
 1

IT-SC book: Core Python Programming

 2

Core Python Programming

Wesley J. Chun
Publisher: Prentice Hall PTR
First Edition December 14, 2000
ISBN: 0-13-026036-3, 816 pages

IT-SC book: Core Python Programming

 3

Review

New to Python? This is the developer's guide to Python development!

Learn the core features of Python as well as advanced topics such as regular expressions,
multithreaded programming, Web/Internet and network development, GUI development
with Tk(inter) and more

Also includes features found in the new Python 1.6 and 2.0 releases

CD-ROM: Complete Python distributions (source code, documentation, and various
binaries) plus all example scripts in the book

Python is an Internet and systems programming language that is soaring in popularity in
today's fast-paced software development environment, and no wonder: it's simple (yet
robust), object-oriented (yet can be used as a procedural language), extensible, scalable
and features an easy to learn syntax that is clear and concise. Python combines the power
of a compiled object language like Java and C++ with the ease of use and rapid
development time of a scripting language. In fact, its syntax is so easy to understand that
you are more likely to pick it up faster than any of the other popular scripting languages
in use today!

In Core Python Programming, Internet software engineer and technical trainer Wesley
Chun provides intermediate and experienced developers all they need to know to learn
Python-fast. Like all Core Series books, Core Python Programming delivers hundreds of
industrial-strength code snippets and examples, all targeted at professional developers
who want to leverage their existing skills! In particular, Core Python Programming
presents numerous interactive examples that can be entered into the Python interpreter
right in front of you! Finally, we present a chapter that shows you step-by-step how to
extend Python using C or C++.

Python syntax and style

Development and Run-time Environments

Objects and Python memory management

Standard data types, methods, and operators

Loops and conditionals

IT-SC book: Core Python Programming

 4

Files and Input/Output

Exceptions and error handling

Functions, scope, arguments, and functional programming

Importing modules and module attributes

Object-oriented Programming with classes, methods, and instances

Callable Objects

Extending Python

Coverage of the Python standard module library and client-server application
development includes comprehensive introductions to the following topics in Python
programming:

Regular expressions

TCP/IP and UDP/IP Network programming using sockets

Operating system interface

GUI development with Tk using Tkinter

Multithreaded programming

Interactive Web/CGI/Internet applications

Executing code in a restricted environment

Inheritance, type emulation, operator overloading, and delegation in an OOP environment

Finally, we provide an introduction to the new features introduced in Python 1.6. These
include Unicode string support, the new function invocation syntax which lets the caller
provide a tuple of positional arguments and/or a dictionary of keyword arguments, and
the new string methods. We also provide a glimpse into features that will only be found
in the newer 2.0 release.

Every Core Series book:

DEMONSTRATES how to write commercial-quality code

FEATURES dozens of programs and examples!

FOCUSES on the features and functions most important to real developers

PROVIDES objective, unbiased coverage of cutting-edge technologies-no

IT-SC book: Core Python Programming

 5

hype!

Core Python Programming delivers:

Coverage of the core parts of the Python language

Real-world insights for developing Web/Internet, network, multithreaded and GUI
applications

Tables and charts detailing Python modules, built-in functions, operators, and attributes

Code snippets to try live with Python's interactive interpreter, hammering the concepts
home

Extensive code examples-including several complete sample applications

CD-ROM includes complete Python source code and documentation distributions for
Unix/Linux along with binaries for Windows and Macintosh platforms plus source
code for all examples in the book.

IT-SC book: Core Python Programming

 6

Library of Congress Cataloging-in-Publication Date

Chun, Wesley

Core python / Wesley. Chun.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-026036-3

1. Python (Computer program language) I. Title

QA76.73.P98 C48 2000

005.13'3--dc21 00-047856

IT-SC book: Core Python Programming

 7

Copyright Information

© 2001 Prentice Hall PTR

Prentice-Hall, Inc

Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities.

For more information, contact

Corporate Sales Department,

Prentice Hall PTR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-7141

E-mail (Internet): corpsales@prenhall.com

All products or services mentioned herein are the trademarks or service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Pearson Education P.T.E., Ltd.

To my parents,

who taught me that everybody is different.

IT-SC book: Core Python Programming

 8

And to my wife,

who lives with someone who is different.

IT-SC book: Core Python Programming

 9

Table of Contents

Welcome to Python!
 Style:Technical, Yet Easy Reading
 Author's Experience with Python
 Book Contents
 Part I : Core Python
 Chapter 1 —Welcome to Python!
 Chapter 2 —Getting Started
 Chapter 3 —Syntax and Style
 Chapter 4 —Python Objects
 Chapter 5 —Numbers
 Chapter 6 —Sequences: Strings, Lists, and Tuples
 Chapter 7 —Dictionaries
 Chapter 8 —Conditionals and Loops
 Chapter 9 —Files and Input/Output
 Chapter 10 —Errors and Exceptions
 Chapter 11 —Functions
 Chapter 12 —Modules
 Chapter 13 —Classes and OOP
 Chapter 14 —Execution Environment
 Part II : Advanced Topics
 Chapter 15 —Regular Expressions
 Chapter 16 —Network Programming with Sockets
 Chapter 17 —Multithreaded Programming
 Chapter 18 —GUI Programming with Tkinter
 Chapter 19 —Web Programming
 Chapter 20 —Extending Python
 Optional Sections
 Conventions
 Book Support

Acknowledgements

I: CORE PYTHON

1. Welcome to Python!
 What Is Python?
 History of Python
 Features of Python
 Obtaining Python
 Obtaining Python
 Installing Python
 Running Python
 Python Documentation
 Comparing Python
 JPython and Some Nomenclature
 Exercises

2. Getting Started
 Program Output, the print Statement, and "Hello World!"
 Program Input and the raw_input() Built-in Function

IT-SC book: Core Python Programming

 10

 Comments
 Operators
 Variables and Assignment
 Numbers
 Strings
 Lists and Tuples
 Dictionaries
 Code Blocks Use Indentation
 if Statement
 while Loop
 for Loop and the range() Built-in Function
 Files and the open() Built-in Function
 Errors and Exceptions
 Functions
 Classes
 Modules
 Exercises

3. Syntax and Style
 Statements and Syntax
 Variable Assignment
 Identifiers
 Basic Style Guidelines
 Memory Management
 First Python Application
 Exercises

4. Python Objects
 Python Objects
 Standard Types
 Other Built-in Types
 Internal Types
 Standard Type Operators
 Standard Type Built-in Functions
 Categorizing the Standard Types
 Unsupported Types
 Exercises

5. Numbers
 Introduction to Numbers
 Integers
 Floating Point Real Numbers
 Complex Numbers
 Operators
 Built-in Functions
 Related Modules
 Exercises

6. Sequences: Strings, Lists, and Tuples
 Sequences
 Strings
 Strings and Operators
 String-only Operators

IT-SC book: Core Python Programming

 11

 Built-in Functions
 String Built-in Methods
 Special Features of Strings
 Related Modules
 Summary of String Highlights
 Lists
 Operators
 Built-in Functions
 List Type Built-in Methods
 Special Features of Lists
 Tuples
 Tuple Operators and Built-in Functions
 Special Features of Tuples
 Related Modules
 *Shallow and Deep Copies
 Exercises

7. Dictionaries
 Introduction to Dictionaries
 Operators
 Built-in Functions
 Built-in Methods
 Dictionary Keys
 Exercises

8. Conditionals and Loops
 if statement
 else Statement
 elif (a.k.a. else-if) Statement
 while Statement
 for Statement
 break Statement
 continue Statement
 pass Statement
 else Statement… Take Two
 Exercises

9. Files and Input/Output
 File Objects
 File Built-in Function [open()]
 File Built-in Methods
 File Built-in Attributes
 Standard Files
 Command-line Arguments
 File System
 File Execution
 Persistent Storage Modules
 Related Modules
 Exercises

10. Errors And Exceptions
 What Are Exceptions?
 Exceptions in Python

IT-SC book: Core Python Programming

 12

 Detecting and Handling Exceptions
 *Exceptions as Strings
 *Exceptions as Classes
 Raising Exceptions
 Assertions
 Standard Exceptions
 *Creating Exceptions
 Why Exceptions (Now)?
 Why Exceptions at All?
 Exceptions and the sys Module
 Related Modules
 Exercises

11. Functions
 What Are Functions?
 Calling Functions
 Creating Functions
 Passing Functions
 Formal Arguments
 Positional Arguments
 Default Arguments
 Why Default Arguments?
 Default Function Object Argument Example
 Variable-length Arguments
 Non-keyword Variable Arguments (Tuple)
 Keyword Variable Arguments (Dictionary)
 Calling Functions with Variable Argument Objects
 Functional Programming
 Anonymous Functions and lambda
 Built-in Functions: apply(), filter(), map(), reduce()
 * apply()
 Lines 1 - 4
 Lines 6 - 7
 Lines 9 - 28
 Lines 30-41
 filter()
 map()
 reduce()
 Variable Scope
 *Recursion
 Exercises

12. Modules
 What are Modules?
 Modules and Files
 Namespaces
 Importing Modules
 Importing Module Attributes
 Module Built-in Functions
 Packages
 Other Features of Modules
 Exercises

IT-SC book: Core Python Programming

 13

13. Classes and OOP
 Introduction
 Object-oriented Programming
 Classes
 Class Attributes
 Instances
 Instance Attributes
 Binding and Method Invocation
 Composition
 Subclassing and Derivation
 Inheritance
 Built-in Functions for Classes, Instances, and Other Objects
 Type vs. Classes/Instances
 Customizing Classes with Special Methods
 Privacy
 Delegation
 Related Modules and Documentation
 Exercises

14. Execution Environment
 Callable Objects
 Code Objects
 Executable Object Statements and Built-in Functions
 Executing Other (Python) Programs
 Executing Other (Non-Python) Programs
 Restricted Execution
 Terminating Execution
 Related Modules
 Exercises

II: Advanced Topics

15. Regular Expressions
 Introduction/Motivation
 Special Symbols and Characters for REs
 REs and Python
 Regular Expression Adventures
 Exercises

16. Network Programming
 Introduction
 Sockets: Communication Endpoints
 Network Programming in Python
 Related Modules
 Exercises

17. Multithreaded Programming
 Introduction/Motivation
 Threads and Processes
 Threads and Python
 thread Module
 threading Module
 Exercises

IT-SC book: Core Python Programming

 14

18. GUI Programming with Tkinter
 Introduction
 Tkinter and Python Programming
 Tkinter Examples
 Related Modules and Other GUIs
 Exercises

19. Web Programming
 Introduction
 Web Surfing with Python: Creating Simple Web Clients
 Advanced Web Clients
 CGI: Helping Web Servers Process Client Data
 Building CGI Application
 Advanced CGI
 Web (HTTP) Servers
 Related Modules
 Exercises

20. Extending Python
 Introduction/Motivation
 Related Topics
 Exercises

A.
 Answers to Selected Exercises

B.
 Other Reading and References
 Other Printed References
 Online References

C.
 Python Operator Summary

D.
 What's New in Python 2.0?

IT-SC book: Core Python Programming

 15

Welcome to Python!

Welcome to the wonderful world of Python! As a professional or student with working
knowledge of another high-level programming language, this text was made for you in
your efforts to jump straight into Python with as little overhead as possible. The goal of
this book is to provide text that flows in a conversational style littered with examples to
highlight your path towards Python programming.

At the time of publication, Python 2.0 was just released, so you will definitely have the
latest and greatest. The supplementary CD-ROM has the three most recent versions of
Python: 1.5.2, 1.6, and 2.0, not to mention the most recent release of the Java version of
the Python interpreter, JPython (a.k.a. Jython).

Style:Technical, Yet Easy Reading

Rather than strictly a "beginners'" book or a pure, hard-core computer science reference
book, my instructional experience indicates that an easy-to-read, yet technically-oriented
book serves our purpose the best, and that is to get you up-to-speed on Python as quickly
as possible, so that you can apply it to your tasks post haste. We will introduce concepts
coupled with appropriate examples to expedite the learning process. At the end of each
chapter you will find numerous exercises to reinforce some of the concepts and ideas
acquired in your reading.

After the obligatory introduction to Python, but before heading to the core of the
language, we take a "quick plunge" into Python with the "Getting Started" chapter. The
intention of this chapter is for those who wish to temporarily dispense of formal reading
and get their hands dirty with Python immediately. If you do not wish to travel this path,
you may proceed as normal to the next set of chapters, an introduction to Python objects.
Python's primitive data types, numbers, strings, lists, tuples, and dictionaries make up the
next three chapters.

Python's error-handling capability is extremely useful to both the programmer and the
user, and we address that topic in a separate chapter. Finally, the largest parts of the
Python "core" we cover will be functions, modules, and classes… each in its own chapter.
The final chapter of the text provides insight on how Python may be extended. The last
section of the book is a mini-reference guide in the appendix. There we spill the beans on
the core modules of the standard library, highlight the operators and built-in operators
and functions for the Python types, provide solutions to selected exercises, and conclude
with a small glossary of terms.

Author's Experience with Python

IT-SC book: Core Python Programming

 16

I discovered Python several years ago at a company called Four11. At the time, the
company had one major product, the Four11.com White Page directory service. Python
was being used to design the Rocketmail web-based email service that would eventually
one day evolve into what is Yahoo!Mail today.

In addition to the use of C++, much of the controlling software and web front-end were
done completely in Python. I participated in work done on the Yahoo!Mail address book
and spellchecker. Since then, Python's appearance has spread to other Yahoo! sites,
including People Search, Yellow Pages, and Maps and Driving Directions, just to name a
few.

Although Python was new to me at the time, it was fairly easy to pick up; much simpler
than other languages that I have learned in the past. The scarcity of the number of
textbooks at the time led me to primarily use the Library Reference and Quick Reference
Guide as my tools in learning, and also led to the motivation of the book you are reading
right now.

Book Contents

This book is divided into two main sections. The first part, taking up about two-thirds of
the text, gives you treatment of the "core" part of the language, and the second part
provides a set of various advanced topics to show what you can build using Python.

Python is everywhere—sometimes it is amazing to discover who is using Python and
what they are doing with it—and although we would have loved to produce additional
chapters on such topics as Databases (RDBMSs, SQL, etc.), CGI Processing with
HTMLgen, XML, Numerical/Scientific Processing, Visual and Graphics Image
Manipulation, and Zope, there simply wasn't enough time to develop these topics into
their own chapters. However, we are certainly glad that we were at least able to provide
you with a good introduction to many of the key areas of Python development.

Here is a chapter-by-chapter guide:

Part I: Core Python

Chapter 1—Welcome to Python!

We begin by introducing Python to you, its history, features, benefits, etc., as well as how
to obtain and install Python on your system.

Chapter 2—Getting Started

If you are an experienced programmer and just want to see "how it's done" in Python, this
is the right place to go. We introduce the basic Python concepts and statements, and
because many of these would be familiar to you, you would simply learn the proper

IT-SC book: Core Python Programming

 17

syntax in Python and can get started right away on your projects without sacrificing too
much reading time.

Chapter 3—Syntax and Style

This section gives you a good overview of Python's syntax as well as style hints. You will
also be exposed to Python's keywords and its memory management ability. Your first
Python application will be presented at the end of the chapter to give you an idea of what
real Python code looks like.

Chapter 4—Python Objects

This chapter introduces Python objects. In addition to generic object attributes, we will
show you all of Python's data types and operators, as well as show you different ways to
categorize the standard types. Built-in functions that apply to most Python objects will
also be covered.

Chapter 5—Numbers

Python has four numeric types: regular or "plain" integers, long integers, floating point
real numbers, and complex numbers. You will learn about all four here, as well as the
operators and built-in functions that apply to numbers.

Chapter 6—Sequences: Strings, Lists, and Tuples

Your first meaty chapter will expose you to all of Python's powerful sequence types:
strings, lists, and tuples. We will show you all the built-in functions, methods, and special
features, which apply to each type as well as all their operators.

Chapter 7—Dictionaries

Dictionaries are Python's mapping or hashing type. Like other data types, dictionaries
also have operators and applicable built-in functions and methods.

Chapter 8—Conditionals and Loops

Like many other high-level languages, Python supports loops such as for and while, as
well as if statements (and related). Python also has a built-in function called range()
which enables Python's for loop to behave more like a traditional counting loop rather
than the foreach iterative type loop that it is.

Chapter 9—Files and Input/Output

In addition to standard file objects and input/output, this chapter introduces you to file
system access, file execution, and persistent storage.

IT-SC book: Core Python Programming

 18

Chapter 10—Errors and Exceptions

One of Python's most powerful constructs is its exception handling ability. You can see a
full treatment of it here, instruction on how to raise or throw exceptions, and more
importantly, how to create your own exception classes.

Chapter 11—Functions

Creating and calling functions are relatively straightforward, but Python has many other
features that you will find useful, such as default arguments, named or keyword
arguments, variable-length arguments, and some functional programming constructs. We
also dip into variable scope and recursion briefly.

Chapter 12—Modules

One of Python's key strengths is in its ability to be extended. This feature allows for
"plug-n-play" access as well as promotes code reuse. Applications written as modules can
be imported for use by other Python modules with a single line of code. Furthermore,
multiple module software distribution can be simplified by using packages.

Chapter 13—Classes and OOP

Python is a fully object-oriented programming language and was designed that way from
the beginning. However, Python does not require you to program in such a manner—you
may continue to develop structural/procedural code as you like, and can transition to
"OO" programming anytime you are ready to take advantage of its benefits. Likewise,
this chapter is here to guide you through the concepts as well as advanced topics, such as
operator overloading, customization, and delegation.

Chapter 14—Execution Environment

The term "execution" can mean many different things, from callable and executable
objects to running other programs (Python or otherwise). We discuss these topics in this
chapter, as well as limited restricted execution and different ways of terminating
execution.

Part II: Advanced Topics

Chapter 15—Regular Expressions

Regular expressions are a powerful tool used for pattern matching, extracting, and search-
and-replace functionality. Learn about them here.

IT-SC book: Core Python Programming

 19

Chapter 16—Network Programming with Sockets

So many applications today need to be network-oriented. You have to start somewhere.
In this chapter, you will learn to create clients and servers, using TCP/IP and UDP/IP.

Chapter 17—Multithreaded Programming

Multithreaded programming is a powerful way to improve the execution performance of
many types of application. This chapter ends the drought of written documentation on
how to do threads in Python by explaining the concepts and showing you how to
correctly build a Python multithreaded application.

Chapter 18—GUI Programming with Tkinter

Based on the Tk graphical toolkit, Tkinter is Python's default GUI development module.
We introduce Tkinter to you by showing you how to build simple sample GUI
applications (say that 10 times, real fast!). One of the best ways to learn is to copy, and
by building on top of some of these applications, you will be on your way in no time. We
conclude the chapter by presenting a more complex example.

Chapter 19—Web Programming

Web programming using Python takes three main forms… Web clients, Web servers, and
the popular Common Gateway Interface applications which help Web servers deliver
dynamically-generated Web pages. We will cover them all in this chapter: simple and
advanced Web clients and CGI applications, as well as how to build your own Web
server.

Chapter 20—Extending Python

We mentioned earlier how powerful it is to have the ability to reuse code and extend the
language. In pure Python, these extensions are modules, but you can also develop lower-
level code in C, C++, or Java, and interface those with Python in a seamless fashion.
Writing your extensions in a lower-level programming language gives you added
performance and some security (because the source code does not have to be revealed).
This final chapter of the book walks you step-by-step through the extension building
process.

Optional Sections

Subsections or exercises marked with an asterisk (*) may be skipped due to their
advanced or optional nature. They are usually self-contained segments that can be
addressed at another time.

IT-SC book: Core Python Programming

 20

Those of you with enough previous programming knowledge and who have set up their
Python development environments can skip the first two chapters and go straight to
Chapter 2—Getting Started—where you can absorb Python into their system and be off
to the races.

Conventions

Python interpreters are available in both C and Java. To differentiate these two
interpreters, the original implementation written in C is referred to as "CPython" while
the native Java implementation is called "JPython." We would also like to define
"Python" as the actual language definition while CPython and JPython are two
interpreters that implement the language. We will refer to "python" as the executable file
name for CPython and "jpython" as the executable file name for JPython.

All program output and source code are in Courier font. Python keywords appear in
Courier-Bold font. Lines of output with three leading greater than signs, >>>, represent
the Python interpreter prompt.

"Core Notes" are highlighted with this logo.

"Core Style" notes are highlighted with this logo.

"Core Module" notes are highlighted with this logo.

New features to Python are highlighted with this logo. The version these features first
appeared in Python is given inside the logo.

Book Support

I welcome any and all feedback:the good, the bad, and the ugly. If you have any
comments, suggestions, kudos, complaints, bugs, questions… anything at all, feel free to
contact me at cyberweb_consulting@yahoo.com.

You will find errata and other information at the book's Web site located on the Python
Starship:

http://starship.python.net/crew/wesc/cpp/

Acknowledgements

The first thanks belongs to Guido van Rossum, without whom this text would not even
exist. With Python, Guido has created a veritable "holy grail" of languages which is an

IT-SC book: Core Python Programming

 21

"oh so perfect" tool in so many fields which involve programming, not to mention being
a pleasure to use.

I would also like to express hearty congratulations and a warm thanks to all technical and
non-technical, official and non-official, reviewers involved in this project. Without you,
this text would have never been completed. In no particular order, you are presented in
the following table. In particular, I'd like to recognize Dowson Tong, Dr. Candelaria de
Ram, and Jim Ahlstrom for their numerous nitpicks and helpful comments throughout the
entire text (you must be tired of my writing by now!); Dr. Cay Horstmann, Java guru and
editor of Prentice Hall's Core series for his up-front and targeted remarks.

Thanks goes to my students at UC Santa Cruz Extension, who had to not only endure an
incomplete and buggy version of this text, but also all the homework they endured in my
Python programming courses. Thanks also goes to my Program Assistant, Ezequiel Jaime,
who helped coordinate all the logistics of the C and Python courses; and I can't leave out
James P. Prior, who, as the BASIC, FORTRAN (punch cards!), 6502 Assembly, and
Pascal instructor to many of us at Pinole Valley High School, encouraged us to pick up
the art of programming as well as a wry and punishing sense of humor.

Why am I writing this book? Because my thesis advisors at UC Santa Barbara, Louise
Moser and P. Michael Melliar-Smith, wanted grad students who

Table Team of Technical Reviewers
Name Affiliation (no-spam) E-mail Address

Guido van Rossum creator of Python, PythonLabs guido at python.org
Dowson Tong dtstong at yahoo.com
James C. Ahlstrom Vice President Interet Corp. jim at interet.com
Dr. S. Candelaria de
Ram

Chief of Research and Technology,
Cognizor

cognite at zianet.com

Cay S. Horstmann San Jose State University cay at horstmann.com
Michael Santos Green Hills Software michael at

alpha.ece.ucsb.edu
Greg Ward gward at python.net
Vincent C. Rubino Technical Yahoo!, Yahoo! vcr at yahoo.com
Martijn Faassen faassen at vet.uu.nl
Emile van Sebille emile at fenx.com
Raymond Tsai U. C. San Diego rehmatlh at yahoo.com
Albert L. Anders Principal Engineer Manage.COM aanders at pacbell.net
Fredrik Lundh effbot at telia.com
Cameron Laird Vice President Phaseit, Inc. claird at NeoSoft.com
Fred L. Drake, Jr. fdrake at acm.org
Jeremy Hylton jeremy at alum.mit.edu
Steve Yoshimoto syosh at yahoo.com

could write, and asked to make sure before letting me in the lab. I'm indebted to you both
for not only encouraging your students to work hard and write, but write well.

IT-SC book: Core Python Programming

 22

Thanks to Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart Elliott,
David Paton, and the rest of the Project for the many years (including the year it took to
write this book!) of listening pleasure and producing the most intellectual, thought-
provoking, and technically sound music to have ever crossed my ears. I must also thank
the many Projectologist Roadkillers for their kind words of support for my own "project"
here.

The entire staff of Prentice Hall PTR, most notably my Acquisitions Editor Mark Taub,
Production Editor Kathleen M. Caren, Managing Editor Lisa Iarkowski, Page Formatter
Eileen Clark, as well as the rest of the staff at PHPTR have been invaluable in helping me
put this project together, and allowing me to join the list of all-star authors of the Core
series. Tom Post is the graphic artist behind some of the cool figures you see in the book.
The ugly ones are solely my responsibility.

As I am Macintosh-challenged, I would like to thank Pieter Claerhout for providing the
cool MacPython screen snapshot in the introductory chapter. I would also like to thank
Albert Anders, who provided the inspiration for, as well as being the co-author of, the
chapter on multithreaded programming.

Thanks also goes to Aahz for his multithreaded and direct remarks on the MT chapter (I
get it now!), as well as inspiration for the Crawler in the Web programming chapter,
fellow Yahoo! Jeffrey E. F. Friedl, "regexer-extraordinaire," who gave me valuable
feedback for the Regular Expressions chapter, and Fredrik Lundh, another regex
luminary and Tk(inter) expert, for valuable comments and suggestions for those
corresponding chapters. Catriona (Kate) Johnston gave me wonderful newbie feedback
on the Web programming chapter. I'd also like to thank David Ascher (Python expert),
Reg Charney (fearless leader of the Silicon Valley chapter of the Association of C/C++
Users), Chris Tismer (Python tinkerer), and Jason Stillwell for their helpful comments.

I would also like to thank my family, friends and the Lord above, who have kept me safe
and sane during this crazy period of late nights and abandonment. And finally, I would
like give a big thanks to all those who believed in me (you know who you are!)—I
couldn't have done it without you. Those who didn't… well, you know what you can
do! :-)

W. J. Chun

Silicon Valley, CA

(it's not as much a place as it is a state of sanity)

November 2000

IT-SC book: Core Python Programming

 23

Part I: CORE PYTHON

IT-SC book: Core Python Programming

 24

Chapter 1. Welcome to Python!

Chapter Topics

What is Python, Its History and Features

Where to Obtain Python

How to Install and Run Python

Python Documentation

Comparing Python

Our introductory chapter provides some background on what Python is, where it came
from, and what some of its "bullet points" are. Once we have stimulated your interest and
enthusiasm, we describe how you can obtain Python and get it up and running on your
system. Finally, the exercises at the end of the chapter will make you comfortable with
using Python, both in the interactive interpreter and also in creating scripts and executing
them.

What Is Python?

Python is an uncomplicated and robust programming language that delivers both the
power and complexity of traditional compiled languages along with the ease-of-use (and
then some) of simpler scripting and interpreted languages. You'll be amazed at how
quickly you'll pick up the language as well as what kind of things you can do with Python,
not to mention the things that have already been done. Your imagination will be the only
limit.

History of Python

Work on Python began in late 1989 by Guido van Rossum, then at CWI in the
Netherlands, and eventually released for public distribution in early 1991. How did it all
begin? Innovative languages are usually born from one of two motivations: a large well-
funded research project or general frustration due to the lack of tools that were needed at
the time to accomplish mundane and/or time-consuming tasks, many of which could be
automated.

At the time, van Rossum was a researcher with considerable language design experience
with the interpreted language ABC, also developed at CWI, but he was unsatisfied with
its ability to be developed into something more. Some of the tools he envisioned were for
performing general system administration tasks, so he also wanted access to the power of
system calls that were available through the Amoeba distributed operating system.

IT-SC book: Core Python Programming

 25

Although an Amoeba-specific language was given some thought, a generalized language
made more sense, and late in 1989, the seeds of Python were sown.

Features of Python

Although practically a decade in age, Python is still somewhat relatively new to the
general software development industry. We should, however, use caution with our use of
the word "relatively," as a few years seem like decades when developing on "Internet
time."

When people ask, "What is Python?" it is difficult to say any one thing. The tendency is
to want to blurt out all the things that you feel Python is in one breath. Python is (fill-in-
the-blanks here). Just what are some of those blanks? For your sanity, we will elucidate on
each here… one at a time.

High-level

It seems that with every generation of languages, we move to a higher level. Assembly
was a godsend for those who struggled with machine code, then came FORTRAN, C, and
Pascal, all of which took computing to another plane and created the software
development industry. These languages then evolved into the current compiled systems
languages C++ and Java. And further still we climb, with powerful, system-accessible,
interpreted scripting languages like Tcl, Perl, and Python. Each of these languages has
higher-level data structures that reduce the "framework" development time which was
once required. Useful types like Python's lists (resizeable arrays) and dictionaries (hash
tables) are built into the language. Providing these crucial building blocks encourages
their use and minimizes development time as well as code size, resulting in more
readable code. Implementing them in C is complicated and often frustrating due to the
necessities of using structures and pointers, not to mention repetitious if some forms of
the same data structures require implementation for every large project. This initial setup
is mitigated somewhat with C++ and its use of templates, but still involves work that may
not be directly related to the application that needs to be developed.

Object-oriented

Object-oriented programming (OOP) adds another dimension to structured and
procedural languages where data and logic are discrete elements of programming. OOP
allows for associating specific behaviors, characteristics, and/or capabilities with the data
that they execute on or are representative of. The object-oriented nature of Python was
part of its design from the very beginning. Other OO scripting languages include
SmallTalk, the original Xerox PARC language that started it all, and Netscape's
JavaScript.

Scalable

IT-SC book: Core Python Programming

 26

Python is often compared to batch or Unix shell scripting languages. Simple shell scripts
handle simple tasks. They grow (indefinitely) in length, but not truly in depth. There is
little code-reusability and you are confined to small projects with shell scripts. In fact,
even small projects may lead to large and unwieldy scripts. Not so with Python, where
you can grow your code from project to project, add other new or existing Python
elements, and reuse code at your whim. Python encourages clean code design, high-level
structure, and "packaging" of multiple components, all of which deliver the flexibility,
consistency, and faster development time required as projects expand in breadth and
scope.

The term "scalable" is most often applied to measuring hardware throughput and usually
refers to additional performance when new hardware is added to a system. We would like
to differentiate this comparison with ours here, which tries to inflect the notion that
Python provides basic building blocks on which you can build an application, and as
those needs expand and grow, Python's pluggable and modular architecture allows your
project to flourish as well as maintain manageability.

Extensible

As the amount of Python code increases in your project, you may still be able to organize
it logically due to its dual structured and object-oriented programming environments. Or,
better yet, you can separate your code into multiple files, or "modules" and be able to
access one module's code and attributes from another. And what is even better is that
Python's syntax for accessing modules is the same for all modules, whether you access
one from the Python standard library or one you created just a minute ago. Using this
feature, you feel like you have just "extended" the language for your own needs, and you
actually have.

The most critical portions of code, perhaps those hotspots that always show up in profile
analysis or areas where performance is absolutely required, are candidates for extensions
as well. By "wrapping" lower-level code with Python interfaces, you can create a
"compiled" module. But again, the interface is exactly the same as for pure Python
modules. Access to code and objects occurs in exactly the same way without any code
modification whatsoever. The only thing different about the code now is that you should
notice an improvement in performance. Naturally, it all depends on your application and
how resource-intensive it is. There are times where it is absolutely advantageous to
convert application bottlenecks to compiled code because it will decidedly improve
overall performance.

This type of extensibility in a language provides engineers with the flexibility to add-on
or customize their tools to be more productive, and to develop in a shorter period of time.
Although this feature is self-evident in mainstream third-generation languages (3GLs)
such as C, C++, and even Java, it is rare among scripting languages. Other than Python,
true extensibility in a current scripting language is readily available only in the Tool
Command Language (TCL). Python extensions can be written in C and C++ for CPython
and in Java for JPython.

IT-SC book: Core Python Programming

 27

Portable

Python is available on a wide variety of platforms (see Section 1.4), which contributes to
its surprisingly rapid growth in today's computing domain. Because Python is written in
C, and because of C's portability, Python is available on practically every type of system
with a C compiler and general operating system interfaces.

Although there are some platform-specific modules, any general Python application
written on one system will run with little or no modification on another. Portability
applies across multiple architectures as well as operating systems.

Easy-to-learn

Python has relatively few keywords, simple structure, and a clearly defined syntax. This
allows the student to pick up the language in a relatively short period of time. There is no
extra effort wasted in learning completely foreign concepts or unfamiliar keywords and
syntax. What may perhaps be new to beginners is the object-oriented nature of Python.
Those who are not fully-versed in the ways of object-oriented programming (OOP) may
be apprehensive about jumping straight into Python, but OOP is neither necessary nor
mandatory. Getting started is easy, and you can pick up OOP and use when you are ready
to.

Easy-to-read

Conspicuously absent from the Python syntax are the usual symbols found in other
languages for accessing variables, code block definition, and pattern-matching. These
include: dollar signs ($), semicolons (;), tildes (~), etc. Without all these distractions,
Python code is much more clearly defined and visible to the eyes. In addition, much to
many programmers' dismay (and relief), Python does not give as much flexibility to write
obfuscated code as compared to other languages, making it easier for others to understand
your code faster and vice versa. Being easy-to-read usually leads to a language's being
easy-to-learn, as we described above. We would even venture to claim that Python code
is fairly understandable, even to a reader who has never seen a single line of Python
before. Take a look at the examples in the next chapter, Getting Started, and let us know
how well you fare.

Easy-to-maintain

Maintaining source code is part of the software development lifecycle. Your software is
permanent until it is replaced or obsoleted, and in the meantime, it is more likely that
your code will outlive you in your current position. Much of Python's success is that
source code is fairly easy-to-maintain, dependent, of course, on size and complexity.
However, this conclusion is not difficult to draw given that Python is easy-to-learn and
easy-to-read. Another motivating advantage of Python is that upon reviewing a script you
wrote six months ago, you are less likely to get lost or require pulling out a reference
book to get reacquainted with your software.

IT-SC book: Core Python Programming

 28

Robust

Nothing is more powerful than allowing a programmer to recognize error conditions and
provide a software handler when such errors occur. Python provides "safe and sane" exits
on errors, allowing the programmer to be in the driver's seat. When Python exits due to
fatal errors, a complete stack trace is available, providing an indication of where and how
the error occurred. Python errors generate "exceptions," and the stack trace will indicate
the name and type of exception that took place. Python also provides the programmer
with the ability to recognize exceptions and take appropriate action, if necessary. These
"exception handlers" can be written to take specific courses of action when exceptions
arise, either defusing the problem, redirecting program flow, or taking clean-up or other
maintenance measures before shutting down the application gracefully. In either case, the
debugging part of the development cycle is reduced considerably due to Python's ability
to help pinpoint the problem faster rather than just being on the hunt alone. Python's
robustness is beneficial for both the software designer as well as for the user. There is
also some accountability when certain errors occur which are not handled properly. The
stack trace which is generated as a result of an error reveals not only the type and location
of the error, but also in which module the erroneous code resides.

Effective as a Rapid Prototyping Tool

We've mentioned before how Python is easy-to-learn and easy-to-read. But, you say, so is
a language like BASIC. What more can Python do? Unlike self-contained and less
flexible languages, Python has so many different interfaces to other systems that it is
powerful enough in features and robust enough that entire systems can be prototyped
completely in Python. Obviously, the same systems can be completed in traditional
compiled languages, but Python's simplicity of engineering allows us to do the same
thing and still be home in time for supper. Also, numerous external libraries have already
been developed for Python, so whatever your application is, someone may have traveled
down that road before. All you need to do is plug-'n'-play (some assembly required, as
usual). Some of these libraries include: networking, Internet/Web/CGI, graphics and
graphical user interface (GUI) development (Tkinter), imaging (PIL), numerical
computation and analysis (NumPy), database access, hypertext (HTML, XML, SGML,
etc.), operating system extensions, audio/visual, programming tools, and many others.

A Memory Manager

The biggest pitfall with programming in C or C++ is that the responsibility of memory
management is in the hands of the developer. Even if the application has very little to do
with memory access, memory modification, and memory management, the programmer
must still perform those duties, in addition to the original task at hand. This places an
unnecessary burden and responsibility upon the developer and often provides an extended
distraction.

Because memory management is performed by the Python interpreter, the application
developer is able to steer clear of memory issues and focus on the immediate goal of just

IT-SC book: Core Python Programming

 29

creating the application that was planned in the first place. This lead to fewer bugs, a
more robust application, and shorter overall development time.

Interpreted and (Byte-) Compiled

Python is classified as an interpreted language, meaning that compile-time is no longer a
factor during development. Traditionally purely interpreted languages are almost always
slower than compiled languages because execution does not take place in a system's
native binary language. However, like Java, Python is actually byte-compiled, resulting
in an intermediate form closer to machine language. This improves Python's performance,
yet allows it to retain all the advantages of interpreted languages.

NOTE

Python source files typically end with the .py extension. The source is byte-compiled
upon being loaded by the interpreter or by being byte-compiled explicitly. Depending on
how you invoke the interpreter, it may leave behind byte-compiled files with a .pyc
or .pyo extension. You can find out more about file extensions in Chapter 12, Modules.

Obtaining Python

As we alluded to earlier in Section 1.3.5, Python is available on a wide variety of
platforms:

Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, et al.)

Win 9x/NT/2000 (Windows 32-bit systems)

Macintosh (PPC, 68K)

OS/2

DOS (multiple versions)

Windows 3.x

PalmOS

Windows CE

Acorn/RISC OS

BeOS

Amiga

VMS/OpenVMS

IT-SC book: Core Python Programming

 30

QNX

VxWorks

Psion

There are currently three contemporary versions of Python today. 1.5.2 is the most stable
version, having been released over a year and a half ago. Python 1.6, recently made
available to the public in early September 2000 introduces several major new features
and improvements over the 1.5 series. However, 1.6 is seen as more of a transition to the
new Python 2.0, which was released in mid-October 2000. Which version should you use?
The answer is based on your needs and expectations.

If you don't need all the fancy new features, but do desire rock solid stability, code which
is backwards-compatible with the older releases (and cohabitating with existing Python
installations), and is available on the greatest number of platforms, 1.5.2 is the obvious
choice.

For all new projects, those without backwards dependence on older versions or Python,
and those either wanting or needing to take advantage of the most crucial new features
such as Unicode support, not to mention wanting to have access to the latest and greatest,
cutting edge Python technology, you should start with 2.0.

1.6 is an alternative for those migrating from 1.5.2 to 2.0 who need a migration path, but
is otherwise not recommended since it was only the most current version of Python by
slightly over a month's time.

Obtaining Python

For the most up-to-date and current source code, binaries, documentation, news, etc.,
check either the main Python language site or the PythonLabs Web site:

 http://www.python.org
(community home page)
http://www.pythonlabs.com (commercial home page)

If you do not have access to the Internet readily available, all three versions (source code
and binaries) are available on the CD-ROM in the back of the book. The CD-ROM also
features the complete online documentation sets viewable via offline browsing or as
archive files which can be installed on hard disk. All of the code samples in the book are
there as well as the Online Resources appendix section (featured as the Python "hotlist").

Installing Python

Platforms with ready-to-install binaries require only the file download and initiation of
the installation application. If a binary distribution is not available for your platform, you

IT-SC book: Core Python Programming

 31

need to obtain and compile the source code manually. This is not as bad an option as it
may seem at first. Manually building your own binaries offers the most flexibility.

You can choose what features to put into your interpreter and which to leave out. The
smaller your executable, the faster it will load and run. For example, on Unix systems,
you may wish to install the GNU readline module. This allows you to scroll back
through Python commands and use Emacs- or vi-like key bindings to scroll through,
access, and perhaps edit previous commands. Other popular options include incorporating
Tkinter so that you can build GUI applications or the threading library to create multi-
threaded applications. All of the options we described can be added by editing the
Modules/Setup file found in your source distribution.

In general, these are the steps when building your own Python interpreter:

download and extract files, customizing build files (if applicable)

run ./configure script

make

make install

Python is usually installed in a standard location so that you can find it rather easily. On
Unix machines, the executable is usually installed in /usr/local/bin while the libraries
are in /usr/local/lib/python1.x where the 1.x is the version of Python you are using.

On DOS and Windows, you will usually find Python installed in C:\Python or
C:\Program Files\Python. Since DOS does not support long names like "Program
Files," it is usually aliased as "Progra~1," so if you are in a DOS window in a Windows
system, you will have to use the short name to get to Python. The standard library files
are typically installed in C:\Program Files\Python\Lib.

Running Python

There are three different ways to start Python. The simplest way is by starting the
interpreter interactively, entering one line of Python at a time for execution. Another way
to start Python is by running a script written in Python. This is accomplished by invoking
the interpreter on your script application. Finally, you can run from a graphical user
interface (GUI) from within an integrated development environment (IDE). IDEs
typically feature additional tools such as debuggers and text editors.

Interactive Interpreter from the Command-line

You can enter Python and start coding right away in the interactive interpreter by starting
it from the command line. You can do this from Unix, DOS, or any other system which
provides you a command-line interpreter or shell window. One of the best ways to start

IT-SC book: Core Python Programming

 32

learning Python is to run the interpreter interactively. Interactive mode is also very useful
later on when you want to experiment with specific features of Python.

Unix

To access Python, you will need to type in the full pathname to its location unless you
have added the directory where Python resides to your search path. Common places
where Python is installed include /usr/bin and /usr/local/bin.

We recommend that you add Python (i.e., the executable file python, or jpython if you
wish to use the Java version of the interpreter) to your search path because you do not
want to have to type in the full pathname every time you wish to run interactively. Once
this is accomplished, you can start the interpreter with just its name.

To add Python to your search path, simply check your login start-up scripts and look for a
set of directories given to the set path or PATH= directive. Adding the full path to
where your Python interpreter is located is all you have to do, followed by refreshing
your shell's path variable. Now at the Unix prompt (% or $, depending on your shell), you
can start the interpreter just by invoking the name python (or jpython), as in the
following:

% python

Once Python has started, you'll see the interpreter startup message indicating version and
platform and be given the interpreter prompt ">>>" to enter Python commands. Figure1-1
is a screen shot of what Python looks like when you start it in a Unix environment:

Figure 1-1. Starting Python in a Unix (Solaris) Window

IT-SC book: Core Python Programming

 33

DOS

To add Python to your search path, you need to edit the C:\autoexec.bat file and add
the full path to where your interpreter is installed. It is usually either C:\Python or
C:\Program Files \Python (or its short DOS name equivalent C:\Progra~1\Python).
From a DOS window (either really running in DOS or started from Windows), the
command to start Python is the same as Unix, python. The only difference is the prompt,
which is C:\>.

C:> python

Figure 1-2. Starting Python in a DOS Window

Command-line Options

When starting Python from the command-line, additional options may be provided to the
interpreter. Here are some of the options to choose from:

-d provide debug output
-O generate optimized bytecode (resulting in .pyo files)
-S do not run import site to look for Python paths on startup
-v verbose output (detailed trace on import statements)

-X disable class-based built-in exceptions (just use strings); obsolete starting
with version 1.6

-c
cmd run Python script sent in as cmd string

file run Python script from given file (see below)

As a Script from the Command-line

IT-SC book: Core Python Programming

 34

From Unix, DOS, or any other version with a command-line interface, a Python script
can be executed by invoking the interpreter on your application, as in the following:

C:\>python script.py
unix%python script.py

Most Python scripts end with a file extension of .py, as indicated above.

It is also possible in Unix to automatically launch the Python interpreter without
explicitly invoking it from the command-line. If you are using any Unix-flavored system,
you can use the shell-launching ("sh-bang") first line of your program:

#!/usr/local/bin/python

The "file path," i.e., the part that follows the "#!," is the full path location of the Python
interpreter. As we mentioned before, it is usually installed in /usr/local/bin or
/usr/bin. If not, be sure to get the exact pathname correct so that you can run your
Python scripts. Pathnames that are not correct will result in the familiar "Command not
found" error message.

As a preferred alternative, many Unix systems have a command named env, either
installed in /bin or /usr/bin, that will look for the Python interpreter in your path. If
you have env, your startup line can be changed to something like this:

#!/usr/bin/env python

env is useful when you either do not know exactly where the Python executable is
located, or if it changes location often, yet still remains available via your directory path.
Once you add the proper startup directive to the beginning of your script, it becomes
directly executable, and when invoked, loads the Python interpreter first, then runs your
script. As we mentioned before, Python no longer has to be invoked explicitly from the
command. You only need the script name:

unix%
script.py

Be sure the file permission mode allows execution first. There should be an 'rwx' flag
for the user in the long listing of your file. Check with your system administrator if you
require help in finding where Python is installed or if you need help with file permissions
or the chmod (CHange MODe) command.

IT-SC book: Core Python Programming

 35

DOS does not support the auto-launching mechanism; however, Windows does provide a
"file type" interface. This interface allows Windows to recognize file types based on
extension names and to invoke a program to "handle" files of predetermined types. For
example, if you install Python with PythonWin (see below), double-clicking on a Python
script with the .py extension will invoke Python or PythonWin IDE (if you have it
installed) to run your script.

In an Integrated Development Environment

You can run Python from a graphical user interface (GUI) environment as well. All you
need is a GUI application on your system that supports Python. If you have found one,
chances are that it is also an IDE (integrated development environment). IDEs are more
than just graphical interfaces. They typically have source code editors and trace and
debugging facilities.

Unix

IDLE is the very first Unix IDE for Python. It was also developed by Guido and made its
debut in Python 1.5.2. IDLE either stands for IDE with a raised "L," as in Integrated
DeveLopment Environment. Suspiciously, IDLE also happens to be the name of a Monty
Python troupe member. Hmmm…. IDLE is Tkinter-based, thus requiring you to have
Tcl/Tk installed on your system. Current versions of Python include a distributed
minimal subset of the Tcl/Tk library so that a full install is no longer required.

You will find the idle executable in the Tools subdirectory with the source distribution.
The Tk toolkit also exists on Windows, so IDLE is also available on that platform and on
the Macintosh as well. A screen shot of IDLE in Unix appears in Figure1-3.

Figure 1-3. Starting IDLE in Unix

IT-SC book: Core Python Programming

 36

Windows

PythonWin is the first Windows interface for Python and is an IDE with a GUI. Included
with the PythonWin distribution are a Windows API, COM (Component Object Model,
a.k.a. OLE [Object Linking and Embedding] and ActiveX) extensions. PythonWin itself
was written to the MFC

(Microsoft Foundation Class) libraries, and it can be used as a development environment
to create your own Windows applications.

PythonWin is usually installed in the same directory as Python, in its own subdirectory,
C:\Program Files\Python\Pythonwin as the executable pythonwin.exe. PythonWin
features a color editor, a new and improved debugger, interactive shell window, COM
extensions, and more. A screen snapshot of the PythonWin IDE running on a Windows
machine appears in Figure1-4.

Figure 1-4. PythonWin Environment in Windows

IT-SC book: Core Python Programming

 37

More documentation from the installed software can be found by firing up your web
browser and pointing it to the following location (or wherever your PythonWin is
installed):

file://C:/Program Files/Python/Pythonwin/readme.html

As we mentioned before, IDLE is also available on the Windows platform, due to the
portability of Tcl/Tk and Python/Tkinter. It looks similar to its Unix counterpart
(Figure1-5).

Figure 1-5. Starting IDLE in Windows

IT-SC book: Core Python Programming

 38

From Windows, IDLE can be found in the Tools\idle subdirectory of where your
Python interpreter is found, usually C:\Program Files \Python\Tools\idle. To start
IDLE from a DOS window, invoke idle.py. You can also invoke idle.py from a
Windows environment, but that starts an unnecessary DOS window. Instead, double-click
on idle.pyw.

Macintosh

The Macintosh effort of Python is called MacPython and also available from the main
website, downloadable as either MacBinary or BinHex'd files. Python source code is
available as a Stuff-It archive. This distribution contains all the software you need to run
Python on either the PowerPC or Motorola 68K architectures. MacPython includes an
IDE, the numerical Python (NumPy) module, and various graphics modules, and the Tk
windowing toolkit comes with the package, so IDLE will work on the Mac as well.
Figure1-6 shows what the MacPython environment looks like. Presented in the figure
below are a text window open to edit a Python script as well as a Python "shell" running
the interpreter:

Figure 1-6. Running the IDE in MacPython

IT-SC book: Core Python Programming

 39

Python Documentation

Most of the documentation that you need with Python can be found on the CD-ROM or
the main website. Documentation is available for download in printable format or as
hypertext HTML files for online (or offline) viewing.

If you download the Windows version of Python, the HTML documentation comes with
the distribution as an install option. Be sure to leave the "Help Files" box checked if you
would like to install the HTML files in your Python directory. Once the installation is
complete, you may then access the Python documentation through your web browser by
pointing to the link below or wherever your interpreter is installed:

file://C:/Program Files/Python/Doc/index.html

Also see the Appendix for an exhaustive list of both printed and online documentation for
Python.

Comparing Python

IT-SC book: Core Python Programming

 40

Python has been compared with many languages. One reason is that it provides many
features found in other languages. Another reason is that Python itself is derived from
many other languages, including ABC, Modula-3, C, C++, Algol-68, SmallTalk, and
Unix shell and other scripting languages, to name a few. Python is a virtual "greatest hits"
where van Rossum combined the features he admired most in the other languages he had
studied and brought them together for our programming sanity.

However, more often than not, since Python is an interpreted language, you will find that
most of the comparisons are with Perl, Java, Tcl, and JavaScript. Perl is another scripting
language which goes well beyond the realm of the standard shell scripts. Like Python,
Perl gives you the power of a full programming language as well as system call access.

Perl's greatest strength is in its string pattern matching ability, providing an extremely
powerful regular expression matching engine. This has pushed Perl to become the de
facto language for string text stream filtering, recognition, and extraction, and it is still
the most popular language for developing Internet applications through web servers'
Common Gateway Interface (CGI). However, Perl's obscure and overly-symbolic syntax
is much more difficult to decipher, resulting in a steep learning curve that inhibits the
beginner, frustrating those for whom grasping concepts is impeded by semantics. This,
coupled with Perl's "feature" of providing many ways of accomplishing the same task,
introduces inconsistency and factionization of developers. Finally, all too often the
reference book is required reading to decipher a Perl script which was written just a mere
quarter ago.

Python is often compared to Java because of their similar object-oriented nature and
syntax. Java's syntax, although much simpler than C++'s, can still be fairly cumbersome,
especially if you want to perform just a small task. Python's simplicity offers a much
more rapid development environment that using just pure Java. One major evolution in
Python's relationship with Java is the development of JPython, a Python interpreter
written completely in Java. It is now possible to run Python programs with only the
presence of a Java VM (virtual machine). We will mention more of JPython's advantages
briefly in the following section, but for now we can tell you that in the JPython scripting
environment, you can manipulate Java objects, Java can interact with Python objects, and
you have access to your normal Java class libraries as if Java has always been part of the
Python environment.

Tcl is another scripting language that bears some similarities to Python. Tcl is one of the
first truly easy-to-use scripting languages providing the programmer extensibility as well
as system call access. Tcl is still popular today and perhaps somewhat more restrictive
(due to its limited types) than Python, but it shares Python's ability to extend past its
original design. More importantly, Tcl is often used with its graphical toolkit partner, Tk,
in developing graphical user interface (GUI) applications. Due to its popularity, Tk has
been ported to Perl (Perl/Tk) and Python (Tkinter).

Python has some light functional programming (FP) constructs which likens it to
languages such as Lisp or Scheme. However, it should be noted that Python is not
considered an FP language; therefore, it does provide much more than what you see.

IT-SC book: Core Python Programming

 41

Of all the languages most often compared to Python, JavaScript bears the most
resemblance. It is the most similar syntax-wise as well as also being object-oriented. Any
proficient JavaScript programmer will find that picking up Python requires little or no
effort. Python provides execution outside the web browser environment as well as the
ability to interact with system calls and perform general system tasks commonly handled
by shell scripts.

You can access a number of comparisons between Python and other languages at:

JPython and Some Nomenclature

As we mentioned in the previous section, a Python interpreter completely (re)written in
Java called JPython is currently available. Although there are still minor differences
between both interpreters, they are very similar and provide a comparable startup
environment.

What are the advantages of JPython? JPython…

Can run (almost) anywhere a Java Virtual Machine (JVM) can be found

Provides access to Java packages and class libraries

Furnishes a scripting environment for Java development

Enables ease-of-testing for Java class libraries

Matches object-oriented programming environments

Delivers JavaBeans property and introspection ability

Encourages Python-to-Java development (and vice versa)

Gives GUI developers access to Java AWT/Swing libraries

Utilizes Java's native garbage collector (so CPython's was not implemented)

A full treatment of JPython is beyond the scope of this text, but there is a good amount of
information online. JPython is still an ongoing development project, so keep an eye out
for new features.

Exercises

1-1. Installing Python. Download the Python software or load it from the CD-ROM, and
install it on your system.

1-2. Executing Python. How many different ways are there to run Python?

1-3. Python Standard Library.

IT-SC book: Core Python Programming

 42

(a) Find where the Python executables and standard library modules are installed on your
system.

(b) Take a look at some of the standard library files, for example, string.py. It will help
you get acclimated to looking at Python scripts.

1-4. Interactive Execution. Start the Python interactive interpreter. You can
invoke it by typing in its full pathname or just its name (python or
python.exe) if you haveinstalled its location in your search path. (You can
alsouse the Python interpreter compiled in Java [jpython or jpython.exe] if
you wish.) The startup screen should look like the ones depicted in this
chapter. When you see the ">>>," that means the interpreter is ready to
accept your Python commands.

Try entering the command for the famous Hello World! program by typing print "Hello
World!," then exit the interpreter. On Unix systems, Ctrl-D will send the EOF signal to
terminate the Python interpreter, and on DOS systems, the keypress is Ctrl-Z. Exiting
from windows in graphical user environments like the Macintosh, PythonWin or IDLE
on Windows, or IDLE on Unix can be accomplished by simply closing their respective
windows.

1-5. Scripting. As a follow-up to Exercise 1–4, create "Hello World!" as a Python script
that does exactly the same thing as the interactive exercise above. If you are using the
Unix system, try setting up the automatic startup line so that you can run the program
without invoking the Python interpreter.

1-6. Scripting. Create a script that displays your name, age, favorite color, and a bit about
you (background, interests, hobbies, etc.) to the screen using the print statement.

IT-SC book: Core Python Programming

 43

Chapter 2. Getting Started

This "quick start" section is intended to "flash" Python to you so that any constructs
recognized from previous programming experience can be used for your immediate needs.
The details will be spelled out in succeeding chapters, but a high-level tour is one fast and
easy way to get you into Python and show you what it has to offer. The best way to
follow along is to bring up the Python interpreter in front of you and try some of these
examples, and at the same time you can experiment on your own.

We introduced how to start up the Python interpreter in Chapter 1 as well as in the
exercises (problem 1-4). In all interactive examples, you will see the Python primary
(>>>) and secondary (…) prompts. The primary prompt is a way for the interpreter to
let you know that it is expecting the next Python statement while the secondary prompt
indicates that the interpreter is waiting for additional input to complete the current
statement.

Program Output, the print Statement, and "Hello
World!"

Veterans to software development will no doubt be ready to take a look at the famous
"Hello World!" program, typically the first program that a programmer experiences when
exposed to a new language. There is no exception here.

>>> print 'Hello World!'
Hello World!

The print statement is used to display output to the screen. Those of you who are
familiar with C are aware that the printf() function produces screen output. Many shell
script languages use the echo command for program output.

NOTE

Usually when you want to see the contents of a variable, you use the print statement in
your code. However, from within the interactive interpreter, you can use the print
statement to give you the string representation of a variable, or just dump the variable
raw—this is accomplished by simply giving the name of the variable.

In the following example, we assign a string variable, then use print to display its
contents. Following that, we issue just the variable name.

IT-SC book: Core Python Programming

 44

>>> myString = 'Hello World!'
>>> print myString
Hello World!
>>> myString
'Hello World!'

Notice how just giving only the name reveals quotation marks around the string. The
reason for this is to allow objects other than strings to be displayed in the same manner as
this string —being able to display a printable string representation of any object, not just
strings. The quotes are there to indicate that the object whose value you just dumped to
the display is a string.

One final introductory note: The print statement, paired with the string format operator
(%), behaves even more like C's printf() function:

>>> print "%s is number %d!" % ("Python", 1)

See Section 6.4 for more information on the string format and other operators.

Program Input and the raw_input() Built-in Function

The easiest way to obtain user input from the command-line is with the raw_input()
built-in function. It reads from standard input and assigns the string value to the variable
you designate. You can use the int() built-in function (Python versions older than 1.5
will have to use the string.atoi() function) to convert any numeric input string to an
integer representation.

>>> user = raw_input('Enter login name: ')
Enter login name: root
>>> print 'Your login is:', user
Your login is: root

The above example was strictly for text input. A numeric string input (with conversion to
a real integer) example follows below:

>>> num = raw_input('Now enter a number: ')
Now enter a number: 1024
>>> print 'Doubling your number: %d' % (int(num) * 2)
Doubling your number: 2048

IT-SC book: Core Python Programming

 45

The int() function converts the string num to an integer, which is the reason why we
need to use the %d (indicates integer) with the string format operator. See Section 6.5.3
for more information in the raw_input() built-in function.

Comments

As with most scripting and Unix-shell languages, the hash/pound (#) sign signals that a
comment begins right from the # and continues till the end of the line.

>>> # one comment
>>> print 'Hello World!' # another comment
Hello World!

Operators

The standard mathematical operators that you are familiar with work the same way in
Python as in most other languages.

+ - * / % **

Addition, subtraction, multiplication, division, and modulus/remainder are all part of the
standard set of operators. In addition, Python provides an exponentiation operator, the
double star/asterisk (**). Although we are emphasizing the mathematical nature of these
operators, please note that some of these operators are overloaded for use with other data
types as well, for example, strings and lists.

>>> print -2 * 4 + 3 ** 2
1

As you can see from above, all operator priorities are what you expect: + and - at the
bottom, followed by *, /, and %, then comes the unary + and -, and finally, ** at the
top. (3 ** 2 is calculated first, followed by -2 * 4, then both results are summed
together.)

NOTE

Although the example in the print statement is a valid mathematical statement, with
Python's hierarchical rules dictating the order in which operations are applied, adhering to
good programming style means properly placing parentheses to indicate visually the

IT-SC book: Core Python Programming

 46

grouping you have intended (see exercises). Anyone maintaining your code will thank
you, and you will thank you.

Python also provides the standard comparison operators:

< <= > >= == != <>

Trying out some of the comparison operators we get:

>>> 2 < 4
1
>>> 2 == 4
0
>>> 2 > 4
0
>>> 6.2 <= 6
0
>>> 6.2 <= 6.2
1
>>> 6.2 <= 6.20001
1

Python currently supports two "not equals" comparison operators, != and <>. These are
the C-style and ABC/Pascal-style notations. The latter is slowly being phased out, so we
recommend against its use.

Python also provides the expression conjunction operators:

 and
 or
 not

Using these operators along with grouping parentheses, we can "chain" some of our
comparisons together:

>>> (2 < 4) and (2 == 4)
0
>>> (2 > 4) or (2 < 4)
1
>>> not (6.2 <= 6)

IT-SC book: Core Python Programming

 47

1
>>> 3 < 4 < 5

The last example is an expression that maybe invalid in other languages, but in Python it
is really a short way of saying:

>>> (3 < 4) and (4 < 5)

You can find out more about Python operators in Section 4.5of the text.

Variables and Assignment

Rules for variables in Python are the same as they are in most other high-level languages:
They are simply identifier names with an alphabetic first character—"alphabetic"
meaning upper- or lowercase letters, including the underscore (_). Any additional
characters may be alphanumeric or underscore. Python is case-sensitive, meaning that the
identifier "cAsE" is different from "CaSe."

Python is dynamically-typed, meaning that no pre-declaration of a variable or its type is
necessary. The type (and value) are initialized on assignment. Assignments are performed
using the equals sign.

>>> counter = 0
>>> miles = 1000.0
>>> name = 'Bob'
>>> counter = counter + 1
>>> kilometers = 1.609 * miles
>>> print '%f miles is the same as %f km' % (miles, kilometers)
1000.000000 miles is the same as 1609.000000 km

We have presented five examples of variable assignment. The first is an integer
assignment followed by one each for floating point numbers, one for strings, an
increment statement for integers, and finally, a floating point operation and assignment.

As you will discover in Chapter 3, the equals sign (=) was formerly the sole assignment
operator in Python. However, beginning with 2.0, the equals sign can be combined with
an arithmetic operation and the resulting value reassigned to the existing variable. Known
as augmented assignment, statements such as:

n = n * 10

IT-SC book: Core Python Programming

 48

can now be written as:

n *= 10

Python does not support operators such as n++ or --n.

The print statement at the end shows off the string format operator (%) again. Each
"%x" code matches the type of the argument to be printed. We have seen %s (for strings)
and %d (for integers) earlier in this chapter. Now we are introduced to %f (for floating
point values). See Section 6.4 for more information on the string format operator.

Numbers

Python supports four different numerical types:

int (signed integers)

long (long integers [can also be represented in octal and hexadecimal])

float (floating point real values)

complex (complex numbers)

Here are some examples:

int 0101 84 -237 0x80 017 -680 -0X92
long 29979062458L -

84140l
0xDECADEDE
ADBEEFBADF
EEDDEAL

float 3.14159 4.2E-10 -90. 6.022e23 -
1.609
E-19

complex 6.23+1.5j -1.23-875J 0+1j 9.80665-
8.31441J

-
.0224+0j

Numeric types of interest are the Python long and complex types. Python long integers
should not be confused with C long s. Python longs have a capacity that surpasses any C
long. You are limited only by the amount of (virtual) memory in your system as far as
range is concerned. If you are familiar with Java, a Python long is similar to numbers of
the BigInteger class type.

Complex numbers (numbers which involve the square root of -1, so called "imaginary"
numbers) are not supported in many languages and perhaps are implemented only as
classes in others.

IT-SC book: Core Python Programming

 49

All numeric types are covered in Chapter 5.

Strings

Strings in Python are identified as a contiguous set of characters in between quotation
marks. Python allows for either pairs of single or double quotes. Subsets of strings can be
taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of
the string and working their way from -1 at the end. The plus (+) sign is the string
concatenation operator, and the asterisk (*) is the repetition operator. Here are some
examples of strings and string usage:

>>> pystr = 'Python'
>>> iscool = 'is cool!'
>>> pystr[0]
'P'
>>> pystr[2:5]
'tho'
>>> iscool[:2]
'is'
>>> iscool[3:]
'cool!'
>>> iscool[-1]
'!'
>>> pystr + iscool
'Pythonis cool!'
>>> pystr + ' ' + iscool
'Python is cool!'
>>> pystr * 2
'PythonPython'
>>> '-' * 20
'--------------------'

You can learn more about strings in Chapter 6.

Lists and Tuples

Lists and tuples can be thought of as generic "buckets" with which to hold an arbitrary
number of arbitrary Python objects. The items are ordered and accessed via index offsets,
similar to arrays, except that lists and tuples can store different types of objects.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]),
and their elements and size can be changed, while tuples are enclosed in parentheses (())
and cannot be updated. Tuples can be thought of for now as "read-only" lists. Subsets can
be taken with the slice operator ([] and [:]) in the same manner as strings.

>>> aList = [1, 2, 3, 4]
>>> aList

IT-SC book: Core Python Programming

 50

[1, 2, 3, 4]
>>> aList[0]
1
>>> aList[2:]
[3, 4]
>>> aList[:3]
[1, 2, 3]
>>> aList[1] = 5
>>> aLlist
[1, 5, 3, 4]

Slice access to a tuple is similar, except for being able to set a value (as in aList[1] = 5
above).

>>> aTuple = ('robots', 77, 93, 'try')
>>> aTuple
('robots', 77, 93, 'try')
>>> aTuple[0]
'robots'
>>> aTuple[2:]
(93, 'try')
>>> aTuple[:3]
('robots', 77, 93)
>>> aTuple[1] = 5
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: object doesn\qt support item assignment

We encountered an error in our last example because we attempted to update a tuple,
which is not allowed. You can find out a lot more about lists and tuples along with strings
in Chapter 6.

Dictionaries

Dictionaries are Python's hash table type. They work like associative arrays or hashes
found in Perl and consist of key-value pairs. Keys can be almost any Python type, but are
usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.
Dictionaries are enclosed by curly braces ({ }).

>>> aDict = {}
>>> aDict['host'] = 'earth'
>>> aDict['port'] = 80
>>> aDict
{'host': 'earth', 'port': 80}
>>> aDict.keys()
['host', 'port']
>>> aDict['host']
'earth'

IT-SC book: Core Python Programming

 51

Dictionaries are covered in Chapter 7.

Code Blocks Use Indentation

Code blocks are identified by indentation rather than using symbols like curly braces.
Without extra symbols, programs are easier to read. Also, indentation clearly identifies
which block of code a statement belongs to. Of course, code blocks can consist of single
statements, too.

When one is new to Python, indentation may comes as a surprise. Humans generally
prefer to avoid change, so perhaps after many years of coding with brace delimitation, the
first impression of using pure indentation may not be completely positive. However,
recall that two of Python's features are that it is simplistic in nature and easy-to-read.
Three hundred and sixty-five days after you indent your first line of Python, revisit this
thought and determine if you maintain the same position you have today. More than
likely, you will have discovered that life without braces is not as bad as you had
originally thought.

if Statement

The standard if conditional statement follows this syntax:

 if
 expression:
 if_suite

If the expression is non-zero or true, then the statement suite is executed; otherwise,
execution continues on the first statement after. "Suite" is the term used in Python to refer
to a sub-block of code and can consist of single or multiple statements.

>>> if counter > 5:
… print 'stopping after 5 iterations'
… break

Python supports an else statement that is used with if in the following manner:

 if expression:
 if_suite
 else:
 else_suite

IT-SC book: Core Python Programming

 52

Python has an "else-if" statement named elif which has the following syntax:

 if expression1:
 if_suite
 elif expression2:
 elif_suite
 else:
 else_suite

Another surprise: There is no switch or case statement in Python. This may also seem
strange and/or detracting at first, but a set of if-elif-else statements are not as "ugly"
because of Python's clean syntax. If you really want to circumvent a set of chained if-
elif-else statements, another elegant workaround is using a for loop (see below) to
iterate through your list of possible "cases."

You can learn more about if, elif, and else statements in the conditional section of
Chapter 8.

while Loop

The standard while conditional loop statement is similar to the if. Again, as with every
code sub-block, indentation (and dedentation) are used to delimit blocks of code as well
as to indicate which block of code statements belong to:

 while expression:
 while_suite

The statement suite is executed continuously in a loop until the expression becomes
zero or false; execution then continues on the first succeeding statement.

>>> counter = 0
>>> while counter < 5:
… print 'loop #%d' % (counter)
… counter = counter + 1

loop #0
loop #1
loop #2
loop #3
loop #4
loop #5

IT-SC book: Core Python Programming

 53

Loops such as while and for (see below) are covered in the loops section of Chapter 8.

for Loop and the range() Built-in Function

The for loop in Python is more like a foreach iterative-type loop in a shell scripting
language than a traditional for conditional loop that works like a counter. Python's for
loop takes what we will later describe as a sequence type (list, tuple, or string) and
iterates over each element of that sequence.

>>> print 'I like to use the Internet for:'
I like to use the Internet for:
>>> for item in ['e-mail', 'net-surfing', 'homework', 'chat']:
… print item
…
e-mail
net-surfing
homework
chat

Our output in the previous example may look more presentable if we display the items on
the same line rather than on separate lines. print statements by default automatically add
a NEWLINE character at the end of every line. This can be suppressed by terminating the
print statement with a comma (,).

 print 'I like to use the Internet for:'
 for item in ['e-mail', 'net-surfing', 'homework', 'chat']:
 print item,
 print

The code required further modification to include an additional print statement with no
arguments to flush our line of output with a terminating NEWLINE; otherwise, the
prompt will show up on the same line immediately after the last piece of data output.
Here is the output with the modified code:

I like to use the Internet for:
e-mail net-surfing homework chat

Elements in print statements separated by commas will automatically include a
delimiting space between them as they are displayed. Providing a string format gives the
programmer the most control because it dictates the exact output layout, without having

IT-SC book: Core Python Programming

 54

to worry about the spaces generated by commas. It also allows all the data to be grouped
together in one place—the tuple or dictionary on the right-hand side of the format
operator.

>>> who = 'knights'
>>> what = 'Ni!'
>>> print 'We are the', who, 'who say', what, what, what, what
We are the knights who say Ni! Ni! Ni! Ni!
>>> print 'We are the %s who say %s' % \
… who, ((what + ' ') * 4))
We are the knights who say Ni! Ni! Ni! Ni!

Using the string format operator also allows us to do some quick string manipulation
before the output, as you can see in the above example.

We conclude our introduction to loops by showing you how we can make Python's for
statement act more like a traditional loop, in other words, a numerical counting loop.
Because we cannot change the behavior of a for loop (iterates over a sequence), we can
manipulate our sequence so that it is a list of numbers. That way, even though we are still
iterating over a sequence, it will at least appear to perform the number counting an
incrementing that we envisioned.

>>> for eachNum in [0, 1, 2, 3, 4, 5]:
… print eachNum
…
0
1
2
3
4
5

Within our loop, eachNum contains the integer value that we are displaying and can use it
in any numerical calculation we wish. Because our range of numbers may differ, Python
provides the range() built-in function to generate such a list for us. It does exactly what
we want, taking a range of numbers and generating a list.

>>> for eachNum in range(6):
… print eachNum
…
0
1
2
3
4
5

IT-SC book: Core Python Programming

 55

Files and the open() Built-in Function

File access is one of the more important aspects of a language once you are comfortable
with the syntax; there is nothing like the power of persistent storage to get some real
work done.

How to Open a File

 handle = open(file_name, access_mode='r')

The file_name variable contains the string name of the file we wish to open, and
access_mode is either 'r' for read, 'w' for write, or 'a' for append. Other flags which
can be used in the access_mode string include the '+' for dual read-write access and the
'b' for binary access. If the mode is not provided, a default of read-only ('r') is used to
open the file.

NOTE

Attributes are items associated with a piece of data. Attributes can be simply data values
or executable objects such as functions and methods. What kind of objects have attributes?
Many. Classes, modules, files, complex numbers. These are just some of the Python
objects which have attributes.

How do I access object attributes? With the dotted attribute notation, that is, by putting
together the object and attribute names, separated by a dot or period: object.attribute.

If open() is successful, a file object will be returned as the handle (handle). All
succeeding access to this file must go through its file handle. Once a file object is
returned, we then have access to the other functionality through its methods such as
readlines() and close(). Methods are attributes of file objects and must be accessed
via the dotted attribute notation (see Core Note above).

Here is some code which prompts the user for the name of a text file, then opens the file
and displays its contents to the screen:

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
allLines = file.readlines()

IT-SC book: Core Python Programming

 56

file.close()
for eachLine in allLines:
 print eachLine,

Rather than looping to read and display one line at a time, our code does something a
little different. We read all lines in one fell swoop, close the file, and then iterate through
the lines of the file. One advantage to coding this way is that it permits the file access to
complete more quickly. The output and file access do not have to alternate back and forth
between reading a line and printing a line. It is cleaner and separates two somewhat
unrelated tasks. The caveat here is the file size. The code above is reasonable for files
with reasonable sizes. Programs too large may take up too much memory, in which case
you would have to revert back to reading one line at a time.

The other interesting statement in our code is that we are again using the comma at the
end of the print statement to suppress the printing of the NEWLINE character. Why?
Because each text line of the file already contains NEWLINEs at the end of every line. If
we did not suppress the NEWLINE from being added by print, our display would be
double-spaced.

In Chapter 9, we cover file objects, their built-in methods attributes, and how to access
your local file system. Please go there for all the details.

Errors and Exceptions

Syntax errors are detected on compilation, but Python also allows for the detection of
errors during program execution. When an error is detected, the Python interpreter raises
(a.k.a. throws, generates, triggers) an exception. Armed with the information that
Python's exception reporting can generate at runtime, programmers can quickly debug
their applications as well as fine-tune their software to take a specific course of action if
an anticipated error occurs.

To add error detection or exception handling to your code, just "wrap" it with a try-
except statement. The suite following the try statement will be the code you want to
manage. The code which comes after the except will be the code that executes if the
exception you are anticipating occurs:

 try:
 try_running_this_suite
 except
 someError:
 suite_if_someError_occurs

Programmers can explicitly raise an exception with the raise command. You can learn
more about exceptions as well as see a complete list of Python exceptions in Chapter 10.

IT-SC book: Core Python Programming

 57

Functions

Functions in Python follow rules and syntax similar to most other languages: Functions
are called using the functional operator (()), functions must be declared before they are
used, and the function type is the type of the value returned.

All arguments of function calls are made by reference, meaning that any changes to these
parameters within the function affect the original objects in the calling function.

How to Declare a Function

 def

 function_name([arguments]):
 "optional documentation string"
 function_suite

The syntax for declaring a function consists of the def keyword followed by the function
name and any arguments which the function may take. Function arguments such as
arguments above are optional, hence the reason why they are enclosed in brackets above.
(Do not physically put brackets in your code!) The statement terminates with a colon (the
same way that an if or while statement is terminated), and a code suite representing the
function body follows. Here is one short example:

 def addMe2Me(x):
 'apply + operation to argument'
 return (x + x)

This function, presumably meaning "add me to me" takes an object, adds its current value
to itself and returns the sum. While the results are fairly obvious with numerical
arguments, we point out that the plus sign works for almost all types. In other words,
most of the standard types support the + operator, whether it be numeric addition or
sequence concatenation.

How to Call Functions

>>> addMe2Me(4.25)
8.5
>>>
>>> addMe2Me(10)
20
>>>
>>> addMe2Me('Python')
'PythonPython'

IT-SC book: Core Python Programming

 58

>>>
>>> addMe2Me([-1, 'abc'])
[-1, 'abc', -1, 'abc']

Calling functions in Python is similar to function invocations in other high-level
languages, by giving the name of the function followed by the functional operator, a pair
of parentheses. Any optional parameters go between the parentheses. Observe how the +
operator works with non-numeric types.

Default arguments

Functions may have arguments which have default values. If present, arguments will take
on the appearance of assignment in the function declaration, but in actuality, it is just the
syntax for default arguments and indicates that if a value is not provided for the
parameter, it will take on the assigned value as a default.

>>> def foo(debug=1):
… 'determine if in debug mode with default argument'
… if debug:
… print 'in debug mode'
… print 'done'
…
>>> foo()
in debug mode
done
>>> foo(0)
done

In the example above, the debug parameter has a default value of 1. When we do not pass
in an argument to the function foo(), debug automatically takes on a true value of 1. On
our second call to foo(), we deliberately send an argument of 0, so that the default
argument is not used.

Functions have many more features than we could describe in this introductory section.
Please refer to Chapter 11 for more details.

Classes

A class is merely a container for static data members or function declarations, called a
class's attributes. Classes provide something which can be considered a blueprint for
creating "real" objects, called class instances. Functions which are part of classes are called
methods. Classes are an object-oriented construct that are not required at this stage in
learning Python. However, we will present it here for those who have some background
in object-oriented methodology and would like to see how classes are implemented in
Python.

IT-SC book: Core Python Programming

 59

How to Declare a Class

 class class_name[(base_classes_if_any)]:
 "optional documentation string"
 static_member_declarations
 method_declarations

Classes are declared using the class keyword. If a subclass is being declared, then the
super or base classes from which it is derived is given in parentheses. This header line is
then terminated and followed by an optional class documentation string, static member
declarations, and any method declarations.

 class FooClass:
 'my very first class: FooClass'
 version = 0.1 # class (data) attribute

 def __init__(self, nm='John Doe'):
 'constructor'
 self.name = nm # class instance (data) attribute
 print 'Created a class instance for', nm

 def showname(self):
 'display instance attribute and class name'
 print 'Your name is', self.name
 print 'My name is', self.__class__ # full class name

 def showver(self):
 'display class(static) attribute'
 print self.version # references FooClass.version

 def addMe2Me(self, x): # does not use 'self'
 'apply + operation to argument'
 return (x + x)

In the above class, we declared one static data type variable version shared among all
instances and four methods, __init__(), showname(), showver(), and the familiar
addMe2Me(). The show*() methods do not really do much but output the data they were
created to. The __init__() method has a special name, as do all those whose name
begins and ends with a double underscore (__).

The __init__() method is a function provided by default that is called when a class
instance is created, similar to a constructor and called after the object has been
instantiated. Its purpose is to perform any other type of "start up" necessary for the
instance to take on a life of its own. By creating our own __init__() method, we
override the default method (which does not do anything) so that we can do
customization and other "extra things" when our instance is created. In our case, we

IT-SC book: Core Python Programming

 60

initialize a class instance attribute called name. This variable is associated only with class
instances and is not part of the actual class itself. __init__() also features a default
argument, introduced in the previous section. You will no doubt also notice the one
argument which is part of every method, self.

What is self? Self is basically an instance's handle to itself. (In other object-oriented
languages such as C++ or Java, self is called this.) When a method is called, self
refers to the instance which made the call. No class methods may be called without an
instance, and is one reason why self is required. Class methods which belong to an
instance are called bound methods. (Those not belonging to a class instance are called
unbound methods and cannot be invoked [unless an instance is explicitly passed in as the
first argument].)

How to Create Class Instances

>>> foo1 = FooClass()
Created a class instance for John Doe

The string that is displayed is a result of a call to the __init__() method which we did
not explicitly have to make. When an instance is created, __init__() is automatically
called, whether we provided our own or the interpreter used the default one.

Creating instances looks just like calling a function and has the exact syntax. Class
instantiation apparently uses the same functional operator as invoking a function or
method. Do not get confused between the two, however. Just because the same symbols
are used does not necessarily mean equivalent operations. Function calls and creating
class instances are very different animals. The same applies for the + operator. Given a
pair of integers, it performs integer addition; given a pair of floating point numbers, it
performs real number addition; and giving it two strings results in string concatenation.
All three of these operations are distinct.

Now that we have successfully created our first class instance, we can make some
method calls, too:

>>> foo1.showname()
Your name is John Doe
My name is __main__.FooClass
>>>
>>> foo1.showver()
0.1
>>> print foo1.addMe2Me(5)
10
>>> print foo1.addMe2Me('xyz')
xyzxyz

IT-SC book: Core Python Programming

 61

The result of each function call is as we expected. One interesting piece of data is the
class name. In the showname() method, we displayed the self.__class__ variable
which, for an instance, represents the name of the class from which it has been
instantiated. In our example, we did not pass in a name to create our instance, so the
'John Doe' default argument was used. In our next example, we do not use it.

>>> foo2 = FooClass('Jane Smith')
Created a class instance for Jane Smith
>>> foo2.showname()
Your name is Jane Smith
__main__.FooClass

There is plenty more on Python classes and instances in Chapter 13.

Modules

Modules are a logical way to physically organize and distinguish related pieces of Python
code into individual files. Modules can contain executable code, functions, classes, or any
and all of the above.

When you create a Python source file, the name of the module is the same as the file
except without the trailing ".py" extension. Once a module is created, you may "import"
that module for use from another module using the import statement.

How to Import a Module

 import
 module_name

How to Call a Module Function or Access a Module Variable

Once imported, a module's attributes (functions and variables) can be accessed using the
familiar dotted attribute notation:

 module.function()
 module.variable

We will now present our Hello World! example again, but using the output functions
inside the sys module.

IT-SC book: Core Python Programming

 62

>>> import sys
>>> sys.stdout.write('Hello World!\n')
Hello World!

This code behaves just like our original Hello World! using the print statement. The
only difference is that the standard output write() method is called, and the NEWLINE
character needs to be stated explicitly because, unlike the print statement, write() does
not do that for you.

Let us now look at some other attributes of the sys module and some of the functions in
the string module as well.

>>> import sys
>>> import string
>>> sys.platform
'win32'
>>> sys.version
'1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]'
>>>
>>> up2space = string.find(sys.version, ' ')
>>> ver = sys.version[:up2space]
>>> ver
1.5.2
>>>
>>> print 'I am running Python %s on %s' % (ver, sys.platform)
I am running Python 1.5.2 on win32

As you can probably surmise, the sys.platform and sys.version variables contain
information regarding the system you are running on and which version of the Python
interpreter you are using.

The string.find() function looks for substrings in strings. In the example, we are
capturing just the version number which occurs from the beginning of the string to right
before the first space character. We use find() to tell us where the space is located so we
can grab all the characters in the string before the space.

Another way to snare the version number is by breaking up the entire string into words
(separated by spaces). The version number is the first word, so that is all we want. The
string.split() function returns a list of all the "words" in a string:

>>> verchunks = string.split(sys.version)
>>> verchunks
['1.5.2', '(#0,', 'Apr', '13', '1999,', '10:51:12)',
'[MSC', '32', 'bit', '(Intel)]']
>>> print 'I am running Python %s on %s' % \
… (verchunks[0], sys.platform)

IT-SC book: Core Python Programming

 63

I am running Python 1.5.2 on win32

Our output is the exact same as the example above In this case, there was clearly more
than one way to accomplish the same task. This is not always the case in Python, but both
examples will allow the reader to decide on the appropriate course of action when
warranted.

You can find out more information on modules and importing in Chapter 12.

We will cover all of the above topics in much greater detail throughout the text, but
hopefully we have provided enough of a "quick dip in the pool" to facilitate your needs if
your primary goal is to get started working with Python as quickly as possible without
too much serious reading.

Exercises

1:
Variables, print, and the string format operator. Start the interactive interpreter. Assign
values to some variables (strings, numbers, etc.) and display them within the
interpreter by typing their names. Also try doing the same thing with the print
statement. What is the difference between giving just a variable name versus using
it in conjunction with print? Also try using the string format operator (%) to
become familiar with it.

2:
Program output. Take a look at the following Python script:

#!/usr/bin/env python
1 + 2 * 4

(a) What do you think this script does?

(b) What do you think this script will output?

(c) Type the code in as a script program and execute it. Did it do what you
expected? Why or why not?

(d) How does execution differ if you are running this code from within the
interactive interpreter? Try it and write down the results.

(e) How can we improve the output of the script version so that it does what we

IT-SC book: Core Python Programming

 64

expect/want?

3:
Numbers and operators. Enter the interpreter. Use Python to add, subtract, multiply,
and divide two numbers (of any type). Then use the modulus operator to determine
the remainder when dividing one number by another, and finally, raise one number
to the power of another by using the exponentiation operator.

4:
User input with raw_input().

(a) Create a small script to use raw_input() built-in function to take a string input
from the user, then display to the user what he/she just typed in.

(b) Add another piece of similar code, but have the input be numeric. Convert the
value to a number (using either int() or any of the other numeric conversion
functions), and display the value back to the user. (Note that if your version of
Python is older than 1.5, you will need to use the string.ato*() functions to
perform the conversion.)

5:
Loops and numbers. Create some loops using both while and for.

(a) Write a loop that counts from 0 to 10 using a while loop. (Make sure your
solution really does count from 0 to 10, not 0 to 9 or 1 to 10.)

(b) Do the same loop as in part (a), but use a for loop and the range() built-in
function.

6:
Conditionals. Detect whether a number is positive, negative, or zero. Try using
fixed values at first, then update your program to accept numeric input from
the user.

7:
Loops and strings. Take a user input string and display string, one character at
a time. As in your above solution, perform this task with a while loop first,
then with a for loop.

8:
Loops and operators. Create a fixed list or tuple of 5 numbers and output their
sum. Then update your program so that this set of numbers comes from user
input. As with the problems above, implement your solution twice, once using

IT-SC book: Core Python Programming

 65

while and again with for.

9:
More loops and operators. Create a fixed list or tuple of 5 numbers and determine their
average. The most difficult part of this exercise is the division to obtain the
average. You will discover that integer division truncates and that you must use
floating point division to obtain a more accurate result. The float() built-in
function may help you there.

10:
User input with loops and conditionals. Use raw_input() to prompt for a number
between 1 and 100. If the input matches criteria, indicate so on the screen and exit.
Otherwise, display an error and reprompt the user until the correct input is
received.

11:
Menu-driven text applications. Take your solutions to any number of the previous 5
problems and upgrade your program to present a menu-driven text-based
application that presents the user with a set of choices, e.g., (1) sum of 5 numbers,
(2) average of 5 numbers, … (X) Quit. The user makes a selection, which is then
executed. The program exits when the user choose the "quit" option. The great
advantage to a program like this is that it allows the user to run as many iterations
of your solutions without having to necessarily restart the same program over and
over again. (It is also good for the developer who is usually the first user main
quality assurance engineer of their applications!)

12:
The dir() built-in function.

(a) Start up the Python interpreter. Run the dir() built-in function by simply
typing "dir()" at the prompt. What do you see? Print the value of each element in
the list you see. Write down the output for each and what you think each is.

(b) You may be asking, so what does dir() do? We have already seen that adding
the pair of parentheses after "dir" causes the function to run. Try typing just the
name "dir" at the prompt. What information does the interpreter give you? What
do you think it means?

(c) The type() built-in function takes any Python object and returns its type. Try
running it on dir by entering "type(dir)" into the interpreter. What do you get?

(d) For the final part of this exercise, let us take a quick look at Python
documentation strings. We can access the documentation for the dir() function by

IT-SC book: Core Python Programming

 66

appending ".__doc__" after its name. So from the interpreter, display the
document string for dir() by typing the following at the promt: print
dir.__doc__. Many of the built-in functions, methods, modules, and module
attributes have a documentation string associated with them. We invite you to put
in your own as you write your code; it may help another user down the road.

13:
Finding more about the sys module with dir().

(a) Start the Python interpreter again. Run the dir() command as in the previous
exercise. Now import the sys module by typing import sys at the prompt. Run the
dir() command again to verify that the sys module now shows up. Now run the
dir() command on the sys module by typing dir(sys). Now you see all the
attributes of the sys module.

(b) Display the version and platform variables of the sys module. Be sure to
prepend the names with sys to indicate that they are attributes of sys. The version
variable contains information regarding the version of the Python interpreter you
are using, and the platform attribute contains the name of the computer system that
Python believes you are running on.

(c) Finally, call the sys.exit() function. This is another way to quit the Python
interpreter in case the keystrokes described above in problem 1 do not get you out
of Python.

14:
Operator precedence and grouping with parentheses. Rewrite the mathematical
expression of the print statement in Section 2.4, but try to group pairs of
operands correctly, using parentheses.

15:
Elementary sorting.

(a) Have the user enter 3 numeric values and store them in 3 different variables.
Without using lists or sorting algorithms, manually sort these 3 numbers from
smallest to largest.

(b) How would you change your solution in part (a) to sort from largest to
smallest?

16:
Files. Type in and/or run the file display code in Section 2.14. Verify that it works

IT-SC book: Core Python Programming

 67

on your system and try different input files as well.

IT-SC book: Core Python Programming

 68

Chapter 3. Syntax and Style

Our next goal is to go through the basic Python syntax, describe some general style
guidelines, then be briefed on identifiers, variables, and keywords. We will also discuss
how memory space for variables is allocated and deallocated. Finally, we will be exposed
to a much larger example Python program—taking the plunge, as it were. No need to
worry, there are plenty of life preservers around that allow for swimming rather than the
alternative.

Statements and Syntax

Some rules and certain symbols are used with regard to statements in Python:

Hash mark (#) indicates Python comments

NEWLINE (\n) is the standard line separator (one statement per line)

Backslash (\) continues a line

Semicolon (;) joins two statements on a line

Colon (:) separates a header line from its suite

Statements (code blocks) grouped as suites

Suites delimited via indentation

Python files organized as "modules"

Comments (#)

First thing's first: Although Python is one of the easiest languages to read, it does not
preclude the programmer from proper and adequate usage and placement of comments in
the code. Like many of its Unix scripting brethren, Python comment statements begin
with the pound sign or hash symbol (#). A comment can begin anywhere on a line. All
characters following the # to the end of the line are ignored by the interpreter. Use them
wisely and judiciously.

Continuation (\)

Python statements are, in general, delimited by NEWLINEs, meaning one statement per
line. Single statements can be broken up into multiple lines by use of the backslash. The

IT-SC book: Core Python Programming

 69

backslash symbol (\) can be placed before a NEWLINE to continue the current
statement onto the next line.

check conditions
if (weather_is_hot == 1) and \
 (shark_warnings == 0) :

 send_goto_beach_mesg_to_pager()

There are two exceptions where lines can be continued without backslashes. A single
statement can take up more than one line when (1) container objects are broken up
between elements over multiple lines, and when (2) NEWLINEs are contained in strings
enclosed in triple quotes.

display a string with triple quotes
print '''hi there, this is a long message for you
that goes over multiple lines… you will find
out soon that triple quotes in Python allows
this kind of fun! it is like a day on the beach!'''

set some variables
go_surf, get_a_tan_while, boat_size, toll_money = (1,
 'windsurfing', 40.0, -2.00)

Multiple Statement Groups as Suites (:)

Groups of individual statements making up a single code block are called "suites" in
Python (as we introduced in Chapter 2). Compound or complex statements, such as if,
while, def, and class, are those which require a header line and a suite. Header lines
begin the statement (with the keyword) and terminate with a colon (:) and are followed
by one or more lines which make up the suite. We will refer to the combination of a
header line and a suite as a clause.

Suites Delimited via Indentation

As we introduced in Section 2.10, Python employs indentation as a means of delimiting
blocks of code. Code at inner levels are indented via spaces or TABs. Indentation
requires exact indentation, in other words, all the lines of code in a suite must be indented
at the exact same level (e.g. same number of spaces). Indented lines starting at different
positions or column numbers is not allowed; each line would be considered part of
another suite and would more than likely result in syntax errors.

A new code block is recognized when the amount of indentation has increased, and its
termination is signaled by a "dedentation," or a reduction of indentation matching a

IT-SC book: Core Python Programming

 70

previous level's. Code that is not indented, i.e., the highest level of code, is considered the
"main" portion of the script.

The decision to creating Python using indentation was based on the belief that grouping
code in this manner is more elegant and contributes to the ease-of-reading to which we
alluded earlier. It also helps avoid "dangling-else"-type problems, including ungrouped
single statement clauses (those where a C if statement which does not use braces at all,
but has two indented statements following). The second statement will execute regardless
of the conditional, leading to more programmer confusion until the light bulb finally
blinks on.

Finally, no "holy brace wars" can occur when using indentation. In C (also C++ and Java),
starting braces may be placed on the same line as the header statement, or may start the
very next line, or may be indented on the next line. Some like it one way, others prefer
the other, etc. You get the picture.

We should also mention a minor performance improvement which can occur since each
missing brace means one less byte to load during execution. Sure these are pennies on
their own, but add up to hundreds and thousands of bytes over a 24×7×365 environment
across a global network such as the Internet and you have something you can see. See
below in Section 3.4 for tips and style guidelines on indentation.

Multiple Statements on a Single Line (;)

The semicolon (;) allows multiple statements on the single line given that neither
statement starts a new code block. Here is a sample snip using the semicolon:

import sys; x = 'foo'; sys.stdout.write(x + '\n')

We caution the reader to be wary of the amount of usage of chaining multiple statements
on individual lines since it makes code much less readable. You decide:

import sys
x = 'foo'
sys.stdout.write(x + '\n')

In our example, separating the code to individual lines makes for remarkably improved
reader-friendliness.

Modules

Each Python script is considered a module. Modules have a physical presence as disk files.
When a module gets large enough or has diverse enough functionality, it may make sense

IT-SC book: Core Python Programming

 71

to move some of the code out to another module. Code that resides in modules may
belong to an application (i.e., a script that is directly executed), or may be executable
code in a library-type module that may be "imported" from another module for invocation.
As we mentioned in the last chapter, modules can contain blocks of code to run, class
declarations, function declarations, or any combination of all of those.

Variable Assignment

This section focuses on variable assignment. We will discuss which identifiers make
valid variables coming up in Section 3.3.

Equal sign (=) is the assignment operator

The equal sign (=) is the main Python assignment operator

anInt = -12
String = 'cart'
aFloat = -3.1415 * (5.0 ** 2)
anotherString = 'shop' + 'ping'
aList = [3.14e10, '2nd elmt of a list', 8.82-4.371j]

Be aware now that assignment does not explicitly assign a value to a variable, although it
may appear that way from your experience with other programming languages. In Python,
objects are referenced, so on assignment, a reference (not a value) to an object is what is
being assigned, whether the object was just created or was a pre-existing object. If this is
not 100% clear now, do not worry about it. We will revisit this topic later on in the
chapter, but just keep it in mind for now.

Also, if you familiar with C, you are aware that assignments are treated as expressions.
This is not the case for Python, where assignments do not have inherent values.
Statements such as the following are invalid in Python:

>>> x = 1
>>> y = (x = x + 1) # assignments not expressions!
 File "<stdin>", line 1
 y = (x = x + 1)
 ^
SyntaxError: invalid syntax

Beginning in Python 2.0, the equals sign can be combined with an arithmetic operation
and the resulting value reassigned to the existing variable. Known as augmented assignment,
statements such as

IT-SC book: Core Python Programming

 72

x = x + 1

can now be written as

x += 1

Python does not support pre-/post-increment nor pre-/post-decrement operators such as
x++ or --x.

How To Do a Multiple Assignment

>>> x = y = z = 1
>>> x
1
>>> y
1
>>> z
1

In the above example, an integer object (with the value 1) is created, and x, y, and z are
all assigned the same reference to that object. This is the process of assigning a single
object to multiple variables. It is also possible in Python to assign multiple objects to
multiple variables.

How to Do a "Multuple" Assignment

Another way of assigning multiple variables is using what we shall call the "multuple"
assignment. This is not an official Python term, but we use "multuple" here because when
assigning variables this way, the objects on both sides of the equals sign are tuples, a
Python standard type we introduced in Section 2.8.

>>> x, y, z = 1, 2, 'a string'
>>> x
1
>>> y
2
>>> z
'a string'

In the above example, two integer objects (with values 1 and 2) and one string object are
assigned to x, y, and z respectively. Parentheses are normally used to denote tuples, and

IT-SC book: Core Python Programming

 73

although they are optional, we recommend them anywhere they make the code easier to
read:

>>> (x, y, z) = (1, 2, 'a string')

If you have ever needed to swap values in other languages like C, you will be reminded
that a temporary variable, i.e., tmp, is required to hold one value which the other is being
exchanged:

/* swapping variables in C */
tmp = x;
x = y;
y = tmp;

In the above C code fragment, the values of the variables x and y are being exchanged.
The tmp variable is needed to hold the value of one of the variables while the other is
being copied into it. After that step, the original value kept in the temporary variable can
be assigned to the second variable.

One interesting side effect of Python's "multuple" assignment is that we no longer need a
temporary variable to swap the values of two variables.

swapping variables in Python
>>> (x, y) = (1, 2)
>>> x
1
>>> y
2
>>> (x, y) = (y, x)
>>> x
2
>>> y
1

Obviously, Python performs evaluation before making assignments.

Identifiers

Identifiers are the set of valid strings which are allowed as names in a computer language.
From this all-encompassing list, we segregate out those which are keywords, names that
form a construct of the language. Such identifiers are reserved words which may not be
used for any other purpose, or else a syntax error (SyntaxError exception) will occur.

IT-SC book: Core Python Programming

 74

Python also has an additional set of identifiers known as built-ins, and although they are
not reserved words, use of these special names is not recommended. (Also see Section
3.3.3.)

Valid Python Identifiers

The rules for Python identifier strings are not unlike most other high-level programming
languages:

First character must be letter or underscore (_)

Any additional characters can be alphanumeric or underscore

Case-sensitive

No identifiers can begin with a number, and no symbols other than the underscore are
ever allowed. The easiest way to deal with underscores is to consider them as alphabetic
characters. Case-sensitivity means that identifier foo is different from Foo, and both of
those are different from FOO.

Keywords

Python currently has twenty-eight keywords. They are listed in Table 3.1.

Generally, the keywords in any language should remain relatively stable, but should
things ever change (as Python is a growing and evolving language), a list of keywords as
well as an iskeyword() function are available in the keyword module.

Table 3.1. Python Keywords
and elif global or
assert else if pass
break except import print
class exec in raise
continue finally is return
def for lambda try
del from not while

For compatibility reasons, observe that the assert keyword is new as of Python 1.5, and
the access keyword was obsolete beginning with 1.4.

Built-ins

In addition to keywords, Python has a set of "built-in" names which are either set and/or
used by the interpreter that are available at any level of Python code. Although not
keywords, built-ins should be treated as "reserved for the system" and not used for any
other purpose. However, some circumstances may call for overriding (a.k.a. redefining,

IT-SC book: Core Python Programming

 75

replacing) them. Python does not support overloading of identifiers, so only one name
"binding" may exist at any given time.

Special Underscore Identifiers

Python designates (even more) special variables with underscores both prefixed and
suffixed. We will also discover later that some are quite useful to the programmer while
others are unknown or useless. Here is a summary of the special underscore usage in
Python:

_xxx do not import with 'from module import *'

_xxx__ system-defined name

_xxx request private name mangling in classes

NOTE

Because of the underscore usage in Python system, interpreter, and built-in identifiers, we
recommend that the programmer avoid the use of beginning variable names with the
underscore.

Basic Style Guidelines

Comments

You do not need to be reminded that comments are useful both to you and those who
come after you. This is especially true for code that has been untouched by man (or
woman) for a time (that means several months in software development time). Comments
should not be absent, nor should there be novellas. Keep the comments explanatory, clear,
short, and concise, but get them in there. In the end, it saves time and energy for everyone.

Documentation

Python also provides a mechanism whereby documentation strings can be retrieved
dynamically through the __doc__ special variable. The first unassigned string in a
module, class declaration, or function declaration can be accessed through by using
obj.__doc__ where obj is the module, class, or function name.

Indentation

Since indentation plays a major role, you will have to decide on a spacing style that is
easy to read as well as the least confusing. Common sense also plays a recurring role in
choosing how many spaces or columns to indent.

1 or probably not enough; difficult to determine which block of code statements

IT-SC book: Core Python Programming

 76

2 belong to
8 to
10

may be too many; code which has many embedded levels will wraparound,
causing the source to be difficult to read

Four (4) spaces is very popular, not to mention being the preferred choice of Python's
creator. Five (5) and six (6) are not bad, but text editors usually do not use these settings,
so they are not as commonly used. Three (3) and seven (7) are borderline cases.

As far as TABs go, bear in mind that different text editors have different concepts of
what TABs are. It is advised not to use TABs if your code will live and run on different
systems or be accessed with different text editors.

Choosing Identifier Names

The concept of good judgment also applies in choosing logical identifier names. Decide
on short yet meaningful identifiers for variables. Although variable length is no longer an
issue with programming languages of today, it is still a good idea to keep name sizes
reasonable. The same applies for naming your modules (Python files).

Module Structure and Layout

Modules are simply physical ways of logically organizing all your Python code. Within
each file, you should set up a consistent and easy-to-read structure. One such layout is the
following:

(1) startup line (Unix)
(2) module documentation
(3) module imports
(4) variable declarations
(5) class declarations
(6) function declarations
(7) "main" body

Figure 3-1 illustrates the internal structure of a typical module.

Figure 3-1. Typical Python File Structure

IT-SC book: Core Python Programming

 77

(1) Startup line

Generally used only in Unix environments, the start-up line allows for script execution by
name only (invoking the interpreter is not required).

(2) Module documentation

Summary of a module's functionality and significant global variables; accessible
externally as module.__doc__.

(3) Module imports

Import all the modules necessary for all the code in current module; modules are
imported once (when this module is loaded); imports within functions are not invoked
until those functions are called.

(4) Variable declarations

IT-SC book: Core Python Programming

 78

Declare (global) variables here which are used by multiple functions in this module (if
not, make them local variables for improved memory/performance).

(5) Class declarations

Any classes should be declared here, along with any static member and method attributes;
class is defined when this module is imported and the class statement executed.
Documentation variable is class.__doc__.

(6) Function declarations

Functions which are declared here are accessible externally as module.function();
function is defined when this module is imported and the def statement executed.
Documentation variable is function.__doc__.

(7) "main" body

All code at this level is executed, whether this module is imported or started as a script;
generally does not include much functional code; rather, gives direction depending on
mode of execution.

NOTE

The main body of code tends to contain lines such as the ones you see above which check
the __name__ variable and takes appropriate action (see Core Note below). Code in the
main body typically executes the class, function, and variable declarations, then checks
__name__ to see whether it should invoke another function (often called main()) which
performs the primary duties of this module. The main body usually does no more than
that. (Our example above uses test() rather than main() to avoid confusion until you
read this Core Note.)

Regardless of the name, we want to emphasize that this is a great place to put a test suite
in your code. As we explain in Section 3.4.2, most Python modules are created for
import use only, and calling such a module directly should invoke a regression test of the
code in such a module.

Most projects tend to consist of a single application and importing any required modules.
Thus it is important to bear in mind that most modules are created solely to be imported
rather than to execute as scripts. We are more likely to create a Python library-style
module whose sole purpose is to be imported by another module. After all, only one of
the modules—the one which houses the main application—will be executed, either by a
user from the command-line, by a batch or timed mechanism such as a Unix cron job, via
a web server call, or be invoked from a GUI callback.

IT-SC book: Core Python Programming

 79

With that fact in hand, we should also remember that all modules have the ability to
execute code. All Python statements in the highest level of code, that is, the lines that are
not indented, will be executed on import, whether desired or not. Because of this
"feature," safer code is written such that everything is in a function except for the code
that should be executed on an import of a module. Again, usually only the main
application module has the bulk of the executable code at its highest-level. All other
imported modules will have very little on the outside, and everything in functions or
classes. (See Core Note below for more information.)

NOTE

Because the "main" code is executed whether a module is imported or executed directly,
we often need to know how this module was loaded to guide the execution path. An
application may wish to import the module of another application, perhaps to access
useful code which will otherwise have to be duplicated (not the OO thing to do).
However, in this case, you only want access to this other application's code, not to
necessarily run it. So the big question is, "Is there a way for Python to detect at runtime
whether this module was imported or executed directly?" The answer is… (drum roll…)
yes! The __name__ system variable is the ticket.

__name__ contains module name if imported

__name__ contains '__main__' if executed directly

Create Tests in the Main Body

For good programmers and engineers, providing a test suite or harness for our entire
application is the goal. Python simplifies this task particularly well for modules created
solely for import. For these modules, you know that they would never be executed
directly. Wouldn't it be nice if they were invoked to run code that puts that module
through the test grinder? Would this be difficult to set up? Not really.

The test software should run only when this file is executed directly, i.e., not when it is
imported from another module, which is the usual case. Above and in the Core Note, we
described how we can determine whether a module was imported or executed directly.
We can take advantage of this mechanism by using the __name__ variable. If this module
was called as a script, plug the test code right in there, perhaps as part of main() or
test() (or whatever you decide to call your "second-level" piece of code) function,
which is called only if this module is executed directly.

The "tester" application for our code should be kept current along with any new test
criteria and results, and it should run as often as the code is updated. These steps will help
improve the robustness of our code, not to mention validating and verifying any new
features or updates.

IT-SC book: Core Python Programming

 80

Memory Management

So far you have seen a large number of Python code samples and may have noticed a few
interesting details about variables and memory management. Highlighting some of the
more conspicuous ones, we have:

Variables not declared ahead of time

Variable types are not declared

No memory management on programmers' part

Variable names can be "recycled"

del statement allows for explicit "deallocation"

Variable Declarations (or Lack Thereof)

In most compiled languages, variables must be declared before they are used. In fact, C is
even more restrictive: Variables have to be declared at the beginning of a code block and
before any statements are given. Other languages, like C++ and Java, allow "on-the-fly"
declarations i.e., those which occur in the middle of a body of code—but these name and
type declarations are still required before the variables can be used. In Python, there are
no explicit variable declarations. Variables are "declared" on first assignment. Like most
languages, however, variables cannot be accessed until they are (created and) assigned:

>>> a
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: a

Once a variable has been assigned, you can access it by using its name:

>>> x = 4
>>> y = 'this is a string'
>>> x
4
>>> y
'this is a string'

Dynamic Typing

Another observation, in addition to lack of variable declaration, is the lack of type
specification. In Python, the type and memory space for an object are determined and

IT-SC book: Core Python Programming

 81

allocated at run-time. Although code is byte-compiled, Python is still an interpreted
language. On creation, that is, on assignment, the interpreter creates an object whose type
is dictated by the syntax that is used for the operand on the right-hand side of an
assignment. After the object is created, a reference to that object is assigned to the
variable on the left-hand side of the assignment.

Memory Allocation

As responsible programmers, we are aware that when allocating memory space for
variables, we are borrowing system resources, and eventually, we will have to return that
which we borrowed back to the system. Happily, not only do we not have to explicitly
allocate the memory, we don't have to deallocate it either. That is memory management
made easy. Well, okay, perhaps it had something to do with the decision that Python
should simply be a tool for the application writer to and shouldn't have to worry about
lower-level, operating system or machine-oriented tasks.

Garbage Collection

Memory that is no longer being used is reclaimed by the system using a mechanism
known as garbage collection. Python's garbage collector will automatically deallocate a data
object once is it no longer needed, all without requiring any management on the
programmer's part. How does Python decide when an object is "no longer needed?" By
keeping track of the number of references to objects. This is called reference counting.

Reference Counting

To keep track of memory that has been allocated, Python does something quite similar to
card-counting, a popular scheme used in casino gaming. When an object is created, a
reference is made to that object. An internal tracking variable, a reference counter, keeps
track of how many references are being made to each object. The reference count for an
object is initially set to one (1) when an object is created and (its reference) assigned.

New references to objects, also called aliases, occur when additional variables are
assigned to the same object, passed as arguments to invoke other bodies of code such as
functions, methods, or class instantiation, or assigned as members of a sequence or
mapping.

initialize string object, set reference count to 1
foo1 = 'foobar'

increment reference count by assigning another variable
foo2 = foo1 # create an alias

increment ref count again temporarily by calling function
check_val(foo1)

IT-SC book: Core Python Programming

 82

In the function call above, the reference count is set to one on creation, incremented when
an alias is created, and incremented again when the object participated in a function call.
The reference count is decremented when the function call has completed; and once again
if foo2 is removed from the namespace. The reference count goes to zero and the object
deallocated when foo1 goes out of scope. (See Section 11.8 for more information on
variable scope.)

del Statement

The del statement removes a single reference to an object, and its syntax is:

del obj1[, obj2[, … objN…]]

For example, executing del foo2 in the example above has two results:

(1) removes name foo2 from namespace

(2) lowers reference count to object 'foobar' (by one)

Further still, executing del foo1 will remove the final reference to the 'foobar' object,
decrementing the reference counter to zero and causing the object to become
"inaccessible" or "unreachable." It is at this point that the object becomes a candidate for
garbage collection. Note that any tracing or debugging facility may keep additional
references to an object, delaying or postponing that object from being garbage-collected.

Decrementing Reference Count

You already noticed that when the del statement was executed, an object was not really
"deleted," rather just a reference to it. Likewise, you can "lose" the reference to an object
by reassigning it to another object.

foo1 = 'foobar' # create original string
foo1 = 'a new string' # 'foobar' "lost" and reclaimed

The preceding example shows how all references to an object can occur with reassigning
a variable. The most common case utilizes neither reassignment nor calling the del
statement.

Exiting from the current scope means that when a piece of code such as a function or
method has completed, all the objects created within that scope are destroyed (unless
passed back as a return object), such as our example above when foo1 is given as an
argument to the check_val() function. The reference count for foo1 is incremented on
the call and decremented when the function completed.

IT-SC book: Core Python Programming

 83

We present below a reference count decrementing summary. The reference count for an
object is decremented when a variable referencing the object…

Is named explicitly in a del statement

Is (re)assigned to another object

Goes out-of-scope

First Python Application

Now that we are familiar with the syntax, style, variable assignment and memory
allocation, it is time to look at a more complex example of Python programming. Many
of the things in this program will be parts of Python which may have unfamiliar
constructs, but we believe that Python is so simple and elegant that the reader should be
able to make the appropriate conclusions upon examination of the code.

The source file we will be looking at is fgrepwc.py, named in honor of the two Unix
utilities of which this program is a hybrid. fgrep is a simple string searching command.
It looks at a text file line by line and will output any line for which the search string
appears. Note that a string may appear more than once on a line. wc is another Unix
command; this one counts the number of characters, words, and lines of an input text file.

Our version does a little of both. It requires a search string and a filename, and outputs all
lines with a match and concludes by displaying the total number of matching lines found.
Because a string may appear more than once on a line, we have to state that the count is a
strict number of lines that match rather than the total number of times a search string
appears in a text file. (One of the exercises at the end of the chapter requires the reader to
"upgrade" the program so that the output is the total number of matches.)

One other note before we take a look at the code: The normal convention for source code
in this text is to leave out all comments, and place the annotated version on the CD-ROM.
However, we will include comments for this example to aid you as you explore your first
longer Python script with features we have yet to introduce.

We now introduce fgrepwc.py, found below as Listing 3.1, and provide analysis
immediately afterward.

Example 3.1. File Find (fgrepwc.py)

This application looks for a search word in a file and displays each matching line as well
as a summary of how many matching lines were found.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 "fgrepwc.py -- searches for string in text file"
004 4

IT-SC book: Core Python Programming

 84

005 5 import sys
006 6 import string
007 7
008 8 # print usage and exit
009 9 def usage():
010 10 print "usage: fgrepwc [-i] string file"
011 11 sys.exit(1)
012 12
013 13 # does all the work
014 14 def filefind(word, filename):
015 15
016 16 # reset word count
017 17 count = 0
018 18
019 19 # can we open file? if so, return file handle
020 20 try: <$nopage>
021 21 fh = open(filename, 'r') <$nopage>
022 22
023 23 # if not, exit
024 24 except: <$nopage>
025 25 print filename, ":",sys.exc_info()[1]
026 26 usage()
027 27
028 28 # read all file lines into list and close
029 29 allLines = fh.readlines()
030 30 fh.close()
031 31
032 32 # iterate over all lines of file
033 33 for eachLine in allLines:
034 34
035 35 # search each line for the word
036 36 if string.find(eachLine, word) > -1:
037 37 count = count + 1
038 38 print eachLine,
039 39
040 40 # when complete, display line count
041 41 print count
042 42
043 43 # validates arguments and calls filefind()
044 44 def checkargs():
045 45
046 46 # check args; 'argv' comes from 'sys' module
047 47 argc = len(sys.argv)
048 48 if argc != 3:
049 49 usage()
050 50
051 51 # call fgrepwc.filefind() with args
052 52 filefind(sys.argv[1], sys.argv[2])
053 53
054 54 # execute as application
055 55 if __name__ == '__main__':
056 56 checkargs()
057 <$nopage>

Lines 1–3

IT-SC book: Core Python Programming

 85

The Unix start up line is followed by the module documentation string. If you import the
fgrepwc module from another module, this string can be accessed with
fgrepwc.__doc__. This is a key feature because it makes previously static text
information available in a dynamic execution environment. We can also point out that
what we described is usually the only use of the documentation string. It serves no other
purpose, but it can double as a comment which is conveniently located at the top of a file.
(We invite the reader to take a look at the documentation string at the commencement of
the cgi module in the standard library for a serious example of module documentation.)

Lines 5–6

We've already seen the sys and string modules. The sys module contains mostly
variables and functions that represent interaction between the Python interpreter and the
operating system. You will find items in here such as the command-line arguments, the
exit() function, the contents of the Python path environment variable PYTHONPATH, the
standard files, and information on errors.

The string module contains practically every function you'll need in processing strings,
such as integer conversion via atoi() (and related functions), various string variables,
and other string manipulation functions.

The main motivation to provide modules to import is to keep the language small, light,
fast, and efficient, and bring in only software that you need to get the job done.
Plug'n'play with only the modules you need. Perl and Java have a similar setup, importing
modules, packages, and the like, and to a certain extent so do C and C++ with the
inclusion of header files.

Lines 8–11

We declare a function called usage() here which has no arguments/parameters. The
purpose of this function is to simply display a message to the user indicating the proper
command-line syntax with which to initiate the script, and exit the program with the
exit() function, found in the sys module. We also mentioned that in the Python
namespace, calling a function from an imported module requires a "fully-qualified" name.
All imported variables and functions have the following formats: module.variable or
module.function(). Thus we have sys.exit().

An alternative from-import statement allows the import of specific functions or
variables from a module, bringing them into the current namespace. If this method of
importing is used, only the attribute name is necessary.

For example, if we wanted to import only the exit() function from sys and nothing else,
we could use the following replacement:

from sys import exit

IT-SC book: Core Python Programming

 86

Then in the usage() function, we would call exit(1) and leave off the "sys.". One
final note about exit(): The argument to sys.exit() is the same as the C exit()
function, and that is the return value to the calling program, usually a command-line shell
program. With that said, we point out that this "protocol" of printing usage and exiting
applies only to command-line driven applications.

In web-based applications, this would not be the preferred way to quit a running program,
because the calling web browser is expecting an acceptable valid HTML response. For
web applications, it is more appropriate to output an error message formatted in HTML
so that end-users can correct their input. So, basically, no web application should
terminate with an error. Exiting a program will send a system or browser error to the user,
which is incorrect behavior and the responsibility falls on the website application
developer.

The same theory applies to GUI-based applications, which should not "crash out" of their
executing window. The correct way to handle errors in such applications is to bring up an
error dialog and notify the user and perhaps allow for a parameter change which may
rectify the situation.

Lines 13–41

The core part of our Python program is the filefind() function. filefind() takes two
parameters: the word the user is searching for, and the name of the file to search.

A counter is kept to track the total number of successful matches (number of lines that
contain the word). The next step is to open the file. The try-except construct is used to
"catch" errors which may occur when attempting to open the file. One of Python's
strengths is its ability to let the programmer handle errors and perform appropriate action
rather than simply exiting the program. This results in a more robust application and a
more acceptable way of programming. Chapter 10 is devoted to errors and exceptions.

Barring any errors, the goal of this section of function is to open a file, read in all the
lines into a buffer that can be processed later, and close the file. We took a sneak peek at
files earlier, but to recap, the open() built-in function returns a file object or file handle,
with which all succeeding operations are performed on, i.e., readlines() and close().

The final part of the function involves iterating through each line, looking for the target
word. Searching is accomplished using the find() function from the string module.
find() returns the starting character position (index) if there is a match, or -1 if the string
does not appear in the line. All successful matches are tallied and matching lines are
displayed to the user.

filefind() concludes by displaying the total number of matching lines that were found.

Lines 43–52

IT-SC book: Core Python Programming

 87

The last function found in our program is checkargs(), which does exactly two things:
checking for the correct number of command-line arguments and calling filefind() to
do the real work. The command-line arguments are stored in the sys.argv list. The first
argument is the program name and presumably, the second is the string we are looking
for, and the final argument is the name of the file to search.

Lines 54–56

This is the special code we alluded to earlier: the code that determines (based on
__name__) the different courses of action to take if this script was imported or executed
directly. With the boilerplate if statement, we can be sure that checkargs() would not
be executed if this module were imported, nor would we want it to. It exits anyway
because the check for the command-line arguments would fail. If the code did not have
the if statement and the main body of code consisted of just the single line to call
checkargs(), then checkargs() would be executed whether this module was imported
or executed directly.

One final note regarding fgrepwc.py. This script was created to run from the command-
line. Some work would be required, specifically interface changes, if you wanted to
execute this from a GUI or web-based environment.

The example we just looked at was fairly complex, but hopefully it was not a complete
mystery, with the help of our comments in this section as well as any previous
programming experience you may have brought. In the next chapter, we will take a closer
look at Python objects, the standard data types, and how we can classify them.

Exercises

1:
Identifiers. Why are variable type declarations not used in Python?

2:
Identifiers. Why are variable name declarations not used in Python?

3:
Identifiers. Why should we avoid the use of the underscore to begin variable names
with?

4:
Statements. Can multiple Python statements be written on a single line?

IT-SC book: Core Python Programming

 88

5:
Statements. Can a single Python statement be written over multiple lines?

6:
Variable assignment.

(a) Given the assignment x, y, z = 1, 2, 3, what do x, y, and z contain?

(b) What do x, y, and z contain after executing: z, x, y = y, z, x?

7:
Identifiers. Which of the following are valid Python identifiers? If not, why not?
Of the invalid ones, which are keywords?

int32 40XL char $aving$ printf print
_print a do this self __name__ 0x40L
boolean python big-daddy 2hot2touch type
thisIsn'tAVar thisIsAVar R_U_Ready yes
if no counter-1 access -

The remaining problems deal with the fgrepwc.py application.

8:
In the fgrepwc.py program above, you will notice the use of the string.find()
module. What does this function do, and what are its return values for success and
failure?

9:
We briefly discussed module names above with regards to the __name__ variable.
What are the contents of this variable if we ran fgrepwc.py directly? What would
the contents be if we imported fgrepwc as a module?

10:
The "-i" option is indicated in the usage() function of the fgrepwc module but is
not implemented anywhere in the entire application. This option is to perform the
search in a case-insensitive manner. Implement this functionality for fgrepwc.py.
You may use the getopt module.

11:
fgrepwc.py currently outputs the number of matching lines which contain the
search string. Update the script so that it outputs the total number of times the

IT-SC book: Core Python Programming

 89

string appears in the text file. In other words, if a match occurs more than once on a
line, count all of those additional appearances.

IT-SC book: Core Python Programming

 90

Chapter 4. Python Objects

We will now begin our journey to the core part of the language. First we will introduce
what Python objects are, then discuss the most commonly-used built-in types. An
introduction to the standard type operators and built-in functions comes next, followed by
an insightful discussion of the different ways to categorize the standard types to gain a
better understanding of how they work, and finally, we will conclude by describing some
types that Python does not have (mostly as a benefit for those of you with experience
with another high-level language).

Python Objects

Python uses the object model abstraction for data storage. Any construct which contains
any type of value is an object. Although Python is classified as an "object-oriented
programming language," OOP is not required to create perfectly working Python
applications. You can certainly write a useful Python script without the use of classes and
instances. However, Python's object syntax and architecture certainly encourage or
"provoke" this type of behavior. Let us now take a closer look at what a Python "object"
is.

All Python objects have the following three characteristics: an identity, a type, and a value.

IDENTITY Unique identifier that differentiates an object from all others. Any object's
identifier can be obtained using the id() built-in function. This value is as
close as you will get to a "memory address" in Python (probably much to the
relief of some of you). Even better is that you rarely, if ever, access this
value, much less care what it is at all.

TYPE An object's type indicates what kind of values an object can hold, what
operations can be applied to such objects, and what behavioral rules these
objects are subject to. You can use the type() built-in function to reveal the
type of a Python object. Since types are also objects in Python (did we
mention that Python was object-oriented?), type() actually returns an object
to you rather than a simple literal.

VALUE Data item that is represented by an object.

IT-SC book: Core Python Programming

 91

All three are assigned on object creation and are read-only with one exception, the value.
If an object supports updates, its value can be changed; otherwise, it is also read-only.
Whether an object's value can be changed is known as an object's mutability, which we will
investigate later on in Section 4.7. These characteristics hang around as long as the
object does and are reclaimed when an object is deallocated.

Python supports a set of basic (built-in) data types, as well as some auxiliary types that
may come into play if your application requires them. Most applications generally use the
standard types and create and instantiate classes for all specialized data storage.

Object Attributes

Certain Python objects have attributes, data values or executable code such as methods,
associated with them. Attributes are accessed in the dotted attribute notation, which
includes the name of the associated object, and were introduced in the Core Note near
Section 3.14. The most familiar attributes are functions and methods, but some Python
types have data attributes associated with them. Objects with data attributes include (but
are not limited to): classes, class instances, modules, complex numbers, and files.

Standard Types

Numbers (four separate sub-types)

Regular or "Plain" Integer

Long Integer

Floating Point Real Number

Complex Number

String

List

Tuple

Dictionary

We will also refer to standard types as "primitive data types" in this text because these
types represent the primitive data types that Python provides. We will go over each one in
detail in Chapters 5, 6 and 7.

NOTE

In Java, although primitive data types are supported, they usually come in class
"wrappers" for which instances are created when a data type is needed. In Python,

IT-SC book: Core Python Programming

 92

standard types are not classes, so creating integers and strings does not involve
instantiation. That also means that you cannot subclass a standard type either, although
there is nothing wrong with wrapping a type around a Python class and modifying a class
to what you desire. Python also provides some classes which emulate types and can be
subclassed. See Section 13.18.

Other Built-in Types

Type

None

File

Function

Module

Class

Class Instance

Method

These are some of the other types you will interact with as you develop as a Python
programmer. We will also cover these in Chapters 9, 11, 12, and 13 with the exception
of the Type and None types, which we will discuss here.

Types and the type() Built-in Function

It may seem unusual perhaps, to regard types themselves as objects since we are
attempting to just describe all of Python's types to you in this chapter. However, if you
keep in mind that an object's set of inherent behaviors and characteristics (such as
supported operators and built-in methods) must be defined somewhere, an object's type is
a logical place for this information. The amount of information necessary to describe a
type cannot fit into a single string; therefore types cannot simply be strings, nor should
this information be stored with the data, so we are back to types as objects.

We will formally introduce the type() built-in function. The syntax is as follows:

type(object)

The type() built-in function takes object and returns its type. The return object is a type
object.

IT-SC book: Core Python Programming

 93

>>> type(4) #int type
<type 'int'>
>>>
>>> type('Hello World!') #string type
<type 'string'>
>>>
>>> type(type(4)) #type type
<type 'type'>

In the examples above, we take an integer and a string and obtain their types using the
type() built-in function; in order to also verify that types themselves are types, we call
type() on the output of a type() call.

Note the interesting output from the type() function. It does not look like a typical
Python data type, i.e., a number or string, but is something enclosed by greater-than and
less-than signs. This syntax is generally a clue that what you are looking at is an object.
Objects may implement a printable string representation; however, this is not always the
case. In these scenarios where there is no easy way to "display" an object, Python "pretty-
prints" a string representation of the object. The format is usually of the form:
<object_something_or_another>. Any object displayed in this manner generally
gives the object type, an object ID or location, or other pertinent information.

None

Python has a special type known as the Null object. It has only one value, None. The type
of None is also None. It does not have any operators or built-in functions. If you are
familiar with C, the closest analogy to the None type is void, while the None value is
similar to the C value of NULL. (Other similar objects and values include Perl's undef and
Java's Void type and null value.) None has no attributes and always evaluates to having a
Boolean false value.

Internal Types

Code

Frame

Traceback

Slice

Ellipsis

Xrange

IT-SC book: Core Python Programming

 94

We will briefly introduce these internal types here. The general application programmer
would typically not interact with these objects directly, but we include them here for
completeness. Please refer to the source code or Python internal and online
documentation for more information.

In case you were wondering about exceptions, they are now implemented as classes not
types. In older versions of Python, exceptions were implemented as strings.

Code Objects

Code objects are executable pieces of Python source that are byte-compiled, usually as
return values from calling the compile() built-in function. Such objects are appropriate
for execution by either exec or by the eval() built-in function. All this will be discussed
in greater detail in Chapter 14.

Code objects themselves do not contain any information regarding their execution
environment, but they are at the heart of every user-defined function, all of which do
contain some execution context. (The actual byte-compiled code as a code object is one
attribute belonging to a function). Along with the code object, a function's attributes also
consist of the administrative support which a function requires, including its name,
documentation string, default arguments, and global namespace.

Frames

These are objects representing execution stack frames in Python. Frame objects contain
all the information the Python interpreter needs to know during a runtime execution
environment. Some of its attributes include a link to the previous stack frame, the code
object (see above) that is being executed, dictionaries for the local and global namespaces,
and the current instruction. Each function call results in a new frame object, and for each
frame object, a C stack frame is created as well. One place where you can access a frame
object is in a traceback object (see below).

Tracebacks

When you make an error in Python, an exception is raised. If exceptions are not caught or
"handled," the interpreter exits with some diagnostic information similar to the output
shown below:

Traceback (innermost last):
 File "<stdin>", line N?, in ???
ErrorName: error reason

The traceback object is just a data item that holds the stack trace information for an
exception and is created when an exception occurs. If a handler is provided for an
exception, this handler is given access to the traceback object.

IT-SC book: Core Python Programming

 95

Slice Objects

Slice objects are created when using the Python extended slice syntax. This extended
syntax allows for different types of indexing. These various types of indexing include
stride indexing, multi-dimensional indexing, and indexing using the Ellipsis type. The
syntax for multi-dimensional indexing is sequence[start1 : end1, start2 : end2],
or using the ellipsis, sequence[…, start1 : end1]. Slice objects can also be generated
by the slice() built-in function. Extended slice syntax is currently supported only in
external third party modules such as the NumPy module and JPython.

Stride indexing for sequence types allows for a third slice element that allows for "step"-
like access with a syntax of sequence[starting_index : ending_index : stride].
We will demonstrate an example of stride indexing using JPython here:

% jpython
JPython 1.1 on java1.1.8 (JIT: sunwjit)
Copyright (C) 1997–1999 Corporation for National Research
Initiatives
>>> foostr = 'abcde'
>>> foostr[::-1]
'edcba'
>>> foostr[::-2]
'eca'
>>> foolist = [123, 'xba', 342.23, 'abc']
>>> foolist[::-1]
['abc', 342.23, 'xba', 123]

Ellipsis

Ellipsis objects are used in extended slice notations as demonstrated above. These objects
are used to represent the actual ellipses in the slice syntax (…). Like the Null object,
ellipsis objects also have a single name, Ellipsis, and has a Boolean true value at all
times.

Xranges

XRange objects are created by the built-in function xrange(), a sibling of the range()
built-in function and used when memory is limited and for when range() generates an
unusually large data set. You can find out more about range() and xrange() in Chapter
8.

For an interesting side adventure into Python types, we invite the reader to take a look at
the types module in the standard Python library.

NOTE

IT-SC book: Core Python Programming

 96

All standard type objects can be tested for truth value and compared to objects of the
same type. Objects have inherent true or false values. Objects take a false value when
they are empty, any numeric representation of zero, or the Null object None.

The following are defined as having false values in Python:

None

Any numeric zero:

0 ([plain] integer)

0.0 (float)

0L (long integer)

0.0+0.0j (complex)

"" (empty string)

[] (empty list)

() (empty tuple)

{} (empty dictionary)

Any value for an object other than the those above is considered to have a true value, i.e.,
non-empty, non-zero, etc. User-created class instances have a false value when their
nonzero (__nonzero__()) or length (__len__()) special methods, if defined, return a
zero value.

Standard Type Operators

Value Comparison

Comparison operators are used to determine equality of two data values between
members of the same type. These comparison operators are supported for all built-in
types. Comparisons yield true or false values, based on the validity of the comparison
expression. Python chooses to interpret these values as the plain integers 0 and 1 for false
and true, respectively, meaning that each comparison will result in one of those two
possible values. A list of Python's value comparison operators is given in Table 4.1.

Table 4.1. Standard Type Value Comparison Operators

operator function

IT-SC book: Core Python Programming

 97

expr1 < expr2 expr1 is less than expr2

expr1 > expr2 expr1 is greater than expr2

expr1 <= expr2 expr1 is less than or equal to expr2

expr1 >= expr2 expr1 is greater than or equal to expr2

expr1 == expr2 expr1 is equal to expr2

expr1 != expr2 expr1 is not equal to expr2 (C-style)

expr1 <> expr2 expr1 is not equal to expr2 (ABC/Pascal-style)[a]

[a] This "not equals" sign will slowly be phased out. Use != instead.

Note that comparisons performed are those that are appropriate for each data type. In
other words, numeric types will be compared according to numeric value in sign and
magnitude, strings will compare lexicographically, etc.

>>> 2 == 2
1
>>> 2.46 <= 8.33
1
>>> 5+4j >= 2-3j
1
>>> 'abc' == 'xyz'
0
>>> 'abc' > 'xyz'
0
>>> 'abc' < 'xyz'
1
>>> [3, 'abc'] == ['abc', 3]
0
>>> [3, 'abc'] == [3, 'abc']
1

Also, unlike many other languages, multiple comparisons can be made on the same line,
evaluated in left-to-right order:

IT-SC book: Core Python Programming

 98

>>> 3 < 4 < 7 # same as (3 < 4) and (4 < 7)
1
>>> 4 > 3 == 3 # same as (4 > 3) and (3 == 3)
1
>>> 4 < 3 < 5 != 2 < 7
0

We would like to note here that comparisons are strictly between object values, meaning
that the comparisons are between the data values and not the actual data objects
themselves. For the latter, we will defer to the object identity comparison operators
described next.

Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly comparing
objects themselves. Objects can be assigned to other variables (by reference). Because
each variable points to the same (shared) data object, any change effected through one
variable will change the object and hence be reflected through all references to the same
object.

In order to understand this, you will have to think of variables as linking to objects now
and be less concerned with the values themselves. Let us take a look at three examples.

Example 1: foo1 and foo2 reference the same object

foo1 = foo2 = 4

When you look at this statement from the value point-of-view, it appears that you are
performing a multiple assignment and assigning the numeric value of 4 to both the foo1
and foo2 variables. This is true to a certain degree, but upon lifting the covers, you will
find that a numeric object with the contents or value of 4 has been created. Then that
object's reference is assigned to both foo1 and foo2, resulting in both foo1 and foo2
aliased to the same object. Figure 4-1 shows an object with two references.

Figure 4-1. foo1 and foo2 Reference the Same Object

IT-SC book: Core Python Programming

 99

Example 2: foo1 and foo2 reference the same object

foo1 = 4
foo2 = foo1

This example is very much like the first: A numeric object with value 4 is created, then
assigned to one variable. When foo2 = foo1 occurs, foo2 is directed to the same object
as foo1 since Python deals with objects by passing references. foo2 then becomes a new
and additional reference for the original value. So both foo1 and foo2 now point to the
same object. The same figure above applies here as well.

Example 3: foo1 and foo2 reference different objects

foo1 = 4
foo2 = 1 + 3

This example is different. First, a numeric object is created, then assigned to foo1. Then
a second numeric object is created, and this time assigned to foo2. Although both
objects are storing the exact same value, there are indeed two distinct objects in the
system, with foo1 pointing to the first, and foo2 being a reference to the second. Figure
4-2 below shows now we have two distinct objects even though both objects have the
same value.

Figure 4-2. foo1 and foo2 Reference Different Objects

IT-SC book: Core Python Programming

 100

Why did we choose to use boxes in our diagrams above? Well, a good way to visualize
this concept is to imagine a box (with contents inside) as an object. When a variable is
assigned an object, that creates a "label" to stick on the box, indicating a reference has
been made. Each time a new reference to the same object is made, another sticker is put
on the box. When references are abandoned, then a label is removed. A box can be
"recycled" only when all the labels have been peeled off the box. How does the system
keep track of how many labels are on a box?

Each object has associated with it a counter that tracks the total number of references that
exist to that object. This number simply indicates how many variables are "pointing to"
any particular object. This is the reference count that we introduced in the last chapter in
Sections 3.5.5–3.5.7. Python provides the is and is not operators to test if a pair of
variables do indeed refer to the same object. Performing a check such as

a is b

is an equivalent expression to

id(a) == id(b)

The object identity comparison operators all share the same precedence level and are
presented in Table 4.2.

Table 4.2. Standard Type Object Identity Comparison Operators

operator function

obj1 is obj2 obj1 is the same object as obj2

obj1 is not obj2 obj1 is not the same object as obj2

In the example below, we create a variable, then another that points to the same object.

>>> a = [5, 'hat', -9.3]
>>> b = a
>>> a is b
1
>>> a is not b
0
>>>
>>> b = 2.5e-5

IT-SC book: Core Python Programming

 101

>>> b
2.5e-005
>>> a
[5, 'hat', -9.3]
>>> a is b
0
>>> a is not b
1

Both the is and not identifiers are Python keywords.

Boolean

Expressions may be linked together or negated using the boolean logical operators and,
or, and not, all of which are Python keywords. These Boolean operations are in
highest-to-lowest order of precedence in Table 4.3. The not operator has the highest
precedence and is immediately one level below all the comparison operators. The and
and or operators follow, respectively.

Table 4.3. Standard Type Boolean Operators

operator function

not expr logical NOT of expr (negation)

expr1 and expr2 logical AND of expr1 and expr2 (conjunction)

expr1 or expr2 logical OR of expr1 and expr2 (disjunction)

>>> x, y = 3.1415926536, -1024
>>> x < 5.0
1
>>> not (x < 5.0)
0
>>> (x < 5.0) or (y > 2.718281828)
1
>>> (x < 5.0) and (y > 2.718281828)
0
>>> not (x is y)
1

Earlier, we introduced the notion that Python supports multiple comparisons within one
expression. These expressions have an implicit and operator joining them together.

IT-SC book: Core Python Programming

 102

>>> 3 < 4 < 7 # same as "(3 < 4) and (4 < 7)"
1

Standard Type Built-in Functions

Along with generic operators which we have just seen, Python also provides some built-
in functions that can be applied to all the basic object types: cmp(), repr(), str(),
type(), and the single reverse or back quotes ('') operator, which is functionally-
equivalent to repr().

Table 4.4. Standard Type Built-in Functions

function operation

cmp(obj1, obj2) compares obj1 and obj2, returns integer i where:

i < 0 if obj1 < obj2

i > 0 if obj1 > obj2

i == 0 if obj1 == obj2

repr(obj)/' obj' returns evaluatable string representation of obj

str(obj) returns printable string representation of obj

type(obj) determines type of obj and return type object

cmp()

The cmp() built-in function CoMPares two objects, say, obj1 and obj2, and returns a
negative number (integer) if obj1 is less than obj2, a positive number if obj1 is greater
than obj2, and zero if obj1 is equal to obj2. Notice the similarity in return values as C's
strcmp(). The comparison used is the one that applies for that type of object, whether it
be a standard type or a user-created class; if the latter, cmp() will call the class's special
__cmp__() method. More on these special methods in Chapter 13, on Python classes.
Here are some samples of using the cmp() built-in function with numbers and strings.

>>> a, b = -4, 12
>>> cmp(a,b)

IT-SC book: Core Python Programming

 103

-1
>>> cmp(b,a)
1
>>> b = -4
>>> cmp(a,b)
0
>>>
>>> a, b = 'abc', 'xyz'
>>> cmp(a,b)
-23
>>> cmp(b,a)
23
>>> b = 'abc'
>>> cmp(a,b)
0

We will look at using cmp() with other objects later.

str() and repr() (and ''Operator)

The str() STRing and repr() REPResentation built-in functions or the single back or
reverse quote operator (``) come in really handy if the need arises to either recreate an
object through evaluation or obtain a human-readable view of the contents of objects,
data values, object types, etc. To use these operations, a Python object is provided as an
argument and some type of string representation of that object is returned.

In some examples below, we take some random Python types and convert them to their
string representations.

>>> str(4.53-2j)
'(4.53-2j)'
>>>
>>> str(1)
'1'
>>>>>> str(2e10)
'20000000000.0'
>>>
>>> str([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> repr([0, 5, 9, 9])
'[0, 5, 9, 9]'
>>>
>>> `[0, 5, 9, 9]`
'[0, 5, 9, 9]'

Although all three are similar in nature and functionality, only repr() and `` do exactly
the same thing, and using them will deliver the "official" string representation of an

IT-SC book: Core Python Programming

 104

object that can be evaluated as a valid Python expression (using the eval() built-in
function). In contrast, str() has the job of delivering a "printable" string representation
of an object which may not necessarily be acceptable by eval(), but will look nice in a
print statement.

The executive summary is that repr() is Python-friendly while str() produces human-
friendly output. However, with that said, because both types of string representations
coincide so often, on many occasions all three return the exact same string.

NOTE

Occasionally in Python, you will find both an operator and a function that do exactly the
same thing. One reason why both an operator and a function exist is that there are times
where a function may be more useful than the operator, for example, when you are
passing around executable objects like functions and where different functions may be
called depending on the data item. Another example is the double-star (**) and pow()
built-in function which performs "x to the y power" exponentiation for x ** y or
pow(x,y).

A Second Look at type()

Python does not support method or function overloading, so you are responsible for any
"introspection" of the objects that your functions are called with. (Also see the Python
FAQ 4.75.) Fortunately, we have the type() built-in function to help us with just that,
introduced earlier in Section 4.3.1.

What's in a name? Quite a lot, if it is the name of a type. It is often advantageous and/or
necessary to base pending computation on the type of object that is received. Fortunately,
Python provides a built-in function just for that very purpose. type() returns the type for
any Python object, not just the standard types. Using the interactive interpreter, let's take
a look at some examples of what type() returns when we give it various objects.

>>> type('')
<type 'string'>
>>>
>>> s = 'xyz'
>>>
>>> type(s)
<type 'string'>
>>>
>>> type(100)
<type 'int'>
>>>
>>> type(-2)

IT-SC book: Core Python Programming

 105

<type 'int'>
>>>
>>> type(0)
<type 'int'>
>>>
>>> type(0+0j)
<type 'complex'>
>>>
>>> type(0L)
<type 'long int'>
>>>
>>> type(0.0)
<type 'float'>
>>>
>>> type([])
<type 'list'>
>>>
>>> type(())
<type 'tuple'>
>>>
>>> type({})
<type 'dictionary'>
>>>
>>> type(type)
<type 'builtin_function_or_method'>
>>>
>>> type(Abc)
<type 'class'>
>>>
>>> type(Abc_obj)
<type 'instance'>

You will find most of these types familiar, as we discussed them at the beginning of the
chapter, however, you can now see how Python recognizes types with type(). Since we
cannot usually "look" at a type object to reveal its value from outside the interactive
interpreter, the best use of the type object is to compare it with other type objects to make
this determination.

>>> type(1.2e-10+4.5e20j) == type(0+0j):
1
>>> type('this is a string') == type(''):
1
>>> type(34L) == type(0L)
1
>>> type(2.4) == type(3)
0

Although type() returns a type object rather than an integer, say, we can still use it to
our advantage because we can make a direct comparison using the if statement. We

IT-SC book: Core Python Programming

 106

present below a script in Example 4.1 that shows how we can use type() in a run-time
environment.

Example 4.1. Checking the Type (typechk.py)

The function displayNumType() takes a numeric argument and uses the type() built-in
to indicate its type (or "not a number," if that is the case).

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def displayNumType(number):
004 4
005 5 print number, "is",
006 6 if type(number) == type(0):
007 7 print 'an integer'
008 8 elif type(number) == type(0L):
009 9 print 'a long'
010 10 elif type(number) == type(0.0):
011 11 print 'a float'
012 12 elif type(number) == type(0+0j):
013 13 print 'a complex number'
014 14 else: <$nopage>
015 15 print 'not a number at all!!'
016 16
017 17 displayNumType(-69)
018 18 displayNumType(9999999999999999999999L)
019 19 displayNumType(98.6)
020 20 displayNumType(-5.2+1.9j)
021 21 displayNumType('xxx')
022 <$nopage>

Running typechk.py, we get the following output:

-69 is an integer
9999999999999999999999 is a long
98.6 is a float
(-5.2+1.9j) is a complex number
xxx is not a number at all!!

An alternative to comparing an object's type with a known object's type (as we did above
and in the example below) is to utilize the types module which we briefly mentioned
earlier in the chapter.

>>> import types
>>> aFloat = 1.69
>>> if type(aFloat) == types.FloatType:
… print aFloat, 'is a float type'
… else:
… print aFloat, 'is not a float type'

IT-SC book: Core Python Programming

 107

…
1.69 is a float type

A summary of operators and built-in functions common to all basic Python types is given
in Table 4.5. The progressing shaded groups indicate hierarchical precedence from
highest-to-lowest order. Elements grouped with similar shading all have equal priority.

Table 4.5. Standard Type Operators and Built-In Functions

operator/function description result[a]

string representation

`` string representation string

built-in functions

cmp(obj1, obj2) compares two objects integer

repr(obj) string representation string

str(obj) string representation string

type(obj) determines object type type object

value comparisons

< less than Boolean

> greater than Boolean

<= less than or equal to Boolean

IT-SC book: Core Python Programming

 108

>= greater than or equal to Boolean

== equal to Boolean

!= not equal to Boolean

<> not equal to Boolean

object comparisons

is the same as Boolean

is not not the same as Boolean

Boolean operators

not logical negation Boolean

and logical conjuction Boolean

or logical disjunction Boolean

[a] Those results labelled as "Boolean" indicate a Boolean comparison; since Python does not
have a Boolean type per se, the result returned is a plain integer with value 0 (for false) or 1
(for true).

Categorizing the Standard Types

If we were to be maximally verbose in describing the standard types, we would probably
call them something like Python's "basic built-in data object primitive types."

"Basic," indicating that these are the standard or core types that Python provides

"Built-in," due to the fact that types these come default with Python. (We use this term
very loosely so as to not confuse them with Python built-in variables and functions.)

IT-SC book: Core Python Programming

 109

"Data," because they are used for general data storage

"Object," because objects are the default abstraction for data and functionality

"Primitive," because these types provide the lowest-level granularity of data storage

"Types," because that's what they are: data types!

However, this description does not really give you an idea of how each type works or
what functionality applies to them. Indeed, some of them share certain characteristics,
such as how they function, and others share commonality with regards to how their data
values are accessed. We should also be interested in whether the data that some of these
types hold can be updated and what kind of storage they provide.

There are three different models we have come up with to help categorize the standard
types, with each model showing us the interrelationships between the types. These
models help us obtain a better understanding of how the types are related, as well as how
they work.

Storage Model

The first way we can categorize the types is by how many objects can be stored in an
object of this type. Python's types, as well as types from most other languages, can hold
either single or multiple values. A type which holds a single object we will call literal or
scalar storage, and those which can hold multiple objects we will refer to as container
storage. (Container objects are also referred to as composite or compound objects in the
documentation, but some of these refer to objects other than types, such as class
instances.) Container types bring up the additional issue of whether different types of
objects can be stored. All of Python's container types can hold objects of different types.
Table 4.6 categorizes Python's types by storage model.

Table 4.6. Types categorized by the Storage Model

Storage model category Python types that fit category

literal/scalar numbers (all numeric types), strings

container lists, tuples, dictionaries

Although strings may seem like a container type since they "contain" characters (and
usually more than one character), they are not considered as such because Python does
not have a character type (see Section 4.8). Thus, because strings are self-contained
literals.

IT-SC book: Core Python Programming

 110

Update Model

Another way of categorizing the standard types is by asking the question, "Once created,
can objects be changed or their values updated?" When we introduced Python types early
on, we indicated that certain types allow their values to be updated and others do not.
Mutable objects are those whose values can be changed, and immutable objects are those
whose values cannot be changed. Table 4.7 illustrates which types support updates and
which do not.

Table 4.7. Types Categorized by the Update Model

Update model category Python types that fit category

mutable lists, dictionaries

immutable numbers, strings, tuples

Now after looking at the table, a thought which must immediately come to mind is, "Wait
a minute! What do you mean that numbers and strings are immutable? I've done things
like the following:"

x = 'Python numbers and strings'
x = 'are immutable?!? What gives?'
i = 0
i = i + 1

"They sure as heck don't look immutable to me!" That is true to some degree, but looks
can be deceiving. What is really happening behind the scenes is that the original objects
are actually being replaced in the above examples. Yes, that is right. Read that again.

Rather than pointing to the original objects, new objects with the new values were
allocated and (re)assigned to the original variable names, and the old objects were
garbage-collected. One can confirm this by using the id() built-in function to compare
object identities before and after such assignments.

If we added calls to id() in our example above, we may be able to see that the objects
are being changed, as below:

x = 'Python numbers and strings'
print id(x)
x = 'are immutable?!? What gives?'
print id(x)
i = 0

IT-SC book: Core Python Programming

 111

print id(i)
i = i + 1
print id(i)

Upon executing our little piece of code, we get the following output. Your mileage will
vary since object IDs will differ from system to system and are memory location
dependent:

16191392
16191232
7749552
7749600

On the flip side, lists can be modified without replacing the original object, as illustrated
in the code below.

>>> aList = ['ammonia', 83, 85, 'lady']
>>> aList
['ammonia', 83, 85, 'lady']
>>>
>>> aList[2]
85
>>>
>>> id(aList)
135443480
>>>
>>> aList[2] = aList[2] + 1
>>> aList[3] = 'stereo'
>>> aList
['ammonia', 83, 86, 'stereo']
>>>
>>> id(aList)
135443480
>>>
>>> aList.append('gaudy')
>>> aList.append(aList[2] + 1)
>>> aList
['ammonia', 83, 86, 'stereo', 'gaudy', 87]
>>>
>>> id(aList)
135443480

Notice how for each change, the ID for the list remained the same.

Access Model

IT-SC book: Core Python Programming

 112

Although the previous two models of categorizing the types are useful when being
introduced to Python, they are not the primary models for differentiating the types. For
that purpose, we use the access model. By this, we mean, how do we access the values of
our stored data? There are three categories under the access model: direct, sequence, and
mapping. The different access models and which types fall into each respective category
are given in Table 4.8.

Table 4.8. Types Categorized by the Access Model

access model category types that fit category

direct numbers

sequence strings, lists, tuples

mapping dictionaries

Direct types indicate single element, non-container types. All numeric types fit into this
category.

Sequence types are those whose elements are sequentially-accessible via index values
starting at 0. Accessed items can be either single elements or in groups, better known as
slices. Types which fall into this category include strings, lists, and tuples. As we
mentioned before, Python does not support a character type, so, although strings are
literals, they are a sequence type because of the ability to access substrings sequentially.

Mapping types are similar to the indexing properties of sequences, except instead of
indexing on a sequential numeric offset, elements (values) are unordered and accessed
with a key, thus making mapping types a set of hashed key-value pairs.

We will use this primary model in the next chapter by presenting each access model type
and what all types in that category have in common (such as operators and built-in
functions), then discussing each Python standard type that fits into those categories. Any
operators, built-in functions, and methods unique to a specific type will be highlighted in
their respective sections.

So why this side trip to view the same data types from differing perspectives? Well, first
of all, why categorize at all? Because of the high-level data structures that Python
provides, we need to differentiate the "primitive" types from those which provide more
functionality. Another reason is to be clear on what the expected behavior of a type
should be. For example, if we minimize the number of times we ask ourselves, "What are
the differences between lists and tuples again?" or "What types are immutable and which
are not?" then we have done our job. And finally, certain categories have general

IT-SC book: Core Python Programming

 113

characteristics which apply to all types which belong to a certain category. A good
craftsman (and craftswoman) should know what is available in his or her toolboxes.

The second part of our inquiry asks, why all these different models or perspectives? It
seems that there is no one way of classifying all of the data types. They all have crossed
relationships with each other, and we feel it best to expose the different sets of
relationships shared by all the types. We also want to show how each type is unique in its
own right. No two types map the same across all categories. And finally, we believe that
understanding all these relationships will ultimately play an important implicit role
during development. The more you know about each type, the more you are apt to use the
correct ones in the parts of your application where they are the most appropriate, and
where you can maximize performance.

We summarize by presenting a cross-reference chart (see Table 4.9) which shows all the
standard types, the three different models we use for categorization, and where each type
fits into these models.

Table 4.9. Categorizing the Standard Types

Data Type Storage Model Update Model Access Model

numbers literal/scalar immutable direct

strings literal/scalar immutable sequence

lists container mutable sequence

tuples container immutable sequence

dictionaries container mutable mapping

Unsupported Types

Before we explore each standard type, we conclude this chapter by giving a list of types
that are not supported by Python.

Boolean

Unlike Pascal or Java, Python does not feature the Boolean type. Use integers instead.

char or byte

IT-SC book: Core Python Programming

 114

Python does not have a char or byte type to hold either single character or 8-bit integers.
Use strings of length one for characters and integers for 8-bit numbers.

pointer

Since Python manages memory for you, there is no need to access pointer addresses. The
closest to an address that you can get in Python is by looking at an object's identity using
the id() built-in function. Since you have no control over this value, it's a moot point.

int vs. short vs. long

Python's plain integers are the universal "standard" integer type, obviating the need for
three different integer types, i.e., C's int, short, and long. For the record, Python's
integers are implemented as C longs. For values larger in magnitude than regular integers
(usually your system architecture size, i.e., 32-bit), use Python's long integer.

float vs. double

C has both a single precision float type and double-precision double type. Python's
float type is actually a C double. Python does not support a single-precision floating
point type because its benefits are outweighed by the overhead required to support two
types of floating point types.

Exercises

1:
Python Objects. What three values are associated with all Python objects?

2:
Types. Which Python types are immutable?

3:
Types. Which Python types are sequences?

4:
type() Built-in Function. What does the type() built-in function do? What kind of
object does type() return—an integer or an object?

5:
str() and repr() Built-in Functions. What are the differences between the str() and
repr() built-in functions and the backquote (``) operator?

IT-SC book: Core Python Programming

 115

6:
Object Equality. What do you think is the difference between the expressions
type(a) == type(b) and type(a) is type(b)?

7:
dir() Built-in Function. In Exercises 2-12 and 2-13, we experimented with a built-
in function called dir() which takes an object and reveals its attributes. Do the
same thing for the types module. Write down the list of the types that you are
familiar with, including all you know about each of these types; then create a
separate list of those you are not familiar with. As you learn Python, deplete the
"unknown" list so that all of them can be moved to the "familiar with" list.

IT-SC book: Core Python Programming

 116

Chapter 5. Numbers

In this chapter, we will focus on Python's numeric types. We will cover each type in
detail, then present the various operators and built-in functions which can be used with
numbers. We conclude this chapter by introducing some of the standard library modules
which deal with numbers.

Introduction to Numbers

Numbers provide literal or scalar storage and direct access. Numbers are also an
immutable type, meaning that changing or updating its value results in a newly allocated
object. This activity is, of course, transparent to both the programmer and the user, so it
should not change the way the application is developed.

Python has four types of numbers: "plain" integers, long integers, floating point real
numbers, and complex numbers.

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assigning a value to a variable:

anInt = 1
1aLong = -9999999999999999L
aFloat = 3.1415926535897932384626433832795
aComplex = 1.23 + 4.56J

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another number. The
new value can be related to its previous value or to a completely different number
altogether.

anInt = anInt + 1
aFloat = 2.718281828

How to Remove Numbers

IT-SC book: Core Python Programming

 117

Under normal circumstances, you do not really "remove" a number; you just stop using it!
If you really want to delete a reference to a number object, just use the del statement
(introduced in Section 3.5.6). You can no longer use the variable name, once removed,
unless you assign it to a new object; otherwise, you will cause a NameError exception to
occur.

 del anInt
del aLong, aFloat, aComplex

Okay, now that you have a good idea of how to create and update numbers, let us take a
look at Python's four numeric types.

Integers

Python has two types of integers. Plain integers are the generic vanilla (32-bit) integers
recognized on most systems today. Python also has a long integer size; however, these far
exceed the size provided by C longs. We will take a look at both types of Python
integers, followed by a description of operators and built-in functions applicable only to
Python integer types.

(Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit) running
Python will provide a range of -231 to 231-1, that is -2,147,483,648 to 2,147,483,647. Here
are some examples of Python integers:

0101 84 -237 0x80 017 -680 -0X92

Python integers are implemented as (signed) longs in C. Integers are normally
represented in base 10 decimal format, but they can also be specified in base eight or base
sixteen representation. Octal values have a "0" prefix, and hexadecimal values have either
"0x" or "0X" prefixes.

Long Integers

The first thing we need to say about Python long integers is to not get them confused with
long integers in C or other compiled languages—these values are typically restricted to
32- or 64-bit sizes, whereas Python long integers are limited only by the amount of
(virtual) memory in your machine. In other words, they can be very L-O-N-G longs.

Long integers are a superset of integers and are useful when the range of plain integers
exceeds those of your application, meaning less than -231 or greater than 231-1. Use of

IT-SC book: Core Python Programming

 118

long integers is denoted by an upper- or lowercase (L) or (l), appended to the integer's
numeric value. Values can be expressed in decimal, octal, or hexadecimal. The following
are examples of long integers:

16384L -0x4E8L 017L -2147483648l 052144364L

299792458l 0xDECADEDEADBEEFBADFEEDDEAL-5432101234L

NOTE

Although Python supports a case-insensitive "L" to denote long integers, we recommend
that you use only the uppercase "L" to avoid confusion with the number "one" (1).
Python will display only long integers with a capital "L."

>>> aLong = 999999999l

>>> aLong

999999999L

Floating Point Real Numbers

Floats in Python are implemented as C doubles, double precision floating point real
numbers, values which can be represented in straightfoward decimal or scientific
notations. These 8-byte (64-bit) values conform to the IEEE 754 definition (52M/11E/1S)
where 52 bits are allocated to the mantissa, 11 bits to the exponent (this gives you about ±
10308.25 in range), and the final bit to the sign. That all sounds fine and dandy; however,
the actual amount of precision you will receive (along with the range and overflow
handling) depends completely on the architecture of the machine as well as the
implementation of the compiler which built your Python interpreter.

Floating point values are denoted by a decimal point (.) in the appropriate place and an
optional "e" suffix representing scientific notation. We can use either lowercase (e) or
uppercase (E). Positive (+) or negative (-) signs between the "e" and the exponent
indicate the sign of the exponent. Absence of such a sign indicates a positive exponent.
Here are some floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0
4.3e25 9.384e-23 -2.172818 float(12) 1.000000001
3.1416 4.2E-10 -90. 6.022e23 -1.609E-19

Complex Numbers

A long time ago, mathematicians were stumped by the following equation:

IT-SC book: Core Python Programming

 119

The reason for this is because any real number (positive or negative) multiplied by itself
results in a positive number. How can you multiply any number with itself to get a
negative number? No such real number exists. So in the eighteenth century,
mathematicians invented something called an imaginary number i (or j— depending what
math book you are reading) such that:

Basically a new branch of mathematics was created around this special number (or
concept), and now imaginary numbers are used in numerical and mathematical
applications. Combining a real number with an imaginary number forms a single entity
known as a complex number. A complex number is any ordered pair of floating point real
numbers (x, y) denoted by x + y j where x is the real part and y is the imaginary part of
a complex number.

Here are some facts about Python's support of complex numbers:

Imaginary numbers by themselves are not supported in Python

Complex numbers are made up of real and imaginary parts

Syntax for a complex number: real+imag j

Both real and imaginary components are floating point values

Imaginary part is suffixed with letter "J" lowercase (j) or upper (J)

The following are examples of complex numbers:

64.375+1j 4.23-8.5j 0.23-8.55j 1.23e-045+6.7e+089j
6.23+1.5j -1.23-875J 0+1j9.80665-8. 31441J -.0224+0j

Complex Number Built-in Attributes

Complex numbers are one example of objects with data attributes (Section 4.1.1). The
data attributes are the real and imaginary components of the complex number object they
belong to. Complex numbers also have a method attribute which can be invoked,
returning the complex conjugate of the object.

>>> aComplex = -8.333-1.47j
>>> aComplex
(-8.333-1.47j)
>>> aComplex.real

IT-SC book: Core Python Programming

 120

-8.333
>>> aComplex.imag
-1.47
>>> aComplex.conjugate()
(-8.333+1.47j)

Table 5.1 describes the attributes which complex numbers have:

Table 5.1. Complex Number Attributes

attribute desciption

num. real real component of complex number num

num. imag imaginary component of complex number num

num. conjugate() returns complex conjugate of num

Operators

Numeric types support a wide variety of operators, ranging from the standard type of
operators to operators created specifically for numbers, and even some which apply to
integer types only.

Mixed-Mode Operations

It may be hard to remember, but when you added a pair of numbers in the past, what was
important was that you got your numbers correct. Addition using the plus (+) sign was
always the same. In programming languages, this may not be as straightforward because
there are different types of numbers.

When you add a pair of integers, the + represents integer addition, and when you add a
pair of floating point numbers, the + represents double-precision floating point addition,
and so on. Our little description extends even to non-numeric types in Python. For
example, the + operator for strings represents concatenation, not addition, but it uses the
same operator! The point is that for each data type that supports the + operator, there are
different pieces of functionality to "make it all work," embodying the concept of
overloading.

Now, we cannot add a number and a string, but Python does support mixed mode
operations strictly between numeric types. When adding an integer and a float, a choice
has to be made as to whether integer or floating point addition is used. There is no hybrid

IT-SC book: Core Python Programming

 121

operation. Python solves this problem using something called numeric coercion. This is
the process whereby one of the operands is converted to the same type as the other before
the operation. Python perform's numeric coercion by following some rules:

To begin with, if both numbers are the same type, no conversion is necessary. When both
types are different, a search takes place to see whether one number can be converted to
the other's type. If so, the operation occurs and both numbers are returned, one having
been converted. There are rules that must be followed since certain conversions are
impossible, such as turning a float into an integer, or converting a complex number to any
non-complex number type.

Coercions which are possible, however, include turning an integer into a float (just add
" .0 ") or converting any non-complex type to a complex number (just add a zero
imaginary component, i.e., " 0j "). The rules of coercion follow from these two examples:
integers move towards float, and all move toward complex. The Python Reference Guide
describes the coerce() operation in the following manner:

If either argument is a complex number, the other is converted to complex;

Otherwise, if either argument is a floating point number, the other is converted to floating
point;

Otherwise, if either argument is a long integer, the other is converted to long integer;

Otherwise, both must be plain integers and no conversion is necessary (in the upcoming
diagram, this describes the rightmost arrow).

The following flowchart illustrates these coercion rules:

Figure 5.1. Numeric coercion.

IT-SC book: Core Python Programming

 122

Automatic numeric coercion makes life easier for the programmer since he or she does
not have to worry about adding coercion code to his or her application. If explicit
coercion is desired, Python does provide the coerce() built-in function (described later
in Section 5.6.2).

If there is any bad news about coercion and mixed-mode operations, it is that no coercion
is performed during an operation. For example, if you multiply two integers together
forming a result that is too large for an integer, no conversion to a long takes place, and
your operation will fail:

>>> 999999 * 999999
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OverflowError: integer multiplication

A workaround to such a situation is to try to detect if such problems may occur, and if so,
perform a manual conversion of both integers to longs by using the long() built-in
function before the operation.

IT-SC book: Core Python Programming

 123

Below is an example showing you Python's automatic coercion. The 2 is converted to a
long before the operation.

>>> 999999L ** 2.
99999B000001L

Standard Type Operators

The standard type operators discussed in the previous chapter all work as advertised for
numeric types. Mixed-mode operations, described above, are those which involve two
numbers of different types. The values are internally converted to the same type before
the operation is applied.

Here are some examples of the standard type operators in action with numbers:

>>> 5.2 == 5.2
1
>>> -719 >= 833
0
>>> 5+4e >= 2-3e
1
>>> 2 < 5 < 9 # same as (2 < 5) and (5 < 9)
1
>>> 77 > 66 == 66 # same as (77 > 66) and (66 == 66)
1
>>> 0. < -90.4 < 55.3e2 != 3 < 181
0
>>> (-1 < 1) or (1 < -1)
1

Numeric Type (Arithmetic) Operators

Python supports unary operators for no change and negation, + and -, respectively; and
binary arithmetic operators +, -, *, /, %, and **, for addition, subtraction,
multiplication, division, modulo, and exponentiation, respectively.

Rules and exceptions: Any zero right-hand argument for division and modulo will result
in a ZeroDivisionError exception. Integer modulo is straightforward integer division
remainder, while for float, take the difference of the dividend and the product of the
divisor and the quotient of the quantity dividend divided by the divisor rounded down to
the closest integer, i.e., x - (math.floor(x/y) * y, or

IT-SC book: Core Python Programming

 124

For complex number modulo, take only the real component of the division result, i.e., x
- (math.floor((x/y).real) * y).

The exponentiation operator has a peculiar precedence rule in its relationship with the
unary operators: It binds more tightly than unary operators to its left, but less tightly than
unary operators to its right. Due to this characteristic, you will find the ** operator twice
in the numeric operator charts in this text. Here are some examples:

>>> 3 ** 2
9
>>> -3 ** 2 # ** binds together than - to its left
-9
>>> (-3) ** 2 # group to cause - to bind first
9>>> 4.0 ** -1.0 # ** binds looser than - to its right
0.25

In the second case, it performs 3 to the power of 2 (3-squared) before it applies the unary
negation. We need to use the parentheses around the "-3" to prevent this from happening.
In the final example, we see that the unary operator binds more tightly because the

operation is 1 over quantity 4 to the first power or ¼. Note that 1/4 as an integer
operation results in an integer 0, so integers are not allowed to be raised to a negative
power (it is a floating point operation anyway), as we will show here:

>>> 4 ** -1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: integer to the negative power

A summary of all arithmetic operators, in shaded hierarchical order from highest-to-
lowest priority is found Table 5.2. All the operators listed here rank higher in priority
than the bitwise operators for integers, found in Section 5.5.4.

Table 5.2. Numeric Type Arithmetic Operators

arithmetic operator function

expr1 ** expr2 expr1 raised to the power of expr2 [a]

+ expr (unary) expr sign unchanged

IT-SC book: Core Python Programming

 125

- expr (unary) negation of expr

expr1 ** expr2 exp1 raised to the power of expr2 [a]

expr1 * expr2 expr1 times expr2

expr1 / expr2 expr1 divided by expr2

expr1 % expr2 expr1 modulo expr2

expr1 + expr2 expr1 plus expr2

expr1 - expr2 expr1 minus expr2

[a] blinds tighter than unary operators to its left and looser than unary operators to its right

Be aware that integer division truncates. To obtain the correct fractional result, use
floating point numbers instead:

>>> 3 / 4
0
>>> 3.0 / 4.0
0.75

Here are a few more examples of Python's numeric operators.

>>> -442 - 77
-519
>>>
>>> 4 ** 3
64
>>>
>>> 4.2 ** 3.2
98.7183139527
>>> 8 / 3
2
>>> 8.0 / 3.0
2.66666666667
>>> 8 % 3

IT-SC book: Core Python Programming

 126

2
>>> (60. - 32.) * (5. / 9.)
15.5555555556
>>> 14 * 0x04
56
>>> 0170 / 4
30
>>> 0x80 + 0777
639
>>> 45L * 22L
990L
>>> 16399L + 0xA94E8L
709879L
>>> -2147483648L - 52147483648L
-54294967296L
>>> 64.375+1j + 4.23-8.5j
(68.605-7.5j)
>>> 0+1j ** 2 # same as 0+(lj**2)
(-1+0j)
>>> 1+1j ** 2 # same as 1+(lj**2)
0j
>>> (1+1j) ** 2
2j

Note how the exponentiation operator is still higher in priority than the binding addition
operator that delimits the real and imaginary components of a complex number.
Regarding the last two examples above, we grouped the components of the complex
number together to obtain the desired result.

*Bit Operators (Integer-only)

Python integers may be manipulated bitwise and the standard bit operations are supported:
inversion, bitwise AND, OR, and exclusive OR (a.k.a. XOR), and left and right shifting.
Here are some facts regarding the bit operators:

Negative numbers are treated as their 2's complement value.

Left and right shifts of N bits are equivalent to multiplication and division by (2 ** N)
without overflow checking.

For long integers, the bit operators use a "modified" form of 2's complement, acting as if
the sign bit were extended infinitely to the left.

The bit inversion operator (~) has the same precedence as the arithmetic unary operators,
the highest of all bit operators. The bit shift operators (<< and >>) come next, having a
precedence one level below that of the standard plus and minus operators, and finally we
have the bitwise AND, XOR, and OR operators (&, ^, |), respectively. All of the
bitwise operators are presented in the order of descending priority in Table 5.3.

IT-SC book: Core Python Programming

 127

Table 5.3. Integer Type Bitwise Operators

bitwise operator function

~ num (unary) invert the bits of num, yielding -(num + 1)

num1 << num2 expr1 left shifted by expr2 bits

num1 >> num2 expr1 right shifted by expr2 bits

num1 & num2 expr1 bitwise AND with expr2

num1 ^ num2 expr1 bitwise XOR (exclusive OR) with expr2

num1 | num2 expr1 bitwise OR with expr2

We will now present some examples using the bit operators using 30 (011110), 45
(101101), and 60 (111100):

>>> 30 & 45
12
>>> 30 | 45
63
>>> 45 & 60
44
>>> 45 | 60
61
>>> ~30
-31
>>> ~45
-46
>>> 45 << 1
90
>>> 60 >> 2
15
>>> 30 ^ 45
51

Built-in Functions

IT-SC book: Core Python Programming

 128

Standard Type Functions

In the last chapter, we introduced the cmp(), str(), and type() built-in functions that
apply for all standard types. For numbers, these functions will compare two numbers,
convert numbers into strings, and tell you a number's type, respectively. Here are some
examples of using these functions:

>>> cmp(-6, 2)]
-1
>>> cmp(-4.333333, -2.718281828)
-1
>>> cmp(0xFF, 255)
0
>>> str(0xFF)
'255'
>>> str(55.3e2)
'5530.0'
>>> type(0xFF)
<type 'int'>
>>> type(98765432109876543210L)
<type 'long int'>
>>> type(2-1j)
<type 'complex'>

Numeric Type Functions

Python currently supports different sets of built-in functions for numeric types. Some
convert from one numeric type to another while others are more operational, performing
some type of calculation on their numeric arguments.

Conversion

The int(), long(), float(), and complex() built-in functions are used to convert
from any numeric type to another. Starting in Python 1.5, these functions will also take
strings and return the numerical value represented by the string.

The following are some examples using the numeric type conversion built-ins:

>>> int(4.25555)
4
>>> long(42)
42L
>>> float(4)
4.0
>>> complex(4)
(4+0j)
>>>
>>> complex(2.4, -8)

IT-SC book: Core Python Programming

 129

(2.4-8j)
>>>
>>> complex(2.3e-10, 45.3e4)
(2.3e-10+453000j)

Table 5.4 nutshells these numeric type conversion built-in functions.

Table 5.4. Numeric Type Conversion Built-in Functions

function operation

int(obj, base=10) converts string or number obj to (plain) integer; provides
same behavior as string.atoi(); optional base argument
introduced in 1.6

long(obj, base=10) converts string or number obj to long integer; provides
same behavior as string.atol(); optional base argument
introduced in 1.6

float(obj) converts string or number obj to floating point; provides
same behavior as string.atof()

complex(str) or
complex(real, imag
=0.0)

converts string str to complex, or takes real (and perhaps
imag inary) numbers and returns a complex number with
those components

Operational

Python has five operational built-in functions for numeric types: abs(), coerce(),
divmod(), pow(), and round(). We will take a look at each and present some usage
examples.

abs() returns the absolute value of the given argument. If the argument is a complex
number, then math.sqrt(num. real2 + num. imag2) is returned. Here are some
examples of using the abs() built-in function:

>>> abs(-1)
1
>>> abs(10.)
10.0
>>> abs(1.2-2.1j)

IT-SC book: Core Python Programming

 130

2.41867732449
>>> abs(0.23 - 0.78)
0.55

The coerce() function, although it technically is a numeric type conversion function,
does not convert to a specific type and acts more like an operator, hence our placement of
it in our operational built-ins section. In Section 5.5.1, we discussed numeric coercion
and how Python performs that operation. The coerce() function is a way for the
programmer to explicitly coerce a pair of numbers rather than letting the interpreter do it.
This feature is particularly useful when defining operations for newly-created numeric
class types. coerce() just returns a tuple containing the converted pair of numbers. Here
are some examples:

>>> coerce(1, 2)
(1, 2)
>>>
>>> coerce(1.3, 134L)
(1.3, 134.0)
>>>
>>> coerce(1, 134L)
(1L, 134L)
>>>
>>> coerce(1j, 134L)
(1j, (134+0j))
>>>
>>> coerce(1.23-41j, 134L)
((1.23-41j), (134+0j))

The divmod() built-in function combines division and modulus operations into a single
function call that returns the pair (quotient, remainder) as a tuple. The values returned are
the same as those given for the standalone division and modulus operators for integer
types. For floats, the quotient returned is math.floor(num1/num2) and for complex
numbers, the quotient is math.floor((num1/num2).real).

>>> divmod(10,3)
(3, 1)
>>> divmod(3,10)
(0, 3)
>>> divmod(10,2.5)
(4.0, 0.0)
>>> divmod(2.5,10)
(0.0, 2.5)
>>> divmod(2+1j, 0.5-1j)
(0j, (2+1j))

IT-SC book: Core Python Programming

 131

Both pow() and the double star (**) operator perform exponentiation; however, there
are differences other than the fact that one is an operator and the other is a built-in
function.

The ** operator did not appear until Python 1.5, and the pow() built-in takes an optional
third parameter, a modulus argument. If provided, pow() will perform the exponentiation
first, then return the result modulo the third argument. This feature is used for
cryptographic applications and has better performance than pow(x,y) % z since the
latter performs the calculations in Python rather than in C like pow(x, y, z).

>>> pow(2,5)
32
>>>
>>> pow(5,2)
25
>>> pow(3.141592,2)
9.86960029446
>>>
>>> pow(1+1j, 3)
(-2+2j)

The round() built-in function has a syntax of round (flt,ndig=0). It normally rounds a
floating point number to the nearest integral number and returns that result (still) as a
float. When the optional third ndig option is given, round() will round the argument to
the specific number of decimal places.

>>> round(3)
3.0
>>> round(3.45)
3.0
>>> round(3.4999999)
3.0
>>> round(3.4999999, 1)
3.5
>>> import math
>>> for eachNum in range(10):
… print round(math.pi, eachNum)
…
3.0
3.1
3.14
3.142
3.1416
3.14159
3.141593
3.1415927
3.14159265
3.141592654
3.1415926536
>>> round(-3.5)

IT-SC book: Core Python Programming

 132

-4.0
>>> round(-3.4)
-3.0
>>> round(-3.49)
-3.0
>>> round(-3.49, 1)
-3.5

Note that the rounding performed by round() moves away from zero on the number line,
i.e., round(.5) goes to 1 and round(-.5) goes to -1. Also, with functions like int(),
round(), and math.floor(), all may seem like they are doing the same thing; it is
possible to get them all confused. Here is how you can differentiate among these:

int() chops off the decimal point and everything after (a.k.a. truncation).

floor() rounds you to the next smaller integer, i.e., the next integer moving in a
negative direction (towards the left on the number line).

round() (rounded zero digits) rounds you to the nearest integer period.

Here is the output for four different values, positive and negative, and the results of
running these three functions on eight different numbers. (We reconverted the result from
int() back to a float so that you can visualize the results more clearly when compared to
the output of the other two functions.)

>>> import math
>>> for eachNum in (.2, .7, 1.2, 1.7, -.2, -.7, -1.2, -1.7):
… print "int(%.1f)\t%+.1f" % (eachNum, float(int(eachNum)))
… print "floor(%.1f)\t%+.1f" % (eachNum,
… math.floor(eachNum))
… print "round(%.1f)\t%+.1f" % (eachNum, round(eachNum))
… print '-' * 20
…
int(0.2) +0.0
floor(0.2) +0.0
round(0.2) +0.0

int(0.7) +0.0
floor(0.7) +0.0
round(0.7) +1.0

int(1.2) +1.0
floor(1.2) +1.0
round(1.2) +1.0

int(1.7) +1.0
floor(1.7) +1.0
round(1.7) +2.0

int(-0.2) +0.0

IT-SC book: Core Python Programming

 133

floor(-0.2) -1.0
round(-0.2) +0.0

int(-0.7) +0.0
floor(-0.7) -1.0
round(-0.7) -1.0

int(-1.2) -1.0
floor(-1.2) -2.0
round(-1.2) -1.0

int(-1.7) -1.0
floor(-1.7) -2.0
round(-1.7) -2.0

Table5.5 summarizes the operational functions for numeric types:

Table 5.5. Numeric Type Operational Built-in Functions[a]

function operation

abs(num) returns the absolute value of num

coerce(num1,
num2)

converts num1 and num2 to the same numeric type and returns the
converted pair as a tuple

divmod(num1,
num2)

division-modulo combination returns (num1 / num2, num1 %
num2) as a tuple. For floats and complex, the quotient is rounded
down (complex uses only real component of quotient)

pow(num1, num2,
mod =1)

raises num1 to num2 power, quantity modulo mod if provided

round(flt, ndig
=0)

(floats only) takes a float flt and rounds it to ndig digits, defaulting
to zero if not provided

[a] except for round(), which applies only to floats

Integer-only Functions

IT-SC book: Core Python Programming

 134

In addition to the built-in functions for all numeric types, Python supports a few that are
specific only to integers (plain and long). These functions fall into two categories, base
presentation with hex() and oct(), and ASCII conversion featuring chr() and ord().

Base Representation

As we have seen before, Python integers automatically support octal and hexadecimal
representations in addition to the decimal standard. Also, Python has two built-in
functions which return string representations of an integer's octal or hexadecimal
equivalent. These are the oct() and hex() built-in functions, respectively. They both
take an integer (in any representation) object and return a string with the corresponding
value. The following are some examples of their usage:

>>> hex(255)
'0xff'
>>> hex(23094823l)
'0x1606627L'
>>> hex(65535*2)
'0x1fffe'
>>>
>>> oct(255)
'0377'
>>> oct(23094823l)
'0130063047L'
>>> oct(65535*2)
'0377776'

ASCII Conversion

Python also provides functions to go back and forth between ASCII (American Standard
Code for Information Interchange) characters and their ordinal integer values. Each
character is mapped to a unique number in a table numbered from 0 to 255. This number
does not change for all computers using the ASCII table, providing consistency and
expected program behavior across different systems. chr() takes a single-byte integer
value and returns a one-character string with the equivalent ASCII character. ord() does
the opposite, taking a single ASCII character in the form of a string of length one and
returns the corresponding ASCII value as an integer:

>>> ord('a')
97
>>> ord('A')
65
>>> ord('0')
48

>>> chr(97)
'a'
>>> chr(65L)

IT-SC book: Core Python Programming

 135

'A'
>>> chr(48)
'0'

Table 5.6 shows all built-in functions for integer types.

Table 5.6. Integer Type Built-in Functions

function operation

hex(num) converts num to hexadecimal and return as string

oct(num) converts num to octal and return as string

chr(num) takes ASCII value num and returns ASCII character as string; 0 <= num <=
255 only

ord(chr) takes ASCII chr and returns corresponding ordinal ASCII value; chr
must be a string of length 1

Related Modules

There are a number of modules in the Python standard library that add-on to the
functionality of the operators and built-in functions for numeric types. Table 5.7 lists the
key modules for use with numeric types. Refer to the literature or online documentation
for more information on these modules.

Table 5.7. Numeric Type Related Modules

module contents

array implements array types… a restricted sequence type

math/cmath supplies standard C library mathematical functions; most functions
available in math are implemented for complex numbers in the cmath
module

IT-SC book: Core Python Programming

 136

operator contains numeric operators available as function calls, i.e.,
operator.sub(m, n) is equivalent to the difference (m - n) for numbers
m and n

random is default RNG module for Python… obsoletes rand and whrandom

For advanced numerical and scientific mathematics applications, there is also a well
known external module called NumPy which may be of interest to you.

NOTE

The random module is the general-purpose place to go if you are looking for random
numbers. The random number generator (RNG), based on the Wichmann-Hill algorithm,
comes seeded with the current timestamp and is ready to go as soon as it has loaded. Here
are four of the most commonly used functions in the random module:

randint() takes two integer values and returns a random integer between those values
inclusive

uniform() does almost the same thing as randint(), but returns a float and is inclusive
only of the smaller number (exclusive of the larger number)

random() works just like uniform() except that the smaller number is fixed at 0.0, and
the larger number is fixed at 1.0

choice() given a sequence (see Chapter 6), randomly selects and returns a sequence
item

We have now come to the conclusion of our tour of all of Python's numeric types. A
summary of operators and built-in functions for numeric types is given in Table 5.8.

Table 5.8. Operators and Built-in Functions for All Numeric Types

Operator/built-in Description int long float complex Result [a]

IT-SC book: Core Python Programming

 137

abs() absolute value • • • • numbera[a]

chr() character • •

string

coerce() numeric coercion • • • • tuple

complex() complex conversion • • • • complex

divmod() division/modulo • • • • tuple

float() float conversion • • • • float

hex() hexadecimal string • •

string

int() int conversion • • • • int

long() long conversion • • • • long

oct() octal string • •

string

ord() ordinal

(string)

int

pow() exponentiation • • • • number

round() float rounding

•

float

** [b] exponentiation • • • • number

+ [c] no change • • • • number

IT-SC book: Core Python Programming

 138

- [c] negation • • • • number

~ [c] bit inversion • •

int/long

** [b] exponentiation • • • • number

* multiplication • • • • number

/ division • • • • number

% modulo/remainder • • • • number

+ addition • • • • number

- subtraction • • • • number

<< bit left shift • •

int/long

>> bit right shift • •

int/long

& bitwise AND • •

int/long

^ bitwise XOR • •

int/long

| bitwise OR • •

int/long

[a] a result of "number" indicates any of the four numeric types

[b] has a unique relationship with unary operators; see Section 5.5.3 and Table 5.2

[c] unary operator

Exercises

IT-SC book: Core Python Programming

 139

The exercises in this chapter may first be implemented as applications. Once full
functionality and correctness have been verified, we recommend that the reader convert
his or her code to functions which can be used in future exercises. On a related note, one
style suggestion is to not use print statements in functions. Instead, have the functions
return the appropriate value and have the caller perform any output desired. This keeps
the code adaptable and reusable.

1:
Integers. Name the differences between Python's plain and long integers.

2:
Operators. (a) Create a function to take two numbers (any type) and output their
sum.

(b) Write another function, but output the product of two given numbers.

3:
Standard Type Operators. Take test score input from the user and output letter
grades according to the following grade scale/curve:

A: 90 – 100

B: 80 – 89

C: 70 – 79

D: 60 – 69

F: < 60

4:
Modulus. Determine whether a given year is a leap year, using the following
formula: a leap year is one that is divisible by four, but not by one hundred, unless
it is also divisible by four hundred. For example, 1992, 1996, and 2000 are leap
years, but 1967 and 1900 are not. The next leap year falling on a century is 2400.

5:
Modulus. Calculate the number of basic American coins given a value less than 1
dollar. A penny is worth 1 cent, a nickel is worth 5 cents, a dime is worth 10 cents,
and a quarter is worth 25 cents. It takes 100 cents to make 1 dollar. So given an
amount less than 1 dollar (if using floats, convert to integers for this exercise),
calculate the number of each type of coin necessary to achieve the amount,
maximizing the number of larger denomination coins. For example, given $0.76, or
76 cents, the correct output would be "3 quarters and 1 penny." Output such as "76

IT-SC book: Core Python Programming

 140

pennies" and "2 quarters, 2 dimes, 1 nickel, and 1 penny" are not acceptable.

6:
Arithmetic. Create a calculator application. Write code that will take two numbers
and an operator in the format: N1 OP N2, where N1 and N2 are floating point or
integer values, and OP is one of the following: +, -, *, /, %, **, representing
addition, subtraction, multiplication, division, modulus/remainder, and
exponentiation, respectively, and displays the result of carrying out that operation
on the input operands.

7:
Sales Tax. Take a monetary amount (i.e., floating point dollar amount [or whatever
currency you use]), and determine a new amount figuring all the sales taxes you
must pay where you live.

8:
Geometry. Calculate the area and volume of:

(a) squares and cubes

(b) circles and spheres

9:
Style. Answer the following numeric format questions:

(a) Why does 17 + 32 give you 49, but 017 + 32 give you 47 and 017 + 032 give
you 41, as indicated in the examples below?

>>> 17 + 32
49
>>> 017+ 32
47
>>> 017 + 032
41

(b) Why does 56l + 78l give you 134L and not 1342, as indicated in the example
below?

 >>> 56l + 78l
134L

IT-SC book: Core Python Programming

 141

10:
Conversion. Create a pair of functions to convert Fahrenheit to Celsius temperature
values. C = (F - 32) * (5 / 9) should help you get started.

11:
Modulus. (a) Using loops and numeric operators, output all even numbers from
0 to 20.

(b) Same as part (a), but output all odd numbers up to 20.

(c) From parts (a) and (b), what is an easy way to tell the difference between even
and odd numbers?

(d) Using part (c), write some code to determine if one number divides another. In
your solution, ask the user for both numbers and have your function answer "yes"
or "no" as to whether one number divides another by returning 1 or 0, respectively.

12:
Limits. Determine the largest and smallest ints, longs, floats, and complex numbers
that your system can handle.

13:
Conversion. Write a function that will take a time period measured in hours and
minutes and return the total time in minutes only.

14:
Bank account interest. Create a function to take an interest percentage rate for a bank
account, say, a Certificate of Deposit (CD). Calculate and return the Annual
Percentage Yield (APY) if the account balance was compounded daily.

15:
GCD and LCM. Determine the greatest common divisor and least common multiple
of a pair of integers.

16:
Home finance. Take an opening balance and a monthly payment. Using a loop,
determine remaining balances for succeeding months, including the final payment.
"Payment 0" should just be the opening balance and schedule monthly payment
amount. The output should be in a schedule format similar to the following (the
numbers used in this example are for illustrative purposes only):

Enter opening balance: 100.00

IT-SC book: Core Python Programming

 142

Enter monthly payment: 16.13

 Amount Remaining
Pymt# Paid Balance
----- ------ ---------
 0 $ 0.00 $100.00
 1 $16.13 $ 83.87
 2 $16.13 $ 67.74
 3 $16.13 $ 51.61
 4 $16.13 $ 35.48
 5 $16.13 $ 19.35
 6 $16.13 $ 3.22
 7 $ 3.22 $ 0.00

17:
*Random numbers. Read up on the random module and do the following problem:
Generate a list of a random number (1 < N <= 100) of random numbers (0 <= n <=
231 -1). Then randomly select a set of these numbers (1 <= N <= 100), sort them,
and display this subset.

IT-SC book: Core Python Programming

 143

Chapter 6. Sequences: Strings, Lists, and
Tuples

The next family of Python types we will be exploring are those whose items are ordered
and sequentially accessible via index offsets into the set. This group, known as sequences,
includes the types: strings, lists, and tuples. We will first describe the general and
common features followed by a closer examination of each type. We will first introduce
all operators and built-in functions that apply to sequence types, then cover each
sequence type individually. For each sequence type, we will provide the following
information:

Introduction

Operators

Built-in Functions

Built-in Methods (if applicable)

Special Features (if applicable)

Related Modules (if applicable)

We will conclude this chapter with a reference chart that summarizes all the operators
and built-in functions which apply to all sequence types. Let us begin by taking a high-
level overview and examine the operators and built-in functions applicable to all
sequence types.

Sequences

Sequence types all share the same access model: ordered set with sequentially-indexed
offsets to get to each element. Multiple elements may be achieved by using the slice
operators which we will explore in this chapter. The numbering scheme used starts from
zero (0) and ends with one less the length of the sequence—the reason for this is because
we began at 0. Figure6-1 illustrates how sequence items are stored.

Figure 6.1. How Sequence Elements Are Stored and Accessed

IT-SC book: Core Python Programming

 144

Operators

A list of all the operators applicable to all sequence types is given in Table6.1. The
operators appear in hierarchical order from highest to lowest with the levels alternating
between shaded and unshaded.

Table 6.1. Sequence Type Operators
Sequence Operator Function

seq[ind] element located at index ind of seq
seq[ind1:ind2] elements from index ind1 to ind2 of seq
seq * expr seq repeated expr times
seq1 + seq2 concatenates sequences seq1 and seq2
obj in seq tests if obj is a member of sequence seq
obj not in seq tests if obj is not a member of sequence seq

Membership (in, not in)

Membership test operators are used to determine whether an element is in or is a member
of a sequence. For strings, this test is whether a character is in a string, and for lists and
tuples, it is whether an object is an element of those sequences. The in and not in
operators are Boolean in nature; they return the integer one if the membership is
confirmed and zero otherwise.

The syntax for using the membership operators is as follows:

obj [not] in
 sequence

Concatenation (+)

This operation allows us to take one sequence and join it with another sequence of the
same type. The syntax for using the concatenation operator is as follows:

sequence1 + sequence2

IT-SC book: Core Python Programming

 145

The resulting expression is a new sequence which contains the combined contents of
sequences sequence1 and sequence2.

Repetition (*)

The repetition operator is useful when consecutive copies of sequence elements are
desired. The syntax for using the membership operators is as follows:

sequence * copies_int

The number of copies, copies_int, must be a plain integer. It cannot even be a long. As
with the concatenation operator, the object returned is newly allocated to hold the
contents of the multiply-replicated objects.

Starting in Python 1.6, copies_int can also be a long.

Slices ([], [:])

Sequences are structured data types whose elements are placed sequentially in an ordered
manner. This format allows for individual element access by index offset or by an index
range of indices to "grab" groups of sequential elements in a sequence. This type of
access is called slicing, and the slicing operators allow us to perform such access.

The syntax for accessing an individual element is:

sequence[index]

sequence is the name of the sequence and index is the offset into the sequence where the
desired element is located. Index values are either positive, ranging from 0 to the length
of the sequence less one, i.e., 0 <= index <= len(sequence) -1, or negative, ranging
from -1 to the negative length of the sequence, -len(sequence), i.e., -len(sequence)
<= index <= -1. The difference between the positive and negative indexes is that
positive indexes start from the beginning of the sequences and negative indexes begin
from the end.

Accessing a group of elements is similar. Starting and ending indexes may be given,
separated by a colon (:). The syntax for accessing a group of elements is:

sequence [[starting_index]: [ending_index]]

IT-SC book: Core Python Programming

 146

Using this syntax, we can obtain a "slice" of elements in sequence from the
starting_index up to but not including the element at the ending_index index. Both
starting_index and ending_index are optional, and if not provided, the slice will go
from the beginning of the sequence or until the end of the sequence, respectively.

In Figures 6-2 to 6-6, we take an entire sequence (of soccer players) of length 5, and
explore how to take various slices of such a sequence.

Figure 6.2. Entire sequence: sequence or sequence [:]

Figure 6.3. Sequence slice: sequence [0:3] or sequence [:3]

IT-SC book: Core Python Programming

 147

Figure 6.4. Sequence slice: sequence [2:5] or sequence [2:]

Figure 6.5. Sequence slice: sequence [1:3]

Figure 6.6. Sequence slice: sequence [3]

IT-SC book: Core Python Programming

 148

We will take a closer look at slicing when we cover each sequence type.

Built-in Functions

Conversion

The list(), str(), and tuple() built-in functions are used to convert from any
sequence type to another. Table 6.2 lists the sequence type conversion functions.

Table 6.2. Sequence Type Conversion Built-in Functions
Function Operation

list (seq) converts seq to list
str (obj) converts obj to string
tuple (seq) converts seq to tuple

We use the term "convert" loosely. It does not actually convert the argument object into
another type; recall that once Python objects are created, we cannot change their identity
or their type. Rather, these functions just create a new sequence of the requested type,
populate it with the members of the argument object, and pass that new sequence back as
the return value. This follows a similar vein to the concatenation and repetition operations
described in Section 6.1.1.

The str() function is most popular when converting an object into something printable
and works with other types of objects, not just sequences. The list() and tuple()
functions are useful to convert from one to another (lists to tuples and vice versa).
However, although those functions are applicable for strings as well since strings are
sequences, using tuple() and list() to turn strings into tuples or lists is not common
practice.

Operational

IT-SC book: Core Python Programming

 149

Python provides the following operational built-in functions for sequence types (see
Table 6.3).

We are now ready to take a tour through each sequence type and will start our journey by
taking a look at Python strings.

Table 6.3. Sequence Type Operational Built-in Functions
Function Operation

len (seq) returns length (number of items) of seq
max (seq) returns "largest" element in seq
min (seq) returns "smallest" element in seq

Strings

Strings are amongst the most popular types in Python. We can create them simply by
enclosing characters in quotes. Python treats single quotes the same as double quotes.
This contrasts with most other scripting languages, which use single quotes for literal
strings and double quotes to allow escaping of characters. Python uses the "raw string"
operator to create literal quotes, so no differentiation is necessary. Other languages such
as C use single quotes for characters and double quotes for strings. Python does not have
a character type; this is probably another reason why single and double quotes are the
same.

Nearly every Python application uses strings in one form or another. Strings are a literal
or scalar type, meaning they are treated by the interpreter as a singular value and are not
containers which hold other Python objects. Strings are immutable, meaning that
changing an element of a string requires creating a new string. Strings are made up of
individual characters, and such elements of strings may be accessed sequentially via
slicing.

How to Create and Assign Strings

Creating strings is as simple as assigning a value to a variable:

>>> aString = 'Hello World!'
>>> anotherString = "Python is cool!"
>>> print aString
Hello World!
>>> print anotherString
Python is cool!
>>> aBlankString = ''
>>> print aBlankString
''

How to Access Values(Characters and Substrings) in Strings

IT-SC book: Core Python Programming

 150

Python does not support a character type; these are treated as strings of length one, thus
also considered a substring. To access substrings, use the square brackets for slicing
along with the index or indices to obtain your substring:

>>> aString = 'Hello World!'
>>> aString[0]
'H'
>>> aString[1:5]
'ello'
>>> aString[6:]
'World!'

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The new
value can be related to its previous value or to a completely different string altogether.

>>> aString = aString[:6] + 'Python!'
>>> aString
'Hello Python!'
>>> aString = 'different string altogether'
>>> aString
'different string altogether'

Like numbers, strings are not mutable, so you cannot change an existing string without
creating a new one from scratch. That means that you cannot update individual characters
or substrings in a string. However, as you can see above, there is nothing wrong with
piecing together part of your old string and assigning it to a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual
characters from an existing string. What you can do, however, is to empty the string, or to
put together another string which drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"… the (lowercase) letter
"l," for example:

>>> aString = 'Hello World!'
>>> aString = aString[:3] + aString[4:]
>>> aString
'Helo World!'

IT-SC book: Core Python Programming

 151

To clear or remove a string, you assign an empty string or use the del statement,
respectively:

>>> aString = ''

>>> aString
''
>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code
defining the string eventually terminates, and the string is automatically garbage-
collected.

Strings and Operators

Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including
the standard types. We will take a look at how some of those apply to strings. For a brief
introduction, here are a few examples using strings:

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> str1 < str2
1
>>> str2 != str3
1
>>> (str1 < str3) and (str2 == 'xyz')
0

When using the value comparison operators, strings are compared lexicographically
(ASCII value order).

Sequence Operators

Slices ([] and [:])

Earlier in Section 6.1.1, we examined how we can access individual or a group of
elements from a sequence. We will apply that knowledge to strings in this section. In
particular, we will look at:

Counting forward

IT-SC book: Core Python Programming

 152

Counting backward

Default/missing indexes

For the following examples, we use the single string 'abcd'. Provided in the figure is a
list of positive and negative indexes that indicate the position in which each character is
located within the string itself.

Using the length operator, we can confirm that its length is 4:

>>> string = 'abcd'
>>> len(string)
4

When counting forward, indexes start at 0 to the left and end at one less than the length of
the string (because we started from zero). In our example, the final index of our string is

final index = len(string) - 1
 = 4 - 1
 = 3

We can access any substring within this range. The slice operator with a single argument
will give us a single character, and the slice operator with a range, i.e., using a colon (:),
will give us multiple consecutive characters. Again, for any ranges [start:end], we
will get all characters starting at offset start up to, but not including, the character at
end. In other words, for all characters x in the range [start : end], start<= x < end.

 >>> string[0]
'a'
>>> string[1:3]
'bc'
>>> string[2:4]
'cd'
>>> string[4]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range

IT-SC book: Core Python Programming

 153

Any index outside our valid index range (in our example, 0 to 3) results in an error.
Above, our access of string[2:4] was valid because that returns characters at indexes 2
and 3, i.e., 'c' and 'd', but a direct access to the character at index 4 was invalid.

When counting backward, we start at index -1 and move toward the beginning of the
string, ending at negative value of the length of the string. The final index (the first
character) is located at:

 final index = -len(string)
 = -4

>>> string[-1]
'd'
>>> string[-3:-1]
'bc'
>>> string[-4]
'a'

When either a starting or an ending index is missing, they default to the beginning or end
of the string, respectively.

>>> string[2:]
'cd'
>>> string[1:]
'bcd'
>>> string[:-1]
'abc'
>>> string[:]
'abcd'

Notice how the omission of both indices gives us a copy of the entire string.

Membership (in, not in)

The membership question asks whether a character (string of length one) appears in a
string. A one is returned if that character appears in the string and zero otherwise. Note
that the membership operation is not used to determine if a substring is within a string.
Such functionality can be accomplished by using the string methods or string module
functions find() or index() (and their brethren rfind() and rindex()).

Here are a few more examples of strings and the membership operators.

>>> 'c' in 'abcd'
1
>>> 'n' in 'abcd'

IT-SC book: Core Python Programming

 154

0
>>> 'n' not in 'abcd'
1

In Example 6-1, we will be using the following predefined strings found in the string
module:

>>> import string
>>> string.uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.digits
'0123456789'

Example 6-1 is a small script called idcheck.py which checks for valid Python
identifiers. As we now know, Python identifiers must start with an alphabetic character.
Any succeeding characters may be alphanumeric. The example also shows use of the
string concatenation operator (+) introduced later in this section.

Running this script several times produces the following output:

% python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? counter
okay as an identifier
%
% python idcheck.py
Welcome to the Identifier Checker v1.0
Testees must be at least 2 chars long.
Identifier to test? 3d_effects
invalid: first symbol must be alphabetic

Let us take apart the application line by line:

Lines 3–6

Import the string module and use some of the predefined strings to put together valid
alphabetic and numeric identifier strings which we will test against.

Example 6.1. ID Check (idcheck.py)

IT-SC book: Core Python Programming

 155

Tests for identifier validity. First symbol must be alphabetic and remaining symbols must
be alphanumeric. This tester program only checks identifiers which are at least two
characters in length.

 <$nopage>
001 1 #!usr/bin/env python
002 2
003 3 import string
004 4
005 5 alphas = string.letters + '_'
006 6 nums = string.digits
007 7
008 8 print 'Welcome to the Identifier Checker v1.0'
009 9 print 'Testees must be at least 2 chars long.'
010 10 inp = raw_input('Identifier to test? ')
011 11
012 12 if len(inp) > 1:
013 13
014 14 if inp[0] not in alphas:
015 15 print '''invalid: first symbol must be
016 16 alphabetic'''
017 17 else: <$nopage>
018 18 for otherChar in inp[1:]:
019 19
020 20 if otherChar not in alphas + nums:
021 21 print '''invalid: remaining
022 22 symbols must be alphanumeric'''
023 23 break <$nopage>
024 24 else: <$nopage>
025 25 print "okay as an identifier"
026 <$nopage>

Lines 8–12

Print the salutation and prompt for user input. The if statement on line twelve filters out
all statements shorter than two characters in length.

Lines 14–16

Check to see if the first symbol is alphabetic. If it is not, display the output indicating the
result and perform no further processing.

Lines 17–18

Otherwise, loop to check the other characters, starting from the second symbol to the end
of the string.

Lines 20–23

Check to see if each remaining symbol is alphanumeric. Note how we use the
concatenation operator (see below) to create the set of valid characters. As soon as we

IT-SC book: Core Python Programming

 156

find an invalid character, display the result and perform no further pocessing by exiting
the loop with break.

NOTE

In general, repeat performances of operations or functions as arguments in a loop are
unproductive as far as performance is concerned.

 while i < l
print 'character %d is:', string[i]

The loop above wastes valuable time recalculating the length of string string. This
function call occurs for each loop iteration. If we simply save this value once, we can
rewrite our loop so that it is more productive.

length = len(string)
while i < length:
 print 'character %d is:', string[i]

The same applies for a loop in the application in Example 6-1.

 for otherCh
 if otherChar not in alphas + nums:
 :

The for loop beginning on line 19 contains an if statement that concatenates a pair of
strings. These strings do not change throughout the course of the application, yet this
calculation must be performed for each loop iteration. If we save the new string first, we
can then reference that string rather than make the same calculations over and over again:

alphnums = alphas + nums
for otherChar in input[1:]:
 if otherChar not in alphnums:
 :

Lines 24–25

IT-SC book: Core Python Programming

 157

It may be somewhat premature to show you a for-else loop statement, but we are going
to give it a shot anyway. (For a full treatment, see Chapter 8). The else statement, for a
for loop is optional and, if provided, will execute if the loop finished in completion
without being "broken" out of by break. In our application, if all remaining symbols
check out okay, then we have a valid identifier name. The result is displayed to indicate
as such, completing execution.

This application is not without its flaws however. One problem is that the identifiers
tested must have length greater than 1. Our application as-is is not reflective of the true
range of Python identifiers, which may be of length 1. Another problem with our
application is that it does not take into consideration Python keywords, which are
reserved names which cannot be used for identifiers. We leave these two tasks as
exercises for the reader (see Exercise 6-2.).

Concatenation (+)

We can use the concatenation operator to create new strings from existing ones. We have
already seen the concatenation operator in action above in Example 6-1. Here are a few
more examples:

>>> 'Spanish' + 'Inquisition'
'SpanishInquisition'
>>>
>>> 'Spanish' + ' ' + 'Inquisition'
'Spanish Inquisition'
>>>
>>> s = 'Spanish' + ' ' + 'Inquisition' + ' Made Easy'
>>> s
Spanish Inquisition Made Easy'
>>>
>>> import string
>>> string.upper(s[:3] + s[20])
'SPAM'

The last example illustrates using the concatenation operator to put together a pair of
slices from string s, the "Spa" from "Spanish" and the "M" from "Made." The extracted
slices are concatenated and then sent to the string.upper() function to convert the new
string to all uppercase letters.

Repetition (*)

The repetition operator creates new strings, concatenating multiple copies of the same
string to accomplish its functionality:

>>> 'Ni!' * 3
'Ni!Ni!Ni!'

IT-SC book: Core Python Programming

 158

>>>
>>> '*'*40'
'**'
>>>
>>> print '-' * 20, 'Hello World!', '-' * 20
-------------------- Hello World! --------------------
>>> who = 'knights'
>>> who * 2
'knightsknights'
>>> who
'knights'

As with any standard operator, the original variable is unmodified, as indicated in the
final examples above.

String-only Operators

Format Operator (%)

One of Python's coolest features is the string format operator. This operator is unique to
strings and makes up for the pack of having functions from C's printf() family. In fact,
it even uses the same symbol, the percent sign (%), and supports all the printf()
formatting codes.

The syntax for using the format operator is as follows:

format_string % (arguments_to_convert)

The format_string on the left-hand side is what you would typically find as the first
argument to printf(), the format string with any of the embedded % codes. The set of
valid codes is given in Table6.4. The arguments_to_convert parameter matches the
remaining arguments you would send to printf(), namely the set of variables to
convert and display.

Table 6.4. Format Operator Conversion Symbols
Format Symbol Conversion

%c character
%s string conversion via str() prior to formatting
%i signed decimal integer
%d signed decimal integer
%u unsigned decimal integer
%o octal integer
%x hexadecimal integer (lowercase letters)
%X hexadecimal integer (UPPERcase letters)

IT-SC book: Core Python Programming

 159

%e exponential notation (with lowercase 'e')
%E exponential notation (with UPPERcase 'E')
%f floating point real number
%g the shorter of %f and %e
%G the shorter of %f and %E

Python supports two formats for the input arguments. The first is a tuple (introduced in
Section 2.8, formally in 6.15), which is basically the set of arguments to convert, just
like for C's printf(). The second format which Python supports is a dictionary
(Chapter 7). A dictionary is basically a set of hashed key-value pairs. The keys are
requested in the format_string, and the corresponding values are provided when the
string is formatted.

Converted strings can either be used in conjunction with the print statement to display
out to the user or saved into a new string for future processing or displaying to a
graphical user interface.

Other supported symbols and functionality are listed in Table 6.5.

Table 6.5. Format Operator Auxiliary Directives
Symbol Functionality
* argument specifies width or precision
- left justification
+ display the sign
<sp> leave a blank space before a positive number
add the octal leading zero ('0') or hexadecimal leading '0x' or '0X',

depending on whether 'x' or 'X' were used.
0 pad from left with zeros (instead of spaces)
% '%%' leaves you with a single literal '%'
(var) mapping variable (dictionary arguments)
m.n. m is the minimum total width and n is the number of digits to display after the

decimal point (if appl.)

As with C's printf(), the asterisk symbol (*) may be used to dynamically indicate the
width and precision via a value in argument tuple. Before we get to our examples, one
more word of caution: long integers are more than likely too large for conversion to
standard integers, so we recommend using exponential notation to get them to fit.

Here are some examples using the string format operator:

Hexadecimal Output

>>> "%x" % 108
'6c'
>>>

IT-SC book: Core Python Programming

 160

>>> "%X" % 108
'6C'
>>>
>>> "%#X" % 108
'0X6C'
>>>
>>> "%#x" % 108
'0x6c'

Floating Point and Exponential Notation Output

>>>
>>> '%f' % 1234.567890
'1234.567890'
>>>
>>> '%.2f' % 1234.567890
'1234.57'
>>>
>>> '%E' % 1234.567890
'1.234568E+03'
>>>
>>> '%e' % 1234.567890
'1.234568e+03'
>>>
>>> '%g' % 1234.567890
'1234.57'
>>>
>>> '%G' % 1234.567890
'1234.57'
>>>
>>> "%e" % (1111111111111111111111L)
'1.111111e+21'

Integer and String Output

>>> "%+d" % 4
'+4'
>>>
>>> "%+d" % -4
'-4'
>>>
>>> "we are at %d%%" % 100
'we are at 100%'
>>>
>>> 'Your host is: %s' % 'earth'
'Your host is: earth'
>>>
>>> 'Host: %s\tPort: %d' % ('mars', 80)
'Host: marsPort: 80'
>>>

IT-SC book: Core Python Programming

 161

>>> num = 123
>>> 'dec: %d/oct: %#o/hex: %#X' % (num, num, num)
'dec: 123/oct: 0173/hex: 0X7B'
>>>
>>> "MM/DD/YY = %02d/%02d/%d" % (2, 15, 67)
'MM/DD/YY = 02/15/67'
>>>
>>> w, p = 'web', 'page'
>>> 'http://xxx.yyy.zzz/%s/%s.html' % (w, p)
'http://xxx.yyy.zzz/web/page.html'

The previous examples all use tuple arguments for conversion. Below, we show how to
use a dictionary argument for the format operator:

>>> 'There are %(howmany)d %(lang)s Quotation Symbols' % \
… {'lang': 'Python', 'howmany': 3}
'There are 3 Python Quotation Symbols'

Amazing Debugging Tool

The string format operator is not only a cool, easy-to-use, and familiar feature, but a great
and useful debugging tool as well. Practically all Python objects have a string
presentation (either evaluatable from repr() or '', or printable from str()). The print
statement automatically invokes the str() function for an object. This gets even better.
When you are defining your own objects, there are hooks for you to create string
representations of your object such that repr() and str() (and '' and print) return an
appropriate string as output. And if worse comes to worst and neither repr() or str() is
able to display an object, the Pythonic default is to at least give you something of the
format:

<… something that is useful …>.

Raw String Operator (r / R)

The purpose of raw strings, introduced to Python in version 1.5, is to counteract the
behavior of the special escape characters that occur in strings (see the subsection below
on what some of these characters are). In raw strings, all characters are taken verbatim
with no translation to special or non-printed characters.

This feature makes raw strings absolutely convenient when such behavior is desired, such
as when composing regular expressions (see the re module documentation). Regular
expressions (REs) are strings which define advanced search patterns for strings and
usually consist of special symbols to indicate characters, grouping and matching

IT-SC book: Core Python Programming

 162

information, variable names, and character classes. The syntax for REs contains enough
symbols already, but when you have to insert additional symbols to make special
characters act like normal characters, you end up with a virtual "alphanumersymbolic"
soup! Raw strings lend a helping hand by not requiring all the normal symbols needed
when composing RE patterns.

The syntax for raw strings is exactly the same as for normal strings with the exception of
the raw string operator, the letter "r," which precedes the quotation marks. The "r" can
be lowercase (r) or uppercase (R) and must be placed immediately preceding the first
quote mark.

>>> print r'\n'
\n
>>>
>>>print '\n'
>>>
>>>print r'werbac'
werbac
>>>
>>>print r'webbac\n'
webbac\n
>>>
>>> print r'fglkjfg\][123=091'
fglkjfg\\][123=091
>>>
>>> import re
>>> aFloatRE = re.compile(R'([+-]?\d+(\.\d*)?([eE][+-
]?\d+)?))
>>> match = aFloatRE.search('abcde')
>>> print "our RE matched:", match.group(1)
''
>>> match = aFloatRE.search('-1.23e+45')
>>> print 'our RE matched:', match.group(1)
'-1.23e+45'

Unicode String Operator (u/U)

The Unicode string operator, uppercase (U) and lowercase (u), introduced with Unicode
string support in Python 1.6, takes standard strings or strings with Unicode characters in
them and converts them to a full Unicode string object. More details on Unicode strings
are available in Section 6.7.4. In addition, Unicode support is available in the new string
methods (Section 6.6) and the new regular expression engine. Here are some examples:

u'abc' U+0061 U+0062 U+0063
u'\u1234' U+1234
u'abc\u1234\n' U+0061 U+0062 U+0063 U+1234 U+0012

IT-SC book: Core Python Programming

 163

The Unicode operator can also accept raw Unicode strings if used in conjunction with the
raw string operator discussed in the previous section. The Unicode operator must precede
the raw string operator.

ur 'Hello\nWorld!'

Built-in Functions

Standard Type Functions

cmp()

As with the value comparison operators, the cmp() built-in function also performs a
lexicographic comparison for strings.

>>> str1 = 'abc'
>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> cmp(str1, str2)
-11
>>> cmp(str3, str1)
23
>>> cmp(str2, 'lmn')
0

Sequence Type Functions

len()

>>> str1 = 'abc'
>>> len(str1)
3
>>> len('Hello World!')
12

The len() built-in function returns the number of characters in the string as expected.

max() and min()

>>> str2 = 'lmn'
>>> str3 = 'xyz'
>>> max(str2)
'n'

IT-SC book: Core Python Programming

 164

>>> min(str3)
'x'

Although more useful with other sequence types, the max() and min() built-in functions
do operate as advertised, returning the greatest and least characters (lexicographic order),
respectively.

String Type Function [raw_input()]

The built-in raw_input() function prompts the user with a given string and accepts and
returns a user-input string. Here is an example using raw_input():

>>> user_input = raw_input("Enter your name: ")
Enter your name: John Doe
>>>
>>> user_input
'John Doe'
>>>
>>> len(user_input)
8

Earlier, we indicated that strings in Python do not have a terminating NUL character like
C strings. We added in the extra call to len() to show you that what you see is what you
get.

String Built-in Methods

String methods were recently added to Python, introduced in version 1.6 (and in JPython
1.1), and tweaked for 2.0. These methods are intended to replace most of the functionality
in the string module as well as to bring new functionality to the table. Table 6.6 shows
all the current methods for strings. All string methods should fully support Unicode
strings. And some are applicable only to Unicode strings.

Table 6.6. String Type Built-in Methods
Value Description

string.capitalize() capitalizes first letter of
string

string.center(width) returns a space-padded
string with the original
string centered to a total of
width columns

string.count(str, beg= 0,end=len(string)) counts how many times str
occurs in string, or in a
substring of string if starting

IT-SC book: Core Python Programming

 165

index beg and ending index
end are given

string.encode(encoding='UTF-8',
errors='strict')[a]

returns encoded string version
of string; on error, default is
to raise a ValueError unless
errors is given with 'ignore'
or 'replace'.

string.endswith(str, beg=0, end=len(string))[b] determines if string or a
substring of string (if
starting index beg and ending
index end are given) ends
with str; returns 1 if so, and
0 otherwise

string.expandtabs(tabsize=8) expands tabs in string to
multiple spaces; defaults to 8
spaces per tab if tabsize not
provided

string.find(str, beg=0 end=len(string)) determine if str occurs in
string, or in a substring of
string if starting index beg
and ending index end are
given; returns index if found
and -1 otherwise

string.index(str, beg=0, end=len(string)) same as find(), but raises
an exception if str not found

string.isa1num()[a][b][c] returns 1 if string has at
least 1 character and all
characters are alphanumeric
and 0 otherwise

string.isalpha()[a][b][c] returns 1 if string has at
least 1 character and all
characters are alphabetic and
0 otherwise

string.isdecimal()[b][c][d] returns 1 if string contains
only decimal digits and 0
otherwise

string.isdigit()[b][c] returns 1 if string contains
only digits and 0 otherwise

string.islower()[b][c] returns 1 if string has at
least 1 cased character and all
cased characters are in
lowercase and 0 otherwise

string.isnumeric()[b][c][d] returns 1 if string contains
only numeric characters and 0
otherwise

string.isspace()[b][c] returns 1 if string contains
only whitespace characters
and 0 otherwise

IT-SC book: Core Python Programming

 166

string.istitle()[b][c] returns 1 if string is properly
"titlecased" (see title()) and
0 otherwise

string.isupper()[b][c] returns 1 if string has at
least one cased character and
all cased characters are in
uppercase and 0 otherwise

string.join(seq) merges (concatenates) the
string representations of
elements in sequence seq into
a string, with separator
string

string.ljust(width) returns a space-padded
string with the original string
left-justified to a total of
width columns

string.lower() converts all uppercase letters
in string to lowercase

string.lstrip() removes all leading
whitespace in string

string.replace(str1, str2,
num=string.count(str1))

replaces all occurrences of
str1 in string with str2, or
at most num occurrences if num
given

string.rfind(str, beg=0,end=len(string)) same as find(), but search
backwards in string

string.rindex(str, beg=0, end=len(string)) same as index(), but search
backwards in string

string.rjust(width) returns a space-padded
string with the original string
right-justified to a total of
width columns.

string.rstrip() removes all trailing
whitespace of string

string.split(str="", num=string.count(str)) splits string according to
delimiter str (space if not
provided) and returns list of
substrings; split into at most
num substrings if given

string.splitlines(num=string.count('\n'))[b][c] splits string at all (or num)
NEWLINEs and returns a list of
each line with NEWLINEs
removed

string.startswith(str,
beg=0,end=len(string))[b][c]

determines if string or a
substring of string (if
starting index beg and ending
index end are given) starts

IT-SC book: Core Python Programming

 167

with substring str; returns 1
if so, and 0 otherwise

string.strip([obj]) performs both lstrip() and
rstrip() on string

string.swapcase() inverts case for all letters in
string

string.title()[b][c] returns "titlecased" version of
string, that is, all words
begin with uppercase, and the
rest are lowercase (also see
istitle())

string.translate(str, del="") translates string according to
translation table str(256
chars), removing those in the
del string

string.upper() converts lowercase letters in
string to uppercase

string.zfill (width) returns original string left-
padded with zeros to a total of
width characters; intended for
numbers, zfill() retains any
sign given (less one zero)

[a] applicable to Unicode strings only in 1.6, but to all string types in 2.0.

[b] not available as a string module function in 1.5.2

[c] not available as a method in JPython 1.1

[d] applicable to Unicode strings only

Using JPython, we will show some examples of methods available for strings:

>>> quest = 'what is your favorite color?'
>>> quest.capitalize()
'What is your favorite color?'
>>>
>>> quest.center(40)
' what is your favorite color? '
>>>
>>> quest.count('or')
2
>>>
>>> quest.endswith('blue')
0
>>>
>>> quest.endswith('color?')
1
>>>
>>> quest.find('or', 30)

IT-SC book: Core Python Programming

 168

-1
>>>
>>> quest.find('or', 22)
25
>>
>>> quest.index('or', 10)
16
>>>
>>> ':'.join(quest.split())
'what:is:your:favorite:color?'
>>> quest.replace('favorite color', 'quest')
>>>
'what is your quest?'
>>>
>>> quest.upper()
'WHAT IS YOUR FAVORITE COLOR?'

The most complex example shown above is the one with split() and join(). We first
call split() on our string, which, without an argument, will break apart our string using
spaces as the delimiter. We then take this list of words and call join() to merge our
words again, but with a new delimiter, the colon. Notice that we used the split()
method for our string, and the join() method for single-character string ':'.

Special Features of Strings

Special or Control Characters

Like most other high-level or scripting languages, a backslash paired with another single
character indicates the presence of a "special" character, usually a non-printable character,
and that this pair of characters will be substituted by the special character. These are the
special characters we discussed above that will not be interpreted if the raw string
operator precedes a string containing these characters.

In addition to the well-known characters such as NEWLINE (\n) and (horizontal) TAB
(\t), specific characters via their ASCII values may be used as well: \OOO or \xXX
where OOO and XX are their respective octal and hexadecimal ASCII values. Here are the
base 10, 8, and 16 representations of 0, 65, and 255:

 ASCII ASCII ASCII
decimal 0 65 255
octal \000 \101 \177
hexadecimal \x00 \x41 \xFF

Special characters, including the backslash-escaped ones, can be stored in Python strings
just like regular characters.

IT-SC book: Core Python Programming

 169

Another way that strings in Python are different from those in C is that Python strings are
not terminated by the NUL (\000) character (ASCII value 0). NUL characters are just like
any of the other special backslash-escaped characters. In fact, not only can NUL
characters appear in Python strings, but there can be any number of them in a string, not
to mention that they can occur anywhere within the string. They are no more special than
any of the other control characters. Table6.7 represents a summary of the escape
characters supported by most versions of Python.

Table 6.7. String Literal Backslash Escape Characters
/X Oct Dec Hex Char Description

\0 000 0 0x00 NUL Null character
\a 007 7 0x07 BEL Bell
\b 010 8 0x08 BS Backspace
\t 011 9 0x09 HT Horizontal Tab
\n 012 10 0x0A LF Linefeed/Newline
\v 013 11 0x0B VT Vertical Tab
\f 014 12 0x0C FF Form Feed
\r 015 13 0x0D CR Carriage Return
\e 033 27 0x1B ESC Escape
\" 042 34 0x22 " Double quote
\' 047 39 0x27 ' Single quote/apostrophe
\\ 134 92 0x5C \ Backslash

And as mentioned before, explicit ASCII octal or hexadecimal values can be given, as
well as escaping a NEWLINE to continue a statement to the next line. All valid ASCII
character values are between 0 and 255 (octal 0177, hexadecimal 0XFF).

\OOO octal value OOO (range is 0000 to 0177)
\xXX 'x' plus hexadecimal value XX (range is 0X00 to 0xFF)
\ escape NEWLINE for statement continuation

One use of control characters in strings is to serve as delimiters. In database or
Internet/Web processing, it is more than likely that most printable characters are allowed
as data items, meaning that they would not make good delimiters.

It becomes difficult to ascertain whether or not a character is a delimiter or a data item,
and by using a printable character such as a colon (:) as a delimiter, you are limiting the
number of allowed characters in your data, which may not be desirable.

One popular solution is to employ seldomly used, non-printable ASCII values as
delimiters. These make the perfect delimiters, freeing up the colon and the other printable
characters for more important uses.

Triple Quotes

IT-SC book: Core Python Programming

 170

Although strings can be represented by single or double quote delimitation, it is often
difficult to manipulate strings containing special or non-printable characters, especially
the NEWLINE character. Python's triple quotes comes to the rescue by allowing strings
to span multiple lines, including verbatim NEWLINEs, TABs, and any other special
characters.

The syntax for triple quotes consists of three consecutive single or double quotes (used in
pairs, naturally):

>>> para_str = """this is a long string that is made up of
… several lines and non-printable characters such as
… TAB (\t) and they will show up that way when displayed.
… NEWLINEs within the string, whether explicitly given like
… this within the brackets [\n], or just a NEWLINE within
… the variable assignment will also show up.
… """

Triple quote lets the developer avoid playing quote and escape character games, all the
while bringing at least a small chunk of text closer to WYSIWIG (what you see is what
you get) format.

An example below shows you what happens when we use the print statement to display
the contents of this string. Note how every single special character has been converted to
its printed form, right down to the last NEWLINE at the end of the string between the
"up." and closing triple quotes. Also note that NEWLINEs occur either with an explicit
carriage return at the end of a line or its escape code (\n):

>>> print para_str
this is a long string that is made up of
several lines and non-printable characters such as
TAB () and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [
], or just a NEWLINE within
the variable assignment will also show up.

We introduced the len() built-in sequence type function earlier, which, for strings, gives
us the total number of characters in a string.

>>> len(para_str)
307

IT-SC book: Core Python Programming

 171

Upon applying that function to our string, we get a result of 307, which includes the
NEWLINE and TAB characters. Another way to look at the string within the interactive
interpreter is by just giving the interpreter the name of the object in question. Here, we
will see the "internal" representation of the string, without the special characters being
converted to printable ones. If that last NEWLINE we looked at above (after the final
word "up" and before the closing triple quotes) is still elusive to you, take a look at the
way the string is represented internally below. You will observe that the last character of
the string is the aforementioned NEWLINE.

>>> para_str

'this is a long string that is made up of\012several lines
and non-printable characters such as\012TAB (\011) and
they will show up that way when displayed.\012NEWLINEs
within the string, whether explicitly given like\012this
within the brackets [\012], or just a NEWLINE
within\012the variable assignment will also show up.\012\'

String Immutability

In Section 4.7.2, we discussed how strings are immutable data types, meaning that their
values cannot be changed or modified. This means that if you do want to update a string,
either by taking a substring, concatenating another string on the end, or concatenating the
string in question to the end of another string, etc., a new string object must be created for
it.

This sounds more complicated than it really is. Since Python manages memory for you,
you won't really notice when this occurs. Any time you modify a string or perform any
operation that is contrary to immutability, Python will allocate a new string for you. In
the following example, Python allocates space for the strings, 'abc' and 'def'. But
when performing the addition operation to create the string 'abcdef', new space is
allocated automatically for the new string.

>>> 'abc' + 'def'
'abcdef'

Assigning values to variables is no different:

>>> string = 'abc'
>>> string = string + 'def'
>>> string
'abcdef'

IT-SC book: Core Python Programming

 172

In the above example, it looks like we assigned the string 'abc' to string, then
appended the string 'def' to string. To the naked eye, strings look mutable. What you
cannot see, however, is the fact that a new string was created when the operation "s +
'def'" was performed, and that the new object was then assigned back to s. The old
string of 'abc' was deallocated.

Once again, we can use the id() built-in function to help show us exactly what happened.
If you recall, id() returns the "identity" of an object. This value is as close to a "memory
address" as we can get in Python.

>> string = 'abc'
>>>
>>> id(string)
135060856
>>>
>>> string = string + 'def'
>>> id(string)
135057968

Note how the identities are different for the string before and after the update. Another
test of mutability is to try to modify individual characters or substrings of a string. We
will now show how any update of a single character or a slice is not allowed:

>>> string
'abcdef'
>>>
>>> string[2] = 'C'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setitem__
>>>
>>> string[3:6] = 'DEF'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __setslice__

Both operations result in an error. In order to perform the actions that we want, we will
have to create new strings using substrings of the existing string, then assign those new
strings back to string:

>>> string
'abcdef'
>>>
>>> string = string[0:2] + 'C' + string[3:]
>>> string
'abCdef'

IT-SC book: Core Python Programming

 173

>>>
>>> string[0:3] + 'DEF'
'abCDEF'
>>>
>>> string = string[0:3] + 'DEF'
>>> string
'abCDEF'

So for immutable objects like strings, we make the observation that only valid
expressions on the left-hand side of an assignment (to the left of the equals sign [=])
must be the variable representation of an entire object such as a string, not single
characters or substrings. There is no such restriction for the expression on the right-hand
side.

Unicode Support

Unicode string support, introduced to Python in version 1.6, is used to convert between
multiple double-byte character formats and encodings, and include as much functionality
to manage these strings as possible. With the addition of string methods (see Section 6.6),
Python strings are fully-featured to handle a much wider variety of applications requiring
Unicode string storage, access, and manipulation. At the time of this writing, the exact
Python specifications have not been finalized. We will do our best here to give an
overview of native Unicode 3.0 support in Python:

unicode() Built-in Function

The Unicode built-in function should operate in a manner similar to that of the Unicode
string operator (u/U). It takes a string and returns a Unicode string.

encode() Built-in Methods

The encode() built-in methods take a string and return an equivalent encoded string.
encode() exists as methods for both regular and Unicode strings in 2.0, but only for
Unicode strings in 1.6.

Unicode Type

There is a new Unicode type named unicode that is returned when a Unicode string is
sent as an argument to type(), i.e., type(u'')

Unicode Ordinals

The standard ord() built-in function should work the same way. It was enhanced
recently to support Unicode objects. The new unichr() built-in function returns a
Unicode object for character (provided it is a 32-bit value); a ValueError exception is
raised, otherwise.

IT-SC book: Core Python Programming

 174

Coercion

Mixed-mode string operations require standard strings be converted to Unicode objects.

Exceptions

UnicodeError is defined in the exceptions module as subclass of ValueError. All
exceptions related to Unicode encoding/decoding should be subclasses of UnicodeError.
Also see the string encode() method.

Table 6.8. Unicode Codecs/Encodings
codec Description

utf-8 8-bit variable length encoding (default encoding)
utf-16 16-bit variable length encoding (little/big endian)
utf-16-le utf-16 but explicitly little endian
utf-16-be utf-16 but explicitly big endian
ascii 7-bit ASCII codepage
iso-8859-1 ISO 8859-1 (Latin 1) codepage
unicode-escape (see Python Unicode Constructors for a definition)
raw-unicode-escape (see Python Unicode Constructors for a definition)
native dump of the internal format used by Python

RE Engine Unicode-aware

The new regular expression engine should be Unicode aware. See the re Code Module
sidebar in the next section (6.8).

String Format Operator

For Python format strings: '%s' does str(u) for Unicode objects embedded in Python
strings, so the output will be u.encode (<default encoding>). If the format string is
an Unicode object, all parameters are coerced to Unicode first and then put together and
formatted according to the format string. Numbers are first converted to strings and then
to Unicode. Python strings are interpreted as Unicode strings using the <default
encoding>. Unicode objects are taken as is. All other string formatters should work
accordingly. Here is an example:

u"%s %s" % (u"abc", "abc") ? u"abc abc"

Specific information regarding Python's support of Unicode strings can be found in the
Misc/unicode.txt of the distribution. The latest version of this document is always
available online at:

IT-SC book: Core Python Programming

 175

 http://www.starship.python.net/~lemburg/unicode-proposal.txt

For more help and information on Python's Unicode strings, see the Python Unicode
Tutorial at:

 http://www.reportlab.com/il8n/python_unicode_tutorial.html

No Characters or Arrays in Python

We mentioned in the previous section that Python does not support a character type. We
can also say that C does not support string types explicitly. Instead, strings in C are
merely arrays of individual characters. Our third fact is that Python does not have an
"array" type as a primitive (although the array module exists if you really have to have
one). Implementing strings as character arrays is also deemed unnecessary due to the
sequential access ability of strings.

In choosing between single characters and strings, Python wisely uses strings as types. It
is much easier manipulating the larger entity as a "blob" since most applications operate
on strings as a whole rather than individual characters. Applications will convert strings
to integers, ask users to input strings, perform regular expression matches on substrings,
search files for specific strings, and will even sort a set of strings like names, etc. How
often are individual characters operated on, except for searches (i.e., search-and-replace,
search-for-delimiter, etc.)? Probably not often as far as most applications are concerned.

However, such functionality should still be available to the Python programmer. Search-
and-replacing can be done with regular expressions and the re module, searching for and
breaking up strings based on delimiters can be accomplished with split(), searching
for substrings can be accomplished using find() and rfind(), and just plain old
character membership in a string can be verified with the in and not in sequence
operators.

We are going to quickly revisit the chr() and ord() built-in functions that convert
between ASCII integer values and their equivalent characters, and describe one of the
"features" of C that has been lost to Python because characters are not integer types in
Python as they are in C.

One feature of C which is lost is the ability to perform numerical calculations directly on
characters, i.e., 'A' + 3. This is allowed in C because both 'A' as a char and 3 as an int
are integers (1-byte and 2/4-bytes, respectively), but would be a type mismatch in Python
because 'A' is a string, 3 is a plain integer, and no such addition (+) operation exists
between numeric and string types.

IT-SC book: Core Python Programming

 176

>>> 'B'
'B'
>>> 'B' + 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> chr('B')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> ord('B')
66
>>> ord('B') + 1
67
>>> chr(67)
'C'
>>> chr(ord('B') + 1)
'C'

Our failure scenario occurred when we attempted to increase the ASCII value of 'B' by 1
to get 'C' by addition. Rather than 1-byte integer arithmetic, our solution in Python
involves using the chr() and ord() built-in functions.

Related Modules

Table 6.9 lists the key related modules for strings that are part of the Python standard
library.

Table 6.9. Related Modules for String Types (-Unix only)
Module Contents

string string manipulation and utility functions
re regular expressions: powerful string pattern matching
struct convert strings to/from binary data format
c/StringIO string buffer object which behaves like a file
crypt

performs one-way encryption cipher
rotor provides multi-platform en/decryption services

NOTE

There are many utility and manipulation functions out there which deal with strings. You
may be familiar with some of them if you have programmed in other high-level
languages like C, C++, and Java. Python has tried to integrate the most popular
functionality into its operators and built-in functions. Nevertheless, they cannot all be
integrated into the language. This is where the string module comes in. The string

IT-SC book: Core Python Programming

 177

module provides a set of constants as well as module functions that provide additional
support for strings.

Some of the key functions in the string module include: ato*()— three functions
which convert from strings to three numeric types, split()—splits up a string into a list
of strings, join()— does the reverse of split(): merges a list of strings into a single
one, and find()—searches for substrings.

Refer to the string module documentation for more information and usage of string
module attributes. Starting in version 1.6 of Python, many of the functions in the string
module have been implemented as string methods, a new feature of strings which begins
the journey of obsoleting this module. We introduced you to these methods in Section
6.6.

NOTE

Regular expressions (REs) provide advanced pattern matching scheme for strings. Using
a separate syntax which describes these patterns, you can effectively use them as "filters"
when passing in the text to perform the searches on. These filters allow you to extract the
matched patterns as well as perform find-and-replace or divide up strings based on the
patterns that you describe.

The re module, introduced in Python 1.5, obsoletes the original regex and regsub
modules from earlier releases. It includes a major upgrade in terms of Python's support
for regular expressions, adopting the complete Perl syntax for REs. In Python 1.6, the RE
engine has been rewritten, for performance improvements as well as support for Unicode
strings.

Some of the key functions in the re module include: compile()—compiles an RE
expression into a reusable RE object, match()—attempts to match a pattern from the
beginning of a string, search()—searches for any matching pattern in the string, and
sub()—performs a search-and-replace of matches. Some of these functions return match
objects with which you can access saved group matches (if any were found). All of
Chapter 15 is dedicated to regular expressions.

Summary of String Highlights

Consists of Characters Delimited by Quotation Marks

You can think of a string as a Python data type which you can consider as an array or
contiguous set of characters between any pair of Python quotation symbols, or quotes.
The two most common quote symbols for Python are the single quote, a single forward

IT-SC book: Core Python Programming

 178

apostrophe ('), and the double quotation mark ("). The actual string itself consists
entirely of those characters in between and not the quote marks themselves.

Having the choice between two different quotation marks is advantageous because it
allows one type of quote to serve as a string delimiter while the other can be used as
characters within the string without the need for special escape characters. Strings
enclosed in single quotes may contain double quotes as characters and vice versa:

>>> quote1 = 'George said, "Good day Madam. How are we today?"'
>>> print quote1
George said, "Good day Madam. How are we today?"
>>> quote2 = "Martha replies, 'We are fine, thank you.'"
>>> print quote2
Martha replies, 'We are fine, thank you.'

Python Does not Support a Separate Character Type

Strings are the only literal sequence type, a sequence of characters. However, characters
are not a type, so strings are the lowest-level primitive for character storage and
manipulation. Most applications tend to deal with strings as a whole and singular entity.
To that end, Python provides a good amount of string utilities in the form of operators,
built-in functions, and the contents of the string module. However, Python is flexible,
allowing access to individual or groups of characters, if desired. Also see Section 6.7.1.
Characters are simply strings of length one.

String Format Operator (%) Provides printf()-like
Functionality

In Section 6.4.1, we highlighted the printf()-like string format operator which
provides a familiar interface to formatting data for output, whether to the screen or
elsewhere.

Triple Quotes

In Section 6.7.2, we introduced the notion of triple quotes, which are strings that can
have special embedded characters like NEWLINEs and TABs. Triple-quoted strings are
delimited by pairs of three single (' ' ') or double (""") quotation marks.

Raw Strings Allow for Special Characters to be Taken Verbatim

In Section 6.4.2, we introduced raw strings and discussed how they do not interpret
special characters escaped with the backslash. This makes raw strings ideal for situations
where strings must be taken verbatim, for example, when describing regular expressions.

IT-SC book: Core Python Programming

 179

Unlike C strings, Python strings do not Terminate with NUL or
'\0'

One of the problems in C is running off the end of your string into memory that does not
belong to you. This occurs when strings in C are not properly terminated with the NUL or
'\0' character, which has the ASCII value of zero. Along with managing memory for you,
Python also removes this little burden or annoyance. Strings in Python do not terminate
with NUL, and you do not have to worry about adding them on. Strings consist entirely
of the characters that were designated and nothing more.

Lists

Like strings, lists provide sequential storage through an index offset and access to single
or consecutive elements through slices. However, the comparisons usually end there.
Strings consist only of characters and are immutable (cannot change individual elements)
while lists are flexible container objects which hold an arbitrary number of Python
objects. Creating lists is simple; adding to lists is easy, too, as we see in the following
examples.

The objects that you can place in a list can include standard types and objects as well as
user-defined ones. Lists can contain different types of objects and are more flexible than
an array of C structs or Python arrays (available through the external array module)
because arrays are restricted to containing objects of a single type. Lists can be populated,
empty, sorted, and reversed. Lists can be grown and shrunk. They can be taken apart and
put together with other lists. Individual or multiple items can be inserted, updated, or
removed at will.

Tuples share many of the same characteristics of lists and although we have a separate
section on tuples, many of the examples and list functions are applicable to tuples as well.
The key difference is that tuples are immutable, i.e., read-only, so any operators or
functions which allow updating lists, such as using the slice operator on the left-hand side
of an assignment, will not be valid for tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list (empty
or with elements) and perform the assignment. Lists are delimited by surrounding square
brackets ([]).

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]
>>> anotherList = [None, 'something to see here']
>>> print aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> print anotherList
[None, 'something to see here']
>>> aListThatStartedEmpty = []
>>> print aListThatStartedEmpty

IT-SC book: Core Python Programming

 180

[]

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with
the index or indices.

>>> aList[0]
123
>>> aList[1:4]
['abc', 4.56, ['inner', 'list']]
>>> aList[:3]
[123, 'abc', 4.56]
>>> aList[3][1]
'list'

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand
side of the assignment operator, and you can add to elements in a list with the append()
method:

>>> aList
[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]
>>> aList[2]
4.56
>>> aList[2] = 'float replacer'
>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]
>>>
>>> anotherList.append("hi, i'm new here")
>>> print anotherList
[None, 'something to see here', "hi, i'm new here"]
>>> aListThatStartedEmpty.append('not empty anymore')
>>> print aListThatStartedEmpty
['not empty anymore']

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly which
element(s) you are deleting or the remove() method if you do not know.

>>> aList
[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

IT-SC book: Core Python Programming

 181

>>> del aList[1]
>>> aList
[123, 'float replacer', ['inner', 'list'], (7-9j)]
>>> aList.remove(123)
>>> aList
['float replacer', ['inner', 'list'], (7-9j)]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather,
they tend to let it go out of scope (i.e., program termination, function call completion, etc.)
and be garbage-collected, but if they do want to explicitly remove an entire list, use the
del statement:

del aList

Operators

Standard Type Operators

In Chapter 4, we introduced a number of operators that apply to most objects, including
the standard types. We will take a look at how some of those apply to lists.

>>> list1 = ['abc', 123]
>>> list2 = ['xyz', 789]
>>> list3 = ['abc', 123]
>>> 1ist1 < list2
1
>>> list2 < list3
0
>>> (list2 > list3) and (list1 == list3)
1

When using the value comparison operators, comparing numbers and strings is
straightforward, but not so much for lists, however. List comparisons are somewhat
tricky, but logical. The comparison operators use the same algorithm as the cmp() built-
in function. The algorithm basically works like this: the elements of both lists are
compared until there is a determination of a winner. For example, in our example above,
the output of 'abc' versus 'xyz' is determined immediately, with 'abc' < 'xyz',
resulting in list1 < list2 and list2 >= list3. Tuple comparisons are performed in
the same manner as lists.

Sequence Type Operators

IT-SC book: Core Python Programming

 182

Slices ([] and [:])

Slicing with lists is very similar to strings, but rather than using individual characters or
substrings, slices of lists pull out an object or a group of objects which are elements of the
list operated on. Focusing specifically on lists, we make the following definitions:

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]

Slicing operators obey the same rules regarding positive and negative indexes, starting
and ending indexes, as well as missing indexes, which default to the beginning or to the
end of a sequence.

>>> num_list[1]
-1.23
>>>
>>> num_list[1:]
[-1.23, -2, 619000.0]
>>>
>>> num_list[2:-1]
[-2]
>>>
>>> str_list[2]
'over'
>>> str_list[:2]
['jack', 'jumped']
>>>
>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>> mixup_list[1]
[1, 'x']

Unlike strings, an element of a list might also be a sequence, implying that you can
perform all the sequences operations or execute any sequence built-in functions on that
element. In the example below, we show that not only can we take a slice of a slice, but
we can also change it, and even to an object of a different type. You will also notice the
similarity to multi-dimensional arrays.

>>> mixup_list[1][1]
'x'
>>> mixup_list[1][1] = -64.875
>>> mixup_list
[4.0, [1, -64.875], 'beef', (-1.9+6j)]

IT-SC book: Core Python Programming

 183

Here is another example using num_list:

>>> num_list
[43, -1.23, -2, 6.19e5]
>>>
>>> num_list[2:4] = [16.0, -49]
>>>
>>> num_list
[43, -1.23, 16.0, -49]
>>>
>>> num_list[0] = [65535L, 2e30, 76.45-1.3j]
>>>
>>> num_list
[[65535L, 2e+30, (76.45-1.3j)], -1.23, 16.0, -49]

Notice how, in the last example, we replaced only a single element of the list, but we
replaced it with a list. So as you can tell, removing, adding, and replacing things in lists
are pretty free-form. Keep in mind that in order to splice elements of a list into another
list, you have to make sure that the left-hand side of the assignment operator (=) is a slice,
not just a single element.

Membership (in, not in)

With strings, the membership operator determined whether a single character is a
member of a string. With lists (and tuples), we can check whether an object is a member
of a list (or tuple).

>>> mixup_list
[4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> 'beef' in mixup_list
1
>>>
>>> 'x' in mixup_list
0
>>>
>>> 'x' in mixup_list[1]
1
>>> num_list
[[65535L, 2e+030, (76.45-1.3j)], -1.23, 16.0, -49]
>>>
>>> -49 in num_list
1
>>>
>>> 34 in num_list
0
>>>
>>> [65535L, 2e+030, (76.45-1.3j)] in num_list
1

IT-SC book: Core Python Programming

 184

Note how 'x' is not a member of mixup_list. That is because 'x' itself is not actually a
member of mixup_list. Rather, it is a member of mixup_uplist[1], which itself is a
list. The membership operator is applicable in the same manner for tuples.

Concatenation (+)

The concatenation operator allows us to join multiple lists together. Note in the examples
below that there is a restriction of concatenating like objects. In other words, you can
concatenate only objects of the same type. You cannot concatenate two different types
even if both are sequences.

>>> num_list = [43, -1.23, -2, 6.19e5]
>>> str_list = ['jack', 'jumped', 'over', 'candlestick']
>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]
>>>
>>> num_list + mixup_list
[43, -1.23, -2, 619000.0, 4.0, [1, 'x'], 'beef', (-1.9+6j)]
>>>
>>> str_list + num_list
['jack', 'jumped', 'over', 'candlestick', 'park', 43, -1.23, -2,
619000.0]

As we will discover in Section 6.13, starting in Python 1.5.2, you can use the extend()
method in place of the concatenation operator to append the contents of a list to another.
Using extend() is advantageous over concatenation because it actually appends the
elements of the new list to the original, rather than creating a new list from scratch like +
does. extend() is also the method used by the new augmented assignment or in-place
concatenation operator (+=) which debuted in Python 2.0.

We would also like to point out that the concatenation operator does not facilitate adding
individual elements to a list. The upcoming example illustrates a case where attempting
to add a new item to the list results in failure.

>>> num_list + 'new item'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

This example fails because we had different types to the left and right of the
concatenation operator. A combination of (list + string) is not valid. Obviously, our
intention was to add the 'new item' string to the list, but we did not go about it the
proper way. Fortunately, we have a solution:

IT-SC book: Core Python Programming

 185

Use the append() list built-in method (we will formally introduce append() and all other
built-in methods in Section 6.13):

>>> num_list.append('new item')

Repetition (*)

Use of the repetition operator may make more sense with strings, but as a sequence type,
lists and tuples can also benefit from this operation, if needed:

>>> num_list * 2
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0]
>>>
>>> num_list * 3
[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0, 43, -1.23, -2,
619000.0]

A new augmented assignment in-place repetition operator was also added to Python 2.0.

List Type Operators

There are currently no special list-only operators in Python. Lists can be used with most
object and sequence operators. In addition, list objects have their own methods.

Built-in Functions

Standard Type Functions

cmp()

In Section 4.6.1, we introduced the cmp() built-in function with examples of comparing
numbers and strings. But how would cmp() work with other objects such as lists and
tuples, which can contain not only numbers and strings, but other objects like lists, tuples,
dictionaries, and even user-created objects?

>>> list1, list2 = [123, 'xyz'], [456, 'abc']
>>> cmp(list1, list2)
-1
>>>
>>> cmp(list2, list1)
1
>>> list3 = list2 + [789]
>>> list3
[456, 'abc', 789]

IT-SC book: Core Python Programming

 186

>>>
>>> cmp(list2, list3)
-1

Compares are straightforward if we are comparing two objects of the same type. For
numbers and strings, the direct values are compared, which is trivial. For sequence types,
comparisons are somewhat more complex, but similar in manner. Python tries its best to
make a fair comparison when one cannot be made, i.e., when there is no relationship
between the objects or when types do not even have compare functions, then all bets are
off as far as obtaining a "logical" decision.

Before such a drastic state is arrived at, more safe-and-sane ways to determine an
inequality are attempted. How does the algorithm start? As we mentioned briefly above,
elements of lists are iterated over. If these elements are of the same type, the standard
compare for that type is performed. As soon as an inequality is determined in an element
compare, that result becomes the result of the list compare. Again, these element
compares are for elements of the same type. As we explained earlier, when the objects
are different, performing an accurate or true comparison becomes a risky proposition.

When we compare list1 with list2, both lists are iterated over. The first true
comparison takes place between the first elements of both lists, i.e., 123 vs. 456. Since
123 < 456, list1 is deemed "smaller."

If both values are the same, then iteration through the sequences continues until either a
mismatch is found, or the end of the shorter sequence is reached. In the latter case, the
sequence with more elements is deemed "greater." That is the reason why we arrived
above at list2 < list3. Tuples are compared using the same algorithm. We leave this
section with a summary of the algorithm highlights:

Compare elements of both lists.

If elements are of the same type, perform the compare and return the result.

If elements are different types, check to see if they are numbers.

If numbers, perform numeric coercion if necessary and compare.

If either element is a number, then the other element is "larger" (numbers are "smallest").

Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the lists, the longer list is "larger."

If we exhaust both lists and share the same data, the result is a tie, meaning that 0 is
returned.

Sequence Type Functions

IT-SC book: Core Python Programming

 187

len()

For strings, len() gives the total length of the string, as in the number of characters. For
lists (and tuples), it will not surprise you that len() returns the number of elements in the
list (or tuple). Container objects found within count as a single item. Our examples below
use some of the lists already defined above in previous sections.

>>> len(num_list)
4
>>>
>>> len(num_list*2)
8
>>>
>>> len(str_list[:4])
4
>>>
>>> len(str_list[:-1])
4
>>>
>>> len(mixup_list+num_list)
8

max() and min()

max() and min() did not have a significant amount of usage for strings since all they did
was to find the "largest" and "smallest" characters (lexicographically) in the string. For
lists (and tuples), their functionality is more defined. Given a list of like objects, i.e.,
numbers or strings only, max() and min() could come in quite handy. Again, the quality
of return values diminishes as mixed objects come into play. However, more often than
not, you will be using these functions in a situation where they will provide the results
you are seeking. We present a few examples using some of our earlier-defined lists.

>>> max(str_list)
'park'
>>>
>>> max(num_list)
[65535L, 2e+30, (76.45-1.3j)]
>>> max(mixup_list)
'beef'
>>> min(mixup_list)
(-1.9+6j)
>>>
>>> min(str_list)
'candlestick'
>>>
>>> min(num_list)
-49

IT-SC book: Core Python Programming

 188

list() and tuple()

The list() and tuple() methods take sequence types and convert them to lists and
tuples, respectively. Although strings are also sequence types, they are not commonly
used with list() and tuple(). These built-in functions are used more often to convert
from one type to the other., i.e., when you have a tuple that you need to make a list (so
that you can modify its elements) and vice versa.

>>> aList = ['tao', 93, 99, 'time']
>>> aTuple = tuple(aList)
>>> print aList
['tao', 93, 99, 'time']
>>>
>>> print aTuple
('tao', 93, 99, 'time')
>>>
>>> back2aList = list(aTuple)
>>> back2aList
['tao', 93, 99, 'time']
>>> back2aList == aList
1
>>> back2aList is aList
0

Neither list() nor tuple() performs true conversions (also see Section 6.1.2). In other
words, the list you passed to tuple() does not turn into a list, and the tuple you give to
list() does not really become a list. Instead, these built-in functions create a new object
of the destination type and populate it with the same elements as the original sequence. In
the last two examples above, although the data set for both lists is the same (hence
satisfying ==), neither variable points to the same list (thus failing is).

List Type Built-in Functions

There are currently no special list-only built-in functions in Python. Lists can be used
with most object and sequence built-in functions. In addition, list objects have their own
methods.

List Type Built-in Methods

Lists in Python have methods. We will go over methods more formally in an introduction
to object-oriented programming in Chapter 13, but for now, think of methods as
functions or procedures that apply only to specific objects. So the methods described in
this section behave just like built-in functions except that they operate only on lists. Since
these functions involve the mutability (or updating) of lists, none of them is applicable
for tuples.

IT-SC book: Core Python Programming

 189

You may recall our earlier discussion of accessing object attributes using the dotted
attribute notation: object.attribute. List methods are no different, using
list.method([arguments]). We use the dotted notation to access the attribute (here it
is a function), then use the function operators (()) in a functional notation to invoke
the methods.

Types that have methods generally have an attribute called object.__methods__ which
name all the methods that are supported by that type. In our case for lists,
list.__methods__ serves this purpose:

>>> [].__methods__
['append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Table6.10 shows all the current methods currently available for lists. Of these methods,
extend() and pop() made their debut in Python 1.5.2. Some examples of using various
list methods are shown below.

Table 6.10. List Type Built-in Methods
List Method Operation

list.append(obj) appends object obj to list
list.count(obj) returns count of how many times obj occurs in list
list.extend(seq)[a] appends the contents of seq to list
list.index(obj) returns the lowest index in list that obj appears
list.insert(index, obj) inserts object obj into list at offset index
list.pop(obj=list[-1])[a] removes and returns last object or obj from list
list.remove(obj) removes object obj from list
list.reverse() reverses objects of list in place
list.sort([func]) sorts objects of list, use compare func if given

[a] new as of Python 1.5.2

>>> music_media = [45]
>>> music_media
[45]
>>>
>>> music_media.insert(0, 'compact disc')
>>> music_media
['compact disc', 45]
>>>
>>> music_media.append('long playing record')
>>> music_media
['compact disc', 45, 'long playing record']
>>>
>>> music_media.insert(2, '8-track tape')

IT-SC book: Core Python Programming

 190

>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']

In the preceeding example, we initiated a list with a single element, then checked the list
as we either inserted elements within the list, or appended new items at the end. Let's
now determine if elements are in a list as well as how to find out the location of where
items are in a list. We do this by using the in operator and index() method.

>>> 'cassette' in music_media
0
>>> 'compact disc' in music_media
1
>>> music_media.index(45)
1
>>> music_media.index('8-track tape')
2
>>> music_media.index('cassette')
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
ValueError: list.index(x): x not in list

Oops! What happened in that last example? Well, it looks like using index() to check if
items are in a list is not a good idea, because we get an error. It would be safer to check
using the membership operator in (or not in) first, and then using index() to find the
element's location. We can put the last few calls to index() in a single for loop like this:

for eachMediaType in (45, '8-track tape', 'cassette'):
 if eachMediaType in music_media:
 print music_media.index(eachMediaType)

This solution helps us avoid the error we encountered above because index() is not
called unless the object was found in the list. We will find out later how we can take
charge if the error occurs, instead of bombing out as we did above.

We will now test drive sort() and reverse(), methods that will sort and reverse the
elements of a list, respectively.

>>> music_media
['compact disc', 45, '8-track tape', 'long playing record']
>>> music_media.sort()
>>> music_media
[45, '8-track tape', 'compact disc', 'long playing record']
>>> music_media.reverse()
>>> music_media

IT-SC book: Core Python Programming

 191

['long playing record', 'compact disc', '8-track tape', 4

One caveat about the sort() and reverse() methods is that these will perform their
operation on a list in place, meaning that the contents of the existing list will be changed.
There is no return value from either of these methods.

Oh, and if you are an algorithm connoisseur, the default sorting algorithm employed by
the sort() method is a randomized version of QuickSort. We defer all other explanation
to the portion of the source code where you can find out more information on the sorting
algorithm (Objects/listobject.c).

The new extend() method will take the contents of one list and append its elements to
another list:

>>> new_media = ['24/96 digital audio disc', 'DVD Audio
disc', 'Super Audio CD']
>>> music_media.extend(new_media)
>>> music_media
['long playing record', 'compact disc', '8-track tape',
45, '24/96 digital audio disc', 'DVD Audio disc', 'Super
Audio CD']

The argument to extend() can be any sequence object starting in Python 1.6—the
sequence is converted to a list by performing the equivalent to list() and then its
contents appended to the original list. In 1.5.2, the argument was required to be a list.

pop() will either return the last or requested item from a list and return it to the caller.
We will see the new pop() method in Section 6.14.1 as well as in the Exercises.

Special Features of Lists

Creating Other DataStructures Using Lists

Because of their container and mutable features, lists are fairly flexible and it is not very
difficult to build other kinds of data structures using lists. Two that we can come up with
rather quickly are stacks and queues.

The two code samples in this section use the pop() method which became reality in
Python 1.5.2. If you are using an older system, this function is easily duplicated in Python.
(See Exercise 6-17.)

Stack

IT-SC book: Core Python Programming

 192

A stack is a last-in-first-out (LIFO) data structure which works similar to a cafeteria
dining plate spring-loading mechanism. Consider the plates as objects. The first object off
the stack is the last one you put in. Every new object gets "stacked" on top of the newest
objects. To "push" an item on a stack is the terminology used to mean you are adding
onto a stack. Likewise, to remove an element, you "pop" it off the stack. The following
example shows a menu-driven program which implements a simple stack used to store
strings:

Example 6.2. Using Lists as a Stack (stack.py)

This simple script uses lists as a stack to store and retrieve strings entered through this
menu-driven text application using only the append() and pop() list methods.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 stack = []
004 4
005 5 def pushit():
006 6 stack.append(raw_input('Enter new string: '))
007 7
008 8 def popit():
009 9 if len(stack) == 0:
010 10 print 'Cannot pop from an empty stack!'
011 11 else: <$nopage>
012 12 print 'Removed [', stack.pop(), ']'
013 13
014 14 def viewstack():
015 15 print str(stack)
016 16
017 17 def showmenu():
018 18 prompt = """
019 19 p(U)sh
020 20 p(O)p
021 21 (V)iew
022 22 (Q)uit
023 23
024 24 Enter choice: """
025 25
026 26 done = 0
027 27 while not done:
028 28
029 29 chosen = 0
030 30 while not chosen:
031 31 try: <$nopage>
032 32 choice = raw_input(prompt)[0]
033 33 except (EOFError, KeyboardInterrupt):
034 34 choice = 'q'
035 35 print 'nYou picked: [%s]' % choice
036 36 if choice not in 'uovq':
037 37 print 'invalid option, try again'
038 38 else:
039 39 chosen = 1
040 40

IT-SC book: Core Python Programming

 193

041 41 if choice == 'q': done = 1
042 42 if choice == 'u': pushit()
043 43 if choice == 'o': popit()
044 44 if choice == 'v': viewstack()
045 45
046 46 if __name__ == '__main__':
047 47 showmenu()
048 <$nopage>

Lines 1–3

In addition to the Unix startup line, we take this opportunity to clear the stack (a list).

Lines 5–6

The pushit() function adds an element (a string prompted from the user) to the stack.

Lines 8–12

The popit() function removes an element from the stack (the more recent one). An error
occurs when trying to remove an element from an empty stack. In this case, a warning is
sent back to the user.

Lines 14–15

The viewstack() function displays a printable string representation of the list.

Lines 17–44

The entire menu-driven application is controlled from the showmenu() function. Here,
the user is prompted with the menu options. Once the user makes a valid choice, the
proper function is called. We have not covered exceptions and try-except statement in
detail yet, but basically that section of the code allows a user to type ^D (EOF, which
generates an EOFError) or ^C (interrupt to quit, which generates a KeyboardInterrupt
error), both of which will be processed by our script in the same manner as if the user had
typed the 'q' to quit the application. This is one place where the exception-handling
feature of Python comes in extremely handy.

Lines 46–47

This part of the code starts up the program if invoked directly. If this script was imported
as a module, only the functions and variables would have been defined, but the menu
would not show up. For more information regarding line 46 and the __name__ variable,
see Section 3.4.1.

Here is a sample execution of our script:

% stack.py

IT-SC book: Core Python Programming

 194

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: Python

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: is

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: u

You picked: [u]
Enter new string: cool!

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: v

You picked: [v]
['Python', 'is', 'cool!']

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed [cool!]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

IT-SC book: Core Python Programming

 195

You picked: [o]
Removed [is]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Removed [Python]

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: o

You picked: [o]
Cannot pop from an empty stack!

p(U)sh
p(O)p
(V)iew
(Q)uit

Enter choice: ^D

You picked: [q]

Queue

A queue is a first-in-first-out (FIFO) data structure which works like a single-file
supermarket or bank teller line. The first person in line is the first one served (and
hopefully the first one to exit). New elements join by being "enqueued" at the end of the
line, and elements are removed from the front by being "dequeued." The following code
shows how, with a little modification from our stack script, we can implement a simple
queue using lists.

Example 6.3. Using Lists as a Queue (queue.py)

This simple script uses lists as a queue to store and retrieve strings entered through this
menu-driven text application, using only the append() and pop() list methods.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 queue = []
004 4

IT-SC book: Core Python Programming

 196

005 5 def enQ():
006 6 queue.append(raw_input('Enter new string: '))
007 7
008 8 def deQ():
009 9 if len(queue) == 0:
010 10 print 'Cannot dequeue from empty queue!'
011 11 else: <$nopage>
012 12 print 'Removed [', queue.pop(0), ']'
013 13
014 14 def viewQ():
015 15 print str(queue)
016 16
017 17 def showmenu():
018 18 prompt = """
019 19 (E)nqueue
020 20 (D)equeue
021 21 (V)iew
022 22 (Q)uit
023 23
024 24 Enter choice: """
025 25
026 26 done = 0
027 27 while not done:
028 28
029 29 chosen = 0
030 30 while not chosen:
031 31 try: <$nopage>
032 32 choice = raw_input(prompt)[0]
033 33 except (EOFError, KeyboardInterrupt):
034 34 choice = 'q'
035 35 print '\nYou picked: [%s]' % choice
036 36 if choice not in 'devq':
037 37 print 'invalid option, try again'
038 38 else: <$nopage>
039 39 chosen = 1
040 40
041 41 if choice == 'q': done = 1
042 42 if choice == 'e': enQ()
043 43 if choice == 'd': deQ()
044 44 if choice == 'v': viewQ()
045 45
046 46 if __name__ == '__main__':
047 47 showmenu()
048 <$nopage>

Because of the similarities of this script with the stack.py script, we will describe only
in detail the lines which have changed significantly:

Lines 5–6

The enQ() function works exactly like pushit(), only the name has been changed.

Lines 8–12

IT-SC book: Core Python Programming

 197

The key difference between the two scripts lies here. The deQ() function, rather than
taking the most recent item as popitem() did, takes the oldest item on the list, the first
element.

We present some output here as well:

% queue.py
(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]
Enter new queue element: Bring out

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: e

You picked: [e]
Enter new queue element: your dead!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: v

You picked: [v]
['Bring out', 'your dead!']

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Removed [Bring out]

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]

IT-SC book: Core Python Programming

 198

 Removed [your dead!]

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: d

You picked: [d]
Cannot dequeue from empty queue!

(E)nqueue
(D)equeue
(V)iew
(Q)uit

Enter choice: ^D
You picked: [q]

Subclassing from "Lists"

Earlier in this text, we described how types are not classes in Python, so you cannot
derive subclasses from them (see the Core Note in Section 4.2). As a proxy, the Python
standard library includes two modules containing class wrappers around two types, lists
and dictionaries, from which you can subclass. These are the UserList and UserDict
modules. Once you are familiar with classes, you can take these already-implemented
classes to create your own subclasses from lists and dictionaries and add whatever
functionality you wish. These modules are part of the Python standard library. See
Section 6.18 for more information.

Tuples

Tuples are another container type extremely similar in nature to lists. The only visible
difference between tuples and lists is that tuples use parentheses and lists use square
brackets. Functionally. there is a more significant difference, and that is the fact that
tuples are immutable.

Our usual modus operandi is to present the operators and built-in functions for the more
general objects, followed by those for sequences and conclude with those applicable only
for tuples, but because tuples share so many characteristics with lists, we would be
duplicating much of our description from the previous section. Rather than providing
much repeated information, we will differentiate tuples from lists as they apply to each
set of operators and functionality, then discuss immutability and other features unique to
tuples.

How to Create and Assign Tuples

IT-SC book: Core Python Programming

 199

Creating and assigning lists are practically identical to lists, with the exception of empty
tuples. These require a trailing comma (,) enclosed in the tuple delimiting parentheses
(()).

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)
>>> anotherTuple = (None, 'something to see here')
>>> print aTuple
 (123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))
>>> print anotherTuple
 (None, 'something to see here')
>>> emptiestPossibleTuple = (None,)
>>> print emptiestPossibleTuple
(None,)

How to Access Values in Tuples

Slicing works similar to lists: Use the square bracket slice operator ([]) along with the
index or indices.

>>> aTuple>>> aList[1:4]
('abc', 4.56, ['inner', 'tuple'])
>>> aTuple[:3]
(123, 'abc', 4.56)
>>> aTuple[3][1]
'tuple'

How to Update Tuples

Like numbers and strings, tuples are immutable which means you cannot update them or
change values of tuple elements. In Sections 6.2 and 6.3.2, we were able to take portions
of an existing string to create a new string. The same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]
>>> aTuple
(123, 'abc', (7-9j))
>>> tup1 = (12, 34.56)
>>> tup2 = ('abc', 'xyz')
>>> tup3 = tup1 + tup2
>>> tup3
(12, 34.56, 'abc', 'xyz')

How to Remove Tuple Elements and Tuples

IT-SC book: Core Python Programming

 200

Removing individual tuple elements is not possible. There is, of course, nothing wrong
with putting together another tuple with the undesired elements discarded.

To explicitly remove an entire list, just use the del statement:

del aTuple

Tuple Operators and Built-in Functions

Standard and Sequence TypeOperators and Built-in Functions

Object and sequence operators and built-in functions act the exact same way toward
tuples as they do with lists. You can still take slices of tuples, concatenate and make
multiple copies of tuples, validate membership, and compare tuples:

Creation, Repetition, Concatenation

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t * 2
(['xyz', 123], 23, -103.4, ['xyz', 123], 23, -103.4)
>>> t = t + ('free', 'easy')
>>> t
(['xyz', 123], 23, -103.4, 'free', 'easy')

Membership, Slicing

>>> 23 in t
1
>>> 123 in t
0
>>> t[0][1]
123
>>> t[1:]
 (23, -103.4, 'free', 'easy')

Built-in Functions

>>> str(t)
(['xyz', 123], 23, -103.4, 'free', 'easy')
>>> len(t)
5

IT-SC book: Core Python Programming

 201

>>> max(t)
'free'
>>> min(t)
-103.4
>>> cmp(t, (['xyz', 123], 23, -103.4, 'free', 'easy'))
0
>>> list(t)
[['xyz', 123], 23, -103.4, 'free', 'easy']

Operators

>>> (4, 2) < (3, 5)
0
>>> (2, 4) < (3, -1)
1
>>> (2, 4) == (3, -1)
0
>>> (2, 4) == (2, 4)
1

Tuple Type Operators and Built-in Functions and Methods

Like lists, tuples have no operators or built-in functions for themselves. All of the list
methods described in the previous section were related to a list object's mutability, i.e.,
sorting, replacing, appending, etc. Since tuples are immutable, those methods are
rendered superfluous, thus unimplemented.

Special Features of Tuples

How are Tuples Affected by Immutability?

Okay, we have been throwing around this word "immutable" in many parts of the text.
Aside from its computer science definition and implications, what is the bottom line as
far as applications are concerned? What are all the consequences of an immutable data
type?

Of the three standard types which are immutable—numbers, strings, and tuples—tuples
are the most affected. A data type that is immutable simply means that once an object is
defined, its value cannot be updated, unless, of course, a completely new object is
allocated. The impact on numbers and strings is not as great since they are scalar types,
and when the sole value they represent is changed, that is the intended effect, and access
occurs as desired. The story is different with tuples, however.

Because tuples are a container type, it is often desired to change a single or multiple
elements of that container. Unfortunately, this is not possible. Slice operators cannot

IT-SC book: Core Python Programming

 202

show up on the left-hand side of an assignment. Recall this is no different for strings, and
that slice access is used for read access only.

Immutability does not necessarily mean bad news. One bright spot is that if we pass in
data to an API with which we are not familiar, we can be certain that our data will not be
changed by the function called. Also, if we receive a tuple as a return argument from a
function that we would like to manipulate, we can use the list() built-in function to turn
it into a mutable list.

Tuples Are Not Quite So "Immutable"

Although tuples are defined as immutable, this does not take away from their flexibility.
Tuples are not quite as immutable as we made them out to be. What do we mean by that?
Tuples have certain behavioral characteristics that make them seem not as immutable as
we had first advertised.

For example, we can join strings together to form a larger string. Similarly, there is
nothing wrong with putting tuples together to form a larger tuple, so concatenation works.
This process does not involve changing the smaller individual tuples in any way. All we
are doing is joining their elements together. Some examples are presented here:

>>> s = 'first'
>>> s = s + ' second'
>>> s
'first second'
>>>
>>> t = ('third', 'fourth')
>>> t
('third', 'fourth')
>>>
>>> t = t + ('fifth', 'sixth')
>>> t
('third', 'fourth', 'fifth', 'sixth')

The same concept applies for repetition. Repetition is just concatenation of multiple
copies of the same elements. In addition, we mentioned in the previous section that one
can turn a tuple into a mutable list with a simple function call. Our final feature may
surprise you the most. You can "modify" certain tuple elements. Whoa. What does that
mean?

Although tuple objects themselves are immutable, this fact does not preclude tuples from
containing mutable objects which can be changed.

>>> t = (['xyz', 123], 23, -103.4)
>>> t
(['xyz', 123], 23, -103.4)
>>> t[0][1]

IT-SC book: Core Python Programming

 203

123
>>> t[0][1] = ['abc', 'def']
>> t
(['xyz', ['abc', 'def']], 23, -103.4)

In the above example, although t is a tuple, we managed to "change" it by replacing an
item in the first tuple element (a list). We replaced t[0][1], formerly an integer, with a
list ['abc', 'def']. Although we modified only a mutable object, in some ways, we
also "modified" our tuple.

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,
brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short
examples:

>>> 'abc', -4.24e93, 18+6.6j, 'xyz'
('abc', -4.24e+093, (18+6.6j), 'xyz')
>>>
>>> x, y = 1, 2
>>> x, y
(1, 2)

Any function returning multiple objects (also no enclosing symbols) is a tuple. Note that
enclosing symbols change a set of multiple objects returned to a single container object.
For example:

def foo1():
 :
 return
 obj1, obj2, obj3
def foo2():
 :
 return [obj1, obj2, obj3]
def foo3():
 :
 return (obj1, obj2, obj3)

In the above examples, foo1() calls for the return of three objects, which come back as a
tuple of three objects, foo2() returns a single object, a list containing three objects, and
foo3() returns the same thing as foo1(). The only difference is that the tuple grouping
is explicit.

IT-SC book: Core Python Programming

 204

Explicit grouping of parentheses for expressions or tuple creation is always
recommended to avoid unpleasant side effects:

>>> 4, 2 < 3, 5 # int, comparison, int
(4, 1, 5)
>>> (4, 2) < (3, 5) # tuple comparison
0

In the first example, the less than (<) operator took precedence over the comma
delimiter intended for the tuples on each side of the less than sign. The result of the
evaluation of 2 < 3 became the second element of a tuple. Properly enclosing the tuples
enables the desired result.

Single Element Tuples

Ever try to create a tuple with a single element? You tried it with lists, and it worked, but
then you tried and tried with tuples, but cannot seem to be able to do it.

>>> ['abc']
['abc']
>>> type(['abc']) # a list
<type 'list'>
>>>
>>> [123]
[123]
>>> type([123]) # also a list
<type 'list'>
>>>
>>> ('xyz')
'xyz'
>>> type(('xyz')) # a string, not a tuple
<type 'string'>
>>>
>>> (456)
456
>>> type((456)) # an int, not a tuple
<type 'int'>

It probably does not help your case that the parentheses are also overloaded as the
expression grouping operator. Parentheses around a single element take on that binding
role rather than as a delimiter for tuples. The workaround is to place a trailing comma (,)
after the first element to indicate that this is a tuple and not a grouping.

>>> ('xyz',)
('xyz',)
>>> (456,)

IT-SC book: Core Python Programming

 205

(456,)

NOTE

One of the questions in the Python FAQ (6.15) asks, "Why are there separate tuple and
list data types?" That question can also be rephrased as, "Do we really need two sequence
types?" One reason why having lists and tuples is a good thing occurs in situations where
having one is more advantageous than having the other.

One case in favor of an immutable data type is if you were manipulating sensitive data
and were passing a mutable object to an unknown function (perhaps an API that you
didn't even write!). As the engineer developing your piece of the software, you would
definitely feel a lot more secure if you knew that the function you were calling could not
alter the data.

An argument for a mutable data type is where you are managing dynamic data sets. You
need to be able to create them on the fly, slowly or arbitrarily adding to them, or from
time to time, deleting individual elements. This is definitely a case where the data type
must be mutable. The good news is that with the list() and tuple() built-in conversion
functions, you can convert from one type to the other relatively painlessly

list() and tuple() are functions which allow you to create a tuple from a list and vice
versa. When you have a tuple and want a list because you need to update its objects, the
list() function suddenly becomes your best buddy. When you have a list and want to
pass it into a function, perhaps an API, and you do not want anyone to mess with the data,
the tuple() function comes in quite useful.

Related Modules

Table6.11 lists the key related modules for sequence types. This list includes the array
module to which we briefly alluded earlier. These are similar to lists except for the
restriction that all elements must be of the same type. The copy module (see optional
Section 6.19 below) performs shallow and deep copies of objects. The operator module,
in addition to the functional equivalents to numeric operators, also contains the same four
sequence types. The types module is a reference of type objects representing all types
which Python supports, including sequence types. Finally, the UserList module contains
a full class implementation of a list object. Because Python types cannot be subclassed,
this module allows users to obtain a class that is list-like in nature, and derive new classes
or functionality. If you are unfamiliar with object-oriented programming, we highly
recommend reading Chapter 13.

Table 6.11. Related Modules for Sequence Types
Module Contents

array features the array restricted mutable sequence type which requires all of
its elements to be of the same type

IT-SC book: Core Python Programming

 206

copy provides functionality to perform shallow and deep copies of objects (see
6.19 below for more information)

operator contains sequence operators available as function calls, i.e.
operator.concat(m, n) is equivalent to the concatenation (m + n) for
sequences m and n.

types contains type objects for all supported Python types
UserList wraps a list object (including operators and methods) into a class which

can be used for derivation (also see Section 6.18)

*Shallow and Deep Copies

Earlier in Section 3.5, we described how object assignments are simply object references.
This means that when you create an object, then assign that object to another variable,
Python does not copy the object. Instead, it copies only a reference to the object. For
example:

>>> aList = [[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> anotherList = aList
>>> aList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>>
>>> anotherList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]

Above, a list of two elements is created and its reference assigned to aList. When aList
is assigned to anotherList, the contents of the list reference by aList are not copied
when anotherList is created. Rather, anotherList "copies" the reference from aList,
not the data. We can confirm this by taking a look at the identities of the objects that both
references point to:

>>> id(aList)
1191872
>>> id(anotherList)
1191872

A shallow copy of an object is defined to be a newly-created object of the same type as the
original object whose contents are references to the elements in the original object. In
other words, the copied object itself is new, but the contents are not. Shallow copies of
sequence objects may be taken one of two ways: (1) taking a complete slice using the
slice operator, or (2) using the copy() function of the copy module, as indicated in the
example below:

>>> thirdList = aList[:]
>>> thirdList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(thirdList)

IT-SC book: Core Python Programming

 207

1192232
>>>
>>> import copy
>>> fourthList = copy.copy(aList)
>>> fourthList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(fourthList)
1192304

The thirdList list is created using the slice operator to take an entire slice (both starting
and ending indices are absent). We also present the new object's identity to confirm its
disassociation with the original object. Likewise for the creation of the fourthList list.
This time, we use the copy.copy() function to perform the same feat. However, the
elements of these lists are still only references to the original object's elements.

>>> id(aList[0]), id(aList[1]), id(aList[2])
(1064072, 1191920, 1191896)
>>> id(thirdList[0]), id(thirdList[1]), id(thirdList[2])
(1064072, 1191920, 1191896)
>>> id(fourthList[0]), id(fourthList[1]), id(fourthList[2])
(1064072, 1191920, 1191896)

We pull the identities of these objects to confirm our hypothesis. In order to obtain a full
or deep copy of the object—creating a new container but containing references to
completely new copies (references) of the element in the original object—we need to use
the copy.deepcopy() function.

>>> lastList = copy.deepcopy(aList)
>>> lastList
[[78, 'pyramid'], [84, 'vulture'], [81, 'eye']]
>>> id(lastList)
1193248
>>> id(lastList[0]), id(lastList[1]), id(lastList[2])
(1192280, 1193128, 1193104)

There are a few notes and caveats to making copies to keep in mind. The first is that non-
container types (i.e., numbers, strings, and other "atomic" objects like code, type, and
xrange objects) are not copied. Shallow copies of sequences are all done using complete
slices. Mapping types, which will be covered in Chapter 8, are copied using the
dictionary copy method. Finally, deep copies of tuples are not made if they contain only
atomic objects. If we changed each of the small lists in the larger list above to all tuples,
we would have performed only a shallow copy, even though we requested a deep copy.

NOTE

IT-SC book: Core Python Programming

 208

The shallow and deep copy operations that we just described are found in the copy
module. There are really only two functions to use from this module: copy()—creates
shallow copy, and deepcopy()—creates a deep copy.

Sequence types provide various mechanisms for ordered storage of data. Strings are a
general medium for carrying data, whether it be displayed to a user, stored on a disk,
transmitted across the network, or be a singular container for multiple sources of
information. Lists and tuples provide container storage that allows for simple
manipulation and access of multiple objects, whether they by Python data types or user-
defined objects. Individual or groups of elements may be accessed as slices via
sequentially-ordered index offsets. Together, these data types provide flexible and easy-
to-use storage tools in your Python development environment. We conclude this chapter
with a summary of operators, built-in functions and methods for sequence types given as
Table6.12.

Table 6.12. Sequence Type Operators, Built-in Functions and Methods
Operator, built-in function or method String List Tuple

[] (list creation) •
() •
'' •
append() •
capitalize() •
center() •
chr() •
cmp() • • •
count() • •
encode() •
endswith() •
expandtabs() •
extend() •
find() •
hex() •
index() • •
insert() • •
isdecimal() •
isdigit() •
islower() •
isnumeric() •
isspace() •
istitle() •
isupper() •

IT-SC book: Core Python Programming

 209

join() •
len() • • •
list() • • •
ljust() •
lower() •
lstrip() •
max() • • •
min() • • •
oct() •
ord() •
pop() •
raw_input() •
remove() •
replace() •
repr() • •
reverse() •
rfind() •
rindex() •
rjust() •
rstrip() •
sort() •
split() •
splitlines() •
startswith() •
str() • • •
strip() •
swapcase() •
split() •
title() •
tuple() • • •
type() • • •
upper() •
zfill() •
. (attributes) • •
[] (slice) • • •
[:] • • •
* • • •
% •
+ • • •
in • • •
not in • • •

IT-SC book: Core Python Programming

 210

Exercises

1:
Strings. Are there any string methods or functions in the string module that
will help me determine if a string is part of a larger string?

2:
String Identifiers. Modify the idcheck.py script in Example 6-1 such that it will
determine the validity of identifiers of length 1 as well as be able to detect if an
identifier is a keyword. For the latter part of the exercise, you may use the keyword
module (specifically the keyword.kwlist list) to aid in your cause.

3:
Sorting.

(a) Enter a list of numbers and sort the values in largest-to-smallest order.

(b) Do the same thing, but for strings and in reverse alphabetical (largest-to-
smallest lexicographic) order.

4:
Arithmetic. Update your solution to the test score exercise in the previous chapter
such that the test scores are entered into a list. Your code should also be able to
come up with an average score. See Exercises 2-9 and 5-3.

5:
Strings.

(a) Display a string one character-at-a-time forward and backward as well.

(b) Determine if two strings match (without using comparison operators or the
cmp() built-in function) by scanning each string. EXTRA CREDIT: Add case-
insensitivity to your solution.

(c) Determine if a string is palindromic (the same backwards as it is for wards).
EXTRA CREDIT: add code to suppress symbols and white space if you want to
process anything other than strict palindromes.

(d) Take a string and append a backwards copy of that string, making a
palindrome.

6:
Strings. Create the equivalent to string.strip(): Take a string and remove all

IT-SC book: Core Python Programming

 211

leading and trailing whitespace. (Use of string.*strip() defeats the purpose of
this exercise.)

7:
Debugging. Take a look at the code we present in Example 6.4 (buggy.py).

(a) Study the code and describe what this program does. Add a comment to every
place you see a comment sign (#). Run the program.

(b) This problem has a big bug in it. It fails on inputs of 6, 12, 20, 30, etc., not to
mention any even number in general. What is wrong with this program?

(c) Fix the bug in (b).

Example 6.4. buggy program(buggy.py)

This is the program listing for Exercise 6-7. You will determine what this program
does, add comments where you see "#"s, determine what is wrong with it, and
provide a fix for it.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 #
004 4 import string
005 5
006 6 #
007 7 num_str = raw_input('Enter a number: ')
008 8
009 9 #
010 10 num_num = string.atoi(num_str)
011 11
012 12 #
013 13 fac_list = range(1, num_num+1)
014 14 print "BEFORE:", 'fac_list'
015 15
016 16 #
017 17 i = 0
018 18
019 19 #
020 20 while i < len(fac_list):
021 21
022 22 #
023 23 if num_num % fac_list[i] == 0:
024 24 del fac_list[i]
025 25
026 26 #
027 27 i = i + 1
028 28
029 29 #
030 30 print "AFTER:", 'fac_list'

IT-SC book: Core Python Programming

 212

031 <$nopage>

8:
Lists. Given an integer value, return a string with the equivalent English text of each
digit. For example, an input of 89 results in "eight nine" being returned. EXTRA
CREDIT: return English text with proper usage, i.e., "eighty-nine." For this part of
the exercise, restrict values to be between zero and a thousand.

9:
Conversion. Create a sister function to your solution for Exercise 6-13 to take the
total number of minutes and return the same time interval in hours and minutes,
maximizing on the total number of hours.

10:
Strings. Create a function that will return another string similar to the input string,
but with its case inverted. For example, input of "Mr. Ed" will result in "mR. eD"
as the output string.

11:
Conversion.

(a) Create a program that will convert from an integer to an Internet Protocol (IP)
address in the four octet format of WWW.XXX.YYY.ZZZ.

(b) Update your program to be able to do the vice versa of the above.

12:
Strings.

(a) Create a function called findchr(), with the following declaration:

 def findchr(string, char)

findchr() will look for character char in string and return the index of the first
occurrence of char, or -1 if that char is not part of string. You cannot use
string.*find() or string.*index() functions or methods.

(b) Create another function called rfindchr() which will find the last occurrence
of a character in a string. Naturally this works similarly to findchr() but it starts
its search from the end of the input string.

IT-SC book: Core Python Programming

 213

(c) Create a third function called subchar() with the following declaration:

 def subchr(string, origchar, newchar)

subchr() is similar to findchr() except that whenever origchar is found, it is
replaced by newchar. The modified string is the return value.

13:
Strings. The string module contains three functions, atoi(), atol(), and
atof(), that convert strings to integers, long integers, and floating point numbers,
respectively. As of Python 1.5, the Python built-in functions int(), long(), and
float() can also perform the same tasks, in addition to complex() which can turn
a string into a complex number. (Prior to 1.5 however, those built-in functions
converted only between numeric types.)

An atoc() was never implemented in the string module, so that is your task here.
atoc() takes a single string as input, a string representation of a complex number,
i.e., '-1.23e+4-5.67j', and returns the equivalent complex number object with
the given value. You cannot use eval(), but complex() is available. However,
you can use only complex() with the following restricted syntax: complex(real,
imag) where real and imag are floating point values. See Table 6.4 for more
information regarding the use of complex().

14:
*Random numbers. Design a "rock, paper, scissors" game, sometimes called
"Rochambeau," a game you may have played as a kid. If you don't know the rules,
they are: at the same time, both you and your opponent have to pick from one of
the following: rock, paper, or scissors using specified hand motions. The winner is
determined by these rules, which form somewhat of a fun paradox: (a) the paper
covers the rock, (b) the rock breaks the scissors, (c) the scissors cut the paper. In
your computerized version, the user enters his/her guess, the computer randomly
chooses, and your program should indicate a winner or draw/tie. NOTE: the most
algorithmic solutions use the fewest number of if statements.

15:
Conversion.

(a) Given a pair of dates in some recognizable standard format such as
MM/DD/YY or DD/MM/YY, determine the total number of days that fall between
both dates.

(b) Given a person's birth date, determine the total number of days that person has

IT-SC book: Core Python Programming

 214

been alive, including all leap days.

(c) Armed with the same information from part (b) above, determine the number of
days remaining until that person's next birthday.

16:
Matrices. Process the addition and multiplication of a pair of M by N matrices.

17:
Methods. Implement a function called my pop(), which is similar to the list
pop() method. Take a list as input, remove the last object from the list and return
it.

IT-SC book: Core Python Programming

 215

Chapter 7. Dictionaries

In this chapter, we focus on Python's single mapping type, dictionaries. We present the
various operators and built-in functions which can be used with dictionaries. We
conclude this chapter by introducing some of the standard library modules which deal
with dictionaries.

Introduction to Dictionaries

The last standard type to add to our repertoire is the dictionary, the sole mapping type in
Python. A dictionary is mutable and is another container type that can store any number
of Python objects, including other container types. What makes dictionaries different
from sequence type containers like lists and tuples is the way the data is stored and
accessed.

Sequence types use numeric keys only (numbered sequentially as indexed offsets from
the beginning of the sequence). Mapping types may use most other object types as keys,
strings being the most common. Unlike sequence type keys, mapping keys are often, if
not directly, associated with the data value that is stored. But because we are no longer
using "sequentially-ordered" keys with mapping types, we are left with an unordered
collection of data. As it turns out, this does not hinder our use because mapping types do
not require a numeric value to index into a container to obtain the desired item. With a
key, you are "mapped" directly to your value, hence the term "mapping type." The most
common data structure that maps keys with associated values are hash tables.

NOTE

Sequence types use sequentially-ordered numeric keys as index offsets to store your data
in an array format. The index number usually has nothing to do with the data value that is
being stored. There should also be a way to store data based on another, associated value
such as a string. We do this all the time in everyday living. You file people's phone
numbers in your address book based on last name, you add events to your calendar or
appointment book based on date and time, etc. For each of these examples, an associated
value to a data item was your key.

Hash tables are a data structure that does exactly what we described. They store each
piece of data, called a value, based on an associated data item, called a key. Together,
these are known as key-value pairs. The hash table algorithm takes your key, performs an
operation on it, called a hash function, and based on the result of the calculation, chooses
where in the data structure to store your value. Where any one particular value is stored

IT-SC book: Core Python Programming

 216

depends on what its key is. Because of this randomness, there is no ordering of the values
in the hash table. You have an unordered collection of data.

The only kind of ordering you can obtain is by key. You can request a dictionary's keys,
which is returned to you as a list. From there, you can call the list's sort() method to
order that data set. This is only one type of ordering you can perform on your keys. In
any case, once you have determined that the set of keys is "sorted" to your satisfaction,
their associated values may be retrieved from the dictionary. Hash tables generally
provide good performance because lookups occur fairly quickly once you have a key. For
a sequential access data structure, you must march down to the correct index location and
then retrieve the value. Naturally, performance is based on the type of hash function used.

Python dictionaries are implemented as resizeable hash tables. If you are familiar with
Perl, then we can say that dictionaries are similar to Perl's associative arrays or hashes.

We will now take a closer look at Python dictionaries. The syntax of a dictionary entry is
key:value. Also, dictionary entries are enclosed in braces ({ }).

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of
whether the dictionary has elements or not:

>>> dict1 = {}
>>> dict2 = {'name': 'earth', 'port': 80}
>>> dict1, dict2
({}, {'port': 80, 'name': 'earth'})

How to Access Values in Dictionaries

To access dictionary elements, you use the familiar square brackets along with the key to
obtain its value:

>>> dict2['name']
'earth'
>>>
>>> print 'host %s is running on port %d' % \
… (dict2['name'], dict2['port'])
host earth is running on port 80

IT-SC book: Core Python Programming

 217

Dictionary dict1 is empty while dict2 has two data items. The keys in dict2 are
'name' and 'port', and their associated value items are 'earth' and 80, respectively.
Access to the value is through the key, as you can see from the explicit access to the
'name' key.

If we attempt to access a data item with a key which is not part of the dictionary, we get
an error:

>>> dict2['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

In this example, we tried to access a value with the key 'server' which, as you know,
does not exist from the code above. The best way to check if a dictionary has a specific
key is to use the dictionary's has_key() method. We will introduce all of a dictionary's
methods below. The Boolean has_key() method will return a 1 if a dictionary has that
key and 0 otherwise.

>>> dict2.has_key('server')
0
>>> dict2.has_key('name')
1
>>> dict2['name']
'earth'

Once the has_key() method has given the okay, meaning that a key exists, then you can
access it without having to worry about getting the KeyError, similar to what happened
above. Let us take a look at another dictionary example, using keys other than strings:

>>> dict3 = {}
>>> dict3[1] = 'abc'
>>> dict3['1'] = 3.14159
>>> dict3[3.2] = 'xyz'
>>> dict3
{3.2: 'xyz', 1: 'abc', '1': 3.14159}

Rather than adding each key-value pair individually, we could have also entered all the
data for dict3 at the same time:

dict3 = { 3.2: 'xyz', 1: 'abc', '1': 3.14159 }

IT-SC book: Core Python Programming

 218

Creating the dictionary with a set key-value pair can be accomplished if all the data items
are known in advance (obviously). The goal of the examples using dict3 is to illustrate
the variety of keys that you can use. If we were to pose the question of whether a key for
a particular value should be allowed to change, you would probably say, "No." Right?

Not allowing keys to change during execution makes sense if you think of it this way: Let
us say that you created a dictionary element with a key and value. Somehow during
execution of your program, the key changed, perhaps due to an altered variable. When
you went to retrieve that data value again with the original key, you got a KeyError
(since the key changed), and you had no idea how to obtain your value now because the
key had somehow been altered. Because of this reason, keys must be immutable, so
numbers and strings are fine, but lists and other dictionaries are not. (See Section 7.5.2
for why keys must be immutable.)

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair),
modifying an existing entry, or deleting an existing entry (see below for more details on
removing an entry).

>>> dict2['name'] = 'venus' # update existing entry
>>> dict2['port'] = 6969 # update existing entry
>>> dict2['arch'] = 'sunos5' # add new entry
>>>
>>> print 'host %(name)s is running on port %(port)d' % dict2
host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The
print statement above illustrates an alternative way of using the string format operator
(%), specific to dictionaries. Using the dictionary argument, you can shorten the print
request somewhat because naming of the dictionary occurs only once, as opposed to
occurring for each element using a tuple argument.

You may also add the contents of an entire dictionary to another dictionary by using the
update() built-in method. We will introduce this methods later on in this chapter in
Section 7.4.

How to Remove Dictionary Elements and Dictionaries

Removing an entire dictionary is not a typical operation. Generally, you either remove
individual dictionary elements or clear the entire contents of a dictionary. However, if
you really want to "remove" an entire dictionary, use the del statement (introduced in
Section 3.5.6). Here are some deletion examples for dictionaries and dictionary elements:

IT-SC book: Core Python Programming

 219

del dict1['name'] # remove entry with key 'name'

dict1.clear() # remove all entries in dict1

del dict1 # delete entire dictionary

NOTE

You may recall that there are two ways to delete an entry from a list, using the del
statement or using the list. remove() method. Then you must be wondering, why do
lists have a remove entry method but not dictionaries? One simple answer is that to
remove a element from a list is a two-step effort. You must first find the index (a.k.a. the
key) where the data item is located and then call the del statement. The remove()
method was written to perform both steps, leaving the programmer with a single step.
With dictionaries, you already have the key; there is no need to perform a lookup. You
just call del once. Creating a dictionary method to remove an entry will provide you with
a functional interface.

Operators

Dictionaries do not support sequence operations such as concatenation and repetition,
although an update() built-in method exists that populates one dictionary with the
contents of another. Dictionaries do not have a "membership" operator either, but the
has_key() built-in method basically performs the same task.

Standard Type Operators

Dictionaries will work with all of the standard type operators. These were introduced in
Chapter 4, but we will present some examples of how to use them with dictionaries here:

>>> dict4 = { 'abc': 123 }
>>> dict5 = { 'abc': 456 }
>>> dict6 = { 'abc': 123, 98.6: 37 }
>>> dict7 = { 'xyz': 123 }
>>> dict4 < dict5
1
>>> (dict4 < dict6) and (dict4 < dict7)
1
>>> (dict5 < dict6) and (dict5 < dict7)
1
>>> dict6 < dict7
0

IT-SC book: Core Python Programming

 220

How are all these comparisons performed? Like lists and tuples, the process is a bit more
complex than it is for numbers and strings. The algorithm is detailed below in Section
7.3.1.

Dictionary Key-lookup Operator ([])

The only operator specific to dictionaries is the key-lookup operator, which works very
similar to the single element slice operator for sequence types.

For sequence types, an index offset is the sole argument or subscript to access a single
element of a sequence. For a dictionary, lookups are by key, so that is the argument rather
than an index. The key-lookup operator is used for both assigning values to and retrieving
values from a dictionary:

dict[k] = v # set value 'v' in dictionary with key 'k'
dict[k] # lookup value in dictionary with key 'k'

Built-in Functions

Standard Type Functions [type(), str(), and cmp()]

The type() built-in function, when operated on a dictionary, reveals an object of the
dictionary type. The str() built-in function will produce a printable string representation
of a dictionary. These are fairly straightfoward.

In each of the last three chapters, we showed how the cmp() built-in function worked
with numbers, strings, lists, and tuples. So how about dictionaries? Comparisons of
dictionaries are based on an algorithm which starts with sizes first, then keys, and finally
values. In our example below, we create two dictionaries and compare them, then slowly
modify the dictionaries to show how these changes affect their comparisons:

>>> dict1 = {}
>>> dict2 = { 'host': 'earth', 'port': 80 }
>>> cmp(dict1, dict2)
-1
>>> dict1['host'] = 'earth'
>>> cmp(dict1, dict2)
-1

In the first comparison, dict1 is deemed smaller because dict2 has more elements (2
items vs. 0 items). After adding one element to dict1, it is still smaller (2 vs. 1), even if
the item added is also in dict2.

>>> dict1['port'] = 8080

IT-SC book: Core Python Programming

 221

>>> cmp(dict1, dict2)
1
>>> dict1['port'] = 80
>>> cmp(dict1, dict2)
0

After we add the second element to dict1, both dictionaries have the same size, so their
keys are then compared. At this juncture, both sets of keys match, so comparison
proceeds to checking their values. The values for the 'host' keys are the same, but when
we get to the 'port' key, dict2 is deemed larger because its value is greater than that of
dict1's 'port' key (8080 vs. 80). When resetting dict2's 'port' key to the same value
as dict1's 'port' key, then both dictionaries form equals: They have the same size, their
keys match, and so do their values, hence the reason that 0 is returned by cmp().

>>> dict1['prot'] = 'tcp'
>>> cmp(dict1, dict2)
1
>>> dict2['prot'] = 'udp'
>>> cmp(dict1, dict2)
-1

As soon as an element is added to one of the dictionaries, it immediately becomes the
"larger one," as in this case with dict1. Adding another key-value pair to dict2 can tip
the scales again, as both dictionaries' sizes match and comparison progresses to checking
keys and values.

>>> cdict = { 'fruits':1 }
>>> ddict = { 'fruits':1 }
>>> cmp(cdict, ddict)
0
>>> cdict['oranges'] = 0
>>> ddict['apples'] = 0
>>> cmp(cdict, ddict)
14

Our final example reminds as that cmp() may return values other than -1, 0, or 1. The
algorithm pursues comparisons in the zzfollowing order:

(1) Compares Dictionary Sizes

If the dictionary lengths are different, then for cmp(dict1, dict2), cmp() will return a
positive number if dict1 is longer and a negative number of dict2 is longer. In other
words, the dictionary with more keys is greater, i.e.,

IT-SC book: Core Python Programming

 222

len(dict1) > len(dict2) ? dict1 > dict2

(2) Compares Dictionary Keys

If both dictionaries are the same size, then their keys are compared; the order in which
the keys are checked is the same order as returned by the keys() method. (It is important
to note here that keys which are the same will map to the same locations in the hash table.
This keeps key-checking consistent.) At the point where keys from both do not match,
they are directly compared and cmp() will return a positive number if the first differing
key for dict1 is greater than the first differing key of dict2.

(3) Compares Dictionary Values

If both dictionary lengths are the same and the keys match exactly, the values for each
key in both dictionaries are compared. Once the first key with non-matching values is
found, those values are compared directly. Then cmp() will return a positive number if,
using the same key, the value in dict1 is greater than that of the value in dict2.

(4) Exact Match

If we have reached this point, i.e., the dictionaries have the same length, the same keys,
and the same values for each key, then the dictionaries are an exact match and 0 is
returned.

Figure7-1 illustrates the dictionary compare algorithm we just outlined above.

Figure 7-1. How Dictionaries are Compared

IT-SC book: Core Python Programming

 223

Mapping Type Function [len()]

Similar to the sequence type built-in function, the mapping type len() built-in returns the
total number of items, that is, key-value pairs, in a dictionary:

>>> dict2 = { 'name': 'earth', 'port': 80 }
>>> dict2
{'port': 80, 'name': 'earth'}
>>> len(dict2)
2

We mentioned earlier that dictionary items are unordered. We can see that above, when
referencing dict2, the items are listed in reverse order from which they were entered
into the dictionary.

Built-in Methods

Table 7.1 lists the methods for dictionary objects. The clear(), copy(), get(), and
update() methods were added recently in Python 1.5. setdefault() was introduced in
2.0.

IT-SC book: Core Python Programming

 224

Table 7.1. Dictionary Type Methods
dictionary method Operation

dict.clear[a] () removes all elements of dictionary dict
dict.copy[a]() returns a (shallow [b]) copy of dictionary dict
dict.get(key,
default=None)[a]

for key key, returns value or default if key not in
dictionary (note that default's default is None)

dict.has_key(key) returns 1 if key in dictionary dict, 0 otherwise
dict.items() returns a list of dict's (key, value) tuple pairs
dict.keys() returns list of dictionary dict's keys
dict.setdefault key,
default=None)[c]

similar to get(), but will set dict[key]=default if
key is not already in dict

dict.update(dict2)[a] adds dictionary dict2's key-values pairs to dict
dict.values() returns list of dictionary dict's values

[a] new as of Python 1.5

[b] more information regarding shallow and deep copies can be found in Section 6.19

[c] new as of Python 2.0

Below, we showcase some of the more common dictionary methods:

>>> dict2 = { 'name': 'earth', 'port': 80 }
>>> dict2.has_key('name')
1
>>>
>>> dict2['name']
'earth'
>>>
>>> dict2.has_key('number')
0

The has_key() method is Boolean, indicating whether the given key is valid for the
dictionary the method is operating on. Attempting to access a non-existent key will result
in an exception (KeyError) as we saw at the beginning of this chapter in Section 7.1.
Mapping types do not support the in and not in operators as sequences do, so has_key()
is our best bet.

Other useful dictionary methods focus entirely on their keys and values. These are
keys(), which returns a list of the dictionary's keys, values(), which returns a list of
the dictionary's values, and items(), which returns a list of (key, value) tuple pairs.
These are useful for when you wish to iterate through a dictionary's keys or values, albeit
in no particular order.

>>> dict2.keys()

IT-SC book: Core Python Programming

 225

['port', 'name']
>>>
>>> dict2.values()
[80, 'earth']
>>>
>>> dict2.items()
[('port', 80), ('name', 'earth')]
>>>
>>> for eachKey in dict2.keys():
… print 'dict2 key', eachKey, 'has value',
dict2[eachKey]
…
dict2 key port has value 80
dict2 key name has value earth

The keys() method is fairly useful when used in conjunction with a for loop to retrieve
a dictionary's values as it returns a list of a dictionary's keys. However, because its items
are unordered, imposing some type of order is usually desired. Below, we present the
same the loop, but sort the keys (using the list's sort() method) before retrieval.

>>> dict2Keys = dict2.keys()
>>> dict2Keys.sort()
>>> for eachKey in dict2Keys:
… print 'dict2 key', eachKey, 'has value',
dict2[eachKey]
…
dict2 key name has value earth
dict2 key port has value 80

The update() method can be used to add the contents of one directory to another. Any
existing entries with duplicate keys will be overridden by the new incoming entries. Non-
existent ones will be added. All entries in a dictionary can be removed with the clear()
method.

>>> dict2= { 'host':'earth', 'port':80 }
>>> dict3= { 'host':'venus', 'server':'http' }
>>> dict2.update(dict3)
>>> dict2
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict3.clear()
>>> dict3
{}

The copy() method simply returns a copy of a dictionary. Note that this is a shallow
copy only. Again, see Section 6.19 regarding shallow and deep copies. Finally, the get()
method is similar to using the key-lookup operator ([]), but allows you to provide a

IT-SC book: Core Python Programming

 226

default value returned if a key does not exist. If a key does not exist and a default value is
not given, then None is returned. This is a more flexible option than just using key-lookup
because you do not have to worry about an exception being raised if a key does not exist.

>>> dict4 = dict2.copy()
>>> dict4
{'server': 'http', 'port': 80, 'host': 'venus'}
>>> dict4.get('host')
'venus'
>>> dict4.get('xxx')
>>> type(dict4.get('xxx'))
<type 'None'>
>>> dict4.get('xxx', 'no such key')
'no such key'

Python 2.0 introduces a new dictionary built-in method, setdefault(), which is
intended on making code shorter by collapsing a common idiom: you want to check if a
dictionary has a key. If it does, you want its value. If the dictionary does not have the key
you are seeking, you want to set a default value and then return it. That is precisely what
setdefault() does:

>>> myDict = { 'host': 'earth', 'port': 80 }
>>> myDict.keys()
['host', 'port']
>>> myDict.items()
[('host', 'earth'), ('port', 80)]
>>> myDict.setdefault('port', 8080)
80
>>> myDict.setdefault('prot', 'tcp')
'tcp'
>>> myDict.items()
[('prot', 'tcp'), ('host', 'earth'), ('port', 80)]

For more information, take a look at the "What's New in 2.0" online document. The URL
is available in the Online Resources section of the Appendix and on the CD-ROM.

Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, i.e., from
standard objects to user-defined objects. However, the same cannot be said of keys.

More Than One Entry per Key Not Allowed

One rule is that you are constrained to having only one entry per key. In other words,
multiple values per the same key are not allowed. (Container objects such as lists, tuples,

IT-SC book: Core Python Programming

 227

and other dictionaries are fine.) When key collisions are detected (meaning duplicate keys
encountered during assignment), the last assignment wins.

>>> dict1 = {' foo':789, 'foo': 'xyz'}
>>> dict1
{'foo': 'xyz'}
>>>
>>> dict1['foo'] = 123
>>> dict1
{'foo': 123}

Rather than producing an error, Python does not check for key collisions because that
would involve taking up memory for each key-value pair assigned. In the above example
where the key 'foo' is given twice on the same line, Python applies the key-value pairs
from left to right. The value 789 may have been set at first, but is quickly replaced by the
string 'xyz'. When assigning a value to a non-existent key, the key is created for the
dictionary and value added, but if the key does exist (a collision), then its current value is
replaced. In the above example, the value for the key 'foo' is replaced twice; in the final
assignment, 'xyz' is replaced by 123.

Keys Must Be Immutable

As we mentioned earlier in Section 7.1, most Python objects can serve as keys—only
mutable types such as lists and dictionaries are disallowed. In other words, types that
compare by value rather than by identity cannot be used as dictionary keys. A TypeError
will occur if a mutable type is given as the key:

>>> dict[[3]] = 14
Traceback (innermost last):
 File "<stdin>," line 1, in ?
TypeError: unhashable type

Why must keys be immutable? The hash function used by the interpreter to calculate
where to store your data is based on the value of your key. If the key was a mutable
object, its value could be changed. If a key changes, the hash function will map to a
different place to store the data. If that was the case, then the hash function could never
reliably store or retrieve the associated value. Immutable keys were chosen for the very
fact that their values cannot change. (Also see the Python FAQ question 6.18.)

We know that numbers and strings are allowed as keys, but what about tuples? We know
they are immutable, but in Section 6.17.2, we hinted that they might not be as immutable
as they can be. The clearest example of that was when we modified a list object which
was one of our tuple elements. To allow tuples as valid keys, one more restriction must

IT-SC book: Core Python Programming

 228

be enacted: Tuples are valid keys only if they only contain immutable arguments like
numbers and strings.

We conclude this chapter on dictionaries by presenting a program (userpw.py as in
Example 7.1), which manages user name and passwords in a mock login entry database
system. This script accepts new users given that they provide a login name and a
password. Once an "account" has been set up, an existing user can return as long as they
give their login and correct password. New users cannot create an entry with an existing
login name.

Example 7.1. Dictionary Example (userpw.py)

This application manages a set of users who join the system with a login name and a
password. Once established, existing users can return as long as they remember their
login and password. New users cannot create an entry with someone else's login name.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 db = {}
004 4
005 5 def newuser():
006 6 prompt = 'login desired: '
007 7 while 1:
008 8 name = raw_input(prompt)
009 9 if db.has_key(name):
010 10 prompt = 'name taken, try another: '
011 11 continue <$nopage>
012 12 else: <$nopage>
013 13 break <$nopage>
014 14 pwd = raw_input('passwd: ')
015 15 db[name] = pwd
016 16
017 17 def olduser():
018 18 name = raw_input('login: ')
019 19 pwd = raw_input('passwd: ')
020 20 passwd = db.get(name)
021 21 if passwd == pwd:
022 22 pass <$nopage>
023 23 else: <$nopage>
024 24 print 'login incorrect'
025 25 return <$nopage>
026 26
027 27 print 'welcome back', name
028 28
029 29 def showmenu():
030 30 prompt = """
031 31 (N)ew User Login
032 32 (E)xisting User Login
033 33 (Q)uit
034 34
035 35 Enter choice: """
036 36

IT-SC book: Core Python Programming

 229

037 37 done = 0
038 38 while not done:
039 39
040 40 chosen = 0
041 41 while not chosen:
042 42 try: <$nopage>
043 43 choice = raw_input(prompt)[0]
044 44 except (EOFError, KeyboardInterrupt):
045 45 choice = 'q'
046 46 print '\nYou picked: [%s]' % choice
047 47 if choice not in 'neq':
048 48 print 'invalid option, try again'
049 49 else: <$nopage>
050 50 chosen = 1
051 51
052 52 if choice == 'q': done = 1
053 53 if choice == 'n': newuser()
054 54 if choice == 'e': olduser()
055 55
056 56 if __name__ == '__main__':
057 57 showmenu()
058 <$nopage>

Lines 1 – 3

After the UNIX-startup line, we initialize the program with an empty user database.
Because we are not storing the data anywhere, a new user database is created every time
this program is executed.

Lines 5 – 15

The newuser() function is the code that serves new users. It checks to see if a name has
already been taken, and once a new name is verified, the user is prompted for his or her
password (no encryption exists in our simple program), and his or her password is stored
in the dictionary with his or her user name as the key.

Lines 17 – 27

The olduser() function handles returning users. If a user returns with the correct login
and password, a welcome message is issued. Otherwise, the user is notified of an invalid
login and returned to the menu. We do not want an infinite loop here to prompt for the
correct password because the user may have inadvertently entered the incorrect menu
option.

Lines 29 – 54

The real controller of this script is the showmenu() function. The user is presented with a
friendly menu. The prompt string is given using triple quotes because it takes place over
multiple lines and is easier to manage on multiple lines than on a single line with
embedded '\n' symbols. Once the menu is displayed, it waits for valid input from the
user and chooses which mode of operation to follow based on the menu choice. The try-

IT-SC book: Core Python Programming

 230

except statements we describe here are the same as for the stack.py and queue.py
examples from the last chapter (see Section 6.14.1).

Lines 56 – 57

Here is the familiar code which will only call showmenu() to start the application if the
script was involved directly (not imported).

Here is a sample execution of our script:

% userpw.py

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: n

You picked: [n]
login desired: king arthur
passwd: grail

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: e

You picked: [e]
login: sir knight
passwd: flesh wound
login incorrect

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: e

You picked: [e]
login: king arthur
passwd: grail
welcome back king arthur

(N)ew User Login
(E)xisting User Login
(Q)uit

Enter choice: ^D
You picked: [q]

Exercises

IT-SC book: Core Python Programming

 231

1:
Dictionary Methods. What dictionary method would we use to combine two
dictionaries together?

2:
Dictionary Keys. We know that dictionary values can be arbitrary Python objects, but
what about the keys? Try using different types of objects as the key other than
numbers or strings. What worked for you and what didn't? As for the failures, why
do you think they didn't succeed?

3:
Dictionary and List Methods.

(a) Create a dictionary and display its keys alphabetically.

(b) Now display both the keys and values sorted in alphabetical order by the key.

(c) Same as part (b), but sorted in alphabetical order by the value. (Note: this
generally has no practical purpose in dictionaries or hash tables in general because
most access and ordering [if any] is based on the keys. This is merely an exercise.)

4:
Creating Dictionaries. Given a pair of identically-sized lists, say, [1, 2,
3, …], and ['abc', 'def', 'ghi', …], process all that list data into a single
dictionary that looks like: {1: 'abc', 2: 'def', 3: 'ghi', …}.

5:
userpw2.pw. Following problem deals with the program in Example 7.1 a
manager of a database of name-password key-value pairs.

(a) Update the script so that a timestamp is also kept with the password indicating
date and time of last login. This interface should prompt for login and password
and indicate a successful or failed login as before, but if successful, it should
update the last login timestamp. If the login occurs within four hours of the last
login, tell the user, "You already logged in at: <last_login_timestamp>."

(b) Add an "administration" menu to include the following two menu options: (1)
remove a user and (2) display a list of all users in the system and their passwords

(c) The passwords are currently not encrypted. Add password-encryption if so
desired (see the crypt, rotor, or other cryptographic modules)

(d) Add a GUI interface, i.e., Tkinter, on top of this application.

IT-SC book: Core Python Programming

 232

6:
Lists and Dictionaries. Create a crude stock portfolio database system: There should be
at least four data columns: stock ticker symbol, number of shares, purchase price,
and current price (you can add more if you wish). Have the user input values for
each column to create a single row. Each row should be created as list. Another all-
encompassing list will hold all these rows. Once the data is entered, prompt the
user for one column to use as the sort metric. Extract the data values of that column
into a dictionary as keys, with their corresponding values being the row that
contains that key. Be mindful that the sort metric must have non-coincidental keys
or else you will lose a row because dictionaries are not allowed to have more than
one value with the same key. You may also choose to have additional calculated
output, such as percentage gain/loss, current portfolio values, etc.

7:
Inverting Dictionaries. Take a dictionary as input and return one as output, but
the values are now the keys and vice versa.

8:
Human Resources. Create a simple name and employee number dictionary
application. Have the user enter a list of names and employee numbers. Your
interface should allow a sorted output (sorted by name) that displays employee
names followed by their employee numbers. EXTRA CREDIT: come up with an
additional feature that allows for output to be sorted by employee numbers.

9:
Translations.

(a) Create a character translator (that works similar to the Unix tr command). This
function, which we will call tr(), takes three strings as arguments: source,
destination, and base strings, and has the following declaration:

def tr(srcstr, dststr, string)

srcstr contains the set of characters you want "translated," dststr contains the
set of characters to translate to, and string is the string to perform the translation
on. For example, if srcstr == 'abc', dststr == 'mno', and string ==
'abcdef', then tr() would output 'mno-def'. Note that len(srcstr) ==
len(dststr). For this exercise, you can use the chr() and ord() built-in
functions, but they are not necessary to arrive at a solution.

(b) Add a new flag argument to this function to perform case-insensitive

IT-SC book: Core Python Programming

 233

translations.

(c) Update your solution so that it can process character deletions. Any extra
characters in srcstr which are beyond those which could be mapped to characters
in dststr should be filtered. In other words, these characters are mapped to no
characters in dststr, and are thus filtered from the modified string which is
returned. For example, if srcstr == 'abcdef', dststr == 'mno', and string
== 'abcdefghi', then tr() would output 'mnoghi'. Note now that
len(srcstr) >= len(dststr).

10:
Encryption. Using your solution to the previous problem, and create a "rot13"
translator. "rot13" is an old and fairly simplistic encryption routine where by each
letter of the alphabet is rotated 13 characters. Letters in the first half of the alphabet
will be rotated to the equivalent letter in the second half and vice versa, retaining
case. For example, 'a' goes to 'n' and 'X' goes to 'K'. Obviously, numbers and
symbols are immune from translation.

(b) Add an application on top of your solution to prompt the user for strings to
encrypt (and decrypt on reapplication of the algorithm), as in the following
examples:

% rot13.py
Enter string to rot13: This is a short sentence.
Your string to en/decrypt was: [This is a short
sentence.].
The rot13 string is: [Guvf vf n fubeg fragrapr.].
%
% rot13.py
Enter string to rot13: Guvf vf n fubeg fragrapr.
Your string to en/decrypt was: [Guvf vf n fubeg
fragrapr.].
The rot13 string is: [This is a short sentence.].

IT-SC book: Core Python Programming

 234

Chapter 8. Conditionals and Loops

The primary focus of this chapter are Python's conditional and looping statements, and all
their related components. We will take a close look at if, while, for, and their friends
else, elif, break, continue, and pass.

if statement

The if statement for Python will seem amazingly familiar; it is made up of three main
components: the keyword itself, an expression which is tested for its truth value, and a
code suite to execute if the expression evaluates to non-zero or true. The syntax for an if
statement:

if
 expression:
 expr_true_suite

The suite of the if clause, expr_true_suite, will be executed only if the above
conditional expression results in a Boolean true value. Otherwise, execution resumes at
the next statement following the suite.

Multiple Conditional Expressions

The Boolean operators and, or, and not can be used to provide multiple conditional
expressions or perform negation of expressions in the same if statement.

if not warn and (system_load >= 10):
 print "WARNING: losing resources"
 warn = warn + 1

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the
header statement:

if (make_hard_copy == 1): send_data_to_printer()

IT-SC book: Core Python Programming

 235

Single line if statements such as the above are valid syntax-wise; however, although it
may be convenient, it may make your code more difficult to read, so I recommend you
indent the suite on the next line. Another good reason is that if you must add another line
to the suite, you have to move that line down to the next anyway.

else Statement

Like other languages, Python features an else statement that can be paired with an if
statement. The else statement identifies a block of code to be executed if the conditional
expression of the if statement resolves to a false Boolean value. The syntax is what you
expect:

if
 expression:
 expr_true_suite
else:
 expr_false_suite

Now the obligatory usage example:

if passwd == user.passwd:
 ret_str = "password accepted"
 id = user.id
 valid = 1
else:
 ret_str = "invalid password entered… try again!"
 valid = 0

Dangling else Avoidance

Python's design of using indentation rather than braces for code block delimitation not
only helps to enforce code correctness, but it even aids implicitly in avoiding potential
problems in code that is syntactically correct. One of those such problems is the
(in)famous "dangling else" problem, a semantic optical illusion.

We present some C code here to illustrate our example (which is also illuminated by
K&R and other programming texts):

/* dangling-else in C */
if (balance > 0.00)
 if (((balance - amt) > min_bal) && (atm_cashout() == 1))
 printf("Here's your cash; please take all bills.\n");

IT-SC book: Core Python Programming

 236

else
 printf("Your balance is zero or negative.\n");

The question is, which if does the else belong to? In the C language, the rule is that the
else stays with the closest if. In our example above, although indented for the outer if
statement, the else statement really belongs to the inner if statement because the C
compiler ignores superfluous whitespace. As a result, if you have a positive balance but is
below the minimum, you will get the horrid (and erroneous) message that your balance is
either zero or negative.

Although solving this problem may be facile due to the simplistic nature of the example,
any larger sections of code embedded within this framework may be a hair-pulling
experience to root out. Python puts up guardrails to not necessarily prevent you from
driving off the cliff, but to steer you away from danger. The same example in Python will
result in one of the following choices (one of which is correct):

if (balance > 0.00):
 if ((balance - amt) > min_bal) and (atm_cashout() == 1):
 print "here's your cash; please take all bills."
else:
 print "your balance is zero or negative"

or

if (balance > 0.00):
 if ((balance - amt) > min_bal) and (atm_cashout() == 1):
 print "here's your cash; please take all bills."
 else:
 print "your balance is zero or negative"

Python's use of indentation forces the proper alignment of code, giving the programmer
the ability to make a conscious decision as to which if an else statement belongs to. By
limiting your choices and thus reducing ambiguities, Python encourages you to develop
correct code the first time. It is impossible to create a dangling-else problem in Python.

elif (a.k.a. else-if) Statement

elif is the Python else-if statement. It allows one to check multiple expressions for
truth value and execute a block of code as soon as one of the conditions evaluates to true.
Like the else, the elif statement is optional. However, unlike else, for which there
can be at most one statement, there can be an arbitrary number of elif statements
following an if.

IT-SC book: Core Python Programming

 237

if
 expression1:
 expr1_true_suite
elif
 expression2:
 expr2_true_suite
 :
elif
 expressionN:
 exprN_true_suite
else:
 none_of_the_above_suite

At this time, Python does not currently support switch or case statements as in other
languages. Python syntax does not present roadblocks to readability in the presence of a
good number of if-elif statements.

if (user.cmd == 'create'):
 action = "create item"
 valid = 1

elif (user.cmd == 'delete'):
 action = 'delete item'
 valid = 1

elif (user.cmd == 'quit'):
 action = 'quit item'
 valid = 1

else:
 action = "invalid choice… try again!"
 valid = 0

Python presents an elegant alternative to the switch/case statement in the for statement.
Using for, one can "simulate" switches by cycling through each potential "case," and
take action when warranted. (See Section 8.5.3.)

while Statement

Python's while is the first looping statement we will look at in this chapter. In fact, it is a
conditional looping statement. In comparison with an if statement where a true
expression will result in a single execution of the if clause suite, the suite in a while
clause will be executed continuously in a loop until that condition is no longer satisfied.

General Syntax

IT-SC book: Core Python Programming

 238

Here is the general syntax for a while loop:

while
 expression:
 suite_to_repeat

The suite_to_repeat clause of the while loop will be executed continuously in a loop
until expression evaluates to Boolean false. This type of looping mechanism is often used
in a counting situation, such as the example in the next subsection.

Counting Loops

count = 0
while (count < 9):
 print 'the index is:', count
 count = count + 1

The suite here, consisting of the print and increment statements, is executed repeatedly
until count is no longer less than 9. With each iteration, the current value of the index
count is displayed and then bumped up by 1. If we take this snippet of code to the Python
interpreter, entering the source and seeing the resulting execution would look something
like:

>>> count = 0
>>> while (count < 9):
… print 'the index is:', count
… count = count + 1
…
the index is: 0
the index is: 1
the index is: 2
the index is: 3
the index is: 4
the index is: 5
the index is: 6
the index is: 7
the index is: 8

Infinite Loops

One must use caution when using while loops because of the possibility that this
condition never resolves to a false value. In such cases, we would have a loop that never
ends on our hands. These "infinite" loops are not necessarily bad things… many

IT-SC book: Core Python Programming

 239

communications "servers" that are part of client-server systems work exactly in that
fashion. It all depends on whether or not the loop was meant to run forever, and if not,
whether the loop has the possibility of terminating; in other words, will the expression
ever be able to evaluate to false?

while 1:
 handle, indata = wait_for_client_connect()
 outdata = process_request(indata)
 ack_result_to_client(handle, outdata)

For example, the piece of code above was set deliberately to never end because the value
1 will never evaluate to Boolean false. The main point of this server code is to sit and
wait for clients to connect, presumably over a network link. These clients send requests
which the server understands and processes. After the request has been serviced, a return
value or data is returned to the client who may either drop the connection altogether or
send another request. As far as the server is concerned, it has performed its duty to this
one client and returns to the top of the loop to wait for the next client to come along. You
will find out more about client-server computing in the Networking and Web
Programming chapters 16 and 19).

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single
statement, it may be placed on the same line as the while header. Here is an example of a
one-line while clause:

while not ready: ready = is_data_ready()

for Statement

The other looping mechanism in Python comes to us in the form of the for statement.
Unlike the traditional conditional looping for statement found in mainstream third-
generation languages (3GLs) like C, Fortran, or Pascal, Python's for is more akin to a
scripting language's iterative foreach loop.

General Syntax

Iterative loops index through individual elements of a set and terminate when all the
items are exhausted. Python's for statement iterates only through sequences, as indicated
in the general syntax here:

for
 iter_var in
sequence:

IT-SC book: Core Python Programming

 240

 suite_to_repeat

The sequence sequence will be iterated over, and with each loop, the iter_var iteration
variable is set to the current element of the sequence, presumably for use in
suite_to_repeat.

Used with Sequence Types

In this section, we will see how the for loop works with the different sequence types.
The examples will include string, list, and tuple types.

>>> for eachLetter in 'Names':
… print 'current letter:', eachLetter
…
current letter: N
current letter: a
current letter: m
current letter: e
current letter: s

When iterating over a string, the iteration variable will always consist of only single
characters (strings of length 1). Such constructs may not necessarily be useful. When
seeking characters in a string, more often than not, the programmer will either use in to
test for membership, or one of the string module functions or string methods to check for
substrings.

One place where seeing individual characters does come in handy is during the
debugging of sequences in a for loop in an application where you are expecting strings
or entire objects to show up in your print statements. If you see individual characters,
this is usually a sign that you received a single string rather than a sequence of objects.

There are two basic ways of iterating over a sequence:

Iterating by Sequence Item

>>> nameList ['Walter', "Nicole", 'Steven', 'Henry']
>>> for eachName in nameList:
… print eachName, "Lim"
…
Walter Lim
Nicole Lim
Steven Lim
Henry Lim

IT-SC book: Core Python Programming

 241

In the above example, a list is iterated over, and for each iteration, the eachName variable
contains the list element that we are on for that particular iteration of the loop.

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence
itself:

>>> nameList = ['Shirley', "Terry", 'Joe', 'Heather', 'Lucy']
>>> for nameIndex in range(len(nameList)):
… print "Liu,", nameList[nameIndex]
…
Liu, Shirley
Liu, Terry
Liu, Joe
Liu, Heather
Liu, Lucy

Rather than iterating through the elements themselves, we are iterating through the
indices of the list.

We employ the assistance of the len() built-in function, which provides the total number
of elements in the tuple as well as the range() built-in function (which we will discuss in
more detail below) to give us the actual sequence to iterate over.

>>> len(nameList)
5
>>> range(len(nameList))
[0, 1, 2, 3, 4]

Using range(), we obtain a list of the indexes that nameIndex iterates over; and using
the slice/subscript operator ([]), we can obtain the corresponding sequence element.

Those of you who are performance pundits will no doubt recognize that iteration by
sequence item wins over iterating via index. If not, this is something to think about. (See
Exercise 8-13).

Switch/Case Statement Proxy

Earlier in Section 8.3, we introduced the if-elif-else construct and indicated that
Python did not support a switch/case statement. In many cases, an incredibly long set
of if-elif-else statements can be replaced by a for loop, which contains the "case"
items in a sequence which is iterated over. We present a modified version of the example
in Section 8.3, moving all the elif statements into the for loop:

IT-SC book: Core Python Programming

 242

for cmd in ('add', 'delete', 'quit'):
 if cmd == user.cmd:
 action = cmd + " item"
 valid = 1
 break
else:
 action = "invalid choice… try again!"
 valid = 0

You are now probably glad to see that there is some kind of substitute for the lack of a
switch/case statement in Python, but do you realize that using a list gives you even
more power as a programmer? In other languages, the elements of a case statement are
constant and a static part of the code. By using lists in Python, not only can these
elements be variables, but they can also be dynamic and changed during run-time!

Final note, it may have surprised you to see an else statement at the end there.Yes, else
statements can be used with for loops. In this case, the else clause is executed only if
the for loop finished to completion. More on else coming up in Section 8.9.

range() [and xrange()] Built-in Function(s)

We mentioned above during our introduction to Python's for loop that it is an iterative
looping mechanism. Python also provides a tool that will let us use the for statement in a
traditional pseudo-conditional setting, i.e., when counting from one number to another
and quitting once the final number has been reached or some condition is no longer
satisfied.

The built-in function range() can turn your foreach-like for-loop back into one that
you are more familiar with, i.e., counting from zero to ten, or counting from 10 to 100 in
increments of 5.

range() Full Syntax

Python presents two different ways to use range(). The full syntax requires that two or
all three integer arguments are present:

range(start, end, step=1)

range() will then return a list where for any k, start <= k < end and k iterates from
start to end in increments of step. step cannot be 0, or else an error condition will
occur.

>>> range(2, 19, 3)

IT-SC book: Core Python Programming

 243

[2, 5, 8, 11, 14, 17]

If step is omitted and only two arguments given, step takes a default value of 1.

>>> range(3,7)
[3, 4, 5, 6]

Let's take a look at an example used in the interpreter environment:

>>> for eachVal in range(2, 19, 3):
… print "value is:", eachVal
…
value is: 2
value is: 5
value is: 8
value is: 11
value is: 14
value is: 17

Our for loop now "counts" from two to nineteen, incrementing by steps of three. If you
are familiar with C, then you will notice the direct correlation between the arguments of
range() and those of the variables in the C for loop:

/* equivalent loop in C */
for (eachVal = 2; eachVal < 19; i += 3) {
 printf("value is: %d\n", eachVal);
}

Although it seems like a conditional loop now (checking if eachVal<19), reality tells us
that range() takes our conditions and generates a list that meets our criteria, which in
turn, is used by the same Python for statement.

range() Abbreviated Syntax

range() also has a simple format, which takes one or both integer arguments:

range(start=0, end)

IT-SC book: Core Python Programming

 244

Given both values, this shortened version of range() is exactly the same as the long
version of range() taking two parameters with step defaulting to 1. However, if given
only a single value, start defaults to zero, and range() returns a list of numbers from
zero up to the argument end:

>>> range(5)
[0, 1, 2, 3, 4]

We will now take this to the Python interpreter and plug in for and print statements to
arrive at:

>>> for count in range(5):
… print count
…
0
1
2
3
4

Once range() executes and produces its list result, our expression above is equivalent to
the following:

>>> for count in [0, 1, 2, 3, 4]:
… print count

NOTE

Now that you know both syntaxes for range(), one nagging question you may have is,
why not just combine the two into a single one that looks like this?

range(start=0, end, step=1)# invalid

This syntax will work for a single argument or all three, but not two. It is illegal because
the presence of step requires start to be given. In other words, you cannot provide end
and step in a two-argument version because they will be (mis)interpreted as start and
end.

IT-SC book: Core Python Programming

 245

xrange() Function for Limited Memory Situations

xrange() is similar to range() except that if you have a really large range list, xrange()
may come in more handy because it does not have to make a complete copy of the list in
memory. This built-in was made for exclusive use in for loops. It doesn't make sense
outside a for loop. Also, as you can imagine, the performance will not be as good
because the entire list is not in memory.

Now that we've covered all the loops Python has to offer, let us take a look at the
peripheral commands that typically go together with loops. These include statements to
abandon the loop (break) and to immediately begin the next iteration (continue).

break Statement

The break statement in Python terminates the current loop and resumes execution at the
next statement, just like the traditional break found in C. The most common use for
break is when some external condition is triggered (usually by testing with an if
statement), requiring a hasty exit from a loop. The break statement can be used in both
while and for loops.

count = num / 2
while count > 0:
 if (num % count == 0):
 print count, 'is the largest factor of', num
 break
 count = count - 1

The task of this piece of code is to find the largest divisor of a given number num. We
iterate through all possible numbers that could possibly be factors of num, using the
count variable and decrementing for every value that does NOT divide num. The first
number that evenly divides num is the largest factor, and once that number is found, we
no longer need to continue and use break to terminate the loop.

phone2remove = '555-1212'
for eachPhone in phoneList:
 if eachPhone == phone2remove:
 print "found", phone2remove, '… deleting'
 deleteFromPhoneDB(phone2remove)
 break

The break statement here is used to interrupt the iteration of the list. The goal is to find a
target element in the list, and, if found, to remove it from the database and break out of
the loop.

IT-SC book: Core Python Programming

 246

continue Statement

NOTE

Whether in Python, C, Java, or any other structured language which features the
continue statement, there is a misconception among some beginning programmers that
the traditional continue statement "immediately starts the next iteration of a loop."
While this may seem to be the apparent action, we would like to clarify this somewhat
invalid supposition. Rather than beginning the next iteration of the loop when a continue
statement is encountered, a continue statement terminates or discards the remaining
statements in the current loop iteration and goes back to the top.

If we are in a conditional loop, the conditional expression is checked for validity before
beginning the next iteration of the loop. Once confirmed, then the next iteration begins.
Likewise, if the loop were iterative, a determination must be made as to whether there are
any more arguments to iterate over. Only when that validation has completed
successfully can we begin the next iteration.

The continue statement in Python is not unlike the traditional continue found in other
high-level languages. The continue statement can be used in both while and for loops.
The while loop is conditional, and the for loop is iterative, so using continue is subject
to the same requirements (as highlighted in the Core Note above) before the next iteration
of the loop can begin. Otherwise, the loop will terminate normally.

valid = 0
count = 3
while count > 0:
 input = raw_input("enter password")
 # check for valid passwd
 for eachPasswd in passwdList:
 if input == eachPasswd:
 valid = 1
 break
 if not valid: # (or valid == 0)
 print "invalid input"
 count = count - 1
 continue
 else:
 break

In this combined example using while, for, if, break, and continue, we are looking
at validating user input. The user is given three opportunities to enter the correct

IT-SC book: Core Python Programming

 247

password; otherwise, the valid variable remains a false value of 0, which presumably
will result in appropriate action being taken soon after.

pass Statement

One Python statement not found in C is the pass statement. Because Python does not use
curly braces to delimit blocks of code, there are places where code is syntactically
required. We do not have the equivalent empty braces or single semicolon the way C has
to indicate "do nothing." If you use a Python statement that expects a sub-block of code
or suite, and one is not present, you will get a syntax error condition. For this reason, we
have pass, a statement that does absolutely nothing—it is a true NOP, to steal the "No
OPeration" assembly code jargon. Style- and development-wise, pass is also useful in
places where your code will eventually go, but has not been written yet (e.g., in stubs for
example):

def foo_func():

 pass

or

if user_choice == 'do_calc':

 pass

else:

 pass

This code structure is helpful during the development or debugging stages because you
want the structure to be there while the code is being created, but you do not want it to
interfere with the other parts of the code that have been completed already. In places
where you want nothing to execute, pass is a good tool to have in the box.

Another popular place is with exception handling, which we will take a look at in
Chapter 10; this is where you can track an error if it occurs, but take no action if it is not
fatal (you just want to keep a record of the event or perform an operation under the
covers if an error occurs).

else Statement… Take Two

In C (as well as in most other languages), you will not find an else statement outside the
realm of conditional statements, yet Python bucks the trend again by offering these in

IT-SC book: Core Python Programming

 248

while or for loops. How do they work? When used with loops, an else clause will be
executed only if a loop finishes to completion, meaning they were not abandoned by
break.

One popular example of else usage in a while statement is in finding the largest factor
of a number. We have implemented a function which performs this task, using the else
statement with our while loop. The showMaxFactor() function in Example 8.1
(maxFact.py) utilizes the else statement as part of a while loop.

Example 8.1. while-else Loop Example (maxFact.py)

This program displays the largest factors for numbers between 10 and 20. If the number
is prime, the script will indicate that as well.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def showMaxFactor(num):
004 4 count = num / 2
005 5 while count > 1:
006 6 if (num % count == 0):
007 7 print 'largest factor of %d is %d' % \
008 8 (num, count)
009 9 break <$nopage>
010 10 count = count - 1
011 11 else: <$nopage>
012 12 print num, "is prime"
013 13
014 14 for eachNum in range(10, 21):
015 15 showMaxFactor(eachNum)
016 <$nopage>

The loop beginning on line 3 in showMaxFactor() counts down from half the amount
(starts checking if two divides the number, which would give the largest factor). The loop
decrements each time (line 10) through until a divisor is found (lines 6–9). If a divisor
has not been found by the time the loop decrements to 1, then the original number must
be prime. The else clause on lines 11–12 takes care of this case. The main part of the
program on lines 14–15 fires off the requests to showMaxFactor() with the numeric
argument.

Running our program results in the following output:

largest factor of 10 is 5
11 is prime
largest factor of 12 is 6
13 is prime
largest factor of 14 is 7
largest factor of 15 is 5
largest factor of 16 is 8
17 is prime
largest factor of 18 is 9

IT-SC book: Core Python Programming

 249

19 is prime
largest factor of 20 is 10

Likewise, a for loop can have a post-processing else. It operates exactly the same way
as for a while loop. As long as the for loop exits normally (not via break), the else
clause will be executed. We saw such an example in Section 8.5.3.

Table 8.1 summarizes which conditional or looping statements auxiliary statements can
be used.

Table 8.1. Auxiliary Statements to Loops and Conditionals
 Loops and Conditionals

Auxiliary Statements if while for
elif •
else • • •
break • •
continue • •
pass[a] • • •

[a] pass is valid anywhere a suite is required (also includes elif, else, class, def, try,
except, finally)

Exercises

1:
Conditionals. Study the following code:

statement A
if x > 0:
 # statement B
 pass

elif x < 0:
 # statement C
 pass

else:
 # statement D
 pass

statement E

(a) Which of the statements above (A, B, C, D, E) will be executed if x < 0?

IT-SC book: Core Python Programming

 250

(b) Which of the statements above will be executed if x == 0?

(c) Which of the statements above will be executed if x > 0?

2:
Loops. Write a program to have the user input three (3) numbers: (f)rom, (t)o, and
(i)ncrement. Count from f to t in increments of i, inclusive of f and t. For example,
if the input is f == 2, t == 24, and i == 4, the program would output: 2, 6, 10, 14,
18, 22.

3:
range(). What argument(s) could we give to the range() built-in function if we
wanted the following lists to be generated?

(a)[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

(b)[3, 6, 9, 12, 15, 18]

(c)[-20, 200, 420, 640, 860]

4:
Prime Numbers. We presented some code in this chapter to determine a
number's largest factor or if it is prime. Turn this code into a Boolean function
called isprime() such that the input is a single value, and the result returned
is 1 if the number is prime and 0 otherwise.

5:
Factors. Write a function called getfactors() that takes a single integer as an
argument and returns a list of all its factors, including 1 and itself.

6:
PrimeFactorization. Take your solutions for isprime() and getfactors() in the
previous problems and create a function that takes an integer as input and returns a
list of its prime factors. This process, known as prime factorization, should output a
list of factors such that if multiplied together, they will result in the original
number. Note that there could be repeats in the list. So if you gave an input of 20,
the output would be [2, 2, 5].

7:
Perfect Numbers. A perfect number is one whose factors (except itself) sum to itself.
For example, the factors of 6 are 1, 2, 3, and 6. Since 1 + 2 + 3 is 6, it (6) is
considered a perfect number. Write a function called isperfect() which takes a

IT-SC book: Core Python Programming

 251

single integer input and outputs 1 if the number is perfect and 0 otherwise.

8:
Factorial. The factorial of a number is defined as the product of all values from one
to that number. A shorthand for N factorial is N! where N! == factorial (N) == 1 *
2 * 3 * … * (N-2) * (N-1) * N!. So 4! == 1 * 2 * 3 * 4. Write a routine such that
given N, the value N! is returned.

9:
Fibonacci Numbers. The Fibonacci number sequence is 1, 1, 2, 3, 5, 8, 13, 21, etc. In
other words, the next value of the sequence is the sum of the previous two values in
the sequence.

10:
Text Processing. Determine the total number of vowels, consonants, and words
(separated by spaces) in a text sentence. Ignore special cases for vowels and
consonants such as "h," "y," "qu," etc.

11:
Text Processing. Write a program to ask the user to input a list of names, in the format
"Last Name, First Name," i.e., last name, comma, first name. Write a function that
manages the input so that when/if the user types the names in the wrong order, i.e.,
"First Name Last Name," the error is corrected, and the user is notified. This
function should also keep track of the number of input mistakes. When the user is
done, sort the list, and display the sorted names in "Last Name, First Name" order.

EXAMPLE input and output: (you don't have to do it this way exactly)

% nametrack.py
Enter total number of names: 5

Please enter name 0: Smith, Joe
Please enter name 1: Mary Wong
>> Wrong format… should be Last, First
>> You have done this 1 time(s) already. Fixing input…
Please enter name 2: Hamilton, Gerald
Please enter name 3: Royce, Linda
Please enter name 4: Winston Salem
>> Wrong format… should be Last, First
>> You have done this 2 time(s) already. Fixing input…

The sorted list (by last name) is:
 Hamilton, Gerald
 Royce, Linda
 Salem, Winston
 Smith, Joe

IT-SC book: Core Python Programming

 252

 Wong, Mary

12:
(Integer) Bit Operators. Write a program that takes begin and end values and prints out
a decimal, binary, octal, hexadecimal chart like below. If any of the characters are
printable ASCII characters, then print those, too. If none is, you may omit the
ASCII column header.

SAMPLE OUTPUT 1

Enter begin value: 9
Enter end value: 18
DEC BIN OCT HEX

 9 01001 11 9
 10 01010 12 a
 11 01011 13 b
 12 01100 14 c
 13 01101 15 d
 14 01110 16 e
 15 01111 17 f
 16 10000 20 10
 17 10001 21 11
 18 10010 22 12
SAMPLE OUTPUT 2

Enter begin value: 26
Enter end value: 41
DEC BIN OCT HEX ASCII

 26 011010 32 1a
 27 011011 33 1b
 28 011100 34 1c
 29 011101 35 1d
 30 011110 36 1e
 31 011111 37 1f
 32 100000 40 20
 33 100001 41 21 !
 34 100010 42 22 "
 35 100011 43 23 #
 36 100100 44 24 $
 37 100101 45 25 %
 38 100110 46 26 &
 39 100111 47 27 '
 40 101000 50 28 (
 41 101001 51 29)

13:
Performance. In Section 8.5.2, we examined two basic ways of iterating over a
sequence: (1) by sequence item, and (2) via sequence index. We pointed out at the

IT-SC book: Core Python Programming

 253

end that the latter does not perform as well over the long haul (on my system here,
a test suite shows performance is nearly twice as bad [83% worse]). Why do you
think that is, and what are the reasons?

Chapter 9. Files and Input/Output

This chapter is intended to give you an in-depth introduction on the use of files and
related input/output capabilities of Python. We introduce the file object (its built-in
function, and built-in methods and attributes), review the standard files, discuss accessing
the file system, hint at file execution, and briefly mention persistent storage and modules
in the standard library related to "file-mania."

File Objects

File objects can be used not only to access normal disk files, but also any other type of
"file" that uses that abstraction. Once the proper "hooks" are installed, you can access
other objects with file-like interfaces in the same manner you would access normal files.

The open() built-in function (see below) returns a file object which is then used for all
succeeding operations on the file in question. There are a large number of other functions
which return a file or file-like object. One primary reason for this abstraction is that many
input/output data structures prefer to adhere to a common interface. It provides
consistency in behavior as well as implementation. Operating systems like Unix even
feature files as an underlying and architectural interface for communication. Remember,
files are simply a contiguous sequence of bytes. Anywhere data needs to be sent usually
involves a byte stream of some sort, whether the stream occurs as individual bytes or
blocks of data.

File Built-in Function [open()]

As the key to opening file doors, the open() built-in function provides a general interface
to initiate the file input/output (I/O) process. open() returns a file object on a successful
opening of the file or else results in an error situation. When a failure occurs, Python
generates or raises an IOError exception—we will cover errors and exceptions in the next
chapter. The basic syntax of the open() built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

IT-SC book: Core Python Programming

 254

The file_name is a string containing the name of the file to open. It can be a relative or
absolute/full pathname. The access_mode optional variable is also a string, consisting of
a set of flags indicating which mode to open the file with. Generally, files are opened
with the modes "r," "w," or "a," representing read, write, and append, respectively.

Any file opened with mode "r" must exist. Any file opened with "w" will be truncated
first if it exists, and then the file is (re)created. Any file opened with "a" will be opened
for write. If the file exists, the initial position for file (write) access is set to the end-of-
file. If the file does not exist, it will be created, making it the same as if you opened the
file in "w" mode. If you are a C programmer, these are the same file open modes used for
the C library function fopen().

There are other modes supported by fopen() that will work with Python's open().
These include the "+" for read-write access and "b" for binary access. One note regarding
the binary flag: "b" is antiquated on all Unix systems which are POSIX-compliant
(including Linux) because they treat all files as "binary" files, including text files. Here is
an entry from the Linux manual page for fopen(), which is from where the Python
open() function is derived:

The mode string can also include the letter "b" either as a last character or as a character
between the characters in any of the two-character strings described above. This is strictly
for compatibility with ANSI C3.159-1989 ("ANSI C") and has no effect; the "b" is
ignored on all POSIX conforming systems, including Linux. (Other systems may treat
text files and binary files differently, and adding the "b" may be a good idea if you do I/O
to a binary file and expect that your program may be ported to non-Unix environments.)

You will find a complete list of file access modes, including the use of "b" if you choose
to use it, in Table9.1. If access_mode is not given, it defaults automatically to "r."

The other optional argument, buffering, is used to indicate the type of buffering that
should be performed when accessing the file. A value of 0 means no buffering should
occur, a value of 1 signals line buffering, and any value greater than 1 indicates buffered
I/O with the given value as the buffer size. The lack of or a negative value indicates that
the system default buffering scheme should be used, which is line buffering for any
teletype or tty-like device and normal buffering for everything else. Under normal
circumstances, a buffering value is not given, thus using the system default.

Table 9.1. Access Modes for File Objects
File Mode Operation

r open for read
w open for write (truncate if necessary)
a open for write (start at EOF, create if necessary)
r+ open for read and write
w+ open for read and write (see "w" above)
a+ open for read and write (see "a" above)
rb open for binary read

IT-SC book: Core Python Programming

 255

wb open for binary write (see "w" above)
ab open for binary append (see "a" above)
rb+ open for binary read and write (see "r+" above)
wb+ open for binary read and write (see "w+" above)
ab+ open for binary read and write (see "a+" above)

Here are some examples for opening files:

fp = open('/etc/motd') #open file for read
fp = open('test', 'w') #open file for write
fp = open('data', 'r+') #open file for read/write
fp = open('c:\io.sys', 'rb') #open binary file for read

File Built-in Methods

Once open() has completed successfully and returned a file object, all subsequent access
to the file transpires with that "handle." File methods come in four different categories:
input, output, movement within a file, which we will call "intra-file motion," and
miscellaneous. A summary of all file methods can be found in Table 9.3. We will now go
over each category.

Input

The read() method is used to read bytes directly into a string, reading at most the
number of bytes indicated. If no size is given, the default value is set to -1, meaning that
the file is read to the end. The readline() method reads one line of the open file (reads
all bytes until a NEWLINE character is encountered). The NEWLINE character is
retained in the returned string. The readlines() method is similar, but reads all
remaining lines as strings and returns a list containing the read set of lines. The
readinto() method reads the given number of bytes into a writable buffer object, the
same type of object returned by the unsupported buffer() built-in function. (Since
buffer() is not supported, neither is readinto()).

Output

The write() built-in method has the opposite functionality as read() and readline().
It takes a string which can consist of one or more lines of text data or a block of bytes and
writes the data to the file. writelines() operates on a list just like readlines(), but
takes a list of strings and writes them out to a file. NEWLINE characters are not inserted
between each line; so if desired, they must be added to the end of each line before
writelines() is called.

This is easily accomplished in Python 2.0 with a list comprehension:

IT-SC book: Core Python Programming

 256

>>> output=['1stline', '2ndline', 'the end']
>>> [x + '\n' for x in output]
['1stline\012', '2ndline\012', 'the end\012']

Note that there is no "writeline()" method since it would be equivalent to calling
write() with a single line string terminated with a NEWLINE character.

Intra-file Motion

The seek() method (analogous to the fseek() function in C) moves the file pointer to
different positions within the file. The offset in bytes is given along with a relative offset
location called whence. A value of 0 indicates distance from the beginning of a file (note
that a position measured from the beginning of a file is also known as the absolute offset), a
value of 1 indicates movement from the current location in the file, and a value of 2
indicates that the offset is from the end of the file. If you have used fseek() as a C
programmer, the values 0, 1, and 2 correspond directly to the constants SEEK_SET,
SEEK_CUR, and SEEK_END, respectively. Use of the seek() method comes to play
when opening a file for read and write access.

tell() is a complementary method to seek(); it tells you the current location of the
file—in bytes from the beginning of the file.

Others

The close() method completes access to a file by closing it. The Python garbage
collection routine will also close a file when the file object reference has decreased to
zero. One way this can happen is when only one reference exists to a file, say, fp =
open(), and fp is reassigned to another file object before the original file is explicitly
closed. Good programming style suggests closing the file before reassignment to another
file object.

The fileno() method passes back the file descriptor to the open file. This is an integer
argument that can be used in lower-level operations such as those featured in the os
module. The flush() method. isatty() is a Boolean built-in method that returns 1 if
the file is a tty-like device and 0 otherwise. The truncate() method truncates the file to
0 or the given size bytes.

File Method Miscellany

We will now reprise our first file example from Chapter 2:

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
allLines = file.readlines()
file.close()

IT-SC book: Core Python Programming

 257

for eachLine in allLines:
 print eachline,

We originally described how this program differs from most standard file access in that
all the lines are read ahead of time before any display to the screen occurs. Obviously,
this is not advantageous if the file is large. In those cases, it may be a good idea to go
back to the tried-and-true way of reading and displaying one line at a time:

filename = raw_input('Enter file name: ')
file = open(filename, 'r')
done = 0
while not done:
 aLine = file.readline()
 if aLine != " ":
 print aLine,
 else:
 done = 1
file.close()

In this example, we do not know when we will reach the end of the file, so we create a
Boolean flag done, which is initially set for false. When we reach the end of the file, we
will reset this value to true so that the while loop will exit. We change from using
readlines()to read all lines to readline(), which reads only a single line. readline()
will return a blank line if the end of the file has been reached. Otherwise, the line is
displayed to the screen.

We anticipate a burning question you may have… "Wait a minute! What if I have a blank
line in my file? Will Python stop and think it has reached the end of my file?" The answer
is, of course, no. A blank line in your file will not come back as a blank line. Recall that
every line has one or more line separator characters at the end of the line, so a "blank
line" would consist of a NEWLINE character or whatever your system uses. So even if
the line in your text file is "blank," the line which is read is not blank, meaning your
application would not terminate until it reaches the end-of-file.

NOTE

One of the inconsistencies of operating systems is the line separator character which their
file systems support. On Unix, the line separator is the NEWLINE (\n) character. For the
Macintosh, it is the RETURN (\r), and DOS and Windows uses both (\r\n). Check
your operating system to determine what your line separator(s) are.

Other differences include the file pathname separator (Unix uses '/', DOS and Windows
use '\', and the Macintosh uses ':'), the separator used to delimit a set of file pathnames,
and the denotations for the current and parent directories.

IT-SC book: Core Python Programming

 258

These inconsistencies generally add an irritating level of annoyance when creating
applications that run on all three platforms (and more if more architectures and operating
systems are supported). Fortunately, the designers of the os module in Python have
thought of this for us. The os module has five attributes which you may find useful. They
are listed below in Table 9.2.

Table 9.2. os Module Attributes to Aid in Multi-platform Development
os Module Attribute Description

linesep string used to separate lines in a file
sep string used to separate file pathname components
pathsep string used to delimit a set of file pathnames
curdir string name for current working directory
pardir string name for parent (of current working directory)

Regardless of your platform, these variables will be set to the correct values when you
import the os module. One less headache to worry about.

We would also like to remind you that the comma placed at the end of the print
statement is to suppress the NEWLINE character that print normally adds at the end of
output. The reason for this is because every line from the text file already contains a
NEWLINE. readline() and readlines()do not strip off any whitespace characters in
your line (see exercises.) If we omitted the comma, then your text file display would be
doublespaced one NEWLINE which is part of the input and another added by the print
statement.

Before moving on to the next section, we will show two more examples, the first
highlighting output to files (rather than input), and the second performing both file input
and output as well as using the seek() and tell() methods for file positioning.

filename = raw_input('Enter file name: ')
file = open(filename, 'w')
done = 0
while not done:
 aLine = raw_input("Enter a line ('.' to quit): ")
 if aLine != ".":
 file.write(aLine + '\n')
 else:
 done = 1
file.close()

This piece of code is practically the opposite of the previous. Rather than reading one line
at a time and displaying it, we ask the user for one line at a time, and send them out to the

IT-SC book: Core Python Programming

 259

file. Our call to the write() method must contain a NEWLINE because raw_input()
does not preserve it from the user input. Because it may not be easy to generate an end-
of-file character from the keyboard, the program uses the period (.) as its end-of-file
character, which, when entered by the user, will terminate input and close the file.

Our final example opens a file for read and write, creating the file scratch (after perhaps
truncating an already-existing file). After writing data to the file, we move around within
the file using seek(). We also use the tell() method to show our movement.

>>> f = open('/tmp/x', 'w+')
>>> f.tell()
0
>>> f.write('test line 1\n') # add 12-char string [0–11]
>>> f.tell()
12
>>> f.write('test line 2\n') # add 12-char string [12–23]
>>> f.tell() # tell us current file location (end))
24
>>> f.seek(-12, 1) # move back 12 bytes
>>> f.tell() # to beginning of line 2
12
>>> f.readline()
'test line 2\012'
>>> f.seek(0, 0) # move back to beginning
>>> f.readline()
'test line 1\012'
>>> f.tell() # back to line 2 again
12
>>> f.readline()
'test line 2\012'
>>> f.tell() # at the end again
24
>>> f.close() # close file

Table9.3 lists all the built-in methods for file objects:

Table 9.3. Methods for File Objects
File Object Method Operation

file.close() close file
file.fileno() return integer file descriptor (FD) for file
file.flush() flush internal buffer for file
file.isatty() return 1 if file is a tty-like device, 0 otherwise
file.read (size=-1) read all or size bytes of file as a string and return it
file.readinto(buf,
size)[a]

read size bytes from file into buffer buf

file.readline() read and return one line from file (includes trailing
"\n")

file.readlines() read and returns all lines from file as a list (includes all

IT-SC book: Core Python Programming

 260

trailing "\n" characters)
file.seek(off, whence) move to a location within file, off bytes offset from

whence (0 == beginning of file, 1 == current location, or
2 == end of file)

file.tell() return current location within file
file.truncate(size=0) truncate file to 0 or size bytes
file.write(str) write string str to file
file.writelines(list) write list of strings to file

[a] unsupported method introduced in Python 1.5.2 (other implementations of file-like objects
do not include this method)

File Built-in Attributes

File objects also have data attributes in addition to its methods. These attributes hold
auxiliary data related to the file object they belong to, such as the file naFme
(file.name), the mode with which the file was opened (file.mode), whether the file is
closed (file.closed), and a flag indicating whether an additional space character needs
to be displayed before successive data items when using the print statement
(file.softspace).Table 9.4 lists these attributes along with a brief description of each.

Table 9.4. Attributes for File Objects
File Object
Attribute

Description

file.closed 1 if file is closed, 0 otherwise
file.mode access mode with which file was opened
file.name name of file

file.softspace 0 if space explicitly required with print, 1 otherwise; rarely used
by the programmer—generally for internal use only

Standard Files

There are generally three standard files which are made available to you when your
program starts. These are standard input (usually the keyboard), standard output (buffered
output to the monitor or display), and standard error (unbuffered output to the screen).
(The "buffered" or "unbuffered" output refers to that third argument to open()). These
files are named stdin, stdout, and stderr and take after their names from the C
language. When we say these files are "available to you when your program starts," that
means that these files are pre-opened for you, and access to these files may commence
once you have their file handles.

Python makes these file handles available to you from the sys module. Once you import
sys, you have access to these files as sys.stdin, sys.stdout, and sys.stderr. The
print statement normally outputs to sys.stdout while the raw_input() built-in
function receives its input from sys.stdin.

IT-SC book: Core Python Programming

 261

We will now take yet another look at the "Hello World!" program so that you can
compare the similarities and differences between using print/raw_input() and directly
with the file names:

print

print 'Hello World!'

sys.stdout.write()

import sys
sys.stdout.write('Hello World!' + '\n)

Notice that we have to explicitly provide the NEWLINE character to sys.stdout's
write() method. In the input examples below, we do not because readline() executed
on sys.stdin preserves the readline. raw_input() does not, hence we will allow print
to add its NEWLINE.

raw_input()

aString = raw_input('Enter a string: ')
print aString

sys.stdin.readline()

import sys
sys.stdout.write('Enter a string: ')
aString = sys.stdin.readline()
sys.stdout.write(aString)

Command-line Arguments

The sys module also provides access to any command-line arguments via the sys.argv.
Command-line arguments are those arguments given to the program in addition to the
script name on invocation. Historically, of course, these arguments are so named because
they are given on the command-line along with the program name in a text-based
environment like a Unix- or DOS-shell. However, in an IDE or GUI environment, this
would not be the case. Most IDEs provide a separate window with which to enter your

IT-SC book: Core Python Programming

 262

"command-line arguments." These, in turn, will be passed into the program as if you
started your application from the command-line.

Those of you familiar with C programming may ask, "Where is argc?" The strings
"argv" and "argv" stand for "argument count" and "argument vector," respectively. The
argv variable contains an array of strings consisting of each argument from the
command-line while the argc variable contains the number of arguments entered. In
Python, the value for argc is simply the number of items in the sys.argv list, and the
first element of the list, sys.argv[0], is always the program name. Summary:

sys.argv is the list of command-line arguments

len(sys.argv) is the number of command-line arguments (a.k.a. argc)

Let us create a small test program called argv.py with the following lines:

import sys

print 'you entered', len(sys.argv), 'arguments…'
print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

% argv.py 76 tales 85 hawk
you entered 5 arguments…
they were: ['argv.py', '76', 'tales', '85', 'hawk']

Are command-line arguments useful? Unix commands are typically programs which take
input, perform some function, and send output as a stream of data. This data is usually
sent as input directly to the next program, which does some other type of function or
calculation and sends the new output to another program, and so on. Rather than saving
the output of each program and potentially taking up a good amount of disk space, the
output is usually "piped" in to the next program as its input. This is accomplished by
providing data on the command-line or through standard input. When a program displays
or sends output to the standard output file, the result would be displayed on the screen—
unless that program is also "piped" to another program, in which case that standard
output file is really the standard input file of the next program. I assume you get the drift
by now!

Command-line arguments allow a programmer or administrator to start a program
perhaps with different behavioral characteristics. Much of the time, this execution takes
place in the middle of the night and run as a batch job without human interaction.
Command-line arguments and program options enable this type of functionality. As long

IT-SC book: Core Python Programming

 263

as there are computers sitting idle at night and plenty of work to be done, there will
always be a need to run programs in the background on our very expensive "calculators."

Python features a getopt module that helps you parse command-line options and
arguments.

File System

Access to your file system occurs mostly through the Python os module. This module
serves as the primary interface to your operating system facilities and services from
Python. The os module is actually a front-end to the real module that is loaded, a module
that is clearly operating system-dependent. This "real" module may be one of the
following: posix (Unix), nt (Windows), mac (Macintosh), dos (DOS), os2 (OS/2), etc.
You should never import those modules directly. Just import os and the appropriate
module will be loaded, keeping all the underlying work hidden from sight. Depending on
what your system supports, you may not have access to some of the attributes which may
be available in other operating system modules.

In addition to managing processes and the process execution environment, the os module
performs most of the major file system operations that the application developer may
wish to take advantage of. These features include removing and renaming files, traversing
the directory tree, and managing file accessibility. Table 9.5 lists some of the more
common file or directory operations available to you from the os module.

A second module that performs specific pathname operations is also available. The
os.path module is accessible through the os module. Included with this module are
functions to manage and manipulate file pathname components, obtain file or directory
information, and make file path inquiries. Table 9.6 outlines some of the more common
functions in os.path.

These two modules allow for consistent access to the file system regardless of platform or
operating system. The program in Example 9.1 (ospathex.py) test drives some of these
functions from the os and os.path modules.

Table 9.5. os Module File/Directory Access Functions
os Module File/Directory Function Operation

File Processing
remove()/unlink() delete file
rename() rename file
*stat()[a] return file statistics
symlink() create symbolic link
utime() update timestamp
Directories/Folders
chdir() change working directory
listdir() list files in directory

IT-SC book: Core Python Programming

 264

getcwd() return current working
directory

mkdir()/makedirs() create directory(ies)
rmdir()/removedirs() remove directory(ies)

Access/Permissions (available only on Unix

or Windows)

access()
verify permission modes

chmod() change permission modes

umask() set default permission modes

[a] includes stat(), lstat(), xstat()

Table 9.6. os.path Module Pathname Access Functions
os.path Pathname Function Operation

Separation
basename() remove directory path and return leaf name
dirname() remove leaf name and return directory path
join() join separate components into single pathname
split() return (dirname(), basename()) tuple
splitdrive() return (drivename, pathname) tuple
splitext() return (filename, extension) tuple
Information
getatime() return last file access time
getmtime() return last file modification time
getsize() return file size (in bytes)
Inquiry
exists() does pathname (file or directory) exist?
isdir() does pathname exist and is a directory?
isfile() does pathname exist and is a file?
islink() does pathname exist and is a symbolic link?
samefile() do both pathnames point to the same file?

Example 9.1. os & os.path Modules Example (ospathex.py)

This code exercises some of the functionality found in the os and os.path modules. It
creates a test file, populates a small amount of data in it, renames the file, and dumps its
contents. Other auxiliary file operations are performed as well, mostly pertaining to
directory tree traversal and file pathname manipulation.

IT-SC book: Core Python Programming

 265

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import os
004 4 for tmpdir in ('/tmp', 'c:/windows/temp'):
005 5 if os.path.isdir(tmpdir):
006 6 break
007 7 else: <$nopage>
008 8 print 'no temp directory available'
009 9 tmpdir = ''
010 10
011 11 if tmpdir:
012 12 os.chdir(tmpdir)
013 13 cwd = os.getcwd()
014 14 print '*** current temporary directory'
015 15 print cwd
016 16
017 17 print '*** creating example directory…'
018 18 os.mkdir('example')
019 19 os.chdir('example')
020 20 cwd = os.getcwd()
021 21 print '*** new working directory:'
022 22 print cwd
023 23 print '*** original directory listing:'
024 24 print os.listdir(cwd)
025 25
026 26 print '*** creating test file…'
027 27 file = open('test', 'w')
028 28 file.write('foo\n')
029 29 file.write('bar\n')
030 30 file.close()
031 31 print '*** updated directory listing:'
032 32 print os.listdir(cwd)
033 33
034 34 print "*** renaming 'test' to 'filetest.txt'"
035 35 os.rename('test', 'filetest.txt')
036 36 print '*** updated directory listing:'
037 37 print os.listdir(cwd)
038 38
039 39 path = os.path.join(cwd, os.listdir (cwd)[0])
040 40 print '*** full file pathname'
041 41 print path
042 42 print '*** (pathname, basename) =='
043 43 print os.path.split(path)
044 44 print '*** (filename, extension) =='
045 45 print os.path.splitext(os.path.basename (path))
046 46
047 47 print '*** displaying file contents:'
048 48 file = open(path)
049 49 allLines = file.readlines()
050 50 file.close()
051 51 for eachLine in allLines:
052 52 print eachLine,
053 53
054 54 print '*** deleting test file'
055 55 os.remove(path)
056 56 print '*** updated directory listing:'

IT-SC book: Core Python Programming

 266

057 57 print os.listdir(cwd)
058 58 os.chdir(os.pardir)
059 59 print '*** deleting test directory'
060 60 os.rmdir('example')
061 61 print '*** DONE'
062 <$nopage>

Running this program on a Unix platform, we get the following output:

% ospathex.py
*** current temporary directory
/tmp
*** creating example directory…
*** new working directory:
/tmp/example
*** original directory listing:
[]
*** creating test file…
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'
*** updated directory listing:
['filetest.txt']
*** full file pathname:
/tmp/example/filetest.txt
*** (pathname, basename) ==
('/tmp/example', 'filetest.txt')
*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Running this example from a DOS window results in very similar execution:

C:\>python ospathex.py
*** current temporary directory
c:\windows\temp
*** creating example directory…
*** new working directory:
c:\windows\temp\example
*** original directory listing:
[]
*** creating test file…
*** updated directory listing:
['test']
*** renaming 'test' to 'filetest.txt'

IT-SC book: Core Python Programming

 267

*** updated directory listing:
['filetest.txt']
*** full file pathname:
c:\windows\temp\example\filetest.txt
*** (pathname, basename) ==
('c:\\windows\\temp\\example', 'filetest.txt')
*** (filename, extension) ==
('filetest', '.txt')
*** displaying file contents:
foo
bar
*** deleting test file
*** updated directory listing:
[]
*** deleting test directory
*** DONE

Rather than providing a line-by-line explanation here, we will leave it to the reader as an
exercise. However, we will walk through a similar interactive example (including errors)
to give you a feel for what it is like to execute this script one step at a time. We will break
into the code every now and then to describe the code we just encountered.

>>> import os
>>> os.path.isdir('/tmp')
1
>>> os.chdir('/tmp')
>>> cwd = os.getcwd()
>>> cwd
'/tmp'

This first block of code consists of importing the os module (which also grabs the
os.path module). We verify that '/tmp' is a valid directory and change to that
temporary directory to do our work. When we arrive, we call the getcwd() method to tell
us where we are.

>>> os.mkdir('example')
>>> cwd = os.getcwd()
>>> cwd
'/tmp/example'
>>>
>>> os.listdir()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: function requires at least one argument
>>>
>>> os.listdir(cwd)
[]

IT-SC book: Core Python Programming

 268

Next, we create a subdirectory in our temporary directory, after which we will use the
listdir() method to confirm that the directory is indeed empty (since we just created it).
The problem with our first call to listdir() was that we forgot to give the name of the directory
we want to list. That problem is quickly remedied on the next line of input.

>>> file = open('test', 'w')
>>> file.write('foo\n')
>>> file.write('bar\n')
>>> file.close()
>>> os.listdir(cwd)
['test']

We then create a test file with two lines and verify that the file has been created by listing
the directory again afterwards.

>>> os.rename('test', 'filetest.txt')
>>> os.listdir(cwd)
['filetest.txt']
>>>
>>> path = os.path.join(cwd, os.listdir(cwd)[0])
>>> path
'/tmp/example/filetest.txt'
>>>
>>> os.path.isfile(path)
1
>>> os.path.isdir(path)
0
>>>
>>> os.path.split(path)
('/tmp/example', 'filetest.txt')
>>>
>>> os.path.splitext(os.path.basename(path))
('filetest', '.ext')

This section is no doubt an exercise of os.path functionality, testing join(), isfile(),
isdir() which we have seen earlier, split(), basename(), and splitext(). We also
call the rename() function from os.

>>> file = open(path)
>>> file.readlines()
>>> file.close()
>>>
>>> for eachLine in allLines:
… print eachLine,
…
foo
bar

IT-SC book: Core Python Programming

 269

This next piece of code should be familiar to the reader by now, since this is the third
time around. We open the test file, read in all the lines, close the file, and display each
line, one at a time.

>>> os.remove(path)
>>> os.listdir(cwd)
[]
>>> os.chdir(os.pardir)
>>> os.rmdir('example')

This last segment involves the deletion of the test file and test directory concluding
execution. The call to chdir() moves us back up to the main temporary directory where
we can remove the test directory (os.pardir contains the parent directory string ".." for
Unix and Windows; the Macintosh uses "::"). It is not advisable to remove the directory
that you are in.

NOTE

As you can tell from our lengthy discussion above, the os and os.path modules provide
different ways to access the file system on your computer. Although our study in this
chapter is restricted to file access only, the os module can do much more. It lets you
manage your process environment, contains provisions for low-level file access, allows
you to create and manage new processes, and even enables your running Python program
to "talk" directly to another running program. You may find yourself a common user of
this module in no time. Read more about the os module in Chapter 14.

File Execution

Whether we want to simply run an operating system command, invoke a binary
executable, or another type of script (perhaps a shell script, Perl, or Tcl/Tk), this involves
executing another file somewhere else on the system. Even running other Python code
may call for starting up another Python interpreter, although that may not always be the
case. In any regard, we will defer this subject to Chapter 14. Please proceed there if you
are interested in how to start other programs, perhaps even communicating with them,
and for general information regarding Python's execution environment.

Persistent Storage Modules

In many of the exercises in this text, user input is required for those applications. After
many iterations, it may be somewhat frustrating being required to enter the same data
repeatedly. The same may occur if you are entering a significant amount of data for use
in the future. This is where it becomes useful to have persistent storage, or a way to
archive your data so that you may access it at a later time instead of having to re-enter all
of that information. When simple disk files are no longer acceptable and full relational
database management systems (RDBMSs) are overkill, simple persistent storage fills the

IT-SC book: Core Python Programming

 270

gap. The majority of the persistent storage modules deals with storing strings of data, but
there are ways to archive Python objects as well.

pickle and marshal Modules

Python provides a variety of modules which implement minimal persistent storage. One
set of modules (marshal and pickle) allows for pickling of Python objects. Pickling is
the process whereby objects more complex than primitive types can be converted to a
binary set of bytes that can be stored or transmitted across the network, then be converted
back to their original object forms. Pickling is also known as flattening, serializing, or
marshalling. Another set of modules (dbhash/bsddb, dbm, gdbm, dumbdbm) and their
"manager" (anydbm) can provide persistent storage of Python strings only. The last
module (shelve) can do both.

As we mentioned before, both marshal and pickle can flatten Python objects. These
modules do not provide "persistent storage" per se, since they do not provide a
namespace for the objects, nor can they provide concurrent write access to persistent
objects. What they can do, however, is to pickle Python objects to allow them to be
stored or transmitted. Storage, of course, is sequential in nature (you store or transmit
objects one after another). The difference between marshal and pickle is that marshal
can handle only simple Python objects (numbers, sequences, mapping, and code) while
pickle can transform recursive objects, objects that are multi-referenced from different
places, and user-defined classes and instances. The pickle module is also available in a
turbo version called cPickle, which implements all functionality in C.

DBM-style Modules

The *db* series of modules writes data in the traditional DBM format. There are a large
number of different implementations: dbhash/bsddb, dbm, gdbm, and dumbdbm. We
highly recommend the use of the anydbm module, which detects which DBM-compatible
modules are installed on your system and uses the "best" one at its disposal. The dumbdbm
module is the most limited one, and is the default used if none of the other packages are
available. These modules do provide a namespace for your objects, using objects which
behave similar to a combination of a dictionary object and a file object. The one
limitation of these systems is that they can store only strings. In other words, they do not
serialize Python objects.

shelve Module

Finally, we have a somewhat more complete solution, the shelve module. The shelve
module uses the anydbm module to find a suitable DBM module, then uses cPickle to
perform the pickling process. The shelve module permits concurrent read access to the
database file, but not shared read/write access. This is about as close to persistent storage
as you will find in the Python standard library. There may other external extension
modules which implement "true" persistent storage. The diagram in Figure 9-1 shows the

IT-SC book: Core Python Programming

 271

relationship between the pickling modules and the persistent storage modules, and how
the shelve object appears to be the best of both worlds.

Figure 9.1. Python Modules for Serialization and Persistency

NOTE

The pickle module allows you to store Python objects directly to a file without having to
convert them to strings or to necessarily write them out as binary files using low-level file
access. Instead, the pickle module creates a Python-only binary version which allows
you to cleanly read and write objects in their entirety without having to worry about all
the file details. All you need is a valid file handle, and you are ready to read or write
objects from or to disk.

The two main functions in the pickle module are dump() and load(). The dump()
function takes a file handle and a data object and saves the object in a format it
understands to the given file. When a pickled object is loaded from disk using load(), it
knows exactly how to restore that object to its original configuration before it was saved
to disk. We recommend you take a look at pickle and its "smarter" brother shelve,
which gives you dictionary-like functionality so there is even less file overhead on your
part.

Related Modules

IT-SC book: Core Python Programming

 272

There are plenty of other modules related to files and input/output, all of which work on
most of the major platforms. Table9.7 lists some of the file-related modules.

Table 9.7. Related File Modules
Module(s) Contents

fileinput iterates over lines of multiple input text files
getopt provides command-line argument parsing/manipulation
glob/fnmatch provides Unix-style wildcard character matching
gzip/zlib/zipfile[a] allows file access to include automatic de/compression
shutil offers high-level file access functionality
c/StringIO implements file-like interface on top of string objects
tempfile generates temporary file names or files

[a] new in Python 1.6

The fileinput module iterates over a set of input files and reads their contents one line
at a time, allowing you to iterate over each line, much like the way the Perl (< >)
operator works without any provided arguments. File names that are not explicitly given
will be assumed to be provided from the command-line.

The glob and fnmatch modules allow for file name pattern-matching in the good old
fashioned Unix shell-style, for example, using the asterisk (*) wildcard character for all
string matches and the (?) for matching single characters.

The gzip and zlib modules provide direct file access to the zlib compression library.
The gzip module, written on top of the zlib module, allows for standard file access, but
provides for automatic gzip-compatible compression and decompression. Note that if
you are compiling your Python interpreter, you have to enable the zlib module to be
built (by editing the Modules/Setup file). It is not turned on by default. The new
zipfile module, also requiring the zlib module, allows the programmer to create,
modify, and read zip archive files.

The shutil module furnishes high-level file access, performing such functions as
copying files, copying file permissions, and recursive directory tree copying, to name a
few.

The tempfile module can be used to generate temporary file names and files.

In our earlier chapter on strings, we described the StringIO module (and its C-compiled
companion cStringIO), and how it overlays a file interface on top of string objects. This
interface includes all of the standard methods available to regular file objects.

The modules we mentioned in the Persistent Storage section above (Section 9.9) include
examples of a hybrid file- and dictionary-like object.

Some other Python modules which generate file-like objects include network and file
socket objects (socket module), the popen*() file objects that connect your application

IT-SC book: Core Python Programming

 273

to other running processes (os and popen2 modules), the fdopen() file object used in
low-level file access (os module), and opening a network connection to an Internet web
server via its Uniform Resource Locator (URL) address (urllib module). Please be
aware that not all standard file methods may be implemented for these objects. Likewise,
they may provide functionality in addition to what is available for regular files.

Refer to the documentation for more details on these file access-related modules.

Exercises

1:
File Filtering. Display all lines of a file, except those that start with a pound sign
(#), the comment character for Python, Perl, Tcl, and most other scripting
languages.

2:
File Access. Prompt for a number N and file F, and display the first N lines of F.

3:
File Information. Prompt for a filename and display the number of lines in that text
file.

4:
File Access. Write a "pager" program. Your solution should prompt for a file name,
and display the text file 25 lines at a time, pausinLg each time to ask the user to
"press a key to continue."

5:
Test Scores. Update your solution to the test scores problems (Exercises 5–3 and
6–4) by allowing a set of test scores be loaded from a file. We leave the file format
to your discretion.

6:
File Comparison. Write a program to compare two text files. If they are different,
give the line and column numbers in the files where the first difference occurs.

7:
Parsing Files. Windows users: create a program that parses a Windows .ini file.
Unix users: create a program that parses the /etc/services file. All other
platforms: create a program that parses an system file with some kind of structure

IT-SC book: Core Python Programming

 274

to it.

8:
Module Introspection. Extract module attribute information. Prompt the user for a
module name (or accept it from the command-line). Then, using dir() and other
built-in functions, extract all its attributes, and display their names, types, and
values.

9:
"PythonDoc." Go to the directory where your Python standard library modules are
located. Examine each .py file and determine whether a __doc__ string is
available for that module. If so, format it properly and catalog it. When your
program has completed, it should present a nice list of those modules which have
documentation strings and what they are. There should be a trailing list showing
which modules do not have documentation strings (the shame list). EXTRA
CREDIT: extract documentation for all classes and functions within the standard
library modules.

10:
Home Finances. Create a home finance manager. Your solution should be able to
manage savings, checking, money market, certificate of deposit (CD), and similar
accounts. Provide a menu-based interface to each account as well as operations
such as deposits, withdrawals, debits, and credits. An option should be given to a
user to remove transactions as well. The data should be stored to file when the user
quits the application (but randomly during execution for backup purposes).

11:
Web Site Addresses.

(a)Write a URL bookmark manager. Create a text-driven menu-based application
which allows the user to add, update, or delete entries. Entries include a site name,
Website URL address, and perhaps a one-line description (optional). Allow search
functionality so that a search "word" looks through both names and URLs for
possible matches. Store the data to a disk file when the user quits the application,
and load up the data when the user restarts.

(b)Upgrade your solution to part (a) by providing output of the bookmarks to a
legible and syntactically correct HTML file (.htm or .html) so that users can then
point their browser to this output file and be presented with a list of their
bookmarks. Another feature to implement is allowing the creation of "folders" to
allow grouping of related bookmarks. EXTRA CREDIT: Read the literature on
regular expressions and the Python re module. Add regular expression validation

IT-SC book: Core Python Programming

 275

of URLs that users enter into their database.

12:
Users and Passwords.

(a)Do Exercise 7-5, which keeps track of usernames and passwords. Update your
code to support a "last login time." See the documentation for the time module to
obtain timestamps for when users "login" to the system. Also, create the concept of
an "administrative" user which can dump a list of all the users, their passwords
(you can add encryption on top of the passwords if you wish), and their last login
times. The database should be stored to disk, one line at a time, with fields
delimited by colons (:), i.e., "joe:boohoo:953176591.145," for each user. The
number of lines in the file will be the number of users which are part of your
system.

(b)Further update your example such that instead of writing out one line at a time,
you "pickle" the entire database object and write that out instead. Read the
documentation on the pickle module to find out how to "flatten" or "serialize"
your object, as well as how to perform I/O using picked objects. With the addition
of this new code, your solution should take up fewer lines than your solution in
part (a).

13:
Command-line arguments.

(a)What are they, and why might they be useful?

(b)Write code to display the command-line arguments which were entered.

14:
Logging Results. Convert your calculator program (Exercise 5-6) to take input
from the command-line, i.e.,

% calc.py 1 + 2

Output the result only. Also, write each expression and result to a disk file. Issuing
a command of…

% calc.py print

IT-SC book: Core Python Programming

 276

… will cause the entire contents of the "register tape" to be dumped to the screen
and file reset/truncated. Here is an example session:

% calc.py 1 + 2
3
% calc.py 3 ^ 3
27
% calc.py print
1 + 2
3
3 ^ 3
27
% calc.py print
%

15:
Copying Files. Prompt for two file names (or better yet, use command-line
arguments). The contents of the first file should be copied to the second file.

16:
Text Processing. You are tired of seeing lines on your e-mail wrap because people
type lines which are too long for your mail reader application. Create a program to
scan a text file for all lines longer than 80 characters. For each of the offending
lines, find the closest word before 80 characters and break the line there, inserting
the remaining text to the next line (and pushing the previous next line down one).
When you are done, there should no longer be lines longer than 80 characters.

17:
Text Processing. Create a crude and elementary text file editor. Your solution is
menu-driven, with the following options: (1) create file [prompt for file name and
any number of lines of input], (2) display file [dump its contents to the screen], (3)
edit file (prompt for line to edit and allow user to make changes), (4) save file, and
(5) quit.

18:
Searching Files. Obtain a byte value (0-255) and a file name. Display the
number of times that byte appears in the file.

19:
Generating Files. Create a sister program to the previous problem. Create a binary
data file with random bytes, but one particular byte will appear in that file a set
number of times. Obtain the following three values: (1) a byte value (0–255), (2)
the number of times that byte should appear in the data file, and (3) the total

IT-SC book: Core Python Programming

 277

number of bytes that make up the data file. Your job is to create that file, randomly
scatter the request byte across the file, and to ensure that there are no duplicates
and that the file contains exactly the number of occurrences that byte was requested
for, and that the resulting data file is exactly the size requested.

IT-SC book: Core Python Programming

 278

Chapter 10. Errors And Exceptions

Errors are an everyday occurrence in the life of a programmer. In days hopefully long
since past, errors were either fatal to the program (or perhaps the machine) or produced
garbage output that was neither recognized as valid input by other computers or programs
nor by the humans who submitted the job to be run. Any time an error occurred,
execution was halted until the error was corrected and code was re-executed. Over time,
demand surged for a "softer" way of dealing with errors other than termination. Programs
evolved such that not every error was malignant, and when they did happen, more
diagnostic information was provided by either the compiler or the program during run-
time to aid the programmer in solving the problem as quickly as possible. However,
errors are errors, and any resolution usually took place after the program or compilation
process was halted. There was never really anything a piece of code could do but exit and
perhaps leave some crumbs hinting at a possible cause—until exceptions and exception
handling came along.

Although we have yet to cover classes and object-oriented programming in Python, many
of the concepts presented here involve classes and class instances.[1] We conclude the
chapter with an optional section on how to create your own exception classes. Older
versions of Python utilized string exceptions, which are not common any more. We
recommend using only class-based exceptions for all future development.

[1] As of Python 1.5, all standard exceptions are implemented as classes. If new to classes,
instances, and other object-oriented terminology, the reader should check Chapter 13 for
clarification.

This chapter begins by exposing the reader to exceptions, exception handling, and how
they are supported in Python. We also describe how programmers can generate
exceptions within their code. Finally, we reveal how programmers can create their own
exception classes.

What Are Exceptions?

Errors

Before we get into details about what exceptions are, let us review what errors are. In the
context of software, errors are either syntactical or logical in nature. Syntax errors
indicate errors with the construct of the software and cannot be executed by the
interpreter or compiled correctly. These errors must be repaired before execution can
occur.

Once programs are semantically correct, the only errors which remain are logical. Logical
errors can either be caused by lack of or invalid input, or, in other cases, by the logic's not

IT-SC book: Core Python Programming

 279

being able to generate, calculate, or otherwise produce the desired results based on the
input. These errors are sometimes known as domain and range failures, respectively.

When errors are detected by Python, the interpreter indicates that it has reached a point
where continuing to execute in the current flow is no longer possible. This is where
exceptions come into the picture.

Exceptions

Exceptions can best be described as action that is taken outside of the normal flow of
control because of errors. This action comes in two distinct phases, the first being the
error which causes an exception to occur, and the second being the detection (and
possible resolution) phase.

The first phase takes place when an exception condition (sometimes referred to as
exceptional condition) occurs. Upon detection of an error and recognition of the
exception condition, the interpreter performs an operation called raising an exception.
Raising is also known as triggering, throwing, or generating, and is the process whereby
the interpreter makes it known to the current control flow that something is wrong.
Python also supports the ability of the programmer's to raise exceptions. Whether
triggered by the Python interpreter or the programmer, exceptions signal that an error has
occurred. The current flow of execution is interrupted to process this error and take
appropriate action, which happens to be the second phase.

The second phase is where exception handling takes place. Once an exception is raised, a
variety of actions can be invoked in response to that exception. These can range
anywhere from ignoring the error, logging the error but otherwise taking no action,
performing some corrective measures and aborting the program, or alleviating the
problem to allow for resumption of execution. Any of these actions represents a
continuation, or an alternative branch of control. The key is that the programmer can
dictate how the program operates when an error occurs.

As you may have already concluded, errors during run-time are primarily caused by
external reasons, such as poor input, a failure of some sort, etc. These causes are not
under the direct control of the programmer, who can anticipate only a few of the errors
and code the most general remedies.

Languages like Python which support the raising and—more importantly—the handling
of exceptions empowers the developer by placing them in a more direct line of control
when errors occur. The programmer not only has the ability to detect errors, but also to
take more concrete and remedial actions when they occur. Due to the ability to manage
errors during run-time, application robustness is increased.

Exceptions and exception handling are not new concepts, as they are also present in Ada,
Modula-3, C++, Eiffel, and Java. The origins of exceptions probably come from
operating systems code which handles exceptions such as system errors and hardware
interruptions. Exception handling as a software tool made its debut in the mid-1960s with

IT-SC book: Core Python Programming

 280

PL/1 being the first major programming language that featured exceptions. Like some of
the other languages supporting exception handling, Python is endowed with the concepts
of a "try" block and "catching" exceptions and, in addition, provides for more
"disciplined" handling of exceptions. By this we mean that you can create different
handlers for different exceptions, as opposed to a general "catch-all" code where you may
be able to detect the exception which occurred in a post-mortem fashion.

Exceptions in Python

As you were going through some of the examples in the previous chapters, you no doubt
noticed what happens when your program "crashes" or terminates due to unresolved
errors. A "traceback" notice appears along with a notice with as much diagnostic
information as the interpreter can give you, including the error name, reason, and perhaps
even the line number near or exactly where the error occurred. All errors have a similar
format, regardless of whether running within the Python interpreter or standard script
execution, providing a consistent error interface. All errors, whether they be syntactical
or logical, result from behavior incompatible with the Python interpreter and cause
exceptions to be raised.

Let us take a look at some exceptions now.

NameError: attempt to access an undeclared variable

>>> foo
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
NameError: foo

NameError indicates access to an uninitialized variable. The offending identifier was not
found in the Python interpreter's symbol table. We will be discussing namespaces in an
upcoming chapter, but as an introduction, regard them as "address books" linking names
to objects. Any object which is accessible should be listed in a namespace. Accessing a
variable entails a search by the interpreter, and if the name requested is not found in any
of the namespaces, a NameError exception will be generated.

ZeroDivisionError: division by any numeric zero

>>> 12.4/0.0
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
ZeroDivisionError: float division

IT-SC book: Core Python Programming

 281

Our example above used floats, but in general, any numeric division-by-zero will result
in a ZeroDivisionError exception.

SyntaxError: Python interpreter syntax error

>>> for
 File "<string>", line 1
 for
 ^
SyntaxError: invalid syntax

SyntaxError exceptions are the only ones which do not occur at run-time. They indicate
an improperly constructed piece of Python code which cannot execute until corrected.
These errors are generated at compile-time, when the interpreter loads and attempts to
convert your script to Python bytecode. These may also occur as a result of importing a
faulty module.

IndexError: request for an out-of-range index for sequence

>>> aList = []
>>> aList[0]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

IndexError is raised when attempting to access an index which is outside the valid range
of a sequence.

KeyError: request for a non-existent dictionary key

>>> aDict = {'host': 'earth', 'port': 80}
>>> print aDict['server']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: server

Mapping types such as dictionaries depend on keys to access data values. Such values are
not retrieved if an incorrect/nonexistent key is requested. In this case, a KeyError is
raised to indicate such an incident has occurred.

IOError: input/output error

IT-SC book: Core Python Programming

 282

>>> f = open("blah")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
IOError: [Errno 2] No such file or directory: 'blah'

Attempting to open a non-existent disk file is one example of an operating system
input/output (I/O) error. Any type of I/O error raises an IOError exception.

AttributeError: attempt to access an unknown object attribute

>>> class myClass:
… pass
…
>>> myInst = myClass()
>>> myInst.bar = 'spam'
>>> myInst.bar
'spam'
>>> myInst.foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: foo

In our example, we stored a value in myInst.bar, the bar attribute of instance myInst.
Once an attribute has been defined, we can access it using the familiar dotted-attribute
notation, but if it has not, as in our case with the foo (non-)attribute, an AttributeError
occurs.

Detecting and Handling Exceptions

Exceptions can be detected by incorporating them as part of a try statement. Any code
suite of a try statement will be monitored for exceptions.

There are two main forms of the try statement: try-except and try-finally. These
statements are mutually exclusive, meaning that you pick only one of them. A try
statement is either accompanied by one or more except clauses or exactly one finally
clause. (There is no such thing as a hybrid "try-except-finally.")

try-except statements allow one to detect and handle exceptions. There is even an
optional else clause for situations where code needs to run only when no exceptions are
detected. Meanwhile, try-finally statements allow only for detection and processing of
any obligatory clean-up (whether or not exceptions occur), but otherwise has no facility
in dealing with exceptions.

try-except Statement

IT-SC book: Core Python Programming

 283

The try-except statement (and more complicated versions of this statement) allows you
to define a section of code to monitor for exceptions and also provides the mechanism to
execute handlers for exceptions.

The syntax for the most general try-except statement looks like this:

try:
 try_suite # watch for exceptions here
except
 Exception:
 except_suite # exception-handling code

Let us give one example, then explain how things work. We will use our IOError
example from above. We can make our code more robust by adding a try-except
"wrapper" around the code:

>>> try:
… f = open('blah')
… except IOError:
… print 'could not open file'
…
could not open file

As you can see, our code now runs seemingly without errors. In actuality, the same
IOError still occurred when we attempted to open the nonexistent file. The difference?
We added code to both detect and handle the error. When the IOError exception was
raised, all we told the interpreter to do was to output a diagnostic message. The program
continues and does not "bomb out" as our earlier example—a minor illustration of the
power of exception handling. So what is really happening codewise?

During run-time, the interpreter attempts to execute all the code within the try statement.
If an exception does not occur when the code block has completed, execution resumes
past the except statement. When the specified exception named on the except statement
does occur, control flow immediately continues in the handler (all remaining code in the
try clause is skipped). In our example above, we are catching only IOError exceptions.
Any other exception will not be caught with the handler we specified. If, for example,
you want to catch an OSError, you have to add a handler for that particular exception.
We will elaborate on the try-except syntax more as we progress further in this chapter.

NOTE

The remaining code in the try suite from the point of the exception is never reached
(hence never executed). Once an exception is raised, the race is on to decide on the

IT-SC book: Core Python Programming

 284

continuing flow of control. The remaining code is skipped, and the search for a handler
begins. If one is found, the program continues in the handler.

If the search is exhausted without finding an appropriate handler, the exception is then
propagated to the caller's level for handling, meaning the stack frame immediately
preceding the current one. If there is no handler at the next higher level, the exception is
yet again propagated to its caller. If the top level is reached without an appropriate
handler, the exception is considered unhandled, and the Python interpreter will display
the traceback and exit.

Wrapping a Built-in Function

We will now present an interactive example—starting with the bare necessity of detecting
an error, then building continuously on what we have to further improve the robustness of
our code. The premise is in detecting errors while trying to convert a numeric string to a
proper (numeric object) representation of its value.

The float() built-in function has a primary purpose of converting any numeric type to a
float. In Python 1.5, float() was given the added feature of being able to convert a
number given in string representation to an actual float value, obsoleting the use of the
atof() function of the string module. Readers with older versions of Python may still
use string.atof(), replacing float(), in the examples we use here.

>>> float(12345)
12345.0
>>> float('12345')
12345.0
>>> float('123.45e67')
1.2345e+069

Unfortunately, float() is not very forgiving when it comes to bad input:

>>> float('abcde')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float('abcde')
ValueError: invalid literal for float(): abcde
>>>
>>> float(['this is', 1, 'list'])
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 float(['this is', 1, 'list'])
TypeError: object can't be converted to float

IT-SC book: Core Python Programming

 285

Notice in the errors above that float() does not take too kindly to strings which do not
represent numbers or non-strings. Specifically, if the correct argument type was given
(string type) but that type contained an invalid value, the exception raised would be
ValueError because it was the value that was improper, not the type. In contrast, a list is
a bad argument altogether, not even being of the correct type; hence, TypeError was
thrown.

Our exercise is to call float() "safely," or in a more "safe manner," meaning that we
want to ignore error situations because they do not apply to our task of converting
numeric string values to floating point numbers, yet are not severe enough errors that we
feel the interpreter should abandon execution. To accomplish this, we will create a
"wrapper" function, and, with the help of try-except, create the environment that we
envisioned. We shall call it safe_float(). In our first iteration, we will scan and ignore
only ValueErrors, because they are the more likely culprit. TypeErrors rarely happen
since somehow a non-string must be given to float().

def safe_float(object):
 try:
 return float(object)
 except ValueError:
 pass

The first step we take is to just "stop the bleeding." In this case, we make the error go
away by just "swallowing it." In other words, the error will be detected, but since we
have nothing in the except suite (except the pass statement, which does nothing but
serve as a syntactical placeholder for where code is supposed to go), no handling takes
place. We just ignore the error.

One obvious problem with this solution is that we did not explicitly return anything to the
function caller in the error situation. Even though None is returned (when a function does
not return any value explicitly, i.e., completing execution without encountering a return
object statement), we give little or no hint that anything wrong took place. The very
least we should do is to explicitly return None so that our function returns a value in both
cases and makes our code somewhat easier to understand:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:
 retval = None
 return retval

IT-SC book: Core Python Programming

 286

Bear in mind that with our change above, nothing about our code changed except that we
used one more local variable. In designing a well-written application programmer
interface (API), you may have kept the return value more flexible. Perhaps you
documented that if a proper argument was passed to safe_float(), then indeed, a
floating point number would be returned, but in the case of an error, you chose to return a
string indicating the problem with the input value. We modify our code one more time to
reflect this change:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:
 retval = 'could not convert non-number to float'
 return retval

The only thing we changed in the example was to return an error string as opposed to just
None. We should take our function out for a "test drive" to see how well it works so far:

>>> safe_float('12.34')
12.34
>>> safe_float('bad input')
'could not convert non-number to float'

We made a good start—now we can detect invalid string input, but we are still vulnerable
to invalid objects being passed in:

>>> safe_float({'a': 'Dict'})
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "safeflt.py", line 28, in safe_float
 retval = float(object)
TypeError: object can't be converted to float

We will address this final shortcoming momentarily, but before we further modify our
example, we would like to highlight the flexibility of the try-except syntax, especially
the except statement, which comes in a few more flavors.

try Statement with Multiple excepts

Earlier in this chapter, we introduced the following general syntax for except:

except

IT-SC book: Core Python Programming

 287

 Exception:
 suite_for_exception_Exception

The except statement in such formats specifically detects exceptions named Exception.
You can chain multiple except statements together to handle different types of
exceptions with the same try:

except
 Exception1:
 suite_for_exception_Exception1
except
 Exception2:
 suite_for_exception_Exception2
 :

This same try clause is attempted, and if there is no error, execution continues, passing
all the except clauses. However, if an exception does occur, the interpreter will look
through your list of handlers attempting to match the exception with one of your handlers
(except clauses). If one is found, execution proceeds to that except suite.

Our safe_float() function has some brains now to detect specific exceptions. Even
smarter code would handle each appropriately. To do that, we have to have separate
except statements, one for each exception type. That is no problem as Python allows
except statements can be chained together. Any reader familiar with popular third-
generation languages (3GLs) will no doubt notice the similarities to the switch/case
statement which is absent in Python. We will now create separate messages for each error
type, providing even more detail to the user as to the cause of his or her problem:

def safe_float(object):
 try:
 retval = float(object)
 except ValueError:
 retval = 'could not convert non-number to float'
 except TypeError:
 retval = 'object type cannot be converted to float'
 return retval

Running the code above with erroneous input, we get the following:

>>> safe_float('xyz')
'could not convert non-number to float'
>>> safe_float(())
'argument must be a string'
>>> safe_float(200L)

IT-SC book: Core Python Programming

 288

200.0
>>> safe_float(45.67000)
45.67

except Statement with Multiple Exceptions

We can also use the same except clause to handle multiple exceptions. except
statements which process more than one exception require that the set of exceptions be
contained in a tuple:

except (Exception1, Exception2):
 suite_for_Exception1_and_Exception2

The above syntax example illustrates how two exceptions can be handled by the same
code. In general, any number of exceptions can follow an except statement as long as
they are all properly enclosed in a tuple:

except (Exception1[, Exception2[, … ExceptionN…]]):
 suite_for_exceptions_Exception1_to_ExceptionN

If for some reason, perhaps due to memory constraints or dictated as part of the design
that all exceptions for our safe_float() function must be handled by the same code, we
can now accommodate that requirement:

def safe_float(object):
 try:
 retval = float(object)
 except (ValueError, TypeError):
 retval = 'argument must be a number or numeric string'
 return retval

Now there is only the single error string returned on erroneous input:

>>> safe_float('Spanish Inquisition')
'argument must be a number or numeric string'
>>> safe_float([])
'argument must be a number or numeric string'
>>> safe_float('1.6')
1.6
>>> safe_float(1.6)
1.6

IT-SC book: Core Python Programming

 289

>>> safe_float(932)
932.0

try-except with No Exceptions Named

The final syntax for try-except we are going to present is one which does not specify an
exception on the except header line:

try:
 try_suite # watch for exceptions here
except:
 except_suite # handles all exceptions

Although this code "catches the most exceptions," it does not promote good Python
coding style. One of the chief reasons is that it does not take into account the potential
root causes of problems which may generate exceptions. Rather than investigating and
discovering what types of errors may occur and how they may be prevented from
happening, this type of code "turns the blind eye," thereby ignoring the possible causes
(and remedies). Also see the Core Style featured in this section.

NOTE

The try-except statement has been included in Python to provide a powerful
mechanism for programmers to track down potential errors and to perhaps provide logic
within the code to handle situations where it may not otherwise be possible, for example
in C. The main idea is to minimize the number of errors and still maintain program
correctness. As with all tools, they must be used properly.

One incorrect use of try-except is to serve as a giant bandage over large pieces of code.
By that we mean putting large blocks, if not your entire source code, within a try and/or
have a large generic except to "filter" any fatal errors by ignoring them:

this is really bad code
try:

 large_block_of_code # bandage of large piece of code
except:
 pass
blind eye ignoring all errors

Obviously, errors cannot be avoided, and the job of try-except is to provide a
mechanism whereby an acceptable problem can be remedied or properly dealt with, and

IT-SC book: Core Python Programming

 290

not be used as a filter. The construct above will hide many errors, but this type of usage
promotes a poor engineering practice that we certainly cannot endorse.

Bottom line: Avoid using try-except around a large block of code with a pass just to
hide errors. Instead, handle specific exceptions and enclose only deserving code in your
try clause, as evidenced by some of the constructs we used for the safe_float()
example in this section.

"Exceptional Arguments"

No, the title of this section has nothing to do with having a major fight. Instead, we are
referring to the fact that exception may have arguments are passed along to the exception
handler when they are raised. When an exception is raised, parameters are generally
provided as an additional aid for the exception handler. Although arguments to
exceptions are optional, the standard built-in exceptions do provide at least one argument,
an error string indicating the cause of the exception.

Exception parameters can be ignored in the handler, but the Python provides syntax for
saving this value. To access any provided exception argument, you must reserve a
variable to hold the argument. This argument is given on the except header line and
follows the exception type you are handling. The different syntaxes for the except
statement can be extended to the following:

single exception
except
 Exception,
Argument:
 suite_for_Exception_with_Argument

multiple exceptions
except (Exception1, Exception2, …, ExceptionN), Argument:
 suite_for_Exception1_to_ExceptionN_with_Argument

Unless a string exception (see Section 10.4) was raised, Argument is a class instance
containing diagnostic information from the code raising the exception. The exception
arguments themselves go into a tuple which is stored as an attribute of the class instance,
an instance of the exception class from which it was instantiated. In the first alternate
syntax above, Argument would be an instance of the Exception class.

For most standard built-in exceptions, that is, exceptions derived from StandardError,
the tuple consists of a single string indicating the cause of the error. The actual exception
name serves as a satisfactory clue, but the error string enhances the meaning even more.
Operating system or other environment type errors, i.e., IOError, will also include an

IT-SC book: Core Python Programming

 291

operating system error number which precedes the error string in the tuple. Whether an
Argument is merely a string or a combination of an error number and a string, calling
str(Argument) should present a human-readable cause of an error.

The only caveat is that not all exceptions raised in third-party or otherwise external
modules adhere to this standard protocol (or error string or (error number, error string).
We recommend to follow such a standard when raising your own exceptions (see Core
Style note).

NOTE

When you raise built-in exceptions in your own code, try to follow the protocol
established by the existing Python code as far as the error information that is part of the
tuple passed as the exception argument. In other words, if you raise a ValueError,
provide the same argument information as when the interpreter raises a ValueError
exception, and so on. This helps keep the code consistent and will prevent other code
which uses your module from breaking.

The example below is when an invalid object is passed to the float() built-in function,
resulting in a TypeError exception:

>>> try:
… float(['float() does not', 'like lists', 2])
… except TypeError, diag:# capture diagnostic info
… pass
…
>>> type(diag)
<type 'instance'>
>>>
>>> print diag
object can't be converted to float

The first thing we did was cause an exception to be raised from within the try statement.
Then we passed cleanly through by ignoring but saving the error information. Calling the
type() built-in function, we were able to confirm that our exception was indeed an
instance. Finally, we displayed the error by calling print with our diagnostic exception
argument.

To obtain more information regarding the exception, we can use the special __class__
instance attribute which identifies which class an instance was instantiated from. Class
objects also have attributes, such as a documentation string and a string name which
further illuminate the error type:

IT-SC book: Core Python Programming

 292

>>> diag # exception instance object
<exceptions.TypeError instance at 8121378>
>>> diag.__class__ # exception class object
<class exceptions.TypeError at 80f6d50>
>>> diag.__class__.__doc__ # exception class documentation string
'Inappropriate argument type.'
>>> diag.__class__.__name__ # exception class name
'TypeError'

As we will discover in Chapter 13—Classes and OOP—the special instance attribute
__class__ exists for all class instances, and the __doc__ class attribute is available for
all classes which define their documentation strings.

We will now update our safe_float() one more time to include the exception argument
which is passed from the interpreter from within float() when exceptions are generated.
In our last modification to safe_float(), we merged both the handlers for the
ValueError and TypeError exceptions into one because we had to satisfy some
requirement. The problem, if any, with this solution is that no clue is given as to which
exception was raised nor what caused the error. The only thing returned is an error string
which indicated some form of invalid argument. Now that we have the exception
argument, this no longer has to be the case.

Because each exception will generate its own exception argument, if we chose to return
this string rather than a generic one we made up, it would provide a better clue as to the
source of the problem. In the following code snippet, we replace our single error string
with the string representation of the exception argument.

def safe_float(object):
 try:
 retval = float(object)
 except (ValueError, TypeError), diag:
 retval = str(diag)
 return retval

Upon running our new code, we obtain the following (different) messages when
providing improper input to safe_float(), even if both exceptions are managed by the
same handler:

>>> safe_float('xyz')
'invalid literal for float(): xyz'
>>> safe_float({})
'object can't be converted to float'

IT-SC book: Core Python Programming

 293

Using Our Wrapped Function in an Application

We will now feature safe_float() in a mini application which takes a credit card
transaction data file (carddata.txt) and reads in all transactions, including explanatory
strings. Here are the contents of our example carddata.txt file:

% cat carddata.txt
carddata.txt
previous balance
25
debits
21.64
541.24
25
credits
-25
-541.24
finance charge/late fees
7.30
5

Our program, cardrun.py, is given in Example 10.1.

Example 10.1. Credit Card Transactions (cardrun.py)

We use safe_float() to process a set of credit card transactions given in a file and read
in as strings. A log file tracks the processing.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import types
004 4
005 5 def safe_float(object):
006 6 'safe version of float()'
007 7 try: <$nopage>
008 8 retval = float(object)
009 9 except (ValueError, TypeError), diag:
010 10 retval = str(diag)
011 11 return retval
012 12
013 13 def main():
014 14 'handles all the data processing'
015 15 log = open('cardlog.txt', 'w')
016 16 try: <$nopage>
017 17 ccfile = open('carddata.txt', 'r')
018 18 except IOError:
019 19 log.write('no txns this month\n')
020 20 log.close()
021 21 return <$nopage>
022 22

IT-SC book: Core Python Programming

 294

023 23 txns = ccfile.readlines()
024 24 ccfile.close()
025 25 total = 0.00
026 26 log.write('account log:\n')
027 27
028 28 for eachTxn in txns:
029 29 result = safe_float(eachTxn)
030 30 if type(result) == types.FloatType:
031 31 total = total + result
032 32 log.write('data… processed\n')
033 33 else: <$nopage>
034 34 log.write('ignored: %s' % result)
035 35 print '$%.2f (new balance)' % (total)
036 36 log.close()
037 37
038 38 if __name__ == '__main__':
039 39 main()
040 <$nopage>

Lines 1 – 3

The script starts by importing the types modules, which contains Type objects for the
Python types. That is why we direct them to standard error instead.

Lines 5 – 11

This chunk of code contains the body of our safe_float() function.

Lines 13 – 36

The core part of our application performs three major tasks: (1) read the credit card data
file, (2) process the input, and (3) display the result. Lines 16–24 perform the extraction
of data from the file. You will notice that there is a try-except statement surrounding
the file open.

A log file of the processing is also kept. In our example, we are assuming the log file can
be opened for write without any problems. You will find that our progress is kept by the
log. If the credit card data file cannot be accessed, we will assume there are no
transactions for the month (lines 18–21).

The data is then read into the txns (transactions) list where it is iterated over in lines 28–
34. After every call to safe_float(), we check the result type using the types module.
The types module contains items of each type, named appropriately typeType, so that
direct comparisons can be performed with results that determine an object's type. In our
example, we check to see if safe_float() returns a string or float. Any string indicates
an error situation with a string that could not be converted to a number, while all other
values are floats which can be added to the running subtotal. The final new balance is
then displayed as the final line of the main() function.

Lines 38 – 39

IT-SC book: Core Python Programming

 295

These lines represent the general "start only if not imported" functionality.

Upon running our program, we get the following output:

% cardrun.py
$58.94 (new balance)

Taking a peek at the resulting log file (cardlog.txt), we see that it contains the
following log entries after cardrun.py processed the transactions found in
carddata.txt:

% cat cardlog.txt
account log:
ignored: invalid literal for float(): # carddata.txt
ignored: invalid literal for float(): previous balance
data… processed
ignored: invalid literal for float(): debits
data… processed
data… processed
data… processed
ignored: invalid literal for float(): credits
data… processed
data… processed
ignored: invalid literal for float(): finance charge/
late fees
data… processed
data… processed

else Clause

We have seen the else statement with other Python constructs such as conditionals and
loops. With respect to try-except statements, its functionality is not that much different
from anything else you have seen: The else clause executes if no exceptions were
detected in the preceding try suite.

All code within the try suite must have completed successfully (i.e., concluded with no
exceptions raised) before any code in the else suite begins execution. Here is a short
example in Python pseudocode:

import 3rd_party_module

log = open('logfile.txt', 'w')

try:
 3rd_party_module.function()
except:

IT-SC book: Core Python Programming

 296

 log.write("*** caught exception in module\n")
else:
 log.write("*** no exceptions caught\n")

log.close()

In the above example, we import an external module and test it for errors. A log file is
used to determine whether there were defects in the third-party module code. Depending
on whether an exception occurred during execution of the external function, we write
differing messages to the log.

try-except Kitchen Sink

We can combine all the varying syntaxes that we have seen so far in this chapter to
highlight all the different ways you can use try-except-else:

try:
 try_suite

except
 Exception1:
 suite_for_Exception1

except (Exception2, Exception3, Exception4):
 suite_for_Exceptions_2_3_and_4

except
 Exception5,
Argument5:
 suite_for_Exception5_plus_argument

except (Exception6, Exception7), Argument67:
 suite_for_Exceptions6_and_7_plus_argument

except:
 suite_for_all_other_exceptions

else:
 no_exceptions_detected_suite

try-finally Statement

The try-finally statement differs from its try-except brethren in that it is not used to
handle exceptions. Instead it is used to maintain consistent behavior regardless of
whether or not exceptions occur. The finally suite executes regardless of an exception
being triggered within the try suite.

IT-SC book: Core Python Programming

 297

try:
 try_suite
finally:
 finally_suite # executes regardless of
exceptions

When an exception does occur within the try suite, execution jumps immediately to the
finally suite. When all the code in the finally suite completes, the exception is re-
raised for handling at the next higher layer. Thus it is common to see a try-finally
nested as part of a try-except suite.

One place where we can add a try-finally statement is by improving our code in
cardrun.py so that we catch any problems which may arise from reading the data from
the carddata.txt file. In the current code in Example 10.1, we do not detect errors
during the read phase (using readlines()):

try:
 ccfile = open('carddata.txt')
except IOError:
 log.write('no txns this month\n')
 log.close()
 return

txns = ccfile.readlines()
ccfile.close()

It is possible for readlines() to fail for any number of reasons, one of which is if
carddata.txt was a file on the network (or a floppy) that became inaccessible.
Regardless, we should improve this piece of code so that the entire input of data is
enclosed in the try clause:

try:
 ccfile = open('carddata.txt')
 txns = ccfile.readlines()
 ccfile.close()

except IOError:
 log.write('no txns this month\n')
 log.close()
 return

All we did was to move the readlines() and close() method calls to the try suite.
Although our code is more robust now, there is still room for improvement. Notice what
happens if there was an error of some sort. If the open succeeds but for some reason the

IT-SC book: Core Python Programming

 298

readlines() call does not, the exception will continue with the except clause. No
attempt is made to close the file. Wouldn't it be nice if we closed the file regardless of
whether an error occurred or not? We can make it a reality using try-finally:

try:
 ccfile = open('carddata.txt')
 try:
 txns = ccfile.readlines()
 finally:
 ccfile.close()
except IOError:
 log.write('no txns this month\n')
 log.close()
 return

Now our code is more robust than ever. Let us take a look at another familiar example,
calling float() with an invalid value. We will use print statements to show you the
flow of execution within the try-except and try-finally clauses. We present
tryfin.py in Example 10.2.

Example l0.2. Testing the try-finally Statement (tryfin.py)

This small script simply illustrates the flow of control when using a try-finally
statement embedded within the try clause of a try-except statement.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 try: <$nopage>
004 4 print 'entering 1st try'
005 5 try: <$nopage>
006 6 print 'entering 2nd try'
007 7 float('abc')
008 8
009 9 finally: <$nopage>
010 10 print 'doing finally'
011 11
012 12 except ValueError:
013 13 print 'handling ValueError'
014 14
015 15 print 'finishing execution'
016 <$nopage>

Running this code, we get the following output:

% tryfin.py
entering 1st try
entering 2nd try
doing finallyhandling ValueError

IT-SC book: Core Python Programming

 299

finishing execution

One final note: If the code in the finally suite raises another exception, or is aborted
due to a return,break, or continue statement, the original exception is lost and cannot
be re-raised. Quick review: The try-finally statement presents a way to detect errors
but ignore other than cleanup, and passes the exception up to higher layers for possible
handling.

NOTE

Currently, continue statements inside a try suite are not allowed due to the current
implementation of the Python bytecode generator (see FAQ 6.28). This restriction has
been lifted in JPython, however.

The proper workaround is to use an if-else in place of a continue. A more interesting
solution involves creating a special exception handler to issue the continue (since
continue statements are fine inside an except clause), as illustrated by the following
Python pseudocode:

create our own exception (see section 10.9)
class Continue(Exception):
 pass

begin our loop
some_loop: pseudocode for a loop

 # try clause inside some_loop
 try:
 if

 skip_rest_of_loop_expr:
 raise
Continue

 …code we do not want executed
 if skip_rest_of_loop_expr is true…

 except Continue: # continue proxy (as except clause)
 continue # start next some_loop iteration

 except

 SomeError: # handle real exceptions
 :

We will look at the raise statement later on in this chapter, but, as you can probably tell,
raise is the statement that lets programmers explicitly raise exceptions in Python.

IT-SC book: Core Python Programming

 300

*Exceptions as Strings

Prior to Python 1.5, standard exceptions were implemented as strings. However, this
became limiting in that it did not allow for exceptions to have any relationships to each
other. With the advent of exception classes, this is no longer the case. As of 1.5, all
standard exceptions are now classes. It is still possible for programmers to generate their
own exceptions as strings, but we recommend using exception classes from now on.

For backwards compatibility, it is possible to revert to string-based exceptions. Starting
the Python interpreter with the command-line option -X will provide you with the
standard exceptions as strings. This feature will be obsoleted beginning with Python 1.6.

If you must use string exceptions, we will now show you how to do it right. The
following piece of code may or may not work:

this may not work… risky!
try:

 :
 raise 'myexception'
 :
except 'myexception'
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

The reason why the above code may not work is because exceptions are based on object
identity as opposed to object value (see Section 10.5.1). There are two different string
objects above, both with the same value. To rectify the potential problem, create a static
string object with which to use:

this is a little bit better
myexception = 'myexception'
try:

 :
 raise myexception
 :
except myexception:
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

With this update, the same string object is used. However, if you are going to use this
code, you might as well use an exception class. Substitute the myexception assignment
above with:

IT-SC book: Core Python Programming

 301

this is the best choice
class MyException(Exception):
 pass
 :
try:
 :

 raise MyException
 :

except MyException:
 suite_to_handle_my_string_exception
except:
 suite_for_other_exceptions

So you see, there really is no reason not to use exception classes from now on when
creating your own exceptions. Be careful, however, because you may end up using an
external module which may still have exceptions implemented as strings.

*Exceptions as Classes

As we mentioned above, as of Python 1.5, all standard exceptions are now identified
using classes. User-defined, class-based exceptions have been around for longer than that
(since Python 1.2!), but until 1.5, the standard exceptions remained implemented as
strings, mostly for backwards compatibility. However, there are a number of advantages
that classes bring to the table, and these reasons were what finally led to all standard
exceptions being converted from strings to class-based.

Selection via Object Identity

The search for an exception handler (checking each except clause) is accomplished via
object identity and not object value. That means that if you are using string exceptions,
the string object used in the except clause must be the same as the string exception that
is raised. Two different string objects, even if they contain exactly the same string,
constitute different exceptions!

Using classes simplifies this selection mechanism because exception classes are, for the
most part, static. When referring to an exception, you are really accessing a class object
that is a built-in identifier and stays constant throughout the course of execution. Whether
using IndexError in an except clause or in a raise statement, you can be sure that they
are both referencing the same class object so that a corresponding handler will be found.

Relationship Between Exceptions

Utilizing classes also allows for a hierarchical structure of exceptions. There are two
consequences of employing this construct:

IT-SC book: Core Python Programming

 302

Promotes Grouping of Related Exceptions

When errors were simply strings, there was no interrelationship between any pair of
errors. Although most errors are unrelated, some are very closely related, such as
IndexError—offset into a sequence with an invalid index, and KeyError—indexing into a
map with an invalid key. String exceptions allow these exceptions to be related in context
or description only and do not recognize any more than that codewise.

Class-based exceptions allow such a relationship. Both exceptions now are subclassed
from a common ancestor, the LookupError exception. If your application defined a new
class with a lookup-related error, it is now possible for you to create yet another related
exception simply by also subclassing from LookupError, or even IndexError or
KeyError.

The complete set of Python exceptions and class hierarchy can be found in Table 10.2

Simplifies Detection

With class-based exceptions, handler code can detect an entire exception class "tree" (i.e.,
an ancestor exception class as well as all derived subclasses). As an example, let us say
that you just want to catch any general arithmetic error in your program. Our code may
be structured something like the following:

try:
 code_to_scan_for_math_errors
except FloatingPointError:
 print "math exception found"
except ZeroDivisionError:
 print "math exception found"
except OverflowError:
 print "math exception found"

Since the handlers for each exception are the same, we can shorten the code to:

try:
 code_to_scan_for_math_errors
except (FloatingPointError, ZeroDivisionError, OverflowError):
 print "math exception found"

However, this solution is not as all-encompassing as it could be, is a little messy perhaps
with all three exceptions listed, and does not take into account future expansion. What if
the next version of Python comes with a new arithmetic exception, or perhaps you create
such a new exception for your application? The code we have above would be out-of-date
and inaccurate.

IT-SC book: Core Python Programming

 303

The solution is to reference a base class in your except clause. Because your new
exceptions (as well as FloatingPointError, ZeroDivisionError, and
OverflowError) are all subclassed from the ArithmeticError exception class, you can
reference ArithmeticError which can then scan for all ArithmeticError exceptions as
well as all exceptions derived from ArithmeticError. Updating our code one more time,
we present the most flexible solution here:

try:
 code_to_scan_for_math_errors
except ArithmeticError:
 print "math exception found"

Now your code can handle all pre-existing ArithmeticError exceptions as well as any
you may create subclassed from ArithmeticError. Care must be taken, however, when
handling both classes and superclasses with the same try statement. Observe both of the
following examples:

try:
 code_to_scan_for_math_errors
except ArithmeticError:
 print "math exception found"
except ZeroDivisionError:
 print "division by zero error"

try:
 code_to_scan_for_math_errors
except ZeroDivisionError:
 print "division by zero error"
except ArithmeticError:
 print "math exception found"

Exception handlers are mutually-exclusive, meaning that once a handler is found for an
exception (or a base class), it is handled immediately without searching further. In the
first example, a ZeroDivisionError will be handled only by the first except statement,
producing an output of "math exception found." The except clause for
ZeroDivisionError will not be reached.

The second example may prove to be more useful, as a specific arithmetic error
(ZeroDivisionError) is handled first, leaving the general ArithmeticError handler to
take care of any other exception derived from ArithmeticError.

Raising Exceptions

The interpreter was responsible for raising all of the exceptions which we have seen so
far. These exist as a result of encountering an error during execution. A programmer

IT-SC book: Core Python Programming

 304

writing an API may also wish to throw an exception on erroneous input, for example, so
Python provides a mechanism for the programmer to explicitly generate an exception: the
raise statement.

raise Statement

The raise statement is quite flexible with the arguments which it supports, translating to
a large number of different formats supported syntactically. The general syntax for raise
is:

raise [Exception [, args [, traceback]]]

The first argument, Exception, is the name of the exception to raise. If present, it must
either be a string, class, or instance (more below). Exception must be given if any of the
other arguments (arguments or traceback) are present. A list of all Python standard
exceptions is given in Table 10.2.

The second expression contains optional args (a.k.a. parameters, values) for the
exception. This value is either a single object or a tuple of objects. When exceptions are
detected, the exception arguments are always returned as a tuple. If args is a tuple, then
that tuple represents the same set of exception arguments which are given to the handler.
If args is a single object, then the tuple will consist solely of this one object (i.e., a tuple
with one element). In most cases, the single argument consists of a string indicating the
cause of the error. When a tuple is given, it usually equates to an error string, an error
number, and perhaps an error location, such as a file, etc.

The final argument, traceback, is also optional (and rarely used in practice), and, if
present, is the traceback object used for the exception—normally a traceback object is
newly created when an exception is raised. This third argument is useful if you want to
re-raise an exception (perhaps to point to the previous location from the current).
Arguments which are absent are represented by the value None.

The most common syntax used is when Exception is a class. No additional parameters
are ever required, but in this case, if they are given, can be a single object argument, a
tuple of arguments, or an exception class instance. If the argument is an instance, then it
can be an instance of the given class or a derived class (subclassed from a pre-existing
exception class). No additional arguments (i.e., exception arguments) are permitted if the
argument is an instance.

What happens if the argument is an instance? No problems arise if instance is an
instance of the given exception class. However, if instance is not an instance of the
class nor an instance of a subclass of the class, then a new instance of the exception class
will be created with exception arguments copied from the given instance. If instance is

IT-SC book: Core Python Programming

 305

an instance of a subclass of the exception class, then the new exception will be
instantiated from the subclass, not the original exception class.

If the additional parameter to the raise statement used with an exception class is not an
instance—instead, it is a singleton or tuple—then the class is instantiated and args is
used as the argument list to the exception. If the second parameter is not present or None,
then the argument list is empty.

If Exception is an instance, then we do not need to instantiate anything. In this case,
additional parameters must not be given or must be None. The exception type is the class
which instance belongs to; in other words, this is equivalent to raising the class with
this instance, i.e., raise instance.__class__, instance.

Use of string exceptions is deprecated in favor of exception classes, but if Exception is a
string, then it raises the exception identified by string, with any optional parameters
(args) as arguments.

Finally, the raise statement by itself without any parameters is a new construct,
introduced in Python 1.5, and causes the last exception raised in the current code block to
be re-raised. If no exception was previously raised, a TypeError exception will occur,
because there was no previous exception to re-raise.

Due to the many different valid syntax formats for raise (i.e., Exception can be either a
class, instance, or a string), we provide Table 10.1 to illuminate all the different ways
which raise can be used.

Table 10.1. Using the raise Statement
raise syntax Description

raise exclass raise an exception, creating an instance of exclass (without any
exception arguments)

raise
exclass()

same as above since classes are now exceptions; invoking the
class name with the function call operator instantiates an instance
of exclass, also with no arguments

raise exclass,
args

same as above, but also providing exception arguments args,
which can be a single argument or a tuple

raise
exclass(args)

same as above

raise exclass,
args, tb

same as above, but provides traceback object tb to use

raise exclass,
instance

raise exception using instance (normally an instance of exclass);
if instance is an instance of a subclass of exclass, then the new
exception will be of the subclass type (not of exclass type); if
instance is not an instance of exclass nor an instance of a
subclass of exclass, then a new instance of exclass will be
created with exception arguments copied from instance

raise instance raise exception using instance: the exception type is the class
which instantiated instance; equivalent to raise

IT-SC book: Core Python Programming

 306

instance.__class__, instance (same as above)
raise string (archaic) raises string exception
raise string,
args

same as above, but raises exception with args

raise string,
args, tb

same as above, but provides traceback object tb to use

raise (new in 1.5) re-raises previously raised exception; if no exception
was previously raised, a TypeError is raised

Assertions

Assertions are diagnostic predicates which must evaluate to Boolean true; otherwise, an
exception is raised to indicate that the expression is false. These work similarly to the
assert macros which are part of the C language preprocessor, but in Python these are run-
time constructs (as opposed to pre-compile directives).

If you are new to the concept of assertions, no problem. The easiest way to think of an
assertion is to liken it to a raise-if statement (or to be more accurate, a raise-if-not
statement). An expression is tested, and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to Python,
introduced in version 1.5.

assert Statement

The assert statement evaluates a Python expression, taking no action if the assertion
succeeds (similar to a pass statement), but otherwise raises an AssertionError
exception. The syntax for assert is:

assert
 expression[,
arguments]

Here are some examples of the use of the assert statement:

assert 1 == 1
assert (2 + 2) == (2 * 2)
assert len(['my list', 12]) < 10
assert range(3) == [0, 1, 2]

AssertionError exceptions can be caught and handled like any other exception using
the try-except statement, but if not handled, they will terminate the program and
produce a traceback similar to the following:

IT-SC book: Core Python Programming

 307

>>> assert 1 == 0
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError

Like the raise statement we investigated in the previous section, we can provide an
exception argument to our assert command:

>>> assert 1 == 0, 'One does not equal zero silly!'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AssertionError: One does not equal zero silly!

Here is how we would use a try-except statement to catch an AssertionError
exception:

try:
 assert 1 == 0, 'One does not equal zero silly!'
except AssertionError, args:
 print '%s: %s' % (args.__class__.__name__, args)

Executing the above code from the command-line would result in the following output:

AssertionError: One does not equal zero silly!

To give you a better idea of how assert works, imagine how the assert statement may
be implemented in Python if written as a function. It would probably look something like
this:

def assert(expr, args=None):
 if __debug__ and not expr:
 raise AssertionError, args

The first if statement confirms the appropriate syntax for the assert, meaning that expr
should be an expression. We compare the type of expr to a real expression to verify. The
second part of the function evaluates the expression and raises AssertionError, if
necessary. The built-in variable __debug__ is 1 under normal circumstances, 0 when
optimization is requested (command line option -O).

IT-SC book: Core Python Programming

 308

Standard Exceptions

Table 10.2 lists all of Python's current set of standard exceptions. All exceptions are
loaded into the interpreter as a built-in so they are ready before your script starts or by the
time you receive the interpreter prompt, if running interactively.

All standard/built-in exceptions are derived from the root class Exception. There are
currently two immediate subclasses of Exception: SystemExit and StandardError.
All other built-in exceptions are subclasses of StandardError. Every level of
indentation of an exception listed in Table 10.2 indicates one level of exception class
derivation.

Table 10.2. Python Standard Exceptions
Exception Name Description

Exception[a] root class for all exceptions
SystemExit request termination of Python interpreter
StandardError[a] base class for all standard built-in exceptions
ArithmeticError[a] base class for all numeric calculation errors
FloatingPointError[a] error in floating point calculation
OverflowError calculation exceeded maximum limit for numerical type
ZeroDivisionError division (or modulus) by zero error (all numeric types)
AssertionError[a] failure of assert statement
AttributeError no such object attribute
EOFError end-of-file marker reached without input from built-in
EnvironmentError[b] base class for operating system environment errors
IOError failure of input/output operation
OSError[b] operating system error
WindowsError[c] MS Windows system call failure
ImportError failure to import module or object
KeyboardInterrupt user interrupted execution (usually by typing ^C)
LookupError[a] base class for invalid data lookup errors
IndexError no such index in sequence
KeyError no such key in mapping
MemoryError out-of-memory error (non-fatal to Python interpreter)
NameError undeclared/uninitialized object (non-attribute)
UnboundLocalError[c] access of an uninitialized local variable
RuntimeError generic default error during execution
NotImplementedError[b] unimplemented method
SyntaxError error in Python syntax
IndentationError[d] improper indentation
TableError[d] improper mixture of TABs and spaces
SystemError generic interpreter system error
TypeError invalid operation for type

IT-SC book: Core Python Programming

 309

ValueError invalid argument given
UnicodeError[c] Unicode related error

[a] Prior to Python 1.5, the exceptions denoted did not exist. All earlier exceptions were string-
based.

[b] New as of Python 1.5.2

[c] New as of Python 1.6

[d] New as of Python 2.0

*Creating Exceptions

Although the set of standard exceptions is fairly wide-ranging, it may be advantageous to
create your own exceptions. One situation is where you would like additional information
from what a standard or module-specific exception provides. We will present two
examples, both related to IOError.

IOError is a generic exception used for input/output problems which may arise from
invalid file access or other forms of communication. Suppose we wanted to be more
specific in terms of identifying the source of the problem. For example, for file errors, we
want to have a FileError exception which behaves like IOError, but with a name that
has more meaning when performing file operations.

Another exception we will look at is related to network programming with sockets. The
exception generated by the socket module is called socket.error and is not a built-in
exception. It is subclassed from the generic Exception exception. However, the
exception arguments from socket.error closely resemble those of IOError exceptions,
so we are going to define a new exception called NetworkError which subclasses from
IOError but contains at least the information provided by socket.error.

Like classes and object-oriented programming, we have not formally covered network
programming at this stage, but skip ahead to Chapter 16 if you need to.

We now present a module called myexc.py with our newly-customized exceptions
FileError and NetworkError. The code is in Example 10.3

Example 10.3. Creating Exceptions (myexc.py)

This module defines two new exceptions, FileError and NetworkError, as well as
reimplements more diagnostic versions of open() [myopen()]and socket.connect()
[myconnect()]. Also included is a test function [test()] that is run if this module is
executed directly.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import os, socket, errno, types, tempfile

IT-SC book: Core Python Programming

 310

004 4
005 5 class NetworkError(IOError):
006 6 pass <$nopage>
007 7
008 8 class FileError(IOError):
009 9 pass <$nopage>
010 10
011 11 def updArgs(args, newarg=None):
012 12
013 13 if type(args) == types.InstanceType:
014 14 myargs = []
015 15 for eachArg in args:
016 16 myargs.append(eachArg)
017 17 else: <$nopage>
018 18 myargs = list(args)
019 19
020 20 if newarg:
021 21 myargs.append(newarg)
022 22
023 23 return tuple(myargs)
024 24
025 25 def fileArgs(file, mode, args):
026 26
027 27 if args[0] == errno.EACCES and \
028 28 'access' in dir(os):
029 29 perms = ''
030 30 permd = { 'r': os.R_OK, 'w': os.W_OK,
031 31 'x': os.X_OK}
032 32 pkeys = permd.keys()
033 33 pkeys.sort()
034 34 pkeys.reverse()
035 35
036 36 for eachPerm in 'rwx':
037 37 if os.access(file, permd[eachPerm]):
038 38 perms = perms + eachPerm
039 39 else: <$nopage>
040 40 perms = perms + '-'
041 41
042 42 if type(args) == types.InstanceType:
043 43 myargs = []
044 44 for eachArg in args:
045 45 myargs.append(eachArg)
046 46 else: <$nopage>
047 47 myargs = list(args)
048 48
049 49 myargs[1] = "'%s' %s (perms: '%s')" % \
050 50 (mode, myargs[1], perms)
051 51
052 52 myargs.append(args.filename)
053 53
054 54 else: <$nopage>
055 55 myargs = args
056 56
057 57 return tuple(myargs)
058 58
059 59 def myconnect(sock, host, port):
060 60

IT-SC book: Core Python Programming

 311

061 61 try: <$nopage>
062 62 sock.connect((host, port))
063 63
064 64 except socket.error, args:
065 65 myargs = updArgs(args)# conv inst2tuple
066 66 if len(myargs) == 1:# no #s on some errs
067 67 myargs = (errno.ENXIO, myargs[0])
068 68
069 69 raise NetworkError, \
070 70 updArgs(myargs, host + ':' + str(port))
071 71
072 72 def myopen(file, mode='r'):
073 73
074 74 try: <$nopage>
075 75 fo = open(file, mode)
076 76
077 77 except IOError, args:
078 78 raise FileError, fileArgs(file, mode, args)
079 79
080 80 return fo
081 81
082 82 def testfile():
083 83
084 84 file = mktemp()
085 85 f = open(file, 'w')
086 86 f.close()
087 87
088 88 for eachTest in ((0, 'r'), (0100, 'r'), \
089 89 0400, 'w'), (0500, 'w')):
090 90 try: <$nopage>
091 91 os.chmod(file, eachTest[0])
092 92 f = myopen(file, eachTest[1])
093 93
094 94 except FileError, args:
095 95 print "%s: %s" % \
096 96 (args.__class__.__name__, args)
097 97 else: <$nopage>
098 98 print file, "opened ok… perm ignored"
099 99 f.close()
100 100
101 101 os.chmod(file, 0777)# enable all perms
102 102 os.unlink(file)
103 103
104 104 def testnet():
105 105 s = socket.socket(socket.AF_INET, \
106 106 socket.SOCK_STREAM)
107 107
108 108 for eachHost in ('deli', 'www'):
109 109 try: <$nopage>
110 110 myconnect(s, 'deli', 8080)
111 111 except NetworkError, args:
112 112 print "%s: %s" % \
113 113 (args.__class__.__name__, args)
114 114
115 115 if __name__ == '__main__':
116 116 testfile()
117 117 testnet()

IT-SC book: Core Python Programming

 312

118 <$nopage>

Lines 1 – 3

The Unix start-up script and importation of the socket, os, errno, types, and
tempfile modules help us start this module.

Lines 5 – 9

Believe it or not, these five lines make up our new exceptions. Not just one, but both of
them. Unless new functionality is going to be introduced, creating a new exception is just
a matter of subclassing from an already-existing exception. In our case, that would be
IOError. EnvironmentError, from which IOError is derived would also work, but we
wanted to convey that our exceptions were definitely I/O-related.

We chose IOError because it provides two arguments, an error number and an error
string. File-related [uses open()] IOError exceptions even support a third argument
which is not part of the main set of exception arguments, and that would be the file name.
Special handling is done for this third argument which lives outside the main tuple pair
and has the name filename.

Lines 11 – 23

The entire purpose of the updArgs() function is to "update" the exception arguments.
What we mean here is that the original exception is going to provide us a set of
arguments. We want to take these arguments and make them part of our new exception,
perhaps embellishing or adding a third argument (which is not added if nothing is
given— None is a default argument which we will study in the next chapter). Our goal is
to provide the more informative details to the user so that if and when errors occur, the
problems can be tracked down as quickly as possible.

Lines 25 – 57

The fileArgs() function is used only by myopen() [see below]. In particular, we are
seeking error EACCES, which represents "permission denied." We pass all other IOError
exceptions along without modification (lines 54–55). If you are curious about ENXIO,
EACCES, and other system error numbers, you can hunt them down by starting at file
/usr/include/sys/errno.h on a Unix system, or C:\Msdev\include\Errno.h if you
are using Visual C++ on Windows.

In line 27, we are also checking to make sure that the machine we are using supports the
os.access() function, which helps you check what kind of file permissions you have for
any particular file. We do not proceed unless we receive both a permission error as well
as the ability to check what kind of permissions we have. If all checks out, we set up a
dictionary to help us build a string indicating the permissions we have on our file.

IT-SC book: Core Python Programming

 313

The Unix file system uses explicit file permissions for the user, group (more than one
user can belong to a "group"), and other (any user other than the owner or someone in the
same group as the owner) in read, write, and execute ('r', 'w', 'x') order. Windows supports
some of these permissions.

Now it is time to build the permission string. If the file has a permission, its
corresponding letter shows up in the string, otherwise a dash (-) appears. For example, a
string of "rw-" means that you have read and write access to it. If the string reads "r-x",
you have only read and execute access; "---" means no permission at all.

After the permission string has been constructed, we create a temporary argument list.
We then alter the error string to contain the permission string, something which standard
IOError exception does not provide. "Permission denied" sometimes seems silly if the
system does not tell you what permissions you have to correct the problem. The reason,
of course, is security. When intruders do not have permission to access something, the
last thing you want them to see is what the file permissions are, hence the dilemma.
However, our example here is merely an exercise, so we allow for the temporary "breach
of security." The point is to verify whether or not the os.chmod() functions call affected
file permissions the way they are supposed to.

The final thing we do is to add the file name to our argument list and return the set of
arguments as a tuple.

Lines 59 – 70

Our new myconnect() function simply wraps the standard socket method connect() to
provide an IOError-type exception if the network connection fails. Unlike the general
socket.error exception, we also provide the host name and port number as an added
value to the programmer.

For those new to network programming, a host name and port number pair are analogous
to an area code and telephone number when you are trying to contact someone. In this
case, we are trying to contact a program running on the remote host, presumably a server
of some sort; therefore, we require the host's name and the port number that the server is
listening on.

When a failure occurs, the error number and error string are quite helpful, but it would be
even more helpful to have the exact host-port combination as well, since this pair may be
dynamically-generated or retrieved from some database or name service. That is the
value-add we are bestowing to our version of connect(). Another issue arises when a
host cannot be found. There is no direct error number given to us by the socket.error
exception, so to make it conform to the IOError protocol of providing an error number-
error string pair, we find the closest error number that matches. We choose ENXIO.

Lines 72 – 80

IT-SC book: Core Python Programming

 314

Like its sibling myconnect(), myopen() also wraps around an existing piece of code.
Here, we have the open() function. Our handler catches only IOError exceptions. All
others will pass through and on up to the next level (when no handler is found for them).
Once an IOError is caught, we raise our own error and customized arguments as
returned from fileArgs().

Lines 82 – 102

We shall perform the file testing first, here using the testfile() function. In order to
begin, we need to create a test file that we can manipulate by changing its permissions to
generate permission errors. The tempfile module contains code to create temporary file
names or temporary files themselves. We just need the name for now and use our new
myopen() function to create an empty file. Note that if an error occurred here, there
would be no handler, and our program would terminate fatally—the test program should
not continue if we cannot even create a test file.

Our test uses four different permission configurations. A zero means no permissions at all,
0100 means execute-only, 0400 indicates read-only, and 0500 means read- and execute-
only (0400 + 0100). In all cases, we will attempt to open a file with an invalid mode. The
os.chmod() function is responsible for updating a file's permission modes. (NOTE: these
permissions all have a leading zero in front, indicating that they are octal [base 8]
numbers.)

If an error occurs, we want to display diagnostic information similar to the way the
Python interpreter performs the same task when uncaught exceptions occur, and that is
giving the exception name followed by its arguments. The __class__ special variable
provides the class object for which an instance was created from. Rather than displaying
the entire class name here (myexc.FileError), we use the class object's __name__
variable to just display the class name (FileError), which is also what you see from the
interpreter in an unhandled error situation. Then the arguments which we arduously put
together in our wrapper functions follow.

If the file opened successfully, that means the permissions were ignored for some reason.
We indicate this with a diagnostic message and close the file. Once all tests have been
completed, we enable all permissions for the file and remove it with the os.unlink()
function. os.remove() is equivalent to os.unlink().)

Lines 104 – 113

The next section of code (testnet()) tests our NetworkError exception. A socket is a
communication endpoint with which to establish contact with another host. We create
such an object, then use it in an attempt to connect to a host with no server to accept our
connect request and a host not on our network.

Lines 115 – 117

IT-SC book: Core Python Programming

 315

We want to execute our test*() functions only when invoking this script directly, and
that is what the code here does. Most of the scripts given in this text utilize the same
format.

Running this on a Unix machine, we get the following output:

% myexc.py
FileError: [Errno 13] 'r' Permission denied (perms: '---'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'r' Permission denied (perms: '--x'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r--'):
 '/usr/tmp/@18908.1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r-x'):
 '/usr/tmp/@18908.1'
NetworkError: [Errno 146] Connection refused: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

The results are slightly different on a Windows machine:

D:\python>python myexc.py
C:\WINDOWS\TEMP\~-195619-1 opened ok… perms ignored
C:\WINDOWS\TEMP\~-195619-1 opened ok… perms ignored
FileError: [Errno 13] 'w' Permission denied (perms: 'r–x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
FileError: [Errno 13] 'w' Permission denied (perms: 'r–x'):
 'C:\\WINDOWS\\TEMP\\~-195619-1'
NetworkError: [Errno 10061] winsock error: 'deli:8080'
NetworkError: [Errno 6] host not found: 'www:8080'

You will notice that Windows does not support read permissions on files, which is the
reason why the first two file open attempts succeeded. Your mileage may vary (YMMV)
on your own machine and operating system.

Why Exceptions (Now)?

There is no doubt that errors will be around as long as software is around. The difference
in today's fast-paced computing world is that our execution environments have changed,
and so has our need to adapt error-handling to accurately reflect the operating context of
the software which we develop. Modern-day applications generally run as self-contained
graphical user interfaces (GUIs) or in a client-server architecture such as the Web.

The ability to handle errors at the application level has become even more important
recently in that users are no longer the only ones directly running applications. As the
Internet and online electronic commerce become more pervasive, web servers will be the
primary users of application software. This means that applications cannot just fail or

IT-SC book: Core Python Programming

 316

crash outright anymore, because if they do, system errors translate to browser errors, and
these in turn lead to frustrated users. Losing eyeballs means losing advertising revenue
and potentially significant amounts of irrecoverable business.

If errors do occur, they are generally attributed to some invalid user input. The execution
environment must be robust enough to handle the application-level error and be able to
produce a user-level error message. This must translate to a "non-error" as far as the web
server is concerned because the application must complete successfully, even if all it does
is return an error message to present to the user as a valid hypertext markup language
(HTML) web page displaying the error.

If you are not familiar with what I am talking about, does a plain web browser screen
with the big black words saying, "Internal Server Error" sound familiar? How about a
fatal error that brings up a pop-up that declares "Document contains no data"? As a user,
do either of these phrases mean anything to you? No, of course not (unless you are an
Internet software engineer), and to the average user, they are an endless source of
confusion and frustration. These errors are a result of a failure in the execution of an
application. The application either returns invalid hypertext transfer protocol (HTTP)
data or terminates fatally, resulting in the web server throwing its hands up into the air,
saying, "I give up!"

This type of faulty execution should not be allowed, if at all possible. As systems become
more complex and involve more apprentice users, additional care should be taken to
ensure a smooth user application experience. Even in the face of an error situation, an
application should terminate successfully, as to not affect its execution environment in a
catastrophic way. Python's exception handling promotes mature and correct programming.

Why Exceptions at All?

If the above section was not motivation enough, imagine what Python programming
might be like without program-level exception handling. The first thing that comes to
mind is the loss of control client programmers have over their code. For example, if you
created an interactive application which allocates and utilizes a large number of resources,
if a user hit ^C or other keyboard interrupt, the application would not have the
opportunity to perform clean-up, resulting in perhaps loss of data, or data corruption.
There is also no mechanism to take alternative action such as prompting the users to
confirm whether they really want to quit or if they hit the control key accidentally.

Another drawback would be that functions would have to be rewritten to return a
"special" value in the face of an error situation, for example, None. The engineer would
be responsible for checking each and every return value from a function call. This may be
cumbersome because you may have to check return values which may not be of the same
type as the object you are expecting if no errors occurred. And what if your function
wants to return None as a valid data value? Then you would have to come up with
another return value, perhaps a negative number. We probably do not need to remind you
that negative numbers may be valid in a Python context, such as an index into a sequence.
As a programmer of application programmer interfaces (APIs), you would then have to

IT-SC book: Core Python Programming

 317

document every single return error your users may encounter based on the input received.
Also, it is difficult (and tedious) to propagate errors (and reasons) of multiple layers of
code.

There is no simple propagation like the way exceptions do it. Because error data needs to
be transmitted upwards in the call hierarchy, it is possible to misinterpret the errors along
the way. A totally unrelated error may be stated as the cause when in fact it had nothing
to do with the original problem to begin with. We lose the bottling-up and safekeeping of
the original error that exceptions provide as they are passed from layer to layer, not to
mention completely losing track of the data we were originally concerned about!
Exceptions simplify not only the code, but the entire error management scheme which
should not play such a significant role in application development. And with Python's
exception handling capabilities, it does not have to.

Exceptions and the sys Module

An alternative way of obtaining exception information is by accessing the exc_info()
function in the sys module. This function provides a 3-tuple of information, more than
what we can achieve by simply using only the exception argument. Let us see what we
get using sys.exc_info():

>>> try:
… float('abc123')
… except:
… import sys
… exc_tuple = sys.exc_info()
…
>>> print exc_tuple
(<class exceptions.ValueError at f9838>, <exceptions.ValueError
instance at 122fa8>,
<traceback object at 10de18>)
>>>
>>> for eachItem in exc_tuple:
… print eachItem
…
exceptions.ValueError
invalid literal for float(): abc123
<traceback object at 10de18>

What we get from sys.exc_info() in a tuple are:

exception class object

(this) exception class instance object

traceback object

IT-SC book: Core Python Programming

 318

The first two items we are familiar with: the actual exception class and this particular
exception's instance (which is the same as the exception argument which we discussed in
the previous section). The third item, a traceback object, is new. This object provides the
execution context of where the exception occurred. It contains information such as the
execution frame of the code that was running and the line number where the exception
occurred.

In older versions of Python, these three values were available in the sys module as
sys.exc_type, sys.exc_value, and sys.exc_traceback. Unfortunately, these three
are global variables and not thread-safe. We recommend using sys.exc_info() instead.

Related Modules

The classes found in module Lib/exceptions.py are automatically loaded as built-in
names on start-up, so no explicit import of this module is ever necessary. We recommend
you take a look at this source code to familiarize yourself with Python's exceptions and
how they interrelate and interoperate. Starting with 2.0, exceptions are now built into the
interpreter (see Python/exceptions.c).

Exercises

1:
Raising Exceptions. Which of the following can RAISE exceptions during program
execution? Note that this question does not ask what may CAUSE exceptions.

a) the user

b) the interpreter

c) the program

d) all of the above

e) only (b) and (c)

f) only (a) and (c)

2:
Raising Exceptions. Referring to the list in the problem above, which could raise
exceptions while running within the interactive interpreter?

3:
Keywords. Name the keyword(s) which is(are) used to raise exceptions.

IT-SC book: Core Python Programming

 319

4:
Keywords. What is the difference between try-except and try-finally?

5:
Exceptions. Name the exception that would result from executing the following
pieces of Python code from within the interactive interpreter (refer back to Table
10.2 for a list of all built-in exceptions):

a)

>>> if 3 < 4 then: print '3 IS less than 4!'

b)

>>> aList = ['Hello', 'World!', 'Anyone', 'Home?']
>>> print 'the last string in aList is:', aList[len(aList)]

c)

>>> x

d)

>>> x = 4 % 0

e)

>>> import math
>>> i = math.sqrt(-1)

6:
Improving open(). Create a wrapper for the open() function. When a program
opens a file successfully, a file handle will be returned. If the file open fails, rather
than generating an error, return None to the callers so that they can open files without
an exception handler.

7:
Exceptions. What is the difference between Python pseudocode snippets (a) and (b)?
Answer in the context of statements A and B, which are part of both pieces of code.
(Thanks to Guido for this teaser!)

a)

IT-SC book: Core Python Programming

 320

try:
 statement_A
except …:
 …
else:
 statement_B

b)

try:
 statement_A
 statement_B
except …:
 …

8:
Improving raw_input(). In the beginning of this chapter, we presented a "safe"
version of the float() built-in function to detect and handle two different types of
exceptions which float() generates. Likewise, the raw_input() function can
generate two different exceptions, either EOFError or KeyboardInterrupt on end-
of-file (EOF) or cancelled input, respectively. Create a wrapper function, perhaps
safe_input(); rather than raising an exception if the user entered EOF (^D in Unix
or ^Z in DOS) or attempted to break out using ^C, have your function return None
that the calling function can check for.

9:
Improving math.sqrt(). The math module contains many functions and some
constants for performing various mathematics-related operations. Unfortunately, this
module does not recognize or operate on complex numbers, which is the reason why
the cmath module was developed. Rather than suffering the overhead of importing
an entire module for complex numbers which you do not plan on using in your
application, you want to just use the standard arithmetic operators which work fine
with complex numbers, but really want just a square root function that can provide a
complex number result when given a negative argument. Create a function, perhaps
safe_sqrt(), which wraps math.sqrt(), but is smart enough to handle a negative
parameter and return a complex number with the correct value back to the caller.

IT-SC book: Core Python Programming

 321

Chapter 11. Functions

We were introduced to functions in Chapter 2 and have seen them created and called
throughout the text. In this chapter, we will look beyond the basics and give you a full
treatment of all the other features associated with functions. In addition to the expected
behavior, functions in Python support a variety of invocation styles and argument types,
including some functional programming interfaces. We conclude this chapter with a look
at Python's scoping as well as take an optional side trip into the world of recursion.

What Are Functions?

Functions are the structured or procedural programming way of organizing the logic in
your programs. Large blocks of code can be neatly segregated into manageable chunks,
and space is saved by putting oft-repeated code in functions as opposed to multiple copies
everywhere—this also helps with consistency because changing the single copy means
you do not have to hunt for and make changes to multiple copies of duplicated code. The
basics of functions in Python are not much different from those of other languages with
which you may be familiar. After a bit of review here in the early part of this chapter, we
will focus on what else Python brings to the table.

Functions can appear in different ways… here is a sampling profile of how you will see
functions created, used, or otherwise referenced:

declaration/definition def foo(): print 'bar'
function object/reference foo
function call/invocation foo()

Functions vs. Procedures

Functions are often compared to procedures. Both are entities which can be invoked, but
the traditional function or "black box," perhaps taking some or no input parameters,
performs some amount of processing and concludes by sending back a return value to the
caller. Some functions are Boolean in nature, returning a "yes" or "no" answer, or, more
appropriately, a non-zero or zero value, respectively. Procedures, often compared to
functions, are simply special cases, functions which do not return a value. As you will see
below, Python procedures are implied functions because the interpreter implicitly returns
a default value of None.

Return Values and Function Types

IT-SC book: Core Python Programming

 322

Functions may return a value back to its caller and those which are more procedural in
nature do not explicitly return anything at all. Languages which treat procedures as
functions usually have a special type or value name for functions that "return nothing."
These functions default to a return type of "void" in C, meaning no value returned. In
Python, the equivalent return object type is None.

The hello() function acts as a procedure in the code below, returning no value. If the
return value is saved, you will see that its value is None:

>>> def hello():
… print 'hello world'
>>>
>>> res = hello()
hello world
>>> res
>>> print res
None
>>> type(res)
<type 'None'>

Also, like most other languages, you may return only one value/object from a function in
Python. One difference is that in returning a container type, it will seem as if you can
actually return more than a single object. In other words, you can't leave the grocery store
with multiple items, but you can throw them all in a single shopping bag which you walk
out of the store with, perfectly legal.

def foo():
 return ['xyz', 1000000, -98.6]

def bar():
 return 'abc', [42, 'python', "Guido"

The foo() function returns a list, and the bar() function returns a tuple. Because of the
tuple's syntax of not requiring the enclosing parentheses, it creates the perfect illusion of
returning multiple items. If we were to properly enclose the tuple items, the definition of
bar() would look like:

def bar():
 return ('abc', [4-2j, 'python'], "Guido")

As far as return values are concerned, tuples can be saved in a number of ways. The
following three ways of saving the return values are equivalent:

IT-SC book: Core Python Programming

 323

>>> aTuple = bar()
>>> x, y, z = bar()
>>> (a, b, c) = bar()
>>>
>>> aTuple
('abc', [(4-2j), 'python'], 'Guido')
>>> x, y, z
('abc', [(4-2j), 'python'], 'Guido')
>>> (a, b, c)
('abc', [(4-2j), 'python'], 'Guido')

In the assignments for x, y, z, and a, b, c, each variable will receive its
corresponding return value in the order the values are returned. The aTuple assignment
takes the entire implied tuple returned from the function. Recall that a tuple can be
"unpacked" into individual variables or not at all and its reference assigned directly to a
single variable. (Refer back to Section 6.17.3 for a review.)

Many languages which support functions maintain the notion that a function's type is the
type of its return value. In Python, no direct type correlation can be made since Python is
dynamically-typed and functions can return values of different types. Because
overloading is not a feature, the programmer can use the type() built-in function as a
proxy for multiple declarations with different signatures (multiple prototypes of the same
overloaded function which differ based on its arguments).

Calling Functions

Function Operator

Functions are called using the same pair of parentheses that you are used to. In fact, some
consider (()) to be a two-character operator, the function operator. As you are
probably aware, any input parameters or arguments must be placed between these calling
parentheses. Parentheses are also used as part of function declarations to define those
arguments. Although we have yet to formally study classes and object-oriented
programming, you will discover that the function operator is also used in Python for class
instantiation.

Keyword Arguments

The concept of keyword arguments applies only to function invocation. The idea here is
for the caller to identify the arguments by parameter name in a function call. This
specification allows for arguments to be missing or out-of-order because the interpreter is
able to use the provided keywords to match values to parameters.

For a simple example, imagine a function foo() which has the following pseudocode
definition:

IT-SC book: Core Python Programming

 324

def foo(x):
 foo_suite # presumably does so processing with 'x'

Standard calls to foo(): foo(42) foo('bar') foo(y)

Keyword calls to foo(): foo(x=42) foo(x='bar') foo(x=y)

For a more realistic example, let us assume you have a function called net_conn() and
you know that it takes two parameters, say, host and port:

def net_conn(host, port):
 net_conn_suite

Naturally, we can call the function giving the proper arguments in the correct positional
order which they were declared:

net_conn('kappa', 8080)

The host parameter gets the string 'kappa' and port gets 8080. Keyword arguments
allow out-of-order parameters, but you must provide the name of the parameter as a
"keyword" to have your arguments match up to their corresponding argument names, as
in the following:

net_conn(port=8080, host='chino')

Keyword arguments may also be used when arguments are allowed to be "missing."
These are related to functions which have default arguments, which we will introduce in
the next section.

Default Arguments

Default arguments are those which are declared with default values. Parameters which
are not passed on a function call are thus allowed and are assigned the default value. We
will cover default arguments more formally in Section 11.5.2

Creating Functions

def Statement

IT-SC book: Core Python Programming

 325

Functions are created using the def statement, with a syntax like the following:

def

 function_name(arguments):
 "function_documentation_string"
 function_body_suite

The header line consists of the def keyword, the function name, and a set of arguments
(if any). The remainder of the def clause consists of an optional but highly-recommended
documentation string and the required function body suite. We have seen many function
declarations throughout this text, and here is another:

def helloSomeone(who):
 'returns a salutory string customized with the input'
 return "Hello" + str(who)

Declaration vs. Definition

Some programming languages differentiate between function declarations and function
definitions. A function declaration consists of providing the parser with the function
name, and the names (and traditionally the types) of its arguments, without necessarily
giving any lines of code for the function, which is usually referred to as the function
definition.

In languages where there is a distinction, it is usually because the function definition may
belong in a physically different location in the code from the function declaration. Python
does not make a distinction between the two, as a function clause is made up of a
declarative header line which is immediately followed by its defining suite.

Forward References

Like some other high-level languages, Python does not permit you to reference or call a
function before it has been declared. We can try a few examples to illustrate this:

def foo():
 print 'in foo()'
 bar()

If we were to call foo() here, it will fail because bar() has not been declared yet:

IT-SC book: Core Python Programming

 326

>>> foo()
in foo()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in foo
NameError: bar

We will now define bar(), placing its declaration before foo()'s declaration:

def bar():
 print 'in bar()'

def foo():
 print 'in foo()'
 bar()

Now we can safely call foo() with no problems:

>>> foo()
in foo()
in bar()

In fact, we can even declare foo() before bar():

def foo():
 print 'in foo()'
 bar()

def bar():
 print 'in bar()'

Amazingly enough, this code still works fine with no forward referencing problems:

>>> foo()
in foo()
in bar()

This piece of code is fine because even though a call to bar() (from foo()) appears
before bar()'s definition, foo() itself is not called before bar() is declared. In other

IT-SC book: Core Python Programming

 327

words, we declared foo(), then bar(), and then called foo(), but by that time, bar()
existed already, so the call succeeds.

Notice that the output of foo() succeeded before the error came about. NameError is the
exception that is always raised when any uninitialized identifiers are accessed.

Passing Functions

The concept of function pointers is an advanced topic when learning a language such as
C, but not Python where functions are like any other object. They can be referenced
(accessed or aliased to other variables), passed as arguments to functions, be elements of
container objects like lists and dictionaries, etc. The one unique characteristic of
functions which may set them apart from other objects is that they are callable, i.e., can
be invoked via the function operator. (There are other callables in Python. For more
information see Chapter 14)

In the description above, we noted that functions can be aliases to other variables.
Because all objects are passed by reference, functions are no different. When assigning to
another variable, you are assigning the reference to the same object; and if that object is a
function, then all aliases to that same object are invokable:

>>> def foo():
… print 'in foo()'
…
>>> bar = foo
>>> bar()
in foo()

When we assigned foo to bar, we are assigning the same function object to bar, thus
we can invoke bar() in the same way we call foo(). Be sure you understand the
difference between "foo" (reference of the function object) and "foo()" (invocation of
the function object)

Taking our reference example a bit further, we can even pass functions in as arguments to
other functions for invocation:

>>> def bar(argfunc):
… argfunc()
…
>>> bar(foo)
in foo()

Note that it is the function object foo that is being passed to bar().bar() is the function
that actually calls foo() (which has been aliased to the local variable argfunc in the

IT-SC book: Core Python Programming

 328

same way that we assigned foo to bar in the previous example). Now let us examine a
more realistic example, numconv.py, whose code is given in Example 11.1.

Example 11.1. Passing and Calling (Built-in) Functions (numconv.py)

A more realistic example of passing functions as arguments and invoking them from
within the function. This script simply converts a sequence of numbers to the same type
using the conversion function that is passed in. In particular, the test() function passes
in a built-in function int(), long(), or float() to perform the conversion.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def convert(func, seq):
004 4 'conv. sequence of numbers to same type'
005 5 newSeq = []
006 6 for eachNum in seq:
007 7 newSeq.append(func(eachNum))
008 8 return newSeq
009 9
010 10 def test():
011 11 'test function for numconv.py'
012 12 myseq = (123, 45.67, -6.2e8, 999999999L)
013 13 print convert(int, myseq)
014 14 print convert(long, myseq)
015 15 print convert(float, myseq)
016 16
017 17 if __name__ == '__main__':
018 18 test()
019 <$nopage>

If we were to run this program, we would get the following output:

% numconv.py
[123, 45, -620000000, 999999999]
[123L, 45L, -620000000L, 999999999L]
[123.0, 45.67, -620000000.0, 999999999.0]

Formal Arguments

A Python function's set of formal arguments consists of all parameters passed to the
function on invocation for which there is an exact correspondence to those of the
argument list in the function declaration. These arguments include all required arguments
(passed to the function in correct positional order), keyword arguments (passed in- or out-
of-order, but which have keywords present to match their values to their proper positions
in the argument list), and all arguments which have default values which may or may not
be part of the function call. For all of these cases, a name is created for that value in the
(newly-created) local namespace and can be accessed as soon as the function begins
execution.

IT-SC book: Core Python Programming

 329

Positional Arguments

These are the standard vanilla parameters that we are all familiar with. Positional
arguments must be passed in the exact order that they are defined for the functions that
are called. Also, without the presence of any default arguments (see next section), the
exact number of arguments passed to a function (call) must be exactly the number
declared:

>>> def foo(who): # defined for only 1 argument
… print 'Hello', who
…
>>> foo() # 0 arguments… BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments; expected 1, got 0
>>>
>>> foo('World!') # 1 argument… WORKS
Hello World!
>>>
>>> foo('Mr.', 'World!')# 2 arguments… BAD
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: too many arguments; expected 1, got 2

The foo() function has one positional argument. That means that any call to foo() must
have exactly one argument, no more, no less. You will become extremely familiar with
TypeError otherwise. Note how informative the Python errors are. As a general rule, all
positional arguments for a function must be provided whenever you call it. They may be
passed into the function call in position or out-of-position, granted that a keyword
argument is provided to match it to its proper position in the argument list (review
Section 11.2.2). Default arguments, however, do not have to be provided because of
their nature.

Default Arguments

Default arguments are parameters which are defined to have a default value if one is not
provided in the function call for that argument. Such definitions are given in the function
declaration header line. C++ and Java are other languages which support default
arguments and whose declaration syntax is shared with Python: The argument name is
followed by an “assignment of its default value. This assignment is merely a syntactical
way of indicating that this assignment will occur if no value is passed in for that
argument.

The syntax for declaring variables with default values in Python is such that all positional
arguments must come before any default arguments:

IT-SC book: Core Python Programming

 330

def
 function_name(posargs,
defarg1=dval1, defarg2=dval2,…):
 "function_documentation_string"
 function_body_suite

Each default argument is followed by an assignment statement of its default value. If no
value is given during a function call, then this assignment is realized.

Why Default Arguments?

Default arguments add a wonderful level of robustness to applications because they allow
for some flexibility that is not offered by the standard positional parameters. That gift
comes in the form of simplicity for the applications programmer. Life is not as
complicated when there are a fewer number of parameters that one needs to worry about.
This is especially helpful when one is new to an API interface and does not have enough
knowledge to provide more targeted values as arguments.

The concept of using default arguments is analogous to the process of installing software
on your computer. How often does one chose the "default install" over the "custom
install?" I would say probably almost always. It is a matter of convenience and know-
how, not to mention a timesaver. And if you are one of those gurus who always chooses
the custom install, please keep in mind that you are one of the minority.

Another advantage goes to the developer, who is given more control over the software
they create for their consumers. When providing default values, they can selectively
choose the "best" default value possible, thereby hoping to give the user some freedom of
not having to make that choice. Over time, as the user becomes more familiar with the
system or API, they may eventually be able to provide their own parameter values, no
longer requiring the use of "training wheels."

Here is one example where a default argument comes in handy and has some usefulness
in the growing electronic commerce industry:

>>> def taxMe(cost, rate=0.0825):
… return cost + (cost * rate)
…
>>> taxMe(100)
108.25
>>>
>>> taxMe(100, 0.05)
105.0

In the example above, the taxMe() function takes the cost of an item and produces a total
sale amount with sales tax added. The cost is a required parameter while the tax rate is a

IT-SC book: Core Python Programming

 331

default argument (in our example, 8¼ %). Perhaps you are an online retail merchant, with
most of your customers coming from the same state or county as your business.
Consumers from locations with different tax rates would like to see their purchase totals
with their corresponding sales tax rates. To override the default, all you have to do is
provide your argument value, such as the case with taxMe(100, 0.05) in the above
example. By specifying a rate of 5%, you provided an argument as the rate parameter,
thereby overriding or bypassing its default value of 0.0825.

All required parameters must be placed before any default arguments. Why? Simply
because they are mandatory, whereas default arguments are not. Syntactically, it would
be impossible for the interpreter to decide which values match which arguments if mixed
modes were allowed. A SyntaxError is raised if the arguments are not given in the
correct order:

>>> def taxMe2(rate=0.0825, cost):
… return cost * (1.0 + rate)
…
SyntaxError: non-default argument follows default argument

Let us take a look at keyword arguments again, using our old friend net_conn().

def net_conn(host, port):
 net_conn_suite

As you will recall, this is where you can provide your arguments out-of-order
(positionally) if you name the arguments. With the above declarations, we can make the
following (regular) positional or keyword argument calls:

• net_conn('kappa', 8000)
• net_conn(port=8080, host='chino')

However, if we bring default arguments into the equation, things change, though the
above calls are still valid. Let us modify the declaration of net_conn() such that the
port parameter has a default value of 80 and add another argument named stype (for
server type) with a default value of 'tcp':

def net_conn(host, port=80, stype='tcp'):
 net_conn_suite

IT-SC book: Core Python Programming

 332

We have just expanded the number of ways we can call net_conn(). The following are
all valid calls to net_conn():

• net_conn('phaze', 8000, 'udp') # no def args used
• net_conn('kappa') # both def args used
• net_conn('chino', stype='icmp') # use port def arg
• net_conn(stype='udp', host='solo') # use port def arg
• net_conn('deli', 8080) # use stype def arg
• net_conn(port=81, host='chino') # use stype def arg

What is the one constant we see in all of the above examples? The sole required
parameter, host. There is no default value for host, thus it is expected in all calls to
net_conn().

Keyword arguments calling prove useful for being able to provide for out-of-order
positional arguments, but, coupled with default arguments, they can also be used to "skip
over" missing arguments as well, as evidenced from our examples above.

Default Function Object Argument Example

We will now present yet another example of where a default argument may prove
beneficial. The grabweb.py script, given in Example 11.2 is a simple script whose main
purpose is to grab a web page from the Internet and temporarily store it to a local file for
analysis. This type of application can be used to test the integrity of a website's pages or
to monitor the load on a server (by measuring connectability or download speed). The
process() function can be anything we want, presenting an infinite number of uses. The
one we chose for this exercise displays the first and last non-blank lines of the retrieved
web page. Although this particular example may not prove too useful in the real world,
you can imagine what kinds of applications you can build on top of this code.

Example 11.2. Grabbing Web Pages (grabweb.py)

This script downloads a webpage (defaults to local www server) and displays the first and
last non-blank lines of the HTML file. Flexibility is added due to both default arguments
of thedownload() function which will allow overriding with different URLs or
specification of a different processing function.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from urllib import urlretrieve
004 4 from string import strip
005 5
006 6 def firstnonblank(lines):
007 7 for eachLine in lines:
008 8 if strip(eachLine) == '':
009 9 continue <$nopage>

IT-SC book: Core Python Programming

 333

010 10 else: <$nopage>
011 11 return eachLine
012 12
013 13 def firstlast(webpage):
014 14 f = open(webpage)
015 15 lines = f.readlines()
016 16 f.close()
017 17 print firstnonblank(lines),
018 18 lines.reverse()
019 19 print firstnonblank(lines),
020 20
021 21 def download(url='http://www', \
022 22 process=firstlast):
023 23 try: <$nopage>
024 24 retval = urlretrieve(url)[0]
025 25 except IOError:
026 26 retval = None
027 27 if retval: # do some
028 processing
029 28 process(retval)
030 29
031 30 if __name__ == '__main__':
032 31 download()
033 <$nopage>

Running this script in our environment gives the following output, although your mileage
will definitely vary since you will be viewing a completely different web page altogether.

% grabweb.py
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final
//EN">
</HTML>

Variable-length Arguments

There may be situations where your function is required to process an unknown number
of arguments. These are called variable-length argument lists. Variable-length arguments
are not named explicitly in function declarations because the number of arguments is
unknown before run-time (and even during execution, the number of arguments may be
different on successive calls), an obvious difference from formal arguments (positional
and default) which are named in function declarations. Python supports variable-length
arguments in two ways because function calls provide for both keyword and non-
keyword argument types.

Non-keyword Variable Arguments (Tuple)

When a function is invoked, all formal (required and default) arguments are assigned to
their corresponding local variables as given in the function declaration. The remaining
non-keyword variable arguments are inserted in order into a tuple for access. Perhaps you
are familiar with "varargs" in C (i.e., va_list, va_arg, and the ellipsis […]). Python

IT-SC book: Core Python Programming

 334

provides equivalent support—iterating over the tuple elements is the same as using
va_arg in C. For those who are not familiar with C or varargs, they just represent the
syntax for accepting a variable (not fixed) number of arguments passed in a function call.

The variable-length argument tuple must follow all positional and default parameters, and
the general syntax for functions with tuple or non-keyword variable arguments is as
follows:

def

 function_name([formal_args,] *vargs_tuple):
"function_documentation_string"
 function_body_suite

The asterisk operator (*) is placed in front of the variable that will hold all remaining
arguments once all the formal parameters have been exhausted, if any. The tuple is empty
if there are no additional arguments given.

As we saw earlier, a TypeError exception is generated whenever an incorrect number of
arguments is given in the function invocation. By adding a variable argument list variable
at the end, we can handle the situation when more than enough arguments are passed to
the function because all the extra (non-keyword) ones will be added to the variable
argument tuple. (The extra keyword arguments require a keyword variable argument
parameter [see the next section].)

As expected, all formal arguments must precede informal arguments for the same reason
that positional arguments must come before keyword arguments.

def tupleVarArgs(arg1, arg2='defaultB', *theRest):
 'display regular args and non-keyword variable args'
 print 'formal arg 1:', arg1
 print 'formal arg 2:', arg1
 for eachXtrArg in theRest:
 print 'another arg:', eachXtrArg

We will now invoke this function to show how variable argument tuples work:

>>> tupleVarArgs('abc')
formal arg 1: abc
formal arg 2: defaultB
>>>
>>> tupleVarArgs(23, 4.56)
formal arg 1: 23
formal arg 2: 4.56
>>>

IT-SC book: Core Python Programming

 335

>>> tupleVarArgs('abc', 123, 'xyz', 456.789)
formal arg 1: abc
formal arg 2: 123
another arg: xyz
another arg: 456.789

Keyword Variable Arguments (Dictionary)

In the case where we have a variable number or extra set of keyword arguments, these are
placed into a dictionary where the "keyworded" argument variable names are the keys,
and the arguments are their corresponding values. Why must it be a dictionary? Because
a pair of items is given for every argument—the name of the argument and its value—so
it is a natural fit to use a dictionary to hold these arguments. Here is the syntax of
function definitions which use the variable argument dictionary for extra keyword
arguments:

def

 function_name([formal_args,][*vargst,] **vargsd):
 function_documentation_string
 function_body_suite

To differentiate keyword variable arguments from non-keyword informal arguments, a
double asterisk (**) is used. The ** is overloaded so it should not be confused with
exponentiation. The keyword variable argument dictionary should be the last parameter
of the function definition prepended with the '**'. We now present an example of how
to use such a dictionary:

def dictVarArgs(arg1, arg2='defaultB', **theRest):
 'display 2 regular args and keyword variable args'
 print 'formal arg1:', dictVarArgs
 print 'formal arg2:', arg2
 for eachXtrArg in theRest.keys():
 print 'Xtra arg %s: %s' % \
 (eachXtrArg, str(theRest[eachXtrArg]))

Executing this code in the interpreter, we get the following output:

>>> dictVarArgs(1220, 740.0, c='grail'
formal arg1: 1220
formal arg2: 740.0
Xtra arg c: grail
>>>
>>> dictVarArgs(arg2='tales', c=123, d='poe',
a='mystery')
formal arg1: mystery

IT-SC book: Core Python Programming

 336

formal arg2: tales
Xtra arg c: 123
Xtra arg d: poe
>>>
>>> dictVarArgs('one', d=10, e='zoo', men=('freud',
'gaudi'))
formal arg1: one
formal arg2: defaultB
Xtra arg men: ('freud', 'gaudi')
Xtra arg d: 10
Xtra arg e: zoo

Both keyword and non-keyword variable arguments may be used in the same function as
long as the keyword dictionary is last and is preceded by the non-keyword tuple, as in the
following example:

def newfoo(arg1, arg2, *nkw, **kw):
 display regular args and all variable args'
 print 'arg1 is:', arg1
 print 'arg2 is:', arg2
 for eachNKW in nkw:
 print 'additional non-keyword arg:', eachNKW
 for eachKW in kw.keys():
 print "additional keyword arg '%s': %s" % \
 (eachKW, kw[eachKW])

Calling our function within the interpreter, we get the following output:

>>> newfoo('wolf', 3, 'projects', freud=90, gamble=96)
arg1 is: wolf
arg2 is: 3
additional non-keyword arg: projects
additional keyword arg 'freud': 90
additional keyword arg 'gamble': 96

Calling Functions with Variable Argument Objects

Python 1.6 introduces the ability to explicitly provide groups of variable arguments, both
a non-keyword tuple and/or a keyword dictionary. In each of the above examples of
variable arguments, the variable arguments provided for in the invocation include
individual arguments (see all the examples in the preceding section). Prior to 1.6, this was
the only way to call a function with a variable number of arguments.

Function calls have the added ability to take a tuple with contents that will go straight to
the non-keyword variable argument tuple and a dictionary containing key-value pairs to
add to the keyword variable argument dictionary. The tuple and dictionary may be joined

IT-SC book: Core Python Programming

 337

in the function call by those variable arguments that were given the original way, listed
individually. The general function invocation full syntax for variable arguments
supported by Python starting with 1.6 is:

function_name(formal_args, *nonKWtuple, **KWdict)

In the previous section, we saw that the '*' and '**' constructs are already accepted for
function declarations, but now they are valid for function calls as well!

We will now use our friend newfoo() defined in the previous section to test the new
calling syntax. Our first call to newfoo() will use the old-style method of listing all
arguments individually, even the variable arguments which follow all the formal
arguments:

>>> newfoo(10, 20, 30, 40, foo=50, bar=60)
arg1 is: 10
arg2 is: 20
additional non-keyword arg: 30
additional non-keyword arg: 40
additional keyword arg 'foo': 50
additional keyword arg 'bar': 60

We will now make a similar call; however, instead of listing the variable arguments
individually, we will put the non-keyword arguments in a tuple and the keyword
arguments in a dictionary to make the call:

>>> newfoo(2, 4, *(6, 8), **{'foo': 10, 'bar': 12})
arg1 is: 2
arg2 is: 4
additional non-keyword arg: 6
additional non-keyword arg: 8
additional keyword arg 'foo': 10
additional keyword arg 'bar': 12

Finally, we will make another call but build our tuple and dictionary outside of the
function invocation:

>>> aTuple = (6, 7, 8)
>>> aDict = {'z': 9}
>>> newfoo(1, 2, 3, x=4, y=5, *aTuple, **aDict)
arg1 is: 1
arg2 is: 2
additional non-keyword arg: 3

IT-SC book: Core Python Programming

 338

additional non-keyword arg: 6
additional non-keyword arg: 7
additional non-keyword arg: 8
additional keyword arg 'z': 9
additional keyword arg 'x': 4
additional keyword arg 'y': 5

Notice how our tuple and dictionary arguments make only a subset of the final tuple and
dictionary received within the function call. The additional non-keyword value '3' and
keyword pairs for 'x' and 'y' were also included in the final argument lists even though
they were not part of the '*' and '**' variable argument parameters.

Functional Programming

Python is not and will probably not ever claim to be a functional programming language,
but it does support a number of valuable functional programming constructs. There are
also some which behave like functional programming mechanisms but may not be
traditionally considered as such. What Python does provide comes in the form of four
built-in functions and lambda expressions.

Anonymous Functions and lambda

Python allows one to create anonymous functions using the lambda keyword. They are
"anonymous" because they are not declared in the standard manner, i.e., using the def
statement. (Unless assigned to a local variable, such objects do not create a name in any
namespace either.) However, as functions, they may also have arguments. An entire
lambda "statement" represents an expression, and the body of the lambda expression
must also be given on the same line as the declaration. We now present the syntax for
anonymous functions using lambda:

lambda [arg1[, arg2, … argN]]: expression

Arguments are optional, and if used, are usually part of the expression as well.

NOTE

Calling lambda with an appropriate expression yields a function object which can be used
like any other function. They can be passed to other functions, aliased with additional
references, be members of container objects, and as callable objects, be invoked (with
any arguments, if necessary). When called, these objects will yield a result equivalent to
the same expression if given the same arguments. They are indistinguishable from
functions which return the evaluation of an equivalent expression.

IT-SC book: Core Python Programming

 339

Before we look at any examples using lambda, we would like to review single-line
statements and then show the resemblances to lambda expressions.

def true():
 return 1

The above function takes no arguments and always returns 1. Single line functions in
Python may be written on the same line as the header. Given that, we can rewrite our
true() function so that it looks something like the following.

def true(): return 1

We will present the named functions in this manner for the duration of this chapter
because it helps one visualize their lambda equivalents. For our true() function, the
equivalent lambda expression (no arguments, returns 1) is:

lambda :1

Usage of the named true() function is fairly obvious, but not for lambda. Do we just
use it as is, or do we need to assign somewhere? A lambda function by itself serves no
purpose, as we see here:

>>> lambda :1
<function <lambda> at f09ba0>

In the above example, we simply created a lambda function, but did not save it anywhere
nor did we call it. The reference count for this function object is set to 1 on creation of the
function object, but because no reference is saved, goes back down to zero and garbage-
collected. To keep the object around, we can save it into a variable and invoke it any time
after. Perhaps now is a good opportunity:

>>> true = lambda :1
>>> true()
1

IT-SC book: Core Python Programming

 340

Assigning it looks much more useful here. Likewise, we can assign lambda expressions
to a data structure such as a list or tuple where, based on some input criteria, we can
choose which function to execute as well as what the arguments would be. (In the next
section, we will show how to use lambda expressions with functional programming
constructs.)

Let us now design a function that takes two numeric or string arguments and returns the
sum for numbers or the concatenated string. We will show the standard function first,
followed by its unnamed equivalent.

def add(x, y): return x + y? lambda x, y: x + y

Default and variable arguments are permitted as well, as indicated in the following
examples:

def usuallyAdd2(x, y=2): return x+y ? lambda x, y=2: x+y
def showAllAsTuple(*z): return z ? lambda *z: z

Seeing is one thing, so we will now try to make you believe by showing how you can try
them in the interpreter:

>>> a = lambda x, y=2: x + y
>>> a(3)
5
>>> a(3,5)
8
>>> a(0)
2
>>> a(0,9)
9
>>>
>>> b = lambda *z: z
>>> b(23, 'zyx')
(23, 'zyx')
>>> b(42)
(42,)

One final word on lambda. Although it appears that lambda's are a one-line version of a
function, they are not equivalent to "inline" statements in C++, whose purpose is
bypassing function stack allocation during invocation for performance reasons. A lambda
expression works just like a function, creating a frame object when called.

Built-in Functions: apply(), filter(), map(), reduce()

IT-SC book: Core Python Programming

 341

In this section, we will look at the apply(), filter(), map(), and reduce() built-in
functions as well as give some examples to show how they can be used. These functions
provide the functional programming features found in Python. A summary of these
functions is given in Table 11.1. All take a function object to somehow invoke.

Table 11.1. Functional Programming Built-in Functions
Built-in Function Description

apply(func[,
nkw][, kw])

call func with optional arguments, nkw for non-keyword arguments
and kw for keyword arguments; the return value is the return value
of the function call

filter(func,
seq)

invokes Boolean function func iteratively over each element of
seq; returns a sequence for those elements for which func
returned true

map(func,
seq1[, seq2…])

applies function func to each element of given sequences(s) and
provides return values in a list; if func is None, func behaves as
the identity function, returning a list consisting of n- tuples for sets
of elements of each sequence

reduce(func,
seq[, init])

applies binary function func to elements of sequence seq, taking a
pair at a time (previous result and next sequence item), continually
applying the current result with the next value to obtain the
succeeding result, finally reducing our sequence to a single return
value; if initial value init given, first compare will be of init and
first sequence element rather than the first two sequence elements

As you may imagine, lambda functions fit nicely into applications using any of these
functions because all of them take a function object with which to execute, and lambda
provides a mechanism for creating functions on the fly.

*apply()

The first built-in function we are looking at is apply(). The apply() function is the
most basic of the four and is simply used to pass in a function object along with any
parameters. apply() will then invoke that function with the given arguments. There is no
special magic here; apply() works exactly the way you think it does, so the following
pair of calls are practically identical:

foo(3, 'pyramid') ? apply(foo, (3, 'pyramid'))

Alternatively, the arguments can be stored in a tuple, and then the function can be called
with apply():

args = (4, 'eve', 79)
apply(foo, args)

IT-SC book: Core Python Programming

 342

Note this is not the same as foo(args) which is calling foo() with a single argument (a
tuple). Rather, using apply() means calling foo() with three arguments, the elements of
the tuple.

If you wanted to call the built-in function dir() from the interpreter, you could either
execute it directly, or use apply(). In this example, they both have the same effect since
no arguments are involved.

dir() ? apply(dir)

Below, we perform both function calls in the interpreter to show you they produce
identical results:

>>> dir()
['__builtins__', '__doc__', '__name__']
>>>
>>> apply(dir)
['__builtins__', '__doc__', '__name__']

You may be wondering… why would I ever need to use apply() when I can just make a
function call? Is there ever a need to do the following? Not only does it require more
typing on my part, but the syntax is more complicated.

apply() can be used as an effective tool in certain situations. One scenario where
apply() comes in handy is when you need to call a function, but its arguments are
generated dynamically. Such situations usually involve assembling an argument list. In
our math game in Example 11.3 (matheasy.py), we generate a two-item argument list
to send to the appropriate arithmetic function.

The matheasy.py application is basically an arithmetic math quiz game for children
where an arithmetic operation is randomly chosen between addition, subtraction, and
multiplication. We use the functional equivalents of these operators, add(), sub(), and
mul(), all found in the operator module. We then generate the list of arguments (two,
since these are binary operators/operations). Then random numbers are chosen as the
operands. Since we do not want to support negative numbers in this more elementary
edition of this application, we sort our list of two numbers in largest-to-smallest order,
then call apply() with this argument list and the randomly-chosen arithmetic operator to
obtain the correct solution to the posed problem. apply() makes a good choice for our
application for two reasons:

Example 11.3. Arithmetic Game Using apply()(matheasy.py)

IT-SC book: Core Python Programming

 343

Randomly chooses numbers and an arithmetic function, displays the question, and
verifies the results. Shows answer after three wrong tries and does not continue until the
user enters the correct answer.

 <$nopage>
001 1 #!/usr/bin/env python
002 2 from string import lower
003 3 from operator import add, sub, mul
004 4 from random import randint, choice
005 5
006 6 ops = { '+': add, '-': sub, '*': mul }
007 7 MAXTRIES = 2
008 8
009 9 def doprob():
010 10 op = choice('+-*')
011 11 nums = [randint(1,10), randint(1,10)]
012 12 nums.sort() ; nums.reverse()
013 13 ans = apply(ops[op], nums)
014 14 pr = '%d %s %d = ' % (nums[0], op, nums[1])
015 15 oops = 0
016 16 while 1:
017 17 try: <$nopage>
018 18 if int(raw_input(pr)) == ans:
019 19 print 'correct'
020 20 break <$nopage>
021 21 if oops == MAXTRIES:
022 22 print 'answer\n%s%d'%(pr,ans)
023 23 else: <$nopage>
024 24 print 'incorrect… try again'
025 25 oops = oops + 1
026 26 except (KeyboardInterrupt, \
027 27 EOFError, ValueError):
028 28 print 'invalid input… try again'
029 29
030 30 def main():
031 31 while 1:
032 32 doprob()
033 33 try: <$nopage>
034 34 opt = lower(raw_input('Again? '))
035 35 except (KeyboardInterrupt, EOFError):
036 36 print ; break <$nopage>
037 37 if opt and opt[0] == 'n':
038 38 break <$nopage>
039 39
040 40 if __name__ == '__main__':
041 41 main()
042 <$nopage>

Argument list hand-built

Function randomly chosen

Since we do not know what our arguments are nor do we know what function we will be
calling for each math question posed to the user, apply() makes for a flexible solution.

IT-SC book: Core Python Programming

 344

Lines 1 - 4

Our code begins with the usual Unix start-up line, which, we repeat, will be harmlessly
ignored on all non-Unix systems. What follows are three from-import statements which
load string.lower() for case-insensitive input verification, random.randint() for
choosing the arithmetic operands, random.choice() for picking the arithmetic operation,
and all the arithmetic operations we need from the operator module.

Lines 6 - 7

The global variables we use in this application are a set of operations and their
corresponding functions, and a value indicating how many times (three: 0, 1, 2) we allow
the user to enter an incorrect answer before we reveal the solution. The function
dictionary uses the operator's symbol to index into the dictionary, pulling out the
appropriate arithmetic function.

Lines 9 - 28

The doprob() function is the core engine of the application. It randomly picks an
operation and generates the two operands, sorting them from largest-to-smallest order in
order to avoid negative numbers for subtraction problems. It then invokes apply() to call
the math function with the values, calculating the correct solution. The user is then
prompted with the equation and given three opportunities to enter the correct answer.

Lines 30-41

The main driver of the application is main(), called from the top-level if the script is
invoked directly. If imported, the importing function either manages the execution by
calling doprob(), or calls main() for program control. main() simply calls doprob() to
engage the user in the main functionality of the script and prompts the user to quit or to
try another problem.

Since the values and operators are chosen randomly, each execution of matheasy.py
should be different. Here is what we got today (oh, and your answers may vary as well!):

% matheasy.py
7 - 2 = 5
correct
Try another? ([y]/n)
7 * 6 = 42
correct
Try another? ([y]/n)
7 * 3 = 20
incorrect… try again
7 * 3 = 22
incorrect… try again
7 * 3 = 23

IT-SC book: Core Python Programming

 345

sorry… the answer is
7 * 3 = 21
7 * 3 = 21
correct
Try another? ([y]/n)
7 - 5 = 2
correct
Try another? ([y]/n) n

Another useful application of apply() comes in terms of debugging or performance
measurement. You are working on functions that need to be fully tested or run through
regressions every night, or that need to be timed over many iterations for potential
improvements. All you need to do is to create a diagnostic function that sets up the test
environment, then calls the function in question. Because this system should be flexible,
you want to allow the testee function to be passed in as an argument. So a pair of such
functions, timeit() and testit(), would probably be useful to the software developer
today.

We will now present the source code to one such example of a testit() function (see
Example 11.4). We will leave a timeit() function as an exercise for the reader (see
Exercise 11.12 at end of chapter).

This module provides an execution test environment for functions. The testit()
function takes a function and arguments, then invokes that function with the given
arguments under the watch of an exception handler. If the function completes
successfully, a return value of 1 packaged withthe return value of the function is sent
back to the caller. Any failure returns a status of 0 and the cause of the exception.
(Exception is the root class for all exceptions; review Chapter 10 for details.)

Example 11.4. Testing Functions (testit.py)

testit() invokes a given function with its arguments, returning a 1 packaged with the
return value of the function on success and 0 with the cause of the exception on failure.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 def testit(func, *nkwargs, **kwargs):
004 4
005 5 try:
006 6 retval = apply(func, nkwargs, kwargs)
007 7 result = (1, retval)
008 8 except Exception, diag:
009 9 result = (0, str(diag))
010 10 return result
011 11
012 12 def test():
013 13 funcs = (int, long, float)
014 14 vals = (1234, 12.34, '1234', '12.34')

IT-SC book: Core Python Programming

 346

015 15
016 16 for eachFunc in funcs:
017 17 print '-' * 20
018 18 for eachVal in vals:
019 19 retval = testit(eachFunc, \
020 20 eachVal)
021 21 if retval[0]:
022 22 print '%s(%s) =' % \
023 23 (eachFunc.__name__, 'eachVal'), retval[1]
024 24 else: <$nopage>
025 25 print '%s(%s) = FAILED:' % \
026 26 (eachFunc.__name__, 'eachVal'), retval[1]
027 27
028 28 if __name__ == '__main__':
029 29 test()
030 <$nopage>

The unit tester function test() runs a set of numeric conversion functions on an input set
of four numbers. There are two failure cases in this test set to confirm such functionality.
Here is the output of running the script:

% testit.py

int(1234) = 1234
int(12.34) = 12
int('1234') = 1234
int('12.34') = FAILED: invalid literal for int(): 12.34

long(1234) = 1234L
long(12.34) = 12L
long('1234') = 1234L
long('12.34') = FAILED: invalid literal for long(): 12.34

float(1234) = 1234.0
float(12.34) = 12.34
float('1234') = 1234.0
float('12.34') = 12.34

filter()

The second built-in function we examine in this chapter is filter(). Imagine going to
an orchard and leaving with a bag of apples you picked off the trees. Wouldn't it be nice
if you could run the entire bag through a filter to keep just the good ones? That is the
main premise of the filter() function.

Given a sequence of objects and a "filtering" function, run each item of the sequence
through the filter, and keep only the ones that the function returns true for. The filter()
function calls the given Boolean function for each item of the provided sequence. Each
item for which filter() returns a non-zero (true) value is appended to a list. The object
that is returned is a "filtered" sequence of the original.

If we were to code filter() in pure Python, it might look something like this:

IT-SC book: Core Python Programming

 347

def filter(bool_func,
 sequence):
filtered_seq = []
for eachItem in
 sequence:
 if apply(bool_func, (eachItem,)):
 filtered_seq.append(eachItem)
 return filtered_seq

One way to to understand filter() better is by visualizing its behavior. Figure11-1
attempts to do just that.

Figure 11-1. How the filter() Built-in Function Works

In Figure11-1, we observe our original sequence at the top, items seq[0], seq[1], …
seq[N-1] for a sequence of size N. For each call to bool_func(), i.e.,
bool_func(seq[0]), bool_func(seq[1]), etc, a return value of 0 or 1 comes back (as
per the definition of a Boolean function—ensure that indeed your function does return 0
or 1). If bool_func() returns true for any sequence item, that element is inserted into the
return sequence. When iteration over the entire sequence has been completed, filter()
returns the newly-created sequence.

We present below a script which shows one way to use filter() to obtain a short list of
random odd numbers. The script generates a larger set of random numbers first, then
filters out all the even numbers, leaving us with the desired dataset. When we first coded
this example, oddnogen.py looked like the following:

from random import randint

IT-SC book: Core Python Programming

 348

def odd(n):
return n % 2

def main():
allNums = []
for eachNum in range(10):
 allNums.append(randint(1, 101))
oddNums = filter(odd, allNums)
print len(oddNums), oddNums

if __name__ == \q__main__\q:
 main()

The script consists of two functions: odd(), a Boolean function which determined if an
integer was odd (true) or even (false), and main(), the primary driving component. The
purpose of main() is to generate ten random numbers between one and a hundred; then
filter() is called to remove all the even numbers. Finally, the set of odd numbers is
displayed, preceded by the size of our filtered list.

Importing and running this module several times, we get the following output:

>>> import oddnogen
>>> oddnogen.main()
4 [9, 33, 55, 65]
>>>
>>> oddnogen.main()
5 [39, 77, 39, 71, 1]
>>>
>>> oddnogen.main()
6 [23, 39, 9, 1, 63, 91]
>>>
>>> oddnogen.main()
5 [41, 85, 93, 53, 3]

On second glance, we realize that the odd() function can be replaced by a lambda
expression to pass to filter(), and it is this modification which gives us our final
oddnogen.py script. The code is given in Example 11.5.

Example 11.5. Odd Number Generator (oddnogen.py)

This simple program generates ten random numbers between one and one hundred, then
filters out all the even ones. The program then displays the total number filtered out and
the resulting list of odd numbers.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint

IT-SC book: Core Python Programming

 349

004 4
005 5 def main():
006 6
007 7 allNums = []
008 8 for eachNum in range(10):
009 9 allNums.append(randint(1, 100))
010 10 oddNums = filter(lambda n: n % 2, allNums)
011 11 print len(oddNums), oddNums
012 12
013 13 if __name__ == '__main__':
014 14 main()
015 <$nopage>

map()

The map() built-in function is similar to filter() in that it can process a sequence
through a function. However, unlike filter(), map() "maps" the function call to each
sequence item and returns a list consisting of all the return values.

In its simplest form, map() takes a function and sequence, applies the function to each
item of the sequence, and creates a return value list that is comprised of each application
of the function. So if your mapping function is to add 2 to each number that comes in and
you feed that function to map() along with a list of numbers, the resulting list returned is
the same set of numbers as the original, but with 2 added to each number. If we were to
code how this simple form of map() works in Python, it might look something like the
code below and is illustrated in Figure11-2

Figure 11-2. How the map() Built-in Function Works

def map(func, seq):
mapped_seq = []
for eachItem in

IT-SC book: Core Python Programming

 350

 seq:
 mapped_seq.append(apply(func, eachItem))
 return mapped_seq

We can whip up a few quick lambda functions to show you how map() works on real
data:

>>> map((lambda x: x+2), [0, 1, 2, 3, 4, 5])
[2, 3, 4, 5, 6, 7]
>>>
>>> map(lambda x: x**2, [0, 1, 2, 3, 4, 5])
[0, 1, 4, 9, 16, 25]
>>>
>>> map((lambda x: x**2), range(6))
[0, 1, 4, 9, 16, 25]

The more general form of map() can take more than a single sequence as its input. If this
is the case, then map() will iterate through each sequence in parallel. On the first
invocation, it will bundle the first element of each sequence into a tuple, apply the func
function to it, and return the result as a tuple into the mapped_seq mapped sequence that
is finally returned as a whole when map() has completed execution.

Figure11-2 illustrated how map() works with a single sequence. If we used map() with
M sequences of N objects each, our previous diagram would be converted to something
like the diagram presented in Figure11-3

Figure 11-3. How the map() Built-in Function Works with > 1 Sequence

IT-SC book: Core Python Programming

 351

For example, let us consider the following call to map():

>>> map(lambda x, y: x + y, [1,3,5], [2,4,6])
[3, 7, 11]

In the above example, the number of sequences, M, is two. The lists [1, 3, 5] and [2, 4, 6]
are our sequences. And each of these sequences has cardinality or size three, or N. The
result then consists of the following:

Let:

f(x, y) \xba x + y,
seq0 = [1, 3, 5], and
seq1 = [2, 4, 6]

Then:

 map(f, seq0, seq1)
= [f(seq0[0], seq1[0]), f(seq0[1], seq1[1]), \
 f(seq0[2], seq1[2])
= [1 + 2, 3 + 4, 5 + 6]
= [3, 7, 11]

IT-SC book: Core Python Programming

 352

Also, map() can also take None as the function argument. If None is used instead of a real
function object, map() will take that clue to default to the identity function, meaning that
the resulting map will be of the same one as the sequence you passed in. If more than one
sequence is passed in, then the resulting list will consist of a tuple with one element from
each sequence. Here are a few more examples of using map() with multiple sequences,
including one with None passed in as the map() function:

>>> map(lambda x, y: (x+y, x-y), [1,3,5], [2,4,6])
[(3, -1), (7, -1), (11, -1)]
>>> map(lambda x, y: (x+y, x*y), [1,3,5], [2,4,6])
[(3, 2), (7, 12), (11, 30)]
>>> map(None, [1,3,5], [2,4,6])
[(1, 2), (3, 4), (5, 6)]

This idiom is so commonly used that a new built-in function, Zip(), which does the
same thing (given sequences of identical size), was added in Python 2.0.

Now these "real-time" examples are nice, but we should also show you some code that
you can use in real life. In the next example, we created a text file called map.txt, which
has a few lines of text surrounded by whitespace. We will use the script strupper.py,
given in Example 11.6, to strip all the leading and trailing whitespace by passing each
line to string.strip() and converting all text to uppercase using string.upper().
The output of this script will show you the file contents before our manipulation and what
the lines look like after we are finished:

Example 11.6. Text File Processing (strupper.py)

strupper.pytakes an existing text file, strips all leading and trailing whitespace, and
converts all the text to uppercase.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from string import strip, upper
004 4
005 5 f = open('map.txt')
006 6 lines = f.readlines()
007 7 f.close()
008 8
009 9 print 'BEFORE:\n'
010 10 for eachLine in lines:
011 11 print '[%s]' % eachLine[:-1]
012 12
013 13 print '\nAFTER:\n'
014 14 for eachLine in map(upper, \
015 15 map(strip, lines)):
016 16 print '[%s]' % eachLine
017 <$nopage>

IT-SC book: Core Python Programming

 353

% strupper.py
BEFORE:

[Apply function to every item of list and return a]
[list of the results. If additional list arguments are]
[passed, function must take that many arguments and is]
[applied to the items of all lists in parallel.]

AFTER:

[APPLY FUNCTION TO EVERY ITEM OF LIST AND RETURN A]
[LIST OF THE RESULTS. IF ADDITIONAL LIST ARGUMENTS ARE]
[PASSED, FUNCTION MUST TAKE THAT MANY ARGUMENTS AND IS]
[APPLIED TO THE ITEMS OF ALL LISTS IN PARALLEL.]

Notice that only leading and trailing whitespace is removed. Extra whitespace in the
middle of a string such as the last sentence is left as-is.

Our final example in this chapter deals with processing numbers. In particular, assume
we have a text file full of numeric dollar amounts. Let us say that these numbers are to go
on your income tax form, but you want to round them all to the nearest dollar amount.
Here are the contents of our test text file round.txt:

98.76
90.69
51.36
50.89
28.34
49.64
6.87
36.95
59.25
55.96

We now present in Example 11.7 the code to rounder.py, a script which strips the
trailing NEWLINE character and rounds all the values to the nearest dollar (converting
the data from strings to floats first, of course).

Example 11.7. Text File Number Crunching (rounder.py)

rounder.py takes a set of floating point values stored in a text file, and rounds them to
the closest whole number. The exercise is to simulate taking numbers destined for income
taxes and rounding them to the nearest dollar.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 f = open('round.txt')

IT-SC book: Core Python Programming

 354

004 4 values = map(float, f.readlines())
005 5 f.close()
006 6
007 7 print 'original\trounded'
008 8 for eachVal in map(None, values, \
009 9 map(round, values)):
010 10 print '%6.02f\t\t%6.02f' % eachVal
011 <$nopage>

The first thing that this script does is to call map(), sending each line to the float()
built-in function, thereby converting the string values to numeric ones while ignoring any
leading or trailing whitespace.

Finally, the main part of the code will now present the original values as well as the
rounded ones. This is accomplished by sending the values to the round() built-in
function via map(). At the same time, we call map() with a None function—implying
identity which does nothing but merge its sequence arguments into a single list consisting
of tuples, each containing one value from each sequence. (Starting in 2.0, we could have
also used the zip() function, as indicated earlier in this section.) In our case, this
constitutes an original value and a rounded value. The for loop thus iterates over this list
of tuples, each tuple representing the original and rounded values, which are then
displayed to the user in a nice and readable format.

Executing the rounder.py script, we get the following output:

% rounder.py
original rounded
 98.76 99.00
 90.69 91.00
 51.36 51.00
 50.89 51.00
 28.34 28.00
 49.64 50.00
 6.87 7.00
 36.95 37.00
 59.25 59.00
 55.96 56.00

reduce()

The final functional programming piece is reduce(), which takes a binary function (a
function that takes two values, performs some calculation and returns one value as
output), a sequence, and an optional initializer, and methodologically "reduces" the
contents of that list down to a single value, hence its name.

It does this by taking the first two elements of the sequence and passing them to the
binary function to obtain a single value. It then takes this value and the next item of the

IT-SC book: Core Python Programming

 355

sequence to get yet another value, and so on until the sequence is exhausted and one final
value is computed.

You may try to visualize reduce() as the following equivalence example:

reduce(func, [1, 2, 3]) = func(func(1, 2), 3)

Some argue that the "proper functional" use of reduce() requires only one item to be
taken at a time for reduce(). In our first iteration above, we took two items because we
did not have a "result" from the previous values (because we did not have any previous
values). This is where the optional initializer comes in. If the initializer is given, then the
first iteration is performed on the initializer and the first item of the sequence, and
follows normally from there.

If we were to try to implement reduce() in pure Python, it might look something like
this:

def reduce(bin_func, seq, init=None):

 lseq = list(seq) # convert to list

 if init == None: # initializer?
 res = lseq.pop(0) # no
 else:
 res = init # yes

 for item in lseq: # reduce sequence
 res = bin_func(res, item) # apply function

 return res # return result

This may be the most difficult of the four conceptually, so we should again show you an
example as well as a functional diagram (see Figure11-4). The "hello world" of reduce()
is its use of a simple addition function or its lambda equivalent seen earlier in this chapter:

Figure 11-4. How the reduce() Built-in Function Works

IT-SC book: Core Python Programming

 356

• def sum(x,y): return x,y
• lambda x,y: x+y

Given a list, we can get the sum of all the values by simply creating a loop, iteratively
going through the list, adding the current element to a running subtotal, and be presented
with the result once the loop has completed:

allNums = range(5) # [0, 1, 2, 3, 4]
total = 0
for eachNum in allNums:
 total = sum(total, eachNum) # total = total + eachNum
print 'the total is:', total

Making this code real in the interpreter looks like this:

>>> def sum(x,y): return x+y
>>> allNums = range(5)
>>> total = 0
>>> for eachNum in allNums:

IT-SC book: Core Python Programming

 357

... total = sum(total, eachNum)

...
>>> print 'the total is:' total
the total is: 10

Using a lambda function, we argue that we can accomplish the same task on a single line
using reduce():

>>> print 'the total is:', reduce((lambda x,y: x+y), range(5))
the total is: 10

The reduce() function performs the following mathematical operations given the input
above:

((0 + 1) + 2) + 3) + 4)? 10

It takes the first two elements of the list (0 and 1), calls sum() to get 1, then calls sum()
again with that result and the next item 2, gets the result from that, pairs it with the next
item 3 and calls sum(), and finally takes the entire subtotal and calls sum() with 4 to
obtain 10, which is the final return value.

Variable Scope

The scope of an identifier is defined to be the portion of the program where its
declaration applies, or what we refer to as "variable visibility." In other words, it is like
asking yourself in which parts of a program do you have access to a specific identifier.
Variables either have local or global scope.

Global vs. Local Variables

Variables defined within a function have local scope, and those which are at the highest
level in a module have global or nonlocal scope.

In their famous "dragon" book on compiler theory, Aho, Sethi, and Ullman summarize it
this way:

"The portion of the program to which a declaration applies is called the scope of that
declaration. An occurrence of a name in a procedure is said to be local to the procedure if
it is in the scope of a declaration within the procedure; otherwise, the occurrence is said
to be nonlocal."

IT-SC book: Core Python Programming

 358

One characteristic of global variables is that unless deleted, they have a lifespan that lasts
as long as the script that is running and whose values are accessible to all functions,
whereas local variables, like the stack frame they reside in, live temporarily, only as long
as the functions they are defined in are currently active. When a function call is made, its
local variables come into scope as they are declared. At that time, a new local name is
created for that object, and once that function has completed and the frame deallocated,
that variable will go out of scope.

global_str = 'foo'
def foo():
 local_str = 'bar'
 return global_str + local_str

In the above example, global_str is a global variable while local_str is a local
variable. The foo() function has access to both global and local variables while the main
block of code has access only to global variables.

NOTE

When searching for an identifier, Python searches the local scope first. If the name is not
found within the local scope, then an identifier must be found in the global scope or else a
NameError exception is raised.

A variable's scope is related to the namespace in which it resides. We will cover
namespaces formally in the next chapter; it suffices to say for now that namespaces are
just naming domains which maps names to objects, a virtual set of what variable names
are currently in use, if you will. The concept of scope relates to the namespace search
order that is used to find a variable. All names in the local namespace are within the local
scope when a function is executing. That is the first namespace searched when looking
for a variable. If it is not found there, then perhaps a globally-scoped variable with that
name can be found. These variables are stored (and searched) in the global and built-in
namespaces.

It is possible to "hide" or override a global variable just by creating a local one. Recall
that the local namespace is searched first, being in its local scope. If the name is found,
the search does not continue to search for a globally-scoped variable, hence overriding
any matching name in either the global or built-in namespaces.

Also, be careful when using local variables with the same names as global variables. If
you use such names in a function (to access the global value) before you assign the local

IT-SC book: Core Python Programming

 359

value, you will get an exception (NameError or UnboundLocalError), depending on
which version of Python you are using.

global Statement

Global variable names can be overridden by local variables if they are declared within the
function. Here is another example, similar to the first, but the global and local nature of
the variable is not as clear.

def foo():
 print "\ncalling foo()…"
 bar = 200
 print "in foo(), bar is", bar
bar = 100
print "in __main__, bar is", bar
foo()
print "\nin __main__, bar is (still)", bar

It gave the following output:

in __main__, bar is 100
calling foo()…
in foo(), bar is 200
in __main__, bar is (still) 100

Our local bar pushed the global bar out of the local scope. To specifically reference a
named global variable, one must use the global statement. The syntax for global is:

global
 var1[, var2[, …
varN]]]

Modifying the example above, we can update our code so that we use the global version
of is_this_global rather than create a new local variable.

>>> is_this_global = "xyz"
>>> def foo():
… global is_this_global
… this_is_local = 'abc'
… is_this_global = 'def'
… print this_is_local + is_this_global
…
>>> foo()

IT-SC book: Core Python Programming

 360

abcdef
>>> print is_this_global
def

Number of Scopes

Python syntactically supports multiple levels of functional nesting; however, a maximum
of two scopes is imposed: a function's local scope and the global scope. Even as more
levels of functional nesting exist, you are not able to access more than two scopes.

def foo():
 m = 3
 def bar():
 n = 4
 print m + n
 print m
 bar()

>>> foo()
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
 File "<interactive input>", line 7, in foo
 File "<interactive input>", line 5, in bar
NameError: m

The access to foo()'s local variable m within function bar() is illegal because m is
declared local to foo(). The only scopes accessible from bar() are bar()'s local scope
and the global scope. foo()'s local scope is not included in that short list of two. Note
that the output for the "print m" statement succeeded, and it is the function call to bar()
that fails. (Note: this may change for future versions of Python.)

Other Scope Characteristics

Scope and lambda

Python's lambda expressions follow the same scoping rules as standard functions. A
lambda expression defines a new scope, just like a function definition, so the scope is
inaccessible to any other part of the program except for that local lambda/function.

Those lambda expressions declared local to a function are accessible only within that
function; however, the expression in the lambda statement has the same scope access as
the function. In other words, they have access to global variables, but neither has access
to each other's local scopes. You can also think of a function and a lambda expression as
siblings.

IT-SC book: Core Python Programming

 361

>>> x = 10
>>> def foo():
… y = 5
… bar = lambda :x+y
… print bar()
… y = 8
… print bar()
…
>>> foo()
Traceback (innermost last):
 File "<interactive input>", line 0, in ?
 File "<interactive input>", line 4, in foo
 File "<interactive input>", line 3, in <lambda>
NameError: y

In the example above, although the lambda expression was created in the local scope of
foo(), it has access to only two scopes: its local scope and the global scope (also see
Section 11.8.3). We can correct it by placing a local variable z within the lambda
expression that references the function local variable y.

>>> x = 10
>>> def foo():
… y = 5
… bar = lambda z:x+z
… print bar(y)
…
… y = 8
… print bar(y)
…
>>> foo()
15
18

Variable Scope and Namespaces

From our study in this chapter, we can see that at any given time, there are either one or
two active scopes—no more, no less. Either we are at the top-level of a module where we
have access only to the global scope, or we are executing in a function where we have
access to its local scope as well as the global scope. How do namespaces relate to scope?

From the Core Note in Section 11.8.1, we can also see that at any given time, there are
either two or three active namespaces. From within a function, the local scope
encompasses the local namespace, the first place a name is searched for. If the name
exists here, then checking the global scope (global and built-in namespaces) is skipped.
From the global scope (outside of any function), a name lookup begins with the global
namespace. If no match is found, the search proceeds to the built-in namespace.

IT-SC book: Core Python Programming

 362

We will now present a script with mixed scope everywhere, Example 11.8. We leave it
as an exercise to the reader to determine the output of the program.

Example 11.8. Variable Scope (scope.py)

Local variables hide global variables, as indicated in this variable scope program. What is
the output of this program? (And why?)

 <$nopage>
001 1 #!/usr/bin/env python
002 2 j, k = 1, 2
003 3
004 4 def proc1():
005 5
006 6 j, k = 3, 4
007 7 print "j == %d and k == %d" % (j, k)
008 8 k = 5
009 9
010 10 def proc2():
011 11
012 12 j = 6
013 13 proc1()
014 14 print "j == %d and k == %d" % (j, k)
015 15
016 16
017 17 k = 7
018 18 proc1()
019 19 print "j == %d and k == %d" % (j, k)
020 20
021 21 j = 8
022 22 proc2()
023 23 print "j == %d and k == %d" % (j, k)
024 <$nopage>

*Recursion

A function is recursive if it contains a call to itself. Aho, Sethi, and Ullman define, "[a]
procedure is recursive if a new activation can begin before an earlier activation of the
same procedure has ended." In other words, a new invocation of the same function occurs
within that function before it finished.

Recursion is used extensively in language recognition as well as in mathematical
applications that use recursive functions. Earlier in this text, we took a first look at the
factorial function where we defined:

N! = factorial(N) = 1 * 2 * 3 … * N

We can also look at factorial this way:

IT-SC book: Core Python Programming

 363

factorial(N) = N!
 = N * (N-1)!
 = N * (N-1) * (N-2)!

 = N * (N-1) * (N-2) … * 3 * 2 * 1

We can now see that factorial is recursive because factorial(N) = N * factorial(N-
1). In other words, to get the value of factorial(N), one needs to calculate
factorial(N-1). Furthermore, to find factorial(N-1), one needs to computer
factorial(N-2), and so on.

We now present the recursive version of the factorial function:

def factorial(n):
 if n == 0 or n == 1:# 0! = 1! = 1
 return 1
 else:
 return (n * factorial(n-1))

Exercises

1:
Arguments. Compare the following three functions:

def countToFour1():
 for eachNum in range(5):
 print eachNum,

def countToFour2(n):
 for eachNum in range(n, 5):
 print eachNum,

def countToFour3(n=1):
 for eachNum in range(n, 5):
 print eachNum,

What do you think will happen as far as output from the program, given the
following input values? Enter the output into Table 11.1 below. Write in
"ERROR" if you think one will occur with the given input or " NONE" if there is
no output.

Table 11.2. Output chart for Problem 11-1
Input countToFour1 countToFour2 countToFour3

2

IT-SC book: Core Python Programming

 364

4
5
(nothing)

2:
Functions. Combine your solutions for Exercise 5-2. such that you create a
combination function which takes the same pair of numbers and returns both their
sum and product at the same time.

3:
Functions. In this exercise, we will be implementing the max() and min() built-in
functions.

(a) Write simple functions max2() and min2() that take two items and return the
larger and smaller item, respectively. They should work on arbitrary Python
objects. For example, max2(4, 8) and min2(4, 8) would each return 8 and 4,
respectively.

(b) Create new functions my_max() and my_min() that use your solutions in part
(a) to recreate max() and min(). These functions return the largest and smallest
item of non-empty sequences, respectively. Test your solutions for numbers and
strings.

4:
Return values. Create a complementary function to your solution for Exercise 5-13.
Create a function that takes a total time in minutes and returns the equivalent in
hours and minutes.

5:
Default arguments. Update the sales tax script you created in Exercise 5-7
such that a sales tax rate is no longer required as input to the function. Create
a default argument using your local tax rate if one is not passed in on
invocation.

6:
Variable-length arguments. Write a function called printf(). There is one
positional argument, a format string. The rest are variable arguments that need to
be displayed to standard output based on the values in the format string, which
allows the special string format operator directives such as %d, %f, etc. HINT: the
solution is trivial—there is no need to implement the string operator functionality,
but you do need to use the string format operator (%) explicitly.

IT-SC book: Core Python Programming

 365

7:
Functional programming with map(). Given a pair of identically-sized lists, say
[1, 2, 3, …], and ['abc', 'def', 'ghi', …], merge both lists into a single
list consisting of tuples of elements of each list so that our result looks like: {[(1,
'abc'), (2, 'def'), (3, 'ghi'), …}. (Although this problem is similar in
nature to a problem in Chapter 6, there is no direct correlation between their
solutions.)

8:
Functional programming with filter(). Use the code you created for Exercise 5-
4 to determine leap years. Update your code so that it is a function if you have not
done so already. Then write some code to take a list of years and return a list of
only leap years.

9:
Functional programming with reduce(). Review the code in Section 11.7.2 that
illustrated how to sum up a set of numbers using reduce(). Modify it to create a
new function called average() that calculates the simple average of a set of
numbers.

10:
Functional programming with filter(). In the Unix file system, there are always
two special files in each folder/directory: '.' indicates the current directory and '..'
represents the parent directory. Given this knowledge, take a look at the
documentation for the os.listdir() function and describe what this code snippet
does:

files = filter(lambda x: x and x[0] != '.', os.listdir(folder))

11:
Functional programming with map(). Write a program that takes a file name and
"cleans" the file by removing all leading and trailing whitespace from each line.
Read in the original file and write out a new one, either creating a new file or
overwriting the existing one. Give your user the option to pick which of the two to
perform.

12:
Passing functions. Write a sister function to the testit() function described in
this chapter. Rather than testing execution for errors, timeit() will take a function
object (along with any arguments), and time how long it takes to execute the
function. Return the following values: function return value, time elapsed. You can

IT-SC book: Core Python Programming

 366

use time.clock() or time.time(), whichever provides you with greater
accuracy.

13:
Functional programming with reduce() and Recursion. In Chapter 8, we looked
at N factorial or N! as the product of all numbers from 1 to N.

(a)Take a minute to write a small, simple function called mult(x, y) that takes x
and y and returns their product.

(b) Use the mult() function you created in part (a)along with reduce() to
calculate factorials.

(c) Discard the use of mult() completely and use a lambda expression instead.

(d) In this chapter, we presented a recursive solution to finding N! Use the
timeit() function you completed in the problem above and time all three versions
of your factorial function (iterative, reduce(), and recursive). Explain any
differences in performance, anticipated and actual.

14:
*Recursion. We also looked at Fibonacci numbers in Chapter 8. Rewrite your
previous solution for calculating Fibonacci numbers (Exercise 8-9) so that it now
uses recursion.

15:
*Recursion. Rewrite your solution to Exercise 6-5 which prints a string backwards
to use recursion. Use recursion to print a string forward and backward.

IT-SC book: Core Python Programming

 367

Chapter 12. Modules

This chapter focus on Python modules and how data is imported from modules into your
programming environment. We will also take a look at packages. Modules are a way to
organize Python code, and packages help you organize modules. We will conclude this
chapter with a look at other related aspects of modules.

What are Modules?

A module allows you to logically organize your Python code. When code gets to be large
enough, the tendency is to break it up into organized pieces which can still interact with
each other at a functioning level. These pieces generally have attributes which have some
relation to each other, perhaps a single class with its member data variables and methods,
or maybe a group of related, yet independently operating functions. These pieces should
be shared, so Python allows a module the ability to "bring in" and use attributes from
other modules to take advantage of work that has been done, maximizing code reusability.
This process of associating attributes from other modules with your module is called
importing. Self-contained and organized pieces of Python code that can be shared—in a
nutshell, that describes a module.

Modules and Files

If modules represent a logical way to organize your Python code, then files are a way to
physically organize modules. To that end, each file is considered an individual module,
and vice versa. The file name of a module is the module name appended with the .py file
extension. There are several aspects we need to discuss with regards to what the file
structure means to modules. Unlike other languages in which you import classes, in
Python you import modules or module attributes.

Namespaces

We will discuss namespaces in detail later in this chapter, but the basic concept of a
namespace is an individual set of mappings from names to objects. As you are no doubt
aware, module names play an important part in the naming of their attributes. The name
of the attribute is always prepended with the module name. For example, the atoi()
function in the string module is called string.atoi(). Because only one module with
a given name can be loaded into the Python interpreter, there is no intersection of names
from different modules; hence, each module defines its own unique namespace. If I
created a function called atoi() in my own module, perhaps mymodule, its name would
be mymodule.atoi(). So even if there is a name conflict for an attribute, the fully-

IT-SC book: Core Python Programming

 368

qualified name—referring to an object via dotted attribute notation—prevents an exact
and conflicting match.

Search Path and Path Search

The process of importing a module requires a process called a path search. This is the
procedure of checking "predefined areas" of the file system to look for your
mymodule.py file in order to load the mymodule module. These predefined areas are no
more than a set of directories that are part of your Python search path. To avoid the
confusion between the two, think of a path search as the pursuit of a file through a set of
directories, the search path.

There may be times where importing a module fails:

>>> import xxx
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ImportError: No module named xxx

When this error occurs, the interpreter is telling you it cannot access the requested
module, and the likely reason is that the module you desire is not in the search path,
leading to a path search failure.

A default search path is automatically defined either in the compilation or installation
process. This search path may be modified in one of two places.

One is the PYTHONPATH environment variable set in the shell or command-line interpreter
that invokes Python. The contents of this variable consist of a colon-delimited set of
directory paths. If you want the interpreter to use the contents of this variable, make sure
you set or update it before you start the interpreter or run a Python script.

Once the interpreter has started, you can access the path itself which is stored in the sys
module as the sys.path variable. Rather than a single string that is colon-delimited, the
path has been "split" into a list of individual directory strings. Below is an example
search path for a Unix machine. Your mileage will definitely vary as you go from system
to system.

>>> sys.path
['', '/usr/local/lib/python1.5/', '/usr/local/lib/
python1.5/plat-sunos5', '/usr/local/lib/python1.5/
lib-tk', '/usr/local/lib/python1.5/lib-dynload']

Bearing in mind that this is just a list, we can definitely take our liberty with it and
modify it at our leisure. If you know of a module you want to import, yet its directory is

IT-SC book: Core Python Programming

 369

not in the search path, by all means use the list's append() method to add it to the path,
like so:

sys.path.append('/home/wesc/py/lib')

Once this is accomplished, you can then load your module. As long as one of the
directories in the search path contains the file, then it will be imported. Of course, this
adds the directory only to the end of your search path. If you want to add it elsewhere,
such as in the beginning or middle, then you have to use the insert() list method for
those. In our examples above, we are updating the sys.path attribute interactively, but it
will work the same way if run as a script.

Here is what it would look like if we ran into this problem interactively:

>>> import sys
>>> import mymodule
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named mymodule
>>>
>>> sys.path.append('/home/wesc/py/lib')
>>> sys.path
['', '/usr/local/lib/python1.5/', '/usr/local/lib/
python1.5/plat-sunos5', '/usr/local/lib/python1.5/
lib-tk', '/usr/local/lib/python1.5/lib-dynload', '/home/
wesc/py/lib']
>>>
>>> import mymodule
>>>

On the flip side, you may have too many copies of a module. In the case of duplicates,
the interpreter will load the first module it finds with the given name while rummaging
through the search path in sequential order.

Namespaces

A namespace is a mapping of names (identifiers) to objects. The process of adding a
name to a namespace consists of binding the identifier to the object (and increasing the
reference count to the object by one). The Python Language Reference also includes the
following definitions: "changing the mapping of a name is called rebinding[, and]
removing a name is unbinding."

As briefly introduced in the last chapter, there are either two or three active namespaces
at any given time during execution. These three namespaces are the local, global, and
built-ins namespaces, but local namespaces come and go during execution, hence the

IT-SC book: Core Python Programming

 370

"two or three" we just alluded to. The names accessible from these namespaces as
dependent on their loading order, or the order in which the namespaces are brought into
the system.

The Python interpreter loads the built-ins namespace first. This consists the names in the
__builtins__ module. Then the global namespace for the executing module is loaded,
which then becomes the active namespace when the module begins execution. Thus we
have our two active namespaces.

NOTE

The __builtins__ module should not be confused with the __builtin__ module. The
names, of course, are so similar that it tends to lead to some confusion among new
Python programmers who have gotten this far. The __builtins__ module consists of a
set of built-in names for the built-ins namespace. Most, if not all, of these names come
from the __builtin__ module, which is a module of the built-in functions, exceptions,
and other attributes. In standard Python execution, __builtins__ contains all the names
from __builtin__. The only time there is a difference is when executing in restricted
mode. (Restricted execution is covered formally in Chapter 14.) In restricted mode,
__builtins__ only consists of a subset of the attributes from __builtin__ which can be
accessed from within a restricted environment.

When a function call is made during execution, the third, a local, namespace is created.
We can use the globals() and locals() built-in functions to tell us which names are in
which namespaces. We will discuss both functions in more detail later on in this chapter.

Namespaces vs. Variable Scope

Okay, now that we know what namespaces are, how do they relate to variable scope
again? They seem extremely similar. The truth is, you are quite correct.

Namespaces are purely mappings between names and objects, but scope dictates how or
rather, where, one can access these names based on the physical location from within
your code. We illustrate the relationship between namespaces and variable scope in
Figure 12-1.

Figure 12.1. Namespaces vs. Variable Scope

IT-SC book: Core Python Programming

 371

Notice that each of the namespaces is a self-contained unit. But looking at the
namespaces from the scoping point of view, things appear different. All names within the
local namespace are within my local scope. Any name outside my local scope is in my
global scope.

Also keep in mind that during the execution of the program, the local namespaces and
scope are transient because function calls come and go, but the global and built-ins
namespaces remain.

Our final thought to you in this section is, when it comes to namespaces, ask yourself the
question, "Does it have it?" And for variable scope, ask, "Can I see it?"

Name Lookup, Scoping, and Overriding

So how do scoping rules work in relationship to namespaces? It all has to do with name
lookup. When accessing an attribute, the interpreter must find it in one of the three
namespaces. The search begins with the local namespace. If the attribute is not found
there, then the global namespace is searched. If that is also unsuccessful, the final frontier
is the built-ins namespace. If the exhaustive search fails, you get the familiar:

>>> foo
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: foo

Notice how the figure features the foremost-searched namespaces "shadowing"
namespaces which are searched afterwards. This is to try to convey the effect of
overriding. This is the process whereby names may be taken out-of-scope because a more

IT-SC book: Core Python Programming

 372

local namespace contains a name. Take a look at the following piece of code that was
introduced in the previous chapter:

def foo():
 print "\ncalling foo()…"
 bar = 200
 print "in foo(), bar is", bar

bar = 100
print "in __main__, bar is", bar
foo()

When we execute this code, we get the following output:

in __main__, bar is 100

calling foo()…
in foo(), bar is 200

The bar variable in the local namespace of foo() overrode the global bar variable.
Although bar exists in the global namespace, the lookup found the one in the local
namespace first, hence "overriding" the global one. For more information regarding scope,
please go back to Section 11.8 in the last chapter.

Importing Modules

Importing a module requires the use of the import statement, whose syntax is:

import
 module1[, module2[, …
moduleN]]

When this statement is encountered by the interpreter, the module is imported if found in
the search path. Scoping rules apply, so if imported from the top-level of a module, it has
global scope; if imported from a function, it has local scope.

When a module is imported the first time, it is loaded and executed.

Module "Executed" When Loaded

One effect of loading a module is that the imported module is "executed," that is, the top-
level portion of the imported module is directly executed. This usually includes setting up

IT-SC book: Core Python Programming

 373

of global variables as well as performing the class and function declarations, and if there
is a check for __name__ to do more on direct script invocation, that is executed too.

Of course, this type of execution may or may not be the desired effect. If not, you will
have to put as much code as possible into functions. Suffice it to say that good module
programming style dictates that only function and/or class definitions should be at the
top-level of a module.

Importing vs. Loading

A module is loaded only once, regardless of the number of times it is imported. This
prevents the module "execution" from happening over and over again if multiple imports
occur. If your module imports the sys module, and so do five of the other modules you
import, it would not be wise to load sys (or any other module) each time! So rest assured,
loading happens only once, on first import.

Importing Module Attributes

It is possible to import specific module elements into your own module. By this, we
really mean importing specific names from the module into the current namespace. For
this purpose, we can use the from-import statement, whose syntax is:

from
 module
 import
 name1[, name2[, … nameN]]

Names Imported into Current Namespace

Calling from-import brings the name into the current namespace, meaning that you do
not use the attribute/dotted notation to access the module identifier. For example, to
access a variable named var in module module that was imported with:

from
 module
 import
 var

we would use var by itself. There is no need to reference the module since you just
imported.

It is also possible to import all the names from the module into the current namespace
using the following from-import statement:

IT-SC book: Core Python Programming

 374

from
 module
 import *

NOTE

In practice, using from module import * is considered poor style because it "pollutes"
the current namespace and has the potential of overriding names in the current namespace;
however, it is extremely convenient if a module has many variables which are often
accessed, or if the module has a very long name.

We recommend using this form in only two situations. The first is where the target
module has many attributes that would make it inconvenient to type in the module name
over and over again. Two prime examples of this are the Tkinter (Python/Tk) and NumPy
(Numeric Python) modules, and perhaps the socket module. The other place where it is
acceptable to use from module import * is within the interactive interpreter, to save on
the amount of typing.

Names Imported into Importer's Scope

Another side effect of importing only names from other modules is that the names are
now part of the scope of the importing module.This means that changes to the variable
affect only the local copy and not the original in the imported module's namespace. In
other words, the binding is now local rather than across namespaces.

Below, we present the code to two modules: an importer, impter.py, and an importee,
imptee.py. Currently, imptr.py uses the from-import statement which creates only
local bindings.

#############
imptee.py #
#############
foo = 'abc'
def show():
 print 'foo from imptee:', foo

#############
impter.py #
#############
from imptee import foo, show
show()
foo = 123
print 'foo from impter:', foo

IT-SC book: Core Python Programming

 375

show()

Upon running the importer, we discover that the importee's view of its foo variable has
not changed even though we modified it in the importer.

foo from imptee: abc
foo from impter: 123
foo from imptee: abc

The only solution is to use import and fully-qualified identifier names using the
attribute/dotted notation.

#############
impter.py #
#############
import imptee
imptee.show()
imptee.foo = 123
print 'foo from impter:', imptee.foo
imptee.show()

Once we make the update and change our references accordingly, we now have achieved
the desired effect.

foo from imptee: abc
foo from impter: 123
foo from imptee: 123

Module Built-in Functions

The importation of modules has some functional support from the system. We will look
at those now.

__import__()

The __import__() function is new as of Python 1.5, and it is the function that actually
does the importing, meaning that the import statement invokes the __import__()
function to do its work. The purpose of making this a function is to allow for overriding it
if one is inclined to develop his or her own importation algorithm.

The syntax of __import__() is:

IT-SC book: Core Python Programming

 376

__import__(module_name[, globals[, locals[, fromlist]]]

The module_name variable is the name of the module to import, globals is the
dictionary of current names in the global symbol table, locals is the dictionary of
current names in the local symbol table, and fromlist is a list of symbols to import the
way they would be imported using the from-import statement.

The globals, locals, and fromlist arguments are optional, and if not provided,
default to globals(), locals(), and [], respectively.

Calling 'import sys' can be accomplished with

sys = __import__('sys')

globals() and locals()

The globals() and locals() built-in functions return dictionaries of the global and
local namespaces, respectively, of the caller. From within a function, the local namespace
represents all names defined for execution of that function, which is what locals() will
return. globals(), of course, will return those names globally accessible to that function.

From the global namespace, however, globals() and locals() return the same
dictionary because the global namespace is as local as you can get while executing there.
Here is a little snippet of code that calls both functions from both namespaces:

def foo():
 print '\ncalling foo()…'
 aString = 'bar'
 anInt = 42
 print "foo()'s globals:", globals().keys()
 print "foo()'s locals:", locals().keys()

print "__main__'s globals:", globals().keys()
print "__main__'s locals:", locals().keys()
foo()

We are going to ask for the dictionary keys only because the values are of no
consequence here (plus they make the lines wrap even more in this text). Executing this
script, we get the following output:

% namespaces.py

IT-SC book: Core Python Programming

 377

__main__'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
__main__'s locals: ['__doc__', 'foo', '__name__',
'__builtins__']

calling foo()…
foo()'s globals: ['__doc__', 'foo', '__name__',
'__builtins__']
foo()'s locals: ['anInt', 'aString']

reload()

The reload() built-in function performs another import on a previously imported
module. The syntax of reload() is:

reload(module)

module is the actual module you want to reload. There are some criteria to using the
reload() module. The first is that the module must have been imported in full (not by
using from-import), and it must have loaded successfully. The second rule follows from
the first, and that is the argument to reload() is the module itself and not a string
containing the module name, i.e., it must be something like reload(sys) instead of
reload('sys').

Also, code in a module is executed when it is imported, but only once. A second import
does not re-execute the code, it just binds the module name. Thus reload() makes sense,
as it overrides this default behavior.

Packages

A package is a hierarchical file directory structure that defines a single Python
application environment that consists of modules and subpackages. Packages were added
to Python 1.5 to aid with a variety of problems including:

Adding hierarchical organization to flat namespace

Allowing developers to group-related modules

Allowing distributors to ship directories vs. bunch of files

Helping resolve conflicting module names

Along with classes and modules, packages use the familiar attribute/dotted attribute
notation to access their elements. Importing modules within packages use the standard
import and from-import statements.

IT-SC book: Core Python Programming

 378

Directory Structure

The example package directory structure below is available for you to experiment with
on the CD-ROM accompanying this book. Just browse the code samples and navigate to
Chapter 12.

Phone/
 __init__.py
 Voicedta/
 __init__.py
 Pots.py
 Isdn.py
 Fax/
 __init__.py
 G3.py
 Mobile/
 __init__.py
 Analog.py
 Digital.py
 Pager/
 __init__.py
 Numeric.py

Phone is top-level package and Voicedta, etc., are subpackages. Import subpackages by
using import like this:

import Phone.Mobile.Analog

Phone.Mobile.Analog.dial()

Alternatively, you can use from-import in a variety of ways:

The first way is importing just the top-level subpackage and referencing down the
subpackage tree using the attribute/dotted notation:

from Phone import Mobile

Mobile.Analog.dial('4 555–1212')

Further more, we can do down one more subpackage for referencing:

from Phone.Mobile import Analog

Analog.dial('555–1212')

IT-SC book: Core Python Programming

 379

In fact, you can go all the way down in the subpackage tree structure:

from Phone.Mobile.Analog import dial

dial('555–1212')

In our above directory structure hierarchy, we observe a number of __init__.py files.
These are initializer modules that are required when using from-import to import
subpackages, but should otherwise exist though they can remain empty.

Using from-import with Packages

Packages also support the from-import all statement:

from
 package.module
 import *

However, such a statement is too operating system filesystem-dependent for Python to
make the determination which files to import. Thus the __all__ variable in
__init__.py is required. This variable contains all the module names that should be
imported when the above statement is invoked if there is such a thing. It consists of a list
of module names as strings.

Other Features of Modules

Auto-loaded Modules

When the Python interpreter starts up in standard mode, some modules are loaded by the
interpreter for system use. The only one that affects you is the __builtin__ module,
which normally gets loaded in as the __builtins__ module.

The sys.modules variable consists of a dictionary of modules that the interpreter has
currently loaded (in full and successfully) into the interpreter. The module names are the
keys, and the location from which they were imported are the values.

For example, in Windows, the sys.modules variable contains a large number of loaded
modules, so we will shorten the list by requesting only the module names. This is
accomplished by using the dictionary's keys() method:

IT-SC book: Core Python Programming

 380

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'exceptions', '__main__', 'ntpath',
'strop', 'nt', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'string', 'stat']

The loaded modules for Unix are quite similar:

>>> import sys
>>> sys.modules.keys()
['os.path', 'os', 'readline', 'exceptions',
'__main__', 'posix', 'sys', '__builtin__', 'site',
'signal', 'UserDict', 'posixpath', 'stat']

Preventing Attribute Import

If you do not want module attributes imported when a module is imported with "from
module import *", begin the name, and prepend the underscore (_) to their names.
Names in the imported module that begin with an underscore (_) are not imported. This
minimal level of data hiding does not apply if the entire module is imported.

Exercises

1:
PathSearch vs. SearchPath. What is the difference between a path search and a
search path?

2:
Importing Attributes. Assume you have a function called foo() in your module
mymodule. What are the two ways of import this function into your namespace for
invocation?

3:
Importing. What are the differences between using "import module" and "from
module import *"?

4:
Namespaces vs. Variable Scope. How are namespaces and variable scopes different
from each other?

IT-SC book: Core Python Programming

 381

5:
Using__import__().

(a) Use __import__() to import a module into your namespace. What is the correct
syntax you finally used to get it working?

(b) Same as above, but use __import__() to import only specific names from
modules.

6:
Extended Import. Create a new function called importAs(). This function will
import a module or module into your namespace, but with a name you specify, not
its original name. For example, calling newname=importAs('mymodule'), will
import the module mymodule, but the module and all its elements are accessible
only as newname or newname.attr. You will discover that this is the exact
functionality provided by the new extended import syntax introduced in Python 2.0.

IT-SC book: Core Python Programming

 382

Chapter 13. Classes and OOP

Classes finally introduce the notion of object-oriented programming (OOP) to our picture.
We will first present a high-level overview, covering all the main aspects of using classes
and OOP in Python. The remainder of the chapter covers all the details on classes, class
instances, and methods. We will also describe derivation or subclassing in Python and
what its inheritance model is. Finally, Python provides special attributes which allow the
programmer to customize classes with special functionality, including those which
overload operators and emulate Python types. We will show you how to implement some
of these special methods to customize your class to attain type-like behavior.

Introduction

Before we get into the nitty-gritty of OOP and classes, we begin with a high-level
overview, then present some simple examples to get you "warmed up." If you are new to
object-oriented programming, you may wish to merely skim this section first, then begin
the formal reading in Section 13.2. This section is targeted more to those already familiar
with the concepts, who simply want to see "how it's done" in Python.

The main two entities in Python object-oriented programming are classes and class
instances (see Figure13-1).

Figure 13.1. The factory manufacturing machines on the left are analogous
to classes, while each toy produced are instances of their respective classes.

Although each instance has the basic underlying structure, individual
attributes like color or feet can be changed—these are similar to instance

attributes.

IT-SC book: Core Python Programming

 383

IT-SC book: Core Python Programming

 384

Classes and Instances

Classes and instances are related to each other: classes provide the definition of an object,
and instances are "the real McCoy," the objects specified in the class definition brought
to life.

Here is an example of how to create a class:

class MyNewObjectType:
 'define MyNewObjectType class'
 class_suite

The keyword is class, followed by the class name. What follows is the suite of code that
defines the class. This usually consists of various definitions and declarations. The
process of creating an instance is called instantiation, and it is carried out like this (note
the conspicuous absence of a new keyword):

myFirstObject = MyNewObjectType()

The class name is given as an "invocation," using the familiar function operators (()).
You then typically assign that newly-created instance to a variable. The assignment is not
required syntactically, but if you do not save your instance to a variable, it will be of no
use and will be automatically garbage-collected because there would no references to that
instance. What you would be doing is allocating memory, then immediately deallocating
it.

Classes can be as simple or as complicated as you wish them to be. At a very minimum,
classes can be used as "namespace containers." By this, we mean that you can store data
into variables and group them in such a way that they have all share the same
relationship—a named relationship using the standard Python dotted-attribute notation.
For example, you may have a class without any inherent attributes and merely use such a
class to provide a namespace for data, giving your class characteristics similar to records
in Pascal or structures in C, or, in other words, use the class as simply a container object
with shared naming.

Here is one example of such a class:

class MyData:
 pass

IT-SC book: Core Python Programming

 385

Recall that the pass statement is used where code is required syntactically, but no
operation is desired. In this case, the required code is the class suite, but we do not wish
to provide one. The class we just defined has no methods or any other attributes. We will
now create an instance to use the class simply as a namespace container.

>>> mathObj = MyData()
>>> mathObj.x = 4
>>> mathObj.y = 5
>>> mathObj.x + mathObj.y
9
>>> mathObj.x * mathObj.y
20

We could have used variables "x" and "y" to accomplish the same thing, but in our case,
mathObj.x and mathObj.y are related by the instance name, mathObj. This is what we
mean by using classes as namespace containers. mathObj.x and mathObj.y are known as
instance attributes because they are only attributes of their instance object (mathObj), not
of the class (MyData).

Methods

One way we can improve our use of classes is to add functions to them. These class
functions are known by their more common name, methods. In Python, methods are
defined as part of the class definition, but can be invoked only by an instance. In other
words, the path one must take to finally be able to call a method goes like this: (1) define
the class (and the methods), (2) create an instance, and finally, (3) invoke the method
from that instance. Here is an example class with a method:

class MyDataWithMethod: # define the class
 def printFoo(self): # define the method
 print 'You invoked printFoo()!'

You will notice the self argument, which must be present in all method invocations.
That argument, representing the instance object, is passed to the method implicitly by the
interpreter when you invoke a method via an instance, so you, yourself, do not have to
worry about passing anything in. Now we will instantiate the class and invoke the method
once we have an instance:

>>> myObj = MyDataWithMethod() # create the instance
>>> myObj.printFoo() # now invoke the method
You invoked printFoo()!

IT-SC book: Core Python Programming

 386

We conclude this introductory section by giving you a slightly more complex example of
what you can do with classes (and instances) and also introducing you to the special
method __init__() as well as subclassing and inheritance.

For those of you who are already familiar with object-oriented programming, __init__()
is the class constructor. If you are new to the world of OOP, a constructor is simply a
special method which is called during instantiation that defines additional behavior that
should occur when a class is instantiated, i.e., setting up initial values or running some
preliminary diagnostic code—basically performing any special tasks or setup after the
instance is created but before it is returned from the instantiation call.

(We will add print statements to our methods to better illustrate when certain methods
are called. It is generally not typical to have input or output statements in functions unless
output is a predetermined characteristic of the body of code.)

Creating a Class (Class Definition)

class AddrBookEntry: # class definition
 'address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = nm # set inst .attr .1
 self.phone = ph # set inst .attr .2
 print 'Created instance for:', self.name

 def updatePhone(self, newph): # define method
 self.phone = newph
 print 'Updated phone# for:', self.name

In the definition for the AddrBookEntry class, we define two methods: __init__() and
updatePhone(). __init__() is called when instantiation occurs, that is, when
AddrBookEntry() is invoked. You can think of such an instantiation call to be an
implicit call to __init__() because the arguments given in the call to AddrBookEntry()
are exactly the same as those that are received by __init__().

Recall that the self (instance object) argument is passed in automatically by the
interpreter when the method is invoked from an instance, so in our __init__() above,
the only required arguments are nm and ph, representing the name and telephone number,
respectively. __init__() sets these two instance attributes on instantiation so that they
are available to the programmer by the time the instance is returned from the instantiation
call.

As you may have surmised, the purpose of the updatePhone() method is to replace an
address book entry's telephone number attribute.

Creating Instances (Instantiation)

IT-SC book: Core Python Programming

 387

>>> john = AddrBookEntry('John Doe', '408-555-1212')
Created instance for: John Doe
>>> jane = AddrBookEntry('Jane Doe', '650-555-1212')
Created instance for: Jane Doe

These are our instantiation calls which, in turn, invoke __init__(). Recall that an
instance object is passed in automatically as self. So in your head, you can replace self
in methods with the name of the instance. In the first case, when object john is
instantiated, it is john.name that is set, as you can confirm below.

Also, without the presence of default arguments, both parameters to __init__() are
required as part of the instantiation invocation.

Accessing Instance Attributes

>>> john
<__main__.AddrBookEntry instance at 80ee610>
>>> john.name
'John Doe'
>>> john.phone
'408-555-1212'
>>> jane.name
'Jane Doe'
>>> jane.phone
'650-555-1212'

Once our instance was created, we can confirm that our instance attributes were indeed
set by __init__() during instantiation. Calling the instance within the interpreter tells us
what kind of object it is. (We will discover later how we can customize our class so that
rather than seeing the default <…> Python object string, a more desired output can be
customized.)

Method Invocation (via Instance)

>>> john.updatePhone('415-555-1212')
Updated phone# for: John Doe
>>> john.phone
'415-555-1212'

The updatePhone() method requires one explicit argument: the new phone number. We
check our instance attribute right after the call to updatePhone(), making sure that it did
what was advertised.

IT-SC book: Core Python Programming

 388

So far, we have invoked only a method via an instance, as in the above example. These
are known as bound methods in Python. Binding is just a Python term to indicate whether
we have an instance to invoke a method.

Creating a Subclass

Subclassing with inheritance is a way to create and customize a new class type with all
the features of an existing class but without modifying the original class definition. The
new subclass can be customized with special functionality unique only to that new class
type. Aside from its relationship to its parent or base class, a subclass has all the same
features as any regular class and is instantiated in the same way as all other classes. Note
below that a parent class is part of the subclass declaration:

class AddrBookEntryWithEmail(AddrBookEntry): # define subclass
 'update address book entry class'
 def __init__(self, nm, ph, em): # new __init__
 AddrBookEntry.__init__(self, nm, ph) # base class cons.
 self.email = em
 def updateEmail(self, newem): # define method
 self.email = newem
 print 'Updated e-mail address for:', self.name

We will now create our first subclass, AddrBookEntryWithEmail. In Python, when
classes are derived, subclasses inherit the base class attributes, so in our case, we will not
only define the methods __init__() and updateEmail(), but
AddrBookEntryWithEmail will also inherit the updatePhone() method from
AddrBookEntry.

Each subclass must define its own constructor if desired, otherwise, the base class
constructor will be called. However, if a subclass overrides a base class constructor, the
base class constructor will not be called automatically—such a request must be made
explicitly as we have above. For our subclass, we make an initial call to the base class
constructor before performing any "local" tasks, hence the call to
AddrBookEntry.__init__() to set the name and phone number. Our subclass sets one
additional instance attribute, the e-mail address, which is set by the remaining line of our
constructor.

Note how we have to explicitly pass the self instance object to the base class constructor
because we are not invoking that method from an instance. We are invoking that method
from an instance of a subclass. Because we are not invoking it via an instance, this
unbound method call requires us to pass an acceptable instance (self) to the method.

We close out this section with examples of how to create an instance of the subclass,
accessing its attributes, and invoking its methods, including those inherited from the
parent class.

IT-SC book: Core Python Programming

 389

Using a Subclass

>>> john = AddrBookEntryWithEmail('John Doe, '408-555-
1212', 'john@spam.doe')
Created instance for: John Doe
>>> john
<__main__.AddrBookEntryWithEmail instance at 80ef6f0>
>>> john.name
'John Doe'
>>> john.phone
'408-555-1212'
>>> john.email
'john@spam.doe'
>>> john.updatePhone('415-555-1212')
Updated phone# for: John Doe
>>> john.phone
'415-555-1212'
>>> john.updateEmail('john@doe.spam')
Updated e-mail address for: John Doe
>>> john.email
'john@doe.spam'

NOTE

Class names traditionally being with a capital letter. This is the standard convention that
will help you identify classes, especially during instantiation (which would look like a
function call otherwise). In particular, data attributes should sound like data value names,
and methods names should indicate action towards a specific object or value. Another
way to phrase this is: Use nouns for data value names and predicates (verbs plus direct
objects) for methods. The data items are the objects you, the programmer, are acting on,
and the methods should indicate what action the programmer wants to perform on the
object.

In the classes we defined above, we attempted to follow this guideline, with data values
such as "name," "phone," and "email," and actions such as "updatePhone" and
"updateEmail." Other good examples for values include "data," "amount," or "balance;"
some recommended method names include "getValue," "setValue," and "clearDataset."
Classes should also be well named; some of those good names include "AddrBookEntry,"
"RepairShop," etc.

We hope that you now have some understanding of how object-oriented programming is
accomplished using Python. The remaining sections of this chapter will take you deeper
into all the facets of object-oriented programming and Python classes and instances.

IT-SC book: Core Python Programming

 390

Object-oriented Programming

The evolution of programming has taken us from a sequence of step-by-step instructions
in a single flow of control to a more organized approach whereby blocks of code could be
cordoned off into named subroutines and defined functionality. Structured or procedural
programming lets us organize our programs into logical blocks, often repeated or reused.
Creating applications becomes a more logical process; actions are chosen which meet the
specifications, then data is created to be subjected to those actions. Deitel & Deitel refer
to structured programming as "action-oriented" due to the fact that logic must be
"enacted" on data which has no associated behaviors.

However, what if we could impose behavior on data? What if we were able to create or
program a piece of data modeled after real-life entities which embodies both data
characteristics along with behaviors? If we were then able to access the data attributes via
a set of defined interfaces (a.k.a. a set of accessor functions), such as an automated teller
machine (ATM) card or a personal check to access your bank account, then we would
have a system of "objects" where each could interact not only with itself, but also with
other objects in a larger picture.

Object-oriented programming takes this evolutionary step by enhancing structured
programming to enable a data/behavior relationship: Data and logic are now described by
a single abstraction with which to create these objects. Real-world problems and entities
are stripped down to their bare essentials, providing that abstraction from which they can
be coded or implemented into objects and be able to interact with other objects in the
system which models and hopefully solves these problems. Classes provide the
definitions of such objects, and instances are realizations of such definitions. Both are
vital components for object-oriented design (OOD), which simply means to build your
system architected in an object-oriented fashion.

Relationship between OOD and OOP

Object-oriented design does not specifically require an object-oriented programming
language. Indeed, OOD can be performed in purely structural languages such as C, but
this requires more effort on the part of the programmer who must build data types with
object qualities and characteristics. Naturally, OOP is simplified when a language has
built-in OO properties that enable smoother and more rapid development of OO programs.

Conversely, an object-oriented language does not necessarily force one to write OO
programs. C++ can be used simply as a "better C." As you are no doubt aware, neither
classes nor OOP are required for everyday Python programming. Even though it is a
language which is object-oriented by design and which has constructs to support OOP,
Python does not restrict nor require you to write OO code for your application. Rather,
OOP is a powerful tool which is at your disposal when you are ready to evolve, learn,
transition, or otherwise move towards OOP. The creator of Python often refers to this
phenomena as being able to "see the forest through the trees."

IT-SC book: Core Python Programming

 391

Real-world Problems

One of the most important reasons to consider working in OOD is that it provides a direct
approach to modeling and solving real-world problems and situations. For example, let us
attempt to model an automobile mechanic shop where you would take your car in for
repair. There are two general entities we would have to create: humans who interact with
and in such a "system," and a physical location for the activities which define a mechanic
shop. Since there are more of and different types of the former, we will describe them
first, then conclude with the latter.

A class called Person would be created to represent all humans involved in such an
activity. Instances of Person would include the Customer, the Mechanic, and perhaps
the Cashier. Each of these instances would have similar as well as unique behaviors.
For example, all would have the talk() method as a means of vocal communication as
well as a drive_car() method. Only the Mechanic would have the repair_car()
method and only the Cashier would have a ring_sale() method. The Mechanic will
have a repair_certification attribute while all Persons would have a
drivers_license attribute.

Finally, all of these instances would be participants in one overseeing class, called the
RepairShop, which would have operating_hours, a data attribute which accesses time
functionality to determine when Customers can bring in their vehicles and when
Employees such as Mechanics and Cashiers show up for work. The RepairShop might
also have a AutoBay class which would have instances such as SmogZone,
TireBrakeZone, and perhaps one called GeneralRepair.

The point of our fictitious RepairShop is to show one example of how classes and
instances plus their behaviors can be used to model a true-to-life scenario. You can
probably also imagine classes such as an Airport, a Restaurant, a ChipFabPlant, a
Hospital, or even a MailOrderMusic business, all complete with their own participants
and functionality.

*Buzzword-compliance

For those of you who are already familiar with all the lingo associated with OOP, here is
how Python stacks up:

Abstraction/Implementation

Abstraction refers to the modeling of essential aspects, behavior, and characteristics of
real-world problems and entities, providing a relevant subset as the definition of a
programmatic structure which can realize such models. Abstractions not only contain the
data attributes of such a model, but also define interfaces with that data. An
implementation of such an abstraction is the realization of that data and the interfaces
which go along with it. Such a realization should remain hidden from and irrelevant to

IT-SC book: Core Python Programming

 392

the client programmer. Class objects in Python provide the ability to create such
abstractions, and implementation details are left to the designer.

Encapsulation/Interfaces

Encapsulation describes the concept of data/information hiding and providing interfaces
or accessor functions to the data attributes. Direct access to data by any client, bypassing
the interfaces, goes against the principles of encapsulation, but the programmer is free to
allow such access. As part of the implementation, the client should not even know how
the data attributes are architected within the abstraction. In Python, all class attributes are
public, but names may be "mangled" to discourage unauthorized access, but otherwise
not prevented. It is up to the designer to provide the appropriate interfaces to the data so
that the client programmer does not have to resort to manipulating the encapsulated data
attributes.

Composition

Composition extends our description of classes, enabling multiple yet distinct classes to
be combined into a larger entity to solve a real-world problem. Composition describes a
singular, complex system such as a class made up of other, smaller components such as
other classes, data attributes, and behaviors, all of which are combined, embodying "has-
a" relationships. For example, the RepairShop "has a" Mechanic (hopefully at least one)
and also "has a" Customer (again, hopefully at least one).

These components are composed either via association, meaning that access to
subcomponents is granted (for the RepairShop, a customer may enter and request a
SmogCheck, the client programmer interfacing with components of the RepairShop), or
aggregation, encapsulating components which are then accessed only via defined
interfaces, and again, hidden from the client programmer. Continuing our example, the
client programmer may be able to make a SmogCheck request on behalf of the Customer,
but has no ability to interact with the SmogZone part of the RepairShop which is accessed
only via internal controls of the RepairShop when the smogCheckCar() method is called.
Both forms of composition are supported in Python.

Derivation/Inheritance/Hierarchy

Derivation describes the creation of subclasses, new classes which retain all desired data
and behavior of the existing class type but permit modification or other customization, all
without having to modify the original class definition. Inheritance describes the means by
which attributes of a subclass are "bequeathed from" an ancestor class. From our earlier
example, a Mechanic may have more car skill attributes than a Customer, but
individually, each "is a" Person, so it is valid to invoke the talk() method, which is
common to all instances of Person, for either of them. Hierarchy describes multiple
"generations" of derivation which can be depicted graphically as a "family tree," with
successive subclasses having relationships with ancestor classes.

Generalization/Specialization

IT-SC book: Core Python Programming

 393

Generalization describes all the traits a subclass has with its parent and ancestor classes,
so subclasses are considered to have an "is-a" relationship with ancestor classes because a
derived object (instance) is an "example" of an ancestor class. For example, a Mechanic
"is a" Person, a Car "is a" Vehicle, etc. In the family tree diagram we alluded to above,
we can draw lines from subclasses to ancestors indicating "is-a" relationships.
Specialization is the term which describes all the customization of a subclass, i.e., what
attributes which make it differ from its ancestor classes.

Polymorphism

The concept of polymorphism describes how objects can be manipulated and accessed
using attributes and behaviors they have in common without regard to their specific class.
Polymorphism indicates the presence of dynamic (a.k.a. late, run-time) binding, allowing
for overloading and run-time type determination and verification. Many OO languages
use "signatures" to determine which version of an overloaded method to call, but since
Python calls are universal or generic without type determination, overloading is
unnecessary and is not supported in the language.

Introspection/Reflection

Introspection is what gives you, the programmer, the ability to perform an activity such
as "manual type checking." Also called reflection, this property describes how
information about a particular object can be accessed by itself during run-time. Would it
not be great to have the ability to take an object passed to you and be able to find out
what it is capable of? This is a powerful feature which you will encounter frequently in
this chapter. The dir() and type() built-in functions would have a very difficult time
working if Python did not support for some sort of introspection capability. Keep an eye
out for these calls as well as for special attributes like __dict__, __name__, __doc__,
__members__, and __methods__. You may even be familiar with some of them already!

NOTE

In other object-oriented programming languages, the term "object" may refer specifically
to class instances, even more so when all data types of those languages are classes. Not so
with Python. Because data types in Python are not classes, not all objects are, therefore,
class instances.

Some languages also consider defining a class to be synonymous with creating a new
type. Again, this is not the case with Python, but it is similar. Python has a fixed number
of predefined types and these remain constant. (Creating a new type in Python is a non-
trivial task, requiring implementation as an extension, and it is out of the scope of this
text.) When creating classes, you can give them behavior characteristics of types but they
are not considered types.

However, Python is an object-oriented programming language and considers all entities
generically as objects because they do share some common semantics, yet are still

IT-SC book: Core Python Programming

 394

distinct enough to be different types of objects. In summary, classes, instances, and types
are not related to each other (with the exception that a class defines an object which is
realized as an instance, another type of object).

Bottom line: (all) classes are class objects, (all) instances are instance objects, neither are
types, and everything is an object. Also see the Core Note in Section 13.5.1.

Classes

Recall that a class is a data structure that we can use to define objects which hold together
data values and behavioral characteristics. Classes are entities which are the
programmatic form of an abstraction for a real-world problem, and instances are
realizations of such objects. One analogy is to liken classes to blueprints or molds with
which to make real objects (instances). So why the term "class?" The term most likely
originates from using classes to identify and categorize biological families of species to
which specific creatures belong and can be derived into similar yet distinct subclasses.
Many of these features apply to the concept of classes in programming.

In Python, class declarations are very similar to function declarations, a header line with
the appropriate keyword followed by a suite as its definition, as indicated below:

def functionName(args):
 'function documentation string'
 function_suite

class
 ClassName:
 'class documentation string"
 class_suite

The fact that such a declaration is "larger" than a standard type declaration should be
proof that classes in Python are much more than standard types. A class is like a Python
container type on steroids. Not only can it hold multiple data items but it can also support
its own set of functions, which we have seen before, called methods. You may be asking
what other advantages classes have over standard container types such as lists and
dictionaries.

Standard types are fixed, cannot be customized, and come with a hard-coded set of
attributes. Data types also do not provide individual namespaces for objects nor can they
be used to derive "sub-types." Objects contained in lists are unrelated except for the name
of their container. Its members are accessed only via an index offset into an array-like
data structure. All lists have the same set of methods. The same goes for dictionaries,
which also have a common set of methods and provide key access to their members (who
are also unrelated except for their container name).

IT-SC book: Core Python Programming

 395

In this section, we will take a close look at classes and what types of attributes they have.
Just remember to keep in mind that even though classes are objects (everything in Python
is an object), they are not realizations of the objects they are defining. We will look at
instances in the next chapter, so stay tuned for that. For now, the limelight is strictly
beamed on class objects.

When you create a class, you are practically creating your own kind of data entity. All
instances of that class are similar, but classes differ from each other (and so will instances
of different classes by nature). Rather than playing with toys that came from the
manufacturer and were bestowed upon you as gifts, why not design and build your own
toys to play with?

Creating Classes

Python classes are created using the class keyword. In the simple form of class
declarations, the name of the class immediately follows the keyword:

class ClassName:
 'class documentation string'
 class_suite

class_suite consists of all the component statements, defining class members, data
attributes, and functions. Classes are generally defined at the top-level of a module so that
instances of a class can be created anywhere in a piece of source code where the class is
defined.

Declaration vs. Definition

As with Python functions, there is no distinction between declaring and defining classes
because they occur simultaneously, i.e., the definition (the class suite) immediately
follows the declaration (header line with the class keyword) and the always
recommended, but optional, documentation string. Likewise, all methods must also be
defined at this time. If you are familiar with the OOP terms, Python does not support pure
virtual functions (à la C++) or abstract methods (as in Java), which coerce the
programmer to define a method in a subclass.

Class Attributes

What is an attribute? An attribute is a data or functional element which belongs to
another object and is accessed via the familiar dotted-attribute notation. Some Python
types such as complex numbers have data attributes (real and imag), while others such
as lists and dictionaries have methods (functional attributes).

One interesting side note about attributes is that when you are accessing an attribute, it is
also an object and may have attributes of its own which you can then access, leading to a

IT-SC book: Core Python Programming

 396

chain of attributes, i.e., myThing.subThing.subSubThing, etc. Some familiar examples
are:

• sys.stdout.write('foo')
• print myModule.myClass.__doc__
• myList.extend(map(upper, open('x').readlines()))

Class attributes are tied only to the classes in which they are defined, and since instance
objects are the most commonly used objects in everyday OOP, instance data attributes are
the primary data attributes you will be using. Class data attributes are useful only when a
more "static" data type is required which is independent of any instances, hence the
reason we are making the next section advanced, optional reading.

In the succeeding subsection, we will briefly describe how methods in Python are
implemented and invoked. In general, all methods in Python have the same restriction:
They require an instance before they can be called.

*Class Data Attributes

Data attributes are simply variables of the class we are defining. They can be used like
any other variable in that they are set when the class is created and can be updated either
by methods within the class or elsewhere in the main part of the program.

Such attributes are better known to OO programmers as static members, class variables,
or static data. They represent data that is tied to the class object they belong to and are
independent of any class instances. If you are a Java or C++ programmer, this type of
data is the same as placing the static keyword in front of a variable declaration.

Static members are generally used only to track values associated with classes. In most
circumstances, you would be using instance attributes rather than class attributes. We will
compare the differences between class and instance attributes when we formally
introduce instances.

Here is an example of using a class data attribute (foo):

>>> class C:
… foo = 100
>>> print C.foo
0
>>> C.foo = C.foo + 1
>>> print C.foo
101

Note that nowhere in the code above do you see any references to class instances.

IT-SC book: Core Python Programming

 397

Methods

A method, such as the myNoActionMethod method of the MyClass class in the example
below, is simply a function defined as part of a class definition (thus making methods
class attributes). This means that myMethod applies only to objects (instances) of MyClass
type. Note how myNoActionMethod is tied to its instance because invocation requires
both names in the dotted attribute notation:

>>> class MyClass:
 def myNoActionMethod(self):
 pass

>>> myInstance = MyClass()
>>> myInstance.myNoActionMethod()

Any call to myNoActionMethod by itself as a function fails:

>>> myNoActionMethod()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 myNoActionMethod()
NameError: myNoActionMethod

A NameError exception is raised because there is no such function in the global
namespace. The point is to show you that myNoactionMethod is a method, meaning that
it belongs to the class and is not a name in the global namespace. If myNoActionMethod
was defined as a function at the top-level, then our call would have succeeded.

We show you below that even calling the method with the class object fails.

>>> MyClass.myNoActionMethod()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 MyClass.myNoActionMethod()
TypeError: unbound method must be called with class
instance 1st argument

This TypeError exception may seem perplexing at first because you know that the
method is an attribute of the class and so are wondering why there is a failure. We will
explain this next.

Binding (Bound and Unbound Methods)

IT-SC book: Core Python Programming

 398

In keeping with OOP tradition, Python imposes the restriction that methods cannot be
invoked without instances. An instance must be used to perform method calls. This
restriction describes Python's concept of binding, where methods must be bound (to an
instance) in order to be invoked directly. Unbound methods may also be called, but an
instance object must be provided explicitly in order for the invocation to succeed.
However, regardless of binding, methods are inherently attributes of the class they are
defined in, even if they are almost always invoked via an instance. We will further
explore bound and unbound methods later in Section 13.7.

Static Methods

Python does not support static methods (a.k.a. static member functions), functions which
are associated only with a class and not with any particular instances. They are either
functions which help manage static class data or are global functions which have some
sort of functionality related to the class they are defined in. Since Python does not support
static methods, a standard global function is the workaround when static method
functionality is desired. More details on how this is accomplished can be found in Section
13.7.2.

Determining Class Attributes

There are two ways to determine what attributes a class has. The simplest way is to use
the dir() built-in function. An alternative is to access the class dictionary attribute
__dict__, one of a number of special attributes that is common to all classes. Let us take
a look at an example:

>>> class MyClass:
… 'MyClass class definition'
… myVersion = '1.1' # static data
… def showMyVersion(self): # method
… print MyClass.myVersion
…

Using the class defined above, let us use dir() and the special class attribute __dict__
to see this class's attributes:

>>> dir(MyClass)
['__doc__', '__module__', 'showMyVersion', 'myVersion']
>>>
>>> MyClass.__dict__
{'__doc__': None, 'myVersion': 1, 'showMyVersion':
<function showMyVersion at 950ed0>, '__module__':
'__main__'}

IT-SC book: Core Python Programming

 399

As you can tell, dir() returns a list of an object's attributes while __dict__ is a
dictionary, with the attribute names as keys and whose values are the data values of the
corresponding attributes.

The output also reveals two familiar attributes of our class MyClass, showMyVersion
and myVersion, as well as a couple of new ones. These attributes, __doc__ and
__module__, are special class attributes which all classes have (in addition to __dict__).
The vars() built-in function returns the contents of a class's __dict__ attribute when
passed the class object as its argument.

Special Class Attributes

For any class C, Table 13.1 represents a list of all the special attributes of C:

Table 13.1. Special Class Attributes

C.__name__ string name of class C

C.__doc__ documentation string for class C

C.__bases__ tuple of class C's parent classes

C.__dict__ attributes of C

C.__module__ module where C is defined (new in 1.5)

Using the class MyClass we just defined above, we have the following:

>>> MyClass.__name__
'MyClass'
>>> MyClass.__doc__
'MyClass class definition'
>>> MyClass.__bases__
()
>>> MyClass.__dict__
{'__doc__': None, 'myVersion': 1, 'showMyVersion':
<function showMyVersion at 950ed0>, '__module__':
'__main__'}
>>> MyClass.__module__
'__main__'

IT-SC book: Core Python Programming

 400

__name__ is the string name for a given class. This may come in handy in cases where a
string is desired rather than a class object. Even some built-in types have this attribute,
and we will use one of them to showcase the usefulness of the __name__ string.

The type object is an example of one built-in type that has a __name__ attribute. Recall
that type() returns a type object when invoked. There may be cases where we just want
the string indicating the type rather than an object. We can use the __name__ attribute of
the type object to obtain the string name. Here is an example:

>>> stype = type('What is your quest?')
>>> stype # stype is a type object
<type 'string'>
>>> stype.__name__ # get type as a string
'string'
>>>
>>> type(3.14159265) # also a type object
<type 'float'>
>>> type(3.14159265).__name__ # get type as a string
'float'

__doc__ is the documentation string for the class, similar to the documentation string for
functions and modules, and must be the first unassigned string succeeding the header line.
The documentation string is not inherited by derived classes, as an indication that they
must contain their own documentation strings.

__bases__ deals with inheritance which we will cover later in this chapter; it contains a
tuple which consists of a class's parent classes.

The aforementioned __dict__ attribute consists of a dictionary containing the data
attributes of a class. When accessing a class attribute, this dictionary is searched for the
attribute in question. If it is not found in __dict__, the hunt continues in the dictionary
of base classes, in "depth-first search" order. The set of base classes is searched in
sequential order, left-to-right in the same order as they are defined as parent classes in a
class declaration. Modification of a class attribute affects only the current class's
dictionary; no base class __dict__ attributes are ever modified.

Python supports class inheritance across modules, so to better clarify a class's description,
the __module__ was introduced in version 1.5 so that a class name is fully qualified with
its module. We present the following example:

>>> class C:
… pass
…
>>> C
<class __main__.C at 81201f0>
>>> C.__module__
'__main__'

IT-SC book: Core Python Programming

 401

The fully-qualified name of class C is "__main__.C", i.e. source_module.class_name.
If class C was located in an imported module, such as mymod, we would see the following:

>>> from mymod import C
>>> C # class C in Python 1.5.2
<class mymod.C at 8120be0>
>>> C.__module__
'mymod'

In previous versions of Python without the special attribute __module__, it was much
more difficult to ascertain the location of a class simply because classes did not use their
fully-qualified names. For example, if we were to perform the same module import and
access the class, you can see that no source module name for class C is available:

>>> from mymod import C
>>> C # class C in Python 1.4
<class C at 8120be0>

Instances

Whereas a class is a data structure definition type, an instance is a declaration of a
variable of that type. In other words, instances are classes brought to life. Once a
blueprint is provided, the next step to bring them to fruition. Instances are the objects
which are used primarily during execution, and all instances are of type "instance."

Instantiation: Creating Instances by Invoking Class Object

Most other OO languages provide a new keyword with which to create an instance of a
class. Python's approach is much simpler. Once a class has been defined, creating an
instance is no more difficult that calling a function—literally. Instantiation is realized
with use of the function operator, as in the following example:

>>> class MyClass: # define class
… pass
>>> myInstance = MyClass() # instantiate class
>>> type(MyClass) # class is of class type
<type 'class'>
>>> type(myInstance) # instance is of
instance type
<type 'instance'>

IT-SC book: Core Python Programming

 402

NOTE

The use of the term "type" in Python may perhaps differ from the general connotation of
an instance being of the type of class it was created from. In Chapter 4, we introduced all
Python objects as data entities with three characteristics: an ID, a type, and a value. An
object's type dictates the behavioral properties of such objects in the Python system, and
these types are a subset of all types which Python supports.

User-defined "types" such as classes are categorized in the same manner. Classes share
the same type, but have different IDs and values (their class definitions). The fact that all
classes are defined with the same syntax, that they can be instantiated, and that all have
the same core properties leads to the conclusion that they have common characteristics
which allow them to fall under the same category. Classes are unique objects which differ
only in definition, hence they are all the same "type" in Python. Class instances follow
the same argument.

Do not let Python's nomenclature fool you; instances are most assuredly related to the
class they were instantiated from and would not have any other relationship to other
instances (unless they were of a subclass or base class).

To avoid confusion, keep the following in mind: When you are defining a class, you are
not creating a new type. You are just defining a unique class type, but it is still a class.
When you instantiate classes, the resulting object is always an instance. Even though
instances may be instantiated from different classes, they are still (generically) class
instances.

As you can see, creating instance myInstance of class MyClass consists of "calling" the
class: MyClass(). The return object of the call is an instance object. We also verified the
data types of MyClass and myInstance using type(): MyClass is a class object and
myInstance is an instance object. To take this even further, we tell you now that all
classes are of the same type (type class), and all instances are of the same type (type
instance). (You can verify this using the type() built-in function.)

__init__() Constructor Method

When the class is invoked, the first step in the instantiation process is to create the
instance object. Once the object is available, a check to see if a constructor has been
implemented is called. By default, no special actions are enacted on the instance without
the overriding of the constructor, the special method __init__(). Any special action
desired requires the programmer to implement __init__(), overriding its default
behavior. If __init__() has not been implemented, the object is then returned and the
instantiation process is complete.

IT-SC book: Core Python Programming

 403

However, if __init__() has been implemented, then that special method is invoked and
the instance object passed in as the first argument (self), just like a standard method call.
Any arguments passed to the class invocation call are passed on to __init__(). You can
practically envision the call to create the class as a call to the constructor.

__init__() is one of many special methods which can be defined for classes. Some of
these special methods are predefined with inaction as their default behavior (such as
__init__()) and must be overridden for customization while others should be
implemented on an as-needed basis. We will go over special methods in Section 13.13
later on in this chapter.

__del__() Destructor Method

Likewise, there is an equivalent destructor special method called __del__(). However,
due to the way Python manages garbage collection of objects (by reference counting),
this function is not executed until all references to an instance object have been removed.
Destructors in Python are methods which provide special processing before instances are
deallocated and are not commonly implemented since instances are seldom deallocated
explicitly.

NOTE

Python does not provide any internal mechanism to track how many instances of a class
have been created nor to keep tabs on what they are. You can explicitly add some code to
the class definition and perhaps __init__() and __del__() if such functionality is
desired. The best way is to keep track of the number of instances using a static member.
It would be dangerous to keep track of instance objects by saving references to them,
because you must manage these references properly or else your instances will never be
deallocated (because of your extra reference to them)! An example follows:

 class
myClass:
 count = 0 # use static data for count
 def __init__(self): # constructor, incr. count
 myClass.count = myClass.count + 1
 def __del__(self): # destructor, decr. count
 myClass.count = myClass.count - 1
 assert myClass > 0 # cannot have < 0 instances
 def howMany(self): # return count
 return myClass.count
>>> a = myClass()
>>> b = myClass()
>>> b.howMany()
2
>>> a.howMany()
2
>>> del b
>>> a.howMany()

IT-SC book: Core Python Programming

 404

1
>>> del a
>>> myClass.count
0

In the following example, we create (and override) both the __init__() and __del__()
constructor and destructor functions, respectively, then instantiate the class and assign
more aliases to the same object. The id() built-in function is then used to confirm that all
three aliases reference the same object. The final step is to remove all the aliases by using
the del statement and discovering when and how many times the destructor is called.

>>> class C: # class declaration
 def __init__(self): # constructor
 print 'initialized'
 def __del__(self): # destructor
 print 'deleted'

>>> c1 = C() # instantiation
initialized
>>> c2 = c1 # create additional alias
>>> c3 = c1 # create a third alias
>>> id(c1), id(c2), id(c3) # all refer to same object
(11938912, 11938912, 11938912)
>>> del c1 # remove one reference
>>> del c2 # remove another reference
>>> del c3 # remove final reference
deleted # destructor finally invoked

Notice how, in the above example, the destructor was not called until all references to the
instance of class C were removed, i.e., when the reference count has decreased to zero. If
for some reason your __del__() method is not being called when you are expecting it to
be invoked, this means that somehow your instance object's reference count is not zero,
and there may be some other reference to it that you are not aware of that is keeping your
object around.

Also note that the destructor is called exactly once, the first time the reference count goes
to zero and the object deallocated. This makes sense because any object in the system is
allocated and deallocated only once.

Instance Attributes

Instances have only data attributes (methods are strictly class attributes) and are simply
data values which you want to be associated with a particular instance of any class and

IT-SC book: Core Python Programming

 405

are accessible via the familiar dotted-attribute notation. These values are independent of
any other instance or of the class it was instantiated from. When an instance is
deallocated, so are its attributes.

"Instantiating" Instance Attributes (or, Creating a Better
Constructor)

Instance attributes can be set any time after an instance has been created, in any piece of
code that has access to the instance. However, one of the key places where such attributes
are set is in the constructor, __init__().

Constructor First Place to Set Instance Attributes

The constructor is the earliest place that instance attributes can be set because __init__()
is the first method called after instance objects have been created. There is no earlier
opportunity to set instance attributes. Once __init__() has finished execution, the
instance object is returned, completing the instantiation process.

Default Arguments Provide Default Instance Setup

One can also use __init__() along with default arguments to provide an effective way
in preparing an instance for use in the real world. In many situations, the default values
represent the most common cases for setting up instance attributes, and such use of
default values precludes them from having to be given explicitly to the constructor. We
also outlined some of the general benefits of default arguments in Section 11.5.2.

Example 13.1 shows how we can use the default constructor behavior to help us
calculate some sample total room costs for lodging at hotels in some of America's large
metropolitan areas.

The main purpose of our code is to help someone figure out the daily hotel room rate,
including any state sales and room taxes. The default is for the general area around San
Francisco, which has an 8.5% sales tax and a 10% room tax. The daily room rate has no
default value, thus it is required for any instance to be created.

The setup work is done after instantiation by __init__() in lines 4–8, and the other core
part of our code is the calcTotal() method, lines 10–14. The job of __init__() is to
set the values needed to determine the total base room rate of a hotel room (not counting
room service, phone calls, or other incidental items). calcTotal() is then used to either
determine the total daily rate or for an entire stay if the number of days is provided. The
round() built-in function is used to round the calculation to the closest penny (two
decimal places). Here is some sample usage of this class:

Example 13.1. Using Default Arguments with Instantiation (hotel.py)

IT-SC book: Core Python Programming

 406

Class definition for a fictitious hotel room rate calculator. The __init__() constructor
method initializes several instance attributes. A calcTotal() method is used to
determine either a total daily room rate, or the total room cost for an entire stay.

 <$nopage>
001 1 class HotelRoomCalc:
002 2 'Hotel room rate calculator'
003 3
004 4 def __init__(self, rt, sales=0.085, rm=0.1):
005 5 '''HotelRoomCalc default arguments:
006 6 sales tax == 8.5% and room tax == 10%'''
007 7 self.salesTax = sales
008 8 self.roomTax = rm
009 9 self.roomRate = rt
010 10
011 11 def calcTotal(self, days=1):
012 12 'Calculate total; default to daily rate'
013 13 daily = round((self.roomRate * \
014 14 (1 + self.roomTax + self.salesTax)), 2)
015 15 return float(days) * daily
016 <$nopage>

>>> sfo = HotelRoomCalc(299) # new instance
>>> sfo.calcTotal() # daily rate
354.32
>>> sfo.calcTotal(2) # 2-day rate
708.64
>>> sea = HotelRoomCalc(189, 0.086, 0.058) # new instance
>>> sea.calcTotal()
216.22
>>> sea.calcTotal(4)
864.88
>>> wasWkDay = HotelRoomCalc(169, 0.045, 0.02) # new instance
>>> wasWkEnd = HotelRoomCalc(119, 0.045, 0.02) # new instance
>>> wasWkDay.calcTotal(5) + wasWkEnd.calcTotal() # 7-day rate
1026.69

The first two hypothetical examples were San Francisco, which used the defaults, and
then Seattle, where we provided different sales tax and room tax rates. The final example,
Washington, D.C., extended the general usage by calculating a hypothetical longer stay: a
five-day weekday stay plus a special rate for one weekend day, assuming a Sunday
departure to return home.

Do not forget that all the flexibility you get with functions, such as default arguments,
apply to methods as well. The use of variable-length arguments is another good feature to
use with instantiation (based on an application's needs, of course).

Constructor Should Return None

As you are now aware, invoking a class object with the function operator creates a class
instance, which is the object returned on such an invocation, as in the following example:

IT-SC book: Core Python Programming

 407

>>> class MyClass:
… pass
>>> myInstance = MyClass()
>>> myInstance
<__main__.MyClass instance at 95d390>

If a constructor is defined, it should not return any object because the instance object is
automatically returned after the instantiation call. Correspondingly, __init__() should
not return any object (or return None); otherwise, there is a conflict of interest because
only the instance should be returned. Attempting to return any object other than None
will result in a TypeError exception:

>>> class MyClass:
… def __init__(self):
… print 'initialized'
… return 1
…
>>> myInstance = MyClass()
initialized
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 myInstance = MyClass()
TypeError: __init__() should return None

Determining Instance Attributes

The dir() built-in function can be used to show all instance attributes in the same
manner that it can reveal class attributes:

>>> class C:
… pass
>>> c = C()
>>> c.foo = 'roger'
>>> c.bar = 'shrubber'
>>> dir(c)
['bar', 'foo']

Similar to classes, instances also have a __dict__ special attribute (also accessible by
calling vars() and passing it an instance), which is a dictionary representing its attributes:

>>> c.__dict__
{'foo': 'roger', 'bar': 'shrubber'}

IT-SC book: Core Python Programming

 408

Special Instance Attributes

Instances have only two special attributes (see Table 13.2). For any instance I:

Table 13.2. Special Instance Attributes

I.__class__ class from which I is instantiated

I.__dict__ attributes of I

We will now take a look at these special instance attributes using the class C and its
instance c:

>>> class C: # define class
… pass
…
>>> c = C() # create instance
>>> dir(c) # instance has no attributes
[]
>>> c.__dict__ # yep, definitely no attributes
{}
>>> c.__class__ # class that instantiated us
<class __main__.C at 948230>

As you can see, c currently has no data attributes; but we can add some and recheck the
__dict__ attribute to make sure they have been added properly:

>>> c.foo = 1
>>> c.bar = 'SPAM'
>>> '%d can of %s please' % (c.foo, c.bar)
'1 can of SPAM please'
>>> dir(c)
['bar', 'foo']
>>> c.__dict__
{'foo': 1, 'bar': 'SPAM'}

The __dict__ attribute consists of a dictionary containing the attributes of an instance.
The keys are the attribute names, and the values are the attributes' corresponding data
values. You will only find instance attributes in this dictionary—no class attributes nor
special attributes.

NOTE

IT-SC book: Core Python Programming

 409

Although the __dict__ attributes for both classes and instances are mutable, it is
recommended that you not modify these dictionaries unless or until you know exactly
what you are doing. Such modification contaminates your OOP and may have
unexpected side effects. It is more acceptable to access and manipulate attributes using
the familiar dotted-attribute notation. One of the few cases where you would modify the
__dict__ attribute directly is when you are overriding the __setattr__ special method.
Implementing __setattr__() is another adventure story on its own, full of traps and
pitfalls such as infinite recursion and corrupted instance objects—but that is another tale
for another time.

Built-in Type Attributes

Built-in types also have attributes, and although they are technically not class instance
attributes, they are sufficiently similar to get a brief mention here. Type attributes do not
have an attribute dictionary like classes and instances (__dict__), so how do we figure
out what attributes built-in types have? The convention for built-in types is to use two
special attributes, __methods__ and __members__, to outline any methods and/or data
attributes. Complex numbers are one example of a built-in type with both methods and
attributes, so we will use its __methods__ and __members__ to help us hunt down its
attributes:

>>> aComplex = (1+2j) # create a complex number
>>> type(aComplex) # display its type
<type 'complex'>
>>> aComplex.__members__ # reveal its data attributes
['imag', 'real']
>>> aComplex.__methods__ # reveal its methods
['conjugate']

Now that we know what kind of attributes a complex number has, we can access the data
attributes and call its methods:

>>> aComplex.imag
2.0
>>> aComplex.real
1.0
>>> aComplex.conjugate()
(1-2j)

Attempting to access __dict__ will fail because that attribute does not exist for built-in
types:

IT-SC book: Core Python Programming

 410

>>> aComplex.__dict__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __dict__

Our final remark for this section is to note that the __members__ and __methods__
special attributes is simply a convention. New types defined in external or third-party
extension modules may not choose to implement them, although it is highly
recommended.

Instance Attributes vs. Class Attributes

We first described class data attributes in Section 13.4.1. As a brief reminder, class
attributes are simply data values associated with a class and not any particular instances
like instance attributes are. Such values are also referred to as static members because
their values stay constant, even if a class is invoked due to instantiation multiple times.
No matter what, static members maintain their values independent of instances unless
explicitly changed. Comparing instance attributes to class attributes is almost like the
comparison between automatic and static variables, if you are familiar with these
concepts from other languages.

There are a few aspects of class attributes versus instance attributes that should be
brought to light. The first is that you can access a class attribute with either the class or an
instance, provided that the instance does not have an attribute with the same name.

Access to Class Attributes

Class attributes can be accessed via a class or an instance. In the example below, when
class C is created with the version class attribute, naturally access is allowed using the
class object, i.e., C.version. When instance c is created, Python provides a default,
read-only instance attribute which is an alias to the class attribute, i.e., c.version:

>>> class C: # define class
… version = 1.0 # static member
…
>>> c = C() # instantiation
>>> C.version # access via class
1.0
>>> c.version # access via instance
1.0
>>> C.version = C.version + .1 # update (only) via class
>>> C.version # class access
1.1
>>> c.version # instance access, which
1.1 # also reflected change

IT-SC book: Core Python Programming

 411

However, access via to a class attribute via an instance attribute is strictly read-only (see
below for what happens if you try to update one), so we can only update the value when
referring to it using the class, as in the C.version increment statement above.
Attempting to set or update the class attribute using the instance name is not allowed and
will create an instance attribute.

Assignment Creates Local Instance Attribute

Any type of assignment of a local attribute will result in the creation and assignment of
an instance attribute, just like a regular Python variable. If a class attribute exists with the
same name, it is overridden in the instance:

>>> dir(C)
['__doc__', '__module__', 'version']
>>> dir(c)
[]
>>> c.version = 100 # attempt to update class attr
>>> c.version
100
>>> C.version # nope, class attr unchanged
1.1
>>> dir(c) # confirm new instance attr created
['version']

In the above code snippet, a new instance attribute named version is created, overriding
the reference to the class attribute. However, the class attribute itself is unscathed and still
exists in the class domain and can still be accessed as a class attribute, as we can see
above.

To confirm that a new instance attribute was added, the call to dir() in the above code
snippet reveals no attributes for instance c, while class C had three attributes (__doc__,
__module__, and version). Calling dir() again on c after the assignment yields one
new attribute, version.

What would happen if we delete this new reference? To find out, we will use the del
statement on c.version.

>>> del c.version # delete instance attribute
>>> dir(c)
[]
>>> c.version # can now access class attr again
1.1

Now let us try to update the class attribute again, but this time, we will just try an
innocent increment:

IT-SC book: Core Python Programming

 412

>>> c.version = c.version + 1.0
>>> c.version
2.1
>>> dir(c)
['version']
>>> C.version
1.1

It is still a "no go." We again created a new instance attribute while leaving the original
class attribute intact. The expression on the right-hand side of the assignment evaluates
the original class variable, adds 1.0 to it, and assigns it to a newly-created instance
attribute. Note that the following is an equivalent assignment, but it may perhaps provide
more clarification:

c.static = C.static + 1.0

Class Attributes More Persistent

Static members, true to their name, hang around while instances (and their attributes)
come and go (hence independent of instances). Also, if a new instance is created after a
class attribute has been modified, the updated value will be reflected:

>>> class C:
… spam = 100 # class attribute
…
>>> c1 = C() # create an instance
>>> c1.spam # access class attr thru inst.
100
>>> C.spam = C.spam + 100 # update class attribute
>>> C.spam # see change in attribute
200
>>> c1.spam # confirm change in attribute
200
>>> c2 = C() # create another instance
>>> c2.spam # verify class attribute
200
>>> del c1 # remove one instance
>>> C.spam = C.spam + 200 # update class attribute again
>>> c2.spam # verify that attribute changed
400

Binding and Method Invocation

Now we need to readdress the Python concept of binding, which is associated only with
method invocation. We will first review the facts about methods. First, a method is
simply a function defined as part of a class. This means that methods are class attributes

IT-SC book: Core Python Programming

 413

(not instance attributes). Second, methods can be invoked only when there is an instance
of the class in which the method was defined. When there is an instance present, the
method is considered bound. Without an instance, a method is considered unbound. And
third, the first argument in any method definition is the variable self, which represents
the instance object which invokes the method.

NOTE

The variable self is used in class instance methods to reference the instance which the
method is bound to. Because a method's instance is always passed as the first argument in
any method call, self is the name that was chosen to represent the instance. You are
required to put self in the method declaration (you may have noticed this already) but do
not need to actually use the instance (self) within the method.

If you do not use self in your method, you might consider creating a regular function
instead, unless you have a particular reason not to. After all, your code, because it does
not use the instance object in any way, "unlinks" its functionality from the class, making
it seem more like a general function.

We will now create a class C with a method called showSelf() which will display more
information about the instance object that was just created:

>>> class C:
… def showSelf(self):
… self
… type(self)
… id(self)

>>> c = C()
>>> c.showSelf()
<__main__.C instance at 94abe0>
<type 'instance'>
9743328

Now let us take a look directly at the instance to see if the information matches—and it
does:

>>> c
<__main__.C instance at 94abe0>
>>> type(c)
<type 'instance'>
>>> id(c)
9743328

In other object-oriented languages, self is named this.

IT-SC book: Core Python Programming

 414

Invoking Bound Methods

Methods, bound or not, is made up of the same code. The only difference is whether there
is an instance present so that the method can be invoked. Recall that even though self is
required as the first argument in every method declaration, it never needs to be passed
explicitly when you invoke it from an instance. The interpreter automatically performs
that task for you.

Once again, here is an example of invoking a bound method, first found in Section
13.4.2:

>>> class MyClass:
… def myNoActionMethod(self):
… pass
…
>>>
>>> myInstance = MyClass() # create instance
>>> myInstance.myNoActionMethod() # invoke method

To invoke a method, use the name of the instance and the name of the method in dotted
attribute notation followed by the function operator and any arguments.

Also in Section 13.4.2, we briefly noted the failure of invoking the method with the class
name. The cause of this failure is that no instance was given to the method. Without
invoking a method using an instance (and having that instance passed automatically as
self to the method), the interpreter complained that self was not passed in. What we
did wrong was to invoke an unbound method without an instance.

Invoking Unbound Methods

There are generally two reasons a programmer might attempt to invoke an unbound
method. One is when a programmer is trying to implement static methods (which is not
supported in Python), and the other is when a specific instance of the class defining the
method is not available. We begin our tale by describing a workaround to the lack of
static method support in Python.

Static Method Workaround

Static methods are generally desired in two different scenarios. The first is a situation
where a programmer wants to keep his or her global or local namespace "pure," by not
adding another function to the corresponding namespace. Or secondly, perhaps it is a
small or insignificant function which is somehow related to the class he wants to define it
in, or maybe it is a function that helps manage static data. The first case presents a
relatively weak argument, but there is some merit for the latter case, this static member

IT-SC book: Core Python Programming

 415

management function. Here, we simply want to invoke the method in a functional sense
(meaning independent of instances) in order to update static data.

>>> class C:
… version = 1.0 # static data attribute
… def updateVersion(self, newv):
… C.version = newv # update static data
…

And of course, invoking this method without an instance gives us the same TypeError
exception we have seen before:

>>> C.updateVersion(2.0)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 C.updateVersion()
TypeError: unbound method must be called with class
instance 1st argument

The only workaround, which may be unpleasant, is to give up and move the function to
the global domain which has access to class C (and thus the attributes of C). We can
obtain the desired functionality:

>>> def updateVersion(newv):
… C.version = newv
…
>>> updateVersion(2.0)
>>> C.version
2.0

One problem with using a global function as the solution is that you do not get the "feel"
that updateVersion() is a class method, because it is not. The desire is to call
C.updateVersion() or something. Yes, there are other, more sinister workarounds
which new Python programmers should avoid because, to paraphrase from the Python
FAQ, "[if] you don't understand why you'd ever want to do this, that's because you are
pure of mind, and you probably never will want to do it! This is dangerous trickery, [and]
not recommended when avoidable."

Convenient Instance Unavailable

When a bound method is invoked, for example, instance.method(x, y), the
interpreter would be executing the equivalent of method(instance, x, y), as in the
following example:

IT-SC book: Core Python Programming

 416

>>> class MyData:
… def myMethod(self, arg):
… print 'called myMethod with:', arg
…
>>>
>> myInstance = MyData()
>>> myInstance.myMethod('grail')
called myMethod with: grail

The call myInstance.myMethod('grail') results in the equivalent call of
myMethod(myInstance, 'grail'), which matches the function signature,
myMethod(self, arg).

However, invoking an unbound method does not work quite as well. Since there is no
bound instance, the method call will fail because the call would be simply method(x, y)
rather than method(instance, x, y). Here is the error one more time:

>>> MyData.myMethod(932)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 MyData.myMethod(932)
TypeError: unbound method must be called with class
instance 1st argument

Notice that the TypeError exception states, "unbound method must be called with class
instance 1st argument." Ah, that's the problem. The first argument passed to the method
was an integer, not a class instance. The function signatures did not match, i.e.,
myMethod(932) versus myMethod(self, arg). What if we did pass an instance as the
first argument (to make the signatures match)?

>>> MyData.myMethod(myInstance, 932)
called myMethod with: 932

Presto! It now works. So an interesting result of having an instance is that you can now
invoke an unbound method if you explicitly provide the instance so that the call is
method(instance, x, y).

This is all rather nice, but what if there is no instance nearby for us to use? What if in the
above example, we had not created the myInstance object? Well, then we would not
have been able to invoke myMethod() then. Does this ever happen? The answer is yes
and comes into play in Section 13.9 below. Such situations require the invocation of a
base class method from the method of a derived class. We've already seen it once, in the
"Creating a Subclass" subsection of Section 13.1.

IT-SC book: Core Python Programming

 417

Composition

Once a class is defined, the goal is to use it as a model programmatically, embedding this
object throughout your code, intermixing use with other data types and the logical flow of
execution. There are two ways of utilizing classes in your code. The first is composition.
This is where different classes are mingled with and into other classes for added
functionality and code reusability. You may perhaps create instances of your class inside
a larger class, containing other attributes and methods enhancing the use of the original
class object. The other way is with derivation and discussed in the next section.

For example, let us imagine an enhanced design of the address book class we created at
the beginning of the chapter. If, during the course of our design, we created separate
classes for names, addresses, etc., we would want to integrate that work into our
AddrBookEntry class, rather than have to redesign each of those supporting classes. We
have the added advantages of time and effort saved, as well as more consistent code—
when bugs are fixed in that same piece of code, that change is reflected in all the
applications which reuse that code.

Such as a class would perhaps contain Name and Phone instances, not to mention others
like StreetAddress, Phone (home, work, telefacsimile, pager, mobile, etc.), Email
(home, work, etc.), and possibly a few Date instances (birthday, wedding, anniversary,
etc.). Here is a simple example with some of the classes mentioned above:

class NewAddrBookEntry: # class definition
 'new address book entry class'
 def __init__(self, nm, ph): # define constructor
 self.name = Name(nm) # create Name instance
 self.phone = Phone(ph) # create Phone instance
 print 'Created instance for:', self.name

The NewAddrBookEntry class is a composition of itself and other classes. This defines a
"has-a" relationship between a class and other classes it is composed of. For example, our
NewAddrBookEntry class "has a" Name class instance and a Phone instance, too.

Creating composite objects enables such additional functionality and make sense because
the classes have nothing in common. Each class manages its own namespace and
behavior. When there are more intimate relationships between objects, a more elegant
solution is the concept of derivation.

Subclassing and Derivation

Composition works fine when classes are distinct and are a required component of larger
classes, but when you desire "the same class but with some tweaking," derivation is a
more logical option.

IT-SC book: Core Python Programming

 418

One of the more powerful aspects of OOP is the ability to take an already-defined class
and extend it or make modifications to it without affecting other pieces of code in the
system that use the currently-existing classes. OOD allows for class features to be
"inherited" by "descendant" classes or "subclasses." These subclasses "derive" the core of
their attributes from "base" (a.k.a. ancestor, super) classes. In addition, this derivation
may be extended for multiple generations. Classes involved in a one-level derivation (or
are adjacent vertically in a class tree diagram) have a "parent" and "child" class
relationship. Those classes which derive from the same parent (or are adjacent
horizontally in a class tree diagram) have a "sibling" relationship. Parent and all higher-
level classes are considered ancestors.

Using our example from the previous section, let us imagine having to create different
types of address books. We are talking about more than just creating multiple instances of
address books—in this case, all objects have everything in common. What if we wanted a
BusinessAddressBook class whose entries would contain more work-related attributes
such as job position, phone number, and e-mail address? This would differ from a
PersonalAddressBook class which would contain more family-oriented information
such as home address, relationship, birthday, etc.

For both of these cases, we do not want to design these classes from scratch, because it
would duplicate the work already accomplished to create the generic AddressBook
class. Wouldn't it be nice to subsume all the features and characteristics of the
AddressBook class and add specialized customization for your new, yet related, classes?
This is the entire motivation and desire for class derivation.

Creating Subclasses

As we have seen earlier, the general syntax for declaring a base class looks like this:

class
 ClassName:
 'optional class documentation string'
 class_suite

Derived classes are declared much like their parent class; however, a list of base classes
to inherit from are given after the class name:

class
 SubClassName
(ParentClass1[, ParentClass2, …]):
 'optional class documentation string'
 class_suite

IT-SC book: Core Python Programming

 419

We have already seen some examples of classes and subclasses so far, but here is another
simple example:

>>> class Parent: # define parent class
… def parentMethod(self):
… print 'calling parent method'

>>> p = Parent() # instance of parent
>>> dir(Parent) # parent class attributes
['__doc__', '__module__', 'parentMethod']
>>> p.parentMethod()
calling parent method
>>>
>>> class Child(Parent): # define child class
… def childMethod(self):
… print 'calling child method'

>>> c = Child() # instance of child
>>> dir(Child) # child class attributes
['__doc__', '__module__', 'childMethod']
>>> c.childMethod() # child calls its method
calling child method
>>> c.parentMethod() # calls parent's method
calling parent method

Inheritance

Inheritance describes how the attributes of base classes are "bequeathed" to a derived
class. A subclass inherits attributes of any of its base classes whether they be data
attributes or methods.

We present an example below. P is a simple class with no attributes. C is a class with no
attributes which derives from (and therefore is a subclass of) P:

>>> class P: # parent class
… pass
>>> class C(P): # child class
… pass
>>>
>>> c = C() # instantiate child
>>> c.__class__ # child "is a" parent
<class __main__.C at 8120c98>
>>> C.__bases__ # child's parent class(es)
(<class __main__.P at 811fc98>,)

Because P has no attributes, nothing was inherited by C. Let us make our example more
useful by giving P some attributes:

IT-SC book: Core Python Programming

 420

>>> class P: # parent class
… 'P class'
… def __init__(self):
… print 'created an instance of', \
… self.__class__.__name__
…
>>> class C(P): # child class
… pass

We now create P with a documentation string (__doc__) and a constructor which will
execute when we instantiate P, as in this interactive session:

>>> p = P() # parent instance
created an instance of P
>>> p.__class__ # class that created us
<class __main__.P at 811f900>
>>> P.__bases__ # parent's parent class(es)
()
>>> P.__doc__ # parent's doc string
'P class'
>>> dir(P) # parent class attributes
['__doc__', '__init__', '__module__']

The "created an instance" output comes directly from __init__(). We also display
some more about the parent class P for your information. Since P is not a subclass, its
__bases__ attribute is empty. We will now instantiate C, showing you how the
__init__() (constructor) method is inherited with its execution:

>>> c = C() # child instance
created an instance of C
>>> c.__class__ # class that created us
<class __main__.C at 812c1b0>
>>> C.__bases__ # child's parent class(es)
(<class __main__.P at 811f900>,)
>>> C.__doc__ # child's doc string
>>>
>>> dir(C) # child class attributes
['__doc__', '__module__']

C has no declared method __init__(), yet there is still output when instance c of class C
is created. The reason is that C inherits __init__() from P. The __bases__ tuple now
lists P as its parent class.

You will notice that some special data attributes are not inherited, the most notable of
which is __doc__. Each class should have its own documentation string. It does not

IT-SC book: Core Python Programming

 421

make sense inheriting special class attributes because the values generally relate to one
specific class.

__bases__ Class Attribute

We briefly introduced the __bases__ class attribute in Section 13.4.4, which is a tuple
containing the set of parent classes for any (sub)class. Note that we specifically state
"parents" as opposed to all base classes (which includes all ancestor classes). Classes
which are not derived will have an empty __bases__ attribute. Let us look at an example
of how to make use of __bases__.

>>> class A: pass # define class A
…
>>> class B(A): pass # subclass of A
…
>>> class C(B): pass # subclass of B (and indirectly, A)
…
>>> class D(A,B): pass # subclass of A and B
…
>>> C.__bases__
(<class __main__.B at 8120c90>,)
>>> D.__bases__
(<class __main__.A at 811fc90>, <class __main__.B at 8120c90>)

In the example above, although C is a derived class of both A (through B) and B, C's
parent is B, as indicated in its declaration, so only B will show up in C.__bases__. On
the other hand, D inherits from two classes, A and B. (Multiple inheritance is covered in
Section 13.10.4.)

Overriding Methods through Inheritance

Let us create another function in P that we will override in its child class:

>>> class P:
… def foo(self):
… print 'Hi, I am P-foo()'
…
>>> p = P()
>>> p.foo()
Hi, I am P-foo()

Now let us create the child class C, subclassed from parent P:

>> class C(P):
… def foo(self):

IT-SC book: Core Python Programming

 422

… print 'Hi, I am C-foo()'
…
>>> c = C()
>>> c.foo()
Hi, I am C-foo()

Although C inherits P's foo() method, it is overridden because C defines its own foo()
method. One reason for overriding methods is because you may want special or different
functionality in your subclass. Your next obvious question then must be, "Can I call a
base class method which I overrode in my subclass?"

The answer is yes, but this is where you will have to invoke an unbound base class
method, explicitly providing the instance of the subclass, as we do here:

>>> P.foo(c)
Hi, I am P-foo()

Notice that we already had an instance of P called p from above, but that is nowhere to be
found in this example. We do not need an instance of P to call a method of P because we
have an instance of a subclass of P which we can use, c.

NOTE

When deriving a class with a constructor __init__(), if you do not override
__init__(), it will be inherited and automatically invoked. But if you do override
__init__() in a subclass, the base class __init__() method is not invoked
automatically when the subclass is instantiated.

>>> class P:
… def __init__(self):
… print "calling P\xd5 s constructor"
…
>>> class C(P):
… def __init__(self):
… print "calling C\xd5 s constructor"
…
>>> c = C()
created an instance of C

If you want the base class __init__() invoked, you need to do that explicitly in the
same manner as we just described, calling the base class (unbound) method with an
instance of the subclass. Updating our class C appropriately results in the following
desired execution:

IT-SC book: Core Python Programming

 423

>>> class C(P):
… def __init__(self):
… P.__init__(self)
… print "calling C's constructor"
…
>>> c = C()
calling P's constructor
calling C's constructor

In the above example, we call the base class __init__() method before the rest of the
code in our own __init__() method. It is fairly common practice (if not mandatory) to
initialize base classes for setup purposes, then proceed with any local setup. This rule
makes sense because you want the inherited object properly initialized and "ready" by the
time the code for the derived class constructor runs, because it may require or set
inherited attributes.

Those of you familiar with C++ would call base class constructors in a derived class
constructor declaration by appending a colon to the declaration followed by calls to any
base class constructors. Java programmers have no choice—base class constructors must
always be called as the first thing that happens in derived class constructors. Python's use
of the base class name to invoke a base class method is directly comparable to Java's
when using the keyword super.

Deriving Standard Types

One limitation is that Python types are not classes, meaning that we cannot derive
subclasses from them. Not all is lost though, because of the many different special default
attribute methods we can implement to emulate the standard types (see the Core Note in
Section 4.2 as well as Sections 6.14.2 and 13.12).

Multiple Inheritance

Python allows for subclassing from multiple base classes. This feature is commonly
known as "multiple inheritance." Python supports a limited form of multiple inheritance
whereby a depth-first searching algorithm is employed to collect the attributes to assign
to the derived class. Unlike other Python algorithms which override names as they are
found, multiple inheritance takes the first name that is found.

Our example below consists of a pair of parent classes, a pair of children classes, and one
grandchild class.

class P1: # parent class 1
 def foo(self):

IT-SC book: Core Python Programming

 424

 print 'called P1-foo()'

class P2: # parent class 2
 def foo(self):
 print 'called P2-foo()'
 def bar(self):
 print 'called P2-bar()'

class C1(P1,P2): # child 1 der. from P1, P2
 pass

class C2(P1,P2): # child 2 der. from P1, P2
 def foo(self):
 print 'called C2-foo()'
 def bar(self):
 print 'called C2-bar()'

class GC(C1,C2): # define grandchild class
 pass # derived from C1 and C2

Upon executing the above declarations in the interactive interpreter, we can confirm that
only the first attributes encountered are used.

>> gc = GC()
>>> gc.foo() # GC ? C1 ? P1
called P1-foo()
>>> gc.bar() # GC ? C1 ? P1 ? P2
called P2-bar()

Again, you can always call a specific method by invoking the method using its fully-
qualified name and providing a valid instance:

>>> C2.foo(gc)
called C2-foo()

Built-in Functions for Classes, Instances, and Other
Objects

issubclass()

The issubclass() Boolean function determines if one class is a subclass or descendant
of another class. It has the following syntax:

issubclass(sub, sup)

IT-SC book: Core Python Programming

 425

issubclass() returns 1 if the given subclass sub is indeed a subclass of the superclass
sup. This function allows for an "improper" subclass, meaning that a class is viewed as a
subclass of itself, so the function returns 1 if sub is either the same class as sup or
derived from sup. (A "proper" subclass is strictly a derived subclass of a class.)

If we were to implement the issubclass() built-in function ourselves, it may look
something like the following:

def my_issubclass(sub, sup):
 if sub is sup or sup in sub.__bases__:
 return 1
 for cls in sub.__bases__:
 if my_issubclass(cls, sup):
 return 1
 else:
 return 0
 return 0

We first check to see if they are both the same class. Since we allow for improper
subclasses, then we would indicate a successful inquiry if both classes are the same. We
also return 1 if sup is a parent class of sub. This check is accomplished by looking at the
__bases__ attribute of sub.

If both of those tests fail, then we need to start moving up the family tree to see if sup is
an ancestor of sub. This is accomplished by checking the parent classes of sub to see if
they are subclasses of sup. If that fails, then we check the grandparent classes, and so on,
moving up the tree to see if any of those classes are subclasses of sup. This is a depth-
first recursive check where all ancestors are checked. If all return a negative result, we
return 0 for failure.

isinstance()

The isinstance() Boolean function is useful for determining if an object is an instance
of a given class and has the following syntax:

isinstance(obj1, obj2)

isinstance() returns 1 if obj1 is an instance of class obj2 or is an instance of a
subclass of obj2, as indicated in the following examples:

>>> class C1: pass
…
>>> class C2: pass
…
>>> c1 = C1()

IT-SC book: Core Python Programming

 426

>>> c2 = C2()
>>> isinstance(c1, C1)
1
>>> isinstance(c2, C1)
0
>>> isinstance(c1, C2)
0
>>> isinstance(c2, C2)
1
>>> isinstance(C2, c2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 isinstance(C2, c2)
TypeError: second argument must be a class

Note that the second argument should be a class; otherwise, you get a TypeError. The
only exception is if the second argument is a type object. This is allowed because you can
also use isinstance() to check if an object obj1 is of the type obj2, i.e.,

>>> isinstance(4, type(4))
1
>>> isinstance(4, type(''))
0
>>> isinstance('4', type(''))
1

If we were to implement the isinstance() built-in function ourselves, it may look
something like the following:

def my_isinstance(obj1, obj2):
 if obj2 is type(type(0)): # check if obj2 is type obj
 return type(obj1) is obj2
 if obj1.__class__ is obj2: # check if obj1 inst of obj2
 return 1
return my_issubclass(obj1.__class__, obj2)

isinstance() may appear simpler than issubclass(), but you will notice that we use
issubclass(). Without it, we would have to reimplement issubclass(), so in
actuality, isinstance() is a bit longer than issubclass().

Our rendition of isinstance() works like this: We first check to see if we are dealing
with objects and types by confirming whether obj2 is a type object. If so, then we
perform the check and return the result. Otherwise, we are dealing with classes and
instances, so the test proceeds to check if instance obj1 is actually a real instance of class
obj2. If it is, then we are done. Otherwise, we recursively check to see if the class of

IT-SC book: Core Python Programming

 427

which obj1 is an instance is a descendant of obj2. If it is, then we return 1 for yes and 0
otherwise.

Proxy for Missing Functionality

Both is*() built-in functions (issubclass() and isinstance()) are new to Python as
of version 1.5. Prior to 1.5, you would have to implement them yourself, as we did above,
as well as create your own routine which proxies for the missing functions. While new
functions are not always part of Python updates, it is quite possible that due to
uncontrollable forces, you are required to use older versions of Python which do not
support the new functionality. The solution would be to implement your own solutions
and integrate them into your code so that your system at least behaves like a more recent
version of the interpreter.

We present one possible solution below, which attempts to import the __builtin__
module (hopefully loading issubclass() and isinstance()), but if not, creates aliases
for our homebrewed functions which reference the code we implemented above:

if '__builtins__' not in dir() and __import__ in dir():
 __builtins__ = __import__('__builtin__')

if 'issubclass' not in dir(__builtins__):
 issubclass = my_issubclass

if 'isinstance' not in dir(__builtins__):
 isinstance = my_isinstance

We will now invoke these functions on the classes and instance we defined in the
previous section. Recall that the P* classes are parent classes, the C* classes are child
classes, and the GC class is the "grandchild" class.

>>> for eachCls in (P1, P2, C1, C2, GC):
… print "is GC subclass of", eachCls.__name__, '?', \
… issubclass(GC, eachCls)
… print "is 'gc' an instance of", eachCls, '?', \
… isinstance(gc, eachCls)

is GC subclass of P1 ? 1
is 'gc' an instance of __main__.P1 ? 1
is GC subclass of P2 ? 1
is 'gc' an instance of __main__.P2 ? 1
is GC subclass of C1 ? 1
is 'gc' an instance of __main__.C1 ? 1
is GC subclass of C2 ? 1
is 'gc' an instance of __main__.C2 ? 1
is GC subclass of GC ? 1
is 'gc' an instance of __main__.GC ? 1

IT-SC book: Core Python Programming

 428

hasattr(), getattr(), setattr(), delattr()

The *attr() functions can work with all kinds of objects, not just classes and instances.
However, since they are most often used with those objects, we present them here.

The hasattr(obj, attr) function is Boolean and its only function is to determine
whether or not an object has a particular attribute, presumably used as a check before
actually trying to access that attribute. The getattr() and setattr() functions retrieve
and assign values to object attributes, respectively. getattr() will raise an
AttributeError exception if you attempt to read an object that does not have the
requested attribute. setattr() will either add a new attribute to the object or replace a
pre-existing one. The delattr() function removes an attribute from an object.

Here are some examples using all the *attr() BIFs:

>>> class myClass:
… def __init__(self):
… self.foo = 100
…
>>> myInst = myClass()
>>> dir(myInst)
['foo']
>>> hasattr(myInst, 'foo')
1
>>> getattr(myInst, 'foo')
100
>>> hasattr(myInst, 'bar')
0
>>> setattr(myInst, 'bar', 'my attr')
>>> dir(myInst)
['bar', 'foo']
>>> getattr(myInst, 'bar')
'my attr'
>>> delattr(myInst, 'foo')
>>> dir(myInst)
['bar']
>>> hasattr(myInst, 'foo')
0

dir()

We first experienced dir() in Exercises 2-12, 2-13, and 4-7. In those exercises, we used
dir() to give us information about all the attributes of a module. We now know that
dir() can be applied to any other objects with attributes—these include classes, class
instances, files, lists, complex numbers, and so on. As long as an object has a __dict__
attribute dictionary, and/or the __members__ and __methods__ lists, dir() will work.

IT-SC book: Core Python Programming

 429

Built-in types do not have a __dict__ attribute dictionary and rely primarily on
__members__ and __methods__ as a convention:

>>> dir(3+3j) # complex number attributes
['conjugate', 'imag', 'real']
>>>
>>> (3+3j).__dict__
Traceback (innermost last):
File "<stdin>", line 1, in ?
AttributeError: __dict__
>>>
>>> (3+3j).__members__
['imag', 'real']
>>>
>>> (3+3j).__methods__
['conjugate']
>>>
>>> f = open('/etc/motd')
>>> dir(f) # file oject attributes
['close', 'closed', 'fileno', 'flush', 'isatty', 'mode',
'name', 'read', 'readinto', 'readline', 'readlines',
'seek', 'softspace', 'tell', 'truncate', 'write',
'writelines]
>>> f.__dict__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: __dict__
>>> f.__members__
['closed', 'mode', 'name', 'softspace']
>>> f.__methods__
['close', 'fileno', 'flush', 'isatty', 'read',
'readinto', 'readline', 'readlines', 'seek', 'tell',
'truncate', 'write', 'writelines]
>>> f.close()

vars()

The vars() built-in function is similar to dir() except that any object given as the
argument must have a __dict__ attribute. vars() will return a dictionary of the
attributes (keys) and values of the given object based on the values in its __dict__
attribute. If the object provided does not have such an attribute, an TypeError exception
is raised. If no object is provided as an argument to vars(), it will display the dictionary
of attributes (keys) and the values of the local namespace, i.e., locals(). We present
below an example of calling vars() with a class instance:

>>> class C:
… pass

>>> c=C()
>>> c.foo = 100

IT-SC book: Core Python Programming

 430

>>> c.bar = 'Python'
>>> c.__dict__
{'foo': 100, 'bar': 'Python'}
>>> vars(c)
{'foo': 100, 'bar': 'Python'}

Table 13.3 summarizes the built-in functions for classes and class instances.

Table 13.3. Built-in Functions for Classes, Instances, and Other Objects

Built-in Function Description

issubclass(sub,
sup)

returns 1 if class sub is a subclass of class sup, 0 otherwise

isinstance(obj1,
obj2)

returns 1 if instance obj1 is an instance of class obj2 or is an
instance of a subclass of obj2; will also return 1 if obj1 is of
type obj2

hasattr(obj, attr) returns 1 if obj has attribute attr (given as a string)

getattr(obj, attr) retrieves attribute attr of obj; same as return obj.attr;
AttributeError exception raised if attr is not an attribute of
obj

setattr(obj, attr,
val)

sets attribute attr of obj to value val, overriding any
previously-existing attribute value, otherwise, attribute is created;
same as obj.attr = val

delattr(obj, attr) removes attribute attr (given as a string) from obj; same as del
obj.attr

dir(obj=None) returns a list of the attributes of obj; if obj not given, dir()
displays local namespace attributes, i.e., locals().keys()

vars(obj=None) returns a dictionary of the attributes and values of obj; if obj not
given, vars() displays local namespace dictionary (attributes and
values), i.e., locals()

IT-SC book: Core Python Programming

 431

Type vs. Classes/Instances

Unlike languages such as Java, Python standard types are not classes and variables are
not instances of such classes. Rather, they are simply primitive types that do not allow for
direct derivation. (As it turns out, a class is simply a specific type of primitive built-in
that does allow for derivation.)

Python supports a fixed number of built-in types; thus, even instances themselves are of a
singular type ("instance"), and classes are all of type "class." (Also review the Core Note
earlier in this chapter which posed the issue of why instances are all of the same type.)

Subclassing of standard types is not possible, though often desired. Python provides for
some elegant solutions, one of which is to create a new class which has the behavior of a
standard type. This allows for the most flexibility because you are in control of your new
type at all times. The other solution allows for the use of a pre-existing type by
"wrapping" a standard type in a class. (We will address wrapping in Section 13.15). By
"wrapping," we mean provide the standard type as the data object of the class and provide
accessor methods which allow for the same type of functionality. This is also a perfect
mechanism for designing and developing a custom data type for an application, which
will be our focus for the upcoming section.

Customizing Classes with Special Methods

We covered two important aspects of methods in preceding sections of this chapter, the
first being that methods must be bound (to an instance of their corresponding class)
before they can be invoked. The other important matter is that there are two special
methods which provide the functionality of constructors and destructors, namely
__init__() and __del__() respectively.

In fact, __init__() and __del__() are part of a set of special methods which can be
implemented. Some have the predefined default behavior of inaction while others do not
and should be implemented where needed. These special methods allow for a powerful
form of extending classes in Python. In particular, they allow for:

Emulating standard types

Overloading operators

Special methods enable classes to emulate standard types by overloading standard
operators such as +, *, and even the slicing subscript and mapping operator []. As
with most other special reserved identifiers, these methods begin and end with a double
underscore (__). Table 13.4 presents a list of all special methods and their descriptions.

Table 13.4. Special Methods for Customizing Classes

Special Method Description

IT-SC book: Core Python Programming

 432

Core

C.__init__(self[, arg1, …]) constructor (with any optional arguments)

C.__del__(self) destructor

C.__repr__(self) evaluatable string representation; repr() built-in
and '' operator

C.__str__(self) printable string representation; str() built-in and
print statement

C.__cmp__(self, obj) object comparison; cmp() built-in

C.__call__(self, *args) denote callable instances

C.__nonzero__(self) define false value for object

C.__len__(self) "length" (appropriate for class); len() built-in

Attributes

C.__getattr__(self, attr) get attribute; getattr() built-in

C.__setattr__(self, attr, val) set attribute; setattr() built-in

C.__delattr__(self, attr) delete attribute; del statement

Customizing Classes / Emulating
Types

IT-SC book: Core Python Programming

 433

Numeric Types: binary operators[a]

C.__*add__(self, obj) addition; + operator

C.__*sub__(self, obj) subtraction; - operator

C.__*mul__(self, obj) multiplication; * operator

C.__*div__(self, obj) division; / operator

C.__*mod__(self, obj) modulo/remainder; % operator

C.__*divmod__(self, obj) division and modulo; divmod() built-in

C.__*pow__(self, obj[, mod]) exponentiation; pow() built-in; ** operator

C.__*lshift__(self, obj) left shift; << operator

C.__*rshift__(self, obj) right shift; >> operator

C.__*and__(self, obj) bitwise AND; & operator

C.__*or__(self, obj) bitwise OR; | operator

C.__*xor__(self, obj) bitwise XOR; ^ operator

Numeric Types: unary operators

C.__neg__(self) unary negation

IT-SC book: Core Python Programming

 434

C.__pos__(self) unary no-change

C.__abs__(self) absolute value; abs() built-in

C.__invert__(self) bit inversion; ~ operator

Numeric Types: numeric conversion

C.__complex__(self, com) convert to complex; complex() built-in

C.__int__(self) convert to int; int() built-in

C.__long__(self) convert to long; long() built-in

C.__float__(self) convert to float; float() built-in

Numeric Types: base representation
(string)

C.__oct__(self) octal representation; oct()built-in

C.__hex__(self) hexadecimal representation; hex() built-in

Numeric Types: numeric coercion

C.__coerce__(self, num) coerce to same numeric type; coerce() built-in

Sequence Types[a]

C.__len__(self) number of items in sequence

IT-SC book: Core Python Programming

 435

C.__getitem__(self, ind) get single sequence element

C.__setitem__(self, ind, val) set single sequence element

C.__delitem__(self, ind) delete single sequence element

C.__getslice__(self, ind1,
ind2)

get sequence slice

C.__setslice__(self, i1, i2,
val)

set sequence slice

C.__delslice__(self, ind1,
ind2)

delete sequence slice

C.__contains__(self, val)[b] test sequence membership; in keyword

C.__*add__(self, obj) concatenation; + operator

C.__*mul__(self, obj) repetition; * operator

Mapping Types

C.__len__(self) number of items in mapping

C.__hash__(self) hash function value

C.__getitem__(self, key) get value with given key

C.__setitem__(self, key, val) set value with given key

C.__delitem__(self, key) delete value with given key

IT-SC book: Core Python Programming

 436

[a] "*" either nothing (self OP obj), "r" (obj OP self), or (new in 2.0) "i" for in-place operation,
i.e., __add__, __radd__, or __iadd__

[b] New in 1.6

The "Core" group of special methods denotes the basic set of special methods which can
be implemented without emulation of any specific types. The "Attributes" group helps
manage instance attributes of your class. The "Numeric Types" set of special methods
can be used to emulate various numeric operations, including those of the standard (unary
and binary) operators, conversion, base representation, and coercion. There are also
special methods to emulate sequence and mapping types. Implementation of some of
these special methods will overload operators so that they work with instances of your
class type.

Numeric binary operators in the table annotated with a wildcard asterisk in their names
are so denoted to indicate that there are multiple versions of those methods with slight
differences in their name. The asterisk either symbolizes no additional character in the
string, or a single "r" to indicate a right-hand-side operation. Without the "r," the
operation occurs for cases which are of the format self OP obj; the presence of the "r"
indicates the format obj OP self. For example, __add__(self, obj) is called for self
+ obj, and __radd__(self, obj) would be invoked for obj + self.

Augmented assignment, new in Python 2.0, introduces the notion of "in-place" operations.
An "i" in place of the asterisk implies a combination left-hand side operation plus an
assignment, as in self = self OP obj. For example, __iadd__(self, obj) is called
for self = self + obj.

Simple Class Customization Example (oPair)

For our first example, let us create a simple class consisting of an ordered pair (x, y) of
numbers. We will represent this data in our class as a 2-tuple. In the code snippet below,
we define the class with a constructor that takes a pair of values and stores them as the
data attribute of our oPair class:

class oPair: # ordered pair
 def __init__(self, obj1, obj2): # constructor
 self.data = (obj1, obj2) # assign attribute

Using this class, we can instantiate our objects:

>>> myPair = oPair(6, -4) # create instance
>>> myPair # calls repr()
<oPair instance at 92bb50>
>>> print myPair # calls str()
<oPair instance at 92bb50>

IT-SC book: Core Python Programming

 437

Unfortunately, neither print (using str()) nor the actual object's string representation
(using repr()) reveals much about our object. One good idea would be to implement
either __str__() or __repr__(), or both so that we can "see" what our object looks like.
In other words, when you want to display your object, you actually want to see something
meaningful rather than the generic Python object string (<object type at id>). We
want to see an ordered pair (tuple) with the current data values in our object. Without
further ado, let us implement __str__() so that the ordered pair is displayed:

def __str__(self): # str() string representation
 return str(self.data) # convert tuple to string

__repr__ = __str__ # repr() string representation

Since we also want to use the same piece of code for __repr__(), rather than copying
the code verbatim, we use our sense of code reusability and simply create an alias to
__str__(). Now our output has been greatly improved:

>>> myPair = oPair(-5, 9)# create instance
>>> myPair # repr() calls __repr__()
(-5, 9)
>>> print myPair # str() calls __str__()
(-5, 9)

What is the next step? Let us say we want our objects to interact. For example, we can
define the addition operation of two oPair objects, (x1, y1) and (x2, y2), to be the
sum of each individual component. Therefore, the "sum" of two oPair objects is defined
as a new object with the values (x1 + x2, y1 + y2). We implement the __add__()
special method in such a way that we calculate the individual sums first, then call the
class constructor to return a new object. Finally, we alias __add__ as __radd__ since the
order does not matter—in other words, numeric addition is commutative. The definitions
of __add__ and __radd__ are featured below:

def __add__(self, other): # add two oPair objects
 return self.__class__(self.data[0] + other.data[0],
 self.data[1] + other.data[1])

The new object is created by invoking the class as in any normal situation. The only
difference is that from within the class, you typically would not invoke the class name
directly. Rather, you take __class__ attribute of self which is the class from which

IT-SC book: Core Python Programming

 438

self was instantiated and invoke that. Because self.__class__ is the same as oPair,
calling self.__class__() is the same as calling oPair().

Now we can perform additions with our newly-overloaded operators. Reloading our
updated module, we create a pair of oPair objects and "add" them, producing the sum
you see below:

>>> pair1 = oPair(6, -4)
>>> pair2 = oPair(-5, 9)
>>> pair1 + pair2
(1, 5)

A TypeError exception occurs when attempting to use an operator for which the
corresponding special method(s) has(have) not been implemented yet:

>>> pair1 * pair2
Traceback (innermost last):
 File "<stdin", line 1, in ?
 pair1 * pair2
TypeError: __mul__ nor __rmul__ defined for these operands

Obviously, our result would have been similar if we had not implemented __add__ and
__radd__. The final example is related to existing data which we may want to use. Let
us say that we have some 2-tuples floating around in our system, and in order to create
oPair objects with them currently, we would have to split them up into individual
components to instantiate an oPair object:

aTuple = (-3, -1)
pair3 = oPair(aTuple[0], aTuple[1])

But rather than splitting up the tuple and creating our objects as in the above, wouldn't it
be nice if we could just feed this tuple into our constructor so that it can handle it there?
The answer is yes, but not by overloading the constructor as the case may be with other
object-oriented programming languages. Python does not support overloading of
callables, so the only way to work around this problem is to perform some manual
introspection with the type() built-in function.

In our update to __init__() below, we add an initial check to see if what we have is a
tuple. If it is, then we just assign it directly to the data attribute. Otherwise, this would
mean a "regular" instantiation, meaning that we expect a pair of numbers to be passed.

IT-SC book: Core Python Programming

 439

def __init__(self, obj1, obj2=None):# constructor
 if type(obj1) == type(()): # tuple type
 self.data = obj1
 else:
 if obj2 == None: # part of values
 raise TypeError, \
 'oPair() requires tuple or numeric pair'
 self.data = (obj1, obj2)

Note in the above code that we needed to give a default value of None to obj2. This
allows only one object to be passed in if it is a tuple. What we do not want is to allow
only the creation of an oPair type without a second value, hence our additional check to
see if obj2 is None in the else clause. We can now make our call in a more
straightforward manner:

aTuple = (-3, -1)
pair3 = oPair(aTuple)
>>> pair3
(-3, -1)
>>> pair3 + pair1
(3, -5)

Hopefully, you now have a better understanding of operator overloading, why you would
want to do it, and how you can implement special methods to accomplish that task. If you
are interested in a more complex customization, continue with the optional section below.

*More Complex Class Customization Example (NumStr)

Let us create another new class, NumStr, consisting of a number-string ordered pair,
called n and s, respectively, using integers as our number type. Although the "proper"
notation of an ordered pair is (n, s), we choose to represent our pair as [n :: s] just
to be different. Regardless of the notation, these two data elements are inseparable as far
as our model is concerned. We want to set up our new class, called NumStr, with the
following characteristics:

Initialization

The class should be initialized with both the number and string; if either (or both) is
missing, then 0 and the empty string should be used, i.e., n=0 and s='', as defaults.

Addition

We define the addition operator functionality as adding the numbers together and
concatenating the strings; the tricky part is that the strings must be concatenated in the
correct order. For example, let NumStr1 = [n1 :: s1] and NumStr2 = [n2 :: s2].

IT-SC book: Core Python Programming

 440

Then NumStr1 + NumStr2 is performed as [n1 + n2 :: s1 + s2] where + represents
addition for numbers and concatenation for strings.

Multiplication

Similarly, we define the multiplication operator functionality as multiplying the numbers
together and repeating or concatenating the strings, i.e., NumStr1 * NumStr2 = [n1 *
n2 :: s1 * s2].

False Value

This entity has a false value when the number has a numeric value of zero and the string
is empty, i.e., when NumStr = [0 :: ''].

Comparisons

Comparing a pair of NumStr objects, i.e., [n1 :: s1] vs. [n2 :: s2], we find 9
different combinations (i.e., n1 > n2 and s1 < s2, n1 == n2 and s1 > s2, etc.) We
use the normal numeric and lexicographic compares for numbers and strings, respectively,
i.e., the ordinary comparison of cmp(obj1, obj2) will return an integer less than zero if
obj1 < obj2, greater than zero if obj1 > obj2, or equal to zero if the objects have the
same value.

The solution for our class is to add both of these values and return the result. The
interesting thing is that cmp() does not like to return values other than -1, 0, 1, so even if
the sum turns out to be -2 or 2, cmp() will still return -1 or 1, respectively. A value of 0 is
returned if both sets of numbers and strings are the same, or if the comparisons offset
each other, i.e., (n1 < n2) and (s1 > s2) or vice versa.

Given the above criteria, we present the code below for numstr.py:

Example 13.2. Emulating Types with Classes (numstr.py)

 <$nopage>
001 1 # !/usr/bin/env python
002 2
003 3 class NumStr:
004 4
005 5 def __init__(self, num=0, string=''):# constr.
006 6 self.__num = num
007 7 self.__string = string
008 8
009 9 def __str__(self): # define for str()
010 10 return \xd4 [%d :: %s]' % \
011 11 self.__num, \xd4 self.__string\xd4)
012 12 __repr__ = __str__
013 13
014 14 def __add__(self, other): # define for s+o
015 15 if isinstance(other, NumStr):
016 16 return self.__class__(self.__num + \

IT-SC book: Core Python Programming

 441

017 17 other.__num, \
018 18 self.__string + other.__string)
019 19 else: <$nopage>
020 20 raise TypeError, \
021 21 'illegal argument type for built-in operation'
022 22
023 23 def __radd__(self, other): # define for o+s
024 24 if isinstance(other, NumStr):
025 25 return self.__class__(other.num + \
026 26 self.num, other.str + self.str)
027 27 else: <$nopage>
028 28 raise TypeError, \
029 29 'illegal argument type for built-in operation'
030 30
031 31 def __mul__(self, num): # define for o*n
032 32 if type(num) == type(0):
033 33 return self.__class__(self.__num * num,\
034 34 self.__string * num)
035 35 else: <$nopage>
036 36 raise TypeError, \
037 37 'illegal argument type for built-in operation'
038 38
039 39 def __nonzero__(self): # reveal tautology
040 40 return self.__num or len(self.__string)
041 41
042 42 def __norm_cval(self, cmpres): # normalize cmp()
043 43 return cmp(cmpres, 0)
044 44
045 45 def __cmp__(self, other): # define for cmp()
046 46 nres = self.__norm_cval(cmp(self.__num, \
047 47 other.__num))
048 48 sres = self.__norm_cval(cmp(self.__string, \
049 49 other.__string))
050 50
051 51 if not (nres or sres): return 0 # both 0
052 52 sum = nres + sres
053 53 if not sum: return None # one <,one>
054 54 return sum
055 <$nopage>

Here is an example execution of how this class works:

>>> a = NumStr(3, 'foo')
>>> b = NumStr(3, 'goo')
>>> c = NumStr(2, 'foo')
>>> d = NumStr()
>>> e = NumStr(string='boo')
>>> f = NumStr(1)
>>> a
[3 :: 'foo']
>>> b
[3 :: 'goo']
>>> c
[2 :: 'foo']
>>> d

IT-SC book: Core Python Programming

 442

[0 :: '']
>>> e
[0 :: 'boo']
>>> f
[1 :: '']
>>> a < b
1
>>> b < c
0
>>> a == a
1
>>> b * 2
[6 :: 'googoo']
>>> a * 3
[9 :: 'foofoofoo']
>>> e + b
[3 :: 'boogoo']
>>> if d: 'not false'
…
>>> if e: 'not false'
…
'not false'
>>> cmp(a,b)
-1
>>> cmp(a,c)
1
>>> cmp(a,a)
0

Line-by-line Explanation

Lines 3–7

The constructor __init__() function sets up our instance initializing itself with the
values passed in to the class instantiator NumStr(). If either value is missing, the
attribute takes on the default false value of either zero or the empty string, depending on
the argument.

One significant oddity is the use of double underscores to name our attributes. As we will
find out in the next section, this is used to enforce a level, albeit elementary, of privacy.
Programmers importing our module will not have straightforward access to our data
elements. We are attempting to enforce one of the encapsulation properties of OO design
by permitting access only though accessor functionality. If this syntax appears odd or
uncomfortable to you, you can remove all double underscores from the instance attributes,
and the examples will still work exactly in the same manner.

All attributes which begin with a double underscore (__) are "mangled" so that these
names are not as easily accessible during run-time. They are not, however, mangled in
such a way so that it cannot be easily reverse-engineered. In fact, the mangling pattern is
fairly well-known and easy to spot. The main point is to prevent the name from being

IT-SC book: Core Python Programming

 443

accidentally used when being imported by an external module where conflicts may arise.
The name is changed to a new identifier name containing the class name to ensure that it
does not get "stepped on" unintentionally. For more information, check out Section
13.14 on privacy.

Lines 9–12

We choose the string representation of our ordered pair to be "[num :: 'str']" so it is
up to __str__() to provide that representation whenever str() is applied to our instance
and when the instance appears in a print statement. Because we want to emphasize that
the second element is a string, it is more visually convincing if the users view the string
surrounded by quotation marks. To that end, we call repr() using the single back
quotation marks to give the evaluatable version of a string, which does have the quotation
marks:

>>> print a
[3 :: 'foo']

Not calling repr() on self.__string (leaving the back quotations off) would result in
the string quotations being absent. For the sake of argument, let us effect this change for
learning purposes. Removing the backquotes, we edit the return statement so that it now
looks like this:

return '[%d :: %s]' % (self.__num, self.__string)

Now calling print again on an instance results in:

>>> print a
[3 :: foo]

How does that look without the quotations? Not as convincing that "foo" is a string, is it?
It looks more like a variable. The author is not as convinced either. (We quickly and
quietly back out of that change and pretend we never even touched it.)

The first line of code after the __str__() function is the assignment of that function to
another special method name, __repr__. We made a decision that an evaluatable string
representation of our instance should be the same as the printable string representation.
Rather than defining an entirely new function which is a duplicate of __str__(), we just
create an alias, copying the reference.

IT-SC book: Core Python Programming

 444

When you implement __str__(), it is the code that is called by the interpreter if you
ever apply the str() built-in function using that object as an argument. The same goes
for __repr__() and repr().

How would our execution differ if we chose not to implement __repr__()? If the
assignment is removed, only the print statement (which calls str() will show us the
contents of our object. The evaluatable string representation defaults to the Python
standard of <…some_object_information…>.

>>> print a # calls str(a)
[3 :: 'foo']
>>> a # calls repr(a)
<NumStr.NumStr instance at 122640>

Lines 14–29

One feature we would like to add to our class is the addition operation, which we
described earlier. One of Python's features as far as customizing classes goes is the fact
that we can overload operators to make these types of customizations more "realistic."
Invoking a function such as "add(obj1, obj2)" to "add" objects obj1 and obj2 may
seem like addition, but is it not more compelling to be able to invoke that same operation
using the plus sign (+) like this? ? obj1 + obj2

Overloading the plus sign requires the implementation of two functions, __add__() and
__radd__(), as explained in more detail in the previous section. The __add__()
function takes care of the SELF + OTHER case, but we need to define __radd__() to
handle the OTHER + SELF scenario. The numeric addition is not affected as much as the
string concatenation is because order matters.

The addition operation adds each of the two components, with the pair of results forming
a new object—created as the results are passed to a call for instantiation as calling
self.__class__() (again, also previously explained above). Any object other than a
like type should result in a TypeError exception, which we raise in such cases.

Lines 31–37

We also overload the asterisk [by implementing __mul__()] so that both numeric
multiplication and string repetition are performed, resulting in a new object, again created
via instantiation. Since repetition allows only an integer to the right of the operator, we
must enforce this restriction as well. We also do not define __rmul__() for the same
reason.

Lines 39–40

IT-SC book: Core Python Programming

 445

Python objects have a concept of having a Boolean value at any time. For the standard
types, objects have a false value when they are either a numeric equivalent of zero or an
empty sequence or mapping. For our class, we have chosen that both its numeric value
must be zero and the string empty in order for any such instance to have a false value.
We override the __nonzero__() method for this purpose. Other objects such as those
which strictly emulate sequence or mapping types use a length of zero as a false value. In
those cases, you would implement the __len__() method to effect that functionality.

Lines 39–54

__norm_cval() is not a special method. Rather, it is a helper function to our overriding
of __cmp__(); its sole purpose is to convert all positive return values of cmp() to 1, and
all negative values to -1. cmp() normally returns arbitrary positive or negative values (or
zero) based on the result of the comparison, but for our purposes, we need to restrict the
return values to only -1, 0, and 1. Calling cmp() with integers will give us the result we
need, being equivalent to the following snippet of code:

def __norm_cval(self, cmpres):
 if cmpres < 0:
 return -1
 elif cmpres > 0:
 return 1
 else:
 return 0

The actual comparison of two like objects consists of comparing the numbers and the
strings, and returning the sum of the comparisons. You may have noticed in the code
above that we prepended a double underscore (__) in front of our data attributes. This
directive provides a light form of privacy.

Privacy

Attributes in Python are, by default, "public" all the time, accessible by both code within
the module and modules that import the module containing the class.

Many OO languages provide some level of privacy for the data and provide only accessor
functions to provide access to the values. This is known as implementation hiding and is
a key component to the encapsulation of the object. Most OO languages provide "access
specifiers" to restrict who has access to member functions.

Python 1.5 introduces an elementary form of privacy for class elements (attributes or
methods). Attributes which begin with a double underscore (__) are mangled during run-
time so direct access is thwarted. In actuality, the name is prepended with an underscore
followed by the class name. For example, let us take the self.__num attribute found in
Example 13.2 (numstr.py). After the mangling process, the identifier used to access that

IT-SC book: Core Python Programming

 446

data value is now self._NumStr__num. Adding the class name to the newly-mangled
result will prevent it from clashing with the same name in either ancestor or descendant
classes.

Although this provides some level of privacy, the algorithm is also in the public domain
and can be defeated easily. It is more of a protective mechanism for importing modules
that do not have direct access to the source code or for other code within the same
module.

One way to prevent the source code from being accessed is to allow only access to the
byte-compiled .pyc file. For example, a software company shipping Python software
may choose to provide only the .pyc files. This helps to ensure that no one can
maliciously gain programmatic access to private variables and methods.

As we discovered in Chapter 12, simple module-level privacy is provided by using a
single underscore character prefixing an attribute name. This prevents a module attribute
from being imported with "from mymodule import *".

Delegation

Wrapping

"Wrapping" is a term you will hear often in the Python programming world. It is a
generic moniker to describe the packaging of an existing object, whether it be a data type
or a piece of code, adding new, removing undesired, or otherwise modifying existing
functionality to the existing object.

The subclassing or derivation of a standard type in Python is not allowed; however, you
can wrap any type as the core member of a class so that the new object's behavior mimics
all existing behavior of the data type that you want, does not do what you do not want it
to do, and perhaps does something a little extra. This is called "wrapping a type." In the
Appendix, we will discuss how to extend Python, another form of wrapping.

Wrapping consists of defining a class whose instances have the core behavior of a
standard type. In other words, it not only sings and dances now, but also walks and talks
like our original type. Figure13-2 attempts to illustrate what a type wrapped in a class
looks like. The core behavior of a standard type is in the center of the figure, but it is also
enhanced by new or updated functionality, and perhaps even by different methods of
accessing the actual data.

Figure 13.2. Wrapping a Type

IT-SC book: Core Python Programming

 447

Class Object (which behaves like a type)

You may also wrap classes, but this does not make as much sense because there is
already a mechanism for taking an object and wrapping it in a manner as described above
for a standard type. How would you take an existing class, mimic the behavior you desire,
remove what you do not like, and perhaps tweak something to make the class perform
differently from the original class? That process, as we discussed recently, is derivation.
We wrap only types because they cannot be subclassed.

Implementing Delegation

Delegation is a characteristic of wrapping that you can utilize which simplifies the
process with regards to dictating functionality.

Delegation is a form of wrapping which takes advantage of pre-existing functionality to
maximize code reuse. Wrapping a type generally consists of some sort of customization
to the existing type. As we mentioned before, this "tweaking" comes in the form of new,
modified, or removed functionality compared to the original product. Everything else
should "remain the same," or keep its existing functionality and behavior. Delegation is
the process whereby all the updated functionality is handled as part of the new class, but
the existing functionality is "delegated" to the default attributes of the object.

The key to implementing delegation is to override the __getattr__() method with code
containing a call to the built-in getattr() function. Specifically, getattr() is invoked
to obtain the default object attribute (data attribute or method) and return it for access or
invocation. The way the special method __getattr__() works is that when an attribute
is searched for, any local ones are found first (the customized ones). If the search fails,
then __getattr__() is invoked, which then calls getattr() to obtain an object's default
behavior.

IT-SC book: Core Python Programming

 448

In other words, when an attribute is referenced, the Python interpreter will attempt to find
that name in the local namespace, such as a customized method or local instance attribute.
If it is not found in the local dictionary, then the class namespace is searched, just in case
a class attribute was accessed. Finally, if both searches fail, the hunt begins to delegate
the request to the original object, and that is when __getattr__() is invoked.

Simple Example Wrapping Any Object

Let us take a look at an example. We present below a class which wraps nearly any object,
providing basic functionality as string representations with repr() and str().
Additional customization comes in the form of the get() method, which removes the
wrapping and returns the raw object. All remaining functionality is delegated to the
object's native attributes as retrieved by __getattr__() when necessary.

Here's an example wrapping class:

class WrapMe:

 def __init__(self, obj):
 self.__data = obj

 def get(self):
 return self.__data

 def __repr__(self):
 return 'self.__data'

 def __str__(self):
 return str(self.__data)

 def __getattr__(self, attr):
 return getattr(self.__data, attr)

In our first example, we will use complex numbers, because of all Python's numeric types,
complex numbers are the only one with attributes, data attributes as well as its
conjugate() built-in method. Remember that attributes can be both data attributes as
well as functions or methods. Again, we chose complex numbers because it is an example
of a standard which has both attribute types. Here is an example with a complex number:

>>> wrappedComplex = WrapMe(3.5+4.2j)
>>> wrappedComplex # wrapped object [repr()]
[repr()]
(3.5+4.2j)
>>> wrappedComplex.real # real attribute
3.5
>>> wrappedComplex.imag # imaginary attribute
42.2
>>> wrappedComplex.conjugate() # conjugate() method

IT-SC book: Core Python Programming

 449

(3.5–4.2j)
>>> wrappedComplex.get() # actual object
(3.5+4.2j)

Once we create our wrapped object type, we obtain a string representation, silently using
the call to repr() by the interactive interpreter. We then proceed to access all three
complex number attributes, none of which is defined for our class. All three accesses are
delegated to the object's attributes via the getattr() method. The final access to our
example object is to retrieve an attribute that is defined for our object, the get() method
which returns the actual data object that we wrapped.

Our next example using our wrapping class uses a list. We will create the object, then
perform multiple operations, delegating each time to list methods.

>>> wrappedList = WrapMe([123, 'foo', 45.67])
>>> wrappedList.append(\xd4 bar\xd5)
>>> wrappedList.append(123)
>>> wrappedList
[123, 'foo', 45.67, 'bar', 123]
>>> wrappedList.index(45.67)
2
>>> wrappedList.count(123)
2
>>> wrappedList.pop()
123
>>> wrappedList
[123, 'foo', 45.67, 'bar']

Notice that although we are using a class instance for our examples, they exhibit behavior
extremely similar to the data types which they wrap. Be aware, however, that only
existing attributes can delegated.

Special behaviors which are not in a type's method list will not be accessible since they
are not attributes. One example is the slicing operations of lists which are built-in to the
type and not available as an attribute like the append() method for example. Another
way of putting it is that the slice operator ([]) is part of the sequence type and is not
implemented through the __getitem__() special method.

>>> wrappedList[3]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "wrapme.py", line 21, in __getattr__
 return getattr(self.data, attr)
AttributeError: __getitem__

IT-SC book: Core Python Programming

 450

The AttributeError exception results from the fact that the slice operator invokes the
__getitem__() method, and __getitem__() is not defined as a class instance method
nor is it a method of list objects. Recall that getattr() is called only when an exhaustive
search through an instance's or class's dictionaries fails to find a successful match. As you
can see above, the call to getattr() is the one which fails, triggering the exception.

However, we can always cheat by accessing the real object [with our get() method] and
its slicing ability instead:

>>> realList = wrappedList.get()
>>> realList[3]
'bar'

You probably have a good idea now why we implemented the get() method—just for
cases like this where we need to obtain access to the original object. We can bypass
assigning local variable (realList) by accessing the attribute of the object directly from
the access call:

>>> wrappedList.get()[3]
'bar'

The get() method returns the object which is then immediately indexed to obtain the
sliced subset.

>>> f = WrapMe(open('/etc/motd'))
>>> f
<open file '/etc/motd', mode 'r' at 80e95e0>
>>> f.readline()
'Have a lot of fun…\012'
>>> f.tell()
21
>>> f.seek(0)
>>> print f.readline(),
Have a lot of fun…
>>> f.close()
>>> f
<closed file '/etc/motd', mode 'r' at 80e95e0>

Once you become familiar with an object's attributes, you begin to understand where
certain pieces of information originate and are able to duplicate functionality with your
newfound knowledge:

IT-SC book: Core Python Programming

 451

>>> print "<%s file %s, mode %s at %x>" % \
… (f.closed and 'closed' or 'open', "f.name",
"f.mode", id(f.get()))
<closed file '/etc/motd', mode 'r' at 80e95e0>

This concludes the sampling of our simple wrapping class. We have only just begun to
touch on class customization with type emulation. You will discover that there are an
infinite number of enhancements you can make to further increase the usefulness of your
code. One such enhancement would be to add timestamps to objects. In the next
subsection, we will add another dimension to our wrapping class: time.

Updating Our Simple Wrapping Class

Creation time, modification time, and access time are familiar attributes of files, but
nothing says that you cannot add this type of information to objects. After all, certain
applications may benefit from these additional pieces of information.

If you are unfamiliar with using these three pieces of chronological data, we will attempt
to clarify them. The creation time (or "ctime") is the time of instantiation, the
modification time (or "mtime") refers to the time that the core data was updated
[accomplished by calling the new set() method], and the access time (or "atime") is the
timestamp of when the data value of the object was last retrieved or an attribute was
accessed.

Proceeding to updating the class we defined earlier, we create the module twrapme.py,
given in Example 13.3.

How did we update the code? Well, first, you will notice the addition of three new
methods: gettimeval(), gettimestr(), and set(). We also added lines of code
throughout which update the appropriate timestamps based on the type of access
performed.

The gettimeval() method takes a single character argument, either "c," "m," or "a," for
create, modify, or access time, respectively, and returns the corresponding time that is
stored as a float value. gettimestr() simply returns a pretty-printable string version of
the time as formatted by the time.ctime() function.

Let us take a test drive of our new module. We have already seen how delegation works,
so we are going to wrap objects without attributes to highlight the new functionality we
just added.

Example 13.3. Wrapping Standard Types (twrapme.py)

Class definition which wraps any built-in type, adding time attributes; get(), set(),
and string representation methods; and delegating all remaining attribute access to those
of the standard type.

IT-SC book: Core Python Programming

 452

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from time import time, ctime
004 4
005 5 class TimedWrapMe:
006 6
007 7 def __init__(self, obj):
008 8 self.__data = obj
009 9 self.__ctime = self.__mtime = \
010 10 self.__atime = time()
011 11
012 12 def get(self):
013 13 self.__atime = time()
014 14 return self.__data
015 15
016 16 def gettimeval(self, t_type):
017 17 if type(t_type) != type('') or \
018 18 t_type[0] not in 'cma':
019 19 raise TypeError, \
020 20 "argument of 'c', 'm', or 'a' req'd"
021 21 return eval('self._%s__%stime' % \
022 22 (self.__class__.__name__, t_type[0]))
023 23
024 24 def gettimestr(self, t_type):
025 25 return ctime(self.gettimeval(t_type))
026 26
027 27 def set(self, obj):
028 28 self.__data = obj
029 29 self.__mtime = self.__atime = time()
030 30
031 31 def __repr__(self):# rep()
032 32 self.__atime = time()
033 33 return \xd4 self.__data\xd4
034 34
035 35 def __str__(self):# str()
036 36 self.__atime = time()
037 37 return str(self.__data)
038 38
039 39 def __getattr__(self, attr):# delegate
040 40 self.__atime = time()
041 41 return getattr(self.__data, attr)
042 <$nopage>

>>> timeWrappedObj = TimedWrapMe(932)
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('a')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj
932
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')

IT-SC book: Core Python Programming

 453

'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('a')
'Wed Apr 26 20:48:05 2000'

You will notice that when an object is first wrapped, the creation, modification, and last
access times are all the same. Once we access the object, the access time is updated, but
not the others. If we use set() to replace the object, the modification and last access
times are updated. One final read access to our object concludes our example.

>>> timeWrappedObj.set('time is up!')
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:48:35 2000'
>>> timeWrappedObj
'time is up!'
>>> timeWrappedObj.gettimestr('c')
'Wed Apr 26 20:47:41 2000'
>>> timeWrappedObj.gettimestr('m')
'Wed Apr 26 20:48:35 2000'
>>> timeWrappedObj.gettimestr('a')
'Wed Apr 26 20:48:46 2000'

Wrapping a Specific Object with Enhancements

The next example represents a class which wraps a file object. Our class will behave
exactly in the same manner as a regular file object with one exception: In write mode,
only strings in all capital letters are written to the file.

The problem we are trying to solve here is for a case where you are writing text files
whose data is to be read by an old mainframe computer. Many older style machines are
restricted to uppercase letters for processing, so we want to implement a file object where
all text written to the file is automatically converted to uppercase without the
programmer's having to worry about it. In fact, the only noticeable difference is that
rather than using the open() built-in function, a call is made to instantiate the capOpen
class. Even the parameters are exactly the same as for open().

Example 13.4 represents that code, written as capOpen.py. Let us take a look at an
example of how to use this class:

Example 13.4. Wrapping a File Object (capOpen.py)

This class extends on the example from Python FAQ 4.48, providing a file-like object
which customizes the write() method while delegating the rest of the functionality to
the file object.

 <$nopage>
001 1 #!/usr/bin/env python

IT-SC book: Core Python Programming

 454

002 2
003 3 from string import upper
004 4
005 5 class capOpen:
006 6 def __init__(self, fn, mode='r', buf=-1):
007 7 self.file = open(fn, mode, buf)
008 8
009 9 def __str__(self):
010 10 return str(self.file)
011 11
012 12 def __repr__(self):
013 13 return 'self.file'
014 14
015 15 def write(self, line):
016 16 self.file.write(upper(line))
017 17
018 18 def __getattr__(self, attr):
019 19 return getattr(self.file, attr)
020 <$nopage>

>>> f = capOpen('/tmp/xxx', 'w')
>>> f.write('delegation example\n')
>>> f.write('faye is good\n')
>>> f.write('at delegating\n')
>>> f.close()
>>> f
<closed file '/tmp/xxx', mode 'w' at 12c230>

As you can see above, the only call out of the ordinary is the first one to capOpen()
rather than open(). All other code is identical to what you would do if you were
interacting with a real file object rather than a class instance which behaves like a file
object. All attributes other than write() have been delegated to the file object. To
confirm the success of our code, we load up the file and display its contents. (Note that
we can use either open() or capOpen(), but chose only capOpen() because we have
been working with this example.)

>>> f = capOpen('/tmp/xxx')
>>> allLines = f.readlines()
>>> for eachLine in allLines:
… print eachLine,
…
DELEGATION EXAMPLE
FAYE IS GOOD
AT DELEGATING

Related Modules and Documentation

Python has several classes which extend the existing functionality of the core language
which we have described in this chapter. The User* modules are like pre-cooked meals,

IT-SC book: Core Python Programming

 455

ready to eat. We mentioned how classes have special methods which, if implemented, can
customize classes so that when wrapped around a standard type, they can give instances
type-like qualities.

UserList and UserDict, along with the new UserString (introduced in Python 1.6),
represent modules that define classes that act as wrappers around list, dictionary, and
string objects, respectively. The primary objective of these modules is to provide the
desired functionality for you so that you do not have to implement them yourself, and to
serve as base classes which are appropriate for subclassing and further customization.
Python already provides an abundance of useful built-in types, but the added ability to
perform "built-it yourself" typing makes it an even more powerful language.

In Chapter 4, we introduced Python's standard as well as other built-in types. The types
module is a great place to learn more about Python's types as well as those which are out
of the scope of this text. The types module also defines type objects which can be used
to make comparisons. (Such comparisons are popular in Python because it does not
support method overloading—this keeps the language simple, yet there are tools that add
functionality to a part of the language where it had appeared to be lacking.)

The following piece of code checks to see if the object data is passed into the foo
function as an integer or string, and does not allow any other type (raises an exception):

def foo(data):
 if type(data) == type(0):
 print 'you entered an integer'
 elif type(data) == type(''):
 print 'you entered a string'
 else:
 raise TypeError, 'only integers or strings!'

Although the above code is effective, you may also use attributes of the types module
instead for more clarity:

from types import *
def foo(data):
 if type(data) == IntType:
 print 'you entered an integer'
 elif type(data) == StringType:
 print 'you entered a string'
 else:
 raise TypeError, 'only integers or strings!'

The last related module is the operator module. This module provides functional
versions of most of Python's standard operators. There may be occasions where this type
of interface proves more versatile than hard-coding use of the standard operators.

IT-SC book: Core Python Programming

 456

Given below is one example. As you look through the code, imagine the extra lines of
code which would have been required if individual operators had been part of the
implementation:

>>> from operator import * # import all operators
>>> vec1 = [12, 24]
>>> vec2 = [2, 3, 4]
>>> opvec = (add, sub, mul, div) # using +, -, *, /
>>> for eachOp in opvec: # loop thru operators
… for i in vec1:
… for j in vec2:
… print '%s(%d, %d) = %d' % \
… (eachOp.__name__, i, j, eachOp(i, j))
…
add(12, 2) = 14
add(12, 3) = 15
add(12, 4) = 16
add(24, 2) = 26
add(24, 3) = 27
add(24, 4) = 28
sub(12, 2) = 10
sub(12, 3) = 9
sub(12, 4) = 8
sub(24, 2) = 22
sub(24, 3) = 21
sub(24, 4) = 20
mul(12, 2) = 24
mul(12, 3) = 36
mul(12, 4) = 48
mul(24, 2) = 48
mul(24, 3) = 72
mul(24, 4) = 96
div(12, 2) = 6
div(12, 3) = 4
div(12, 4) = 3
div(24, 2) = 12
div(24, 3) = 8
div(24, 4) = 6

The code snippet above defines three vectors, two containing operands and the last
representing the set of operations the programmer wants to perform on each pair of
available operands. The outermost loop iterates through each operation while the inner
pair of loops creates every possible combination of ordered pairs from elements of each
operand vector. Finally, the print statement simply applies the current operator with the
given arguments.

A list of the modules we described above is given in Table 13.5.

Table 13.5. Class Related Modules

IT-SC book: Core Python Programming

 457

Module Description

UserList provides a class wrapper around list objects

UserDict provides a class wrapper around dictionary objects

UserString[a] provides a class wrapper around string objects; also included is a
MutableString subclass which provides that kind of functionality, if so
desired

types defines names for all Python object types as used by the standard Python
interpreter

operator processes site-specific modules or packages

[a] new in Python 1.6

There are plenty of class and object-oriented programming related questions in the
Python FAQ. In Section 13.5.3, we noted how it was dangerous to track instances by
keeping references to them. For more information on this phenomenon, see Python FAQ
4.17. Most of the relevant questions on classes and object-oriented programming are
found in Sections 4 and 6 of the FAQ.

The code of Example 13.4 is inspired by the code implemented in Python FAQ 4.48.
This FAQ includes a short example of wrapping a file object and modifying the write()
method. Our version represents a complete class that can be used like a file object rather
than simply passing in an existing (and open) file object. The one caveat to our class is
that it applies only to files which use the write() method; therefore, we also refer the
reader to Exercise 13–16, where the writelines() method is also implemented.

Finally, we point out again, the Python Library and Language Reference manuals are
invaluable sources of related material.

Exercises

1:
Programming. Name some benefits of object-oriented programming over older
forms of programming.

IT-SC book: Core Python Programming

 458

2:
Functions vs. Methods. What are the differences between functions and
methods?

3:
Customizing Classes. Create a class to format floating point values to monetary
amounts. In this exercise, we will use United States currency, but feel free to
implement your own.

Preliminary work: Create a function called dollarize() which takes a floating
point value and returns that value as a string properly formatted with symbols and
rounded to obtain a financial amount. For example: dollarize(1234567.8901) ?
'$1,234,567.89' The dollarize() function should allow for commas, such as
1,000,000, and dollar signs. Any negative sign should appear to the left of the
dollar sign. Once you have completed this task, then you are ready to convert it
into a useful class called MoneyFmt.

The MoneyFmt class contains a single data value, the monetary amount, and has
five methods (feel free to create your own outside of this exercise). The
__init__() constructor method initializes the data value, the update() method
replaces the data value with a new one, the __nonzero__() method is Boolean,
returning 1 (true) if the data value is non-zero, the __repr__() method returns the
amount as a float, and the __str__() method displays the value in the string-
formatted manner that dollarize() does.

(a) Fill in the code to the update() method so that it will update the data value.

(b) Use the work you completed for dollarize() to fill in the code for the
__str__() method.

(c) Fix the bug in the __nonzero__() method, which currently thinks that any
value less than one, i.e., fifty cents ($0.50), has a false value.

(d) EXTRA CREDIT: Allow the user to optionally specify an argument indicating
the desire for seeing less-than and greater-than pairs for negative values rather than
the negative sign. The default argument should use the standard negative sign.

You will find the code skeleton for moneyfmt.py presented as Example 13.5. You
will find a fully-documented (yet incomplete) version of moneyfmt.py on the CD-
ROM. If we were to import the completed class within the interpreter, execution
should behave similar to the following:

>>> import moneyfmt
>>>
>>> cash = moneyfmt.MoneyFmt(123.45)
>>> cash

IT-SC book: Core Python Programming

 459

123.45
>>> print cash
$123.45
>>>
>>> cash.update(100000.4567)
>>> cash
100000.4567
>>> print cash
$100,000.46
>>>
>>> cash.update(-0.3)
>>> cash
-0.3
>>> print cash
-$0.30
>>> repr(cash)
'-0.3'
>>> 'cash'
'-0.3'
>>> str(cash)
'-$0.30'

Example 13.5. Money Formatter (moneyfmt.py)

String format class designed to "wrap" floating point values to appear as monetary
amounts with the appropriate symbols.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 class MoneyFmt:
004 4
005 5 def __init__(self, value=0.) # constructor
006 6
007 7 self.value = float(value)
008 8
009 9 def update(self, value=None) # allow updates
010 10 ###
011 11 ### (a) complete this function
012 12 ###
013 13
014 14 def __repr__(self): # display as a float
015 15 return 'self.value'
016 16
017 17 def __str__(self): # formatted display
018 18 val = ''
019 19
020 20 ###
021 21 ### (b) complete this function… do NOT
022 22 ### forget about negative numbers!!
023 23 ###
024 24

IT-SC book: Core Python Programming

 460

025 25 return val
026 26
027 27 def __nonzero__(self): # boolean test
028 28 ###
029 29 ### (c) find and fix the bug
030 30 ###
031 31
032 32 return int(self.value)
033 <$nopage>

4:
User Registration. Create a user database (login, password, and last login
timestamp) class (see problems 7–5 and 9–12) which manages a system requiring
users to login before access to resources is allowed. This database class manages
its users, loading any previously-saved user information on instantiation and
providing accessor functions to add or update database information. If updated, the
database will save the new information to disk as part of its deallocation (see
__del__()).

5:
Geometry. Create a Point class that consists of an ordered pair (x, y)
representing a point's location on the X and Y axes. X and Y coordinates are
passed to the constructor on instantiation and default to the origin for any missing
coordinate.

6:
Geometry. Create a line/line segment class which has length and slope behaviors,
in addition to the main data attributes, a pair of points (see previous problem). You
should override the __repr__() method (and str(), if you want) so that the
string representing a line (or line segment) are a pair of tuples, ((x1, y1), (x2,
y2)). Summary:

__repr__
length

display points as pair of tuples return length of line segment—do
not use "len" since that is supposed tobe an integer

slope return slope of line segment (or Noneif applicable)

7:
Date class. Provide interface to a time module where users can request dates in a
few (given) date formats such as "MM/DD/YY," "MM/DD/YYYY,"
"DD/MM/YY," "DD/MM/YYYY," "Mon DD, YYYY," or the standard Unix date
of "Day Mon DD, HH:MM:SS YYYY." Your class should maintain a single value
of date and create an instance with the given time. If not given, default to the

IT-SC book: Core Python Programming

 461

current time at execution. Additional methods:

update() changes the data value to reflect time given or current time as a
default

display() takes format indicator and displays date in requested format:

'MDY' -> MM/DD/YY

'MDYY' -> MM/DD/YYYY

'DMY' -> DD/MM/YY

'DMYY' -> DD/MM/YYYY

'MODYY' -
>

Mon DD, YYYY

If no format is given, default to system/ctime() format. EXTRA CREDIT: Merge
the use of this class into Exercise 6-15.

8:
Stack class. A stack is a data structure with last-in-first-out (LIFO) characteristics.
Think of a stack of cafeteria trays. The first one in the spring-loaded device is the
last one out, and the last one in is the first one out. Your class will have the
expected push() (add an item to the stack) and pop() (remove an item from the
stack) methods. Add an isempty() Boolean method that returns 1 if the stack is
empty and 0 otherwise, and a peek() method that returns the item at the top of the
stack without popping it off.

Note that if you are using a list to implement your stacks, the pop() method is
already available as of Python 1.5.2. Create your new class so that it contains code
to detect if the pop() method is available. If so, call the built-in one; otherwise, it
should execute your implementation of pop(). You should probably use a list
object; if you do, do not worry about implementing any list functionality (i.e.,
slicing). Just make sure that your Stack class can perform both of the operations
above correctly. See Section 13.16 and Example 6.2 for motivation.

IT-SC book: Core Python Programming

 462

9:
Queue class. A queue is a data structure that has first-in-first-out (FIFO)
characteristics. A queue is like a line where items are removed from the front and
added to the rear. The class should support the following methods:

enqueue()—adds a new element to the end of a list dequeue()—returns the first
element and removes it from the list

See the previous problem and Example 6.3 for motivation.

10:
Stacks and Queues. Write a class which defines a data structure that can behave as
both a queue (FIFO) or a stack (LIFO), somewhat similar in nature to arrays in
PERL. There are four methods that should be implemented:

shift()—returns the first element and removes it from the list, similar to the earlier
dequeue() function.

unshift()—"pushes" a new element to the front or head of the list.

push()—adds a new element to the end of a list, similar to the enqueue() and push()
methods from previous problems.

pop()returns the last element and removes it from the list. It works exactly the
same way as pop() from before.

Also see Exercises 13-8 and 13-9.

11:
Electronic Commerce. You need to create the foundations of an e-commerce
engine for a B2C (business-to-consumer) retailer. You need to have a class for a
customer called User, a class for items in inventory called Item, and a shopping
cart class called Cart. Items go in Carts, and Users can have multiple Carts.
Also, multiple items can go into Carts, including more than one of any single item.

12:
Chat Rooms. You have been pretty disappointed at the current quality of chat room
applications and vow to create your own, start-up a new Internet company, obtain
venture capital funding, integrate advertisement into your chat program, quintuple
revenues in a six-month period, go public, and retire. However, none of this will
happen if you do not have a pretty cool chat application.

There are three classes you would need: a Message class containing a message
string and any additional information such as broadcast or single recipient, a User
class that contains all the information for a person entering your chat rooms. To

IT-SC book: Core Python Programming

 463

really wow the VCs to get your start-up capital, you add a class Room that
represents a more sophisticated chat system where users can create separate
"rooms" within the chat area and invite others to join. EXTRA CREDIT:

Develop graphical user interface (GUI) applications for the users.

13:
Stock portfolio class. For each company, your database tracks the name, ticket
symbol, purchase date, purchase price, # of shares. Methods include: Add new
symbol, remove symbol, and YTD or Annual Return performance for any or all
symbols given a current price (and date).

14:
DOS. Write a Unix interface shell for DOS machines. You present the user a
command-line where he or she can type in Unix commands, and you interpret them
and output accordingly, i.e., the "ls" command calls "dir" to give a list of filenames
in a directory, "more" uses the same command (paginating through a text file),
"cat" calls "type," "cp" calls "copy," "mv" calls "ren," and "rm" invokes "del," etc.

15:
Delegation. In our final comments regarding the capOpen class of Example
13.4 where we proved that our class wrote out the data successfully, we noted that
we could use either capOpen() or open() to read the file text. Why? Would
anything change if we used one or the other?

16:
Delegation and Functional Programming.

(a) Implement a writelines() method for the capOpen class of Example 13.4. Your
new function will take a list of lines and write them out converted to uppercase,
similar to the way the regular writelines() method differs from write(). Note that
once you are done, writelines() is no longer "delegated" to the file object.

(b) Add an argument to the writelines() method that determines whether a
NEWLINE should be added to every line of the list. This argument should default
to a value of 0 for no NEWLINEs.

IT-SC book: Core Python Programming

 464

Chapter 14. Execution Environment

There are built-ins and external modules which can provide any of the functionality
described above. The programmer must decide which tool to pick from the box based on
the application which requires implementation. This chapter sketches a potpourri of many
of the aspects of the execution environment within Python; however, we will not discuss
how to start the Python interpreter or the different command-line options. Readers
seeking information on invoking or starting the Python interpreter should review Chapter
2.

Our tour of Python's execution environment consists of looking at "callable" objects and
following up with a lower-level peek at code objects. We will then take a look at what
Python statements and built-in functions are available to support the functionality we
desire. The ability to execute other programs gives our Python script even more power, as
well as being a resource-saver because certainly it is illogical to reimplement all this code,
not to mention the loss of time and manpower. Python provides many mechanisms to
execute programs or commands external to the current script environment, and we will
run through the most common options. Next, we give a brief overview of Python's
restricted execution environment, and finally, the different ways of terminating execution
(other than letting a program run to completion). We begin our tour of Python's execution
environment by looking at "callable" objects.

Callable Objects

A number of Python objects are what we describe as "callable," meaning any object
which can be invoked with the function operator "()". The function operator is placed
immediately following the name of the callable to invoke it. For example, the function
"foo" is called with "foo()". You already know this. Callables may also be invoked via
functional programming interfaces such as apply(), filter(), map(), and reduce(),
all of which we discussed in Chapter 11. Python has four callable objects: functions,
methods, classes, and some class instances. Keep in mind that any additional references
or aliases of these objects are callable, too.

Functions

The first callable object we introduced was the function. There are three types of different
function objects, the first being the Python built-in functions.

Built-in Functions (BIFs)

BIFs are generally written as extensions in C or C++, compiled into the Python
interpreter, and loaded into the system as part of the first (built-in) namespace. As

IT-SC book: Core Python Programming

 465

mentioned in previous chapters, these functions are found in the __builtin__ module
and are imported into the interpreter as the __builtins__ module. In restricted execution
modes, only a subset of these functions is available. (See Section 14.6 for more details
on restricted execution.)

All BIFs come with the attributes given in Table 14.1.

Table 14.1. Built-in Function Attributes
BIF Attribute Description

bif.__doc__ documentation string
bif.__name__ function name as a string
bif.__self__ set to None (reserved for built-in methods)

You can verify these attributes by using the dir() built-in function, as indicated below
using the type() BIF as our example:

>>> dir(type)
['__doc__', '__name__', '__self__']

Internally, built-in functions are represented as the same type as built-in methods, so
invoking the type() built-in function on a built-in function or method outputs
"builtin_function_or_method," as indicated in the following example:

>>> type(type)
<type 'builtin_function_or_method'>

User-defined Functions (UDFs)

The second type of function is the user-defined function. These are generally defined at
the top-level part of a module and hence are loaded as part of the global namespace (once
the built-in namespace has been established). Functions may also be defined in other
functions; however, the function at the innermost level does not have access to the
containing function's local scope. As indicated in previous chapters, Python currently
supports only two scopes: the global scope and a function's local scope. All the names
defined in a function, including parameters, are part of the local namespace.

All UDFs come with the attributes listed in Table 14.2.

Table 14.2. User-defined Function Attributes
UDF Attribute Description

udf.__doc__ documentation string (also udf.func_doc)
udf.__name__ function name as a string (also udf.func_name)

IT-SC book: Core Python Programming

 466

udf.func_code byte-compiled code object
udf.func_defaults default argument tuple
udf.func_globals global namespace dictionary; same as calling globals(x) from

within function

Internally, user-defined functions are of the type "function," as indicated in the following
example by using type():

>>> def foo(): pass
>>> type(foo)
<type 'function'>

lambda Expressions (Functions named "<lambda>")

Lambda expressions are the same as user-defined functions with some minor differences.
Although they yield function objects, lambda expressions are not created with the def
statement and instead are created using the lambda keyword.

Because lambda expressions do not provide the infrastructure for naming the code which
are tied to them, lambda expressions must be called either through functional
programming interfaces or have their reference be assigned to a variable, and then they
can be invoked directly or again via functional programming. This variable is merely an
alias and is not the function object's name.

Function objects created by lambda also share all the same attributes as user-defined
functions, with the only exception resulting from the fact that they are not named; the
__name__ or func_name attribute is given the string "<lambda>".

Using the type() built-in function, we show that lambda expressions yield the same
function objects as user-defined functions:

>>> lambdaFunc = lambda x: x * 2
>>> lambdaFunc(100)
200
>>> type(lambdaFunc)
<type 'function'>

In the example above, we assign the expression to an alias. We can also invoke type()
directly on a lambda expression:

>>> type (lambda: 1)
<type 'function'>

IT-SC book: Core Python Programming

 467

Let's take a quick look at UDF names, using lambdaFunc above and foo from the
preceding subsection:

>>> foo.__name__
'foo'
>>> lambdaFunc.__name__
'<lambda>'

Methods

In the previous chapter, we discovered methods, functions which are defined as part of a
class—these are user-defined methods. Many Python data types such as lists and
dictionaries also have methods, known as built-in methods. To further show this type of
"ownership," methods are named with or represented alongside the object's name via the
dotted-attribute notation.

Built-in Methods (BIMs)

We discussed in the previous section how built-in methods are similar to built-in
functions. Only built-in types (BITs) have BIMs. As you can see below, the type() built-
in function gives the same output for built-in methods as it does for built-in functions—
note how we have to provide a built-in type (object or reference) in order to access a BIM:

>>> type([].append)
<type 'builtin_function_or_method'>

Furthermore, both BIMs and BIFs share the same attributes, too. The only exception is
that now the __self__ attribute points to a Python object (for BIMs) as opposed to None
(for BIFs):

Table 14.3. Built-in Method Attributes
BIM Attribute Description

bim.__doc__ documentation string
bim.__name__ function name as a string
bim.__self__ object the method is bound to

By convention, a BIT should have the following lists of its BIMs and (built-in) attributes.

Table 14.4. Built-in Type Attributes
BIT Attribute Description

bit.__methods__ list of (built-in) methods

IT-SC book: Core Python Programming

 468

bit.__members__ list of (built-in) data attributes

Recall that for classes and instances, their data and method attributes can be obtained by
using the dir() built-in function with that object as the argument to dir(). Apparently,
BITs have two attributes that list their data and method attributes. Attributes of BITs may
be accessed with either a reference or an actual object, as in these examples:

>>> aList = ['on', 'air']
>>> aList.append('velocity')
>>> aList
['on', 'air', 'velocity']
>>> aList.insert(2, 'speed')
>>> aList
['on', 'air', 'speed', 'velocity']
>>>
>>> [].__methods__
['append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']
>>> [3, 'headed', 'knight'].pop()
'knight'

It does not take too long to discover, however, that using an actual object to access its
methods does not prove very useful functionally, as in the last example. No reference is
saved to the object, so it is immediately garbage-collected. The only thing useful you can
do with this type of access is to use it to display what methods (or members) a BIT has.

User-defined Methods (UDMs)

User-defined methods are contained in class definitions and are merely "wrappers"
around standard functions, applicable only to the class they are defined for. They may
also be called by subclass instances if not overridden in the subclass definition.

As explained in the previous chapter, UDMs are associated with class objects (unbound
methods), but can be invoked only with class instances (bound methods). Regardless of
whether they are bound or not, all UDMs are of the same type, "instance method," as seen
in the following calls to type():

>>> class C: # define class
… def foo(self): pass # define UDM
…
>>> c = C() # instantiation
>>> type(C.foo) # type of unbound method
<type 'instance method'>
>>> type(c.foo) # type of bound method
<type 'instance method'>

IT-SC book: Core Python Programming

 469

UDMs have the following attributes:

Table 14.5. User-defined Method Attributes
UDM Attribute Description

udm.__doc__ documentation string
udm.__name__ method name as a string
udm.im_class class which method is associated with
udm.im_func function object for method (see UDFs)
udm.im_self associated instance if bound, None if unbound

Accessing the object itself will reveal whether you are referring to a bound or an unbound
method. As you can also see below, a bound method reveals to which instance object a
method is bound:

>>> C.foo # unbound method object
<unbound method C.foo>
>>>
>>> c.foo # bound method object
<method C.foo of C instance at 122c78>
>>> c # instance foo()'s bound to
<__main__.c instance at 122c78>

Classes

The callable property of classes allows instances to be created. "Invoking" a class has the
effect of creating an instance, better known as instantiation. Classes have default
constructors which perform no action, basically consisting of a pass statement. The
programmer may choose to customize the instantiation process by implementing an
__init__() method. Any arguments to an instantiation call are passed on to the
constructor:

>>> class C:
 def __init__(self, *args):
 print 'instantiated with these arguments:\n', args

>>> c1 = C() # invoking class to instantiate c1
instantiated with these arguments:
()
>>> c2 = C('The number of the counting shall be', 3)
instantiated with these arguments:
('The number of the counting shall be', 3)

We are already familiar with the instantiation process and how it is accomplished, so we
will keep this section brief. What is new, however, is how to make instances callable.

IT-SC book: Core Python Programming

 470

Class Instances

Python provides the __call__() special method for classes which allows a programmer
to create objects (instances) which are callable. By default, the __call__() method is not
implemented, meaning that most instances are not callable. However, if this method is
overridden in a class definition, instances of such a class are made callable. Calling such
instance objects is equivalent to invoking the __call__() method. Naturally, any
arguments given in the instance call are passed as arguments to __call__().

You also have to keep in mind that __call__() is still a method, so the instance object
itself is passed in as the first argument to __call__() as self. In other words, if foo is
an instance, then foo() has the same effect as foo.__call__(foo)—the occurrence of
foo as an argument—simply the reference to self that is automatically part of every
method call. If __call__() has arguments, i.e., __call__(self, arg), then foo(arg)
is the same as invoking foo.__call__(foo, arg). We present below an example of a
callable instance, using a similar example to the previous section:

>>> class C:
… def __call__(self, *args):
… print "I'm callable! Called with args:\n", args
…

>>> c = C() # instantiation
>>> c # our instance
<__main__.C instance at babd30>
>>> callable(c) # instance is callable
1
>>> c() # instance invoked
I'm callable! Called with arguments:
()
>>> c(3) # invoked with 1 arg
I'm callable! Called with arguments:
(3,)
>>> c(3, 'no more, no less') # invoked with 2 args
I'm callable! Called with arguments:
(3, 'no more, no less')

We close this subsection with a note that class instances cannot be made callable unless
the __call__() method is implemented as part of the class definition.

Code Objects

Callables are a crucial part of the Python execution environment, yet are only one
element of a larger landscape. The grander picture consists of Python statements,
assignments, expressions, even modules. These other "executable objects" do not have
the ability to be invoked like callables. Rather, these objects are the smaller pieces of the
puzzle which make up executable blocks of code called code objects.

IT-SC book: Core Python Programming

 471

At the heart of every callable is a code object which consists of statements, assignments,
expressions, and other callables. Looking at a module means viewing one large code
object which contains all the code found in the module, which can then be dissected into
statements, assignments, expressions, and callables which recurse to another layer as they
contain their own code objects.

In general, code objects can be executed as part of function or method invocations or
using either the exec statement or eval() built-in function. A bird's eye view of a Python
module also reveals a single code object representing all lines of code that make up that
module.

If any Python code is to be executed, that code must first be converted to byte-compiled
code (a.k.a. bytecode). This is precisely what code objects are. They do not contain any
information about their execution environment, however, and that is why callables exist,
to "wrap" a code object and provide that extra information.

Recall, from the previous section, the udf.func_code attribute for a UDFs? Well, guess
what? That is a code object. Or how about the udm.im_func function object for UDMs?
Since that is also a function object, it also has its own udm.im_func.func_code code
object. So you can see that function objects are merely wrappers for code objects, and
methods are wrappers for function objects. You can start anywhere and dig. When you
get to the bottom, you will have arrived at a code object.

Executable Object Statements and Built-in Functions

Python provides a number of built-in functions supporting callables and executable
objects, including the exec statement. These functions let the programmer execute code
objects as well as generate them using the compile() built-in function and are listed in
Table 14.6.

Table 14.6. Executable Object Statements and Built-in Functions
Built-in Function or Statement Description
callable(obj) determines if obj is callable; returns 1 if so, 0 otherwise
compile(string, file,
type)

creates a code object from string of type type; file is
where the code originates from (usually set to ?)

eval(obj,
globals=globals(),
locals=locals())

evaluates obj, which is either a expression compiled into
a code object or a string expression; global and/or local
namespace dictionaries may also be provided, otherwise,
the defaults for the current environment will be used

exec obj execute obj, a single Python statement or set of
statements, either in code object or string format; obj
may also be a file object (opened to a valid Python script)

input(prompt='') equivalent to eval(raw_input(prompt=''))
intern(string) request intern of string

callable()

IT-SC book: Core Python Programming

 472

callable() is a Boolean function which determines if an object type can be invoked via
the function operator (()). It returns 1 if the object is callable and 0 otherwise. Here are
some sample objects and what callable returns for each type:

>>> callable(dir) # built-in function
1
>>> callable(1) # integer
0
>>> def foo(): pass
…
>>> callable(foo) # user-defined function
1
>>> callable('bar') # string
0
>>> class C: pass
…
>>> callable(C) # class
1

compile()

compile() is a function which allows the programmer to generate a code object on the
fly, that is, during run-time. These objects can then be executed or evaluated using the
exec statement or eval() built-in function. It is important to bring up the point that both
exec and eval() can take string representations of Python code to execute. When
executing code given as strings, the process of byte-compiling such code must occur
every time. The compile() function provides a one-time byte-code compilation of code
so that the precompile does not have to take place with each invocation. Naturally, this is
an advantage only if the same pieces of code are executed more than once. In these cases,
it is definitely better to precompile the code.

All three arguments to compile() are required, with the first being a string representing
the Python code to compile. The second string, although required, is usually set to the
empty string. This parameter represents the file name (as a string) where this code object
is located or can be found. Normal usage is for compile() to generate a code object from
a dynamically-generated string of Python code—code which obviously does not read
from an existing file.

The last argument is a string indicating the code object type. There are three possible
values:

'eval' evaluatable expression [to be used with eval()]
'single' single executable statement [to be used with exec]
'exec' group of executable statements [to be used with exec]

Evaluatable Expression

IT-SC book: Core Python Programming

 473

>>> eval_code = compile('100 + 200', '', 'eval')
>>> eval(eval_code)
300

Single Executable Statement

>>> single_code = compile('print "hello world!"', '', 'single')
>>> single_code
<code object ? at 120998, file "", line 0>
>>> exec single_code
hello world!

Group of Executable Statements

>>> exec_code = compile("""
… req = input('Count how many numbers? ')
… for eachNum in range(req):
… print eachNum
… """, '', 'exec')
>>> exec exec_code
Count how many numbers? 6
0
1
2
3
4
5

eval()

eval() evaluates an expression, either as a string representation or a pre-compiled code
object created via the compile() built-in. This is the first argument to eval(). The
second and third parameters, both optional, represent the objects in the global and local
namespaces, respectively. If these arguments are not given, they default to objects
returned by globals() and locals(), respectively. Take a look at the following
example:

>>> eval('932')
932
>>> int('932')
932

IT-SC book: Core Python Programming

 474

We see that in this case, both eval() and int() yield the same result: an integer with the
value 932. The paths they take are somewhat different, however. eval() takes the string
in quotes and evaluates it as a Python expression. int() takes a string representation of
an integer and converts it to an integer. It just so happens that the string consists exactly
of the string 932, which as an expression yields the value 932, and that 932 is also the
integer represented by the string "932." Things are not the same, however, when we use a
pure string expression:

>>> eval('100 + 200')
300
>>> int('100 + 200')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): 100 + 200

In this case, eval() takes the string and evaluates "100 + 200" as an expression, which,
after performing integer addition, yields the value 300. The call to int() fails because
the string argument is not a string representation of an integer—there are invalid literals
in the string, namely, the spaces and "+" character.

One simple way to envision how the eval() function works is to imagine that the
quotation marks around the expression are invisible and think, "If I were the Python
interpreter, how would I view this expression?" In other words, how would the interpreter
react if the same expression were entered interactively? The output after pressing the
RETURN or ENTER key should be the same as what eval() will yield.

exec

Like eval(), the exec statement also executes either a code object or a string
representing Python code. Similarly, precompiling oft-repeated code with compile()
helps improve performance by not having to go through the bytecode compilation process
for each invocation. The exec statement takes exactly one argument, as indicated here
with its general syntax:

exec
 obj

The executed object (obj) can be either a single statement or a group of statements, and
either may be compiled into a code object (with "single" or "exec," respectively) or it can
be just the raw string. Below is an example of multiple statements being sent to exec as a
single string:

>>> exec """

IT-SC book: Core Python Programming

 475

… x = 0
… print 'x is currently:', x
… while x < 5:
… x = x + 1
… print 'incrementing x to:', x
… """
x is currently: 0
incrementing x to: 1
incrementing x to: 2
incrementing x to: 3
incrementing x to: 4
incrementing x to: 5

Finally, exec can also accept a valid file object to a (valid) Python file. If we take the
code in the multi-line string above and create a file called xcount.py, then we could also
execute the same code with the following:

>>> f = open('xcount.py') # open the file
>>> exec f # execute the file
x is currently: 0
incrementing x to: 1
incrementing x to: 2
incrementing x to: 3
incrementing x to: 4
incrementing x to: 5
>>> exec f # try execution again
>>> # oops, it failed… why?

Note that once execution has completed, a successive call to exec fails. Well, it really
doesn't fail. It just doesn't do anything, which may have caught you by surprise. In reality,
exec has read all the data in the file and is sitting at the end-of-file (EOF). When exec is
called again with the same file object, there is no more code to execute, so it does not do
anything, hence the behavior seen above. How do we know that it is at EOF?

We use the file object's tell() method to tell us where we are in the file and then use
os.path.getsize() to tell us how large our xcount.py script was. As you can see,
there is an exact match:

>>> f.tell() # where are we in the file?
116
>>> f.close() # close the file
>>> from os.path import getsize
>>> getsize('xcount.py') # what is the file size?
116

IT-SC book: Core Python Programming

 476

Using Python to Generate and Execute Python Code Example

We now present code for the loopmake.py script, which is a simple computer-aided
software engineering (CASE) that generates and executes loops on-the-fly. It prompts the
user for the various parameters (i.e., loop type (while or for), type of data to iterate over
[numbers or sequences]), generates the code string, and executes it.

Example 14.1. Dynamically Generating and Executing Python Code
(loopmake.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 dashes = '\n' + '-' * 50 # dashed line
004 4 exec_dict = {
005 5
006 6 'f': """ # for loop
007 7 for %s in %s:
008 8 print %s
009 9 """,
010 10
011 11 's': """ # sequence while loop
012 12 %s = 0
013 13 %s = %s
014 14 while %s < len(%s):
015 15 print %s[%s]
016 16 %s = %s + 1
017 17 """,
018 18
019 19 'n': """ # counting while loop
020 20 %s = %d
021 21 while %s < %d:
022 22 print %s
023 23 %s = %s + %d
024 24 """
025 25 }
026 26
027 27 def main():
028 28
029 29 ltype = raw_input('Loop type? (For/While) ')
030 30 dtype = raw_input('Data type? (Number/Seq) ')
031 31
032 32 if dtype == 'n':
033 33 start = input('Starting value? ')
034 34 stop = input('Ending value (non-inclusive)? ')
035 35 step = input('Stepping value? ')
036 36 seq = str(range(start, stop, step))
037 37
038 38 else: <$nopage>
039 39 seq = raw_input('Enter sequence: ')
040 40
041 41 var = raw_input('Iterative variable name? ')
042 42
043 43 if ltype == 'f':
044 44 exec_str = exec_dict['f'] % (var, seq, var)

IT-SC book: Core Python Programming

 477

045 45
046 46 elif ltype == 'w':
047 47 if dtype == 's':
048 48 svar = raw_input('Enter sequence name? ')
049 59 exec_str = exec_dict['s'] % \
050 50 (var, svar, seq, var, svar, svar, var, var, var)
051 51
052 52 elif dtype == 'n':
053 53 exec_str = exec_dict['n'] % \
054 54 (var, start, var, stop, var, var, var, step)
055 55
056 56 print dashes
057 57 print 'Your custom-generated code:' + dashes
058 58 print exec_str + dashes
059 59 print 'Test execution of the code:' + dashes
060 60 exec exec_str
061 61 print dashes
062 62
063 63 if __name__ == '__main__':
064 64 main()
065 <$nopage>

Here are a few example executions of this script:

% loopmake.py
Loop type? (For/While) f
Data type? (Number/Sequence) n
Starting value? 0
Ending value (non-inclusive)? 4

Stepping value? 1
Iterative variable name? counter

--
The custom-generated code for you is:
--

for counter in [0, 1, 2, 3]:
 print counter

--
Test execution of the code:
--
0
1
2
3

--

IT-SC book: Core Python Programming

 478

% loopmake.py
Loop type? (For/While) w
Data type? (Number/Sequence) n
Starting value? 0
Ending value (non-inclusive)? 4
Stepping value? 1
Iterative variable name? counter

--
Your custom-generated code:
--

counter = 0
while counter < 4:
 print counter
 counter = counter + 1

--
Test execution of the code:
--
0
1
2
3

--

% loopmake.py
Loop type? (For/While) f
Data type? (Number/Sequence) s
Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
Iterative variable name? eachItem

--
Your custom-generated code:
--

for eachItem in [932, 'grail', 3.0, 'arrrghhh']:
 print eachItem

--
Test execution of the code:
--
932
grail
3.0
arrrghhh

IT-SC book: Core Python Programming

 479

--
% loopmake.py
Loop type? (For/While) w
Data type? (Number/Sequence) s
Enter sequence: [932, 'grail', 3.0, 'arrrghhh']
Iterative variable name? eachIndex
Enter sequence name? myList

--
Your custom-generated code:
--

eachIndex = 0
myList = [932, 'grail', 3.0, 'arrrghhh']
while eachIndex < len(myList):
 print myList[eachIndex]
 eachIndex = eachIndex + 1

--
Test execution of the code:
--
932
grail
3.0
arrrghhh

--

Line-by-line Explanation

Lines 1 – 25

In this first part of the script, we are setting up two global variables. The first is a static
string consisting of a line of dashes (hence the name) and the second is a dictionary of the
skeleton code we will need to use for the loops we are going to generate. The keys are "f"
for a for loop, "s" for a while loop iterating through a sequence, and "n" for a counting
while loop.

Lines 27 – 30

Here we prompt the user for the type of loop he or she wants and what data types to use.

Lines 32 – 36

Numbers have been chosen; they provide the starting, stopping, and incremental values.
In this section of code, we are introduced to the input() built-in function for the first
time. As we shall see in Section 14.3.5, input() is similar to raw_input() in that it

IT-SC book: Core Python Programming

 480

prompts the user for string input, but unlike raw_input(), input() also evaluates the
input as a Python expression, rendering a Python object even if the user typed it in as a
string.

Lines 38 – 39

A sequence was chosen; enter the sequence here as a string.

Line 41

Get the name of the iterative loop variable that the user wants to use.

Lines 43 – 44

Generate the for loop, filling in all the customized details.

Lines 46 – 50

Generate a while loop which iterates through a sequence.

Lines 52– 54

Generate a counting while loop.

Lines 56 – 61

Output the generated source code as well as the resulting output from execution of the
aforementioned generated code.

Lines 63 – 64

Execute main() only if this module was invoked directly.

To keep the size of this script to a manageable size, we had to trim all the comments and
error checking from the original script. You can find both the original as well as an
alternate version of this script on the CD-ROM in the back of the text.

The extended version includes extra features such as not requiring enclosing quotation
marks for string input, default values for input data, and detection of invalid ranges and
identifiers; it also does not permit built-in names or keywords as variable names.

input()

The input() built-in function is the same as the composite of eval() and raw_input(),
equivalent to eval(raw_input()). Like raw_input(), input() has an optional
parameter which represents a string prompt to display to the user. If not provided, the
string has a default value of the empty string.

IT-SC book: Core Python Programming

 481

Functionally, input() differs from raw_input() because raw_input() always returns a
string containing the user's input, verbatim. input() performs the same task of obtaining
user input; however it takes things one step further by evaluating the input as a Python
expression. This means that the data returned by input() is a Python object, the result of
performing the evaluation of the input expression.

One clear example is when the user inputs a list. raw_input() returns the string
representation of a list, while input() returns the actual list:

>>> aString = raw_input('Enter a list: ')
Enter a list: [123, 'xyz', 45.67]
>>> aString
"[123, 'xyz', 45.67]"
>>> type(aString)
<type 'string'>

The above was performed with raw_input(). As you can see, everything is a string.
Now let us see what happens when we use input() instead:

>>> aList = input('Enter a list: ')
Enter a list: [123, 'xyz', 45.67]
>>> aList
[123, 'xyz', 45.67]
>>> type(aList)
<type 'list'>

Although the user input a string, input() evaluates that input as a Python object and
returns the result of that expression.

Interned Strings and intern()

For performance reasons, Python keeps an internal string table consisting of static string
literals and identifier strings whose purpose is to speed up dictionary lookups. By keeping
these strings around, any time a reference is made to either the same string literal, or to an
identifier which bears a name that is in the table, no new space needs to be allocated for
that string, hence saving the time it takes for memory allocation. This "interned" set of
strings is not deallocated or garbage-collected until the interpreter exits.

Here is an example of an interned string:

>>> id('hello world')
1040072
>>> foo = 'hello world'
>>> id(foo)

IT-SC book: Core Python Programming

 482

1040072
>>> del foo
>>> id('hello world')
1040072

The string "hello world" is created in the first statement. The call to id() to reveal its
identity was not necessary since the string was created regardless of whether or not the
call was made. We did so in the example to immediately display its ID once it was
created. Upon assigning this string to an identifier, we observe with another call to id()
that, indeed, foo is referencing the same string object, which has been interned. If we
remove the object, thereby decrementing the reference count, we see that this has no
effect on the string which has been interned.

One surprising aspect may be that the string "foo" itself was interned (as the string name
of an identifier). If we create two other strings, we can see that the "foo" string has an
earlier ID than the newer strings, indicating that it was created first.

>>> id('bar')
1053088
>>> id('foo')
1052968
>>> id('goo')
1053728

Python 1.5 saw the debut of the intern() built-in function, which lets the programmer
explicitly request that a string be interned. The syntax of intern(), as you may suspect,
is:

intern(string)

The given string argument is the string to intern. intern() enters the string in the
(global) table of interned strings. If the string is not already in the interned string table, it
is interned and the string is returned. Otherwise, if the string is already there, it is simply
returned.

Executing Other (Python) Programs

When we discuss the execution of other programs, we distinguish between Python
programs and all other non-Python programs, which includes binary executables or other
scripting language source code. We will cover how to run other Python programs first,
then how to use the os module to invoke external programs.

Import

IT-SC book: Core Python Programming

 483

During run-time, there are a number of ways to execute another Python script. As we
discussed in an earlier chapter, importing a module the first time will cause the code at
the top-level of that module to execute. This is the behavior of Python importing, whether
desired or not. We remind you that the only code that belongs to the top-level of a
module are global variables, and class and function declarations.

These should be followed by an if statement that checks __name__ to determine if a
script is invoked, i.e., "if __name__ == '__main__'". In these cases, your script can
then execute the main body of code, or, if this script was meant to be imported, it can run
a test suite for the code in this module.

One complication arises when the imported module itself contains import statements. If
the modules in these import statements have not been loaded yet, they will be loaded and
their top-level code executed, resulting in recursive import behavior. We present a simple
example below. We have two modules import1 and import2, both with print
statements at their outermost level. import1 imports import2 so that when we import
import1 from within Python, it imports and "executes" import2 as well:

Here are the contents of import1.py:

import1.py
print 'loaded import1'
import import2

And here are the contents of import2.py:

import2.py
print 'loaded import2'

Here is the output when we import import1 from Python:

>>> import import1
loaded import1
loaded import2
>>>

Following our suggested workaround of checking the value of __name__, we can change
the code in import1.py and import2.py so that this behavior does not occur:

Here is the modified version of import1.py:

import1.py
import import2

IT-SC book: Core Python Programming

 484

if __name__ == '__main__':
 print 'loaded import1'

The following is the code for import2.py, changed in the same manner:

import2.py
if __name__ == '__main__'
 print 'loaded import2'

We no longer get any output when we import import1 from Python:

>>> import import1
>>>

Now it does not necessarily mean that this is the behavior you should code for all
situations. There may be cases where you want to display output to confirm a module
import. It all depends on your situation. Our goal is to provide pragmatic programming
examples to prevent unintended side effects.

execfile()

It should seem apparent that importing a module is not the preferred method of executing
a Python script from within another Python script; that is not what the importing process
is. One side effect of importing a module is the execution of the top-level code.

Earlier in this chapter, we described how the exec statement can be used with a file
object argument to read the contents of a Python script and execute it. This can be
accomplished with the following code segment:

f = open(filename, 'r')
exec f
f.close()

The three lines can be replaced by a single call to execfile():

execfile(filename)

Although the code above does execute a module, it does so only in its current execution
environment (i.e., its global and local namespace). There may be a desire to execute a

IT-SC book: Core Python Programming

 485

module with a different set of global and local dictionaries instead of the default ones.
For this purpose, we can use the execfile() built-in function, whose syntax allows the
programmer to specify the namespaces:

execfile(filename, globals=globals(), locals=locals())

Executing Other (Non-Python) Programs

We can also execute non-Python programs from within Python. These include binary
executables, other shell scripts, etc. All that is required is a valid execution environment,
i.e., permissions for file access and execution must be granted, shell scripts must be able
to access their interpreter (Perl, bash, etc.), binaries must be accessible (and be of the
local machine's architecture).

Finally, the programmer must bear in mind whether our Python script is required to
communicate with the other program that is to be executed. Some programs require input,
others return output as well as an error code upon completion (or both). Depending on the
circumstances, Python provides a variety of ways to execute non-Python programs. All of
the functions discussed in this section can be found in the os module. We provide a
summary for you here in Table 14.7 (where appropriate, we annotate those which are
available only for certain platforms) and introduce them to you for the remainder of this
section.

As we get closer to the operating system layer of software, you will notice that the
consistency of executing programs, even Python scripts, across platforms starts to get a
little dicey. We mentioned above that the functions

Table 14.7. os Module Functions for External Program Execution (Unix only, Windows
only)

os Module Function Description
system(cmd) execute program cmd given as string, wait for program

completion, and return the exit code (on Windows, the exit
code is always 0)

fork() create a child process which runs in parallel to the parent
process [usually used with exec*()]; return twice… once

for the parent and once for the child
execl(file, arg0,
arg1…)

execute file with argument list arg0, arg1, etc.

execv(file,
arglist)

same as execl() except with argument list (or tuple)
arglist

execle(file, arg0,
arg1…, env)

same as execl() but also providing environment variable
dictionary env

execve(file,
arglist, env)

same as execle() except with argument list (or tuple)
arglist

execlp(cmd, arg0,
arg1…)

same as execl() but search for full file pathname of cmd in

IT-SC book: Core Python Programming

 486

user search path
execvp(cmd,
arglist)

same as execlp() except with argument list (or tuple)
arglist

execvpe(cmd,
arglist, env)

same as execvp() but also providing environment variable
dictionary env

spawn*(mode, file,
args[, env])

depending on mode, spawn*() functions can duplicate
the functionality of fork(), exec*(), system(),

wait*(), and/or a combination of the aforementioned
popen(cmd,
mode='r',
buffering=-1)

execute cmd string, returning a file-like object as a
communication handle to the running program,

defaulting to read mode and default system buffering
wait() wait for child process to complete [usually used with

fork() and exec*()]
waitpid(pid,
options)

wait for specific child process to complete [usually used
with fork() and exec*()]

described in this section are in the os module. Truth is, there are multiple os modules.
For example, the one for Unix is the posix module. The one for Windows is nt
(regardless of which version of Windows you are running; DOS users get the dos
module), and the one for the Macintosh is the mac module. Do not worry, Python will
load the correct module when you call "import os". You should never need to import a
specific operating system module directly.

os.system()

The first function on our list is system(), a rather simplistic function which takes a
system command as a string name and executes it. Python execution is suspended while
the command is being executed. When execution has completed, the exit status will be
given as the return value from system() and Python execution resumes. This function is
available for Unix and Windows only.

system() preserves the current standard files, including standard output, meaning that
executing any program or command displaying output will be passed on to standard
output. Be cautious here because certain applications such as common gateway interface
(CGI) programs will cause web browser errors if output other than valid hypertext
markup language (HTML) strings are sent back to the client via standard output. system()
is generally used with commands producing no output, some of which include programs
to compress or convert files, mount disks to the system, or any other command to
perform a specific task that indicates success or failure via its exit status rather than
communicating via input and/or output. The convention adopted is an exit status of 0
indicating success and non-zero for some sort of failure.

For the sake of providing an example, we will execute two commands which do have
program output from the interactive interpreter so that you can observe how system()
works.

IT-SC book: Core Python Programming

 487

>>> import os
>>> result = os.system('cat /etc/motd')
Have a lot of fun…
>>> result
0
>>> result = os.system('uname -a')
Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown
>>> result
0

You will notice the output of both commands as well as the exit status of their execution
which we saved in the result variable. Here is an example executing a DOS command:

>>> import os
>>> result = os.system('dir')

Volume in drive C has no label
Volume Serial Number is 43D1-6C8A
Directory of C:\WINDOWS\TEMP

. <DIR> 01-08-98 8:39a .
.. <DIR> 01-08-98 8:39a ..
 0 file(s) 0 bytes
 2 dir(s) 572,588,032 bytes free
>>> result
0

os.popen()

The popen() function is a combination of a file object and the system() function. It
works in the same way as system() does, but in addition, it has the ability to establish a
one-way connection to that program and then to access it like a file. If the program
requires input, then you would call popen() with a mode of 'w' to "write" to that
command. The data that you send to the program will then be received through its
standard input. Likewise, a mode of 'r' will allow you to spawn a command, then as it
writes to standard output, you can read that through your file-like handle using the
familiar read*() methods of file object. And just like for files, you will be a good citizen
and close() the connection when you are finished.

In one of the system() examples we used above, we called the Unix uname program to
give us some information about the machine and operating system we are using. That
command produced a line of output that went directly to the screen. If we wanted to read
that string into a variable and perform internal manipulation or store that string to a log
file, we could, using popen(). In fact, the code would look like the following:

IT-SC book: Core Python Programming

 488

>>> import os
>>> f = os.popen('uname -a')
>>> data = f.readline()
>>> f.close()
>>> print data,
Linux solo 2.2.13 #1 Mon Nov 8 15:08:22 CET 1999 i586 unknown

As you can see, popen() returns a file-like object; also notice that readline(), as
always, preserves the newline character found at the end of a line of input text.

os.fork(), os.exec*(), os.wait*()

Without a detailed introduction to operating systems theory, we present a "light"
introduction to processes in this section. fork() takes your single executing flow of
control known as a "process" and creates a "fork-in-the-road," if you will. The interesting
thing is that your system takes both forks—meaning that you will have two consecutive
and parallel running programs (running the same code no less because both processes
resume at the next line of code immediately succeeding the fork() call).

The original process which called fork() is called the "parent" process, and the new
process created as a result of the call is known as the "child process." When the child
process returns, its return value is always zero; when the parent process returns, its return
value is always the process identifier (a.k.a. process ID, or "PID" for short) of the child
process (so the parent can keep tabs on all its children). The PIDs are the only way to tell
them apart, too!

We mentioned that both processes will resume immediately after the call to fork().
Because the code is the same, we are looking at identical execution if no other action is
taken at this time. This is usually not the intention. The main purpose for creating another
process is to run another program, so we need to take divergent action as soon as parent
and child return. As we stated above, the PIDs differ, so this is how we tell them apart:

The following snippet of code will look familiar to those who have experience managing
processes. However, if you are new, it may be difficult to see how it works at first, but
once you get it, you get it.

ret = os.fork() # spawn 2 processes, both return
if ret == 0: # child returns with PID of 0
 child_suite # child code
else: # parent returns with child's PID
 parent_suite # parent code

The call to fork() is made in the first line of code. A new process called a child process
is created. The original process is called the parent process. The child process has its own

IT-SC book: Core Python Programming

 489

copy of the virtual memory address space and contains an exact replica of the parent's
address space—yes, both processes are nearly identical. Recall that fork() returns twice,
meaning that both the parent and the child return. You might ask, how can you tell them
apart if they both return? When the parent returns, it comes back with the PID of the child
process. When the child returns, it has a return value of 0. This is how we can
differentiate both processes.

Using an if-else statement, we can direct code for the child to execute (i.e., the if
clause) as well as the parent (the else clause). The code for the child is where we can
make a call to any of the exec*() functions to run a completely different program or
some function in the same program (as long as both child and process take divergent
paths of execution). The general convention is to let the children do all the dirty work
while the parent either waits patiently for the child to complete its task or continues
execution and checks later to see if the child finished properly.

All of the exec*() functions load a file or command and execute it with an argument list
(either individually given or as part of an argument list). If applicable, an environment
variable dictionary can be provided for the command. These variables are generally made
available to programs to provide a more accurate description of the user's current
execution environment. Some of the more well-known variables include the user name,
search path, current shell, terminal type, localized language, machine type, operating
system name, etc.

All versions of exec*() will replace the Python interpreter running in the current (child)
process with the given file as the program to execute now. Unlike system(), there is no
return to Python (since Python was replaced). An exception will be raised if exec*()
fails because the program cannot execute for some reason.

The following code starts up a cute little game called "xbill" in the child process while
the parent continues running the Python interpreter. Because the child process never
returns, we do not have to worry about any code for the child after calling exec*(). Note
that the command is also a required first argument of the argument list.

ret = os.fork()

if ret == 0: # child code

 execvp('xbill', ['xbill'])

else: # parent code

 os.wait()

In this code, you also find a call to wait(). When children processes have completed,
they need their parents to clean up after them. This task, known as "reaping a child," can
be accomplished with the wait*() functions. Immediately following a fork(), a parent

IT-SC book: Core Python Programming

 490

can wait for the child to complete and do the clean-up then and there. A parent can also
continue processing and reap the child later, also using one of the wait*() functions.

Regardless of which method a parent chooses, it must be performed. When a child has
finished execution but has not been reaped yet, it enters a limbo state and becomes known
as a "zombie" process. It is a good idea to minimize the number of zombie processes in
your system because children in this state retain all the system resources allocated in their
lifetimes, which do not get freed or released until they have been reaped by the parent.

A call to wait() suspends execution (i.e., waits) until a child process (any child process)
has completed, terminating either normally or via a signal. wait() will then reap the
child, releasing any resources. If the child has already completed, then wait() just
performs the reaping procedure. waitpid() performs the same functionality as wait()
with the additional arguments PID to specify the process identifier to a specific child
process to wait for, and options, which is normally zero or a set of optional flags logically
OR'd together. Refer to the Python, your operating system documentation, or any general
operating system textbook such as Silbershatz and Galvin, Tanenbaum and Woodhull, or
Stallings for more details.

os.spawn*()

The spawn*() family of functions work only in the world of Windows. Depending on the
mode chosen, spawn*() functions can duplicate the functionality of fork(), exec*(),
system(), wait*(), and/or a combination of those popular Unix functions. Both
spawn() and spawnve() were introduced in Python 1.5.2. For more information, go to
the os module documentation in the Python Library Reference manual.

Other Functions

Table 14.8 lists some of the functions (and their modules) which can perform some of the
tasks described.

Table 14-8. Various Functions for File Execution
File Object Attribute Description (available only on Unix or Windows platforms)

popen2.popen2()
execute a file and open file read and write access from
(stdout) and to (stdin) the newly-created running

program

popen2.popen3()
execute a file and open file read and write access from
(stdout and stderr) and (stdin) to the newly-created

running program

commands.getoutput() executes a file in a subprocess, return all output as a
string

Restricted Execution

IT-SC book: Core Python Programming

 491

Throughout this text, we have used only normal, unrestricted execution which provides
general access to all resources available to the Python interpreter. This includes, but is not
limited to: disk file or database access, establishing network connections, invoking other
programs, etc.

There may be circumstances in which you want to impose restrictions on Python
programs which execute on your system. Scenarios which may require you to impose
restrictions on some or all of the above include: Python CGI applications, environments
which allow for upload and execution of Python scripts, anonymous FTP access which
has installed the Python interpreter in the /bin directory, etc.

There are two primary modules which aid in setting up restricted environments. The first
is Bastion, which provides restricted access to your data. The primary method of
utilizing Bastion is to instantiate the Bastion class around your object, providing an
attribute filter with which to provide or deny access to your object's attributes.

We will not discuss Bastion in this text, but you may refer to the Python documentation
or Beazley for more information. Instead, we will focus our efforts primarily on the
rexec module which creates the restricted environment with which to execute untrusted
Python code. We conclude our discussion of Bastion by stating that it can be used in
conjunction with rexec to provide a complete and secure execution mechanism,
restricting access to data as well as the run-time environment. (Both modules are installed
with Python as part of the standard library.)

The rexec module has a primary mission to restrict the execution environment of a
Python script. This module allows for a limited number of built-ins (functions and/or data
attributes), imposes restrictions on which modules can imported, which attributes can and
cannot be accessed from the sys and os modules, and wraps the most critical built-ins
[i.e., open(), reload(), and __import__()] with imposed restrictions.

You will recall that the __builtins__ module consists of all the attributes from the
__builtin__ module. If __builtins__ is the __builtin__ module, then this
constitutes an unrestricted environment:

>>> __builtins__
<module '__builtin__' (built-in)>

When we impose a restricted environment, __builtins__ will actually be a subset of the
__builtin__ module that is handpicked for the restricted environment and even
becomes "inaccessible" in that environment:

>>> __builtins__
<module '?' (built-in)>

IT-SC book: Core Python Programming

 492

The rexec module implements an RExec class with which to subclass and create your
restricted environment. This class has static members, which you override, that dictate
what is and what is not allowed in the "caged" or "sandboxed" environment. We present
the static data attributes of the RExec class in Table 14.9.

Table 14-9. RExec Class Attributes
Attribute Name Description

nok_builtin_names attributes that are not ok to include in __builtins__
ok_builtin_modules modules that can be imported
ok_path list of directories accessible in restricted environment
ok_posix_names attributes that are ok to import from os module
ok_sys_names attributes that are ok to import from sys module

Instances of your RExec subclass have a number of methods with which to execute
restricted code with. These are listed in Table 14.10.

Table 14-10. RExec Class Methods
Method Name Description

r_eval() restricted version of eval()
r_exc_info() restricted version of sys.exc_info()
r_exec() restricted version of exec
r_execfile() restricted version of execfile()
r_import() restricted version of __import__()
r_open() restricted version of open()
r_reload() restricted version of reload()
r_unload() restricted version of del module

All of the r_*() methods except for r_exc_info() and r_open() are available as s_*(),
which behaves exactly the same as their r_*() counterparts with the exception of being
granted access to the standard files (standard input, output, and error). There are other
methods available in rexec, and we recommend that you refer to the Python
documentation for more information.

We present a small example below consisting of a pair of files. The cager.py is the
program responsible for creating a restricted environment with which to safely execute
another script, caged.py. The restriction we are imposing in this example is to remove
all the built-in attributes and allow only a handful of them to be accessible in our
restricted environment. To accomplish this, we override the nok_builtin_names
attribute, a tuple listing which attributes are not okay in the restricted environment.

The code for cager.py is given in Example 14.2. And the code for caged.py is shown
in Example 14.3.

Upon execution, we will see the output of caged.py, giving a list of built-in attributes
that it does have access to (compare this list with the code in cager.py), as well as an

IT-SC book: Core Python Programming

 493

erroneous example of what happens if we call a function that we do not have access to,
such as eval():

Example 14.2. Creating a Restricted Environment (cager.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import rexec
004 4
005 5 class YourSandbox(rexec.RExec):
006 6 nok_builtin_names = dir(__builtins__)
007 7 nok_builtin_names.remove('dir')
008 8 nok_builtin_names.remove('str')
009 9 nok_builtin_names.remove('vars')
010 10
011 11 r = YourSandbox()
012 12 r.r_execfile("caged.py")
013 <$nopage>

Example 14.3. Executing Within a Restricted Environment (caged.py)

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 print 'Restricted to these built-in attributes:'
004 4 for eachBI in dir(__builtin__):
005 5 print '\t', each BI:
006 6 print '\nAll others inaccessible, i.e. eval():\n'
007 7 eval (123)
008 <$nopage>

% cager.py
Restricted to these built-in attributes:
 __builtins__
 __import__
 dir
 open
 reload
 str
 vars
All others inaccessible, i.e. eval():

Traceback (most recent call last):
 File "cager.py", line 12, in ?
 r.r_execfile("caged.py")
 File "/usr/lib/python2.0/rexec.py", line 261, in r_execfile
 return execfile(file, m.__dict__)
 File "caged.py", line 7, in ?
 eval(123)
NameError: There is no variable named 'eval'

IT-SC book: Core Python Programming

 494

r_*() functions such as r_open() (and their s_*() equivalents) automatically direct all
calls to to special wrappers which execute these functions with additional restrictions. For
example, a call to open() calls r_open() which allows only read mode. Attempting to
open() a file for write would result in an IOError exception:

IOError: can't open files for writing in restricted mode

You may even disallow this by overriding r_open(). Let us add the following method
definition to our YourSandbox class definition in cager.py:

def r_open(f, m='r', b=-1):
 raise IOError, 'sorry, no file access period'

When we try to open a file for reading or writing this time, we get:

IOError: sorry, no file access period

Terminating Execution

Clean execution occurs when a program runs to completion, where all statements in the
top-level of your module finish execution and your program exits. There may be cases
where you may want to exit from Python sooner, such as a fatal error of some sort.
Another case is when conditions are not sufficient to continue execution.

In Python, there are varying ways to respond to errors. One is via exceptions and
exception handling. Another way is to construct a "cleaner" approach so that the main
portions of code are cordoned off with if statements to execute only in non-error
situations, thus letting error scenarios terminate "normally." However, you may also
desire to exit to the calling program with an error code to indicate that such an event has
occurred.

sys.exit() and SystemExit

The primary way to exit a program immediately and return to the calling program is the
exit() function found in the sys module. The syntax for sys.exit() is:

sys.exit(status=0)

IT-SC book: Core Python Programming

 495

When sys.exit() is called, a SystemExit exception is raised. Unless monitored (in a
try statement with an appropriate except clause), this exception is generally not caught
nor handled, and the interpreter exits with the given status argument, which defaults to
zero if not provided. SystemExit is the only exception which is not viewed as an error. It
simply indicates the desire to exit Python.

One popular place to use sys.exit() is after an error is discovered in the way a
command was invoked. In particular, if the arguments are incorrect, invalid, or if there
are an incorrect number of them. The following Example 14.4 (args.py) is just a test
script we created to require that a certain number of arguments be given to the program
before it can execute properly:

Executing this script we get the following output:

% args.py
At least 2 arguments required (incl. cmd name).
usage: args.py arg1 arg2 [arg3…]

% args.py XXX
At least 2 arguments required (incl. cmd name).
usage: args.py arg1 arg2 [arg3…]

% args.py 123 abc
number of args entered: 3
args (incl. cmd name) were: ['args.py', '123', 'abc']

% args.py -x -2 foo bar
number of args entered: 5
args (incl. cmd name) were: ['args.py', '-x', '-2', 'foo', 'bar']

Example 14.4. Exiting Immediately (args.py)

Calling sys.exit() causes the Python interpreter to quit. Any integer argument to exit()
will be the returned to the caller as the exit status, which has a default value of 0.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import sys
004 4
005 5 def usage():
006 6 print 'At least 2 arguments (incl. cmd name).'
007 7 print usage: args.py arg1 arg2 [arg3…]'
008 8 sys.exit(1)
009 9
010 10 argc = len(sys.argv)
011 11 if argc < 3:
012 12 usage()
013 13 print "number of args entered:", argc
014 14 print "args (incl. cmd name) were:", sys.argv

IT-SC book: Core Python Programming

 496

015 <$nopage>

Many command-line driven programs test the validity of the input before proceeding with
the core functionality of the script. If the validation fails at any point, a call is made to a
usage() function to inform the user what problem caused the error as well as a usage
"hint" to aid the user so that he or she will invoke the script properly the next time.

sys.exitfunc()

sys.exitfunc() is disabled by default, but can be overridden to provide additional
functionality which takes place when sys.exit() is called and before the interpreter
exits. This function will not be passed any arguments, so you should create your function
to take no arguments.

As described in Beazley, if sys.exitfunc has already been overridden by a previously
defined exit function, it is good practice to also execute that code as part of your exit
function. Generally, exit functions are used to perform some type of shutdown activity,
such as closing a file or network connection, and it is always a good idea to complete
these maintenance tasks, such as releasing previously held system resources.

Here is an example of how to set up an exit function, being sure to execute one if one has
already been set:

 <$nopage>
001 <$nopage>import sys
002 <$nopage>
003 prev_exit_func = getattr(sys, 'exitfunc', None)
004 <$nopage>
005 <$nopage>def my_exit_func(old_exit = prev_exit_func):
006 # :
007 # perform cleanup
008 # :
009 if old_exit != None and callable(old_exit):
010 old_exit()
011 <$nopage>
012 sys.exitfunc = my_exit_func
013 <$nopage>

We execute the old exit function after our cleanup has been performed. The getattr()
call simply checks to see whether a previous exitfunc has been defined. If not, then
None is assigned to prev_exit_func; otherwise, prev_exit_func becomes a new alias
to the exiting function, which is then passed as a default argument to our new exit
function, my_exit_func.

The call to getattr() could have been rewritten as:

 <$nopage>
001 <$nopage>if hasattr(sys, 'exitfunc'):
002 prev_exit_func = sys.exitfunc # getattr(sys, 'exitfunc')

IT-SC book: Core Python Programming

 497

003 <$nopage>else: <$nopage>
004 prev_exit_func = None
005 <$nopage>

os._exit() Function

The _exit() function of the os module should not be used in general practice. (It is
platform-dependent and available only on certain platforms anyway [Unix and Windows,
to name a pair].) Its syntax is:

 <$nopage>
001 os._exit(status)
002 <$nopage>

This function provides functionality opposite to that of sys.exit() and
sys.exitfunc(), exiting Python immediately without performing any cleanup (Python
or programmer-defined) at all. Unlike sys.exit(), the status argument is required.
Exiting via sys.exit() is the preferred method of quitting the interpreter.

Related Modules

In Table 14.11 you will find a list of modules other than os and sys which relate to the
execution environment theme of this chapter.

Table 14.11. Execution Environment Related Modules
Module Description

popen2 provides additional functionality on top of os.popen(): provides ability
to communicate via standard files to the other process

commands provides additional functionality on top of os.system(): saves all
program output in a string which is returned (as opposed to just
dumping output to the screen)

getopt processes options and command-line arguments in such applications
site processes site-specific modules or packages
findertools provides an interface to Macintosh finder functionality, such as

launching an application (or a document with its companion
application)

Exercises

1:
Callable Objects. Name Python's callable objects.

2:
exec vs. eval(). What is the difference between the exec statement and the

IT-SC book: Core Python Programming

 498

eval() built-in function?

3:
input vs. raw.input(). What is the difference between the built-in functions
input() and raw_input()?

4:
Execution Environment. Create a Python script that runs other Python scripts.

5:
os.system(). Choose a familiar system command that performs a task without
requiring input and either outputs to the screen or does not output at all. Use the
os.system() call to run that program.

6:
commands.getoutput(). Solve the previous problem using
commands.getoutput().

7:
popen().Family. Choose another familiar system command that takes text from
standard input and manipulates or otherwise outputs the data. Use os.popen() to
communicate with this program. Where does the output go? Try using
popen2.popen2() instead.

8:
Restricted Execution. Create a restricted environment and display the contents of
your __builtins__ module to prove it.

9:
Exit Function. Design a function to be called when your program exits. Install it as
sys.exitfunc(), run your program and show that your exit function was indeed
called.

10:
Shells. Create a shell (operating system interface) program: Present a command-
line interface which accepts operating system commands for execution.

EXTRA CREDIT 1: support pipes (see the dup(), dup2(), and pipe() functions in
the os module). This piping procedure allows the standard output of one process to

IT-SC book: Core Python Programming

 499

be connected to the standard input of another.

EXTRA CREDIT 2: Support inverse pipes using parentheses, giving your shell a
functional programming-like interface.

IT-SC book: Core Python Programming

 500

Part II: Advanced Topics

IT-SC book: Core Python Programming

 501

Chapter 15. Regular Expressions

Introduction/Motivation

Manipulating text/data is a big thing. If you don't believe me, look very carefully at what
computers primarily do today. Word processing, "fill-out-form" Web pages, streams of
information coming from a database dump, stock quote information, news feeds—the list
goes on and on. Because we may not know the exact text or data which we have
programmed our machines to process, it becomes advantageous to be able to express this
text or data in patterns which a machine can recognize and take action upon.

If I were running an electronic mail (e-mail) archiving company, and you were one of my
customers who requested all his or her e-mail sent and received last February, for
example, it would be nice if I could set a computer program to collate and forward that
information to you, rather than having a human being read through your e-mail and
process your request manually. You would be horrified (and infuriated) that someone
would be rummaging through your messages, even if his or her eyes were supposed to be
looking only at timestamps. Another example request might be to look for a subject line
like "ILOVEYOU" indicating a virus-infected message and remove those e-mail
messages from your personal archive. So this begs the question of how can we program
machines with the ability to look for patterns in text.

Regular Expressions (REs) provide such an infrastructure for advanced text pattern
matching, extraction, and/or search-and-replace functionality. REs are simply strings
which use special symbols and characters to indicate pattern repetition or to represent
multiple characters so that they can "match" a set of strings with similar characteristics
described by the pattern (Figure15.1). In other words, they enable matching of multiple
strings—an RE pattern that matched only one string would be rather boring and
ineffective, wouldn't you say?

Figure 15.1. You can use regular expressions, such as the one here which
recognizes valid Python identifiers. "[A-Za-z]\w+" means the first

character should be alphabetic, i.e., either A–Z or a–z, followed by at least
one (+) alphanumeric character (\w). In our filter, notice how many strings

go into the filter, but the only ones to come out are the ones we asked for
via the RE.

IT-SC book: Core Python Programming

 502

IT-SC book: Core Python Programming

 503

Python supports REs through the standard library re module. In this introductory
subsection, we will give you a brief and concise introduction. Due to its brevity, only the
most common aspects of REs used in every day Python programming will be covered.
Your experience, will of course, vary. We highly recommend reading any of the official
supporting documentation as well as external texts on this interesting subject. You will
never look at strings the same way again!

NOTE

Throughout this chapter, you will find references to searching and matching. When we
are strictly discussing regular expressions with respect to patterns in strings, we will say
"matching," referring to the term pattern-matching. In Python terminology, there are two
main ways to accomplish pattern-matching: searching, i.e., looking for a pattern match in
any part of a string, and matching, i.e., attempting to match a pattern to an entire string
(starting from the beginning). Searches are accomplished using the search() function or
method, and matching is done with the match() function or method. In summary, we
keep the term "matching" universal when referencing patterns, and we differentiate
between "searching" and "matching" in terms of how Python accomplishes pattern-
matching.

Your First Regular Expression

As we mentioned above, REs are strings containing text and special characters which
describe a pattern with which to recognize multiple strings. We also briefly discussed a
regular expression alphabet and for general text, the alphabet used for regular
expressions is the set of all uppercase and lowercase letters plus numeric digits.
Specialized alphabets are also possible, for instance, one consisting of only the characters
"0" and "1." The set of all strings over this alphabet describes all binary strings, i.e., "0,"
"1," "00," "01," "10," "11," "100," etc.

Let us look at the most basic of regular expressions now to show you that although REs
are sometimes considered an "advanced topic," they can also be rather simplistic. Using
the standard alphabet for general text, we present some simple REs and the strings which
their patterns describe. The following regular expressions are the most basic, "true
vanilla," as it were. They simply consist of a string pattern which matches only one string,
the string defined by the regular expression. We now present the REs followed by the
strings which match them:

RE Pattern String(s) Matched
foo foo
Python Python
abc123 abc123

IT-SC book: Core Python Programming

 504

The first regular expression pattern from the above chart is "foo." This pattern has no
special symbols to match any other symbol other than those described, so the only string
which matches this pattern is the string "foo." The same thing applies to "Python" and
"abc123." The power of regular expressions comes in when special characters are used to
define character sets, subgroup matching, and pattern repetition. It is these special
symbols that allow a RE to match a set of strings rather than a single one.

Special Symbols and Characters for REs

We will now introduce the most popular of the metacharacters, special characters and
symbols, which give regular expressions their power and flexibility. You will find the
most common of these symbols and characters in Table 15.1.

Table 15.1. Common Regular Expression Symbols and Special Characters
Notation Description Example RE

Symbols
re_string match literal string value re_string foo
re1|re2 match literal string value re1 or re2 foo|bar
. match any character (except NEWLINE) ::.+::
^ match start of string ^Dear
$ match end of string /bin/\w*sh$
* match 0 or more occurrences of preceding RE [A-Za-z]\w*
+ match 1 or more occurrences of preceding RE \d+\.|\.\d+
? match 0 or 1 occurrence(s) of preceding RE goo?
{N} match N occurrences of preceding RE \d{3}
{M,N} match from M to N occurrences of preceding RE \d{5,9}
[…] match any single character from character class [aeiou]
[..x–y..] match any single character in the range from x

to y
[0–9], [A-Za-z]

[^…] do not match any character from character class,
including any ranges, if present

[^aeiou], [^A-
Za-z0–9_]

(*|+|?|{})? apply non-greedy versions of above
occurrence/repetition symbols (*, +, ?, {})

.*?\w

(…) match enclosed RE and save as subgroup (\d{3})?,
f(oo|u)bar

Special
Characters

\d match any decimal digit, same as [0–9] (\D is
inverse of \d: do not match any numeric digit)

data\d+.txt

\w match any alphanumeric character, same as [A-
Za-z0-9_] (\W is inverse of \w)

[A-Za-z_]\w+

\s match any whitespace character, same as
[\n\t\r\v\f] (\S is inverse of \s)

of\sthe

\b match any word boundary (\B is inverse of \b) \bThe\b

IT-SC book: Core Python Programming

 505

\nn match saved subgroup nn (see (…) above) price: \16
\c match any special character c verbatim (i.e.,

without its special meaning, literal)
\., \\, *

\A (\Z) match start (end) of string (also see ^ and $
above)

\ADear

Matching more than one RE pattern with alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an alternation
operation, meaning that it is used to choose from one of the different regular expressions
which are separated by the pipe symbol. For example, below are some patterns which
employ alternation, along with the strings they match:

RE Pattern Strings Matched
at|home at, home
r2d2|c3po r2d2, c3po
bat|bet|bit bat, bet, bit

With this one symbol, we have just increased the flexibility of our regular expressions,
enabling the matching of more than just one string. Alternation is also sometimes called
union or logical OR.

Matching any single character (.)

The dot or period (.) symbol matches any single character except for NEWLINE
(Python REs have a compilation flag [S or DOTALL] which can override this to include
NEWLINEs.). Whether letter, number, whitespace not including "\n," printable, non-
printable, or a symbol, the dot can match them all.

RE Pattern Strings Matched
f.o any character between "f" and "o," e.g., fao,f9o, f#o, etc.
.. any pair of characters
.end any character before the string end

Q:
"What if I want to match the dot or period character?"

A:
In order to specify a dot character explicitly, you must escape its functionality with a
backslash, as in "\."

IT-SC book: Core Python Programming

 506

Matching from the beginning or end of strings or word
boundaries (^/$)

There are also symbols and related special characters to specify searching for patterns at
the beginning and ending of strings. To match a pattern starting from the beginning, you
must use the carat symbol (^) or the special character \A (backslash-capital "A"). The
latter is primarily for keyboards which do not have the carat symbol, i.e., international.
Similarly, the dollar sign ($) or \Z will match a pattern from the end of a string.

Patterns which use these symbols differ from most of the others we describe in this
chapter since they dictate location or position. In the Core Note above, we noted that a
distinction is made between "matching," attempting matches of entire strings starting at
the beginning, and "searching," attempting matches from anywhere within a string.
Because we are looking specifically at symbols and special characters which deal with
position, they make sense only when applied to searching.

That said, here are some examples of "edge-bound" RE search patterns:

RE Pattern Strings Matched
^From any string which starts with From
/bin/tcsh$ any string which ends with /bin/tcsh
^Subject: hi$ any string consisting solely of the string Subject: hi

Again, if you want to match either (or both) of these characters verbatim, you must use an
escaping backslash. For example, if you wanted to match any string which ended with a
dollar sign, one possible RE solution would be the pattern ".*\$$".

The \b and \B special characters will match the empty string, meaning that they can start
performing the match anywhere. The difference is that \b will match a pattern to a word
boundary, meaning that a pattern must be at the beginning of a word, whether there are
any characters in front of it (word in the middle of a string) or not (word at the beginning
of a line). And likewise, \B will match a pattern only if it appears starting in the middle of
a word (i.e., not at a word boundary). Here are some examples:

RE Pattern Strings Matched
the any string containing the
\bthe any word which starts with the
\bthe\b matches only the word the
\Bthe any string which contains but does not begin with the

Creating character classes ([])

While the dot is good for allowing matches of any symbols, there may be occasions
where there are specific characters you want to match. For this reason, the bracket

IT-SC book: Core Python Programming

 507

symbols ([]) were invented. The regular expression will match from any of the
enclosed characters. Here are some examples:

RE Pattern Strings Matched
b[aeiu]t bat, bet, bit, but
[cr][23][dp][o2] "r" or "c" then "2" or "3" followed by "d" or "p" and finally, either

"o" or "2," e.g., c2do, r3p2, r2d2, c3po, etc.

One side note regarding the RE "[cr][23][dp][o2]"—a more restrictive version of this
RE would be required to allow only "r2d2" or "c3po" as valid strings. Because brackets
merely imply "logical OR" functionality, it is not possible to use brackets to enforce such
a requirement. The only solution is to use the pipe, as in "r2d2|c3po".

For single character REs, though, the pipe and brackets are equivalent. For example, let's
start with the regular expression "ab" which matches only the string with an "a" followed
by a "b." If we wanted either a one-letter string, i.e., either "a" or a "b," we could use the
RE "[ab]". Because "a" and "b" are individual strings, we can also choose the RE "a|b".
However, if we wanted to match the string with the pattern "ab" followed by "cd," we
cannot use the brackets because they work only for single characters. In this case, the
only solution is "ab|cd," similar to the "r2d2/c3po" problem just mentioned.

Denoting ranges (-) and negation (^)

In addition to single characters, the brackets also support ranges of characters. A hyphen
between a pair of symbols enclosed in brackets is used to indicate a range of characters,
e.g., A–Z, a–z, or 0–9 for uppercase letters, lowercase letters, and numeric digits,
respectively. This is a lexicographic range, so you are not restricted to using just
alphanumeric characters. Additionally, if a caret (^) is the first character immediately
inside the open left bracket, this symbolizes a directive to not match any of the characters
in the given character set.

RE Pattern Strings Matched
z.[0–9] "z" followed by any character then followed by a single digit
[r–u][env-
y][us]

"r" "s," "t" or "u" followed by "e," "n," "v," "w," "x," or "y" followed by
"u" or "s"

[^aeiou]* zero or more (*symbol introduced in next subsection) non-vowels
(EXERCISE: Why do we say "non-vowels" rather than "consonants?")

[^\t\n]+ one or more (+symbol introduced in next subsection) characters up
to, but not including, the first TAB or NEWLINE encountered

["-a] in an ASCII system, all characters which fall between """ and "a," i.e.,
between ordinals 34 and 97.

Multiple occurrence/repetition using closure operators (*,
+, ?, { })

IT-SC book: Core Python Programming

 508

We will now introduce the most common RE notations, namely, the special symbols *,
+, and ?, all of which can be used to match single, multiple, or no occurrences of string
patterns. The asterisk or star operator (*) will match zero or more occurrences of the RE
immediately to its left (in language and compiler theory, this operation is known as the
Kleene Closure). The plus operator (+) will match one or more occurrences of an RE
(known as Positive Closure), and the question mark operator (?) will match exactly 0 or
1 occurrences of an RE.

There are also brace operators ({ }) with either a single value or a comma-separated
pair of values. These indicate a match of exactly N occurrences (for { N }) or a range of
occurrences, i.e., {M, N} will match from M to N occurrences. These symbols may also be
escaped with the backslash, i.e., "*" matches the asterisk, etc.

Finally, the question mark (?) is overloaded so that if it follows any of the following
symbols, it will direct the regular expression engine to match as few repetitions as
possible.

Here are some examples using the closure operators:

RE Pattern Strings Matched
[dn]ot? "d" or "n," followed by an "o" and, at most, one "t" after that, i.e.,

do, no, dot, not
0?[1–9] any numeric digit, possibly prepended with a "0," e.g., the set of

numeric representations of the months January to September,
whether single- or double-digits

[0–9]{15,16} fifteen or sixteen digits, e.g., credit card numbers
</?[^>]+> strings which match all valid (and invalid) HTML tags
[KQRBNP][a–
h][1–8]-[a–
h][1–8]

Legal chess move in "long algebraic" notation (move only, no
capture, check, etc.), i.e., strings which start with any of "K," "Q,"
"R," "B," "N," or "P" followed by a hyphenated-pair of chess board
grid locations from "a1" to "h8" (and everything in between), with
the first coordinate indicating the former position and the second
being the new position.

Special characters representing character sets

We also mentioned that there are special characters which may represent character sets.
Rather than using a range of "0–9," you may simply use "\d" to indicate the match of any
decimal digit. Another special character "\w" can be used to denote the entire
alphanumeric character class, serving as a shortcut for "A–Za–z0–9_," and "\s" for
whitespace characters. Uppercase versions of these strings symbolizes a non-match, i.e.,
"\D" matches any non-decimal digit (same as "[^0–9]"), etc.

Using these shortcuts, we will present a few more complex examples:

RE Pattern Strings Matched
\w+-\d+ alphanumeric string and number separated by a hyphen

IT-SC book: Core Python Programming

 509

[A–Za–z]\w* alphabetic first character, additional characters (if present) can be
alphanumeric (almost equivalent to the set of valid Python
identifiers [see exercises])

\d{3}-\d{3}-
\d{4}

(American) telephone numbers with an area code prefix, as in 800-
555-1212

\w+@\w+\.com simple e-mail addresses of the form XXX@YYY.com

Note that all special characters, including all the ones mentioned before such as "\A,"
"\B," "\d," etc., may or may not have ASCII equivalents. To be sure you are using the
regular expression versions, it would be a safe bet to use raw strings to escape backslash
functionality (see the Core Note later in this chapter).

Also, the "\w" and "\W" alphanumeric character sets are affected by the L or LOCALE
compilation flag and in Python 1.6 and newer, by Unicode flags.

Designating groups with parentheses (())

Now, perhaps we have achieved the goal of matching a string and discarding non-
matches, but in some cases, we may also be more interested in the data that we did match.
Not only do we want to know whether the entire string matched our criteria, but whether
we can also extract any specific strings or substrings which were part of a successful
match. The answer is yes. To accomplish this, surround any RE with a pair of parentheses.

A pair of parentheses (()) can accomplish either (or both) of the below when used with
regular expressions:

grouping regular expressions

matching subgroups

One good example for wanting to group regular expressions is when you have two
different REs with which you want to compare a string. Another reason is to group an RE
in order to use a repetition operator on the entire RE (as opposed to an individual
characters or character classes).

One side-effect of using parentheses is that the substring which matched the pattern is
saved for future use. These subgroups can be recalled for the same match or search, or
extracted for post-processing. Why are matches of subgroups important? The main reason
is that there are times where you want to extract the patterns you match, in addition to
making a match.

For example, what if we decided to match the pattern "\w+-\d+" but wanted save the
alphabetic first part and the numeric second part individually? This may be desired
because with any successful match, we may want to see just what those strings were that
matched our RE patterns. If we add parentheses to both subpatterns, i.e., "(\w+)-
(\d+)," then we can access each of the matched subgroups individually. Subgrouping is
preferred because the alternative is to write code to determine we have a match, then

IT-SC book: Core Python Programming

 510

execute another separate routine (which we also had to create) to parse the entire match
just to extract both parts. Why not let Python do it, since it is a supported feature of the
re module, instead of "reinventing the wheel"?

RE Pattern Strings Matched
\d+(\.\d*)? strings representing simple floating point number, that is, any

number of digits followed optionally by a single decimal point
and zero or more numeric digits, as in "0.004," "2," "75.," etc.

(Mr?s?\.)?[A–
Z][a–z]* [A–Za–
z-]+

first name and last name, with a restricted first name (must
start with uppercase; lowercase only for remaining letters, if
any), the full name prepended by an optional title of "Mr.,"
"Mrs.," "Ms.," or "M.," and a flexible last name, allowing for
multiple words, dashes, and uppercase letters

REs and Python

Now that we know all about regular expressions, we can examine how Python currently
supports regular expressions through the re module. The re module was introduced to
Python in version 1.5. If you are using an older version of Python, you will have to use
the now-obsolete regex and regsub modules—these older modules are more Emacs-
flavored, are not as full-featured, and are in many ways incompatible with the current re
module.

However, regular expressions are still regular expressions, so most of the basic concepts
from this section can be used with the old regex and regsub software. In contrast, the
new re module supports the more powerful and regular Perl-style (Perl5) REs, allows
multiple threads to share the same compiled RE objects, and supports named subgroups.
In addition, there is a transition module called reconvert to help developers move from
regex/regsub to re. However, be aware that although there are different flavors of
regular expressions, we will primarily focus on the current incarnation for Python.

The re engine was rewritten in 1.6 for performance enhancements as well as adding
Unicode support. The interface was not changed, hence the reason the module name was
left alone. The new re engine—known internally as sre —thus replaces the existing 1.5
engine—internally called pcre.

re Module: Core Functions and Methods

The chart in Table 15.2 lists the more popular functions and methods from the re module.
Many of these functions are also available as methods of compiled regular expression
objects "regex objects" and RE "match objects." In this subsection, we will look at the
two main functions/methods, match() and search(), as well as the compile() function.
We will introduce several more in the next section, but for more information on all these
and the others which we do not cover, we refer you to the Python documentation.

Table 15.2. Common Regular Expression Functions and Methods
Function/Method Description

IT-SC book: Core Python Programming

 511

re Module Function Only
compile(pattern,
flags=0)

compile RE pattern with any optional flags and return
a regex object

re Module Functions
and regex Object
Methods

match(pattern, string,
flags=0)

attempt to match RE pattern to string with optional
flags; return match object on success, None on failure

search(pattern,
string, flags=0)

search for first occurrence of RE pattern within string
with optional flags; return match object on success,
None on failure

findall(pattern,
string)

look for all (non-overlapping) occurrences of pattern in
string; return a list of matches (new as of Python
1.5.2)

split(pattern, string,
max=0)

split string into a list according to RE pattern delimiter
and return list of successful matches, splitting at most
max times (split all occurrences is the default)

sub(pattern, repl,
string, max=0)

replace all occurrences of the RE pattern in string with
repl, substituting all occurrences unless max provided
(also see subn() which, in addition, returns the number
of substitutions made)

Match Object Methods
group(num=0) return entire match (or specific subgroup num)
groups() return all matching subgroups in a tuple (empty if there

weren't any)
NOTE

In the previous chapter, we described how Python code is eventually compiled into
bytecode which is then executed by the interpreter. In particular, we mentioned that
calling eval() or exec with a code object rather than a string provides a significant
performance improvement due to the fact that the compilation process does not have to
be performed. In other words, using precompiled code objects is faster than using strings
because the interpreter will have to compile it into a code object (anyway) before
execution.

The same concept applies to REs—regular expression patterns must be compiled into
regex objects before any pattern matching can occur. For REs which are compared many
times during the course of execution, we highly recommend using precompilation first
because, again, REs have to be compiled anyway, so doing it ahead of time is prudent for
performance reasons. re.compile() provides this functionality.

The module functions do cache the compiled objects, though, so it's not as if every
search() and match() with the same RE pattern requires compilation. Still, you save the
cache lookups and do not have to make function calls with the same string over and over.
In Python 1.5.2, this cache held up to 20 compiled RE objects, but in 1.6, due to the

IT-SC book: Core Python Programming

 512

additional overhead of Unicode awareness, the compilation engine is a bit slower, so the
cache has been extended to 100 compiled regex objects.

Compiling REs with compile()

Almost all of the re module functions we will be describing shortly are available as
methods for regex objects. Remember, even with our recommendation, precompilation is
not required. If you compile, you will use methods; if you don't, you will just use
functions. The good news is that either way, the names are the same whether a function
or a method. (This is the reason why there are module functions and methods which are
identical, i.e., search(), match(), etc., in case you were wondering.) Since it saves
one small step for most of our examples, we will use strings instead. We will throw in a
few with compilation though just so you know how it is done.

Optional flags may be given as arguments for specialized compilation. These flags allow
for case-insensitive matching, using system locale settings for matching alphanumeric
characters, etc. Please refer to the documentation for more details. These flags, some of
which have been briefly mentioned (i.e. DOTALL, LOCALE), may also be given to the
module versions of match() and search() for a specific pattern match attempt—these
flags are mostly for compilation reasons, hence the reason why they can be passed to the
module versions of match() and search() which do compile an RE pattern once. If you
want to use these flags with the methods, they must already be integrated into the
compiled regex objects.

In addition to the methods below, regex objects also have some data attributes, two of
which include any compilation flags given as well as the regular expression pattern
compiled.

Match objects and the group() and groups() Methods

There is another object type in addition to the regex object when dealing with regular
expressions, the match object. These objects are those which are returned on successful
calls to match() or search(). Match objects have two primary methods, group() and
groups().

group() will either return the entire match, or a specific subgroup, if requested. groups()
will simply return a tuple consisting of only/all the subgroups. If there are no subgroups
requested, then groups() returns an empty tuple while group() still returns the entire
match.

Python REs also allow for named matches, which are beyond the scope of this
introductory section on REs. We refer you to the complete re module documentation
regarding all the more advanced details we have omitted here.

IT-SC book: Core Python Programming

 513

Matching strings with match()

match() is the first re module function and RE object (regex object) method we will
look at. The match() function attempts to match the pattern to the string, starting at the
beginning. If the match is successful, a match object is returned, but on failure, None is
returned. The group() method of a match object can be used to show the successful
match. Here is an example of how to use match() [and group()]:

>>> m = re.match('foo', 'foo') # pattern matches string
>>> if m != None: # show match if successful
… m.group()
…
`foo'

The pattern "foo" matches exactly the string "foo." We can also confirm that m is an
example of a match object from within the interactive interpreter:

>>> m # confirm match object returned
<re.MatchObject instance at 80ebf48>

Here is an example of a failed match where None is returned:

>>> m = re.match('foo', 'bar')# pattern does not match string
>>> if m != None: m.group() # (1-line version of if clause)
…
>>>

The match above fails, thus None is assigned to m, and no action is taken due to the way
we constructed our if statement. For the remaining examples, we will try to leave out the
if check for brevity, if possible, but in practice it is a good idea to have it there to
prevent AttributeError exceptions (None is returned on failures, which does not have a
group() attribute [method].)

A match will still succeed even if the string is longer than the pattern as long as the
pattern matches from the beginning of the string. For example, the pattern "foo" will find
a match in the string "food on the table" because it matches the pattern from the
beginning:

>>> m = re.match('foo', 'food on the table')# match succeeds
>>> m.group()
'foo'

IT-SC book: Core Python Programming

 514

As you can see, although the string is longer than the pattern, a successful match was
made from the beginning of the string. The substring "foo" represents the match which
was extracted from the larger string.

We can even sometimes bypass saving the result altogether, taking advantage of Python's
object-oriented nature:

>>> re.match('foo', 'food on the table').group()
'foo'

Note from a few paragraphs above that an AttributeError will be generated on a non-
match.

Looking for a pattern within a string with search() (searching vs.
matching)

The chances are greater that the pattern you seek is somewhere in the middle of a string,
rather than at the beginning. This is where search() comes in handy. It works exactly in
the same way as match except that it searches for the first occurrence of the given RE
pattern anywhere with its string argument. Again, a match object is returned on success
and None otherwise.

We will now illustrate the difference between match() and search(). Let us try a
longer string match attempt. This time, we will try to match our string "foo" to "seafood:"

>>> m = re.match('foo', 'seafood') # no match
>>> if m != None: m.group()
…
>>>

As you can see, there is no match here. match() attempts to match the pattern to the
string from the beginning, i.e., the "f" in the pattern is matched against the "s" in the
string, which fails immediately. However, the string "foo" does appear (elsewhere) in
"seafood," so how do we get Python to say "yes?" The answer is by using the search()
function. Rather than attempting a match, search() looks for the first occurrence of the
pattern within the string. search() searches strictly from left to right.

>>> m = re.search('foo', 'seafood') # use search() instead
>>> if m != None: m.group()
…
'foo' # search succeeds where match failed
>>>

IT-SC book: Core Python Programming

 515

We will be using the match() and search() regex object methods and the group() and
groups() match object methods for the remainder of this subsection, exhibiting a broad
range of examples of how to use regular expressions with Python. We will be using
almost all of the special characters and symbols which are part of the regular expression
syntax.

Matching more than one string (|)

In Section 15.2, we used the pipe in the RE "bat|bet|bit". Here is how we would use
that RE with Python:

>>> bt = 'bat|bet|bit' # RE pattern: bat, bet, bit
>>> m = re.match(bt, 'bat') # 'bat' is a match
>>> if m != None: m.group()
…
'bat'
>>> m = re.match(bt, 'blt') # no match for 'blt'
>>> if m != None: m.group()
…
>>> m = re.match(bt, 'He bit me!') # does not match string
>>> if m != None: m.group()
…
>>> m = re.search(bt, 'He bit me!')# found \qbit\q via search
>>> if m != None: m.group()
…
'bit'

Matching any single character (.)

In the examples below, we show that a dot cannot match a NEWLINE or a non-character,
i.e., the empty string:

>>> anyend = '.end'
>>> m = re.match(anyend, 'bend') # dot matches 'b'
>>> if m != None: m.group()
…
'bend'
>>> m = re.match(anyend, 'end') # no char to match
>>> if m != None: m.group()
…
>>> m = re.match(anyend, '\nend') # any char except \n
>>> if m != None: m.group()
…
>>> m = re.search('.end', 'The end.') # matches ' ' in search
>>> if m != None: m.group()
…

IT-SC book: Core Python Programming

 516

' end'

Below is an example of searching for a real dot (decimal point) in a regular expression
where we escape its functionality with a backslash:

>>> patt314 = '3.14' # RE dot
>>> pi_patt = '3\.14' # literal dot (dec. point)
>>> m = re.match(pi_patt, '3.14') # exact match
>>> if m != None: m.group()
…
'3.14'
>>> m = re.match(patt314, '3014') # dot matches '0'
>>> if m != None: m.group()
…
'3014'
>>> m = re.match(patt314, '3.14') # dot matches '.'
>>> if m != None: m.group()
…
'3.14'

Creating character classes ([])

Earlier, we had a long discussion regarding "[cr][23][dp][o2]" and how it differs from
"r2d2|c3po". With the examples below, we will show that "r2d2|c3po" is more
restrictive than "[cr][23][dp][o2]":

>>> m = re.match('[cr][23][dp][o2]', 'c3po')# matches \qc3po\q
>>> if m != None: m.group()
…
'c3po'
>>> m = re.match('[cr][23][dp][o2]', 'c2do')# matches 'c2do'
>>> if m != None: m.group()
…
'c2do'
>>> m = re.match('r2d2|c3po', 'c2do')# does not match 'c2do'
>>> if m != None: m.group()
…
>>> m = re.match('r2d2|c3po', 'r2d2')# matches 'r2d2'
>>> if m != None: m.group()
…
'r2d2'

Repetition, special characters, and grouping

The most common aspects of REs involve the use of special characters, multiple
occurrences of RE patterns, and using parentheses to group and extract submatch patterns.

IT-SC book: Core Python Programming

 517

One particular RE we looked at related to simple e-mail addresses ("\w+@\w+\.com").
Perhaps we want to match more e-mail addresses than this RE allows. In order to support
an additional hostname in front of the domain, i.e., "www.xxx.com" as opposed to
accepting only "xxx.com" as the entire domain, we have to modify our existing RE. To
indicate that the hostname is optional, we create a pattern which matches the hostname
(followed by a dot), use the ? operator indicating zero or one copy of this pattern, and
insert the optional RE into our previous RE as follows: "\w+@(\w+\.)?\w+\.com". As
you can see from the examples below, either one or two names are now accepted in front
of the ".com".

>>> patt = '\w+@(\w+\.)?\w+\.com'
>>> re.match(patt, 'nobody@xxx.com').group()
'nobody@xxx.com'
>>> re.match(patt, 'nobody@www.xxx.com').group()
'nobody@www.xxx.com'

Furthermore, we can even extend our example to allow any number of intermediate
subdomain names with the following pattern: "\w+@(\w+\.)*\w+\.com":

>>> patt = '\w+@(\w+\.)*\w+\.com'
>>> re.match(patt,
'nobody@www.xxx.yyy.zzz.com').group()
'nobody@www.xxx.yyy.zzz.com'

However, we must add the disclaimer that using solely alphanumeric characters does not
match all the possible characters which may make up e-mail addresses. The above RE
patterns would not match a domain such as "xxx-yyy.com" or other domains with "\W"
characters.

Earlier, we discussed the merits of using parentheses to match and save subgroups for
further processing rather than coding a separate routine to manually parse a string after an
RE match had been determined. In particular, we discussed a simple RE pattern of an
alphanumeric string and a number separated by a hyphen, "\w+-\d+," and how adding
subgrouping to form a new RE, "(\w+)-(\d+)," would do the job. Here is how the
original RE works:

>>> m = re.match('\w\w\w-\d\d\d', 'abc-123')
>>> if m != None: m.group()
…
'abc-123'

>>> m = re.match('\w\w\w-\d\d\d', 'abc-xyz')
>>> if m != None: m.group()
…

IT-SC book: Core Python Programming

 518

>>>

In the above code, we created an RE to recognize three alphanumeric characters followed
by three digits. Testing this RE on "abc-123," we obtained with positive results while
"abc-xyz" fails. We will now modify our RE as discussed before to be able to extract the
alphanumeric string and number. Note how we can now use the group() method to
access individual subgroups or the groups() method to obtain a tuple of all the
subgroups matched:

>>> m = re.match('(\w\w\w)-(\d\d\d)', 'abc-123')
>>> m.group() # entire match
'abc-123'
>>> m.group(1) # subgroup 1
'abc'
>>> m.group(2) # subgroup 2
'123'
>>> m.groups() # all subgroups
('abc', '123')

As you can see, group() is used in the normal way to show the entire match, but can also
be used to grab individual subgroup matches. We can also use the groups() method to
obtain a tuple of all the substring matches.

Here is a simpler example showing different group permutations, which will hopefully
make things even more clear:

>>> m = re.match('ab', 'ab') # no subgroups
>>> m.group() # entire match
'ab'
>>> m.groups() # all subgroups
()
>>>
>>> m = re.match('(ab)', 'ab') # one subgroup
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.groups() # all subgroups
('ab',)
>>>
>>> m = re.match('(a)(b)', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'a'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups

IT-SC book: Core Python Programming

 519

('a', 'b')
>>>
>>> m = re.match('(a(b))', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('ab', 'b')

Matching from the beginning and end of strings and on word boundaries

The following examples highlight the positional RE operators. These apply more for
searching than matching because match() always starts at the beginning of a string.

>>> m = re.search('^The', 'The end.') # match
>>> if m != None: m.group()
…
'The'
>>> m = re.search('^The', 'end. The') # not at beginning
>>> if m != None: m.group()
…
>>> m = re.search(r'\bthe', 'bite the dog')# at a boundary
>>> if m != None: m.group()
…
'the'
>>> m = re.search(r'\bthe', 'bitethe dog') # no boundary
>>> if m != None: m.group()
…
>>> m = re.search(r'\Bthe', 'bitethe dog') # no boundary
>>> if m != None: m.group()
…
'the'

You will notice the appearance of raw strings here. You may want to take a look at the
Core Note towards the end of the chapter for clarification on why they are here. In
general, it is a good idea to use raw strings with regular expressions.

Other re Module Functions and Methods

There are four other re module functions and regex object methods which we think you
should be aware of: findall(), sub(), subn(), and split().

Finding every occurrence with findall()

IT-SC book: Core Python Programming

 520

findall() is new to Python as of version 1.5.2. It looks for all non-overlapping
occurrences of an RE pattern in a string. It is similar to search() in that it performs a
string search, but it differs from match() and search() in that findall() always returns
a list. The list will be empty if no occurrences are found but if successful, it will consist
of all matches found (grouped in left-to-right order of occurrence).

>>> re.findall('car', 'car')
['car']
>>> re.findall('car', 'scary')
['car']
>>> re.findall('car', 'carry the barcardi to the car')
['car', 'car', 'car']

Subgroup searches result in a more complex list returned, and that makes sense, because
subgroups are a mechanism which will allow you to extract specific patterns from within
your single regular expression, such as matching an area code which is part of a complete
telephone number, or a login name which is part of an entire e-mail address.

For a single successful match, each subgroup match is a single element of the resulting
list returned by findall(); for multiple successful matches, each subgroup match is a
single element in a tuple, and such tuples (one for each successful match) are the
elements of the resulting list. This part may sound confusing at first, but if you try
different examples, it will help clarify things.

Searching and replacing with sub() [and subn()]

There are two functions/methods for search-and-replace functionality: sub() and subn().
They are both almost identical and replace all matched occurrences of the RE pattern in a
string with some sort of replacement. The replacement is usually a string, but it can also
be a function which returns a replacement string. subn() is exactly the same as sub(),
but it also returns the total number of substitutions made—both the newly-substituted
string and the substitution count are returned as a 2-tuple.

>>> re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
'attn: Mr. Smith\012\012Dear Mr. Smith,\012'
>>>
>>> re.subn('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
('attn: Mr. Smith\012\012Dear Mr. Smith,\012', 2)
>>>
>>> print re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
attn: Mr. Smith

Dear Mr. Smith,

>>> re.sub('[ae]', 'X', 'abcdef')
'XbcdXf'
>>> re.subn('[ae]', 'X' , 'abcdef')

IT-SC book: Core Python Programming

 521

('XbcdXf', 2)

Splitting (on delimiting pattern) with split()

The re module and RE object method split() work similar to its string counterpart, but
rather than splitting on a fixed string, it splits a string based on an RE pattern, adding
some significant power to string splitting capabilities. If you do not want the string split
for every occurrence of the pattern, you can specify the maximum number of splits by
setting a value (other than zero) to the max argument.

If the delimiter given is not a regular expression which uses special symbols to match
multiple patterns, then re.split() works in exactly the same manner as
string.split(), as illustrated in the example below (which splits on a single colon):

>>> re.split(':', 'str1:str2:str3')
['str1', 'str2', 'str3']

But with regular expressions involved, we have an even more powerful tool. Take, for
example, the output from the Unix who command, which lists all the users logged into a
system:

% who
wesc console Jun 20 20:33
wesc pts/9 Jun 22 01:38 (192.168.0.6)
wesc pts/1 Jun 20 20:33 (:0.0)
wesc pts/2 Jun 20 20:33 (:0.0)
wesc pts/4 Jun 20 20:33 (:0.0)
wesc pts/3 Jun 20 20:33 (:0.0)
wesc pts/5 Jun 20 20:33 (:0.0)
wesc pts/6 Jun 20 20:33 (:0.0)
wesc pts/7 Jun 20 20:33 (:0.0)
wesc pts/8 Jun 20 20:33 (:0.0)

Perhaps we want to save some user login information such as login name, teletype they
logged in at, when they logged in, and from where. Using string.split() on the above
would not be effective, since the spacing is erratic and inconsistent. The other problem is
that there is a space between the month, day, and time for the login timestamps. We
would probably want to keep these fields together.

You need some way to describe a pattern such as, "split on two or more spaces." This is
easily done with regular expressions. In no time, we whip up the RE pattern "\s\s+,"
which does mean at least two whitespace characters. Let's create a program called

IT-SC book: Core Python Programming

 522

rewho.py that reads the output of the who command, presumably saved into a file called
whodata.txt. Our rewho.pyscript initially looks something like this:

import re
f = open('whodata.txt', 'r')
for eachLine in f.readlines():
 print re.split('\s\s+', eachLine)
f.close()

We will now execute the who command, saving the output into whodata.txt, and then
call rewho.py and take a look at the results:

% who > whodata.txt
% rewho.py
['wesc', 'console', 'Jun 20 20:33\012']
['wesc', 'pts/9', 'Jun 22 01:38\011(192.168.0.6)\012']
['wesc', 'pts/1', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/2', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/4', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/3', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/5', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/6', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/7', 'Jun 20 20:33\011(:0.0)\012']
['wesc', 'pts/8', 'Jun 20 20:33\011(:0.0)\012']

It was a good first try, but not quite correct. For one thing, we did not anticipate a single
TAB (ASCII \011) as part of the output (which looked like at least 2 spaces, right?), and
perhaps we aren't really keen on saving the NEWLINE (ASCII \012) which terminates
each line. We are now going to fix those problems as well as improve the overall quality
of our application by making a few more changes.

First, we would rather run the who command from within the script, instead of doing it
externally and saving the output to a whodata.txt file—doing this repeatedly gets tiring
rather quickly. To accomplish invoking another program from within ours, we call upon
the os.popen() command, discussed briefly in Section 14.5.2. Although os.popen() is
available only on Unix systems, the point is to illustrate the functionality of re.split(),
which is available on all platforms.

We shall also employ the map() built-in function along with string.strip() to get rid
of the trailing NEWLINEs. Finally, we will add the detection of a single TAB as an
additional, alternative re.split() delimiter by adding it to the regular expression.
Presented below in Example 15.1. is the final version of our rewho.pyscript:

Example 15.1. Split Output of Unix who Command (rewho.py)

IT-SC book: Core Python Programming

 523

This script calls the who command and parses the input by splitting up its data along
various types of whitespace characters.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from os import popen
004 4 from re import split
005 5 from string import strip
006 6
007 7 f = popen('who', 'r')
008 8 for eachLine in map(strip, f.readlines()):
009 9 print split('\s\s+|\t', eachLine)
010 10 f.close()
011 <$nopage>

Running this script, we now get the following (correct) output:

% rewho.py
['wesc', 'console', 'Jun 20 20:33']
['wesc', 'pts/9', 'Jun 22 01:38', '(192.168.0.6)']
['wesc', 'pts/1', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/2', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/4', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/3', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/5', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/6', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/7', 'Jun 20 20:33', '(:0.0)']
['wesc', 'pts/8', 'Jun 20 20:33', '(:0.0)']

A similar exercise can be achieved in a DOS/Windows environment using the dir
command in place of who.

NOTE

You may have seen the use of raw strings in some of the examples above. Regular
expressions were a strong motivation for the advent of raw strings. The reason is because
of conflicts between ASCII characters and regular expression special characters. As a
special symbol, "\b" represents the ASCII character for backspace, but "\b" is also a
regular expression special symbol, meaning "match" on a word boundary. In order for the
RE compiler to not interpret a "\b" in your string as a backspace, you need to escape it
using the backslash, resulting in "\\b."

This can get messy, especially if you have a lot of special characters in your string, which
adds to the confusion. We were introduced to raw strings back in Section 6.4.2, and they
can be (and are often) used to help keep REs looking somewhat manageable. In fact,
many Python programmers swear by these and only use raw strings when defining
regular expressions.

IT-SC book: Core Python Programming

 524

Here are some examples of differentiating between the backspace "\b" and the regular
expression "\b," with and without raw strings:

>>> m = re.match('\bblow', 'blow') # backspace, no match
>>> if m != None: m.group()
…
>>> m = re.match('\\bblow', 'blow') # escaped \, now it works
>>> if m != None: m.group()
…
'blow'
>>> m = re.match(r'\bblow', 'blow\q) # or use raw string
instead
>>> if m != None: m.group()
…
'blow'

You may have recalled that we had no trouble using "\d" in our regular expressions
without using raw strings. That is because there is no ASCII equivalent special character,
so the regular expression compiler already knew you meant a decimal digit.

Regular Expression Adventures

We will now run through an in-depth example of the different ways of using regular
expressions for string manipulation. The first step is to come up with some code that
actually generates some random (but-not-so-random) data on which to operate. In
Example 15.2, we present gendata.py, a script which generates a data set. Although
this program simply displays the generated set of strings to standard output, this output
may very well be redirected to a test file.

NOTE

Unix systems, as well as others, use architecture-size integers to represent the current
time in seconds. Since most systems today are 32-bit, the total amount of time recognized
by any platform using this mechanism is 232 seconds. Such integers are signed, so we
really only have 231-1 seconds.

The current time is recognized as the number of seconds which have elapsed since time
zero, which is pegged at midnight, January 1, 1970. Moving forward to the maximum
possible positive 32-bit signed integer (231 - 1), we arrive at the "end of time," which
evaluates to Tuesday morning, January 19, 2038 at 3:14 AM and 7 seconds using
Universal Coordinated Time (UTC/GMT). Hopefully by then, we would have
discontinued the use of 32-bit systems. This phenomena is otherwise known as the Y2038
problem.)

Here is one way you could find out what the special date/time it is for your local time,
using Python:

IT-SC book: Core Python Programming

 525

>>> import sys, time
>>> time.asctime(time.localtime(sys.maxint))# Pacific Time
'Mon Jan 18 19:14:07 2038'

sys.maxinthas the last possible second using a 32-bit integer. We feed that time in
seconds to time.localtime()to obtain the tuple for your/our local time (here we are on
Pacific Time), and finally, we ship that tuple off to time.asctime()to obtain the
standard timestamp for the last possible second. As you can see from our example, we are
eight hours west of the Prime/Greenwich Meridian.

This is not as much a Python Core Note as it is a general programming note, but should
be nevertheless discussed for common knowledge since it applies to all 32-bit systems
with applications using on the C language, regardless of platform, i.e., UNIX and non-
UNIX, which use UNIX-style dating. In the gendata.py script coming up, we randomly
generate integers, effectively generating random dates for our application.

This script generates strings with three fields, delimited by a pair of colons, or a double-
colon. The first field is a random (32-bit) integer, which is converted to a date (see the
accompanying Core Note). The next field is a randomly-generated electronic mail (e-mail)
address, and the final field is a set of integers separated by a single dash (-).

Example 15.2. Data Generator for RE Exercises (gendata.py)

Create random data for regular expressions practice and output the generated data to the
screen.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint,choice
004 4 from string import lowercase
005 5 from sys import maxint
006 6 from time import ctime
007 7
008 8 doms = ('com', 'edu', 'net', 'org', 'gov')
009 9
010 10 for i in range(randint(5, 10)):
011 11 dtint = randint(0, maxint-1) # pick date
012 12 dtstr = ctime(dtint) # date string
013 13
014 14 shorter = randint(4, 7) # login shorter
015 15 em = ''
016 16 for j in range(shorter): # generate login
017 17 em = em + choice(lowercase)
018 18
019 19 longer = randint(shorter, 12) # domain longer

IT-SC book: Core Python Programming

 526

020 20 dn = ''
021 21 for j in range(longer): # create domain
022 22 dn = dn + choice(lowercase)
023 23
024 24 print '%s::%s@%s.%s::%d-%d-%d' % (dtstr, em,
025 25 dn, choice(doms), dtint, shorter, longer)
026 <$nopage>

Running this code, we get the following output (your mileage will definitely vary) and
store locally as the file redata.txt:

Thu Jul 22 19:21:19 2004::izsp@dicqdhytvhv.edu::1090549279-4-11
Sun Jul 13 22:42:11 2008::zqeu@dxaibjgkniy.com::1216014131-4-11
Sat May 5 16:36:23 1990::fclihw@alwdbzpsdg.edu::641950583-6-10
Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8
Thu Jun 26 19:08:59 2036::ugxfugt@jkhuqhs.net::2098145339-7-7
Tue Apr 10 01:04:45 2012::zkwaq@rpxwmtikse.com::1334045085-5-10

You may or may not be able to tell, but the output from this program is ripe for regular
expression processing. Following our line-by-line explanation, we will implement several
REs to operate on this data, as well as leave plenty for the end-of-chapter exercises.

Line-by-line explanation

Lines 1 – 6

In our example script, we require the use of multiple modules. But since we are utilizing
only one or two functions from these modules, rather than importing the entire module,
we choose in this case to import only specific attributes from these modules. Our decision
to use from-import rather than import was based solely on this reasoning. The from-
import lines succeed the UNIX start-up directive on line 1.

Line 8

doms is simply a set of higher-level domain names from which we will randomly pick for
each randomly-generated e-mail address.

Lines 10–12

Each time gendata.py executes, between 5 and 10 lines of output are generated. (Our
script uses the random.randint() function for all cases where we desire a random
integer.) For each line, we choose a random integer from the entire possible range (0 to
231 - 1 [sys.maxint]), then convert that integer to a date using time.ctime().

Lines 14–22

IT-SC book: Core Python Programming

 527

The login name for the fake e-mail address should be between 4 and 7 characters in
length. To put it together, we randomly choose between 4 and 7 random lowercase letters,
concatenating each letter to our string one-at-a-time. The functionality of the
random.choice() function is given a sequence, return a random element of that
sequence. In our case, the sequence is the set of all 26 lowercase letters of the alphabet,
string.lowercase.

We decided that the main domain name for the fake e-mail address should be between 4
and 12 characters in length, but at least as long as the login name. Again, use random
lowercase letters to put this name together letter-by-letter.

Line 24–25

The key component of our script puts together all of the random data into the output line.
The date string comes first, followed by the delimiter. We then put together the random
e-mail address by concatenating the login name, the "@" symbol, the domain name, and a
randomly chosen high-level domain. After the final double-colon, we put together a
random integer string using the original time chosen (for the date string), followed by the
lengths of the login and domain names, all separated by a single hyphen.

Matching a string

For the following exercises, create both permissive and restrictive versions of your REs.
We recommend you test these REs in a short application which utilizes our sample
redata.txt file above (or use your own generated data from running gendata.py). You
will need to use it again when you do the exercises.

To test the RE before putting it into our little application, we will import the re module
and assign one sample line from redata.txt to a string variable data. These statements
are constant across both illustrated examples.

>>> import re
>>> data = Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-
8

In our first example, we will create a regular expression to extract (only) the days of the
week from the timestamps from each line of the data file redata.txt. We will use the
following RE:

"^Mon|^Tue|^Wed|^Thu|^Fri|^Sat|^Sun"

IT-SC book: Core Python Programming

 528

This example requires that the string start with ("^" RE operator) any of the seven strings
listed. If we were to "translate" the above RE to English, it would read something like,
“the string should start with "Mon," "Tue,"… , "Sat," or "Sun."

Alternatively, we can bypass all the carat operators with a single carat if we group the
day strings like this:

"^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)"

The parentheses around the set of strings mean that one of these strings must be
encountered for a match to succeed. This is a "friendlier" version of the original RE
which we came up with which did not have the parentheses. Using our modified RE, we
can take advantage of the fact that we can access the matched string as a subgroup:

>>> patt = '^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)'
>>> m = re.match(patt, data)
>>> m.group() # entire match
'Thu'
>>> m.group(1) # subgroup 1
'Thu'
>>> m.groups() # all subgroups
('Thu',)

This feature may not seem as revolutionary as we have made it out to be for this example,
but it definitely advantageous in the next example or anywhere you provide extra data as
part of the RE to help in the string matching process, even though those characters may
not be part of the string you are interested in.

Both of the above REs are the most restrictive, specifically requiring a set number of
strings. This may not work well in an internationalization environment where localized
days and abbreviations are used. A looser RE would be:"^\w{3}."This one requires only
that a string begin with three consecutive alphanumeric characters. Again, to translate the
RE into English, the carat indicates "begins with," the "\w" means any single
alphanumeric character, and the "{3}" means that there should be 3 consecutive copies of
the RE which the "{3}" embellishes. Again, if you want grouping, parentheses should be
used, i.e., "^(\w{3}):"

>>> patt = '^(\w{3})'
>>> m = re.match(patt, data)
>>> if m != None: m.group()
…
'Thu'
>>> m.group(1)
'Thu'

IT-SC book: Core Python Programming

 529

Note that an RE of "^(\w){3}" is not correct. When the "{3}" was inside the parentheses,
the match for 3 consecutive alphanumeric characters was made first, then represented as a
group. But by moving the "{3}" outside, it is now equivalent to 3 consecutive single
alphanumeric characters:

>>> patt = '^(\w){3}'
>>> m = re.match(patt, data)
>>> if m != None: m.group()
…
'Thu'
>>> m.group(1)
'u'

The reason why only the "u" shows up when accessing subgroup 1 is that subgroup 1 was
being continually replaced by the next character. In other words, m.group(1) started out
as "T," then changed to "h," then finally was replaced by "u." These are 3 individual (and
overlapping) groups of a single alphanumeric character, as opposed to a single group
consisting of 3 consecutive alphanumeric characters.

In our next (and final) example, we will create a regular expression to extract the numeric
fields found at the end of each line of redata.txt.

Search vs. Match

Before we create any REs, however, we realize that these integer data items are at the end
of the data strings. This means that we have a choice of using either search or match.
Initiating a search makes more sense because we know exactly what we are looking for
(set of 3 integers), that what we seek is not at the beginning of the string, and that it does
not make up the entire string. If we were to perform a match, we would have to create an
RE to match the entire line and use subgroups to save the data we are interested in. To
illustrate the differences, we will perform a search first, then do a match to show you that
searching is more appropriate.

Since we are looking for 3 integers delimited by hyphens, we create our RE to indicate as
such: "\d+-\d+-\d+". This regular expression means, “any number of digits (at least one,
though) followed by a hyphen, then more digits, another hyphen, and finally, a final set
of digits. We test our RE now using search():

>>> patt = '\d+-\d+-\d+'
>>> re.search(patt, data).group() # entire match
'1171590364-6-8'

IT-SC book: Core Python Programming

 530

A match attempt, however, would fail. Why? Because matches start at the beginning of
the string, the numeric strings are at the rear. We would have to create another RE to
match the entire string. We can be lazy though, by using ".+" to indicate just an arbitrary
set of characters followed by what we are really interested in:

patt = '.+\d+-\d+-\d+'
>>> re.match(patt, data).group() # entire match
'Thu Feb 15 17:46:04
2007::uzifzf@dpyivihw.gov::1171590364-6-8'

This works great, but we really want the number fields at the end, not the entire string, so
we have to use parentheses to group what we want:

>>> patt = '.+(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'4-6-8'

Eek! What happened? We should have extracted "1171590364-6-8," not just "4-6-8".
Where is the rest of the first integer? The problem is that regular expressions are
inherently "greedy." That means that with wildcard patterns, regular expressions are
evaluated in left-to-right order and try to "grab" as many characters as possible which
match the pattern. In our case above, the ".+" grabbed every single character from the
beginning of the string, including most of the first integer field we wanted. The "\d+"
needed only a single digit, so it got "4," while the ".+" matched everything from the
beginning of the string up to that first digit: "Thu Feb 15 17:46:04
2007::uzifzf@dpyivihw.gov::117159036," as indicated below in Figure 15-2.

Figure 15.2.

IT-SC book: Core Python Programming

 531

The solution is to use the "don't be greedy" operator, "?". It can be used after "*", "+", or
"?". This directs the regular expression engine to match as few characters as possible. So
if we place a "?" after the ".+", we obtain the desired result illustrated in Figure15-3.

Figure 15.3. Solving the Greedy Problem:? Requests Non-Greediness

>>> patt = '.+?(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'1171590364-6-8'

One final example. Let's say we want to pull out only the middle integer of the three-
integer field. Here is how we would do it (using a search so we don't have to match the
entire string): "-(\d+)-". Trying out this pattern, we get:

>>> patt = '-(\d+)-'
>>> m = re.search(patt, data)
>>> m.group() # entire match
'-6-'
>>> m.group(1) # subgroup 1
'6'

We barely touched upon the power of regular expressions, and in this limited space we
have not been able to give them justice. However, we hope that we have given an
informative introduction so that you can add this powerful tool to your programming
skills. We suggest you refer to the documentation for more details on how to use REs
with Python. For more complete immersion into the world of regular expressions, we
recommend Mastering Regular Expressions by Jeffrey E. F. Friedl.

Exercises

Regular Expressions. Create regular expressions in Exercises 15-1 to 15-12 to:

IT-SC book: Core Python Programming

 532

1:
Recognize the following strings: "bat," "bit," "but," "hat," "hit," or "hut."

2:
Match any pair of words separated by a single space, i.e., first and last names.

3:
Match any word and single letter separated by a comma and single space, as in
last name, first initial.

4:
Match the set of all valid Python identifiers.

5:
Match a street address according to your local format (keep your RE general
enough to match any number of street words, including the type designation). For
example, American street addresses use the format: 1180 Bordeaux Drive. Make
your RE general enough to support multi-word street names like: 3120 De la Cruz
Boulevard.

6:
Match simple Web domain names that begin with "www." and end with a ".com"
suffix, e.g., http://www.yahoo.com. EXTRA CREDIT if your RE also supports
other high-level domain names: .edu, .net, etc., e.g., http://www.ucsc.edu

7:
Match the set of the string representations of all Python integers.

8:
Match the set of the string representations of all Python longs.

9:
Match the set of the string representations of all Python floats.

10:
Match the set of the string representations of all Python complex numbers.

11:
Match the set of all valid e-mail addresses (start with a loose RE, then try to tighten

IT-SC book: Core Python Programming

 533

it as much as you can, yet maintain correct functionality).

12:
Match the set of all valid Web site addresses (URLs) (start with a loose RE, then
try to tighten it as much as you can, yet maintain correct functionality).

13:
type(). The type() built-in function returns a type object which is displayed as a
Pythonic-looking string:

>>> type(0)
<type 'int'>
>>> type(.34)
<type 'loat'>
>>> type(dir)
<type 'builtin_function_or_method'>

Create an RE that would extract out the actual type name from the string. Your
function should take a string like this " <type 'int'>" and return 'int'. (Ditto for
all other types, i.e., 'float', 'builtin_function_or_method', etc.) Note: you are
implement the value that is stored in the __name__ attribute for classes and some
built-in types.

14:
Regular Expressions. In Section 15.2, we gave you the RE pattern which matched
the single- or double-digit string representations of the months January to
September ("0?[1–9]"). Create the RE that represents the remaining three months
in the standard calendar.

15:
Regular Expressions. Also in Section 15.2, we gave you the RE pattern which
matched credit card (CC) numbers ("[0–9]{15,16}"). However, this pattern does
not allow for hyphens separating blocks of numbers. Create the RE that allows
hyphens, but only in the correct locations. For example, 15-digit CC numbers have
a pattern of 4-6-5, indicating four digits-hyphen-six digits-hyphen-five digits, and
16-digit CC numbers have a 4-4-4-4 pattern. Remember to "balloon" the size of the
entire string correctly. EXTRA CREDIT: there is a standard algorithm for
determining whether a CC number is valid. Write some code to not only recognize
a correctly formatted CC number, but also a valid one.

The next set of problems (15–16 through 15–27) deal specifically with the data that
is generated by gendata.py Before approaching problems 15–17 and 15–18, you

IT-SC book: Core Python Programming

 534

may wish to do 15–16 and all the regular expressions first.

16:
Update the code for gendata.py so that the data is written directly to redata.txt
rather than output to the screen.

17:
Determine how many times each day of the week shows up for any incarnation of
redata.txt.(Alternatively, you can also count how many times each month of the
year was chosen.)

18:
Ensure there is no data corruption in redata.txt by confirming that the first
integer of the integer field matches the timestamp given at the front of each output
line.

Create regular expressions to:

19:
Extract the complete timestamps from each line.

20:
Extract the complete e-mail address from each line.

21:
Extract only the months from the timestamps.

22:
Extract only the years from the timestamps.

23:
Extract only the time (HH:MM:SS) from the timestamps.

24:
Extract only the login and domain names (both the main domain name and the
high-level domain together) from the e-mail address.

25:
Extract only the login and domain names (both the main domain name and the

IT-SC book: Core Python Programming

 535

high-level domain) from the e-mail address.

26:
Replace the e-mail address from each line of data with your e-mail address.

27:
Extract the months, days, and years from the timestamps and output them in "Mon
Day, Year" format, iterating over each line only once.

For problems 15–28 and 15–29, recall the regular expression introduced in Section
15.2 which matched telephone numbers but allowed for an optional area code
prefix: \d{3}-\d{3}-\d{4} Update this regular expression so that:

28:
Area codes (the first set of three-digits and the accompanying hyphen) are optional,
i.e., your RE should match both 800-555-1212 as well as just 555-1212.

29:
Either parenthesized or hyphenated area codes are supported, not to mention
optional; make your RE match 800-555-1212, 555-1212, and also (800) 555-1212.

IT-SC book: Core Python Programming

 536

Chapter 16. Network Programming

In this section, we will take a brief look at network programming using sockets. We will
first present some background information on network programming, how sockets apply
to Python, then show you how to use some of Python's modules to build networked
applications.

Introduction

What is Client-Server Architecture?

What is client-server architecture? It means different things to different people,
depending on whom you ask as well as whether you are describing a software or a
hardware system. In either case, the premise is simple: The server, a piece of hardware or
software, is providing a "service" which is needed by one or more clients, users of the
service. Its sole purpose of existence is to wait for (client) requests, service those clients,
then wait for more requests.

Clients, on the other hand, contact a (predetermined) server for a particular request, send
over any necessary data, and wait for the server to reply, either completing the request or
indicating the cause of failure. While the server runs indefinitely processing requests,
clients make a one-time request for service, receive that service, and thus conclude their
transaction. A client may make additional requests at some later time, but these are
considered separate transactions.

The most common notion of "client-server" today is illlustrated in Figure 16-1, a user or
client computer is retrieving information from a server across the Internet. Although such
a system is indeed an example of a client-server architecture, it isn't the only one.
Furthermore, client-server architecture can be applied to computer hardware as well as
software.

Figure 16-1. Typical Conception of a Client-Server System on the Internet.

IT-SC book: Core Python Programming

 537

Hardware client-server architecture

Print(er) servers are examples of hardware servers. They process incoming print jobs and
send them to a printer (or some other printing device) attached to such a system. Such a
computer is generally network-accessible and client machines would send print requests.

Another example of a hardware server is a file server. These are typically machines with
large, generalized storage capacity which is remotely-accessible to clients. Client
machines "mount" the disks from the server machine onto their local machine as if the
disk itself were on the local machine. One of the most popular network operating systems
which support file servers is Sun Microsystems' Network File System (NFS). If you are
accessing a networked disk drive and cannot tell whether it is local or on the network,
then the client-server system has done its job. The goal is for the user experience to be
exactly the same as a local disk—the "abstraction" is normal disk access. It is up to the
programmed "implementation" to make it behave in such a manner.

Software client-server architecture

Software servers also run on a piece of hardware but do not have dedicated peripheral
devices as hardware servers do, i.e., printers, disk drives, etc. The primary services
provided by software servers include program execution, data transfer retrieval,
aggregation, update, or other type of programmed or data manipulation.

One of the more common software servers today is the Web server. A corporate machine
is set up with Web pages and/or Web applications, then the Web server is started. The job
of such a server is to accept client requests, send back Web pages to (Web) clients, i.e.,
browsers on users' computers, and wait for the next client request. These servers are
started with the expectation of "running forever," although they do not achieve that goal,
they go for as long as possible unless stopped by some external force, i.e., explicitly shut
down or catastrophically due to hardware failure.

Database servers are another kind of software server. They take client requests for either
storage or retrieval, perform that service, then wait for more business. They are also
designed to run "forever."

IT-SC book: Core Python Programming

 538

The last type of software server we will discuss are windows servers. These servers can
almost be considered hardware servers. They run on a machine with an attached display,
such as a monitor of some sort. Windows clients are actually programs which require a
windowing environment with which to execute. These are generally considered graphical
user interface (GUI) applications. If they are executed without a window server, i.e., in a
text-based environment such as a DOS window or a Unix shell, they are unable to start.
Once a windows server is accessible, then things are fine.

Such an environment becomes even more interesting when networking comes into play.
The usual display for a windows client is the server on the local machine, but it is
possible in some networked windowing environments, such as the X Windows system, to
choose another machine's window server as a display. In such situations, you can be
running a GUI program on one machine, but have it displayed at another!

Bank tellers as servers?

One way to imagine how client-server architecture works is to create in your mind the
image of a bank teller who neither eats, sleeps, nor rests, serving one customer after
another in a line that never seems to end (see Figure 16-2). The line may be long or it
may be empty on occasion, but at any given moment, a customer may show up. Of course,
such a teller was fantasy years ago, but automated teller machines (ATMs) seem to come
close to such a model now.

Figure 16-2. The bank teller in this diagram works "forever" serving client
requests. The teller runs in an infinite loop receiving requests, servicing
them, and going back to serve or wait for another client. There may be a

long line of clients, or there may be none at all, but in either case, a server's
work is never done.

IT-SC book: Core Python Programming

 539

The teller is, of course, the server that runs in an infinite loop. Each customer is a client
with a need which requires servicing. Customers arrive and are serviced by the teller in a
first-come-first-served manner. Once a transaction has been completed, the client goes
away while the server either serves the next customer or sits and waits until one comes
along.

Why is all this important? The reason is that this style of execution is how client-server
architecture works in a general sense. Now that you have the basic idea, let us adapt it to
network programming, which follows the software client-server architecture model.

Client-Server Network Programming

Before any servicing can be accomplished, a server must perform some preliminary setup
procedures to prepare for the work that lies ahead. A communication endpoint is created
which allows a server to "listen" for requests. One can liken our server to a company
receptionist or switchboard operator who answers calls on the main corporate line. Once
the phone number and equipment are installed and the operator arrives, the service can
begin.

This process is the same in the networked world—once a communication endpoint has
been established, our listening server can now enter its infinite loop to wait for clients to
connect and be serviced. Of course, we must not forget to put that phone number on
company letterhead, in advertisements, or some sort of press release; otherwise, no one
will ever call!

On a related note, potential clients must be made aware that this server exists to handle
their needs—otherwise, the server will never get a single request. Imagine creating a
brand new Web site. It may be the most super-duper, awesome, amazing, useful, and
coolest Web site of all, but if the Web address or Uniform Resource Locator (URL) is
never broadcast or advertised in any way, no one will ever know about it, and it will
never see see the light of day. The same thing applies for the new telephone number of
corporate headquarters. No calls will ever be received if the number is not made known
to the public.

Now you have a good idea as to how the server works. You have gotten past the difficult
part. The client side stuff is much more simple than on the server side. All the client has
to do is to create its single communication endpoint, establish a connection to the server.
The client can now make their request, which includes any necessary exchange of data.
Once the request has been serviced and the client has received the result or some sort of
acknowledgement, communication is terminated.

Sockets: Communication Endpoints

What Are Sockets?

Sockets are computer networking data structures which embody the concept of the
"communication endpoint" described in the previous section. Networked applications

IT-SC book: Core Python Programming

 540

must create sockets before any type of communication can commence. They can be
likened to telephone jacks, without which engaging in communication is impossible.

Sockets originated in the 1970s from the University of California, Berkeley version of
UNIX, known as BSD UNIX. Therefore, you will sometimes hear these sockets referred
to as "Berkeley sockets" or "BSD sockets." Sockets were originally created for same-host
applications where they would enable one running program (a.k.a. a process) to
communicate with another running program. This is known as interprocess
communication, or "IPC" for short.

One interesting historical note: Sockets were invented before networking existed. Despite
what you may have heard, sockets have not always been just for networked applications.
These original sockets, still in use today, are called UNIX sockets and have a "family
name" of AF_UNIX, which stands for "address family: UNIX." (Most popular platforms,
including Python, use the term "address families" and "AF" abbreviation while other
systems may refer to address families as "domains" or "protocol families" and use "PF"
rather than "AF.") Because both processes run on the same machine, these sockets are
file-based, meaning that their underlying infrastructure is supported by the file system.
This makes sense because the file system is a shared constant between processes running
on the same host.

When networking (utilizing the Internet Protocol [a.k.a. IP]) became a reality, researchers
believed that interprocess communication should still be able to take place, but rather
than restricting both applications to running on the same machine, why not enable a
process on one machine to talk to a process on a different machine? These newer,
networked sockets have their own family name, AF_INET, or "address family: Internet."
There are other address families, all of which are either specialized, antiquated, seldom
used, or remain unimplemented. Of all address families, AF_INET is now the most
widely used. Python supports only the AF_UNIX and AF_INET families. Because of our
focus on network programming, we will be using AF_INET for most of the remaining
part of this chapter.

Socket Addresses: Host-port Pairs

If a socket is like a telephone jack, a piece of infrastructure that enables communication,
then a hostname and port number are like an area code and telephone number
combination. Having the hardware and ability to communicate doesn't do any good
unless you know whom and where to "dial." An Internet address is comprised of a
hostname and port number pair, and such an address is required for networked
communication. It goes without saying that there should also be someone listening at the
other end; otherwise, you get the familiar, "DO-SO-DO" tones followed by "I'm sorry,
that number is no longer in service. Please check the number and try your call again."
You have probably seen one networking analogy during Web surfing, i.e., "Unable to
contact server. Server is not responding or is unreachable."

Valid port numbers range from 0–65535, although those less than 1024 are reserved for
the system. If you are using a Unix system, the list of reserved port numbers (along with

IT-SC book: Core Python Programming

 541

servers/protocols and socket types) is found in the /etc/services file. A list of well-
known port numbers is accessible at this Web site:

http://www.isi.edu/in-notes/iana/assignments/port-numbers

Connection-Oriented vs. Connectionless

Connection-Oriented

Regardless of which address family you are using, there are two different styles of socket
connections. The first type is connection-oriented. What this basically means is that a
connection must be established before communication can occur, such as calling a friend
using the telephone system. This type of communication is also referred to as a "virtual
circuit" or "stream socket."

Connection-oriented communication offers sequenced, reliable, and unduplicated
delivery of data, and without record boundaries. That basically means that each message
may be broken up into multiple pieces, which are all guaranteed to arrive ("exactly-once"
semantics means no loss or duplication of data) at their destination to be, put back
together and in order, and delivered to the waiting application.

The primary protocol which implements such connection types is the Transmission
Control Protocol (or better known by its acronym "TCP"). To create TCP sockets, one
must use SOCK_STREAM as the type of socket one wants to create. The
SOCK_STREAM name for a TCP socket is based on one of its denotations as stream
socket. Because these sockets use the Internet Protocol to find hosts in the network, the
entire system generally goes by the combined names of both protocols (TCP and IP) or
"TCP/IP."

Connectionless

In stark contrast to virtual circuits is the datagram type of socket, which is connectionless.
This means that no connection is necessary before communication can begin. Here, there
are no guarantees of sequencing, reliability or non-duplication in the process of data
delivery. Datagrams do preserve record boundaries, however, meaning that entire
messages are sent rather than being broken into pieces first, like connection-oriented
protocols.

Message delivery using datagrams can be compared to the postal service. Letters and
packages may not arrive in the order they were sent. In fact, they might not arrive at all!
To add to the complication, in the land of networking, duplication of messages is even
possible.

So with all this negativity, why use datagrams at all? (There must be some advantage
over using stream sockets!) Because of the guarantees provided by connection-oriented

IT-SC book: Core Python Programming

 542

sockets, a good amount of overhead is required for their setup as well as in maintaining
the virtual circuit connection. Datagrams do not have this overhead and thus are "less
expensive," usually providing better performance and may be suitable for some types of
applications.

The primary protocol which implements such connection types is the User Datagram
Protocol (or better known by its acronym "UDP"). To create UDP sockets, one must use
SOCK_DGRAM as the type of socket they want to create. The SOCK_DGRAM name
for a UDP socket, as you can probably tell, comes from the word "datagram." Because
these sockets also use the Internet Protocol to find hosts in the network, this system also
has a more general name, going by the combined names of both of these protocols (UDP
and IP), or "UDP/IP."

Network Programming in Python

Now that you know all about client-server architecture, sockets, and networking, let us
try to bring this concept to Python. The primary module we will be using in this section is
the socket module. Found within this module is the socket() function, which is used to
create socket objects. Sockets also have their own set of methods which enable socket-
based network communication.

socket() Module Function

To create a socket, you must use the socket.socket() function, which has the general
syntax:

socket (socket_family, socket_type, protocol=0)

The socket_family is either AF_UNIX or AF_INET, as explained earlier, and the
socket_type is either SOCK_STREAM or SOCK_DGRAM, also explained earlier. The
protocol is usually left out, defaulting to 0.

So to create a TCP/IP socket, you call socket.socket() like this:

tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Likewise, to create a UDP/IP socket you perform:

udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

IT-SC book: Core Python Programming

 543

Since there are numerous socket module attributes, this is one of the exceptions where
using "from module import *" is acceptable because of the number of module attributes.
If we applied "from socket import *", we bring the socket attributes into our
namespace, but our code is shortened considerably, i.e.,

tcpSock = socket(AF_INET, SOCK_STREAM)

Once we have a socket object, all further interaction will occur using that socket object's
methods.

Socket Object (Built-in) Methods

In Table 16.1, we present a list of the most common socket methods. In the next
subsection, we will create both TCP and UDP clients and servers, all of which use these
methods. Although we are focusing on Internet sockets, these methods have similar
meanings when using Unix sockets.

Table 16.1. Common Socket Object Methods
Method Description

Server Socket
Methods

s.bind() bind address (hostname, port number pair) to socket
s.listen() set up and start TCP listener
s.accept() passively accept TCP client connection, waiting until

connection arrives (blocking)
Client Socket
Methods

s.connect() actively initiate TCP server connection
General Socket
Methods

s.recv() receive TCP message
s.send() transmit TCP message
s.recvfrom() receive UDP message
s.sendto() transmit UDP message
s.close() close socket

Creating a TCP Server

We will first present some general pseudocode involved with creating a generic TCP
server, then describe in general what is going on. Keep in mind that this is only one way
of designing your server. Once you become comfortable with server design, you will be
able to modify the pseudocode to operate the way you want it to:

ss = socket() # create server socket

IT-SC book: Core Python Programming

 544

ss.bind() # bind socket to address
ss.listen() # listen for connections
inf_loop: # server infinite loop
 cs = ss.accept() # accept client connection
 comm_loop: # communication loop
 cs.recv()/cs.send() # dialog (receive/send)
 cs.close() # close client socket
ss.close() # close server socket

All sockets are created using the socket.socket() function. Servers need to "sit on a
port" and wait for requests, so they all must "bind" to a local address. Because TCP is a
connection-oriented communication system, some infrastructure must be set up before a
TCP server can begin operation. In particular, TCP servers must "listen" for (incoming)
connections. Once this setup process is complete, a server can start its infinite loop.

A simple (single-threaded) server will then sit on an accept() call waiting for a
connection. By default, accept() is blocking, meaning that execution is suspended until
a connection arrives. Sockets do support a non-blocking mode; refer to the
documentation or operating systems textbooks for more details on why and how you
would use non-blocking sockets.

Once a connection is accepted, a separate client socket is returned [by accept()] for the
upcoming message interchange. Using the new client socket is similar to handing off a
customer call to a service representative. When a client eventually does come in, the main
switchboard operator takes the incoming call and patches it through, using another line to
the right person to handle their needs.

This frees up the main line, i.e., the original server socket so that the operator can resume
waiting for new calls (client requests) while the customer and the service representative
he or she was connected to carry on their own conversation. Likewise, when an incoming
request arrives, a new communication port is created to converse directly with that client
while the main one is free to accept new client connections.

NOTE

We do not implement this in our examples, but it is also fairly common to hand a client
request off to a thread or new process to complete the client processing. The
SocketServer module, a high-level socket communication module written on top of
socket, supports both threaded and spawned process handling of client requests. We
refer the reader to the documentation to obtain more information about the
SocketServer module as well as the exercises in Chapter 17, Multithreaded
Programming.

IT-SC book: Core Python Programming

 545

Once the temporary socket is created, communication can commence, and both client and
server proceed to engage in a dialog of sending and receiving using this new socket until
the connection is terminated. This usually happens when one of the parties either closes
its connection or sends an empty string to its partner.

In our code, after a client connection is closed, the server goes back to wait for another
client connection. The final line of code, where we close the server socket, is never
encountered since it is supposed to run in an infinite loop. We leave this code in our
example as a reminder to the reader that calling the close() method is recommended
when implementing an intelligent exit scheme for the server, for example, a handler
which detects some external condition whereby the server should be shut down. In those
cases, a close() method call is warranted.

In Example 16.1, we present tsTserv.py, a TCP server program which takes the data
string sent from a client and returns it timestamped (format: "[timestamp] data") back
to the client. ("tsTserv" stands for timestamp TCP server. The other files are named in a
similar manner.)

Example 16.1. TCP Timestamp Server (tsTserv.py)

Creates a TCP server which accepts messages from clients and returns them with a
timestamp prefix.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4 from time import time, ctime
005 5
006 6 HOST = ''
007 7 PORT = 21567
008 8 BUFSIZ = 1024
009 9 ADDR = (HOST, PORT)
010 10
011 11 tcpSerSock = socket(AF_INET, SOCK_STREAM)
012 12 tcpSerSock.bind(ADDR)
013 13 tcpSerSock.listen(5)
014 14
015 15 while 1:
016 16 print 'waiting for connection…'
017 17 tcpClisock, addr = tcpSerSock.accept()
018 18 print '…connected from:', addr
019 19
020 20 while 1:
021 21 data = tcpCliSock.recv(BUFSIZ)
022 22 if not data: break <$nopage>
023 23 tcpCliSock.send('[%s] %s' % \
024 24 ctime(time()), data)
025 25
026 26 tcpCliSock.close()
027 27 tcpSerSock.close()
028 <$nopage>

IT-SC book: Core Python Programming

 546

Line-by-line

Lines 1–4

After the Unix start-up line, we import time.time(), time.ctime(), and all the
attributes from the socket module.

Lines 6–13

The HOST variable is blank, an indication to the bind() method that it can use any
address that is available. We also choose an arbitrarily random port number which does
not appear to be used or reserved by the system. For our application, we set the buffer
size to 1K. You may vary this size based on your networking capability and application
needs. The argument for the listen() method is simply a maximum number of
incoming connection requests to accept before connections are turned away or refused.

The TCP server socket (tcpSerSock) is allocated on line 11, followed by the calls to bind
the socket to the server's address and to start the TCP listener.

Lines 15–27

Once we are inside the server's infinite loop, we (passively) wait for a connection. When
one comes in, we enter the dialog loop where we wait for the client to send its message. If
the message is blank, that means that the client has quit, so we would break from the
dialog loop, close the client connection, and go back to wait for another client. If we did
get a message from the client, then we format and return the same data but prepended
with the current timestamp. The final line (27) is never executed, but is there as a
reminder to the reader that a close() call should be made if a handler is written to allow
for a more graceful exit, as we discussed before.

Creating a TCP Client

Creating a client is much simpler than a server. Similar to our description of the TCP
server, we will present the pseudocode with explanations first, then show you the real
thing.

cs = socket() # create client socket
cs.connect() # attempt server connection
comm_loop: # communication loop
 cs.send()/cs.recv() # dialog (send/receive)
cs.close() # close client socket

As we noted before, all sockets are created using socket.socket(). Once a client has a
socket, however, it can immediately make a connection to a server by using the socket's
connect() method. When the connection has been established, then it can participate in

IT-SC book: Core Python Programming

 547

dialog with the server. Once the client has completed its transaction, it may close its
socket, terminating the connection.

We present the code for tsTclnt.py in Example 16.2; it connects to the server and
prompts the user for line-after-line of data. The server returns this data timestamped,
which is presented to the user by the client code.

Example 16.2. TCP Timestamp Client (tsTclnt.py)

Creates a TCP client which prompts the user for messages to send to the server, gets them
back with a timestamp prefix, and displays the results to the user.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4
005 5 HOST = 'localhost'
006 6 PORT = 21567
007 7 BUFSIZ = 1024
008 8 ADDR = (HOST, PORT)
009 9
010 10 tcpCliSock = socket(AF_INET, SOCK_STREAM)
011 11 tcpCliSock.connect(ADDR)
012 12
013 13 while 1:
014 14 data = raw_input('> ')
015 15 if not data: break <$nopage>
016 16 tcpCliSock.send(data)
017 17 data = tcpCliSock.recv(1024)
018 18 if not data: break <$nopage>
019 19 print data
020 20
021 21 tcpCliSock.close()
022 <$nopage>

Line-by-line

Lines 1–3

After the Unix start-up line, we import all the attributes from the socket module.

Lines 5–11

The HOST and PORT variables refer to the server's hostname and port number. Since we
are running our test (in this case) on the same machine, HOST contains the local hostname
(change it accordingly if you are running your server on a different host). The port
number PORT should be exactly the same as what you set for your server (otherwise there
won't be much communication[!]). We also choose the same buffer size, 1K.

IT-SC book: Core Python Programming

 548

The TCP client socket (tcpCliSock) is allocated on line 10, followed by the call to
connect to the server.

Lines 13–21

The client also has an infinite loop, but it is not meant to run forever like the server's loop.
The client loop will exit on either of two conditions: If the user enters no input (line 15),
or if the server somehow quit and our call to the recv() method fails (line 18). Otherwise,
in a normal situation, the user enters in some string data, which is sent to the server for
processing. The newly-timestamped input string is then received and displayed to the
screen.

Executing Our TCP Client-server Application

Now let's run the server and client programs to see how they work. Should we run the
server first or the client first? Naturally, if we ran the client first, no connection would be
possible because there is no server waiting to accept the request. The server is considered
a "passive" partner because it has to establish itself first and passively wait for a
connection. A client on the other hand is an "active" partner because it actively initiates a
connection. In other words:

Start the server first (before any clients try to connect).

In our example running of the client and server, we use the same machine, but there is
nothing to stop us from using another host for the server. If this is the case, then just
change the hostname. (It is rather exciting when you get your first networked application
running the server and client from different machines!)

We now present the corresponding (input and) output from the client program, which
exits with a simple RETURN (or Enter key) keystroke with no data entered:

% tsTclnt.py
> hi
[Sat Jun 17 17:27:21 2000] hi
> spanish inquisition
[Sat Jun 17 17:27:37 2000] spanish inquisition
>
%

The server's output is mainly diagnostic:

% tsTserv.py
waiting for connection…
…connected from: ('127.0.0.1', 1040)
waiting for connection…

IT-SC book: Core Python Programming

 549

The "…connected from…" message was received when our client made its connection.
The server went back to wait for new clients while we continued receiving "service."
When we exited from the server, we had to break out of it, resulting in an exception. The
best way to avoid such an error is to create a more graceful exit, as we have been
discussing.

NOTE

One way to create this "friendly" exit is to put the server's while loop inside the except
clause of a try-except statement and monitor for EOFError or KeyboardInterrupt
exceptions. Then in the except clause, you can make a call to close the server's socket.

The interesting thing about this simple networked application is that we are not only
showing how our data takes a round trip from the client to the server and back to the
client, but we also use the server as a sort of "time server," because the timestamp we
receive is purely from the server.

Creating a UDP Server

UDP servers do not require as much setup as TCP servers because they are not
connection-oriented. There is virtually no work that needs to be done other than just
waiting for incoming connections.

ss = socket() # create server socket
ss.bind() # bind server socket
inf_loop: # server infinite loop
 cs = ss.recvfrom()/ss.sendto() # dialog (receive/send)
ss.close() # close server socket

As you can see from the pseudocode, there is nothing extra other than the usual create-
the-socket and bind it to the local address (host/port pair). The infinite loop consists of
receiving a message from a client, returning a timestamped one, then going back to wait
for another message. Again, the close() method will not be reached due to the infinite
loop, but serves as a reminder that it should be part of the graceful or intelligent exit
scheme we've been mentioning.

One other significant different between UDP and TCP servers is that because datagram
sockets are connectionless, there is no "handing off" of a client connection to a separate
socket for succeeding communication. These servers just accept messages and perhaps
reply.

IT-SC book: Core Python Programming

 550

You will find the code to tsUserv.py in Example 16.3, a UDP version of the TCP
server seen earlier. It accepts a client message and returns it to the client timestamped.

Example 16.3. UDP Timestamp Server (tsUserv.py)

Creates a UDP server which accepts messages from clients and returns them with a
timestamp prefix.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4 from time import time, ctime
005 5
006 6 HOST = ''
007 7 PORT = 21567
008 8 BUFSIZ = 1024
009 9 ADDR = (HOST, PORT)
010 10
011 11 udpSerSock = socket(AF_INET, SOCK_DGRAM)
012 12 udpSerSock.bind(ADDR)
013 13
014 14 while 1:
015 15 print 'waiting for message…'
016 16 data, addr = udpSerSock.recvfrom(BUFSIZ)
017 17 udpSerSock.sendto('[%s] %s' % \
018 18 (ctime(time()), data), addr)
019 19 print '…received from, returned to:', addr
020 20
021 21 udpSerSock.close()
022 <$nopage>

Line-by-line

Lines 1–4

After the Unix start-up line, we import time.time(), time.ctime(), and all the
attributes from the socket module, just like the TCP server setup.

Lines 6–12

The HOST and PORT variables are the same as before, and for all the same reasons. The
call socket() differs only in that we are now requesting a datagram/UDP socket type,
but bind() is invoked in the same way as in the TCP server version. Again, because
UDP is connectionless, no call to "listen() for incoming connections" is made here.

Lines 14–21

Once we are inside the server's infinite loop, we (passively) wait for a connection. When
one comes in, we process it (by adding a timestamp to it), then send it right back and go

IT-SC book: Core Python Programming

 551

back to wait for another message. The socket close() method is there for show only, as
indicated before.

Creating a UDP Client

Of the four highlighted here in this section, the UDP client is the shortest bit of code
which we will look at. The pseudocode looks like this:

cs = socket() # create client socket
comm_loop: # communication loop
 cs.sendto()/cs.recvfrom() # dialog (send/receive)
cs.close() # close client socket

Once a socket object is created, we enter the dialog loop of exchanging messages with the
server. When communication is complete, the socket is closed.

The real client code, tsUclnt.py, is presented in Example 16.4.

Example 16.4. UDP Timestamp Client (tsUclnt.py)

Creates a UDP client which prompts the user for messages to send to the server, gets
them back with a timestamp prefix, and displays them back to the user.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from socket import * <$nopage>
004 4
005 5 HOST = 'localhost'
006 6 PORT = 21567
007 7 BUFSIZ = 1024
008 8 ADDR = (HOST, PORT)
009 9
010 10 udpCliSock = socket(AF_INET, SOCK_DGRAM)
011 11
012 12 while 1:
013 13 data = raw_input('> ')
014 14 if not data: break <$nopage>
015 15 udpCliSock.sendto(data, ADDR)
016 16 data, ADDR = udpCliSock.recvfrom(BUFSIZ)
017 17 if not data: break <$nopage>
018 18 print data
019 19
020 20 udpCliSock.close()
021 <$nopage>

Line-by-line

Lines 1–3

IT-SC book: Core Python Programming

 552

After the Unix start-up line, we import all the attributes from the socket module, again,
just like in the TCP version of the client.

Lines 5–10

Because we are running the server on our local machine again, we use "localhost" and the
same port number on the client side, not to mention the same 1K buffer. We allocate our
socket object in the same way as the UDP server.

Lines 12–20

Our UDP client loop works almost exactly in the same manner as the TCP client. The
only difference is that we do not have to establish a connection to the UDP server first,
we simply send a message to it and await the reply. After the timestamped string is
returned, we display it to the screen and go back for more. When the input is complete,
we break out of the loop and close the socket.

Executing Our UDP Client-Server Application

The UDP client behaves the same as the TCP client:

% tsUclnt.py
> hi
[Sat Jun 17 19:55:36 2000] hi
> spam! spam! spam!
[Sat Jun 17 19:55:40 2000] spam! spam! spam!
>
%

Likewise for the server:

% tsUserv.py
waiting for message…
… received from and returned to: ('27.0.0.1' 1025)
waiting for message…

In fact, we output the client's information because we can be receiving messages from
multiple clients and sending replies, and such output helps in telling us where messages
came from. With the TCP server, we know where messages come from because each
client makes a connection. Note how the messages says, "waiting for message" as
opposed to "waiting for connection."

Other socket Module Functions

IT-SC book: Core Python Programming

 553

In addition to the socket.socket() function which creates a socket object, the socket
module features a whole host of other ancillary functions to aid you in your networked
applications, as seen below in Table 16.2.

Table 16.2. Other socket Module Functions
Function Name Description

fromfd() create a socket object from an open file descriptor
gethostname() return the current hostname
gethostbyname() map a hostname to its IP number
gethostbyaddr() map an IP number or hostname to DNS info
getservbyname() map a service name and a protocol name to a port number
getprotobyname() map a protocol name (e.g. 'tcp') to a number
ntohl()/ntohs() converts integers from network to host byte order
htonl()/htons() converts integers from host to network byte order
inet_aton() convert IP address octet string to 32-bit packed format
inet_ntoa() convert 32-bit packed format to IP address string
ssl() Secure Socket Layer support (must be configured); new in 1.6

For more information, we refer you to the socket Module documentation in the Python
Library Reference.

Related Modules

Table 16.3 lists some of the other Python modules which are related to network and
socket programming. The select module is usually used in conjunction with the socket
module when developing lower-level socket applications. It provides the select()
function which manages sets of socket objects. One of the most useful things it does is to
take a set of sockets and listen for active connections on them. The select() function
will block until at least one socket is ready for communication, and when that happens, it
provides you with a set of which ones are ready for reading. (It can also determine which
are ready for writing, although that is not as common as the former operation.)

Table 16.3. Network/Socket Programming Related Modules
Module Description

asyncore provides infrastructure to create networked applications which
process clients asynchronously

select manages multiple socket connections in a single-threaded network
server application

SocketServer high-level module which provides server classes for networked
applications, complete with forking or threading varieties

The asyncore and SocketServer modules both provide higher-level functionality as far
as create servers are concerned. Written on top of the socket and/or select modules,
they enable more rapid development of client-server systems because all the lower-level
code is handled for you. All you have to do is to create or subclass the appropriate base

IT-SC book: Core Python Programming

 554

classes, and you are on your way. As we mentioned earlier, SocketServer even provides
the capability of integrating threading or new processes into the server for more
parallelized processing of client requests.

The topics which we have covered in this chapter deal with network programming with
sockets in Python and how to create custom applications using lower-level protocol suites
such as TCP/IP and UDP/IP. If you want to develop higher-level Web and Internet
applications, we strongly encourage you to head to Chapter 19.

Exercises

1:
Sockets. What is the difference between connection-oriented versus
connectionless?

2:
Sockets. What is the difference between TCP and UDP?

3:
Sockets. Between TCP and UDP, which type of servers accept connections and
hands them off to separate sockets for client communication?

4:
Clients. Update the TCP (tsTclnt.py) and UDP (tsUclnt.py) clients so that the
server name is not hard-coded into the application. Allow the user to specify a
hostname and port number, and only use the default values if either or both
parameters are missing.

5:
Internetworking and Sockets. Implement Guido's sample TCP client/server
programs found in Section 7.2.2 of the Python Library Reference and get them to
work. Set up the server, then the client. An online version of the source is also
available here:

http://www.python.org/doc/current/lib/Socket_Example.html

You decide the server is too boring. Update the server so that it can do much more,
recognizing the following commands:

date server will return its current date/timestamp, i.e.,
time.ctime(time.time())

IT-SC book: Core Python Programming

 555

os get OS info (os.name)
ls give a listing of the current directory (HINTS: os.listdir() lists a

directory, os.curdir is the current directory) EXTRA CREDIT: accept "ls
dir" and return dir's file listing

You do not need a network to do this assignment—your machine can talk to itself.
Note: After the server exits, the binding must be cleared before you can run it
again. You may experience "port already bound" errors. The operating system
usually clears the binding within 5 minutes, so be patient!

6:
Daytime Service. Use the socket.getservbyname() to determine the port number
for the "daytime" service under the UDP protocol. Check the documentation for
getservbyname() to get the exact usage syntax (i.e.,
socket.getservbyname.__doc__). Now write an application which sends a
dummy message over and wait for the reply. Once you have received a reply from
the server, display it to the screen.

7:
Half Duplex Chat. Create a simple, half-duplex chat program. By "half-duplex,"
we mean that when a connection is made and the service starts, only one person
can type. The other participant must wait to get a message before he or she is
prompted to enter a message. Once a message is sent, then the sender must wait for
a reply before being allowed to send another message. One participant will be on
the server side, while the other will be on the client side.

8:
Full Duplex Chat. Update your solution to the previous problem so that your chat
service is now full-duplex, meaning that both parties can send and receive
independently of each other.

9:
Multi-User Full Duplex Chat. Further update your solution so that your chat
service is multi-user.

10:
Multi-User Multi-Room Full Duplex Chat. Now make your chat service multi-user
and multi-room.

11:
Web Client. Write a TCP client which connects to port 80 of your favorite Web site
(remove the "http://" and any trailing info; use only the hostname). Once a

IT-SC book: Core Python Programming

 556

connection has been established, send the HTTP command string "GET /\n" and
write all the data that the server returns to a file. (The GET command retrieves a
Web page, the "/" file indicates the file to get, and the "\n" sends the command to
the server.) Examine the contents of the retrieved file. What is it? How can you
check to make sure the data you received is correct? (Note: You may have to give
one or two NEWLINEs of the command string. One usually works.)

12:
Sleep Server. Create a "sleep" server. A client will request to be "put to sleep" for a
number of seconds. The server will issue the command on behalf of the client, then
return a message to the client indicating success. The client should have slept or
have been idle for the exact time requested. This is a simple implementation of a
"remote procedure call" where a client's request invokes commands on another
machine across the network.

13:
Name Server. Design and implement a name server. Such a server is responsible
for maintaining a database of hostname-port number pairs; perhaps along with the
string description of the service that the corresponding servers provide. Take one or
more existing servers and have them "register" their service with your name server.
(Note that these servers are, in this case, clients of the name server.)

Every client that starts up has no idea where the server is that it is looking for. Also
as clients of the name server, these clients should send a request to the name server
indicating what type of service they are seeking. The name server, in reply, returns
a hostname-port number pair to this client, which then connects to the appropriate
server to process its request.

EXTRA CREDIT: (1) add caching to your name server for popular requests, (2)
add logging capability to your name server, keeping track of which servers have
registered and which services clients are requesting; (3) your name server should
periodically "ping" the registered hosts at their respective port numbers to ensure
that the service is indeed up. Repeated failures will cause a server to be delisted
from the list of services.

You may implement real services for the servers which register for your name
service, or just use dummy servers (which merely acknowledge a request)

IT-SC book: Core Python Programming

 557

Chapter 17. Multithreaded Programming

In this section, we will explore the different ways you can achieve more parallelism in
your code by using the multithreaded (MT) programming features found in Python. We
will begin by differentiating between processes and threads in the first few of sections of
this chapter. We will then introduce the notion of multithreaded programming. (Those of
you already familiar with MT programming can skip directly to Section 17.3.5.) The last
section of this chapter lays out some examples of how to use the threading and Queue
modules to accomplish MT programming with Python.

Introduction/Motivation

Before the advent of multithreaded (MT) programming, running of computer programs
consisted of a single sequence of steps which were executed in synchronous order by the
host's central processing unit (CPU). This style of execution was the norm whether the
task itself required the sequential ordering of steps or if the entire program was actually
an aggregation of multiple subtasks. What if these subtasks were independent, having no
causal relationship (meaning that results of subtasks do not affect other subtask
outcomes)? Is it not logical, then, to want to run these independent tasks all at the same
time? Such parallel processing could significantly improve the performance of the overall
task. This is what MT programming is all about.

MT programming is ideal for programming tasks that are asynchronous in nature, require
multiple concurrent activities, and where the processing of each activity may be
nondeterministic, i.e., random and unpredictable. Such programming tasks can be
organized or partitioned into multiple streams of execution where each has a specific task
to accomplish. Depending on the application, these subtasks may calculate intermediate
results that could be merged into a final piece of output.

While CPU-bound tasks may be fairly straightforward to divide into subtasks and
executed sequentially or in a multithreaded manner, the task of managing a single-
threaded process with multiple external sources of input is not as trivial. To achieve such
a programming task without multithreading, a sequential program must use one or more
timers and implement a multiplexing scheme.

A sequential program will need to sample each I/O (input/output) terminal channel to
check for user input; however, it is important that the program does not block when
reading the I/O terminal channel because the arrival of user input is nondeterministic, and
blocking would prevent processing of other I/O channels. The sequential program must
use non-blocked I/O or blocked I/O with a timer (so that blocking is only temporary).

IT-SC book: Core Python Programming

 558

Because the sequential program is a single thread of execution, it must juggle the
multiple tasks that it needs to perform, making sure that it does not spend too much time
on any one task, and it must ensure that user response time is appropriately distributed.
The use of a sequential program for this type of programming task often results in a
complicated flow of control program that is difficult to understand and maintain.

Using an MT program with a shared data structure such as a Queue (a multithreaded
queue data structure discussed later in this chapter), this programming task can be
organized with a few threads that have specific functions to perform:

UserRequestThread: responsible for reading client input, perhaps from an I/O channel.
A number of threads would be created by the program, one for each current client, with
requests being entered into the queue.

RequestProcessor: a thread that is responsible for retrieving requests from the queue
and processing them, providing output for yet a third thread.

ReplyThread: responsible for taking output destined for the user and either sending it
back, if in a networked application, or writing data to the local file system or database.

Organizing this programming task with multiple threads reduces the complexity of the
program and enables an implementation that is clean, efficient, and well-organized. The
logic in each thread is typically less complex because it has a specific job to do. For
example, the UserRequestThread simply reads input from a user and places the data
into a queue for further processing by another thread, etc. Each thread has its own job to
do; and you merely have to design each type of thread to do one thing and do it well. Use
of threads for specific tasks is not unlike Henry Ford's assembly line model for
manufacturing automobiles.

Threads and Processes

What Are Processes?

Computer programs are merely executables, binary (or otherwise), which reside on disk.
They do not take on a life of their own until loaded into memory and invoked by the
operating system. A process (sometimes called a heavyweight process) is a program in
execution. Each process has its own address space, memory, a data stack, and other
auxiliary data to keep track of execution. The operating system manages the execution of
all processes on the system, dividing the time fairly between all processes. Processes can
also fork or spawn new processes to perform other tasks, but each new process has its
own memory, data stack, etc., and cannot generally share information unless interprocess
communication (IPC) is employed.

What Are Threads?

Threads (sometimes called lightweight processes) are similar to processes except that
they all execute within the same process, thus all share the same context. They can be

IT-SC book: Core Python Programming

 559

thought of as "mini-processes" running in parallel within a main process or "main
thread."

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction
pointer that keeps track of where within its context it is currently running. It can be pre-
empted (interrupted) and temporarily put on hold (also known as sleeping) while other
threads are running—this is called yielding.

Multiple threads within a process share the same data space with the main thread and can
therefore share information or communicate with each other more easily than if they were
separate processes. Threads are generally executed in a concurrent fashion, and it is this
parallelism and data sharing that enable the coordination of multiple tasks. Naturally, it is
impossible to run truly in a concurrent manner in a single CPU system, so threads are
scheduled in such a way that they run for a little bit, then yield to other threads (going to
the proverbial "back-of-the-line" to await getting more CPU time again). Throughout the
execution of the entire process, each thread performs its own, separate tasks, and
communicates the results with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more threads access the same
piece of data, inconsistent results may arise because of the ordering of data access. This is
commonly known as a race condition. Fortunately, most thread libraries come with some
sort of synchronization primitives which allow the thread manager to control execution
and access.

Another caveat is that threads may not be given equal and fair execution time. This is
because some functions block until they have completed. If not written specifically to
take threads into account, this skews the amount of CPU time in favor of such greedy
functions.

Threads and Python

Global Interpreter Lock

Execution by Python code is controlled by the Python Virtual Machine (a.k.a. the
interpreter main loop), and Python was designed in such a way that only one thread of
control may be executing in this main loop, similar to how multiple processes in a system
share a single CPU. Many programs may be in memory, but only one is live on the CPU
at any given moment. Likewise, although multiple threads may be "running" within the
Python interpreter, only one thread is being executed by the interpreter at any given time.

Access to the Python Virtual Machine is controlled by a global interpreter lock (GIL).
This lock is what ensures that exactly one thread is running. The Python Virtual Machine
executes in the following manner in an MT environment:

Set the GIL,

Switch in a thread to run,

IT-SC book: Core Python Programming

 560

Execute for a specified number of bytecode instructions,

Put the thread back to sleep (switch out thread),

Unlock the GIL, and,

Do it all over again (rinse, lather, repeat).

When a call is made to external code, i.e., any C/C++ extension built-in function, the GIL
will be locked until it has completed (since there are no Python bytecodes to count as the
interval). Extension programmers do have the ability to unlock the GIL however, so you
being the Python developer shouldn't have to worry about your Python code locking up in
those situations.

As an example, for any Python I/O-oriented routines (which invoke built-in operating
system C code), the GIL is released before the I/O call is made, allowing other threads to
run while the I/O is being performed. Code which doesn't have much I/O will tend to
keep the processor (and GIL) to the full interval a thread is allowed before it yields. In
other words, I/O-bound Python programs stand a much better chance of being able to
take advantage of a multithreaded environment than CPU-bound code.

Those of you interested in the source code, the interpreter main loop, and the GIL can
take a look at eval_code2() routine in the Python/ceval.c file, which is the Python
Virtual Machine.

Exiting Threads

When a thread completes execution of the function they were created for, they exit.
Threads may also quit by calling an exit function such as thread.exit(), or any of the
standard ways of exiting a Python process, i.e., sys.exit() or raising the SystemExit
exception.

There are a variety of ways of managing thread termination. In most systems, when the
main thread exits, all other threads die without cleanup, but for some systems, they live
on. Check your operating system threaded programming documentation regarding their
behavior in such occasions.

Main threads should always be good managers, though, and perform the task of knowing
what needs to be executed by individual threads, what data or arguments each of the
spawned threads requires, when they complete execution, and what results they provide.
In so doing, those main threads can collate the individual results into a final conclusion.

Accessing Threads From Python

Python supports multithreaded programming, depending on the operating system that it is
running on. It is supported on most versions of Unix, including Solaris and Linux, and

IT-SC book: Core Python Programming

 561

Windows. Threads are not currently available on the Macintosh platform. Python uses
POSIX-compliant threads, or "pthreads," as they commonly known.

By default, threads are not enabled when building Python from source, but are available
for Windows platforms automatically from the installer. To tell whether threads are
installed, simply attempt to import the thread module from the interactive interpreter.
No errors occur when threads are available:

>>> import thread
>>>

If your Python interpreter was not compiled with threads enabled, the module import fails:

>>> import thread
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named thread

In such cases, you may have to recompile your Python interpreter to get access to threads.
This usually involves invoking the configure script with the "--with-thread" option.
Check the README file for your distribution for specific instructions on how to compile
Python with threads for your system.

Due to the brevity of this chapter, we will give you only a quick introduction to threads
and MT programming in Python. We refer you to the official documentation to get the
full coverage of all the aspects of the threading support which Python has to offer. Also,
we recommended accessing any general operating system textbook for more details on
processes, interprocess communication, multi-threaded programming, and thread/process
synchronization. (Some of these texts are listed in the appendix.)

Life Without Threads

For our first set of examples, we are going to use the time.sleep() function to show
how threads work. time.sleep() takes a floating point argument and "sleeps" for the
given number of seconds, meaning that execution is temporarily halted for the amount of
time specified.

Let us create two "time loops," one which sleeps for 4 seconds and one that sleeps for 2
seconds, loop0() and loop1(), respectively. (We use the names "loop0" and "loop1" as
a hint that we will eventually have a sequence of loops.) If we were to execute loop0()
and loop1() sequentially in a one-process or single-threaded program, as onethr.py
does in Example 17.1, the total execution time would be at least 6 seconds. There may or

IT-SC book: Core Python Programming

 562

may not be a 1-second gap between the starting of loop0() and loop1(), and other
execution overhead which may cause the overall time to be bumped to 7 seconds.

Example 17.1. Loops Executed by a Single Thread (onethr.py)

Executes two loops consecutively in a single-threaded program. One loop must complete
before the other can begin. The total elapsed time is the sum of times taken by each loop.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from time import sleep, time, ctime
004 4
005 5 def loop0():
006 6 print 'start loop 0 at:', ctime(time())
007 7 sleep(4)
008 8 print 'loop 0 done at:', ctime(time())
009 9
010 10 def loop1():
011 11 print 'start loop 1 at:', ctime(time())
012 12 sleep(2)
013 13 print 'loop 1 done at:', ctime(time())
014 14
015 15 def main():
016 16 print 'starting…'
017 17 loop0()
018 18 loop1()
019 19 print 'all DONE at:', ctime(time())
020 20
021 21 if __name__ == '__main__':
022 22 main()
023 <$nopage>

We can verify this by executing onethr.py, which gives the following output:

% onethr.py
starting…
start loop 0 at: Sun Aug 13 05:03:34 2000
loop 0 done at: Sun Aug 13 05:03:38 2000
start loop 1 at: Sun Aug 13 05:03:38 2000
loop 1 done at: Sun Aug 13 05:03:40 2000
all DONE at: Sun Aug 13 05:03:40 2000

Now, pretend that rather than sleeping, loop0() and loop1() were separate functions
that performed individual and independent computations, all working to arrive at a
common solution. Wouldn't it be useful to have them run in parallel to cut down on the
overall running time? That is the premise behind MT that we will now introduce you to.

Python Threading Modules

IT-SC book: Core Python Programming

 563

Python provides several modules to support MT programming, including the thread,
threading, and Queue modules. The thread and threading modules allow the
programmer to create and manage threads. The thread module provides the basic thread
and locking support, while threading provides high-level full-featured thread
management. The Queue module allows the user to create a queue data structure which
can be shared across multiple threads. We will take a look at these modules individually,
present a good number of examples, and a couple of intermediate-sized applications.

NOTE

We recommend avoiding the thread module for many reasons. The first is that the high-
level threading module is more contemporary, not to mention the fact that thread
support in the threading module is much improved and the use of attributes of the
thread module may conflict with using the threading module. Another reason is that
the lower-level thread module has a few synchronization primitives (actually only one)
while threading has many.

However, in the interest of learning Python and threading in general, we do present some
code which uses the thread module. These pieces of code should be used for learning
purposes only and will give you a much better insight as to why you would want to avoid
using the thread module. These examples also show how our applications and thread
programming improve as we migrate to using more appropriate tools such as those
available in the threading and Queue modules.

Use of the thread module is recommended only for experts desiring lower-level thread
access. Those of you new to threads should look at the code samples to see how we can
overlay threads onto our time loop application and to gain a better understanding as to
how these first examples evolve to the main code samples of this chapter. Your first
multithreaded application should utilize threading and perhaps other high-level thread
modules, if applicable.

thread Module

Let's take a look at what the thread module has to offer. In addition to being able to
spawn threads, the threadmodule also provides a basic synchronization data structure
called a lock object (a.k.a. primitive lock, simple lock, mutual exclusion lock, mutex,
binary semaphore). As we mentioned earlier, such synchronization primitives go hand-in-
hand with thread management.

Listed in Table 17.1 are a list of the more commonly-used thread functions and
LockType lock object methods:

Table 17.1. thread Module and Lock Objects
Function/Method Description

thread Module Functions

IT-SC book: Core Python Programming

 564

start_new_thread(function, args,
kwargs=None)

spawns a new thread and execute
function with the given args and optional
kwargs

allocate_lock() allocates LockType lock object
exit() instructs a thread to exit
LockType Lock Object Methods
acquire(wait=None) attempts to acquire lock object
locked() returns 1 if lock acquired, 0 otherwise
release() releases lock

The key function of the thread module is start_new_thread(). Its syntax is exactly
that of the apply() built-in function, taking a function along with arguments and optional
keyword arguments. The difference is that instead of the main thread executing the
function, a new thread is spawned to invoke the function.

Let's take our onethr.py example and integrate threading into it. By slightly changing
the call to the loop*() functions, we now present mtsleep1.py in Example 17.2.

Example 17.2. Using the thread Module (mtsleepl.py)

The same loops from onethr.py are executed, but this time using the simple
multithreaded mechanism provided by the thread module. The two loops are executed
concurrently (with the shorter one finishing first, obviously), and the total elapsed time is
only as long as the slowest thread rather than the total time for each separately.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import thread
004 4 from time import sleep, time, ctime
005 5
006 6 def loop0():
007 7 print 'start loop 0 at:', ctime(time())
008 8 sleep(4)
009 9 print 'loop 0 done at:', ctime(time())
010 10
011 11 def loop1():
012 12 print 'start loop 1 at:', ctime(time())
013 13 sleep(2)
014 14 print 'loop 1 done at:', ctime(time())
015 15
016 16 def main():
017 17 print 'starting threads…'
018 18 thread.start_new_thread(loop0, ())
019 19 thread.start_new_thread(loop1, ())
020 20 sleep(6)
021 21 print 'all DONE at:', ctime(time))
022 22
023 23 if __name__ == '__main__':
024 24 main()
025 <$nopage>

IT-SC book: Core Python Programming

 565

start_new_thread() requires the first two arguments, so that's the reason for passing in
an empty tuple even if the executing function requires no arguments.

Upon execution of this program, our output changes drastically. Rather than taking a full
6 or 7 seconds, our script now runs in 4, the length of time of our longest loop, plus any
overhead.

% mtsleep1.py
starting threads…
start loop 0 at: Sun Aug 13 05:04:50 2000
start loop 1 at: Sun Aug 13 05:04:50 2000
loop 1 done at: Sun Aug 13 05:04:52 2000
loop 0 done at: Sun Aug 13 05:04:54 2000
all DONE at: Sun Aug 13 05:04:56 2000

The pieces of code that sleep for 4 and 2 seconds now occur concurrently, contributing to
the lower overall runtime.

The only other major change to our application is the addition of the "sleep(6)" call.
Why is this necessary? The reason is that if we did not stop the main thread from
continuing, it would proceed to the next statement, displaying "all done" and exit, killing
both threads running loop0() and loop1().

We did not have any code which told the main thread to wait for the child threads to
complete before continuing. This is what we mean by threads requiring some sort of
synchronization. In our case, we used another sleep() call as our synchronization
mechanism. We used a value of 6 seconds because we know that both threads (which
take 4 and 2 seconds, as you know) should have completed by the time the main thread
has counted to 6.

You are probably thinking that there should be a better way of managing threads than
creating that extra delay of 6 seconds in the main thread. Because of this delay, the
overall runtime is no better than in our single-threaded version. Using sleep() for thread
synchronization as we did is not reliable. What if our loops had independent and varying
execution times? We may be exiting the main thread too early or too late. This is where
locks come in.

Making yet another update to our code to include locks as well as getting rid of separate
loop functions, we get mtsleep2.py, presented in Example 17.3. Running it, we see that
the output is similar to mtsleep1.py. The only difference is that we did not have to wait
the extra time for mtsleep1.py to conclude. By using locks, we were able to exit as soon
as both threads had completed execution.

% mtsleep2.py
starting threads…
start loop 0 at: Sun Aug 13 16:34:41 2000

IT-SC book: Core Python Programming

 566

start loop 1 at: Sun Aug 13 16:34:41 2000
loop 1 done at: Sun Aug 13 16:34:43 2000
loop 0 done at: Sun Aug 13 16:34:45 2000
all DONE at: Sun Aug 13 16:34:45 2000

Example 17.3. Using thread and Locks (mtsleep2.py)

Rather than using a call to sleep() to hold up the main thread as in mtsleep1.py, the
use of locks makes more sense.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import thread
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7
008 8 def loop(nloop, nsec, lock):
009 9 print 'start loop', nloop, 'at:', ctime(time())
010 10 sleep(nsec)
011 11 print 'loop', nloop, 'done at:', ctime(time())
012 12 lock.release()
013 13
014 14 def main():
015 15 print 'starting threads…'
016 16 locks = []
017 17 nloops = range(len(loops))
018 18
019 19 for i in nloops:
020 20 lock = thread.allocate_lock()
021 21 lock.acquire()
022 22 locks.append(lock)
023 23
024 24 for i in nloops:
025 25 thread.start_new_thread(loop, \
026 26 (i, loops[i], locks[i]))
027 27
028 28 for i in nloops:
029 29 while locks[i].locked(): pass <$nopage>
030 30
031 31 print 'all DONE at:', ctime(time())
032 32
033 33 if __name__ == '__main__':
034 34 main()
035 <$nopage>

So how did we accomplish our task with locks? Let's take a look at the source code:

Line-by-line explanation

Lines 1–6

IT-SC book: Core Python Programming

 567

After the Unix start-up line, we import the thread module and a few familiar attributes
of the time module. Rather than hardcoding separate functions to count to 4 and 2
seconds, we will use a single loop() function and place these constants in a list, loops.

Lines 8–12

The loop() function will proxy for the now-removed loop*() functions from our earlier
examples. We had to make some cosmetic changes to loop() so that it can now perform
its duties using locks. The obvious changes are that we need to be told which loop
number we are as well as how long to sleep for. The last piece of new information is the
lock itself. Each thread will be allocated an acquired lock. When the sleep() time has
concluded, we will release the corresponding lock, indicating to the main thread that this
thread has completed.

Lines 14–34

The bulk of the work is done here in main() using three separate for loops. We first
create a list of locks, which we obtain using the thread.allocate_lock() function and
acquire each lock with the acquire() method. Acquiring a lock has the effect of
"locking the lock." Once it's locked, we add the lock to the lock list, locks. The next
loop actually spawns the threads, invoking the loop() function per thread, and for each
thread, provides it with the loop number, the time to sleep for, and the acquired lock for
that thread. So why didn't we start the threads in the lock acquisition loop? There are
several reasons: (1) we wanted to synchronize the threads, so that "all the horses started
out the gate" around the same time, and (2) locks take a little bit of time to be acquired. If
your thread executes "too fast," it is possible that it completes before the lock has a
chance to be acquired.

It is up to each thread to unlock its lock object when it has completed execution. The final
loop just sits-and-spins (pausing the main thread) until both locks have been released
before continuing execution. Since we are checking each lock sequentially, we may be at
the mercy of all the slower loops if they are more towards the beginning of the set of
loops. In such cases, the majority of the wait time may be for the first loop(s). When that
lock is released, remaining locks may have already been unlocked (meaning that
corresponding threads have completed execution). The result is that the main thread will
fly through those lock checks without pause. Finally, you should be well aware that the
final pair of lines will execute main() only if we are invoking this script directly.

As hinted in the earlier Core Note, we presented the thread module only to introduce the
reader to threaded programming. Your MT application should use higher-level modules
such as the threading module, which we will now discuss.

threading Module

We will now introduce the higher-level threading module which gives you not only a
Thread class but also a wide variety of synchronization mechanisms to use to your heart's

IT-SC book: Core Python Programming

 568

content. Table 17.2 represents a list of all the objects which are provided for in the
threading module.

Table 17.2. threading Module Objects
threading

Module Objects
Description

Thread object which represents a single thread of execution
Lock primitive lock object (same lock object as in the thread module)
RLock re-entrant lock object provides ability for a single thread to

(re)acquire an already-held lock (recursive locking)
Condition condition variable object causes one thread to wait until a certain

"condition" has been satisfied by another thread, such as changing
of state or of some data value

Event general version of condition variables whereby any number of
threads are waiting for some event to occur and all will awaken
when the event happens

Semaphore provides a "waiting area"-like structure for threads waiting on a lock

In this section, we will examine how to use the Thread class to implement threading.
Since we have already covered the basics of locking, we will not cover the locking
primitives here. The Thread() class also contains a form of synchronization, so explicit
use of locking primitives is not necessary.

Thread Class

There are a variety of ways you can create threads using the Thread class. We cover
three of them here, all quite similar. Pick the one you feel most comfortable with, not to
mention the most appropriate for your application and future scalability (we like choice 3
the best):

Create Thread instance, passing in function

Create Thread instance, passing in callable class instance

Subclass Thread and create subclass instance

Create Thread instance, passing in function

In our first example, we will just instantiate Thread, passing in our function (and its
arguments) in a manner similar to our previous examples. This function is what will be
executed when we direct the thread to begin execution. Taking our mtsleep2.py script
and tweaking it, adding the use of Thread objects, we have mtsleep3.py, shown in
Example 17.4.

When we run it, we see output similar to its predecessors':

IT-SC book: Core Python Programming

 569

% mtsleep3.py
starting threads…
start loop 0 at: Sun Aug 13 18:16:38 2000
start loop 1 at: Sun Aug 13 18:16:38 2000
loop 1 done at: Sun Aug 13 18:16:40 2000
loop 0 done at: Sun Aug 13 18:16:42 2000
all DONE at: Sun Aug 13 18:16:42 2000

So what did change? Gone are the locks which we had to implement when using the
thread module. Instead, we create a set of Thread objects. When each Thread is
instantiated, we dutifully pass in the function (target) and arguments (args) and receive
a Thread instance in return. The biggest difference between instantiating Thread [calling
Thread()] and invoking thread.start_new_thread() is that the new thread does not
begin execution right away. This is a useful synchronization feature, especially when you
don't want the threads to start immediately.

Example 17.4. Using the threading Module (mtsleep3.py)

The Thread class from the threading module has a join() method which lets the main
thread wait for thread completion.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7
008 8 def loop(nloop, nsec):
009 9 print 'start loop', nloop, 'at:', ctime(time())
010 10 sleep(nsec)
011 11 print 'loop', nloop, 'done at:', ctime(time())
012 12
013 13 def main():
014 14 print 'starting threads…'
015 15 threads = []
016 16 nloops = range(len(loops))
017 17
018 18 for i in nloops:
019 19 t = threading.Thread(target=loop,
020 20 args=(i, loops[i]))
021 21 threads.append(t)
022 22
023 23 for i in nloops: # start threads
024 24 threads[i].start()
025 25
026 26 for i in nloops: # wait for all
027 27 threads[i].join(# threads to finish
028 28
029 29 print 'all DONE at:', ctime(time())
030 30

IT-SC book: Core Python Programming

 570

031 31 if __name__ == '__main__':
032 32 main()
033 <$nopage>

Once all the threads have been allocated, we let them go off to the races by invoking each
thread's start() method, but not a moment before that. And rather than having to
manage a set of locks (allocating, acquiring, releasing, checking lock state, etc.), we
simply call the join() method for each thread. join() will wait until a thread terminates,
or, if provided, a timeout occurs. Use of join() appears much cleaner than an infinite
loop waiting for locks to be released (causing these locks to sometimes be known as "spin
locks").

One other important aspect of join() is that it does not need to be called at all. Once
threads are started, they will execute until their given function completes, whereby they
will exit. If your main thread has things to do other than wait for threads to complete
(such as other processing or waiting for new client requests), it should be all means do so.
join() is useful only when you want to wait for thread completion.

Create Thread instance, passing in callable class instance

A similar offshoot to passing in a function when creating a thread is to have a callable
class and passing in an instance for execution—this is the more OO approach to MT
programming. Such a callable class embodies an execution environment that is much
more flexible than a function or choosing from a set of functions. You now have the
power of a class object behind you, as opposed to a single function or a list/tuple of
functions.

Adding our new class ThreadFunc to the code and making other slight modifications to
mtsleep3.py, we get mtsleep4.py, given in Example 17.5.

If we run mtsleep4.py, we get the expected output:

% mtsleep4.py
starting threads…
start loop 0 at: Sun Aug 13 18:49:17 2000
start loop 1 at: Sun Aug 13 18:49:17 2000
loop 1 done at: Sun Aug 13 18:49:19 2000
loop 0 done at: Sun Aug 13 18:49:21 2000
all DONE at: Sun Aug 13 18:49:21 2000

So what are the changes this time? The addition of the ThreadFunc class and a minor
change to instantiate the Thread object, which also instantiates ThreadFunc, our callable
class. In effect, we have a double instantiation going on here. Let's take a closer look at
our ThreadFunc class.

IT-SC book: Core Python Programming

 571

We want to make this class general enough to use with other functions besides our loop()
function, so we added some new infrastructure, such as having this class hold the
arguments for the function, the function itself, and also a function name string. The
constructor __init__() just sets all the values.

Example 17.5. Using Callable classes (mtsleep4.py)

In this example we pass in a callable class (instance) as opposed to just a function. It
presents more of an OO approach than mtsleep3.py.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = [4, 2]
007 7
008 8 class ThreadFunc:
009 9
010 10 def __init__(self, func, args, name=''):
011 11 self.name = name
012 12 self.func = func
013 13 self.args = args
014 14
015 15 def __call__(self):
016 16 apply(self.func, self.args)
017 17
018 18 def loop(nloop, nsec):
019 19 print 'start loop', nloop, 'at:', ctime(time())
020 20 sleep(nsec)
021 21 print 'loop', nloop, 'done at:', ctime(time())
022 22
023 23 def main():
024 24 print 'starting threads…'
025 25 threads = []
026 26 nloops = range(len(loops))
027 27
028 28 for i in nloops: # create all threads
029 29 t = threading.Thread(\
030 30 target=ThreadFunc(loop, (i, loops[i]),
031 31 loop.__name__))
032 32 threads.append(t)
033 33
034 34 for i in nloops: # start all threads
035 35 threads[i].start()
036 36
037 37 for i in nloops: # wait for completion
038 38 threads[i].join()
039 39
040 40 print 'all DONE at:', ctime(time())
041 41
042 42 if __name__ == '__main__':
043 43 main()
044 <$nopage>

IT-SC book: Core Python Programming

 572

When the Thread code calls our ThreadFunc object when a new thread is created, it will
invoke the __call__() special method. Because we already have our set of arguments,
we do not need to pass it to the Thread() constructor, but do have to use apply() in our
code now because we have an argument tuple. Those of you who have Python 1.6 and
higher can use the new function invocation syntax described in Section 11.6.3 instead of
using apply() on line 17:

self.res = self.func(*self.args)

Subclass Thread and create subclass instance

The final introductory example involves subclassing Thread(), which turns out to be
extremely similar to creating a callable class as in the previous example. Subclassing is a
bit easier to read when you are creating your threads (lines 28–29). We will present the
code for mtsleep5.py in Example 17.6 as well as the output obtained from its execution,
and leave it as an exercise for the reader to compare mtsleep5.py to mtsleep4.py.

Here is the output for mtsleep5.py, again, just what we expected:

% mtsleep5.py
starting threads…
start loop 0 at: Sun Aug 13 19:14:26 2000
start loop 1 at: Sun Aug 13 19:14:26 2000
loop 1 done at: Sun Aug 13 19:14:28 2000
loop 0 done at: Sun Aug 13 19:14:30 2000
all DONE at: Sun Aug 13 19:14:30 2000

While the reader compares the source between the mtsleep4 and mtsleep5 modules, we
want to point out the most significant changes: (1) our MyThread subclass constructor
must first invoke the base class constructor (line 9), and (2) the former special method
__call__() must be called run() in the subclass.

We now modify our MyThread class with some diagnostic output and store it in a
separate module called myThread (see Example 17.7) and import this class for the
upcoming examples. Rather than simply calling apply() to run our functions, we also
save the result to instance attribute self.res, and create a new method to retrieve that
value, getResult().

Example 17.6. Subclassing Thread (mtsleep5.py)

Rather than instantiating the Thread class, we subclass it. This gives us more flexibility
in customizing our threading objects and simplifies the thread creation call.

IT-SC book: Core Python Programming

 573

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading
004 4 from time import sleep, time, ctime
005 5
006 6 loops = (4, 2)
007 7
008 8 class MyThread(threading.Thread):
009 9 def __init__(self, func, args, name=''):
010 10 threading.Thread.__init__(self)
011 11 self.name = name
012 12 self.func = func
013 13 self.args = args
014 14
015 15 def run(self):
016 16 apply(self.func, self.args)
017 17
018 18 def loop(nloop, nsec):
019 19 print 'start loop', nloop, 'at:', ctime(time())
020 20 sleep(nsec)
021 21 print 'loop', nloop, 'done at:', ctime(time())
022 22
023 23 def main():
024 24 print 'starting threads…'
025 25 threads = []
026 26 nloops = range(len(loops))
027 27
028 28 for i in nloops:
029 29 t = MyThread(loop, (i, loops[i]), \
030 30 loop.__name__)
031 31 threads.append(t)
032 32
033 33 for i in nloops:
034 34 threads[i].start()
035 35
036 36 for i in nloops:
037 37 threads[i].join()
038 38
039 39 print 'all DONE at:', ctime(time())'
040 40
041 41 if __name__ == '__main__':
042 42 main()
043 <$nopage>

Example 17.7. MyThread Subclass of Thread (myThread.py)

To generalize our subclass of Thread from mtsleep5.py, we move the subclass to a
separate module and add a getResult() method for callables which produce return
values.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import threading

IT-SC book: Core Python Programming

 574

004 4 from time import time, ctime
005 5
006 6 class MyThread(threading.Thread):
007 7 def __init__(self, func, args, name=''):
008 8 threading.Thread.__init__(self)
009 9 self.name = name
010 10 self.func = func
011 11 self.args = args
012 12
013 13 def getResult(self):
014 14 return self.res
015 15
016 16 def run(self):
017 17 print 'starting', self.name, 'at:', \
018 18 ctime(time())
019 19 self.res = apply(self.func, self.args)
020 20 print self.name, 'finished at:', \
021 21 ctime(time())
022 <$nopage>

Fibonacci and factorial… take 2, plus summation

The mtfacfib.py script, given in Example 17.8, compares execution of the recursive
Fibonacci, factorial, and summation functions. This script runs all three functions in a
single-threaded manner, then performs the same task using threads to illustrate one of the
advantages of having a threading environment.

Example 17.8. Fibonacci, Factorial, Summation (mtfacfib.py)

In this MT application, we execute 3 separate recursive functions—first in a single-
threaded fashion, followed by the alternative with multiple threads.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from myThread import MyThread
004 4 from time import time, ctime, sleep
005 5
006 6 def fib(x):
007 7 sleep(0.005)
008 8 if x < 2: return 1
009 9 return (fib(x-2) + fib(x-1))
010 10
011 11 def fac(x):
012 12 sleep(0.1)
013 13 if x < 2: return 1
014 14 return (x * fac(x-1))
015 15
016 16 def sum(x):
017 17 sleep(0.1)
018 18 if x < 2: return 1
019 19 return (x + sum(x-1))
020 20
021 21 funcs = [fib, fac, sum]

IT-SC book: Core Python Programming

 575

022 22 n = 12
023 23
024 24 def main():
025 25 nfuncs = range(len(funcs))
026 26
027 27 print '*** SINGLE THREAD'
028 28 for i in nfuncs:
029 29 print 'starting', funcs[i].__name__, 'at:', \
030 30 ctime(time())
031 31 print funcs[i](n)
032 32 print funcs[i].__name__, 'finished at:', \
033 33 ctime(time())
034 34
035 35 print '\n*** MULTIPLE THREADS'
036 36 threads = []
037 37 for i in nfuncs:
038 38 t = MyThread(funcs[i], (n,),
039 39 funcs[i].__name__)
040 40 threads.append(t)
041 41
042 42 for i in nfuncs:
043 43 threads[i].start()
044 44
045 45 for i in nfuncs:
046 46 threads[i].join()
047 47 print threads[i].getResult()
048 48
049 49 print 'all DONE'
050 50
051 51 if __name__ == '__main__':
052 52 main()
053 <$nopage>

Running in single-threaded mode simply involves calling the functions one at a time and
displaying the corresponding the results right after the function call.

When running in multithreaded mode, we do not display the result right away. Because
we want to keep our MyThread class as general as possible (being able to execute
callables which do and do not produce output), we wait until the end to call the
getResult() method to finally show you the return values of each function call.

Because these functions execute so quickly (well, maybe except for the Fibonacci
function), you will noticed that we had to add calls to sleep() to each function to slow
things down so that we can see how threading may improve performance, if indeed the
actual work had varying execution times—you certainly wouldn't pad your work with
calls to sleep(). Anyway, here is the output:

% mtfacfib.py
*** SINGLE THREAD
starting fib at: Sun Jun 18 19:52:20 2000
233
fib finished at: Sun Jun 18 19:52:24 2000
starting fac at: Sun Jun 18 19:52:24 2000

IT-SC book: Core Python Programming

 576

479001600
fac finished at: Sun Jun 18 19:52:26 2000
starting sum at: Sun Jun 18 19:52:26 2000
78
sum finished at: Sun Jun 18 19:52:27 2000

*** MULTIPLE THREADS
starting fib at: Sun Jun 18 19:52:27 2000
starting fac at: Sun Jun 18 19:52:27 2000
starting sum at: Sun Jun 18 19:52:27 2000
fac finished at: Sun Jun 18 19:52:28 2000
sum finished at: Sun Jun 18 19:52:28 2000
fib finished at: Sun Jun 18 19:52:31 2000
233
479001600
78
all DONE

Producer-Consumer Problem and the Queue Module

The final example illustrates the producer-consumer scenario where a producer of goods
or services creates goods and places it in a data structure such as a queue. The amount of
time between producing goods is non-deterministic, as is the consumer consuming the
goods produced by the producer.

We use the Queue module to provide an interthread communication mechanism which
allows threads to share data with each other. In particular, we create a queue for the
producer (thread) to place new goods into and where the consumer (thread) can consume
goods from.

In particular, we will use the following attributes from the Queue module (see Table
17.3).

Table 17.3. Common Queue Module Attributes
Function/Method Description

Queue Module
Function

queue(size) creates a Queue object of given size
Queue Object
Methods

qsize() returns queue size (approximate, since queue may be getting
updated by other threads)

empty() returns 1 if queue empty, 0 otherwise
full() returns 1 if queue full, 0 otherwise
put(item,
block=0)

puts item in queue, if block given (not 0), block until room is
available

get(block=0) gets item from queue, if block given (not 0), block until an

IT-SC book: Core Python Programming

 577

item is available

Without further ado, we present the code for prodcons.py, shown in Example 17.9.

Example 17.9. Producer-Consumer Problem (prodcons.py)

We feature an implementation of the Producer–Consumer problem using Queue objects
and a random number of goods produced (and consumed). The producer and consumer
are individually—and concurrently—executing threads.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from random import randint
004 4 from time import time, ctime, sleep
005 5 from Queue import Queue
006 6 from myThread import MyThread
007 7
008 8 def writeQ(queue):
009 9 print 'producing object for Q…',
010 10 queue.put('xxx', 1)
011 11 print "size now", queue.qsize()
012 12
013 13 def readQ(queue):
014 14 val = queue.get(1)
015 15 print 'consumed object from Q… size now', \
016 16 queue.qsize()
017 17
018 18 def writer(queue, loops):
019 19 for i in range(loops):
020 20 writeQ(queue)
021 21 sleep(randint(1, 3))
022 22
023 23 def reader(queue, loops):
024 24 for i in range(loops):
025 25 readQ(queue)
026 26 sleep(randint(2, 5))
027 27
028 28 funcs = [writer, reader]
029 29 nfuncs = range(len(funcs))
030 30
031 31 def main():
032 32 nloops = randint(2, 5)
033 33 q = Queue(32)
034 34
035 35 threads = []
036 36 for i in nfuncs:
037 37 t = MyThread(funcs[i], (q, nloops), \
038 38 funcs[i].__name__)
039 39 threads.append(t)
040 40
041 41 for i in nfuncs:
042 42 threads[i].start()
043 43

IT-SC book: Core Python Programming

 578

044 44 for i in nfuncs:
045 45 threads[i].join()
046 46
047 47 print 'all DONE'
048 48
049 49 if __name__ == '__main__':
050 50 main()
051 <$nopage>

Here is the output from one execution of this script:

% prodcons.py
starting writer at: Sun Jun 18 20:27:07 2000
producing object for Q… size now 1
starting reader at: Sun Jun 18 20:27:07 2000
consumed object from Q… size now 0
producing object for Q… size now 1
consumed object from Q… size now 0
producing object for Q… size now 1
producing object for Q… size now 2
producing object for Q… size now 3
consumed object from Q… size now 2
consumed object from Q… size now 1
writer finished at: Sun Jun 18 20:27:17 2000
consumed object from Q… size now 0
reader finished at: Sun Jun 18 20:27:25 2000
all DONE

As you can see, the producer and consumer do not necessarily alternate in execution.
(Thank goodness for random numbers!) Seriously though, real life is generally random
and non-deterministic.

Line-by-line explanation

Lines 1–6

In this module, we will use the Queue.Queue object as well as our thread class
myThread.MyThread which we gave in Example 17.7. We will use random.randint()
to make production and consumption somewhat varied, and also grab the usual suspects
from the time module.

Lines 8–16

The writeQ() and readQ() functions each have a specific purpose, to place an object in
the queue—we are using the string 'xxx' for example—and to consume a queued object,
respectively. Notice that we are producing one object and reading one object each time.

Lines 18–26

The writer() is going to run as a single thread who sole purpose is to produce an item
for the queue, wait for a bit, then do it again, up to the specified number of times, chosen

IT-SC book: Core Python Programming

 579

randomly per script execution. The reader() will do likewise, with the exception of
consuming an item, of course.

You will notice that the random number of seconds that the writer sleeps is in general
shorter than the amount of time the reader sleeps. This is to discourage the reader from
trying to take items from an empty queue. By giving the writer a shorter time period of
waiting, it is more likely that there will already be an object for the reader to consume by
the time their turn rolls around again.

Lines 28–29

These are just setup lines to set the total number of threads that are to be spawned and
executed.

Lines 31–47

Finally, our main() function, which should look quite similar to the main() in all of the
other scripts in this chapter. We create the appropriate threads and send them on their
way, finishing up when both threads have concluded execution.

We infer from this example that a program that has multiple tasks to perform can be
organized to use separate threads for each of the tasks. This can result in a much cleaner
program design than a single threaded program that attempts to do all of the tasks.

In this chapter, we illustrated how a single-threaded process may limit an application's
performance. In particular, programs with independent, non-deterministic, and non-causal
tasks which execute sequentially can be improved by division into separate tasks
executed by individual threads. Not all applications may benefit from multithreading and
its overheads, but now you are more cognizant of Python's threading capability enough to
use this tool to your advantage when appropriate.

Exercises

Processes vs. Threads. What are the differences between processes and threads?

Threads. If multiple threads are running on a single CPU system, how do they share the
CPU?

Threads. Do you think anything significant happens if you have multiple threads on a
multiple CPU system? How do you think multiple threads run on these systems?

Threads and Files. Update your solution to Exercise 9-19 which obtains a byte value and
a file name, displaying the number of times that byte appears in the file. Let's suppose
this is a really big file. Multiple readers in a file is acceptable, so create multiple threads
that count in different parts of the file so that each thread is responsible for a certain part
of the file. Collate the data from each thread and provide the summed-up result. Use your

IT-SC book: Core Python Programming

 580

timeit() code to time both the single threaded version and your new multithreaded
version and say something about the performance improvement.

Threads, Files, and Regular Expressions. You have a very large mailbox file—if you
don't have one, put all of your e-mail messages together into a single text file. Your job is
to take the regular expressions you designed in Chapter 15 that recognizes e-mail
addresses and Web site URLs, and use them to convert all e-mail addresses and URLs in
this large file into live links so that when the new file is saved as a .html (or .htm)file,
will show up in a Web browser as live and clickable. Use threads to segregate the
conversion process across the large text file and collate the results into a single new .html
file. Test the results on your Web browser to ensure the links are indeed working.

Threads and Networking. Your solution to the chat service application in the previous
chapter (Exercises 16-7 to 16-10) may have required you to use heavyweight threads or
processes as part of your solution. Convert that to be multithreaded code.

*Threads and Web Programming. The Crawler in Example 19.1 is a single-threaded
application that downloads Web pages that would benefit from MT programming. Update
crawl.py (you could call it mtcrawl.py) such that independent threads are used to
download pages. Be sure to use some kind of locking mechanism to prevent conflicting
access to the links queue.

IT-SC book: Core Python Programming

 581

Chapter 18. GUI Programming with
Tkinter

In this chapter, we will give you a quick introduction to Graphical User Interface (GUI)
programming with Tkinter, Python's Tk graphics toolkit. GUI development has enough
material to warrant its own text (and it has!), but if you are somewhat new or want to
learn more about it, or if you want to see how it's done in Python, then this chapter is for
you. We present four simple examples and one intermediate example, and will defer a
more complete tour of Tkinter to texts devoted purely to GUI programming in Python.

Introduction

What Are Tcl, Tk, and Tkinter?

Tkinter is Python's default graphical user interface library. It is based on the Tk toolkit,
originally designed for the Tool Command Language (TCL). Due to Tk's popularity, it
has been ported to a variety of other scripting languages, including Perl (Perl/Tk) and
Python (Tkinter). With the GUI development portability and flexibility of Tk, along with
the simplicity of scripting language integrated with the power of systems language, you
are given the tools to rapidly design and implement a wide variety of commercial-quality
GUI applications.

If you are new to GUI programming, you will be pleasantly surprised at how easy it is.
You will also find that Python, along with Tkinter, provide a fast and exciting way to
build applications that are fun (and perhaps useful) and that would have taken much
longer if you had to program directly in C/C++ with the native windowing system's
libraries. Once you have designed the application and the look-and-feel that goes along
with your program, you will use basic building blocks known as widgets to piece together
the desired components, and finally, to attach functionality to "make it real."

If you are an "old-hat" at using Tk, either with Tcl or Perl, you will find Python a
refreshing way to program GUIs, on top of that, it provides an even faster rapid
prototyping system for building GUIs. Remember that you also have Python's system-
accessibility, networking functionality, XML, numerical and visual processing, database
access, and all the other standard library and third-party extension modules.

Once you get Tkinter up on your system, it will take less than 15 minutes to get your first
GUI app running.

Getting Tkinter Installed and Working

IT-SC book: Core Python Programming

 582

Like threading, Tkinter is not necessarily turned on by default on your system. You can
tell whether Tkinter is available for your Python interpreter by attempting to import the
Tkinter module. If Tkinter is available, then no errors occur:

>>> import Tkinter
>>>

If your Python interpreter was not compiled with Tkinter enabled, the module import fails:

>>> import Tkinter
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "/usr/lib/python1.5/lib-tk/Tkinter.py", line 8, in ?
 import _tkinter # If this fails your Python may not
be configured for Tk
ImportError: No module named _tkinter

You may have to recompile your Python interpreter to get access to Tkinter. This usually
involves editing the Modules/Setup file and enabling all the correct settings to compile
your Python interpreter with hooks to Tkinter or choosing to have Tk installed on your
system. Check the README file for your Python distribution for specific instructions on
getting Tkinter to compile on your system. Be sure, after your compilation, that you start
the new Python interpreter you just created; otherwise, it will act just like your old one
without Tkinter (and in fact, it is your old one).

Client-Server Architecture—Take 2

In the earlier chapter on network programming, we introduced the notion of client-server
computing. A windowing system is another example of a software server. These run on a
machine with an attached display, such as a monitor of some sort. There are clients too—
programs which require a windowing environment to execute, also known as GUI
applications. Such applications cannot run without a windows system.

The architecture becomes even more interesting when networking comes into play.
Usually when a GUI application is executed, it displays to the machine that it started on
(via the windowing server), but it is possible in some networked windowing
environments, such as the X Windows system on Unix, to choose another machine's
window server to display to. In such situations, you can be running a GUI program on
one machine, but have it displayed at another!

Tkinter and Python Programming

Tkinter Module: Adding Tk to your Applications

IT-SC book: Core Python Programming

 583

So what do you need to do to have Tkinter as part of your application? Well, first of all, it
is not necessary to have an application already. You can create a pure graphical user
interface if you want, but it probably isn't too useful without some underlying software
that does something interesting.

There are basically five main steps that are required to get your GUI up-and-running:

Import the Tkinter module (or from Tkinter import *).

Create a top-level windowing object which contains your entire GUI application.

Built all your GUI components (and functionality) on top (or "inside") of your top-level
windowing object).

Connect these GUI components to the underlying application code.

Enter the main event loop.

The first step is trivial: All GUIs which use Tkinter must import the Tkinter module.
Getting access to Tkinter is the first step (see the previous Section 18.1.2).

Introduction to GUI Programming

Before going to the examples, we will give you a brief introduction to GUI application
development in general. This will give you some of the background you need to move
forward.

Setting up a GUI application is similar to an artist's producing a painting. Conventionally,
there is a single canvas onto which the artist must put all the work. The way it works is
like this: You start with a clean slate, a "top-level" windowing object on which you build
the rest of your components. Think of it as a foundation to a house or the easel for an
artist. In other words, you have to pour the concrete or set up your easel before putting
together the actual structure or canvas on top of it. In Tkinter, this foundation is known as
the top-level window object.

In GUI programming, a top-level root windowing object contains all of the little
windowing objects that will be part of your complete GUI application. These can be text
labels, buttons, list boxes, etc. These individual little GUI components are known as
widgets. So when we say create a top-level window, we just mean that you need such a
thing as a place where you put all your widgets. In Python, this would typically look like
the line below :

top = Tkinter.Tk() # or just Tk() with "from Tkinter import *"

IT-SC book: Core Python Programming

 584

The object returned by Tkinter.Tk() is usually referred to as the root object, hence the
reason why some applications use root rather than top to indicate as such. Top-level
windows are those which show up standalone as part of your application, and, yes, you
may have more than one top-level window for your GUI, but only one of them should be
your root window. You may choose to completely design all your widgets first, then add
the real functionality, or do a little of this and a little of that along the way. (This means
mixing and matching steps 3 and 4 from our list above.)

Widgets may be standalone or be containers. If a widget "contains" other widgets, it is
considered the parent of those widgets. Accordingly, if a widget is "contained" in another
widget, it's considered a child of the parent, the parent being the next immediate
enclosing container widget.

Usually, widgets have some associated behaviors, such as when a button is pressed, or
text is filled into a text field. These types of user behaviors are called events, and the
actions that the GUI takes to respond to such events are known as callbacks.

Actions may include the actual button press (and release), mouse movement, hitting the
RETURN or Enter key, etc. All of these are known to the system literally as events. The
entire system of events which occurs from the beginning to the end of a GUI application
is what drives it. This is known as event-driven processing.

One example of an event with a callback is a simple mouse move. Let's say the mouse
pointer is sitting somewhere on top of your GUI application. If the mouse is moved to
another part of your application, something has to cause the movement of the mouse on
your screen so that it looks as if it is moving to another location. These are mouse move
events that the system must process to give you the illusion (and reality) that your mouse
is moving across the window. When you release the mouse, there are no more events to
process, so everything just sits there quietly on the screen again.

The event-driven processing nature of GUIs fits right in with client-server architecture.
When you start a GUI application, it must perform some setup procedures to prepare for
the core execution, just as when a network server has to allocate a socket and bind it to a
local address. The GUI application must establish all the GUI components, then draw
(a.k.a. render or paint) them to the screen. Tk has a couple of geometry managers which
help position the widget in the right place; the main one which you will use is called the
packer. Once the packer has determined the sizes and alignments of all your widgets, it
will then place them on the screen for you.

When all of the widgets, including the top-level window finally appear on your screen,
your GUI application then enters a "server-like" infinite loop. This infinite loop involves
waiting for a GUI event, processing it, then going back to wait for the next event.

The final step we described above says to enter the main loop once all the widgets are
ready. This is the "server" infinite loop we have been referring to. In Tkinter, the code
that does this is:

IT-SC book: Core Python Programming

 585

Tkinter.mainloop()

This is normally the last piece of sequential code your program runs. When the main loop
is entered, the GUI takes over execution from there. All other action is via callbacks,
even exiting your application. When you pull down the File menu to click on the Exit
menu option or close the window directly, a callback must be invoked to end your GUI
application.

Top-level window: Tkinter.Tk()

We mentioned above that all main widgets are built into the top-level window object.
This object is created by the Tk class in Tkinter and is created via the normal instantiation:

>>> import Tkinter
>>> top = Tkinter.Tk()

Within this window, you place individual widgets or multiple-component pieces together
to form your GUI. So what kinds of widgets are there? We will now introduce the Tk
widgets.

Tk Widgets

There are currently 15 types of widgets in Tk. We present these widgets as well as a brief
description in Table 18.1.

We won't go over the Tk widgets in detail as there is plenty of good documentation
available on them, either from the Tkinter topics page at the main Python Web site or the
abundant number of Tcl/Tk printed and online resources (some of which are available in
the Appendix). However, we will present several simple examples to help you get started.

NOTE

GUI development really takes advantage of default arguments in Python because there
are numerous default actions in Tkinter widgets. Unless you know every single option
available to you for every single widget you are using, it's best to start out by setting only
the parameters you are aware of and letting the system handle the rest. These defaults
were chosen carefully. If you do not provide these values, do not worry about your
applications appearing odd on the screen. They were created with an optimized set of
default arguments as a general rule, and only when you know how to exactly customize
your widgets should you use values other than the default.

IT-SC book: Core Python Programming

 586

Table 18.1. Tk Widgets
Widgets Description

Button similar to a Label but provides additional functionality for mouse
overs, presses, and releases as well as keyboard activity/events

Canvas provides ability to draw shapes (lines, ovals, polygons, rectangles);
can contain images or bitmaps

Checkbutton set of boxes of which any number can be "checked" (similar to HTML
checkbox input)

Entry single-line text field with which to collect keyboard input (similar to
HTML text input)

Frame pure container for other widgets
Label used to contain text or images
Listbox presents user list of choices to pick from
Menu actual list of choices "hanging" from a Menubutton that the user can

choose from
Menubutton provides infrastructure to contain menus (pulldown, cascading, etc.)
Message similar to a Label, but displays multi-line text
Radiobutton set of buttons of which only one can be "pressed" (similar to HTML

radio input)
Scale linear "slider" widget providing an exact value at current setting; with

defined starting and ending values
Scrollbar provides scrolling functionality to supporting widgets, i.e., Text,

Canvas, Listbox, and Entry
Text multi-line text field with which to collect (or display) text from user

(similar to HTML textarea)
Toplevel similar to a Frame, but provides a separate window container

Tkinter Examples

Label Widget

In Example 18.1, we present tkhello1.py, the Tkinter version of "Hello World!" In
particular, it shows you how a Tkinter application is set up and highlights the Label
widget

Example 18.1. Label Widget Demo (tkhello1.py)

Our first Tkinter example is… what else? "Hello World!" In particular, we introduce our
first widget, the Label.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4
005 5 top = Tkinter.Tk()

IT-SC book: Core Python Programming

 587

006 6 label = Tkinter.Label(top, text='Hello World!')
007 7 label.pack()
008 8 Tkinter.mainloop()
009 <$nopage>

In the first line, we create our top-level window. That is followed by our Label widget
containing the all-too-famous string. We instruct the packer to manage and display our
widget, and finally call mainloop() to run our GUI application. Figure18-1 shows what
you will see when you run this GUI application.

Figure 18-1. Tkinter Label Widget (tkhello1.py)

Button Widget

The next example is pretty much the same as the first. However, instead of a simple text
label, we will create a button instead. In Example 18.2 is the source code for
tkhello2.py:

Example 18.2. ButtonWidget Demo (tkhello2.py)

This example is exactly the same as tkhello1.py except that rather than using a Label
widget, we create a Button widget.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4
005 5 top = Tkinter.Tk()
006 6 quit = Tkinter.Button(top, text='Hello World!',
007 7 command=top.quit)
008 8 quit.pack()
009 9 Tkinter.mainloop()
010 <$nopage>

The first few lines are identical. Things differ only when we create the Button widget.
Our button has one additional parameter, the Tkinter.quit() method. This installs a
callback to our button so that if it is pressed (and released), the entire application will exit.

IT-SC book: Core Python Programming

 588

The final two lines are the usual pack() and entering of the mainloop(). This simple
button application is shown in Figure18-2.

Figure 18-2. Tkinter Button Widget (tkhello2.py)

Label and Button Widgets

We combine tkhello1.py and tkhello2.py into tkhello3.py, a script which has both
a label and a button. In addition, we are providing more parameters now than before
when we were comfortable using all the default arguments which are automatically set
for us. The source for tkhello3.py is given in Example 18.3.

Example 18.3. Label and Button Widget Demo (tkhello3.py)

This example features both a Label and a Button widget. Rather than primarily using
default arguments when creating the widget, we are able to specify more now that we
know more about Button widgets and how to configure them.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import Tkinter
004 4 top = Tkinter.Tk()
005 5
006 6 hello = Tkinter.Label(top, text='Hello World!')
007 7 hello.pack()
008 8
009 9 quit = Tkinter.Button(top, text='QUIT',
010 10 command=top.quit, bg='red', fg='white')
011 11 quit.pack(fill=Tkinter.X, expand=1)
012 12
013 13 Tkinter.mainloop()
014 <$nopage>

Besides additional parameters for the widgets, we also see some arguments for the packer.
The fill parameter tells the packer to let the QUIT button take up the rest of the
horizontal real estate, and the expand parameter directs the packer to visually fill out the
entire horizontal landscape, stretching the button to the left and right sides of the window.

IT-SC book: Core Python Programming

 589

As you can see in Figure18-3, without any other instructions to the packer, the widgets
are placed vertically (on top of each other). Horizontal placement requires creating a new
Frame object with which to add the buttons. That frame will take the place of the parent
object as a single child object (see the buttons in the listdir.py module, Example 18.5
in Section 18.3.5).

Figure 18-3. Tkinter Label and Button Widgets (tkhello3.py)

Label, Button, and Scale Widgets

Our final trivial example, tkhello4.py, involves the addition of a Scale widget. In
particular, the Scale is used to interact with the Label widget. The Scale slider is a tool
which controls the size of the text font in the Label widget. The greater the slider
position, the larger the font, and the same goes for a lesser position, meaning a smaller
font. The code for tkhello4.py is given in Example 18.4.

New features of this script include a resize() callback function (lines 5–7), which is
attached to the Scale. This is the code that is activated when the slider on the Scale is
moved, resizing the size of the text in the Label.

We also define the size (250×150) of the top-level window (line 10). The final difference
between this script and the first three is that we import the attributes from the Tkinter
module into our namespace with "from Tkinter import *." This is mainly due to the
fact that this application is larger and involves a large number of references to Tkinter
attributes, which would otherwise require their fully-qualified names. The code is
shortened a bit and perhaps may not wrap as many lines without importing all the
attributes locally.

Example 18.4. Label, Button, and Scale Demo (tkhello4.py)

IT-SC book: Core Python Programming

 590

Our final introductory widget example introduces the Scale widget and highlights how
widgets can "communicate" with each other using callbacks [such as resize()]. The text
in the Label widget is affected by actions taken on the Scale widget.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from Tkinter import * <$nopage>
004 4
005 5 def resize(ev=None):
006 6 label.config(font='Helvetica -%d bold' % \
007 7 scale.get())
008 8
009 9 top = Tk()
010 10 top.geometry('250×150')
011 11
012 12 label = Label(top, text='Hello World!',
013 13 font='Helvetica -12 bold')
014 14 label.pack(fill=Y, expand=1)
015 15
016 16 scale = Scale(top, from_=10, to=40,
017 17 orient=HORIZONTAL, command=resize)
018 18 scale.set(12)
019 19 scale.pack(fill=X, expand=1)
020 20
021 21 quit = Button(top, text='QUIT',
022 22 command=top.quit, activeforeground='white',
023 23 activebackground='red')
024 24 quit.pack()
025 25
026 26 mainloop()
027 <$nopage>

As you can see from Figure18-4, both the slider mechanism as well as the current set
value show up in the main part of the window.

Figure 18-4. Tkinter Label, Button, and Scale Widgets (tkhello4.py)

IT-SC book: Core Python Programming

 591

Intermediate Tkinter Example

We conclude this section with a larger example, listdir.py. This application is a
directory tree traversal tool. It starts in the current directory and provides a file listing.
Double-clicking on any other directory in the list causes the tool to change to the new
directory as well as replace the original file listing with the files from the new directory.
The source code is given below as Example 18.5.

Example 18.5. File System Traversal GUI (listdir.py)

This slightly more advanced GUI expands on the use of widgets, adding listboxes, text
entry fields, and scrollbars to our repertoire. There are also a good number of callbacks
such as mouse clicks, key presses, and scrollbar action.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import os
004 4 from time import sleep
005 5 from Tkinter import * <$nopage>
006 6

IT-SC book: Core Python Programming

 592

007 7 class DirList:
008 8
009 9 def __init__(self, initdir=None):
010 10 self.top = Tk()
011 11 self.label = Label(self.top,
012 12 text='Directory Lister' + ' v1.1')
013 13 self.label.pack()
014 14
015 15 self.cwd=StringVar(self.top)
016 16
017 17 self.dirl = Label(self.top, fg='blue',
018 18 font=('Helvetica', 12, 'bold'))
019 19 self.dirl.pack()
020 20
021 21 self.dirfm = Frame(self.top)
022 22 self.dirsb = Scrollbar(self.dirfm)
023 23 self.dirsb.pack(side=RIGHT, fill=Y)
024 24 self.dirs = Listbox(self.dirfm, height=15,
025 25 width=50, yscrollcommand=self.dirsb.set)
026 26 self.dirs.bind('<Double-1>', self.setDirAndGo)
027 27 self.dirsb.config(command=self.dirs.yview)
028 28 self.dirs.pack(side=LEFT, fill=BOTH)
029 29 self.dirfm.pack()
030 30
031 31 self.dirn = Entry(self.top, width=50,
032 32 textvariable=self.cwd)
033 33 self.dirn.bind('<Return>', self.doLS)
034 34 self.dirn.pack()
035 35
036 36 self.bfm = Frame(self.top)
037 37 self.clr = Button(self.bfm, text='Clear',
038 38 command=self.clrDir,
039 39 activeforeground='white',
040 40 activebackground='blue')
041 41 self.ls = Button(self.bfm,
042 42 text='List.Directory',
043 43 command=self.doLS,
044 44 activeforeground='white',
045 45 activebackground='green')
046 46 self.quit = Button(self.bfm, text='Quit',
047 47 command=self.top.quit,
048 48 activeforeground='white',
049 49 activebackground='red')
050 50 self.clr.pack(side=LEFT)
051 51 self.ls.pack(side=LEFT)
052 52 self.quit.pack(side=LEFT)
053 53 self.bfm.pack()
054 54
055 55 if initdir:
056 56 self.cwd.set(os.curdir)
057 57 self.doLS()
058 58
059 59 def clrDir(self, ev=None):
060 60 self.cwd.set('')
061 61
062 62 def setDirAndGo(self, ev=None):
063 63 self.last = self.cwd.get()

IT-SC book: Core Python Programming

 593

064 64 self.dirs.config(selectbackground='red')
065 65 check = self.dirs.get(self.dirs.curselection())
066 66 if
067 not check:
068 67 check = os.curdir
069 68 self.cwd.set(check)
070 69 self.doLS()
071 70
072 71 def doLS(self, ev=None):
073 72 error = ''
074 73 tdir = self.cwd.get()
075 74 if
076 not tdir: tdir =
os.curdir
077 75
078 76 if
079 not
os.path.exists(tdir):
080 77 error = tdir + ': no such file'
081 78 elif
082 not
os.path.isdir(tdir):
083 79 error = tdir + ': not a directory'
084 80
085 81 if error:
086 82 self.cwd.set(error)
087 83 self.top.update()
088 84 sleep(2)
089 85 if not (hasattr(self, 'last') \
090 86 and self.last):
091 87 self.last = os.curdir
092 88 self.cwd.set(self.last)
093 89 self.dirs.config(\
094 90 selectbackground='LightSkyBlue')
095 91 self.top.update()
096 92 return <$nopage>
097 93
098 94 self.cwd.set(\
099 95 'FETCHING DIRECTORY CONTENTS…')
100 96 self.top.update()
101 97 dirlist = os listdir(tdir)
102 98 dirlist sort()
103 99 os.chdir(tdir)
104 100 self.dirl.config(text=os.getcwd())
105 101 self.dirs.delete(0, END)
106 102 self.dirs.insert(END, os.curdir)
107 103 self.dirs.insert(END, os.pardir)
108 104 for eachFile in dirlist:
109 105 self.dirs.insert(END, eachFile)
110 106 self.cwd.set(os.curdir)
111 107 self.dirs.config(\
112 108 selectbackground='LightSkyBlue')
113 109
114 110 def main():
115 111 d = DirList(os.curdir)
116 112 mainloop()
117 113

IT-SC book: Core Python Programming

 594

118 114 if __name__ == '__main__':
119 115 main()
120 <$nopage>

In Figure18-5, we present what this GUI looks like in a Windows environment:

Figure 18-5. List Directory GUI Application in Windows (listdir.py)

The Unix version of this application is given in Figure18-6.

Figure 18-6. List Directory GUI Application in UNIX (listdir.py)

IT-SC book: Core Python Programming

 595

Line-by-line explanation

Lines 1–5

These first few lines contain the usual Unix start-up line and importation of the os
module, the time.sleep() function, and all attributes of the Tkinter module.

Lines 9–13

These lines define the constructor for the DirList class, an object which represents our
application. The first Label we create contains the main title of the application and the
version number.

Lines 15–19

We declare a Tk variable named cwd to hold the name of the directory we are on—we
will see where this comes in handy later. Another Label is created to display the name of
the current directory.

Lines 21–30

This section defines the core part of our GUI, the Listbox dirs, which contain the list
of files of the directory that is being listed. A Scrollbar is employed to allow the user to
move through a listing if the number of files exceeds the size of the Listbox. Both of
these widgets are contained in a Frame widget. Listbox entries have a callback
(setdirandgo) tied to them using the Listbox bind() method.

IT-SC book: Core Python Programming

 596

Binding means to tie a keystroke, mouse action, or some other event to a call back to be
executed when such an event is generated by the user. setdirandgo() will be called if
any item in the Listbox is doubleclicked. The Scrollbar is tied to the Listbox by
calling the Scrollbar.config() method.

Lines 32–35

We then create a text Entry field for the user to enter the name of the directory he or she
wants to traverse to and see its files listed in the Listbox. We add a RETURN or Enter
key binding to this text entry field so that the user can hit RETURN as an alternative to
pressing a button. The same applies for the mouse binding we saw above in the Listbox.
When the user doubleclicks on a Listbox item, it has the same effect as the user's
entering the directory name manually into the text Entry field and pressing the "go"
button.

Lines 37–54

We then define a Button frame (bfm) to hold our three buttons, a "clear" button (clr),
"go" button (ls), and a "quit" button (quit). Each button has its own different
configuration and callbacks, if pressed.

Lines 56–58

The final part of the constructor initializes the GUI program, starting with the current
working directory.

Lines 60–61

The clrDir() method clears the cwd Tk string variable, which contains the current
directory which is "active." This variable is used to keep track of what directory we are in
and, more importantly, helps keep track of the previous directory in case errors arise. You
will notice the ev variables in the callback functions with a default value of None. Any
such values would be passed in by the windowing system. They may or may not be used
in your callback.

Lines 63–71

The setDirAndGo() method sets the directory to traverse to and issues the call to the
method that makes it all happen, doLS().

Lines 73–108

doLS() is, by far, the key to this entire GUI application. It performs all the safety checks
(e.g., is the destination a directory and does it exist?). If there is an error, the last
directory is reset to be the current directory. If all goes well, it calls os.listdir() to get
the actual set of files and replaces the listing in the Listbox. While the background work

IT-SC book: Core Python Programming

 597

is going on to pull in the new directory's information, the highlighted blue bar becomes a
bright red. When the new directory has been installed, it reverts to blue.

Lines 110–115

The last pieces of code in listdir.py represent the main part of the code. main() is
executed only if this script is invoked directly, and when main() runs, it creates the GUI
application, then calls mainloop() to start the GUI, which is passed control of the
application.

We leave all other aspects of the application as an exercise to the reader, recommending
that it is easier to view the entire application as a combination of a set of widgets and
functionality. If you see the individual pieces clearly, then the entire script will not appear
as daunting.

We hope that we have given you a good introduction to GUI programming with Python
and Tkinter. Remember that the best way to get familiar with Tkinter programming is by
practicing and stealing a few examples! The Python distribution comes with a large
number of demonstration applications (see the Demo directory) that you can study. And as
we mentioned earlier, there is also an entire text devoted to Tkinter programming.

One final note: do you still doubt the ability of Tkinter to produce a commercial
application? Take a close look at IDLE. IDLE itself is a Tkinter application (written by
Guido)!

Related Modules and Other GUIs

There are other GUI development systems which can be used with Python. We present
the appropriate modules along with their corresponding window systems in Table 18.2.

Table 18.2. GUI Systems Available Under Python
GUI Module or System Description

Other Tkinter Modules
Pmw Python Mega Widgets
Open Source
wxPython wxWindows
PyGTK GTK+/GNOME/Glade/GIMP
PyQt/PyKDE Qt/KDE
Commercial
win32ui Microsoft MFC
swing Sun Microsystems Java/Swing

Exercises

Client-Server Architecture. Describe the roles of a windows (or windowing) server and a
windows client.

IT-SC book: Core Python Programming

 598

Object-Oriented Programming. Describe the relationship between child and parent
windows.

Label widgets. Update the tkhello1.py script to display your own message instead of
"Hello World!"

Label and Button widgets. Update the tkhello3.py script so that there are three new
buttons in addition to the QUIT button. Pressing any of the three buttons will result in
changing the text label so that it will then contain the text of the Button (widget) that was
pressed.

Label, Button, and Radiobutton widgets. Modify your solution to the previous
problem so that there are three Radiobuttons presenting the choices of text for the
Label. There are two buttons: the QUIT button and an "Update" button. When the
Update button is pressed, the text label will then be changed to contain the text of the
selected Radiobutton. If no Radiobutton has been checked, the Label will remain
unchanged.

Label, Button, and Entry widgets. Modify your solution to the previous problem so
that the three Radiobuttons are replaced by a single Entry text field widget with a
default value of "Hello World!" (to reflect the initial string in the Label). The Entry field
can be edited by the user with a new text string for the Label which will be updated if the
Update button is pressed.

Label and Entry Widgets and Python I/O. Create a GUI application that provides an
Entry field where the user can provide the name of a text file. Open the file and read it,
displaying its contents in a Label. EXTRA CREDIT (Menus): replace the Entry widget
with menu that has a File Open option that pops up a window to allow the user to specify
the file to read. Also add an Exit or Quit option to the menu rather than having a QUIT
button.

Simple Text Editor. Use your solution to the previous problem to create a simple text
editor. A file can be created from scratch or read and displayed into a Text widget which
can be edited by the user. When the user quits the application (either with the QUIT
button or the Quit/Exit menu option), the user is prompted whether to save the changes.
EXTRA CREDIT: interface your script to a spellchecker and add a button or menu option
to spellcheck the file. The words which are misspelled should be highlighted by using a
different foreground or background color in the Text widget.

Multithreaded Chat Applications. The chat programs from Chapters 13, 16, and 17 need
completion. Create a fully-functional multithreaded chat server. A GUI is not really
necessary for the server unless you want to create one as a front-end to its configuration,
i.e., port number, name, connection to a name server, etc. Create a multithreaded chat
client which has separate threads to monitor user input (and sends the message to the
server for broadcast) and another thread to accept incoming messages to display to the
user. The client front-end GUI should have two portions of the chat window: a larger

IT-SC book: Core Python Programming

 599

section with multiple lines to hold all the dialog, and a smaller text entry field to accept
input from the user.

IT-SC book: Core Python Programming

 600

Chapter 19. Web Programming

Introduction

No Python book would be complete without discussing how to do Web programming,
one of the main avenues in which people discover Python. In fact, one of the very first
Python books was named, "Internet Programming with Python" (unfortunately out-of-
print). This introductory chapter on web programming will give you a quick and high-
level overview of the kinds of things you can do with Python on the Internet, from Web
surfing to creating user feedback forms, from recognizing Uniform Resource Locators to
generating dynamic Web page output.

Web Surfing: Client-Server Computing (Again?!?)

Web surfing falls under the same client-server architecture umbrella that we have seen
repeatedly. This time, Web clients are browsers; applications allow users to seek
documents on the World Wide Web. On the other side are Web servers, processes which
run on an information provider's host computers. These servers wait for clients and their
document requests, process them, and return the requested data. As with most servers in a
client-server system, Web servers are designed to run "forever." The Web surfing
experience is best illustrated by Figure19-1. Here, a user runs a Web client program such
as a browser and makes a connection to a Web server elsewhere on the Internet to obtain
their information.

Figure 19-1. Web Client and Web Server on the Internet. A client sends a
request out over the Internet to the server, which then responds with the

requested data back to the client.

Clients may issue a variety of requests to Web servers. Such requests may include
obtaining a Web page for viewing or submitting a form with data for processing. The

IT-SC book: Core Python Programming

 601

request is then serviced by the Web server, and the reply comes back to the client in a
special format for display purposes.

The "language" which is spoken by Web clients and servers, the standard protocol used
for Web communication, is called HTTP, which stands for HyperText Transfer Protocol.
HTTP is written "on top of" the TCP and IP protocol suite, meaning that it relies on TCP
and IP to carry out its lower-level communication functionality. Its responsibility is not to
route or deliver messages—TCP and IP handle that—but to respond to client requests.

HTTP is known as a "stateless" protocol because it does not keep track of information
from one client request to the next, similar to the client-server architecture we have seen
so far. The server stays running, but client interactions are singular events structured in
such a way that once a client request is serviced, it quits. New requests can always be
sent, but they are considered separate service requests. Because of the lack of context per
request, you may notice that some URLs have a long set of variables and values chained
as part of the request to provide some sort of state information. Another alternative is the
use of "cookies"—static data stored on the client side which generally contains state
information as well. In later parts of this chapter, we will look at how to use both long
URLs and cookies to maintain state information.

The Internet

The Internet is a moving and fluctuating "cloud" or "pond" of interconnected clients and
servers scattered around the globe. Communication between client and server consists of
a series of connections from one lily pad on the pond to another, with the last step
connecting to the server. As a client user, all this detail is kept hidden from your view.
The abstraction is to have a direct connection between you the client and the server you
are "visiting," but the underlying HTTP, TCP, and IP protocols are hidden underneath,
doing all of the dirty work. Information regarding the intermediate "nodes" is of no
concern or consequence to the general user anyway, so it's good that the implementation
is hidden. Figure19-2 shows an expanded view of the Internet.

Figure 19-2. A Grand View of the Internet. The left side illustrates where
you would find Web clients while the right side hints as to where Web

servers are typically located.

IT-SC book: Core Python Programming

 602

As you can see from the figure, the Internet is made up of multiply-interconnected
networks, all working with some sense of (perhaps disjointed) harmony. The left half of
the diagram is focused on the Web clients, users who are either at home dialed-in to their
Internet Service Provider (ISP) or at work on their company's Local Area Network
(LAN).

The right hand side of the diagram concentrates more on Web servers and where they can
be found. Corporations with larger Web sites will typically have an entire "Web server
farm" located at their ISP. Such physical placement is called colocation, meaning that a
company's servers are "co-located" at an ISP along with machines from other corporate
customers. These servers are either all providing different data to clients or are part of a
redundant system with duplicated information designed for heavy demand (high number
of clients). Smaller corporate Web sites may not require as much hardware and
networking gear, and hence, may only have one or several colocated servers at their ISP.

In either case, most colocated servers are stored with a larger ISP sitting on a network
backbone, meaning that they have a "fatter" (meaning wider) and presumably faster
connection to the Internet—closer to the "core" of the Internet, if you will. This permits
clients to access the servers quickly—being on a backbone means clients do not have to

IT-SC book: Core Python Programming

 603

hop across as many networks to access a server, thus allowing more clients to be serviced
within a given time period.

One should also keep in mind that although Web surfing is the most common Internet
application, it is not the only one and is certainly not the oldest. The Internet predates the
Web by almost three decades. Before the Web, the Internet was mainly used for
educational and research purposes. Most of the systems on the Internet run Unix, a multi-
user operating system, and many of the original Internet protocols are still around today.

Such protocols include telnet (allows for users to login to a remote host on the Internet
and still in use today), FTP (the File Transfer Protocol which enables users to share files
and data via uploading or downloading and also still in use today), gopher (the precursor
to the Web search engine—a "gopher"-like piece of software that "tunneled the Internet"
looking for the data that you were interested in), SMTP or Simple Mail Transfer Protocol
(the protocol used for one of the oldest and most widely used Internet applications:
electronic mail), and NNTP (News-to-News Transfer Protocol).

Since one of Python's initial strengths was Internet programming, you will find support
for all of the protocols discussed above in addition to many others. We differentiate
between "Internet programming" and "Web programming" by stating that the latter
pertains only to applications developed specifically for Web applications, i.e., Web
clients and servers, our focus for this chapter. Internet programming covers a wider range
of applications, including some of the Internet protocols we previously mentioned, such
as FTP, SMTP, etc., as well as network and socket programming in general, as we
discussed in a previous chapter.

Web Surfing with Python: Creating Simple Web Clients

One thing to keep in mind is that a browser is only one type of Web client. Any
application that makes a request for data from a Web server is considered a "client." Yes,
it is possible to create other clients which retrieve documents or data off the Internet. One
important reason to do this is that a browser provides only limited capacity, i.e., it is used
primarily for viewing and interacting with Web sites. A client program, on the other hand,
has the ability to do more—it can not only download data, it can also store it, manipulate
it, or perhaps even transmit it to another location or application.

Applications which use the urllib module to download or access information on the
Web [using either urllib.urlopen() or urllib.urlretrieve()] can be considered a
simple Web client. All you need to do is provide a valid Web address.

Uniform Resource Locators

Simple Web surfing involves using Web addresses called Uniform Resource Locators
(URLs). Such addresses are used to locate a document on the Web or to call a CGI
program to generate a document for your client. URLs are part of a larger set of
identifiers known as URIs (Uniform Resource Identifiers). This superset was created in
anticipation of other naming conventions which have yet to be developed. A URL is

IT-SC book: Core Python Programming

 604

simply a URI which uses an existing protocol or scheme (i.e., http, ftp, etc.) as part of its
addressing. To complete this picture, we'll add that non-URL URIs are sometimes known
as URNs (Uniform Resource Names), but because URLs are the only URIs in use today,
you really don't hear much about URIs or URNs.

Like street addresses, Web addresses have some structure. An American street address
usually is of the form "number street designation," i.e., 123 Main Street. It differs from
other countries, which have their own rules. A URL is of the format:

prot_sch://net_loc/path;params?query#frag

Table 19.1 describes each of the components.

Table 19.1. Web Address Components

URL Component Description

prot_sch network protocol or download scheme

net_loc location of server (and perhaps user information)

path slash (/) delimited path to file or CGI application

params optional parameters

query ampersand (&) delimited set of "key=value" pairs

frag fragment to a specific anchor within document

net_loc can be broken down into several more components, some required, others
optional. The net_loc string looks like this:

user:passwd@host:port

These individual components are described in Table 19.2.

IT-SC book: Core Python Programming

 605

Table 19.2. Network Location Components

net_loc

Component Description

user user name or login

passwd user password

host name or address of machine running Web server [required]

port port number (if not 80, the default)

Of the four, the host name is the most important. The port number is necessary only if
the Web server is running on a different port number from the default. (If you aren't sure
what a port number is, go back to Chapter 16.)

User names and perhaps passwords are used only when making FTP connections, and
even then, they usually aren't necessary because the majority of such connections are
"anonymous."

Python supplies two different modules, each dealing with URLs in completely different
functionality and capacities. One is urlparse, and the other is urllib. We will briefly
introduce some of their functions here.

urlparse Module

The urlparse module provides basic functionality with which to manipulate URL
strings. These functions include urlparse(), urlunparse(), and urljoin().

urlparse.urlparse()

urlparse() breaks up a URL string into some of the major components described above
and has the following syntax:

urlparse(urlstr, defProtSch=None, allowFrag=None)

IT-SC book: Core Python Programming

 606

urlparse() parses urlstr into a 6-tuple (prot_sch, net_loc, path, params,
query, frag). Each of these components has been described above. defProtSch
indicates a default network protocol or download scheme in case one is not provided in
urlstr. allowFrag is a flag that signals whether or not a fragment part of a URL is
allowed. Here is what urlparse() outputs when given a URL:

>>> urlparse.urlparse('http://www.python.org/doc/FAQ.html')
('http', 'www.python.org', '/doc/FAQ.html', '', '', '')

urlparse.urlunparse()

urlunparse() does the exact opposite of urlparse()—it merges a 6-tuple (prot_sch,
net_loc, path, params, query, frag)—urltup, which could be the output of
urlparse(), into a single URL string and returns it. Accordingly, we state the following
equivalence:

urlunparse(urlparse(urlstr)) = urlstr

You may have already surmised that the syntax of urlunparse() is as follows:

urlunparse(urltup)

urlparse.urljoin()

The urljoin() function is useful in cases where many related URLs are needed, for
example, the URLs for a set of pages to be generated for a Web site. The syntax for
urljoin() is:

urljoin(baseurl, newurl, allowFrag=None)

urljoin() takes baseurl and joins its base path (net_loc plus the full path up to, but
not including, a file at the end) with newurl. For example:

>>> urlparse.urljoin('http://www.python.org/doc/FAQ.html', \
… 'current/lib/lib.htm')
'http://www.python.org/doc/current/lib/lib.html'

IT-SC book: Core Python Programming

 607

A summary of the functions in urlparse can be found in Table 19.3

Table 19.3. Core urlparse Module Functions

urlparse Functions Description

urlparse(urlstr,
defProtSch=None,
allowFrag=None)

parses urlstr into separate components, using
defProtSch if the protocol or scheme is not given in
urlstr; allowFrag determines whether a URL
fragment is allowed

urlunparse(urltup) unparses a tuple of URL data (urltup) into a single
URL string

urljoin(baseurl,
newurl,allowFrag=None)

merges the base part of the baseurl URL with
newurl to form a complete URL; allowFrag is the
same as for urlparse()

urllib Module

NOTE

Unless you are planning on writing a more lower-level network client, the urllib
module provides all the functionality you need. urllib provides a high-level Web
communication library, supporting the basic Web protocols, HTTP, FTP, and Gopher, as
well as providing access to local files. Specifically, the functions of the urllib module
are designed to download data (from the Internet, local network, or local host) using the
aforementioned protocols. Use of this module generally obviates the need for using the
httplib, ftplib, and gopherlib modules unless you desire their lower-level
functionality. In those cases, such modules can be considered as alternatives. (Note: most
modules named *lib are generally for developing clients of the corresponding protocols.
This is not always the case, however, as perhaps urllib should then be renamed as
"internetlib" or something similar!)

The urllib module provides functions to download data from given URLs as well as
encoding and decoding strings to make them suitable for including as part of valid URL
strings. The functions functions which we will be looking at in this upcoming section

IT-SC book: Core Python Programming

 608

include: urlopen(), urlretrieve(), quote(), quote_plus(), unquote(),
unquote_plus(), and urlencode().

We will also look at some of the methods available to the file-like object returned by
urlopen().

urllib.urlopen()

urlopen() opens a Web connection to the given URL string and returns a file-like object.
It has the following syntax:

urlopen(urlstr, postQueryData=None)

urlopen() opens the URL pointed to by urlstr. If no protocol or download scheme is
given, or if a "file" scheme is passed in, urlopen() will open a local file.

For all HTTP requests, the normal request type is "GET." In these cases, the query string
provided to the Web server (key-value pairs encoded or "quoted," such as the string
output of the urlencode() function [see below]), should be given as part of urlstr.

If the "POST" request method is desired, then the query string (again encoded) should be
placed in the postQueryData variable. (For more information regarding the GET and
POST request methods, refer to any general documentation or texts on programming CGI
applications—which we will also discuss below. GET and POST requests are the two
ways to "upload" data to a Web server.

When a successful connection is made, urlopen() returns a file-like object as if the
destination was a file opened in read mode. If our file object is f, for example, then our
"handle" would support the expected read methods such as f.read(), f.readline(),
f.readlines(), f.close(), and f.fileno().

In addition, a f.info() method is available which returns the MIME (Multipurpose
Internet Mail Extension) headers. Such headers give the browser information regarding
which application can view returned file types. For example, the browser itself can view
HTML (Hypertext Markup Language) or plain text type files as well as GIF (Graphics
Interchange Format) and JPEG (Joint Photographic Experts Group) graphics files. Other
files such as multimedia or specific document types require external applications in order
to view.

Finally, a geturl() method exists to obtain the true URL of the final opened destination,
taking into consideration any redirection which may have occurred. A summary of these
file-like object methods is given in Table 19.4.

Table 19.4. urllib.urlopen() File-like Object Methods

IT-SC book: Core Python Programming

 609

urlopen() Object Methods Description

f. read ([bytes]) reads all or bytes bytes from f

f.readline() reads a single line from f

f.readlines() reads a all lines from f into a list

f.close() closes URL connection for f

f.fileno() returns file number of f

f.info() gets MIME headers of f

f.geturl() returns true URL opened for f

urllib.urlretrieve()

urlretrieve() will do some quick and dirty work for you if you are interested in
working with a URL document as a whole. Here is the syntax for urlretrieve():

urlretrieve(urlstr, localfile=None, downloadStatusHook=None)

Rather than reading from the URL like urlopen() does, urlretrieve() will simply
download the entire HTML file located at urlstr to your local disk. It will store the
downloaded data into localfile if given or a temporary file if not. If the file has already
been copied from the Internet or if the file is local, no subsequent downloading will occur.

The downloadStatusHook, if provided, is a function that is called after each block of
data has been downloaded and delivered. It is called with the following three arguments:
number of blocks read so far, the block size in bytes, and the total (byte) size of the file.
This is very useful if you are implementing "download status" information to the user in a
text-based or graphical display.

IT-SC book: Core Python Programming

 610

urlretrieve() returns a 2-tuple, (filename, mime_hdrs). filename is the name of the
local file containing the downloaded data. mime_hdrs is the set of MIME headers
returned by the responding Web server. For more information, see the Message class of
the mimetools module. mime_hdrs is None for local files.

For an example using urlretrieve(), take a look at Example 11.2 (grabweb.py).

urllib.quote() and urllib.quote_plus()

The quote*() functions take URL data and "encodes" them so that they are "fit" for
inclusion as part of a URL string. In particular, certain special characters that are
unprintable or cannot be part of valid URLs acceptable to a Web server must be
converted. This is what the quote*() functions do for you. Both quote*() functions
have the following syntax:

quote(urldata, safe='/')

Characters that are never converted include commas, underscores, periods and dashes as
well as alphanumerics. All others are subject to conversion. In particular, the disallowed
characters are changed to their hexadecimal ordinal equivalents prepended with a percent
sign (%), i.e., "%xx" where "xx" is the hexadecimal representation of a character's ASCII
value. When calling quote*(), the urldata string is converted to an equivalent string
that can be part of a URL string. The safe string should contain a set of characters which
should also not be converted. The default is the slash (/).

quote_plus() is similar to quote() except that it also encodes spaces to plus signs (+).
Here is an example using quote() vs. quote_plus():

>>> name = 'joe mama'
>>> number = 6
>>> base = 'http://www/~foo/cgi-bin/s.py'
>>> final = '%s?name=%s&num=%d' % (base, name, number)
>>> final
'http://www/~foo/cgi-bin/s.py?name=joe mama&num=6'
>>>
>>> urllib.quote(final)
'http:%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe%20mama%26num%3d6'
>>>
>>> urllib.quote_plus(final)
'http%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe+mama%26num%3d6'

urllib.unquote() and urllib.unquote_plus()

IT-SC book: Core Python Programming

 611

As you have probably guessed, the unquote*() functions do the exact opposite of the
quote*() functions—they convert all characters encoded in the "%xx" fashion to their
ASCII equivalents. The syntax of unquote*() is as follows:

unquote*(urldata)

Calling unquote() will decode all URL-encoded characters in urldata and return the
resulting string. unquote_plus() will also convert plus signs back to space characters.

urllib.urlencode()

urlencode(), recently added to Python (as of version 1.5.2) takes a dictionary of key-
value pairs and encodes them to be included as part of a query in a CGI request URL
string. The pairs are in "key=value" format and are delimited by ampersands (&).
Furthermore, the keys and their values are sent to quote_plus() for proper encoding.
Here is an example output from urlencode():

>>> aDict = { 'name': 'Georgina Garcia', 'hmdir': '~ggarcia' }
>>> urllib.urlencode(aDict)
'name=Georgina+Garcia&hmdir=%7eggarcia'

There are other functions in urllib and urlparse which we did not have the opportunity
to cover here. Refer to the documentation for more information.

Secure Socket Layer support

The urllib module has been modified for Python 1.6 so that it now supports opening
HTTP connections using the Secure Socket Layer (SSL). The core change to add SSL is
implemented in the socket module. Consequently, the urllib and httplib modules
were updated to support URLs using the "https" connection scheme. Note, however, that
as of time of publication, only HTTP requests using SSL have been implemented. The
future may see additional updates to the other protocols supported by the urllib module,
such as FTP.

A summary of the urllib functions discussed in this section can be found in Table 19.5.

Table 19.5. Core urllib Module Functions

urllib Functions Description

urlopen(urlstr, opens the URL urlstr, sending the query data in

IT-SC book: Core Python Programming

 612

postQueryData=None) postQueryData if a POST request

urlretrieve(urlstr,
localfileV=None,
downloadStatusHook=None)

downloads the file located at the urlstr URL to
localfile or a temporary file if localfile not
given; if present, downloaStatusHook is a
function which can receive download statistics

quote(urldata, safe='/') encodes invalid URL characters of urldata;
characters in safe string are also not encoded

quote_plus(urldata, safe='/') same as quote() except encodes spaces as plus
signs

unquote(urldata) decodes encoded characters of urldata

unquote_plus(urldata) same as unquote() but converts plus signs to
spaces

urlencode(dict) encodes the key-value pairs of dict into a valid
string for CGI queries and encodes the key and
value strings with quote_plus()

Advanced Web Clients

Web browsers are basic Web clients. They are used primarily for searching and
downloading documents from the Web. Advanced clients of the Web are those
applications which do more than download single documents from the Internet.

One example of an advanced Web client is a crawler (a.k.a. spider, robot). These are
programs which explore and download pages from the Internet for different reasons,
some of which include:

Indexing or cataloging into a large search engine such as Google, Alta Vista, or Yahoo!,

Offline browsing—downloading documents onto a local hard disk and rearranging
hyperlinks to create almost a mirror image for local browsing,

Downloading and storing for historical or archival purposes, or

Web page caching to save superfluous downloading time on Web site revisits.

IT-SC book: Core Python Programming

 613

The crawler we present below, crawl.py, takes a starting Web address (URL),
downloads that page and all other pages whose links appear in succeeding pages, but only
those which are in the same domain as the starting page. Without such limitations, you
will run out of disk space! The source for crawl.py follows:

Example 19.1. An Advanced Web Client: a Web Crawler (crawl.py)

The crawler consists of two classes, one to manage the entire crawling process (Crawler),
and one to retrieve and parse each downloaded Web page (Retriever).

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from sys import argv
004 4 from os import makedirs, unlink
005 5 from os.path import dirname, exists, isdir, splitext
006 6 from string import replace, find, lower
007 7 from htmllib import HTMLParser
008 8 from urllib import urlretrieve
009 9 from urlparse import urlparse, urljoin
010 10 from formatter import DumbWriter, AbstractFormatter
011 11 from cStringIO import StringIO
012 12
013 13 class Retriever: # download Web pages
014 14
015 15 def __init__(self, url):
016 16 self.url = url
017 17 self.file = self.filename(url)
018 18
019 19 def filename(self, url, deffile='index.htm'):
020 20 parsedurl = urlparse(url, 'http:', 0)# parse path
021 21 path = parsedurl[1] + parsedurl[2]
022 22 text = splitext(path)
023 23 if ext[1] == '': # no file, use default
024 24 if newpath[-1] == '/':
025 25 path = path + deffile
026 26 else: <$nopage>
027 27 path = path + '/' + deffile
028 28 dir = dirname(path)
029 29 if not isdir(dir): # create archive dir if nec.
030 30 if exists(dir): unlink(dir)
031 31 makedirs(dir)
032 32 return path
033 33
034 34 def download(self): # download Web page
035 35 try: <$nopage>
036 36 retval = urlretrieve(self.url, self.file)
037 37 except IOError:
038 38 retval = ('*** ERROR: invalid URL "%s"' %\
039 39 self.url,)
040 40 return retval
041 41
042 42 def parseAndGetLinks(self): # parse HTML, save links
043 43 self.parser = HTMLParser(AbstractFormatter(\
044 44 DumbWriter(StringIO())))

IT-SC book: Core Python Programming

 614

045 45 self.parser.feed(open(self.file).read())
046 46 self.parser.close()
047 47 return self.parser.anchorlist
048 48
049 49 class Crawler: # manage entire crawling process
050 50
051 51 count = 0 # static downloaded page counter
052 52
053 53 def __init__(self, url):
054 54 self.q = [url]
055 55 self.seen = []
056 56 self.dom = urlparse(url)[1]
057 57
058 58 def getPage(self, url):
059 59 r = Retriever(url)
060 60 retval = r.download()
061 61 if retval[0] == '*': # error situation, do not parse
062 62 print retval, '… skipping parse'
063 63 return <$nopage>
064 64 Crawler.count = Crawler.count + 1
065 65 print '\n(', Crawler.count, ')'
066 66 print 'URL:', url
067 67 print 'FILE:', retval[0]
068 68 self.seen.append(url)
069 69
070 70 links = r.parseAndGetLinks() # get and process links
071 71 for eachLink in links:
072 72 if eachLink[:4] != 'http' and \
073 73 find(eachLink, '://') == -1:
074 74 eachLink = urljoin(url, eachLink)
075 75 print '* ', eachLink,
076 76
077 77 if find(lower(eachLink), 'mailto:') != -1:
078 78 print '… discarded, mailto link'
079 79 continue <$nopage>
080 80
081 81 if eachLink not in self.seen:
082 82 if find(eachLink, self.dom) == -1:
083 83 print '… discarded, not in domain'
084 84 else: <$nopage>
085 85 if eachLink not in self.q:
086 86 self.q.append(eachLink)
087 87 print '… new, added to Q'
088 88 else: <$nopage>
089 89 print '… discarded, already in Q'
090 90 else: <$nopage>
091 91 print '… discarded, already processed'
092 92
093 93 def go(self):# process links in queue
094 94 while self.q:
095 95 url = self.q.pop()
096 96 self.getPage(url)
097 97
098 98 def main():
099 99 if len(argv) > 1:
100 100 url = argv[1]
101 101 else: <$nopage>

IT-SC book: Core Python Programming

 615

102 102 try: <$nopage>
103 103 url = raw_input('Enter starting URL: ')
104 104 except (KeyboardInterrupt, EOFError):
105 105 url = ''
106 106
107 107 if not url: return <$nopage>
108 108 robot = Crawler(url)
109 109 robot.go()
110 110
111 111 if __name__ == '__main__':
112 112 main()
113 <$nopage>

Line-by-line (Class-by-class) explanation:

Lines 1– 11

The top part of the script consists of the standard Python Unix start-up line and the
importation of various module attributes which are employed in this application.

Lines 13 – 47

The Retriever class has the responsibility of downloading pages from the Web and
parsing the links located within each document, adding them to the "to-do" queue if
necessary. A Retriever instance object is created for each page which is downloaded
from the net. Retriever consists of several methods to aid in its functionality: a
constructor (__init__()), filename(), download(), and parseAndGetLinks().

The filename() method takes the given URL and comes up with a safe and sane
corresponding file name to store locally. Basically, it removes the "http://" prefix from
the URL and uses the remaining part as the file name, creating any directory paths
necessary. URLs without trailing file names will be given a default file name of
"index.htm." (This name can be overridden in the call to filename()).

The constructor instantiates a Retriever object and stores both the URL string and the
corresponding file name returned by filename() as local attributes.

The download() method, as you may imagine, actually goes out to the net to download
the page with the given link. It calls urllib.urlretrieve() with the URL and saves it
to the filename (the one returned by filename()). If the download was successful, the
parse() method is called to parse the page just copied from the network, otherwise an
error string is returned.

If the Crawler determines that no error has occurred, it will invoke the
parseAndGetLinks() method to parse newly-downloaded page and determine the cause
of action for each link located on that page.

Lines 49 – 96

IT-SC book: Core Python Programming

 616

The Crawler class is the "star" of the show, managing the entire crawling process, thus
only one instance is created for each invocation of our script. The Crawler consists of
three items stored by the constructor during the instantiation phase, the first of which is q,
a queue of links to download. Such a list will fluctuate during execution, shrinking as
each page is processed and grown as new links are discovered within each downloaded
page.

The other two data values for the Crawler include seen, a list of all the links which "we
have seen" (downloaded) already. And finally, we store the domain name for the main
link, dom, and use that value to determine whether any succeeding links are part of the
same domain.

Crawler also has of a static data item named count. The purpose of this counter is just
to keep track of the number of objects we have downloaded from the net. It is
incremented for every page successfully download.

Crawler has a pair of other methods in addition to its constructor, getPage() and go().
go() is simply the method that is used to start the Crawler and is called from the main
body of code. go() consists of a loop that will continue to execute as long as there are
new links in the queue which need to be downloaded. The workhorse of this class though,
is the getPage() method.

getPage() instantiates a Retriever object with the first link and lets it go off to the
races. If the page was downloaded successfully, the counter is incremented and the link
added to the "already seen" list. It looks recursively at all the links featured inside each
downloaded page and determine whether any more links should be added to the queue.
The main loop in go() will continue to process links until the queue is empty, at which
time victory is declared.

Links which are: part of another domain, have already been downloaded, are already in
the queue waiting to be processed, or are "mailto:" links are ignored and not added to
the queue.

Lines 98 – 112

main() is executed if this script is invoked directly and is the starting point of execution.
Other modules which import crawl.py will need to invoke main() to begin processing.
main() needs a URL to begin processing, If one is given on the command-line (for
example which this script is invoked directly), it will just go with the one given.
Otherwise, the script enters interactive mode prompting the user for a starting URL. With
a starting link in hand, the Crawler is instantiated and away we go.

One sample invocation of crawl.py may look like:

% crawl.py
Enter starting URL: http://www.null.com/home/index.html

IT-SC book: Core Python Programming

 617

(1)
URL: http://www.null.com/home/index.html
FILE: www.null.com/home/index.html
* http://www.null.com/home/overview.html … new, added to Q
* http://www.null.com/home/synopsis.html … new, added to Q
* http://www.null.com/home/order.html … new, added to Q
* mailto:postmaster@null.com … discarded, mailto link
* http://www.null.com/home/overview.html … discarded, already in Q
* http://www.null.com/home/synopsis.html … discarded, already in Q
* http://www.null.com/home/order.html … discarded, already in Q
* mailto:postmaster@null.com … discarded, mailto link
* http://bogus.com/index.html … discarded, not in domain

(2)
URL: http://www.null.com/home/order.html
FILE: www.null.com/home/order.html
* mailto:postmaster@null.com … discarded, mailto link
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/synopsis.html … discarded, already in Q
* http://www.null.com/home/overview.html … discarded, already in Q

(3)
URL: http://www.null.com/home/synopsis.html
FILE: www.null.com/home/synopsis.html
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/order.html … discarded, already processed
* http://www.null.com/home/overview.html … discarded, already in Q

(4)
URL: http://www.null.com/home/overview.html
FILE: www.null.com/home/overview.html
* http://www.null.com/home/synopsis.html … discarded, already processed
* http://www.null.com/home/index.html … discarded, already processed
* http://www.null.com/home/synopsis.html … discarded, already processed
* http://www.null.com/home/order.html … discarded, already processed

After execution, a http://www.null.com directory would be created in the local file
system, with a home subdirectory. Within home, all the HTML files processed will be
found there.

CGI: Helping Web Servers Process Client Data

Introduction to CGI

The Web was initially developed to be a global online repository or archive of (mostly
educational and research-oriented) documents. Such pieces of information generally
come in the form of static text and usually in HTML (HyperText Markup Language).
[Many documents also exist in plain text, Adobe Portable Document Format (PDF), or
Extensible Markup Language (XML) format, a generalized markup language.]

IT-SC book: Core Python Programming

 618

HTML is not as much of a language as it is a text formatter, indicating changes in font
types, sizes, and styles. The main feature of HTML is in its hypertext capability,
document text that is in one way or another highlighted to point to another document in a
related context to the original. Such a document can be accessed by a mouse click or
other user selection mechanism. These (static) HTML documents live on the Web server
and are sent to clients when and if requested.

As the Internet and Web services evolved, there grew a need to process user input. Online
retailers needed to be able to take individual orders, and online banks and search engine
portals needed to create accounts for individual users. Thus fill-out forms were invented,
and became the only way a Web site can get specific information from users (until Java
applets came along).This, in turn, required the HTML now be generated on the fly, for
each client submitting user-specific data.

Now Web servers are only really good at one thing, getting a user request for a file and
returning that file (i.e., an HTML file) to the client. They do not have the "brains" to be
able to deal with user-specific data such as those which come from fields. Not being their
responsibility, Web servers farm out such requests to external applications which create
the dynamically-generated HTML that is returned to the client.

The entire process begins when the Web server receives a client request (i.e., GET or
POST) and calls the appropriate application. It then waits for the resulting HTML—
meanwhile, the client also waits. Once the application has completed, it passes the
dynamically-generated HTML back to the server, who then (finally) forwards it back to
the user. This process of the server receiving a form, contacting an external application,
receiving and returning the newly-generated HTML takes place through what is called
the Web server's Common Gateway Interface (CGI). An overview of how CGI works is
illustrated in Figure19-3, which shows you the execution and data flow, step-by-step
from when a user submits a form until the resulting Web page is returned.

Figure 19-3. Overview of how CGI Works. CGI represents the interaction
between a web server and the application which is required to process a
user's form and generate the dynamic HTML that is eventually returned.

Forms input from the client sent to a Web server may include processing and perhaps
some form of storage in a backend database. Just keep in mind that any time there are any

IT-SC book: Core Python Programming

 619

user-filled fields and/or a Submit button or image, it most likely involves some sort of
CGI activity.

CGI applications which create the HTML are usually written in one of many higher-level
programming languages which have the ability to accept user data, process it, and return
value HTML back to the server. Today, these include: Perl, C, C++, or Python, to name a
few. In this next section, we will look at how to create CGI applications in Python, with
the help of the cgi module.

CGI Applications

A CGI application is slightly different from a typical program. The primary differences
are in the input, output, and user interaction aspects of a computer program.

When a CGI script starts, it will have the additional functionality of retrieving the user-
supplied data, the input for the program comes from the data via the Web client, not a
user on the server machine nor a disk file.

The output differs in that any data sent to standard output will be sent back to the
connected Web client rather than to the screen, GUI window, or disk file. The data that is
sent back must be a set of valid headers followed by HTML. If it is not and the Web
client is a browser, an error (specifically, an Internal Server Error) will occur because
Web clients such as browsers understand only valid HTTP data (i.e., MIME headers and
HTML).

Finally, as you can probably guess, there is no user interaction with the script. All
communication occurs among the Web client (on behalf of a user), the Web server, and
the CGI application.

cgi Module

There is one primary class in the cgi module which does all the work: the FieldStorage
class. This class should be instantiated when a Python CGI script begins, as it will read in
all the pertinent user information from the Web client (via the Web server). Once this
object has been instantiated, it will consist of a dictionary-like object which has a set of
key-value pairs. The keys are the names of the form items that were passed in through the
form while the values contain the corresponding data.

These values themselves can be one of three objects. They can be FieldStorage objects
(instances) as well as instances of a similar class called MiniFieldStorage, which is
used in cases where no file uploads or multiple part form data is involved.
MiniFieldStorage instances contain only the key-value pair of the name and the data.
Lastly, they can be a list of such objects. This occurs when a form contains more than one
input item with the same field name.

For simple Web forms, you will usually find all MiniFieldStorage instances. All of our
examples below pertain only to this general case.

IT-SC book: Core Python Programming

 620

Building CGI Application

Generating the Results Page

In Example 19.2, we present the code for a simple Web form, friends.htm.

Example 19.2. Static Form Web Page (friends.htm)

This HTML file presents a form to the user with an empty field for the user's name and a
set of radio buttons for the user to choose from.

 <$nopage>
001 1 <HTML><HEAD><TITLE>
002 2 Friends CGI Demo (static screen)
003 3 </TITLE></HEAD>
004 4 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
005 5 <FORM ACTION="/cgi-bin/friends1.py">
006 6 Enter your Name:
007 7 <INPUT TYPE=text NAME=person SIZE=15>
008 8 <P>How many friends do you have?
009 9 <INPUT TYPE=radio NAME=howmany VALUE="0"> CHECKED> 0
010 10 <INPUT TYPE=radio NAME=howmany VALUE="10"> 10
011 11 <INPUT TYPE=radio NAME=howmany VALUE="25"> 25
012 12 <INPUT TYPE=radio NAME=howmany VALUE="50"> 50
013 13 <INPUT TYPE=radio NAME=howmany VALUE="100"> 100
014 14 <P><INPUT TYPE=submit></FORM></BODY></HTML>
015 <$nopage>

As you can see in the code, the form contains two input variables: person and howmany.
The values of these two fields will be passed to our CGI script, friends1.py.

You will notice in our example that we install our CGI script into the default cgi-bin
directory (see the "Action" link) on the local host. (If this information does not
correspond with your development environment, update the form action before
attempting to test the Web page and CGI script.) Also, because a METHOD subtag is
missing from the form action, all requests will be of the default type, GET. We choose
the GET method because we do not have very many form fields, and also, we want our
query string to show up in the "Location" (a.k.a. "Address," "Go To") bar so that you can
see what URL is sent to the server.

Let's take a look at the screen which is rendered by friends.htm in a Web browser.
Figure19-4 illustrates what the page would look like using Netscape Communicator 4 in
a UNIX environment, while Figure19-5 is an example of using Microsoft IE5 on
Windows.

Figure 19-4. Friends Form Page in Netscape4 on Unix (friends.htm)

IT-SC book: Core Python Programming

 621

The input is entered by the user and the "Submit" button is pressed. (Alternatively, the
user can also press the RETURN or Enter key within the text field to cause a similar
effect.) When this occurs, the script in Example 19.3, friends1.py, is executed via CGI.

Figure 19-5. Friends Form Page in IE5 on Windows (friends.htm)

IT-SC book: Core Python Programming

 622

Example 19.3. Results Screen CGI code (friends1.py)

This CGI script grabs the person and howmany fields from the form and uses that data to
create the dynamically-generated results screen.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4
005 5 reshtml = '''Content-Type: text/html\n
006 6 <HTML><HEAD><TITLE>
007 7 Friends CGI Demo (dynamic screen)
008 8 </TITLE></HEAD>
009 9 <BODY><H3>Friends list for: <I>%s</I></H3>
010 10 Your name is: %s<P>
011 11 You have %s friends.
012 12 </BODY></HTML>'''
013 13
014 14 form = cgi.FieldStorage()
015 15 who = form['person'].value
016 16 howmany = form['howmany'].value
017 17 print reshtml % (who, who, howmany)
018 <$nopage>

This script contains all the programming power to read the form input and process it, as
well as return the resulting HTML page back to the user. All the "real" work in this script
takes place in only four lines of Python code (lines 14–17).

The form variable is our FieldStorage instance, containing the values of the person and
howmany fields. We read these into the Python whoand howmany variables, respectively.
The reshtml variable contains the general body of HTML text to return, with a few
fields filled in dynamically, the data just read in from the form.

NOTE

One thing which always nails CGI beginners is that when sending results back to a CGI
script, it must return the appropriate HTTP headers first before any HTML. Furthermore,
to distinguish between these headers and the resulting HTML, several newline characters
must be inserted between both sets of data, as in line 5 of our friends1.py example as
well as for the code in the remaining part of the chapter.

One possible resulting screen appears in Figure19-6, assuming the user typed in "erick
allen" as the name and clicked on the "10 friends" radio button.

Figure 19-6. Friends Results Page in IE3 on Windows

IT-SC book: Core Python Programming

 623

The screen snapshot this time is represented by the older IE3 browser in a Windows
environment.

If you are a Web site producer, you may be thinking, "Gee, wouldn't it be nice if I could
automatically capitalize this person's name, especially if they forgot?" This can easily be
accomplished using Python CGI. (And we shall do so soon!)

Notice how on a GET request that our form variables and their values are added to the
form action URL in the "Address" bar. Also, did you observe that the title for the
friends.htm page has the word "static" in it while the output screen from friends.py has
the work "dynamic" in its title? We did that for a reason: to indicate that friends.htm
file is a static text file while the results page is dynamically-generated. In other words, the
HTML for the results page did not exist on disk as a text file; rather, it was generated by
our CGI script and returned it as if it was a local file.

In our next example, we will bypass static files altogether by updating our CGI script to
be somewhat more multifaceted.

Generating Form and Results Pages

We obsolete friends.html and merge it into friends2.py. The script will now
generate both the form page as well as the results page. But how can we tell which page
to generate? Well, if there is form data being sent to us, that means that we should be
creating a results page. If we do not get any information at all, that tells us that we should
generate a form page for the user to enter his or her data.

Our new friends2.py script is shown in Example 19.4.

Example 19.4. Generating Form and Results Pages (friends2.py)

IT-SC book: Core Python Programming

 624

Both friends.html and friends1.py are merged together as friends2.py. The
resulting script can now output both form and results pages as dynamically-generated
HTML and has the smarts to know which page to output.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4
005 5 header = 'Content-Type: text/html\n\n'
006 6
007 7 formhtml = '''<HTML> <HEAD><TITLE>
008 8 Friends CGI Demo</TITLE></HEAD>
009 9 <BODY><H3>Friends list for: <I>NEW USER</I>></H3>
010 10 <FORM ACTION="/cgi-bin/friends2.py">
011 11 Enter your Name:
012 12 <INPUT TYPE=hidden NAME=action VALUE=edit>
013 13 <INPUT TYPE=text NAME=person SIZE=15>
014 14 <P>How many friends do you have?
015 15 %s
016 16 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
017 17
018 18 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
019 19
020 20 def showForm():
021 21 friends = ''
022 22 for i in [0, 10, 25, 50, 100]:
023 23 checked = ''
024 24 if i == 0:
025 25 checked = 'CHECKED'
026 26 friends = friends + fradio % \
027 27 (str(i), checked, str(i))
028 28
029 29 print header + formhtml % (friends)
030 30
031 31 reshtml = '''<HTML><HEAD><TITLE>
032 32 Friends CGI Demo</TITLE></HEAD>
033 33 <BODY><H3>Friends list for: <I>%s</I></H3>
034 34 Your name is: %s<P>
035 35 You have %s friends.
036 36 </BODY></HTML>'''
037 37
038 38 def doResults(who, howmany):
039 39 print header + reshtml % (who, who, howmany)
040 40
041 41 def process():
042 42 form = cgi.FieldStorage()
043 43 if form.has_key('person'):
044 44 who = form['person'].value
045 45 else: <$nopage>
046 46 who = 'NEW USER'
047 47
048 48 if form.has_key('howmany'):
049 49 howmany = form['howmany'].value
050 50 else: <$nopage>
051 51 howmany = 0

IT-SC book: Core Python Programming

 625

052 52
053 53 if form.has_key('action'):
054 54 doResults(who, howmany)
055 55 else: <$nopage>
056 56 showForm()
057 57
058 58 if __name__ == '__main__':
059 59 process()
060 <$nopage>

So what did we change in our script? Let's take a look at some of the blocks of code in
this script.

Line-by-line explanation

Lines 1 – 5

In addition to the usual start-up and module import lines, we separate the HTTP MIME
header from the rest of the HTML body because we will use it for both types of pages
(form page and results page) returned and don't want to duplicate the text. We will add
this header string to the corresponding HTML body when it comes time for output to
occur.

Lines 7 – 29

All of this code is related to the now-integrated friends.htm form page in our CGI
script. We have a variable for the form page text, formhtml, and we also have a string to
build the list of radio buttons, fradio. We could have duplicated this radio button
HTML text as it is in friends.htm, but we wanted to show how we could use Python to
generate more dynamic output—see the for-loop on lines 22–27.

The showForm() function has the responsibility of generating a form for user input. It
builds a set of text for the radio buttons, merges those lines of HTML into the main body
of formhtml, prepends the header to the form, and then returns the entire wad of data
back to the client by sending the entire string to standard output.

There are a couple of interesting things to note about this code. The first is the "hidden"
variable in the form called action, containing the value, "edit" on line 12. This field is
the only way we can tell which screen to display (i.e., the form page or the results page).
We will see this field come into play in lines 53–56.

Also, observe that we set the 0 radio button as the default by "checking" it within the loop
that generates all the buttons. This will also allow us to update the layout of the radio
buttons and/or their values on a single line of code (line 18) rather than over multiple
lines of text. It will also offer some more flexibility in letting the logic determine which
radio button is checked—see the next update to our script, friends3.py coming up.

IT-SC book: Core Python Programming

 626

Now you may be thinking, "Why do we need an action variable when I could just as
well be checking for the presence of person or howmany?" That is a valid question
because yes, you could have just used person or howmany in this situation.

However, the action variable is a more conspicuous presence, in as far as its name as
well as what it does—the code is easier to understand. The person and howmany
variables are used for their values while the action variable is used as a flag.

The other reason for creating action is that we will be using it again to help us determine
which page to generate. In particular, we will need to display a form with the resence of a
person variable (rather than a results page)—this will break your code if you are solely
relying on there being a person variable.

Lines 31 – 39

The code to display the results page is practically identical to that of friends1.py.

Lines 41 – 56

Since there are different pages which can result from this one script, we created an
overall process() function to get the form data and decide which action to take. The
main portion of process() will also look familiar to the main body of code in
friends1.py. There are two major differences, however.

Since the script may or may not be getting the expected fields (invoking the script the
first time to generate a form page, for example, will not pass any fields to the server), we
need to "bracket" our retrieval of the form fields with if statements to check if they are
even there. Also, we mentioned the action field above which helps us decide which page
to bring up. The code that performs this determination is in lines 53–56.

In Figure19-8 and Figure19-7, you will see first the form screen generated by our script
(with a name entered and radio button chosen), followed by the results page, also
generated by our script.

Figure 19-8. Friends Form Page in Netscape4 on Windows

IT-SC book: Core Python Programming

 627

Figure 19-7. Friends Results Page in Netscape4 on Windows

If you look at the location or "Go to" bar, you will not see a URL referring to a static
friends.htm file as you did in Figure19-4 or Figure19-5 earlier.

Fully Interactive Web Sites

Our final example will complete the circle. As in the past, a user enters his or her
information from the form page. We then process the data and output a results page. Now
we will add a link to the results page that will allow the user to go back to the form page,
but rather than presenting a blank form, we will fill in the data that the user has already
provided. We will also add some error processing to give you an example of how it can
be accomplished.

We now present our final update, friends3.py in Example 19.5.

Example 19.5. Full User Interaction and Error Processing (friends3.py)

IT-SC book: Core Python Programming

 628

By adding a link to return to the form page with information already provided, we have
come "full circle," giving the user a fully-interactive Web surfing experience. Our
application also now performs simple error checking which notifies the user if no radio
button was selected.

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 import cgi
004 4 from urllib import quote_plus
005 5 from string import capwords
006 6
007 7 header = 'Content-Type: text/html\n\n'
008 8 url = '/cgi-bin/friends3.py'
009 9
010 10 errhtml = '''<HTML><HEAD><TITLE>
011 11 Friends CGI Demo</TITLE></HEAD>
012 12 <BODY><H3>ERROR</H3>
013 13 %s<P>
014 14 <FORM><INPUT TYPE=button VALUE=Back
015 15 ONCLICK="window.history.back()"></FORM <$nopage>
016 16 </BODY></HTML>'''
017 17
018 18 def showError(error_str):
019 19 print header + errhtml % (error_str)
020 20
021 21 formhtml = '''<HTML><HEAD><TITLE>
022 22 Friends CGI Demo</TITLE></HEAD>
023 23 <BODY><H3>Friends list for: <I>%s</I></H3>
024 24 <FORM ACTION="%s">
025 25 Your Name:
026 26 <INPUT TYPE=hidden NAME=action VALUE=edit>
027 27 <INPUT TYPE=text NAME=person VALUE="%s" SIZE=15>
028 28 <P>How many friends do you have?
029 29 %s
030 30 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
031 31
032 32 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
033 33
034 34 def showForm(who, howmany):
035 35 friends = ''
036 36 for i in [0, 10, 25, 50, 100]:
037 37 checked = ''
038 38 if str(i) == howmany:
039 39 checked = 'CHECKED'
040 40 friends = friends + fradio % \
041 41 (str(i), checked, str(i))
042 42 print header + formhtml % (who, url, who, friends)
043 43
044 44 reshtml = '''<HTML><HEAD><TITLE>
045 45 Friends CGI Demo</TITLE></HEAD>
046 46 <BODY><H3>Friends list for: <I>%s</I></H3>
047 47 Your name is: %s<P>
048 48 You have %s friends.
049 49 <P>Click here to edit your data again.
050 50 </BODY></HTML>'''

IT-SC book: Core Python Programming

 629

051 51
052 52 def doResults(who, howmany):
053 53 newurl = url + '?action=reedit&person=%s&howmany=%s'%\
054 54 (quote_plus(who), howmany)
055 55 print header + reshtml % (who, who, howmany, newurl)
056 56
057 57 def process():
058 58 error = ''
059 59 form = cgi.FieldStorage()
060 60
061 61 if form.has_key('person'):
062 62 who = capwords(form['person'].value)
063 63 else: <$nopage>
064 64 who = 'NEW USER'
065 65
066 66 if form.has_key('howmany'):
067 67 howmany = form['howmany'].value
068 68 else: <$nopage>
069 69 if form.has_key('action') and \
070 70 form['action'].value == 'edit':
071 71 error = 'Please select number of friends.'
072 72 else: <$nopage>
073 73 howmany = 0
074 74
075 75 if not error:
076 76 if form.has_key('action') and \
077 77 form['action'].value != 'reedit':
078 78 doResults(who, howmany)
079 79 else: <$nopage>
080 80 showForm(who, howmany)
081 81 else: <$nopage>
082 82 showError(error)
083 83
084 84 if __name__ == '__main__':
085 85 process()
086 <$nopage>

friends3.py is not too unlike friends2.py. We invite the reader to compare the
differences; we present a brief summary of the major changes for you here:

Abridged line-by-line explanation

Line 8

We take the URL out of the form because we now need it in two places, the results page
being the new customer.

Lines 10 – 19, 69 – 71, 75 – 82

All of these lines deal with the new feature of having an error screen. If the user does not
select a radio button indicating the number of friends, the howmany field is not passed to
the server. In such a case, the showError() function returns the error page to the user.

IT-SC book: Core Python Programming

 630

The error page also features a JavaScript "Back" button. Because buttons are input types,
we need a form, but no action is needed because we are simply just going back one page
in the browsing history. Although our script currently supports (a.k.a. detects, tests for)
only one type of error, we still use a generic error variable in case we wanted to
continue development of this script to add more error detection in the future.

Lines 27, 38–41, 49, and 52–55

One goal for this script is to create a meaningful link back to the form page from the
results page. This is implemented as a link to give the user the ability to return to a form
page to update the data her or she entered, in case it was erroneous. The new form page
makes sense only if it contains information pertaining to the data that has already been
entered by the user. (It is frustrating for users to reenter their information from scratch!)

To accomplish this, we need to embed the current values into the updated form. In line 27,
we add a value for the name. This value will be inserted into the name field, if given.
Obviously, it will be blank on the initial form page. In Line 38–41, we set the radio box
which corresponds to the number of friends currently chosen. Finally, on lines 49 and the
updated doResults() function on lines 52–55, we create the link with all the existing
information which "returns" the user to our modified form page.

Line 62

Finally, we added a simple feature that we thought would add a nice aesthetic touch. In
the screens for friends1.py and friends2.py, the text entered by the user as his or her
name is taken verbatim. You will notice in the screens above that if the user does not
capitalize his or her names, that is reflected in the results page. We added a call to the
string.capwords() function to automatically capitalize a user's name. The capwords()
function will capitalize the first letter of each word in the string that is passed in. This
may or may not be a desired feature, but we thought that we would share it with you so
that you know that such functionality exists.

We will now present four screens which shows the progression of user interaction with
this CGI form and script.

In the first screen, shown in Figure19-9, we invoke friends3.py to bring up the now-
familiar form page. We enter a name "bar foo," but deliberately avoid checking any of the
radio buttons. The resulting error after submitting the form can be seen in the second
screen (Figure19-10).

Figure 19-9. Friends Initial Form Page in Netscape3 on Windows

IT-SC book: Core Python Programming

 631

We click on the "Back" button, check the "50" radio button, and resubmit our form. The
results page, seen in Figure 19-11, is also familiar, but now has an extra link at the
bottom. This link will take us back to the form page.

Figure 19-11. Friends Results Page (Valid Input)

IT-SC book: Core Python Programming

 632

The only difference between the new form page and our original is that all the data filled
in by the user is now set as the "default" settings, meaning that the values are already
available in the form. We can see this in Figure19-12.

Figure 19-10. Friends Error Page (invalid user input)

Figure 19-12. Friends Updated Form Page with Current Information

IT-SC book: Core Python Programming

 633

Now the user is able to make changes to either of the fields and resubmit their form.

You will no doubt begin to notice that as our forms and data get more complicated, so
does the generated HTML, especially for complex results pages. If you ever get to a point
where generating the HTML text is interfering with your application, you may consider
connecting with a Python module such as HTMLgen, an external Python module which
specializes in HTML generation.

Advanced CGI

We will now take a look at some of the more advanced aspects of CGI programming.
These include: the use of cookies—cached data saved on the client side, multiple values
for the same CGI field and file upload using multipart form submissions. To save space,
we will show you all three of these features with a single application. Let's take a look at
multipart submissions first.

Multipart Form Submission and File Uploading

Currently, the CGI specifications only allow two types of form encodings, "application/x-
www-form-urlencoded" and "multipart/form-data." Because "application/x-www-form-
urlencoded" is the default, there is never a need to state the encoding in the FORM tag
like this:

<FORM enctype="application/x-www-form-urlencoded" …>

But for multipart forms, you must explicitly give the encoding as:

<FORM enctype="multipart/form-data" …>

You can use either type of encoding for form submissions, but at this time, file uploads
can only be performed with the multipart encoding. Multipart encoding was invented by
Netscape in the early days but since has been adopted by Microsoft (starting with version
4 of Internet Explorer) as well as other browsers.

File uploads are accomplished using the file input type:

<INPUT type=file name=…>

This directive presents an empty text field with a button on the side which allows you to
browse your file directory structure for a file to upload. On most browsers, this button

IT-SC book: Core Python Programming

 634

says "Browse," but your mileage may vary. (For example, we will be using the Opera
browser in our examples which has a button labeled with ellipses "…".)

When using multipart, your Web client's form submission to the server will look
amazingly like (multipart) e-mail messages with attachments. A separate encoding was
needed because it just wouldn't be necessarily wise to "urlencode" a file, especially a
binary file. The information still gets to the server, but is just "packaged" in a different
way.

Regardless of whether you use the default encoding or the multipart, the cgi module will
process them in the same manner, providing keys and corresponding values in the form
submission. You will simply access the data through your FieldStorage instance as
before.

Multivalued Fields

In addition for file uploads, we are also going to show you how to process fields with
multiple values. The most common case is when you have a set of checkboxes allowing a
user to select from various choices. Each of the checkboxes is labeled with the same field
name, but to differentiate them, each will have a different value associated with a
particular checkbox.

As you know, the data from the user is sent to the server in key-value pairs during form
submission. When more than one checkbox is submitted, you will have multiple values
associated with the same key. In these cases, rather than being given a single
MiniFieldStorage instance for your data, the cgi module will create a list of such
instances which you will iterate over to obtain the different values. Not too painful at all.

Cookies

Finally, we will use cookies in our example. If you are not familiar with cookies, they are
just bits of data information which a server at a Web site will request to be saved on the
client side, e.g., the browser.

Because HTTP is a "stateless" protocol, information that has to be carried from one page
to another can be accomplished by using key-value pairs in the request as you have seen
in the GET requests and screens earlier in this chapter. Another way of doing it, as we
have also seen before, is using hidden form fields, such as the action variable in some of
the later friends*.py scripts. These variables and their values are managed by the server
because the pages they return to the client must embed these in generated pages.

One alternative to maintaining persistency in state across multiple page views is to save
the data on the client side instead. This is where cookies come in. Rather than embedding
data to be saved in the returned Web pages, a server will make a request to the client to
save a cookie. The cookie is linked to the domain of the originating server (so a server
cannot set nor override cookies from other Web sites) and has an expiration date (so your
browser doesn't become cluttered with cookies).

IT-SC book: Core Python Programming

 635

These two characteristics are tied to a cookie along with the key-value pair representing
the data item of interest. There are other attributes of cookies such as a domain subpath or
a request that a cookie should only be delivered in a secure environment.

By using cookies, we no longer have to pass the data from page to page to track a user.
Although they have been subject to a good amount of controversy over the privacy issue,
most Web sites use cookies responsibly. To prepare you for the code, a Web server
requests a client store a cookie by sending the "Set-Cookie" header immediately before
the requested file.

Once cookies are set on the client side, requests to the server will automatically have
those cookies sent to the server using the HTTP_COOKIE environment variable. The
cookies are delimited by semicolons and come in "key=value" pairs. All your application
needs to do to access the data values is to split the string several times (i.e., using
string.split() or manual parsing). The cookies are delimited by semicolons (;), and
each key-value pair is separated by equal signs (=).

Like multipart encoding, cookies originated from Netscape, who implemented cookies
and wrote up the first specification which is still valid today. You can access this
document at the following Web site:

http://www.netscape.com/newsref/std/cookie_spec.html

Once cookies are standardized and this document finally obsoleted, you will be able to
get more current information from Request for Comment documents (RFCs). The most
current one for cookies at the time of publication is RFC 2109.

Using Advanced CGI

We now present our CGI application, advcgi.py, which has code and functionality not
too unlike the friends3.py script seen earlier in this chapter. The default first page is a
user fill-out form consisting of four main parts: user-set cookie string, name field,
checkbox list of programming languages, and file submission box. An image of this
screen can be seen in Figure19-13, this time using the Opera 4 browser in a Windows
environment.

Figure 19-13. Upload and Multivalue Form Page in Opera4 on Windows

IT-SC book: Core Python Programming

 636

In a browser world dominated by the Netscape and Microsoft browsers, we seldom hear
of others such as Opera and Lynx, but they are out there! Opera, in particular, is known to
have excellent footprint (memory size) and speed characteristics.

Well, just so you aren't totally uncomfortable, let's take a peek at what the same form
looks like from Netscape running on Linux, as in Figure19-14. As you can see, Netscape
uses "Browse" as the file upload label instead of the ellipses. (The rest of the screens for
this section will feature Opera.)

Figure 19-14. The Same Advanced CGI Form but in Netscape4 on Linux

IT-SC book: Core Python Programming

 637

From this form, we can enter our information, such as the sample data given in Figure19-
15.

Figure 19-15. One Possible Form Submission in our Advanced CGI Demo

IT-SC book: Core Python Programming

 638

The data is submitted to the server using multipart encoding and is retrieved in the same
manner on the server side using the FieldStorage instance. The only tricky part is in
retrieving the uploaded file. In our application, we choose to iterate over the file, reading
it line-by-line. It is also possible to read in the entire contents of the file if you are not
wary of its size.

Since this is the first occasion data is received by the server, it is at this time, when
returning the results page back to the client, that we use the "Set-Cookie:" header to
cache our data in browser cookies.

In Figure19-16, you will see the results after submitting our form data. All the fields the
user entered are shown on the page. The contents of the filename given in the final dialog
box was actually uploaded to the server and displayed as well.

Figure 19-16. Results Page Generated and Returned by the Web Server

IT-SC book: Core Python Programming

 639

You will also notice the link at the bottom of the results page which returns us to the form
page, again using the same CGI script.

If we click on that link at the bottom, no form data is submitted to our script, causing a
form page to be displayed. Yet, as you can see from Figure 19-17, what shows up is
anything but an empty form! Information previously entered by the user shows up! How
did we accomplish this with no form data (either hidden or as query arguments in the
URL)? The secret is that the data is stored on the client side in cookies, two in fact.

Figure 19-17. Form Page With Data Loaded from the Client Cookies

IT-SC book: Core Python Programming

 640

The user cookie holds the string of data typed in by the user in the "Enter cookie value"
form field, and the user's name, languages they are familiar with, and uploaded file are
stored in the info cookie.

When the script detects no form data, it shows the form page, but before the form page
has been created, it grabs the cookies from the client (which are automatically transmitted
by the client when the user clicks on the link) and fills out the form accordingly. So when
the form is finally displayed, all the previously entered information appears to the user
like magic.

We are sure you are eager to take a look at this application, so here it is, presented in
Example 19-6.

Example 19.6. Advanced CGI Application (advcgi.py)

IT-SC book: Core Python Programming

 641

The crawler has one main class which does everything, AdvCGI. It has methods to show
either form, error, or results pages as well as those which read or write cookies from/to
the client (a web browser).

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from cgi import FieldStorage
004 4 from os import environ
005 5 from cStringIO import StringIO
006 6 from urllib import quote, unquote
007 7 from string import capwords, strip, split, join
008 8
009 9 class AdvCGI:
010 10
011 11 header = 'Content-Type: text/html\n\n'
012 12 url = '/py/advcgi.py'
013 13
014 14 formhtml = '''<HTML><HEAD><TITLE>
015 15 Advanced CGI Demo</TITLE></HEAD>
016 16 <BODY><H2>Advanced CGI Demo Form</H2>
017 17 <FORM METHOD=post ACTION="%s ENCTYPE="multipart/form-data">
018 18 <H3>My Cookie Setting</H3>
019 19 <CODE>CPPuser = %s</CODE>
020 20 <H3>Enter cookie value

021 21 <INPUT NAME=cookie value="%s"> (<I>optional</I>)</H3>
022 22 <H3>Enter your name

023 23 <INPUT NAME=person VALUE="%s"> (<I>required</I>)</H3>
024 24 <H3>What languages can you program in?
025 25 (<I>at least one required</I>)</H3>
026 26 %s
027 27 <H3>Enter file to upload</H3>
028 28 <INPUT TYPE=file NAME=upfile VALUE="%s" SIZE=45>
029 29 <P><INPUT TYPE=submit>
030 30 </FORM></BODY></HTML>'''
031 31
032 32 langSet = ('Python', 'PERL', 'Java', 'C++', 'PHP',
033 33 'C', 'JavaScript')
034 34 langItem = \
035 35 '<INPUT TYPE=checkbox NAME=lang VALUE="%s"%s> %s\n'
036 36
037 37 def getCPPCookies(self):# read cookies from client
038 38 if environ.has_key('HTTP_COOKIE'):
039 39 for eachCookie in map(strip, \
040 40 split(environ['HTTP_COOKIE'], ';')):
041 41 if len(eachCookie) > 6 and \
042 42 eachCookie[:3] == 'CPP':
043 43 tag = eachCookie[3:7]
044 44 try: <$nopage>
045 45 self.cookies[tag] = \
046 46 eval(unquote(eachCookie[8:]))
047 47 except (NameError, SyntaxError):
048 48 self.cookies[tag] = \
049 49 unquote(eachCookie[8:])
050 50 else: <$nopage>
051 51 self.cookies['info'] = self.cookies['user'] = ''

IT-SC book: Core Python Programming

 642

052 52
053 53 if self.cookies['info'] != '':
054 54 self.who, langStr, self.fn = \
055 55 split(self.cookies['info'], ':')
056 56 self.langs = split(langStr, ',')
057 57 else: <$nopage>
058 58 self.who = self.fn = ' '
059 59 self.langs = ['Python']
060 60
061 61 def showForm(self): # show fill-out form
062 62 self.getCPPCookies()
063 63 langStr = ''
064 64 for eachLang in AdvCGI.langSet:
065 65 if eachLang in self.langs:
066 66 langStr = langStr + AdvCGI.langItem % \
067 67 (eachLang, ' CHECKED', eachLang)
068 68 else: <$nopage>
069 69 langStr = langStr + AdvCGI.langItem % \
070 70 (eachLang, '', eachLang)
071 71
072 72 if not self.cookies.has_key('user') or \
073 73 self.cookies['user'] == '':
074 74 cookStatus = '<I>(cookie has not been set
yet)</I>'
075 75 userCook = ''
076 76 else: <$nopage>
077 77 userCook = cookStatus = self.cookies['user']
078 78
079 79 print AdvCGI.header + AdvCGI.formhtml % (AdvCGI.url,
080 80 cookStatus, userCook, self.who, langStr, self.fn)
081 81
082 82 errhtml = '''<HTML><HEAD><TITLE>
083 83 Advanced CGI Demo</TITLE></HEAD>
084 84 <BODY><H3>ERROR</H3>
085 85 %s<P>
086 86 <FORM><INPUT TYPE=button VALUE=Back
087 87 ONCLICK="window.history.back()"></FORM>
088 88 </BODY></HTML>'''
089 89
090 90 def showError(self):
091 91 print AdvCGI.header + AdvCGI.errhtml % (self.error)
092 92
093 93 reshtml = '''<HTML><HEAD><TITLE>
094 94 Advanced CGI Demo</TITLE></HEAD>
095 95 <BODY><H2>Your Uploaded Data</H2>
096 96 <H3>Your cookie value is: %s</H3>
097 97 <H3>Your name is: %s</H3>
098 98 <H3>You can program in the following languages:</H3>
099 99 %s
100 100 <H3>Your uploaded file…

101 101 Name: <I>%s</I>

102 102 Contents:</H3>
103 103 <PRE>%s</PRE>
104 104 Click here to return to form.
105 105 </BODY></HTML>'''
106 106
107 107 def setCPPCookies(self):# tell client to store cookies

IT-SC book: Core Python Programming

 643

108 108 or eachCookie in self.cookies.keys():
109 109 print 'Set-Cookie: CPP%s=%s; path=/' % \
110 110 (eachCookie, quote(self.cookies[eachCookie]))
111 111
112 112 def doResults(self):# display results page
113 113 MAXBYTES = 1024
114 114 langlist = ''
115 115 for eachLang in self.langs:
116 116 langlist = langlist + '%s
' % eachLang
117 117
118 118 filedata = ''
119 119 while len(filedata) < MAXBYTES:# read file chunks
120 120 data = self.fp.readline()
121 121 if data == '': break <$nopage>
122 122 filedata = filedata + data
123 123 else: # truncate if too long
124 124 filedata = filedata + \
125 125 '… <I>(file truncated due to size)</I>'
<$nopage>
126 126 self.fp.close()
127 127 if filedata == '':
128 128 filedata = \
129 129 '<I>(file upload error or file not given)</I>'
<$nopage>
130 130 filename = self.fn
131 131
132 132 if not self.cookies.has_key('user') or \
133 133 self.cookies['user'] == '':
134 134 cookStatus = '<I>(cookie has not been set yet)</I>'
<$nopage>
135 135 userCook = ''
136 136 else: <$nopage>
137 137 userCook = cookStatus = self.cookies['user']
138 138
139 139 self.cookies['info'] = join([self.who, \
140 140 join(self.langs, ','), filename], ':')
141 141 self.setCPPCookies()
142 142 print AdvCGI.header + AdvCGI.reshtml % \
143 143 (cookStatus, self.who, langlist,
144 144 filename, filedata, AdvCGI.url)
145 145
146 146 def go(self):# determine which page to return
147 147 self.cookies = {}
148 148 self.error = ''
149 149 form = FieldStorage()
150 150 if form.keys() == []:
151 151 self.showForm()
152 152 return <$nopage>
153 153
154 154 if form.has_key('person'):
155 155 self.who = capwords(strip(form['person'].value))
156 156 if self.who == '':
157 157 self.error = 'Your name is required. (blank)'
158 158 else: <$nopage>
159 159 self.error = 'Your name is required. (missing)'
160 160
161 161 if form.has_key('cookie'):

IT-SC book: Core Python Programming

 644

162 162 self.cookies['user'] = unquote(strip(\
163 163 form['cookie'].value))
164 164 else: <$nopage>
165 165 self.cookies['user'] = ''
166 166
167 167 self.langs = []
168 168 if form.has_key('lang'):
169 169 langdata = form['lang']
170 170 if type(langdata) == type([]):
171 171 for eachLang in langdata:
172 172 self.langs.append(eachLang.value)
173 173 else: <$nopage>
174 174 self.langs.append(langdata.value)
175 175 else: <$nopage>
176 176 self.error = 'At least one language required.'
177 177
178 178 if form.has_key('upfile'):
179 179 upfile = form["upfile"]
180 180 self.fn = upfile.filename or ''
181 181 if upfile.file:
182 182 self.fp = upfile.file
183 183 else: <$nopage>
184 184 self.fp = StringIO('(no data)')
185 185 else: <$nopage>
186 186 self.fp = StringIO('(no file)')
187 187 self.fn = ''
188 188
189 189 if not self.error:
190 190 self.doResults()
191 191 else: <$nopage>
192 192 self.showError()
193 193
194 194 if __name__ == '__main__':
195 195 page = AdvCGI()
196 196 page.go()
197 <$nopage>

advcgi.py looks strikingly similar to our friends3.py CGI scripts seen earlier in this
chapter. It has form, results, and error pages to return. In addition to all of the advanced
CGI features which are part of our new script, we are also using more of an object-
oriented feel to our script by using a class with methods instead of just a set of functions.
The HTML text for our pages are now static data for our class, meaning that they will
remain constant across all instances—even though there is actually only one instance in
our case.

Line-by-line (Block-by-block) explanation

Lines 1 – 7

The usual start-up and import lines appear here. The only module you may not be
familiar with is cStringIO, which we briefly introduced at the end of Chapter 10 and
also used in Example 19-1. cStringIO.StringIO() creates a file-like object out of a

IT-SC book: Core Python Programming

 645

string so that access to the string is similar to opening a file and using the handle to
access the data.

Lines 9 – 12

After the AdvCGI class is declared, the header and url (static class) variables are created
for use by the methods displaying all the different pages.

Lines 14 – 80

All the code in this block is used to generate and display the form page. The data
attributes speak for themselves. getCPPCookies() obtains cookie information sent by the
Web client, and showForm() collates all the information and sends the form page back to
the client.

Lines 82 – 91

This block of code is responsible for the error page.

Lines 93 – 144

The results page is created using this block of code. The setCPPCookies() method
requests that a client store the cookies for our application, and the doResults() method
puts together all the data and sends the output back to the client.

Lines 146 – 196

The script begins by instantiating an AdvCGI page object, then call its go() method to
start the ball rolling, in contrast to a strictly procedural programming process. The go()
method contains the logic that reads all incoming data and decides which page to show.

The error page will be displayed if no name was given or if no languages were checked.
The showForm() method is called to output the form if no input data was received, and
the doResults() method is invoked otherwise to display the results page.

Handling the person field is the same as we have seen in the past, a single key-value pair;
however, collecting the language information is a bit trickier since we must check for
either a (Mini)FieldStorage instance or a list of such instances. We will employ the
familiar type() built-in function for this purpose. In the end, we will have a list of a
single language name or many, depending on the user's selections.

The use of cookies to contain data illustrates how they can be used to avoid using any
kind of CGI field pass-through. You will notice in the code which obtains such data that
no CGI processing is invoked, meaning that the data does not come from the
FieldStorage object. The data is passed to us by the Web client with each request and
the values (user's chosen data as well as information to fill in a succeeding form with pre-
existing information) are obtained from cookies.

IT-SC book: Core Python Programming

 646

Because the showResults() method receives the new input from the user, it has the
responsibility of setting the cookies, i.e., by calling setCPPCookies(). showForm()
however, must read in the cookies' values in order to display a form page with the current
user selections. This is done by its invocation of the getCPPCookies() method.

Finally, we get to the file upload processing. Regardless of whether a file was actually
uploaded, FieldStorage is given a file handle in the file attribute. If the value attribute is
accessed, then entire contents of the file will be placed into value. As a better alternative,
you can access the file pointer—the file attribute—and perhaps read only one line at a
time or other kind of slower processing.

In our case, file uploads are only part of user submissions, so we simply pass on the file
pointer to the doResults() function to extract the data from the file. doResults() will
display only the first 1K of the file for space reasons and to show you that it is not
necessary (or necessarily productive/useful) to display a four megabyte binary file.

Web (HTTP) Servers

Until now, we have been discussing the use of Python in creating Web clients and
performing tasks to aid Web servers in CGI request processing. We know (and have seen
earlier in Sections 19.2 and 19.3) that Python can be used to create both simple and
complex Web clients. Complexity of CGI requests goes without saying.

However, we have yet to explore the creation of Web servers, and that is the focus of this
section. If the Netscape, IE, Opera, Mozilla, and Lynx browsers are among the most
popular Web clients, then what are the most common Web servers? They are Apache,
Netscape, and IIS. In situations where these servers may be overkill for your desired
application, we would like to use Python to help us create simple yet useful Web servers.

Creating Web Servers in Python

Since you have decided on building such an application, you will naturally be creating all
the custom stuff, but all the base code you will need is already available in the Python
Standard Library. To create a Web server, a base server and a "handler" are required.

The base (Web) server is a boilerplate item, a must have. Its role is to perform the
necessary HTTP communication between client and server. The base server is
(appropriately) named HTTPServer and is found in the BaseHTTPServer module.

The handler is the piece of software which does the majority of the "Web serving." It
processes the client request and returns the appropriate file, whether static or
dynamically-generated by CGI. The complexity of the handler determines the complexity
of your Web server. The Python standard library provides three different handlers.

The most basic, plain, vanilla handler, named BaseHTTPRequestHandler, is found in the
BaseHTTPServer module, along with the base Web server. Other than taking a client

IT-SC book: Core Python Programming

 647

request, no other handling is implemented at all, so you have to do it all yourself, such as
in our myhttpd.py server below.

The SimpleHTTPRequestHandler, available in the SimpleHTTP-Server module, builds
on BaseHTTPRequestHandler by implementing the standard GET and HEAD requests in
a fairly straightforward manner. Still nothing sexy, but it gets the simple jobs done.

Finally, we have the CGIHTTPRequestHandler, available in the CGIHTTPServer module,
which takes the SimpleHTTPRequestHandler and adds support for POST requests. It has
the ability to call CGI scripts to perform the requested processing and can send the
generated HTML back to the client.

The three modules and their classes are summarized in Table 19-6.

Table 19.6. Web Server Modules and Classes

Module Description

BaseHTTPServer provides the base Web server and base handler classes, HTTPServer
and BaseHTTPRequestHandler, respectively

SimpleHTTPServer contains the SimpleHTTPRequestHandler class to perform GET
and HEAD requests

CGIHTTPServer contains the CGIHTTPRequestHandler class to process POST
requests and perform CGI execution

To be able to understand how the more advanced handlers found in the
SimpleHTTPServer and CGIHTTPServer modules work, we will implement simple GET
processing for a BaseHTTPRequestHandler. In Example 19-7, we present the code for a
fully working Web server, myhttpd.py.

This server subclasses BaseHTTPRequestHandler and consists of a single do_GET()
method, which is called when the base server receives a GET request. We attempt to
open the path passed in by the client and if present, return an "OK" status (200) and
forward the downloaded Web page. If the file was not found, returning a 404 status.

The main() function simply instantiates our Web server class and invokes it to run our
familiar infinite server loop; shutting it down if interrupted by ^C or similar keystroke. If
you have appropriate access and can run this server, you will notice that it displays
loggable output which will look something like:

Example 19.7. Simple Web Server (myhttpd.py)

IT-SC book: Core Python Programming

 648

This simple Web server can read GET requests, fetch a Web page (.html file) and return
it to the calling client. It uses the BaseHTTPRequestHandler found in BaseHTTPServer
and implements the do_GET() method to enable processing of GET requests

 <$nopage>
001 1 #!/usr/bin/env python
002 2
003 3 from os import curdir, sep
004 4 from BaseHTTPServer import \
005 5 BaseHTTPRequestHandler, HTTPServer
006 6
007 7 class MyHandler(BaseHTTPRequestHandler):
008 8
009 9 def do_GET(self):
010 10 try: <$nopage>
011 11 f = open(curdir + sep + self.path)
012 12 self.send_response(200)
013 13 self.send_header('Content-type',
014 14 'text/html')
015 15 self.end_headers()
016 16 self.wfile.write(f.read())
017 17 f.close()
018 18 except IOError:
019 19 self.send_error(404, \
020 20 'File Not Found: %s' % self.path)
021 21
022 22 def main():
023 23 try: <$nopage>
024 24 server = HTTPServer(('', 80), MyHandler)
025 25 print 'Welcome to the machine…',
026 26 print 'Press ^C once or twice to quit.'
027 27 server.serve_forever()
028 28 except KeyboardInterrupt:
029 29 print '^C received, shutting down server'
030 30 server.socket.close()
031 31
032 32 if __name__ == '__main__':
033 33 main()
034 <$nopage>

myhttpd.py
Welcome to the machine... Press ^C once or twice to quit
localhost - - [26/Aug/2000 03:01:35] "GET /index.html
HTTP/1.0" 200 -
localhost - - [26/Aug/2000 03:01:29] code 404, message
File Not Found: /dummy.html
localhost - - [26/Aug/2000 03:01:29] "GET /dummy.html
HTTP/1.0" 404 -
localhost - - [26/Aug/2000 03:02:03] "GET /hotlist.htm
HTTP/1.0" 200 -

IT-SC book: Core Python Programming

 649

Of course, our simple little Web server is so simple, that it cannot even process plain text
files. We leave that as an exercise for the reader, which can be found at the end of the
chapter.

As you can see, it doesn't take much to have a Web server up and running in pure Python.
There is plenty more you can do to enhance the handlers to customize it to your specific
application. Please review the Library Reference for more information on these modules
(and their classes) discussed in this section.

Related Modules

In Table 19-7, we present a list of modules which you may find useful for Web and
Internet development.

The parsing modules deal with recognizing documents in specific formats.

You can write POP- or IMAP-compliant mail clients using the corresponding protocol
modules.

Python has plenty of modules to support most kinds of binary file encoding for e-mail
and other MIME-oriented applications.

You can create clients for common Internet protocols like HTTP, FTP, Telnet, and NNTP
with the appropriate modules. Be aware that urllib provides a high-level interface to
protocols supported by your browser such as HTTP and FTP, so use of the lower-level
protocol modules only makes sense when you cannot get all you want from urllib.

Finally, we have the HTMLgen external module and the commercial Zope (Z Object
Publishing Environment) system by Digital Creations. We introduced the HTMLgen
module briefly at the end of Section 19.5. It definitely comes in handy when you need to
generate more complex HTML documents via CGI scripts.

Table 19.7. Web Programming Related Modules

Module Description

Parsing

htmllib parses simple HTML files

sgmllib parses simple SGML files

IT-SC book: Core Python Programming

 650

xmllib parses simple XML files

robotparser[a] parses robots.txt files for URL "fetchability"
analysis

Mail Client Protocols

poplib use to create POP3 clients

imaplib use to create IMAP4 clients

Mail and MIME Processing and
Data Encoding Formats

mailcap parses mailcap files to obtain MIME application
delegations

mimetools provides functions for manipulating MIM-encoded
messages

mimetypes provides MIME type associations

MimeWriter generates MIME-encoded multipart files

multifile can parse multipart MIME-encoded files

quopri en-/decodes data using quoted-printable encoding

rfc822 parses RFC822-compliant e-mail headers

smtplib uses to create SMTP (Simple Mail Transfer Protocol)
clients

IT-SC book: Core Python Programming

 651

base64 en-/decodes data using base64 encoding

binascii en-/decodes data using base64, binhex, or uu
(modules)

binhex en-/decodes data using binhex4 encoding

uu en-/decodes data using uuencode encoding

Internet Protocols

httplib[a] use to create HTTP (HyperText Transfer Protocol)
clients (modified in Python 1.6 to support HTTP 1.1
and SSL)

ftplib use to create FTP (File Transfer Protocol) clients

gopherlib use to create Gopher clients

telnetlib use to create Telnet clients

nntplib use to create NNTP (Network News Transfer Protocol
[Usenet]) clients

External/Commercial

HTMLgen use with CGI to generate complex HTML documents

Zope (not a module) web object publishing product and Python Web
application development environment
(http://www.zope.org)

[a] new or modified in Python 1.6

IT-SC book: Core Python Programming

 652

Zope is an open source Web publishing and application development platform which has
Python code everywhere. Part of it is written in Python, and Python can be used to create
extensions to Zope. Although it is in our Related Modules section, Zope is not a specific
module as it is a powerful system for Web publishing.

Zope presents an extremely powerful alternative when simple CGI and database access
just do not cut it for the application you are trying to build. Material on Zope itself can
take up a book's length—you may even see one soon! We invite the reader to explore this
system if desiring to create any complex system.

The robotparser module is new as of Python 1.6 and the httplib and urllib modules
have been modified for 1.6 to support HTTP connections over SSL. (See Section 19.2.2
for a really brief introduction.) Also, a new module webbrowser, was introduced in 2.0
to provide a platform-independent way to launch a Web browser.

Exercises

urllib Module and Files. Update the friends3.py script so that it stores
names and corresponding number of friends into a 2-column text file on disk
and continues to add names each time the script is run.

EXTRA CREDIT: Add code to dump the contents of such a file to the Web browser (in
HTML format). Additional EXTRA CREDIT: Create a link that clears all the names in
this file.

urllib Module. Write a program that takes a user-input URL (either a Web page or an
FTP file, i.e., http://www.python.org or ftp://ftp.python.org/pub/python/README,
and downloads it to your machine with the same filename (or modified name similar to
the original if it is invalid on your system). Web pages (HTTP) should be saved as .htm
or .html files, and FTP'd files should retain their extension.

urllib Module. Rewrite the grabWeb.py script of Example 11.2 which downloads a
Web page and displays the first and last non-blank lines of the resulting HTML file so
that you use urlopen() instead of urlretrieve() to process the data directly (as
opposed to downloading the entire file first before processing it).

URLs and Regular Expressions. Your browser may save your favorite Web site URLs as
a "bookmarks" HTML file (Netscape browsers do this) or as a set of .URL files in a
"favorites" directory (Microsoft browsers do this). Find your browser's method of
recording your "hot links" and the location of where and how they stored. Without
altering any of the files, strip the URLs and names of the corresponding Web sites (if
given) and produce a 2-column list of names and links as output, and storing this data
into a disk file. Truncate site names or URLs to keep each line of output within 80
columns in size.

URLs, urllib Module, Exceptions, and REs. As a follow-up problem to the previous,
add code to your script to test each of your favorite links. Report back a list of dead links

IT-SC book: Core Python Programming

 653

(and their names), i.e., Web sites that are no longer active or a Web page that has been
removed. Only output and save to disk the still-valid links.

Error Checking. The friends3.py script reports an error if no radio button
was selected to indicate the number of friends. Update the CGI script to also
report an error if no name (e.g., blank or whitespace) is entered.

EXTRA CREDIT: We have so far explored only server-side error checking. Explore
JavaScript programming and implement client-side error checking by creating JavaScript
code to check for both error situations so that these errors are stopped before they reach
the server.

Problems 19–7 to 19–10 below pertain to Web server access log files and Regular
Expressions. Web servers (and their administrators) generally have to maintain an access
log file (usually logs/access_log from the main Web server directory) which tracks
requests file. Over a period of time, such files get large and either need to be stored or
truncated. Why not save only the pertinent information and delete the files to conserve
disk space? The exercises below are designed to give you some exercise with REs and
how they can be used to help archive and analyze Web server data.

Step 19-7.

Count how many of each type of request (GET vs. POST) exist in the log file.

Count the successful page/data downloads: Display all links which resulted in a return
code of 200 (OK [no error]) and how many times each link was accessed.

Count the errors: Show all links which resulted in errors (return codes in the 400s or 500s)
and how many times each link was accessed.

Track IP addresses: For each IP address, output a list of each page/data downloaded and
how many times that link was accessed.

Simple CGI. Create a "Comments" or "Feedback" page for a Web site. Take user
feedback via a form, process the data in your script, and return a "thank you" screen.

Simple CGI. Create a Web guestbook. Accept a name, an e-mail address, and a journal
entry from a user and log it to a file (format of your choice). Like the previous problem,
return a "thanks for filling out a guestbook entry" page. Also provide a link which allows
users to view guestbooks.

Web Browser Cookies and Web Site Registration. Update your solution to
Exercise 13-4. so that your user-password information pertains to Web site
registration instead of a simple text-based menu system.

EXTRA CREDIT: familiarize yourself with setting Web browser cookies and maintain a
login session for 4 hours from the last successful login.

IT-SC book: Core Python Programming

 654

Stock Quote Information. There are many online services which allow users to
look up stock quote price information. A few of these sites, such as Yahoo! for
example, allow users to download such data in a comma-delimited
spreadsheet format. Become familiar with one of these sites and learn how to
download stock price information onto your local hard drive. Create a Python
application not only to perform the download, but also to be able to read,
parse, and display the saved data for a specified set of stock ticker symbols.

EXTRA CREDIT: Integrate your solution to the previous problem by registering users
and allowing individual portfolios using the classes created for your solution to Exercise
13-13.

Stock Quote Information. Update your solution to the previous problem by bypassing the
downloading of the information to a local file. Open a connection directly to a Web
server and parse the stock data as it streams down to your application, and display this
information to the screen.

NOTE

Python on the Windows 32-bit platform contains connectivity to Component Object
Model (COM), a Microsoft interfacing technology that allows objects to talk to one
another, or more higher-level, applications to talk to one another, without any language-
or format-dependence. You can read all about COM in Hammond and Robinson. The
combination of Python and COM presents a unique opportunity to create Python scripts
which can talk to such applications as Word or Excel.

Stock Quotes and Excel/COM programming (). Familiarize yourself with COM
programming in Python, then use your solution to the previous problem to create a new
application which downloads stock quote information and transfers that data directly to
an Excel spreadsheet. You may choose to have the user manually invoke the Python
script to update the data, or if you have a direct connection to the Internet, have your
script update the data periodically during the business day. Merge any element of your
solution to the previous problem by providing automatically-updating Excel spreadsheets
for multiple portfolios.

Multithreaded COM Programming (). Update your solution to the previous problem
so that the downloads of data happen "concurrently" using multiple threads.

Web Database Application. Think of a database schema you want to provide
as part of a Web database application. For this multi-user application, you
want to provide everyone read access to the entire contents of the database,
but perhaps only write access to each individual. One example may be an
"address book" for your family and relatives. Each family member, once
successfully logged in, is presented with a Web page with several options, add
an entry, view my entry, update my entry, remove or delete my entry, and
view all entries (entire database).

IT-SC book: Core Python Programming

 655

Design a UserEntry class and create a database entry for each instance of this class. You
may use any solution created for any previous problem to implement the registration
framework. Finally, you make use any type of storage mechanism for your database,
either a relational database such as mySQL or some of the simpler Python persistent
storage modules such as anydbm or shelve.

Electronic Commerce Engine. Use the classes created for your solution to Exercise 13-11
and add some product inventory to create a potential electronic commerce Website. Be
sure your Web application also supports multiple customers and provides registration for
each user.

Dictionaries and cgi module. As you know, the cgi.FieldStorage() method
returns a dictionary-like object containing the key-value pairs of the
submitted CGI variables. You can use methods such as keys() and has_key()
for such objects. In Python 1.5, a get() method was added to dictionaries
which returned the value of the requested key, or the default value for a non-
existent key. FieldStorage objects do not have such a method. Let's say we
grab the form in the usual manner of:

form = cgi.FieldStorage()

Add a similar get() method to class definition in cgi.py (you can rename it
to mycgi.py or something like that) such that code which looks like this:

if form.has_key(\qwho\q):
 who = form[\qwho\q].value
else:
 who = \q(no name submitted)\q

… can be replaced by a single line which makes forms even more like a dictionary:

howmany = form.get('who', '(no name submitted)')

Creating Web Servers. Our code for myhttpd.py in Section 19.7 is only able
to read HTML files and return them to the calling client. Add support for plain
text files with the ".txt" ending. Be sure that you return the correct MIME type
of "text/plain."

EXTRA CREDIT: add support for JPEG files ending with either ".jpg" or ".jpeg" and
having a MIME type of "image/jpeg".

Advanced Web Clients. Update the crawl.py script in Section 19.3 to also download
links which use the "ftp:" scheme. All "mailto:" links are ignored by crawl.py. Add
support to ensurethat it also ignores "telnet:, news:, gopher:," and "about:" links.

IT-SC book: Core Python Programming

 656

Advanced Web Clients. The crawl.py script in Section 19.3 only
downloads .html files via links found in Web pages at the same site and does
not handle/save images which are also valid "files" for those pages. It also
does not handle servers which are susceptible to URLs which are missing the
trailing slash (/). Add a pair of classes to crawl.py to deal with these
problems. A My404UrlOpener class should subclass urllib.FancyURLOpener
and consist of a single method, http_error_404() which determines if a 404
error was reached using a URL without a trailing slash. If so, it adds the slash
and retries the request again (and only once). If it still fails, return a real 404
error. You must set urllib._urlopener with an instance of this class so that
urllib uses it.

Create another class called LinkImageParser which derives from htmllib.HTMLParser.
This class should contain a constructor to call the base class constructor as well as
initialize a list for the image files parsed from Web pages. The handle_image() method
should be overridden to add image filenames to the image list (instead of discarding them
like the current base class method does).

IT-SC book: Core Python Programming

 657

Chapter 20. Extending Python

Chapter Topics

Introduction/Motivation

Extending Python

Create Application Code

Wrap Code in Boilerplate

Compile

Import and Test

Related Topics

In this chapter, we will discuss how we can take code written externally and integrate that
functionality into your Python programming environment. We will first give you
motivation for doing such a thing, then take you through the step-by-step process on how
to do it. We should point out, though, that because extensions are primarily done in the C
language, all of the example code you will see in this section is pure C.

Introduction/Motivation

What Are Extensions?

In general, any code that you write that can be integrated or imported into another Python
script can be considered an "extension." This new code can be written in pure Python or
in a compiled language like C and C++ (or Java for JPython). However, a more "strict"
definition of an extension is relegated to the latter category, the topic of this chapter.

One great feature of Python is that its extensions interact with the interpreter in exactly
the same way as the regular Python modules. Python was designed so that the abstraction
of module import hides the underlying implementation details from the code which uses
such extensions. Unless the client programmer searches the file system, he or she simply
cannot tell whether a module is written in Python or in a compiled language.

NOTE

We will note here that extensions are generally available in a development environment
where you compile your own Python interpreter. There is a subtle relationship between
manual compilation versus obtaining the binaries. Although compilation may be a bit

IT-SC book: Core Python Programming

 658

trickier than just downloading and installing binaries, you have the most flexibility in
customizing the version of Python you are using.

If you intend to create extensions, you should perform this task in a similar environment.
The examples in this chapter use a Unix system (which, by default, comes with
compilers), but, assuming you do have access to aC/C++ (or Java) compiler and a Python
development environment in C/C++ (or Java), the only differences are in your
compilation method. The actual code to make your extensions usable in the Python world
is the same on any platform.

Why Extend Python?

Throughout the brief history of software engineering, programming languages have
always been taken at face value. What you see is what you get; it was impossible to add
new functionality to an existing language. In today's programming environment however,
the ability to customize one's programming environment is now a desired feature; it also
promotes code reuse. Languages such as TCL and Python are among the first languages
to provide the ability to extend the base language. So why would you want to extend a
language like Python which is already feature-rich? There are several good reasons:

Added/extra (non-Python) functionality

One reason for extending Python is the need to have new functionality not provided by
the core part of the language. This can be accomplished in either pure Python or as a
compiled extension, but there are certain things such as creating new data types or
embedding Python in an existing application.

Bottleneck performance improvement

It is well-known that interpreted languages do not perform as fast as compiled languages
due to the fact that translation must happen on-the-fly and during runtime. In general,
moving a body of code into an extension will improve overall performance. The problem
is that it is sometimes not advantageous if the cost is high in terms of resources.

Percentage-wise, it is a wiser bet to do some simple profiling of the code to identify what
the bottlenecks are, and move those pieces of code out to an extension. The gain can be
seen more quickly and without expending as much in terms of resources.

Keep proprietary source code private

Another important reason to create extensions is due to one side effect of having a
scripting language. For all the ease-of-use such languages bring to the table, there really
is no privacy as far as source code is concerned because the executable is the source code.

IT-SC book: Core Python Programming

 659

Code that is moved out of Python and into a compiled language helps keep proprietary
code private because you ship a binary object. Because these objects are compiled, they
are not as readily able to be reverse-engineered; thus, the source remains more private.
This is key when it involves special algorithms, encryption or software security, etc.

Another alternative to keeping code private is to only ship pre-compiled .pyc files only.
It serves as a good middle ground between releasing the actual source (.py files) and
having to migrate that code to extensions.

Extending Python by Writing Extensions

Creating extensions for Python involve three main steps:

Create application code

Wrap code with boilerplates

Compilation

In this section, we will break out all three pieces and expose it all to you.

Create Your Application Code

First, before any code becomes an extension, create a standalone "library." In other words,
create your code keeping in mind that it is going to turn into a Python module. Design
your functions and objects with the vision that Python code will be communicating and
sharing data with your C code and vice versa.

Next, create test code to bulletproof your software. You may even use the "Pythonic"
development method of designating your main() function in C as the testing application
so that if your code is compiled, linked, and loaded into an executable (as opposed to just
a shared object), that invocation of such an executable will result in a regression test of
your software library. For our extension example below, this is exactly what we do.

The test case involves two C functions which we want to bring to the world of Python
programming. The first is the recursive factorial function, fac(). The second,
reverse(), is a simple string reverse algorithm, whose main purpose is to reverse a
string "in place," that is, to return a string whose characters are all reversed from their
original positions, all without allocating a separate string to copy in reverse order.
Because this involves the use of pointers, we need to carefully design and debug our code
before bringing Python into the picture.

Our first version, Extest1.c, is presented in Example 20.1.

Example 20.1. Pure C Version of Library(Extest1.c)

IT-SC book: Core Python Programming

 660

The following code represents our library of C functions which we want to wrap so that
we can use this code from within the Python interpreter. main() is our tester function.

 <$nopage>
001 1 #include <stdio.h>
002 2 #include <stdlib.h>
003 3 #include <string.h>
004 4
005 5 int fac(int n)
006 6 {
007 7 if (n < 2) return(1);
008 8 return((n)*fac(n-1));
009 9 }
010 10
011 11 char *reverse(char *s)
012 12 {
013 13 register char t,
014 14 *p = s,
015 15 *q = (s + (strlen(s) - 1));
016 16
017 17 while (s && (p < q))
018 18 {
019 19 t = *p;
020 20 *p++ = *q;
021 21 *q-- = t;
022 22 }
023 23 return s;
024 24 }
025 25
026 26 void main()
027 27 {
028 28 char s[BUFSIZ];
029 29 printf("4! == %d\n", fac(4));
030 30 printf("8! == %d\n", fac(8));
031 31 printf("12! == %d\n", fac(12));
032 32 strcpy(s, "abcdef");
033 33 printf("reversing 'abcdef', we get '%s'\n", \
034 34 reverse(s));
035 35 strcpy(s, "madam");
036 36 printf("reversing 'madam', we get '%s'\n", \
037 37 reverse(s));
038 38 }
039 <$nopage>

This code consists of a pair of functions, fac() and reverse(), which are
implementations of the functionality we described above. fac() takes a single integer
argument and recursively calculates the result, which is eventually returned to the caller
once it exits the outermost call.

The last piece of code is the required main() function. We use it to be our tester, sending
various arguments to fac() and reverse(). With this function, we can actual tell
whether our code works (or not).

IT-SC book: Core Python Programming

 661

Now we should compile the code. For many versions of Unix with the gcc compiler, we
use the following command:

% gcc Extest1.c -o Extest
%

To run our program, we issue the following command and get the output:

% Extest
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
%

We stress again that you should try to complete your code as much as possible, because
you do not want to mix debugging of your library with potential bugs when integrating
with Python. In other words, keep the debugging of your core code separate from the
debugging of the integration. The closer you write your code to Python interfaces, the
sooner your code will be integrated and work correctly.

Each of our functions takes a single value and returns a single value. It's pretty cut and
dried, so there shouldn't be a problem integrating with Python. Note that so far, there no
connection or relationship with Python as of now. We are simply creating a standard C or
C++ application.

Wrap Your Code in Boilerplate

The entire implementation of an extension primarily revolves around the "wrapping"
concept which we introduced earlier in Section 13.15.1. You should design your code in
such a way that there is a smooth transition between the world of Python and your
implementing language. This interfacing code is commonly called "boilerplate" code
because it is a necessity if your code is to talk to the Python interpreter.

There are 4 main pieces to the boilerplate software:

Include Python header file

Add PyObject* Module_func() Python wrappers for each module function

Add PyMethodDef ModuleMethods[] array/table for each module function

Add void initModule() module initializer function

IT-SC book: Core Python Programming

 662

Include Python header file

The first thing you should do is to find out where your Python include files are and make
sure your compiler has access to that directory, which is usually
/usr/local/include/python1.x, or /usr/include/python1.x, where the "1.x" is
your version of Python. (It is probably 1.5 or 2.0.) If you compiled and installed your
Python interpreter, then you shouldn't have a problem because the system generally
knows where your files are installed.

Add the inclusion of the Python.h header file to your source. The line will look
something like:

#include "Python.h"

That's the easy part. Now you have to add the rest of the boilerplate software.

Add PyObject* Module_func() Python wrappers for each function

This part is the trickiest. For each function which you want accessible to the Python
environment, you will create a static PyObject* function with the module name (along
with an underscore [_]) prepended to it.

For example, we want fac() to be one of the functions available for import from Python
and will use Extest as the name of our final module, so we create a "wrapper" called
Extest_fac(). So in the client Python script, there will be an "import Extest" and an
"Extest.fac()" call somewhere (or just "fac()" for "from Extest import fac").

The job of the wrapper is to take Python values, convert them to C, then make a call to
the appropriate function with what we want. When our function has completed, and it is
time to return to the world of Python, it is also the job of this wrapper to take whatever
return values we designate, convert them to Python, and then perform the return, passing
back any values as necessary.

In the case of fac(), when the client program invokes Extest.fac(), our wrapper will
be called. We will accept a Python integer, convert it to a C integer, call our C function
fac() and obtain another integer result. We then have to take that return value, convert it
back to a Python integer, then return from the call. (In your head, try to keep in mind that
you are writing the code that will proxy for a "def fac(n)" declaration. When you are
returning, it is as if that imaginary Python fac() function is completing.)

So, you're asking, how does this conversion take place? The answer is with the
PyArg_Parse*() functions when going from C to Python, and Py_BuildValue() when
returning from C to Python.

IT-SC book: Core Python Programming

 663

The PyArg_Parse*() functions are similar to the C sscanf() function. It takes a stream
of bytes, and, according to some format string, parcels them off to corresponding
container variables, which, as expected, take pointer addresses. They both return 1 on
successful parsing and 0 otherwise.

Py_BuildValue() works like sprintf(), taking a format string and converting all
arguments to a single returned object containing those values in the formats that you
requested.

You will find a summary of these functions below in Table 20.1:

Table 20.1. Converting Data Between Python and C/C++
Function Description

C to Python

int

PyArg_ParseTuple()

converts (a tuple of) arguments passed from Python
to C

int

PyArg_ParseTupleAndKeywords()

same as PyArg_ParseTuple() but also parses
keyword arguments

Python to C

PyObject*

Py_BuildValue()

converts C data values into a Python return object,
either a single object or a single tuple of objects

A set of conversion codes is used to convert data objects between C and Python; they are
given in Table 20.2.

Table 20.2. Common Codes to Convert Data Between Python and C/C++
Format Code Python Type C/C++ Type

s string char*
z string/None char*c/NULL
i int int
l long long
c string char
d float double
D complex Py_Complex*
O (any) PyObject*
S string PyStringObject

These conversion codes are the ones given in the respective format strings that dictate
how the values should be converted when moving between both languages. NOTE: the

IT-SC book: Core Python Programming

 664

conversion types are different for Java since all data types are classes. Consult the
JPython documentation to obtain the corresponding Java types for Python objects.

Here we show you our completed Extest_fac() wrapper function:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {

 int res; // parse result
 int num; // arg for fac()
 PyObject* retval; // return value

 res = PyArg_ParseTuple(args, "i", &num);
 if (!res) // TypeError
 return NULL;
 }
 res = fac(num);
 retval = (PyObject*)Py_BuildValue("i", res);
 return retval;
}

The first step is to parse the data received from Python. It should be a regular integer, so
we use the "i" conversion code to indicate as such. If the value was indeed an integer,
then it gets stored in the num variable. Otherwise, PyArg_ParseTuple() will return a
NULL, in which case we also return one. In our case, it will generate a TypeError
exception that tells the client user that we are expecting an integer.

We then call fac() with the value stored in num and put the result in res, reusing that
variable. Now we build our return object, a Python integer, again using a conversion code
of "i". Py_BuildValue() creates an integer Python object which we then return. That's
all there is to it!

In fact, once you have created wrapper after wrapper, you tend to shorten your code
somewhat to avoid extraneous use of variables. Try to keep your code legible, though.
We take our Extest_fac() function and reduce it to its smaller version given here, using
only one variable, num:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {
 int num;
 if (!PyArg_ParseTuple(args, "i", &num)) return NULL;
 return (PyObject*)Py_BuildValue("i", fac(num));
}

What about reverse()? Well, since you already know how to return a single value, we
are going to change our reverse() example somewhat, returning two values instead of

IT-SC book: Core Python Programming

 665

one. We will return a pair of strings as a tuple, the first element being the string as passed
in to us, and the second being the newly-reversed string.

To show you that there is some flexibility, we will call this function Extest.doppel() to
indicate that its behavior differs from reverse(). Wrapping our code into an
Extest_doppel() function, we get:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str;
 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 return (PyObject*)Py_BuildValue("ss", orig_str, \
 reverse(strdup(orig_str)));
}

As in Extest_fac(), we take a single input value, this time a string, and store it into
orig_str. Notice that we use the "s" conversion code now. We then call strdup() to
create a copy of the string. (Since we want to return the original one as well, we need a
string to reverse, so the best candidate is just a copy of the string.) strdup() creates and
returns a copy which we immediate dispatch to reverse(). We get back a reversed
string.

As you can see, Py_BuildValue() puts together both strings using a conversion string of
"ss." This creates a tuple of two strings, the original string and the reversed one. End of
story, right? Unfortunately, no.

We got caught by one of the perils of C programming: the memory leak, that is, when
memory is allocated but not freed. Memory leaks are analogous to borrowed books from
the library but not returning them. You should always release resources which you have
acquired when you no longer require them. How did we commit such a crime with our
code (which looks innocent enough)?

When Py_BuildValue() puts together the Python object to return, it makes copies of the
data it has been passed. In our case here, that would be a pair of strings. The problem is
that we allocated the memory for the second string, but we did not release that memory
when we finished, leaking it. What we really want to do is to build the return object and
then free the memory that we allocated in our wrapper. We have no choice but to
lengthen our code to:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str; // original string
 char *dupe_str; // reversed string
 PyObject* retval;

 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 retval = (PyObject*)Py_BuildValue("ss", orig_str, \

IT-SC book: Core Python Programming

 666

 dupestr=reverse(strdup(orig_str)));
 free(dupe_str);
 return retval;
}

We introduced the dupe_str variable to point to the newly-allocated string, built the
return object and referenced it to retval. Then we free() the memory allocated and
finally return back to the caller. Now we are done.

Add PyMethodDef ModuleMethods[]array/table for each module function

Now that both of our wrappers are complete, we want to list them somewhere so that the
Python interpreter knows how to import and access them. This is the job of the
ModuleMethods[] array.

It is made up of an array of arrays, with each individual array containing information
about each function, terminated by a NULL array marking the end of the list. For our
Extest module, we create the following ExtestMethods[] array:

static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { NULL, NULL },
};

The Python-accessible names are given, followed by the corresponding wrapping
functions. The constant METH_VARARGS is given, indicating a set of arguments in the form
of a tuple. If we are using PyArg_ParseTupleAndKeywords() with keyworded
arguments, we would logically OR this flag with the METH_KEYWORDS constant. Finally, a
pair of NULLs properly terminates our list of two functions.

Add void initModule() module initializer function

The final piece to our puzzle is the module initializer function. This code is called when
our module is imported for use by the interpreter. In this code, we make one call to
Py_InitModule() along with the module name and the name of the ModuleMethods[]
array so that the interpreter can access our module functions. For our Extest module, our
initExtest() procedure looks like this:

 void initExtest() {
 Py_InitModule("Extest", ExtestMethods);
 }

IT-SC book: Core Python Programming

 667

We are now done with all our wrapping. We add all this code to our original code from
Extest1.c and merge the results into a new file called Extest2.c, concluding the
development phase of our example.

Another approach to creating an extension would be to make your wrapping code first,
using "stubs" or test or dummy functions which will, during the course of development,
be replaced by the fully functional pieces of implemented code. That way you can ensure
that your interface between Python and C is correct, and then use Python to test your C
code.

Compilation

Now we are on to the compilation phase. In order to get your new wrapper Python
extension to build, you need to get it to compile with the Python library. This task has
finally been standardized across platforms to make life a lot easier for extension
designers.

Copy Misc/Makefile.pre.in

Create Setup

Create Makefile

Compile and link your code by running make

Import your module from Python

Test function

Copy Misc/Makefile.pre.in

The first step is to copy the Makefile.pre.in file from the Misc directory of the Python
distribution to your local directory where your extension is to be compiled. In fact, all
steps take place in this same directory or folder.

Create Setup

The next step is to create a Setup file. The first line should contain the string
"*shared*." It is followed by line after line of module names followed by source files
and compiler options which need to come together to build the module. If you have only
one module, then it should be only one line. The format of these lines is the following:

modName modFile[1, ***modFile2…][compiler_opts][linker_opts]

So for our Extest example, our Setup file consists of the following pair of lines:

IT-SC book: Core Python Programming

 668

shared
Extest Extest.2c

The "*shared*" string at the top of the Setup file means to create a shared library (.so
object file), i.e., Extest.so. This file can then be imported by any Python module just as
if your module was written in pure Python.

Create Makefile

Now we need to create the Makefile. We do this by issuing the make command:

% make -f Makefile.pre.in boot

This step usually gives a good amount of output, most of which is not important to you. It
basically takes the information provided in the Setup file, adds its knowledge of where
all the Python files are, and generates a Makefile so that you can build your module
object file.

Compile and link your code by running make

% make
gcc -fpic -O2 -m486 -fno-strength-reduce -I/usr/
include/python1.5 -I/usr/include/python1.5 -
DHAVE_CONFIG_H -c ./Extest2.c
gcc -shared Extest2.o -o Extestmodule.so

NOTE

If your module consists of a single file of the same name, then your shared object file will
be the same name, but with a .so extension, i.e., if our module is Extest and our file is
Extest.c, then our shared object file would be called Extest.so. If there is more than
one file or if there is a single file with a different name, then your module will have a
"module" suffix after its name, i.e., Extestmodule.so. In either case, you still import
the module by its original name (without the "module").

Import your module from Python

Now we can test out our module from the interpreter:

IT-SC book: Core Python Programming

 669

>>> import Extest
>>> Extest.fac(5)
120
>>> Extest.fac(9)
362880
>>> Extest.doppel('abcdefgh')
('abcdefgh', 'hgfedcba')
>>> Extest.doppel("Madam, I'm Adam.")
("Madam, I'm Adam.", ".madA m'I ,madaM")

Test function

The one last thing we want to do is to add a test function. In fact, we already have one, in
the form of the main() function. Now it is potentially dangerous to have a main()
function in our code because there should only be one main() in the system. We remove
this danger by changing the name of our main() to test() and wrapping it, adding
Extest_test() and updating ExtestMethods array so that they both look like this:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { "test", Extest_test, METH_VARARGS },
 { NULL, NULL },
};

The Extest_test() module function just runs test() and returns an empty string,
resulting in a Python value of None being returned to the caller.

Now we can run the same test from Python:

>>> Extest.test()
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
>>>

IT-SC book: Core Python Programming

 670

Below, we present the final version of Extest2.c (Example 20.2) that was used to
generate the output we just witnessed.

Example 20.2. Python-wrapped Version of C Library (Extest2.c)

 <$nopage>
001 1 #include <stdio.h>
002 2 #include <stdlib.h>
003 3 #include <string.h>
004 4
005 5 int fac(int n)
006 6 {
007 7 if (n < 2) return(1);
008 8 return ((n)*fac(n-1));
009 9 }
010 10
011 11 char *reverse(char *s)
012 12 {
013 13 register char t,
014 14 *p = s,
015 15 *q = (s + (strlen(s) - 1));
016 16
017 17 while (s && (p < q))
018 18 {
019 19 t = *p;
020 20 *p++ = *q;
021 21 *q-- = t;
022 22 }
023 23 return(s);
024 24 }
025 25
026 26 void test()
027 27 {
028 28 char s[BUFSIZ];
029 29 printf("4! == %d\n", fac(4));
030 30 printf("8! == %d\n", fac(8));
031 31 printf("12! == %d\n", fac(12));
032 32 strcpy(s, "abcdef");
033 33 printf("reversing 'abcdef', we get '%s'\n", \
034 34 reverse(s));
035 35 strcpy(s, "madam");
036 36 printf("reversing 'madam', we get '%s'\n", \
037 37 reverse(s));
038 38 }
039 39
040 40 #include "Python.h"
041 41
042 42 static PyObject *
043 43 Extest_fac(PyObject *self, PyObject *args)
044 44 {
045 45 int num;
046 46 if (!PyArg_ParseTuple(args, "i", &num))
047 47 return NULL;
048 48 return (PyObject*)Py_BuildValue("i", fac(num));
049 49 }
050 50

IT-SC book: Core Python Programming

 671

051 51 static PyObject *
052 52 Extest_doppel(PyObject *self, PyObject *args)
053 53 {
054 54 char *orig_str;
055 55 char *dupe_str;
056 56 PyObject* retval;
057 57
058 58 if (!PyArg_ParseTuple(args, "s", &orig_str))
059 59 return NULL;
060 60 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
061 61 dupe_str=reverse(strdup(orig_str)));
062 62 free(dupe_str);
063 63 return retval;
064 64 }
065 65
066 66 static PyObject *
067 67 Extest_test(PyObject *self, PyObject *args)
068 68 {
069 69 test();
070 70 return (PyObject*)Py_BuildValue("");
071 71 }
072 72
073 73 static PyMethodDef
074 74 ExtestMethods[] =
075 75 {
076 76 { "fac", Extest_fac, METH_VARARGS },
077 77 { "doppel", Extest_doppel, METH_VARARGS },
078 78 { "test", Extest_test, METH_VARARGS },
079 79 { NULL, NULL },
080 80 };
081 81
082 82 void initExtest()
083 83 {
084 84 Py_InitModule("Extest", ExtestMethods);
085 85 }
086 <$nopage>

In this example, we chose to segregate our C code from our Python code. It just kept
things easier to read and is no problem with our short example. In practice, these source
files tend to get large, and some choose to implement their wrappers completely in a
different source file, i.e., ExtestWrappers.c or something of that nature.

Reference Counting

You may recall that Python uses reference counting as a means of keeping track of
objects and deallocating objects no longer referenced as part of the garbage collection
mechanism. When creating extensions, you must pay extra special attention to how you
manipulate Python objects because you must be mindful of whether or not you need to
change the reference count for such objects.

There are two types of references you may have to an object, one of which is an owned
reference, meaning that the reference count to the object is incremented by one to

IT-SC book: Core Python Programming

 672

indicate your ownership. One place where you would definitely have an owned reference
is where you create a Python object from scratch.

When you are done with a Python object, you must dispose of your ownership, either by
decrementing the reference count, transferring your ownership by passing it on, or storing
the object. Failure to dispose of an owned reference creates a memory leak.

You may also have a borrowed reference to an object. Somewhat lower on the
responsibility ladder, this is where you are passed the reference of an object, but
otherwise do not manipulate the data in any way nor do you have to worry about its
reference count, so long as you do not hold onto this reference after its reference count
has decreased to zero. You may convert your borrowed reference to an owned reference
simply by incrementing an object's reference count.

Python provides a pairs of C macros which are used to change the reference count to a
Python object. They are given in Table 20.3:

Table 20.3. Macros for Performing Python Object Reference Counting
Function Description

Py_INCREF(obj) increment the reference count to obj
Py_DECREF(obj) decrement the reference count to obj

In our above Extest_test() function, we return None by building a PyObject with an
empty string; however, it can also be accomplished by becoming an owner of the None
object, PyNone, incrementing your reference count to it, and returning it explicitly, as in
the following alternative piece of code:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 Py_INCREF(Py_None);
 return PyNone;
}

Py_INCREF() and Py_DECREF() also have versions which check for NULL objects, and
they are Py_XINCREF() and Py_XDECREF(), respectively.

We strongly urge the reader to consult the Python documentation regarding extending
and embedding Python for all the details with regards to reference counting (see the
documentation reference in the Appendix).

Threading and GIL Awareness

Extension writers must be aware that their code may be executed in a multithreaded
Python environment. Back in Section 17.3.1, we introduced the Python Virtual Machine

IT-SC book: Core Python Programming

 673

(PVM) and the Global Interpreter Lock (GIL) and described how only one thread of
execution can be running at any given time in the PVM, and that the GIL is responsible
for keeping other threads from running. Furthermore, we indicated that code calling
external functions such as in extension code would keep the GIL locked until the call
returns.

We also hinted that there was a remedy, a way for the extension programmer to release
the GIL, for example before performing a system call. This accomplished by "blocking"
your code off to where threads may (and may not) run safely using another pair of C
macros, Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS. A block of code
bounded by these macros will permit other threads to run.

As with the reference counting macros, we urge you consult with the documentation
regarding extending and embedding Python as well as the Python/C API reference
manual.

Related Topics

SWIG

There is an external tool available called SWIG, which stands for Simplified Wrapper
and Interface Generator. It was written by David Beazley, also the author of Python
Essential Reference, and is a software tool that can take annotated C/C++ header files and
generate wrapped code, ready to compile for Python, Tcl, and Perl. In fact, it is so simple
that once you get comfortable using it, you can practically bypass everything we have
discussed in this chapter! You can find out more information about SWIG from its main
Web site located at the following Web address (URL):

http://www.swig.org

Embedding

Embedding is another feature which is available in Python. It is the inverse of an
extension. Rather than taking C code and wrapping it into Python, you take a C
application and wrap a Python interpreter inside it. This has the effect of giving a
potentially large, monolithic, and perhaps rigid, proprietary, and/or mission-critical
application the power of having an embedded Python interpreter. Once you have Python,
well, it's like a whole new ball game.

To conclude, we would like to mention that there are two pieces of official Python
documentation related to the material in this chapter, "Embedding and Extending the
Python Interpreter" and "Python/C API Reference Manual." Both will be able to fill in
the gaps that we left and are available at the Python home page or directly at this link:

IT-SC book: Core Python Programming

 674

http://www.python.org/doc/ext

Exercises

Extending Python. What are some of the advantages of Python extensions?

Extending Python. Can you see any disadvantages or dangers from using extensions?

Writing Extensions. Obtain or find a C/C++ compiler and write a small program with it to
(re)familiarize yourself with C/C++ programming. Find your Python distribution
directory and locate the Misc/Makefile.pre.in file. Take the program you just wrote
and wrap it in Python. Go through the steps necessary to create a shared object. Access
that module from Python and test it.

Porting from Python to C. Take several of the exercises you did in earlier chapters and
port them to C/C++ as extension modules.

Wrapping C Code. Find a piece of C/C++ code which you may have done a long time
ago, but want to port to Python. Instead of porting, make it an extension module.

Writing Extensions. In Exercise 13-3, you created a dollarize() function as part of a
class to convert a floating point value to a financial numeric string with embedded dollar
signs and commas. Create an extension featuring a wrapped dollarize() function and
integrate a regression testing function, i.e., test(), into the module.

Extending vs. Embedding. What is the difference between extending and embedding?

IT-SC book: Core Python Programming

 675

Answers to Selected Exercises

Chapter 2

Q:
Loops and numbers. Create some loops using both while and for.

A:
5. loops and numbers

a)

i = 0
while i < 11:
 i = i + 1

b)

for i in range(11):
 pass

Q:
Conditionals. Detect whether a number is positive, negative, or zero. Try using fixed
values at first, then update your program to accept numeric input from the user

A:
6. conditionals

n = int(raw_input('enter a number: '))
if n < 0:
 print 'negative'
elif n > 0:
 print 'positive'
else:
 print 'zero'

Q:
Loops and strings. Take a user input string and display string, one character at a
time. As in your above solution, perform this task with a while loop first, then with a
for loop

IT-SC book: Core Python Programming

 676

A:
7.

s = raw_input('enter a string: ')

for eachChar in s:
 print eachChar

for i in range(len(s)):
 print s[i]

Q:
Loops and operators. Create a fixed list or tuple of 5 numbers and output their sum.
Then update your program so that this set of numbers comes from user input. As
with the problems above, implement your solution twice, once using while and
again with for.

A:
8.

subtot = 0
for i in range(5):
 subtot = subtot + int(raw_input('enter a number: '))
print subtot

Chapter 3

Q:
Identifiers. Which of the following are valid Python identifiers? If not, why not? Of
the invalid ones, which are keywords?

A:
7. identifiers

40XL number
$saving$ symbol
print kw
0x40L number
big-daddy symbol
2hot2touch number
thisIsn'tAVar symbol
if kw

IT-SC book: Core Python Programming

 677

counter-1 symbol

Chapter 4

Q:
Object Equality. What do you think is the difference between the expressions
type(a) == type(b) and type(a) is type(b)?

A:
6. difference between type(a) == type(b) and type(a) is type(b):

type(a) == type(b) whether the value of type(a) is the same as the value of
type(b)… == is a value compare

type(a) is type(b) whether the type objects returned by type(a) and type(b) are
the same object

Chapter 5

Q:
Geometry. Calculate the area and volume of

A:
8.

import math

def sqcube():
 s= float(raw_input('enter length of one side: '))
 print 'the area is:', s ** 2., '(units squared)'
 print 'the volume is:', s ** 3., '(cubic units)'

def cirsph():
 r = float(raw_input('enter length of radius: '))
 print 'the area is:', math.pi * (r ** 2.),
 '(units squared)'
 print 'the volume is:', (4. / 3.) * math.pi * (r **
3.), '(cubic units)'

sqcube()
cirsph()

IT-SC book: Core Python Programming

 678

Q:
Modulus. (a) Using loops and numeric operators, output all even numbers from 0 to
20

A:
11.

a.

for i in range(0, 22, 2): # range(0, 21, 2) okay too
 print i

OR

for i in range(22): # range(21) okay too
 if i % 2 == 0: print i

b.

for i in range(1, 20, 2): # range(1, 21, 2) okay too
 print i

OR

for i in range(20): # range(21) okay too
 if i % 2 != 0: print i

c.

when i % 2 is 0, it's even (divisible by 2), otherwise it's odd

Chapter 6

1:
Strings. Are there any string methods or functions in the string module that will help
me determine if a string is part of a larger string

A:
1.

find(), rfind(), index(), rindex()

IT-SC book: Core Python Programming

 679

2:
String Identifiers. Modify the idcheck.py script in Example 6-1 such that it will
determine the validity of identifiers of length 1 as well as be able to detect if an
identifier is a keyword. For the latter part of the exercise, you may use the keyword
module (specifically the keyword.kwlist list) to aid in your cause

A:
2.

import string

alphas = string.letters + '_'
alnums = alphas + string.digits

iden = raw_input('Identifier to check? ')

if len(iden) > 0:
 if iden[0] not in alphas:
 print "invalid: first char must be alphabetic"
 else:
 if len(iden) > 1:
 for eachChar in iden[1:]:
 if eachChar not in alnums:
 print invalid: other chars must be alphanumeric
 break
 else:
 import keyword
 if iden not in keyword.kwlist:
 print 'ok'
 else:
 print 'invalid: keyword name'

else:
 print 'no identifier entered'

Chapter 7

Q:
Creating Dictionaries. Given a pair of identically-sized lists, say, [1, 2, 3, …], and
['abc', 'def', 'ghi', …], process all that list data into a single dictionary that looks like:
{1: 'abc', 2: 'def', 3: 'ghi', …}.

IT-SC book: Core Python Programming

 680

A:
4.

assumes both list1 and list2 are of the same length
dict = {}
for i in range(len(list1)):
 dict[list1[i]] = list2[i]

There is a more clever solution using the map() built-in function.

Q:
Inverting Dictionaries. Take a dictionary as input and return one as output, but the
values are now the keys and vice versa

A:
7.

list1 = oldDict.values()
list2 = oldDict.keys()
(See solution to problem 4 for the remainder of this solution.)

Chapter 8

Q:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A:
3a.

range(10)

Q:
Prime Numbers. We presented some code in this chapter to determine a number's
largest factor or if it is prime. Turn this code into a Boolean function called
isprime() such that the input is a single value, and the result returned is 1 if the
number is prime and 0 otherwise

A:
4.

def isprime(num):
 count = num / 2

IT-SC book: Core Python Programming

 681

 while count > 1:
 if num % count == 0: return 0
 count = count - 1
 return 1

Chapter 9

1:
File Access. Prompt for a number N and file F, and display the first N lines of F

A:
2.

file = open(raw_input('enter file: '))
allLines = file.readlines()
file.close()
num = input('enter number of lines: ')
i = 0
while i < num:
 print allLines[i],
 i = i + 1

(HINT: 1., 2., 3. can be inspired with outfile.py on p. 38 and p. 245)

2:
Logging Results. Convert your calculator program (Exercise 5-6) to take input from
the command-line, i.e.

A:
14b.

import sys

print "# of args", len(sys.argv)
print "args:", sys.argv

3:
Searching Files. Obtain a byte value (0-255) and a file name. Display the number of
times that byte appears in the file

IT-SC book: Core Python Programming

 682

A:
18.

part of this comes from creatext.py on p.247

Chapter 10

1:
Raising Exceptions. Which of the following can RAISE exceptions during program
execution? Note that this question does not ask what may CAUSE exceptions

A:
1.

e)

2:
Raising Exceptions. Referring to the list in the problem above, which could raise
exceptions while running within the interactive interpreter?

A:
2.

try-except monitors the try clause for exceptions and execution jumps to the
matching except clause. However, the finally clause of a try-finally will be
executed regardless of whether or not an exception occurred.

Chapter 11

Q:
Default arguments. Update the sales tax script you created in Exercise 5-7 such that
a sales tax rate is no longer required as input to the function. Create a default
argument using your local tax rate if one is not passed in on invocation

A:
5.

def printf(string, *args):
 print string % args

IT-SC book: Core Python Programming

 683

Chapter 13

Q:
Functions vs. Methods. What are the differences between functions and methods?

A:
2.

Methods are basically functions, but are tied to a specific class object type. They are
defined as part of a class and are executed as part of an instance of that class.

Q:
Delegation. In our final comments regarding the capOpen class of Example 13.4
where we proved that our class wrote out the data successfully, we noted that we
could use either capOpen() or open() to read the file text. Why? Would anything
change if we used one or the other?

A:
15.

It makes no difference whether we use open() or capOpen() to read our file
because in capOpen.py, we delegated all of the reading functionality to the Python
system defaults, meaning that no special action is ever taken on reads, meaning the
same code would be executed, i.e., none of read(), readline(), or readlines()
was overridden with any special functionality.

Chapter 14

1:
Callable Objects. Name Python's callable objects

A:
1.

functions, methods, classes, callable class instances

2:
input vs. raw.input(). What is the difference between the built-in functions input()
and raw_input()

IT-SC book: Core Python Programming

 684

A:
3.

raw_input() returns user input as a string; input() returns the evaluation of the
user input as a Python expression.

Chapter 15

1:
Recognize the following strings: bat, bit, but, hat, hit, or hut.

A:
1.

bat, hat, bit, etc.

[bh] [aiu] t

2:
Match any pair of words separated by a single space, i.e., first and last names

A:
2.

first name last

[A-Za-z-]+ [A-Za-z-]+

(any pair of words separated by a single space, e.g., first and last names,
hyphens allowed)

3:
Match any word and single letter separated by a comma and single space, as in last
name, first initial

A:
3.

last name, first

IT-SC book: Core Python Programming

 685

[A-Za-z-]+, [A-Za-z]

(any word and single letter separated by a comma and single space, e.g., last
name, first initial)

[A-Za-z-]+, [A-Za-z-]+

(any pair of words separated by a comma and single space, e.g., last, first
names, hyphens allowed)

4:
Match the set of the string representations of all Python longs

A:
8.

Python longs

\d+[lL]

(decimal [base 10] integers only)

5:
Match the set of the string representations of all Python floats

A:
9.

Python floats

[0–9]+(\.[0–9]*)?

(describes a simple floating point number, that is, any number of digits followed
optionally by a single decimal point and zero or more numeric digits, as in
"0.004," "2," "75.," etc.)

Chapter 16

1:

IT-SC book: Core Python Programming

 686

A:
3.

TCP

2:

A:
5.

>>> import socket
>>> socket.getservbyname('daytime', 'udp')
13

IT-SC book: Core Python Programming

 687

Other Reading and References

Printed References

Altom,Tim,Mitch Chapman,Programming with Python, Prima,
Beazley,David M.,Python Essential Reference, New Riders,
Brown,Martin C.,Python Annotated Archives, McGraw Hill,
Grayson,John E.,Python and Tkinter Programming, Manning,
Hammond,MarkAndy Robinson,Python Programming on Win32, O'Reilly,
Harms,Daryl,Kenneth McDonald,The Quick Python Book, Manning,
Himstedt,Tobias,Klaus Mänzel,Mit Python programmieren (Programming with Python)
[in German], dpunkt.verlag,
Lundh,Fredrik,(the eff-bot guide to) The Standard Python Library,
http://FatBrain.com, (Product#)
Lutz,Mark,David Ascher,Learning Python, O'Reilly,
Lutz,Mark,Programming Python, O'Reilly,
Lutz,Mark,Python Pocket Reference, O'Reilly,
McGrath,Sean,XML Processing with Python, Prentice Hall,
Van Laningham,Ivan,Teach Yourself Python in 24 Hours, Sams,
Watters,Aaron,Guido van Rossum,James C. Ahlstrom,Internet Programming with
Python, Henry Holt & Co./M&T Books/MIS:Press/IDG Books, [out-of-print]
van Rossum,Guido,Python Library Reference: Release 1.5.2, http://iUniverse.com,
van Rossum,Guido,Python Reference Manual: Release 1.5.2, http://iUniverse.com,
van Rossum,Guido,Python Tutorial: Release 1.5.2, http://iUniverse.com,
von Löwis,Martin,Nils Fischbeck,Das Python-Buch (The Python Book) [in German],
Addison Wesley Longman, [out-of-print]

Other Printed References

Aho,Alfred V.,Ravi Sethi,Jeffrey D. Ullman,Compilers: Principles, Techniques, and
Tools, Addison Wesley Longman,
Brookshear,J. Glenn,Computer Science, An Overview, 6th Ed., Addison Wesley
Longman,
Eckel,Bruce,Thinking in C++, 2nd Ed., Prentice Hall,
Eckel,Bruce,Thinking in Java, Prentice Hall,
Freidl,Jeffrey,Mastering Regular Expressions, O'Reilly,
Galvin,Peter,Abraham Silberschatz,Operating System Concepts, 5th Ed., Addison
Wesley Longman,
McKusick,Marshall Kirk,Keith Bostic,Michael J. Karels,John S. Quarterman,Design and
Implementation of the 4.4BSD Operating System, Addison Wesley Longman,
Ousterhout,John,Tcl and Tk Toolkit, Addison Wesley Longman,
Tane nbaum,Andrew S.,Operating Systems: Design and Implementation, Prentice
Hall,
Welch,Brent,Practical Programming in Tcl and Tk, 3rd Ed., Prentice Hall,

IT-SC book: Core Python Programming

 688

Online References

The list below represents a good number of Python online references. For a more up-to-
date copy, check out the Python hotlist on the CD-ROM. Or better yet, go to the Core
Python Programming website:

http://starship.python.net/crew/wesc/cpp

Apache Modules

mod_python (evolved from httpdapy and nsapy)

http://www.modpython.org/

Code

Python source (SourceForge)

http://sourceforge.net/project/?group_id=5470

Snippets (SourceForge)

http://sourceforge.net/snippet/browse.php?by=lang&lang=6

SourceForge Python projects

http://sourceforge.net/search/?type_of_search=soft&words=python

Vaults of Parnassus (Python shareware)

http://www.vex.net/parnassus/

Commercial

ActiveState Tool

http://www.activestate.com/

CyberWeb Consulting

http://www.roadkill.com/~wesc/cyberweb

O'Reilly Python DevCenter

http://www.oreillynet.com/python/

IT-SC book: Core Python Programming

 689

PythonLabs (commercial home page)

http://www.pythonlabs.com/

PythonWare

http://www.pythonware.com

ReportLab

http://www.reportlab.com/

UC Santa Cruz Extension Scripting Language Courses

http://www.ucsc-extension.edu/to/software/silang.html

Communication

Bay Area Python Interest Group

http://www.baypiggies.org/

comp.lang.python weekly newsgroup summaries

http://purl.org/thecliff/python/url.html

Python Conferences

http://www.python.org/workshops/

Python links (sizeable hotlist)

http://www.cetus-links.de/oo_python.html

Python mailing lists

http://www.python.org/mailman/listinfo

Python Special Interest Groups

http://www.python.org/sigs

Starship FAQ

http://starship.python.net/~tbryan/FAQ/Starship/

Starship Python

http://starship.python.net

Core

IT-SC book: Core Python Programming

 690

JPython

http://www.jpython.org/

Python.org (community home page)

http://www.python.org/

DBs

Databases

http://www.python.org/topics/database/

Python database modules

http://www.python.org/topics/database/modules.html

Python DB API 2.0 specification

http://www.python.org/topics/database/DatabaseAPI-2.0.html">

Extending

Extending and Embedding reference

http://www.python.org/doc/current/ext/ext.html

Python-C API

http://www.python.org/doc/current/api/api.html

SWIG (Simple Wrapper and Interface Generator)

http://www.swig.org

GUIs (with Python development interfaces)

Gimp-Python

http://www.daa.com.au/~james/pygimp

Glade (GTK+ UI builder)

http://glade.pn.org

GLC (Glade Python Code Generator)

http://glc.sourceforge.net

IT-SC book: Core Python Programming

 691

GTK+ (GIMP Toolkit)

http://www.gtk.org

KDE (K Desktop Environment)

http://www.kde.org

PMW (Python MegaWidgets for Tkinter)

http://www.dscpl.com.au/pmw/

PyG Tools (PyGTK, PyGNOME, etc.)

http://www.bioinformatics.org/pygtools

PyGTK Module

http://www.daa.com.au/~james/pygtk

PyQt-PyKDE

http://www.thekompany.com/projects/pykde

Python-KDE Tutorial

http://www.xs4all.nl/~bsarempt/python/tutorial.html

Tkinter (Python-Tk)

http://www.python.org/topics/tkinter

Tkinter intro (F. Lundh)

http://www.pythonware.com/library/tkinter/introduction

TrollTech Qt products (commercial)

http://www.trolltech.com/products

wxPython

http://www.wxpython.org/

Macintosh

Macintosh Library Modules

http://www.python.org/doc/current/mac/mac.html

MacPython

IT-SC book: Core Python Programming

 692

http://www.cwi.nl/~jack/macpython.html

MacPython download page

http://www.python.org/download/download_mac.html

Open Directory MacPython links

http://dmoz.org/computers/systems/macintosh/development/languages/python

News

Python Events

http://www.python.org/Events.html

Python mailing lists

http://www.python.org/mailman/listinfo

Python News

http://www.python.org/News.html

Numerical/Scientific Processing

NumPy numerical extensions

http://www.python.org/topics/scicomp/numpy.html

NumPy source(SourceForge)

http://sourceforge.net/project/?group_id=1369

Programming

Comparing Python to …

http://www.python.org/doc/Comparisons.html

Computer Programming for Everybody (CP4E)

http://www.python.org/cp4e/

CP4E proposal paper

http://www.python.org/doc/essays/cp4e.html

Empirical language comparison paper

IT-SC book: Core Python Programming

 693

http://wwwipd.ira.uka.de/~prechelt/Biblio/jccpprtTR.pdf

Guido's CP4E talk

http://www.python.org/doc/essays/ppt/acm-cp4e/

Instant Hacking: Learning to Program with Python

http://www.idi.ntnu.no/~mlh/python/programming.html

Instant Python (crash course in Python)

http://www.idi.ntnu.no/~mlh/python/instant.html

Learning to Program

http://members.xoom.com/alan_gauld/tutor/tutindex.htm

Non-Programmers Tutorial

http://www.honors.montana.edu/~jjc/easytut/easytut/

Reference

Python documentation

http://www.python.org/doc

FAQ (Frequently Asked Questions)

http://www.python.org/doc/FAQ.html

FAQTS Python Knowledge Base

http://python.faqts.com

Global Module Index for the Python Standard Library

http://www.python.org/doc/current/modindex.html

Language Reference Manual

http://www.python.org/doc/current/ref/ref.html

Library Reference

http://www.python.org/doc/current/lib/lib.html

Python-Perl Cookbook

http://starship.python.net/crew/da/jak/cookbook.html

IT-SC book: Core Python Programming

 694

Quick Reference Guide

http://starship.python.net/quick-ref1_52.html

Regular Expressions HOWTO

http://www.python.org/doc/howto/regex/regex.html

Releases

Python 1.5 to 1.5.2

http://www.python.org/1.5

Python 1.6

http://www.python.org/1.6

Python 2.0

http://www.pythonlabs.com/products/python2.0

Python Download

http://www.python.org/download

Python FTP site

ftp://ftp.python.org

What's New in 2.0

http://starship.python.net/crew/amk/python/writing/new-python

Unicode

Python Unicode Integration (M.A. Lemburg)

http://starship.python.net/crew/lemburg/unicode-proposal.txt

Python Unicode Tutorial

http://www.reportlab.com/i18n/python_unicode_tutorial.html

Unicode Standard home page

http://www.unicode.org/

Web

IT-SC book: Core Python Programming

 695

Five Minutes to a Python CGI (D. Mertz, Web Review)

http://webreview.com/pub/2000/07/07/feature/index02.html

HTMLgen home page

http://starship.python.net/crew/friedrich/HTMLgen/html/

Web programming

http://www.python.org/topics/web/

Writing CGI Programs in Python (P. Landers, Dev Shed)

http://www.devshed.com/Server_Side/Python/CGI/print.html

XML

Annotated XML 1.0 Specification

http://www.xml.com/axml/axmlintro.html

Python-XML How-To

http://www.python.org/doc/howto/xml/

Python-XML reference

http://www.python.org/doc/howto/xml-ref/

XML

http://www.python.org/topics/xml/

XML Cover Pages

http://www.oasis-open.org/cover/

XML FAQ

http://www.ucc.ie/xml/

Zope

http://www.zope.org/

IT-SC book: Core Python Programming

 696

Python Operator Summary

TableC.1 represents the complete set of Python operators and to which standard types
they apply. The operators are sorted from highest-to-lowest precedence, with those
sharing the same shaded group having the same priority.

Table c.1. Python Operators († - unary)
Operator Int long float complex string list tuple dictionary

[] • • •
[:] • • •
** • • • •
+† • • • •
-† • • • •
~† • •
* • • • • • • •
/ • • • •
% • • • • •
+ • • • • • • •
- • • • •
<< • •
>> • •
& • •
^ • •
| • •
< • • • • • • • •
> • • • • • • • •
<= • • • • • • • •
>= • • • • • • • •
== • • • • • • • •
!= • • • • • • • •
<> • • • • • • • •
is • • • • • • • •
is not • • • • • • • •
in • • •
not in • • •
not† • • • • • • • •
and • • • • • • • •
or • • • • • • • •

IT-SC book: Core Python Programming

 697

What's New in Python 2.0?

Introduction

During the creation process of this text, the Python development team has been hard at
work producing Python 2.0, which at press time, is finally being released to the public.

The supplementary CD-ROM in the back of the book contains the three most current
releases of Python: 1.5.2, 1.6, and 2.0, including the most recent Java version of the
Python interpreter, JPython (a.k.a. Jython): 1.1.

1.5.2 has been a rock stable release for almost two years, and is the foundation for most
of the content in the book. 1.6 brought many new changes to Python. String methods and
Unicode support have been added, as well as an improved regular expression engine.

A few more significant changes have made their way into the 2.0 release, which we will
address here. We also recommend the "What's New in 2.0" document found at the Python
2.0 Web site (see the Online Resources section of the Appendix for the URL).

Review and Preview

The following is a review of the major changes from Python 1.5.2 to 1.6, along with the
expected bug fixes and module updates (new, revised, and obsoleted modules).

Unicode support

String methods

Upgraded regular expression engine (performance and Unicode enhancements)

New function invocation mechanism

The 2.0 release also features the usual fixes and module updates, but in addition, offers
the following new features to the language:

Augmented assignment

List comprehensions

Extended import statement

Extended print statement

Once you get Python 2.0 compiled and/or installed on your system, you will see the
familiar start-up line in UNIX (or similar if you are using another platform):

IT-SC book: Core Python Programming

 698

% python
Python 2.0 (#4, Oct 2 2000, 23:58:52)
[GCC 2.95.1 19990816 (release)] on sunos5
Type "copyright", "credits" or "license" for more
information.
>>>

Now, let's take a look at some of those new features.

Augmented Assignment

Augmented assignment refers to the use of operators, which imply both an arithmetic
operation as well as an assignment. You will recognize the following symbols if you are a
C, C++, or Java programmer:

+= -= *= /= %= **=
<<= >>= &= ^= |=

For example, the shorter

A += B

can now be used instead of

A = A + B

Other than the obvious syntactical change, the most significant difference is that the first
object (A in our example) is examined only once. Mutable objects will be modified in
place, whereas immutable objects will have the same effect as "A = A + B" (with a new
object allocated) except that A is only evaluated once, as we have mentioned before.

>>> m = 12
>>> m %= 7
>>> m
5
>>> m **= 2
>>> m
25
>>> aList = [123, 'xyz']
>>> aList += [45.6e7]
>>> aList

IT-SC book: Core Python Programming

 699

[123, 'xyz', 456000000.0]

These in-place operators have equivalent special method names when creating classes to
emulate numeric types. To implement an in-place special method, just add an "i" in front
of the not-in-place operator; e.g., implement __iadd__() for the += operator as opposed
to __add__() for just the + operator.

List Comprehensions

Remember how we used lambda functions along with map() and filter() to apply an
operation to list members or to filter out list members based on criteria via a conditional
expression? Well, list comprehensions simplify that task and improve performance by
bypassing the necessity of using lambda along with functional programming built-in
functions. List comprehensions allow you to provide an operation directly with an
iteration over the original list sequence.

Let's take a look at the simpler list comprehension syntax first:

[expression
 for
 iterative_var
 in
 sequence]

The core of this statement is the for loop, which iterates over each item of sequence.
The prefixed expression is applied for each member of the sequence, and the resulting
values comprise the list that the expression yields. The iteration variable need not be part
of the expression.

Recall the following code seen earlier in the text (Chapter 11, Functions) which utilizes a
lambda function to square the members of a sequence:

>>> map((lambda x: x ** 2), range(6))
[0, 1, 4, 9, 16, 25]

We can replace this code with the following list comprehension statement:

>>> [x ** 2 for x in range(6)]
[0, 1, 4, 9, 16, 25]

IT-SC book: Core Python Programming

 700

In the new statement, only one function call (range()) is made (as opposed to three—
range(), map(), and the lambda function). You may also use parentheses around the
expression if "[(x ** 2) for x in range(6)]" is easier for you to read. This syntax
for list comprehensions can be a substitute for and is more efficient than using the map()
built-in function along with lambda.

List comprehensions also support an extended syntax with the if statement:

[expression
 for
 iterative_var
 in
 sequence
 if
 cond_expression]

This syntax will filter or "capture" sequence members only if they meet the condition
provided for in the cond_expression conditional expression during iteration.

Recall the following odd() function below, which determines whether a numeric
argument is odd or even (returning 1 for odd numbers and 0 for even numbers):

def odd(n):
 return n % 2

We were able to take the core operation from this function, and use it with filter() and
lambda to obtain the set of odd numbers from a sequence:

>>> seq = [11, 10, 9, 9, 10, 10, 9, 8, 23, 9, 7, 18, 12, 11, 12]
>>> filter(lambda x: x % 2, seq)
[11, 9, 9, 9, 23, 9, 7, 11]

As in the previous example, we can bypass the use of filter() and lambda to obtain the
desired set of numbers with list comprehensions:

>>> [x for x in seq if x % 2]
[11, 9, 9, 9, 23, 9, 7, 11]

IT-SC book: Core Python Programming

 701

List comprehensions also support multiple nested for loops and more than one if clause.
Please see the documentation including the "What's New" online document for more
information.

Extended import Statement

Another fairly common request from Python programmers is the ability to import
modules and module attributes into your program using names other than their original
given names. One common workaround is to assign the module name to a variable:

>>> import longmodulename
>>> short = longmodulename
>>> del longmodulename

In the example above, rather than using longmodulename.attribute, you would use
the short.attribute to access the same object. (A similar analogy can be made with
importing module attributes using from-import… see below.) However, to do this over
and over again, and in multiple modules can be annoying and seem wasteful. The new
extended import statement will now support the following:

>>> import longmodulename as short

Accordingly, you may also use this syntax with from-import statements.

>>> from sys import stderr as err
>>> err.write("now using sys.stderr")
now using sys.stderr

We will note that as is not a new keyword and is only recognized when using import.
As a result, you can still use it as a valid identifier in your code:

>>> as = 14
>>> as += 3
>>> as
17

Extended print Statement

IT-SC book: Core Python Programming

 702

One of the last and more argumentative additions to Python 2.0 is the extended print
statement. The change, which employs a pair of "greater than" symbols (>>), allows you
to direct the output of print to a file other than standard output.

In the example below, we utilize our import of sys.stderr to err above:

>>> print >> err, "using sys.stderr again"
using sys.stderr again

Conclusion

While both augmented assignments and list comprehensions appear to be adding a twist
to Python's easygoing syntax, the basic philosophy of keeping the language clean and
simple has not changed. The key value-adds that these new features bring to the table is
actually under the covers.

Augmented assignment only evaluates the first object once—a timesaver and
performance enhancer over the long haul. Also, because function objects created by
lambda are practically the same as those generated by def, the overhead of a real
function call is incurred when they are executed. By using list comprehensions, there is
no additional function object created on the fly, nor is there the additional function call
overhead present. In this sense, list comprehensions give Python more "inlined"
execution.

The extended import and print statements have less to do with performance as they do
with programmer convenience.

Other additions include an optional garbage collector that can detect cycles and improved
XML support (xml.dom, xml.sax, xml.parsers, and pyexpat modules). Other
features to look for in 2.0 are range displays, parallel for loops, and ports to 64-bit
systems.

Exercise

Q:
Create a composite list comprehension statement that creates (randomly) a list of
between 1 and 10 random numbers, ranging from 1 to 100, and pull out only the odd
ones.

A:
Answer:

IT-SC book: Core Python Programming

 703

Our solution uses list comprehensions as well as the new extended import syntax.

>>> from random import randint as ri
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[47, 9, 85]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[45, 3]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[]
>>> [y for y in [ri(1, 100) for x in range(ri(1, 10))] if y % 2]
[47, 25, 95, 83, 15, 77]

	Core Python Programming
	Picture
	Review
	Table of Contents
	Welcome to Python!
	Acknowledgements
	Part I: CORE PYTHON
	Chapter 1. Welcome to Python!
	What Is Python?

	Chapter 2. Getting Started
	Chapter 3. Syntax and Style
	Chapter 4. Python Objects
	Chapter 5. Numbers
	Chapter 6. Sequences: Strings, Lists, and Tuples
	Chapter 7. Dictionaries
	Chapter 8. Conditionals and Loops
	Chapter 9. Files and Input/Output
	Chapter 10. Errors And Exceptions
	Chapter 11. Functions
	Chapter 12. Modules
	Chapter 13. Classes and OOP
	Chapter 14. Execution Environment

	Part II: Advanced Topics
	Chapter 15. Regular Expressions
	Chapter 16. Network Programming
	Chapter 17. Multithreaded Programming
	Chapter 18. GUI Programming with Tkinter
	Chapter 19. Web Programming
	Chapter 20. Extending Python

	Answers to Selected Exercises
	Other Reading and References
	Python Operator Summary
	What's New in Python 2.0?

