Python Cookbook, 2nd Edition
By David Ascher, Alex Martelli, Anna Ravenscroft

Pythor « Publisher: O'Reilly
Cookbook

Pub Date: March 2005
ISBN: 0-596-00797-3

Pages: 844

Table of
) Contents
* Index
* Reviews

Reader Like its predecessor, the new edition offers a collection of solutions to
" Reviews problems that Python programmers face everyday. Updated for Python
+ Errata 2.4, it now includes over 200 recipes that range from simple tasks, such
+ Academic as working with dictionaries and list comprehensions, to complex tasks,

such as monitoring a network and building a templating system.

[rrevons f e

Python Cookbook, 2nd Edition
By David Ascher, Alex Martelli, Anna Ravenscroft

Pythor « Publisher: O'Reilly
Cookbook
Pub Date: March 2005
ISBN: 0-596-00797-3
Pages: 844

Table of
Contents
* Index

* Reviews
Reader
Reviews

- Emata

» Academic

Copyright
Preface

The Design of the Book

The Implementation of the Book
Using the Code from This Book
Audience

Organization

Further Reading
Conventions Used in This Book

How to Contact Us
Safari® Enabled
Acknowledgments

Chapter1. Text
Introduction

Recipe 1.1. ProcessingaString One CharacterataTime

Recipe 1.2. Converting Between Characters and Numeric Codes

Recipe 1.3. Testing Whether an Object s String-like

Recipe 1.4. AligningStrings

Recipe 1.5. Trimming Space fromthe Ends of a String

Recipe 1.6. Combining Strings

Recipe 1.7. Reversing a String by Words or Characters

Recipe 1.8. Checking Whether a String Contains a Set of Characters

Recipe 1.9. Simplifying Usage of Strings' translate Method

Recipe 1.10. Filteringa String for a Setof Characters
Recipe 1.11. CheckingWhethera String Is Textor Binary
Recipe 1.12. ControllingCase

Recipe 1.13. Accessing Substrings

Recipe 1.14. Changingthe Indentation of a Multiline String

Recipe 1.15. Expandingand Compressing Tabs

Recipe 1.16. Interpolating VariablesinaString

Recipe 1.17. Interpolating Variablesina Stringin Python 2.4

Recipe 1.18. Replacing Multiple PatternsinaSingle Pass

Recipe 1.19. CheckingaString for Any of Multiple Endings

Recipe 1.20. Handling International Textwith Unicode

Recipe 1.21. Converting Between Unicode and Plain Strings

Recipe 1.22. Printing Unicode Charactersto Standard Output
Recipe 1.23. Encoding Unicode Datafor XML and HTML
Recipe 1.24. Making Some Strings Case-Insensitive

Recipe 1.25. Converting HTML Documentsto Texton a Unix Terminal

Chapter2. Files
Introduction

Recipe 2.1. ReadingfromaFile

Recipe 2.2. WritingtoaFile

Recipe 2.3. Searchingand Replacing TextinaFile

Recipe 2.4. ReadingaSpecificLinefromaFile

Recipe 2.5. CountingLinesinaFile

Recipe 2.6. Processing EveryWordinaFile

Recipe 2.7. Using Random-Access Input/Output

Recipe 2.8. UpdatingaRandom-Access File

Recipe 2.9. ReadingDatafromzip Files

Recipe 2.10. Handling azip File Inside a String

Recipe 2.11. Archiving aTree of Filesinto a Compressed tar File

Recipe 2.12. SendingBinary Datato Standard Output Under Windows

Recipe 2.13. UsingaC++-like iostream Syntax

Recipe 2.14. Rewindingan InputFile tothe Beginning
Recipe 2.15. Adapting aFile-like Objectto a True File Object
Recipe 2.16. Walking Directory Trees

Recipe 2.17. Swapping One File Extension for Another Throughout a Directory Tree

Recipe 2.18. FindingaFile Givena Search Path

Recipe 2.19. Finding Files Given a Search Path and a Pattern
Recipe 2.20. FindingaFile onthe Python Search Path
Recipe 2.21. Dynamically Changingthe PythonSearch Path

Recipe 2.22. Computing the Relative Path from One Directory to Another

Recipe 2.23. Readingan Unbuffered Characterin a Cross-Platform Way

Recipe 2.24. Counting Pages of PDF Documents on Mac OS X

Recipe 2.25. Changing File Attributes on Windows

Recipe 2.26. Extracting Textfrom OpenOffice.org Documents

Recipe 2.27. Extracting Textfrom Microsoft Word Documents

Recipe 2.28. File Locking Using a Cross-Platform API

Recipe 2.29. Versioning Filenames
Recipe 2.30. Calculating CRC-64 Cyclic Redundancy Checks
Chapter3. Time and Money

Introduction
Recipe 3.1. Calculating Yesterday and Tomorrow

Recipe 3.2. FindingLastFriday

Recipe 3.3. Calculating Time PeriodsinaDate Range

Recipe 3.4. SummingDurations of Songs

Recipe 3.5. Calculatingthe Number of Weekdays Between Two Dates

Recipe 3.6. Lookingup Holidays Automatically

Recipe 3.7. FuzzyParsingofDates

Recipe 3.8. CheckingWhether Daylight Saving Time Is Currently in Effect

Recipe 3.9. Converting Time Zones

Recipe 3.10. RunningaCommand Repeatedly

Recipe 3.11. SchedulingCommands

Recipe 3.12. Doing Decimal Arithmetic

Recipe 3.13. Formatting Decimals as Currency

Recipe 3.14. UsingPythonas a Simple Adding Machine
Recipe 3.15. CheckingaCredit Card Checksum

Recipe 3.16. Watching Foreign Exchange Rates

Chapter4. Python Shortcuts

Introduction

Recipe 4.1. CopyinganObiject

Recipe 4.2. Constructing Lists with List Comprehensions

Recipe 4.3. Returningan Elementofa ListIflt Exists

Recipe 4.4. Loopingover ltemsand Their Indicesina Sequence
Recipe 4.5. Creating Lists of Lists Without Sharing References
Recipe 4.6. FlatteningaNested Sequence

Recipe 4.7. Removing or Reordering Columnsina List of Rows
Recipe 4.8. Transposing Two-Dimensional Arrays

Recipe 4.9. GettingaValue fromaDictionary

Recipe 4.10. Addingan EntrytoaDictionary

Recipe 4.11. BuildingaDictionary Without Excessive Quoting
Recipe 4.12. Building a Dict from a List of Alternating Keys and Values
Recipe 4.13. Extractinga Subsetofa Dictionary

Recipe 4.14. InvertingaDictionary

Recipe 4.15. Associating Multiple Values with Each KeyinaDictionary
Recipe 4.16. Using aDictionaryto Dispatch Methods or Functions
Recipe 4.17. Finding Unions and Intersections of Dictionaries
Recipe 4.18. CollectingaBunchof Named ltems

Recipe 4.19. Assigning and Testing with One Statement

Recipe 4.20. Usingprintfin Python

Recipe 4.21. Randomly Picking Items with Given Probabilities
Recipe 4.22. Handling Exceptions Withinan Expression

Recipe 4.23. EnsuringaName Is Defined ina Given Module

Chapter5. Searching and Sorting

Introduction

Recipe 5.1. SortingaDictionary

Recipe 5.2. SortingalListof Strings Case-Insensitively

Recipe 5.3. Sorting aList of Objects by an Attribute of the Objects
Recipe 5.4. Sorting Keys orIndices Basedon the Corresponding Values
Recipe 5.5. Sorting Strings with Embedded Numbers

Recipe 5.6. Processing AllofaList's Items in Random Order

Recipe 5.7. KeepingaSeguence Ordered as ltems Are Added
Recipe 5.8. Gettingthe First Few Smallest Items of a Sequence
Recipe 5.9. Lookingforltemsina Sorted Sequence

Recipe 5.10. Selecting the nth Smallest Elementof a Sequence
Recipe 5.11. Showing offquicksortin Three Lines

Recipe 5.12. Performing Frequent Membership Tests ona Sequence
Recipe 5.13. Finding Subseguences

Recipe 5.14. Enrichingthe Dictionary Type with Ratings Functionality
Recipe 5.15. Sorting Names and Separating Them by Initials

Chapter6. Object-Oriented Programming

Introduction

Recipe 6.1. Converting Among Temperature Scales

Recipe 6.2. Defining Constants

Recipe 6.3. Restricting Attribute Setting

Recipe 6.4. ChainingDictionary Lookups

Recipe 6.5. Delegating Automatically as an Alternative to Inheritance
Recipe 6.6. Delegating Special Methods in Proxies

Recipe 6.7. Implementing Tupleswith Named ltems

Recipe 6.8. Avoiding Boilerplate Accessors for Properties

Recipe 6.9. Making aFast Copy of an Object

Recipe 6.10. Keeping Referencesto Bound Methods Without Inhibiting Garbage Collection

Recipe 6.11. ImplementingaRing Buffer

Recipe 6.12. Checkingan Instance for Any State Changes

Recipe 6.13. Checking Whether an Object Has Necessary Attributes

Recipe 6.14. Implementingthe State Design Pattern

Recipe 6.15. Implementingthe "Singleton" Design Pattern

Recipe 6.16. Avoidingthe "Singleton" Design Pattern with the Borg Idiom

Recipe 6.17. Implementingthe Null Object Design Pattern

Recipe 6.18. Automatically Initializing Instance Variablesfrom _init _ Arguments

Recipe 6.19. CallingaSuperclass init Method If It Exists

Recipe 6.20. Using Cooperative Supercalls Concisely and Safely

Chapter7. Persistence and Databases

Introduction
Recipe 7.1. Serializing Data Using the marshal Module

Recipe 7.2. Serializing Data Using the pickle and cPickle Modules

Recipe 7.3. Using Compressionwith Pickling

Recipe 7.4. Usingthe cPickle Module on Classes and Instances
Recipe 7.5. Holding Bound Methods in a Picklable Way

Recipe 7.6. Pickling Code Objects

Recipe 7.7. Mutating Objects with shelve

Recipe 7.8. Usingthe Berkeley DB Database

Recipe 7.9. AccesssingaMySQL Database

Recipe 7.10. StoringaBLOBinaMySOQL Database

Recipe 7.11. StoringaBLOBIinaPostgreSQL Database

Recipe 7.12. StoringaBLOBIinaSQLite Database

Recipe 7.13. Generating aDictionary Mapping Field Names to Column Numbers

Recipe 7.14. Usingdtuple for Flexible Accessto Query Results

Recipe 7.15. Pretty-Printingthe Contents of Database Cursors

Recipe 7.16. UsingaSingle Parameter-Passing Style Across Various DB API Modules
Recipe 7.17. UsingMicrosoftJetviaADO
Recipe 7.18. AccessingaJDBC Database from a Jython Servlet
Recipe 7.19. Using ODBCto Get Excel Datawith Jython
Chapter 8. Debugging and Testing

Introduction
Recipe 8.1. Disabling Execution of Some Conditionals and Loops

Recipe 8.2. Measuring Memory Usage on Linux

Recipe 8.3. Debuggingthe Garbage-Collection Process

Recipe 8.4. Trappingand Recording Exceptions

Recipe 8.5. Tracing Expressions and Commentsin Debug Mode

Recipe 8.6. Getting More Information from Tracebacks

Recipe 8.7. Startingthe Debugger Automatically After an Uncaught Exception

Recipe 8.8. Running Unit Tests Most Simply

Recipe 8.9. Running Unit Tests Automatically
Recipe 8.10. Usingdoctestwith unittestin Python2.4
Recipe 8.11. Checking Values AgainstIntervalsin Unit Testing

Chapter9. Processes, Threads, and Synchronization

Introduction
Recipe 9.1. Synchronizing All Methods inan Object

Recipe 9.2. TerminatingaThread

Recipe 9.3. UsingaQueue.Queue as aPriority Queue
Recipe 9.4. WorkingwithaThread Pool
Recipe 9.5. Executing a Functionin Parallel on Multiple Argument Sets

Recipe 9.6.

Coordinating Threads by Simple Message Passing

Recipe 9.7. StoringPer-Thread Information

Recipe 9.8. Multitasking Cooperatively Without Threads
Recipe 9.9. Determining Whether Another Instanceof a Script Is Already Running in Windows
Recipe 9.10. Processing Windows Messages Using MsgWaitForMultipleObjects
Recipe 9.11. DrivinganExternal Processwith popen
Recipe 9.12. Capturing the Output and Error Streams from a Unix Shell Command
Recipe 9.13. ForkingaDaemon Process on Unix
Chapter10. System Administration
Introduction
Recipe 10.1. Generating Random Passwords
Recipe 10.2. Generating Easily Remembered Somewhat-Random Passwords
Recipe 10.3. Authenticating Users by Means of a POP Server
Recipe 10.4. Calculating Apache Hits per IP Address
Recipe 10.5. Calculating the Rate of Client Cache Hits on Apache
Recipe 10.6. Spawningan Editor froma Script
Recipe 10.7. BackingUpFiles
Recipe 10.8. Selectively CopyingaMailbox File
Recipe 10.9. BuildingaWhitelist of Email Addresses From a Mailbox
Recipe 10.10. Blocking Duplicate Mails
Recipe 10.11. Checking Your Windows Sound System
Recipe 10.12. Registering or UnregisteringaDLL on Windows
Recipe 10.13. Checking and Modifying the Set of Tasks Windows Automatically Runs at Login
Recipe 10.14. CreatingaShare on Windows
Recipe 10.15. Connectingto an Already Running Instance of Internet Explorer
Recipe 10.16. ReadingMicrosoft Outlook Contacts
Recipe 10.17. Gathering Detailed System Informationon Mac OS X
Chapter11. UserInterfaces
Introduction
Recipe 11.1. ShowingaProgress IndicatoronaTextConsole
Recipe 11.2. Avoidinglambdain Writing Callback Functions
Recipe 11.3. Using DefaultValues and Bounds with tkSimpleDialog Functions
Recipe 11.4. Adding Dragand Drop Reorderingto a TKinter Listbox
Recipe 11.5. Entering Accented Charactersin Tkinter Widgets
Recipe 11.6. EmbeddingInline GIFs Using Tkinter
Recipe 11.7. Converting Among Image Formats
Recipe 11.8. Implementing a Stopwatchin Tkinter
Recipe 11.9. Combining GUIs and Asynchronous I/Owith Threads
Recipe 11.10. UsingIDLE's Tree Widgetin Tkinter
Recipe 11.11. Supporting Multiple Values per Rowin a Tkinter Listbox
Recipe 11.12. Copying Geometry Methods and Options Between Tkinter Widgets
Recipe 11.13. Implementing a Tabbed Notebook for Tkinter
Recipe 11.14. UsingawxPython Notebook with Panels
Recipe 11.15. ImplementinganImageJPlug-ininJython
Recipe 11.16. ViewinganImage from a URL with Swing and Jython
Recipe 11.17. GettingUser InputonMac OS
Recipe 11.18. BuildingaPython Cocoa GUI Programmatically
Recipe 11.19. Implementing Fade-in Windows with [ronPython
Chapter12. Processing XML
Introduction
Recipe 12.1. Checking XML Well-Formedness
Recipe 12.2. Counting TagsinaDocument

Recipe 12.3.

Extracting Textfrom an XML Document

Recipe 12.4. Autodetecting XML Encoding

Recipe 12.5. Convertingan XML Documentinto a Tree of Python Objects

Recipe 12.6. Removing Whitespace-only Text Nodes from an XML DOM Node's Subtree
Recipe 12.7. ParsingMicrosoft Excel's XML

Recipe 12.8. Validating XML Documents

Recipe 12.9. Filtering Elements and Attributes Belonging to a Given Namespace

Recipe 12.10. Merging Continuous Text Events witha SAX Filter

Recipe 12.11. Using MSHTML to Parse XML or HTML

Chapter 13. Network Programming

Introduction

Recipe 13.1. Passing Messageswith Socket Datagrams

Recipe 13.2. GrabbingaDocumentfromthe Web

Recipe 13.3. Filteringalistof FTP Sites

Recipe 13.4. Getting Time from a Server viathe SNTP Protocol
Recipe 13.5. SendingHTML Mail

Recipe 13.6. Bundling FilesinaMIME Message

Recipe 13.7. Unpacking a Multipart MIME Message

Recipe 13.8. Removing Attachments from an Email Message
Recipe 13.9. Fixing Messages Parsed by Python 2.4 email.FeedParser
Recipe 13.10. InspectingaPOP3 Mailbox Interactively

Recipe 13.11. Detecting Inactive Computers

Recipe 13.12. MonitoringaNetworkwithHTTP.

Recipe 13.13. Forwardingand Redirecting Network Ports

Recipe 13.14. Tunneling SSL Through a Proxy

Recipe 13.15. Implementing the Dynamic IP Protocol

Recipe 13.16. Connectingto IRC and Logging Messages to Disk
Recipe 13.17. Accessing LDAP Servers

Chapter14. Web Programming

Introduction

Recipe

14.1. Testing Whether CGlls Working

Recipe

14.2. Handling URLs Withina CGI Script

Recipe

14.3. UploadingFileswith CGlI

Recipe

14.4. CheckingforaWeb Page's Existence

Recipe

14.5. Checking Content TypeviaHTTP

Recipe

14.6. Resumingthe HTTP Download of aFile

Recipe

14.7. Handling Cookies While Fetching Web Pages

Recipe

14.8. Authenticating with a Proxy for HTTPS Navigation

Recipe

14.9. RunningaServletwith Jython

Recipe

14.10. Finding an Internet Explorer Cookie

Recipe

14.11. Generating OPML Files

Recipe

14.12. Adgregating RSS Feeds

Recipe

14.13. Turning Datainto Web Pages Through Templates

Recipe

14.14. Rendering Arbitrary Objects with Nevow

Chapter15. Distributed Programming

Introduction

Recipe

15.1. Makingan XML-RPC Method Call

Recipe

15.2. Serving XML-RPC Requests

Recipe

15.3. Using XML-RPCwith Medusa

Recipe

15.4. Enablingan XML-RPC Serverto Be Terminated Remotely

Recipe

15.5. Implementing SimpleXMLRPCServer Niceties

Recipe

15.6. Givingan XML-RPC ServerawxPython GUI

Recipe

15.7. Using Twisted Perspective Broker

Recipe

15.8. Implementinga CORBA Server and Client

Recipe 15.9. Performing Remote Logins Using telnetlib

Recipe 15.10. Performing Remote Loginswith SSH
Recipe 15.11. Authenticatingan SSL Clientover HTTPS
Chapter 16. Programs About Programs

Introduction
Recipe 16.1. Verifying Whether a String Represents a Valid Number

Recipe 16.2. ImportingaDynamically Generated Module

Recipe 16.3. Importing from a Module Whose Name Is Determined at Runtime

Recipe 16.4. Associating Parameters with a Function (Currying)

Recipe 16.5. ComposingFunctions

Recipe 16.6. Colorizing Python Source Using the Built-in Tokenizer

Recipe 16.7. Mergingand Splitting Tokens

Recipe 16.8. Checking Whether a String Has Balanced Parentheses

Recipe 16.9. Simulating Enumerationsin Python

Recipe 16.10. Referringtoalist Comprehension While Building It

Recipe 16.11. Automating the py2exe Compilation of Scripts into Windows Executables

Recipe 16.12. Binding Main Scriptand Modules into One Executable on Unix
Chapter17. Extending and Embedding

Introduction
Recipe 17.1. ImplementingaSimple Extension Type

Recipe 17.2. ImplementingaSimple Extension Type with Pyrex

Recipe 17.3. ExposingaC++Libraryto Python

Recipe 17.4. Calling FunctionsfromaWindows DLL

Recipe 17.5. Using SWIG-Generated Modules ina Multithreaded Environment

Recipe 17.6. Translating a Python Sequence into a C Array with the PySequence Fast Protocol

Recipe 17.7. Accessing a Python Sequence Iltem-by-Item with the Iterator Protocol

Recipe 17.8. Returning None from aPython-Callable C Function

Recipe 17.9. Debugging Dynamically Loaded C Extensions with gdb

Recipe 17.10. Debugging Memory Problems
Chapter 18. Algorithms

Introduction
Recipe 18.1. Removing Duplicates fromaSequence

Recipe 18.2. Removing Duplicates from a Sequence While Maintaining Sequence Order

Recipe 18.3. Generating Random Samples with Replacement

Recipe 18.4. GeneratingRandom Samples Without Replacement

Recipe 18.5. Memoizing (Caching) the Return Values of Functions

Recipe 18.6. ImplementingaFIFO Container

Recipe 18.7. Caching ObjectswithaFIFO Pruning Strategy

Recipe 18.8. ImplementingaBag (Multiset) Collection Type

Recipe 18.9. Simulatingthe Ternary Operatorin Python

Recipe 18.10. Computing Prime Numbers

Recipe 18.11. Formatting Integers as Binary Strings

Recipe 18.12. Formatting Integers as Stringsin Arbitrary Bases

Recipe 18.13. Converting Numbersto Rationals via Farey Fractions

Recipe 18.14. Doing Arithmetic with Error Propagation

Recipe 18.15. Summing Numbers with Maximal Accuracy

Recipe 18.16. Simulating Floating Point

Recipe 18.17. Computingthe Convex Hulls and Diameters of 2D Point Sets

Chapter 19. Iterators and Generators

Introduction
Recipe 19.1. Writingarange-like Function with Float Increments

Recipe 19.2. BuildingalListfromAny lterable

Recipe 19.3. Generatingthe Fibonacci Sequence

Recipe 19.4. UnpackingaFew ItemsinaMultiple Assignment

Recipe 19.5. Automatically Unpackingthe Needed Number of Items
Recipe 19.6. Dividingan lterable into n Slices of Stride n

Recipe 19.7. LoopingonaSequence by Overlapping Windows

Recipe 19.8. Looping Through Multiple Iterablesin Parallel

Recipe 19.9. Looping Throughthe Cross-Productof Multiple Iterables
Recipe 19.10. ReadingaTextFile by Paragraphs

Recipe 19.11. ReadingLineswith Continuation Characters

Recipe 19.12. lIterating on a Stream of Data Blocks as a Stream of Lines
Recipe 19.13. Fetching Large Record Sets from a Database with a Generator
Recipe 19.14. Merging Sorted Sequences

Recipe 19.15. Generating Permutations, Combinations, and Selections
Recipe 19.16. Generatingthe Partitions of an Integer

Recipe 19.17. Duplicatingan Iterator

Recipe 19.18. LookingAheadintoan lterator

Recipe 19.19. Simplifying Queue-Consumer Threads

Recipe 19.20. Runningan Iteratorin Another Thread

Recipe 19.21. ComputingaSummary Reportwithitertools.groupby

Chapter 20. Descriptors, Decorators,and Metaclasses

Introduction
Recipe 20.1. Getting Fresh Default Values at Each Function Call
Recipe 20.2. Coding Properties as Nested Functions
Recipe 20.3. Aliasing Attribute Values
Recipe 20.4. CachingAttribute Values
Recipe 20.5. Using One Method as Accessorfor Multiple Attributes
Recipe 20.6. Adding Functionality to a Class by Wrapping a Method
Recipe 20.7. Adding Functionality to a Class by Enriching All Methods
Recipe 20.8. Adding a Methodto a Class Instance at Runtime
Recipe 20.9. Checking Whether Interfaces Are Implemented
Recipe 20.10. Using new and init Appropriately in Custom Metaclasses
Recipe 20.11. Allowing Chaining of Mutating List Methods
Recipe 20.12. Using Cooperative Super calls with Terser Syntax
Recipe 20.13. Initializing Instance Attributes WithoutUsing init
Recipe 20.14. Automatic Initialization of Instance Attributes
Recipe 20.15. Upgrading Class Instances Automatically onreload
Recipe 20.16. Binding Constants at Compile Time
Recipe 20.17. Solving Metaclass Conflicts

Colophon

Index

[rrevons f e

Copyright © 2005, 2002 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly Media, Inc. The Cookbook series designations, Python Cookbook, the image of a
springhaas, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[rrevous f e

http://safari.oreilly.com

[rrevons f e

Preface

This book is not a typical O'Reilly book, written as a cohesive manuscript by one or two authors.
Instead, it is a new kind of booka bold attempt at applying some principles of open source
development to book authoring. Over 300 members of the Python community contributed
materials to this book. In this Preface, we, the editors, want to give you, the reader, some
background regarding how this book came about and the processes and people involved, and
some thoughts about the implications of this new form.

[rscviovs Jexr s

[rrevons f e

The Design of the Book

In early 2000, Frank Willison, then Editor-in-Chief of O'Reilly & Associates, contacted me (David
Ascher) to find out if I wanted to write a book. Frank had been the editor for Learning Python,
which | cowrote with Mark Lutz. Since | had just taken a job at what was then considered a Perl
shop (ActiveState), | didn't have the bandwidth necessary to write another book, and plans for
the project were gently shelved. Periodically, however, Frank would send me an email or chat
with me at a conference regarding some of the book topics we had discussed. One of Frank's
ideas was to create a Python Cookbook, based on the concept first used by Tom Christiansen and
Nathan Torkington with the Perl Cookbook. Frank wanted to replicate the success of the Perl
Cookbook, but he wanted a broader set of people to provide input. He thought that, much as in a
real cookbook, a larger set of authors would provide for a greater range of tastes. The quality, in
his vision, would be ensured by the oversight of a technical editor, combined with O'Reilly's
editorial review process.

Frank and Dick Hardt, ActiveState's CEO, realized that Frank's goal could be combined with
ActiveState's goal of creating a community site for open source programmers, called the
ActiveState Programmer's Network (ASPN). ActiveState had a popular web site, with the
infrastructure required to host a wide variety of content, but it wasn't in the business of creating
original content. ActiveState always felt that the open source communities were the best sources
of accurate and up-to-date content, even if sometimes that content was hard to find.

The O'Reilly and ActiveState teams quickly realized that the two goals were aligned and that a
joint venture would be the best way to achieve the following key objectives:

e Creating an online repository of Python recipes by Python programmers for Python
programmers

¢ Publishing a book containing the best of those recipes, accompanied by overviews and
background material written by key Python figures

e Learning what it would take to create a book with a different authoring model

At the same time, two other activities were happening. First, those of us at ActiveState, including
Paul Prescod, were actively looking for "stars" to join ActiveState's development team. One of
the candidates being recruited was the famous (but unknown to us, at the time) Alex Martelli.
Alex was famous because of his numerous and exhaustive postings on the Python mailing list,
where he exhibited an unending patience for explaining Python's subtleties and joys to the
increasing audience of Python programmers. He was unknown because he lived in Italy and,
since he was a relative newcomer to the Python community, none of the old Python hands had
ever met himtheir paths had not happened to cross back in the 1980s when Alex lived in the
United States, working for IBM Research and enthusiastically using and promoting other high-
level languages (at the time, mostly IBM's Rexx).

ActiveState wooed Alex, trying to convince him to move to Vancouver. We came quite close, but
his employer put some golden handcuffs on him, and somehow Vancouver's weather couldn't
compete with Italy's. Alex stayed in Italy, much to my disappointment. As it happened, Alex was
also at that time negotiating with O'Reilly about writing a book. Alex wanted to write a cookbook,
but O'Reilly explained that the cookbook was already signed. Later, Alex and O'Reilly sighed a
contract for Python in Nutshell.

The second ongoing activity was the creation of the Python Software Foundation. For a variety of
reasons, best left to discussion over beers at a conference, everyone in the Python community
wanted to create a non-profit organization that would be the holder of Python's intellectual
property, to ensure that Python would be on a legally strong footing. However, such an
organization needed both financial support and buy-in from the Python community to be

successful.

Given all these parameters, the various parties agreed to the following plan:

¢ ActiveState would build an online cookbook, a mechanism by which anyone could submit a
recipe (i.e., a snippet of Python code addressing a particular problem, accompanied by a
discussion of the recipe, much like a description of why one should use cream of tartar
when whipping egg whites). To foster a community of authors and encourage peer review,
the web site would also let readers of the recipes suggest changes, ask questions, and so
on.

e As part of my ActiveState job, | would edit and ensure the quality of the recipes. Alex
Martelli joined the project as a co-editor when the material was being prepared for
publication, and, with Anna Martelli Ravenscroft, took over as primary editor for the second
edition.

e O'Reilly would publish the best recipes as the Python Cookbook.

e In lieu of author royalties for the recipes, a portion of the proceeds from the book sales
would be donated to the Python Software Foundation.

[rscviovs Jruexr s

T =

The Implementation of the Book

The online cookbook (at http://aspn.activestate.com/ASPN/Cookbook/Python/) was the entry
point for the recipes. Users got free accounts, filled in a form, and presto, their recipes became
part of the cookbook. Thousands of people read the recipes, and some added comments, and so,
in the publishing equivalent of peer review, the recipes matured and grew. While it was
predictable that the chance of getting your name in print would get people attracted to the online
cookbook, the ongoing success of the cookbook, with dozens of recipes added monthly and more
and more references to it on the newsgroups, is a testament to the value it brings to the
readersvalue which is provided by the recipe authors.

Starting from the materials available on the site, the implementation of the book was mostly a
question of selecting, merging, ordering, and editing the materials. A few more details about this
part of the work are in the "Organization” section of this Preface.

T

http://aspn.activestate.com/ASPN/Cookbook/Python/

[rrevons f e

Using the Code from This Book

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
code taken from O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant amount of
code from this book into your product's documentation does require permission. We appreciate,
but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "Python Cookbook, 2d ed., by Alex Martelli, Anna Martelli Ravenscroft, and
David Ascher (O'Reilly Media, 2005) 0-596-00797-3." If you feel your use of code from this book
falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

[rscviovs Jexr s

[rrevons f e

Audience

We expect that you know at least some Python. This book does not attempt to teach Python as a
whole; rather, it presents some specific techniques and concepts (and occasionally tricks) for
dealing with particular tasks. If you are looking for an introduction to Python, consider some of
the books described in the Further Reading section of this Preface. However, you don't need to
know a lot of Python to find this book helpful. Chapters include recipes demonstrating the best
techniques for accomplishing some elementary and general tasks, as well as more complex or
specialized ones. We have also added sidebars, here and there, to clarify certain concepts which
are used in the book and which you may have heard of, but which might still be unclear to you.
However, this is definitely not a book just for beginners. The main target audience is the whole
Python community, mostly made up of pretty good programmers, neither newbies nor wizards.
And if you do already know a lot about Python, you may be in for a pleasant surprise! We've
included recipes that explore some the newest and least well-known areas of Python. You might
very well learn a few thingswe did! Regardless of where you fall along the spectrum of Python
expertise, and more generally of programming skill, we believe you will get something valuable
from this book.

If you already own the first edition, you may be wondering whether you need this second edition,
too. We think the answer is "yes." The first edition had 245 recipes; we kept 146 of those (with
lots of editing in almost all cases), and added 192 new ones, for a total of 338 recipes in this
second edition. So, over half of the recipes in this edition are completely new, and all the recipes
are updated to apply to today's Pythonreleases 2.3 and 2.4. Indeed, this update is the main
factor which lets us have almost 100 more recipes in a book of about the same size. The first
edition covered all versions from 1.5.2 (and sometimes earlier) to 2.2; this one focuses firmly on
2.3 and 2.4. Thanks to the greater power of today's Python, and, even more, thanks to the fact
that this edition avoids the "historical” treatises about how you had to do things in Python
versions released 5 or more years ago, we were able to provide substantially more currently
relevant recipes and information in roughly the same amount of space.

T [

[rrevons f e

Organization

This book has 20 chapters. Each chapter is devoted to a particular kind of recipe, such as
algorithms, text processing, databases, and so on. The 1st edition had 17 chapters. There have
been improvements to Python, both language and library, and to the corpus of recipes the
Python community has posted to the cookbook site, that convinced us to add three entirely new
chapters: on the iterators and generators introduced in Python 2.3; on Python's support for time
and money operations, both old and new; and on new, advanced tools introduced in Python 2.2
and following releases (custom descriptors, decorators, metaclasses). Each chapter contains an
introduction, written by an expert in the field, followed by recipes selected from the online
cookbook (in some casesabout 5% of this book's recipesa few new recipes were specially written
for this volume) and edited to fit the book's formatting and style requirements. Alex (with some
help from Anna) did the vast majority of the selectiondetermining which recipes from the first
edition to keep and update, and selecting new recipes to add, or merge with others, from the
nearly 1,000 available on the site (so, if a recipe you posted to the cookbook site didn't get into
this printed edition, it's his fault!). He also decided which subjects just had to be covered and
thus might need specially written recipesalthough he couldn't manage to get quite all of the
specially written recipes he wanted, so anything that's missing, and wasn't on the cookbook site,
might not be entirely his fault.

Once the selection was complete, the work turned to editing the recipes, and to merging multiple
recipes, as well as incorporating important contents from many significant comments posted
about the recipes. This proved to be quite a challenge, just as it had been for the first edition,
but even more so. The recipes varied widely in their organization, level of completeness, and
sophistication. With over 300 authors involved, over 300 different "voices" were included in the
text. We have striven to maintain a variety of styles to reflect the true nature of this book, the
book written by the entire Python community. However, we edited each recipe, sometimes quite
considerably, to make it as accessible and useful as possible, ensuring enough uniformity in
structure and presentation to maximize the usability of the book as a whole. Most recipes, both
from the first edition and from the online site, had to be updated, sometimes heavily, to take
advantage of new tools and better approaches developed since those recipes were originally
posted. We also carefully reconsidered (and slightly altered) the ordering of chapters, and the
placement and ordering of recipes within chapters; our goal in this reordering was to maximize
the book's usefulness for both newcomers to Python and seasoned veterans, and, also, for both
readers tackling the book sequentially, cover to cover, and ones just dipping in, in "random
access" fashion, to look for help on some specific area.

While the book should thus definitely be accessible "by hops and jumps,” we nevertheless believe
a first sequential skim will amply repay the modest time you, the reader, invest in it. On such a
skim, skip every recipe that you have trouble following or that is of no current interest to you.
Despite the skipping, you'll still get a sense of how the whole book hangs together and of where
certain subjects are covered, which will stand you in good stead both for later in-depth
sequential reading, if that's your choice, and for "random access" reading. To further help you
get a sense of what's where in the book, here's a capsule summary of each chapter's contents,
and equally capsule bios of the Python experts who were so kind as to take on the task of writing
the chapters' "Introduction" sections.

Chapter 1, introduction by Fred L. Drake, Jr.

This chapter contains recipes for manipulating text in a variety of ways, including
combining, filtering, and formatting strings, substituting variables throughout a text
document, and dealing with Unicode.

Fred Drake is a member of the PythonLabs group, working on Python development. A
father of three, Fred is best known in the Python community for single-handedly
maintaining the official documentation. Fred is a co-author of Python & XML (O'Reilly).

Chapter 2, introduction by Mark Lutz

This chapter presents techniques for working with data in files and for manipulating files
and directories within the filesystem, including specific file formats and archive formats
such as tar and zip.

Mark Lutz is well known to most Python users as the most prolific author of Python books,
including Programming Python, Python Pocket Reference, and Learning Python (all from
O'Reilly), which he co-authored with David Ascher. Mark is also a leading Python trainer,
spreading the Python gospel throughout the world.

Chapter 3, introduction by Gustavo Niemeyer and Facundo Batista

This chapter (new in this edition) presents tools and techniques for working with dates,
times, decimal numbers, and some other money-related issues.

Gustavo Niemeyer is the author of the third-party dat euti | module, as well as a variety of
other Python extensions and projects. Gustavo lives in Brazil. Facundo Batista is the author
of the Decimal PEP 327, and of the standard library module deci mal , which brought
floating-point decimal support to Python 2.4. He lives in Argentina. The editors were
delighted to bring them together for this introduction.

Chapter 4, introduction by David Ascher

This chapter includes recipes for many common techniques that can be used anywhere, or
that don't really fit into any of the other, more specific recipe categories.

David Ascher is a co-editor of this volume. David's background spans physics, vision
research, scientific visualization, computer graphics, a variety of programming languages,
co-authoring Learning Python (O'Reilly), teaching Python, and these days, a slew of
technical and nontechnical tasks such as managing the ActiveState team. David also gets
roped into organizing Python conferences on a regular basis.

Chapter 5, introduction by Tim Peters

This chapter covers techniques for searching and sorting in Python. Many of the recipes
explore creative uses of the stable and fast | i st. sort in conjunction with the decorate-
sort-undecorate (DSU) idiom (newly built in with Python 2.4), while others demonstrate
the power of heapq, bi sect , and other Python searching and sorting tools.

Tim Peters, also known as the tim-bot, is one of the mythological figures of the Python
world. He is the oracle, channeling Guido van Rossum when Guido is busy, channeling the
IEEE-754 floating-point committee when anyone asks anything remotely relevant, and
appearing conservative while pushing for a constant evolution in the language. Tim is a
member of the PythonLabs team.

Chapter 6, introduction by Alex Martelli

This chapter offers a wide range of recipes that demonstrate the power of object-oriented

programming with Python, including fundamental techniques such as delegating and
controlling attribute access via special methods, intermediate ones such as the
implementation of various design patterns, and some simple but useful applications of
advanced concepts, such as custom metaclasses, which are covered in greater depth in
Chapter 20.

Alex Martelli, also known as the martelli-bot, is a co-editor of this volume. After almost a
decade with IBM Research, then a bit more than that with think3, inc., Alex now works as a
freelance consultant, most recently for AB Strakt, a Swedish Python-centered firm. He also
edits and writes Python articles and books, including Python in a Nutshell (O'Reilly) and,
occasionally, research works on the game of contract bridge.

Chapter 7, introduction by Aaron Watters

This chapter presents Python techniques for persistence, including serialization approaches
and interaction with various databases.

Aaron Watters was one of the earliest advocates of Python and is an expert in databases.
He's known for having been the lead author on the first book on Python (Internet
Programming with Python, M&T Books, now out of print), and he has authored many
widely used Python extensions, such as kj Bucket s and kwPar si ng. Aaron currently works
as a freelance consultant.

Chapter 8, introduction by Mark Hammond

This chapter includes a collection of recipes that assist with the debugging and testing
process, from customizing error logging and traceback information, to unit testing with
custom modules, uni ttest and doct est .

Mark Hammond is best known for his work supporting Python on the Windows platform.
With Greg Stein, he built an incredible library of modules interfacing Python to a wide
variety of APls, libraries, and component models such as COM. He is also an expert
designer and builder of developer tools, most notably Pythonwin and Komodo. Finally,
Mark is an expert at debugging even the most messy systemsduring Komodo
development, for example, Mark was often called upon to debug problems that spanned
three languages (Python, C++, JavaScript), multiple threads, and multiple processes. Mark
is also co-author, with Andy Robinson, of Python Programming on Win32 (O'Reilly).

Chapter 9, introduction by Greg Wilson

This chapter covers a variety of techniques for concurrent programming, including threads,
queues, and multiple processes.

Greg Wilson writes children's books, as well as books on parallel programming and data
crunching. When he's not doing that, he's a contributing editor with Doctor Dobb's Journal,
an adjunct professor in Computer Science at the University of Toronto, and a freelance
software developer. Greg was the original driving force behind the Software Carpentry
project, and he recently received a grant from the Python Software Foundation to develop
Pythonic course material for computational scientists and engineers.

Chapter 10, introduction by Donn Cave

This chapter includes recipes for a number of common system administration tasks, from
generating passwords and interacting with the Windows registry, to handling mailbox and

web server issues.

Donn Cave is a software engineer at the University of Washington's central computer site.
Over the years, Donn has proven to be a fount of information on comp.lang.python on all
matters related to system calls, Unix, system administration, files, signals, and the like.

Chapter 11, introduction by Fredrik Lundh

This chapter contains recipes for common GUI tasks, mostly with Tkinter, but also a
smattering of wxPython, Qt, image processing, and GUI recipes specific to Jython (for
JVMJava Virtual Machine), Mac OS X, and IronPython (for dotNET).

Fredrik Lundh, also known as the eff-bot, is the CTO of Secret Labs AB, a Swedish Python-
focused company providing a variety of products and technologies. Fredrik is the world's
leading expert on Tkinter (the most popular GUI toolkit for Python), as well as the main
author of the Python Imaging Library (PIL). He is also the author of Python Standard
Library (O'Reilly), which is a good complement to this volume and focuses on the modules
in the standard Python library. Finally, he is a prolific contributor to comp.lang.python,
helping novices and experts alike.

Chapter 12, introduction by Paul Prescod

This chapter offers techniques for parsing, processing, and generating XML using a variety
of Python tools.

Paul Prescod is an expert in three technologies: Python, which he need not justify; XML,
which makes sense in a pragmatic world (Paul is co-author of the XML Handbook, with
Charles Goldfarb, published by Prentice Hall); and Unicode, which somehow must address
some deep-seated desire for pain and confusion that neither of the other two technologies
satisfies. Paul is currently a product manager at Blast Radius.

Chapter 13, introduction by Guido van Rossum

This chapter covers a variety of network programming techniques, from writing basic TCP
clients and servers to manipulating MIME messages.

Guido created Python, nurtured it throughout its infancy, and is shepherding its growth.
Need we say more?

Chapter 14, introduction by Andy McKay

This chapter presents a variety of web-related recipes, including ones for CGI scripting,
running a Java servlet with Jython, and accessing the content of web pages.

Andy McKay is the co-founder and vice president of Enfold Systems. In the last few years,
Andy went from being a happy Perl user to a fanatical Python, Zope, and Plone expert. He
wrote the Definitive Guide to Plone (Apress) and runs the popular Zope discussion site,
http://www.zopezen.org.

Chapter 15, introduction by Jeremy Hylton

This chapter provides recipes for using Python in simple distributed systems, including
XML-RPC, CORBA, and Twisted's Perspective Broker.

http://www.zopezen.org

Jeremy Hylton works for Google. In addition to young twins, Jeremy's interests including
programming language theory, parsers, and the like. As part of his work for CNRI, Jeremy
worked on a variety of distributed systems.

Chapter 16, introduction by Paul F. Dubois

This chapter contains Python techniques that involve program introspection, currying,
dynamic importing, distributing programs, lexing and parsing.

Paul Dubois has been working at the Lawrence Livermore National Laboratory for many
years, building software systems for scientists working on everything from nuclear
simulations to climate modeling. He has considerable experience with a wide range of
scientific computing problems, as well as experience with language design and advanced
object-oriented programming techniques.

Chapter 17, introduction by David Beazley

This chapter offers techniques for extending Python and recipes that assist in the
development of extensions.

David Beazley's chief claim to fame is SWIG, an amazingly powerful hack that lets one
quickly wrap C and other libraries and use them from Python, Tcl, Perl, and myriad other
languages. Behind this seemingly language-neutral tool lies a Python supporter of the first
order, as evidenced by his book, Python Essential Reference (New Riders). David Beazley
is a fairly sick man (in a good way), leading us to believe that more scarily useful tools are
likely to emerge from his brain. He's currently inflicting his sense of humor on computer
science students at the University of Chicago.

Chapter 18, introduction by Tim Peters

This chapter provides a collection of fascinating and useful algorithms and data structures
implemented in Python.

See the discussion of Chapter 5 for information about Tim Peters.

Chapter 19, introduction by Raymond Hettinger

This chapter (new in this edition) contains recipes demonstrating the variety and power of
iterators and generatorshow Python makes your loops' structures simpler, faster, and
reusable.

Raymond Hettinger is the creator of the i t ert ool s package, original proposer of generator
expressions, and has become a major contributor to the development of Pythonif you don't
know who originated and implemented some major novelty or important optimization in
the 2.3 and 2.4 releases of Python, our advice is to bet it was Raymond!

Chapter 20, introduction by Raymond Hettinger

This chapter (new in this edition) provides an in-depth look into the infrastructural
elements which make Python's OOP so powerful and smooth, and how you can exploit and
customize them for fun and profit. From handy idioms for building properties, to aliasing
and caching attributes, all the way to decorators which optimize your functions by hacking

their bytecode and to a factory of custom metaclasses to solve metatype conflicts, this

chapter shows how, while surely "there be dragons here," they're the wise, powerful and
beneficent Chinese variety thereof...!

See the discussion of Chapter 19 for information about Raymond Hettinger.

[recviovs Jrexr

[rrevons f e

Further Reading

There are many texts available to help you learn Python or refine your Python knowledge, from
introductory texts all the way to quite formal language descriptions.

We recommend the following books for general information about Python (all these books cover
at least Python 2.2, unless otherwise noted):

e Python Programming for the Absolute Beginner, by Michael Dawson (Thomson Course
Technology), is a hands-on, highly accessible introduction to Python for people who have
never programmed.

e Learning Python, by Mark Lutz and David Ascher (O'Reilly), is a thorough introduction to the
fundamentals of Python.

e Practical Python, by Magnus Lie Hetland (APress), is an introduction to Python which also
develops, in detail, ten fully worked out, substantial programs in many different areas.

¢ Dive into Python, by Mark Pilgrim (APress), is a fast-paced introduction to Python for
experienced programmers, and it is also freely available for online reading and downloading
(http://diveintopython.org/).

e Python Standard Library, by Fredrik Lundh (O'Reilly), provides a use case for each module
in the rich library that comes with every standard Python distribution (in the current first
edition, the book only covers Python up to 2.0).

¢ Programming Python, by Mark Lutz (O'Reilly), is a thorough rundown of Python
programming techniques (in the current second edition, the book only covers Python up to
2.0).

¢ Python Essential Reference, by David Beazley (New Riders), is a quick reference that
focuses on the Python language and the core Python libraries (in the current second edition,
the book only covers Python up to 2.1).

e Python in a Nutshell, by Alex Martelli (O'Reilly), is a comprehensive quick reference to the
Python language and the key libraries used by most Python programmers.

In addition, several more special-purpose books can help you explore particular aspects of
Python programming. Which books you will like best depends a lot on your areas of interest.
From personal experience, the editors can recommend at least the following:

Python and XML, by Christopher A. Jones and Fred L. Drake, Jr. (O'Reilly), offers thorough
coverage of using Python to read, process, and transform XML.

e Jython Essentials, by Samuele Pedroni and Noel Rappin (O'Reilly), is the authoritative book
on Jython, the port of Python to the JVM. Particularly useful if you already know some (or a
lot of) Java.

e Game Programming with Python, by Sean Riley (Charles River Media), covers programming
computer games with Python, all the way from advanced graphics to moderate amounts of
"artificial intelligence."

¢ Python Web Programming, by Steve Holden (New Riders), covers building networked
systems using Python, with introductions to many other related technologies (databases,
HTTP, HTML, etc.). Very suitable for readers with none to medium experience with these
fields, but has something to teach everyone.

http://diveintopython.org/

In addition to these books, other important sources of information can help explain some of the
code in the recipes in this book. We've pointed out the information that seemed particularly
relevant in the "See Also" sections of each recipe. In these sections, we often refer to the
standard Python documentation: most often the Library Reference, sometimes the Reference
Manual, and occasionally the Tutorial. This documentation is freely available in a variety of forms:

e On the python.org web site (at http://www.python.org/doc/), which always contains the
most up-to-date documentation about Python.

e On the pydoc.org web site (at http://pydoc.org/), accompanied by module-by-module
documentation of the standard library automatically generated by the very useful pydoc
tool.

e In Python itself. Recent versions of Python boast a nice online help system, which is worth
exploring if you've never used it. Just type hel p() at the interactive Python interpreter
prompt to start exploring.

¢ As part of the online help in your Python installation. ActivePython's installer, for example,
includes a searchable Windows help file. The standard Python distribution currently includes
HTML pages, but there are plans to include a similar Windows Help file in future releases.

We have not included specific section numbers in our references to the standard Python
documentation, since the organization of these manuals can change from release to release. You
should be able to use the table of contents and indexes to find the relevant material. For the
Library Reference, in particular, the Module Index (an alphabetical list of all standard library
modules, each module name being a hyperlink to the Library Reference documentation for that
module) is invaluable. Similarly, we have not given specific pointers in our references to Python
in a Nutshell: that book is still in its first edition (covering Python up to 2.2) at the time of this
writing, but by the time you're reading, a second edition (covering Python 2.3 and 2.4) is likely
to be forthcoming, if not already published.

T [

http://www.python.org/doc/
http://pydoc.org/

[rrevons f e

Conventions Used in This Book

Pronouns: the first person singular is meant to convey that the recipe's or chapter introduction's
author is speaking (when multiple credits are given for a recipe, the author is the first person
credited); however, even such remarks have at times had to be edited enough that they may not
reflect the original author's intended meaning (we, the editors, tried hard to avoid that, but we
know we must have failed in some cases, since there were so many remarks, and authorial intent
was often not entirely clear). The second person is meant to refer to you, the reader. The first
person plural collectively indicates you, the reader, plus the recipe's author and co-authors, the
editors, and my friend Joe (hi Joel)in other words, it's a very inclusive "we" or "us."

Code: each block of code may indicate a complete module or script (or, often, a Python source
file that is usable both as a script and as a module), an isolated snippet from some hypothetical
module or script, or part of a Python interactive interpreter session (indicated by the prompt
>>>).

The following typographical conventions are used throughout this book:

Italic for commands, filenames, for emphasis, and for first use of a term.

Const ant wi dt h for general code fragments and keywords (mostly Python ones, but also other
languages, such as C or HTML, where they occur). Constant width is al so used for all names
defined in Python's library and third-party modules.

Constant wi dth bol d is used to emphasize particular lines within code listings and show output
that is produced.

O [

[rrevons f e

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that some features have changed, or that we have let errors slip through the production
of the book. Please let us know of any errors that you find, as well as any suggestions for future
editions, by writing to:

O'Reilly Media

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/pythoncook?2

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com/

The online cookbook from which most of the recipes for this book were taken is available at:

http://aspn.activestate.com/ASPN/Cookbook/Python

[rscviovs Jruexr s

http://www.oreilly.com/catalog/pythoncook2
http://www.oreilly.com/
http://aspn.activestate.com/ASPN/Cookbook/Python

[rrevons f e

Safari® Enabled

H

When you see a Safari Enabled icon on the cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

T

http://safari.oreilly.com

[rrevons f e

Acknowledgments

Most publications, from mysteries to scientific papers to computer books, claim that the work
being published would not have been possible without the collaboration of many others, typically
including local forensic scientists, colleagues, and children, respectively. This book makes this
claim to an extreme degree. Most of the words, code, and ideas in this volume were contributed
by people not listed on the front cover. The original recipe authors, readers who submitted useful
and insightful comments to the cookbook web site, and the authors of the chapter introductions,
are the true authors of the book, and they deserve the credit.

David Ascher

The software that runs the online cookbook was the product of Andy McKay's constant and
diligent effort. Andy was ActiveState's key Zope developer during the online data-collection
phase of this project, and one of the key developers behind ASPN (http://aspn.activestate.com),
ActiveState's content site, which serves a wide variety of information for and by programmers of
open source languages such as Python, Perl, PHP, Tcl, and XSLT. Andy McKay used to be a Perl
developer, by the way. At about the same time that | started at ActiveState, the company
decided to use Zope to build what would become ASPN. In the years that followed, Andy has
become a Zope master and somewhat of a Python fanatic (without any advocacy from me!), and
is currently a Zope and Plone author, consultant and entrepreneur. Based on an original design
that | put together with Diane Mueller, also of ActiveState, Andy single-handedly implemented
ASPN in record time, then proceeded to adjust it to ever-changing requirements for new features
that we hadn't anticipated in the early design phase, staying cheerful and professional
throughout. It's a pleasure to have him as the author of the introduction to the chapter on web
recipes. Since Andy's departure, James McGill has taken over as caretaker of the online
cookbookhe makes sure that the cookbook is live at all hours of the day or night, ready to serve
Pythonistas worldwide.

Paul Prescod, then also of ActiveState, was a kindred spirit throughout the project, helping with
the online editorial process, suggesting changes, and encouraging readers of comp.lang.python
to visit the web site and submit recipes. Paul also helped with some of his considerable XML
knowledge when it came to figuring out how to take the data out of Zope and get it ready for the
publication process.

The last activator I'd like to thank, for two different reasons, is Dick Hardt, founder and CEO of
ActiveState. The first is that Dick agreed to let me work on the cookbook as part of my job. Had
he not, | wouldn't have been able to participate in it. The second reason I'd like to thank Dick is
for suggesting at the outset that a share of the book royalties go to the Python Software
Foundation. This decision not only made it easier to enlist Python users into becoming
contributors but has also resulted in some long-term revenue to an organization that | believe
needs and deserves financial support. All Python users will benefit.

Writing a software system a second time is dangerous; the "second-system" syndrome is a well-
known engineering scenario in which teams that are allowed to rebuild systems "right" often end
up with interminable, over-engineered projects. I'm pleased to say that this didn't happen in the
case of this second edition, for two primary reasons. The first was the decision to trim the scope
of the cookbook to cover only truly modern Pythonthat made the content more manageable and
the book much more interesting to contemporary audiences. The second factor was that
everyone realized with hindsight that | would have no time to contribute to the day-to-day
editing of this second edition. I'm as glad as ever to have been associated with this book, and
pleased that | have no guilt regarding the amount of work | didn't contribute. When people like
Alex and Anna are willing to take on the work, it's much better for everyone else to get out of the
way.

http://aspn.activestate.com

Finally, I'd like to thank the O'Reilly editors who have had a big hand in shaping the cookbook.
Laura Lewin was the original editor for the first edition, and she helped make sure that the
project moved along, securing and coordinating the contributions of the introduction authors.
Paula Ferguson then took the baton, provided a huge amount of precious feedback, and
copyedited the final manuscript, ensuring that the prose was as readable as possible given the
multiplicity of voices in the book. Jonathan Gennick was the editor for the second edition, and as
far as I can tell, he basically let Alex and Anna drive, which was the right thing to do. Another
editor | forgot to mention last time was Tim O'Reilly, who got more involved in this book than in
most, in its early (rough) phases, and provided very useful input.

Each time | review this acknowledgments section, | can't help but remember O'Reilly's Editor-in-
Chief at the inception of the project, Frank Willison. Frank died suddenly on a black day, July 30,
2001. He was the person who most wanted to see this book happen, for the simple reason that
he believed the Python community deserved it. Frank was always willing to explore new ideas,
and he was generous to a fault. The idea of a book with over a hundred authors would have
terrified most editors. Frank saw it as a challenge and an experiment. | still miss Frank.

Alex Martelli

I first met Python thanks to the gentle insistence of a former colleague, Alessandro Bottoni. He
kept courteously repeating that | really should give Python a try, in spite of my claims that |
already knew more programming languages than | knew what to do with. If | hadn't trusted his
technical and aesthetic judgment enough to invest the needed time and energy on the basis of
his suggestion, | most definitely wouldn't be writing and editing Python books today. Thanks for
your well-placed stubbornness, Alessandro!

Of course, once | tasted Python, | was irretrievably hookedmy lifelong taste for very high-level
(often mis-named "scripting™) languages at last congealed into one superb synthesis. Here, at
long last, was a language with the syntactic ease of Rexx (and then some), the semantic
simplicity of Tcl (and then some), the intellectual rigor of Scheme (and other Lisp variants), and
the awesome power of Perl (and then some). How could | resist? Still, | do owe a debt to Mike
Cowlishaw (inventor of Rexx), who | had the pleasure of having as a colleague when | worked for
IBM Research, for first getting me hooked on scripting. | must also thank John Ousterhout and
Larry Wall, the inventors of Tcl and Perl, respectively, for later reinforcing my addiction through
their brainchildren.

Greg Wilson first introduced me to O'Reilly, so he must get his share of thanks, tooand I'm
overjoyed at having him as one of the introduction authors. I am also grateful to David Ascher,
and several people at O'Reilly, for signing me up as co-editor of the first edition of this book and
supporting so immediately and enthusiastically my idea that, hmmm, the time had sure come for
a second edition (in dazed retrospect, | suspect what I meant was mostly that | had forgotten
how deuced much work it had been to do the first one . . . and failed to realize that, with all the
new materials heaped on ActiveState's site, as well as Python's wonderful progress over three
years, the second edition would take more work than the first one. . .).

I couldn't possibly have done the job without an impressive array of technology to help me. |
don't know the names of all the people | should thank for the Internet, ADSL, and Google's
search engines, which, together, let me look things up so easilyor for many of the other
hardware and software technologies cooperating to amplify my productivity. But, | do know I
couldn't have made it without Theo de Raadt's OpenBSD operating system, Steve Jobs'
inspiration behind Mac OS X and the iBook G4 on which | did most of the work, Bram
Moolenaar's VIM editor, and, of course, Guido van Rossum's Python language. So, I'll single out
Theo, Steve, Bram, and Guido for special thanks!

Nor, as any book author will surely confirm, could | have done it without patience and moral
support from friends and familychiefly my children Lucio and Flavia, my sister Elisabetta, my
father Lanfranco. But the one person who was truly indispensable to this second edition was my
wife and co-editor Anna. Having reconnected (after many years apart) thanks to Python, taken
our honeymoon at the Open Source Convention, given a joint Lightning Talk about our "Pythonic

Marriage," maybe | should have surmised how wonderful it would be to work so closely with her,
day in and day out, on such a large and complex joint project. It was truly incredible, all the way
through, fully including the heated debates about this or that technical or organizational point or
exact choice of wording in delicate cases. Throughout the effort and the stress, her skill, her
love, her joy, always shined through, sustained me, and constantly renewed my energies and my
determination. Thanks, Anna!

Anna Martelli Ravenscroft

I discovered Python about two years ago. | fell in love, both with Python and (concurrently) with
the martelli-bot. Python is a language that is near to my heart, primarily because it is so quickly
usable. It doesn't require you to become a hermit for the next four years in order to do anything
with the language. Thank you to Guido. And thanks to the amazing Python community for
providing such a welcoming atmosphere to newcomers.

Working on this book was quite the learning experience for me. Besides all the Python code, |
also learned both XML and VI, as well as reacquainting myself with Subversion. Thanks go to
Holger Krekel and codespeak, for hosting our subversion repository while we travelled. Which
brings us to a group of people who deserve special thanks: our reviewers. Holger Krekel, again,
was exceptionally thorough, and ensured, among other things, that we had solid Unicode
support. Raymond Hettinger gave us a huge amount of valuable, detailed insight throughout,
particularly where iterators and generators were concerned. Both Raymond and Holger often
offered alternatives to the presented "solutions" when warranted. Valentino Volonghi pointed out
programming style issues as well as formatting issues and brought an incredible amount of
enthusiasm to his reviews. Ryan Alexander, a newcomer to Python with a background in Java,
provided extremely detailed recommendations on ordering and presenting materials (recipes and
chapters), as well as pointing out explanations that were weak or missing altogether. His
perspective was invaluable in making this book more accessible and useful to new Pythonistas.
Several other individuals provided feedback on specific chapters or recipes, too numerous to list
here. Your work, however, is greatly appreciated.

Of course, thanks go to my husband. | am amazed at Alex's patience with questions (and |
questioned a lot). His dedication to excellence is a co-author's dream. When presented with
feedback, he consistently responded with appreciation and focus on making the book better. He's
one of the least ego-istical writers I've ever met.

Thank you to Dan, for encouraging my geekiness by starting me on Linux, teaching me proper
terminology for the stuff | was doing, and for getting me hooked on the Internet. And finally, an
extra special thanks to my children, Inanna and Graeme, for their hugs, understanding, and
support when | was in geekmode, particularly during the final push to complete the book. You
guys are the best kids a mother could wish for.

[rscviovs Jruexr s

Chapter 1. Text

Introduction

Recipe 1.1. Processinga String One CharacterataTime

Recipe 1.2. ConvertingBetween Characters and Numeric Codes
Recipe 1.3. TestingWhetheran Object Is String-like

Recipe 1.4. Aligning Strings

Recipe 1.5. Trimming Space from the Ends of a String

Recipe 1.6. Combining Strings

Recipe 1.7. Reversinga StringbyWords or Characters

Recipe 1.8. Checking Whether a String Contains a Set of Characters
Recipe 1.9. Simplifying Usage of Strings' translate Method
Recipe 1.10. Filtering a String for a Set of Characters

Recipe 1.11. CheckingWhether a String Is Text or Binary
Recipe 1.12. Controlling Case

Recipe 1.13. Accessing Substrings

Recipe 1.14. Changing the Indentation of a Multiline String
Recipe 1.15. Expandingand Compressing Tabs

Recipe 1.16. Interpolating Variablesina String

Recipe 1.17. InterpolatingVariablesina Stringin Python 2.4
Recipe 1.18. ReplacingMultiple PatternsinaSingle Pass

Recipe 1.19. Checkinga String for Any of Multiple Endings
Recipe 1.20. Handling International Textwith Unicode

Recipe 1.21. ConvertingBetween Unicode and Plain Strings
Recipe 1.22. PrintingUnicode Charactersto Standard Output
Recipe 1.23. EncodingUnicode Data for XML and HTML

Recipe 1.24. Making Some Strings Case-Insensitive

Recipe 1.25. Converting HTML Documents to Texton a Unix Terminal

[rrevons f e

Introduction

Credit: Fred L. Drake, Jr., PythonLabs

Text-processing applications form a substantial part of the application space for any scripting
language, if only because everyone can agree that text processing is useful. Everyone has bits of
text that need to be reformatted or transformed in various ways. The catch, of course, is that
every application is just a little bit different from every other application, so it can be difficult to
find just the right reusable code to work with different file formats, no matter how similar they
are.

What Is Text?

Sounds like an easy question, doesn't it? After all, we know it when we see it, don't we? Text is a
sequence of characters, and it is distinguished from binary data by that very fact. Binary data,
after all, is a sequence of bytes.

Unfortunately, all data enters our applications as a sequence of bytes. There's no library function
we can call that will tell us whether a particular sequence of bytes represents text, although we
can create some useful heuristics that tell us whether data can safely (not necessarily correctly)
be handled as text. Recipe 1.11 shows just such a heuristic.

Python strings are immutable sequences of bytes or characters. Most of the ways we create and
process strings treat them as sequences of characters, but many are just as applicable to
sequences of bytes. Unicode strings are immutable sequences of Unicode characters:
transformations of Unicode strings into and from plain strings use codecs (coder-decoders)
objects that embody knowledge about the many standard ways in which sequences of characters
can be represented by sequences of bytes (also known as encodings and character sets). Note
that Unicode strings do not serve double duty as sequences of bytes. Recipe 1.20, Recipe 1.21,
and Recipe 1.22 illustrate the fundamentals of Unicode in Python.

Okay, let's assume that our application knows from the context that it's looking at text. That's
usually the best approach because that's where external input comes into play. We're looking at
a file either because it has a well-known name and defined format (common in the "Unix" world)
or because it has a well-known filename extension that indicates the format of the contents
(common on Windows). But now we have a problem: we had to use the word format to make the
previous paragraph meaningful. Wasn't text supposed to be simple?

Let's face it: there's no such thing as "pure" text, and if there were, we probably wouldn't care
about it (with the possible exception of applications in the field of computational linguistics,
where pure text may indeed sometimes be studied for its own sake). What we want to deal with
in our applications is information contained in text. The text we care about may contain
configuration data, commands to control or define processes, documents for human
consumption, or even tabular data. Text that contains configuration data or a series of
commands usually can be expected to conform to a fairly strict syntax that can be checked
before relying on the information in the text. Informing the user of an error in the input text is
typically sufficient to deal with things that aren't what we were expecting.

Documents intended for humans tend to be simple, but they vary widely in detail. Since they are
usually written in a natural language, their syntax and grammar can be difficult to check, at best.
Different texts may use different character sets or encodings, and it can be difficult or even
impossible to tell which character set or encoding was used to create a text if that information is
not available in addition to the text itself. It is, however, necessary to support proper
representation of natural-language documents. Natural-language text has structure as well, but
the structures are often less explicit in the text and require at least some understanding of the

language in which the text was written. Characters make up words, which make up sentences,
which make up paragraphs, and still larger structures may be present as well. Paragraphs alone
can be particularly difficult to locate unless you know what typographical conventions were used
for a document: is each line a paragraph, or can multiple lines make up a paragraph? If the
latter, how do we tell which lines are grouped together to make a paragraph? Paragraphs may be
separated by blank lines, indentation, or some other special mark. See Recipe 19.10 for an
example of reading a text file as a sequence of paragraphs separated by blank lines.

Tabular data has many issues that are similar to the problems associated with natural-language
text, but it adds a second dimension to the input format: the text is no longer linearit is no longer
a sequence of characters, but rather a matrix of characters from which individual blocks of text
must be identified and organized.

Basic Textual Operations

As with any other data format, we need to do different things with text at different times.
However, there are still three basic operations:

e Parsing the data into a structure internal to our application
¢ Transforming the input into something similar in some way, but with changes of some kind
¢ Generating completely new data

Parsing can be performed in a variety of ways, and many formats can be suitably handled by ad
hoc parsers that deal effectively with a very constrained format. Examples of this approach
include parsers for RFC 2822-style email headers (see the rf ¢822 module in Python's standard
library) and the configuration files handled by the Confi gPar ser module. The netrc module
offers another example of a parser for an application-specific file format, this one based on the
shl ex module. shl ex offers a fairly typical tokenizer for basic languages, useful in creating
readable configuration files or allowing users to enter commands to an interactive prompt. These
sorts of ad hoc parsers are abundant in Python's standard library, and recipes using them can be
found in Chapter 2 and Chapter 13. More formal parsing tools are also available for Python; they
depend on larger add-on packages and are surveyed in the introduction to Chapter 16.

Transforming text from one format to another is more interesting when viewed as text
processing, which is what we usually think of first when we talk about text. In this chapter, we'll
take a look at some ways to approach transformations that can be applied for different purposes.
Sometimes we'll work with text stored in external files, and other times we'll simply work with it
as strings in memory.

The generation of textual data from application-specific data structures is most easily performed
using Python's pri nt statement or the wri t e method of a file or file-like object. This is often
done using a method of the application object or a function, which takes the output file as a
parameter. The function can then use statements such as these:

print >>thefile, sonetext
thefile.wite(sonetext)

which generate output to the appropriate file. However, this isn't generally thought of as text
processing, as here there is no input text to be processed. Examples of using both print and
wri t e can of course be found throughout this book.

Sources of Text

Working with text stored as a string in memory can be easy when the text is not too large.

Operations that search the text can operate over multiple lines very easily and quickly, and
there's no need to worry about searching for something that might cross a buffer boundary.
Being able to keep the text in memory as a simple string makes it very easy to take advantage of
the built-in string operations available as methods of the string object.

File-based transformations deserve special treatment, because there can be substantial overhead
related to 1/0 performance and the amount of data that must actually be stored in memory.
When working with data stored on disk, we often want to avoid loading entire files into memory,
due to the size of the data: loading an 80 MB file into memory should not be done too casually!
When our application needs only part of the data at a time, working on smaller segments of the
data can yield substantial performance improvements, simply because we've allowed enough
space for our program to run. If we are careful about buffer management, we can still maintain
the performance advantage of using a small number of relatively large disk read and write
operations by working on large chunks of data at a time. File-related recipes are found in Chapter
12 .

Another interesting source for textual data comes to light when we consider the network. Text is
often retrieved from the network using a socket. While we can always view a socket as a file
(using the nakefi | e method of the socket object), the data that is retrieved over a socket may
come in chunks, or we may have to wait for more data to arrive. The textual data may not
consist of all data until the end of the data stream, so a file object created with makefi | e may
not be entirely appropriate to pass to text-processing code. When working with text from a
network connection, we often need to read the data from the connection before passing it along
for further processing. If the data is large, it can be handled by saving it to a file as it arrives and
then using that file when performing text-processing operations. More elaborate solutions can be
built when the text processing needs to be started before all the data is available. Examples of
parsers that are useful in such situations may be found in the ht ml | i b and HTM_Par ser modules
in the standard library.

String Basics

The main tool Python gives us to process text is stringsimmutable sequences of characters.
There are actually two kinds of strings: plain strings, which contain 8-bit (ASCII) characters; and
Unicode strings, which contain Unicode characters. We won't deal much with Unicode strings
here: their functionality is similar to that of plain strings, except each character takes up 2 (or 4)
bytes, so that the number of different characters is in the tens of thousands (or even billions), as
opposed to the 256 different characters that make up plain strings. Unicode strings are important
if you must deal with text in many different alphabets, particularly Asian ideographs. Plain strings
are sufficient to deal with English or any of a limited set of non-Asian languages. For example, all
western European alphabets can be encoded in plain strings, typically using the international
standard encoding known as 1SO-8859-1 (or 1SO-8859-15, if you need the Euro currency symbol
as well).

In Python, you express a literal string (curiously more often known as a string literal) as:

"thisis aliteral string
"this is another string"

String values can be enclosed in either single or double quotes. The two different kinds of quotes
work the same way, but having both allows you to include one kind of quotes inside of a string
specified with the other kind of quotes, without needing to escape them with the backslash
character:

"isn\'t that grand'
"isn't that grand"

To have a string literal span multiple lines, you can use a backslash as the last character on the

line, which indicates that the next line is a continuation:

big = "This is a long string\
that spans two lines."

You must embed newlines in the string if you want the string to output on two lines:

big = "This is a long string\n\
that prints on two lines."

Another approach is to enclose the string in a pair of matching triple quotes (either single or
double):

bi gger =
This is an even

bi gger string that
spans three |ines.

Using triple quotes, you don't need to use the continuation character, and line breaks in the
string literal are preserved as newline characters in the resulting Python string object. You can
also make a string literal "raw" string by preceding it with anr or R:

big =r"This is a long string\
with a backslash and a newline init"

With a raw string, backslash escape sequences are left alone, rather than being interpreted.
Finally, you can precede a string literal with a u or U to make it a Unicode string:

hell o = u' Hel | o\ u0020Wor | d'

Strings are immutable, which means that no matter what operation you do on a string, you will
always produce a new string object, rather than mutating the existing string. A string is a
sequence of characters, which means that you can access a single character by indexing:

nystr = "ny string"

nystr[0] #'nm
nystr[-2] #'n'

You can also access a portion of the string with a slice:

nystr[1: 4] #'y s'
nystr[3:] # 'string'
nystr[-3:] #'ing'

Slices can be extended, that is, include a third parameter that is known as the stride or step of
the slice:

nystr[:3:-1] # 'gnirt’
nystr[1::2] # 'ysrn'

You can loop on a string's characters:

for ¢ in mystr:

This binds ¢ to each of the characters in mystr in turn. You can form another sequence:

['ist(mystr) #returns ['m, "y, sttt i, 'nt gt]

You can concatenate strings by addition:

mystr+' oid' # 'my stringoid

You can also repeat strings by multiplication:

'X0'*3 # ' Xoxoxo'

In general, you can do anything to a string that you can do to any other sequence, as long as it
doesn't require changing the sequence, since strings are immutable.

String objects have many useful methods. For example, you can test a string's contents with
s.isdigit(), whichreturnstrue if s is not empty and all of the characters in s are digits
(otherwise, it returns Fal se). You can produce a new modified string with a method call such as
s. toupper (), which returns a new string that is like s, but with every letter changed into its
uppercase equivalent. You can search for a string inside another with

hayst ack. count (' needl e'), which returns the number of times the substring 'needl e' appears
in the string hayst ack. When you have a large string that spans multiple lines, you can split it
into a list of single-line strings with splitlines:

list_of lines = one_large_string.splitlines()

You can produce the single large string again with j oi n:

one_large_string = '\n'.join(list_of _lines)

The recipes in this chapter show off many methods of the string object. You can find complete
documentation in Python's Library Reference and Python in a Nutshell.

Strings in Python can also be manipulated with regular expressions, via the re module. Regular
expressions are a powerful (but complicated) set of tools that you may already be familiar with
from another language (such as Perl), or from the use of tools such as the vi editor and text-
mode commands such as grep. You'll find a number of uses of regular expressions in recipes in
the second half of this chapter. For complete documentation, see the Library Reference and
Python in a Nutshell. J.E.F. Friedl, Mastering Regular Expressions (O'Reilly) is also recommended
if you need to master this subjectPython's regular expressions are basically the same as Perl's,
which Friedl covers thoroughly.

Python's standard module st ri ng offers much of the same functionality that is available from
string methods, packaged up as functions instead of methods. The st ri ng module also offers a
few additional functions, such as the useful st ri ng. maket r ans function that is demonstrated in a
few recipes in this chapter; several helpful string constants (stri ng. di gi ts, for example, is
'0123456789") and, in Python 2.4, the new class Tenpl at e, for simple yet flexible formatting of
strings with embedded variables, which as you'll see features in one of this chapter's recipes. The
string-formatting operator, % provides a handy way to put strings together and to obtain
precisely formatted strings from such objects as floating-point numbers. Again, you'll find recipes
in this chapter that show how to use %for your purposes. Python also has lots of standard and
extension modules that perform special processing on strings of many kinds. This chapter
doesn't cover such specialized resources, but Chapter 12 is, for example, entirely devoted to the

important specialized subject of processing XML.

R [

[rrevons f e

Recipe 1.1. Processing a String One Character at a Time

Credit: Luther Blissett

Problem

You want to process a string one character at a time.

Solution

You can build a list whose items are the string's characters (meaning that the items are strings,
each of length of onePython doesn't have a special type for "characters™ as distinct from strings).
Just call the built-in | i st, with the string as its argument:

thelist = list(thestring)

You may not even need to build the list, since you can loop directly on the string with a f or
statement:

for c in thestring:
do_sonet hing_with(c)

or in the f or clause of a list comprehension:

results = [do_something_w th(c) for ¢ in thestring]

or, with exactly the same effects as this list comprehension, you can call a function on each
character with the map built-in function:

results = map(do_sonet hing, thestring)

Discussion

In Python, characters are just strings of length one. You can loop over a string to access each of
its characters, one by one. You can use map for much the same purpose, as long as what you
need to do with each character is call a function on it. Finally, you can call the built-in type | i st
to obtain a list of the length-one substrings of the string (i.e., the string's characters). If what
you want is a set whose elements are the string's characters, you can call set s. Set with the
string as the argument (in Python 2.4, you can also call the built-in set in just the same way):

i mport sets

magi c_chars = sets. Set (' abracadabra')

poppi ns_chars = sets. Set (' supercalifragilisticexpialidocious")
print ''.join(magi c_chars & poppins_chars) # set intersection
acrd

See Also

The Library Reference section on sequences; Perl Cookbook Recipe 1.5.

[rrevous f e

[rrevons f e

Recipe 1.2. Converting Between Characters and
Numeric Codes

Credit: Luther Blissett

Problem

You need to turn a character into its numeric ASCII (1SO) or Unicode code, and vice versa.

Solution

That's what the built-in functions ord and chr are for:

>>> print ord('a')
97

>>> print chr(97)
a

The built-in function or d also accepts as its argument a Unicode string of length one, in which
case it returns a Unicode code value, up to 65536. To make a Unicode string of length one from
a numeric Unicode code value, use the built-in function uni chr :

>>> print ord(u'\u2020")
8224

>>> print repr(unichr(8224))
u' \ u2020'

Discussion

It's a mundane task, to be sure, but it is sometimes useful to turn a character (which in Python
just means a string of length one) into its ASCII or Unicode code, and vice versa. The built-in
functions or d, chr, and uni chr cover all the related needs. Note, in particular, the huge
difference between chr (n) and str(n), which beginners sometimes confuse...:

>>> print repr(chr(97))
'a
>>> print repr(str(97))
l97l

chr takes as its argument a small integer and returns the corresponding single-character string
according to ASCII, while str, called with any integer, returns the string that is the decimal
representation of that integer.

To turn a string into a list of character value codes, use the built-in functions map and ord
together, as follows:

>>> print map(ord, 'ciao')
[99, 105, 97, 111]

To build a string from a list of character codes, use " . j oi n, map and chr ; for example:

>>> print ''.join(map(chr, range(97, 100)))
abc

See Also

Documentation for the built-in functions chr, ord, and uni chr in the Library Reference and
Python in a Nutshell.

T [

[rrevons f e

Recipe 1.3. Testing Whether an Object Is String-like

Credit: Luther Blissett

Problem

You need to test if an object, typically an argument to a function or method you're writing, is a
string (or more precisely, whether the object is string-like).

Solution

A simple and fast way to check whether something is a string or Unicode object is to use the
built-ins i si nst ance and basestri ng, as follows:

def i sAString(anobj):
return isinstance(anobj, basestring)

Discussion

The first approach to solving this recipe's problem that comes to many programmers' minds is
type-testing:

def isExactlyAString(anobj):
return type(anobj) is type('")

However, this approach is pretty bad, as it willfully destroys one of Python's greatest
strengthssmooth, signhature-based polymorphism. This kind of test would reject Unicode objects,
instances of user-coded subclasses of str, and instances of any user-coded type that is meant to

be "string-like".

Using the i si nst ance built-in function, as recommended in this recipe's Solution, is much better.
The built-in type basest ri ng exists exactly to enable this approach. basestri ng is a common
base class for the str and uni code types, and any string-like type that user code might define
should also subclass basestri ng, just to make sure that such i si nst ance testing works as
intended. basestri ng is essentially an "empty" type, just like obj ect, so no cost is involved in
subclassing it.

Unfortunately, the canonical i si nst ance checking fails to accept such clearly string-like objects
as instances of the User St ri ng class from Python Standard Library module User St ri ng, since
that class, alas, does not inherit from basestri ng. If you need to support such types, you can
check directly whether an object behaves like a stringfor example:

def isStringLi ke(anobj):
try: anobj + ''
except: return Fal se
el se: return True

This i sStringLi ke function is slower and more complicated than the i sAStri ng function
presented in the "Solution”, but it does accept instances of User St ri ng (and other string-like

types) as well as instances of st r and uni code.

The general Python approach to type-checking is known as duck typing: if it walks like a duck
and quacks like a duck, it's duck-like enough for our purposes. The isStringLike function in this
recipe goes only as far as the quacks-like part, but that may be enough. If and when you need to
check for more string-like features of the object anobj , it's easy to test a few more properties by
using a richer expression in the TRy clausefor example, changing the clause to:

try: anobj.lower() + anobj +

In my experience, however, the simple test shown in the isStringLike function usually does what
I need.

The most Pythonic approach to type validation (or any validation task, really) is just to try to
perform whatever task you need to do, detecting and handling any errors or exceptions that
might result if the situation is somehow invalidan approach known as "it's easier to ask
forgiveness than permission” (EAFP). try/except is the key tool in enabling the EAFP style.
Sometimes, as in this recipe, you may choose some simple task, such as concatenation to the
empty string, as a stand-in for a much richer set of properties (such as, all the wealth of
operations and methods that string objects make available).

See Also

Documentation for the built-ins i si nst ance and basestri ng in the Library Reference and Python
in a Nutshell.

T [

[rrevons f e

Recipe 1.4. Aligning Strings

Credit: Luther Blissett

Problem

You want to align strings: left, right, or center.

Solution

That's what the | j ust, rjust, and cent er methods of string objects are for. Each takes a single
argument, the width of the string you want as a result, and returns a copy of the starting string
with spaces added on either or both sides:

>>> print '|', "hej'.ljust(20), '|"', "hej'.rjust(20), '"|", '"hej'.center(20), '|"'
| hej | hej | hej |
Discussion

Centering, left-justifying, or right-justifying text comes up surprisingly oftenfor example, when
you want to print a simple report with centered page numbers in a monospaced font. Because of
this, Python string objects supply this functionality through three of their many methods. In
Python 2.3, the padding character is always a space. In Python 2.4, however, while space-
padding is still the default, you may optionally call any of these methods with a second
argument, a single character to be used for the padding:

>>> print 'hej'.center(20, '+')
++++++++hej] +++++++++

See Also

The Library Reference section on string methods; Java Cookbook recipe 3.5.

[recviovs Jrexr

[rrevons f e

Recipe 1.5. Trimming Space from the Ends of a String

Credit: Luther Blissett

Problem

You need to work on a string without regard for any extra leading or trailing spaces a user may
have typed.

Solution

That's what the | strip, rstrip, and stri p methods of string objects are for. Each takes no
argument and returns a copy of the starting string, shorn of whitespace on either or both sides:

>>> x = ! hej '

>>> print '|', x.Istrip(), "|', x.rstrip(), "|", x.strip(), "|'
| hej | hej | hej |

Discussion

Just as you may need to add space to either end of a string to align that string left, right, or
center in a field of fixed width (as covered previously in Recipe 1.4), so may you need to remove
all whitespace (blanks, tabs, newlines, etc.) from either or both ends. Because this need is
frequent, Python string objects supply this functionality through three of their many methods.
Optionally, you may call each of these methods with an argument, a string composed of all the
characters you want to trim from either or both ends instead of trimming whitespace characters:

>>> x = ' xyxxyy hejyx yyx'

>>> print "|"+x.strip(txy')+ |
| hejyx |

Note that in these cases the leading and trailing spaces have been left in the resulting string, as
have the 'yx' that are followed by spaces: only all the occurrences of ' x' and 'y’ at either end of
the string have been removed from the resulting string.

See Also

The Library Reference section on string methods; Recipe 1.4; Java Cookbook recipe 3.12.

[rscviovs Jruexr s

[rrevons f e

Recipe 1.6. Combining Strings

Credit: Luther Blissett

Problem

You have several small strings that you need to combine into one larger string.

Solution

To join a sequence of small strings into one large string, use the string operator j oi n. Say that
pi eces is a list whose items are strings, and you want one big string with all the items
concatenated in order; then, you should code:

largeString ="'"'.join(pieces)

To put together pieces stored in a few variables, the string-formatting operator %can often be
even handier:

largeString = ' %% sonmething % yet nmore' % (smalll1, small2, snmall3)

Discussion

In Python, the + operator concatenates strings and therefore offers seemingly obvious solutions
for putting small strings together into a larger one. For example, when you have pieces stored in
a few variables, it seems quite natural to code something like:

largeString = smalll + small2 + ' something ' + small3 + ' yet nore'

And similarly, when you have a sequence of small strings named pi eces, it seems quite natural
to code something like:

| argeString = "'
for piece in pieces:
| argeString += piece

Or, equivalently, but more fancifully and compactly:

i mport operator
| argeString = reduce(operator.add, pieces, ')

However, it's very important to realize that none of these seemingly obvious solution is goodthe
approaches shown in the "Solution™ are vastly superior.

In Python, string objects are immutable. Therefore, any operation on a string, including string
concatenation, produces a new string object, rather than modifying an existing one.
Concatenating N strings thus involves building and then immediately throwing away each of N-1

intermediate results. Performance is therefore vastly better for operations that build no
intermediate results, but rather produce the desired end result at once.

Python's string-formatting operator %is one such operation, particularly suitable when you have
a few pieces (e.g., each bound to a different variable) that you want to put together, perhaps
with some constant text in addition. Performance is not a major issue for this specific kind of
task. However, the %operator also has other potential advantages, when compared to an
expression that uses multiple + operations on strings. % is more readable, once you get used to
it. Also, you don't have to call str on pieces that aren't already strings (e.g., humbers), because
the format specifier % does so implicitly. Another advantage is that you can use format specifiers
other than %, so that, for example, you can control how many significant digits the string form
of a floating-point number should display.

What Is "a Sequence?"

Python does not have a specific type called sequence, but sequence is still an often-
used term in Python. sequence, strictly speaking, means: a container that can be
iterated on, to get a finite number of items, one at a time, and that also supports
indexing, slicing, and being passed to the built-in function | en (which gives the
number of items in a container). Python | i st s are the "sequences” you'll meet most
often, but there are many others (strings, unicode objects, tuples, array. arrays,
etc.).

Often, one does not need indexing, slicing, and | enthe ability to iterate, one item at a
time, suffices. In that case, one should speak of an iterable (or, to focus on the finite
number of items issue, a bounded iterable). Iterables that are not sequences include
dictionaries (iteration gives the keys of the dictionary, one at a time in arbitrary
order), file objects (iteration gives the lines of the text file, one at a time), and many
more, including iterators and generators. Any iterable can be used in a f or loop
statement and in many equivalent contexts (the f or clause of a list comprehension or
Python 2.4 generator expression, and also many built-ins such as m n, nax, zi p, sum
str.join, etc.).

At http://www.python.org/moin/PythonGlossary, you can find a Python Glossary that
can help you with these and several other terms. However, while the editors of this
cookbook have tried to adhere to the word usage that the glossary describes, you will
still find many places where this book says a sequence or an iterable or even a list,
where, by strict terminology, one should always say a bounded iterable. For example,
at the start of this recipe's Solution, we say "a sequence of small strings" where, in
fact, any bounded iterable of strings suffices. The problem with using "bounded
iterable" all over the place is that it would make this book read more like a
mathematics textbook than a practical programming book! So, we have deviated
from terminological rigor where readability, and maintaining in the book a variety of
"voices", were better served by slightly imprecise terminology that is nevertheless
entirely clear in context.

When you have many small string pieces in a sequence, performance can become a truly
important issue. The time needed to execute a loop using + or += (or a fancier but equivalent
approach using the built-in function r educe) grows with the square of the number of characters

you are accumulating, since the time to allocate and fill a large string is roughly proportional to
the length of that string. Fortunately, Python offers an excellent alternative. The j oi n method of

a string object s takes as its only argument a sequence of strings and produces a string result
obtained by concatenating all items in the sequence, with a copy of s joining each item to its
neighbors. For example, " . j oi n(pi eces) concatenates all the items of pi eces in a single gulp,

http://www.python.org/moin/PythonGlossary

without interposing anything between them, and ', '.j oi n(pi eces) concatenates the items
putting a comma and a space between each pair of them. It's the fastest, neatest, and most
elegant and readable way to put a large string together.

When the pieces are not all available at the same time, but rather come in sequentially from
input or computation, use a list as an intermediate data structure to hold the pieces (to add
items at the end of a list, you can call the append or ext end methods of the list). At the end,
when the list of pieces is complete, call "' . joi n(t hel i st) to obtain the big string that's the
concatenation of all pieces. Of all the many handy tips and tricks | could give you about Python
strings, | consider this one by far the most significant: the most frequent reason some Python
programs are too slow is that they build up big strings with + or +=. So, train yourself never to do
that. Use, instead, the " . j oi n approach recommented in this recipe.

Python 2.4 makes a heroic attempt to ameliorate the issue, reducing a little the performance
penalty due to such erroneous use of +=. While " . j oi n is still way faster and in all ways
preferable, at least some newbie or careless programmer gets to waste somewhat fewer machine
cycles. Similarly, psyco (a specializing just-in-time [JIT] Python compiler found at
http://psyco.sourceforge.net/), can reduce the += penalty even further. Nevertheless, " .join
remains the best approach in all cases.

See Also

The Library Reference and Python in a Nutshell sections on string methods, string-formatting
operations, and the oper at or module.

[rrevons f e

http://psyco.sourceforge.net/

[rrevons f e

Recipe 1.7. Reversing a String by Words or Characters

Credit: Alex Martelli

Problem

You want to reverse the characters or words in a string.

Solution

Strings are immutable, so, to reverse one, we need to make a copy. The simplest approach for
reversing is to take an extended slice with a "step” of -1, so that the slicing proceeds backwards:

revchars = astring[::-1]

To flip words, we need to make a list of words, reverse it, and join it back into a string with a
space as the joiner:

revwords = astring.split() # string -> list of words
revwords. reverse() # reverse the list in place
revwords ="' '".join(revwords) # list of strings -> string

or, if you prefer terse and compact "one-liners":

revwords ="' '.join(astring.split()[::-1])

If you need to reverse by words while preserving untouched the intermediate whitespace, you
can split by a regular expression:

import re

revwords = re.split(r' (\s+)', astring) # separators too, since '(...)'
revwords. reverse() # reverse the list in place

revwords = ''.join(revwords) # list of strings -> string

Note that the joiner must be the empty string in this case, because the whitespace separators
are kept in the revwords list (by using re. spl it with a regular expression that includes a

parenthesized group). Again, you could make a one-liner, if you wished:

revwords ="' .join(re.split(r'(\s+)', astring)[::-1])

but this is getting too dense and unreadable to be good Python code!

Discussion

In Python 2.4, you may make the by-word one-liners more readable by using the new built-in
function r ever sed instead of the less readable extended-slicing indicator [:: -1] :

".join(reversed(astring.split()))
"".join(reversed(re.split(r'(\s+)", astring)))

revwor ds
revwor ds

For the by-character case, though, astri ng[::-1] remains best, even in 2.4, because to use
rever sed, you'd have to introduce a call to " . j oi n as well:

revchars =''.join(reversed(astring))

The new rever sed built-in returns an iterator, suitable for looping on or for passing to some
"accumulator” callable such as " . j oi nit does not return a ready-made string!

See Also

Library Reference and Python in a Nutshell docs on sequence types and slicing, and (2.4 only)
the r ever sed built-in; Perl Cookbook recipe 1.6.

[rscviovs Jexr s

[rrevons f e

Recipe 1.8. Checking Whether a String Contains a Set of
Characters

Credit: JUrgen Hermann, Horst Hansen

Problem

You need to check for the occurrence of any of a set of characters in a string.

Solution

The simplest approach is clear, fast, and general (it works for any sequence, not just strings, and
for any container on which you can test for membership, not just sets):

def contai nsAny(seq, aset):
""" Check whether sequence seq contains ANY of the itens in aset.
for ¢ in seq:
if cin aset: return True
return Fal se

You can gain a little speed by moving to a higher-level, more sophisticated approach, based on
the i t ert ool s standard library module, essentially expressing the same approach in a different

way:

import itertools
def contai nsAny(seq, aset):
for itemin itertools.ifilter(aset._ _contains_ _, seq):
return True
return Fal se

Discussion

Most problems related to sets are best handled by using the set built-in type introduced in
Python 2.4 (if you're using Python 2.3, you can use the equivalent set s. Set type from the
Python Standard Library). However, there are exceptions. Here, for example, a pure set-based
approach would be something like:

def contai nsAny(seq, aset):
return bool (set(aset).intersection(seq))

However, with this approach, every item in seq inevitably has to be examined. The functions in
this recipe's Solution, on the other hand, "short-circuit": they return as soon as they know the
answer. They must still check every item in seq when the answer is Fal sewe could never affirm
that no item in seq is a member of aset without examining all the items, of course. But when the
answer is true, we often learn about that very soon, namely as soon as we examine one item
that is a member of aset. Whether this matters at all is very data-dependent, of course. It will
make no practical difference when seq is short, or when the answer is typically Fal se, but it may
be extremely important for a very long seq (when the answer can typically be soon determined

to be true).

The first version of containsAny presented in the recipe has the advantage of simplicity and
clarity: it expresses the fundamental idea with total transparency. The second version may
appear to be "clever”, and that is not a complimentary adjective in the Python world, where
simplicity and clarity are core values. However, the second version is well worth considering,
because it shows a higher-level approach, based on the i t ert ool s module of the standard
library. Higher-level approaches are most often preferable to lower-level ones (although the issue
is moot in this particular case). itertool s.ifilter takes a predicate and an iterable, and yields
the items in that iterable that satisfy the "predicate”. Here, as the "predicate”, we use anyset.
contains _, the bound method that is internally called when we code i n anyset for
membership testing. So, ififilter yields anything at all, it yields an item of seq that is also a
member of anyset, so we can return True as soon as this happens. If we get to the statement
following the f or, it must mean the ret urn True never executed, because no items of seq are
members of anyset, so we can return Fal se.

What Is "a Predicate?"

A term you can see often in discussions about programming is predicate: it just
means a function (or other callable object) that returns TRue or Fal se as its result. A
predicate is said to be satisfied when it returns t r ue.

If your application needs some function such as containsAny to check whether a string (or other
sequence) contains any members of a set, you may also need such variants as:

def containsOnly(seq, aset):
""" Check whether sequence seq contains ONLY itens in aset.
for c in seq:
if c not in aset: return Fal se
return True

containsOnly is the same function as containsAny, but with the logic turned upside-down. Other
apparently similar tasks don't lend themselves to short-circuiting (they intrinsically need to
examine all items) and so are best tackled by using the built-in type set (in Python 2.4; in 2.3,
you can use set s. Set in the same way):

def containsAll(seq, aset):
""" Check whet her sequence seq contains ALL the itens in aset.
return not set(aset).difference(seq)

If you're not accustomed to using the set (or sets. Set) method di f f erence, be aware of its
semantics: for any set a, a. di fference(b) (just like a-set (b)) returns the set of all elements of
a that are not in b. For example:

>>> 11 =1, 2, 3, 3]

>>> L2 = [1, 2, 3, 4]

>>> set (L1).difference(L2)
set([1)

>>> get (L2).difference(Ll)
set ([4])

which hopefully helps explain why:

>>> containsAll (L1, L2)
Fal se

>>> contai nsAll (L2, L1)
True

(In other words, don't confuse di f f er ence with another method of set, symmetric_di fference,
which returns the set of all items that are in either argument and not in the other.)

When you're dealing specifically with (plain, not Unicode) strings for both seq and aset, you may
not need the full generality of the functions presented in this recipe, and may want to try the
more specialized approach explained in Recipe 1.10 based on strings' method TRansl at e and the
string. maket rans function from the Python Standard Library. For example:

i mport string

notrans = string. maketrans('', '") # identity "translation"
def contai nsAny(astr, strset):
return len(strset) !'=1len(strset.translate(notrans, astr))

def containsAll(astr, strset):
return not strset.transl ate(notrans, astr)

This somewhat tricky approach relies on strset.transl ate(notrans, astr) being the
subsequence of strset that is made of characters not in ast r. When that subsequence has the
same length as strset, no characters have been removed by strset.translate, therefore no
characters of strset are in astr. Conversely, when the subsequence is empty, all characters have
been removed, so all characters of strset are in astr. The transl at e method keeps coming up
naturally when one wants to treat strings as sets of characters, because it's speedy as well as
handy and flexible; see Recipe 1.10 for more details.

These two sets of approaches to the recipe's tasks have very different levels of generality. The
earlier approaches are very general: not at all limited to string processing, they make rather
minimal demands on the objects you apply them to. The approach based on the transl ate
method, on the other hand, works only when both astr and strset are strings, or very closely
mimic plain strings' functionality. Not even Unicode strings suffice, because the TRansl at e
method of Unicode strings has a signature that is different from that of plain stringsa single
argument (a di ct mapping code numbers to Unicode strings or None) instead of two (both
strings).

See Also

Recipe 1.10; documentation for the t r ansl at e method of strings and Unicode objects, and

maket r ans function in the string module, in the Library Reference and Python in a Nutshell; ditto
for documentation of built-in set (Python 2.4 only), modules sets anditertool s, and the
special method _ _contains_

[rscviovs Jexr s

[rrevons f e

Recipe 1.9. Simplifying Usage of Strings' translate
Method

Credit: Chris Perkins, Raymond Hettinger

Problem

You often want to use the fast code in strings’ TRansl at e method, but find it hard to remember
in detail how that method and the function st ri ng. maket r ans work, so you want a handy facade
to simplify their use in typical cases.

Solution

The TRansl at e method of strings is quite powerful and flexible, as detailed in Recipe 1.10.
However, exactly because of that power and flexibility, it may be a nice idea to front it with a
"facade" that simplifies its typical use. A little factory function, returning a closure, can do
wonders for this kind of task:

import string
def translator(frm="", to="", delete="", keep=None):
if len(to) ==
to=to * len(frm
trans = string. maketrans(frm to)
if keep is not None:
all chars = string. maketrans('', '")
delete = allchars.transl ate(al |l chars, keep.translate(allchars, delete))
def translate(s):
return s.translate(trans, delete)
return transl ate

Discussion

I often find myself wanting to use strings’ t r ansl at e method for any one of a few purposes, but
each time | have to stop and think about the details (see Recipe 1.10 for more information about
those details). So, | wrote myself a class (later remade into the factory closure presented in this
recipe's Solution) to encapsulate various possibilities behind a simpler-to-use facade. Now, when
I want a function that keeps only characters from a given set, | can easily build and use that
function:

>>> digits_only = transl ator(keep=string.digits)
>>> digits_only(' Chris Perkins : 224-7992")
12247992

It's similarly simple when | want to remove a set of characters:

>>> no_digits = translator(del ete=string.digits)
>>> no_digits(' Chris Perkins : 224-7992")
"Chris Perkins : -'

and when | want to replace a set of characters with a single character:

>>> digits_to_hash = translator(fromestring.digits, to="#")
>>> digits_to_hash(' Chris Perkins : 224-7992")
"Chris Perkins : ###- ####'

While the latter may appear to be a bit of a special case, it is a task that keeps coming up for me
every once in a while.

I had to make one arbitrary design decision in this recipenamely, | decided that the delete
parameter "trumps"” the keep parameter if they overlap:

>>> trans = transl ator (del ete="abcd', keep='cdef')
>>> trans(' abcdefg')
L} efl

For your applications it might be preferable to ignore delete if keep is specified, or, perhaps
better, to raise an exception if they are both specified, since it may not make much sense to let
them both be given in the same call to translator, anyway. Also: as noted in Recipe 1.8 and
Recipe 1.10, the code in this recipe works only for normal strings, not for Unicode strings. See
Recipe 1.10 to learn how to code this kind of functionality for Unicode strings, whose tr ansl at e
method is different from that of plain (i.e., byte) strings.

Closures

A closure is nothing terribly complicated: just an "inner" function that refers to
names (variables) that are local to an "outer"” function containing it. Canonical toy-
level example:

def make_adder (addend):
def adder (augend): return augend+addend
return adder

Executing p = nake_adder (23) makes a closure of inner function adder internally
referring to a name addend that is bound to the value 23. Then, q =

make_adder (42) makes another closure, for which, internally, name addend is
instead bound to the value 42. Making g in no way interferes with p, they can happily
and independently coexist. So we can now execute, say, print p(100), g(100) and
enjoy the output 123 142.

In practice, you may often see make_adder referred to as a closure rather than by
the pedantic, ponderous periphrasis "a function that returns a closure"fortunately,
context often clarifies the situation. Calling make_adder a factory (or factory
function) is both accurate and concise; you may also say it's a closure factory to
specify it builds and returns closures, rather than, say, classes or class instances.

See Also

Recipe 1.10 for a direct equivalent of this recipe's TRans! at or (keep=...), more information on

the TRansl| at e method, and an equivalent approach for Unicode strings; documentation for
strings' t r ansl at e method, and for the maket r ans function in the stri ng module, in the Library
Reference and Python in a Nutshell.

[rrevous f e

[rrevons f e

Recipe 1.10. Filtering a String for a Set of Characters

Credit: JUrgen Hermann, Nick Perkins, Peter Cogolo

Problem

Given a set of characters to keep, you need to build a filtering function that, applied to any string
s, returns a copy of s that contains only characters in the set.

Solution

The TRansl at e method of string objects is fast and handy for all tasks of this ilk. However, to call
transl at e effectively to solve this recipe's task, we must do some advance preparation. The first
argument to TRansl at e is a translation table: in this recipe, we do not want to do any
translation, so we must prepare a first argument that specifies "no translation". The second
argument to TRansl at e specifies which characters we want to delete: since the task here says
that we're given, instead, a set of characters to keep (i.e., to not delete), we must prepare a
second argument that gives the set complementdeleting all characters we must not keep. A
closure is the best way to do this advance preparation just once, obtaining a fast filtering
function tailored to our exact needs:

i mport string
Make a reusable string of all characters, which does double duty
as a translation table specifying "no translati on what soever"
al l chars = string. mketrans('"', '")
def makefilter(keep):
""" Return a function that takes a string and returns a partial copy
of that string consisting of only the characters in 'keep'
Note that “keep' nust be a plain string.
Make a string of all characters that are not in 'keep': the "set
conpl ement” of keep, neaning the string of characters we nust delete
del chars = allchars.transl ate(all chars, keep)
Make and return the desired filtering function (as a closure)
def thefilter(s):
return s.transl ate(all chars, delchars)
return thefilter
if _ _nane_ _ =="'_ _main_ _
just _vowels = makefilter('aeiouy")
print just_vowel s('four score and seven years ago')
emts: ouoeaeeyeaao
print just_vowels('tiger, tiger burning bright")
emits: ieieui

Discussion

The key to understanding this recipe lies in the definitions of the maket r ans function in the

st ri ng module of the Python Standard Library and in the transl at e method of string objects.
TRansl at e returns a copy of the string you call it on, replacing each character in it with the
corresponding character in the translation table passed in as the first argument and deleting the

characters specified in the second argument. naket r ans is a utility function to create translation
tables. (A translation table is a string t of exactly 256 characters: when you passt as the first
argument of atransl at e method, each character ¢ of the string on which you call the method is
translated in the resulting string into the character t [ord(c)].)

In this recipe, efficiency is maximized by splitting the filtering task into preparation and execution
phases. The string of all characters is clearly reusable, so we build it once and for all as a global
variable when this module is imported. That way, we ensure that each filtering function uses the
same string-of-all-characters object, not wasting any memory. The string of characters to delete,
which we need to pass as the second argument to the t r ansl at e method, depends on the set of
characters to keep, because it must be built as the "set complement” of the latter: we must tell
transl at e to delete every character that we do not want to keep. So, we build the delete-these-
characters string in the nakefilter factory function. This building is done quite rapidly by using
the transl at e method to delete the "characters to keep" from the string of all characters. The
transl at e method is very fast, as are the construction and execution of these useful little
resulting functions. The test code that executes when this recipe runs as a main script shows
how to build a filtering function by calling makefilter, bind a name to the filtering function (by
simply assigning the result of calling makefilter to a name), then call the filtering function on
some strings and print the results.

Incidentally, calling a filtering function with allchars as the argument puts the set of characters
being kept into a canonic string form, alphabetically sorted and without duplicates. You can use
this idea to code a very simple function to return the canonic form of any set of characters
presented as an arbitrary string:

def canoni cforms):
""" Gven a string s, return s's characters as a canonic-formstring:
al phabeti zed and wi t hout duplicates. """
return makefilter(s)(allchars)

The Solution uses a def statement to make the nested function (closure) it returns, because def
is the most normal, general, and clear way to make functions. If you prefer, you could use

| anbda instead, changing the def and r et urn statements in function makefilter into just one
return | anbda statement:

return | anbda s: s.translate(allchars, delchars)

Most Pythonistas, but not all, consider using def clearer and more readable than using | anbda.

Since this recipe deals with strings seen as sets of characters, you could alternatively use the
sets. Set type (or, in Python 2.4, the new built-in set type) to perform the same tasks. Thanks
to the t r ansl at e method's power and speed, it's often faster to work directly on strings, rather
than go through sets, for tasks of this ilk. However, just as noted in Recipe 1.8, the functions in
this recipe only work for normal strings, not for Unicode strings.

To solve this recipe's task for Unicode strings, we must do some very different preparation. A
Unicode string's t r ansl at e method takes only one argument: a mapping or sequence, which is
indexed with the code number of each character in the string. Characters whose codes are not
keys in the mapping (or indices in the sequence) are just copied over to the output string.
Otherwise, the value corresponding to each character's code must be either a Unicode string
(which is substituted for the character) or None (in which case the character is deleted). A very
nice and powerful arrangement, but unfortunately not one that's identical to the way plain strings
work, so we must recode.

Normally, we use either a di ct or ali st as the argument to a Unicode string's transl at e
method to translate some characters and/or delete some. But for the specific task of this recipe
(i.e., keep just some characters, delete all others), we might need an inordinately large di ct or
string, just mapping all other characters to None. It's better to code, instead, a little class that
appropriately implements a _ _getitem _ method (the special method that gets called in

indexing operations). Once we're going to the (slight) trouble of coding a little class, we might as
well make its instances callable and have makefilter be just a synonym for the class itself:

i mport sets
cl ass Keeper (object):
def _ _init_ (self, keep):
sel f. keep = sets. Set (map(ord, keep))
def _ getitem (self, n):
if nnot in self.keep:
return None
return unichr(n)
def _ _call_ (self, s):
return uni code(s).transl ate(self)
makefilter = Keeper
if _ _nane_ _ =="'_ _main_ _
just _vowels = makefilter('aeiouy")
print just_vowel s(u' four score and seven years ago')
emts: ouoeaeeyeaao
print just_vowels(u'tiger, tiger burning bright')
emts: ieieui

We might name the class itself makefilter, but, by convention, one normally names classes with
an uppercase initial; there is essentially no cost in following that convention here, too, so we did.

See Also

Recipe 1.8; documentation for the TRansl| at e method of strings and Unicode objects, and
maket r ans function in the stri ng module, in the Library Reference and Python in a Nutshell.

T [

[rrevons f e

Recipe 1.11. Checking Whether a String Is Text or
Binary

Credit: Andrew Dalke

Problem

Python can use a plain string to hold either text or arbitrary bytes, and you need to determine
(heuristically, of course: there can be no precise algorithm for this) which of the two cases holds
for a certain string.

Solution

We can use the same heuristic criteria as Perl does, deeming a string binary if it contains any
nulls or if more than 30% of its characters have the high bit set (i.e., codes greater than 126) or
are strange control codes. We have to code this ourselves, but this also means we easily get to
tweak the heuristics for special application needs:

from_ _future_ _ inport division # ensure / does NOT truncate
i mport string
text _characters = "".join(map(chr, range(32, 127))) + "\n\r\t\b"
_null _trans = string. maketrans("", "")
def istext(s, text_characters=text_characters, threshol d=0.30):
#if s contains any null, it's not text:
if "\0" in s:

return Fal se
an "enpty" string is "text" (arbitrary but reasonabl e choice):
if not s:
return True
Get the substring of s made up of non-text characters
t = s.translate(_null _trans, text_characters)
s is "text' if less than 30%of its characters are non-text ones:
return len(t)/len(s) <= threshold

Discussion

You can easily do minor customizations to the heuristics used by function istext by passing in
specific values for the threshold, which defaults to 0.30 (30%), or for the string of those
characters that are to be deemed "text" (which defaults to normal ASCII characters plus the four
"normal" control characters, meaning ones that are often found in text). For example, if you
expected ltalian text encoded as 1SO-8859-1, you could add the accented letters used in Italian,

Often, what you need to check as being either binary or text is not a string, but a file. Again, we
can use the same heuristics as Perl, checking just the first block of the file with the istext
function shown in this recipe's Solution:

def istextfile(filenanme, blocksize=512, **kwds):
return istext(open(filenane).read(blocksize), **kwds)

Note that, by default, the expression | en(t) /| en(s) used in the body of function istext would
truncate the result to 0, since it is a division between integer numbers. In some future version
(probably Python 3.0, a few years away), Python will change the meaning of the / operator so
that it performs division without truncationif you really do want truncation, you should use the
truncating-division operator, // .

However, Python has not yet changed the semantics of division, keeping the old one by default in
order to ensure backwards compatibility. It's important that the millions of lines of code of
Python programs and modules that already exist keep running smoothly under all new 2.x
versions of Pythononly upon a change of major language version number, no more often than
every decade or so, is Python allowed to change in ways that aren't backwards-compatible.

Since, in the small module containing this recipe's Solution, it's handy for us to get the division
behavior that is scheduled for introduction in some future release, we start our module with the
statement:

from_ _future_ _ inport division

This statement doesn't affect the rest of the program, only the specific module that starts with
this statement; throughout this module, / performs "true division" (without truncation). As of
Python 2.3 and 2.4, di vi si on is the only thing you may want to import from _ future_ _
Other features that used to be scheduled for the future, nest ed_scopes and gener at or s, are
now part of the language and cannot be turned offit's innocuous to import them, but it makes
sense to do so only if your program also needs to run under some older version of Python.

See Also

Recipe 1.10 for more details about function maket r ans and string method tr ansl at e; Language
Reference for details about true versus truncating division.

[rrevous f e

[rrevons f e

Recipe 1.12. Controlling Case

Credit: Luther Blissett

Problem

You need to convert a string from uppercase to lowercase, or vice versa.

Solution

That's what the upper and | ower methods of string objects are for. Each takes no arguments and
returns a copy of the string in which each letter has been changed to upper- or lowercase,
respectively.

big=1ittle.upper()
little = big.lower()

Characters that are not letters are copied unchanged.

s.capitalize is similar tos[:1].upper()+s[1l:].1ower(): the first character is changed to
uppercase, and all others are changed to lowercase. s. titl e is again similar, but it capitalizes
the first letter of each word (where a "word" is a sequence of letters) and uses lowercase for all
other letters:

>>> print ‘one tW thrEe'.capitalize()
One two three

>>> print "one tW thrEe' .title()

One Two Three

Discussion

Case manipulation of strings is a very frequent need. Because of this, several string methods let
you produce case-altered copies of strings. Moreover, you can also check whether a string object
is already in a given case form, with the methods i supper, i sl ower, andistitl e, which all
return t r ue if the string is not empty, contains at least one letter, and already meets the
uppercase, lowercase, or titlecase constraints. There is no analogous i scapi t al i zed method,
and coding it is not trivial, if we want behavior that's strictly similar to strings' i s... methods.
Those methods all return Fal se for an "empty" string, and the three case-checking ones also
return Fal se for strings that, while not empty, contain no letters at all.

The simplest and clearest way to code iscapitalized is clearly:

def iscapitalized(s):
return s == s.capitalize()

However, this version deviates from the boundary-case semantics of the analogousis...
methods, since it also returns TRue for strings that are empty or contain no letters. Here's a
stricter one:

i mport string
notrans = string. maketrans('', '') # identity "translation"
def contai nsAny(str, strset):
return len(strset) !'=len(strset.translate(notrans, str))
def iscapitalized(s):
return s == s.capitalize() and contai nsAny(s, string.letters)

Here, we use the function shown in Recipe 1.8 to ensure we return Fal se if s is empty or
contains no letters. As noted in Recipe 1.8, this means that this specific version works only for
plain strings, not for Unicode ones.

See Also

Library Reference and Python in a Nutshell docs on string methods; Perl Cookbook recipe 1.9;
Recipe 1.8.

T [

[rrevons f e

Recipe 1.13. Accessing Substrings

Credit: Alex Martelli

Problem

You want to access portions of a string. For example, you've read a fixed-width record and want
to extract the record's fields.

Solution

Slicing is great, but it only does one field at a time:

afield = theline[3: 8]

If you need to think in terms of field lengths, struct . unpack may be appropriate. For example:

i mport struct

Get a 5-byte string, skip 3, get two 8-byte strings, then all the rest:
basef ormat = "5s 3x 8s 8s"

by how many bytes does theline exceed the length inplied by this

base-format (24 bytes in this case, but struct.calcsize is general)

nuntemain = len(theline) - struct. cal csize(basefornat)
conplete the format with the appropriate 's' field, then unpack
format = "% %ls" % (baseformat, nunremnain)

|, sl1, s2, t = struct.unpack(format, theline)

If you want to skip rather than get "al | the rest", then just unpack the initial part of t hel i ne
with the right length:

I, s1, s2 = struct.unpack(baseformat, theline[:struct.cal csize(baseformat)])

If you need to split at five-byte boundaries, you can easily code a list comprehension (LC) of
slices:

fivers = [theline[k:k+5] for k in xrange(0, len(theline), 5)]

Chopping a string into individual characters is of course easier:

chars = list(theline)

If you prefer to think of your data as being cut up at specific columns, slicing with LCs is
generally handier:

cuts = [8, 14, 20, 26, 30]
pieces = [theline[i:j] for i, j in zip([O]+cuts, cuts+[None])]

The call to zi p in this LC returns a list of pairs of the form (cut s[k], cuts[k+1]), except that
the first pair is (0, cuts[0]), and the last one is (cuts[l en(cuts)-1], None). In other words,
each pair gives the right (i, j) for slicing between each cut and the next, except that the first
one is for the slice before the first cut, and the last one is for the slice from the last cut to the
end of the string. The rest of the LC just uses these pairs to cut up the appropriate slices of
theline.

Discussion

This recipe was inspired by recipe 1.1 in the Perl Cookbook. Python's slicing takes the place of
Perl's substr. Perl's built-in unpack and Python's st ruct. unpack are similar. Perl's is slightly
richer, since it accepts a field length of * for the last field to mean all the rest. In Python, we
have to compute and insert the exact length for either extraction or skipping. This isn't a major
issue because such extraction tasks will usually be encapsulated into small functions. Memoizing,
also known as automatic caching, may help with performance if the function is called repeatedly,
since it allows you to avoid redoing the preparation of the format for the struct unpacking. See
Recipe 18.5 for details about memoizing.

In a purely Python context, the point of this recipe is to remind you that st ruct . unpack is often
viable, and sometimes preferable, as an alternative to string slicing (not quite as often as unpack
versus substr in Perl, given the lack of a * -valued field length, but often enough to be worth
keeping in mind).

Each of these snippets is, of course, best encapsulated in a function. Among other advantages,
encapsulation ensures we don't have to work out the computation of the last field's length on
each and every use. This function is the equivalent of the first snippet using st ruct. unpack in
the "Solution":

def fields(baseformat, theline, |lastfield=False):
by how many bytes does theline exceed the length inplied by
base-format (struct.cal csize conputes exactly that |ength)
nunrenmai n = | en(theline)-struct. cal csize(basefornat)
conplete the format with the appropriate 's' or 'x' field, then unpack
format = "% %l%" % (baseformat, nunremain, lastfield and "s" or "x")
return struct.unpack(format, theline)

A design decision worth noticing (and, perhaps, worth criticizing) is that of having a

| ast fi el d=Fal se optional parameter. This reflects the observation that, while we often want to
skip the last, unknown-length subfield, sometimes we want to retain it instead. The use of
lastfield in the expression | astfield and s or x (equivalent to C's ternary operator | astfi el d?
"s":"c'") saves anif /el se, but it's unclear whether the saving is worth the obscurity. See Recipe
18.9 for more about simulating ternary operators in Python.

If function fields is called in a loop, memoizing (caching) with a key that is the tuple
(baseformat, len(theline), lastfield) may offer faster performance. Here's a version of

fields with memoizing:

def fields(baseformat, theline, lastfield=False, _cache={ 1}):
build the key and try getting the cached format string
key = baseformat, len(theline), lastfield
format = _cache. get (key)
if format is None:

no format string was cached, build and cache it
nunremain = |l en(theline)-struct. cal csize(baseformat)
_cache[key] = format = "% %%" % (
basef ormat, nunremain, lastfield and "s" or "x")
return struct.unpack(format, theline)

The idea behind this memoizing is to perform the somewhat costly preparation of format only
once for each set of arguments requiring that preparation, thereafter storing it in the _cache
dictionary. Of course, like all optimizations, memoizing needs to be validated by measuring
performance to check that each given optimization does actually speed things up. In this case, |
measure an increase in speed of approximately 30% to 40% for the memoized version, meaning
that the optimization is probably not worth the bother unless the function is part of a
performance bottleneck for your program.

The function equivalent of the next LC snippet in the solution is:

def split_by(theline, n, lastfield=False):
cut up all the needed pieces
pieces = [theline[k:k+n] for k in xrange(0O, len(theline), n)]
drop the last piece if too short and not required
if not lastfield and I en(pieces[-1]) <n
pi eces. pop()
return pieces

And for the last snippet:

def split_at(theline, cuts, lastfield=False):
cut up all the needed pieces
pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts+[None])]
drop the last piece if not required
if not lastfield:
pi eces. pop()
return pieces

In both of these cases, a list comprehension doing slicing turns out to be slightly preferable to
the use of struct. unpack.

A completely different approach is to use generators, such as:

def split_at(the_line, cuts, lastfield=False):
last =0
for cut in cuts:
yield the_line[last:cut]
l ast = cut
if lastfield:
yield the_line[last:]
def split_by(the_line, n, lastfield=False):
return split_at(the_line, xrange(n, len(the_line), n), lastfield)

Generator-based approaches are particularly appropriate when all you need to do on the
sequence of resulting fields is loop over it, either explicitly, or implicitly by calling on it some
"accumulator" callable such as " . j oi n. If you do need to materialize a list of the fields, and what
you have available is a generator instead, you only need to call the built-in | i st on the

generator, as in:

list_of fields =1list(split_by(the_line, 5))

See Also

Recipe 18.9 and Recipe 18.5; Perl Cookbook recipe 1.1.

[rrevons f e

[rrevons f e

Recipe 1.14. Changing the Indentation of a Multiline
String

Credit: Tom Good

Problem

You have a string made up of multiple lines, and you need to build another string from it, adding
or removing leading spaces on each line so that the indentation of each line is some absolute
number of spaces.

Solution

The methods of string objects are quite handy, and let us write a simple function to perform this
task:

def reindent(s, nuntSpaces):
| eadi ng_space = nunftpaces * '
lines = [leading_space + line.strip()
for line in s.splitlines()]
return '\n'.join(lines)

Discussion

When working with text, it may be necessary to change the indentation level of a block. This
recipe's code adds leading spaces to or removes them from each line of a multiline string so that
the indentation level of each line matches some absolute number of spaces. For example:

i ne one
line two
and line three

>>> X =

>>> print X
l'ine one

line two

and |ine three

>>> print reindent(x, 4)
l'ine one
line two
and line three

Even if the lines in s are initially indented differently, this recipe makes their indentation
homogeneous, which is sometimes what we want, and sometimes not. A frequent need is to
adjust the amount of leading spaces in each line, so that the relative indentation of each line in
the block is preserved. This is not difficult for either positive or negative values of the
adjustment. However, negative values need a check to ensure that no nonspace characters are
snipped from the start of the lines. Thus, we may as well split the functionality into two functions
to perform the transformations, plus one to measure the number of leading spaces of each line
and return the result as a list:

def addSpaces(s, numAdd):

white = " "*numAdd

return white + white.join(s.splitlines(True))
def nunBpaces(s):

return [len(line)-len(line.lstrip()) for linein s.splitlines()]
def del Spaces(s, nunDel):

i f numDel > mi n(nunSpaces(s)):

rai se Val ueError, "renoving nore spaces than there are!”
return "\n'.join([line[numDel:] for line in s.splitlines()])

All of these functions rely on the string method splitlines, which is similar to asplit on"\n'.
splitlines has the extra ability to leave the trailing newline on each line (when you call it with
true as its argument). Sometimes this turns out to be handy: addSpaces could not be quite as
short and sweet without this ability of the splitlines string method.

Here's how we can combine these functions to build another function to delete just enough

leading spaces from each line to ensure that the least-indented line of the block becomes flush
left, while preserving the relative indentation of the lines:

def unl ndent Bl ock(s):
return del Spaces(s, m n(nunSpaces(s)))

See Also

Library Reference and Python in a Nutshell docs on sequence types.

T [

[rrevons f e

Recipe 1.15. Expanding and Compressing Tabs

Credit: Alex Martelli, David Ascher

Problem

You want to convert tabs in a string to the appropriate number of spaces, or vice versa.

Solution

Changing tabs to the appropriate number of spaces is a reasonably frequent task, easily
accomplished with Python strings' expandt abs method. Because strings are immutable, the
method returns a new string object, a modified copy of the original one. However, it's easy to
rebind a string variable name from the original to the modified-copy value:

nystring = nystring. expandtabs()

This doesn't change the string object to which nystri ng originally referred, but it does rebind the
name nystring to a newly created string object, a modified copy of nystri ng in which tabs are
expanded into runs of spaces. expandt abs, by default, uses a tab length of 8; you can pass
expandt abs an integer argument to use as the tab length.

Changing spaces into tabs is a rare and peculiar need. Compression, if that's what you're after, is
far better performed in other ways, so Python doesn't offer a built-in way to "unexpand" spaces
into tabs. We can, of course, write our own function for the purpose. String processing tends to
be fastest in a split/process/rejoin approach, rather than with repeated overall string
transformations:

def unexpand(astring, tablen=8):
i mport re
split into alternating space and non-space sequences
pieces = re.split(r'(+)', astring.expandtabs(tablen))
keep track of the total length of the string so far
| ensofar = 0
for i, piece in enunerate(pieces):
thislen = I en(piece)
| ensofar += thislen
if piece.isspace():
change each space sequences into tabs+spaces
nunbl anks = [ensofar % tabl en
nunt abs = (thi sl en-nunbl anks+t abl en-1)/tabl en
pieces[i] = "\t'*nuntabs + ' ' *nunbl anks
return ''.join(pieces)

Function unexpand, as written in this example, works only for a single-line string; to deal with a
multi-line string, use " . j oi n([unexpand(s) for s in astring.splitlines(True)]).

Discussion

While regular expressions are never indispensable for the purpose of manipulating strings in
Python, they are occasionally quite handy. Function unexpand, as presented in the recipe, for
example, takes advantage of one extra feature of re. split with respect to string'ssplit
method: when the regular expression contains a (parenthesized) group, re. split returns a list
where the split pieces are interleaved with the "splitter" pieces. So, here, we get alternate runs of
nonblanks and blanks as items of list pi eces; the f or loop keeps track of the length of string it
has seen so far, and changes pieces that are made of blanks to as many tabs as possible, plus as
many blanks are needed to maintain the overall length.

Some programming tasks that could still be described as expanding tabs are unfortunately not
quite as easy as just calling the expandt abs method. A category that does happen with some
regularity is to fix Python source files, which use a mix of tabs and spaces for indentation (a very
bad idea), so that they instead use spaces only (which is the best approach). This could entail
extra complications, for example, when you need to guess the tab length (and want to end up
with the standard four spaces per indentation level, which is strongly advisable). It can also
happen when you need to preserve tabs that are inside strings, rather than tabs being used for
indentation (because somebody erroneously used actual tabs, rather than '\t ', to indicate tabs in
strings), or even because you're asked to treat docstrings differently from other strings. Some
cases are not too badfor example, when you want to expand tabs that occur only within runs of
whitespace at the start of each line, leaving any other tab alone. A little function using a regular
expression suffices:

def expand_at _linestart(P, tablen=8):
i mport re
def exp(no):
return no. group().expand(tablen)
return ''.join([re.sub(r'Ms+'", exp, s) for sin P.splitlines(True)])

This function expand_at_linestart exploits the r e. sub function, which looks for a regular
expression in a string and, each time it gets a match, calls a function, passing the match object
as the argument, to obtain the string to substitute in place of the match. For convenience,
expand_at_linestart is coded to deal with a multiline string argument P, performing the list
comprehension over the results of the splitlines call, and the '\ n' . j oi n of the whole. Of
course, this convenience does not stop the function from being able to deal with a single-line P.

If your specifications regarding which tabs are to be expanded are even more complex, such as
needing to deal differently with tabs depending on whether they're inside or outside of strings,
and on whether or not strings are docstrings, at the very least, you need to perform a
tokenization. In addition, you may also have to perform a full parse of the source code you're
dealing with, rather than using simple string or regular-expression operations. If this is the case,
you can expect a substantial amount of work. Some beginning pointers to help you get started
may be found in Chapter 16.

If you ever find yourself sweating out this kind of task, you will no doubt get excellent motivation
in the future for following the normal and recommended Python style in the source code you
write or edit: only spaces, four per indentation level, no tabs, and always "\t ', never an actual
tab character, to include a tab in a string literal. Your favorite editor can no doubt be told to
enforce all of these conventions whenever a Python source file is saved; the editor that comes
with IDLE (the free integrated development environment that comes with Python), for example,
supports these conventions. It is much easier to arrange your editor so that the problem never
arises, rather than striving to fix it after the fact!

See Also

Documentation for the expandt abs method of strings in the "Sequence Types" section of the
Library Reference; Perl Cookbook recipe 1.7; Library Reference and Python in a Nutshell
documentation of module re.

[rrevos] uexr

[rrevons f e

Recipe 1.16. Interpolating Variables in a String

Credit: Scott David Daniels

Problem

You need a simple way to get a copy of a string where specially marked substrings are replaced
with the results of looking up the substrings in a dictionary.

Solution

Here is a solution that works in Python 2.3 as well as in 2.4:

def expand(format, d, marker="""', safe=Fal se):
if safe:
def | ookup(w): return d.get(w, w.join(marker*2))
el se:

def | ookup(w): return d[w
parts = format.split(marker)
parts[1::2] = map(l ookup, parts[1l::2])
return ''.join(parts)
if _ _nane_ _ =="'_ _main_ _
print expand('just "a" test', {'a': 'one'})
emts: just one test

When the parameter safe is Fal se, the default, every marked substring must be found in
dictionary d, otherwise expand terminates with a KeyEr r or exception. When parameter safe is
explicitly passed as t r ue, marked substrings that are not found in the dictionary are just left
intact in the output string.

Discussion

The code in the body of the expand function has some points of interest. It defines one of two
different nested functions (with the name of lookup either way), depending on whether the
expansion is required to be safe. Safe means no KeyEr r or exception gets raised for marked
strings not found in the dictionary. If not required to be safe (the default), lookup just indexes
into dictionary d and raises an error if the substring is not found. But, if lookup is required to be
"safe", it uses d's method get and supplies as the default the substring being looked up, with a
marker on either side. In this way, by passing safe as t r ue, you may choose to have unknown
formatting markers come right through to the output rather than raising exceptions.

mar ker +w+mar ker would be an obvious alternative to the chosen w. j oi n(mar ker *2) , but I've
chosen the latter exactly to display a non-obvious but interesting way to construct such a quoted
string.

With either version of lookup, expand operates according to the split/modify/join idiom that is so
important for Python string processing. The modify part, in expand's case, makes use of the
possibility of accessing and modifying a list's slice with a "step" or "stride". Specifically, expand
accesses and rebinds all of those items of part s that lie at an odd index, because those items
are exactly the ones that were enclosed between a pair of markers in the original format string.
Therefore, they are the marked substrings that may be looked up in the dictionary.

The syntax of format strings accepted by this recipe's function expand is more flexible than the
$-based syntax of string. Tenpl at e. You can specify a different marker when you want your
format string to contain double quotes, for example. There is no constraint for each specially
marked substring to be an identifier, so you can easily interpolate Python expressions (with a d
whose _ getitem _ performs an eval) or any other kind of placeholder. Moreover, you can
easily get slightly different, useful effects. For example:

print expand('just "a" ""little"" test', {"a : 'one', """ : ""'})

emitsjust one "little" test. Advanced users can customize Python 2.4's stri ng. Tenpl at e
class, by inheritance, to match all of these capabilities, and more, but this recipe’s little expand
function is still simpler to use in some flexible ways.

See Also

Library Reference docs for stri ng. Tenpl at e (Python 2.4, only), the section on sequence types
(for string methods split and j oi n, and for slicing operations), and the section on dictionaries
(for indexing and the get method). For more information on Python 2.4's string. Tenpl at e

class, see Recipe 1.17.

T [

[rrevons f e

Recipe 1.17. Interpolating Variables in a Stringin Python
2.4

Credit: John Nielsen, Lawrence Oluyede, Nick Coghlan

Problem

Using Python 2.4, you need a simple way to get a copy of a string where specially marked
identifiers are replaced with the results of looking up the identifiers in a dictionary.

Solution

Python 2.4 offers the new string. Tenpl at e class for this purpose. Here is a snippet of code
showing how to use that class:

i mport string

make a tenplate froma string where sone identifiers are marked with $
new style = string. Tenplate('this is $thing')

use the substitute nethod of the tenplate with a dictionary argunent:
print new style.substitute({' thing :5}) # emts: thisis 5

print new style.substitute({'thing':"test'}) # enmits: this is test

alternatively, you can pass keyword-argunents to 'substitute':

print new style.substitute(thing=5) # emits: thisis 5
print new style.substitute(thing="test") # emts: this is test
Discussion

In Python 2.3, a format string for identifier-substitution has to be expressed in a less simple
format:

old style ="this is %thing)s'

with the identifier in parentheses after a % and an s right after the closed parenthesis. Then, you
use the %operator, with the format string on the left of the operator, and a dictionary on the
right:

print old_style %{'thing' :5} # emts: thisis 5
print old_style %{'thing :'"test'} # enits: this is test

Of course, this code keeps working in Python 2.4, too. However, the new string. Tenpl at e class
offers a simpler alternative.

When you build a st ri ng. Tenpl at e instance, you may include a dollar sign ($) by doubling it,

and you may have the interpolated identifier immediately followed by letters or digits by
enclosing it in curly braces ({ }). Here is an example that requires both of these refinements:

formletter ="''' Dear $custoner,
| hope you are having a great tine.

I f you do not find Room $roomto your satisfaction,
| et us know. Pl ease accept this $$5 coupon.

Si ncerely,
$nmanager
${nane}lnn""’
letter tenplate = string. Tenplate(formletter)
print letter_tenplate.substitute({ nane':'Sleepy', 'custoner':'Fred Snmith',
"manager' :'Barney MIIls', 'room :307,
1)

This snippet emits the following output:

Dear Fred Smith,
| hope you are having a great tine.
I f you do not find Room 307 to your satisfaction,
l et us know. Pl ease accept this $5 coupon.
Si ncerely,
Barney MIls
Sl eepyl nn

Sometimes, the handiest way to prepare a dictionary to be used as the argument to the
substi t ut e method is to set local variables, and then pass as the argument | ocal s() (the

artificial dictionary whose keys are the local variables, each with its value associated):

nmeg = string. Tenpl ate('the square of $nunber is $square')
for nunber in range(10):

square = nunber * nunber

print nmsg.substitute(locals())

Another handy alternative is to pass the values to substitute using keyword argument syntax
rather than a dictionary:

nmeg = string. Tenpl ate('the square of $nunber is $square')
for i in range(10):
print nsg.substitute(nunber=i, square=i*i)

You can even pass both a dictionary and keyword arguments:

neg = string. Tenpl ate('the square of $nunber is $square')
for nunber in range(10):
print nmsg.substitute(locals(), square=nunber*nunber)

In case of any conflict between entries in the dictionary and the values explicitly passed as
keyword arguments, the keyword arguments take precedence. For example:

nmeg = string. Tenpl ate(' an $adj $nsg')

adj = 'interesting'

print nsg.substitute(locals(), nmsg='nessage')
enmits an interesting nmessage

See Also

Library Reference docs for string. Tenpl at e (2.4 only) and the | ocal s built-in function.

R [

[rrevons f e

Recipe 1.18. Replacing Multiple Patterns in a Single
Pass

Credit: Xavier Defrang, Alex Martelli

Problem

You need to perform several string substitutions on a string.

Solution

Sometimes regular expressions afford the fastest solution even in cases where their applicability
is not obvious. The powerful sub method of re objects (from the re module in the standard
library) makes regular expressions particularly good at performing string substitutions. Here is a
function returning a modified copy of an input string, where each occurrence of any string that's
a key in a given dictionary is replaced by the corresponding value in the dictionary:

import re
def multiple replace(text, adict):
rx =re.conpile('|".join(map(re.escape, adict)))

def one_xl at (match):
return adict[match. group(0)]
return rx.sub(one_xlat, text)

Discussion

This recipe shows how to use the Python standard re module to perform single-pass multiple-
string substitution using a dictionary. Let's say you have a dictionary-based mapping between
strings. The keys are the set of strings you want to replace, and the corresponding values are the
strings with which to replace them. You could perform the substitution by calling the string
method r epl ace for each key/value pair in the dictionary, thus processing and creating a new
copy of the entire text several times, but it is clearly better and faster to do all the changes in a
single pass, processing and creating a copy of the text only once. re. sub's callback facility
makes this better approach quite easy.

First, we have to build a regular expression from the set of keys we want to match. Such a
regular expression has a pattern of the form al| a2| .. .| aN, made up of the N strings to be
substituted, joined by vertical bars, and it can easily be generated using a one-liner, as shown in
the recipe. Then, instead of giving r e. sub a replacement string, we pass it a callback argument.
re. sub then calls this object for each match, with a re. Mat chQbj ect instance as its only
argument, and it expects the replacement string for that match as the call's result. In our case,
the callback just has to look up the matched text in the dictionary and return the corresponding
value.

The function multiple_replace presented in the recipe recomputes the regular expression and
redefines the one_xlat auxiliary function each time you call it. Often, you must perform
substitutions on multiple strings based on the same, unchanging translation dictionary and would
prefer to pay these setup prices only once. For such needs, you may prefer the following closure-
based approach:

import re
def make xl at (*args, **kwds):
adict = dict(*args, **kwds)
rx =re.conpile('|".join(map(re.escape, adict)))
def one_xl at(match):
return adict[match. group(0)]
def xlat(text):
return rx.sub(one_xlat, text)
return x| at

You can call make_xlat, passing as its argument a dictionary, or any other combination of
arguments you could pass to built-in di ct in order to construct a dictionary; make_xlat returns a
x| at closure that takes as its only argument text the string on which the substitutions are
desired and returns a copy of text with all the substitutions performed.

Here's a usage example for each half of this recipe. We would normally have such an example as
a part of the same .py source file as the functions in the recipe, so it is guarded by the traditional
Python idiom that runs it if and only if the module is called as a main script:

if nanme_ _=="_ main_ ":
text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossunt,
“creator" : "Benevolent Dictator for Life",
“"Perl" : "Python",
}

print nmultiple_replace(text, adict)
transl ate = nmake_xl at (adi ct)
print translate(text)

Substitutions such as those performed by this recipe are often intended to operate on entire
words, rather than on arbitrary substrings. Regular expressions are good at picking up the
beginnings and endings of words, thanks to the special sequence r' \ b'. We can easily make
customized versions of either multiple_replace or make_xlat by simply changing the one line in
which each of them builds and assigns the regular expression object rx into a slightly different
form:

rx =re.compile(r'\b%\b'" %r'\b|\b'.join(map(re.escape, adict)))

The rest of the code is just the same as shown earlier in this recipe. However, this sameness is
not necessarily good news: it suggests that if we need many similarly customized versions, each
building the regular expression in slightly different ways, we'll end up doing a lot of copy-and-
paste coding, which is the worst form of code reuse, likely to lead to high maintenance costs in
the future.

A key rule of good coding is: "once, and only once!™ When we notice that we are duplicating
code, we should notice this symptom as a "code smell,” and refactor our code for better reuse.
In this case, for ease of customization, we need a class rather than a function or closure. For
example, here's how to write a class that works very similarly to make_xlat but can be
customized by subclassing and overriding:

cl ass make xl at:
def _ _init_ _(self, *args, **kwds):
self.adict = dict(*args, **kwds)
self.rx = self.make_rx()
def nmake rx(self):
return re.conpile('|"'.join(map(re.escape, self.adict)))
def one_xlat(self, match):

return self.adict[match. group(0)]
def _ call_ (self, text):
return self.rx.sub(self.one_xlat, text)

This is a "drop-in replacement” for the function of the same name: in other words, a snippet such
as the one we showed, withtheif _ name_ _ =="'_ _main_ _'guard, works identically when
make_xlat is this class rather than the previously shown function. The function is simpler and
faster, but the class' important advantage is that it can easily be customized in the usual object-
oriented waysubclassing it, and overriding some method. To translate by whole words, for
example, all we need to code is:

cl ass make_xl at _by whol e_wor ds(nmake xl at):
def nmake_rx(self):
return re.conpile(r'\b%\b'" %r'\b|\b'.join(map(re.escape, self.adict)))

Ease of customization by subclassing and overriding helps you avoid copy-and-paste coding, and
this is sometimes an excellent reason to prefer object-oriented structures over simpler functional
structures, such as closures. Of course, just because some functionality is packaged as a class
doesn't magically make it customizable in just the way you want. Customizability also requires
some foresight in dividing the functionality into separately overridable methods that correspond
to the right pieces of overall functionality. Fortunately, you don't have to get it right the first
time; when code does not have the optimal internal structure for the task at hand (in this specific
example, for reuse by subclassing and selective overriding), you can and should refactor the
code so that its internal structure serves your needs. Just make sure you have a suitable battery
of tests ready to run to ensure that your refactoring hasn't broken anything, and then you can
refactor to your heart's content. See http://www.refactoring.com for more information on the
important art and practice of refactoring.

See Also

Documentation for the re module in the Library Reference and Python in a Nutshell; the
Refactoring home page (http://www.refactoring.com).

[rrevos] uexr

http://www.refactoring.com
http://www.refactoring.com

[rrevons f e

Recipe 1.19. Checking a String for Any of Multiple
Endings

Credit: Michele Simionato

Problem

For a certain string s, you must check whether s has any of several endings; in other words, you
need a handy, elegant equivalent of s. endswi t h(end1) or s.endsw th(end2) or
s. endswi t h(end3) and so on.

Solution

The itertool s.i map function is just as handy for this task as for many of a similar nature:

import itertools
def anyTrue(predicate, sequence):

return True in itertools.imp(predicate, sequence)
def endsWth(s, *endings):

return anyTrue(s. endswith, endings)

Discussion

A typical use for endsWith might be to print all names of image files in the current directory:

i mport os
for filename in os.listdir('."):
if endsWth(filenanme, '.jpg', '.jpeg', '.gif'):

print filenane

The same general idea shown in this recipe's Solution is easily applied to other tasks related to
checking a string for any of several possibilities. The auxiliary function anyTrue is general and
fast, and you can pass it as its first argument (the predicate) other bound methods, such as
s.startswithors. _contains_ _. Indeed, perhaps it would be better to do without the helper

function endsWithafter all, directly coding

if anyTrue(filenane.endswith, (".jpg", ".gif", ".png")):

seems to be already readable enough.

Bound Methods

Whenever a Python object supplies a method, you can get the method, already
bound to the object, by just accessing the method on the object. (For example, you
can assign it, pass it as an argument, return it as a function's result, etc.) For
example:

L=["fee', 'fie'", '"foo']
x = L.append

Now, name x refers to a bound method of list object L. Calling, say, x(' fum) is the
same as calling L. append(' fum) : either call mutates object L into['fee', 'fie',
foo', "fum].

If you access a method on a type or class, rather than an instance of the type or
class, you get an unbound method, not "attached" to any particular instance of the
type or class: when you call it, you need to pass as its first argument an instance of
that type or class. For example, if you sety = |ist. append, you cannot just call
y('1") Python couldn't possibly guess which list you want to append | to! You can,
however, call y(L, 'I1'), and that is just the same as calling L. append('1"') (as long
asisinstance(L, list)).

This recipe originates from a discussion on news:comp.lang.python. and summarizes inputs from
many people, including Raymond Hettinger, Chris Perkins, Bengt Richter and others.

See Also

Library Reference and Python in a Nutshell docs for it ert ool s and string methods.

[rrevons f e

[rrevons f e

Recipe 1.20. Handling International Text with Unicode

Credit: Holger Krekel

Problem

You need to deal with text strings that include non-ASCII characters.

Solution

Python has a first class uni code type that you can use in place of the plain bytestring st r type.
It's easy, once you accept the need to explicitly convert between a bytestring and a Unicode
string:

>>> german_ae = uni code('\xc3\xa4', 'utf8')

Here ger man_ae is a uni code string representing the German lowercase a with umlaut (i.e.,
diaeresis) character "ae". It has been constructed from interpreting the bytestring "\ xc3\ xa4'
according to the specified UTF-8 encoding. There are many encodings, but UTF-8 is often used
because it is universal (UTF-8 can encode any Unicode string) and yet fully compatible with the
7-bit ASCII set (any ASCII bytestring is a correct UTF-8-encoded string).

Once you cross this barrier, life is easy! You can manipulate this Unicode string in practically the
same way as a plain st r string:

>>> sentence = "This is a " + german_ae
>>> sentence2 = "Easy!"
>>> para = ". ".join([sentence, sentence?])

Note that par a is a Uni code string, because operations between a uni code string and a
bytestring always result in a uni code stringunless they fail and raise an exception:

>>> pytestring = '\xc3\xa4d' # Uuh, some non-ASClI| bytestring!
>>> german_ae += bytestring
Uni codeDecodeError: 'ascii' codec can't decode byte 0xc3 in

position 0: ordinal not in range(128)

The byte '0xc3" is not a valid character in the 7-bit ASCII encoding, and Python refuses to guess
an encoding. So, being explicit about encodings is the crucial point for successfully using Unicode
strings with Python.

Discussion

Unicode is easy to handle in Python, if you respect a few guidelines and learn to deal with
common problems. This is not to say that an efficient implementation of Unicode is an easy task.
Luckily, as with other hard problems, you don't have to care much: you can just use the efficient
implementation of Unicode that Python provides.

The most important issue is to fully accept the distinction between a bytestring and a uni code
string. As exemplified in this recipe's solution, you often need to explicitly construct a uni code
string by providing a bytestring and an encoding. Without an encoding, a bytestring is basically
meaningless, unless you happen to be lucky and can just assume that the bytestring is text in
ASCII.

The most common problem with using Unicode in Python arises when you are doing some text
manipulation where only some of your strings are uni code objects and others are bytestrings.
Python makes a shallow attempt to implicitly convert your bytestrings to Unicode. It usually
assumes an ASCII encoding, though, which gives you Uni codeDecodeEr r or exceptions if you
actually have non-ASCII bytes somewhere. Uni codeDecodeError tells you that you mixed
Unicode and bytestrings in such a way that Python cannot (doesn't even try to) guess the text
your bytestring might represent.

Developers from many big Python projects have come up with simple rules of thumb to prevent
such runtime Uni codeDecodeErrors, and the rules may be summarized into one sentence:

always do the conversion at 10 barriers. To express this same concept a bit more extensively:

e Whenever your program receives text data "from the outside" (from the network, from a
file, from user input, etc.), construct uni code objects immediately. Find out the appropriate
encoding, for example, from an HTTP header, or look for an appropriate convention to
determine the encoding to use.

e Whenever your program sends text data "to the outside" (to the network, to some file, to
the user, etc.), determine the correct encoding, and convert your text to a bytestring with
that encoding. (Otherwise, Python attempts to convert Unicode to an ASCII bytestring,
likely producing Uni codeEncodeErr or s, which are just the converse of the
Uni codeDecodeEr r or s previously mentioned).

With these two rules, you will solve most Unicode problems. If you still get Uni codeErr or s of
either kind, look for where you forgot to properly construct a uni code object, forgot to properly
convert back to an encoded bytestring, or ended up using an inappropriate encoding due to
some mistake. (It is quite possible that such encoding mistakes are due to the user, or some
other program that is interacting with yours, not following the proper encoding rules or
conventions.)

In order to convert a Unicode string back to an encoded bytestring, you usually do something
like:

>>> pytestring = german_ae. decode('latinl")
>>> pytestring
"\ xed'

Now byt estri ng is a German ae character in the 'l ati n1' encoding. Note how '\ xe4' (in Latinl)
and the previously shown "\ xc3\ xa4' (in UTF-8) represent the same German character, but in
different encodings.

By now, you can probably imagine why Python refuses to guess among the hundreds of possible
encodings. It's a crucial design choice, based on one of the Zen of Python principles: "In the face
of ambiguity, resist the temptation to guess." At any interactive Python shell prompt, enter the
statement i nport thi s to read all of the important principles that make up the Zen of Python.

See Also

Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony Graham
(Hungry Minds, Inc.)details are available at http://www.menteith.com/unicode/primer/; and a
short but complete article from Joel Spolsky, "The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses)!," located at

http://www.menteith.com/unicode/primer/

http://www.joelonsoftware.com/articles/Unicode.html. See also the Library Reference and Python
in a Nutshell documentation about the built-in st r and uni code types and modules uni dat a and
codecs; also, Recipe 1.21 and Recipe 1.22.

[rrevous f e

http://www.joelonsoftware.com/articles/Unicode.html

[rrevons f e

Recipe 1.21. Converting Between Unicode and Plain
Strings

Credit: David Ascher, Paul Prescod

Problem

You need to deal with textual data that doesn't necessarily fit in the ASCII character set.

Solution

Unicode strings can be encoded in plain strings in a variety of ways, according to whichever
encoding you choose:

uni codestring = u"Hello worl d"

Convert Unicode to plain Python string: "encode
utf8string = uni codestring. encode("utf-8")
asciistring = uni codestring. encode("ascii")

i sostring = uni codestring. encode("l SO 8859-1")
utf 16string = uni codestring. encode("utf-16")

Convert plain Python string to Unicode: "decode"

pl ai nstringl = unicode(utf8string, "utf-8")

pl ai nstring2 = uni code(asciistring, "ascii")

pl ai nstring3 = uni code(i sostring, "ISO 8859-1")

pl ai nstring4 = uni code(utfl6string, "utf-16")

assert plainstringl == plainstring2 == plainstring3 == plainstring4

Discussion

If you find yourself dealing with text that contains non-ASCII characters, you have to learn about
Unicodewhat it is, how it works, and how Python uses it. The preceding Recipe 1.20 offers
minimal but crucial practical tips, and this recipe tries to offer more perspective.

You don't need to know everything about Unicode to be able to solve real-world problems with it,
but a few basic tidbits of knowledge are indispensable. First, you must understand the difference
between bytes and characters. In older, ASCII-centric languages and environments, bytes and
characters are treated as if they were the same thing. A byte can hold up to 256 different values,
so these environments are limited to dealing with no more than 256 distinct characters. Unicode,
on the other hand, has tens of thousands of characters, which means that each Unicode
character takes more than one byte; thus you need to make the distinction between characters
and bytes.

Standard Python strings are really bytestrings, and a Python character, being such a string of
length 1, is really a byte. Other terms for an instance of the standard Python string type are 8-bit
string and plain string. In this recipe we call such instances bytestrings, to remind you of their
byte orientation.

A Python Unicode character is an abstract object big enough to hold any character, analogous to
Python's long integers. You don't have to worry about the internal representation; the
representation of Unicode characters becomes an issue only when you are trying to send them to

some byte-oriented function, such as the wri t e method of files or the send method of network
sockets. At that point, you must choose how to represent the characters as bytes. Converting
from Unicode to a bytestring is called encoding the string. Similarly, when you load Unicode
strings from a file, socket, or other byte-oriented object, you need to decode the strings from
bytes to characters.

Converting Unicode objects to bytestrings can be achieved in many ways, each of which is called
an encoding. For a variety of historical, political, and technical reasons, there is no one "right”
encoding. Every encoding has a case-insensitive name, and that name is passed to the encode
and decode methods as a parameter. Here are a few encodings you should know about:

¢ The UTF-8 encoding can handle any Unicode character. It is also backwards compatible with
ASCII, so that a pure ASCII file can also be considered a UTF-8 file, and a UTF-8 file that
happens to use only ASCII characters is identical to an ASCII file with the same characters.
This property makes UTF-8 very backwards-compatible, especially with older Unix tools.
UTF-8 is by far the dominant encoding on Unix, as well as the default encoding for XML
documents. UTF-8's primary weakness is that it is fairly inefficient for eastern-language
texts.

e The UTF-16 encoding is favored by Microsoft operating systems and the Java environment.
It is less efficient for western languages but more efficient for eastern ones. A variant of
UTF-16 is sometimes known as UCS-2.

e The 1S0O-8859 series of encodings are supersets of ASCII, each able to deal with 256
distinct characters. These encodings cannot support all of the Unicode characters; they
support only some particular language or family of languages. 1SO-8859-1, also known as
"Latin-1", covers most western European and African languages, but not Arabic. 1SO-8859-
2, also known as "Latin-2", covers many eastern European languages such as Hungarian
and Polish. 1SO-8859-15, very popular in Europe these days, is basically the same as 1SO-
8859-1 with the addition of the Euro currency symbol as a character.

If you want to be able to encode all Unicode characters, you'll probably want to use UTF-8. You
will need to deal with the other encodings only when you are handed data in those encodings
created by some other application or input device, or vice versa, when you need to prepare data
in a specified encoding to accommodate another application downstream of yours, or an output
device. In particular, Recipe 1.22 shows how to handle the case in which the downstream
application or device is driven from your program's standard output stream.

See Also

Unicode is a huge topic, but a recommended book is Tony Graham, Unicode: A Primer (Hungry
Minds)details are available at http://www.menteith.com/unicode/primer/; and a short, but
complete article from Joel Spolsky, "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses)!" is located at
http://www.joelonsoftware.com/articles/Unicode.html. See also the Library Reference and Python
in a Nutshell documentation about the built-in st r and uni code types, and modules uni dat a and
codecs; also, Recipe 1.20 and Recipe 1.22.

[rrevous f e

http://www.menteith.com/unicode/primer/
http://www.joelonsoftware.com/articles/Unicode.html

[rrevons f e

Recipe 1.22. Printing Unicode Charactersto Standard
Output

Credit: David Ascher

Problem

You want to print Unicode strings to standard output (e.g., for debugging), but they don't fit in
the default encoding.

Solution

Wrap the sys. st dout stream with a converter, using the codecs module of Python's standard
library. For example, if you know your output is going to a terminal that displays characters
according to the 1SO-8859-1 encoding, you can code:

i nport codecs, sys
sys. stdout = codecs. | ookup('is08859-1")[-1](sys. stdout)

Discussion

Unicode strings live in a large space, big enough for all of the characters in every language
worldwide, but thankfully the internal representation of Unicode strings is irrelevant for users of
Unicode. Alas, a file stream, such as sys. st dout , deals with bytes and has an encoding
associated with it. You can change the default encoding that is used for new files by modifying
the si t e module. That, however, requires changing your entire Python installation, which is likely
to confuse other applications that may expect the encoding you originally configured Python to
use (typically the Python standard encoding, which is ASCII). Therefore, this kind of modification
is not to be recommended.

This recipe takes a sounder approach: it rebinds sys. st dout as a stream that expects Unicode
input and outputs it in 1ISO-8859-1 (also known as "Latin-1"). This approach doesn't change the
encoding of any previous references to sys. st dout , as illustrated here. First, we keep a
reference to the original, ASCIll-encoded sys. st dout :

>>> ol d = sys. stdout

Then, we create a Unicode string that wouldn't normally be able to go through sys. st dout :

>>> char = u"\N{LATIN SMALL LETTER A W TH DI AERESI S} "
>>> print char
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
Uni codeError: ASCI | encoding error: ordinal not in range(128)

If you don't get an error from this operation, it's because Python thinks it knows which encoding
your "terminal” is using (in particular, Python is likely to use the right encoding if your "terminal”
is IDLE, the free development environment that comes with Python). But, suppose you do get

this error, or get no error but the output is not the character you expected, because your
"terminal" uses UTF-8 encoding and Python does not know about it. When that is the case, we
can just wrap sys. st dout in the codecs stream writer for UTF-8, which is a much richer
encoding, then rebind sys. st dout to it and try again:

>>> sys. stdout = codecs. | ookup('utf-8")[-1](sys.stdout)
>>> print char
5

This approach works only if your "terminal”, terminal emulator, or other window in which you're
running the interactive Python interpreter supports the UTF-8 encoding, with a font rich enough
to display all the characters you need to output. If you don't have such a program or device
available, you may be able to find a suitable one for your platform in the form of a free program
downloadable from the Internet.

Python tries to determine which encoding your "terminal” is using and sets that encoding's name
as attribute sys. st dout . encodi ng. Sometimes (alas, not always) it even manages to get it right.

IDLE already wraps your sys. st dout , as suggested in this recipe, so, within the environment's
interactive Python shell, you can directly print Unicode strings.

See Also

Documentation for the codecs and si t e modules, and set def aul t encodi ng in module sys, in
the Library Reference and Python in a Nutshell; Recipe 1.20 and Recipe 1.21.

O [

[rrevons f e

Recipe 1.23. Encoding Unicode Data for XML and HTML

Credit: David Goodger, Peter Cogolo

Problem

You want to encode Unicode text for output in HTML, or some other XML application, using a
limited but popular encoding such as ASCII or Latin-1.

Solution

Python provides an encoding error handler named xni char r ef r epl ace, which replaces all
characters outside of the chosen encoding with XML numeric character references:

def encode for_xm (uni code _data, encodi ng="ascii'):
return uni code_dat a. encode(encodi ng, 'xm charrefrepl ace')

You could use this approach for HTML output, too, but you might prefer to use HTML's symbolic
entity references instead. For this purpose, you need to define and register a customized
encoding error handler. Implementing that handler is made easier by the fact that the Python
Standard Library includes a module named ht ml ent i t ydef s that holds HTML entity definitions:

i mport codecs
fromhtnm entitydefs inport codepoint2nane
def html _repl ace(exc):
i f isinstance(exc, (UnicodeEncodeError, UnicodeTranslateError)):
s = [u &6;"' % codepoint2nane[ord(c)]
for ¢ in exc.object[exc.start:exc.end]]
return ''.join(s), exc.end
el se:
rai se TypeError("can't handle %" %exc. __nane_)
codecs.register_error('htm _replace', htm _repl ace)

After registering this error handler, you can optionally write a function to wrap its use:

def encode _for_htm (uni code_data, encodi ng="ascii'):
return uni code_dat a. encode(encoding, 'html _replace')

Discussion
As with any good Python module, this module would normally proceed with an example of its
use, guarded by anif _ nane_ =="'_ nmain_ 'test:
if _ _nane_ _ =="'_ _main_ _
deno
data = u' """\
<htm >
<head>

<title>Encoding Test</title>

</ head>

<body>

<p>accent ed characters:

\xe0 (a + grave)

\xe7 (c + cedilla)

\xe9 (e + acute)

<p>synbol s:

\xa3 (British pound)

<l i>\u20ac (Euro)

\u22le (infinity)

</ body></ht nl >
print encode for_ xm (data)
print encode_for_htm (data)

If you run this module as a main script, you will then see such output as (from function
encode_for_xml):

à (a + grave)
ç (c + cedilla)
é (e + acute)

£ (British pound)
<l i >€ (Euro)
∞ (infinity)

as well as (from function encode_for_html):

à (a + grave)
ç (c + cedilla)
é (e + acute)

£ (British pound)
€ (Euro)
& nfin; (infinity)

There is clearly a niche for each case, since encode_for_xml is more general (you can use it for
any XML application, not just HTML), but encode_for_html may produce output that's easier to
readshould you ever need to look at it directly, edit it further, and so on. If you feed either form
to a browser, you should view it in exactly the same way. To visualize both forms of encoding in
a browser, run this recipe's module as a main script, redirect the output to a disk file, and use a
text editor to separate the two halves before you view them with a browser. (Alternatively, run
the script twice, once commenting out the call to encode_for_xml, and once commenting out the
call to encode_for_html.)

Remember that Unicode data must always be encoded before being printed or written out to a
file. UTF-8 is an ideal encoding, since it can handle any Unicode character. But for many users
and applications, ASCII or Latin-1 encodings are often preferred over UTF-8. When the Unicode
data contains characters that are outside of the given encoding (e.g., accented characters and
most symbols are not encodable in ASCII, and the "infinity" symbol is not encodable in Latin-1),
these encodings cannot handle the data on their own. Python supports a built-in encoding error
handler called xm char r ef r epl ace, which replaces unencodable characters with XML numeric
character references, such as ∞ for the "infinity" symbol. This recipe shows how to write

and register another similar error handler, html_replace, specifically for producing HTML output.
html_replace replaces unencodable characters with more readable HTML symbolic entity
references, such as & nfin; for the "infinity" symbol. html_replace is less general than

xm charrefrepl ace, since it does not support all Unicode characters and cannot be used with
non-HTML applications; however, it can still be useful if you want HTML output that is as readable
as possible in a "view page source" context.

Neither of these error handlers makes sense for output that is neither HTML nor some other form
of XML. For example, TeX and other markup languages do not recognize XML numeric character
references. However, if you know how to build an arbitrary character reference for such a
markup language, you may modify the example error handler html_replace shown in this recipe's
Solution to code and register your own encoding error handler.

An alternative (and very effective!) way to perform encoding of Unicode data into a file, with a
given encoding and error handler of your choice, is offered by the codecs module in Python's

standard library:

outfile = codecs. open('out.htm', nmode="w , encoding="ascii',
errors="htm _replace')

You can now use outfile.wite(uni code_data) for any arbitrary Unicode string uni code_dat a,

and all the encoding and error handling will be taken care of transparently. When your output is
finished, of course, you should call outfile.cl ose().

See Also

Library Reference and Python in a Nutshell docs for modules codecs and ht m enti t ydef s.

[rrevons f e

[rrevons f e

Recipe 1.24. Making Some Strings Case-Insensitive

Credit: Dale Strickland-Clark, Peter Cogolo, Mark McMahon

Problem

You want to treat some strings so that all comparisons and lookups are case-insensitive, while all
other uses of the strings preserve the original case.

Solution

The best solution is to wrap the specific strings in question into a suitable subclass of str:

class i Str(str):
Case insensitive string class.
Behaves just |ike str, except that all conparisons and | ookups
are case insensitive.
def _ _init_ (self, *args):
self. lowered = str.lower(self)
def _ _repr_ _(self):
return '9%(%)' % (type(self).__name_ _, str._ _repr_ _(self))
def _ _hash_ (self):
return hash(sel f. | owered)
def |ower(self):
return self. | owered
def _make case insensitive(nane):
wrap one nethod of str into an iStr one, case-insensitive "'
str_meth = getattr(str, nane)
def x(self, other, *args):
try lowercasing 'other', which is typically a string, but
be prepared to use it as-is if lowering gives problens,
since strings CAN be correctly conpared with non-strings.
try: other = other.|lower()
except (TypeError, AttributeError, ValueError): pass
return str_meth(self. | owered, other, *args)
#in Python 2.4, only, add the statenent: x.func_nanme = nane
setattr(iStr, name, x)
apply the _make_case_insensitive function to specified nmethods
for name in 'eq It le gt gt ne cnp contains'.split():
_nmake _case_insensitive(' % ' %nane)
for name in 'count endswith find index rfind rindex startswith' .split()
_make_case_insensitive(nane)
note that we don't nodify nmethods 'replace', 'split', 'strip',
of course, you can add nodifications to them too, if you prefer that.
del _make case_insensitive # renmove hel per function, not needed any nore

Discussion

Some implementation choices in class iStr are worthy of notice. First, we choose to generate the
lowercase version once and for all, in method _ _init_ _, since we envision that in typical uses
of iStr instances, this version will be required repeatedly. We hold that version in an attribute
that is private, but not overly so (i.e., has a name that begins with one underscore, not two),
because if iStr gets subclassed (e.g., to make a more extensive version that also offers case-
insensitive splitting, replacing, etc., as the comment in the "Solution” suggests), iStr's subclasses
are quite likely to want to access this crucial "implementation detail" of superclass iStr!

We do not offer "case-insensitive" versions of such methods as r epl ace, because it's anything
but clear what kind of input-output relation we might want to establish in the general case.
Application-specific subclasses may therefore be the way to provide this functionality in ways
appropriate to a given application. For example, since the r epl ace method is not wrapped,
calling repl ace on an instance of iStr returns an instance of str, not of iStr. If that is a problem
in your application, you may want to wrap all iStr methods that return strings, simply to ensure
that the results are made into instances of iStr. For that purpose, you need another, separate
helper function, similar but not identical to the _make_case_insensitive one shown in the
"Solution":

def _nmake _return_i Str(nane):
str_neth = getattr(str, name)
def x(*args):
return i Str(str_neth(*args))
setattr(iStr, name, x)

and you need to call this helper function _make_return_iStr on all the names of relevant string
methods returning strings such as:

for nane in 'center ljust rjust strip Istrip rstrip' .split():
_make _return_i Str(name)

Strings have about 20 methods (including special methods suchas _ _add_ _and _ _nmul _)
that you should consider wrapping in this way. You can also wrap in this way some additional
methods, such as split and j oi n, which may require special handling, and others, such as
encode and decode, that you cannot deal with unless you also define a case-insensitive uni code
subtype. In practice, one can hope that not every single one of these methods will prove
problematic in a typical application. However, as you can see, the very functional richness of
Python strings makes it a bit of work to customize string subtypes fully, in a general way without
depending on the needs of a specific application.

The implementation of iStr is careful to avoid the boilerplate code (meaning repetitious and
therefore bug-prone code) that we'd need if we just overrode each needed method of str in the
normal way, with def statements in the class body. A custom metaclass or other such advanced
technique would offer no special advantage in this case, so the boilerplate avoidance is simply
obtained with one helper function that generates and installs wrapper closures, and two loops
using that function, one for normal methods and one for special ones. The loops need to be
placed after the cl ass statement, as we do in this recipe's Solution, because they need to modify
the class object iStr, and the class object doesn't exist yet (and thus cannot be modified) until
the cl ass statement has completed.

In Python 2.4, you can reassign the f unc_nane attribute of a function object, and in this case,
you should do so to get clearer and more readable results when introspection (e.g., the hel p
function in an interactive interpreter session) is applied to an i Str instance. However, Python 2.3
considers attribute f unc_nane of function objects to be read-only; therefore, in this recipe's
Solution, we have indicated this possibility only in a comment, to avoid losing Python 2.3
compatibility over such a minor issue.

Case-insensitive (but case-preserving) strings have many uses, from more tolerant parsing of
user input, to filename matching on filesystems that share this characteristic, such as all of
Windows filesystems and the Macintosh default filesystem. You might easily find yourself creating

a variety of "case-insensitive" container types, such as dictionaries, lists, sets, and so onmeaning
containers that go out of their way to treat string-valued keys or items as if they were case-
insensitive. Clearly a better architecture is to factor out the functionality of "case-insensitive"
comparisons and lookups once and for all; with this recipe in your toolbox, you can just add the
required wrapping of strings into iStr instances wherever you may need it, including those times
when you're making case-insensitive container types.

For example, a list whose items are basically strings, but are to be treated case-insensitively (for
sorting purposes and in such methods as count and i ndex), is reasonably easy to build on top of

iStr:

class iList(list):

def _ init_ (self, *args):
list. _init_ (self, *args)
rely on _ _setitem _ to wap each iteminto iStr...

self[:] = self
wrap_each_item=iStr
def _ _setitem _(self, i, v):
if isinstance(i, slice): v = map(self.wap_each_item v)
else: v = self.wap_each_iten(v)
l[ist. _setitem _(self, i, v)
def append(self, item:
list.append(self, self.wap_each itenm(item)
def extend(self, seq):
[ist.extend(self, map(self.wap_each item seq))

Essentially, all we're doing is ensuring that every item that gets into an instance of iList gets
wrapped by a call to iStr, and everything else takes care of itself.

Incidentally, this example class iList is accurately coded so that you can easily make customized
subclasses of iList to accommodate application-specific subclasses of iStr: all such a customized
subclass of iList needs to do is override the single class-level member named wrap_each_item.

See Also

Library Reference and Python in a Nutshell sections on st r, string methods, and special methods
used in comparisons and hashing.

[rrevons f e

[rrevons f e

Recipe 1.25. Converting HTML Documents to Texton a
Unix Terminal

Credit: Brent Burley, Mark Moraes

Problem

You need to visualize HTML documents as text, with support for bold and underlined display on
your Unix terminal.

Solution

The simplest approach is to code a filter script, taking HTML on standard input and emitting text
and terminal control sequences on standard output. Since this recipe only targets Unix, we can
get the needed terminal control sequences from the "Unix" command tput, via the function popen
of the Python Standard Library module os:

#! [usr/ bi n/ env pyt hon

import sys, os, htmlib, formatter

use Unix tput to get the escape sequences for bold, underline, reset

set _bold = os.popen('tput bold).read()

set _underline = os.popen('tput smul').read()

performreset 0s. popen(' tput sgr0').read()

cl ass TtyFormatter(for matter. Abstract Formatter):
a formatter that keeps track of bold and italic font states, and
emts termnal control sequences accordingly.

def _ _init_ (self, witer):
first, as usual, initialize the superclass
formatter. Abstract Formatter. _init_ (self, witer)

start with neither bold nor italic, and no saved font state
self.fontState = Fal se, Fal se
self.fontStack = []
def push font(self, font):
the "font' tuple has four itens, we only track the two flags
about whether italic and bold are active or not
size, is_italic, is_bold, is_tt = font
sel f.font Stack. append((is_italic, is_bold))
sel f. _updateFontState()
def pop_font(self, *args):
go back to previous font state
try:
sel f.font Stack. pop()
except I ndexError:
pass
sel f. _updateFontState()
def updat eFont State(sel f):
emt appropriate termnal control sequences if the state of
bold and/or italic(==underline) has just changed
try:
newSt ate = sel f.font Stack|-1]

except I ndexError:
newSt ate = Fal se, Fal se
if self.fontState != newState:
rel evant state change: reset termnal
print performreset,
set underine and/or bold if needed
if newState[O0]:
print set_underline,
if newState[1]:
print set_bold,
remenber the two flags as our current font-state
self.fontState = newState
make witer, formatter and parser objects, connecting themas needed
nyWiter = formatter. DunbWiter()
if sys.stdout.isatty():
nmyFormatter = TtyFormatter (nyWiter)
el se:
nyFormatter = formatter. Abstract Formatter (nyWiter)
nmyParser = htm|ib. HTM_Par ser (nyFormatter)
feed all of standard input to the parser, then term nate operations
nyPar ser. feed(sys. stdin.read())
nyPar ser. cl ose()

Discussion

The basic formatter. Abstract Formatt er class, offered by the Python Standard Library, should
work just about anywhere. On the other hand, the refinements in the TtyFormatter subclass
that's the focus of this recipe depend on using a Unix-like terminal, and more specifically on the
availability of the tput Unix command to obtain information on the escape sequences used to get
bold or underlined output and to reset the terminal to its base state.

Many systems that do not have Unix certification, such as Linux and Mac OS X, do have a
perfectly workable tput command and therefore can use this recipe's TtyFormatter subclass just
fine. In other words, you can take the use of the word "Unix" in this recipe just as loosely as you
can take it in just about every normal discussion: take it as meaning "*ix," if you will.

If your "terminal" emulator supports other escape sequences for controlling output appearance,
you should be able to adapt this TtyFormatter class accordingly. For example, on Windows, a
cmd.exe command window should, I'm told, support standard ANSI escape sequences, SO you
could choose to hard-code those sequences if Windows is the platform on which you want to run
your version of this script.

In many cases, you may prefer to use other existing Unix commands, such as lynx -dump -, to
get richer formatting than this recipe provides. However, this recipe comes in quite handy when

you find yourself on a system that has a Python installation but lacks such other helpful
commands as lynx.

See Also

Library Reference and Python in a Nutshell docs on the formatter and ht i | i b modules; man
tput on a Unix or Unix-like system for more information about the tput command.

[recviovs Jrexr

Chapter 2. Files

Introduction

Recipe 2.1. ReadingfromacfFile

Recipe 2.2. WritingtoacFile

Recipe 2.3. SearchingandReplacing TextinaFile

Recipe 2.4. Readinga SpecificLine from aFile

Recipe 2.5. CountinglLinesinafFile

Recipe 2.6. ProcessingEveryWordinaFile

Recipe 2.7. UsingRandom-Access Input/Output

Recipe 2.8. UpdatingaRandom-AccessFile

Recipe 2.9. ReadingDatafrom zip Files

Recipe 2.10. Handlingazip File Inside a String

Recipe 2.11. Archiving aTree of Files into a Compressed tar File

Recipe 2.12. SendingBinary Data to Standard Output Under Windows
Recipe 2.13. UsingaC++-like iostream Syntax

Recipe 2.14. Rewindingan InputFile to the Beginning

Recipe 2.15. Adapting a File-like Object to a True File Object

Recipe 2.16. WalkingDirectory Trees

Recipe 2.17. Swapping One File Extension for Another Throughout a Directory Tree
Recipe 2.18. FindingaFile GivenaSearch Path

Recipe 2.19. Finding Files Given a Search Path and a Pattern

Recipe 2.20. Finding aFile on the Python Search Path

Recipe 2.21. Dynamically Changing the PythonSearch Path

Recipe 2.22. Computing the Relative Path from One Directory to Another
Recipe 2.23. Reading an Unbuffered Character in a Cross-Platform Way
Recipe 2.24. Counting Pages of PDF Documents on Mac OS X

Recipe 2.25. Changing File Attributes on Windows

Recipe 2.26. Extracting Textfrom OpenOffice.org Documents

Recipe 2.27. Extracting Textfrom Microsoft Word Documents

Recipe 2.28. File Locking Using a Cross-Platform API

Recipe 2.29. VersioningFilenames

Recipe 2.30. Calculating CRC-64 Cyclic Redundancy Checks

[rscviovs Jruexr s

[rrevons f e

Introduction

Credit: Mark Lutz, author of Programming Python and Python Quick Reference, co-author of
Learning Python

Behold the fileone of the first things that any reasonably pragmatic programmer reaches for in a
programming language's toolbox. Because processing external files is a very real, tangible task,
the quality of file-processing interfaces is a good way to assess the practicality of a programming
tool.

As the recipes in this chapter attest, Python shines in this task. Files in Python are supported in a
variety of layers: from the built-in open function (a synonym for the standard fi | e object type),
to specialized tools in standard library modules such as os, to third-party utilities available on the
Web. All told, Python's arsenal of file tools provides several powerful ways to access files in your
scripts.

File Basics

In Python, a file object is an instance of built-in type fi | e. The built-in function open creates and
returns a file object. The first argument, a string, specifies the file's path (i.e., the filename
preceded by an optional directory path). The second argument to open, also a string, specifies
the mode in which to open the file. For example:

i nput = open('data', 'r')
out put = open('/tnp/spam, 'wW)

open accepts a file path in which directories and files are separated by slash characters (/),
regardless of the proclivities of the underlying operating system. On systems that don't use
slashes, you can use a backslash character (\) instead, but there's no real reason to do so.
Backslashes are harder to fit nicely in string literals, since you have to double them up or use
"raw" strings. If the file path argument does not include the file's directory name, the file is
assumed to reside in the current working directory (which is a disjoint concept from the Python
module search path).

For the mode argument, use 'r' to read the file in text mode; this is the default value and is
commonly omitted, so that open is called with just one argument. Other common modes are 'rb’
to read the file in binary mode, ‘W to create and write to the file in text mode, and 'wb' to create
and write to the file in binary mode. A variant of 'r ' that is sometimes precious is 'rU', which tells
Python to read the file in text mode with "universal newlines": mode 'rU' can read text files
independently of the line-termination convention the files are using, be it the Unix way, the
Windows way, or even the (old) Mac way. (Mac OS X today is a Unix for all intents and purposes,
but releases of Mac OS 9 and earlier, just a few years ago, were quite different.)

The distinction between text mode and binary mode is important on non-Unix-like platforms
because of the line-termination characters used on these systems. When you open a file in binary
mode, Python knows that it doesn't need to worry about line-termination characters; it just
moves bytes between the file and in-memory strings without any kind of translation. When you
open a file in text mode on a non-Unix-like system, however, Python knows it must translate
between the "\ n' line-termination characters used in strings and whatever the current platform
uses in the file itself. All of your Python code can always rely on '\ n' as the line-termination
character, as long as you properly indicate text or binary mode when you open the file.

Once you have a file object, you perform all file 1/0 by calling methods of this object, as we'll
discuss in a moment. When you're done with the file, you should finish by calling the cl ose

method on the object, to close the connection to the file:

i nput.close()

In short scripts, people often omit this step, as Python automatically closes the file when a file
object is reclaimed during garbage collection (which in mainstream Python means the file is
closed just about at once, although other important Python implementations, such as Jython and
IronPython, have other, more relaxed garbage-collection strategies). Nevertheless, it is good
programming practice to close your files as soon as possible, and it is especially a good idea in
larger programs, which otherwise may be at more risk of having excessive numbers of uselessly
open files lying about. Note that TRy/fi nal | y is particularly well suited to ensuring that a file
gets closed, even when a function terminates due to an uncaught exception.

To write to a file, use the wi t e method:

output.wite(s)

where s is a string. Think of s as a string of characters if out put is open for text-mode writing,
and as a string of bytes if out put is open for binary-mode writing. Files have other writing-
related methods, such as f | ush, to send any data being buffered, and wri t el i nes, to write a
sequence of strings in a single call. However, wri t e is by far the most commonly used method.

Reading from a file is more common than writing to a file, and more issues are involved, so file
objects have more reading methods than writing ones. The r eadl i ne method reads and returns

the next line from a text file. Consider the following loop:

whi |l e True:
line = input.readline()
if not line: break
process(line)

This was once idiomatic Python but it is no longer the best way to read and process all of the
lines from a file. Another dated alternative is to use the readl i nes method, which reads the
whole file and returns a list of lines:

for line in input.readlines():
process(line)

readl i nes is useful only for files that fit comfortably in physical memory. If the file is truly huge,
readl i nes can fail or at least slow things down quite drastically (virtual memory fills up and the
operating system has to start copying parts of physical memory to disk). In today's Python, just
loop on the file object itself to get a line at a time with excellent memory and performance
characteristics:

for line in input:
process(!line)

Of course, you don't always want to read a file line by line. You may instead want to read some
or all of the bytes in the file, particularly if you've opened the file for binary-mode reading, where
lines are unlikely to be an applicable concept. In this case, you can use the r ead method. When
called without arguments, r ead reads and returns all the remaining bytes from the file. When
read is called with an integer argument N, it reads and returns the next N bytes (or all the
remaining bytes, if less than N bytes remain). Other methods worth mentioning are seek and

tel |, which support random access to files. These methods are normally used with binary files
made up of fixed-length records.

Portability and Flexibility

On the surface, Python's file support is straightforward. However, before you peruse the code in
this chapter, | want to underscore two aspects of Python's file support: code portability and
interface flexibility.

Keep in mind that most file interfaces in Python are fully portable across platform boundaries. It
would be difficult to overstate the importance of this feature. A Python script that searches all
files in a "directory" tree for a bit of text, for example, can be freely moved from platform to
platform without source-code changes: just copy the script's source file to the new target
machine. | do it all the timeso much so that | can happily stay out of operating system wars.
With Python's portability, the underlying platform is almost irrelevant.

Also, it has always struck me that Python's file-processing interfaces are not restricted to real,
physical files. In fact, most file tools work with any kind of object that exposes the same
interface as a real file object. Thus, a file reader cares only about read methods, and a file writer
cares only about write methods. As long as the target object implements the expected protocol,
all goes well.

For example, suppose you have written a general file-processing function such as the following,
meant to apply a passed-in function to each line of an input file:

def scanner (fil eobject, linehandler):
for line in fileobject:
[i nehandl er (1ine)

If you code this function in a module file and drop that file into a "directory" that's on your
Python search path (sys. pat h), you can use it any time you need to scan a text file line by line,
now or in the future. To illustrate, here is a client script that simply prints the first word of each
line:

frommyutils inport scanner
def firstword(line):

print line.split()[0]
file = open('data')
scanner (file, firstword)

So far, so good; we've just coded a small, reusable software component. But notice that there
are no type declarations in the scanner function, only an interface constraintany object that is
iterable line by line will do. For instance, suppose you later want to provide canned test input
from a string object, instead of using a real, physical file. The standard St ri ngl O module, and
the equivalent but faster cSt ri ngl O, provide the appropriate wrapping and interface forgery:

fromcStringlOinport StringlO
frommyutils inport scanner

def firstword(line): print line.split()[O0]
string = Stringl Q' one\ntwo xxx\ nthree\n')
scanner (string, firstword)

St ri ngl Oobjects are plug-and-play compatible with file objects, so scanner takes its three lines
of text from an in-memory string object, rather than a true external file. You don't need to
change the scanner to make this workjust pass it the right kind of object. For more generality,
you can even use a class to implement the expected interface instead:

cl ass MyStrean{object):
def _ _iter_ _(self):

grab and return text from wherever
return iter(['a\n', "bc din'])
frommyutils inmport scanner
def firstword(line):
print line.split()[0]
object = MyStrean()
scanner (obj ect, firstword)

This time, as scanner attempts to read the file, it really calls out to the _ _iter_ _ method
you've coded in your class. In practice, such a method might use other Python standard tools to
grab text from a variety of sources: an interactive user, a popup GUI input box, a shel ve object,
an SQL database, an XML or HTML page, a network socket, and so on. The point is that scanner
doesn't know or care what type of object is implementing the interface it expects, or what that
interface actually does.

Object-oriented programmers know this deliberate naiveté& as polymorphism. The type of the
object being processed determines what an operation, such as the f or -loop iteration in scanner,
actually does. Everywhere in Python, object interfaces, rather than specific data types, are the
unit of coupling. The practical effect is that functions are often applicable to a much broader
range of problems than you might expect. This is especially true if you have a background in
statically typed languages such as C or C++. It is almost as if we get C++ templates for free in
Python. Code has an innate flexibility that is a by-product of Python's strong but dynamic typing.

Of course, code portability and flexibility run rampant in Python development and are not really
confined to file interfaces. Both are features of the language that are simply inherited by file-
processing scripts. Other Python benefits, such as its easy scriptability and code readability, are
also key assets when it comes time to change file-processing programs. But rather than extolling
all of Python's virtues here, I'll simply defer to the wonderful recipes in this chapter and this book
at large for more details. Enjoy!

T

[rrevons f e

Recipe 2.1. Reading from a File

Credit: Luther Blissett

Problem

You want to read text or data from a file.

Solution

Here's the most convenient way to read all of the file's contents at once into one long string:

al | _the text open('thefile.txt').read() # all text froma text file
all _the data = open('abinfile', 'rb').read() # all data froma binary file

However, it is safer to bind the file object to a nhame, so that you can call cl ose on it as soon as
you're done, to avoid ending up with open files hanging around. For example, for a text file:

file object = open('thefile.txt")
try:

all _the text = file_object.read()
finally:

file_ object.close()

You don't necessarily have to use the TRy/fi nal | y statement here, but it's a good idea to use it,
because it ensures the file gets closed even when an error occurs during reading.

The simplest, fastest, and most Pythonic way to read a text file's contents at once as a list of
strings, one per line, is:

list_of _all_the_lines =file_object.readlines()

This leaves a '\n' at the end of each line; if you don't want that, you have alternatives, such as:

list_of _all_the_lines
list_of _all_the_lines
list _of all _the |ines

file object.read().splitlines()
file object.read().split('\n")
[L.rstrip('\n') for Lin file_object]

The simplest and fastest way to process a text file one line at a time is simply to loop on the file
object with a f or statement:

for line in file_object:
process |line

This approach also leaves a \n' at the end of each line; you may remove it by starting the f or
loop's body with:

line =line.rstrip('\n")

or even, when you're OK with getting rid of trailing whitespace from each line (not just a trailing
\n"), the generally handier:

line = line.rstrip()

Discussion

Unless the file you're reading is truly huge, slurping it all into memory in one gulp is often fastest
and most convenient for any further processing. The built-in function open creates a Python file
object (alternatively, you can equivalently call the built-in type fil €). You call the r ead method
on that object to get all of the contents (whether text or binary) as a single long string. If the
contents are text, you may choose to immediately split that string into a list of lines with the

spl it method or the specialized splitlines method. Since splitting into lines is frequently
needed, you may also call r eadl i nes directly on the file object for faster, more convenient
operation.

You can also loop directly on the file object, or pass it to callables that require an iterable, such
as | i st or maxwhen thus treated as an iterable, a file object open for reading has the file's text
lines as the iteration items (therefore, this should be done for text files only). This kind of line-
by-line iteration is cheap in terms of memory consumption and fairly speedy too.

On Unix and Unix-like systems, such as Linux, Mac OS X, and other BSD variants, there is no
real distinction between text files and binary data files. On Windows and very old Macintosh
systems, however, line terminators in text files are encoded, not with the standard "\ n' separator,
but with '\r\ n' and "\r ', respectively. Python translates these line-termination characters into '\ n’
on your behalf. This means that you need to tell Python when you open a binary file, so that it
won't perform such translation. To do so, use 'rb' as the second argument to open. This is
innocuous even on Unix-like platforms, and it's a good habit to distinguish binary files from text
files even there, although it's not mandatory in that case. Such good habits will make your
programs more immediately understandable, as well as more compatible with different
platforms.

If you're unsure about which line-termination convention a certain text file might be using, use
rU" as the second argument to open, requesting universal endline translation. This lets you freely
interchange text files among Windows, Unix (including Mac OS X), and old Macintosh systems,
without worries: all kinds of line-ending conventions get mapped to '\ n’, whatever platform your
code is running on.

You can call methods such as r ead directly on the file object produced by the open function, as
shown in the first snippet of the solution. When you do so, you no longer have a reference to the
file object as soon as the reading operation finishes. In practice, Python notices the lack of a
reference at once, and immediately closes the file. However, it is better to bind a name to the
result of open, so that you can call cl ose yourself explicitly when you are done with the file. This
ensures that the file stays open for as short a time as possible, even on platforms such as
Jython, IronPython, and other hypothetical future versions of Python, on which more advanced
garbage-collection mechanisms might delay the automatic closing that the current version of C-
based Python performs at once. To ensure that a file object is closed even if errors happen
during its processing, the most solid and prudent approach is to use the try/final | y statement:

file_object = open('thefile.txt")
try:
for line in file_object:
process |ine
finally:
file_object.close()

Be careful not to place the call to open inside the try clause of thistry/final | y statement (a
rather common error among beginners). If an error occurs during the opening, there is nothing
to close, and besides, nothing gets bound to name fi |l e_obj ect, so you definitely don't want to
call file_object.close()!

If you choose to read the file a little at a time, rather than all at once, the idioms are different.
Here's one way to read a binary file 100 bytes at a time, until you reach the end of the file:

file_ object = open('abinfile', '"rb")
try:
whil e True:
chunk = fil e_object.read(100)
i f not chunk:
br eak
do_sonet hi ng_wi t h(chunk)
finally:
file_ object.close()

Passing an argument N to the r ead method ensures that r ead will read only the next N bytes (or
fewer, if the file is closer to the end). r ead returns the empty string when it reaches the end of
the file. Complicated loops are best encapsulated as reusable generators. In this case, we can
encapsulate the logic only partially, because a generator's yi el d keyword is not allowed in the
try clause of atry/final |l y statement. Giving up on the assurance of file closing afforded by
try/finally, we can therefore settle for:

def read_file_by chunks(filename, chunksize=100):

file object = open(filenane, 'rb')
whi l e True:

chunk = fil e_object.read(chunksize)

i f not chunk:

br eak

yi el d chunk

file_object.close()

Once this read_file_by chunks generator is available, your application code to read and process
a binary file by fixed-size chunks becomes extremely simple:

for chunk in read file_ by chunks('abinfile'):
do_sonet hi ng_wi t h(chunk)

Reading a text file one line at a time is a frequent task. Just loop on the file object, as in:

for line in open('thefile.txt', 'rU):
do_sonething_wi th(line)

Here, too, in order to be 100% certain that no uselessly open file object will ever be left just
hanging around, you may want to code this snippet in a more rigorously correct and prudent
way:

file_object = open('thefile.txt', '"rU):
try:
for line in file_object:
do_sonet hing_with(line)
finally:
file object.close()

See Also

Recipe 2.2; documentation for the open built-in function and fi | e objects in the Library
Reference and Python in a Nutshell.

[rrevons f e

[rrevons f e

Recipe 2.2. Writing to a File

Credit: Luther Blissett

Problem

You want to write text or data to a file.

Solution

Here is the most convenient way to write one long string to a file:

open('thefile.txt', '"wW).wite(all_the_ text) # text to atext file
open('abinfile', "wb').wite(all _the _data) # data to a binary file

However, it is safer to bind the file object to a name, so that you can call cl ose on the file object
as soon as you're done. For example, for a text file:

file object = open('thefile.txt', "wW)
file object.wite(all _the_ text)
file_object.close()

Often, the data you want to write is not in one big string, but in a list (or other sequence) of
strings. In this case, you should use the wri t el i nes method (which, despite its name, is not

limited to lines and works just as well with binary data as with text files!):

file_ object.witelines(list_of _text_strings)
open('abinfile , "wb').witelines(list_of data strings)

Calling wri t el i nes is much faster than the alternatives of joining the strings into one big string
(e.g., with " . joi n) and then calling wite, or calling wite repeatedly in a loop.

Discussion

To create a file object for writing, you must always pass a second argument to open (or

fil e)either 'w to write textual data or ‘wb' to write binary data. The same considerations detailed
previously in Recipe 2.1 apply here, except that calling cl ose explicitly is even more advisable
when you're writing to a file rather than reading from it. Only by closing the file can you be
reasonably sure that the data is actually on the disk and not still residing in some temporary
buffer in memory.

Writing a file a little at a time is even more common than reading a file a little at a time. You can
just callwrite and/or writelines repeatedly, as each string or sequence of strings to write
becomes ready. Each write operation appends data at the end of the file, after all the previously
written data. When you're done, call the cl ose method on the file object. If all the data is
available at once, a single wri t el i nes call is faster and simpler. However, if the data becomes
available a little at a time, it's better to call wi t e as the data comes, than to build up a
temporary list of pieces (e.g., with append) just in order to be able to write it all at once in the

end with wri t el i nes. Reading and writing are quite different, with respect to the performance
and convenience implications of operating "in bulk™ versus operating a little at a time.

When you open a file for writing with option 'w (or 'wb"), any data that might already have been
in the file is immediately destroyed; even if you close the file object immediately after opening it,
you still end up with an empty file on the disk. If you want the data you're writing to be
appended to the previous contents of the file, open the file with option 'a' (or 'ab") instead. More
advanced options allow both reading and writing on the same open file objectin particular, see
Recipe 2.8 for option 'r +b’, which, in practice, is the only frequently used one out of all the
advanced option strings.

See Also

Recipe 2.1; Recipe 2.8; documentation for the open built-in function and file objects in the
Library Reference and Python in a Nutshell.

O [

[rrevons f e

Recipe 2.3. Searching and Replacing Text in a File

Credit: Jeff Bauer, Adam Krieg

Problem

You need to change one string into another throughout a file.

Solution

String substitution is most simply performed by the r epl ace method of string objects. The work
here is to support reading from a specified file (or standard input) and writing to a specified file
(or standard output):

#!'/usr/ bi n/ env pyt hon
i mport o0s, sys
nargs = | en(sys. argv)
if not 3 <= nargs <= 5:
print "usage: % search_text replace_text [infile [outfile]]" %\
os. pat h. basename(sys. argv[0])
el se:
st ext sys. argv[1]
rtext sys. argv[2]
input_file = sys.stdin
output _file = sys.stdout
if nargs > 3:
7 input_file
if nargs > 4:
output file = open(sys.argv[4], 'wW)
for s ininput file:
output _file.wite(s.replace(stext, rtext))
out put. cl ose()
i nput.close()

open(sys. argv[3])

Discussion

This recipe is really simple, but that's what beautiful about itwhy do complicated stuff when
simple stuff suffices? As indicated by the leading "shebang" line, the recipe is a simple main
script, meaning a script meant to be run directly at a shell command prompt, as opposed to a
module meant to be imported from elsewhere. The script looks at its arguments to determine the
search text, the replacement text, the input file (defaulting to standard input), and the output file
(defaulting to standard output). Then, it loops over each line of the input file, writing to the
output file a copy of the line with the substitution performed on it. That's all! For accuracy, the
script closes both files at the end.

As long as an input file fits comfortably in memory in two copies (one before and one after the
replacement, since strings are immutable), we could, with an increase in speed, operate on the
entire input file's contents at once instead of looping. With today's low-end PCs typically
containing at least 256 MB of memory, handling files of up to about 100 MB should not be a
problem, and few text files are bigger than that. It suffices to replace the f or loop with one

single statement:

output file.wite(input file.read().replace(stext, rtext))

As you can see, that's even simpler than the loop used in the recipe.

See Also

Documentation for the open built-in function, fi | e objects, and strings' r epl ace method in the
Library Reference and Python in a Nutshell.

T [

[rrevons f e

Recipe 2.4. Reading a Specific Line from a File

Credit: Luther Blissett

Problem

You want to read from a text file a single line, given the line number.

Solution

The standard Python library | i necache module makes this task a snap:

i mport |inecache
theline = linecache. getline(thefilepath, desired_|ine_nunber)

Discussion

The standard | i necache module is usually the optimal Python solution for this task. | i necache is
particularly useful when you have to perform this task repeatedly for several lines in a file, since

| i necache caches information to avoid uselessly repeating work. When you know that you won't
be needing any more lines from the cache for a while, call the module's cl ear cache function to
free the memory used for the cache. You can also use checkcache if the file may have changed
on disk and you must make sure you are getting the updated version.

| i necache reads and caches all of the text file whose name you pass to it, so, if it's a very large
file and you need only one of its lines, | i necache may be doing more work than is strictly
necessary. Should this happen to be a bottleneck for your program, you may get an increase in
speed by coding an explicit loop, encapsulated within a function, such as:

def getline(thefilepath, desired_line_nunber):
if desired_line_number < 1. return '’

for current _line_nunber, line in enunerate(open(thefilepath, 'ruU)):
if current_line_nunber == desired _|line nunber-1: return line
return '’

The only detail requiring attention is that enuner at e counts from 0O, so, since we assume the
desired_line_number argument counts from 1, we need the -1 in the == comparison.

See Also

Documentation for the | i necache module in the Library Reference and Python in a Nutshell; Perl
Cookbook recipe 8.8.

[rrevons f e

[rrevons f e

Recipe 2.5. Counting Lines in a File

Credit: Luther Blissett

Problem

You need to compute the number of lines in a file.

Solution

The simplest approach for reasonably sized files is to read the file as a list of lines, so that the
count of lines is the length of the list. If the file's path is in a string bound to a variable named
t hefil epat h, all the code you need to implement this approach is:

count = len(open(thefilepath, 'rU).readlines())

For a truly huge file, however, this simple approach may be very slow or even fail to work. If you
have to worry about humongous files, a loop on the file always works:

count = -1

for count, line in enunerate(open(thefilepath, 'ruU)):
pass

count +=1

A tricky alternative, potentially faster for truly humongous files, for when the line terminator is
\n' (or has '\n' as a substring, as happens on Windows):

count = 0
thefile = open(thefilepath, 'rb")
whi l e True:

buffer = thefile.read(8192*1024)

if not buffer:

br eak

count += buffer.count('\n")

thefile.close()

The 'rb' argument to open is necessary if you're after speedwithout that argument, this snippet
might be very slow on Windows.

Discussion

When an external program counts a file's lines, such as wc -1 on Unix-like platforms, you can of
course choose to use that (e.g., via 0s. popen). However, it's generally simpler, faster, and more
portable to do the line-counting in your own program. You can rely on almost all text files having
a reasonable size, so that reading the whole file into memory at once is feasible. For all such
normal files, the | en of the result of r eadl i nes gives you the count of lines in the simplest way.

If the file is larger than available memory (say, a few hundred megabytes on a typical PC today),

the simplest solution can become unacceptably slow, as the operating system struggles to fit the
file's contents into virtual memory. It may even fail, when swap space is exhausted and virtual
memory can't help any more. On a typical PC, with 256MB RAM and virtually unlimited disk
space, you should still expect serious problems when you try to read into memory files above,
say, 1 or 2 GB, depending on your operating system. (Some operating systems are much more
fragile than others in handling virtual-memory issues under such overly stressed load
conditions.) In this case, looping on the file object, as shown in this recipe’s Solution, is better.
The enuner at e built-in keeps the line count without your code having to do it explicitly.

Counting line-termination characters while reading the file by bytes in reasonably sized chunks is
the key idea in the third approach. It's probably the least immediately intuitive, and it's not
perfectly cross-platform, but you might hope that it's fastest (e.g., when compared with recipe
8.2 in the Perl Cookbook).

However, in most cases, performance doesn't really matter all that much. When it does matter,
the time-sink part of your program might not be what your intuition tells you it is, so you should
never trust your intuition in this matterinstead, always benchmark and measure. For example,
consider a typical Unix syslog file of middling size, a bit over 18 MB of text in 230,000 lines:

[situ@ioni nuc]$ wc nuc
231581 2312730 18508908 nuc

And consider the following testing-and-benchmark framework script, bench.py:

import tine

def tinmeo(fun, n=10):
start = tinme.clock()
for i in xrange(n): fun()
stend = tine.clock()
thetime = stend-start

return fun. _ nane_ , thetine
i mport os
def linecount_wW):
return int(os.popen('wc -1 nuc').read().split()[0])

def linecount_1():
return len(open(' nuc').readlines())
def linecount 2():
count = -1
for count, line in enunerate(open('nuc')): pass
return count+1
def linecount 3():
count = 0
thefile = open('nuc', 'rb")
whil e True:
buf fer = thefile.read(65536)
if not buffer: break
count += buffer.count('\n")
return count

for f in linecount_w, linecount_ 1, |inecount_ 2, |inecount_3:
print f._ _name_ _, f()
for f in linecount 1, |inecount 2, linecount 3:

print "%: %2f"%ineo(f)

First, | print the line-counts obtained by all methods, thus ensuring that no anomaly or error has
occurred (counting tasks are notoriously prone to off-by-one errors). Then, | run each alternative
10 times, under the control of the timing function t i meo, and look at the results. Here they are,
on the old but reliable machine I measured them on:

[situ@ioni nuc]$ python -O bench. py

| i necount _w 231581
| i necount 1 231581
| i necount 2 231581
|'i necount 3 231581
|inecount _1: 4.84
|inecount 2: 4.54
i necount 3: 5.02

As you can see, the performance differences hardly matter: your users will never even notice a
difference of 10% or so in one auxiliary task. However, the fastest approach (for my particular
circumstances, on an old but reliable PC running a popular Linux distribution, and for this specific
benchmark) is the humble loop-on-every-line technique, while the slowest one is the fancy,
ambitious technique that counts line terminators by chunks. In practice, unless | had to worry
about files of many hundreds of megabytes, I'd always use the simplest approach (i.e., the first
one presented in this recipe).

Measuring the exact performance of code snippets (rather than blindly using complicated
approaches in the hope that they'll be faster) is very importantso important, indeed, that the
Python Standard Library includes a module, ti nei t , specifically designed for such measurement
tasks. | suggest you use tineit, rather than coding your own little benchmarks as | have done

here. The benchmark | just showed you is one I've had around for years, since well before
tineit appeared in the standard Python library, so | think | can be forgiven for not using ti nei t
in this specific case!

See Also

The Library Reference and Python in a Nutshell sections on fi | e objects, the enuner at e built-in,
0s. popen, and the ti me and ti nmei t modules; Perl Cookbook recipe 8.2.

[rscviovs Jruexr s

[rrevons f e

Recipe 2.6. Processing Every Word in a File

Credit: Luther Blissett

Problem

You need to do something with each and every word in a file.

Solution

This task is best handled by two nested loops, one on lines and another on the words in each
line:

for line in open(thefilepath):
for word in line.split():
dosonet hi ngwi t h(wor d)

The nested f or statement's header implicitly defines words as sequences of nonspaces separated
by sequences of spaces (just as the Unix program wc does). For other definitions of words, you
can use regular expressions. For example:

import re
reword =re.conpile(r"[\w-]+")
for line in open(thefilepath):
for word inre word.finditer(line):
dosonet hi ngwi t h(wor d. gr oup(0))

In this case, a word is defined as a maximal sequence of alphanumerics, hyphens, and
apostrophes.

Discussion

If you want to use other definitions of words, you will obviously need different regular
expressions. The outer loop, on all lines in the file, won't change.

It's often a good idea to wrap iterations as iterator objects, and this kind of wrapping is most
commonly and conveniently obtained by coding simple generators:

def words_of file(thefilepath, line to words=str.split):
the file = open(thefilepath):
for line in the_file:
for word in line_to words(line):
yield word
the file.close()
for word in words_of _file(thefilepath):
dosonet hi ngwi t h(wor d)

This approach lets you separate, cleanly and effectively, two different concerns: how to iterate

over all items (in this case, words in a file) and what to do with each item in the iteration. Once
you have cleanly encapsulated iteration concerns in an iterator object (often, as here, a
generator), most of your uses of iteration become simple f or statements. You can often reuse
the iterator in many spots in your program, and if maintenance is ever needed, you can perform
that maintenance in just one placethe definition of the iteratorrather than having to hunt for all
uses. The advantages are thus very similar to those you obtain in any programming language by
appropriately defining and using functions, rather than copying and pasting pieces of code all
over the place. With Python's iterators, you can get these reuse advantages for all of your
looping-control structures, too.

We've taken the opportunity afforded by the refactoring of the loop into a generator to perform
two minor enhancementsensuring the file is explicitly closed, which is always a good idea, and
generalizing the way each line is split into words (defaulting to the spl it method of string
objects, but leaving a door open to more generality). For example, when we need words as
defined by a regular expression, we can code another wrapper on top of words_of_file thanks to
this "hook™":

i mport re
def words_by re(thefilepath, repattern=r"[\w -]+"):
we = re.conpile(repattern)
def line_to words(line):
for mo in we.finditer(line):
return no. group(0)
return words_of file(thefilepath, Iine_to words)

Here, too, we supply a reasonable default for the regular expression pattern defining a word but
still make it easy to pass a different value in those cases in which different definitions are
necessary. Excessive generalization is a pernicious temptation, but a little tasteful generalization
suggested by experience will most often amply repay the modest effort it requires. Having a
function accept an optional argument, while providing the most likely value for the argument as
the default value, is among the simplest and handiest ways to implement this modest and often
worthwhile kind of generalization.

See Also

Chapter 19 for more on iterators and generators; Library Reference and Python in a Nutshell on
fil e objects and the re module; Perl Cookbook recipe 8.3.

T [

[rrevons f e

Recipe 2.7. Using Random-Access Input/Output

Credit: Luther Blissett

Problem

You want to read a binary record from somewhere inside a large file of fixed-length records,
without reading a record at a time to get there.

Solution

The byte offset of the start of a record in the file is the size of a record, in bytes, multiplied by
the progressive number of the record (counting from 0). So, you can just seek right to the
proper spot, then read the data. For example, to read the seventh record from a binary file
where each record is 48 bytes long:

thefile = open('sonebinfile, "rb")
record_size = 48

record_nunber =6

thefil e.seek(record_size * record_nunber)
buffer = thefile.read(record_size)

Note that the record_number of the seventh record is 6: record numbers count from zero!

Discussion

This approach works only on files (generally binary ones) defined in terms of records that are all
the same fixed size in bytes; it doesn't work on normal text files. For clarity, the recipe shows the
file being opened for reading as a binary file by passing 'rb' as the second argument to open, just
before the seek. As long as the file object is open for reading as a binary file, you can perform as
many seek and r ead operations as you need, before eventually closing the file againyou don't
necessarily open the file just before performing a seek on it.

See Also

The section of the Library Reference and Python in a Nutshell on file objects; Perl Cookbook
recipe 8.12.

O [

[rrevons f e

Recipe 2.8. Updating a Random-Access File

Credit: Luther Blissett

Problem

You want to read a binary record from somewhere inside a large file of fixed-length records,
change some or all of the values of the record’s fields, and write the record back.

Solution

Read the record, unpack it, perform whatever computations you need for the update, pack the
fields back into the record, seek to the start of the record again, write it back. Phew. Faster to
code than to say:

i mport struct

format _string = '8l"' # e.g., say arecord is 8 4-byte integers
thefile = open('sonebinfile', 'r+b")

record_size = struct.cal csize(format_string)

thefil e.seek(record_size * record_nunber)

buffer = thefile.read(record_size)

fields = Ilist(struct.unpack(format_string, buffer))

Performconputations, suitably nodifying fields, then
buffer = struct. pack(format_string, *fields)
thefile.seek(record_size * record_nunber)
thefile.wite(buffer)

thefile.close()

Discussion

This approach works only on files (generally binary ones) defined in terms of records that are all
the same, fixed size; it doesn't work on normal text files. Furthermore, the size of each record
must be that defined by a struct format string, as shown in the recipe's code. A typical format
string, for example, might be '8l ', to specify that each record is made up of eight four-byte
integers, each to be interpreted as a signed value and unpacked into a Python i nt . In this case,
the fi el ds variable in the recipe would be bound to a list of eight i nts. Note that st ruct . unpack
returns a tuple. Because tuples are immutable, the computation would have to rebind the entire
fi el ds variable. A list is mutable, so each field can be rebound as needed. Thus, for
convenience, we explicitly ask for a list when we bind fi el ds. Make sure, however, not to alter
the length of the list. In this case, it needs to remain composed of exactly eight integers, or the
struct. pack call will raise an exception when we call it with a f or mat _stri ng of '8l ". Also, this
recipe is not suitable when working with records that are not all of the same, unchanging length.

To seek back to the start of the record, instead of using the record_si ze*record_nunber offset
again, you may choose to do a relative seek:

thefile.seek(-record_size, 1)

The second argument to the seek method (1) tells the file object to seek relative to the current

position (here, so many bytes back, because we used a negative number as the first argument).
seek's default is to seek to an absolute offset within the file (i.e., from the start of the file). You
can also explicitly request this default behavior by calling seek with a second argument of 0.

You don't need to open the file just before you do the first seek, nor do you need to close it right
after the wri t e. Once you have a file object that is correctly opened (i.e., for updating and as a
binary rather than a text file), you can perform as many updates on the file as you want before
closing the file again. These calls are shown here to emphasize the proper technique for opening
a file for random-access updates and the importance of closing a file when you are done with it.

The file needs to be opened for updating (i.e., to allow both reading and writing). That's what the
r+b' argument to open means: open for reading and writing, but do not implicitly perform any
transformations on the file's contents because the file is a binary one. (The 'b’ part is
unnecessary but still recommended for clarity on Unix and Unix-like systems. However, it's
absolutely crucial on other platforms, such as Windows.) If you're creating the binary file from
scratch, but you still want to be able to go back, reread, and update some records without
closing and reopening the file, you can use a second argument of ‘w+b' instead. However, | have
never witnessed this strange combination of requirements; binary files are normally first created
(by opening them with 'wb', writing data, and closing the file) and later reopened for updating
with 'r +b'.

While this approach is normally useful only on a file whose records are all the same size, another,
more advanced possibility exists: a separate "index file" that provides the offset and length of
each record inside the "data file". Such indexed sequential access approaches aren't much in
fashion any more, but they used to be very important. Nowadays, one meets just about only text
files (of many kinds, more and more often XML ones), databases, and occasional binary files with
fixed-length records. Still, if you do need to access an indexed sequential binary file, the code is
quite similar to that shown in this recipe, except that you must obtain the record_size and the
offset argument to pass tot hefi |l e. seek by reading them from the index file, rather than
computing them yourself as shown in this recipe's Solution.

See Also

The sections of the Library Reference and Python in a Nutshell on file objects and the st ruct
module; Perl Cookbook recipe 8.13.

[rrevos] uexr

[rrevons f e

Recipe 2.9. Reading Data from zip Files

Credit: Paul Prescod, Alex Martelli

Problem

You want to directly examine some or all of the files contained in an archive in zip format,
without expanding them on disk.

Solution

zip files are a popular, cross-platform way of archiving files. The Python Standard Library comes
with a zi pfi | e module to access such files easily:

i mport zipfile
z =zipfile. ZipFile("zipfile.zip", "r")
for filenane in z.nanelist():

print '"File:", filenane,

bytes = z.read(fil enane)

print 'has', len(bytes), 'bytes’

Discussion

Python can work directly with data in zip files. You can look at the list of items in the archive's
directory and work with the "data file"s themselves. This recipe is a snippet that lists all of the
names and content lengths of the files included in the zip archive zipfile.zip.

The zi pfi | e module does not currently handle multidisk zip files nor zip files with appended
comments. Take care to use r as the flag argument, not rb, which might seem more natural
(e.g., on Windows). With Zi pFi | e, the flag is not used the same way when opening a file, and rb
is not recognized. The r flag handles the inherently binary nature of all zip files on all platforms.

When a zip file contains some Python modules (meaning .py or preferably .pyc files), possibly in
addition to other (data) files, you can add the file's path to Python's sys. pat h and then use the
i mport statement to import modules from the zip file. Here's a toy, self-contained, purely
demonstrative example that creates such a zip file on the fly, imports a module from it, then
removes itall just to show you how it's done:

import zipfile, tenpfile, o0s, sys

handl e, filename = tenpfile.nkstenp('.zip')
0s. cl ose(handl e)

z = zipfile.ZipFile(filenane, 'W)

z.witestr('hello.py', "def f(): return "hello world from"+_ file_ _\n")
z.close()

sys. path.insert(0, filenane)

i mport hello

print hello.f()
os. unlink(filenane)

Running this script emits something like:

hel l o world from/tnp/tnpESVzeY. zi p/ hel | 0. py

Besides illustrating Python's ability to import from a zip file, this snippet also shows how to make
(and later remove) a temporary file, and how to use the wri t estr method to add a member to a

zip file without placing that member into a disk file first.

Note that the path to the zip file from which you i nport is treated somewhat like a directory. (In
this specific example run, that path is / t np/ t npESVzeY. zi p, but of course, since we're dealing
with a temporary file, the exact value of the path can change at each run, depending also on
your platform.) In particular, the _ file_ _ global variable, within the module hello, which is

i mport ed from the zip file, has a value of /tmp/tmpESVzeY.zip/hello.pya pseudo-path, made up
of the zip file's path seen as a "directory" followed by the relative path of hello.py within the zip
file. If you import from a zip file a module that computes paths relative to itself in order to get to
data files, you need to adapt the module to this effect, because you cannot just open such a
"pseudo-path" to get a file object: rather, to read or write files inside a zip file, you must use
functions from standard library module zi pfi |l e, as shown in the solution.

For more information about importing modules from a zip file, see Recipe 16.12. While that

recipe is Unix-specific, the information in the recipe's Discussion about importing from zip files is
also valid for Windows.

See Also

Documentation for the zi pfil e module in the Library Reference and Python in a Nutshell;
modules tenpfil e, os, sys; for archiving a tree of files, see Recipe 2.11; for more information
about importing modules from a zip file, Recipe 16.12.

T [

[rrevons f e

Recipe 2.10. Handling a zip File Inside a String

Credit: Indyana Jones

Problem

Your program receives a zip file as a string of bytes in memory, and you need to read the
information in this zip file.

Solution

Solving this kind of problem is exactly what standard library module cStri ngl Ois for:

import cStringl O zipfile
class ZipString(ZipFile):
def _ _init_ _(self, datastring):
ZipFile. _init_ (self, cStringl O StringlQdatastring))

Discussion

I often find myself faced with this taskfor example, zip files coming from BLOB fields in a
database or ones received from a network connection. | used to save such binary data to a
temporary file, then open the file with the standard library module zi pfil e. Of course, | had to
ensure | deleted the temporary file when | was done. Then | thought of using the standard
library module ¢St ri ngl Ofor the purpose . . . and never looked back.

Module cStri ngl Olets you wrap a string of bytes so it can be accessed as a file object. You can
also do things the other way around, writing into a cStri ngl O Stri ngl Oinstance as if it were a
file object, and eventually recovering its contents as a string of bytes. Most Python modules that
take file objects don't check whether you're passing an actual fi | erather, any file-like object will
do; the module’s code just calls on the object whatever file methods it needs. As long as the
object supplies those methods and responds correctly when they're called, everything just
works. This demonstrates the awesome power of signature-based polymorphism and hopefully
teaches why you should almost never type-test (utter such horrors asif type(x) is y, or even
just the lesser horror i f isinstance(x, y)) inyour own code! A few low-level modules, such as
mar shal , are unfortunately adamant about using "true" files, but zi pfil e isn't, and this recipe
shows how simple it makes your life!

If you are using a version of Python that is different from the mainstream C-coded one, known as
"CPython", you may not find module cStri ngl Oin the standard library. The leading c in the
name of the module indicates that it's a C-specific module, optimized for speed but not
guaranteed to be in the standard library for other compliant Python implementations. Several
such alternative implementations include both production-quality ones (such as Jython, which is
coded in Java and runs on a JVM) and experimental ones (such as pypy, which is coded in Python
and generates machine code, and IronPython, which is coded in C# and runs on Microsoft's .NET
CLR). Not to worry: the Python Standard Library always includes module Stri ngl O, which is
coded in pure Python (and thus is usable from any compliant implementation of Python), and
implements the same functionality as module ¢St ri ngl O (albeit not quite as fast, at least on the
mainstream CPython implementation). You just need to alter your i nport statement a bit to
make sure you get cSt ri ngl Owhen available and Stri ngl Ootherwise. For example, this recipe
might become:

import zipfile
try:

fromcStringl Oinport StringlO
except lnportError:

fromStringl Oinport StringlO
class ZipString(ZipFile):

def _ _init_ _(self, datastring):

ZipFile. _init_ (self, StringlQ datastring))

With this modification, the recipe becomes useful in Jython, and other, alternative
implementations.

See Also

Modules zi pfil e and cStri ngl Oin the Library Reference and Python in a Nutshell; Jython is at
http://www.jython.org/; pypy is at http://codespeak.net/pypy/; IronPython is at
http://ironpython.com/.

[rrevons f e

http://www.jython.org/
http://codespeak.net/pypy/
http://ironpython.com/

[rrevons f e

Recipe 2.11. Archiving a Tree of Files into a
Compressed tar File

Credit: Ed Gordon, Ravi Teja Bhupatiraju

Problem

You need to archive all of the files and folders in a subtree into a tar archive file, compressing the
data with either the popular gzi p approach or the higher-compressing bzi p2 approach.

Solution

The Python Standard Library's tarfi | e module directly supports either kind of compression: you

just need to specify the kind of compression you require, as part of the option string that you
pass when you call tarfil e. TarFi | e. open to create the archive file. For example:

inmport tarfile, os
def make tar(fol der_to backup, dest fol der, conpression='bz2'):
i f conpression:

dest _ext ="'.' + conpression
el se:

dest _ext ="'
arcnanme = os. pat h. basenane(fol der _t o_backup)
dest_name = '%.tar%' % (arcnanme, dest_ext)

dest _path = os.path.join(dest folder, dest_nane)
i f conpression:
dest _cnp = ':' + conpression
el se:
dest _cnp ="'
out = tarfile. TarFile.open(dest _path, 'w +dest_cnp)
out . add(fol der _to_backup, arcnane)
out.cl ose()
return dest _path

Discussion

You can pass, as argument compression to function make_tar, the string ‘gz’ to get gzi p
compression instead of the default bzi p2, or you can pass the empty string " to get no
compression at all. Besides making the file extension of the result either .tar, .tar.gz, or .tar.bz2,
as appropriate, your choice for the compression argument determines which string is passed as
the second argument totarfile. TarFi |l e. open: 'W, when you want no compression, or 'w. gz'
or 'w. bz2' to get two kinds of compression.

Class tarfil e. TarFi |l e offers several other cl assnet hods, besides open, which you could use to
generate a suitable instance. | find open handier and more flexible because it takes the
compression information as part of the node string argument. However, if you want to ensure
bzi p2 compression is used unconditionally, for example, you could choose to call cl assnet hod
bz2open instead.

Once we have an instance of classtarfil e. TarFi | e that is set to use the kind of compression

we desire, the instance's method add does all we require. In particular, when string
folder_to_backup names a "directory" (or folder), rather than an ordinary file, add recursively
adds all of the subtree rooted in that directory. If on some other occasion, we wanted to change
this behavior to get precise control on what is archived, we could pass to add an additional
named argument r ecur si ve=Fal se to switch off this implicit recursion. After calling add, all
that's left for function make_tar to do is to close the Tar Fi | e instance and return the path on
which the tar file has been written, just in case the caller needs this information.

See Also

Library Reference docs on module tarfile.

T [

[rrevons f e

Recipe 2.12. Sending Binary Data to Standard Output
Under Windows

Credit: Hamish Lawson

Problem

You want to send binary data (e.g., an image) to st dout under Windows.

Solution

That's what the set node function, in the platform-dependent (Windows-only) nsvcrt module in
the Python Standard Library, is for:

i mport sys
if sys.platform=="w n32":
i mport os, msvcrt
nsvcrt. set node(sys. stdout.fileno(), os.O_BlI NARY)

You can now call sys. stdout.wite with any bytestring as the argument, and the bytestring will
go unmodified to standard output.

Discussion

While Unix doesn't make (or need) a distinction between text and binary modes, if you are
reading or writing binary data, such as an image, under Windows, the file must be opened in
binary mode. This is a problem for programs that write binary data to standard output (as a CGlI
script, for example, could be expected to do), because Python opens the sys. st dout file object
on your behalf, normally in text mode.

You can have st dout opened in binary mode instead by supplying the -u command-line option to
the Python interpreter. For example, if you know your CGI script will be running under the
Apache web server, as the first line of your script, you can use something like:

#! c:/python23/ pyt hon. exe -u

assuming you're running under Python 2.3 with a standard installation. Unfortunately, you may
not always be able to control the command line under which your script will be started. The
approach taken in this recipe's "Solution” offers a workable alternative. The set node function
provided by the Windows-specific nsvcrt module lets you change the mode of st dout 's
underlying file descriptor. By using this function, you can ensure from within your program that
sys. st dout gets set to binary mode.

See Also

Documentation for the nsvcrt module in the Library Reference and Python in a Nutshell.

R [

[rrevons f e

Recipe 2.13. Using a C++-like iostream Syntax

Credit: Erik Max Francis

Problem

You like the C++ approach to 1/0, based on ostreans and manipulators (special objects that
cause special effects on a stream when inserted in it) and want to use it in your Python
programs.

Solution

Python lets you overload operators by having your classes define special methods (i.e., methods
whose names start and end with two underscores). To use << for output, as you do in C++, you
just need to code an output stream class that defines the special method _ _Ishift_ _

cl ass | Ovani pul at or (obj ect):
def _ _init_ _(self, function=None):
sel f.function = function
def do(self, output):
sel f. function(out put)
def do_endl (stream:
streamoutput.wite('\n")
stream out put.flush()
endl = | Ovani pul at or (do_endl)
cl ass OStrean(object):
def _ _init_ (self, output=None):
if output is None:
i mport sys
out put = sys. stdout
sel f. out put = out put
self.format ="'%'
def _ _Ishift_ _(self, thing):
"'' the special nethod which Python calls when you use the <<
operator and the left-hand operand is an OStream'"''
if isinstance(thing, |QOvanipulator):
t hi ng. do(sel f)

el se:
self.output.wite(self.format %t hing)
self.format ="'9%'

return self
def exanple_main():
cout = CStrean()

cout<< "The average of " << 1 << " and " << 3 << " is " << (143)/2 <<endl
emts The average of 1 and 3 is 4
if _name ="' _ min_ ":

exanpl g_r_mi n()

Discussion

Wrapping Python file-like objects to emulate C++ ostreams syntax is quite easy. This recipe
shows how to code the insertion operator << for this purpose. The recipe also implements an

| OMani pul at or class (as in C++) to call arbitrary functions on a stream upon insertion, and a
predefined manipulator endl (guess where that name comes from) to write a newline and flush
the stream.

The reason class OStream's instances hold a format attribute and reset it to the default value '%"
after each sel f. out put.wite is so that you can build devious manipulators that temporarily
save formatting state on the stream object, such as:

def do_hex(strean):

streamformat = ' %'
hex = | Ovani pul at or (do_hex)
cout << 23 <<' in hex is ' << hex << 23 << ', and in decimal ' << 23 << endl

emts 23 in hex is 17, and in decinmal 23

Some people detest C++'s cout << sonet hi ng syntax, some love it. In cases such as the
example given in the recipe, this syntax ends up simpler and more readable than:

print >>sonmewhere, "The average of % and %l is %\n" % (1, 3, (1+3)/2)

which is the "Python-native" alternative (looking a lot like C in this case). It depends in part on
whether you're more used to C++ or to C. In any case, this recipe gives you a choice! Even if

you don't end up using this particular approach, it's still interesting to see how simple operator
overloading is in Python.

See Also

Library Reference and Python in a Nutshell docs on fi | e objects and special methods such as _
I'shift _; Recipe 4.20 implements a Python version of C's pri ntf function.

R [

[rrevons f e

Recipe 2.14. Rewinding an Input File to the Beginning

Credit: Andrew Dalke

Problem

You need to make an input file object (with data coming from a socket or other input file handle)
rewindable back to the beginning so you can read it over.

Solution

Wrap the file object into a suitable class:

fromcStringlOinport StringlO
cl ass Rewi ndabl eFi | e(obj ect):
""" Wap a file handle to all ow seeks back to the begi nning.

def _ init_ (self, input _file):
" Waps input fileinto a file-like object with rew nd.
self.file = input_file

self.buffer file = Stringl O)
self.at_start = True

try:
self.start = input _file.tell()
except (I1CError, AttributeError):
self.start =0

self. use buffer = True
def seek(self, offset, whence=0):
' Seek to a given byte position.
Miust be: whence == 0 and offset == self.start
i f whence != 0:
rai se Val ueError ("whence=% ; expecting 0" % (whence,))
if offset !'= self.start:
rai se ValueError("of fset=%,; expecting %" % (offset, self.start))
self.rewi nd()
def rew nd(self):
" Sinplified way to seek back to the begi nning.
self.buffer_file.seek(0)
self.at _start = True
def tell (self):
" Return the current position of the file (nmust be at start).
if not self.at _start:
rai se TypeError("Rew ndableFile can't tell except at start of file")
return self.start
def _read(self, size):
if size < O0: # read all the way to the end of the file
y = self.file.read()
if self. _use_buffer:
self.buffer file.wite(y)
return self.buffer _file.read() + vy
elif size == 0: # no need to actually read the enpty string
return ""

x = self.buffer file.read(size)
if len(x) < size:
y = self.file.read(size - len(x))
if self. use buffer:
self.buffer_file.wite(y)
return x +vy
return x
def read(self, size=-1):
Read up to 'size' bytes fromthe file.
Default is -1, which nmeans to read to end of file.
x = self. _read(size)
if self.at_start and x:
self.at_start = Fal se
sel f. _check_no_buffer()
return x
def readline(self):
""" Read a line fromthe file.
Can we get it out of the buffer _file?
s = self.buffer_file.readline()
if s[-1:] == "\n":
return s
No, so read a line fromthe input file
t =self.file.readline()
if self. _use_buffer:
self.buffer file.wite(t)
self. _check _no _buffer()
return s +t
def readlines(self):
"""read all remaining lines fromthe file
return self.read().splitlines(True)
def _check _no_buffer(self):
If 'nobuffer' has been called and we're finished with the buffer file,
get rid of the buffer, redirect everything to the original input file.
if not self. use buffer and \
self.buffer_file.tell() ==len(self.buffer_file.getvalue()):
for top performance, we rebind all relevant nethods in self
for nin 'seek tell read readline readlines .split():
setattr(self, n, getattr(self.file, n, None))
del self.buffer_file
def nobuffer(self):
"""tell Rew ndableFile to stop using the buffer once it's exhausted"""
sel f. use buffer = Fal se

Discussion

Sometimes, data coming from a socket or other input file handle isn't what it was supposed to
be. For example, suppose you are reading from a buggy server, which is supposed to return an
XML stream, but sometimes returns an unformatted error message instead. (This scenario often
occurs because many servers don't handle incorrect input very well.)

This recipe’'s RewindableFile class helps you solve this problem. r = Rewi ndabl eFi | e(f) wraps
the original input stream f into a "rewindable file" instance r which essentially mimics f 's
behavior but also provides a buffer. Read requests to r are forwarded to f, and the data thus
read gets appended to a buffer, then returned to the caller. The buffer contains all the data read
So far.

r can be told to rewind, meaning to seek back to the start position. The next read request will

come from the buffer, until the buffer has been read, in which case it gets the data from the
input stream again. The newly read data is also appended to the buffer.

When buffering is no longer needed, call the nobuffer method of r. This tells r that, once it's

done reading the buffer's current contents, it can throw the buffer away. After nobuffer is called,
the behavior of seek is no longer defined.

For example, suppose you have a server that gives either an error message of the form ERROR
cannot do that, or an XML data stream, starting with '<?xm '...:

i nport Rewi ndabl eFi | e

infile = urllib2. urlopen("http://sonewhere/")

infile = Rewi ndabl eFi | e. Rewi ndabl eFil e(infile)

s = infile.readline()

if s.startswith("ERROR "):
rai se Exception(s[:-1])

infile.seek(0)

infile.nobuffer() # Don't buffer the data any nore
process the XML frominfile ...

One sometimes-useful Python idiom is not supported by the class in this recipe: you can't reliably
stash away the bound methods of a RewindableFile instance. (If you don't know what bound
methods are, no problem, of course, since in that case you surely won't want to stash them
anywhere!). The reason for this limitation is that, when the buffer is empty, the RewindableFile
code reassigns the input file's r ead, r eadl i nes, etc., methods, as instance variables of sel f.
This gives slightly better performance, at the cost of not supporting the infrequently-used idiom
of saving bound methods. See Recipe 6.11 for another example of a similar technique, where an
instance irreversibly changes its own methods.

The tel | method, which gives the current location of a file, can be called on an instance of
RewindableFile only right after wrapping, and before any reading, to get the beginning byte
location. The RewindableFile implementation of t el | TRies to get the real position from the
wrapped file, and use that as the beginning location. If the wrapped file does not supporttell,
then the RewindableFile implementation of t el | just returns O.

See Also

Site http://www.dalkescientific.com/Python/ for the latest version of this recipe's code; Library
Reference and Python in a Nutshell docs on fi | e objects and module cStri ngl O; Recipe 6.11 for

another example of an instance affecting an irreversible behavior change on itself by rebinding its
methods.

[rscviovs Jruexr s

http://www.dalkescientific.com/Python/

[rrevons f e

Recipe 2.15. Adapting a File-like Object to a True File
Object

Credit: Michael Kent

Problem

You need to pass a file-like object (e.g., the results of a call such asurllib. url open) to a
function or method that insists on receiving a true file object (e.g., a function such as
mar shal . | oad).

Solution

To cooperate with such type-checking, we need to write all data from the file-like object into a
temporary file on disk. Then, we can use the (true) file object for that temporary disk file. Here's
a function that implements this idea:

i nport types, tenpfile
CHUNK SI ZE = 16 * 1024
def adapt _file(fileCbj):
if isinstance(fileObj, file): return filej
tnpFil et = tenpfile. TenporaryFile
whil e True:
data = fil eQbj.read(CHUNK Sl ZE)
if not data: break
tnpFil eCbj . wite(data)
fileObj.close()
tnpFi | eQoj . seek(0)
return tnpFil e(j

Discussion

This recipe demonstrates an unusual Pythonic application of the Adapter Design Pattern (i.e.,
what to do when you have an X and you need a Y instead). While design patterns are most
normally thought of in an object-oriented way, and therefore implemented by writing classes,
nothing is intrinsically necessary about that. In this case, for example, we don't really need to
introduce any new class, since the adapt_file function is obviously sufficient. Therefore, we
respect Occam's Razor and do not introduce entities without necessity.

One way or another, you should think in terms of adaptation, in preference to type testing, even
when you need to rely on some lower-level utility that insists on precise types. Instead of raising
an exception when you get passed an object that's perfectly adequate save for the technicality of
type membership, think of the possibility of adapting what you get passed to what you need. In
this way, your code will be more flexible and more suitable for reuse.

See Also

Documentation on built-in fi | e objects, and modules t enpfi | e and mar shal , in the Library

Reference and Python in a Nutshell.

R [

[rrevons f e

Recipe 2.16. Walking Directory Trees

Credit: Robin Parmar, Alex Martelli

Problem

You need to examine a "directory", or an entire directory tree rooted in a certain directory, and
iterate on the files (and optionally folders) that match certain patterns.

Solution

The generator os. wal k from the Python Standard Library module os is sufficient for this task, but
we can dress it up a bit by coding our own function to wrap os. wal k:

i nport os, fnmatch
def all _files(root, patterns="*', single_level =Fal se, yield_fol ders=Fal se):
Expand patterns from sem col on-separated string to |ist
patterns = patterns.split(';")
for path, subdirs, files in os.wal k(root):
if yield_fol ders:
files.extend(subdirs)
files.sort()
for name in files:
for pattern in patterns:
i f fnmatch. fnmat ch(nane, pattern):
yi el d os.path.join(path, nane)
br eak
if single |evel:
br eak

Discussion

The standard directory tree traversal generator os. wal k is powerful, simple, and flexible.
However, as it stands, os. wal k lacks a few niceties that applications may need, such as selecting

files according to some patterns, flat (linear) looping on all files (and optionally folders) in sorted
order, and the ability to examine a single directory (without entering its subdirectories). This
recipe shows how easily these kinds of features can be added, by wrapping os. wal k into another
simple generator and using standard library module f nnat ch to check filenames for matches to

patterns.

The file patterns are possibly case-insensitive (that's platform-dependent) but otherwise Unix-
style, as supplied by the standard f nmat ch module, which this recipe uses. To specify multiple
patterns, join them with a semicolon. Note that this means that semicolons themselves can't be

part of a pattern.

For example, you can easily get a list of all Python and HTML files in directory / t np or any
subdirectory thereof:

thefiles = list(all_files('/tnmp', "*.py;*.htm*.htm "))

Should you just want to process these files' paths one at a time (e.g., print them, one per line),
you do not need to build a list: you can simply loop on the result of calling all_files:

for path inall_files('/tnp', "*.py;*.htm*.htm"):
print path

If your platform is case-sensitive, alnd you want case-sensitive matching, then you need to
specify the patterns more laboriously, e.g., ™. [Hh] [Tt] [M [LI] instead of just **. htm ".

See Also

Documentation for the os. pat h module and the os. wal k generator, as well as the f nmat ch
module, in the Library Reference and Python in a Nutshell.

O [

[rrevons f e

Recipe 2.17. Swapping One File Extension for Another
Throughout a Directory Tree

Credit: Julius Welby

Problem

You need to rename files throughout a subtree of directories, specifically changing the names of
all files with a given extension so that they have a different extension instead.

Solution

Operating on all files of a whole subtree of directories is easy enough with the os. wal k function
from Python's standard library:

i mport os
def swapextensions(dir, before, after):
if before[:1] !="

before = '."' +before
thelen = -l en(before)
if after[:1] !="

after = '."+after

for path, subdirs, files in os.walk(dir):
for oldfile in files:
if oldfile[thelen:] == before:
oldfile = os.path.join(path, oldfile)
newfile = oldfile[:thelen] + after
os.renanme(ol dfile, newfile)
if _ nane_ =='"_ main_ _
i nport sys
if len(sys.argv) != 4.
print "Usage: swapext rootdir before after”
sys. exit(100)
swapext ensi ons(sys. argv[1l], sys.argv[2], sys.argv[3])

Discussion

This recipe shows how to change the file extensions of all files in a specified directory, all of its
subdirectories, all of their subdirectories, and so on. This technique is useful for changing the
extensions of a whole batch of files in a folder structure, such as a web site. You can also use it
to correct errors made when saving a batch of files programmatically.

The recipe is usable either as a module to be imported from any other, or as a script to run from
the command line, and it is carefully coded to be platform-independent. You can pass in the
extensions either with or without the leading dot (.), since the code in this recipe inserts that dot,
if necessary. (As a consequence of this convenience, however, this recipe is unable to deal with
files completely lacking any extension, including the dot; this limitation may be bothersome on
Unix systems.)

The implementation of this recipe uses techniques that purists might consider too low

levelspecifically by dealing mostly with filenames and extensions by direct string manipulation,
rather than by the functions in module os. pat h. It's not a big deal: using os. pat h is fine, but

using Python's powerful string facilities to deal with filenames is fine, too.

See Also

The author's web page at http://www.outwardlynormal.com/python/swapextensions.htm.

T

http://www.outwardlynormal.com/python/swapextensions.htm

[rrevons f e

Recipe 2.18. Finding a File Given a Search Path

Credit: Chui Tey

Problem

Given a search path (a string of directories with a separator in between), you need to find the
first file along the path with the requested name.

Solution

Basically, you need to loop over the directories in the given search path:

i mport os
def search file(filename, search_path, pathsep=0s. pathsep):
""" Gven a search path, find file with requested nane
for path in search_path.split(pathsep):
candi date = os.path.join(path, filenange)
if os.path.isfile(candidate):
return os. path. abspat h(candi dat e)
return None

if _ _nane_ _ =="'_ _main_ _
search_path = '/bin" + os.pathsep + '/usr/bin" # ; on Wndows, : on Unix
find_file = search_file('lIs', search_path)
if find_file:
print "File '"Is" found at %" %find_file
el se:

print "File '"I's" not found"

Discussion

This recipe's "Problem" is a reasonably frequent task, and Python makes resolving it extremely
easy. Other recipes perform similar and related tasks: to find files specifically on Python's own
search path, see Recipe 2.20; to find all files matching a pattern along a search path, see Recipe
2.19.

The search loop can be coded in many ways, but returning the path (made into an absolute path,
for uniformity and convenience) as soon as a hit is found is simplest as well as fast. The explicit
return None after the loop is not strictly needed, since None is returned by Python when a
function falls off the end. Having the r et ur n statement explicitly there in this case makes the

functionality of search_file much clearer at first sight.

See Also

Recipe 2.20; Recipe 2.19; documentation for the module os in the Library Reference and Python
in a Nutshell.

[rrevons f e

[rrevons f e

Recipe 2.19. Finding Files Given a Search Path and a
Pattern

Credit: Bill McNeill, Andrew Kirkpatrick

Problem

Given a search path (i.e., a string of directories with a separator in between), you need to find all
files along the path whose names match a given pattern.

Solution

Basically, you need to loop over the directories in the given search path. The loop is best
encapsulated in a generator:

i mport glob, os
def all _files(pattern, search_path, pathsep=o0s. pathsep):
' Gven a search path, yield all files matching the pattern.
for path in search_path.split(pathsep):
for match in glob.glob(os.path.join(path, pattern)):
yield match

Discussion

One nice thing about generators is that you can easily use them to obtain just the first item, all
items, or anything in between. For example, to print the first file matching . pye"' along your
environment's PATH:

print all _files('*.pye', os.environ['PATH]).next()

To print all such files, one per line:

for matchinall _files('*.pye', os.environ['PATH]):
print nmatch

To print them all at once, as a list:

print list(all _files('*.pye', os.environ[' PATH]))

I have also wrapped around this all_files function a main script to show all of the files with a
given name along my PATH. Thus | can see not only which one will execute for that name (the

first one), but also which ones are "shadowed" by that first one:

if _ nanme_ =="'_ main_ _
i nport sys
if len(sys.argv) !=2 or sys.argv[1l].startswith('-"):

print 'Use: % <pattern>' % sys. argv[0]

sys.exit(1)
matches = list(all _files(sys.argv[1],
print '%l match:' %/ en(matches)
for match in matches:
print match

os.environ[' PATH 1))

See Also

Recipe 2.18 for a simpler approach to find the first file with a specified name along the path;
Library Reference and Python in a Nutshell docs for modules os and gl ob.

T [

[rrevons f e

Recipe 2.20. Finding a File on the Python Search Path

Credit: Mitch Chapman

Problem

A large Python application includes resource files (e.g., Glade project files, SQL templates, and
images) as well as Python packages. You want to store these associated files together with the
Python packages that use them.

Solution

You need to be able to look for either files or directories along Python's sys. pat h:

i mport sys, o0s
class Error(Exception): pass
def _find(pathname, mat chFunc=os. path.isfile):
for dirname in sys.path:
candi date = os. path.joi n(dirname, pathnane)
i f mat chFunc(candi date):
return candi date
raise Error("Can't find file %" % pat hnane)
def findFile(pathnane):
return _find(pathnane)
def findDir(path):
return _find(path, matchFunc=o0s. path.isdir)

Discussion

Larger Python applications consist of sets of Python packages and associated sets of resource
files. It's convenient to store these associated files together with the Python packages that use
them, and it's easy to do so if you use this variation on the previous Recipe 2.18 to find files or
directories with pathnames relative to the Python search path.

See Also

Recipe 2.18; documentation for the os module in the Library Reference and Python in a Nutshell.

[rscviovs Jruexr s

[rrevons f e

Recipe 2.21. Dynamically Changing the PythonSearch
Path

Credit: Robin Parmar

Problem

Modules must be on the Python search path before they can be imported, but you don't want to
set a huge permanent path because that slows performanceso, you want to change the path
dynamically.

Solution

We simply conditionally add a "directory" to Python's sys. pat h, carefully checking to avoid
duplication:

def AddSysPat h(new_pat h):
' AddSysPat h(new path): adds a "directory" to Python's sys.path
Does not add the directory if it does not exist or if it's already on
sys.path. Returns 1 if OK, -1 if new path does not exist, O if it was
al ready on sys. pat h.

i nport sys, o0s
Avoi d addi ng nonexi stent paths
if not os.path.exists(new path): return -1
Standardi ze the path. Wndows is case-insensitive, so | owercase
for definiteness if we are on W ndows.
new _pat h = os. pat h. abspat h(new_pat h)
if sys.platform=="wi n32'
new_path = new_path. | ower()
Check against all currently avail abl e paths
for x in sys.path:
X = 0s. pat h. abspat h(x)
if sys.platform=="w n32'
X = X.lower()
if newpath in (x, x + 0s.sep):
return O
sys. pat h. append(new_pat h)
if you want the new path to take precedence over existing
directories already in sys.path, instead of appendi ng, use:
sys.path.insert(0, new path)

return 1

if _ nanme_ =="'_ main_ ":
Test and show usage
i nport sys

print 'Before:'
for x in sys.path: print x
if sys.platform=="w n32":
print AddSysPath('c:\\Tenp")
print AddSysPath('c:\\tenp")
el se:

print AddSysPath('/usr/lib/m _nodul es')
print 'After:’
for x in sys.path: print x

Discussion

Modules must be in directories that are on the Python search path before they can be imported,
but we don't want to have a huge permanent path because doing so slows down every import
performed by every Python script and application. This simple recipe dynamically adds a
"directory" to the path, but only if that directory exists and was not already on sys. pat h.

sys. pat h is a list, so it's easy to add directories to its end, using sys. pat h. append. Every i nport
performed after such an append will automatically look in the newly added directory if it cannot
be satisfied from earlier ones. As indicated in the Solution, you can alternatively use
sys.path.insert(0, . . .so that the newly added directory is searched before ones that were
already in sys. pat h.

It's no big deal if sys. pat h ends up with some duplicates or if a nonexistent directory is
accidentally appended to it; Python's i nport statement is clever enough to shield itself against
such issues. However, each time such a problem occurs at import time (e.g., from duplicate
unsuccessful searches, errors from the operating system that need to be handled gracefully,
etc.), a small price is paid in terms of performance. To avoid uselessly paying such a price, this
recipe does a conditional addition to sys. pat h, never appending any directory that doesn't exist
or is already in sys. pat h. Directories appended by this recipe stay in sys. pat h only for the
duration of this program's run, just like any other dynamic alteration you might do to sys. pat h.

See Also

Documentation for the sys and os. pat h modules in the Library Reference and Python in a
Nutshell.

[rscviovs Jruexr s

[rrevons f e

Recipe 2.22. Computing the Relative Path from One
Directory to Another

Credit: Cimarron Taylor, Alan Ezust

Problem

You need to know the relative path from one directory to anotherfor example, to create a
symbolic link or a relative reference in a URL.

Solution

The simplest approach is to split paths into lists of directories, then work on the lists. Using a
couple of auxiliary and somewhat generic helper functions, we could code:

import os, itertools
def all_equal (el ements):
return True if all the elenents are equal, otherw se Fal se.
first_element = el ements[0]
for other_elenent in elements[1l:]:
if other _elenent != first _elenent: return Fal se
return True
def common_prefix(*sequences):
"'' return a list of common elenents at the start of all sequences,
then a list of lists that are the unique tails of each sequence.
if there are no sequences at all, we're done
if not sequences: return [1, []
loop in parallel on the sequences
comon = []
for elements in itertools.izip(*sequences):
unless all elenments are equal, bail out of the |oop
if not all_equal (el enents): break
got one nore common el ement, append it and keep | ooping
common. append(el enent s[0])
return the conmon prefix and unique tails
return common, [sequence[len(comon):] for sequence in sequences]
def rel path(pl, p2, sep=o0s.path.sep, pardir=os.path.pardir):
"'' return a relative path frompl equivalent to path p2.
In particular: the enpty string, if pl == p2;
p2, if pl and p2 have no comon prefix.

comon, (ul, u2) = common_prefix(pl.split(sep), p2.split(sep))
if not common:
return p2 # | eave path absolute if nothing at all in conmon
return sep.join([pardir]*len(ul) + u2)
def test(pl, p2, sep=o0s.path.sep):
call function rel path and display argunments and results.
print "from, pl, "to", p2, " ->", relpath(pl, p2, sep)
if _ _nane_ _ =="'_ _main_ _

test('/alblc/d, "lalblcl/idl, '/")
test('/alblc/d, '"lfalblc/d, "I")

test('c:/xlylz', "d:/xlylz", 'I")

Discussion

The workhorse in this recipe is the simple but very general function common_prefix, which, given
any N sequences, returns their common prefix and a list of their respective unique tails. To
compute the relative path between two given paths, we can ignore their common prefix. We
need only the appropriate number of move-up markers (normally, os. pat h. pardire.g., ../ on
Unix-like systems; we need as many of them as the length of the unique tail of the starting path)
followed by the unique tail of the destination path. So, function relpath splits the paths into lists
of directories, calls common_prefix, and then performs exactly the construction just described.

common_prefix centers on the loop for elenents in itertools.izip(*sequences), relying on
the fact that i zi p ends with the shortest of the iterables it's zipping. The body of the loop only

needs to prematurely terminate the loop as soon as it meets a tuple of elements (coming one
from each sequence, per i zi p's specifications) that aren't all equal, and to keep track of the

elements that are equal by appending one of them to list common. Once the loop is done, all
that's left to prepare the lists to return is to slice off the elements that are already in common
from the front of each of the sequences.

Function all_equal could alternatively be implemented in a completely different way, less simple
and obvious, but interesting:

def all _equal (el ements):
return len(dict.fronkeys(el ements)) ==

or, equivalently and more concisely, in Python 2.4 only,

def all _equal (el ements):
return len(set(elenments)) ==

Saying that all elements are equal is exactly the same as saying that the set of the elements has
cardinality (length) one. In the variation using di ct. f r onkeys, we use a di ct to represent the
set, so that variation works in Python 2.3 as well as in 2.4. The variation using set is clearer, but

it only works in Python 2.4. (You could also make it work in version 2.3, as well as Python 2.4,
by using the standard Python library module set s).

See Also

Library Reference and Python in a Nutshell docs for modules os and i t ert ool s.

[rrevons f e

[rrevons f e

Recipe 2.23. Reading an Unbuffered Character in a
Cross-Platform Way

Credit: Danny Yoo

Problem

Your application needs to read single characters, unbuffered, from standard input, and it needs
to work on both Windows and Unix-like systems.

Solution

When we need a cross-platform solution, starting with platform-dependent ones, we need to
wrap the different solutions so that they look the same:

try:
fromnsvcrt inport getch
except | nportError:
""" we're not on Wndows, so we try the Unix-Ilike approach """’
def getch():
i mport sys, tty, termos
fd = sys.stdin.fileno()
ol d_settings = term os.tcgetattr(fd)
try:
tty.setraw(fd)
ch = sys.stdin.read(1)
finally:
termos.tcsetattr(fd, term os. TCSADRAI N, ol d_settings)
return ch

Discussion

On Windows, the standard Python library module nsvcrt offers the handy get ch function to read
one character, unbuffered, from the keyboard, without echoing it to the screen. However, this
module is not part of the standard Python library on Unix and Unix-like platforms, such as Linux
and Mac OS X. On such platforms, we can get the same functionality with the tty and t erm os
modules of the standard Python library (which, in turn, are not present on Windows).

The key point is that in application-level code, we should never have to worry about such issues;
rather, we should write our application code in platform-independent ways, counting on library
functions to paper over the differences between platforms. The Python Standard Library fulfills
that role admirably for most tasks, but not all, and the problem posed by this recipe is an
example of one for which the Python Standard Library doesn't directly supply a cross-platform
solution.

When we can't find a ready-packaged cross-platform solution in the standard library, we should
package it anyway as part of our own additional custom library. This recipe's Solution, besides
solving the specific task of the recipe, also shows one good general way to go about such
packaging. (Alternatively, you can test sys. pl at f or m, but | prefer the approach shown in this
recipe.)

Your own library module should try to i nport the standard library module it needs on a certain
platform within a TRy clause and include a corresponding except | nport Error clause that is
triggered when the module is running on a different platform. In the body of that except clause,
your own library module can apply whatever alternate approach will work on the different
platform. In some rare cases, you may need more than two platform-dependent approaches, but
most often you'll need one approach on Windows and only one other approach to cover all other
platforms. This is because most non-Windows platforms today are generally Unix or Unix-like.

See Also

Library Reference and Python in a Nutshell docs for msvert, tty, and term os.

[rscviovs Jruexr s

[rrevons f e

Recipe 2.24. Counting Pages of PDF Documents on Mac
OS X

Credit: Dinu Gherman, Dan Wolfe

Problem

You're running on a reasonably recent version of Mac OS X (version 10.3 "Panther" or later), and
you need to know the number of pages in a PDF document.

Solution

The PDF format and Python are both natively integrated with Mac OS X (10.3 or later), and this
allows a rather simple solution:

#! [usr/ bi n python
i nport CoreG aphics
def pageCount (pdf Pat h):
"Return the nunmber of pages for the PDF document at the given path."
pdf = CoreG aphi cs. CGPDFDocunent Cr eat eW t hProvi der (
Cor eGr aphi cs. CGDat aProvi der Creat eW t hFi | ename(pdf Pat h)

)
return pdf.get Nunber O Pages()

if nanme_ =="'_ main_ _
i nport sys

for path in sys.argv[1l:]:

print pageCount (path)

Discussion

A reasonable alternative to this recipe might be to use the Py(Obj C Python extension, which
(among other wonders) lets Python code reuse all the power in the Foundat i on and AppKi t
frameworks that come with Mac OS X. Such a choice would let you write a Python script that is
also able to run on older versions of Mac OS X, such as 10.2 Jaguar. However, relying on Mac OS
X 10.3 or later ensures we can use the Python installation that is integrated as a part of the
operating system, as well as such goodies as the Cor eG aphi cs Python extension module (also
part of Mac OS X "Panther") that lets your Python code reuse Apple's excellent Quart z graphics
engine directly.

See Also

PyQbj Cis at http://pyobjc.sourceforge.net/; information on the Cor eG aphi cs module is at
http://www.macdevcenter.com/pub/a/mac/2004/03/19/core graphics.html.

O [

http://pyobjc.sourceforge.net/
http://www.macdevcenter.com/pub/a/mac/2004/03/19/core_graphics.html

[rrevons f e

Recipe 2.25. Changing File Attributes on Windows

Credit: John Nielsen

Problem

You need to set the attributes of a file on Windows; for example, you may need to set the file as 1
and so on.

Solution

PyWin32's wi n32api module offers a function Set Fi | eAttri but es that makes this task quite simg

i mport w n32con, W n32api, 0s

create a file, just to show how to manipulate it

thefile = "test'

f = open('test', 'W)

f.close()

to make the file hidden...:

wi n32api . SetFil eAttributes(thefile, win32con. FI LE_ATTRI BUTE_HI DDEN)
to nmake the file readonly:

wi n32api . SetFil eAttributes(thefile, win32con. FI LE ATTRI BUTE_READONLY)
to be able to delete the file we need to set it back to nornal:
wi n32api . SetFil eAttributes(thefile, win32con. FI LE_ATTRI BUTE_NORNVAL)
and finally we remove the file we just nade

os.renove(thefile)

Discussion

One interesting use of wi n32api . Set Fi |l eAttri but es is to enable a file's removal. Removing a file

can fail on Windows if the file's attributes are not normal. To get around this problem, you just ne
call to Set Fi | eAttri butes to convert it to a normal file, as shown at the end of this recipe's Solut

should be done with caution, since there may be a good reason the file is not "normal"”. The file st
only if you know what you're doing!

See Also

The documentation on the wi n32f i | e module at
http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extens

[rscviovs Jruexr s

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html

T =

Recipe 2.26. Extracting Text from OpenOffice.org
Documents

Credit: Dirk Holtwick

Problem

You need to extract the text content (with or without the attending XML markup) from an
OpenOffice.org document.

Solution

An OpenOffice.org document is just a zip file that aggregates XML documents according to a
well-documented standard. To access our precious data, we don't even need to have
OpenOffice.org installed:

inmport zipfile, re
rx_stripxm =re.conpile("<[*>]*?>", re. DOTALL|re. MILLTI LI NE)
def convert OQ(fil enane, want text=True):
""" Convert an OpenOifice.org docunment to XML or text.
zf = zipfile.ZipFile(filenane, "r")
data = zf.read("content.xm")
zf.close()
if want _text:
data =" ".join(rx_stripxm.sub(" ", data).split())
return data
if _ name_ =="_ main_ _
i nport sys
if len(sys.argv)>1:
for docname in sys.argv[1l:]:
print 'Text of', docnaneg,
print convert_OOQ(docnhane)
print 'XM. of', docnane,
print convert_QOQ(docnane, want_text=Fal se)

el se:
print '"Call with paths to OO o doc files to see Text and XM. forns.'

Discussion

OpenOffice.org documents are zip files, and in addition to other contents, they always contain
the file content.xml. This recipe's job, therefore, essentially boils down to just extracting this file.
By default, the recipe then throws away XML tags with a simple regular expression, splits the
result by whitespace, and joins it up again with a single blank to save space. Of course, we could
use an XML parser to get information in a vastly richer and more structured way, but if all we
need is the rough textual content, this fast, rough-and-ready approach may suffice.

Specifically, the regular expression rx_stripxml matches any XML tag (opening or closing) from
the leading < to the terminating >. Inside function convert_ OO, in the statements guarded by i f
want _t ext, we use that regular expression to change every XML tag into a space, then normalize
whitespace by splitting (i.e., calling the string method spl i t, which splits on any sequence of

whitespace), and rejoining (with " ". j oi n, to use a single blank character as the joiner).
Essentially, this split-and-rejoin process changes any sequence of whitespace into a single blank

character. More advanced ways to extract all text from an XML document are shown in Recipe
12.3.

See Also

Library Reference docs on modules zi pfil e and re; OpenOffice.org's web site,
http://www.openoffice.org/; Recipe 12.3.

T [

http://www.openoffice.org/

[rrevons f e

Recipe 2.27. Extracting Text from Microsoft Word
Documents

Credit: Simon Brunning, Pavel Kosina

Problem

You want to extract the text content from each Microsoft Word document in a directory tree on
Windows into a corresponding text file.

Solution

With the PyWin32 extension, we can access Word itself, through COM, to perform the
conversion:

i mport fnmatch, os, sys, w n32com client
wor dapp = wi n32com cl i ent. gencache. Ensur eDi spat ch("Wrd. Application")
try:
for path, dirs, files in os.wal k(sys.argv[1]):
for filename in files:
if not fnmatch. fnmatch(filenane, '*.doc'): continue
doc = o0s. path. abspat h(os. path.join(path, filenane))
print "processing %" % doc
wor dapp. Docunent s. Open(doc)
docastxt = doc[:-3] + 'txt'
wor dapp. Act i veDocunent . SaveAs(docast xt ,
Fi | eFor mat =wi n32com cl i ent. const ant s. wdFor mat Text)
wor dapp. Acti veDocunent . Cl ose()
finally:
ensure Wrd is properly shut down even if we get an exception
wor dapp. Quit()

Discussion

A useful aspect of most Windows applications is that you can script them via COM, and the
PyWin32 extension makes it fairly easy to perform COM scripting from Python. The extension
enables you to write Python scripts to perform many kinds of Window tasks. The script in this
recipe's Solution drives Microsoft Word to extract the text from every .doc file in a "directory"
tree into a corresponding .txt text file. Using the os. wal k function, we can access every
subdirectory in a tree with a simple f or statement, without recursion. With the f nmat ch. f nnat ch
function, we can check a filename to determine whether it matches an appropriate wildcard, here
* . doc'. Once we have determined the name of a Word document file, we process that name with
functions from os. pat h to turn it into a complete absolute path, and have Word open it, save it
as text, and close it again.

If you don't have Word, you may need to take a completely different approach. One possibility is
to use OpenOffice.org, which is able to load Word documents. Another is to use a program
specifically designed to read Word documents, such as Antiword, found at
http://www.winfield.demon.nl/. However, we have not explored these alternative options.

http://www.winfield.demon.nl/

See Also

Mark Hammond, Andy Robinson, Python Programming on Win32 (O'Reilly), for documentation on
PyWin32; http://msdn.microsoft.com, for Microsoft's documentation of the object model of
Microsoft Word; Library Reference and Python in a Nutshell sections on modules f nnat ch and

0s. pat h, and function os. wal k.

[rrevons] uexr

http://msdn.microsoft.com

[rrevons f e

Recipe 2.28. File Locking Using a Cross-Platform API

Credit: Jonathan Feinberg, John Nielsen

Problem

You need to lock files in a program that runs on both Windows and Unix-like systems, but the Pyt
Library offers only platform-specific ways to lock files.

Solution

When the Python Standard Library itself doesn't offer a cross-platform solution, it's often possible
ourselves:

i mport os
needs win32all to work on Wndows (NT, 2K, XP, _not_ /95 or /98)
if os.nane == "'nt':
i mport wi n32con, wi n32file, pyw ntypes
LOCK_EX = wi n32con. LOCKFI LE_EXCLUSI VE_LOCK
LOCK SH = 0 # the default
LOCK _NB = wi n32con. LOCKFI LE_FAI L_| MVEDI ATELY
_ _overl apped = pyw ntypes. OVERLAPPED()
def lock(file, flags):
hfile = win32file. _get_osfhandl e(file.fileno())
wi n32file. LockFil eEx(hfile, flags, 0, Oxffff0000, _ _overl apped)
def unl ock(file):
hfile = win32file. _get_osfhandle(file.fileno())
wi n32file. Unl ockFil eEx(hfile, 0, Oxffff0000, _ _overl apped)
elif os.name == 'posix':
fromfcntl inport LOCK EX, LOCK SH, LOCK NB
def lock(file, flags):
fentl.flock(file.fileno(), flags)
def unl ock(file):
fentl.flock(file.fileno(), fcntl.LOCK UN)
el se:
rai se RuntineError("PortalLocker only defined for nt and posix platfornms")

Discussion

When multiple programs or threads have to access a shared file, it's wise to ensure that accesses
that two processes don't try to modify the file contents at the same time. Failure to synchronize a
corrupt the entire file in some cases.

This recipe supplies two functions, lock and unlock, that request and release locks on a file, respe

portal ocker. py module is a simple matter of calling the lock function and passing in the file and
specifying the kind of lock that is desired:

Shared lock (default)

This lock denies all processes, including the process that first locks the file, write access to 1
processes can read the locked file.

Exclusive lock

This denies all other processes both read and write access to the file.

Nonblocking lock

When this value is specified, the function returns immediately if it is unable to acquire the
Otherwise, it waits. LOCK_NB can be (Red with either LOCK_SH or LOCK_EX by using Python's
the vertical bar (]).

For example:

i mport portal ocker
afile = open("sonefile", "r+")
portal ocker.lock(afile, portal ocker.LOCK EX)

The implementation of the lock and unlock functions is entirely different on different systems. On
(including Linux and Mac OS X), the recipe relies on functionality made available by the standard -
Windows systems (NT, 2000, XPit doesn't work on old Win/95 and Win/98 platforms because they
needed oomph in the operating system!), the recipe uses the wi n32fi | e module, part of the very
package of Windows-specific extensions to Python, authored by Mark Hammond. But the importal
despite the differences in implementation, the functions (and the flags you can pass to the lock fu
behave in the same way across platforms. Such cross-platform packaging of differently implemen
functionality enables you to easily write cross-platform applications, which is one of Python's strel

When you write a cross-platform program, it's nice if the functionality that your program uses is,

encapsulated in a cross-platform way. For file locking in particular, it is especially helpful to Perl u
to an essentially transparent | ock system call across platforms. More generally, i f 0s. nane== ju
application-level code. Such platform testing ideally should always be in the standard library or ar
independent module, as it is here.

See Also

Documentation on the f cnt| module in the Library Reference; documentation on the wi n32filer
http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extens
Jonathan Feinberg's web site (http://MrFeinberg.com).

[rscviovs Jruexr s

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html
http://MrFeinberg.com

[rrevons f e

Recipe 2.29. Versioning Filenames

Credit: Robin Parmar, Martin Miller

Problem

You want to make a backup copy of a file, before you overwrite it, with the standard convention
of appending a three-digit version number to the name of the old file.

Solution

We just need to code a function to perform the backup copy appropriately:

def VersionFile(file _spec, vtype= copy'):
i mport os, shutil
if os.path.isfile(file_spec):
check the 'vtype' paraneter
if vtype not in ('copy', 'renane'):
rai se ValueError, 'Unknown vtype %' % (vtype,)
Determine root filename so the extension doesn't get |onger
n, e = os.path.splitext(file_spec)
1s e athree-digits integer preceded by a dot?
if len(e) == 4 and e[l:].isdigit():
num=1 + int(e[l:])
root = n
el se:
num = 0
root = file_spec
Find next available file version
for i in xrange(num 1000):
new file = '9.9%3d" % (root, i)
if not os.path.exists(newfile):
if vtype == 'copy":
shutil.copy(file_spec, newfile)
el se:
os.rename(file_spec, new file)
return True
raise RuntimeError, "Can't % %, all names taken"%vtype,file_spec)
return Fal se
i f _hame_ _ == mai n
i mport os
create a dummy file '"test.txt
tfn = "test.txt’
open(tfn, "w).close()
version it 3 tines
print VersionFile(tfn)
emts: True
print VersionFile(tfn)
emts: True
print VersionFile(tfn)
emts: True
remove all test.txt* files we just made

for x in ("", '.000", '.001", '.002"):
os.unlink(tfn + x)

show what happens when the file does not exist

print VersionFile(tfn)

emts: Fal se

print VersionFile(tfn)

emts: Fal se

Discussion

The purpose of the VersionFile function is to ensure that an existing file is copied (or renamed, as
indicated by the optional second parameter) before you open it for writing or updating and
therefore modify it. It is polite to make such backups of files before you mangle them (one
functionality some people still pine for from the good old VMS operating system, which
performed it automatically!). The actual copy or renaming is performed by shutil.copy and
os.rename, respectively, so the only issue is which name to use as the target.

A popular way to determine backups' names is versioning (i.e., appending to the filename a
gradually incrementing number). This recipe determines the new name by first extracting the
filename's root (just in case you call it with an already-versioned filename) and then successively
appending to that root the further extensions .000, .001, and so on, until a name built in this
manner does not correspond to any existing file. Then, and only then, is the name used as the
target of a copy or renaming. Note that VersionFile is limited to 1,000 versions, so you should
have an archive plan after that. The file must exist before it is first versionedyou cannot back up
what does not yet exist. However, if the file doesn't exist, function VersionFile simply returns

Fal se (while it returns TRue if the file exists and has been successfully versioned), so you don't
need to check before calling it!

See Also

Documentation for the os and shuti | modules in the Library Reference and Python in a Nutshell.

T [

[rrevons f e

Recipe 2.30. Calculating CRC-64 Cyclic Redundancy
Checks

Credit: Gian Paolo Ciceri

Problem

You need to ensure the integrity of some data by computing the data's cyclic redundancy check
(CRC), and you need to do so according to the CRC-64 specifications of the 1SO-3309 standard.

Solution

The Python Standard Library does not include any implementation of CRC-64 (only one of CRC-
32 in function zl i b. crc32), so we need to program it ourselves. Fortunately, Python can perform
bitwise operations (masking, shifting, bitwise-and, bitwise-or, xor, etc.) just as well as, say, C
(and, in fact, with just about the same syntax), so it's easy to transliterate a typical reference
implementation of CRC-64 into a Python function as follows:

prepare two auxiliary tables tables (using a function, for speed),
then renove the function, since it's not needed any nore:
CRCTabl eh = [0] * 256
CRCTablel =[0] * 256
def _inittabl es(CRCTabl eh, CRCTablel, POLY64REVh, Bl T_TOGGLE)
for i in xrange(256):
partl =i
parth = OL
for j in xrange(8):
rflag = partl & 1L
partl >>= 1L

if parth & 1:

partl ~= BIT_TOGGLE
parth >>= 1L
if rflag:

parth "= POLY64REVh
CRCTabl eh[i] = parth
CRCTablel[i] = partl
first 32 bits of generator polynom al for CRC64 (the 32 lower bits are
assunmed to be zero) and bit-toggle mask used in _inittables
POLY64REVh = 0xd8000000L
BI T_TOGGLE = 1L << 31L
run the function to prepare the tables
_inittabl es(CRCTabl eh, CRCTabl el, POLY64REVh, BI T_TOGGLE)
renove all nanes we don't need any nore, including the function
del _inittables, POLY64REVh, BI T_TOGGLE
this nodul e exposes the following two functions: crc64, crc64di gest
def crc64(bytes, (crch, crcl)=(0,0)):
for byte in bytes:
shr = (crch & OxFF) << 24
tenplh = crch >> 8L
templl = (crcl >> 8L) | shr
tabl ei ndex = (crcl ” ord(byte)) & OxFF

crch = tenplh ~ CRCTabl eh[t abl ei ndex]
crcl = tenpll ~ CRCTabl el [tabl ei ndex]
return crch, crcl
def crc64di gest(aString):
return "9%O8X%08X" % (crcb64(bytes))
if _ _nane_ _ =="'_ _main_ _
alittle test/deno, for when this nodul e runs as nain-script
assert crc64("1 HATEMATH') == (3822890454, 2600578513)
assert crc64di gest ("I HATEVMATH') == "E3DCADD69B01ADD1"
print 'crc64: dunb test successful'

Discussion

Cyclic redundancy checks (CRCs) are a popular way to ensure that data (in particular, a file) has
not been accidentally damaged. CRCs can readily detect accidental damage, but they are not
intended to withstand inimical assault the way other cryptographically strong checksums are.
CRCs can be computed much faster than other kinds of checksums, making them useful in those
cases where the only damage we need to guard against is accidental damage, rather than
deliberate adversarial tampering.

Mathematically speaking, a CRC is computed as a polynomial over the bits of the data we're
checksumming. In practice, as this recipe shows, most of the computation can be done once and
for all and summarized in tables that, when properly indexed, give the contribution of each byte
of input data to the result. So, after initialization (which we do with an auxiliary function because
computation in Python is much faster when using a function's local variables than when using
globals), actual CRC computation is quite fast. Both the computation of the tables and their use
for CRC computation require a lot of bitwise operations, but, fortunately, Python's just as good at
such operations as other languages such as C. (In fact, Python's syntax for the various bitwise
operands is just about the same as C's.)

The algorithm to compute the standard CRC-64 checksum is described in the 1SO-3309 standard,
and this recipe does nothing more than implement that algorithm. The generator polynomial is
x64 + x4 + x3 + x + 1. (The "See Also" section within this recipe provides a reference for

obtaining information about the computation.)

We represent the 64-bit result as a pair of Python i nt s, holding the low and high 32-bit halves of
the result. To allow the CRC to be computed incrementally, in those cases where the data comes

in a little at a time, we let the caller of function crc64 optionally feed in the "initial value" for the
(crch, crcl) pair, presumably obtained by calling crc64 on previous parts of the data. To

compute the CRC in one gulp, the caller just needs to pass in the data (a string of bytes), since
in this case, we initialize the result to (0, 0) by default.

See Also

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, 2d ed.
(Cambridge University Press), pp. 896ff.

O [

Chapter 3. Time and Money

Introduction

Recipe 3.1. Calculating Yesterday and Tomorrow

Recipe 3.2. FindinglastFriday

Recipe 3.3. Calculating Time Periods in a Date Range

Recipe 3.4. Summing Durations of Songs

Recipe 3.5. Calculating the Number of Weekdays Between Two Dates
Recipe 3.6. Looking up Holidays Automatically

Recipe 3.7. FuzzyParsing of Dates

Recipe 3.8. Checking Whether Daylight Saving Time Is Currently in Effect
Recipe 3.9. ConvertingTime Zones

Recipe 3.10. RunningaCommand Repeatedly

Recipe 3.11. SchedulingCommands

Recipe 3.12. Doing Decimal Arithmetic

Recipe 3.13. Formatting Decimals as Currency

Recipe 3.14. UsingPython as aSimple Adding Machine

Recipe 3.15. CheckingacCreditCard Checksum

Recipe 3.16. WatchingForeign Exchange Rates

[rrevons f e

Introduction

Credit: Gustavo Niemeyer, Facundo Batista

Today, last weekend, next year. These terms sound so common. You have probably wondered,
at least once, about how deeply our lives are involved in the very idea of time. The concept of
time surrounds us, and, as a consequence, it's also present in the vast majority of software
projects. Even very simple programs may have to deal with timestamps, delays, timeouts, speed
gauges, calendars, and so on. As befits a general-purpose language that is proud to come with
"batteries included,"” Python's standard library offers solid support for these application needs,
and more support yet comes from third-party modules and packages.

Computing tasks involving money are another interesting topic that catches our attention
because it's so closely related to our daily lives. Python 2.4 introduced support for decimal
numbers (and you can retrofit that support into 2.3, see
http://www.taniquetil.com.ar/facundo/bdvfiles/get decimal.html), making Python a good option
even for computations where you must avoid using binary floats, as ones involving money so
often are.

This chapter covers exactly these two topics, money and time. According to the old saying,
maybe we should claim the chapter is really about a single topic, since after all, as everybody
knowstime is money!

The time Module

Python Standard Library's ti me module lets Python applications access a good portion of the
time-related functionality offered by the platform Python is running on. Your platform's
documentation for the equivalent functions in the C library will therefore be useful, and some
peculiarities of different platforms will affect Python as well.

One of the most used functions from module ti ne is the one that obtains the current

timeti me. ti me. This function's return value may be a little cryptic for the uninitiated: it's a
floating-point number that corresponds to the number of seconds passed since a fixed instant
called the epoch, which may change depending on your platform but is usually midnight of
January 1, 1970.

To check which epoch your platform uses, try, at any Python interactive interpreter prompt:

>>> jnport tine
>>> print tine.asctine(tinme.gntinme(0))

Notice we're passing O (meaning O seconds after the epoch) to the ti nme. gnti me function.

time. gntime converts any timestamp (in seconds since the epoch) into a tuple that represents
that precise instant of time in human terms, without applying any kind of time zone conversion
(GMT stands for "Greenwich mean time", an old but colorful way to refer to what is now known
as UTC, for "Coordinated Universal Time"). You can also pass a timestamp (in seconds since the
epoch) to ti ne. | ocal ti ne, which applies the current local notion of time zone.

It's important to understand the difference, since, if you have a timestamp that is already offset
to represent a local time, passing it to the ti ne. | ocal ti ne function will not yield the expected

resultunless you're so lucky that your local time zone happens to coincide with the UTC time
zone, of course!

Here is a way to unpack a tuple representing the current local time:

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

year, nonth, nday, hour, mnute, second, wday, yday = time.localtine()

While valid, this code is not elegant, and it would certainly not be practical to use it often. This
kind of construct may be completely avoided, since the tuples returned by the time functions let
you access their elements via meaningful attribute names. Obtaining the current month then
becomes a simple and elegant expression:

time.localtine().tmnon

Note that we omitted passing any argument to | ocal ti me. When we call | ocal ti me, gnti me, or
ascti me without an argument, each of them conveniently defaults to using the current time.

Two very useful functions in module ti nme are strfti me, which lets you build a string from a time
tuple, and st r pti nme, which goes the other way, parsing a string and producing a time tuple.
Each of these two functions accepts a format string that lets you specify exactly what you want in
the resulting string (or, respectively, what you expect from the string you're parsing) in
excruciating detail. For all the formatting specifications that you can use in the format strings you
pass to these functions, see http://docs.python.org/lib/module-time.html.

One last important function in module ti ne is the ti ne. sl eep function, which lets you introduce
delays in Python programs. Even though this function's POSIX counterpart accepts only an
integer parameter, the Python equivalent supports a float and allows sub-second delays to be
achieved. For instance:

for i in range(10):
time.sleep(0.5)
print "Tick!"

This snippet will take about 5 seconds to execute, emitting Ti ck! approximately twice per
second.

Time and Date Objects

While module ti ne is quite useful, the Python Standard Library also includes the dat eti ne
module, which supplies types that provide better abstractions for the concepts of dates and
timesnamely, the types ti ne, dat e, and dat et i ne. Constructing instances of those types is quite
elegant:

today = datetinme.date.today()

birthday = datetinme.date(1977, 5, 4) #May 4
currenttinme = datetine.datetine.nowm).tine()
lunchtine = datetinme.tinme(12, 00)

now = datetime. datetine.now)

epoch = datetine.dateti me(1970, 1, 1)

neeting = datetine. dateti me(2005, 8, 3, 15, 30)

Further, as you'd expect, instances of these types offer comfortable information access and
useful operations through their attributes and methods. The following statements create an
instance of the dat e type, representing the current day, then obtain the same date in the next
year, and finally print the result in a dotted format:

today = datetinme.date.today()
next year = today.repl ace(year=today.year+1).strftinme("%. %n %l")
print next_year

http://docs.python.org/lib/module-time.html

Notice how the year was incremented, using the r epl ace method. Assigning to the attributes of
date and time instances may sound tempting, but these instances are immutable (which is a
good thing, because it means we can use the instances as members in a set, or keys in a
dictionary!), so new instances must be created instead of changing existing ones.

Module dat et i me also provides basic support for time deltas (differences between instants of
time; you can think of them as basically meaning durations in time), through the ti medel t a
type. This type lets you change a given date by incrementing or decrementing the date by a
given time slice, and it is also the result of taking the difference between times or dates.

>>> inport datetine

>>> NewYear sDay = datetine. date(2005, 01, 01)
>>> NewYear sEve = datetine. date(2004, 12, 31)
>>> oneday = NewYearsDay - NewYear sEve

>>> print oneday

1 day, 0:00:00

>>>

A ti nmedel t a instance is internally represented by days, seconds, and microseconds, but you can
construct ti nedel t a instances by passing any of these arguments and also other multipliers, like
minutes, hours and weeks. Support for other kinds of deltas, like months, and years, is not
availableon purpose, since their meanings, and operation results, are debatable. (This feature is,
however, offered by the third-party dat euti | packagesee
https://moin.conectiva.com.br/DateUtil.)

dat eti me can be described as a prudent or cautious design. The decision of not implementing
doubtful tasks, and tasks that may need many different implementations in different systems,
reflects the strategy used to develop all of the module. This way, the module offers good
interfaces for most use cases, and, even more importantly, a strong and coherent base for third-
party modules to build upon.

Another area where this cautious design strategy for dat et i me shows starkly is the module's
time zone support. Even though dat et i ne offers nice ways to query and set time zone
information, they're not really useful without an external source to provide nonabstract
subclasses of the t zi nf o type. At least two third-party packages provide time zone support for
dat eti me: dat euti |, mentioned previously, and pyTZ, available at
http://sourceforge.net/projects/pytz/.

Decimal

deci mal is a Python Standard Library module, new in Python 2.4, which finally brings decimal
arithmetic to Python. Thanks to deci nal , we now have a decimal numeric data type, with
bounded precision and floating point. Let's look at each of these three little phrases in more
detail:

Decimal numeric data type

The number is not stored in binary, but rather, as a sequence of decimal digits.

With bounded precision

The number of digits each number stores is fixed. (It is a fixed parameter of each decimal

http://sourceforge.net/projects/pytz/

number object, but different decimal number objects can be set to use different numbers
of digits.)

Floating point

The decimal point does not have a fixed place. (To put it another way: while the number
has a fixed amount of digits in total, it does not have a fixed amount of digits after the
decimal point. If it did, it would be a fixed-point, rather than floating-point, numeric data

type).

Such a data type has many uses (the big use case is as the basis for money computations),
particularly because deci mal . Deci mal offers many other advantages over standard binary

fl oat . The main advantage is that all of the decimal numbers that the user can enter (which is to
say, all the decimal numbers with a finite number of digits) can be represented exactly (in
contrast, some of those numbers do not have an exact representation in binary floating point):

>>> jnport deci mal

>>> 1.1
1.1000000000000001

>>> 2.3
2.2999999999999998

>>> deci mal . Deci mal ("1.1")
Deci mal ("1.1")

>>> deci nmal . Deci mal ("2.3")
Deci mal ("2.3")

The exactness of the representation carries over into arithmetic. In binary floating point, for
example:

>>0.1+0.1+0.1- 0.3
5.5511151231257827e- 17

Such differences are very close to zero, and yet they prevent reliable equality testing; moreover,
even tiny differences can accumulate. For this reason, deci nal should be preferred to binary

floats in accounting applications that have strict equality requirements:

>>> d1 = deci nal . Deci mal
>>> d3 deci mal . Deci mal
>>> dl + d1 + d1 - d3
Deci mal ("0.0")

("0.1")
("0.3")

deci mal . Deci mal instances can be constructed from integers, strings, or tuples. To create a

deci mal . Deci mal from afl oat, first convert the f| oat to a string. This necessary step serves as
an explicit reminder of the details of the conversion, including representation error. Decimal
numbers include special values such as NaN (which stands for "not a number"), positive and
negative I nfinity, and -0. Once constructed, a deci mal . Deci mal object is immutable, just like
any other number in Python.

The deci mal module essentially implements the rules of arithmetic that are taught in school. Up
to a given working precision, exact, unrounded results are given whenever possible:

>>> 0.9/ 10

0. 089999999999999997

>>> deci mal . Deci mal ("0.9") / deci mal . Deci mal (10)
Deci nal ("0.09")

Where the number of digits in a result exceeds the working precision, the number is rounded
according to the current rounding method. Several rounding methods are available; the default is
round-half-even.

The deci mal module incorporates the notion of significant digits, so that, for example, 1.30+1.20
is 2.50. The trailing zero is kept to indicate significance. This is the usual representation for
monetary applications. For multiplication, the "schoolbook" approach uses all the figures in the
multiplicands:

>>> deci mal . Decimal ("1.3") * decinal.Decimal ("1.2")
Deci mal ("1.56")

>>> deci mal . Deci mal (" 1. 30") * decinmal. Decinal ("1.20")
Deci mal ("1.5600")

In addition to the standard numeric properties that deci nal objects share with other built-in
number types, such as fl oat and i nt, deci mal objects also have several specialized methods.
Check the docs for all of the methods, with details and examples.

The deci mal data type works within a context, where some configuration aspects are set. Each
thread has its own current context (having a separate context per thread means that each thread

may make changes without interfering with other threads); the current thread's current context
is accessed or changed using functions get cont ext and set cont ext from the deci mal module.

Unlike hardware-based binary floating point, the precision of the deci mal module can be set by
users (defaulting to 28 places). It can be set to be as large as needed for a given problem:

>>> deci mal . getcontext().prec = 6 # set the precision to 6..
>>> deci nal . Deci nal (1) / decimal . Deci nal (7)

Deci mal (" 0. 142857")

>>> deci mal . getcontext().prec = 60 # ...and to 60 digits

>>> deci nal . Deci mal (1) / deci mal . Deci mal (7)

Deci mal (" 0. 142857142857142857142857142857142857142857142857142857142857")

Not everything in deci mal can be as simple and elementary as shown so far, of course.
Essentially, deci mal implements the standards for general decimal arithmetic which you can
study in detail at http://www?2.hursley.ibm.com/decimal/. In particular, this means that deci nal
supports the concept of signals. Signals represent abnormal conditions arising from
computations (e.g., 1/0, 0/ 0, Infinity/Infinity). Depending on the needs of each specific
application, signals may be ignored, considered as informational, or treated as exceptions. For
each signal, there is a flag and a trap enabler. When a signal is encountered, its flag is
incremented from zero, and then, if the trap enabler is set to one, an exception is raised. This
gives programmers a great deal of power and flexibility in configuring deci nal to meet their
exact needs.

Given all of these advantages for deci nal , why would someone want to stick with f | oat ?
Indeed, is there any reason why Python (like just about every other widespread language, with
Cobol and Rexx the two major exceptions that easily come to mind) originally adopted floating-
point binary numbers as its default (or only) noninteger data type? Of coursemany reasons can
be provided, and they're all spelled speed! Consider:

$ python -ntineit -s'fromdecimal inport Decimal as D 'D("1.2")+D("3.4")"
10000 | oops, best of 3: 191 usec per |oop

$ python -ntineit -s'fromdecinal inport Decimal as D '1.2+3.4'

1000000 | oops, best of 3: 0.339 usec per |oop

This basically translates to: on this machine (an old Athlon 1.2 GHz PC running Linux), Python
can perform almost 3 million sums per second on f | oat s (using the PC's arithmetic hardware),

http://www2.hursley.ibm.com/decimal/

but only a bit more than 5 thousand sums per second on Deci mal s (all done in software and with
all the niceties shown previously).

Essentially, if your application must sum many tens of millions of noninteger numbers, you had
better stick with f1 oat ! When an average machine was a thousand times slower than it is today
(and it wasn't all that long ago!), such limitations hit even applications doing relatively small
amounts of computation, if the applications ran on reasonably cheap machines (again, we see
time and money both playing a role!). Rexx and Cobol were born on mainframes that were not
quite as fast as today's cheapest PCs but thousands of times more expensive. Purchasers of such
mainframes could afford nice and friendly decimal arithmetic, but most other languages, born on
more reasonably priced machines (or meant for computationally intensive tasks), just couldn't.

Fortunately, relatively few applications actually need to perform so much arithmetic on non-
integers as to give any observable performance problems on today's typical machines. Thus,
today, most applications can actually take advantage of deci nal 's many beneficial aspects,
including applications that must continue to use Python 2.3, even though deci nmal is in the
Python Standard Library only since version 2.4. To learn how you can easily integrate deci mal
into Python 2.3, see http://www.taniquetil.com.ar/facundo/bdvfiles/get decimal.html.

T [

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

[rrevons f e

Recipe 3.1. Calculating Yesterday and Tomorrow

Credit: Andrea Cavalcanti

Problem

You want to get today's date, then calculate yesterday's or tomorrow's.

Solution

Whenever you have to deal with a "change" or "difference” in time, think t i medel t a:

i mport datetinme

today = datetine.date.today()

yesterday = today - datetine.tinedelta(days=1)
tomorrow = today + datetine.tinedelta(days=1)
print yesterday, today, tonorrow

#emts: 2004-11-17 2004-11-18 2004-11-19

Discussion

This recipe's Problem has been a fairly frequent question on Python mailing lists since the

dat et i me module arrived. When first confronted with this task, it's quite common for people to
try to code it as yest erday = today - 1, which gives a TypeError: unsupported operand
type(s) for -: 'datetine.date' and 'int".

Some people have called this a bug, implying that Python should guess what they mean.
However, one of the guiding principles that gives Python its simplicity and power is: "in the face
of ambiguity, refuse the temptation to guess." Trying to guess would clutter dat et i ne with
heuristics meant to guess that you "really meant 1 day", rather than 1 second (which ti nedel t a
also supports), or 1 year.

Rather than trying to guess what you mean, Python, as usual, expects you to make your
meaning explicit. If you want to subtract a time difference of one day, you code that explicitly. If,
instead, you want to add a time difference of one second, you can use ti nedel t a with a

dat et i me. dat eti ne object, and then you code the operation using exactly the same syntax. This
way, for each task you might want to perform, there's only one obvious way of doing it. This
approach also allows a fair amount of flexibility, without added complexity. Consider the following
interactive snippet:

>>> anniversary = today + datetine.tinedelta(days=365) # add 1 year

>>> print anniversary

2005-11-18

>>>t = datetinme.datetine.today() # get right now
>>> t

dat eti ne. dateti ne(2004, 11, 19, 10, 12, 43, 801000)

>>> t2 =t + datetinme.tinedelta(seconds=1) # add 1 second
>>> t 2

datetine. dateti me(2004, 11, 19, 10, 12, 44, 801000)

>>>t3 =t + datetine.tinedelta(seconds=3600) # add 1 hour

>>> 13

datetime. datetinme(2004, 11, 19, 11, 12, 43, 801000)

Keep in mind that, if you want fancier control over date and time arithmetic, third-party
packages, such as dat euti | (which works together with the built-in dat et i ne) and the classic
nx. Dat eTi ne, are available. For example:

fromdateutil inmport relativedelta

nextweek = today + rel ativedelta.rel ativedel t a(weeks=1)
print nextweek

#em ts: 2004-11-25

However, "always do the simplest thing that can possibly work." For simple, straightforward
tasks such as the ones in this recipe, dat eti me. ti medel t a works just fine.

See Also

dat euti | documentation at https://moin.conectiva.com.br/DateUtil?action=highlight&value=
DateUtil, and dat et i me documentation in the Library Reference. nx. Dat eTi ne can be found at
http://www.egenix.com/files/python/mxDateTime.html. nx. Dat eTi ne can be found at
http://www.egenix.com/files/python/mxDateTime.html.

T

http://www.egenix.com/files/python/mxDateTime.html
http://www.egenix.com/files/python/mxDateTime.html

[rrevons f e

Recipe 3.2. Finding Last Friday

Credit: Kent Johnson, Danny Yoo, Jonathan Gennick, Michael Wener

Problem

You want to find the date of last Friday (or today, if today is Friday) and print it in a specified
format.

Solution

You can use the dat et i me module from Python's standard library to easily achieve this:

i mport datetine, cal endar

| ast Friday = datetine.date.today()

oneday = datetine.tinedelta(days=1)

whi |l e | ast Friday. weekday() != cal endar. FRI DAY:
| ast Fri day -= oneday

print lastFriday.strftime(' % %-%-%")

emts, e.g.: Friday, 10-Dec-2004

Discussion

The handy little snippet of code in this recipe lets us find a previous weekday and print the
properly formatted date, regardless of whether that weekday is in the same month, or even the
same year. In this example, we're looking for the last Friday (or today, if today is Friday).
Friday's integer representation is 4, but to avoid depending on this "magical number," we just
import the Python Standard Library cal endar module and rely instead on its cal endar . FRI DAY
attribute (which, sure enough, is the number 4). We set a variable called lastFriday to today's
date and work backward until we have reached a date with the desired weekday value of 4.

Once we have the date we desire, formatting the date in any way we like is easily achieved with
the "string formatting™ method strfti me of the dat eti ne. dat e class.

An alternative, slightly more terse solution uses the built-in constant dat et i me. dat e. r esol uti on
instead of explicitly building the dat eti ne. ti medel t a instance to represent one day's duration:

i mport datetine, cal endar

| ast Friday = datetine.date.today()

whi | e | ast Fri day. weekday() != cal endar. FRI DAY:
| ast Friday -= datetinme. date.resolution

print lastFriday.strftinme(' %l- %- %")

The dat eti me. dat e. resol uti on class attribute has exactly the same value as the oneday
variable in the recipe's Solutionthe time interval of one day. However, r esol uti on can trip you
up. The value of the class attribute r esol uti on varies among various classes of the dateti ne
modulefor t he dat e class it'sti nedel t a(days=1), but for the ti ne and dat et i ne classes , it's
timedel ta(m croseconds=1) . You could mix-and-match (e.g., add dat eti ne. date. resol uti on
to a dat eti nme. dat eti me instance), but it's easy to get confused doing so. The version in this
recipe's Solution, using the explicitly named and defined oneday variable, is just as general,

more explicit, and less confusing. Thus, all in all, that version is more Pythonic (which is why it's
presented as the "official” onel!).

A more important enhancement is that we don't really need to loop, decrementing a date by one
at each step through the loop: we can, in fact, get to the desired target in one fell swoop,
computing the number of days to subtract thanks to the wonders of modular arithmetic:

i mport datetinme, cal endar

today = datetine.date.today()

target Day = cal endar. FRI DAY

t hi sDay = today.weekday()

del taToTarget = (thisDay - targetDay) %7

| ast Friday = today - datetine.tinmedelta(days=deltaToTarget)
print lastFriday.strftinme(' %l- %b- %")

If you don't follow why this works, you may want to brush up on modular arithmetic, for example
at http://www.cut-the-knot.org/blue/Modulo.shtml.

Use the approach you find clearest, without worrying about performance. Remember Hoare's
dictum (often misattributed to Knuth, who was in fact quoting Hoare): "premature optimization is
the root of all evil in programming.” Let's see why thinking of optimization would be premature
here.

Net of the common parts (computing today's date, and formatting and emitting the result) on a
four-year-old PC, with Linux and Python 2.4, the slowest approach (the one chosen for
presentation as the "Solution” because it's probably the clearest and most obvious one) takes
18.4 microseconds; the fastest approach (the one avoiding the loop, with some further tweaks to
really get pedal to the metal) takes 10.1 microseconds.

You're not going to compute last Friday's date often enough, in your life, to be able to tell the
difference at 8 microseconds a pop (much less if you use recent hardware rather than a box
that's four years old). If you consider the time needed to compute today's date and to format the
result, you need to add 37 microseconds to each timing, even net of the 1/0 time for the pri nt
statement; so, the range of performance is roughly between 55 microseconds for the slowest
and clearest form, and 47 microseconds for the fastest and tersest oneclearly not worth worrying
about.

See Also

dat eti me module and strftine documentation in the Library Reference (currently at
http://www.python.org/doc/lib/module-datetime.html and
http://www.python.org/doc/current/lib/node208.html).

[rrevons f e

http://www.cut-the-knot.org/blue/Modulo.shtml
http://www.python.org/doc/lib/module-datetime.html
http://www.python.org/doc/current/lib/node208.html

[rrevons f e

Recipe 3.3. Calculating Time Periods in a Date Range

Credit: Andrea Cavalcanti

Problem

Given two dates, you want to calculate the number of weeks between them.

Solution

Once again, the standard dat et i me and third-party dat euti| modules (particularly dateutil's
rrul e. count method) come in quite handy. After importing the appropriate modules, it's a really
simple job:

fromdateutil inport rrule

i nport datetine

def weeks _between(start _date, end_date):
weeks = rrule.rrule(rrule. WEEKLY, dtstart=start_date, until=end _date)
return weeks. count()

Discussion

Function weeks_between takes the starting and ending dates as arguments, instantiates a rule to
recur weekly between them, and returns the result of the rule's count methodfaster to code than
to describe. This method will return only an integer (it won't return "half" weeks). For example,
eight days is considered two weeks. It's easy to code a test for this:

if _ nane_ =="_ main_ _":
starts = [datetine.date(2005, 01, 04), datetine.date(2005, 01, 03)]
end = datetine. date(2005, 01, 10)
for s in starts:
days = rrule.rrule(rrule. DAILY, dtstart=s, until=end).count()
print "% days shows as % weeks "% (days, weeks between(s, end))

This test emits the following output:

7 days shows as 1 weeks
8 days shows as 2 weeks

It's not necessary to give a name to a recurrence rule, if you don't want tochanging the
function’s body, for example, to the single statement:

return rrule.rrule(rrul e. WEEKLY, dtstart=start_date, until=end _date).count()

works just as well. | prefer to name recurrence rules because (frankly) I still find them a bit
weird, even though they're so incredibly useful | doubt I could do without them!

See Also

Refer to the dat euti | module's documentation available at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, dat et i ne
documentation in the Library Reference.

[rrevos] uexr

[rrevons f e

Recipe 3.4. Summing Durations of Songs

Credit: Anna Martelli Ravenscroft

Problem

You want to find out the total duration of a playlist of songs.

Solution

Use the dat et i me standard module and the built-in function sumto handle this task:

i mport datetinme
def totaltimer(tinmes):
td = datetine.tinmedelta(0) # initial value of sum (nust be a tinmedelta)
duration = sun([
datetine.timedel ta(m nutes=m seconds=s) for m s in tinmes],

td)
return duration
if _ name_ =='_ main_ ": # test when nodule run as main script

timesl = [(2, 36), # list containing tuples (m nutes, seconds)
(3, 35),
(3, 45),]

times2 = [(3, 0),
(5, 13),
(4, 12),
(1, 10),]

assert totaltiner(tinesl) == datetine.tinedelta(0, 596)

assert totaltiner(tines2) == datetine.tinedelta(0, 815)

print ("Tests passed.\n"
"First test total: %\n"
"Second test total: %" % (
totaltimer(tinmesl), totaltimer(tines2)))

Discussion

I have a large playlist of songs | listen to during workouts. | wanted to create a select list but
wanted to know the total duration of the selected songs, without having to create the new
playlist first. | wrote this little script to handle the task.

A datetinme. tinmedel tais normally what's returned when calculating the difference between two
dat et i me objects. However, you can create your own ti nedel t a instance to represent any given
duration of time (while other classes of the dat et i nre module, such as class dat et i me, have
instances that represent a point in time). Here, we need to sum durations, so, clearly, it's exactly
ti medel t a that we need.

datetine.tinedel t a takes a variety of optional arguments: days, seconds, microseconds,

milliseconds, minutes, hours, weeks. So, to create an instance, you really should pass named
arguments when you call the class to avoid confusion. If you simply call dat eti ne. ti nedel ta(m

n) , without naming the arguments, the class uses positional notation and treats mand n as days
and seconds, which produces really strange results. (I found this out the hard way . . . a good

demonstration of the need to test!)

To use the built-in function sumon a list of objects such as ti nedel t as, you have to pass to sum
a second argument to use as the initial valueotherwise, the default initial value is 0, integer zero,
and you get an error as soon as you try to sum ati medel t a with that i nt. All objects in the
iterable that you pass as sunis first argument should be able to support numeric addition.
(Strings are specifically disallowed, but, take my earnest advice: don't use sumfor concatenating
a lot of lists either!) In Python 2.4, instead of a list comprehension for sunis first argument, we
could use a generator expression by replacing the square brackets, [and], with parentheses, (
and) which might be handy if you're trying to handle a playlist of several thousand songs.

For the test case, | manually created a list of tuples with the durations of the songs in minutes
and seconds. The script could be enhanced to parse the times in different formats (such as
mm:ss) or to read the information from a file or directly from your music library.

See Also

Library Reference on sumand dat et i ne.

T [

[rrevons f e

Recipe 3.5. Calculating the Number of Weekdays
Between Two Dates

Credit: Anna Martelli Ravenscroft

Problem

You want to calculate the number of weekdays (working days), as opposed to calendar days, that
fall between two dates.

Solution

Since weekends and other "days off" vary by country, by region, even sometimes within a single
company, there is no built-in way to perform this task. However, using dat euti | along with
dat et i me objects, it's reasonably simple to code a solution:

fromdateutil inport rrule
i mport datetinme
def workdays(start, end, holidays=0, days_of f =None):
if days_off is None:
days_off =5, 6 # default to: saturdays and sundays
wor kdays = [x for x in range(7) if x not in days_off]
days = rrule.rrule(rrule. DAILY, dtstart=start, until=end,
byweekday=wor kdays)
return days.count() - holidays
if _ _nane_ _ =="'_ _main_ _
test when run as main script
testdates = [(datetinme.date(2004, 9, 1), datetine.date(2004, 11, 14), 2),
(dat eti ne. dat e(2003, 2, 28), datetine.date(2003, 3, 3), 1),]
def test(testdates, days_of f=None):
for s, e, hin testdates:
print 'total workdays from% to % is % with % holidays' % (
s, e, workdays(s, e, h, days_off), h)
test (testdates)
test(testdates, days_off=[6])

Discussion

This project was my very first one in Python: | needed to know the number of actual days in
training of our trainees, given a start date and end date (inclusive). This problem was a bit
trickier back in Python 2.2; today, the dat et i ne module and the dat euti| third-party package
make the problem much simpler to solve.

Function workdays starts by assigning a reasonable default value to variable days_off (unless an
explicit value was passed for it as an argument), which is a sequence of the weekday numbers of
our normal days off. In my company, weekly days off varied among individuals but were usually
fewer than the workdays, so it was easier to track and modify the days off rather than the
workdays. | made this an argument to the function so that | can easily pass a different value for
days_off if and when | have different needs. Then, the function uses a list comprehension to
create a list of actual weekly workdays, which are all weekdays not in days_off. Now the function

is ready to do its calculations.

The workhorse in this recipe is an instance, named days, of dateutil's rrul e (recurrence rule)
class. Class rrul e may be instantiated with various parameters to produce a rule object. In this
example, | pass a frequency (rrul e. DAI LY), a beginning date and an ending dateboth of which
must be dat et i me. dat e objectsand which weekdays to include (workdays). Then, | simply call

method days. count to count the number of occurrences generated by the rule. (See Recipe 3.3
for other uses for the count method of rrul e.)

You can easily set your own definition of weekend: just pass as days_off whichever values you
need. In this recipe, the default value is set to the standard U.S. weekend of Saturday and
Sunday. However, if your company normally works a four-day week, say, Tuesday through
Friday, you would pass days_of f =(5, 6, 0). Just be sure to pass the days_off value as an
iterable, such as a li st or tupl e, even if, as in the second test, you only have a single day in
that container.

A simple but useful enhancement might be to automatically check whether your start and end
dates are weekends (for weekend-shift workers), and use an i f/ el se to handle the weekend
shifts, with appropriate changes to days_off. Further enhancements would be to add the ability
to enter sick days, or to perform a call to an automatic holiday lookup function, rather than
passing the number of holidays directly, as I do in this recipe. See Recipe 3.6 for a simple
implementation of a holidays list for this purpose.

See Also

Refer to the dat euti | documentation, which is available at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, dat et i ne
documentation in the Library Reference; Recipe 3.3 for another use of rrul e. count ; Recipe 3.6
for automatic holiday lookup.

[rrevos] uexr

[rrevons f e

Recipe 3.6. Looking up Holidays Automatically

Credit: Anna Martelli Ravenscroft, Alex Martelli

Problem

Holidays vary by country, by region, even by union within the same company. You want an
automatic way to determine the number of holidays that fall between two given dates.

Solution

Between two dates, there may be movable holidays, such as Easter and Labor Day (U.S.);
holidays that are based on Easter, such as Boxing Day; holidays with a fixed date, such as
Christmas; holidays that your company has designated (the CEO's birthday). You can deal with
all of them using dat et i me and the third-party module dat euti | .

A very flexible architecture is to factor out the various possibilities into separate functions to be
called as appropriate:

i mport datetinme
fromdateutil inport rrule, easter
try: set
except NameError: fromsets inport Set as set
def all_easter(start, end):
return the list of Easter dates within start..end
easters = [easter.easter(y)
for y in xrange(start.year, end.year+1)]
return [d for d in easters if start<=d<=end]
def all_boxing(start, end):
return the list of Boxing Day dates within start..end
one_day = datetine.tinmedelta(days=1)
boxi ngs = [easter. easter(y)+one_day
for y in xrange(start.year, end.year+1)]
return [d for d in boxings if start<=d<=end]
def all_christmas(start, end):
return the list of Christrmas Day dates within start..end
christmases = [datetinme.date(y, 12, 25)
for y in xrange(start.year, end.year+1)]
return [d for d in christmases if start<=d<=end]
def all _labor(start, end):
return the list of Labor Day dates within start..end
[abors = rrule.rrule(rrule. YEARLY, bynmont h=9, byweekday=rrule. MJ(1),
dtstart=start, until=end)
return [d.date() for d in Iabors] # no need to test for in-between here
def read_holidays(start, end, holidays_file="holidays.txt"):
return the list of dates fromholidays file within start..end
try:
hol i days_file = open(holidays_file)
except |1 CError, err
print 'cannot read holidays (%):' % (holidays_file,), err
return []
holidays = []

for line in holidays file:
skip blank lines and comrents
if line.isspace() or line.startswith('#'):
conti nue
try to parse the format: YYYY, M D
try:
y, m d=TJint(x.strip()) for x inline.split(',"')]
date = datetine.date(y, m d)
except Val ueError:
diagnose invalid line and just go on
print "Invalid line % in holidays file %" % (
line, holidays file)
conti nue
i f start<=dat e<=end:
hol i days. append(dat e)
hol i days_file.close()
return holidays
hol i days_by country = {
map each country code to a sequence of functions
"US': (all _easter, all_christmas, all _|abor),
"IT: (all_easter, all_boxing, all_christnas),
}
def holidays(cc, start, end, holidays file="holidays.txt"):
read applicable holidays fromthe file
all _holidays = read_holidays(start, end, holidays file)
add all holidays conmputed by applicable functions
functions = holidays by country.get(cc, ())
for function in functions:
all _holidays += function(start, end)
elimnate duplicates
all _holidays = list(set(all _holidays))
uncoment the following 2 lines to return a sorted |ist:
all _holidays.sort()
return all _holidays
return len(all _holidays) # comment this out if returning list
if _ _nane_ _ =="'_ _main_ _
test _file = open('test_holidays.txt', 'w)
test_file.wite(' 2004, 9, 6\n")
test _file.close()
testdates = [(datetinme.date(2004, 8, 1), datetine.date(2004, 11, 14)),
(datetine. date(2003, 2, 28), datetine.date(2003, 5, 30)),
(datetine. date(2004, 2, 28), datetine.date(2004, 5, 30)),
]
def test(cc, testdates, expected):
for (s, e), expect in zip(testdates, expected):
print '"total holidays in % from% to % is % (exp %)’ % (
cc, s, e, holidays(cc, s, e, test file.nanme), expect)
print
test('US, testdates, (1,1,1))
test('IT, testdates, (1,2,2))
i nport os
os.renove(test _file.name)

Discussion

In one company | worked for, there were three different unions, and holidays varied among the
unions by contract. In addition, we had to track any snow days or other release days in the same
way as "official” holidays. To deal with all the potential variations in holidays, it's easiest to factor

out the calculation of standard holidays into their own functions, as we did in the preceding
example for al | _easter, all _| abor, and so on. Examples of different types of calculations are

provided so it's easy to roll your own as needed.

Although half-open intervals (with the lower bound included but the upper one excluded) are the
norm in Python (and for good reasons, since they're arithmetically more malleable and tend to
induce fewer bugs in your computations!), this recipe deals with closed intervals instead (both
lower and upper bounds included). Unfortunately, that's how specifications in terms of date
intervals tend to be given, and dat euti | also works that way, so the choice was essentially
obvious.

Each function is responsible for ensuring that it only returns results that meet our criteria: lists of
dat et i ne. dat e instances that lie between the dates (inclusive) passed to the function. For
example, in all_labor, we coerce the dat eti nme. dat et i me results returned by dateutil'srrul e
into dat et i me. dat e instances with the dat e method.

A company may choose to set a specific date as a holiday (such as a snow day) "just this once,"
and a text file may be used to hold such unique instances. In our example, the read_holidays
function handles the task of reading and processing a text file, with one date per line, each in the
format year, month, day. You could also choose to refactor this function to use a "fuzzy" date
parser, as shown in Recipe 3.7.

If you need to look up holidays many times within a single run of your program, you may apply
the optimization of reading and parsing the text file just once, then using the list of dates parsed
from its contents each time that data is needed. However, "premature optimization is the root of
all evil in programming,” as Knuth said, quoting Hoare: by avoiding even this "obvious"
optimization, we gain clarity and flexibility. Imagine these functions being used in an interactive
environment, where the text file containing holidays may be edited between one computation
and the next: by rereading the file each time, there is no need for any special check about
whether the file was changed since you last read it!

Since countries often celebrate different holidays, the recipe provides a rudimentary
holidays_by_ country dictionary. You can consult plenty of web sites that list holidays by country
to flesh out the dictionary for your needs. The important part is that this dictionary allows a
different group of holidays-generating functions to be called, depending on which country code is
passed to the holidays function. If your company has multiple unions, you could easily create a
union-based dictionary, passing the union-code instead of (or for multinationals, in addition to) a
country code to holidays. The holidays function calls the appropriate functions (including,
unconditionally, read_holidays), concatenates the results, eliminates duplicates, and returns the
length of the list. If you prefer, of course, you can return the list instead, by simply
uncommenting two lines as indicated in the code.

See Also

Recipe 3.7 for fuzzy parsing; dat euti | documentation at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, dat et i e
documentation in the Library Reference.

[rrevos] uexr

[rrevons f e

Recipe 3.7. Fuzzy Parsing of Dates

Credit: Andrea Cavalcanti

Problem

Your program needs to read and accept dates that don't conform to the dat et i me standard
format of "yyyy, nmm dd".

Solution

The third-party dat euti | . par ser module provides a simple answer:

i mport datetinme

i mport dateutil. parser

def tryparse(date):
dateutil.parser needs a string argunent: let's make one from our
“date' argument, according to a few reasonabl e conventions...:

kwargs = { } # assume no named-args
if isinstance(date, (tuple, list)):
date ="' ".join([str(x) for x in date]) # join up sequences
elif isinstance(date, int):
date = str(date) # stringify integers
elif isinstance(date, dict):
kwargs = date # accept naned-args dicts
date = kwargs. pop('date') # with a 'date' str
try:
try:

parsedate = dateutil.parser.parse(date, **kwargs)
print 'Sharp % -> %' % (date, parsedate)
except Val ueError:
parsedate = dateutil.parser.parse(date, fuzzy=True, **kwargs)
print 'Fuzzy % -> %' % (date, parsedate)
except Exception, err:

print 'Try as | may, | cannot parse % (%)' % (date, err)
if _ _nane_ _ =="_ min_ _
tests = (
"January 3, 2003", # a string
(5, "Cct", 55), # a tuple
"Thur sday, Novenber 18", # |l onger string wthout year
"7/ 24/ 04", # a string with slashes
"24-7-2004", # European-format string
{'date':"5-10-1955", "dayfirst":True}, # a dict including the kwarg
"5-10-1955", # dayfirst, no kwarg
19950317, # not a string
"11AM on the 11th day of 11th nmonth, in the year of our Lord 1945",
)
for test in tests: # testing date formats
tryparse(test) # try to parse

Discussion

dateutil . parser's parse function works on a variety of date formats. This recipe demonstrates
a few of them. The parser can handle English-language month-names and two- or four-digit
years (with some constraints). When you call par se without named arguments, its default is to
first try parsing the string argument in the following order: mm-dd-yy. If that does not make
logical sense, as, for example, it doesn't for the '24- 7- 2004' string in the recipe, par se then tries
dd-mme-yy. Lastly, it tries yy-mm-dd. If a "keyword" such as dayfirst or yearfirst is passed
(as we do in one test), par se attempts to parse based on that keyword.

The recipe tests define a few edge cases that a date parser might encounter, such as trying to
pass the date as a tuple, an integer (ISO-formatted without spaces), and even a phrase. To allow
testing of the keyword arguments, the tryparse function in the recipe also accepts a dictionary
argument, expecting, in this case, to find in it the value of the string to be parsed in
correspondence to key 'dat e', and passing the rest on to dat euti | 's parser as keyword
arguments.

dat euti | 's parser can provide a pretty good level of "fuzzy" parsing, given some hints to let it
know which piece is, for example, the hour (such as the AM in the test phrase in this recipe). For
production code, you should avoid relying on fuzzy parsing, and either do some kind of
preprocessing, or at least provide some kind of mechanism for checking the accuracy of the
parsed date.

See Also

For more on date-parsing algorithms, see dat euti | documentation at

https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil; for date handling, see
the dat et i me documentation in the Library Reference.

[rrevos] uexr

[rrevons f e

Recipe 3.8. Checking Whether Daylight Saving Time Is
Currently in Effect

Credit: Doug Fort

Problem

You want to know whether daylight saving time is in effect in your local time zone today.

Solution

It's a natural temptation to check ti ne. dayl i ght for this purpose, but that doesn't work. Instead
you need:

import time
def is_dst():
return bool (time.localtime().tm.isdst)

Discussion

In my location (as in most others nowadays), ti me. dayl i ght is always 1 because
ti me. dayl i ght means that this time zone has daylight saving time (DST) at some time during
the year, whether or not DST is in effect today.

The very last item in the pseudo-tuple you get by calling ti ne. | ocal ti ne, on the other hand, is
1 only when DST is currently in effect, otherwise it's Owhich, in my experience, is exactly the

information one usually needs to check. This recipe wraps this check into a function, calling built-
in type bool to ensure the result is an elegant t rue or Fal se rather than a rougher 1 or Ooptional

refinements, but nice ones, | think. You could alternatively access the relevant item as
tine.localtime()[-1], but using attribute-access syntax with the t m i sdst attribute name is

more readable.

See Also

Library Reference and Python in a Nutshell about module ti ne.

[rrevos] uexr

[rrevons f e

Recipe 3.9. Converting Time Zones

Credit: Gustavo Niemeyer

Problem

You are in Spain and want to get the correct local (Spanish) time for an event in China.

Solution

Time zone support for dat et i e is available in the third-party dat euti | package. Here's one way
to set the local time zone, then print the current time to check that it worked properly:

fromdateutil inport tz

i nport datetine

posi xstr = "CET- 1CEST- 2, M3. 5. 0/ 02: 00, MLO. 5. 0/ 03: 00"
spaintz = tz.tzstr(posixstr)

print datetinme.datetime. now(spaintz).ctime()

Conversion between different time zones is also possible, and often necessary in our expanding
world. For instance, let's find out when the next Olympic Games will start, according to a Spanish
clock:

chinatz = tz.tzoffset (" China", 60*60*8)
ol ynpi cganes = datetine. datetinme(2008, 8, 8, 20, 0, tzinfo=chinatz)
print ol ynpi cganes. asti nezone(spai nt z)

Discussion

The cryptic string named posixstr is a POSIX-style representation for the time zone currently
being used in Spain. This string provides the standard and daylight saving time zone names (CST
and CEST), their offsets (UTC+1 and UTC+2), and the day and hour when DST starts and ends
(the last Sunday of March at 2 a.m., and the last Sunday of October at 3 a.m., respectively). We
may check the DST zone bounds to ensure they are correct:

assert spaintz.tznane(datetine.dateti ne(2004, 03, 28, 1, 59)) == "CET"
assert spaintz.tznane(datetine.datetine(2004, 03, 28, 2, 00)) == "CEST"
assert spaintz.tznane(datetine.datetine(2004, 10, 31, 1, 59)) == "CEST"
assert spaintz.tznane(datetine.datetine(2004, 10, 31, 2, 00)) == "CET"

All of these assert s should pass silently, confirming that the time zone name switches between
the right strings at the right times.

Observe that even though the return to the standard time zone is scheduled to 3a.m., the
moment of the change is marked as 2 a.m. This happens because of a one-hour gap, between 2
a.m. and 3 a.m., that is ambiguous. That hour of time happens twice: once in the time zone
CEST, and then again in the time zone CET. Currently, expressing this moment in an
unambiguous way, using the standard Python date and time support, is not possible. This is why
it is recommended that you store dat et i me instances in UTC, which is unambiguous, and only

use time zone conversion for display purposes.

To do the conversion from China to Spain, we've used t zof f set to express the fact that China is

eight hours ahead of UTC time (tzoffset is always compared to UTC, not to a particular time
zone). Notice how the dat et i ne instance is created with the time zone information. This is

always necessary for converting between two different time zones, even if the given time is in
the local time zone. If you don't create the instance with the time zone information, you'll get a
Val ueError: astimezone() cannot be applied to a naive datetine. datetine instances
are always created naivethey ignore time zone issues entirelyunless you explicitly create them
with a time zone. For this purpose, dat euti| provides the t zl ocal type, which creates instances
representing the platform's idea of the local time zone.

Besides the types we have seen so far, dat euti | also provides t zut ¢, which creates instances
representing UTC; t zfi | e, which allows using standard binary time zone files; t zi cal , which
creates instances representing iCalendar time zones; and many more besides.

See Also

Documentation about the dat eut i | module can be found at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, and dat et i ne
documentation in the Library Reference.

[rrevous f e

[rrevons f e

Recipe 3.10. Running a Command Repeatedly

Credit: Philip Nunez

Problem

You need to run a command repeatedly, with arbitrary periodicity.

Solution

The ti nme. sl eep function offers a simple approach to this task:

import time, o0s, sys
def main(cnd, inc=60):
whil e True:
0S. system cnd)
tinme. sl eep(inc)
if _ _nane_ _ =="'_ _main_ _
numargs = |l en(sys.argv) - 1
if numargs < 1 or nunargs > 2:
print "usage: " + sys.argv[0] + " conmand [seconds_del ay]"
sys.exit(1)
cnd = sys. argv| 1]
if numargs < 3:
mai n(cd)
el se:
inc = int(sys.argv[2])
mai n(cnd, inc)

Discussion

You can use this recipe with a command that periodically checks for something (e.g., polling), or
with one that performs an endlessly repeating action, such as telling a browser to reload a URL
whose contents change often, so as to always have a recent version of that URL for viewing. The
recipe is structured into a function called main and a body that is preceded by the usual i f _
nane _=='"_ _main_ _':idiom, to execute only if the script runs as a main script. The body
examines the command-line arguments you used with the script and calls main appropriately (or
gives a usage message if there are too many or too few arguments). This is the best way to
structure a script, to make its functionality also available to other scripts that may import it as a
module.

The main function accepts a cmd string, which is a command you want to pass periodically to the
operating system's shell, and, optionally, a period of time in seconds, with a default value of 60
(one minute). main loops forever, alternating between executing the command with 0s. syst em
and waiting (without consuming resources) with ti ne. sl eep.

The script's body looks at the command-line arguments you used with the script, which it finds in
sys. argv. The first argument, sys. argv[0] , is the name of the script, often useful when the
script identifies itself as it prints out messages. The body checks that one or two other
arguments, in addition to this name, are included. The first (and mandatory) is the command to
be run. (You may need to enclose this command in quotes to preserve it from your shell's

parsing: the important thing is that it must remain a single argument.) The second (and optional)
argument is the delay in seconds between two runs of the command. If the second argument is
missing, the body calls main with just the command argument, accepting the default delay (60
seconds).

Note that, if there is a second argument, the body transforms it from a string (all items in
sys. ar gv are always strings) into an integer, which is done most simply by calling built-in type
int:

inc =int(sys.argv[2])

If the second argument is a string that is not acceptable for transformation into an integer (in
other words, if it's anything except a sequence of digits), this call to i nt raises an exception and
terminates the script with appropriate error messages. As one of Python's design principles
states, "errors should not pass silently, unless explicitly silenced.” It would be bad design to let
the script accept an arbitrary string as its second argument, silently taking a default action if that
string was not a correct integer representation!

For a variant of this recipe that uses the standard Python library module sched, rather than
explicit looping and sleeping, see Recipe 3.11.

See Also

Documentation of the standard library modules os, ti ne, and sys in the Library Reference and
Python in a Nutshell; Recipe 3.11.

T [

[rrevons f e

Recipe 3.11. Scheduling Commands

Credit: Peter Cogolo

Problem

You need to schedule commands for execution at certain times.

Solution

That's what the sched module of the standard library is for:

import tine, os, sys, sched

schedul e = sched. schedul er(tinme.tine, tine.sleep)

def perform command(cnd, inc):
schedul e. enter(inc, 0, perform.conmmand, (cnd, inc)) # re-schedul er
0s. systen(cnd)

def main(cnd, inc=60):
schedul e.enter (0, 0, performcomrand, (cnd, inc)) # 0==ri ght now
schedul e.run()

if _ nane_ _ =="'_ _main_ _

numargs = len(sys.argv) - 1

if numargs < 1 or nunmargs > 2:
print "usage: " + sys.argv[O0] +
sys.exit(1)

cnmd = sys. argv[1]

if numargs < 3:
mai n(cnd)

el se:
inc = int(sys.argv[2])
mai n(cnd, inc)

conmand [seconds_del ay] "

Discussion

This recipe implements the same functionality as in the previous Recipe 3.10, but instead of that
recipe's simpler roll-our-own approach, this one uses the standard library module sched.

sched is a reasonably simple, yet flexible and powerful, module for scheduling tasks that must
take place at given times in the future. To use sched, you first instantiate a schedul er object,

such as schedule (shown in this recipe's Solution), with two arguments. The first argument is the
function to call in order to find out what time it isnormally ti me. ti ne, which returns the current

time as a number of seconds from an arbitrary reference point known as the epoch. The second
argument is the function to call to wait for some timenormally ti me. sl eep. You can also pass
functions that measure time in arbitrary artificial ways. For example, you can use sched for such
tasks as simulation programs. However, measuring time in artificial ways is an advanced use of
sched not covered in this recipe.

Once you have a sched. schedul er instance s, you schedule events by calling either s. enter, to
schedule something at a relative time n seconds from now (you can pass n as O to schedule
something for right now), or s. ent er abs, to schedule something at a given absolute time. In

either case, you pass the time (relative or absolute), a priority (if multiple events are scheduled
for the same time, they execute in priority order, lowest-priority first), a function to call, and a
tuple of arguments to call that function with. Each of these two methods return an event
identifier, an arbitrary token that you may store somewhere and later use to cancel a scheduled
event by passing the event's token as the argument in a call to s. cancel another advanced use
which this recipe does not cover.

After scheduling some events, you call s. run, which keeps running until the queue of scheduled
events is empty. In this recipe, we show how to schedule a periodic, recurring event: function
perform_command reschedules itself for inc seconds later in the future as the first thing it does,
before running the specified system command. In this way, the queue of scheduled events never
empties, and function perform_command keeps getting called with regular periodicity. This self-
rescheduling is an important idiom, not just in using sched, but any time you have a "one-shot"
way to ask for something to happen in the future, and you need instead to have something
happen in the future "periodically”. (Tkinter's af t er method, e.g., also works in exactly this way,
and thus is also often used with just this kind of self-rescheduling idiom.)

Even for a task as simple as the one handled by this recipe, sched still has a small advantage
over the simpler roll-your-own approach used previously in Recipe 3.10. In Recipe 3.10, the
specified delay occurs between the end of one execution of cmd and the beginning of the next
execution. If the execution of cmnd takes a highly variable amount of time (as is often the case,
e.g., for commands that must wait for the network, or some busy server, etc.), then the
command is not really being run periodically. In this recipe, the delay occurs between beginning
successive runs of cmd, so that periodicity is indeed guaranteed. If a certain run of cmd takes
longer than inc seconds, the schedule temporarily falls behind, but it will eventually catch up
again, as long as the average running time of cmd is less than inc seconds: sched never "skips"
events. (If you do want an event to be skipped because it's not relevant any more, you have to
keep track of the event identifier token and use the cancel method.)

For a detailed explanation of this script's structure and body, see Recipe 3.10.

See Also

Recipe 3.10; documentation of the standard library modules os, ti ne, sys, and sched in the
Library Reference and Python in a Nutshell.

[recviovs Jrexr

[rrevons f e

Recipe 3.12. Doing Decimal Arithmetic

Credit: Anna Martelli Ravenscroft

Problem

You want to perform some simple arithmetic computations in Python 2.4, but you want decimal
results, not the Python default of f| oat .

Solution

To get the normal, expected results from plain, simple computations, use the deci nal module
introduced in Python 2.4:

>>> inport deci nal
>>> d1 = decinmal.Decimal ('0.3") # assign a deci mal - nunber obj ect

>>> d1/3 # try some division
Deci mal ("0.1")
>>> (d1/3)*3 # can we get back where we started?

Deci mal (" 0. 3")

Discussion

Newcomers to Python (particularly ones without experience with binary float calculations in other
programming languages) are often surprised by the results of seemingly simple calculations. For
example:

>>> f1l = .3 # assign a float

>>> 1/ 3 # try some division

0. 099999999999999992

>>> (f1/3)*3 # can we get back where we started?

0. 29999999999999999

Binary floating-point arithmetic is the default in Python for very good reasons. You can read all
about them in the Python FAQ (Frequently Asked Questions) document at
http://www.python.org/doc/fag/general.html#why-are-floating-point-calculations-so-inaccurate,
and even in the appendix to the Python Tutorial at http://docs.python.org/tut/nodel5.html.

Many people, however, were unsatisfied with binary floats being the only optionthey wanted to
be able to specify the precision, or wanted to use decimal arithmetic for monetary calculations
with predictable results. Some of us just wanted the predictable results. (A True Numerical
Analyst does, of course, find all results of binary floating-point computations to be perfectly
predictable; if any of you three are reading this chapter, you can skip to the next recipe, thanks.)

The new deci mal type affords a great deal of control over the context for your calculations,
allowing you, for example, to set the precision and rounding method to use for the results.

However, when all you want is to run simple arithmetical operations that return predictable
results, deci mal 's default context works just fine.

Just keep in mind a few points: you may pass a string, integer, tuple, or other decimal object to

http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate
http://docs.python.org/tut/node15.html

create a new deci mal object, but if you have a float n that you want to make into a deci nal ,
pass str(n), not bare n. Also, deci nal objects can interact (i.e., be subject to arithmetical
operations) with integers, longs, and other deci mal objects, but not with f| oat s. These
restrictions are anything but arbitrary. Decimal numbers have been added to Python exactly to
provide the precision and predictability that f | oat lacks: if it was allowed to build a decimal
number from a f | oat, or by operating with one, the whole purpose would be defeated. deci nal
objects, on the other hand, can be coerced into other numeric types such as fl oat, | ong, and
i nt, just as you would expect.

Keep in mind that decimal is still floating point, not fixed point. If you want fixed point, take a
look at Tim Peter's Fi xedPoi nt at http://fixedpoint.sourceforge.net/. Also, no noney data type is
yet available in Python, although you can look at Recipe 3.13 to learn how to roll-your-own
money formatting on top of deci mal . Last but not least, it is not obvious (at least not to me),
when an intermediate computation produces more digits than the inputs, whether you should
keep the extra digits for further intermediate computations, and round only when you're done
computing a formula (and are about to display or store a result), or whether you should instead
round at each step. Different textbooks suggest different answers. | tend to do the former,
simply because it's more convenient.

If you're stuck with Python 2.3, you may still take advantage of the deci mal module, by
downloading and installing it as a third-party extensionsee
http://www.taniquetil.com.ar/facundo/bdvfiles/get decimal.html.

See Also

The explanation of floating-point arithmetic in Appendix B of the Python Tutorial at
http://docs.python.org/tut/nodel5.html; the Python FAQ at
http://www.python.org/doc/fag/general.html#why-are-floating-point-calculations-so-inaccurate;
Tim Peter's FixedPoint at http://fixedpoint.sourceforge.net/; using decimal as currency, see
Recipe 3.13; deci mal is documented in the Python 2.4 Library Reference and is available for
download to use with 2.3 at
http://cvs.sourceforge.net/viewcvs.py/python/python/dist/src/Lib/decimal.py; the decimal PEP
(Python Enhancement Proposal), PEP 327, is at http://www.python.org/peps/pep-0327.html.

[rrevous f e

http://fixedpoint.sourceforge.net/
http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html
http://docs.python.org/tut/node15.html
http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate
http://fixedpoint.sourceforge.net/
http://cvs.sourceforge.net/viewcvs.py/python/python/dist/src/Lib/decimal.py
http://www.python.org/peps/pep-0327.html

[rrevons f e

Recipe 3.13. Formatting Decimals as Currency

Credit: Anna Martelli Ravenscroft, Alex Martelli, Raymond Hettinger

Problem

You want to do some tax calculations and display the result in a simple report as Euro currency.

Solution

Use the new deci mal module, along with a modified noneyf nt function (the original, by Raymond
Hettinger, is part of the Python library reference section about deci nal):

i nport deci mal
""" calculate Italian invoice taxes given a subtotal

def ital format(value, places=2, curr="EUR, sep='.", dp=",', pos="', neg=-',
overal | =10):

" Convert Decimal "~ “value'' to a noney-formatted string.
pl aces: required nunber of places after the deci mal point
curr: optional currency synbol before the sign (nmay be bl ank)
sep: optional grouping separator (comma, period, or blank) every 3
dp: deci mal point indicator (conma or period); only specify as

bl ank when places is zero

pos: optional sign for positive nunbers: "+", space or blank
neg: optional sign for negative nunbers: "-", "(", space or blank
overall: optional overall length of result, adds padding on the

| eft, between the currency synbol and digits

g = decinal.Decimal ((0, (1,), -places)) # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as tuple()
result [1]
digits map(str, digits)
append, next = result.append, digits.pop
for i in range(places):
if digits:
append(next())
el se:
append(' 0")
append(dp)
i =0
while digits:
append(next ())
i +=1
if i == 3 and digits:
i =0
append(sep)
while len(result) < overall:
append(’ ')
append(curr)
if sign: append(neg)
el se: append(pos)
result.reverse()

return .join(result)
get the subtotal for use in calculations
def get subt ot al (subti n=None):
if subtin == None:
subtin = input("Enter the subtotal: ")
subtotal = deci mal. Decimal (str(subtin))
print "\'n subtotal: ", italformat(subtotal)
return subtota
specific Italian tax | aw functions
def cnpcal c(subtotal):
contrib = subtotal * decinmal.Decimal ('.02")
print "+ contributo integrativo 2% ", italformat(contrib, curr="")
return contrib
def vatcal c(subtotal, cnp):
vat = (subtotal +cnp) * decimal . Decinmal ('.20")
print "+ | VA 20% ", italformat(vat, curr="")
return vat
def ritacal c(subtotal):
rit = subtotal * decinal.Deciml('.20")

print "-Ritenuta d' acconto 20% ", italformat(rit, curr="")
return rit
def dototal (subtotal, cnp, iva=0, rit=0):
totl = (subtotal +cnp+iva)-rit
print " TOTALE: ", italformat(totl)
return totl

overall cal cul ations report
def invoi cer (subtotal =None, cont ext =None):
if context is None:
deci mal . get context (). roundi ng="ROUND HALF_ UP" # Euro rounding rul es
el se:
deci mal . set cont ext (cont ext) # set to context arg
subt ot = getsubtotal (subtotal)
contrib = cnpcal c(subtot)
dot ot al (subtot, contrib, vatcal c(subtot, contrib), ritacal c(subtot))
if _ _nane_ =='"_ main_ _
print "Wl come to the invoice cal cul ator”
tests = [100, 1000.00, "10000", 555.55]
print "Euro context"
for test in tests:
i nvoi cer (test)
print "default context"
for test in tests:
i nvoi cer (test, context=decinmal . Defaul t Cont ext)

Discussion

Italian tax calculations are somewhat complicated, more so than this recipe demonstrates. This
recipe applies only to invoicing customers within Italy. | soon got tired of doing them by hand, so
I wrote a simple Python script to do the calculations for me. I've currently refactored into the
version shown in this recipe, using the new deci mal module, just on the principle that money
computations should never, but never, be done with binary floats.

How to best use the new deci mal module for monetary calculations was not immediately
obvious. While the decimal arithmetic is pretty straightforward, the options for displaying results
were less clear. The italformat function in the recipe is based on Raymond Hettinger's moneyfmt
recipe, found in the deci nal module documentation available in the Python 2.4 Library
Reference. Some minor modifications were helpful for my reporting purposes. The primary
addition was the overall parameter. This parameter builds a decimal with a specific number of

overall digits, with whitespace padding between the currency symbol (if any) and the digits. This
eases alignment issues when the results are of a standard, predictable length.

Notice that | have coerced the subtotal input subti n to be a string in subtotal =

deci mal . Deci mal (str(subtin)). This makes it possible to feed floats (as well as integers or
strings) to getsubtotal without worrywithout this, a float would raise an exception. If your
program is likely to pass tuples, refactor the code to handle that. In my case, a float was a rather
likely input to getsubtotal, but I didn't have to worry about tuples.

Of course, if you need to display using U.S. $, or need to use other rounding rules, it's easy
enough to modify things to suit your needs. For example, to display U.S. currency, you could
change the curr, sep, and dp arguments’ default values as follows:

def USfornat(val ue, places=2, curr="$, sep='",', dp="."', pos='"', neg='-"',
overal | =10):

If you regularly have to use multiple currency formats, you may choose to refactor the function
so that it looks up the appropriate arguments in a dictionary, or you may want to find other ways
to pass the appropriate arguments. In theory, the | ocal e module in the Python Standard Library
should be the standard way to let your code access locale-related preferences such as those
connected to money formatting, but in practice I've never had much luck using | ocal e (for this

or any other purpose), so that's one task that I'll gladly leave as an exercise to the reader.

Countries often have specific rules on rounding; deci mal uses ROUND_HALF_EVEN as the default.
However, the Euro rules specify ROUND HALF_UP. To use different rounding rules, change the
context, as shown in the recipe. The result of this change may or may not be obvious, but one
should be aware that it can make a (small, but legally not negligible) difference.

You can also change the context more extensively, by creating and setting your own context
class instance. A change in context, whether set by a simple get cont ext attribution change, or
with a custom context class instance passed to set cont ext (mycont ext), continues to apply
throughout the active thread, until you change it. If you are considering using deci mal in
production code (or even for your own home bookkeeping use), be sure to use the right context
(in particular, the correct rounding rules) for your country's accounting practices.

See Also

Python 2.4's Library Reference on deci mal , particularly the section on deci mal . cont ext and the
"recipes" at the end of that section.

[rrevous f e

[rrevons f e

Recipe 3.14. Using Python as a Simple Adding Machine

Credit: Brett Cannon

Problem

You want to use Python as a simple adding machine, with accurate decimal (not binary floating-
point!) computations and a "tape" that shows the numbers in an uncluttered columnar view.

Solution

To perform the computations, we can rely on the deci mal module. We accept input lines, each
made up of a number followed by an arithmetic operator, an empty line to request the current
total, and g to terminate the program:

i nport decinmal, re, operator
parse_input = re.conpile(r'''(?x) # allow comments and whitespace in the RE

(\d+\. 2\ d*) # nunber with optional decinmal part
\s* # optional whitespace
([-+/*]) # operator
$'") # end-of -string
oper ={ '+': operator.add, '-': operator.sub,
"*': operator.nul, '/': operator.truediv,
}
total = decimal.Decimal ('0")
def print_total():
print '== == =\n', total

print """Wel conme to Addi ng Machi ne:
Enter a nunber and operator
an enpty line to see the current subtotal,
or qtoquit: """
whil e True:
try:
tape line = raw_input().strip()
except ECFError:
tape line = 'q'
if not tape_line:
print_total ()
conti nue
elif tape_line == "q":
print_total ()
br eak
try:
numtext, op = parse_input.match(tape_line).groups()
except AttributeError
print "Invalid entry: %' %tape_line
print 'Enter nunber and operator, enpty line for total, g to quit
conti nue
total = oper[op](total, decimal.Decimal (numtext))

Discussion

Python's interactive interpreter is often a useful calculator, but a simpler "adding machine" also
has its uses. For example, an expression such as 2345634+2894756-2345823 is not easy to
read, so checking that you're entering the right numbers for a computation is not all that simple.
An adding machine's tape shows numbers in a simple, uncluttered columnar view, making it
easier to double check what you have entered. Moreover, the deci mal module performs
computations in the normal, decimal-based way we need in real life, rather than in the floating-
point arithmetic preferred by scientists, engineers, and today's computers.

When you run the script in this recipe from a normal command shell (this script is not meant to
be run from within a Python interactive interpreter!), the script prompts you once, and then just
sits there, waiting for input. Type a number (one or more digits, then optionally a decimal point,
then optionally more digits), followed by an operator (/, *, -, or + the four operator characters
you find on the numeric keypad on your keyboard), and then press return. The script applies the
number to the running total using the operator. To output the current total, just enter a blank
line. To quit, enter the letter g and press return. This simple interface matches the input/output
conventions of a typical simple adding machine, removing the need to have some other form of
output.

The deci mal package is part of Python's standard library since version 2.4. If you're still using
Python 2.3, visit http://www.taniquetil.com.ar/facundo/bdvfiles/get decimal.html and download
and install the package in whatever form is most convenient for you. deci nal allows high-
precision decimal arithmetic, which is more convenient for many uses (such as any computation
involving money) than the binary floating-point computations that are faster on today's
computers and which Python uses by default. No more lost pennies due to hard-to-understand
issues with binary floating point! As demonstrated in Recipe 3.13, you can even change the
rounding rules from the default of ROUND_HALF_EVEN, if you really need to.

This recipe's script is meant to be very simple, so many improvements are possible. A useful
enhancement would be to keep the "tape" on disk for later checking. You can do that easily, by
adding, just before the loop, a statement to open some appropriate text file for append:

tapefile = open('tapefile.txt', "a')

and, just after the try/except statement that obtains a value for tape_line, a statement to write
that value to the file:

tapefile.wite(tape_line+ \n")

If you do want to make these additions, you will probably also want to enrich function print_total
so that it writes to the "tape" file as well as to the command window, therefore, change the
function to:

def print_total():

print '== == =\n', total
tapefile.wite('== == =\n'" + str(total) + '\n")

The wri te method of afil e object accepts a string as its argument and does not implicitly
terminate the line as the print statement does, so we need to explicitly call the str built-in
function and explicitly add "\n' as needed. Alternatively, the second statement in this version of
print_total could be coded in a way closer to the first one:

print >>tapefile, '== == =\n', total

Some people really dislike this pri nt >>sonefil e, syntax, but it can come in handy in cases
such as this one.

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

More ambitious improvements would be to remove the need to press Return after each operator
(that would require performing unbuffered input and dealing with one character at a time, rather
than using the handy but line-oriented built-in function raw_i nput as the recipe doessee Recipe
2.23 for a cross-platform way to get unbuffered input), to add a cl ear function (or clarify to
users that inputting 0* will zero out the "tape"), and even to add a GUI that looks like an adding
machine. However, I'm leaving any such improvements as exercises for the reader.

One important point about the recipe's implementation is the oper dictionary, which uses
operator characters (/, *, -, +) as keys and the appropriate arithmetic functions from the built-in
module oper at or, as corresponding values. The same effect could be obtained, more verbosely,
by a "tree" of if /el i f, such as:

if op =="+"":
total = total + decinal.Decinmal(numtext)
elif op =="-":
total = total - decinmal.Decimal (numtext)
elif op =="*":
<line_annotation>. .. and so on ...</line_annotation>

However, Python dictionaries are very idiomatic and handy for such uses, and they lead to less
repetitious and thus more maintainable code.

See Also

deci mal is documented in the Python 2.4 Library Reference, and is available for download to use
with 2.3 at http://www.taniquetil.com.ar/facundo/bdvfiles/get decimal.html; you can read the
decimal PEP 327 at http://www.python.org/peps/pep-0327.html.

[rrevons] uexr

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html
http://www.python.org/peps/pep-0327.html

[rrevons f e

Recipe 3.15. Checking a Credit Card Checksum

Credit: David Shaw, Miika Keskinen

Problem

You need to check whether a credit card number respects the industry standard Luhn checksum
algorithm.

Solution

Luhn mod 10 is the credit card industry's standard for credit card checksums. It's not built into
Python, but it's easy to roll our own computation for it:

def cardLuhnChecksum sVal i d(card_nunber):
""" checks to nmake sure that the card passes a | uhn nod-10 checksum
sum= 0
numdigits = | en(card_nunber)
oddeven = numdigits & 1
for count in range(numdigits):
digit = int(card_nunber[count])
if not ((count & 1) " oddeven):
digit =digit * 2
if digit >9:
digit =digit - 9
sum = sum + digit
return (sum % 10) ==

Discussion

This recipe was originally written for a now-defunct e-commerce application to be used within
Zope.

It can save you time and money to apply this simple validation before trying to process a bad or
miskeyed card with your credit card vendor, because you won't waste money trying to authorize
a bad card number. The recipe has wider applicability because many government identification
numbers also use the Luhn (i.e., modulus 10) algorithm.

A full suite of credit card validation methods is available at
http://david.theresistance.net/files/creditValidation.py

If you're into cool one-liners rather than simplicity and clarity, (a) you're reading the wrong book
(the Perl Cookbook is a great book that will make you much happier), (b) meanwhile, to keep
you smiling while you go purchase a more appropriate oeuvre, try:

checksum = | anbda a: (
10 - sun([int(y)*[7,3,1][x¥%8] for x, y in enunerate(str(a)[::-1])])%0)%0

See Also

http://david.theresistance.net/files/creditValidation.py

A good therapist, if you do prefer the one-line checksum version.

T [

[rrevons f e

Recipe 3.16. Watching Foreign Exchange Rates

Credit: Victor Yongwei Yang

Problem

You want to monitor periodically (with a Python script to be run by crontab or as a Windows
scheduled task) an exchange rate between two currencies, obtained from the Web, and receive
email alerts when the rate crosses a certain threshold.

Solution

This task is similar to other monitoring tasks that you could perform on numbers easily obtained
from the Web, be they exchange rates, stock quotes, wind-chill factors, or whatever. Let's see
specifically how to monitor the exchange rate between U.S. and Canadian dollars, as reported by
the Bank of Canada web site (as a simple CSV (comma-separated values) feed that is easy to
parse):

import httplib

inmport smplib

configure script's paraneters here

threshol dRate = 1. 30

sm pServer = 'sntp.freebie.com

fromaddr = ' foo@ar. coni

toaddrs = 'your @or p. coni

end of configuration

url ="/en/financial markets/csv/exchange_eng. csv'
conn = httplib. HTTPConnecti on(' www. bankof canada. ca')
conn. request (' GET', url)

response = conn. getresponse()

data = response.read()

start = data.index('United States Dol lar')

line = data[start:data.index('\n", start)] # get the relevant line
rate = line.split(',")[-1] # last field on the line
if float(rate) < threshol dRat e:

send eni |

nsg = ' Subj ect: Bank of Canada exchange rate alert %' %rate

server = sntplib. SMIP(snt pServer)
server.sendmail (fromaddr, toaddrs, nsgQ)
server.quit()

conn. cl ose()

Discussion

When working with foreign currencies, it is particularly useful to have an automated way of
getting the conversions you need. This recipe provides this functionality in a quite simple,
straightforward manner. When cron runs this script, the script goes to the site, and gets the CSV
feed, which provides the daily noon exchange rates for the previous seven days:

Date (mid/year), 11/ 12/ 2004, 11/ 15/ 2004, ... ,11/19/2004, 11/ 22/ 2004

$Can/ US cl osing rate, 1. 1927, 1. 2005, 1. 1956, 1. 1934, 1. 2058, 1. 1930,
United States Dol | ar, 1. 1925, 1. 2031, 1. 1934, 1. 1924, 1. 2074, 1. 1916, 1. 1844

The script then continues to find the specific currency (‘United States Dol |l ar") and reads the
last field to find today's rate. If you're having trouble understanding how that works, it may be
helpful to break it down:

US = data.find('United States Dollar') # find the index of the currency

endof USl i ne = data.index('\n', US) # find index for that |line end
USl i ne = dat a[US: endof US| i ne] # slice to nake one string
rate = USline.split(',")[-1] # split on',' and return last field

The recipe provides an email alert when the rate falls below a particular threshold, which can be
configured to whatever rate you prefer (e.g., you could change that statement to send you an
alert whenever the rate changes outside a threshold range).

See Also

httplib, snmtplib, and string function are documented in the Library Reference and Python in a
Nutshell.

[rscviovs Jruexr s

Chapter 4. Python Shortcuts

Introduction

Recipe 4.1. CopyinganObject

Recipe 4.2. Constructing Listswith List Comprehensions

Recipe 4.3. Returning an Element of a List If It Exists

Recipe 4.4. Loopingover Items and Their Indices in a Sequence
Recipe 4.5. Creating Lists of Lists Without Sharing References
Recipe 4.6. FlatteningaNested Sequence

Recipe 4.7. Removing or Reordering Columnsin a List of Rows
Recipe 4.8. Transposing Two-Dimensional Arrays

Recipe 4.9. GettingaValue from aDictionary

Recipe 4.10. AddinganEntrytoaDictionary

Recipe 4.11. Building aDictionary Without Excessive Quoting
Recipe 4.12. Building a Dict from a List of Alternating Keys and Values
Recipe 4.13. ExtractingaSubsetofa Dictionary

Recipe 4.14. InvertingaDictionary

Recipe 4.15. Associating Multiple Values with Each Key in a Dictionary
Recipe 4.16. Usinga Dictionary to Dispatch Methods or Functions
Recipe 4.17. FindingUnions and Intersections of Dictionaries
Recipe 4.18. CollectingaBunch of Named Items

Recipe 4.19. Assigning and Testing with One Statement

Recipe 4.20. Using printfin Python

Recipe 4.21. Randomly Picking Items with Given Probabilities
Recipe 4.22. Handling Exceptions Within an Expression

Recipe 4.23. Ensuring a Name Is Defined in a Given Module

[rrevons f e

Introduction

Credit: David Ascher, ActiveState, co-author of Learning Python

Programming languages are like natural languages. Each has a set of qualities that polyglots
generally agree on as characteristics of the language. Russian and French are often admired for
their lyricism, while English is more often cited for its precision and dynamism: unlike the
Académie-defined French language, the English language routinely grows words to suit its
speakers' needs, such as "carjacking," "earwitness," "snailmail,” "email," "googlewhacking," and
"blogging."” In the world of computer languages, Perl is well known for its many degrees of
freedom: TMTOWTDI (There's More Than One Way To Do It) is one of the mantras of the Perl
programmer. Conciseness is also seen as a strong virtue in the Perl and APL communities. As
you'll see in many of the discussions of recipes throughout this volume, in contrast, Python
programmers often express their belief in the value of clarity and elegance. As a well-known Perl
hacker once told me, Python's prettier, but Perl is more fun. | agree with him that Python does
have a strong (as in well-defined) aesthetic, while Perl has more of a sense of humor.

The reason | mention these seemingly irrelevant characteristics at the beginning of this chapter
is that the recipes you see in this chapter are directly related to Python's aesthetic and social
dynamics. If this book had been about Perl, the recipes in a shortcuts chapter would probably
elicit head scratching, contemplation, an "a-ha"! moment, and then a burst of laughter, as the
reader grokked the genius behind a particular trick. In contrast, in most of the recipes in this
chapter, the author presents a single elegant language feature, but one that he feels is
underappreciated. Much like 1, a proud resident of Vancouver, will go out of my way to show
tourists the really neat things about the city, from the parks to the beaches to the mountains, a
Python user will seek out friends and colleagues and say, "You gotta see this!" For me and most
of the programmers | know, programming in Python is a shared social pleasure, not a
competitive pursuit. There is great pleasure in learning a new feature and appreciating its design,
elegance, and judicious use, and there's a twin pleasure in teaching another or another thousand
about that feature.

A word about the history of the chapter: back when we identified the recipe categories for the
first edition of this collection, our driving notion was that there would be recipes of various kinds,
each with a specific goala soufflé, a tart, an osso buco. Those recipes would naturally fall into
fairly typical categories, such as desserts, appetizers, and meat dishes, or their perhaps less
appetizing, nonmetaphorical equivalents, such as files, algorithms, and so on. So we picked a list
of categories, added the categories to the Zope site used to collect recipes, and opened the
floodgates.

Soon, it became clear that some submissions were hard to fit into the predetermined categories.
There's a reason for that, and cooking helps explain why. The recipes in this chapter are the
Pythonic equivalent of making a roux (a cooked mixture of fat and flour, used in making sauces,
for those of you without a classic French cooking background), kneading dough, flouring,
separating eggs, flipping a pan's contents, blanching, and the myriad other tricks that any
accomplished cook knows, but that you won't find in a typical cookbook. Many of these tricks and
techniques are used in preparing meals, but it's hard to pigeonhole them as relevant for a given
type of dish. And if you're a novice cook looking up a fancy recipe, you're likely to get frustrated
quickly because serious cookbook authors assume you know these techniques, and they explain
them (with illustrations!) only in books with titles such as Cooking for Divorced Middle-Aged Men.
We didn't want to exclude this precious category of tricks from this book, so a new category was
born (sorry, no illustrations).

In the introduction to this chapter in the first edition, | presciently said:

I believe that the recipes in this chapter are among the most time-sensitive of the recipes in
this volume. That's because the aspects of the language that people consider shortcuts or

noteworthy techniques seem to be relatively straightforward, idiomatic applications of
recent language features.

I can proudly say that | was right. This new edition, significantly focused on the present
definition of the language, makes many of the original recipes irrelevant. In the two Python
releases since the book's first edition, Python 2.3 and 2.4, the language has evolved to
incorporate the ideas of those recipes into new syntactic features or library functions, just as it
had done with every previous major release, making a cleaner, more compact, and yet more
powerful language that's as much fun to use today as it was over ten years ago.

All in all, about half the recipes in this chapter (roughly the same proportion as in the rest of the
book) are entirely new ones, while the other half are vastly revised (mostly simplified) versions
of recipes that were in the first edition. Thanks to the simplifications, and to the focus on just two
language versions (2.3 and 2.4) rather than the whole panoply of older versions that was
covered by the first edition, this chapter, as well as the book as a whole, has over one-third more
recipes than the first edition did.

It's worth noting in closing that many of the recipes that are in this newly revised chapter touch
on some of the most fundamental, unchanging aspects of the language: the semantics of
assignment, binding, copy, and references; sequences; dictionaries. These ideas are all keys to
the Pythonic approach to programming, and seeing these recipes live for several years makes
me wonder whether Python will evolve in the next few years in related directions.

[rscviovs Jruexr s

[rrevons f e

Recipe 4.1. Copying an Object

Credit: Anna Martelli Ravenscroft, Peter Cogolo

Problem

You want to copy an object. However, when you assign an object, pass it as an argument, or
return it as a result, Python uses a reference to the original object, without making a copy.

Solution

Module copy in the standard Python library offers two functions to create copies. The one you
should generally use is the function named copy, which returns a new object containing exactly
the same items and attributes as the object you're copying:

i mport copy
new | ist = copy.copy(existing |list)

On the rare occasions when you also want every item and attribute in the object to be separately
copied, recursively, use deepcopy:

i mport copy
new |ist_of dicts = copy. deepcopy(existing |ist_of dicts)

Discussion

When you assign an object (or pass it as an argument, or return it as a result), Python (like
Java) uses a reference to the original object, not a copy. Some other programming languages
make copies every time you assign something. Python never makes copies "implicitly" just
because you're assigning: to get a copy, you must specifically request a copy.

Python's behavior is simple, fast, and uniform. However, if you do need a copy and do not ask
for one, you may have problems. For example:

>>>a = [1, 2, 3]

>>> ph = a

>>> b. append(5)

>>> print a, b

[1, 2, 3, 5] [1, 2, 3, 5]

Here, the names a and b both refer to the same object (a list), so once we alter the object
through one of these names, we later see the altered object no matter which name we use for it.
No original, unaltered copy is left lying about anywhere.

To become an effective Python programmer, it is crucial that you learn to

draw the distinction between altering an object and assigning to a name,
which previously happened to refer to the object. These two kinds of
operations have nothing to do with each other. A statement such as a=[]

rebinds name a but performs no alteration at all on the object that was
previously bound to name a. Therefore, the issue of references versus
copies just doesn't arise in this case: the issue is meaningful only when you
alter some object.

If you are about to alter an object, but you want to keep the original object unaltered, you must
make a copy. As this recipe's solution explains, the module copy from the Python Standard
Library offers two functions to make copies. Normally, you use copy. copy, which makes a
shallow copyit copies an object, but for each attribute or item of the object, it continues to share
references, which is faster and saves memory.

Shallow copying, alas, isn't sufficient to entirely "decouple" a copied object from the original one,
if you propose to alter the items or attributes of either object, not just the object itself:

>>> list_of lists = ["a], [1, 2], ['Z', 23]]

>>> copy_|l ol = copy.copy(lists_of |ists)

>>> copy_l ol [1] . append(' boo")

>>> print list_of _lists, copy_lol

[['a'], [1, 2, "boo'], ['Zz', 23]] [['a']l, [, 2, "boo'], ['Z', 23]]

Here, the names | i st _of |ists and copy_I ol refer to distinct objects (two lists), so we could
alter either of them without affecting the other. However, each item of | i st _of _|ists is the
same object as the corresponding item of copy_| ol , so once we alter an item reached by
indexing either of these names, we later see the altered item no matter which object we're
indexing to reach it.

If you do need to copy some container object and also recursively copy all objects it refers to
(meaning all items, all attributes, and also items of items, items of attributes, etc.), use

copy. deepcopysuch deep copying may cost you substantial amounts of time and memory, but if
you gotta, you gotta. For deep copies, copy. deepcopy is the only way to go.

For normal shallow copies, you may have good alternatives to copy. copy, if you know the type
of the object you want to copy. To copy a list L, call I i st (L) ; to copy a dict d, call di ct (d) ; to
copy a set s (in Python 2.4, which introduces the built-in type set), call set (s) . (Since | i st,
dict, and, in 2.4, set, are built-in names, you do not need to perform any "preparation" before
you use any of them.) You get the general pattern: to copy a copyable object o, which belongs
to some built-in Python type t, you may generally just call t (0) . di ct s also offer a dedicated
method to perform a shallow copy: d. copy() and di ct (d) do the same thing. Of the two, I
suggest you use di ct (d) : it's more uniform with respect to other types, and it's even shorter by
one character!

To copy instances of arbitrary types or classes, whether you coded them or got them from a
library, just use copy. copy. If you code your own classes, it's generally not worth the bother to
define your own copy or clone method. If you want to customize the way instances of your class
get (shallowly) copied, your class can supply a special method _ _copy_ _ (see Recipe 6.9 for a
special technique relating to the implementation of such a method), or special methods _
getstate _and _ _setstate_ . (See Recipe 7.4 for notes on these special methods, which
also help with deep copying and serializationi.e., picklingof instances of your class.) If you want
to customize the way instances of your class get deeply copied, your class can supply a special
method _ _deepcopy_ _ (see Recipe 6.9.)

Note that you do not need to copy immutable objects (strings, numbers, tuples, etc.) because
you don't have to worry about altering them. If you do try to perform such a copy, you'll just get

the original right back; no harm done, but it's a waste of time and code. For example:

>>> s = 'cat'

>>> t = copy. copy(s)
>>> s st

True

The i s operator checks whether two objects are not merely equal, but in fact the same object

(i s checks for identity; for checking mere equality, you use the == operator). Checking object
identity is not particularly useful for immutable objects (we're using it here just to show that the
call to copy. copy was useless, although innocuous). However, checking object identity can
sometimes be quite important for mutable objects. For example, if you're not sure whether two
names a and b refer to separate objects, or whether both refer to the same object, a simple and
very fast check a i s b lets you know how things stand. That way you know whether you need to
copy the object before altering it, in case you want to keep the original object unaltered.

You can use other, inferior ways exist to create copies, namely building
your own. Given a list L, both a "whole-object slice” L[:] and a list
comprehension [x for x in L] do happen to make a (shallow) copy of L,
as do adding an empty list, L+[], and multiplying the list by 1, L*1 . . . but
each of these constructs is just wasted effort and obfuscationcalling
I'ist(L) is clearer and faster. You should, however, be familiar with the
L[:] construct because for historical reasons it's widely used. So, even
though you're best advised not to use it yourself, you'll see it in Python
code written by others.

- Similarly, given a dictionary d, you could create a shallow copy named d1

o by coding out a loop:
"
L

e

>>> dl = { }
>>> for sonekey in d:

d1[sonekey] = d[sonekey]
- or more concisely by d1 = { }; d1l1.update(d). However, again, such

oy coding is a waste of time and effort and produces nothing but obfuscated,
w} #: fatter, and slower code. Use d1=di ct (d), be happy!

See Also

Module copy in the Library Reference and Python in a Nutshell.

[rscviovs Jruexr s

[rrevons f e

Recipe 4.2. Constructing Lists with List
Comprehensions

Credit: Luther Blissett

Problem

You want to construct a new list by operating on elements of an existing sequence (or other kind
of iterable).

Solution

Say you want to create a new list by adding 23 to each item of some other list. A list
comprehension expresses this idea directly:

thenewlist =[x + 23 for x in theoldlist]

Similarly, say you want the new list to comprise all items in the other list that are larger than 5.
A list comprehension says exactly that:

thenewlist =[x for x intheoldlist if x > 5]

When you want to combine both ideas, you can perform selection with an if clause, and also use
some expression, such as adding 23, on the selected items, in a single pass:

thenewist =[x + 23 for x in theoldlist if x > 5]

Discussion

Elegance, clarity, and pragmatism, are Python's core values. List comprehensions show how
pragmatism can enhance both clarity and elegance. Indeed, list comprehensions are often the
best approach even when, instinctively, you're thinking not of constructing a new list but rather
of "altering an existing list". For example, if your task is to set all items greater than 100 to 100,
in an existing list object L, the best solution is:

L[:] = [mn(x,100) for x in L]

Assigning to the "whole-list slice” L[:] alters the existing list object in place, rather than just
rebinding the name L, as would be the case if you coded L = . . . instead.

You should not use a list comprehension when you simply want to perform a loop. When you
want a loop, code a loop. For an example of looping over a list, see Recipe 4.4. See Chapter 19
for more information about iteration in Python.

It's also best not to use a list comprehension when another built-in does what you want even
more directly and immediately. For example, to copy a list, use L1 =1ist(L), not:

L1 =[x for x in L]

Similarly, when the operation you want to perform on each item is to call a function on the item
and use the function's result, use L1 = map(f, L) rather than Ll = [f(x) for x in L].Butin
most cases, a list comprehension is just right.

In Python 2.4, you should consider using a generator expression, rather than a list
comprehension, when the sequence may be long and you only need one item at a time. The
syntax of generator expressions is just the same as for list comprehensions, except that
generator expressions are surrounded by parentheses, (and), not brackets, [and] . For

example, say that we only need the summation of the list computed in this recipe's Solution, not
each item of the list. In Python 2.3, we would code:

total = sum([x + 23 for x in theoldlist if x > 5])

In Python 2.4, we can code more naturally, omitting the brackets (no need to add additional
parenthesesthe parentheses already needed to call the built-in sumsuffice):

total = sum(x + 23 for x in theoldlist if x > 5)

Besides being a little bit cleaner, this method avoids materializing the list as a whole in memory
and thus may be slightly faster when the list is extremely long.

See Also

The Reference Manual section on list displays (another name for list comprehensions) and Python
2.4 generator expressions; Chapter 19; the Library Reference and Python in a Nutshell docs on
the i t ert ool s module and on the built-in functions map, filter, and sunt Haskell is at
http://www.haskell.org.

Python borrowed list comprehensions from the functional language Haskell

(http://www.haskell.org), changing the syntax to use keywords rather than
punctuation. If you do know Haskell, though, take care! Haskell's list
comprehensions, like the rest of Haskell, use lazy evaluation (also known as
normal order or call by need). Each item is computed only when it's
needed. Python, like most other languages, uses (for list comprehensions
as well as elsewhere) eager evaluation (also known as applicative order,
call by value, or strict evaluation). That is, the entire list is computed when
the list comprehension executes, and kept in memory afterwards as long as
necessary. If you are translating into Python a Haskell program that uses
list comprehensions to represent infinite sequences, or even just long
sequences of which only one item at a time must be kept around, Python
list comprehensions may not be suitable. Rather, look into Python 2.4's new
generator expressions, whose semantics are closer to the spirit of Haskell's
lazy evaluationeach item gets computed only when needed.

[rrevous f e

http://www.haskell.org
http://www.haskell.org

[rrevons f e

Recipe 4.3. Returning an Element of a List If It Exists

Credit: Nestor Nissen, A. Bass

Problem

You have a list L and an index i , and you want to get L[i] when i is a valid index into L;
otherwise, you want to get a default value v. If L were a dictionary, you'd use L. get (i, v), but
lists don't have a get method.

Solution

Clearly, we need to code a function, and, in this case, the simplest and most direct approach is
the best one:

def list_get(L, i, v=None):
if -len(L) <=1 <len(L): return L[i]
el se: return v

Discussion

The function in this recipe just checks whether i is a valid index by applying Python's indexing
rule: valid indices are negative ones down to -1 en(L) inclusive, and non-negative ones up to

| en(L) exclusive. If almost all calls to list_get pass a valid index value for i , you might prefer an
alternative approach:

def list_get_egfp(L, i, v=None):
try: return L[i]
except IndexError: return v

However, unless a vast majority of the calls pass a valid index, this alternative (as some time-
measurements show) can be up to four times slower than the list_get function shown in the
solution. Therefore, this "easier to get forgiveness than permission" (EGFP) approach, although it
is often preferable in Python, cannot be recommended for this specific case.

I've also tried quite a few fancy, intricate and obscure approaches, but, besides being hard to
explain and to understand, they all end up slower than the plain, simple function list_get. General
principle: when you write Python code, prefer clarity and readability to compactness and
tersenesschoose simplicity over subtlety. You often will be rewarded with code that runs faster,
and invariably, you will end up with code that is less prone to bugs and is easier to maintain,
which is far more important than minor speed differences in 99.9% of the cases you encounter in
the real world.

See Also

Language Reference and Python in a Nutshell documentation on list indexing.

[rrevons f e

Recipe 4.4. Looping over Items and Their Indices in a
Sequence

Credit: Alex Martelli, Sami Hangaslammi

Problem

You need to loop on a sequence, but at each step you also need to know which index into the
sequence you have reached (e.g., because you need to rebind some entries in the sequence),
and Python's preferred approach to looping doesn't use the indices.

Solution

That's what built-in function enumner at e is for. For example:

for index, itemin enunerate(sequence):
if item> 23:
sequence[index] = transforn(item

This is cleaner, more readable, and faster than the alternative of looping over indices and
accessing items by indexing:

for index in range(l en(sequence)):
i f sequence[index] > 23:
sequence[i ndex] = transforn(sequence[index])

Discussion

Looping on a sequence is a very frequent need, and Python strongly encourages you to do just
that, looping on the sequence directly. In other words, the Pythonic way to get each item in a
sequence is to use:

for itemin sequence:
process(item

rather than the indirect approach, typical of lower-level languages, of looping over the
sequence's indices and using each index to fetch the corresponding item:

for index in range(l en(sequence)):
process(sequence[index])

Looping directly is cleaner, more readable, faster, and more general (since you can loop on any
iterable, by definition, while indexing works only on sequences, such as lists).

However, sometimes you do need to know the index, as well as the corresponding item, within
the loop. The most frequent reason for this need is that, in order to rebind an entry in a list, you
must assign the new item to t hel i st[i ndex]. To support this need, Python offers the built-in

function enuner at e, which takes any iterable argument and returns an iterator yielding all the
pairs (two-item tuples) of the form (i ndex, i t en), one pair at a time. By writing your f or loop's
header clause in the form:

for index, itemin enunerate(sequence):

both the index and the item are available within the loop's body.

For help remembering the order of the items in each pair enuner at e yields, think of the idiom
d=dict(enumerate(L)). This gives a dictionary d that's equivalent to list L, in the sense that d[i]
is L[i] for any valid non-negative index i .

See Also

Library Reference and Python in a Nutshell section about enuner at e; Chapter 19.

R [

[rrevons f e

Recipe 4.5. Creating Lists of Lists Without Sharing
References

Credit: David Ascher

Problem

You want to create a multidimensional list but want to avoid implicit reference sharing.

Solution

To build a list and avoid implicit reference sharing, use a list comprehension. For example, to
build a 5 x 10 array of zeros:

multilist = [[0 for col in range(5)] for rowin range(10)]

Discussion

When a newcomer to Python is first shown that multiplying a list by an integer repeats that list
that many times, the newcomer often gets quite excited about it, since it is such an elegant
notation. For example:

>>> alist = [0] * 5

is clearly an excellent way to get an array of 5 zeros.

The problem is that one-dimensional tasks often grow a second dimension, so there is a natural
progression to:

>>> nmulti = [[0] * 5] * 3
>>> print multi
[fo, o, o, o, 0], [o, o, o, 0, 0], [O, O, O, 0O, 0]]

This appears to work, but the same newcomer is then often puzzled by bugs, which typically can
be boiled down to a snippet such as:

>>> nmulti[0][0] = "' oops!’
>>> print nmulti
[['oops!", O, O, O, O], ['ooOps!", O, O, O, O], ['oops!", O, O, 0, 0O]]

This issue confuses most programmers at least once, if not a few times (see the FAQ entry at
http://www.python.org/doc/FAQ.html#4.50). To understand the issue, it helps to decompose the
creation of the multidimensional list into two steps:

>>>row =[0] * 5 # alist with five references to 0
>>> nulti = [row] * 3 # alist with three references to the row object

http://www.python.org/doc/FAQ.html#4.50

This decomposed snippet produces a nul ti that's identical to that given by the more concise
snippet [[0] *5] *3 shown earlier, and it has exactly the same problem: if you now assign a value
tormul ti[0][0], you have also changed the value of nulti[1][0] and thatof mul ti[2][0] ...,
and, indeed, you have changed the value of rowf 0] , too!

The comments are key to understanding the source of the confusion. Multiplying a sequence by a
number creates a new sequence with the specified number of new references to the original
contents. In the case of the creation of r ow, it doesn't matter whether or not references are
being duplicated, since the referent (the object being referred to) is a number, and therefore
immutable. In other words, there is no practical difference between an object and a reference to
an object if that object is immutable. In the second line, however, we create a new list containing
three references to the contents of the [row] list, which holds a single reference to a list. Thus,
mul ti contains three references to a single list object. So, when the first element of the first
element of mul ti is changed, you are actually modifying the first element of the shared list.
Hence the surprise.

List comprehensions, as shown in the "Solution"”, avoid the problem. With list comprehensions,
no sharing of references occursyou have a truly nested computation. If you have followed the
discussion thoroughly, it may have occurred to you that we don't really need the inner list
comprehension, only the outer one. In other words, couldn't we get just the same effect with:

multilist = [[0]*5 for rowin range(10)]

The answer is that, yes, we could, and in fact using list multiplication for the innermost axis and
list comprehension for all outer ones is fasterover twice as fast in this example. So why don't |
recommend this latest solution? Answer: the speed improvement for this example is from 57
down to 24 microseconds in Python 2.3, from 49 to 21 in Python 2.4, on a typical PC of several
years ago (AMD Athlon 1.2 GHz CPU, running Linux). Shaving a few tens of microseconds from a
list-creation operation makes no real difference to your application's performance: and you
should optimize your code, if at all, only where it matters, where it makes a substantial and
important difference to the performance of your application as a whole. Therefore, | prefer the
code shown in the recipe's Solution, simply because using the same construct for both the inner
and the outer list creations makes it more conceptually symmetrical and easier to read!

See Also

Documentation for the r ange built-in function in the Library Reference and Python in a Nutshell.

[recviovs Jrexr

[rrevons f e

Recipe 4.6. Flattening a Nested Sequence

Credit: Luther Blissett, Holger Krekel, Hemanth Sethuram, ParzAspen Aspen

Problem

Some of the items in a sequence may in turn be sub-sequences, and so on, to arbitrary depth of
"nesting”. You need to loop over a "flattened" sequence, "expanding" each sub-sequence into a
single, flat sequence of scalar items. (A scalar, or atom, is anything that is not a sequencei.e., a
leaf, if you think of the nested sequence as a tree.)

Solution

We need to be able to tell which of the elements we're handling are "subsequences" to be
"expanded" and which are "scalars" to be yielded as is. For generality, we can take an argument
that's a predicate to tell us what items we are to expand. (A predicate is a function that we can
call on any element and that returns a truth value: in this case, t r ue if the element is a
subsequence we are to expand, Fal se otherwise.) By default, we can arbitrarily say that every
I'i st ortupl e is to be "expanded", and nothing else. Then, a recursive generator offers the
simplest solution:

def list_or_tuple(x):
return isinstance(x, (list, tuple))
def flatten(sequence, to_expand=list_or_tuple):
for itemin sequence:
if to_expand(itemn:
for subitemin flatten(item to_expand):
yield subitem
el se:
yield item

Discussion

Flattening a nested sequence, or, equivalently, "walking" sequentially over all the leaves of a
"tree", is a common task in many kinds of applications. You start with a nested structure, with
items grouped into sequences and subsequences, and, for some purposes, you don't care about
the structure at all. You just want to deal with the items, one after the other. For example,

for x in flatten([1, 2, [3, [1, 4, [5 6], 7, [8]1,], 9]):
print x,

emitsl 2 3456 7 8 9.

The only problem with this common task is that, in the general case, determining what is to be
"expanded"”, and what is to be yielded as a scalar, is not as obvious as it might seem. So, |
ducked that decision, delegating it to a callable predicate argument that the caller can pass to
flatten, unless the caller accepts flatten's somewhat simplistic default behavior of expanding just
tuples and lists.

In the same module as flatten, we should also supply another predicate that a caller might well

want to usea predicate that will expand just about any iterable except strings (plain and
Unicode). Strings are iterable, but almost invariably applications want to treat them as scalars,
not as subsequences.

To identify whether an object is iterable, we just need to try calling the built-in i t er on that
object: the call raises TypeError if the object is not iterable. To identify whether an object is
string-like, we simply check whether the object is an instance of basestri ng, since

i si nstance(obj, basestring) istrue when obj is an instance of any subclass of

basest ri ngthat is, any string-like type. So, the alternative predicate is not hard to code:

def nonstring iterable(obj):
try: iter(obj)
except TypeError: return Fal se
el se: return not isinstance(obj, basestring)

Now the caller may choose to call fl atten(seq, nonstring_iterabl e) when the need is to
expand any iterable that is not a string. It is surely better not to make the nonstring_iterable
predicate the default for flatten, though: in a simple case, such as the example snippet we
showed previously, flatten can be up to three times slower when the predicate is
nonstring_iterable rather than list_or_tuple.

We can also write a nonrecursive version of generator flatten. Such a version lets you flatten
nested sequences with nesting levels higher than Python's recursion limit, which normally allows
no more than a few thousand levels of recursion depth. The main technique for recursion
removal is to keep an explicit last-in, first-out (LIFO) stack, which, in this case, we can
implement with a list of iterators:

def flatten(sequence, to_expand=list_or_tuple):
iterators = [iter(sequence)]
while iterators:
loop on the currently nost-nested (last) iterator
for itemin iterators[-1]:
if to_expand(item:
subsequence found, go |loop on iterator on subsequence
iterators. append(iter(iten))
br eak
el se:
yield item
el se:
nmost-nested iterator exhausted, go back, loop on its parent
iterators. pop()

The if clause of the i f statement executes for any item we are to expandthat is, any
subsequence on which we must loop; so in that clause, we push an iterator for the subsequence
to the end of the stack, then execute a br eak to terminate the f or, and go back to the outer
whi | e, which will in turn execute a new f or statement on the iterator we just appended to the
stack. The el se clause of the i f statement executes for any item we don't expand, and it just
yi el ds the item.

The el se clause of the f or statement executes if no br eak statement interrupts the f or loopin
other words, when the f or loop runs to completion, exhausting the currently most-nested
iterator. So, in that el se clause, we remove the now-exhausted most-nested (last) iterator, and
the outer whi | e loop proceeds, either terminating if no iterators are left on the stack, or
executing a new f or statement that continues the loop on the iterator that's back at the top of
the stackfrom wherever that iterator had last left off, intrinsically, because an iterator's job is
exactly to remember iteration state.

The results of this nonrecursive implementation of flatten are identical to those of the simpler
recursive version given in this recipe's Solution. If you think non-recursive implementations are

faster than recursive ones, though, you may be disappointed: according to my measurements,
the nonrecursive version is about 10% slower than the recursive one, across a range of cases.

See Also

Library Reference and Python in a Nutshell sections on sequence types and built-ins i t er,
i si nstance, and basestring.

[rscviovs Jexr s

[rrevons f e

Recipe 4.7. Removing or Reordering Columnsin a List of
Rows

Credit: Jason Whitlark

Problem

You have a list of lists (rows) and need to get another list of the same rows but with some
columns removed and/or reordered.

Solution

A list comprehension works well for this task. Say you have:

listOfRows = [[1,2, 3,4], [5,6,7,8], [9 10,11, 12]]

You want a list with the same rows but with the second of the four columns removed and the
third and fourth ones interchanged. A simple list comprehension that performs this job is:

newList = [[row0], row 3], row2]] for rowin |istORows]

An alternative way of coding, that is at least as practical and arguably a bit more elegant, is to
use an auxiliary sequence (meaning a list or tuple) that has the column indices you desire in their
proper order. Then, you can nest an inner list comprehension that loops on the auxiliary
sequence inside the outer list comprehension that loops on listOfRows:

newList = [[rowci] for ci in (0, 3, 2)] for rowin |istof Rows]

Discussion

I often use lists of lists to represent two-dimensional arrays. | think of such lists as having the
"rows" of a "two-dimensional array" as their items. | often perform manipulation on the
"columns" of such a "two-dimensional array", typically reordering some columns, sometimes
omitting some of the original columns. It is not obvious (at least, it was not immediately obvious
to me) that list comprehensions are just as useful for this purpose as they are for other kinds of
sequence-manipulation tasks.

A list comprehension builds a new list, rather than altering an existing one. But even when you

do need to alter the existing list in place, the best approach is to write a list comprehension and
assign it to the existing list's contents. For example, if you needed to alter | i st O Rows in place,
for the example given in this recipe's Solution, you would code:

[istOORows[:] = [row O], row 3], row2]] for rowin IistOfRows]

Do consider, as suggested in the second example in this recipe’s Solution, the possibility of using
an auxiliary sequence to hold the column indices you desire, in the order in which you desire
them, rather than explicitly hard-coding the list display as we did in the first example. You might

feel a little queasy about nesting two list comprehensions into each other in this fashion, but it's
simpler and safer than you might fear. If you adopt this approach, you gain some potential
generality, because you can choose to give a name to the auxiliary sequence of indices, use it to
reorder several lists of rows in the same fashion, pass it as an argument to a function, whatever:

def pick_and_reorder_col ums(listof Rows, col um_i ndexes):

return [[rowci] for ci in colum_indexes] for rowin |istof Rows]
colums =0, 3, 2
newLi st Of Pandas = pi ck_and_reorder _col ums(ol dLi st Of Pandas, col ums)
newLi st Of Cat s = pi ck_and_reorder_col ums(ol dLi st Of Cats, col umms)

This example performs just the same column reordering and selection as all the other snippets in
this recipe, but it performs the operation on two separate "old" lists, obtaining from each the
corresponding "new" list. Reaching for excessive generalization is a pernicious temptation, but
here, with this pick_and_reorder_columns function, it seems that we are probably getting just
the right amount of generality.

One last note: some people prefer a fancier way to express the kinds of list comprehensions that
are used as "inner"” ones in some of the functions used previously. Instead of coding them
straightforwardly, as in:

[rowfci] for ci in colum_indexes]

they prefer to use the built-in function map, and the special method _ getitem_ _ of row used
as a bound-method, to perform the indexing subtask, so they code instead:

map(row. __getitem _, columm_i ndexes)

Depending on the exact version of Python, perhaps this fancy and somewhat obscure way may
be slightly faster. Nevertheless, | think the greater simplicity of the list comprehension form
means the list comprehension is still the best way.

See Also

List comprehension docs in Language Reference and Python in a Nutshell.

[rscviovs Jexr s

[rrevons f e

Recipe 4.8. Transposing Two-Dimensional Arrays

Credit: Steve Holden, Raymond Hettinger, Attila Vasarhelyi, Chris Perkins

Problem

You need to transpose a list of lists, turning rows into columns and vice versa.

Solution

You must start with a list whose items are lists all of the same length, such as:

arr = [[1, 2, 3], [4, 5 6], [7, 8 9], [10, 11, 12]]

A list comprehension offers a simple, handy way to transpose such a two-dimensional array:

print [[r[col] for r inarr] for col in range(len(arr[0]))]
(11, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

A faster though more obscure alternative (with exactly the same output) can be obtained by
exploiting built-in function zi p in a slightly strange way:

print map(list, zip(*arr))

Discussion

This recipe shows a concise yet clear way to turn rows into columns, and also a faster though
more obscure way. List comprehensions work well when you want to be clear yet concise, while
the alternative solution exploits the built-in function zi p in a way that is definitely not obvious.

Sometimes data just comes at you the wrong way. For instance, if you use Microsoft's ActiveX
Data Ojbects (ADO) database interface, due to array element-ordering differences between
Python and Microsoft's preferred implementation language (Visual Basic), the Get r ows method
actually appears to return database columns in Python, despite the method's name. This recipe's
two solutions to this common kind of problem let you choose between clarity and speed.

In the list comprehension solution, the inner comprehension varies what is selected from (the
row), while the outer comprehension varies the selector (the column). This process achieves the
required transposition.

In the zi p-based solution, we use the *a syntax to pass each item (row) of arr to zi p, in order,
as a separate positional argument. zi p returns a list of tuples, which directly achieves the
required transposition; we then apply | i st to each tuple, via the single call to map, to obtain a
list of lists, as required. Since we don't use zi p's result as a list directly, we could get a further
slight improvement in performance by using itertool s.i zi p instead (because i zi p does not
materialize its result as a list in memory, but rather yields it one item at a time):

import itertools
print map(list, itertools.izip(*arr))

but, in this specific case, the slight speed increase is probably not worth the added complexity.

The *args and *kwds Syntax

*ar gs (actually, * followed by any identifiermost usually, you'll see args or a as the
identifier that's used) is Python syntax for accepting or passing arbitrary positional
arguments. When you receive arguments with this syntax (i.e., when you place the
star syntax within a function's signature, in the def statement for that function),
Python binds the identifier to a tuple that holds all positional arguments not
"explicitly" received. When you pass arguments with this syntax, the identifier can be
bound to any iterable (in fact, it could be any expression, not necessarily an
identifier, as long as the expression’s result is an iterable).

**kwds (again, the identifier is arbitrary, most often kwds or k) is Python syntax for
accepting or passing arbitrary named arguments. (Python sometimes calls named
arguments keyword arguments, which they most definitely are notjust try to use as
argument name a keyword, such as pass, for, oryi el d, and you'll see.
Unfortunately, this confusing terminology is, by now, ingrained in the language and
its culture.) When you receive arguments with this syntax (i.e., when you place the
starstar syntax within a function's signature, in the def statement for that function),
Python binds the identifier to a di ct, which holds all named arguments not
"explicitly" received. When you pass arguments with this syntax, the identifier must
be bound to a di ct (in fact, it could be any expression, not necessarily an identifier,
as long as the expression's result is a di ct).

Whether in defining a function or in calling it, make sure that both *a and **k come
after any other parameters or arguments. If both forms appear, then place the **k
after the *a.

If you're transposing large arrays of numbers, consider Numeric Python and other third-party
packages. Numeric Python defines transposition and other axis-swinging routines that will make
your head spin.

See Also

The Reference Manual and Python in a Nutshell sections on list displays (the other name for list
comprehensions) and on the *a and *k notation for positional and named argument passing;
built-in functions zi p and map; Numeric Python (http://www.pfdubois.com/numpy/).

[recviovs Jrexr

http://www.pfdubois.com/numpy/

[rrevons f e

Recipe 4.9. Getting a Value from a Dictionary

Credit: Andy McKay

Problem

You need to obtain a value from a dictionary, without having to handle an exception if the key
you seek is not in the dictionary.

Solution

That's what the get method of dictionaries is for. Say you have a dictionary such as d =
{" key':"value',}. To get the value corresponding to key in d in an exception-safe way, code:

print d.get('key', 'not found')

If you need to remove the entry after you have obtained the value, call d.pop (which does a get-
and-remove) instead of d.get (which just reads d and never changes it).

Discussion

Want to get a value for a key from a dictionary, without getting an exception if the key does not
exist in the dictionary? Use the simple and useful get method of the dictionary.

If you try to get a value with the indexing syntax d[x], and the value of x is not a key in
dictionary d, your attempt raises a KeyError exception. This is often okay. If you expected the
value of x to be a key in d, an exception is just the right way to inform you that you're mistaken
(i.e., that you need to debug your program).

However, you often need to be more tentative about it: as far as you know, the value of x may
or may not be a key in d. In this case, don't start messing with i n tests, such as:

if "key' in d:
print d['key']
el se:
print 'not found

or try/except statements, such as:

try:
print d['key']
except KeyError:
print 'not found'

Instead, use the get method, as shown in the "Solution™. If you call d. get (x) , no exception is
thrown: you get d[x] if x is a key in d, and if it's not, you get None (which you can check for or
propagate). If None is not what you want to get when x is not a key of d, call d. get (x,

sonet hi ngel se) instead. In this case, if x is not a key, you will get the value of sonet hi ngel se.

get is a simple, useful mechanism that is well explained in the Python documentation, but a
surprising number of people don't know about it. Another similar method is pop, which is mostly
like get, except that, if the key was in the dictionary, pop also removes it. Just one caveat: get
and pop are not exactly parallel. d. pop(x) does raise KeyError if x is not a key in d; to get
exactly the same effect as d. get (x), plus the entry removal, call d. pop(x, None) instead.

See Also

Recipe 4.10; the Library Reference and Python in a Nutshell sections on mapping types.

T [

[rrevons f e

Recipe 4.10. Adding an Entry to a Dictionary

Credit: Alex Martelli, Martin Miller, Matthew Shomphe

Problem

Working with a dictionary d, you need to use the entry d[k] when it's already present, or add a
new value as d[k] when k isn't yet a key in d.

Solution

This is what the set def aul t method of dictionaries is for. Say we're building a word- to-page-
numbers index, a dictionary that maps each word to the list of page numbers where it appears. A
key piece of code in that application might be:

def addword(thel ndex, word, pagenunber):
t hel ndex. setdefaul t(word, []).append(pagenunber)

This code is equivalent to more verbose approaches such as:

def addword(thel ndex, word, pagenunber):
if word in thel ndex:
t hel ndex[wor d] . append(pagenunber)
el se:
t hel ndex[word] = [pagenunber]

and:

def addwor d(thel ndex, word, pagenunber):
try:
t hel ndex[wor d] . append(pagenunber)
except KeyError:
t hel ndex[word] = [pagenunber]

Using method set def aul t simplifies this task considerably.

Discussion

For any dictionary d, d. setdefaul t (k, v) is very similar to d. get (k, v), which was covered
previously in Recipe 4.9. The essential difference is that, if k is not a key in the dictionary, the
setdef aul t method assigns d[k] =v as a side effect, in addition to returning v. (get would just
return v, without affecting d in any way.) Therefore, consider using set def aul t any time you
have get -like needs, but also want to produce this side effect on the dictionary.

set def aul t is particularly useful in a dictionary with values that are lists, as detailed in Recipe
4.15. The most typical usage for set def aul t is something like:

sonedi ct. setdefaul t (sonekey, []).append(soneval ue)

setdefaul t is not all that useful for immutable values, such as numbers. If you just want to
count words, for example, the right way to code is to use, not set def aul t, but rather get :

t hel ndex[word] = thel ndex. get(word, 0) + 1

since you must rebind the dictionary entry at t hel ndex[wor d] anyway (because numbers are
immutable). But for our word-to page-numbers example, you definitely do not want to fall into
the performance trap that's hidden in the following approach:

def addwor d(t hel ndex, word, pagenunber):
t hel ndex[word] = thel ndex.get(word, []) + [pagenunber]

This latest version of addword builds three new lists each time you call it: an empty list that's
passed as the second argument to t hel ndex. get , a one-item list containing just pagenunber,
and a list with N+1 items obtained by concatenating these two (where N is the number of times
that wor d was previously found). Building such a huge number of lists is sure to take its toll, in
performance terms. For example, on my machine, | timed the task of indexing the same four
words occurring once each on each of 1,000 pages. Taking the first version of addword in the
recipe as a reference point, the second one (using t ry/except) is about 10% faster, the third
one (using set def aul t) is about 20% slowerthe kind of performance differences that you should
blissfully ignore in just about all cases. This fourth version (using get) is four times slowerthe
kind of performance difference you just can't afford to ignore.

See Also

Recipe 4.9; Recipe 4.15; Library Reference and Python in a Nutshell documentation about di ct .

T [

[rrevons f e

Recipe 4.11. Building a Dictionary Without Excessive
Quoting

Credit: Brent Burley, Peter Cogolo

Problem

You want to construct a dictionary whose keys are literal strings, without having to quote each
key.

Solution

Once you get into the swing of Python, you'll find yourself constructing a lot of dictionaries. When
the keys are identifiers, you can avoid quoting them by calling di ct with named-argument

syntax:

data = dict(red=1, green=2, blue=3)

This is neater than the equivalent use of dictionary-display syntax:

data = {'red': 1, 'green': 2, 'blue': 3}

Discussion

One powerful way to build a dictionary is to call the built-in type di ct . It's often a good

alternative to the dictionary-display syntax with braces and colons. This recipe shows that, by
calling di ct, you can avoid having to quote keys, when the keys are literal strings that happen to

be syntactically valid for use as Python identifiers. You cannot use this approach for keys such as
the literal strings '12ba’ or 'f or', because '12ba’ starts with a digit, and f or happens to be a

Python keyword, not an identifier.

Also, dictionary-display syntax is the only case in Python where you need to use braces: if you
dislike braces, or happen to work on a keyboard that makes braces hard to reach (as all Italian
layout keyboards do!), you may be happier, for example, using di ct () rather than { } to build

an empty dictionary.

Calling di ct also gives you other possibilities. di ct (d) returns a new dictionary that is an
independent copy of existing dictionary d, just like d. copy() but di ct (d) works even when d is
a sequence of pairs (key, val ue) instead of being a dictionary (when a key occurs more than
once in the sequence, the last appearance of the key applies). A common dictionary-building
idiom is:

d = dict(zip(the_keys, the_val ues))

where t he_keys is a sequence of keys and t he_val ues a "parallel" sequence of corresponding
values. Built-in function zi p builds and returns a list of (key, val ue) pairs, and built-in type

di ct accepts that list as its argument and constructs a dictionary accordingly. If the sequences
are long, it's faster to use module i t ert ool s from the standard Python library:

import itertools
d =dict(itertools.izip(the_keys, the_val ues))

Built-in function zi p constructs the whole list of pairs in memory, while i tert ool s. i zi p yields

only one pair at a time. On my machine, with sequences of 10,000 numbers, the latter idiom is
about twice as fast as the one using zi p18 versus 45 milliseconds with Python 2.3, 17 versus 32

with Python 2.4.

You can use both a positional argument and named arguments in the same call to di ct (if the
named argument clashes with a key specified in the positional argument, the named argument
applies). For example, here is a workaround for the previously mentioned issue that Python
keywords, and other nonidentifiers, cannot be used as argument names:

d =dict({"12ba':49, '"for': 23}, rof=41, fro=97, orf=42)

If you need to build a dictionary where the same value corresponds to each key, call

di ct.fronkeys(keys_sequence, val ue) (if you omit the val ue, it defaults to None). For
example, here is a neat way to initialize a dictionary to be used for counting occurrences of
various lowercase ASCII letters:

import string
count _by letter = dict.fronkeys(string.ascii_|owercase, 0)

See Also

Library Reference and Python in a Nutshell sections on built-ins di ct and zi p, and on modules
itertools andstring.

[rrevous f e

[rrevons f e

Recipe 4.12. Building a Dict from a List of Alternating
Keys and Values

Credit: Richard Philips, Raymond Hettinger

Problem

You want to build a dict from a list of alternating keys and values.

Solution

The built-in type di ct offers many ways to build dictionaries, but not this one, so we need to
code a function for the purpose. One way is to use the built-in function zi p on extended slices:

def di ct Fronili st (keysAndVal ues):
return dict(zi p(keysAndVval ues[::2], keysAndVal ues[1::2]))

A more general approach, which works for any sequence or other iterable argument and not just
for lists, is to "factor out" the task of getting a sequence of pairs from a flat sequence into a
separate generator. This approach is not quite as concise as dictFromList, but it's faster as well
as more general:

def pairwi se(iterable):
itnext = iter(iterable).next
whil e True:
yield itnext(), itnext()
def di ct FronSequence(seq):
return dict(pairw se(seq))

Defining pairwise also allows updating an existing dictionary with any sequence of alternating
keys and valuesjust code, for example, nydi ct . updat e(pai rwi se(seq)).

Discussion

Both of the "factory functions" in this recipe use the same underlying way to construct a
dictionary: each calls di ct with an argument that is a sequence of (key, val ue) pairs. All the
difference is in how the functions build the sequence of pairs to pass to di ct .

dictFromList builds a list of such pairs by calling built-in function zi p with two extended-form
slices of the function’s keysAndValues argumentone that gathers all items with even indices
(meaning the items at index 0, 2, 4, . . .), the other that gathers all items with odd indices
(starting at 1 and counting by 2 . . .). This approach is fine, but it works only when the argument
named keysAndValues is an instance of a type or class that supports extended slicing, such as
|'ist,tupleorstr. Also, this approach results in constructing several temporary lists in
memory: if keysAndValues is a long sequence, all of this list construction activity can cost some
performance.

dictfromSequence, on the other hand, delegates the task of building the sequence of pairs to the

generator named pairwise. In turn, pairwise is coded to ensure that it can use any iterable at
allnot just lists (or other sequences, such as tuples or strings), but also, for example, results of
other generators, files, dictionaries, and so on. Moreover, pairwise yields pairs one at a time. It
never constructs any long list in memory, an aspect that may improve performance if the input
sequence is very long.

The implementation of pairwise is interesting. As its very first statement, pairwise binds local
name i t next to the bound-method next of the iterator that it obtains by calling the built-in
function i t er on the iterable argument. This may seem a bit strange, but it's a good general
technique in Python: if you start with an object, and all you need to do with that object is call one
of its methods in a loop, you can extract the bound-method, assign it to a local name, and
afterwards just call the local name as if it were a function. pairwise would work just as well if the
next method was instead called in a way that may look more normal to programmers who are
used to other languages:

def pairw se_slow(iterable):
it = iter(iterable)
whil e True:
yield it.next(), it.next()

However, this pairwise_slow variant isn't really any simpler than the pairwise generator shown in
the Solution ("more familiar to people who don't know Python" is not a synonym of "simpler"!),
and it is about 60% slower. Focusing on simplicity and clarity is one thing, and a very good
oneindeed, a core principle of Python. Throwing performance to the winds, without getting any
real advantage to compensate, is a completely different proposition and definitely not a practice
that can be recommended in any language. So, while it is an excellent idea to focus on writing
correct, clear, and simple code, it's also very advisable to learn and use Python's idioms that are
most appropriate to your needs.

See Also

Recipe 19.7 for more general approaches to looping by sliding windows over an iterable. See the
Python Reference Manual for more on extended slicing.

T [

[rrevons f e

Recipe 4.13. Extracting a Subset of a Dictionary

Credit: David Benjamin

Problem

You want to extract from a larger dictionary only that subset of it that corresponds to a certain
set of keys.

Solution

If you want to leave the original dictionary intact:

def sub_dict(sonedi ct, sonekeys, default=None):
return dict([(k, somedict.get(k, default)) for k in sonekeys])

If you want to remove from the original the items you're extracting:

def sub_dict_renove(sonedi ct, sonekeys, defaul t=None):
return dict([(k, somedict.pop(k, default)) for k in sonekeys])

Two examples of these functions' use and effects:

>>d={"a": 5 'b': 6, 'c: 7}

>>> print sub_dict(d, "ab'), d
{*a': 5 'b': 6} {"a: 5 'b: 6, 'c': 7}
>>> print sub_dict_renove(d, "ab'), d
{*a': 5, 'b': 6} {'c': 7}

Discussion

In Python, | use dictionaries for many purposesdatabase rows, primary and compound keys,
variable namespaces for template parsing, and so on. So, | often need to create a dictionary that
is based on another, larger dictionary, but only contains the subset of the larger dictionary
corresponding to some set of keys. In most use cases, the larger dictionary must remain intact
after the extraction; sometimes, however, | need to remove from the larger dictionary the subset
that I'm extracting. This recipe's solution shows both possibilities. The only difference is that you
use method get when you want to avoid affecting the dictionary that you are getting data from,
method pop when you want to remove the items you're getting.

If some item k of sonekeys is not in fact a key in sonedi ct, this recipe's functions put k as a key
in the result anyway, with a default value (which | pass as an optional argument to either
function, with a default value of None). So, the result is not necessarily a subset of sonedi ct .
This behavior is the one I've found most useful in my applications.

You might prefer to get an exception for "missing keys"that would help alert you to a bug in your
program, in cases in which you know all ks in sonekeys should definitely also be keys in
sonedi ct . Remember, "errors should never pass silently. Unless explicitly silenced," to quote The

Zen of Python, by Tim Peters (enter the statement i nport thi s at an interactive Python prompt
to read or re-read this delightful summary of Python's design principles). So, if a missing key is
an error, from the point of view of your application, then you do want to get an exception that
alerts you to that error at once, if it ever occurs. If this is what you want, you can get it with
minor modifications to this recipe's functions:

def sub_dict_strict(sonedict, sonekeys):
return dict([] (k, sonedict[k]) for k in sonekeys])
def sub_dict_renove_strict(sonedi ct, sonekeys):
return dict([(k, sonedict.pop(k)) for k in sonmekeys])

As you can see, these strict variants are even simpler than the originalsa good indication that
Python likes to raise exceptions when unexpected behavior occurs!

Alternatively, you might prefer missing keys to be simply omitted from the result. This, too,
requires just minor modifications:

def sub_dict_sel ect (sonedi ct, sonekeys):
return dict([] (k, sonedict[k]) for k in sonekeys if k in sonedict])
def sub_dict_renove_sel ect (sonedi ct, sonekeys):
return dict([(k, sonedict.pop(k)) for k in sonekeys if k in somedict])

The if clause in each list comprehension does all we need to distinguish these _select variants
from the _strict ones.

In Python 2.4, you can use generator expressions, instead of list comprehensions, as the
arguments to di ct in each of the functions shown in this recipe. Just change the syntax of the
callstodict, fromdict([...]) todict(...) (removing the brackets adjacent to the
parentheses) and enjoy the resulting slight simplification and acceleration. However, these
variants would not work in Python 2.3, which has list comprehensions but not generator
expressions.

See Also

Library Reference and Python in a Nutshell documentation on di ct .

[rrevons f e

[rrevons f e

Recipe 4.14. Inverting a Dictionary

Credit: Joel Lawhead, lan Bollinger, Raymond Hettinger

Problem

An existing di ct maps keys to unique values, and you want to build the inverse di ct , mapping
each value to its key.

Solution

You can write a function that passes a list comprehension as di ct 's argument to build the new
requested dictionary:

def invert dict(d):
return dict([(v, k) for k, vind.iteritems()])

For large dictionaries, though, it's faster to use the generator i zi p from the it ert ool s module in
the Python Standard Library:

fromitertools inport izip
def invert_dict_fast(d):
return dict(izip(d.itervalues(), d.iterkeys()))

Discussion

If the values in dict d are not unique, then d cannot truly be inverted, meaning that there exists
no dict i d such that for any valid key k, i d[d[k]] ==k. However, the functions shown in this
recipe still construct, even in such cases, a "pseudo-inverse" dict pd such that, for any v that is a
value in d, d[pd[v]] ==v. Given the original dict d and the dict x returned by either of the
functions shown in this recipe, you can easily check whether x is the true inverse of d or just d's
pseudo-inverse: x is the true inverse of d if and only if | en(x) ==l en(d) . That's because, if two
different keys have the same value, then, in the result of either of the functions in this recipe,
one of the two keys will simply go "poof" into the ether, thus leaving the resulting pseudo-
inverse dict shorter than the dict you started with. In any case, quite obviously, the functions
shown in this recipe can work only if all values in d are hashable (meaning that they are all
usable as keys into a dict): otherwise, the functions raise a TypeError exception.

When we program in Python, we normally "disregard minor optimizations,” as Donald Knuth
suggested over thirty years ago: we place a premium on clarity and correctness and care
relatively little about speed. However, it can't hurt to know about faster possibilities: when we
decide to code in a certain way because it's simpler or clearer than another, it's best if we are
taking the decision deliberately, not out of ignorance.

Here, function invert_dict in this recipe's Solution might perhaps be considered clearer because it
shows exactly what it's doing. Take the pairs k, v of key and value that method iteritens
yields, swap them into (val ue, key) order, and feed the resulting list as the argument of di ct,
so that di ct builds a dictionary where each value v is a key and the corresponding key k
becomes that key's valuejust the inverse di ct that our problem requires.

However, function invert_dict_fast, also in this recipe's Solution, isn't really any more
complicated: it just operates more abstractly, by getting all keys and all values as two separate
iterators and zipping them up (into an iterator whose items are the needed, swapped (val ue,
key) pairs) via a call to generator i zi p, supplied by the it ert ool s module of the Python
Standard Library. If you get used to such higher abstraction levels, they will soon come to feel
simpler than lower-level code!

Thanks to the higher level of abstraction, and to never materializing the whole list of pairs (but
rather operating via generators and iterators that yield only one item at a time), function
invert_dict_fast can be substantially faster than function invert_dict. For example, on my
machine, to invert a 10,000-item dictionary, invert_dict takes about 63 milliseconds, but
invert_dict_fast manages the same task in just 20 milliseconds. A speed increase by a factor of
three, in general, is not to be sneered at. Such performance gains, when you work on large
amounts of data, are the norm, rather than the exception, for coding at higher abstraction levels.
This is particularly true when you can use i t ert ool s rather than loops or list comprehensions,
because you don't need to materialize some large list in memory at one time. Performance gain
is an extra incentive for getting familiar with working at higher abstraction levels, a familiarity
that has conceptual and productivity pluses, too.

See Also

Documentation on mapping types and it ert ool s in the Library Reference and Python in a
Nutshell; Chapter 19.

R [

[rrevons f e

Recipe 4.15. Associating Multiple Values with Each Key
in a Dictionary

Credit: Michael Chermside

Problem

You need a dictionary that maps each key to multiple values.

Solution

By nature, a dictionary is a one-to-one mapping, but it's not hard to make it one-to-manyin other
words, to make one key map to multiple values. Your choice of one of two possible approaches
depends on how you want to treat duplications in the set of values for a key. The following
approach, based on using | i st s as the di ct's values, allows such duplications:

di ={ }
d.setdefault(key, []).append(val ue)

while an alternative approach, based on using sub-di ct s as the di ct 's values, automatically
eliminates duplications of values:

d2 = { }
d2. setdefaul t (key, { })[value] =1

In Python 2.4, the no-duplication approach can equivalently be coded:

d3 = { }
d3. setdef aul t (key, set()).add(val ue)

Discussion

A normal dictionary performs a simple mapping of each key to one value. This recipe shows
three easy, efficient ways to achieve a mapping of each key to multiple values, by holding as the
dictionary's values | i st's, sub-di cts, or, in Python 2.4, sets. The semantics of the list-based

approach differ slightly but importantly from those of the other two in terms of how they deal
with duplication. Each approach relies on the set def aul t method of a dictionary, covered earlier

in Recipe 4.10, to initialize the entry for a key in the dictionary, if needed, and in any case to
return said entry.

You need to be able to do more than just add values for a key. With the first approach, which
uses lists and allows duplications, here's how to retrieve the list of values for a key:

|'ist_of values = dl[key]

Here's how to remove one value for a key, if you don't mind leaving empty lists as items of d1
when the last value for a key is removed:

di[key] . renove(val ue)

Despite the empty lists, it's still easy to test for the existence of a key with at least one valuejust
use a function that always returns a list (maybe an empty one), such as:

def get values_ if_any(d, key):
return d.get(key, [1)

For example, to check whether ' freep' is among the values (if any) for key ' sonekey' in
dictionary d1, you can code: if 'freep' in get values if_any(dl, 'sonekey').

The second approach, which uses sub-di ct s and eliminates duplications, can use rather similar
idioms. To retrieve the list of values for a key:

|'ist_of _values = 1list(d2[key])

To remove one value for a key, leaving empty dictionaries as items of d2 when the last value for
a key is removed:

del d2[key] [val ue]

In the third approach, showing the Python 2.4-only version d3, which uses set s, this would be:

d3[key] . renove(val ue)

One possibility for the get _val ues_i f _any function in either the second or third (duplication-
removing) approaches would be:

def get_values_if_any(d, key):
return list(d.get(key, ()))

This recipe focuses on how to code the raw functionality, but, to use this functionality in a
systematic way, you'll probably want to wrap up this code into a class. For that purpose, you
need to make some of the design decisions that this recipe highlights. Do you want a value to be
in the entry for a key multiple times? (Is the entry for each key a bag rather than a set, in
mathematical terms?) If so, should r enove just reduce the number of occurrences by 1, or
should it wipe out all of them? This is just the beginning of the choices you have to make, and
the right choices depend on the specifics of your application.

See Also

Recipe 4.10; the Library Reference and Python in a Nutshell sections on mapping types; Recipe
18.8 for an implementation of the bag type.

R [

[rrevons f e

Recipe 4.16. Using a Dictionary to Dispatch Methods or
Functions

Credit: Dick Wall

Problem

You need to execute different pieces of code depending on the value of some control variablethe
kind of problem that in some other languages you might approach with a case statement.

Solution

Object-oriented programming, thanks to its elegant concept of dispatching, does away with
many (but not all) needs for case statements. In Python, dictionaries, and the fact that functions
are first-class objects (in particular, functions can be values in a dictionary), conspire to make
the full problem of "case statements" easier to solve. For example, consider the following snippet
of code:

animals = []
nunber of felines =0
def deal with a cat()
gl obal nunber of felines
print "neow'
ani mal s. append(' feline')
nunber of felines += 1
def deal with_a dog():
print "bark"
ani mal s. append(' cani ne')
def deal with a bear():
print "watch out for the *HUG!"
ani mal s. append("' ursine')
tokenDict = {
"cat": deal _with_a cat,
"dog": deal _with_a dog
"bear": deal with_a bear

}
Sinmul ate, say, sone words read froma file
words = ["cat", "bear", "cat", "dog"]
for word in words:
Look up the function to call for each word, and call it

return tokenDict[word] ()
nf = nunber _of felines
print "we met % feline%' % (nf, 's'[nf==1:])
print "the aninmals we net were:', ' '.join(aninmals)

Discussion

The key idea in this recipe is to construct a dictionary with string (or other) values as keys, and
bound-methods, functions, or other callables as values. At each step of execution, we use the

string keys to select which callable to execute and then call it. This approach can be used as a
kind of generalized case statement.

It's embarrassingly simple (really!), but I use this technique often. You can also use bound-
methods or other callables instead of functions. If you use unbound methods, you need to pass
an appropriate object as the first actual argument when you do call them. More generally, you
can store, as the dictionary's values, tuples including both a callable and arguments to pass to
the callable.

I primarily use this technique in places where in other languages, | might want a case, swi t ch,
or sel ect statement. For example, | use it to implement a poor man's way to parse command
files (e.g., an X10 macro control file).

See Also

The Library Reference section on mapping types; the Reference Manual section on bound and
unbound methods; Python in a Nutshell about both dictionaries and callables.

[rscviovs Jruexr s

[rrevons f e

Recipe 4.17. Finding Unions and Intersections of
Dictionaries

Credit: Tom Good, Andy McKay, Sami Hangaslammi, Robin Siebler

Problem

Given two dictionaries, you need to find the set of keys that are in both dictionaries (the
intersection) or the set of keys that are in either dictionary (the union).

Solution

Sometimes, particularly in Python 2.3, you find yourself using dictionaries as concrete
representations of sets. In such cases, you only care about the keys, not the corresponding
values, and often you build the dictionaries by calls to di ct. fronkeys, such as

a
b

di ct. fronkeys(xrange(1000))
di ct. fronkeys(xrange(500, 1500))

The fastest way to compute the di ct that is the set-union is:

union = dict(a, **b)

The fastest concise way to compute the di ct that is the set-intersection is:

inter = dict.fronkeys([x for x inaif x in b])

If the number of items in dictionaries a and b can be very different, then it can be important for
speed considerations to have the shorter one in the f or clause, and the longer one in the i f
clause, of this list comprehension. In such cases, it may be worth sacrificing some conciseness in
favor of speed, by coding the intersection computation as follows:

if len(a) < len(b):
inter = dict.fronkeys([x for x inaif x not in b])
el se:
inter

dict.fronkeys([x for x in b if x not in a])

Python also gives you types to represent sets directly (in standard library module set s, and, in
Python 2.4, also as built-ins). Here is a snippet that you can use at the start of a module: the
snippet ensures that name set is bound to the best available set type, so that throughout the
module, you can then use the same code whether you're using Python 2.3 or 2.4:

try:
set
except NaneError:
fromsets inport Set as set

Having done this, you can now use type set to best effect, gaining clarity and conciseness, and
(in Python 2.4) gaining a little speed, too:

a = set (xrange(1000))

b = set(xrange(500, 1500))
union = a | b

inter = a &b

Discussion

In Python 2.3, even though the Python Standard Library module set s offers an elegant data type
Set that directly represents a set (with hashable elements), it is still common to use a di ct to
represent a set, partly for historical reasons. Just in case you want to keep doing it, this recipe
shows you how to compute unions and intersections of such sets in the fastest ways, which are
not obvious. The code in this recipe, on my machine, takes about 260 microseconds for the
union, about 690 for the intersection (with Python 2.3; with Python 2.4, 260 and

600, respectively), while alternatives based on loops or generator expressions are substantially
slower.

However, it's best to use type set instead of representing sets by dictionaries. As the recipe
shows, using set makes your code more direct and readable. If you dislike the or-operator (|)
and the "and-operator"” (& , you can equivalently use a. uni on(b) and a. i ntersection(b),
respectively. Besides clarity, you also gain speed, particularly in Python 2.4: computing the union
still takes about 260 microseconds, but computing the intersection takes only about 210. Even in
Python 2.3, this approach is acceptably fast: computing the union takes about 270
microseconds, computing the intersection takes about 650not quite as fast as Python 2.4 but still
quite comparable to what you can get if you represent sets by dictionaries. Last but not least,
once you use type set (whether it is the Python 2.4 built-in, or class Set from the Python
Standard Library module set s, the interface is the same), you gain a wealth of useful set
operations. For example, the set of elements that are in either a or b but not both is a*b or,
equivalently, a. symmetri c_di fference(b).

Even if you start with di ct s for other reasons, consider using set s anyway if you need to
perform set operations. Say, for example, that you have in phones a dictionary that maps names
to phone numbers and in addr esses one that maps names to addresses. The clearest and
simplest way to print all names for which you know both address and phone number, and their
associated data, is:

for nane in set(phones) & set(addresses):
print nane, phones[nane], addresses[nane]

This is much terser, and arguably clearer, than something like:

for nane in phones:
if name in addresses:
print nanme, phones[nane], addresses[nane]

Another excellent alternative is:

for name in set(phones).intersection(addresses):
print nane, phones[nane], addresses[nane]

If you use the named i nt er sect i on method, rather than the & intersection operator, you don't
need to turn both di ct s into set s: just one of them. Then call i nt er secti on on the resulting
set, and pass the other di ct as the argument to the i nt er secti on method.

See Also

The Library Reference and Python in a Nutshell sections on mapping types, module set s, and
Python 2.4's built-in set type.

[rrevous f e

[rrevons f e

Recipe 4.18. Collecting a Bunch of Named Items

Credit: Alex Martelli, Doug Hudgeon

Problem

You want to collect a bunch of items together, naming each item of the bunch, and you find
dictionary syntax a bit heavyweight for the purpose.

Solution

Any normal class instance inherently wraps a dictionary, which it uses to hold its state. We can
easily take advantage of this handily wrapped dictionary by coding a nearly empty class:

cl ass Bunch(object):
def _ _init_ (self, **kwds):
self. _dict_ _.update(kwds)

Now, to group a few variables, create a Bunch instance:

poi nt = Bunch(datunry, squared=y*y, coord=x)

You can now access and rebind the named attributes just created, add others, remove some,
and so on. For example:

i f point.squared > threshol d:
point.isok = True

Discussion

We often just want to collect a bunch of stuff together, naming each item of the bunch. A
dictionary is OK for this purpose, but a small do-nothing class is even handier and prettier to use.

It takes minimal effort to build a little class, as in this recipe, to provide elegant attribute-access
syntax. While a dictionary is fine for collecting a few items in which each item has a name (the
item's key in the dictionary can be thought of as the item's name, in this context), it's not the
best solution when all names are identifiers, to be used just like variables. In class Bunch's _
init _ method, we accept arbitrary named arguments with the **kwds syntax, and we use
the kwds dictionary to update the initially empty instance dictionary, so that each named
argument gets turned into an attribute of the instance.

Compared to attribute-access syntax, dictionary-indexing syntax is not quite as terse and
readable. For example, if poi nt was a dictionary, the little snippet at the end of the "Solution”
would have to be coded like:

if point['squared'] > threshol d:
point['isok'] = True

An alternative implementation that's just as attractive as the one used in this recipe is:

cl ass EvenSi npl er Bunch(obj ect):
def _ init_ (self, **kwds):
self. dict__ = kwds

Rebinding an instance's dictionary may feel risque&, but it's not actually any pushier than calling
that dictionary's updat e method. So you might prefer the marginal speed advantage of this
alternative implementation of Bunch. Unfortunately, | cannot find anywhere in Python's
documentation an assurance that usage like:

d
X

{*foo': "bar'}
EvensSi npl er Bunch(**d)

will forever keep making x._ _dict_ _ an independent copy of d rather than just sharing a
reference. It does currently, and in every version, but unless it's a documented semantic
constraint, we cannot be entirely sure that it will keep working forever. So, if you do choose the
implementation in EvenSimplerBunch, you might choose to assign a copy (di ct (kwds) or

kwds. copy()) rather than kwds itself. And, if you do, then the marginal speed advantage
disappears. All in all, the Bunch presented in this recipe's Solution is probably preferable.

A further tempting but not fully sound alternative is to have the Bunch class inherit from di ct,
and set attribute access special methods equal to the item access special methods, as follows:

class Di ctBunch(dict):

_ _getattr_ = dict._ _getitem _
_ _setattr_ = dict._ _setitem _
_ _delattr_ _ =dict._ delitem _

One problem with this approach is that, with this definition, an instance x of DictBunch has many
attributes it doesn't really have, because it inherits all the attributes (methods, actually, but
there's no significant difference in this context) of di ct . So, you can't meaningfully check
hasattr(x, soneattr), as you could with the classes Bunch and EvenSimplerBunch previously
shown, unless you can somehow rule out the value of someattr being any of several common
words such as 'keys', 'pop’, and 'get .

Python's distinction between attributes and items is really a wellspring of clarity and simplicity.
Unfortunately, many newcomers to Python wrongly believe that it would be better to confuse
items with attributes, generally because of previous experience with JavaScript and other such
languages, in which attributes and items are regularly confused. But educating newcomers is a
much better idea than promoting item/attribute confusion.

See Also

The Python Tutorial section on classes; the Language Reference and Python in a Nutshell
coverage of classes; Chapter 6 for more information about object-oriented programming in
Python; Recipe 4.18 for more on the **kwds syntax.

[rrevos] uexr

[rrevons f e

Recipe 4.19. Assigning and Testing with One Statement

Credit: Alex Martelli, Martin Miller

Problem

You are transliterating C or Perl code to Python, and to keep close to the original's structure,
you'd like an expression's result to be both assigned and tested (as inif ((x=foo()) or
whi | e((x=foo()) in such other languages).

Solution

In Python, you can't code i f x=foo():. ... Assignment is a statement, so it cannot fit into an
expression, and you can only use expressions as conditions of i f and whi | e statements. This
isn't a problem, it just means you have to structure your code Pythonically! For example, to
process a file object f line by line, instead of the following C-like (and syntactically incorrect, in
Python) approach:

while (line=f.readline()) !'="
process(line)

you can code a highly Pythonic (readable, clean, fast) approach:

for linein f:
process(line)

But sometimes, you're transliterating from C, Perl, or another language, and you'd like your
transliteration to be structurally close to the original. One simple utility class makes it easy:

cl ass Dat aHol der (obj ect):
def _ init_ (self, value=None):
sel f.val ue = val ue
def set(self, value):
sel f.val ue = val ue
return val ue
def get(self):
return sel f.val ue
optional and strongly discouraged, but neverthel ess handy at times:
inmport _ _builtin_ _
_ _builtin_ _.DataHol der = Dat aHol der
_ _builtin_ _.data = data = Dat aHol der()

With the help of the DataHolder class and its instance data, you can keep your C-like code
structure intact in transliteration:

while data.set(file.readline()) !'=""
process(data.get())

Discussion

In Python, assignment is a statement, not an expression. Thus, you cannot assign the result that
you are also testing, for example, in the condition of an if, el i f, or whi | e statement. This is
usually fine: just structure your code to avoid the need to assign while testing (in fact, your code
will often become clearer as a result). In particular, whenever you feel the need to assign-and-
test within the condition of a whi | e loop, that's a good hint that your loop's structure probably
wants to be refactored into a generator (or other iterator). Once you have refactored in this way,
your loops become plain and simple f or statements. The example given in the recipe, looping
over each line read from a text file, is one where the refactoring has already been done on your
behalf by Python itself, since afil e object is an iterator whose items are the file's lines.

However, sometimes you may be writing Python code that is the transliteration of code originally
written in C, Perl, or some other language that supports assignment-as-expression. Such
transliterations often occur in the first Python version of an algorithm for which a reference
implementation is supplied, an algorithm taken from a book, and so on. In such cases, it's often
preferable to have the structure of your initial transliteration be close to that of the code you're
transcribing. You can refactor later and make your code more Pythonicclearer, faster, and so on.
But first, you want to get working code as soon as possible, and specifically you want code that
is easy to check for compliance to the original it has been transliterated from. Fortunately,
Python offers enough power to make it quite easy for you to satisfy this requirement.

Python doesn't let us redefine the meaning of assignment, but we can have a method (or
function) that saves its argument somewhere and also returns that argument so it can be tested.
That somewhere is most naturally an attribute of an object, so a method is a more natural choice
than a function. Of course, we could just retrieve the attribute directly (i.e., the get method is
redundant), but it looks nicer to me to have symmetry between data.set and data.get.

dat a. set (what ever) can be seen as little more than syntactic sugar around

dat a. val ue=what ever, with the added value of being acceptable as an expression. Therefore, it's
the one obviously right way to satisfy the requirement for a reasonably faithful transliteration.
The only difference between the resulting Python code and the original (say) C or Perl code, is at
the syntactic sugar levelthe overall structure is the same, and that's the key issue.

Importing _ _builtin_ _ and assigning to its attributes is a trick that basically defines a new
built-in object at runtime. You can use that trick in your application's start-up code, and then all
other modules will automatically be able to access your new built-ins without having to do an

i mport . It's not good Python practice, though; on the contrary, it's pushing the boundaries of
Pythonic good taste, since the readers of all those other modules should not have to know about
the strange side effects performed in your application's startup code. But since this recipe is
meant to offer a quick-and-dirty approach for a first transliteration that will soon be refactored to
make it better, it may be acceptable in this specific context to cut more corners than one would
in production-level code.

On the other hand, one trick you should definitely not use is the following abuse of a currently
existing wart in list comprehensions:

while [line for line in [f.readline()] if linel="]:
process(!line)

This trick currently works, since both Python 2.3 and 2.4 still "leak” the list comprehension
control variable (here, |i ne) into the surrounding scope. However, besides being obscure and
unreadable, this trick is specifically deprecated: list comprehension control variable leakage will
be fixed in some future version of Python, and this trick will then stop working at all.

See Also

The Tutorial section on classes; the documentation for the _ _builtin_ _ module in the Library

Reference and Python in a Nutshell; Language Reference and Python in a Nutshell documentation
on list comprehensions.

O [

[rrevons f e

Recipe 4.20. Using printf in Python

Credit: Tobias Klausmann, Andrea Cavalcanti

Problem

You'd like to output something to your program's standard output with C's function pri ntf, but
Python doesn't have that function.

Solution
It's easy to code a printf function in Python:

i mport sys
def printf(format, *args):
sys.stdout.wite(format % args)

Discussion

Python separates the concepts of output (the pri nt statement) and formatting (the %operator),
but if you prefer to have these concepts together, they're easy to join, as this recipe shows. No
more worries about automatic insertion of spaces or newlines, either. Now you need worry only
about correctly matching format and arguments!

For example, instead of something like:

print 'Result tuple is: %' % (result_tuple,),

with its finicky need for commas in unobvious places (i.e., one to make a singleton tuple around
result_tupl e, one to avoid the newline that pri nt would otherwise insert by default), once you
have defined this recipe's printf function, you can just write:

printf('Result tuple is: %', result _tuple)

See Also

Library Reference and Python in a Nutshell documentation for module sys and for the string
formatting operator % Recipe 2.13 for a way to implement C++'s <<-style output in Python.

[rrevous f e

[rrevons f e

Recipe 4.21. Randomly Picking Items with Given
Probabilities

Credit: Kevin Parks, Peter Cogolo

Problem

You want to pick an item at random from a list, just about as r andom choi ce does, but you need

to pick the various items with different probabilities given in another list, rather than picking any
item with equal probability as r andom choi ce does.

Solution

Module randomin the standard Python library offers a wealth of possibilities for generating and
using pseudo-random numbers, but it does not offer this specific functionality, so we must code
it as a function of our own:

i nport random
def random pick(sone_|ist, probabilities):
x = random uni form(0, 1)
curul ative_probability = 0.0
for item itemprobability in zip(sone_list, probabilities):
curmul ative_probability += itemprobability
if x < cunulative_probability: break
return item

Discussion

Module randomin the standard Python library does not have the weighted choice functionality
that is sometimes needed in games, simulations, and random tests, so | wrote this recipe to
supply this functionality. The recipe uses module r andonis function uni f or mto get a uniformly
distributed pseudo-random number between 0.0 and 1.0, then loops in parallel on items and
their probabilities, computing the increasing cumulative probability, until the latter becomes
greater than the pseudo-random number.

The recipe assumes, but does not check, that probabilities is a sequence with just as many items
as some_list, which are probabilitiesthat is, numbers between 0.0 and 1.0, summing up to 1.0; if
these assumptions are violated, you may still get some random picks, but they will not follow the
(inconsistent) specifications encoded in the function's arguments. You may want to add some

assert statements at the start of the function to check that the arguments make sense, such as:

assert len(sonme_list) == len(probabilities)

assert 0 <= min(probabilities) and max(probabilities) <=1
assert abs(sunm(probabilities)-1.0) < 1.0e-5

However, these checks can be quite time consuming, so | don't normally use them and have not
included them in the official Solution.

As | already mentioned, the problem solved in this recipe requires items to be associated with

probabilitiesnumbers between 0 and 1, summing up to 1. A related but slightly different task is
to get random picks with weighted relative probabilities given by small non-negative
integersodds, rather than probabilities. For this related problem, the best solution is a generator,
with an internal structure that is rather different from the function random_pick given in this
recipe's Solution:

i nport random
def random pi cks(sequence, relative odds):
table = z for x, y in zip(sequence, relative_odds) for z in [X]*y]
whil e True:
yi el d random choi ce(t abl e)

This generator works by first preparing a table whose total number of items is
sun(rel ative_odds), each item of seq appearing in the table as many times as the small non-

negative integer that is its corresponding item in relative_odds. Once the table is prepared, the
generator's body is tiny and fast, as it simply delegates to r andom choi ce the picking of each

random item it yields. Typical uses of this random_picks generator might be:

>>> x = random picks('ciao', [1, 1, 3, 2])

>>> for two_chars in zip('boo', x): print ''.join(tw_chars),
bc oa oa

>>> jnport itertools

>>> print "'.join(itertools.islice(x, 8))

i cacaoco

See Also

Module randomin the Library Reference and Python in a Nutshell.

[rrevons f e

[rrevons f e

Recipe 4.22. Handling Exceptions Within an Expression

Credit: Chris Perkins, Gregor Rayman, Scott David Daniels

Problem

You want to code an expression, so you can't directly use the statement TRy/except , but you still
need to handle exceptions that the expression may throw.

Solution

To catch exceptions, TRy/except is indispensable, and, since try/except is a statement, the only
way to use it inside an expression is to code an auxiliary function:

def throws(t, f, *a, **k):
"'"'"Return True iff f(*a, **k) raises an exception whose type is t
(or, one of the itens of _tuple_ t, if t is atuple).""’

try:
f(*a, **k)
except t:
return True
el se:

return Fal se

For example, suppose you have a text file, which has one number per line, but also extra lines
which may be whitespace, comments, or what-have-you. Here is how you can make a list of all
the numbers in the file, skipping the lines that aren't numbers:

data = [float(line) for line in open(sonme_file)
if not throws(ValueError, float, line)]

Discussion

You might prefer to name such a function raises, but | personally prefer throws, which is
probably a throwback to C++. By whatever name, the auxiliary function shown in this recipe
takes as its arguments, first an exception type (or tuple of exception types) t, then a callable f,
and then arbitrary positional and named arguments a and k, which are to be passed on to f. Do
not code, for example, i f not throws(ValueError, float(line))! When you call a function,
Python evaluates the arguments before passing control to the function; if an argument's
evaluation raises an exception, the function never even gets started. I've seen this erroneous
usage attempted more than once by people who are just starting to use the assert Rai ses
method from the standard Python library's uni tt est. Test Case class, for example.

When throws executes, it just calls f within the t ry clause of atry/except statement, passing on
the arbitrary positional and named arguments. If the call to f in the try clause raises an
exception whose type is t (or one of the items of t, if tis a t upl e of exception types), then
control passes to the corresponding except clause, which, in this case, returns true as throws'
result. If no exception is raised in the try clause, then control passes to the corresponding el se
clause (if any), which, in this case, returns Fal se as throws' result.

Note that, if some unexpected exception (one whose type is not in t) gets raised, then function
throws does not catch that exception, so that throws terminates and propagates the exception to
its caller. This choice is quite a deliberate one. Catching exceptions with a too-wide except clause
is a bug-diagnosing headache waiting to happen. If the caller really wants throws to catch just
about everything, it can always call t HRows(Excepti on, . . .and live with the resulting headaches.

One problem with the throws function is that you end up doing the key operation twiceonce just
to see if it throws, tossing the result away, then, a second time, to get the result. It would be
nicer to get the result, if any, together with an indication of whether an exception has been
caught. | first tried something along the lines of:

def throws(t, f, *a, **k):
" Return a pair (True, None) if f(*a, **k) raises an exception whose
type is int, else a pair (False, x) where x is the result of f(*a, **k). "
try:
return False, f(*a, **k)
except t:
return True, None

Unfortunately, this version doesn't fit in well in a list comprehension: there is no elegant way to
get and use both the flag and the result. So, | chose a different approach: a function that returns
alist in any caseempty if an exception was caught, otherwise with the result as the only item.
This approach works fine in a list comprehension, but for clarity, the name of the function needs
to be changed:

def returns(t, f, *a, **k):
" Return [f(*a, **k)] normally, [] if that raises an exception in t.
try:
return [f(*a, **k)]
except t:
return []

The resulting list comprehension is even more elegant, in my opinion, than the original one in
this recipe's Solution:

data = [x for line in open(sone_file)
for x in returns(Val ueError, float, line)]

See Also

Python in a Nutshell's section on catching and handling exceptions; the sidebar The *args and
**kwds Syntax for an explanation of *ar gs and **kwds syntax.

[rscviovs Jruexr s

[rrevons f e

Recipe 4.23. Ensuring a Name Is Defined in a Given
Module

Credit: Steven Cummings

Problem

You want to ensure that a certain name is defined in a given module (e.g., you want to ensure
that there is a built-in name set), and, if not, you want to execute some code that sets the

definition.

Solution

The solution to this problem is the only good use I've yet seen for statement exec. exec lets us
execute arbitrary Python code from a string, and thus lets us write a very simple function to deal
with this task:

import _ _builtin_ _

def ensureDefined(nanme, defining_code, target=_ _builtin_ _):
if not hasattr(target, name):
d={ }

exec defining_code in d

assert name in d, 'Code % did not set name %' % (
defi ni ng_code, nane)

setattr(target, name, d[nane])

Discussion

If your code supports several versions of Python (or of some third-party package), then many of
your modules must start with code such as the following snippet (which ensures name set is
properly set in either Python 2.4, where it's a built-in, or 2.3, where it must be obtained from the
standard library):

try:
set
except NaneError:
fromsets inport Set as set

This recipe encapsulates this kind of logic directly, and by default works on module _ _builtin_
_, since that's the typical module for which you need to work around missing names in older
Python versions. With this recipe, you could ensure name set is properly defined among the
built-ins by running just once, during your program's initialization, the single call:

ensureDefined('set', '"fromsets inport Set as set')

The key advantage of this recipe is that you can group all needed calls to ensureDefined in just
one place of your application, at initialization time, rather than having several ad hoc try/except

statements at the start of various modules. Moreover, ensureDefined may allow more readable

code because it does only one specific job, so the purpose of calling it is obvious, while
try/except statements could have several purposes, so that more study and reflection might be
needed to understand them. Last but not least, using this recipe lets you avoid the warnings that
the try/except approach can trigger from such useful checking tools as pychecker,
http://pychecker.sourceforge.net/. (If you aren't using pychecker or something like that, you
should!)

The recipe takes care to avoid unintended accidental side effects on t ar get , by using an auxiliary
dictionary d as the target for the exec statement and then transferring only the requested name.
This way, for example, you can use as t ar get an object that is not a module (a class, say, or
even a class instance), without necessarily adding to your target an attribute named _
builtins _ that references the dictionary of Python's built-ins. If you used less care, so that
the body of the i f statement was only:

exec defining_code in vars(target)

you would inevitably get such side effects, as documented at
http://www.python.org/doc/current/ref/exec.html.

It's important to be aware that exec can and does execute any valid string of Python code that
you give it. Therefore, make sure that the argument defining_code that you pass to any call of
function ensureDefined does not come from an untrusted source, such as a text file that might
have been maliciously tampered with.

See Also

The online documentation of the exec statement in the Python Language Reference Manual at
http://www.python.org/doc/current/ref/exec.html.

[rrevons] uexr

http://pychecker.sourceforge.net/
http://www.python.org/doc/current/ref/exec.html
http://www.python.org/doc/current/ref/exec.html

[rrevons f e

Chapter 5. Searching and Sorting

Introduction

Recipe 5.1. SortingaDictionary

Recipe 5.2. SortingalListof Strings Case-Insensitively

Recipe 5.3. Sorting a List of Objects by an Attribute of the Objects

Recipe 5.4. Sorting Keys or Indices Basedon the Corresponding Values

Recipe 5.5. Sorting Strings with Embedded Numbers

Recipe 5.6. Processing All of a List's Items in Random Order

Recipe 5.7. Keeping a Sequence Ordered as Items Are Added

Recipe 5.8. Getting the First Few Smallest Items of a Sequence

Recipe 5.9. Lookingfor ltemsinaSorted Sequence

Recipe 5.10. Selecting the nth Smallest Element of a Sequence

Recipe 5.11. ShowingoffquicksortinThreelLines

Recipe 5.12. PerformingFrequent Membership Tests on a Sequence

Recipe 5.13. Finding Subseguences

Recipe 5.14. Enrichingthe Dictionary Type with Ratings Functionality

Recipe 5.15. Sorting Names and Separating Them by Initials

[rrevos] uexr

[rrevons f e

Introduction

Credit: Tim Peters, PythonLabs

Computer manufacturers of the 1960s estimated that more than 25 percent of the running
time on their computers was spent on sorting, when all their customers were taken into
account. In fact, there were many installations in which the task of sorting was responsible
for more than half of the computing time. From these statistics we may conclude that either
(i) there are many important applications of sorting, or (ii) many people sort when they
shouldn't, or (iii) inefficient sorting algorithms have been in common use.

Donald Knuth
The Art of Computer Programming,vol. 3, Sorting and Searching, page 3

Professor Knuth's masterful work on the topics of sorting and searching spans nearly 800 pages
of sophisticated technical text. In Python practice, we reduce it to two imperatives (we read
Knuth so you don't have to):

e When you need to sort, find a way to use the built-in sort method of Python lists.
¢ When you need to search, find a way to use built-in dictionaries.

Many recipes in this chapter illustrate these principles. The most common theme is using the
decorate-sort-undecorate (DSU) pattern, a general approach to transforming a sorting problem
by creating an auxiliary list that we can then sort with the default, speedy sort method. This
technique is the single most useful one to take from this chapter. In fact, DSU is so useful that
Python 2.4 introduced new features to make it easier to apply. Many recipes can be made
simpler in 2.4 as a result, and the discussion of older recipes have been updated to show how.

DSU relies on an unusual feature of Python's built-in comparisons: sequences are compared
lexicographically. Lexicographical order is a generalization to tuples and lists of the everyday
rules used to compare strings (e.g., alphabetical order). The built-in cnp(sl1, s2), when sl and
s2 are sequences, is equivalent to this Python code:

def lexcmp(sl, s2):

Find | eft rost nonequal pair.
i =0
while i <len(sl) and i < len(s2):

outconme = cnp(sl[i], s2[i])

i f outcone:

return outcone

i +=1
Al equal, until at |east one sequence was exhausted.
return cnp(len(sl), len(s2))

This code looks for the first unequal corresponding elements. If such an unequal pair is found,
that pair determines the outcome. Otherwise, if one sequence is a proper prefix of the other, the
prefix is considered to be the smaller sequence. Finally, if these cases don't apply, the sequences
are identical and are considered equal. Here are some examples:

>>> cmp((1, 2, 3), (1, 2, 3)) # identical

0

>>> cnmp((1, 2, 3), (1, 2)) # first larger because second is a prefix
1

>>> cnp((1, 100), (2, 1)) # first smaller because 1<2

-1

>>> cnp((1, 2), (1, 3)) # first smaller because 1==1, then 2<3
-1

An immediate consequence of lexicographical comparison is that if you want to sort a list of
objects by a primary key, breaking ties by comparing a secondary key, you can simply build a
list of tuples, in which each tuple contains the primary key, secondary key, and original object, in
that order. Because tuples are compared lexicographically, this automatically does the right
thing. When comparing tuples, the primary keys are compared first, and if (and only if) the
primary keys are equal, the secondary keys are compared.

The examples of the DSU pattern in this chapter show many applications of this idea. The DSU
technique applies to any number of keys. You can add to the tuples as many keys as you like, in
the order in which you want the keys compared. In Python 2.4, you can get the same effect with
the new key= optional argument to sort, as several recipes point out. Using the sort method's
key= argument is easier, more memory-efficient, and runs faster than building an auxiliary list of
tuples by hand.

The other 2.4-introduced innovation in sorting is a convenient shortcut: a sort ed built-in function
that sorts any iterable, not in-place, but by first copying it into a new list. In Python 2.3 (apart
from the new optional keyword arguments, which apply to the sort ed built-in function as well as
tolist.sort), you can code the same functionality quite easily:

def sorted 2 3(iterable):
alist = list(iterable)
alist.sort()
return alist

Because copying a list and sorting it are both nontrivial operations, and the built-in sort ed needs
to perform those operations too, no speed advantage is gained in making sort ed a built-in. Its
advantage is just the convenience. Having something always around and available, rather than
having to code even just four simple lines over and over, does make a difference in practice. On
the other hand, few tiny functions are used commonly enough to justify expanding the set of
built-ins. Python 2.4 added sort ed and r ever sed because those two functions were requested
very frequently over the years.

The biggest change in Python sorting since the first edition of this book is that Python 2.3 moved
to a new implementation of sorting. The primary visible consequences are increased speed in
many common cases, and the fact that the new sort is stable (meaning that when two elements
compare equal in the original list, they retain their relative order in the sorted list). The new
implementation was so successful, and the chances of improving on it appeared so slim, that
Guido was persuaded to proclaim that Python's | i st. sort method will always be stable. This
guarantee started with Python 2.4 but was actually realized in Python 2.3. Still, the history of
sorting cautions us that better methods may yet be discovered. A brief account of Python's
sorting history may be instructive in this regard.

A Short History of Python Sorting

In early releases of Python, |i st. sort used the gsort routine from the underlying platform's C
library. This didn't work out for several reasons, primarily because the quality of gsort varied
widely across machines. Some versions were extremely slow when given a list with many equal
values or in reverse-sorted order. Some versions even dumped core because they weren't
reentrant. A user-defined _ _cnp_ _ function can also invoke | i st. sort, so that one | i st. sort
can invoke others as a side effect of comparing. Some platform gsort routines couldn't handle
that. A user-defined _ _cnp_ _ function can also (if it's insane or malicious) mutate the list while
it's being sorted, and many platform gsort routines dumped core when that happened.

Python then grew its own implementation of the quicksort algorithm. This was rewritten with
every release, as real-life cases of unacceptable slowness were discovered. Quicksort is a
delicate algorithm indeed!

In Python 1.5.2 the quicksort algorithm was replaced by a hybrid of samplesort and binary
insertion sort, and that implementation remained unchanged for more than four years, until
Python 2.3. Samplesort can be viewed as a variant of quicksort that uses a very large sample
size to pick the partitioning element, also known as the pivot (it recursively samplesorts a large
random subset of the elements and picks the median of those). This variant makes quadratic-
time behavior almost impossible and brings the number of comparisons in the average case
much closer to the theoretical minimum.

However, because samplesort is a complicated algorithm, it has too much administrative
overhead for small lists. Therefore, small lists (and small slices resulting from samplesort
partitioning) were handled by a separate binary insertion sort, which is an ordinary insertion sort,
except that it uses binary search to determine where each new element belongs. Most sorting
texts say this isn't worth the bother, but that's because most texts assume that comparing two
elements is as cheap as or cheaper than swapping them in memory, which isn't true for Python's
sort! Moving an object is very cheap, since what is copied is just a reference to the object.
Comparing two objects is expensive, though, because all of the object-oriented machinery for
finding the appropriate code to compare two objects and for coercion gets reinvoked each time.
This made binary search a major win for Python's sort.

On top of this hybrid approach, a few common special cases were exploited for speed. First,
already-sorted or reverse-sorted lists were detected and handled in linear time. For some
applications, these kinds of lists are very common. Second, if an array was mostly sorted, with
just a few out-of-place elements at the end, the binary insertion sort handled the whole job. This
was much faster than letting samplesort have at it and occurred often in applications that
repeatedly sort a list, append a few new elements, then sort it again. Finally, special code in the
samplesort looked for stretches of equal elements, so that the slice they occupy could be marked
as done early.

In the end, all of this yielded an in-place sort with excellent performance in all known real cases
and supernaturally good performance in some common special cases. It spanned about 500 lines
of complicated C code, which gives special poignancy to recipe Recipe 5.11.

Over the years samplesort was in use, | made a standing offer to buy dinner for anyone who
could code a faster Python sort. Alas, | ate alone. Still, | kept my eye on the literature because
several aspects of the samplesort hybrid were irritating:

¢ While no case of quadratic-time behavior appeared in real life, I knew such cases could be
contrived, and it was easy to contrive cases two or three times slower than average ones.

¢ The special cases to speed sorting in the presence of extreme partial order were valuable in
practice, but my real data often had many other kinds of partial order that should be
exploitable. In fact, I came to believe that random ordering in input lists almost never
exists in real life (i.e., not outside of timing harnesses for testing sorting algorithmst!).

e There is no practical way to make samplesort stable without grossly increasing memory
use.

e The code was very complex and complicated in ugly ways by the special cases.

Current Sorting

It was always clear that a mergesort would be better on several counts, including guaranteed
worst-case n | og n time, and that mergesort is easy to make stable. The problem was that half

a dozen attempts to code a mergesort for Python yielded a sort that ran slower (mergesort does

much more data movement than samplesort) and consumed more memory.

A large and growing literature concerns adaptive sorting algorithms, which attempt to detect
order of various kinds in the input. | coded a dozen of them, but they were all much slower than
Python's samplesort except on the cases they were designed to exploit. The theoretical bases for
these algorithms were simply too complex to yield effective practical algorithms. Then | read an
article pointing out that list merging naturally reveals many kinds of partial order, simply by
paying attention to how often each input list "wins" in a row. This information was simple and
general. When | realized how it could be applied to a natural mergesort, which would obviously
exploit all the kinds of partial order | knew and cared about, | got obsessed enough to solve the
speed problem for random data and to minimize the memory burden.

The resulting "adaptive, natural, stable"” mergesort implemented for Python 2.3 was a major
success, but also a major engineering effortthe devil is in the details. There are about 1,200 lines
of C code, but unlike the code in the samplesort hybrid, none of these lines are coding for special
cases, and about half implement a technical trick allowing the worst-case memory burden to be
cut in half. I'm quite proud of it, but the margins of this introduction lack the space for me to
explain the details. If you're curious, | wrote a long technical description that you can find in a
Python source distribution: Objects/listsort.txt under the main directory (say, Python-2.3.5 or
Python-2.4) where you unpacked Python's source distribution archive. In the following list, |
provide examples of the partial order Python 2.3's mergesort naturally exploits, where "sorted"
means in either forward-sorted or reverse-sorted order:

¢ The input is already sorted.

¢ The input is mostly sorted but has random elements appended at either end, or both, or
inserted in the middle.

e The input is the concatenation of two or more sorted lists. In fact, the fastest way to merge
multiple sorted lists in Python now is to join them into one long list and run | i st. sort on

that.

¢ The input is mostly sorted but has some scattered elements that are out of order. This is
common, for example, when people manually add new records to a database sorted by
name: people aren't good at maintaining strict alphabetic order but are good at getting
close.

¢ The input has many keys with the same value. For example, when sorting a database of
American companies by the stock exchange they're listed on, most will be associated with
the NYSE or NASDAQ exchanges. This is exploitable for a curious reason: records with
equal keys are already in sorted order, by the definition of "stable"! The algorithm detects
that naturally, without code especially looking for equal keys.

¢ The input was in sorted order but got dropped on the floor in chunks; the chunks were
reassembled in random order, and to fight boredom, some of the chunks were riffle-
shuffled together. While that's a silly example, it still results in exploitable partial order and
suggests how general the method is.

In short, Python 2.3's timsort (well, it has to have some brief name) is stable, robust, and
preternaturally fast in many real-life cases: use it any time you can!

[recviovs Jrexr

[rrevons f e

Recipe 5.1. Sorting a Dictionary

Credit: Alex Martelli

Problem

You want to sort a dictionary. This probably means that you want to sort the keys and then get
the values in that same sorted order.

Solution

The simplest approach is exactly the one expressed by the problem statement: sort the keys,
then pick the corresponding values:

def sortedDi ctVal ues(adict):
keys = adict. keys()
keys.sort()
return [adict[key] for key in keys]

Discussion

The concept of sorting applies only to a collection that has an orderin other words, a sequence. A
mapping, such as a dictionary, has no order, so it cannot be sorted. And yet, "How do I sort a
dictionary?" is a frequent, though literally meaningless, question on the Python lists. More often
than not, the question is in fact about sorting some sequence composed of keys and/or values
from the dictionary.

As for the implementation, while one could think of more sophisticated approaches, it turns out
(not unusually, for Python) that the one shown in the solution, the simplest one, is also
essentially the fastest one. A further slight increase in speed, about 20%, can be squeezed out in
Python 2.3 by replacing the list comprehension with a map call in the r et ur n statement at the

end of the function. For example:

return map(adict.get, keys)

Python 2.4, however, is already measurably faster than Python 2.3 with the version in the
"Solution" and gains nothing from this further step. Other variants, such as using adi ct. _
_getitem _ instead of adi ct. get, offer no further increase in speed, or they even slow
performance down a little, in both Python 2.3 and 2.4.

See Also

Recipe 5.4 for sorting a dictionary based on its values rather than on its keys.

[rscviovs Jexr s

[rrevons f e

Recipe 5.2. Sorting a List of Strings Case-Insensitively

Credit: Kevin Altis, Robin Thomas, Guido van Rossum, Martin V. Lewis, Dave Cross

Problem

You want to sort a list of strings, ignoring case differences. For example, you want a, although
it's lowercase, to sort before B, although the latter is uppercase. By default, however, string
comparison is case-sensitive (e.g., all uppercase letters sort before all lowercase ones).

Solution

The decorate-sort-undecorate (DSU) idiom is simple and fast:

def case_insensitive_sort(string_list):

auxiliary_list = [(x.lower(), x) for x in string_list] # decorate
auxiliary_list.sort() # sort
return [x[1] for x in auxiliary_list] # undecorate

In Python 2.4, DSU is natively supported, so (assuming the items of string_Il i st are indeed
strings, and not, e.g., Unicode objects), you can use the following even shorter and faster
approach:

def case_insensitive sort(string list):
return sorted(string_list, key=str.|ower)

Discussion

An obvious alternative to this recipe's Solution is to code a comparison function and pass it to the
sort method:

def case_insensitive_sort_1(string_list):
def conpare(a, b): return cnp(a.lower(), b.lower())
string_list.sort(conpare)

However, in this way the | ower method gets called twice for every comparison, and the number
of comparisons needed to sort a list of n items is typically proportional to n | og(n).

The DSU idiom builds an auxiliary list, whose items are tuples where each item of the original list
is preceded by a "key". The sort then takes place on the key, because Python compares tuples
lexicographically (i.e., it compares the tuples' first items first). With DSU, the | ower method gets
called only n times to sort a list of n strings, which saves enough time to cover the small costs of
the first, decorate step and the final, undecorate step, with a big net increase in speed.

DSU is also sometimes known, not quite correctly, as the Schwartzian Transform, by somewhat
imprecise analogy with a well-known idiom of the Perl language. (If anything, DSU is closer to
the Guttman-Rosler Transform, see http://www.sysarch.com/perl/sort paper.html.)

DSU is so important that Python 2.4 supports it directly: you can optionally pass to the sort

http://www.sysarch.com/perl/sort_paper.html

method of a list an argument named key, which is the callable to use on each item of the list to
obtain the key for the sort. If you pass such an argument, the sorting internally uses DSU. So, in
Python 2.4, string list.sort(key=str. | ower is essentially equivalent to function
case_insensitive_sort, except the sort method sorts the list in-place (and returns None) instead
of returning a sorted copy and leaving the original list alone. If you want function
case_insensitive_sort to sort in-place, by the way, just change its r et ur n statement into an
assignment to the list's body:

string_list[:] =[x[1] for x inauxiliary_list]

Vice versa, if, in Python 2.4, you want to get a sorted copy and leave the original list alone, you
can use the new built-in function sort ed. For example, in Python 2.4:

for s in sorted(string_list, key=str.lower): print s

prints each string in the list, sorted case-insensitively, without affecting string_Ii st itself.

The use of str. | ower as the key argument in the Python 2.4 Solution restricts you to specifically
sorting strings (not, e.g., Unicode objects). If you know you're sorting a list of Unicode objects,
use key=uni code. | ower instead. If you need a function that applies just as well to strings and
Unicode objects, you caninport string and then use key=stri ng. | ower ; alternatively, you
could use key=l anbda s: s.lower().

If you need case-insensitive sorting of lists of strings, you might also need dictionaries and sets
using case-insensitive strings as keys, lists behaving case-insensitively regarding such methods
as i ndex and count , case-insensitive results from needl| e in hayst ack, and so on. If that is the
case, then your real underlying need is a subtype of str that behaves case-insensitively in
comparison and hashinga clearly better factoring of the issue, compared to implementing many
container types and functions to get all of this functionality. To see how to implement such a

type, see Recipe 1.24.

See Also

The Python Frequently Asked Questions http://www.python.org/cgi-bin/fagw.py?
reg=show&file=fag04.051.htp; Recipe 5.3; Python 2.4 Library Reference about the sort ed built-
in function and the key argument to sort and sort ed; Recipe 1.24.

[rscviovs Jexr s

http://www.python.org/cgi-bin/faqw.py?

[rrevons f e

Recipe 5.3. Sorting a List of Objects by an Attribute of
the Objects

Credit: Yakov Markovitch, Nick Perkins

Problem

You need to sort a list of objects according to one attribute of each object.

Solution

The DSU idiom shines, as usual:

def sort _by attr(seq, attr):
intermed = [(getattr(x, attr), i, x) for i, x in enunmerate(seq)]
intermed.sort()
return [x[-1] for x in intermed]
def sort_by attr_inplace(lst, attr):
Ist[:] = sort_by attr(lst, attr)

In Python 2.4, DSU is natively supported, so your code can be even shorter and faster:

i nport operator
def sort by attr(seq, attr):

return sorted(seq, key=operator.attrgetter(attr))
def sort_by_ attr_inplace(lst, attr):

| st.sort(key=operator.attrgetter(attr))

Discussion

Sorting a list of objects by an attribute of each object is best done using the DSU idiom
introduced previously in Recipe 5.2. In Python 2.3 and 2.4, DSU is no longer needed, as it used
to be, to ensure that a sort is stable (sorting is always stable in Python 2.3 and later), but DSU's
speed advantages still shine.

Sorting, in the general case and with the best algorithms, is Q n | og n) (as is often the case in
mathematical formulas, the juxtaposition of terms, here n and | og n, indicates that the terms are
multiplied). DSU's speed comes from maximally accelerating the Q' n | og n) part, which
dominates sorting time for sequences of substantial length n, by using only Python's native (and
maximally fast) comparison. The preliminary decoration step, which prepares an intermediate
auxiliary list of tuples, and the successive undecoration step, which extracts the important item
from each tuple after the intermediate list is sorted, are only Q' n) . Therefore any minor
inefficiencies in these steps contribute negligible overhead if n is large enough, and reasonably
little even for many practical values of n.

The O()-Notation

The most useful way to reason about many performance issues is in terms of what is
popularly known as big-O analysis and notation (the O stands for "order™). You can
find detailed explanations, for example, at

http://en.wikipedia.org/wiki/Big O notation, but here's a summary.

If we consider an algorithm applied to input data of some size N, running time can be
described, for large enough values of N (and big inputs are often those for which
performance is most critical), as being proportional to some function of N. This is
indicated with notations such as Q' N) (running time proportional to N: processing
twice as much data takes about twice as much time, 10 times as much data, 10
times as much time, and so on; also known as linear time), O N squar ed) (running
time proportional to the square of N: processing twice as much data takes about four
times as much time, 10 times as much data, 100 times as much time; also known as
quadratic time), and so on. Another case you will see often is Q N1 og N), which is
faster than Q' N squar ed) but not as fast as Q' N) .

The constant of proportionality is often ignored (at least in theoretical analysis)
because it depends on such issues as the clock rate of your computer, not just on the
algorithm. If you buy a machine that's twice as fast as your old one, everything will
run in half the time, but that will not change any of the comparisons between
alternative algorithms.

This recipe puts index i , in each tuple that is an item of list i nt er med, ahead of the
corresponding x (where x is the i -th item in seq). This placement ensures that two items of seq
will never be compared directly, even if they have the same value for the attribute named attr.
Even in that case, their indices will still differ, and thus Python's lexicographic comparison of the
tuples will never get all the way to comparing the tuples' last items (the original items from seq).
Avoiding object comparisons may save us from performing extremely slow operations, or even
from attempting forbidden ones. For example, we could sort a list of complex numbers by their
real attribute: we would get an exception if we ever tried to compare two complex numbers
directly, because no ordering is defined on complex numbers. But thanks to the precaution
described in this paragraph, such an event can never occur, and the sorting will therefore
proceed correctly.

As mentioned earlier in Recipe 5.2, Python 2.4 supports DSU directly. You can pass an optional
keyword-argument key, to sort, which is the callable to use on each item to get the sort key.
Standard library module oper at or has two new functions, attrgetter anditengetter, that
exist specifically to return callables suitable for this purpose. In Python 2.4, the ideal solution to
this problem therefore becomes:

i mport operator
seq. sort (key=operator.attrgetter(attr))

This snippet performs the sort in-place, which helps make it blazingly faston my machine, three
times faster than the Python 2.3 function shown first in this recipe. If you need a sorted copy,
without disturbing seq, you can get it using Python 2.4's new built-in function sort ed:

sorted_copy = sorted(seq, key=operator.attrgetter(attr))

While not quite as fast as an in-place sort, this latest snippet is still over 2.5 times faster than the
function shown first in this recipe. Python 2.4 also guarantees that, when you pass the optional

http://en.wikipedia.org/wiki/Big_O_notation

key named argument, list items will never be accidentally compared directly, so you need not
take any special safeguards. Moreover, stability is also guaranteed.

See Also

Recipe 5.2; Python 2.4's Library Reference docs about the sort ed built-in function, oper at or
module's attrgetter anditengetter functions, and the key argument to . sort and sorted.

[rscviovs Jexr s

[rrevons f e

Recipe 5.4. Sorting Keys or Indices Basedon the
Corresponding Values

Credit: John Jensen, Fred Bremmer, Nick Coghlan

Problem

You need to count the occurrences of various items and present the items in order of their
number of occurrencesfor example, to produce a histogram.

Solution

A histogram, apart from graphical issues, is based on counting the occurrences of items (easy to
do with a Python list or dictionary) and then sorting the keys or indices in an order based on
corresponding values. Here is a subclass of di ct that adds two methods for the purpose:

class hist(dict):
def add(self, item increnent=1):
add 'increnment' to the entry for '"item
self[item = increnent + self.get(item O0)
def counts(self, reverse=Fal se):
return |list of keys sorted by corresponding values '"'
aux = [(self[k], k) for k in self]
aux.sort()
if reverse: aux.reverse()
return [k for v, k in aux]

If the items you're counting are best modeled by small integers in a compact range, so that you
want to keep item counts in a list, the solution is quite similar:

class hist1(list):

def _ _init_ _(self, n):
"'"initialize this list to count occurrences of n distinct itens
list. _init_ (self, n*[0])

def add(self, item increnent=1):
"'' add 'increnment' to the entry for 'item '''
self[item += increnent

def counts(self, reverse=Fal se):

return list of indices sorted by corresponding val ues "'

aux = [(v, k) for k, v in enunerate(self)]
aux.sort()
if reverse: aux.reverse()
return [k for v, k in aux]

Discussion

The add method of hist embodies the normal Python idiom for counting occurrences of arbitrary
(but hashable) items, using a di ct to hold the counts. In class histl, based on a | i st, we take a
different approach, initializing all countsto O in _ _init_ _, so the add method is even simpler.

The count s methods produce the lists of keys, or indices, sorted in the order given by the
corresponding values. The problem is very similar in both classes, hist and histl; therefore, the
solutions are also almost identical, using in each case the DSU approach already shown in Recipe
5.2 and Recipe 5.3. If we need both classes in our program, the similarity is so close that we
should surely factor out the commonalities into a single auxiliary function _sorted_keys:

def _sorted_keys(container, keys, reverse):
"'' return list of 'keys' sorted by corresponding values in 'container'
aux = [(container[k], k) for k in keys]
aux.sort()
if reverse: aux.reverse()
return [k for v, k in aux]

and then implement the counts methods of each class as thin wrappers over this _sorted_keys
function:

class hist(dict):

def counts(self, reverse=Fal se):
return _sorted_keys(self, self, reverse)
class hist1(list):

def counts(self, reverse=Fal se):
return _sorted_keys(self, xrange(len(self)), reverse)

DSU is so important that in Python 2.4, as shown previously in Recipe 5.2 and Recipe 5.3, the
sort method of lists and the new built-in function sort ed offer a fast, intrinsic implementation of
it. Therefore, in Python 2.4, function _sorted_keys can become much simpler and faster:

def _sorted_keys(container, keys, reverse):
return sorted(keys, key=container. getitem _, reverse=reverse)’

The bound-method contai ner. _ _getitem _ performs exactly the same operation as the
indexing cont ai ner [k] in the Python 2.3 implementation, but it's a callable to call on each k of
the sequence that we're sorting, namely keysexactly the right kind of value to pass as the key
keyword argument to the sort ed built-in function. Python 2.4 also affords an easy, direct way to
get a list of a dictionary's items sorted by value:

fromoperator inmport itengetter
def dict_itens_sorted_by value(d, reverse=Fal se):
return sorted(d.iteritens(), key=itengetter(1l), reverse=reverse)

The operator.itengetter higher-order function, also new in Python 2.4, is a handy way to
supply the key argument when you want to sort a container whose items are subcontainers,
keying on a certain item of each subcontainer. This is exactly the case here, since a dictionary's
items are a sequence of pairs (two-item tuples), and we want to sort the sequence keying on the
second item of each tuple.

Getting back to this recipe's main theme, here is a usage example for the class hist shown in this
recipe's Solution:

sentence = Hello there this is atest. Hello there this was a test,
but nowit is not. "'’

wor ds = sentence.split()

c = hist()

for word in words: c.add(word)

print "Ascendi ng count:"
print c.counts()

print "Descendi ng count:"
print c.counts(reverse=True)

This code snippet produces the following output:

Ascendi ng count:

[(2, "but"), (1, "it"), (1, 'not."), (1, '"now), (1, "test,'), (1, "test.'),
(1, "was'), (2, "Hello"), (2, "a"), (2, "is"'), (2, "there'), (2, '"this")]
Descendi ng count:

[(2, "this"), (2, '"there'), (2, "is'), (2, "a"), (2, "Hello"), (1, 'was'),
(1, "test.'), (1, "test,'), (1, 'now), (1, 'not."), (1, "it"), (1, '"but')]

See Also

Recipe "Special Method Names" in the Language Reference and the OOP chapter in Python in a
Nutshell, about special method _ _getitem_ _; Library Reference docs for Python 2.4 sorted
built-in and the key= argument to sort and sorted.

[rrevons f e

[rrevons f e

Recipe 5.5. Sorting Strings with Embedded Numbers

Credit: S&bastien Keim, Chui Tey, Alex Martelli

Problem

You need to sort a list of strings that contain substrings of digits (e.g., a list of postal addresses)
in an order that looks good. For example, 'f 002. t xt ' should come before 'f 0010. t xt *. However,
Python's default string comparison is alphabetical, so, by default, 'f 0010. t xt ' instead comes
before 'f 002. t xt".

Solution

You need to split each string into sequences of digits and nondigits, and transform each
sequence of digits into a number. This gives you a list that is just the right comparison key for
the sort you want, and you can then use DSU for the sort itselfthat is, code two functions,
shorter than this description:

i mport re

re digits =re.conpile(r' (\d+)")

def enbedded_nunbers(s):
pieces =re_digits.split(s) # split into digits/nondigits
pieces[1l::2] = map(int, pieces[1l::2]) # turn digits into nunbers
return pieces

def sort _strings_wth_enbedded nunbers(alist):
aux = [(enbedded nunbers(s), s) for s in alist]
aux.sort()
return [s for _ _, s in aux] # convention: _ _ neans "ignore"

In Python 2.4, use the native support for DSU, with the same function embedded_numbers to
get the sort key:

def sort_strings_w th_enbedded nunbers(alist):
return sorted(alist, key=enbedded nunbers)

Discussion

Say you have an unsorted list of filenames, such as:

files ="'"file3.txt filell.txt file7.txt filed.txt filelb.txt'.split()

If you just sort and print this list, for example in Python 2.4 with pri nt

join(sorted(files)), your output looks like filell.txt filelb.txt file3.txt filed.txt
file7.txt, since, by default, strings are sorted alphabetically (to use a fancier word, the sort
order is described as lexicographical). Python cannot just guess that you mean to treat in a
different way those substrings that happen to be made of digits; you have to tell Python precisely
what you want, and this recipe shows how.

Using this recipe, you can get a nicer-looking result:

print " ".join(sort_strings wth_enbedded nunbers(files))

The outputisnow file3d.txt filed.txt file7.txt filell.txt filelb.txt, which is probably
just what you want in this case.

The implementation relies on the DSU idiom. We need to code DSU explicitly if we want to
support Python 2.3, while if our code is Python 2.4-only, we just rely on the native
implementation of DSU. We do so by passing an argument named key (a function to be called on
each item to get the right comparison key for the sort) to the new built-in function sorted.

Function embedded_numbers in the recipe is how we get the right comparison key for each item:
a list alternating substrings of nondigits, and the i nt obtained from each substring of digits.
re digits.split(s) gives us a list of alternating substrings of nondigits and digits (with the
substrings of digits at odd-numbered indices); then, we use built-in functions map and i nt (and
extended-form slices that get and set all items at odd-numbered indices) to turn sequences of
digits into integers. Lexicographical comparison on this list of mixed types now produces just the
right result.

See Also

Library Reference and Python in a Nutshell docs about extended slicing and about module re;
Python 2.4 Library Reference about the sort ed built-in function and the key argument to sort
and sort ed; Recipe 5.3; Recipe 5.2.

[rscviovs Jruexr s

[rrevons f e

Recipe 5.6. Processing All of a List's Items in Random
Order

Credit: luri Wickert, Duncan Grisby, T. Warner, Steve Holden, Alex Martelli

Problem

You need to process, in random order, all of the items of a long list.

Solution

As usual in Python, the best approach is the simplest one. If we are allowed to change the order
of items in the input list, then the following function is simplest and fastest:

def process_all _in_random order(data, process):
first, put the whole list into random order
random shuf f | e(dat a)
next, just walk over the list linearly
for elemin data: process(elem

If we must preserve the input list intact, or if the input data may be some iterable that is not a
list, just insert as the first statement of the function the assignment data = | i st (dat a) .

Discussion

While it's a common mistake to be overly concerned with speed, don't make the opposite
mistake of ignoring the different performances of various algorithms. Suppose we must process
all of the items in a long list in random order, without repetition (assume that we're allowed to
mangle or destroy the input list). The first idea to suggest itself might be to repeatedly pick an
item at random (with function random choi ce), removing each picked item from the list to avoid
future repetitions:

i mport random
def process_random renovi ng(data, process):
whi | e dat a:
el em = random choi ce(dat a)
dat a. renmove(el em
process(el en)

However, this function is painfully slow, even for input lists of just a few hundred elements. Each
call to dat a. r enove must linearly search through the list to find the element to delete. Since the
cost of each of n steps is Q(n), the whole process is Q' n2) time proportional to the square of the
length of the list (and with a large multiplicative constant, too).

Minor improvements to this first idea could focus on obtaining random indices, using the pop
method of the list to get and remove an item at the same time, low-level fiddling with indices to
avoid the costly removal in favor of swapping the picked item with the last yet-unpicked one
towards the end, or using dictionaries or sets instead of lists. This latest idea might be based on

a hope of using a di ct's popi t emmethod (or the equivalent method pop of class sets. Set and
Python 2.4's built-in type set), which may look like it's designed exactly to pick and remove a
random item, but, beware! di ct. popi t emis documented to return and remove an arbitrary item
of the dictionary, and that's a far cry from a random item. Check it out:

>>> d=di ct (enunerate(' ciao'))
>>> while d: print d.popiten()

It may surprise you, but in most Python implementations this snippet will print d's items in a far
from random order, typically (0,'c") then (1,"i") and so forth. In short, if you need pseudo-
random behavior in Python, you need standard library module r andonpopi t emis not an
alternative.

If you thought about using a dictionary rather than a list, you are definitely on your way to
"thinking Pythonically"”, even though it turns out that dictionaries wouldn't provide a substantial
performance boost for this specific problem. However, an approach that is even more Pythonic
than choosing the right data structure is best summarized as: let the standard library do it!. The
Python Standard Library is large, rich, and chock full of useful, robust, fast functions and classes
for a wide variety of tasks. In this case, the key intuition is realizing that, to walk over a
sequence in a random order, the simplest approach is to first put that sequence into random
order (known as shuffling the sequence, an analogy with shuffling a deck of cards) and then walk
over the shuffled sequence linearly. Function r andom shuf f | e performs the shuffling, and the
function shown in this recipe's Solution just uses it.

Performance should always be measured, never guessed at, and that's what standard library
module tineit is for. Using a null process function and a list of length 1,000 as dat a,
process_all_in_random_order is almost 10 times faster than process_random_removing; with a
list of length 2,000, the performance ratio grows to almost 20. While an improvement of, say,
25%, or even a constant factor of 2, usually can be neglected without really affecting the
performance of your program as a whole, the same does not apply to an algorithm that is 10 or
20 times as slow as it could be. Such terrible performance is likely to make that program
fragment a bottleneck, all by itself. Moreover, this risk increases when we're talking about Q n2)
versus Q' n) behavior: with such differences in big-O behavior, the performance ratio between
bad and good algorithms keeps increasing without bounds as the size of the input data grows.

See Also

The documentation for the randomand ti neit modules in the Library Reference and Python in a
Nutshell.

R [

[rrevons f e

Recipe 5.7. Keeping a Sequence Ordered as Iltems Are
Added

Credit: John Nielsen

Problem

You want to maintain a sequence, to which items are added, in a sorted state, so that at any
time, you can easily examine or remove the smallest item currently present in the sequence.

Solution

Say you start with an unordered list, such as:

the_list =[903, 10, 35, 69, 933, 485, 519, 379, 102, 402, 883, 1]

You could call the_Iist.sort() to make the list sorted and thenresult=the_list.pop(0) to

get and remove the smallest item. But then, every time you add an item (say with
the_list.append(0)), you need to call the_list.sort() again to keep the list sorted.

Alternatively, you can use the heapg module of the Python Standard Library:

i mport heapq
heapq. heapi fy(the_list)

Now the list is not necessarily fully sorted, but it does satisfy the heap property (meaning if all
indices involved are valid, the _list[i]<=the_list[2*i+1] and
the_list[i]<=the_list[2*i+2])so0, in particular, the_list[0] is the smallest item. To keep the
heap property valid, use r esul t =heapq. heappop(t he_I| i st) to get and remove the smallest item
and heapg. heappush(the_list, new ten) to add a new item. When you need to do bothadd a
new item while getting and removing the previously smallest itemyou can use

resul t =heapq. heaprepl ace(the_list, newiten).

Discussion

When you need to retrieve data in an ordered way (at each retrieval getting the smallest item
among those you currently have at hand), you can pay the runtime cost for the sorting when you
retrieve the data, or you can pay for it when you add the data. One approach is to collect your
data into a list and sort the list. Now it's easy to get your data in order, smallest to largest.
However, you have to keep calling sort each time you add new data during the retrieval, to
make sure you can later keep retrieving from the smallest current item after each addition. The
method sort of Python lists is implemented with a little-known algorithm called Natural
Mergesort, which minimizes the runtime cost of this approach. Yet the approach can still be
burdensome: each addition (and sorting) and each retrieval (and removal, via pop) takes time
proportional to the number of current items in the list (O(N) , in common parlance).

An alternative approach is to use a data organization known as a heap, a type of binary tree
implemented compactly, yet ensuring that each "parent” is always less than its "children”. The

best way to maintain a heap in Python is to use a | i st and have it managed by the heapq library
module, as shown in this recipe's Solution. The list does not get fully sorted, yet you can be sure
that, whenever you heappop an item from the list, you always get the lowest item currently
present, and all others will be adjusted to ensure the heap property is still valid. Each addition
with heappush, and each removal with heappop, takes a short time proportional to the logarithm
of the current length of the list ({1 og N), in common parlance). You pay as you go, a little at a
time (and not too much in total, either.)

A good occasion to use this heap approach, for example, is when you have a long-running queue
with new data periodically arriving, and you always want to be able to get the most important
item off the queue without having to constantly re-sort your data or perform full searches. This
concept is known as a priority queue, and a heap is an excellent way to implement it. Note that,
intrinsically, the heapq module supplies you with the smallest item at each heappop, so make
sure to arrange the way you encode your items' priority values to reflect this. For example, say
that you receive incoming items each accompanied by a cost, and the most important item at
any time is the one with the highest cost that is currently on the queue; moreover, among items
of equal cost, the most important one is the one that arrived earliest. Here's a way to build a
"priority queue" class respecting these specs and based on functions of module heapq:

cl ass priog(object):

def _ init_ (self):
self.q =1 1]
self.i =0
def push(self, item cost):
heapq. heappush(sel f.q, (-cost, self.i, item)

self.i +=1
def pop(self):
return heapq. heappop(sel f.q)[-1]

The main idea in this snippet is to push on the heap tuples whose first item is the cost with
changed sign, so that higher costs result in smaller tuples (by Python's natural comparison);
right after the cost, we put a progressive index, so that, among items with equal cost, the one
arriving earliest will be in a smaller tuple.

In Python 2.4, module heapqg has been reimplemented and optimized; see Recipe 5.8 for more
information about heapq.

See Also

Docs for module heapq in the Library Reference and Python in a Nutshell; heapq.py in the Python

sources contains a very interesting discussion of heaps; Recipe 5.8 for more information about
heapq; Recipe 19.14 for merging sorted sequences using heapq.

[recviovs Jrexr

[rrevons f e

Recipe 5.8. Getting the First Few Smallest Items of a
Sequence

Credit: Matteo Dell'’Amico, Raymond Hettinger, George Yoshida, Daniel Harding

Problem

You need to get just a few of the smallest items from a sequence. You could sort the sequence
and just use seq[: n], but is there any way you can do better?

Solution

Perhaps you can do better, if n, the number of items you need, is small compared to n, the
sequence's length. sort is very fast, but it still takes Q(n | og n) time, while we can get the first
n smallest elements in time Q(n) if n is small. Here is a simple and practical generator for this
purpose, which works equally well in Python 2.3 and 2.4:

i mport heapq
def isorted(data):

data = |ist(data)
heapq. heapi f y(dat a)
whi | e dat a:
yi el d heapq. heappop(dat a)

In Python 2.4 only, you can use an even simpler and faster way to get the smallest n items of
dat a when you know n in advance:

i mport heapq
def smallest(n, data):
return heapq.nsnallest(n, data)

Discussion

dat a can be any bounded iterable; the recipe's function isorted starts by calling | i st on it to
ensure that. You can remove the statement data = | i st (dat a) if all the following conditions
hold: you know that dat a is a list to start with, you don't mind the fact that the generator
reorders dat a's items, and you want to remove items from dat a as you fetch them.

As shown previously in Recipe 5.7, the Python Standard Library contains module heapq, which

supports the data structures known as heaps. Generator isorted in this recipe's Solution relies on
making a heap at the start (via heap. heapi f y) and then yielding and removing the heap's
smallest remaining item at each step (via heap. heappop).

In Python 2.4, module heapg has also grown two new functions. heapq. nl ar gest (n, dat a)
returns a list of the n largest items of data; heapg. nsnal | est (n, data) returns a list of the n
smallest items. These functions do not require that dat a satisfy the heap condition; indeed, they
do not even require dat a to be a listany bounded iterable whose items are comparable will do.
Function smallest in this recipe's Solution just lets heapq. smal | est do all the work.

To judge speed, we must always measure itguessing about relative speeds of different pieces of
code is a mug's game. So, how does isorted’s performance compare with Python 2.4's built-in
function sort ed, when we're only looping on the first few (smallest) items? To help measure
timing, | wrote a t op10 function that can use either approach, and | also made sure | had a
sort ed function even in Python 2.3, where it's not built in:

try:
sorted
except :
def sorted(data):
data = list(data)

data.sort()
return data
import itertools
def toplO(data, howtosort):
return list(itertools.islice(howosort(data), 10))

On my machine running Python 2.4 on thoroughly shuffled lists of 1,000 integers, t op10 takes
about 260 microseconds with isorted, while it takes about 850 microseconds with the built-in
sort ed. However, Python 2.3 is much slower and gives vastly different results: about 12
milliseconds with isorted, about 2.7 milliseconds with sort ed. In other words, Python 2.3 is 3
times slower than Python 2.4 for sort ed, but it's 50 times slower for isorted. Lesson to retain:
whenever you optimize, measure. You shouldn't choose optimizations based on first principles,
since the performance numbers can vary so widely, even between vastly compatible "point
releases". A secondary point can be made: if you care about performance, move to Python 2.4
as soon as you can. Python 2.4 has been vastly optimized and accelerated over Python 2.3,
particularly in areas related to searching and sorting.

If you know that your code need only support Python 2.4, then, as this recipe's Solution
indicates, using heapq's new function nsmal | est is faster, as well as simpler, than doing your

own coding. To implement top10 in Python 2.4, for example, you just need:

i mport heapq
def toplO(data):

return heapqg. nsnal | est (10, data)

This version takes about half the time of the previously shown isorted-based t op10, when called
on the same thoroughly shuffled lists of 1,000 integers.

See Also

Library Reference and Python in a Nutshell docs about method sort of type | i st, and about
modules heapq and ti nei t ; Chapter 19 for more about iteration in Python; Python in a Nutshell's
chapter on optimization; heapq.py in the Python sources contains a very interesting discussion of
heaps; Recipe 5.7 for more information about heapq.

T [

[rrevons f e

Recipe 5.9. Looking for Items in a Sorted Sequence

Credit: Noah Spurrier

Problem

You need to look for a lot of items in a sequence.

Solution

If list L is sorted, module bi sect from the Python Standard Library makes it easy to check if
some item x is present in L:

i nport bisect
X_insert_point = bisect.bisect_right(L, x)
X_is_present = L[x_insert_point-1:x_insert_point] == [x]

Discussion

Looking for an item x in a list L is very easy in Python: to check whether the item is there at all,
if x in L; to find out where exactly it is, L. i ndex(x) . However, if L has length n, these
operations take time proportional to nessentially, they just loop over the list's items, checking
each for equality to x. If L is sorted, we can do better.

The classic algorithm to look for an item in a sorted sequence is known as binary search, because
at each step it roughly halves the range it's still searching onit generally takes about | ogon steps.

It's worth considering when you're going to look for items many times, so you can amortize the
cost of sorting over many searches. Once you've decided to use binary search for x in L, after
calling L. sort(), module bi sect from the Python Standard Library makes the job easy.

Specifically, we need function bi sect . bi sect _ri ght, which returns the index where an item
should be inserted, to keep the sorted list sorted, but doesn't alter the list; moreover, if the item
already appears in the list, bi sect _ri ght returns an index that's just to the right of any items
with the same value. So, after getting this "insert point" by calling bi sect . bi sect _right(L, x),
we need only to check the list immediately before the insert point, to see if an item equal to x is
already there.

The way we compute x_i s_present in the "Solution" may not be immediately obvious. If we
know that L is not empty, we can use a simpler and more obvious approach:

X_is_present = L[x_insert_point-1] == X

However, the indexing in this simpler approach raises an exception when L is empty. When the
slice boundaries are invalid, slicing is less "strict" than indexing, since it just produces an empty
slice without raising any exception. In general, sonel i st[i:i+1] is the same one-item list as
[sonelist[i]] wheni is avalid index in sonel i st: it's an empty list[] when the indexing
would raise | ndexErr or . The computation of x_i s_present in the recipe exploits this important
property to avoid having to deal with exceptions and handle empty and nonempty cases for L in
one uniform way. An alternative approach is:

X_is_present =L and L[x_insert_point-1] == x

This alternative approach exploits and's short-circuiting behavior to guard the indexing, instead
of using slicing.

An auxiliary di ct, as shown in Recipe 5.12, is also a possibility as long as items are hashable
(meaning that items can be used as keys into a di ct). However, the approach in this recipe,

based on a sorted list, may be the only useful one when the items are comparable (otherwise,
the list could not be sorted) but not hashable (so a di ct can't have those items as its keys).

When the list is already sorted, and the number of items you need to look up in it is not
extremely large, it may in any case be faster to use bi sect than to build an auxiliary dictionary,
since the investment of time in the latter operation might not be fully amortized. This is
particularly likely in Python 2.4, since bi sect has been optimized very effectively and is much
faster than it was in Python 2.3. On my machine, for example, bi sect . bi sect _ri ght for an item
in the middle of a list of 10,000 integers is about four times faster in Python 2.4 than it was in
Python 2.3.

See Also

Documentation for the bi sect module in the Library Reference and Python in a Nutshell; Recipe
5.12.

[rscviovs Jexr s

[rrevons f e

Recipe 5.10. Selecting the nth Smallest Element of a
Sequence

Credit: Raymond Hettinger, David Eppstein, Shane Holloway, Chris Perkins

Problem

You need to get from a sequence the nth item in rank order (e.g., the middle item, known as the
median). If the sequence was sorted, you would just use seq[n] . But the sequence isn't sorted,
and you wonder if you can do better than just sorting it first.

Solution

Perhaps you can do better, if the sequence is big, has been shuffled enough, and comparisons
between its items are costly. Sort is very fast, but in the end (when applied to a thoroughly
shuffled sequence of length n) it always takes Q' n | og n) time, while there exist algorithms that
can be used to get the nth smallest element in time n) . Here is a function with a solid
implementation of such an algorithm:

i mport random
def select(data, n):
Find the nth rank ordered el enent (the |east value has rank 0).
make a new |list, deal with <0 indices, check for valid index
data = |ist(data)
i f n<O:
n += | en(dat a)
if not 0 <= n < len(data):
rai se ValueError, "can't get rank %l out of %" % (n, |en(data))
main [oop, quicksort-like but with no need for recursion
whi l e True:
pi vot = random choi ce(dat a)
pcount = 0
under, over = 1, [1]
uappend, oappend = under. append, over.append
for elemin data:
if elem< pivot:
uappend(el em
elif elem> pivot:
oappend(el em
el se:
pcount += 1
numunder = | en(under)
if n < numunder:
data = under
elif n < nunmunder + pcount:
return pivot
el se:
data = over
n -= numunder + pcount

Discussion

This recipe is meant for cases in which repetitions count. For example, the median of the list [1,
1, 1, 2, 3] is1 because that is the third one of the five items in rank order. If, for some
strange reason, you want to discount duplications, you need to reduce the list to its unique items
first (e.g., by applying the Recipe 18.1), after which you may want to come back to this recipe.

Input argument dat a can be any bounded iterable; the recipe starts by calling | i st on it to
ensure that. The algorithm then loops, implementing at each leg a few key ideas: randomly
choosing a pivot element; slicing up the list into two parts, made up of the items that are "under”
and "over" the pivot respectively; continuing work for the next leg on just one of the two parts,
since we can tell which one of them the nth element will be in, and the other part can safely be
ignored. The ideas are very close to that in the classic algorithm known as quicksort (except that
quicksort cannot ignore either part, and thus must use recursion, or recursion-removal
techniques such as keeping an explicit stack, to make sure it deals with both parts).

The random choice of pivot makes the algorithm robust against unfavorable data orderings (the
kind that wreak havoc with naive quicksort); this implementation decision costs about | ogzN calls
to random choi ce. Another implementation issue worth pointing out is that the recipe counts the
number of occurrences of the pivot: this precaution ensures good performance even in the
anomalous case where dat a contains a high number of repetitions of identical values.

Extracting the bound methods . append of lists under and over as local variables uappend and
oappend may look like a pointless, if tiny, complication, but it is, in fact, a very important
optimization technique in Python. To keep the compiler simple, straightforward, unsurprising,
and robust, Python does not hoist constant computations out of loops, nor does it "cache" the
results of method lookup. If you call under.append and over.append in the inner loop, you pay
the cost of lookup each and every time. If you want something hoisted, hoist it yourself. When
you're considering an optimization, you should always measure the code's performance with and
without that optimization, to check that the optimization does indeed make an important
difference. According to my measurements, removing this single optimization slows performance
down by about 50% for the typical task of picking the 5000t item of r ange(10000) . Considering
the tiny amount of complication involved, a difference of 50% is well worth it.

A natural idea for optimization, which just didn't make the grade once carefully measured, is to
call cnrp(el em pivot) in the loop body, rather than making separate tests for el em < pi vot

and el em > pi vot . Unfortunately, measurement shows that cnp doesn't speed things up; in fact,
it slows them down, at least when the items of dat a are of elementary types such as numbers
and strings.

So, how does select's performance compare with the simpler alternative of:

def sel sor(data, n):
data = |ist(data)
data.sort()
return datafn]

On thoroughly shuffled lists of 3,001 integers on my machine, this recipe's select takes about 16
milliseconds to find the median, while selsor takes about 13 milliseconds; considering that sort
could take advantage of any partial sortedness in the data, for this kind of length, and on
elementary data whose comparisons are fast, it's not to your advantage to use select. For a
length of 30,001, performance becomes very close between the two approachesaround 170
milliseconds either way. When you push the length all the way to 300,001, select provides an
advantage, finding the median in about 2.2 seconds, while selsor takes about 2.5.

The break-even point will be smaller if the items in the sequence have costly comparison
methods, since the key difference between the two approaches is in the number of comparisons
performedselect takes Q(n), selsor takes O n | og n). For example, say we need to compare
instances of a class designed for somewhat costly comparisons (simulating four-dimensional

points that will often coincide on the first few dimensions):

cl ass X(object):
def _ _init_ _(self):
self.a =self.b = self.c = 23.51
self.d = random randon{)
def _dats(self):
return self.a, self.b, self.c, self.d
def _ _cnp_ _(self, oth):
return cnp(self. dats, oth. _dats)

Here, select already becomes faster than selsor when what we're computing is the median of
vectors of 201 such instances.

In other words, although select has more general overhead, when compared to the wondrously
efficient coding of lists’ sort method, nevertheless, if n is large enough and each comparison is
costly enough, select is still well worth considering.

See Also

Library Reference and Python in a Nutshell docs about method sort of type | i st, and about
module random

[rscviovs Jruexr s

[rrevons f e

Recipe 5.11. Showing off quicksort in Three Lines

Credit: Nathaniel Gray, Raymond Hettinger, Christophe Delord, Jeremy Zucker

Problem

You need to show that Python's support for the functional programming paradigm is better than
it might seem at first sight.

Solution

Functional programming languages, of which Haskell is a great example, are splendid animals,
but Python can hold its own in such company:

def gsort(L):
if len(L) <= 1: return L
return gqsort([It for It inL[1:] if It <L[O0]]) + L[O:1] +\
gsort([ge for ge in L[1:] if ge >=L[0]])

In my humble opinion, this code is almost as pretty as the Haskell version from
http://www.haskell.org:

gsort [] =[]
gsort (x:xs) = qsort elts_It_x ++ [x] ++ gsort elts_greq_x
wher e
elts It x =[y | ¥y < xs, y <X]
elts_greq x = [y | y < Xxs, y >= X]

Here's a test function for the Python version:

def gs_test(length):
i mport random
joe = range(l ength)
random shuffl e(j oe)
gsJoe = gsort (] oe)
for i in range(len(gsJoe)):
assert qgsJoe[i] ==1i, 'qsort is broken at %' %

Discussion

This rather naive implementation of quicksort illustrates the expressive power of list
comprehensions. Do not use this approach in real code! Python lists have an in-place sort

method that is much faster and should always be preferred; in Python 2.4, the new built-in
function sort ed accepts any finite sequence and returns a new sorted list with the sequence’'s
items. The only proper use of this recipe is for impressing friends, particularly ones who (quite
understandably) are enthusiastic about functional programming, and particularly about the
Haskell language.

I cooked up this function after finding the wonderful Haskell quicksort (which I've reproduced in

http://www.haskell.org

the "Solution™) at http://www.haskell.org/aboutHaskell.html. After marveling at the elegance of
this code for a while, | realized that list comprehensions made the same approach possible in
Python. Not for nothing did we steal list comprehensions right out of Haskell, just Pythonizing
them a bit by using keywords rather than punctuation!

Both implementations pivot on the first element of the list and thus have worst-case Q(n)
performance for the very common case of sorting an already sorted list. You would never want to
do so in production code! Because this recipe is just a propaganda piece, though, it doesn't really
matter.

You can write a less compact version with similar architecture in order to use named local
variables and functions for enhanced clarity:

def gsort(L):
if not L: return L
pi vot = L[O0]
def It(x): return x<pivot
def ge(x): return x>=pivot
return gsort(filter(lt, L[1:]))+ pivot]+gsort(filter(ge, L[1:]))

Once you start going this route, you can easily move to a slightly less naive version, using
random pivot selection to make worst-case performance less likely and counting pivots to handle
degenerate case with many equal elements:

i mport random
def gsort(L):
if not L: returnL
pi vot = random choi ce(L)
def It(x): return x<pivot
def gt(x): return x>pivot
return gsort(filter(lt, L))+[pivot]*L.count(pivot)+qgsort(filter(gt, L))

Despite the enhancements, they are meant essentially for fun and demonstration purposes.
Production-quality sorting code is quite another thing: these little jewels, no matter how much
we dwell on them, will never match the performance and solidity of Python's own built-in sorting
approaches.

Rather than going for clarity and robustness, we can move in the opposite direction to make this
last point most obvious, showing off the obscurity and compactness that one can get with
Python's | anbda:

g=l anbda x: (| anbda o=l anbda s:[i for i in x if cnp(i,x[0])==s]:
l'en(x)>1 and q(o(-1))+0(0)+q(o(1)) or x)()

At least, with this beauty (a single logical line, although it needs to be split into two physical lines
due to its length), it should be absolutely obvious that this approach is not meant for real-world
use. The equivalent, using more readable def statements rather than opaque | anbdas, would still

be pretty obscure:

def q(x):
def o(s): return [i for i in x if cnp(i,x[0])==s]
return len(x)>1 and g(o(-1))+o(0)+g(o(1)) or x

but a little more clarity (and sanity) can be recovered by opening up the pithy | en(x) >1 and .
or x into an if /el se statement and introducing sensible local names again:

def q(x):

http://www.haskell.org/aboutHaskell.html

if len(x)>1:

It =i for i inx if cmp(i,x[0]) ==-11]
eq =[i for i inx if cnmp(i,x[0]) == 0]
gt =i for i inx if cmp(i,x[0]) == 1]
return g(lt) + eq + q(gt)

el se:
return x

Fortunately, in the real world, Pythonistas are much too sensible to write convoluted, | anbda-
filled horrors such as this. In fact, many (though admittedly not all) of us feel enough aversion to
| anbda itself (partly from having seen it abused this way) that we go out of our way to use
readable def statements instead. As a result, the ability to decode such "bursts of line noise" is
not a necessary survival skill in the Python world, as it might be for other languages. Any
language feature can be abused by programmers trying to be "clever" . . . as a result, some
Pythonistas (though a minority) feel a similar aversion to features such as list comprehensions
(since it's possible to cram too many things into a list comprehension, where a plain f or loop
would be clearer) or to the short-circuiting behavior of operators and/or (since they can be
abused to write obscure, terse expressions where a plain i f statement would be clearer).

See Also

The Haskell web site, http://www.haskell.org.

[rrevous f e

http://www.haskell.org

[rrevons f e

Recipe 5.12. Performing Frequent Membership Tests on
a Sequence

Credit: Alex Martelli

Problem

You need to perform frequent tests for membership in a sequence. The Q(n) behavior of
repeated i n operators hurts performance, but you can't switch to using just a dictionary or set
instead of the sequence, because you also need to keep the sequence's order.

Solution

Say you need to append items to a list only if they're not already in the list. One sound approach
to this task is the following function:

def addUni que(baselLi st, otherlList):
auxDi ct = dict.fronkeys(baseli st)
for itemin otherlList:
if itemnot in auxDict:
baselLi st. append(item
auxDict[iten] = None

If your code has to run only under Python 2.4, you can get exactly the same effect with an
auxiliary set rather than an auxiliary dictionary.

Discussion

A simple (naive?) approach to this recipe's task looks good:

def addUni que_si npl e(baseLi st, otherlList):
for itemin otherlList:
if itemnot in baselList:
baseli st. append(item

and it may be sort of OK, if the lists are very small.

However, the simple approach can be quite slow if the lists are not small. When you check i f
itemnot in baselList, Python can implement the i n operator in only one way: an internal loop
over the elements of baselList, ending with a result of t r ue as soon as an element compares
equal to item, with a result of Fal se if the loop terminates without having found any equality. On
average, executing the i n-operator takes time proportional to | en(baseli st) . addUnique_simple
executes the i n-operator | en(ot herLi st) times, so, in all, it takes time proportional to the
product of the lengths of the two lists.

In the addUnique function shown in the "Solution”, we first build the auxiliary dictionary auxDict,
a step that takes time proportional to | en(baselLi st). Then, the i n-operator inside the loop
checks for membership in a di ct a step that makes all the difference because checking for

membership in a di ct takes roughly constant time, independent of the number of items in the
di ct! So, the f or loop takes time proportional to | en(ot herLi st), and the entire function takes
time proportional to the sum of the lengths of the two lists.

The analysis of the running times should in fact go quite a bit deeper, because the length of
baselList is not constant in addUnique_simple; baseList grows each time an item is processed
that was not already there. But the gist of the (surprisingly complicated) analysis is not very
different from what this simplified version indicates. We can check this by measuring. When each
list holds 10 integers, with an overlap of 50%, the simple version is about 30% slower than the
one shown in the "Solution”, the kind of slowdown that can normally be ignored. But with lists of
100 integers each, again with 50% overlap, the simple version is twelve times slower than the
one shown in the "Solution"a level of slowdown that can never be ignored, and it only gets worse
if the lists get really substantial.

Sometimes, you could obtain even better overall performance for your program by permanently
placing the auxiliary di ct alongside the sequence, encapsulating both into one object. However,
in this case, you must maintain the di ct as the sequence gets modified, to ensure it stays in
sync with the sequence's current membership. This maintenance task is not trivial, and it can be
architected in many different ways. Here is one such way, which does the syncing "just in time,"
rebuilding the auxiliary di ct when a membership test is required and the dictionary is possibly
out of sync with the list's contents. Since it costs very little, the following class optimizes the

i ndex method, as well as membership tests:

class list_with_aux_dict(list):
def _ _init_ (self, iterable=()):
list._ _init_ _(self, iterable)
self. dict_ok = Fal se
def _rebuild dict(self):
self. dict ={ }
for i, itemin enunerate(self):
if itemnot in self. dict:
self. dict[iten] =i
self. _dict_ok = True
def _ contains_ (self, item
if not self. dict_ok:
self. _rebuild_dict()
return itemin self. dict
def index(self, iten):
if not self. dict_ ok:
self. _rebuild_dict()
try: return self. _dict[iten
except KeyError: raise ValueError
def _wrapMut at or Met hod(net hnane) :
_method = getattr(list, methnane)
def wrapper(self, *args):
Reset 'dictionary OK flag, then delegate to the real nutator nethod
self. dict_ok = Fal se
return _nethod(self, *args)
#in Python 2.4, only: wapper._ nane_ _ = nmethod. _name_
setattr(list_w th_aux_dict, nmethnanme, w apper)
for meth in 'setitemdelitemsetslice delslice iadd .split()
wapMiutatorMethod(' _%_ ' % neth)
for meth in "append insert pop renmove extend .split():
_wr apMut at or Met hod(et h)
del _w apMet hod # renove auxiliary function, not needed any nore

The list_with_aux_dict class extends | i st and delegates to it every method, except _
contains _ and i ndex. Every method that can modify list membership is wrapped in a closure
that resets a flag asserting that the auxiliary dictionary is OK. Python's i n-operator calls the _
contains _ method. list_with_aux_dict's _ _contai ns_ _ method rebuilds the auxiliary

dictionary, unless the flag is set (when the flag is set, rebuilding is unnecessary); the i ndex
method works the same way.

Instead of building and installing wrapping closures for all the mutating methods of the list into
the list_with_aux_dict class with a helper function, as the recipe does, we could write all the def
statements for the wrapper methods in the body of list_with_aux_dict. However, the code for the
class as presented has the important advantage of minimizing boilerplate (repetitious plumbing
code that is boring and voluminous, and thus a likely home for bugs). Python's strengths at
introspection and dynamic modification give you a choice: you can build method wrappers, as
this recipe does, in a smart and concise way; or, you can choose to code the boilerplate anyway,
if you prefer to avoid what some would call the black magic of introspection and dynamic
modification of class objects.

The architecture of class list_with_aux_dict caters well to a rather common pattern of use, where
sequence-modifying operations happen in bunches, followed by a period of time in which the
sequence is not modified, but several membership tests may be performed. However, the
addUnique_simple function shown earlier would not get any performance benefit if argument
baselLi st was an instance of this recipe's list_with_aux_dict rather than a plain | i st : the
function interleaves membership tests and sequence modifications. Therefore, too many rebuilds
of the auxiliary dictionary for list_with_aux_dict would impede the function's performance.
(Unless a typical case was for a vast majority of the items of ot her Li st to be already contained
in baseli st, so that very few modifications occurred compared to the number of membership
tests.)

An important requisite for any of these membership-test optimizations is that the values in the
sequence must be hashable (otherwise, of course, they cannot be keys in a di ct, nor items in a
set). For example, a list of tuples might be subjected to this recipe's treatment, but for a list of
lists, the recipe as it stands is just not applicable.

See Also

The Library Reference and Python in a Nutshell sections on sequence types and mapping types.

T [

[rrevons f e

Recipe 5.13. Finding Subsequences

Credit: David Eppstein, Alexander Semenov

Problem

You need to find occurrences of a subsequence in a larger sequence.

Solution

If the sequences are strings (plain or Unicode), Python strings' fi nd method and the standard
library's re module are the best approach. Otherwise, use the Knuth-Morris-Pratt algorithm
(KMP):

def Knut hMorrisPratt(text, pattern):
""" Yields all starting positions of copies of subsequence 'pattern’
in sequence 'text' -- each argunent can be any iterable.
At the tine of each yield, 'text' has been read exactly up to and
including the match with '"pattern' that is causing the yield. "'
ensure we can index into pattern, and al so nake a copy to protect
agai nst changes to 'pattern' while we're suspended by “yield
pattern = list(pattern)
length = len(pattern)
build the KMP "table of shift anpbunts” and nane it 'shifts
shifts = [1] * (length + 1)
shift =1
for pos, pat in enunerate(pattern):
while shift <= pos and pat != pattern[pos-shift]:
shift += shifts[pos-shift]
shifts[pos+l] = shift
performthe actual search
startPos = 0
mat chLen = 0
for cin text:

whil e matchLen == | ength or matchLen >= 0 and pattern[matchLen] != c:
start Pos += shifts[matchLen]
mat chLen -= shifts[matchLen]
mat chLen += 1
if matchLen == length: yield startPos
Discussion

This recipe implements the Knuth-Morris-Pratt algorithm for finding copies of a given pattern as a
contiguous subsequence of a larger text. Since KMP accesses the text sequentially, it is natural to
implement it in a way that allows the text to be an arbitrary iterator. After a preprocessing stage
that builds a table of shift amounts and takes time that's directly proportional to the length of the
pattern, each text symbol is processed in constant amortized time. Explanations and
demonstrations of how KMP works can be found in all good elementary texts about algorithms.
(A recommendation is provided in See Also.)

If t ext and pattern are both Python strings, you can get a faster solution by suitably applying
Python built-in search methods:

def finditer(text, pattern):
pos = -1
whil e True:
pos = text.find(pattern, pos+l)
if pos < 0: break
yi el d pos

For example, using an alphabet of length 4 ("ACQAU . . .), finding all occurrences of a pattern of
length 8 in a text of length 100000, on my machine, takes about 4.3 milliseconds with fi ndi ter,
but the same task takes about 540 milliseconds with KnuthMorrisPratt (that's with Python 2.3;
KMP is faster with Python 2.4, taking about 480 milliseconds, but that's still over 100 times
slower than fi ndi t er). So remember: this recipe is useful for searches on generic sequences,
including ones that you cannot keep in memory all at once, but if you're searching on strings,
Python's built-in searching methods rule.

See Also

Many excellent books cover the fundamentals of algorithms; among such books, a widely
admired one is Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, 2d ed. (MIT Press).

T [

[rrevons f e

Recipe 5.14. Enriching the Dictionary Type with Ratings
Functionality

Credit: Dmitry Vasiliev, Alex Martelli

Problem

You want to use a dictionary to store the mapping between some keys and a current score value
for each key. You frequently need to access the keys and scores in natural order (meaning, in
order of ascending scores) and to check on a "key"'s current ranking in that order, so that using
just a di ct isn't quite enough.

Solution

We can subclass di ct and add or override methods as needed. By using multiple inheritance,
placing base User Di ct. Di ct M xi n before base di ct and carefully arranging our various
delegations and "over'"rides, we can achieve a good balance between getting good performance
and avoiding the need to write "boilerplate™ code.

By enriching our class with many examples in its docstring, we can use the standard library's
module doct est to give us unit-testing functionality, as well as ensuring the accuracy of all the

examples we write in the docstring:

#! [usr/ bi n/ env pyt hon
"'' An enriched dictionary that holds a mapping fromkeys to scores
from bi sect inport bisect_left, insort_|eft
i mport UserDi ct
class Ratings(UserDict.DictMxin, dict):
""" class Ratings is nostly like a dictionary, with extra features: the
val ue corresponding to each key is the 'score' for that key, and al
keys are ranked in terns their scores. Values nust be conparable; keys,
as well as being hashable, nust be conparable if any two keys may ever
have the sane corresponding value (i.e., nmay be "tied" on score).
Al'l mapping-1ike behavior is just as you woul d expect, such as:
>>> r = Ratings({"bob": 30, "john": 30})
>>> | en(r)
2
>>> r. has_key("paul "), "paul" inr
(Fal se, Fal se)
>>> r["john"] = 20
>>> 1. update({"paul ": 20, "toni: 10})

>>> |en(r)

4

>>> r. has_key("paul "), "paul" inr

(True, True)

>>> [r[key] for key in ["bob", "paul", "john", "toni]]

[30, 20, 20, 10]

>>> r. get ("nobody"), r.get("nobody", 0)

(None, 0)

In addition to the mapping interface, we offer rating-specific
met hods. r.rating(key) returns the ranking of a "key" in the
ratings, with a ranking of 0 nmeaning the | owest score (when two

def

def

def

keys have equal scores, the keys thenselves are conpared, to
"break the tie", and the | esser key gets a | ower ranking):

>>> [r.rating(key) for key in ["bob", "paul", "john", "toni']]

[3, 2, 1, O]

get Val ueByRat i ng(ranki ng) and get KeyByRati ng(ranking) return the
score and key, respectively, for a given ranking index:

>>> [r.getValueByRating(rating) for rating in range(4)]

[10, 20, 20, 30]

>>> [r.getKeyByRating(rating) for rating in range(4)]

["tom, "john', 'paul', 'bob']

An inportant feature is that the keys() nethod returns keys in
ascendi ng order of ranking, and all other related nethods return
lists or iterators fully consistent with this ordering:

>>> 1. keys()

["tom, "john', 'paul', 'bob']

>>> [key for key in r]

["tom, "john', 'paul', 'bob']

>>> [key for key in r.iterkeys()]
["tom, "john', '"paul', 'bob']

>>> r.val ues()

[10, 20, 20, 30]

>>> [value for value in r.itervalues()]

[10, 20, 20, 30]

>>> r.itens()

[("tom, 10), ('john', 20), ('paul', 20), ('bob', 30)]
>>> [itemfor iteminr.iteritens()]

[(‘tom, 10), ('john', 20), ('paul', 20), ('bob', 30)]
An instance can be nodified (adding, changi ng and del eting
key-score correspondences), and every nethod of that instance
reflects the instance's current state at all tinmes:

>>> r["tonl'] = 100

>>> r.itens()

[("john", 20), ('paul', 20), ('bob', 30), ('tom, 100)]
>>> del r["paul "]

>>>r.itens()

[("john'", 20), ('bob', 30), ('tom, 100)]

>>> r["paul "] = 25

>>> r.itens()

[("john'", 20), ('paul', 25), ('bob', 30), ('tom, 100)]
>>> r.clear()

>>> r.itenms()

[]

the inplenentation carefully mixes inheritance and del egation
to achi eve reasonabl e performance while mnimzing boilerplate,
and, of course, to ensure senantic correctness as above. Al
mappi ngs' met hods not inplenented bel ow get inherited, nostly
fromDictMxin, but, crucially!, _ getitem _ fromdict. "'
_ _init_ _(self, *args, **kwds):

This class gets instantiated just |ike "dict'
dict. _init_ (self, *args, **kwds)
self. rating is the crucial auxiliary data structure: a |ist
of all (value, key) pairs, kept in "natural"ly-sorted order
self. _rating = [(v, k) for k, vindict.iteritems(self)]
self. _rating.sort()
copy(self):

Provi de an identical but independent copy ''
return Ratings(self)
_ _setitem _(self, k, v):
""" besides delegating to dict, we maintain self._rating

if kin self:
del self._rating[self.rating(k)]
dict. _setitem _(self, k, v)
insort_left(self._rating, (v, K))
def _ delitem _(self, k):
besi des del egating to dict, we maintain self. _rating """’
del self. _rating[self.rating(k)]
dict._ _delitem _(self, k)
del egate sonme nethods to dict explicitly to avoid getting
DictMxin's slower (though correct) inplenentations instead """

_ len_ _=dict._ _len_ _

__contains_ _ =dict._ _contains_ _

has key = _contains_ _

"'' the key semantic connection between self. rating and the order
of self.keys() -- DictMxin gives us all other nmethods 'for

free', although we could inplenent themdirectly for slightly
better performance.

def _ _iter_ (self):
for v, k in self._rating:
yield k
iterkeys = _iter_

def keys(self):
return list(self)
the three ratings-related nmethods """’
def rating(self, key):
item= sel f[key], key
i = bisect left(self. rating, item
if item== self. _rating[i]:
return
rai se LookupError, "itemnot found in rating"
def getVal ueByRating(self, rating):
return self._rating[rating][O0]
def get KeyByRating(self, rating):
return self. _rating[rating][1]
def _test():
' we use doctest to test this nodule, which nust be naned
rating.py, by validating all the exanples in docstrings.
i nport doctest, rating
doct est. testnod(rating)

if nane_ _=="_ main_ _
_test()
Discussion

In many ways, a dictionary is the natural data structure for storing a correspondence between
keys (e.g., names of contestants in a competition) and the current "score" of each key (e.g., the
number of points a contestant has scored so far, or the highest bid made by each contestant at
an auction, etc.). If we use a dictionary for such purposes, we will probably want to access it
often in natural orderthe order in which the keys' scores are ascendingand we'll also want fast
access to the rankings (ratings) implied by the current "score"s (e.g., the contestant currently in
third place, the score of the contestant who is in second place, etc.).

To achieve these purposes, this recipe subclasses di ct to add the needed functionality that is
completely missing from di ct (methods rating, getValueByRating, getKeyByRating), and, more
subtly and crucially, to modify method keys and all other related methods so that they return
lists or iterators with the required order (i.e., the order in which scores are ascending; if we have
to break ties when two keys have the same score, we implicitly compare the keys themselves).
Most of the detailed documentation is in the docstring of the class itselfa crucial issue because by

keeping the documentation and examples there, we can use module doct est from the Python
Standard Library to provide unit-testing functionality, as well as ensuring that our examples are
correct.

The most interesting aspect of the implementation is that it takes good care to minimize
boilerplate (meaning repetitious and boring code, and therefore code where bugs are most likely
to hide) without seriously impairing performance. cl ass Rati ngs multiply inherits from di ct and
Di ct M xi n, with the latter placed first in the list of bases, so that all methods come from the
mixin, if it provides them, unless explicitly overridden in the class.

Raymond Hettinger's Di ct M xi n class was originally posted as a recipe to the online version of
the Python Cookbook and later became part of Python 2.3's standard library. Di ct M xi n provides
all the methods of a mapping except _ _init_ _, copy, and the four fundamental methods: _
_getitem _, _setitem _, _delitem _, and, last but not least, keys. If you are coding a
mapping class and want to ensure that your class supports all of the many methods that a full
mapping provides to application code, you should subclass Di ct M xi n and supply at least the
fundamental methods (depending on your class' semanticse.q., if your class has immutable
instances, you need not supply the mutator methods _ _setitem _and _ _delitem_ _). You
may optionally implement other methods for performance purposes, overriding the
implementation that Di ct M xi n provides. The whole Di ct M xi n architecture can be seen as an
excellent example of the classic Template Method Design Pattern, applied pervasively in a useful
mix-in variant.

In this recipe's class, we inherit _ _getitem_ _ from our other base (namely, the built-in type
di ct), and we also delegate explicitly to di ct everything we can for performance reasons. We
have to code the elementary mutator methods (_ _setitem _ and _ _delitem_ _) because, in
addition to delegating to our base class di ct, we need to maintain our auxiliary data structure
self._ratinga list of (score, key) pairs that we keep in sorted order with the help of standard
library module bi sect . We implement keys ourselves (and while we're at it, we implement _

iter _i.e.,iterkeys as well, since clearly keys is easiest to implement by using _ _iter_)
to exploit self._rating and return the keys in the order we need. Finally, we add the obvious
implementations for _ _init_ _ and copy, in addition to the three, ratings-specific methods that
we supply.

The result is quite an interesting example of balancing concision, clarity, and well-advised reuse
of the enormous amount of functionality that the standard Python library places at our disposal.
If you use this module in your applications, profiling may reveal that a method that this recipe's
class inherits from Di ct M xi n has somewhat unsatisfactory performanceafter all, the
implementations in Di ct M xi n are, of necessity, somewhat generic. If this is the case, by all
means add a direct implementation of whatever further methods you need to achieve maximum
performance! For example, if your application performs a lot of looping on the result of calling
r.iteritems() for some instance r of class Ratings, you may get slightly better performance
by adding to the body of the class the direct implementation of the method:

def iteritenms(self):
for v, k in self. _rating:
yield k, v

See Also

Library Reference and Python in a Nutshell documentation about class Di ¢t M xi n in module
User Di ct, and about module bi sect .

[rscviovs Jruexr s

[rrevons f e

Recipe 5.15. Sorting Names and Separating Them by
Initials

Credit: Brett Cannon, Amos Newcombe

Problem

You want to write a directory for a group of people, and you want that directory to be grouped by
the initials of their last names and sorted alphabetically.

Solution

Python 2.4's new i t ert ool s. gr oupby function makes this task easy:

import itertools
def groupnanes(name_iterable):

sorted_nanes = sorted(name_iterable, key=_sortkeyfunc)

name_dict = { }

for key, group in itertools.groupby(sorted names, _groupkeyfunc):
name_di ct[key] = tupl e(group)

return nanme_dict

pieces _order ={ 2: (-1, 0), 3: (-1, 0, 1) }
def _sortkeyfunc(name):

"''* name is a string with first and | ast nanes, and an optional mniddle
name or initial, separated by spaces; returns a string in order
last-first-mddle, as wanted for sorting purposes.

name_parts = nane.split()

return ' '.join([name_parts[n] for n in pieces_order[len(nane_parts)]])
def _groupkeyfunc(nane):
returns the key for grouping, i.e. the last name's initial.

return name.split()[-1][0]

Discussion

In this recipe, name_iterable must be an iterable whose items are strings containing names in
the form first - middle - last, with middle being optional and the parts separated by whitespace.
The result of calling groupnames on such an iterable is a dictionary whose keys are the last
names' initials, and the corresponding values are the tuples of all names with that last name's
initial.

Auxiliary function _sortkeyfunc splits a name that's a single string, either "first last" or "first
middle last,” and reorders the part into a list that starts with the last name, followed by first
name, plus the middle name or initial, if any, at the end. Then, the function returns this list
rejoined into a string. The resulting string is the key we want to use for sorting, according to the
problem statement. Python 2.4's built-in function sort ed takes just this kind of function (to call
on each item to get the sort key) as the value of its optional parameter named key.

Auxiliary function _groupkeyfunc takes a name in the same form and returns the last name's
initialthe key on which, again according to the problem statement, we want to group.

This recipe's primary function, groupnames, uses the two auxiliary functions and Python 2.4's
sorted anditertools. groupby to solve our problem, building and returning the required
dictionary.

If you need to code this task in Python 2.3, you can use the same two support functions and
recode function groupnames itself. In 2.3, it is more convenient to do the grouping first and the
sorting separately on each group, since no gr oupby function is available in Python 2.3's standard
library:

def groupnanes(name_iterable):
name_dict = { }
for nane in nanme_iterable:
key = _groupkeyfunc(nane)
nanme_di ct.setdefault (key, []).append(nane)
for k, vinnanme dict.iteritens():
aux = [(_sortkeyfunc(name), nane) for nane in v]
aux.sort()
name_dict[k] = tuple([n for _
return nanme_di ct

., nhinaux])

See Also

Recipe 19.21; Library Reference (Python 2.4) docs on moduleitertool s.

[rrevous f e

[rrevons f e

Chapter 6. Object-Oriented Programming

Introduction

Recipe 6.1. Converting Among Temperature Scales

Recipe 6.2. Defining Constants

Recipe 6.3. Restricting Attribute Setting

Recipe 6.4. ChainingDictionary Lookups

Recipe 6.5. Delegating Automatically as an Alternative to Inheritance

Recipe 6.6. Delegating Special Methods in Proxies

Recipe 6.7. Implementing Tuples with Named Items

Recipe 6.8. AvoidingBoilerplate Accessors for Properties

Recipe 6.9. Making aFast Copy of an Object

Recipe 6.10. Keeping References to Bound Methods Without Inhibiting Garbage Collection

Recipe 6.11. ImplementingaRingBuffer

Recipe 6.12. Checkingan Instance for Any State Changes

Recipe 6.13. Checking Whether an Object Has Necessary Attributes

Recipe 6.14. Implementingthe State Design Pattern

Recipe 6.15. Implementingthe"Singleton" Design Pattern

Recipe 6.16. Avoiding the "Singleton" Design Pattern with the Borg Idiom

Recipe 6.17. Implementingthe Null Object Design Pattern

Recipe 6.18. Automatically Initializing Instance Variables from init Arguments

Recipe 6.19. Calling a Superclass init Method If It Exists

Recipe 6.20. Using Cooperative Supercalls Concisely and Safely

[rrevons f e

[rrevons f e

Introduction

Credit: Alex Martelli, author of Python in a Nutshell (O'Reilly)

Object-oriented programming (OOP) is among Python's greatest strengths. Python's OOP
features continue to improve steadily and gradually, just like Python in general. You could
already write better object-oriented programs in Python 1.5.2 (the ancient, long-stable version
that was new when | first began to work with Python) than in any other popular language
(excluding, of course, Lisp and its variants: | doubt there's anything you can't do well in Lisp-like
languages, as long as you can stomach parentheses-heavy concrete syntax). For a few years
now, since the release of Python 2.2, Python OOP has become substantially better than it was
with 1.5.2. | am constantly amazed at the systematic progress Python achieves without
sacrificing solidity, stability, and backwards-compatibility.

To get the most out of Python's great OOP features, you should use them the Python way, rather
than trying to mimic C++, Java, Smalltalk, or other languages you may be familiar with. You can
do a lot of mimicry, thanks to Python's power. However, you'll get better mileage if you invest
time and energy in understanding the Python way. Most of the investment is in increasing your
understanding of OOP itself: what is OOP, what does it buy you, and which underlying
mechanisms can your object-oriented programs use? The rest of the investment is in
understanding the specific mechanisms that Python itself offers.

One caveat is in order. For such a high-level language, Python is quite explicit about the OOP
mechanisms it uses behind the curtains: they're exposed and available for your exploration and
tinkering. Exploration and understanding are good, but beware the temptation to tinker. In other
words, don't use unnecessary black magic just because you can. Specifically, don't use black
magic in production code. If you can meet your goals with simplicity (and most often, in Python,
you can), then keep your code simple. Simplicity pays off in readability, maintainability, and,
more often than not, performance, too. To describe something as clever is not considered a
compliment in the Python culture.

So what is OOP all about? First of all, it's about keeping some state (data) and some behavior
(code) together in handy packets. "Handy packets" is the key here. Every program has state and
behaviorprogramming paradigms differ only in how you view, organize, and package them. If the
packaging is in terms of objects that typically comprise state and behavior, you're using OOP.
Some object-oriented languages force you to use OOP for everything, so you end up with many
objects that lack either state or behavior. Python, however, supports multiple paradigms. While
everything in Python is an object, you package things as OOP objects only when you want to.
Other languages try to force your programming style into a predefined mold for your own good,
while Python empowers you to make and express your own design choices.

With OOP, once you have specified how an object is composed, you can instantiate as many
objects of that kind as you need. When you don't want to create multiple objects, consider using
other Python constructs, such as modules. In this chapter, you'll find recipes for Singleton, an
object-oriented design pattern that eliminates the multiplicity of instantiation, and Borg, an idiom
that makes multiple instances share state. But if you want only one instance, in Python it's often
best to use a module, not an OOP object.

To describe how an object is made, use the cl ass statement:

cl ass SoneNane(object):
""" You usual ly define data and code here (in the class body).

SomeName is a class object. It's a first-class object, like every Python object, meaning that you
can put it in lists and dictionaries, pass it as an argument to functions, and so on. You don't have

to include the (obj ect) part in the cl ass header clausecl ass SonmeNane: by itself is also valid
Python syntaxbut normally you should include that part, as we'll see later.

When you want a new instance of a class, call the class object as if it were a function. Each call
returns a new instance object:

anl nstance = SoneNane()
anot her = SonmeNane()

anl nst ance and anot her are two distinct instance objects, instances of the SomeName class.
(See Recipe 4.18 for a class that does little more than this and yet is already quite useful.) You
can freely bind (i.e., assign or set) and access (i.e., get) attributes (i.e., state) of an instance
object:

anl nst ance. soneNunber = 23 * 45
print anlnstance. someNunber # emts: 1035

Instances of an "empty" class like SomeName have no behavior, but they may have state. Most
often, however, you want instances to have behavior. Specify the behavior you want by defining
methods (with def statements, just like you define functions) inside the class body:

cl ass Behave(object):
def _ _init_ _(self, nane):
sel f. name = nane
def once(self):
print "Hello,", self.nane
def renane(sel f, newNane)
sel f. name = newNane
def repeat(self, N):
for i in range(N): self.once()

You define methods with the same def statement Python uses to define functions, exactly
because methods are essentially functions. However, a method is an attribute of a class object,
and its first formal argument is (by universal convention) named sel f. sel f always refers to the
instance on which you call the method.

The method with the special name _ _init_ _ is also known as the constructor (or more
properly the initializer) for instances of the class. Python calls this special method to initialize
each newly created instance with the arguments that you passed when calling the class (except
for sel f, which you do not pass explicitly since Python supplies it automatically). The body of _
init _ typically binds attributes on the newly created sel f instance to appropriately initialize
the instance's state.

Other methods implement the behavior of instances of the class. Typically, they do so by
accessing instance attributes. Also, methods often rebind instance attributes, and they may call
other methods. Within a class definition, these actions are always done with the self.something
syntax. Once you instantiate the class, however, you call methods on the instance, access the
instance's attributes, and even rebind them, using the theobject.something syntax:

beehi ve = Behave(" Queen Bee")

beehi ve. repeat (3)

beehi ve. rename(" Sti nger")

beehi ve. once()

print beehive. nane

beehi ve. nane = 'See, you can rebind it "fromthe outside" too, if you want'
beehi ve. repeat (2)

self

No true difference exists between what | described as the self.something syntax and
the theobject.something syntax: the former is simply a special case of the latter,
when the name of reference theobject happens to be self!

If you're new to OOP in Python, you should try, in an interactive Python environment, the
example snippets | have shown so far and those I'm going to show in the rest of this
Introduction. One of the best interactive Python environments for such exploration is the GUI
shell supplied as part of the free IDLE development environment that comes with Python.

In addition to the constructor (_ _init_), your class may have other special methods,
meaning methods with names that start and end with two underscores. Python calls the special
methods of a class when instances of the class are used in various operations and built-in
functions. For example, | en(x) returnsx. _ _len_ _();a+b normally returnsa. _ _add_ _(b);
a[b] returnsa. __getitem _(b). Therefore, by defining special methods in a class, you can
make instances of that class interchangeable with objects of built-in types, such as numbers,
lists, and dictionaries.

] Each operation and built-in function can try several special methods in some
= . specific order. For example, a+b first tries a. _ _add_ _(b), but, if that
wh #: doesn't pan out, the operation also gives object b a say in the matter, by
" nexttryingb. radd__(a). This kind of intrinsic structuring among

special methods, that operations and built-in functions can provide, is an
important added value of such functions and operations with respect to
pure OO notation such as soneobj ect . sonenet hod(ar gunent s) .

The ability to handle different objects in similar ways, known as polymorphism, is a major
advantage of OOP. Thanks to polymorphism, you can call the same method on various objects,
and each object can implement the method appropriately. For example, in addition to the Behave
class, you might have another class that implements a repeat method with rather different
behavior:

cl ass Repeater(object):
def repeat(self, N: print N<"*-*"

You can mix instances of Behave and Repeater at will, as long as the only method you call on
each such instance is repeat:

aM x = beehive, Behave('John'), Repeater(), Behave('world")
for whatever in aM x: whatever. repeat (3)

Other languages require inheritance, or the formal definition and implementation of interfaces, in
order to enable such polymorphism. In Python, all you need is to have methods with the same
signature (i.e., methods of the same name, callable with the same arguments). This sighature-
based polymorphism allows a style of programming that's quite similar to generic programming
(e.g., as supported by C++'s t enpl at e classes and functions), without syntax cruft and without
conceptual complications.

Python also uses inheritance, which is mostly a handy, elegant, structured way to reuse code.
You can define a class by inheriting from another (i.e., subclassing the other class) and then

adding or redefining (known as overriding) some methods:

cl ass Subcl ass(Behave):

def once(self): print '(%)' %self.nanme
subl nst ance = Subcl ass(" Queen Bee")
subl nst ance. r epeat (3)

The Subclass class overrides only the once method, but you can also call the repeat method on
subl nst ance, since Subclass inherits that method from the Behave superclass. The body of the
repeat method calls once n times on the specific instance, using whatever version of the once
method the instance has. In this case, each call uses the method from the Subclass class, which
prints the name in parentheses, not the original version from the Behave class, which prints the
name after a greeting. The idea of a method calling other methods on the same instance and
getting the appropriately overridden version of each is important in every object-oriented
language, including Python. It is also known as the Template Method Design Pattern.

The method of a subclass often overrides a method from the superclass, but also needs to call
the method of the superclass as part of its own operation. You can do this in Python by explicitly
getting the method as a class attribute and passing the instance as the first argument:

cl ass OneMor e(Behave):

def repeat(self, N): Behave.repeat (self, N+tl)
zeal ant = OneMor e("Wor ker Bee")
zeal ant . repeat (3)

The OneMore class implements its own repeat method in terms of the method with the same
name in its superclass, Behave, with a slight change. This approach, known as delegation, is
pervasive in all programming. Delegation involves implementing some functionality by letting
another existing piece of code do most of the work, often with some slight variation. An
overriding method often is best implemented by delegating some of the work to the same
method in the superclass. In Python, the syntax d assnane. net hod(sel f, .. .) delegates to
Classname's version of the method. A vastly preferable way to perform superclass delegation,
however, is to use Python's built-in super :

cl ass OneMor e(Behave):
def repeat(self, N): super(OneMre, self).repeat(N+1)

This super construct is equivalent to the explicit use of Behave. r epeat in this simple case, but it
also allows class OneMore to be used smoothly with multiple inheritance. Even if you're not
interested in multiple inheritance at first, you should still get into the habit of using super instead
of explicit delegation to your base class by namesuper costs nothing and it may prove very
useful to you in the future.

Python does fully support multiple inheritance: one class can inherit from several other classes.
In terms of coding, this feature is sometimes just a minor one that lets you use the mix-in class
idiom, a convenient way to supply functionality across a broad range of classes. (See Recipe 6.20
and Recipe 6.12, for unusual but powerful examples of using the mix-in idiom.) However,
multiple inheritance is particularly important because of its implications for object-oriented
analysisthe way you conceptualize your problem and your solution in the first place. Single
inheritance pushes you to frame your problem space via taxonomy (i.e., mutually exclusive
classification). The real world doesn't work like that. Rather, it resembles Jorge Luis Borges'
explanation in The Analytical Language of John Wilkins, from a purported Chinese encyclopedia,
The Celestial Emporium of Benevolent Knowledge. Borges explains that all animals are divided
into:

e Those that belong to the Emperor

e Embalmed ones

e Those that are trained

e Suckling pigs

e Mermaids

e Fabulous ones

e Stray dogs

¢ Those included in the present classification
¢ Those that tremble as if they were mad

¢ Innumerable ones

¢ Those drawn with a very fine camelhair brush
e Others

e Those that have just broken a flower vase

e Those that from a long way off look like flies

You get the point: taxonomy forces you to pigeonhole, fitting everything into categories that
aren't truly mutually exclusive. Modeling aspects of the real world in your programs is hard
enough without buying into artificial constraints such as taxonomy. Multiple inheritance frees you
from these constraints.

Ah, yes, that (obj ect) thingl had promised to come back to it later. Now that you've seen
Python's notation for inheritance, you realize that writing cl ass X(obj ect) means that class X
inherits from class obj ect . If you just write cl ass Y:, you're saying that Y doesn't inherit from
anythingY, so to speak, "stands on its own". For backwards compatibility, Python allows you to
request such a rootless class, and, if you do, then Python makes class Y an "old-style" class, also
known as a classic class, meaning a class that works just like all classes used to work in the
Python versions of old. Python is very keen on backwards-compatibility.

For many elementary uses, you won't notice the difference between classic classes and the new-
style classes that are recommended for all new Python code you write. However, it's important to
underscore that classic classes are a legacy feature, not recommended for new code. Even within
the limited compass of elementary OOP features that | cover in this Introduction, you will already
feel some of the limitations of classic classes: for example, you cannot use super within classic
classes, and in practice, you should not do any serious use of multiple inheritance with them.
Many important features of today's Python OOP, such as the property built-in, can't work
completely, if they even work at all, with old-style classes.

In practice, even if you're maintaining a large body of legacy Python code, the next time you
need to do any substantial maintenance on that code, you should take the little effort required to
ensure all classes are new style: it's a small job, and it will ease your future maintenance burden
quite a bit. Instead of explicitly having all your classes inherit from obj ect , an equivalent
alternative is to add the following assignment statement close to the start of every module that
defines any classes:

_ _metaclass_ _ = type

The built-in t ype is the metaclass of obj ect and of every other new-style class and built-in t ype.
That's why inheriting from obj ect or any built-in t ype makes a class new style: the class you're
coding gets the same metaclass as its base. A class without bases can get its metaclass from the
module-global _ _netacl ass_ _ variable, which is why the "state"ment | suggest suffices to

ensure that any classes without explicit bases are made new-style. Even if you never make any
other use of explicit metaclasses (a rather advanced subject that is, nevertheless, mentioned in
several of this chapter's recipes), this one simple use of them will stand you in good stead.

What Is a Metaclass?

Metaclasses do not mean "deep, dark black magic". When you execute any cl ass
statement, Python performs the following steps:

Remember the class name as a string, say n, and the class bases as a tuple, say b.

Execute the body of the class, recording all names that the body binds as keys in a
new dictionary d, each with its associated value (e.g., each statement such as def
f(self) justsetsd['f'] to the function object the def statement builds).

Determine the appropriate metaclass, say M, by inheritance or by looking for name _
metaclass _ind and in the globals:

if ' _metaclass_ ' ind: M=d['__netaclass_ ']
elif b: M= type(b[0])
elif ' __metaclass_ ' in globals(): M= globals()['_ _netaclass_ ']

el se: M= types. d assType

types. d assType is the metaclass of old-style classes, so this code implies that a
class without bases is old style if the name '_ _netacl ass_ _'is not set in the class
body nor among the global variables of the current module.

Call Mn, b, d) and record the result as a variable with name n in whatever scope
the cl ass statement executed.

So, some metaclass Mis always involved in the execution of any cl ass statement.
The metaclass is normally t ype for new-style classes, t ypes. d assType for old-style
classes. You can set it up to use your own custom metaclass (normally a subclass of
type), and that is where you may reasonably feel that things are getting a bit too
advanced. However, understanding that a cl ass statement, such as:

cl ass Sonecl ass(Sonebase) :
nmetaclass_ _ = type
23

X

is exactly equivalent to the assignment statement:

Sonecl ass = type(' Sonecl ass', (Sonebase,), {'x': 23})

does help a lot in understanding the exact semantics of the cl ass statement.

[rscviovs Jexr s

[rrevons f e

Recipe 6.1. Converting Among Temperature Scales

Credit: Artur de Sousa Rocha, Adde Nilsson

Problem

You want to convert easily among Kelvin, Celsius, Fahrenheit, and Rankine scales of
temperature.

Solution

Rather than having a dozen functions to do all possible conversions, we can more elegantly
package this functionality into a class:

cl ass Tenperat ure(object):
coefficients = {'c': (1.0, 0.0, -273.15), '"f': (1.8, -273.15, 32.0),
‘r': (1.8, 0.0, 0.0)}
def _ _init_ _(self, **kwargs):
default to absolute (Kelvin) 0, but allow one named argument,
with nane being k, ¢, f or r, to use any of the scales
try:
name, val ue = kwargs. popiten{()
except KeyError:
no argunents, so default to k=0
nane, value = 'k', O
error if there are nore argunents, or the arg's name i s unknown
if kwargs or nanme not in '"kcfr':

kwar gs[nane] = val ue # put it back for diagnosis
rai se TypeError, "invalid arguments %' % kwargs
setattr(self, nanme, float(value))
def _ _getattr_ _(self, nane):
maps getting of ¢, f, r, to conputation fromk

try:
eq = sel f.coefficients[nane]
except KeyError:
unknown nane, give error nessage
raise AttributeError, nane
return (self.k + eq[1]) * eq[0] + eq[?2]
def _ _setattr_ _(self, name, value):
maps settings of k, c, f, r, to setting of k; forbids others
if name in self.coefficients:
name is c, f or r -- conpute and set k
eq = sel f.coefficients[nane]
self.k = (value - eq[2]) / eq[0] - eq[1]

elif name == "k":

nane is k, just set it

object. _setattr_ (self, nanme, val ue)
el se:

unknown nane, give error message
rai se AttributeError, nane
def _ _str_ _(self):
readabl e, concise representation as string

return "% K' %self.k

def _ _repr_ _(self):
detailed, precise representation as string
return "Tenperature(k=%)" %self.k

Discussion

Converting between several different scales or units of measure is a task that's subject to a
"combinatorial explosion™: if we tackle it in the apparently obvious way, by providing a function
for each conversion, then, to deal with n different units, we will have to write n * (n-1)
functions.

A Python class can intercept attribute setting and getting, and perform computation on the fly in
response. This power enables a much handier and more elegant architecture, as shown in this
recipe for the specific case of temperatures.

Inside the class, we always hold the measurement in one reference unit or scale, Kelvin
(absolute) degrees in the case of this recipe. We allow the setting of the value to happen through
any of four attribute names ('’k', 'r', 'c¢', 'f', abbreviations of the scales' names), and
compute and set the Kelvin-scale value appropriately. Vice versa, we also allow the "getting" of
the value in any scale, through the same attribute names, computing the result on the fly.
(Assuming you have saved the code in this recipe as te.py somewhere on your Python sys. pat h,
you can import it as a module.) For example:

>>> fromte i nport Tenperature

>>> t = Tenperature(f=70) # 70 Fis...

>>> print t.c # ...a bit over 21 C

21. 1111111111

>>>t.c = 23 # 23 Cis...

>>> print t.f # ...a bit over 73 F

73.4

_ _getattr_ _and _ _setattr_ _ work better than named properties would in this case, since

the form of the computation is the same for every attribute (except the reference 'k’ one), and
we only need to use different coefficients that we can most handily keep in a per-class dictionary,
the one we name sel f. coefficients. It's important to remember that _setattr_ _ is called
on every setting of any attribute, so it must delegate to obj ect the setting of attributes, which
need to be recorded in the instance (the _ _setattr_ _ implementation in this recipe does just
such a delegation for attribute k) and must raise an At tri but eErr or exception for attributes that
can't be set. _ _getattr_ _, on the other hand, is called only upon the "getting" of an attribute
that can't be found by other, "normal” means (e.g., in the case of this recipe's class, _
getattr _ is not called for accesses to attribute k, which is recorded in the instance and thus
gets found by normal means). _ _getattr_ _ must also raise an Attri but eError exception for
attributes that can't be accessed.

See Also

Library Reference and Python in a Nutshell documentation on attributes and on special methods _
getattr _and _ _setattr_ _

[rrevos] uexr

[rrevons f e

Recipe 6.2. Defining Constants

Credit: Alex Martelli

Problem

You need to define module-level variables (i.e., named constants) that client code cannot
accidentally rebind.

Solution

You can install any object as if it were a module. Save the following code as module const.py on
some directory on your Python sys. pat h:

cl ass _const (object):
class ConstError(TypeError): pass

def _ setattr_ (self, nane, value):
if name in self. _dict_ _
rai se self.ConstError, "Can't rebind const(%)" % nane
self._ _dict_ _[nane] = value
def _ delattr_ (self, nane):
if name in self. dict_

rai se self.ConstError, "Can't unbind const(%)" % nane
rai se NaneError, nane

i mport sys
sys.nodul es[_ _name_ _] = _const()

Now, any client code can import const, then bind an attribute on the const module just once, as
follows:

const. magic = 23

Once the attribute is bound, the program cannot accidentally rebind or unbind it:

const.magic = 88 # rai ses const. ConstError
del const. magic # rai ses const. ConstError
Discussion

In Python, variables can be rebound at will, and modules, differently from classes, don't let you
define special methods such as _ _setattr_ _ to stop rebinding. An easy solution is to install an

instance as if it were a module.

Python performs no type-checks to force entries in sys. nodul es to actually be module objects.

Therefore, you can install any object there and take advantage of attribute-access special
methods (e.g., to prevent rebinding, to synthesize attributes on the fly in _ _getattr_ _, etc.),

while still allowing client code to access the object with i nport sonenane. You may even see it as
a more Pythonic Singleton-style idiom (but see Recipe 6.16).

This recipe ensures that a module-level name remains constantly bound to the same object once
it has first been bound to it. This recipe does not deal with a certain object's immutability, which
is quite a different issue. Altering an object and rebinding a name are different concepts, as
explained in Recipe 4.1. Numbers, strings, and tuples are immutable: if you bind a name in const
to such an object, not only will the name always be bound to that object, but the object's
contents also will always be the same since the object is immutable. However, other objects,
such as lists and dictionaries, are mutable: if you bind a name in const to, say, a list object, the
name will always remain bound to that list object, but the contents of the list may change (e.g.,
items in it may be rebound or unbound, more items can be added with the object's append
method, etc.).

To make "read-only" wrappers around mutable objects, see Recipe 6.5. You might choose to
have class _const's _ _setattr_ _ method perform such wrapping implicitly. Say you have
saved the code from Recipe 6.5 as module ro.py somewhere along your Python sys. pat h. Then,
you need to add, at the start of module const.py:

i mport ro
and change the assignmentsel f. _dict__[nane] = val ue, used in class const's _
setattr _ method to:

self. dict_ _[nanme] = ro. Readonl y(val ue)

Now, when you set an attribute in const to some value, what gets bound there is a read-only
wrapper to that value. The underlying value might still get changed by calling mutators on some
other reference to that same value (object), but it cannot be accidentally changed through the
attribute of "pseudo-module” const. If you want to avoid such "accidental changes through other
references”, you need to take a copy, as explained in Recipe 4.1, so that there exist no other
references to the value held by the read-only wrapper. Ensure that at the start of module
const.py you have:

i nport ro, copy

and change the assignment in class _const's _ _setattr_ _ method to:

self. _dict_ [nanme] = ro.Readonl y(copy. copy(val ue))

If you're sufficiently paranoid, you might even use copy. deepcopy rather than plain copy. copy in
this latest snippet. However, you may end up paying substantial amounts of memory, as well as
losing some performance, by these kinds of excessive precautions. You should evaluate carefully
whether so much prudence is really necessary for your specific application. Whatever you end up
deciding about this issue, Python offers all the tools you need to implement exactly the amount
of constantness you require.

The _const class presented in this recipe can be seen, in a sense, as the "complement” of the
NoNewAttrs class, which is presented next in Recipe 6.3. This one ensures that already bound
attributes can never be rebound but lets you freely bind new attributes; the other one,
conversely, lets you freely rebind attributes that are already bound but blocks the binding of any
new attribute.

See Also

Recipe 6.5; Recipe 6.13; Recipe 4.1; Library Reference and Python in a Nutshell docs on module
objects, the i nport statement, and the nodul es attribute of the sys built-in module.

[rscviovs Jruexr s

[rrevons f e

Recipe 6.3. Restricting Attribute Setting

Credit: Michele Simionato

Problem

Python normally lets you freely add attributes to classes and their instances. However, you want
to restrict that freedom for some class.

Solution

Special method _ _setattr_ _ intercepts every setting of an attribute, so it lets you inhibit the
addition of new attributes that were not already present. One elegant way to implement this idea
is to code a class, a simple custom metaclass, and a wrapper function, all cooperating for the
purpose, as follows:

def no_new attributes(w apped_setattr):
""" raise an error on attenpts to add a new attribute, while
allowing existing attributes to be set to new val ues.

def _ setattr_ (self, nane, value):
if hasattr(self, name): # not a new attribute, allow setting
wrapped_setattr(sel f, name, val ue)
el se: # a new attribute, forbid adding it
raise AttributeError("can't add attribute % to %" % (nanme, self))
return _ _setattr_ _

cl ass NoNewAt t rs(object):
""" subcl asses of NoNewAttrs inhibit addition of new attributes, while
allowing existing attributed to be set to new val ues.

block the addition new attributes to i nstances of this class

_ _setattr_ _ = no_new attributes(object. _setattr_)
class _ nmetaclass_ _(type):
" sinple customnetacl ass to bl ock adding new attributes to this class "
_ _Setattr_ _ = no_new attributes(type._ _setattr_)
Discussion

For various reasons, you sometimes want to restrict Python's dynamism. In particular, you may
want to get an exception when a new attribute is accidentally set on a certain class or one of its
instances. This recipe shows how to go about implementing such a restriction. The key point of
the recipe is, don't use _ slots_ _ for this purpose: _ slots_ _ is intended for a completely
different task (i.e., saving memory by avoiding each instance having a dictionary, as it normally
would, when you need to have vast numbers of instances of a class with just a few fixed
attributes). _ _slots_ _ performs its intended task well but has various limitations when you try
to stretch it to perform, instead, the task this recipe covers. (See Recipe 6.18 for an example of
the appropriate use of _ _slots_ _ to save memory.)

Notice that this recipe inhibits the addition of runtime attributes, not only to class instances, but
also to the class itself, thanks to the simple custom metaclass it defines. When you want to

inhibit accidental addition of attributes, you usually want to inhibit it on the class as well as on
each individual instance. On the other hand, existing attributes on both the class and its
instances may be freely set to new values.

Here is an example of how you could use this recipe:

cl ass Person(NoNewAttrs):

firstnane = "'

| astnane = "'

def _ init_ (self, firstnane, |astnane):
self.firstnane = firstnane
sel f.lastnane = | ast nane

def _ _repr_ _(self):
return 'Person(%, %)' % (self.firstname, self.lastnane)

me = Person("M chere", "Simonato")
print ne
emts: Person('Mchere', 'Simonato')
oops, wong value for firstnane, can we fix it? Sure, no problen
nme.firstname = "M chel e"
print ne
emits: Person('Mchele', 'Sinmionato')

The point of inheriting from NoNewAttrs is forcing yourself to "declare™ all allowed attributes by
setting them at class level in the body of the class itself. Any further attempt to set a new,
"undeclared" attribute raises an Attri but eError:

try: Person. address =
except AttributeError, err: print 'raised % as expected %err
try: ne.address ="'

except AttributeError, err: print 'raised % as expected %err

In some ways, therefore, subclasses of NoNewAttr and their instances behave more like Java or
C++ classes and instances, rather than normal Python ones. Thus, one use case for this recipe is
when you're coding in Python a prototype that you already know will eventually have to be
recoded in a less dynamic language.

See Also

Library Reference and Python in a Nutshell documentation on the special method _ _setattr_ _
and on custom metaclasses; Recipe 6.18 for an example of an appropriate use of _ _slots_ _ to
save memory; Recipe 6.2 for a class that is the complement of this one.

[rscviovs Jruexr s

[rrevons f e

Recipe 6.4. Chaining Dictionary Lookups

Credit: Raymond Hettinger

Problem

You have several mappings (usually di ct s) and want to look things up in them in a chained way
(try the first one; if the key is not there, then try the second one; and so on). Specifically, you
want to make a single mapping object that "virtually merges" several others, by looking things
up in them in a specified priority order, so that you can conveniently pass that one object
around.

Solution

A mapping is a generalized, abstract version of a dictionary: a mapping provides an interface
that's similar to a dictionary's, but it may use very different implementations. All dictionaries are
mappings, but not vice versa. Here, you need to implement a mapping which sequentially tries
delegating lookups to other mappings. A class is the right way to encapsulate this functionality:

cl ass Chai nmap(obj ect):
def _ _init_ (self, *mappings):
record the sequence of mappings into which we nust | ook
sel f. _mappi ngs = mappi ngs
def _ _getitem _(self, key):
try looking up into each nmapping in sequence
for mapping in self._mappings:
try:
return nmappi ng[key]
except KeyError:
pass
“key' not found in any nmapping, so raise KeyError exception
rai se KeyError, key
def get(self, key, default=None):
return self[key] if present, otherw se “default'
try:
return sel f[key]
except KeyError:
return default

def _ _contains_ _(self, key):
return True if “key' is present in self, otherw se Fal se
try:
sel f[key]

return True
except KeyError:
return Fal se

For example, you can now implement the same sequence of lookups that Python normally uses
for any name: look among locals, then (if not found there) among globals, lastly (if not found
yet) among built-ins:

inmport _ _builtin_ _

pyl ookup = Chai nmap(l ocal s(), globals(), vars(_ _builtin_))

Discussion

Chainmap relies on minimal functionality from the mappings it wraps: each of those underlying
mappings must allow indexing (i.e., supply a special method _ _getitem_ _), and it must raise
the standard exception KeyErr or when indexed with a key that the mapping does not know
about. A Chainmap instance provides the same behavior, plus the handy get method covered in
Recipe 4.9 and special method _ _contai ns_ _ (which conveniently lets you check whether
some key k is present in a Chainmap instance ¢ by just codingif k in c).

Besides the obvious and sensible limitation of being "read-only", this Chainmap class has
othersessentially, it is not a "full mapping" even within the read-only design choice. You can
make any partial mapping into a "full mapping" by inheriting from class Di ct M xi n (in standard
library module User Di ct) and supplying a few key methods (Di ct M xi n implements the others).
Here is how you could make a full (read-only) mapping from ChainMap and

UserDict.DictM xin:

i mport UserDi ct
fromsets inport Set
cl ass Ful | Chai nmap(Chai nmap, UserDict.DictM xin):
def copy(self):
return self._ _class_ _(self._mappings)
def _ iter_ (self):
seen = Set()
for mapping in self._nmappings:
for key in napping:
if key not in seen:

yield key
seen. add(key)
iterkeys = _ _iter_ _

def keys(self):
return list(self)

This class FullChainmap adds one requirement to the mappings it holds, besides the
requirements posed by Chainmap: the mappings must be iterable. Also note that the
implementation in Chainmap of methods get and _ _contai ns_ _ is redundant (although
innocuous) once we subclass Di ct M xi n, since Di ct M xi n also implements those two methods
(as well as many others) in terms of lower-level methods, just like Chainmap does. See Recipe
5.14 for more details about Di ct M xi n.

See Also

Recipe 4.9; Recipe 5.14; the Library Reference and Python in a Nutshell sections on mapping
types.

T [

[rrevons f e

Recipe 6.5. Delegating Automatically as an Alternative
to Inheritance

Credit: Alex Martelli, Raymond Hettinger

Problem

You'd like to inherit from a class or type, but you need some tweak that inheritance does not
provide. For example, you want to selectively hide some of the base class' methods, which
inheritance doesn't allow.

Solution

Inheritance is quite handy, but it's not all-powerful. For example, it doesn't let you hide methods
or other attributes supplied by a base class. Containment with automatic delegation is often a
good alternative. Say, for example, you need to wrap some objects to make them read-only;
thus preventing accidental alterations. Therefore, besides stopping attribute-setting, you also
need to hide mutating methods. Here's a way:

support 2.3 as well as 2.4

try: set

except NameError: fromsets inport Set as set

class RCError (AttributeError): pass

class Readonly: # there IS a reason to NOT subcl ass object, see Discussion
mutators = {

list: set(''" __delitem _ delslice_ _ iadd__ _ _imul_ _
_ _setitem _ _ setslice_ _ append extend insert
pop renmove sort'"'.split()),
dict: set('"'_ _delitem _ _ setitem _ clear pop popitem
setdefault update' "' .split()),
}
def _ _init_ _(self, 0):
object. _setattr_ (self, ' _0o', 0)
object. _setattr_ (self, ' _no', self.nmutators.get(type(o), ()))
def _ _setattr_ (self, n, v):

raise ROError, "Can't set attr % on RO object" %n
def _ _delattr_ _(self, n):
raise ROError, "Can't del attr % from RO object” %n
def _ _getattr_ _(self, n):
if nin self. _no:
raise ROError, "Can't get attr % from RO object" %n
return getattr(self._o, n)

Code using this class Readonly can easily add other wrappable types with
Readonl y. nut at or s[sonetype] = the_nutators.

Discussion

Automatic delegation, which the special methods _ getattr_ , setattr_ _, and

delattr _ enable us to perform so smoothly, is a powerful, general technique. In this recipe,
we show how to use it to get an effect that is almost indistinguishable from subclassing while
hiding some names. In particular, we apply this quasi-subclassing to the task of wrapping
objects to make them read-only. Performance isn't quite as good as it might be with real
inheritance, but we get better flexibility and finer-grained control as compensation.

The fundamental idea is that each instance of our class holds an instance of the type we are
wrapping (i.e., extending and/or tweaking). Whenever client code tries to get an attribute from
an instance of our class, unless the attribute is specifically defined there (e.g., the mutators
dictionary in class Readonly), ~ _getattr__ TRansparently shunts the request to the wrapped
instance after appropriate checks. In Python, methods are also attributes, accessed in just the
same way, so we don't need to do anything different to access methods. The _ getattr_
approach used to access data attributes works for methods just as well.

This is where the comment in the recipe about there being a specific reason to avoid subclassing
object comes in. Our _ getattr_ _ based approach does work on special methods too, but
only for instances of old-style classes. In today's object model, Python operations access special
methods on the class, not on the instance. Solutions to this issue are presented next in Recipe
6.6 and in Recipe 20.8. The approach adopted in this recipemaking class Readonly old style, so
that the issue can be locally avoided and delegated to other recipesis definitely not recommended
for production code. | use it here only to keep this recipe shorter and to avoid duplicating
coverage that is already amply given elsewhere in this cookbook.

_ _setattr_ _ plays arole similar to _ _getattr_ _, but it gets called when client code sets an
instance attribute; in this case, since we want to make a read-only wrapper, we simply forbid the
operation. Remember, to avoid triggering _ _setattr_ _ from inside the methods you code, you
must never code normal sel f. n = v statements within the methods of classes that have _
setattr . The simplest workaround is to delegate the setting to class obj ect, just like our
class Readonly does twice iniits _ _init_ _ method. Method _ delattr_ _ completes the
picture, dealing with any attempts to delete attributes from an instance.

Wrapping by automatic delegation does not work well with client or framework code that, one
way or another, does type-testing. In such cases, the client or framework code is breaking
polymorphism and should be rewritten. Remember not to use type-tests in your own client code,
as you probably do not need them anyway. See Recipe 6.13 for better alternatives.

In old versions of Python, automatic delegation was even more prevalent, since you could not
subclass built-in types. In modern Python, you can inherit from built-in types, so you'll use
automatic delegation less often. However, delegation still has its placeit is just a bit farther from
the spotlight. Delegation is more flexible than inheritance, and sometimes such flexibility is
invaluable. In addition to the ability to delegate selectively (thus effectively "hiding" some of the
attributes), an object can delegate to different subobjects over time, or to multiple subobjects at
one time, and inheritance doesn't offer anything comparable.

Here is an example of delegating to multiple specific subobjects. Say that you have classes that
are chock full of "forwarding methods", such as:

class Pricing(object):
def _ init_ (self, location, event):
self.location = | ocation
sel f. event = event
def setlocation(self, location):
self.location = | ocation
def getprice(self):
return self.location.getprice()
def getquantity(self):
return self.location.getquantity()
def getdiscount(self):
return self.event.getdiscount()
and many nore such net hods

Inheritance is clearly not applicable because an instance of Pricing must delegate to specific
location and event instances, which get passed at initialization time and may even be changed.
Automatic delegation to the rescue:

cl ass Aut oDel egat or (obj ect):
del egates = ()
do_not del egate = ()
def _ _getattr_ _(self, key):
if key not in do_not_ del egate:
for din self.delegates:
try:
return getattr(d, key)
except AttributeError
pass
raise AttributeError, key
cl ass Pricing(AutoDel egator):

def _ _init_ (self, location, event):
sel f. del egates = [l ocation, event]
def setlocation(self, location):
sel f. del egates[0] = Il ocation

In this case, we do not delegate the setting and deletion of attributes, only the getting of
attributes (and nonspecial methods). Of course, this approach is fully applicable only when the
methods (and other attributes) of the various objects to which we want to delegate do not
interfere with each other; for example, location must not have a getdiscount method; otherwise,
it would preempt the delegation of that method, which is intended to go to event.

If a class that does lots of delegation has a few such issues to solve, it can do so by explicitly
defining the few corresponding methods, since _ getattr_ _ enters the picture only for
attributes and methods that cannot be found otherwise. The ability to hide some attributes and
methods that are supplied by a delegate, but the delegator does not want to expose, is
supported through attribute do_not_delegate, which any subclass may override. For example, if
class Pricing wanted to hide a method setdiscount that is supplied by, say, event, only a tiny
change would be required:

cl ass Pricing(AutoDel egator):
do_not _del egate = ('set_discount',)

while all the rest remains as in the previous snippet.

See Also

Recipe 6.13; Recipe 6.6; Recipe 20.8; Python in a Nutshell chapter on OOP; PEP 253
(http://www.python.org/peps/pep-0253.html) for more details about Python's current (new-
style) object model.

[rrevos] uexr

http://www.python.org/peps/pep-0253.html

[rrevons f e

Recipe 6.6. Delegating Special Methods in Proxies

Credit: Goncalo Rodrigues

Problem

In the new-style object model, Python operations perform implicit lookups for special methods on
the class (rather than on the instance, as they do in the classic object model). Nevertheless, you
need to wrap new-style instances in proxies that can also delegate a selected set of special
methods to the object they're wrapping.

Solution

You need to generate each proxy's class on the fly. For example:

cl ass Proxy(object):
""" base class for all proxies """

def _ init_ (self, obj):
super (Proxy, self). _init_ _(obj)
self. _obj = obj

def _ getattr_ (self, attrib):
return getattr(self. obj, attrib)
def make_bi nder (unbound_net hod):
def f(self, *a, **k): return unbound_nethod(self._obj, *a, **k)
#1in 2.4, only: f.__nane_ _ = unbound nethod. _name_ _
return f
known_proxy_cl asses = { }
def proxy(obj, *specials):
factory-function for a proxy able to del egate special nethods "'
do we already have a suitable custom zed cl ass around?
obj cls = obj._ _class_ _
key = obj cls, specials
cl s = known_proxy_cl asses. get (key)
if cls is None:
we don't have a suitable class around, so let's nmake it

cls = type("%Proxy" %obj cls. nane_ , (Proxy,), { })
for name in specials:
nane = ' % " % nane

unbound_net hod = getattr(obj _cls, nane)
setattr(cls, name, nmake_bi nder (unbound _rnet hod))
also cache it for the future
known_proxy_cl asses[key] = cls
instantiate and return the needed proxy
return cls(obj)

Discussion

Proxying and automatic delegation are a joy in Python, thanks to the _ _getattr_ _ hook.
Python calls it automatically when a lookup for any attribute (including a methodPython draws no
distinction there) has not otherwise succeeded.

In the old-style (classic) object model, _ _getattr_ _ also applied to special methods that were
looked up as part of a Python operation. This required some care to avoid mistakenly supplying a
special method one didn't really want to supply but was otherwise handy. Nowadays, the new-
style object model is recommended for all new code: it is faster, more regular, and richer in
features. You get new-style classes when you subclass obj ect or any other built-in type. One
day, some years from now, Python 3.0 will eliminate the classic object model, as well as other
features that are still around only for backwards-compatibility. (See
http://www.python.org/peps/pep-3000.html for details about plans for Python 3.0almost all
changes will be language simplifications, rather than new features.)

In the new-style object model, Python operations don't look up special methods at runtime: they
rely on "slots" held in class objects. Such slots are updated when a class object is built or
modified. Therefore, a proxy object that wants to delegate some special methods to an object it's
wrapping needs to belong to a specially made and tailored class. Fortunately, as this recipe
shows, making and instantiating classes on the fly is quite an easy job in Python.

In this recipe, we don't use any advanced Python concepts such as custom metaclasses and
custom descriptors. Rather, each proxy is built by a factory function pr oxy, which takes as
arguments the object to wrap and the names of special methods to delegate (shorn of leading

and trailing double underscores). If you've saved the "Solution"'s code in a file named proxy.py
somewhere along your Python sys. pat h, here is how you could use it from an interactive Python

interpreter session:

>>> jnport proxy

>>> a = proxy.proxy([], 'len', "iter") # only delegate _ len_ _ & _ _iter_ _
>>> g # _ _repr_ _ is not delegated
<proxy.listProxy object at 0x0113C370>

>>> a. class_ _

<cl ass ' proxy.|istProxy'>

>>> a._obj

[]

>>> a. append # all non-specials are del egated

<built-in method append of |ist object at 0xO10F1A10>

Since _ _len_ _ is delegated, | en(a) works as expected:

>>> | en(a)

0

>>> a. append(23)
>>> | en(a)

1

Since _ _iter_ _ is delegated, f or loops work as expected, as does intrinsic looping performed
by built-ins such as i st, sum nmax, . .. :

>>> for x in a: print X
23

>>> |ist(a)

[23]

>>> sum a)

23

>>> max(a)
23

However, since _ getitem_ _ is not delegated, a cannot be indexed nor sliced:

>>> a._ _getitem _

http://www.python.org/peps/pep-3000.html

<met hod- wr apper object at Ox010F1AFO0>

>>> a[1]
Traceback (nost recent call last):
File "<interactive input>", line 1, in ?

TypeError: uni ndexabl e obj ect

Function proxy uses a "cache" of classes it has previously generated, the global dictionary
known_proxy_classes, keyed by the class of the object being wrapped and the tuple of special
methods' names being delegated. To make a new class, pr oxy calls the built-in t ype, passing as
arguments the name of the new class (made by appending 'Pr oxy' to the name of the class being
wrapped), class Proxy as the only base, and an "empty" class dictionary (since it's adding no
class attributes yet). Base class Proxy deals with initialization and delegation of ordinary attribute
lookups. Then, factory function proxy loops over the names of specials to be delegated: for each
of them, it gets the unbound method from the class of the object being wrapped, and sets it as
an attribute of the new class within a make_binder closure. make_binder deals with calling the
unbound method with the appropriate first argument (i.e., the object being wrapped,

sel f. _obj).

Once it's done preparing a new class, proxy saves it in known_proxy_classes under the
appropriate key. Finally, whether the class was just built or recovered from

known_proxy_classes, proxy instantiates it, with the object being wrapped as the only argument,
and returns the resulting proxy instance.

See Also

Recipe 6.5 for more information about automatic delegation; Recipe 6.9 for another example of
generating classes on the fly (using a cl ass statement rather than a call to t ype).

[rrevous f e

[rrevons f e

Recipe 6.7. Implementing Tuples with Named Items

Credit: Goncalo Rodrigues, Raymond Hettinger

Problem

Python tuples are handy ways to group pieces of information, but having to access each item by
numeric index is a bother. You'd like to build tuples whose items are also accessible as named

attributes.

Solution

A factory function is the simplest way to generate the required subclass of t upl e:

use operator.itengetter if we'rein 2.4, roll our own if we're in 2.3
try:
fromoperator inport itengetter
except | nportError:
def itengetter(i):
def getter(self): return self[i]
return getter
def superTupl e(typenane, *attribute nanes):
" create and return a subclass of “tuple', with naned attributes

make the subclass with appropriate _ new__ and _ _repr_ _ specials
nargs = len(attribute_nanes)
cl ass supertup(tuple):
_ _slots_ _ = () # save menory, we don't need per-instance dict
def _ new_ _(cls, *args):
if len(args) != nargs:

rai se TypeError, '% takes exactly % arguments (% given)' % (
typename, nargs, len(args))

return tuple. _ new_(cls, args)
def _ _repr_ _(self):
return '%(%)' % (typenanme, ', '.join(map(repr, self)))

add a few key touches to our new subcl ass of “tuple'

for index, attr_name in enunerate(attribute_nanes):
setattr(supertup, attr_nane, property(itengetter(index)))

supertup._ _name_ _ = typenane

return supertup

Discussion

You often want to pass data around by means of tuples, which play the role of C's struct s, or
that of simple records in other languages. Having to remember which numeric index corresponds
to which field, and accessing the fields by indexing, is often bothersome. Some Python Standard
Library modules, such as ti me and os, which in old Python versions used to return tuples, have
fixed the problem by returning, instead, instances of tuple-like types that let you access the
fields by name, as attributes, as well as by index, as items. This recipe shows you how to get the
same effect for your code, essentially by automatically building a custom subclass of t upl e.

Orchestrating the building of a new, customized type can be achieved in several ways; custom
metaclasses are often the best approach for such tasks. In this case, however, a simple factory
function is quite sufficient, and you should never use more power than you need. Here is how
you can use this recipe's superTuple factory function in your code, assuming you have saved this
recipe’s Solution as a module named supertuple.py somewhere along your Python sys. pat h:

>>> inport supertuple

>>> Poi nt = supertuple.superTuple('Point', "x', '"y")
>>> Poi nt
<cl ass ' supertupl e. Point'>
>>>p = Point(1, 2, 3) # wong nunber of fields
Traceback (nost recent call last):
File"", line 1, in?
File "C \Python24\Lib\site-packages\super Tupl e.py", line 16, in _ _new_ _

rai se TypeError, '% takes exactly %l argunents (%l given)' % (
TypeError: Point takes exactly 2 argunents (3 given)

>>> p = Point (1, 2) # let's do it right this time
>>>p

Point (1, 2)

>>> print p.x, p.y

12

Function superTuple's implementation is quite straightforward. To build the new subclass,
superTuple uses a cl ass statement, and in that statement's body, it defines three specials: an

"empty" _ _slots_ _ (just to save memory, since our supertuple instances don't need any per-
instance dictionary anyway); a _ _new_ _ method that checks the number of arguments before
delegating totuple. _ _new_ _; and an appropriate _ _repr_ _ method. After the new class

object is built, we set into it a property for each named attribute we want. Each such property
has only a "getter”, since our supertuples, just like tuples themselves, are immutableno setting
of fields. Finally, we set the new class' name and return the class object.

Each of the getters is easily built by a simple call to the built-in i t engett er from the standard
library module oper at or. Since operator.itengetter was introduced in Python 2.4, at the very
start of our module we ensure we have a suitable itemgetter at hand anyway, even in Python
2.3, by rolling our own if necessary.

See Also
Library Reference and Python in a Nutshell docs for property, _slots_ _, tupl e, and special
methods _ new_ _and _ _repr_ _; (Python 2.4 only) module oper at or's function i t engetter.

[rscviovs Jexr s

[rrevons f e

Recipe 6.8. Avoiding Boilerplate Accessors for
Properties

Credit: Yakov Markovitch

Problem

Your classes use some property instances where either the getter or the setter is just boilerplate
code to fetch or set an instance attribute. You would prefer to just specify the attribute name,
instead of writing boilerplate code.

Solution

You need a factory function that catches the cases in which either the getter or the setter
argument is a string, and wraps the appropriate argument into a function, then delegates the
rest of the work to Python's built-in property:

def xproperty(fget, fset, fdel =None, doc=None):
if isinstance(fget, str):
attr_nanme = fget
def fget(obj): return getattr(obj, attr_nane)
elif isinstance(fset, str):
attr_name = fset
def fset(obj, val): setattr(obj, attr_nane, val)
el se:
rai se TypeError, 'either fget or fset nust be a str'
return property(fget, fset, fdel, doc)

Discussion

Python's built-in property is very useful, but it presents one minor annoyance (it may be easier
to see as an annoyance for programmers with experience in Delphi). It often happens that you
want to have both a setter and a "getter"”, but only one of them actually needs to execute any
significant code; the other one simply needs to read or write an instance attribute. In that case,
proper ty still requires two functions as its arguments. One of the functions will then be just
"boilerplate code" (i.e., repetitious plumbing code that is boring, and often voluminous, and thus
a likely home for bugs).

For example, consider:

cl ass Lower (object):

def _ _init_ (self, s=""):
self.s = s

def _getS(self):
return self. s

def _setS(self, s):
self. s = s.lower()

S = property(_getS, _setS)

Method _getS is just boilerplate, yet you have to code it because you need to pass it to
property. Using this recipe, you can make your code a little bit simpler, without changing the
code's meaning:

cl ass Lower (object):
def _ init_ (self, s=""):
self.s = s
def _setS(self, s):
self._s = s.lower()
s = xproperty(' _s', _setS)

The simplification doesn't look like much in one small example, but, applied widely all over your
code, it can in fact help quite a bit.

The implementation of factory function xproperty in this recipe's Solution is rather rigidly coded:
it requires you to pass both f get and f set, and exactly one of them must be a string. No use
case requires that both be strings; when neither is a string, or when you want to have just one of
the two accessors, you can (and should) use the built-in property directly. It is better, therefore,

to have xproperty check that it is being used accurately, considering that such checks remove no
useful functionality and impose no substantial performance penalty either.

See Also

Library Reference and Python in a Nutshell documentation on the built-in property.

[rrevons f e

[rrevons f e

Recipe 6.9. Making a Fast Copy of an Object

Credit: Alex Martelli

Problem

You need to implement the special method _ _copy_ _ so that your class can cooperate with the
copy. copy function. Because the _ _init_ _ method of your specific class happens to be slow,
you need to bypass it and get an "empty", uninitialized instance of the class.

Solution

Here's a solution that works for both new-style and classic classes:

def enpty _copy(obj):

class Enpty(obj._ _class_):

def _ init_ (self): pass
newcopy = Enpty()
newcopy. _class__ = obj._ _class_ _

return newcopy

Your classes can use this function to implement _ _copy_ _ as follows:

cl ass Your d ass(object):
def _ init_ (self):
assume there's a ot of work here
def _ _copy_ _(self):
newcopy = enpty_copy(self)
copy sone rel evant subset of self's attributes to newcopy
return newcopy

Here's a usage example:

if _ _nane_ _ =="'_ _nmmin
i mport copy
y = Yourd ass() # This, of course, does run _ init_
print y
z = copy. copy(y) # ...but this doesn't
print z

Discussion

As covered in Recipe 4.1, Python doesn't implicitly copy your objects when you assign them,
which is a great thing because it gives fast, flexible, and uniform semantics. When you need a
copy, you explicitly ask for it, often with the copy. copy function, which knows how to copy built-
in types, has reasonable defaults for your own objects, and lets you customize the copying
process by defining a special method _ _copy_ _ in your own classes. If you want instances of a
class to be noncopyable, you can define _ _copy_ _ and raise a TypeError there. In most cases,

you can just let copy. copy's default mechanisms work, and you get free clonability for most of
your classes. This is quite a bit nicer than languages that force you to implement a specific cl one
method for every class whose instances you want to be clonable.

A _ _copy_ _ method often needs to start with an "empty" instance of the class in question
(e.g., sel f), bypassing _ _init_ _ when that is a costly operation. The simplest general way to
do this is to use the ability that Python gives you to change an instance's class on the fly: create
a new object in a local empty class, then set the new object's _ _class_ _ attribute, as the
recipe's code shows. Inheriting cl ass Enpty from obj._ _class_ _ is redundant (but quite
innocuous) for old-style (classic) classes, but that inheritance makes the recipe compatible with
all kinds of objects of classic or new-style classes (including built-in and extension types). Once
you choose to inherit from obj 's class, you must override _ _init_ _inclass Enpty, or else
the whole purpose of the recipe is defeated. The override means that the _ _init_ _ method of
obj 's class won't execute, since Python, fortunately, does not automatically execute ancestor
classes' initializers.

Once you have an "empty" object of the required class, you typically need to copy a subset of
self's attributes. When you need all of the attributes, you're better off not defining _ _copy_ _

explicitly, since copying all instance attributes is exactly copy. copy's default behavior. Unless, of
course, you need to do a little bit more than just copying instance attributes; in this case, these
two alternative techniques to copy all attributes are both quite acceptable:

newcopy. _dict_ _.update(self._ _dict_)
newcopy. _dict_ _ =dict(self._ _dict_)
An instance of a new-style class doesn't necessarily keep all of its state in _ _dict_ _, so you

may need to do some class-specific state copying in such cases.

Alternatives based on the new standard module can't be made transparent across classic and
new-style classes, and neither can the _ _new__ static method that generates an empty
instancethe latter is only defined in new-style classes, not classic ones. Fortunately, this recipe
obviates any such issues.

A good alternative to implementing _ _copy_ _ is often to implement the methods _
getstate _and _ _setstate_ _ instead: these special methods define your object's state
very explicitly and intrinsically bypass _ _init_ _. Moreover, they also support serialization (i.e.,

pickling) of your class instances: see Recipe 7.4 for more information about these methods.

So far we have been discussing shallow copies, which is what you want most of the time. With a
shallow copy, your object is copied, but objects it refers to (attributes or items) are not, so the
newly copied object and the original object refer to the same items or attributes objectsa fast
and lightweight operation. A deep copy is a heavyweight operation, potentially duplicating a large
graph of objects that refer to each other. You get a deep copy by calling copy. deepcopy on an
object. If you need to customize the way in which instances of your class are deep-copied, you
can define the special method _ _deepcopy_ _:

cl ass Yourd ass(object):

def _ _deepcopy_ _(self, neno):
newcopy = enpty_copy(self)
use copy. deepcopy(sel f.x, menp) to get deep copies of elenents
#in the relevant subset of self's attributes, to set in newcopy
return newcopy

If you choose to implement _ _deepcopy_ _, remember to respect the memoization protocol
that is specified in the Python documentation for standard module copyget deep copies of all the
attributes or items that are needed by calling copy. deepcopy with a second argument, the same
memo dictionary that is passed to the _ _deepcopy_ _ method. Again, implementing _
getstate _and _ _setstate_ _ is often a good alternative, since these methods can also

support deep copying: Python takes care of deeply copying the "state" object that _ getstate_
_ returns, before passing it to the _ _setstate_ _ method of a new, empty instance. See Recipe
7.4 for more information about these special methods.

See Also

Recipe 4.1 about shallow and deep copies; Recipe 7.4 about _ getstate_ _and _ _setstate_
_; the Library Reference and Python in a Nutshell sections on the copy module.

[rscviovs Jruexr s

[rrevons f e

Recipe 6.10. Keeping References to Bound Methods
Without Inhibiting Garbage Collection

Credit: Joseph A. Knapka, Frédeéric Jolliton, Nicodemus

Problem

You want to hold references to bound methods, while still allowing the associated object to be
garbage-collected.

Solution

Weak references (i.e., references that indicate an object as long as that object is alive but don't
keep that object alive if there are no other, normal references to it) are an important tool in
some advanced programming situations. The weakr ef module in the Python Standard Library lets
you use weak references.

However, weakr ef 's functionality cannot directly be used for bound methods unless you take
some precautions. To allow an object to be garbage-collected despite outstanding references to

its bound methods, you need some wrappers. Put the following code in a file named
weakmethod.py in some directory on your Python sys. pat h:

i nport weakref, new
cl ass ref (object):
""" Waps any callable, nost inportantly a bound nethod, in
a way that allows a bound nmethod's object to be GC ed, while
providing the sane interface as a nornal weak reference.
def _ _init_ _(self, fn):
try:
try getting object, function, and class
o, f, c =fn.imself, fn.imfunc, fn.imclass

except AttributeError: # 1t's not a bound net hod
sel f._obj = None
self. func = fn
self. _clas = None

el se: # 1t is a bound nethod
if ois None: self._obj = None # ...actually UN-bound
el se: self. obj = weakref.ref(o) # ...really bound
self. _func = f
self. clas = ¢

def _ _call_ (self):

if self.obj is None: return self._func
elif self._obj() is None: return None
return new. i nstancenet hod(self. func, self.obj(), self._clas)

Discussion

A normal bound method holds a strong reference to the bound method's object. That means that
the object can't be garbage-collected until the bound method is disposed of:

>>> cl ass C(object):
def f(self):
print "Hello"
def _ _del _ (self):
print "C dying"

>>> C = C()

>>> cf =c.f

>>> del c # c continues to wander about with glazed eyes...

>>> del cf # ...until we stake its bound nethod, only then it goes away:
C dying

This behavior is most often handy, but sometimes it's not what you want. For example, if you're
implementing an event-dispatch system, it might not be desirable for the mere presence of an
event handler (i.e., a bound method) to prevent the associated object from being reclaimed. The
instinctive idea should then be to use weak references. However, a normal weakref . ref to a
bound method doesn't quite work the way one might expect, because bound methods are first-
class objects. Weak references to bound methods are dead-on-arrivalthat is, they always return
None when dereferenced, unless another strong reference to the same bound-method object
exists.

For example, the following code, based on the weakr ef module from the Python Standard
Library, doesn't print "Hello" but raises an exception instead:

>>> jnport weakr ef

>>> C = C()
>>> cf = weakref.ref(c.f)
>>> cf # Qops, better try the lightning again, lgor...

<weakref at 80ce394; dead>

>>> cf (1) ()

Traceback (nost recent call l|ast):

File"", linel, in?

TypeError: object of type 'None' is not callable

On the other hand, the class ref in the weakmethod module shown in this recipe allows you to
have weak references to bound methods in a useful way:

>>> j nport weaknet hod
>>> c¢f = weaknmethod. ref(c.f)

>>> cf () () # 1t LIVES' Bwahahahaha!
Hell o

>>> del ¢ # ...and it dies

C dying

>>> print cf()

None

Calling the weakmethod.ref instance, which refers to a bound method, has the same semantics
as calling a weakr ef . r ef instance that refers to, say, a function object: if the referent has died, it
returns None; otherwise, it returns the referent. Actually, in this case, it returns a freshly minted
new. i nst ancenet hod (holding a strong reference to the objectso, be sure not to hold on to that,
unless you do want to keep the object alive for a while!).

Note that the recipe is carefully coded so you can wrap into a ref instance any callable you want,
be it a method (bound or unbound), a function, whatever; the weak references semantics,
however, are provided only when you're wrapping a bound method; otherwise, ref acts as a
normal (strong) reference, holding the callable alive. This basically lets you use ref for wrapping
arbitrary callables without needing to check for special cases.

If you want semantics closer to that of a weakr ef . pr oxy, they're easy to implement, for example
by subclassing the ref class given in this recipe. When you call a proxy, the proxy calls the

referent with the same arguments. If the referent's object no longer lives, then
weakr ef . Ref erenceEr ror gets raised instead. Here's an implementation of such a proxy class:

class proxy(ref):
def _ call_ (self, *args, **kwargs):
func = ref. _call_ (self)
if func is None:
rai se weakref.ReferenceError('referent object is dead')
el se:
return func(*args, **kwargs)
def _ _eq_ _(self, other):
if type(other) !'= type(self):
return Fal se
return ref._ _call_ (self) ==ref._ _call_ _(other)

See Also

The Library Reference and Python in a Nutshell sections on the weakr ef and new modules and on
bound-method objects.

R [

[rrevons f e

Recipe 6.11. Implementing a Ring Buffer

Credit: Sébastien Keim, Paul Moore, Steve Alexander, Raymond Hettinger

Problem

You want to define a buffer with a fixed size, so that, when it fills up, adding another element
overwrites the first (oldest) one. This kind of data structure is particularly useful for storing log
and history information.

Solution

This recipe changes the buffer object's class on the fly, from a nonfull buffer class to a full buffer
class, when the buffer fills up:

cl ass Ri ngBuffer(object):
" class that inplenments a not-yet-full buffer """
def _ _init_ _(self, size_max):
sel f.max = size_max
self.data = []
class _ _Full (object):
""" class that inplenents a full buffer """
def append(self, x):
""" Append an el ement overwiting the ol dest one.
sel f.data[sel f.cur] = x
self.cur = (self.cur+l) %self.nmax
def tolist(self):
"'return list of elements in correct order.
return self.data[self.cur:] + self.data[:self.cur]
def append(self, x):
""" append an elenent at the end of the buffer
sel f. dat a. append(x)
if len(self.data) == self. max:
self.cur =0
Permanently change self's class fromnon-full to ful
self. _class_ = Ful
def tolist(self):
""" Return a list of elements fromthe ol dest to the newest.
return self.data
sanpl e usage
if _ _nane_ _ =="'_ _main_ _
X = Ri ngBuffer(5)
x. append(1); x.append(2); x.append(3); x.append(4)

print x. _class_ , x.tolist()
X. append(5)
print x._ _class_ _, x.tolist()

X. append(6)

print x.data, x.tolist()

X. append(7); x.append(8); x.append(9); x.append(10)
print x.data, x.tolist()

Discussion

A ring buffer is a buffer with a fixed size. When it fills up, adding another element overwrites the
oldest one that was still being kept. It's particularly useful for the storage of log and history
information. Python has no direct support for this kind of structure, but it's easy to construct
one. The implementation in this recipe is optimized for element insertion.

The notable design choice in the implementation is that, since these objects undergo a
nonreversible state transition at some point in their lifetimesfrom nonfull buffer to full buffer (and
behavior changes at that point)l modeled that by changing sel f. __class_ . This works just
as well for classic classes as for new-style ones, as long as the old and new classes of the object
have the same slots (e.g., it works fine for two new-style classes that have no slots at all, such
as RingBuffer and _ _Full in this recipe). Note that, differently from other languages, the fact that
class _ _Full is implemented inside class RingBuffer does not imply any special relationship
between these classes; that's a good thing, too, because no such relationship is necessary.

Changing the class of an instance may be strange in many languages, but it is an excellent
Pythonic alternative to other ways of representing occasional, massive, irreversible, and discrete
changes of state that vastly affect behavior, as in this recipe. Fortunately, Python supports it for
all kinds of classes.

Ring buffers (i.e., bounded queues, and other names) are quite a useful idea, but the inefficiency
of testing whether the ring is full, and if so, doing something different, is a nuisance. The
nuisance is particularly undesirable in a language like Python, where there's no difficultyother
than the massive memory cost involvedin allowing the list to grow without bounds. So, ring
buffers end up being underused in spite of their potential. The idea of assigning to _ _class_ _
to switch behaviors when the ring gets full is the key to this recipe's efficiency: such class
switching is a one-off operation, so it doesn't make the steady-state cases any less efficient.

Alternatively, we might switch just two methods, rather than the whole class, of a ring buffer
instance that becomes full:

cl ass Ri ngBuffer(object):
def _ _init_ (self,size_max):
sel f. max = size_max
self.data = []
def _full_append(self, Xx):
self.data[self.cur] = x
sel f.cur = (self.cur+l) %self.nmax
def _full_get(self):
return self.data[self.cur:]+self.data:self.cur]
def append(sel f, x):
sel f . dat a. append(x)
if len(self.data) == sel f. max:
self.cur =0
Permanently change self's methods fromnon-full to ful
sel f.append = sel f. _full _append
self.tolist = self. _full _get
def tolist(self):
return self.data

This method-switching approach is essentially equivalent to the class-switching one in the
recipe's solution, albeit through rather different mechanisms. The best approach is probably to
use class switching when all methods must be switched in bulk and method switching only when
you need finer granularity of behavior change. Class switching is the only approach that works if
you need to switch any special methods in a new-style class, since intrinsic lookup of special
methods during various operations happens on the class, not on the instance (classic classes
differ from new-style ones in this aspect).

You can use many other ways to implement a ring buffer. In Python 2.4, in particular, you should
consider subclassing the new type col | ecti ons. deque, which supplies a "double-ended queue",
allowing equally effective additions and deletions from either end:

fromcollections inport deque
cl ass Ri ngBuffer(deque):
def _ _init_ _(self, size_max):
deque. _init_ (self)
sel f.size max = size_max
def append(sel f, datum:
deque. append(sel f, datum
if len(self) > self.size_max:
sel f.popleft()
def tolist(self):
return list(self)

or, to avoid the i f statement when at steady state, you can mix this idea with the idea of
switching a method:

fromcollections inport deque
cl ass Ri ngBuf f er (deque):
def _ _init_ (self, size_max):
deque. _init_ (self)
sel f.size_max = size_nmax
def _full_append(self, datum:
deque. append(sel f, datum
sel f.popleft()
def append(self, datum:
deque. append(sel f, datum
if len(self) == self.size_max:
sel f. append = self._full_append
def tolist(self):
return list(self)

With this latest implementation, we need to switch only the append method (the tolist method
remains the same), so method switching appears to be more appropriate than class switching.

See Also

The Reference Manual and Python in a Nutshell sections on the standard type hierarchy and
classic and new-style object models; Python 2.4 Library Reference on module col | ecti ons.

[rrevos] uexr

[rrevons f e

Recipe 6.12. Checking an Instance for Any State
Changes

Credit: David Hughes

Problem

You need to check whether any changes to an instance's state have occurred to selectively save
instances that have been modified since the last "save" operation.

Solution

An effective solution is a mixin classa class you can multiply inherit from and that is able to take
snapshots of an instance's state and compare the instance's current state with the last snapshot
to determine whether or not the instance has been modified:

i mport copy
cl ass ChangeChecker M xi n(obj ect):
containerltens = {dict: dict.iteritenms, |list: enumerate}

i mmut abl e = Fal se
def snapshot (self):
"'' create a "snapshot" of self's state -- |ike a shallow copy, but
recursing over container types (not over general instances:
i nstances nust keep track of their own changes if needed).
if self.imutable:
return
sel f. _snapshot = self. _copy_container(self.__dict_)
def makel mut abl e(sel f):
'"'' the instance state can't change any nore, set .inmutable
sel f.immutable = True
try:
del self._snapshot
except AttributeError
pass
def _copy_container(self, container):
""" sem -shal | ow copy, recursing on container types only "'
new_cont ai ner = copy. copy(cont ai ner)
for k, v in self.containerltens[type(new container)](new container):
if type(v) in self.containerltens:
new contai ner[k] = self. _copy_contai ner(v)
elif hasattr(v, 'snapshot'):
v. snapshot ()
return new_cont ai ner
def isChanged(self):
""" True if self's state is changed since the |ast snapshot
if self.immtable:
return Fal se
renmove snapshot fromself. _dict_ _, put it back at the end
snap = self. _dict_ _.pop('_snapshot', None)
if snap is None:
return True

try:
return self._checkContainer(self._ _dict_ _, snap)

finally:
sel f. _snapshot = snap

def _checkContainer(self, container, snapshot):

"' return True if the container and its snapshot differ

if len(container) !'=1len(snapshot):
return True

for k, vin self.containerltens[type(container)](container):
try:

ov = snapshot [K]
except LookupError:
return True
if self. _checkltem(v, ov):
return True
return Fal se
def _checkltem(self, newitem olditemn):

"'' conpare newitemand olditem If they are containers, call
sel f. _checkContai ner recursively. |If they're an instance with
an 'isChanged' nethod, delegate to that nethod. O herw se,
return True if the itens differ. "'’

if type(newitem) !'= type(olditen):
return True

if type(newitem) in self.containerltens:
return self. checkContainer(newitem olditem

if newitemis olditem
nmet hod_i sChanged = getattr(newitem 'isChanged' , None)

i f method_i sChanged i s None:
return Fal se
return nethod_i sChanged()
return newitem!= ol ditem

Discussion

I often need change-checking functionality in my applications. For example, when a user closes
the last GUI window over a certain document, | need to check whether the document was
changed since the last "save" operation; if it was, then | need to pop up a small window to give
the user a choice between saving the document, losing the latest changes, or canceling the
window-closing operation.

The class ChangeCheckerMixin, which this recipe describes, satisfies this need. The idea is to
multiply derive all of your data classes, meaning all classes that hold data the user views and
may change, from ChangeCheckerMixin (as well as from any other bases they need). When the
data has just been loaded from or saved to persistent storage, call method snapshot on the top-
level, document data class instance. This call takes a "snapshot" of the current state, basically a
shallow copy of the object but with recursion over containers, and calls the snapshot methods on
any contained instance that has such a method. Any time afterward, you can call method
isChanged on any data class instance to check whether the instance state was changed since the
time of its last snapshot.

As container types, ChangeCheckerMixin, as presented, considers only | i st and di ct. If you also
use other types as containers, you just need to add them appropriately to the containerltems
dictionary. That dictionary must map each container type to a function callable on an instance of
that type to get an iterator on indices and values (with indices usable to index the container).
Container type instances must also support being shallowly copied with standard library Python
function copy. copy. For example, to add Python 2.4's col | ecti ons. deque as a container to a
subclass of ChangeCheckerMixin, you can code:

i mport collections

cl ass CCM wi t h_deque(ChangeChecker M xi n) :
contai nerltems = di ct(ChangeChecker M xi n. cont ai nerltens)
contai nerltens[collections.deque] = enunerate

since col | ecti ons. deque can be "walked over" with enuner at e, just like | i st can.

Here is a toy example of use for ChangeChecherMixin:

if _ nane_ _ =="'_ _min_ _':
cl ass eg(ChangeChecker M xi n):
def _ _init_ (self, *a, **k):
self.L = list(*a, **k)

def _ _str_ _(self):
return 'eg(%)' %str(self.L)
def _ _getattr_ (self, a):
return getattr(self.L, a)
X = eg('ciaon')
print 'x =", x, 'is changed ="', x.isChanged()

emts: x =eg(['c', "i', "a, '0']) is changed = True

now, assume x gets saved, then...:

X. snapshot ()

print 'x =", x, 'is changed =, x.isChanged()

emts: x = eg(['c', "i', "a", '"0']) is changed = Fal se

now we change X...:

X. append(' x')

print 'x =, X, 'is changed =, x.isChanged()

emts: x = eg(['c, "i', "a, "0, '"x']) is changed = True

In class eg we only subclass ChanceCheckerMixin because we need no other bases. In particular,
we cannot usefully subclass | i st because the change-checking functionality works only on state
that is kept in an instance's dictionary; so, we must hold a list object in our instance's dictionary,
and delegate to it as needed (in this toy example, we delegate all nonspecial methods,
automatically, via _ _getattr_). With this precaution, we see that the isChanged method
correctly reflects the crucial tidbitwhether the instance's state has been changed since the last
call to snapshot on the instance.

An implicit assumption of this recipe is that your application's data class instances are organized
in a hierarchical fashion. The tired old (but still valid) example is an invoice containing header
data and detail lines. Each instance of the details data class could contain other instances, such
as product details, which may not be modifiable in the current activity but are probably
modifiable elsewhere. This is the reason for the immutable attribute and the makelmmutable
method: when the attribute is set by calling the method, any outstanding snapshot for the
instance is dropped to save memory, and further calls to either snapshot or isChanged can
return very rapidly.

If your data does not lend itself to such hierarchical structuring, you may have to take full deep
copies, or even "snapshot" a document instance by taking a full pickle of it, and check for
changes by comparing the new pickle with the last one previously taken. That may be all right on
very fast machines, or when the amount of data you're handling is rather modest. In my tests,
however, it shows up as being unacceptably slow for substantial amounts of data on more
ordinary machines. This recipe, when your data organization is suitable for its application, can
offer better performance. If some of your data classes also contain data that is automatically
computed or, for other reasons, does not need to be saved, store such data in instances of
subordinate classes (which do not inherit from ChangeCheckerMixin), rather than either holding
the data as attributes or storing it in ordinary containers such as lists and dictionaries.

See Also

Library Reference and Python in a Nutshell documentation on multiple inheritance, the iteritens
method of dictionaries, and built-in functions enuner at e, i si nst ance, and hasattr.

[rrevons f e

[rrevons f e

Recipe 6.13. Checking Whether an Object Has
Necessary Attributes

Credit: Alex Martelli

Problem

You need to check whether an object has certain necessary attributes before performing state-
altering operations. However, you want to avoid type-testing because you know it interferes with
polymorphism.

Solution

In Python, you normally just try performing whatever operations you need to perform. For
example, here's the simplest, no-checks code for doing a certain sequence of manipulations on a
list argument:

def mungel(alist):
al i st. append(23)
al i st.extend(range(5))
al i st. append(42)
alist[4] = alist[3]
alist.extend(range(2))

If al i st is missing any of the methods you're calling (explicitly, such as append and extend; or
implicitly, such as the callsto _ getitem _and _ _setitem _ implied by the assignment
statement al i st[4] = alist[3]), the attempt to access and call a missing method raises an
exception. Function mungel makes no attempt to catch the exception, so the execution of
mungel terminates, and the exception propagates to the caller of mungel. The caller may
choose to catch the exception and deal with it, or terminate execution and let the exception
propagate further back along the chain of calls, as appropriate.

This approach is usually just fine, but problems may occasionally occur. Suppose, for example,
that the al i st object has an append method but not an ext end method. In this peculiar case, the
mungel function partially alters al i st before an exception is raised. Such partial alterations are
generally not cleanly undoable; depending on your application, they can sometimes be a bother.

To forestall the "partial alterations" problem, the first approach that comes to mind is to check
the type of al i st. Such a naive "Look Before You Leap"” (LBYL) approach may look safer than
doing no checks at all, but LBYL has a serious defect: it loses polymorphism! The worst approach
of all is checking for equality of types:

def nunge2(alist):
if type(alist) is list: # a very bad idea
mungel(alist)
el se: raise TypeError, "expected list, got %" %type(alist)

This even fails, without any good reason, when al i st is an instance of a subclass of | i st. You
can at least remove that huge defect by using i si nst ance instead:

def nunge3(alist):
if isinstance(alist, list):
mungel(alist)
el se: raise TypeError, "expected list, got %" %type(alist)

However, munge3 still fails, needlessly, when al i st is an instance of a type or class that mimics
|'i st but doesn't inherit from it. In other words, such type-checking sacrifices one of Python's
great strengths: signature-based polymorphism. For example, you cannot pass to munge3 an
instance of Python 2.4's col | ecti ons. deque, which is a real pity because such a deque does
supply all needed functionality and indeed can be passed to the original mungel and work just
fine. Probably a zillion sequence types are out there that, like deque, are quite acceptable to
mungel but not to munge3. Type-checking, even with i si nst ance, exacts an enormous price.

A far better solution is accurate LBYL, which is both safe and fully polymorphic:

def munge4(alist):
Extract all bound nethods you need (get inmediate exception
wi thout partial alteration, if any needed nmethod is missing):
append = al i st. append
extend = alist.extend
Check operations, such as indexing, to get an excepti on ASAP
if signature conpatibility is m ssing
try: alist[0] = alist[O0]
except IndexError: pass # An enpty alist is okay
Operate: no exceptions are expected fromthis point onwards
append(23)
extend(range(5))
append(42)
alist[4] = alist[3]
ext end(range(2))

Discussion

Python functions are naturally polymorphic on their arguments because they essentially depend
on the methods and behaviors of the arguments, not on the arguments' types. If you check the
types of arguments, you sacrifice this precious polymorphism, so, don't! However, you may
perform a few early checks to obtain some extra safety (particularly against partial alterations)
without substantial costs.

What Is Polymorphism?

Polymorphism (from Greek roots meaning "many shapes") is the ability of code to
deal with objects of different types in ways that are appropriate to each applicable
type. Unfortunately, this useful term has been overloaded with all sorts of
implications, to the point that many people think it's somehow connected with such
concepts as overloading (specifying different functions depending on call-time
signatures) or subtyping (i.e., subclassing), which it most definitely isn't.

Subclassing is often a useful implementation technique, but it's not a necessary
condition for polymorphism. Overloading is right out: Python just doesn't let multiple
objects with the same name live at the same time in the same scope, so you can't
have several functions or methods with the same name and scope, distinguished only
by their signaturesa minor annoyance, at worst: just rename those functions or
methods so that their name suffices to distinguish them.

Python's functions are polymorphic (unless you take specific steps to break this very
useful feature) because they just call methods on their arguments (explicitly or
implicitly by performing operations such as arithmetic and indexing): as long as the
arguments supply the needed methods, callable with the needed signatures, and
those calls perform the appropriate behavior, everything just works.

The normal Pythonic way of life can be described as the Easier to Ask Forgiveness than
Permission (EAFP) approach: just try to perform whatever operations you need, and either
handle or propagate any exceptions that may result. It usually works great. The only real
problem that occasionally arises is "partial alteration": when you need to perform several
operations on an object, just trying to do them all in natural order could result in some of them
succeeding, and partially altering the object, before an exception is raised.

For example, suppose that mungel, as shown at the start of this recipe's Solution, is called with
an actual argument value for al i st that has an append method but lacks ext end. In this case,

al i st is altered by the first call to append; but then, the attempt to obtain and call ext end raises
an exception, leaving al i st 's state partially altered, a situation that may be hard to recover
from. Sometimes, a sequence of operations should ideally be atomic: either all of the alterations
happen, and everything is fine, or none of them do, and an exception gets raised.

You can get closer to ideal atomicity by switching to the LBYL approach, but in an accurate,
careful way. Extract all bound methods you'll need, then noninvasively test the necessary
operations (such as indexing on both sides of the assignment operator). Move on to actually
changing the object state only if all of this succeeds. From that point onward, it's far less likely
(although not impossible) that exceptions will occur in midstream, leaving state partially altered.
You could not reach 100% safety even with the strictest type-checking, after all: for example,
you might run out of memory just smack in the middle of your operations. So, with or without
type-checking, you don't really ever guarantee atomicityyou just approach asymptotically to that
desirable property.

Accurate LBYL generally offers a good trade-off in comparison to EAFP, assuming we need
safeguards against partial alterations. The extra complication is modest, and the slowdown due
to the checks is typically compensated by the extra speed gained by using bound methods
through local names rather than explicit attribute access (at least if the operations include loops,
which is often the case). It's important to avoid overdoing the checks, and the assert statement
can help with that. For example, you can add such checks as assert cal | abl e(append) to
munge4. In this case, the compiler removes the assert entirely when you run the program with
optimization (i.e., with flags - O or - OO passed to the python command), while performing the
checks when the program is run for testing and debugging (i.e., without the optimization flags).

See Also

Language Reference and Python in a Nutshell about assert and the meaning of the -Oand - QO
command-line arguments; Library Reference and Python in a Nutshell about sequence types, and
lists in particular.

[rrevons] uexr

[rrevons f e

Recipe 6.14. Implementing the State Design Pattern

Credit: Elmar Bschorer

Problem

An object in your program can switch among several "states", and the object's behavior must
change along with the object's state.

Solution

The key idea of the State Design Pattern is to objectify the "state" (with its several behaviors)
into a class instance (with its several methods). In Python, you don't have to build an abstract
class to represent the interface that is common to the various states: just write the classes for
the "state"s themselves. For example:

cl ass TraceNor mal (obj ect):
state for normal |evel of verbosity
def startMessage(self):
self.nstr = self.characters =0
def emitString(self, s):
self.nstr +=1
sel f.characters += |l en(s)
def endMessage(sel f):
print '%l characters in %l strings' % (self.characters, self.nstr)
cl ass TraceChatty(object):
" state for high level of verbosity '
def start Message(self):
self.msg = []
def emitString(self, s):
sel f. nsg. append(repr(s))
def endMessage(sel f):
print 'Message: ', ', '.join(self.nsQ)
cl ass TraceQui et (obj ect):
" state for zero |level of verbosity '
def startMessage(self): pass
def emtString(self, s): pass
def endMessage(sel f): pass
cl ass Tracer (object):
def _ init_ (self, state): self.state = state
def setState(self, state): self.state = state
def emtStrings(self, strings):
sel f.state.start Message()
for s in strings: self.state.emtString(s)
sel f.state. endMessage()

if nane_ =="'_ main_ _
t = Tracer(TraceNormal ())
t.emtStrings(' some exanple strings here' .split())
emits: 21 characters in 4 strings
t.setState(TraceQuiet())
t.emtStrings(' some exanple strings here' .split())
em ts nothing

t.setState(TraceChatty())
t.emtStrings(' some exanple strings here' .split())
emts: Message: '

sone', 'exanple', 'strings', 'here

Discussion

With the State Design Pattern, you can "factor out” a number of related behaviors of an object
(and possibly some data connected with these behaviors) into an auxiliary state object, to which
the main object delegates these behaviors as needed, through calls to methods of the "state"
object. In Python terms, this design pattern is related to the idioms of rebinding an object's
whole ~ class_ _, as shown in Recipe 6.11, and rebinding just certain methods (shown in
Recipe 2.14). This design pattern, in a sense, lies in between those Python idioms: you group a
set of related behaviors, rather than switching either all behavior, by changing the object's whole
_ _class_ _, or each method on its own, without grouping. With relation to the classic design
pattern terminology, this recipe presents a pattern that falls somewhere between the classic
State Design Pattern and the classic Strategy Design Pattern.

This State Design Pattern has some extra oomph, compared to the related Pythonic idioms,
because an appropriate amount of data can live together with the behaviors you're
delegatingexactly as much, or as little, as needed to support each specific behavior. In the
examples given in this recipe's Solution, for example, the different state objects differ greatly in
the kind and amount of data they need: none at all for class TraceQuiet, just a couple of
numbers for TraceNormal, a whole list of strings for TraceChatty. These responsibilities are
usefully delegated from the main object to each specific "state object".

In some cases, although not in the specific examples shown in this recipe, state objects may
need to cooperate more closely with the main object, by calling main object methods or
accessing main object attributes in certain circumstances. To allow this, the main object can pass
as an argument either sel f or some bound method of sel f to methods of the "state" objects.
For example, suppose that the functionality in this recipe's Solution needs to be extended, in that
the main object must keep track of how many lines have been emitted by messages it has sent.
Tracer._ _init_ _ will have to add one per-instance initialization sel f. i nes = 0, and the
signature of the "state" object's endMessage methods will have to be extended to def
endMessage(sel f, tracer):. The implementation of endMessage in class TraceQuiet will just
ignore the tracer argument, since it doesn't actually emit any lines; the implementations in the
other two classes will each add a statementtracer.|ines += 1, since each of them emits one
line per message.

As you see, the kind of closer coupling implied by this kind of extra functionality need not be
particularly problematic. In particular, the key feature of the classic State Design Pattern, that
state objects are the ones that handle state switching (while, in the Strategy Design Pattern, the
switching comes from the outside), is just not enough of a big deal in Python to warrant
considering the two design patterns as separate.

See Also

See http://exciton.cs.rice.edu/JavaResources/DesignPatterns/ for good coverage of the classic
design patterns, albeit in a Java context.

[rscviovs Jruexr s

http://exciton.cs.rice.edu/JavaResources/DesignPatterns/

[rrevons f e

Recipe 6.15. Implementing the "Singleton"” Design
Pattern

Credit: JUrgen Hermann

Problem

You want to make sure that only one instance of a class is ever created.

Solution

The _ _new_ _ staticmet hod makes the task very simple:

cl ass Singleton(object):
" A Pythonic Singleton """

def _ new__(cls, *args, **kwargs):
if '_inst" not in vars(cls):
cls. inst = type. _new_(cls, *args, **kwargs)

return cls._inst

Just have your class inherit from Singleton, and don't override _ _new_ _. Then, all calls to that
class (normally creations of new instances) return the same instance. (The instance is created
once, on the first such call to each given subclass of Singleton during each run of your program.)

Discussion

This recipe shows the one obvious way to implement the "Singleton" Design Pattern in Python
(see E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley). A Singleton is a class that makes sure only one instance of it is ever created.
Typically, such a class is used to manage resources that by their nature can exist only once. See
Recipe 6.16 for other considerations about, and alternatives to, the "Singleton” design pattern in
Python.

We can complete the module with the usual self-test idiom and show this behavior:

if _ npnane_ _=="'_ min_ _'":
cl ass Singl eSpan(Si ngl et on):
def _ _init_ (self, s): self.s =s
def _ _str_ _(self): return self.s

sl = Singl eSpan(' spani)
print id(sl), sl.spam)
s2 = Singl eSpan(' eggs')
print id(s2), s2.span)

When we run this module as a script, we get something like the following output (the exact value
of i d does vary, of course):

8172684 spam

8172684 spam

The 'eggs’ parameter passed when trying to instantiate s2 has been ignored, of coursethat's part
of the price you pay for having a Singleton!

One issue with Singleton in general is subclassability. The way class Singleton is coded in this
recipe, each descendant subclass, direct or indirect, will get a separate instance. Literally
speaking, this violates the constraint of only one instance per class, depending on what one
exactly means by it:

cl ass Foo(Singleton): pass

cl ass Bar (Foo): pass

f = Foo(); b =Bar()

print f is b, isinstance(f, Foo), isinstance(b, Foo0)
emts Fal se True True

f and b are separate instances, yet, according to the built-in function i si nst ance, they are both
instances of Foo because i si nst ance applies the IS-A rule of OOP: an instance of a subclass IS-
An instance of the base class too. On the other hand, if we took pains to return f again when b is
being instantiated by calling Bar, we'd be violating the normal assumption that calling class Bar
gives us an instance of class Bar, not an instance of a random superclass of Bar that just
happens to have been instantiated earlier in the course of a run of the program.

In practice, subclassability of "Singleton"s is rather a headache, without any obvious solution. If

this issue is important to you, the alternative Borg idiom, explained next in Recipe 6.16 may
provide a better approach.

See Also

Recipe 6.16; E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley).

[rscviovs Jruexr s

[rrevons f e

Recipe 6.16. Avoiding the "Singleton" Design Pattern
with the Borg Idiom

Credit: Alex Martelli, Alex A. Naanou

Problem

You want to make sure that only one instance of a class is ever created: you don't care about the
i d of the resulting instances, just about their state and behavior, and you need to ensure

subclassability.

Solution

Application needs (forces) related to the "Singleton" Design Pattern can be met by allowing
multiple instances to be created while ensuring that all instances share state and behavior. This
is more flexible than fiddling with instance creation. Have your class inherit from the following
Borg class:

cl ass Borg(object):
_shared_state = { }

def _ new_ (cls, *a, **k):
obj = object. _new_ (cls, *a, **k)
obj. _dict_ _ =cls. _shared state

return obj

If you override _ _new_ _ in your class (very few classes need to do that), just remember to use
Borg. _new_ _, rather than obj ect. _new_ _, within your override. If you want instances of
your class to share state among themselves, but not with instances of other subclasses of Borg,
make sure that your class has, at class scope, the "state"ment:

_shared_state = { }

With this "data override", your class doesn't inherit the _shared_state attribute from Borg but
rather gets its own. It is to enable this "data override" that Borg's _ _new_ _ uses

cls._shared_state instead of Borg._shared_state.

Discussion

Borg in action

Here's a typical example of Bor g use:

if _ _nane_ _ =="'_ _nmmin
cl ass Exanpl e(Borg):
nanme = None
def _ init_ (self, name=None):

if nane is not None: self.nane = nane

def _ str_ (self): return 'nane->%' % self.nane
a = Exanpl e(' Lara')
b = Exanple() # instantiating b shares self.nane with a
print a, b
¢ = Exanpl e(' John Mal kovich') # making ¢ changes self.name of a & b too

print a, b, ¢
b. name = ' Seven' # setting b.name changes nane of a & ¢ too
print a, b, c

When running this module as a main script, the output is:

nane- >Lar a name->Lar a
nane- >John Mal kovi ch nane->John Ml kovi ch nane->John Mal kovi ch
name- >Seven nane->Seven name- >Seven

All instances of Exanpl e share state, so any setting of the name attribute of any instance, either

in_ _init_ _ ordirectly, affects all instances equally. However, note that the instance's i ds
differ; therefore, since we have not defined special methods = eq_ _and _ _hash_ _, each
instance can work as a distinct key in a dictionary. Thus, if we continue our sample code as
follows:
adict = { }
j =0
for i ina, b, c:
adict[i] =]
=] +1
for i ina, b, c:

print i, adict[i]

the output is:

name- >Seven 0

nanme- >Seven

(=

nane- >Seven 2

If this behavior is not what you want, add _ _eq_ _and _ _hash_ _ methods to the Exanpl e
class or the Borg superclass. Having these methods might better simulate the existence of a
single instance, depending on your exact needs. For example, here's a version of Borg with these
special methods added:

cl ass Borg(object):
_Shared_state = { }

def _

def

def _

new (cls, *a, **k):

obj = object. _new_ (cls, *a, **k)

obj. _dict_ _ =cls. _shared_state

return obj

_ _hash_ (self): return 9 # any arbitrary constant integer
eq _(self, other):

try: return self._ dict__ is other. _dict__

except AttributeError: return Fal se

With this enriched version of Borg, the example's output changes to:

name- >Seven 2
name- >Seven 2

nanme- >Seven 2

Borg, Singleton, or neither?

The Singleton Design Pattern has a catchy name, but unfortunately it also has the wrong focus
for most purposes: it focuses on object identity, rather than on object state and behavior. The
Borg design nonpattern makes all instances share state instead, and Python makes implementing
this idea a snap.

In most cases in which you might think of using Singleton or Borg, you don't really need either of
them. Just write a Python module, with functions and module-global variables, instead of defining
a class, with methods and per-instance attributes. You need to use a class only if you must be
able to inherit from it, or if you need to take advantage of the class' ability to define special
methods. (See Recipe 6.2 for a way to combine some of the advantages of classes and

modules.) Even when you do need a class, it's usually unnecessary to include in the class itself
any code to enforce the idea that one can't make multiple instances of it; other, simpler idioms
are generally preferable. For example:

cl ass froober(object):
def _ init_ (self):
etc, etc
froober = froober()

Now froober is by nature the only instance of its own class, since name 'f r oober ' has been
rebound to mean the instance, not the class. Of course, one might call froober. _ _class_ _(

), but it's not sensible to spend much energy taking precautions against deliberate abuse of your
design intentions. Any obstacles you put in the way of such abuse, somebody else can bypass.
Taking precautions against accidental misuse is way plenty. If the very simple idiom shown in
this latest snippet is sufficient for your needs, use it, and forget about Singleton and Borg.
Remember: do the simplest thing that could possibly work. On rare occasions, though, an idiom
as simple as this one cannot work, and then you do need more.

The Singleton Design Pattern (described previously in Recipe 6.15) is all about ensuring that just
one instance of a certain class is ever created. In my experience, Singleton is generally not the
best solution to the problems it tries to solve, producing different kinds of issues in various
object models. We typically want to let as many instances be created as necessary, but all with
shared state. Who cares about identity? It's state (and behavior) we care about. The alternate
pattern based on sharing state, in order to solve roughly the same problems as Singleton does,
has also been called Monostate. Incidentally, I like to call Singleton "Highlander" because there
can be only one.

In Python, you can implement the Monostate Design Pattern in many ways, but the Borg design
nonpattern is often best. Simplicity is Borg's greatest strength. Since the _ _dict_ _ of any
instance can be rebound, Borginits _ _new_ _ rebinds the __dict_ _ of each of its instances
to a class-attribute dictionary. Now, any reference or binding of an instance attribute will affect
all instances equally. | thank David Ascher for suggesting the appropriate name Borg for this
nonpattern. Borg is a nonpattern because it had no known uses at the time of its first publication
(although several uses are now known): two or more known uses are part of the prerequisites
for being a design pattern. See the detailed discussion at http://www.aleax.it/5ep.html.

An excellent article by Robert Martin about Singleton and Monostate can be found at
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf. Note that most of
the disadvantages that Martin attributes to Monostate are really due to the limitations of the
languages that Martin is considering, such as C++ and Java, and just disappear when using Borg
in Python. For example, Martin indicates, as Monostate's first and main disadvantage, that "A
non-Monostate class cannot be converted into a Monostate class through derivation"but that is
obviously not the case for Borg, which, through multiple inheritance, makes such conversions
trivial.

http://www.aleax.it/5ep.html
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf

Borg odds and ends

The _ getattr_ _and _ _setattr_ _ special methods are not involved in Borg's operations.
Therefore, you can define them independently in your subclass, for whatever other purposes you
may require, or you may leave these special methods undefined. Either way is not a problem
because Python does not call _ _setattr_ _ in the specific case of the rebinding of the
instance's _ _dict_ _ attribute.

Borg does not work well for classes that choose to keep some or all of their per-instance state
somewhere other than in the instance's _ _dict _ . So, in subclasses of Borg, avoid defining _
slots _that's a memory-footprint optimization that would make no sense, anyway, since it's
meant for classes that have a large number of instances, and Borg subclasses will effectively
have just one instance! Moreover, instead of inheriting from built-in types such as | i st or di ct,
your Borg subclasses should use wrapping and automatic delegation, as shown previously Recipe
6.5. (I named this latter twist "DeleBorg," in my paper available at
http://www.aleax.it/5ep.html.)

Saying that Borg "is a Singleton™ would be as silly as saying that a portico is an umbrella. Both
serve similar purposes (letting you walk in the rain without getting wet)solve similar forces, in
design pattern parlancebut since they do so in utterly different ways, they're not instances of the
same pattern. If anything, as already mentioned, Borg has similarities to the Monostate
alternative design pattern to Singleton. However, Monostate is a design pattern, while Borg is
not; also, a Python Monostate could perfectly well exist without being a Borg. We can say that
Borg is an idiom that makes it easy and effective to implement Monostate in Python.

For reasons mysterious to me, people often conflate issues germane to Borg and Highlander with
other, independent issues, such as access control and, particularly, access from multiple threads.
If you need to control access to an object, that need is exactly the same whether there is one
instance of that object's class or twenty of them, and whether or not those instances share state.
A fruitful approach to problem-solving is known as divide and conquermaking problems easier to
solve by splitting apart their different aspects. Making problems more difficult to solve by joining
together several aspects must be an example of an approach known as unite and suffer!

See Also

Recipe 6.5; Recipe 6.15; Alex Martelli, "Five Easy Pieces: Simple Python Non-Patterns™
(http://www.aleax.it/5ep.html).

[rrevons f e

http://www.aleax.it/5ep.html
http://www.aleax.it/5ep.html

[rrevons f e

Recipe 6.17. Implementing the Null Object Design
Pattern

Credit: Dinu C. Gherman, Holger Krekel

Problem

You want to reduce the need for conditional statements in your code, particularly the need to
keep checking for special cases.

Solution

The usual placeholder object for "there's nothing here" is None, but we may be able to do better
than that by defining a class meant exactly to act as such a placeholder:

class Nul | (object):
""" Null objects always and reliably "do nothing.'
optional optim zation: ensure only one instance per subclass
(essentially just to save menory, no functional difference)

def _ new_ _(cls, *args, **kwargs):
if ' _inst' not in vars(cls):
cls. inst = type. _new_(cls, *args, **kwargs)
return cls._inst
def _ init_ _(self, *args, **kwargs): pass
def _ call_ (self, *args, **kwargs): return self
def _ _repr_ _(self): return "Null()"
def _ _nonzero_ (self): return False
def _ _getattr_ _(self, name): return self
def _ setattr_ (self, nane, value): return self
def _ delattr_ (self, name): return self
Discussion

You can use an instance of the Null class instead of the primitive value None. By using such an
instance as a placeholder, instead of None, you can avoid many conditional statements in your
code and can often express algorithms with little or no checking for special values. This recipe is
a sample implementation of the Null Object Design Pattern. (See B. Woolf, "The Null Object
Pattern” in Pattern Languages of Programming [PLoP 96, September 1996].)

This recipe's Nul | class ignores all parameters passed when constructing or calling instances, as
well as any attempt to set or delete attributes. Any call or attempt to access an attribute (or a
method, since Python does not distinguish between the two, calling _ _getattr_ _ either way)
returns the same Nul | instance (i.e., sel f no reason to create a new instance). For example, if
you have a computation such as:

def conpute(x, y):
try:
lots of conputation here to return sonme appropriate object
except SoneError:
return None

and you use it like this:

for x in xs:
for y in ys:
obj = conpute(x, V)
if obj is not None:
obj . somenet hod(y, x)

you can usefully change the computation to:

def conpute(x, y):
try:
lots of conputation here to return sonme appropriate object
except SoneError:
return Null ()

and thus simplify its use down to:

for x in xs:
for y in ys:
conput e(x, y).sonmenethod(y, x)

The point is that you don't need to check whether conput e has returned a real result or an
instance of Nul | : even in the latter case, you can safely and innocuously call on it whatever
method you want. Here is another, more specific use case:

log = err = Null ()
if verbose:
log = open('/tmp/log', "W)
err = open('/tmp/err', '"wW)
log.write('blabla)
err.wite('blablaerror")

This obviously avoids the usual kind of "pollution" of your code from guards such as i f verbose:
strewn all over the place. You can now call |l og. wite('bla'), instead of having to express each
suchcallasif log is not None: log.wite('bla').

In the new object model, Python does not call _ _getattr_ _ on an instance for any special
methods needed to perform an operation on the instance (rather, it looks up such methods in the
instance class' slots). You may have to take care and customize Null to your application's needs
regarding operations on null objects, and therefore special methods of the null objects' class,
either directly in the class' sources or by subclassing it appropriately. For example, with this
recipe's Null, you cannot index Null instances, nor take their length, nor iterate on them. If this is
a problem for your purposes, you can add all the special methods you need (in Null itself or in an
appropriate subclass) and implement them appropriatelyfor example:

class SeqNul | (Null):

def _ len_ (self): return O

def _ _iter_ _(self): returniter(())

def _ _getitem _(self, i): return self
def _ delitem _(self, i): return self
def _ setitem _(self, i, v): return self

Similar considerations apply to several other operations.

The key goal of Nul | objects is to provide an intelligent replacement for the often-used primitive
value None in Python. (Other languages represent the lack of a value using either null or a null
pointer.) These nobody-lives-here markers/placeholders are used for many purposes, including
the important case in which one member of a group of otherwise similar elements is special. This
usage usually results in conditional statements all over the place to distinguish between ordinary
elements and the primitive null (e.g., None) value, but Null objects help you avoid that.

Among the advantages of using Null objects are the following:

e Superfluous conditional statements can be avoided by providing a first-class object
alternative for the primitive value None, thereby improving code readability.

¢ Nul | objects can act as placeholders for objects whose behavior is not yet implemented.

¢ Nul | objects can be used polymorphically with instances of just about any other class
(perhaps needing suitable subclassing for special methods, as previously mentioned).

e Nul | objects are very predictable.

The one serious disadvantage of Null is that it can hide bugs. If a function returns None, and the
caller did not expect that return value, the caller most likely will soon thereafter try to call a
method or perform an operation that None doesn't support, leading to a reasonably prompt
exception and traceback. If the return value that the caller didn't expect is a Null, the problem
might stay hidden for a longer time, and the exception and traceback, when they eventually
happen, may therefore be harder to reconnect to the location of the defect in the code. Is this
problem serious enough to make using Null inadvisable? The answer is a matter of opinion. If
your code has halfway decent unit tests, this problem will not arise; while, if your code lacks
decent unit tests, then using Null is the least of your problems. But, as | said, it boils down to a
matter of opinions. | use Null very widely, and I'm extremely happy with the effect it has had on
my productivity.

The Null class as presented in this recipe uses a simple variant of the "Singleton” pattern (shown
earlier in Recipe 6.15), strictly for optimization purposesnamely, to avoid the creation of
numerous passive objects that do nothing but take up memory. Given all the previous remarks
about customization by subclassing, it is, of course, crucial that the specific implementation of
"Singleton" ensures a separate instance exists for each subclass of Null that gets instantiated.
The number of subclasses will no doubt never be so high as to eat up substantial amounts of
memory, and anyway this per-subclass distinction can be semantically crucial.

See Also

B. Woolf, "The Null Object Pattern" in Pattern Languages of Programming (PLoP 96, September
1996), http://www.cs.wustl.edu/~schmidt/PLoP-96/woolfl.ps.qgz; Recipe 6.15.

[rrevons] uexr

http://www.cs.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz

[rrevons f e

Recipe 6.18. Automatically Initializing Instance Variables
from _ _init__ Arguments

Credit: Peter Otten, Gary Robinson, Henry Crutcher, Paul Moore, Peter Schwalm, Holger Krekel

Problem

You want to avoid writing and maintaining _ _init_ _ methods that consist of almost nothing
but a series of sel f. sonet hi ng = sonet hi ng assignments.

Solution

You can "factor out" the attribute-assignment task to an auxiliary function:

def attributesFronDict(d):
self = d. pop('self")
for n, vind.iteritenms():
setattr(self, n, v)

Now, the typical boilerplate code for an _ _init_ _ method such as:

def _ _init_ (self, foo, bar, baz, boomrl, bang=2):
self.foo = foo
sel f.bar = bar
sel f.baz = baz
sel f. boom = boom
sel f. bang = bang

can become a short, crystal-clear one-liner:

def _ init_ (self, foo, bar, baz, boonmrl, bang=2):
attributesFronDict(locals())

Discussion
As long as no additional logic is in the body of _ _init_ _, the di ct returned by calling the built-
in function | ocal s contains only the arguments that were passed to _ _init_ _ (plus those

arguments that were not passed but have default values). Function at tri but esFronDi ct extracts
the object, relying on the convention that the object is always an argument named ‘sel f*, and
then interprets all other items in the dictionary as names and values of attributes to set. A similar
but simpler technique, not requiring an auxiliary function, is:

def _ init_ (self, foo, bar, baz, boomrl, bang=2):

self. _dict_ _.update(locals())
del self.self

However, this latter technique has a serious defect when compared to the one presented in this

recipe's Solution: by setting attributes directly into sel f. _ _dict__ _ (through the latter's updat e

method), it does not play well with properties and other advanced descriptors, while the
approach in this recipe's Solution, using built-in setattr, is impeccable in this respect.

attributesFromDict is not meant for use inan _ _init_ _ method that contains more code, and
specifically one that uses some local variables, because attributesFromDict cannot easily
distinguish, in the dictionary that is passed as its only argument d, between arguments of _
init _ and other local variables of _ _init_ . If you're willing to insert a little introspection
in the auxiliary function, this limitation may be overcome:

def attributesFromArgunents(d):
self = d. pop('self")
codenject =self. _init_ _.imfunc.func_code
ar gument Nanes = codeCbj ect. co_varnanmes[1: codebj ect. co_ar gcount]
for n in argunment Nanes:
setattr(self, n, d[n])

By extracting the code object of the _ _init_ _ method, function attributesFromArguments is
able to limit itself to the names of _ _init_ _'sarguments. Your _ _init_ _ method can then
call attri but esFromAr gunent s(l ocal s()), instead of attri but esFronDi ct (|l ocal s()), if and
when it needs to continue, after the call, with more code that may define other local variables.

The key limitation of attributesFromArguments is that it does not support _ _init_ _ having a
last special argument of the **kw kind. Such support can be added, with yet more introspection,

but it would require more black magic and complication than the functionality is probably worth.
If you nevertheless want to explore this possibility, you can use the i nspect module of the

standard library, rather than the roll-your-own approach used in function
attributeFromArguments, for introspection purposes. i nspect. getargspec(self.__init_)
gives you both the argument names and the indication of whether self. __init_ _ accepts a
**kw form. See Recipe 6.19 for more information about function i nspect . get ar gspec.
Remember the golden rule of Python programming: "Let the standard library do it!"

See Also

Library Reference and Python in a Nutshell docs for the built-in function | ocal s, methods of type
di ct, special method _ _init_ _, and introspection techniques (including module i nspect).

[rrevous f e

[rrevons f e

Recipe 6.19. Calling a Superclass _ _init__ Method If It
Exists

Credit: Alex Martelli

Problem

You want to ensure that _ _init_ _ is called for all superclasses that define it, and Python does
not do this automatically.

Solution

As long as your class is new-style, the built-in super makes this task easy (if all superclasses' _
init _ methods also use super similarly):

class NewsStyleOnly(A B, O:
def _ _init_ (self):
super (NewStyl eOnly, self). _init_ ()
initialization specific to subclass NewStyleOnly

Discussion

Classic classes are not recommended for new code development: they exist only to guarantee
backwards compatibility with old versions of Python. Use new-style classes (deriving directly or
indirectly from obj ect) for all new code. The only thing you cannot do with a new-style class is to
rai se its instances as exception objects; exception classes must therefore be old style, but then,
you do not need the functionality of this recipe for such classes. Since the rest of this recipe's
Discussion is therefore both advanced and of limited applicability, you may want to skip it.

Still, it may happen that you need to retrofit this functionality into a classic class, or, more likely,
into a new-style class with some superclasses that do not follow the proper style of cooperative
superclass method-calling with the built-in super . In such cases, you should first try to fix the
problematic premisesmake all classes new style and make them use super properly. If you
absolutely cannot fix things, the best you can do is to have your class loop over its base
classesfor each base, check whether it hasan _ init_ _, and if so, then call it:

cl ass LookBeforeYouLeap(X, Y, 2):

def _ _init_ (self):
for base in self_class_ . _bases
if hasattr(base, '_ _init_ _'):
base. _init_ (self)

initialization specific to subclass LookBeforeYoulLeap

More generally, and not just for method _ _init_ _, we often want to call a method on an
instance, or class, if and only if that method exists; if the method does not exist on that class or
instance, we do nothing, or we default to another action. The technique shown in the "Solution”,
based on built-in super, is not applicable in general: it only works on superclasses of the current
object, only if those superclasses also use super appropriately, and only if the method in
question does exist in some superclass. Note that all new-style classes do have an _ _init_ _

method: they all subclass obj ect, and obj ect defines _ _init_ _ (as a do-nothing function that
accepts and ignores any arguments). Therefore, all new-style classes have an _ _init_
method, either by inheritance or by override.

The LBYL technique shown in class LookBeforeYoulLeap may be of help in more general cases,
including ones that involve methods other than _ _init_ . Indeed, LBYL may even be used
together with super, for example, as in the following toy example:

cl ass Basel(object):
def met(self):
print 'net in Basel
cl ass Der1(Basel):
def net(self):
s = super(Derl, self)
if hasattr(s, 'net'):
s.met()
print 'net in Derl
cl ass Base2(object):
pass
cl ass Der2(Base?2):
def met(self):
s = super(Der2, self)
if hasattr(s, 'net'):
s.nmet()
print 'net in Der2
Derl().nmet()
Der2().met()

This snippet emits:

nmet in Basel
met in Derl
nmet in Der2

The implementation of met has the same structure in both derived classes, Derl (whose
superclass Basel does have a method named met) and Der2 (whose superclass Basel doesn't
have such a method). By binding a local name s to the result of super, and checking with
hasattr that the superclass does have such a method before calling it, this LBYL structure lets
you code in the same way in both cases. Of course, when coding a subclass, you do normally
know which methods the superclasses have, and whether and how you need to call them. Still,
this technique can provide a little extra flexibility for those occasions in which you need to slightly
decouple the subclass from the superclass.

The LBYL technique is far from perfect, though: a superclass might define an attribute named
met, which is not callable or needs a different number of arguments. If your need for flexibility is
so extreme that you must ward against such occurrences, you can extract the superclass'
method object (if any) and check it with the get ar gspec function of standard library module

i nspect .

While pushing this idea towards full generality can lead into rather deep complications, here is
one example of how you might code a class with a method that calls the superclass’ version of
the same method only if the latter is callable without arguments:

i mport inspect
class Der(A B, C D:
def met(self):
s = super(Der, self)
get the superclass's bound-nethod object, or else None
m = getattr(s, 'net', None)

try:

args, varargs, varkw, defaults = inspect.getargspec(m
except TypeError:

mis not a nmethod, just ignore it

pass
el se:
mis a nmethod, do all its argunents have default val ues?
if len(defaults) == len(args):
yes! so, call it:
n)

print 'net in Der'

i nspect . get argspec raises a TypeError if its argument is not a method or function, so we catch
that case with a TRy/ except statement, and if the exception occurs, we just ignore it with a do-
nothing pass statement in the except clause. To simplify our code a bit, we do not first check
separately with hasat tr . Rather, we get the 'net ' attribute of the superclass by calling getattr
with a third argument of None. Thus, if the superclass does not have any attribute named 'net’,
m is set to None, later causing exactly the same TypeError that we have to catch (and ignore)
anywaytwo birds with one stone. If the call to i nspect. get ar gspec in the try clause does not
raise a TypeError, execution continues with the el se clause.

If i nspect . get ar gspec doesn't raise a TypeError, it returns a tuple of four items, and we bind
each item to a local name. In this case, the ones we care about are args, a list of ms argument
names, and defaults, a tuple of default values that mprovides for its arguments. Clearly, we can
call mwithout arguments if and only if mprovides default values for all of its arguments. So, we
check that there are just as many default values as arguments, by comparing the | engths of list
args and tuple defaults, and call monly if the lengths are equal.

No doubt you don't need such advanced introspection and such careful checking in most of the
code you write, but, just in case you do, Python does supply all the tools you need to achieve it.
See Also

Docs for built-in functions super, getattr, and hasattr, and module i nspect, in the Library
Reference and Python in a Nutshell.

[recviovs Jrexr

[rrevons f e

Recipe 6.20. Using Cooperative Supercalls Concisely
and Safely

Credit: Paul McNett, Alex Martelli

Problem

You appreciate the cooperative style of multiple-inheritance coding supported by the super built-
in, but you wish you could use that style in a more terse and concise way.

Solution

A good solution is a mi xi n classa class you can multiply inherit from, that uses introspection to
allow more terse coding:

i mport inspect
cl ass Super M xi n(obj ect):
def super(cls, *args, **kwargs):
frame = inspect.currentfrane(l)
self = frame.f_local s['self']
met hodNanme = frane.f _code. co_nane
met hod = getattr(super(cls, self), nmethodName, None)
i f inspect.ismethod(nethod):
return nethod(*args, **kwargs)
super = cl assnet hod(super)

Any class cl s that inherits from class SuperMixin acquires a magic method named super: calling
cl s. super (args) from within a method named sonenane of class cl s is a concise way to call
super(cls, self).sonenane(args). Moreover, the call is safe even if no class that follows cl s in
Method Resolution Order (MRO) defines any method named sonenarne.

Discussion

Here is a usage example:

if _ nane_ _=="'_ main_ _":
cl ass TestBase(list, SuperM xin):
note: no nyMethod defined here
pass
cl ass MyTest 1(Test Base):
def myMet hod(self):
print "in MyTest1"
MyTest 1. super ()
cl ass MyTest 2(Test Base):
def nyMethod(sel f):
print "in MyTest2"
MyTest 2. super ()
class MyTest (MyTest1, MyTest2):
def nmyMet hod(sel f):

print "in MyTest"
MyTest . super()
MyTest (). myMet hod()

emts:

#in MyTest
#1in MyTest1l
#in MyTest 2

Python has been offering "new-style" classes for years, as a preferable alternative to the classic
classes that you get by default. Classic classes exist only for backwards-compatibility with old
versions of Python and are not recommended for new code. Among the advantages of new-style
classes is the ease of calling superclass implementations of a method in a "cooperative" way that
fully supports multiple inheritance, thanks to the super built-in.

Suppose you have a method in a new-style class cl s, which needs to perform a task and then

delegate the rest of the work to the superclass implementation of the same method. The code
idiom is:

def somenane(sel f, *args):
...sone prelimnary task...
return super(cls, self).sonmenane(*args)

This idiom suffers from two minor issues: it's slightly verbose, and it also depends on a
superclass offering a method sonenane. If you want to make cl s less coupled to other classes,
and therefore more robust, by removing the dependency, the code gets even more verbose:

def somenane(sel f, *args):
...sonme prelimnary task...
try:
super _net hod = super(cls, self).sonenane
except AttributeError:
return None
el se:
return super_mnet hod(*args)

The nmi xi n class SuperMixin shown in this recipe removes both issues. Just ensure cl s inherits,
directly or indirectly, from SuperMixin (alongside any other base classes you desire), and then
you can code, concisely and robustly:

def sonmenane(sel f, *args):
...sone prelimnary task...
return cls.super(*args)

The cl assnet hod SuperMixin.super relies on simple introspection to get the sel f object and the
name of the method, then internally uses built-ins super and get attr to get the superclass
method, and safely call it only if it exists. The introspection is performed through the handy

i nspect module of the standard Python library, making the whole task even simpler.

See Also

Library Reference and Python in a Nutshell docs on super, the new object model and MRO, the
built-in get attr, and standard library module i nspect ; Recipe 20.12 for another recipe taking a
very different approach to simplify the use of built-in super .

[rrevons f e

[rrevons f e

Chapter 7. Persistence and Databases

Introduction

Recipe 7.1. Serializing Data Using the marshal Module

Recipe 7.2. Serializing Data Using the pickle and cPickle Modules

Recipe 7.3. UsingCompressionwith Pickling

Recipe 7.4. Usingthe cPickle Module on Classes and Instances

Recipe 7.5. Holding Bound Methods in a Picklable Way

Recipe 7.6. Pickling Code Objects

Recipe 7.7. Mutating Objects with shelve

Recipe 7.8. Usingthe Berkeley DB Database

Recipe 7.9. AccesssingaMySOL Database

Recipe 7.10. StoringaBLOBinaMySQOL Database

Recipe 7.11. StoringaBLOB inaPostgreSOQOL Database

Recipe 7.12. StoringaBLOBinaSOQLite Database

Recipe 7.13. Generating a Dictionary Mapping Field Names to Column Numbers

Recipe 7.14. Usingdtuple for Flexible Accessto Query Results

Recipe 7.15. Pretty-Printing the Contents of Database Cursors

Recipe 7.16. Using a Single Parameter-Passing Style Across Various DB APl Modules

Recipe 7.17. UsingMicrosoftJetvia ADO

Recipe 7.18. Accessing aJDBC Database from aJython Servlet

Recipe 7.19. Using ODBC to Get Excel Data with Jython

[rrevos] uexr

[rrevons f e

Introduction

Credit: Aaron Watters, Software Consultant
There are three kinds of people in this world: those who can count and those who can't.

However, there are only two kinds of computer programs: toy programs and programs that
interact with some kind of persistent databases. That is to say, most real computer programs
must retrieve stored information and record information for future use. These days, this
description applies to almost every computer game, which can typically save and restore the
state of the game at any time. So when | refer to toy programs, | mean programs written as
exercises, or for the fun of programming. Nearly all real programs (such as programs that people
get paid to write) have some persistent database storage/retrieval component.

When | was a Fortran programmer in the 1980s, | noticed that although almost every program
had to retrieve and store information, they almost always did it using home-grown methods.
Furthermore, since the storage and retrieval parts of the program were the least interesting
components from the programmer’s point of view, these parts of the program were frequently
implemented very sloppily and were hideous sources of intractable bugs. This repeated
observation convinced me that the study and implementation of database systems sat at the
core of programming pragmatics, and that the state of the art as | saw it then required much
improvement.

Later, in graduate school, | was delighted to find an impressive and sophisticated body of work
relating to the implementation of database systems. The literature of database systems covered
issues of concurrency, fault tolerance, distribution, query optimization, database design, and
transaction semantics, among others. In typical academic fashion, many of the concepts had
been elaborated to the point of absurdity (such as the silly notion of conditional multivalued
dependencies), but much of the work was directly related to the practical implementation of
reliable and efficient storage and retrieval systems. The starting point for much of this work was
E.F. Codd's seminal paper, "A Relational Model of Data for Large Shared Data Banks."[11

I E.F. Codd, "A Relational Model of Data for Large Shared Data Banks," Communications of the ACM, 13, no. 6 (1970), pp.
377-87, http://www.acm.org/classics/nov95/toc.html.

Among my fellow graduate students, and even among most of the faculty, the same body of
knowledge was either disregarded or regarded with some scorn. Everyone recognized that
knowledge of conventional relational technology could be lucrative, but they generally considered
such knowledge to be on the same level as knowing how to write (or more importantly, maintain)
COBOL programs. This situation was not helped by the fact that the emerging database interface
standard, SQL (which is now very well established), looked like an extension of COBOL and bore
little obvious relationship to any modern programming language.

More than a decade later, there is little indication that anything will soon overtake SQL-based
relational technology for the majority of data-based applications. In fact, relational-database
technology seems more pervasive than ever. The largest software vendorsIBM, Microsoft, and
Oracleall provide various relational-database implementations as crucial components of their core
offerings. Other large software firms, such as SAP and PeopleSoft, essentially provide layers of
software built on top of a relational-database core.

Generally, relational databases have been augmented rather than replaced. Enterprise software-
engineering dogma frequently espouses three-tier systems, in which the bottom tier is a carefully
designed relational database, the middle tier defines a view of the database as business objects,
and the top tier consists of applications or transactions that manipulate the business objects,
with effects that ultimately translate to changes in the underlying relational tables.

Microsoft's Open Database Connectivity (ODBC) standard provides a common programming API

http://www.acm.org/classics/nov95/toc.html

for SQL-based relational databases that permits programs to interact with many different
database engines with no or few changes. For example, a Python program could be first
implemented using Microsoft Jet[2l as a backend database for testing and debugging purposes.
Once the program is stable, it can be put into production use, remotely accessing, say, a
backend DB2 database on an IBM mainframe residing on another continent, by changing (at
most) one line of code.

[2] Microsoft Jet is commonly but erroneously known as the "Microsoft Access database." Access is a product that Microsoft
sells for designing and implementing database frontends; Jet is a backend that you may download for free from Microsoft's
web site.

Relational databases are not appropriate for all applications. In particular, a computer game or
engineering design tool that must save and restore sessions should probably use a more direct
method of persisting the logical objects of the program than the flat tabular representation
encouraged in relational-database design. However, even in domains such as engineering or
scientific information, a hybrid approach that uses some relational methods is often advisable.
For example, | have seen a complex relational-database schema for archiving genetic-sequencing
informationin which the sequences show up as binary large objects (BLOBs)but a tremendous
amount of important ancillary information can fit nicely into relational tables. But as the reader
has probably surmised, | fear, | speak as a relational zealot.

Within the Python world there are many ways of providing persistence and database
functionality. My personal favorite is Gadfly, http://gadfly.sourceforge.net/, a simple and minimal
SQL implementation that works primarily with in-memory databases. It is my favorite for no
other reason than because it is mine, and its biggest advantage is that, if it becomes unworkable
for you, it is easy to switch over to another, industrial-strength SQL engine. Many Gadfly users
have started an application with Gadfly (because it was easy to use) and switched later (because
they needed more).

However, many people may prefer to start by using other SQL implementations such as MySQL,
Microsoft Access, Oracle, Sybase, Microsoft SQL Server, SQLite, or others that provide the
advantages of an ODBC interface (which Gadfly does not do).

Python provides a standard interface for accessing relational databases: the Python DB
Application Programming Interface (Py-DBAPI), originally designhed by Greg Stein. Each
underlying database API requires a wrapper implementation of the Py-DBAPI, and
implementations are available for just about all underlying database interfaces, notably Oracle
and ODBC.

When the relational approach is overkill, Python provides built-in facilities for storing and
retrieving data. At the most basic level, the programmer can manipulate files directly, as covered
in Chapter 2. A step up from files, the nar shal module allows programs to serialize data
structures constructed from simple Python types (not including, e.g., classes or class instances).
mar shal has the advantage of being able to retrieve large data structures with blinding speed.
The pi ckl e and cPi ckl e modules allow general storage of objects, including classes, class
instances, and circular structures. cPi ckl e is so named because it is implemented in C and is
consequently quite fast, but it remains slower than mar shal . For access to structured data in a
somewhat human-readable form, it is also worth considering storing and retrieving data in XML
format (taking advantage of Python's several XML parsing and generation modules), covered in
Chapter 12but this option works best for write once, read many-type applications. Serialized data
or XML representations may be stored in SQL databases to create a hybrid approach as well.

While nmar shal and pi ckl e provide basic serialization and deserialization of structures, the
application programmer will frequently desire more functionality, such as transaction support and
concurrency control. When the relational model doesn't fit the application, a direct object
database implementation such as the Z-Object Database (ZODB) might be appropriatesee
http://zope.org/Products/ZODB3.2.

I must conclude with a plea to those who are dismissive of relational-database technology.
Remember that it is successful for good reasons, and it might be worth considering. To
paraphrase Churchill:

http://gadfly.sourceforge.net/
http://zope.org/Products/ZODB3.2

text = """ Indeed, it has been said that denocracy is the worst form of
governnent, except for all those others that have been tried
fromtime to time. """

i mport string

for a, bin [("denocracy", "SQ."), ("governnment", "database")]:
text = string.replace(text, a, b)
print text

R [

[rrevons f e

Recipe 7.1. Serializing Data Using the marshal Module

Credit: Luther Blissett

Problem

You want to serialize and reconstruct a Python data structure whose items are fundamental
Python objects (e.g., lists, tuples, numbers, and strings but no classes, instances, etc.) as fast as
possible.

Solution

If you know that your data is composed entirely of fundamental Python objects (and you only
need to support one version of Python, though possibly on several different platforms), the
lowest-level, fastest approach to serializing your data (i.e., turning it into a string of bytes, and
later reconstructing it from such a string) is via the mar shal module. Suppose that dat a has only
elementary Python data types as items, for example:

data = {12:"twelve', "feep' :list('ciao'), 1.23:4+5j, (1,2,3):u wer'}

You can serialize dat a to a bytestring at top speed as follows:

i mport mar shal
byt es = marshal . dunps(dat a)

You can now sling byt es around as you wish (e.g., send it across a network, put it as a BLOB in
a database, etc.), as long as you keep its arbitrary binary bytes intact. Then you can reconstruct
the data structure from the bytestring at any time:

redata = marshal . | oads(byt es)

When you specifically want to write the data to a disk file (as long as the latter is open for
binarynot the default text modeinput/output), you can also use the dunp function of the nar shal
module, which lets you dump several data structures to the same file one after the other:

ouf = open('datafile.dat', 'wh')
mar shal . dunp(data, ouf)

mar shal . dunp(' some string', ouf)
mar shal . dunp(range(19), ouf)
ouf. cl ose()

You can later recover from datafile.dat the same data structures you dumped into it, in the same
sequence:

inf = open('datafile.dat', "rb")
a = marshal . | oad(i nf)
b = marshal .1 oad(i nf)
¢ = marshal .l oad(i nf)

inf.close()

Discussion

Python offers several ways to serialize data (meaning to turn the data into a string of bytes that
you can save on disk, put in a database, send across the network, etc.) and corresponding ways
to reconstruct the data from such serialized forms. The lowest-level approach is to use the

mar shal module, which Python uses to write its bytecode files. mar shal supports only elementary
data types (e.g., dictionaries, lists, tuples, numbers, and strings) and combinations thereof.

mar shal does not guarantee compatibility from one Python release to another, so data serialized
with nar shal may not be readable if you upgrade your Python release. However, mar shal does
guarantee independence from a specific machine's architecture, so it is guaranteed to work if
you're sending serialized data between different machines, as long as they are all running the
same version of Pythonsimilar to how you can share compiled Python bytecode files in such a
distributed setting.

mar shal 's dunps function accepts any suitable Python data structure and returns a bytestring
representing it. You can pass that bytestring to the | oads function, which will return another
Python data structure that compares equal (==) to the one you originally dumped. In particular,
the order of keys in dictionaries is arbitrary in both the original and reconstructed data
structures, but order in any kind of sequence is meaningful and is thus preserved. In between
the dunps and | oads calls, you can subject the bytestring to any procedure you wish, such as
sending it over the network, storing it into a database and retrieving it, or encrypting and
decrypting it. As long as the string's binary structure is correctly restored, | oads will work fine on
it (as stated previously, this is guaranteed only if you use | oads under the same Python release
with which you originally executed dunps).

When you specifically need to save the data to a file, you can also use mar shal 's dunp function,
which takes two arguments: the data structure you're dumping and the open file object. Note
that the file must be opened for binary 1/0 (not the default, which is text 1/0) and can't be a file-
like object, as mar shal is quite picky about it being a true file. The advantage of dunp is that you
can perform several calls to dunp with various data structures and the same open file object:
each data structure is then dumped together with information about how long the dumped
bytestring is. As a consequence, when you later open the file for binary reading and then call
mar shal . | oad, passing the file as the argument, you can reload each previously dumped data
structure sequentially, one after the other, at each call to | oad. The return value of | oad, like
that of | oads, is a new data structure that compares equal to the one you originally dumped.
(Again, dunp and | oad work within one Python releaseno guarantee across releases.)

Those accustomed to other languages and libraries offering "serialization" facilities may be

wondering if mar shal imposes substantial practical limits on the size of objects you can serialize

or deserialize. Answer: Nope. Your machine's memory might, but as long as everything fits
comfortably in memory, mar shal imposes practically no further limit.

See Also

Recipe 7.2 for cPi ckl e, the big brother of mar shal ; documentation on the nmar shal standard
library module in the Library Reference and in Python in a Nutshell.

[rrevous f e

[rrevons f e

Recipe 7.2. Serializing Data Using the pickle and cPickle
Modules

Credit: Luther Blissett

Problem

You want to serialize and reconstruct, at a reasonable speed, a Python data structure, which may
include both fundamental Python object as well as classes and instances.

Solution

If you don't want to assume that your data is composed only of fundamental Python objects, or
you need portability across versions of Python, or you need to transmit the serialized form as
text, the best way of serializing your data is with the cPi ckl e module. (The pi ckl e module is a

pure-Python equivalent and totally interchangeable, but it's slower and not worth using except if
you're missing cPi ckl e.) For example, say you have:

data = {12:"twelve', '"feep':list('ciao'), 1.23:4+5j, (1,2,3):u wer'}

You can serialize dat a to a text string:

i mport cPickle
text = cPickl e. dunps(data)

or to a binary string, a choice that is faster and takes up less space:

bytes = cPi ckl e. dunps(data, 2)

You can now sling t ext or byt es around as you wish (e.g., send across a network, include as a
BLOB in a databasesee Recipe 7.10, Recipe 7.11, and Recipe 7.12) as long as you keep t ext or
byt es intact. In the case of byt es, it means keeping the arbitrary binary bytes intact. In the case
of t ext, it means keeping its textual structure intact, including newline characters. Then you can
reconstruct the data at any time, regardless of machine architecture or Python release:

redatal = cPickle.| oads(text)
redata2 = cPickl e. | oads(bytes)

Either call reconstructs a data structure that compares equal to dat a. In particular, the order of
keys in dictionaries is arbitrary in both the original and reconstructed data structures, but order
in any kind of sequence is meaningful, and thus it is preserved. You don't need to tell

cPi ckl e. | oads whether the original dunps used text mode (the default, also readable by some
very old versions of Python) or binary (faster and more compact)l oads figures it out by
examining its argument's contents.

When you specifically want to write the data to a file, you can also use the dunp function of the
cPi ckl e module, which lets you dump several data structures to the same file one after the

other:

ouf = open('datafile.txt', "w)
cPi ckl e. dunp(data, ouf)

cPi ckl e. dump(' sone string', ouf)
cPi ckl e. dunp(range(19), ouf)
ouf. cl ose()

Once you have done this, you can recover from datafile.txt the same data structures you
dumped into it, one after the other, in the same order:

inf = open('datafile.txt")

a = cPickl e.load(inf)
b = cPickle.load(inf)
¢ = cPickle.load(inf)

inf.close()

You can also pass cPi ckl e. dunp a third argument with a value of 2 to tell cPi ckl e. dunp to
serialize the data in binary form (faster and more compact), but the data file must then be
opened for binary 1/0, not in the default text mode, both when you originally dump to the file
and when you later load from the file.

Discussion

Python offers several ways to serialize data (i.e., make the data into a string of bytes that you
can save on disk, save in a database, send across the network, etc.) and corresponding ways to
reconstruct the data from such serialized forms. Typically, the best approach is to use the

cPi ckl e module. A pure-Python equivalent, called pi ckl e (the cPi ckl e module is coded in C as
a Python extension) is substantially slower, and the only reason to use it is if you don't have

cPi ckl e (e.g., with a Python port onto a mobile phone with tiny storage space, where you saved
every byte you possibly could by installing only an indispensable subset of Python's large
standard library). However, in cases where you do need to use pi ckl e, rest assured that it is
completely interchangeable with cPi ckl e: you can pickle with either module and unpickle with
the other one, without any problems whatsoever.

cPi ckl e supports most elementary data types (e.g., dictionaries, lists, tuples, numbers, strings)
and combinations thereof, as well as classes and instances. Pickling classes and instances saves
only the data involved, not the code. (Code objects are not even among the types that cPi ckl e
knows how to serialize, basically because there would be no way to guarantee their portability
across disparate versions of Python. See Recipe 7.6 for a way to serialize code objects, as long
as you don't need the cross-version guarantee.) See Recipe 7.4 for more about pickling classes
and instances.

cPi ckl e guarantees compatibility from one Python release to another, as well as independence
from a specific machine's architecture. Data serialized with cPi ckl e will still be readable if you
upgrade your Python release, and pickling is also guaranteed to work if you're sending serialized
data between different machines.

The dunps function of cPi ckl e accepts any Python data structure and returns a text string
representing it. If you call dunps with a second argument of 2, dunps returns an arbitrary
bytestring instead: the operation is faster, and the resulting string takes up less space. You can
pass either the text or the bytestring to the | oads function, which will return another Python data
structure that compares equal (==) to the one you originally dumped. In between the dunps and

| oads calls, you can subject the text or bytestring to any procedure you wish, such as sending it
over the network, storing it in a database and retrieving it, or encrypting and decrypting it. As
long as the string's textual or binary structure is correctly restored, | oads will work fine on it
(even across platforms and in future releases). If you need to produce data readable by old (pre-
2.3) versions of Python, consider using 1 as the second argument: operation will be slower, and

the resulting strings will not be as compact as those obtained by using 2, but the strings will be
unpicklable by old Python versions as well as current and future ones.

When you specifically need to save the data into a file, you can also use cPi ckl e's dunp function,
which takes two arguments: the data structure you're dumping and the open file or file-like
object. If the file is opened for binary 1/0, rather than the default (text 1/0), then by giving dunp
a third argument of 2, you can ask for binary format, which is faster and takes up less space
(again, you can also use 1 in this position to get a binary format that's neither as compact nor as
fast, but is understood by old, pre-2.3 Python versions too). The advantage of dunp over dunps
is that, with dunp, you can perform several calls, one after the other, with various data structures
and the same open file object. Each data structure is then dumped with information about how
long the dumped string is. Consequently, when you later open the file for reading (binary
reading, if you asked for binary format) and then repeatedly call cPi ckl e. | oad, passing the file

as the argument, each data structure previously dumped is reloaded sequentially, one after the
other. The return value of | oad, like that of | oads, is a new data structure that compares equal

to the one you originally dumped.

Those accustomed to other languages and libraries offering "serialization"” facilities may be
wondering whether pi ckl e imposes substantial practical limits on the size of objects you can

serialize or deserialize. Answer: Nope. Your machine's memory might, but as long as everything
fits comfortably in memory, pi ckl e practically imposes no further limit.

See Also

Recipe 7.2 and Recipe 7.4; documentation for the standard library module cPi ckl e in the Library
Reference and Python in a Nutshell.

[rscviovs Jruexr s

[rrevons f e

Recipe 7.3. Using Compression with Pickling

Credit: Bill McNeill, Andrew Dalke

Problem

You want to pickle generic Python objects to and from disk in a compressed form.

Solution

Standard library modules cPi ckl e and gzi p offer the needed functionality; you just need to glue
them together appropriately:

i mport cPickle, gzip
def save(fil enane, *objects):
'"'' save objects into a conpressed diskfile
fil = gzip.open(filenane, 'wh')
for obj in objects: cPickle.dunp(obj, fil, proto=2)
fil.close()
def |oad(filenane):
rel oad objects froma conpressed diskfile "'
fil = gzip.open(filenanme, 'rb")
whil e True:
try: yield cPickle.load(fil)
except EOFError: break
fil.close()

Discussion

Persistence and compression, as a general rule, go well together. cPi ckl e protocol 2 saves
Python objects quite compactly, but the resulting files can still compress quite well. For example,
on my Linux box, open('/usr/dict/share/words').readlines() produces a list of over
45,000 strings. Pickling that list with the default protocol O makes a disk file of 972 KB, while
protocol 2 takes only 716 KB. However, using both gzi p and protocol 2, as shown in this recipe,
requires only 268 KB, saving a significant amount of space. As it happens, protocol O produces a
more compressible file in this case, so that using gzi p and protocol O would save even more
space, taking only 252 KB on disk. However, the difference between 268 and 252 isn't all that
meaningful, and protocol 2 has other advantages, particularly when used on instances of new-
style classes, so | recommend the mix | use in the functions shown in this recipe.

Whatever protocol you choose to save your data, you don't need to worry about it when you're
reloading the data. The protocol is recorded in the file together with the data, so cPi ckl e. | oad
can figure out by itself all it needs. Just pass it an instance of afil e or pseudo-fi | e object with
aread method, and cPi ckl e. | oad returns each object that was pickled to the file, one after the
other, and raises ECFEr r or when the file's done. In this recipe, we wrap a generator around

cPi ckl e. | oad, so you can simply loop over all recovered objects with a f or statement, or,
depending on what you need, you can use some call such as | i st (| oad(' sonefile.gz')) to get
a list with all recovered objects as its items.

See Also

Modules gzi p and cPi ckl e in the Library Reference.

[rscviovs Jexr s

[rrevons f e

Recipe 7.4. Using the cPickle Module on Classes and
Instances

Credit: Luther Blissett

Problem

You want to save and restore class and instance objects using the cPi ckl e module.

Solution

You often need no special precautions to use cPi ckl e on your classes and their instances. For
example, the following works fine:

i mport cPickle
cl ass For Exanpl e(obj ect):

def _ _init_ (self, *stuff):

sel f.stuff = stuff

anl nstance = For Exanpl e(' one', 2, 3)
saved = cPi ckl e. dunps(anl nst ance)
rel oaded = cPickl e. | oads(saved)
assert anlnstance.stuff == rel oaded. stuff

However, sometimes there are problems:

anot her |l nstance = For Exanpl e(1, 2, open('three', "w))
wont Wr k = cPi ckl e. dunps(anot her | nst ance)

This snippet causes a TypeError : "can't pickle file objects" exception, because the state of
anot her | nstance includes a fi | e object, and fi | e objects cannot be pickled. You would get
exactly the same exception if you tried to pickle any other container that includes a fi | e object
among its items.

However, in some cases, you may be able to do something about it:

class PrettyCl ever (object):

def _ _init_ (self, *stuff):
sel f.stuff = stuff
def _ _getstate_ _(self):

def normalize(x):
if isinstance(x, file):
return 1, (x.nane, x.node, x.tell())
return 0, X
return [normalize(x) for x in self.stuff]

def _ setstate (self, stuff):
def reconstruct(x):
if x[0] ==

return x[1]
nane, node, offs = x[1]
openfile = open(nane, node)

openfil e. seek(offs)
return openfile
self.stuff = tuple([reconstruct(x) for x in stuff])

By defining the _ getstate_ and _ _setstate_ _ special methods in your class, you gain
fine-grained control about what, exactly, your class' instances consider to be their state. As long
as you can define such state in picklable terms, and reconstruct your instances from the
unpickled state in some way that is sufficient for your application, you can make your instances
themselves picklable and unpicklable in this way.

Discussion

cPi ckl e dumps class and function objects by name (i.e., through their module's name and their
name within the module). Thus, you can dump only classes defined at module level (not inside
other classes and functions). Reloading such objects requires the respective modules to be
available for i mport . Instances can be saved and reloaded only if they belong to such classes. In
addition, the instance's state must also be picklable.

By default, an instance's state is the contents of the instance's _ _dict__ _, plus whatever state
the instance may get from the built-in type the instance's class inherits from, if any. For
example, an instance of a new-style class that subclasses | i st includes the list items as part of
the instance's state. cPi ckl e also handles instances of new-style classes that define or inherit a
class attribute named _ _slots_ _ (and therefore hold some or all per-instance state in those
predefined slots, rather than in a per-instance _ _dict_). Overall, cPickle'sdefault
approach is often quite sufficient and satisfactory.

Sometimes, however, you may have nonpicklable attributes or items as part of your instance's
state (as cPi ckl e defines such state by default, as explained in the previous paragraph). In this
recipe, for example, | show a class whose instances hold arbitrary stuff, which may include open
fil e objects. To handle this case, your class can define the special method _ getstate_ _

cPi ckl e calls that method on your object, if your object's class defines it or inherits it, instead of
going directly for the object's _ _dict_ _ (or possibly _ _slots_ _ and/or built-in type bases).

Normally, when you define the _ _getstate_ _ method, you define the _ _setstate_ _ method
as well, as shown in this recipe's Solution. _ _getstate_ _ can return any picklable object, and
that object gets pickled, and later, at unpickling time, passed as _ _setstate_ _'s argument. In
this recipe's Solution, _ _getstate_ _ returns a list that's similar to the instance’s default state
(attribute sel f. st uff), except that each item is turned into a tuple of two items. The first item in
the pair can be set to 0 to indicate that the second one will be taken verbatim, or 1 to indicate
that the second item will be used to reconstruct an open file. (Of course, the reconstruction may
fail or be unsatisfactory in several ways. There is no general way to save an open file's state,
which is why cPi ckl e itself doesn't even try. But in the context of our application, we can
assume that the given approach will work.) When reloading the instance from pickled form,
cPickle calls _ _setstate__ with the list of pairs, and _ _setstate_ _ can reconstruct

sel f.stuf f by processing each pair appropriately in its nested reconstruct function. This scheme
can clearly generalize to getting and restoring state that may contain various kinds of normally
unpicklable objectsjust be sure to use different numbers to tag each of the various kinds of
"nonverbatim" pairs you need to support.

In one particular case, you can define _ _getstate_ _ without defining _ _setstate :
getstate _ must then return a dictionary, and reloading the instance from pickled form uses
that dictionary just as the instance's _ _dict _ _ would normally be used. Not running your own
code at reloading time is a serious hindrance, but it may come in handy when you want to use _
getstate _, not to save otherwise unpicklable state but rather as an optimization. Typically,
this optimization opportunity occurs when your instance caches results that it can recompute if
they're absent, and you decide it's best not to store the cache as a part of the instance's state. In
this case, you should define _ getstate_ _ to return a dictionary that's the indispensable
subset of the instance's _ _dict_ . (See Recipe 4.13) for a simple and handy way to "subset a

dictionary".)

Defining _ _getstate_ _ (and then, normally, also _ _setstate_) also gives you a further
important bonus, besides the pickling support: if a class offers these methods but doesn't offer
special methods _ _copy_ _ or _ _deepcopy_ _, then the methods are also used for copying,
both shallowly and deeply, as well as for serializing. The state data returned by _ _getstate_ _
is deep-copied if and only if the object is being dee-copied, but, other than this distinction,
shallow and deep copies work very similarly when they are implemented through _ getstate_
_. See Recipe 4.1 for more information about how a class can control the way its instances are
copied, shallowly or deeply.

With either the default pickling/unpickling approach, or your own _ getstate _ and _
setstate _, the instance's special method _ _init_ _ is not called when the instance is
getting unpickled. If the most convenient way for you to reconstruct an instance is to call the _
init _ method with appropriate parameters, then you may want to define the special method
_ _getinitargs_ _,instead of _ getstate_ . In this case, cPi ckl e calls this method without
arguments: the method must return a pickable t upl e, and at unpickling time, cPi ckl e calls _
init _ with the arguments that are that tuple's items. _ _getinitargs_ _, like _ _getstate_
_and _ _setstate_ _, can also be used for copying.

The Library Reference for the pi ckl e and copy_r eg modules details even subtler things you can
do when pickling and unpickling, as well as the thorny security issues that are likely to arise if
you ever stoop to unpickling data from untrusted sources. (Executive summary: don't do
thatthere is no way Python can protect you if you do.) However, the techniques I've discussed
here should suffice in almost all practical cases, as long as the security aspects of unpickling are
not a problem (and if they are, the only practical suggestion is: forget pickling!).

See Also

Recipe 7.2; documentation for the standard library module cPi ckl e in the Library Reference and
Python in a Nutshell.

[rrevos] uexr

Recipe 7.5. Holding Bound Methods in a Picklable Way

Credit: Peter Cogolo

Problem

You need to pickle an object, but that object holds (as an attribute or item) a bound method of

another object, and bound methods are not picklable.

Solution

Say you have the following objects:

i mport cPickle
class Greeter(object):
def _ _init_ (self, nane):
sel f. name = name
def greet(self):
print "hello', self.nane
cl ass Repeater (object):
def _ init_ (self, greeter):
self.greeter = greeter
def greet(self):
self.greeter()
self.greeter()
r = Repeater(Greeter('world').greet)

Were it not for the fact that r holds a bound method as its greeter attribute, you could pickle r

very simply:

s = cPi ckl e. dunps(r)

However, upon encountering the bound method, this call to cPi ckl e. dunps raises a TypeErr or.
One simple solution is to have each instance of class Repeater hold, not a bound method directly,

but rather a picklable wrapper to it. For example:

cl ass pi ckl abl e_boundnet hod(obj ect):
def _ _init_ (self, nt):
self.m =nt
def _ getstate_ (self):

return self.nt.imself, self.nm.imfunc. _ _name_ _
def _ setstate_ _(self, (s,fn)):

self.nt = getattr(s, fn)
def _ _call_ _(self, *a, **kw):

return self.nt(*a, **kw)

Now, changing Repeater._ _init __'s body to sel f. greeter =
pi