

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

Python Cookbook, 2nd Edition

By David Ascher, Alex Martelli, Anna Ravenscroft

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00797-3

Pages: 844

Like its predecessor, the new edition offers a collection of solutions to
problems that Python programmers face everyday. Updated for Python
2.4, it now includes over 200 recipes that range from simple tasks, such
as working with dictionaries and list comprehensions, to complex tasks,
such as monitoring a network and building a templating system.

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

Python Cookbook, 2nd Edition

By David Ascher, Alex Martelli, Anna Ravenscroft

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00797-3

Pages: 844

 Copyright

 Preface

 The Design of the Book

 The Implementation of the Book

 Using the Code from This Book

 Audience

 Organization

 Further Reading

 Conventions Used in This Book

 How to Contact Us

 Safari® Enabled

 Acknowledgments

 Chapter 1. Text

 Introduction

 Recipe 1.1. Processing a String One Character at a Time

 Recipe 1.2. Converting Between Characters and Numeric Codes

 Recipe 1.3. Testing Whether an Object Is String-like

 Recipe 1.4. Aligning Strings

 Recipe 1.5. Trimming Space from the Ends of a String

 Recipe 1.6. Combining Strings

 Recipe 1.7. Reversing a String by Words or Characters

 Recipe 1.8. Checking Whether a String Contains a Set of Characters

 Recipe 1.9. Simplifying Usage of Strings' translate Method

 Recipe 1.10. Filtering a String for a Set of Characters

 Recipe 1.11. Checking Whether a String Is Text or Binary

 Recipe 1.12. Controlling Case

 Recipe 1.13. Accessing Substrings

 Recipe 1.14. Changing the Indentation of a Multiline String

 Recipe 1.15. Expanding and Compressing Tabs

 Recipe 1.16. Interpolating Variables in a String

 Recipe 1.17. Interpolating Variables in a Stringin Python 2.4

 Recipe 1.18. Replacing Multiple Patterns in a Single Pass

 Recipe 1.19. Checking a String for Any of Multiple Endings

 Recipe 1.20. Handling International Text with Unicode

 Recipe 1.21. Converting Between Unicode and Plain Strings

 Recipe 1.22. Printing Unicode Charactersto Standard Output

 Recipe 1.23. Encoding Unicode Data for XML and HTML

 Recipe 1.24. Making Some Strings Case-Insensitive

 Recipe 1.25. Converting HTML Documents to Texton a Unix Terminal

 Chapter 2. Files

 Introduction

 Recipe 2.1. Reading from a File

 Recipe 2.2. Writing to a File

 Recipe 2.3. Searching and Replacing Text in a File

 Recipe 2.4. Reading a Specific Line from a File

 Recipe 2.5. Counting Lines in a File

 Recipe 2.6. Processing Every Word in a File

 Recipe 2.7. Using Random-Access Input/Output

 Recipe 2.8. Updating a Random-Access File

 Recipe 2.9. Reading Data from zip Files

 Recipe 2.10. Handling a zip File Inside a String

 Recipe 2.11. Archiving a Tree of Files into a Compressed tar File

 Recipe 2.12. Sending Binary Data to Standard Output Under Windows

 Recipe 2.13. Using a C++-like iostream Syntax

 Recipe 2.14. Rewinding an Input File to the Beginning

 Recipe 2.15. Adapting a File-like Object to a True File Object

 Recipe 2.16. Walking Directory Trees

 Recipe 2.17. Swapping One File Extension for Another Throughout a Directory Tree

 Recipe 2.18. Finding a File Given a Search Path

 Recipe 2.19. Finding Files Given a Search Path and a Pattern

 Recipe 2.20. Finding a File on the Python Search Path

 Recipe 2.21. Dynamically Changing the PythonSearch Path

 Recipe 2.22. Computing the Relative Path from One Directory to Another

 Recipe 2.23. Reading an Unbuffered Character in a Cross-Platform Way

 Recipe 2.24. Counting Pages of PDF Documents on Mac OS X

 Recipe 2.25. Changing File Attributes on Windows

 Recipe 2.26. Extracting Text from OpenOffice.org Documents

 Recipe 2.27. Extracting Text from Microsoft Word Documents

 Recipe 2.28. File Locking Using a Cross-Platform API

 Recipe 2.29. Versioning Filenames

 Recipe 2.30. Calculating CRC-64 Cyclic Redundancy Checks

 Chapter 3. Time and Money

 Introduction

 Recipe 3.1. Calculating Yesterday and Tomorrow

 Recipe 3.2. Finding Last Friday

 Recipe 3.3. Calculating Time Periods in a Date Range

 Recipe 3.4. Summing Durations of Songs

 Recipe 3.5. Calculating the Number of Weekdays Between Two Dates

 Recipe 3.6. Looking up Holidays Automatically

 Recipe 3.7. Fuzzy Parsing of Dates

 Recipe 3.8. Checking Whether Daylight Saving Time Is Currently in Effect

 Recipe 3.9. Converting Time Zones

 Recipe 3.10. Running a Command Repeatedly

 Recipe 3.11. Scheduling Commands

 Recipe 3.12. Doing Decimal Arithmetic

 Recipe 3.13. Formatting Decimals as Currency

 Recipe 3.14. Using Python as a Simple Adding Machine

 Recipe 3.15. Checking a Credit Card Checksum

 Recipe 3.16. Watching Foreign Exchange Rates

 Chapter 4. Python Shortcuts

 Introduction

 Recipe 4.1. Copying an Object

 Recipe 4.2. Constructing Lists with List Comprehensions

 Recipe 4.3. Returning an Element of a List If It Exists

 Recipe 4.4. Looping over Items and Their Indices in a Sequence

 Recipe 4.5. Creating Lists of Lists Without Sharing References

 Recipe 4.6. Flattening a Nested Sequence

 Recipe 4.7. Removing or Reordering Columnsin a List of Rows

 Recipe 4.8. Transposing Two-Dimensional Arrays

 Recipe 4.9. Getting a Value from a Dictionary

 Recipe 4.10. Adding an Entry to a Dictionary

 Recipe 4.11. Building a Dictionary Without Excessive Quoting

 Recipe 4.12. Building a Dict from a List of Alternating Keys and Values

 Recipe 4.13. Extracting a Subset of a Dictionary

 Recipe 4.14. Inverting a Dictionary

 Recipe 4.15. Associating Multiple Values with Each Key in a Dictionary

 Recipe 4.16. Using a Dictionary to Dispatch Methods or Functions

 Recipe 4.17. Finding Unions and Intersections of Dictionaries

 Recipe 4.18. Collecting a Bunch of Named Items

 Recipe 4.19. Assigning and Testing with One Statement

 Recipe 4.20. Using printf in Python

 Recipe 4.21. Randomly Picking Items with Given Probabilities

 Recipe 4.22. Handling Exceptions Within an Expression

 Recipe 4.23. Ensuring a Name Is Defined in a Given Module

 Chapter 5. Searching and Sorting

 Introduction

 Recipe 5.1. Sorting a Dictionary

 Recipe 5.2. Sorting a List of Strings Case-Insensitively

 Recipe 5.3. Sorting a List of Objects by an Attribute of the Objects

 Recipe 5.4. Sorting Keys or Indices Basedon the Corresponding Values

 Recipe 5.5. Sorting Strings with Embedded Numbers

 Recipe 5.6. Processing All of a List's Items in Random Order

 Recipe 5.7. Keeping a Sequence Ordered as Items Are Added

 Recipe 5.8. Getting the First Few Smallest Items of a Sequence

 Recipe 5.9. Looking for Items in a Sorted Sequence

 Recipe 5.10. Selecting the nth Smallest Element of a Sequence

 Recipe 5.11. Showing off quicksort in Three Lines

 Recipe 5.12. Performing Frequent Membership Tests on a Sequence

 Recipe 5.13. Finding Subsequences

 Recipe 5.14. Enriching the Dictionary Type with Ratings Functionality

 Recipe 5.15. Sorting Names and Separating Them by Initials

 Chapter 6. Object-Oriented Programming

 Introduction

 Recipe 6.1. Converting Among Temperature Scales

 Recipe 6.2. Defining Constants

 Recipe 6.3. Restricting Attribute Setting

 Recipe 6.4. Chaining Dictionary Lookups

 Recipe 6.5. Delegating Automatically as an Alternative to Inheritance

 Recipe 6.6. Delegating Special Methods in Proxies

 Recipe 6.7. Implementing Tuples with Named Items

 Recipe 6.8. Avoiding Boilerplate Accessors for Properties

 Recipe 6.9. Making a Fast Copy of an Object

 Recipe 6.10. Keeping References to Bound Methods Without Inhibiting Garbage Collection

 Recipe 6.11. Implementing a Ring Buffer

 Recipe 6.12. Checking an Instance for Any State Changes

 Recipe 6.13. Checking Whether an Object Has Necessary Attributes

 Recipe 6.14. Implementing the State Design Pattern

 Recipe 6.15. Implementing the "Singleton" Design Pattern

 Recipe 6.16. Avoiding the "Singleton" Design Pattern with the Borg Idiom

 Recipe 6.17. Implementing the Null Object Design Pattern

 Recipe 6.18. Automatically Initializing Instance Variables from _ _init_ _ Arguments

 Recipe 6.19. Calling a Superclass _ _init_ _ Method If It Exists

 Recipe 6.20. Using Cooperative Supercalls Concisely and Safely

 Chapter 7. Persistence and Databases

 Introduction

 Recipe 7.1. Serializing Data Using the marshal Module

 Recipe 7.2. Serializing Data Using the pickle and cPickle Modules

 Recipe 7.3. Using Compression with Pickling

 Recipe 7.4. Using the cPickle Module on Classes and Instances

 Recipe 7.5. Holding Bound Methods in a Picklable Way

 Recipe 7.6. Pickling Code Objects

 Recipe 7.7. Mutating Objects with shelve

 Recipe 7.8. Using the Berkeley DB Database

 Recipe 7.9. Accesssing a MySQL Database

 Recipe 7.10. Storing a BLOB in a MySQL Database

 Recipe 7.11. Storing a BLOB in a PostgreSQL Database

 Recipe 7.12. Storing a BLOB in a SQLite Database

 Recipe 7.13. Generating a Dictionary Mapping Field Names to Column Numbers

 Recipe 7.14. Using dtuple for Flexible Accessto Query Results

 Recipe 7.15. Pretty-Printing the Contents of Database Cursors

 Recipe 7.16. Using a Single Parameter-Passing Style Across Various DB API Modules

 Recipe 7.17. Using Microsoft Jet via ADO

 Recipe 7.18. Accessing a JDBC Database from a Jython Servlet

 Recipe 7.19. Using ODBC to Get Excel Data with Jython

 Chapter 8. Debugging and Testing

 Introduction

 Recipe 8.1. Disabling Execution of Some Conditionals and Loops

 Recipe 8.2. Measuring Memory Usage on Linux

 Recipe 8.3. Debugging the Garbage-Collection Process

 Recipe 8.4. Trapping and Recording Exceptions

 Recipe 8.5. Tracing Expressions and Comments in Debug Mode

 Recipe 8.6. Getting More Information from Tracebacks

 Recipe 8.7. Starting the Debugger Automatically After an Uncaught Exception

 Recipe 8.8. Running Unit Tests Most Simply

 Recipe 8.9. Running Unit Tests Automatically

 Recipe 8.10. Using doctest with unittest in Python 2.4

 Recipe 8.11. Checking Values Against Intervals in Unit Testing

 Chapter 9. Processes, Threads, and Synchronization

 Introduction

 Recipe 9.1. Synchronizing All Methods in an Object

 Recipe 9.2. Terminating a Thread

 Recipe 9.3. Using a Queue.Queue as a Priority Queue

 Recipe 9.4. Working with a Thread Pool

 Recipe 9.5. Executing a Function in Parallel on Multiple Argument Sets

 Recipe 9.6. Coordinating Threads by Simple Message Passing

 Recipe 9.7. Storing Per-Thread Information

 Recipe 9.8. Multitasking Cooperatively Without Threads

 Recipe 9.9. Determining Whether Another Instanceof a Script Is Already Running in Windows

 Recipe 9.10. Processing Windows Messages Using MsgWaitForMultipleObjects

 Recipe 9.11. Driving an External Process with popen

 Recipe 9.12. Capturing the Output and Error Streams from a Unix Shell Command

 Recipe 9.13. Forking a Daemon Process on Unix

 Chapter 10. System Administration

 Introduction

 Recipe 10.1. Generating Random Passwords

 Recipe 10.2. Generating Easily Remembered Somewhat-Random Passwords

 Recipe 10.3. Authenticating Users by Means of a POP Server

 Recipe 10.4. Calculating Apache Hits per IP Address

 Recipe 10.5. Calculating the Rate of Client Cache Hits on Apache

 Recipe 10.6. Spawning an Editor from a Script

 Recipe 10.7. Backing Up Files

 Recipe 10.8. Selectively Copying a Mailbox File

 Recipe 10.9. Building a Whitelist of Email Addresses From a Mailbox

 Recipe 10.10. Blocking Duplicate Mails

 Recipe 10.11. Checking Your Windows Sound System

 Recipe 10.12. Registering or Unregistering a DLL on Windows

 Recipe 10.13. Checking and Modifying the Set of Tasks Windows Automatically Runs at Login

 Recipe 10.14. Creating a Share on Windows

 Recipe 10.15. Connecting to an Already Running Instance of Internet Explorer

 Recipe 10.16. Reading Microsoft Outlook Contacts

 Recipe 10.17. Gathering Detailed System Informationon Mac OS X

 Chapter 11. User Interfaces

 Introduction

 Recipe 11.1. Showing a Progress Indicator on a Text Console

 Recipe 11.2. Avoiding lambda in Writing Callback Functions

 Recipe 11.3. Using Default Values and Bounds with tkSimpleDialog Functions

 Recipe 11.4. Adding Drag and Drop Reordering to a Tkinter Listbox

 Recipe 11.5. Entering Accented Characters in Tkinter Widgets

 Recipe 11.6. Embedding Inline GIFs Using Tkinter

 Recipe 11.7. Converting Among Image Formats

 Recipe 11.8. Implementing a Stopwatch in Tkinter

 Recipe 11.9. Combining GUIs and Asynchronous I/Owith Threads

 Recipe 11.10. Using IDLE's Tree Widget in Tkinter

 Recipe 11.11. Supporting Multiple Values per Row in a Tkinter Listbox

 Recipe 11.12. Copying Geometry Methods and Options Between Tkinter Widgets

 Recipe 11.13. Implementing a Tabbed Notebook for Tkinter

 Recipe 11.14. Using a wxPython Notebook with Panels

 Recipe 11.15. Implementing an ImageJ Plug-in in Jython

 Recipe 11.16. Viewing an Image from a URL with Swing and Jython

 Recipe 11.17. Getting User Input on Mac OS

 Recipe 11.18. Building a Python Cocoa GUI Programmatically

 Recipe 11.19. Implementing Fade-in Windows with IronPython

 Chapter 12. Processing XML

 Introduction

 Recipe 12.1. Checking XML Well-Formedness

 Recipe 12.2. Counting Tags in a Document

 Recipe 12.3. Extracting Text from an XML Document

 Recipe 12.4. Autodetecting XML Encoding

 Recipe 12.5. Converting an XML Document into a Tree of Python Objects

 Recipe 12.6. Removing Whitespace-only Text Nodes from an XML DOM Node's Subtree

 Recipe 12.7. Parsing Microsoft Excel's XML

 Recipe 12.8. Validating XML Documents

 Recipe 12.9. Filtering Elements and Attributes Belonging to a Given Namespace

 Recipe 12.10. Merging Continuous Text Events with a SAX Filter

 Recipe 12.11. Using MSHTML to Parse XML or HTML

 Chapter 13. Network Programming

 Introduction

 Recipe 13.1. Passing Messages with Socket Datagrams

 Recipe 13.2. Grabbing a Document from the Web

 Recipe 13.3. Filtering a List of FTP Sites

 Recipe 13.4. Getting Time from a Server via the SNTP Protocol

 Recipe 13.5. Sending HTML Mail

 Recipe 13.6. Bundling Files in a MIME Message

 Recipe 13.7. Unpacking a Multipart MIME Message

 Recipe 13.8. Removing Attachments from an Email Message

 Recipe 13.9. Fixing Messages Parsed by Python 2.4 email.FeedParser

 Recipe 13.10. Inspecting a POP3 Mailbox Interactively

 Recipe 13.11. Detecting Inactive Computers

 Recipe 13.12. Monitoring a Network with HTTP

 Recipe 13.13. Forwarding and Redirecting Network Ports

 Recipe 13.14. Tunneling SSL Through a Proxy

 Recipe 13.15. Implementing the Dynamic IP Protocol

 Recipe 13.16. Connecting to IRC and Logging Messages to Disk

 Recipe 13.17. Accessing LDAP Servers

 Chapter 14. Web Programming

 Introduction

 Recipe 14.1. Testing Whether CGI Is Working

 Recipe 14.2. Handling URLs Within a CGI Script

 Recipe 14.3. Uploading Files with CGI

 Recipe 14.4. Checking for a Web Page's Existence

 Recipe 14.5. Checking Content Type via HTTP

 Recipe 14.6. Resuming the HTTP Download of a File

 Recipe 14.7. Handling Cookies While Fetching Web Pages

 Recipe 14.8. Authenticating with a Proxy for HTTPS Navigation

 Recipe 14.9. Running a Servlet with Jython

 Recipe 14.10. Finding an Internet Explorer Cookie

 Recipe 14.11. Generating OPML Files

 Recipe 14.12. Aggregating RSS Feeds

 Recipe 14.13. Turning Data into Web Pages Through Templates

 Recipe 14.14. Rendering Arbitrary Objects with Nevow

 Chapter 15. Distributed Programming

 Introduction

 Recipe 15.1. Making an XML-RPC Method Call

 Recipe 15.2. Serving XML-RPC Requests

 Recipe 15.3. Using XML-RPC with Medusa

 Recipe 15.4. Enabling an XML-RPC Server to Be Terminated Remotely

 Recipe 15.5. Implementing SimpleXMLRPCServer Niceties

 Recipe 15.6. Giving an XML-RPC Server a wxPython GUI

 Recipe 15.7. Using Twisted Perspective Broker

 Recipe 15.8. Implementing a CORBA Server and Client

 Recipe 15.9. Performing Remote Logins Using telnetlib

 Recipe 15.10. Performing Remote Logins with SSH

 Recipe 15.11. Authenticating an SSL Client over HTTPS

 Chapter 16. Programs About Programs

 Introduction

 Recipe 16.1. Verifying Whether a String Represents a Valid Number

 Recipe 16.2. Importing a Dynamically Generated Module

 Recipe 16.3. Importing from a Module Whose Name Is Determined at Runtime

 Recipe 16.4. Associating Parameters with a Function (Currying)

 Recipe 16.5. Composing Functions

 Recipe 16.6. Colorizing Python Source Using the Built-in Tokenizer

 Recipe 16.7. Merging and Splitting Tokens

 Recipe 16.8. Checking Whether a String Has Balanced Parentheses

 Recipe 16.9. Simulating Enumerations in Python

 Recipe 16.10. Referring to a List Comprehension While Building It

 Recipe 16.11. Automating the py2exe Compilation of Scripts into Windows Executables

 Recipe 16.12. Binding Main Script and Modules into One Executable on Unix

 Chapter 17. Extending and Embedding

 Introduction

 Recipe 17.1. Implementing a Simple Extension Type

 Recipe 17.2. Implementing a Simple Extension Type with Pyrex

 Recipe 17.3. Exposing a C++ Library to Python

 Recipe 17.4. Calling Functions from a Windows DLL

 Recipe 17.5. Using SWIG-Generated Modules in a Multithreaded Environment

 Recipe 17.6. Translating a Python Sequence into a C Array with the PySequence_Fast Protocol

 Recipe 17.7. Accessing a Python Sequence Item-by-Item with the Iterator Protocol

 Recipe 17.8. Returning None from a Python-Callable C Function

 Recipe 17.9. Debugging Dynamically Loaded C Extensions with gdb

 Recipe 17.10. Debugging Memory Problems

 Chapter 18. Algorithms

 Introduction

 Recipe 18.1. Removing Duplicates from a Sequence

 Recipe 18.2. Removing Duplicates from a Sequence While Maintaining Sequence Order

 Recipe 18.3. Generating Random Samples with Replacement

 Recipe 18.4. Generating Random Samples Without Replacement

 Recipe 18.5. Memoizing (Caching) the Return Values of Functions

 Recipe 18.6. Implementing a FIFO Container

 Recipe 18.7. Caching Objects with a FIFO Pruning Strategy

 Recipe 18.8. Implementing a Bag (Multiset) Collection Type

 Recipe 18.9. Simulating the Ternary Operator in Python

 Recipe 18.10. Computing Prime Numbers

 Recipe 18.11. Formatting Integers as Binary Strings

 Recipe 18.12. Formatting Integers as Strings in Arbitrary Bases

 Recipe 18.13. Converting Numbers to Rationals via Farey Fractions

 Recipe 18.14. Doing Arithmetic with Error Propagation

 Recipe 18.15. Summing Numbers with Maximal Accuracy

 Recipe 18.16. Simulating Floating Point

 Recipe 18.17. Computing the Convex Hulls and Diameters of 2D Point Sets

 Chapter 19. Iterators and Generators

 Introduction

 Recipe 19.1. Writing a range-like Function with Float Increments

 Recipe 19.2. Building a List from Any Iterable

 Recipe 19.3. Generating the Fibonacci Sequence

 Recipe 19.4. Unpacking a Few Items in a Multiple Assignment

 Recipe 19.5. Automatically Unpacking the Needed Number of Items

 Recipe 19.6. Dividing an Iterable into n Slices of Stride n

 Recipe 19.7. Looping on a Sequence by Overlapping Windows

 Recipe 19.8. Looping Through Multiple Iterables in Parallel

 Recipe 19.9. Looping Through the Cross-Product of Multiple Iterables

 Recipe 19.10. Reading a Text File by Paragraphs

 Recipe 19.11. Reading Lines with Continuation Characters

 Recipe 19.12. Iterating on a Stream of Data Blocks as a Stream of Lines

 Recipe 19.13. Fetching Large Record Sets from a Database with a Generator

 Recipe 19.14. Merging Sorted Sequences

 Recipe 19.15. Generating Permutations, Combinations, and Selections

 Recipe 19.16. Generating the Partitions of an Integer

 Recipe 19.17. Duplicating an Iterator

 Recipe 19.18. Looking Ahead into an Iterator

 Recipe 19.19. Simplifying Queue-Consumer Threads

 Recipe 19.20. Running an Iterator in Another Thread

 Recipe 19.21. Computing a Summary Report with itertools.groupby

 Chapter 20. Descriptors, Decorators,and Metaclasses

 Introduction

 Recipe 20.1. Getting Fresh Default Values at Each Function Call

 Recipe 20.2. Coding Properties as Nested Functions

 Recipe 20.3. Aliasing Attribute Values

 Recipe 20.4. Caching Attribute Values

 Recipe 20.5. Using One Method as Accessorfor Multiple Attributes

 Recipe 20.6. Adding Functionality to a Class by Wrapping a Method

 Recipe 20.7. Adding Functionality to a Class by Enriching All Methods

 Recipe 20.8. Adding a Method to a Class Instance at Runtime

 Recipe 20.9. Checking Whether Interfaces Are Implemented

 Recipe 20.10. Using _ _new_ _ and _ _init_ _ Appropriately in Custom Metaclasses

 Recipe 20.11. Allowing Chaining of Mutating List Methods

 Recipe 20.12. Using Cooperative Super calls with Terser Syntax

 Recipe 20.13. Initializing Instance Attributes Without Using _ _init_ _

 Recipe 20.14. Automatic Initialization of Instance Attributes

 Recipe 20.15. Upgrading Class Instances Automatically on reload

 Recipe 20.16. Binding Constants at Compile Time

 Recipe 20.17. Solving Metaclass Conflicts

 Colophon

 Index

Copyright © 2005, 2002 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly Media, Inc. The Cookbook series designations, Python Cookbook, the image of a
springhaas, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com

Preface
This book is not a typical O'Reilly book, written as a cohesive manuscript by one or two authors.
Instead, it is a new kind of booka bold attempt at applying some principles of open source
development to book authoring. Over 300 members of the Python community contributed
materials to this book. In this Preface, we, the editors, want to give you, the reader, some
background regarding how this book came about and the processes and people involved, and
some thoughts about the implications of this new form.

The Design of the Book

In early 2000, Frank Willison, then Editor-in-Chief of O'Reilly & Associates, contacted me (David
Ascher) to find out if I wanted to write a book. Frank had been the editor for Learning Python,
which I cowrote with Mark Lutz. Since I had just taken a job at what was then considered a Perl
shop (ActiveState), I didn't have the bandwidth necessary to write another book, and plans for
the project were gently shelved. Periodically, however, Frank would send me an email or chat
with me at a conference regarding some of the book topics we had discussed. One of Frank's
ideas was to create a Python Cookbook, based on the concept first used by Tom Christiansen and
Nathan Torkington with the Perl Cookbook. Frank wanted to replicate the success of the Perl
Cookbook, but he wanted a broader set of people to provide input. He thought that, much as in a
real cookbook, a larger set of authors would provide for a greater range of tastes. The quality, in
his vision, would be ensured by the oversight of a technical editor, combined with O'Reilly's
editorial review process.

Frank and Dick Hardt, ActiveState's CEO, realized that Frank's goal could be combined with
ActiveState's goal of creating a community site for open source programmers, called the
ActiveState Programmer's Network (ASPN). ActiveState had a popular web site, with the
infrastructure required to host a wide variety of content, but it wasn't in the business of creating
original content. ActiveState always felt that the open source communities were the best sources
of accurate and up-to-date content, even if sometimes that content was hard to find.

The O'Reilly and ActiveState teams quickly realized that the two goals were aligned and that a
joint venture would be the best way to achieve the following key objectives:

Creating an online repository of Python recipes by Python programmers for Python
programmers

Publishing a book containing the best of those recipes, accompanied by overviews and
background material written by key Python figures

Learning what it would take to create a book with a different authoring model

At the same time, two other activities were happening. First, those of us at ActiveState, including
Paul Prescod, were actively looking for "stars" to join ActiveState's development team. One of
the candidates being recruited was the famous (but unknown to us, at the time) Alex Martelli.
Alex was famous because of his numerous and exhaustive postings on the Python mailing list,
where he exhibited an unending patience for explaining Python's subtleties and joys to the
increasing audience of Python programmers. He was unknown because he lived in Italy and,
since he was a relative newcomer to the Python community, none of the old Python hands had
ever met himtheir paths had not happened to cross back in the 1980s when Alex lived in the
United States, working for IBM Research and enthusiastically using and promoting other high-
level languages (at the time, mostly IBM's Rexx).

ActiveState wooed Alex, trying to convince him to move to Vancouver. We came quite close, but
his employer put some golden handcuffs on him, and somehow Vancouver's weather couldn't
compete with Italy's. Alex stayed in Italy, much to my disappointment. As it happened, Alex was
also at that time negotiating with O'Reilly about writing a book. Alex wanted to write a cookbook,
but O'Reilly explained that the cookbook was already signed. Later, Alex and O'Reilly signed a
contract for Python in Nutshell.

The second ongoing activity was the creation of the Python Software Foundation. For a variety of
reasons, best left to discussion over beers at a conference, everyone in the Python community
wanted to create a non-profit organization that would be the holder of Python's intellectual
property, to ensure that Python would be on a legally strong footing. However, such an
organization needed both financial support and buy-in from the Python community to be

successful.

Given all these parameters, the various parties agreed to the following plan:

ActiveState would build an online cookbook, a mechanism by which anyone could submit a
recipe (i.e., a snippet of Python code addressing a particular problem, accompanied by a
discussion of the recipe, much like a description of why one should use cream of tartar
when whipping egg whites). To foster a community of authors and encourage peer review,
the web site would also let readers of the recipes suggest changes, ask questions, and so
on.

As part of my ActiveState job, I would edit and ensure the quality of the recipes. Alex
Martelli joined the project as a co-editor when the material was being prepared for
publication, and, with Anna Martelli Ravenscroft, took over as primary editor for the second
edition.

O'Reilly would publish the best recipes as the Python Cookbook.

In lieu of author royalties for the recipes, a portion of the proceeds from the book sales
would be donated to the Python Software Foundation.

The Implementation of the Book

The online cookbook (at http://aspn.activestate.com/ASPN/Cookbook/Python/) was the entry
point for the recipes. Users got free accounts, filled in a form, and presto, their recipes became
part of the cookbook. Thousands of people read the recipes, and some added comments, and so,
in the publishing equivalent of peer review, the recipes matured and grew. While it was
predictable that the chance of getting your name in print would get people attracted to the online
cookbook, the ongoing success of the cookbook, with dozens of recipes added monthly and more
and more references to it on the newsgroups, is a testament to the value it brings to the
readersvalue which is provided by the recipe authors.

Starting from the materials available on the site, the implementation of the book was mostly a
question of selecting, merging, ordering, and editing the materials. A few more details about this
part of the work are in the "Organization" section of this Preface.

http://aspn.activestate.com/ASPN/Cookbook/Python/

Using the Code from This Book

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
code taken from O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant amount of
code from this book into your product's documentation does require permission. We appreciate,
but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "Python Cookbook, 2d ed., by Alex Martelli, Anna Martelli Ravenscroft, and
David Ascher (O'Reilly Media, 2005) 0-596-00797-3." If you feel your use of code from this book
falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Audience

We expect that you know at least some Python. This book does not attempt to teach Python as a
whole; rather, it presents some specific techniques and concepts (and occasionally tricks) for
dealing with particular tasks. If you are looking for an introduction to Python, consider some of
the books described in the Further Reading section of this Preface. However, you don't need to
know a lot of Python to find this book helpful. Chapters include recipes demonstrating the best
techniques for accomplishing some elementary and general tasks, as well as more complex or
specialized ones. We have also added sidebars, here and there, to clarify certain concepts which
are used in the book and which you may have heard of, but which might still be unclear to you.
However, this is definitely not a book just for beginners. The main target audience is the whole
Python community, mostly made up of pretty good programmers, neither newbies nor wizards.
And if you do already know a lot about Python, you may be in for a pleasant surprise! We've
included recipes that explore some the newest and least well-known areas of Python. You might
very well learn a few thingswe did! Regardless of where you fall along the spectrum of Python
expertise, and more generally of programming skill, we believe you will get something valuable
from this book.

If you already own the first edition, you may be wondering whether you need this second edition,
too. We think the answer is "yes." The first edition had 245 recipes; we kept 146 of those (with
lots of editing in almost all cases), and added 192 new ones, for a total of 338 recipes in this
second edition. So, over half of the recipes in this edition are completely new, and all the recipes
are updated to apply to today's Pythonreleases 2.3 and 2.4. Indeed, this update is the main
factor which lets us have almost 100 more recipes in a book of about the same size. The first
edition covered all versions from 1.5.2 (and sometimes earlier) to 2.2; this one focuses firmly on
2.3 and 2.4. Thanks to the greater power of today's Python, and, even more, thanks to the fact
that this edition avoids the "historical" treatises about how you had to do things in Python
versions released 5 or more years ago, we were able to provide substantially more currently
relevant recipes and information in roughly the same amount of space.

Organization

This book has 20 chapters. Each chapter is devoted to a particular kind of recipe, such as
algorithms, text processing, databases, and so on. The 1st edition had 17 chapters. There have
been improvements to Python, both language and library, and to the corpus of recipes the
Python community has posted to the cookbook site, that convinced us to add three entirely new
chapters: on the iterators and generators introduced in Python 2.3; on Python's support for time
and money operations, both old and new; and on new, advanced tools introduced in Python 2.2
and following releases (custom descriptors, decorators, metaclasses). Each chapter contains an
introduction, written by an expert in the field, followed by recipes selected from the online
cookbook (in some casesabout 5% of this book's recipesa few new recipes were specially written
for this volume) and edited to fit the book's formatting and style requirements. Alex (with some
help from Anna) did the vast majority of the selectiondetermining which recipes from the first
edition to keep and update, and selecting new recipes to add, or merge with others, from the
nearly 1,000 available on the site (so, if a recipe you posted to the cookbook site didn't get into
this printed edition, it's his fault!). He also decided which subjects just had to be covered and
thus might need specially written recipesalthough he couldn't manage to get quite all of the
specially written recipes he wanted, so anything that's missing, and wasn't on the cookbook site,
might not be entirely his fault.

Once the selection was complete, the work turned to editing the recipes, and to merging multiple
recipes, as well as incorporating important contents from many significant comments posted
about the recipes. This proved to be quite a challenge, just as it had been for the first edition,
but even more so. The recipes varied widely in their organization, level of completeness, and
sophistication. With over 300 authors involved, over 300 different "voices" were included in the
text. We have striven to maintain a variety of styles to reflect the true nature of this book, the
book written by the entire Python community. However, we edited each recipe, sometimes quite
considerably, to make it as accessible and useful as possible, ensuring enough uniformity in
structure and presentation to maximize the usability of the book as a whole. Most recipes, both
from the first edition and from the online site, had to be updated, sometimes heavily, to take
advantage of new tools and better approaches developed since those recipes were originally
posted. We also carefully reconsidered (and slightly altered) the ordering of chapters, and the
placement and ordering of recipes within chapters; our goal in this reordering was to maximize
the book's usefulness for both newcomers to Python and seasoned veterans, and, also, for both
readers tackling the book sequentially, cover to cover, and ones just dipping in, in "random
access" fashion, to look for help on some specific area.

While the book should thus definitely be accessible "by hops and jumps," we nevertheless believe
a first sequential skim will amply repay the modest time you, the reader, invest in it. On such a
skim, skip every recipe that you have trouble following or that is of no current interest to you.
Despite the skipping, you'll still get a sense of how the whole book hangs together and of where
certain subjects are covered, which will stand you in good stead both for later in-depth
sequential reading, if that's your choice, and for "random access" reading. To further help you
get a sense of what's where in the book, here's a capsule summary of each chapter's contents,
and equally capsule bios of the Python experts who were so kind as to take on the task of writing
the chapters' "Introduction" sections.

Chapter 1, introduction by Fred L. Drake, Jr.

This chapter contains recipes for manipulating text in a variety of ways, including
combining, filtering, and formatting strings, substituting variables throughout a text
document, and dealing with Unicode.

Fred Drake is a member of the PythonLabs group, working on Python development. A
father of three, Fred is best known in the Python community for single-handedly
maintaining the official documentation. Fred is a co-author of Python & XML (O'Reilly).

Chapter 2, introduction by Mark Lutz

This chapter presents techniques for working with data in files and for manipulating files
and directories within the filesystem, including specific file formats and archive formats
such as tar and zip.

Mark Lutz is well known to most Python users as the most prolific author of Python books,
including Programming Python, Python Pocket Reference, and Learning Python (all from
O'Reilly), which he co-authored with David Ascher. Mark is also a leading Python trainer,
spreading the Python gospel throughout the world.

Chapter 3, introduction by Gustavo Niemeyer and Facundo Batista

This chapter (new in this edition) presents tools and techniques for working with dates,
times, decimal numbers, and some other money-related issues.

Gustavo Niemeyer is the author of the third-party dateutil module, as well as a variety of

other Python extensions and projects. Gustavo lives in Brazil. Facundo Batista is the author
of the Decimal PEP 327, and of the standard library module decimal, which brought

floating-point decimal support to Python 2.4. He lives in Argentina. The editors were
delighted to bring them together for this introduction.

Chapter 4, introduction by David Ascher

This chapter includes recipes for many common techniques that can be used anywhere, or
that don't really fit into any of the other, more specific recipe categories.

David Ascher is a co-editor of this volume. David's background spans physics, vision
research, scientific visualization, computer graphics, a variety of programming languages,
co-authoring Learning Python (O'Reilly), teaching Python, and these days, a slew of
technical and nontechnical tasks such as managing the ActiveState team. David also gets
roped into organizing Python conferences on a regular basis.

Chapter 5, introduction by Tim Peters

This chapter covers techniques for searching and sorting in Python. Many of the recipes
explore creative uses of the stable and fast list.sort in conjunction with the decorate-

sort-undecorate (DSU) idiom (newly built in with Python 2.4), while others demonstrate
the power of heapq, bisect, and other Python searching and sorting tools.

Tim Peters, also known as the tim-bot, is one of the mythological figures of the Python
world. He is the oracle, channeling Guido van Rossum when Guido is busy, channeling the
IEEE-754 floating-point committee when anyone asks anything remotely relevant, and
appearing conservative while pushing for a constant evolution in the language. Tim is a
member of the PythonLabs team.

Chapter 6, introduction by Alex Martelli

This chapter offers a wide range of recipes that demonstrate the power of object-oriented

programming with Python, including fundamental techniques such as delegating and
controlling attribute access via special methods, intermediate ones such as the
implementation of various design patterns, and some simple but useful applications of
advanced concepts, such as custom metaclasses, which are covered in greater depth in
Chapter 20.

Alex Martelli, also known as the martelli-bot, is a co-editor of this volume. After almost a
decade with IBM Research, then a bit more than that with think3, inc., Alex now works as a
freelance consultant, most recently for AB Strakt, a Swedish Python-centered firm. He also
edits and writes Python articles and books, including Python in a Nutshell (O'Reilly) and,
occasionally, research works on the game of contract bridge.

Chapter 7, introduction by Aaron Watters

This chapter presents Python techniques for persistence, including serialization approaches
and interaction with various databases.

Aaron Watters was one of the earliest advocates of Python and is an expert in databases.
He's known for having been the lead author on the first book on Python (Internet
Programming with Python, M&T Books, now out of print), and he has authored many
widely used Python extensions, such as kjBuckets and kwParsing. Aaron currently works

as a freelance consultant.

Chapter 8, introduction by Mark Hammond

This chapter includes a collection of recipes that assist with the debugging and testing
process, from customizing error logging and traceback information, to unit testing with
custom modules, unittest and doctest.

Mark Hammond is best known for his work supporting Python on the Windows platform.
With Greg Stein, he built an incredible library of modules interfacing Python to a wide
variety of APIs, libraries, and component models such as COM. He is also an expert
designer and builder of developer tools, most notably Pythonwin and Komodo. Finally,
Mark is an expert at debugging even the most messy systemsduring Komodo
development, for example, Mark was often called upon to debug problems that spanned
three languages (Python, C++, JavaScript), multiple threads, and multiple processes. Mark
is also co-author, with Andy Robinson, of Python Programming on Win32 (O'Reilly).

Chapter 9, introduction by Greg Wilson

This chapter covers a variety of techniques for concurrent programming, including threads,
queues, and multiple processes.

Greg Wilson writes children's books, as well as books on parallel programming and data
crunching. When he's not doing that, he's a contributing editor with Doctor Dobb's Journal,
an adjunct professor in Computer Science at the University of Toronto, and a freelance
software developer. Greg was the original driving force behind the Software Carpentry
project, and he recently received a grant from the Python Software Foundation to develop
Pythonic course material for computational scientists and engineers.

Chapter 10, introduction by Donn Cave

This chapter includes recipes for a number of common system administration tasks, from
generating passwords and interacting with the Windows registry, to handling mailbox and

web server issues.

Donn Cave is a software engineer at the University of Washington's central computer site.
Over the years, Donn has proven to be a fount of information on comp.lang.python on all
matters related to system calls, Unix, system administration, files, signals, and the like.

Chapter 11, introduction by Fredrik Lundh

This chapter contains recipes for common GUI tasks, mostly with Tkinter, but also a
smattering of wxPython, Qt, image processing, and GUI recipes specific to Jython (for
JVMJava Virtual Machine), Mac OS X, and IronPython (for dotNET).

Fredrik Lundh, also known as the eff-bot, is the CTO of Secret Labs AB, a Swedish Python-
focused company providing a variety of products and technologies. Fredrik is the world's
leading expert on Tkinter (the most popular GUI toolkit for Python), as well as the main
author of the Python Imaging Library (PIL). He is also the author of Python Standard
Library (O'Reilly), which is a good complement to this volume and focuses on the modules
in the standard Python library. Finally, he is a prolific contributor to comp.lang.python,
helping novices and experts alike.

Chapter 12, introduction by Paul Prescod

This chapter offers techniques for parsing, processing, and generating XML using a variety
of Python tools.

Paul Prescod is an expert in three technologies: Python, which he need not justify; XML,
which makes sense in a pragmatic world (Paul is co-author of the XML Handbook, with
Charles Goldfarb, published by Prentice Hall); and Unicode, which somehow must address
some deep-seated desire for pain and confusion that neither of the other two technologies
satisfies. Paul is currently a product manager at Blast Radius.

Chapter 13, introduction by Guido van Rossum

This chapter covers a variety of network programming techniques, from writing basic TCP
clients and servers to manipulating MIME messages.

Guido created Python, nurtured it throughout its infancy, and is shepherding its growth.
Need we say more?

Chapter 14, introduction by Andy McKay

This chapter presents a variety of web-related recipes, including ones for CGI scripting,
running a Java servlet with Jython, and accessing the content of web pages.

Andy McKay is the co-founder and vice president of Enfold Systems. In the last few years,
Andy went from being a happy Perl user to a fanatical Python, Zope, and Plone expert. He
wrote the Definitive Guide to Plone (Apress) and runs the popular Zope discussion site,
http://www.zopezen.org.

Chapter 15, introduction by Jeremy Hylton

This chapter provides recipes for using Python in simple distributed systems, including
XML-RPC, CORBA, and Twisted's Perspective Broker.

http://www.zopezen.org

Jeremy Hylton works for Google. In addition to young twins, Jeremy's interests including
programming language theory, parsers, and the like. As part of his work for CNRI, Jeremy
worked on a variety of distributed systems.

Chapter 16, introduction by Paul F. Dubois

This chapter contains Python techniques that involve program introspection, currying,
dynamic importing, distributing programs, lexing and parsing.

Paul Dubois has been working at the Lawrence Livermore National Laboratory for many
years, building software systems for scientists working on everything from nuclear
simulations to climate modeling. He has considerable experience with a wide range of
scientific computing problems, as well as experience with language design and advanced
object-oriented programming techniques.

Chapter 17, introduction by David Beazley

This chapter offers techniques for extending Python and recipes that assist in the
development of extensions.

David Beazley's chief claim to fame is SWIG, an amazingly powerful hack that lets one
quickly wrap C and other libraries and use them from Python, Tcl, Perl, and myriad other
languages. Behind this seemingly language-neutral tool lies a Python supporter of the first
order, as evidenced by his book, Python Essential Reference (New Riders). David Beazley
is a fairly sick man (in a good way), leading us to believe that more scarily useful tools are
likely to emerge from his brain. He's currently inflicting his sense of humor on computer
science students at the University of Chicago.

Chapter 18, introduction by Tim Peters

This chapter provides a collection of fascinating and useful algorithms and data structures
implemented in Python.

See the discussion of Chapter 5 for information about Tim Peters.

Chapter 19, introduction by Raymond Hettinger

This chapter (new in this edition) contains recipes demonstrating the variety and power of
iterators and generatorshow Python makes your loops' structures simpler, faster, and
reusable.

Raymond Hettinger is the creator of the itertools package, original proposer of generator

expressions, and has become a major contributor to the development of Pythonif you don't
know who originated and implemented some major novelty or important optimization in
the 2.3 and 2.4 releases of Python, our advice is to bet it was Raymond!

Chapter 20, introduction by Raymond Hettinger

This chapter (new in this edition) provides an in-depth look into the infrastructural
elements which make Python's OOP so powerful and smooth, and how you can exploit and
customize them for fun and profit. From handy idioms for building properties, to aliasing
and caching attributes, all the way to decorators which optimize your functions by hacking

their bytecode and to a factory of custom metaclasses to solve metatype conflicts, this
chapter shows how, while surely "there be dragons here," they're the wise, powerful and
beneficent Chinese variety thereof...!

See the discussion of Chapter 19 for information about Raymond Hettinger.

Further Reading

There are many texts available to help you learn Python or refine your Python knowledge, from
introductory texts all the way to quite formal language descriptions.

We recommend the following books for general information about Python (all these books cover
at least Python 2.2, unless otherwise noted):

Python Programming for the Absolute Beginner, by Michael Dawson (Thomson Course
Technology), is a hands-on, highly accessible introduction to Python for people who have
never programmed.

Learning Python, by Mark Lutz and David Ascher (O'Reilly), is a thorough introduction to the
fundamentals of Python.

Practical Python, by Magnus Lie Hetland (APress), is an introduction to Python which also
develops, in detail, ten fully worked out, substantial programs in many different areas.

Dive into Python, by Mark Pilgrim (APress), is a fast-paced introduction to Python for
experienced programmers, and it is also freely available for online reading and downloading
(http://diveintopython.org/).

Python Standard Library, by Fredrik Lundh (O'Reilly), provides a use case for each module
in the rich library that comes with every standard Python distribution (in the current first
edition, the book only covers Python up to 2.0).

Programming Python, by Mark Lutz (O'Reilly), is a thorough rundown of Python
programming techniques (in the current second edition, the book only covers Python up to
2.0).

Python Essential Reference, by David Beazley (New Riders), is a quick reference that
focuses on the Python language and the core Python libraries (in the current second edition,
the book only covers Python up to 2.1).

Python in a Nutshell, by Alex Martelli (O'Reilly), is a comprehensive quick reference to the
Python language and the key libraries used by most Python programmers.

In addition, several more special-purpose books can help you explore particular aspects of
Python programming. Which books you will like best depends a lot on your areas of interest.
From personal experience, the editors can recommend at least the following:

Python and XML, by Christopher A. Jones and Fred L. Drake, Jr. (O'Reilly), offers thorough
coverage of using Python to read, process, and transform XML.

Jython Essentials, by Samuele Pedroni and Noel Rappin (O'Reilly), is the authoritative book
on Jython, the port of Python to the JVM. Particularly useful if you already know some (or a
lot of) Java.

Game Programming with Python, by Sean Riley (Charles River Media), covers programming
computer games with Python, all the way from advanced graphics to moderate amounts of
"artificial intelligence."

Python Web Programming, by Steve Holden (New Riders), covers building networked
systems using Python, with introductions to many other related technologies (databases,
HTTP, HTML, etc.). Very suitable for readers with none to medium experience with these
fields, but has something to teach everyone.

http://diveintopython.org/

In addition to these books, other important sources of information can help explain some of the
code in the recipes in this book. We've pointed out the information that seemed particularly
relevant in the "See Also" sections of each recipe. In these sections, we often refer to the
standard Python documentation: most often the Library Reference, sometimes the Reference
Manual, and occasionally the Tutorial. This documentation is freely available in a variety of forms:

On the python.org web site (at http://www.python.org/doc/), which always contains the
most up-to-date documentation about Python.

On the pydoc.org web site (at http://pydoc.org/), accompanied by module-by-module
documentation of the standard library automatically generated by the very useful pydoc
tool.

In Python itself. Recent versions of Python boast a nice online help system, which is worth
exploring if you've never used it. Just type help() at the interactive Python interpreter

prompt to start exploring.

As part of the online help in your Python installation. ActivePython's installer, for example,
includes a searchable Windows help file. The standard Python distribution currently includes
HTML pages, but there are plans to include a similar Windows Help file in future releases.

We have not included specific section numbers in our references to the standard Python
documentation, since the organization of these manuals can change from release to release. You
should be able to use the table of contents and indexes to find the relevant material. For the
Library Reference, in particular, the Module Index (an alphabetical list of all standard library
modules, each module name being a hyperlink to the Library Reference documentation for that
module) is invaluable. Similarly, we have not given specific pointers in our references to Python
in a Nutshell: that book is still in its first edition (covering Python up to 2.2) at the time of this
writing, but by the time you're reading, a second edition (covering Python 2.3 and 2.4) is likely
to be forthcoming, if not already published.

http://www.python.org/doc/
http://pydoc.org/

Conventions Used in This Book

Pronouns: the first person singular is meant to convey that the recipe's or chapter introduction's
author is speaking (when multiple credits are given for a recipe, the author is the first person
credited); however, even such remarks have at times had to be edited enough that they may not
reflect the original author's intended meaning (we, the editors, tried hard to avoid that, but we
know we must have failed in some cases, since there were so many remarks, and authorial intent
was often not entirely clear). The second person is meant to refer to you, the reader. The first
person plural collectively indicates you, the reader, plus the recipe's author and co-authors, the
editors, and my friend Joe (hi Joe!)in other words, it's a very inclusive "we" or "us."

Code: each block of code may indicate a complete module or script (or, often, a Python source
file that is usable both as a script and as a module), an isolated snippet from some hypothetical
module or script, or part of a Python interactive interpreter session (indicated by the prompt
>>>).

The following typographical conventions are used throughout this book:

Italic for commands, filenames, for emphasis, and for first use of a term.

Constant width for general code fragments and keywords (mostly Python ones, but also other
languages, such as C or HTML, where they occur). Constant width is also used for all names

defined in Python's library and third-party modules.

Constant width bold is used to emphasize particular lines within code listings and show output

that is produced.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that some features have changed, or that we have let errors slip through the production
of the book. Please let us know of any errors that you find, as well as any suggestions for future
editions, by writing to:

O'Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/pythoncook2

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com/

The online cookbook from which most of the recipes for this book were taken is available at:

http://aspn.activestate.com/ASPN/Cookbook/Python

http://www.oreilly.com/catalog/pythoncook2
http://www.oreilly.com/
http://aspn.activestate.com/ASPN/Cookbook/Python

Safari® Enabled

When you see a Safari Enabled icon on the cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

Acknowledgments

Most publications, from mysteries to scientific papers to computer books, claim that the work
being published would not have been possible without the collaboration of many others, typically
including local forensic scientists, colleagues, and children, respectively. This book makes this
claim to an extreme degree. Most of the words, code, and ideas in this volume were contributed
by people not listed on the front cover. The original recipe authors, readers who submitted useful
and insightful comments to the cookbook web site, and the authors of the chapter introductions,
are the true authors of the book, and they deserve the credit.

David Ascher

The software that runs the online cookbook was the product of Andy McKay's constant and
diligent effort. Andy was ActiveState's key Zope developer during the online data-collection
phase of this project, and one of the key developers behind ASPN (http://aspn.activestate.com),
ActiveState's content site, which serves a wide variety of information for and by programmers of
open source languages such as Python, Perl, PHP, Tcl, and XSLT. Andy McKay used to be a Perl
developer, by the way. At about the same time that I started at ActiveState, the company
decided to use Zope to build what would become ASPN. In the years that followed, Andy has
become a Zope master and somewhat of a Python fanatic (without any advocacy from me!), and
is currently a Zope and Plone author, consultant and entrepreneur. Based on an original design
that I put together with Diane Mueller, also of ActiveState, Andy single-handedly implemented
ASPN in record time, then proceeded to adjust it to ever-changing requirements for new features
that we hadn't anticipated in the early design phase, staying cheerful and professional
throughout. It's a pleasure to have him as the author of the introduction to the chapter on web
recipes. Since Andy's departure, James McGill has taken over as caretaker of the online
cookbookhe makes sure that the cookbook is live at all hours of the day or night, ready to serve
Pythonistas worldwide.

Paul Prescod, then also of ActiveState, was a kindred spirit throughout the project, helping with
the online editorial process, suggesting changes, and encouraging readers of comp.lang.python
to visit the web site and submit recipes. Paul also helped with some of his considerable XML
knowledge when it came to figuring out how to take the data out of Zope and get it ready for the
publication process.

The last activator I'd like to thank, for two different reasons, is Dick Hardt, founder and CEO of
ActiveState. The first is that Dick agreed to let me work on the cookbook as part of my job. Had
he not, I wouldn't have been able to participate in it. The second reason I'd like to thank Dick is
for suggesting at the outset that a share of the book royalties go to the Python Software
Foundation. This decision not only made it easier to enlist Python users into becoming
contributors but has also resulted in some long-term revenue to an organization that I believe
needs and deserves financial support. All Python users will benefit.

Writing a software system a second time is dangerous; the "second-system" syndrome is a well-
known engineering scenario in which teams that are allowed to rebuild systems "right" often end
up with interminable, over-engineered projects. I'm pleased to say that this didn't happen in the
case of this second edition, for two primary reasons. The first was the decision to trim the scope
of the cookbook to cover only truly modern Pythonthat made the content more manageable and
the book much more interesting to contemporary audiences. The second factor was that
everyone realized with hindsight that I would have no time to contribute to the day-to-day
editing of this second edition. I'm as glad as ever to have been associated with this book, and
pleased that I have no guilt regarding the amount of work I didn't contribute. When people like
Alex and Anna are willing to take on the work, it's much better for everyone else to get out of the
way.

http://aspn.activestate.com

Finally, I'd like to thank the O'Reilly editors who have had a big hand in shaping the cookbook.
Laura Lewin was the original editor for the first edition, and she helped make sure that the
project moved along, securing and coordinating the contributions of the introduction authors.
Paula Ferguson then took the baton, provided a huge amount of precious feedback, and
copyedited the final manuscript, ensuring that the prose was as readable as possible given the
multiplicity of voices in the book. Jonathan Gennick was the editor for the second edition, and as
far as I can tell, he basically let Alex and Anna drive, which was the right thing to do. Another
editor I forgot to mention last time was Tim O'Reilly, who got more involved in this book than in
most, in its early (rough) phases, and provided very useful input.

Each time I review this acknowledgments section, I can't help but remember O'Reilly's Editor-in-
Chief at the inception of the project, Frank Willison. Frank died suddenly on a black day, July 30,
2001. He was the person who most wanted to see this book happen, for the simple reason that
he believed the Python community deserved it. Frank was always willing to explore new ideas,
and he was generous to a fault. The idea of a book with over a hundred authors would have
terrified most editors. Frank saw it as a challenge and an experiment. I still miss Frank.

Alex Martelli

I first met Python thanks to the gentle insistence of a former colleague, Alessandro Bottoni. He
kept courteously repeating that I really should give Python a try, in spite of my claims that I
already knew more programming languages than I knew what to do with. If I hadn't trusted his
technical and aesthetic judgment enough to invest the needed time and energy on the basis of
his suggestion, I most definitely wouldn't be writing and editing Python books today. Thanks for
your well-placed stubbornness, Alessandro!

Of course, once I tasted Python, I was irretrievably hookedmy lifelong taste for very high-level
(often mis-named "scripting") languages at last congealed into one superb synthesis. Here, at
long last, was a language with the syntactic ease of Rexx (and then some), the semantic
simplicity of Tcl (and then some), the intellectual rigor of Scheme (and other Lisp variants), and
the awesome power of Perl (and then some). How could I resist? Still, I do owe a debt to Mike
Cowlishaw (inventor of Rexx), who I had the pleasure of having as a colleague when I worked for
IBM Research, for first getting me hooked on scripting. I must also thank John Ousterhout and
Larry Wall, the inventors of Tcl and Perl, respectively, for later reinforcing my addiction through
their brainchildren.

Greg Wilson first introduced me to O'Reilly, so he must get his share of thanks, tooand I'm
overjoyed at having him as one of the introduction authors. I am also grateful to David Ascher,
and several people at O'Reilly, for signing me up as co-editor of the first edition of this book and
supporting so immediately and enthusiastically my idea that, hmmm, the time had sure come for
a second edition (in dazed retrospect, I suspect what I meant was mostly that I had forgotten
how deuced much work it had been to do the first one . . . and failed to realize that, with all the
new materials heaped on ActiveState's site, as well as Python's wonderful progress over three
years, the second edition would take more work than the first one. . . !).

I couldn't possibly have done the job without an impressive array of technology to help me. I
don't know the names of all the people I should thank for the Internet, ADSL, and Google's
search engines, which, together, let me look things up so easilyor for many of the other
hardware and software technologies cooperating to amplify my productivity. But, I do know I
couldn't have made it without Theo de Raadt's OpenBSD operating system, Steve Jobs'
inspiration behind Mac OS X and the iBook G4 on which I did most of the work, Bram
Moolenaar's VIM editor, and, of course, Guido van Rossum's Python language. So, I'll single out
Theo, Steve, Bram, and Guido for special thanks!

Nor, as any book author will surely confirm, could I have done it without patience and moral
support from friends and familychiefly my children Lucio and Flavia, my sister Elisabetta, my
father Lanfranco. But the one person who was truly indispensable to this second edition was my
wife and co-editor Anna. Having reconnected (after many years apart) thanks to Python, taken
our honeymoon at the Open Source Convention, given a joint Lightning Talk about our "Pythonic

Marriage," maybe I should have surmised how wonderful it would be to work so closely with her,
day in and day out, on such a large and complex joint project. It was truly incredible, all the way
through, fully including the heated debates about this or that technical or organizational point or
exact choice of wording in delicate cases. Throughout the effort and the stress, her skill, her
love, her joy, always shined through, sustained me, and constantly renewed my energies and my
determination. Thanks, Anna!

Anna Martelli Ravenscroft

I discovered Python about two years ago. I fell in love, both with Python and (concurrently) with
the martelli-bot. Python is a language that is near to my heart, primarily because it is so quickly
usable. It doesn't require you to become a hermit for the next four years in order to do anything
with the language. Thank you to Guido. And thanks to the amazing Python community for
providing such a welcoming atmosphere to newcomers.

Working on this book was quite the learning experience for me. Besides all the Python code, I
also learned both XML and VI, as well as reacquainting myself with Subversion. Thanks go to
Holger Krekel and codespeak, for hosting our subversion repository while we travelled. Which
brings us to a group of people who deserve special thanks: our reviewers. Holger Krekel, again,
was exceptionally thorough, and ensured, among other things, that we had solid Unicode
support. Raymond Hettinger gave us a huge amount of valuable, detailed insight throughout,
particularly where iterators and generators were concerned. Both Raymond and Holger often
offered alternatives to the presented "solutions" when warranted. Valentino Volonghi pointed out
programming style issues as well as formatting issues and brought an incredible amount of
enthusiasm to his reviews. Ryan Alexander, a newcomer to Python with a background in Java,
provided extremely detailed recommendations on ordering and presenting materials (recipes and
chapters), as well as pointing out explanations that were weak or missing altogether. His
perspective was invaluable in making this book more accessible and useful to new Pythonistas.
Several other individuals provided feedback on specific chapters or recipes, too numerous to list
here. Your work, however, is greatly appreciated.

Of course, thanks go to my husband. I am amazed at Alex's patience with questions (and I
questioned a lot). His dedication to excellence is a co-author's dream. When presented with
feedback, he consistently responded with appreciation and focus on making the book better. He's
one of the least ego-istical writers I've ever met.

Thank you to Dan, for encouraging my geekiness by starting me on Linux, teaching me proper
terminology for the stuff I was doing, and for getting me hooked on the Internet. And finally, an
extra special thanks to my children, Inanna and Graeme, for their hugs, understanding, and
support when I was in geekmode, particularly during the final push to complete the book. You
guys are the best kids a mother could wish for.

Chapter 1. Text
Introduction

Recipe 1.1. Processing a String One Character at a Time

Recipe 1.2. Converting Between Characters and Numeric Codes

Recipe 1.3. Testing Whether an Object Is String-like

Recipe 1.4. Aligning Strings

Recipe 1.5. Trimming Space from the Ends of a String

Recipe 1.6. Combining Strings

Recipe 1.7. Reversing a String by Words or Characters

Recipe 1.8. Checking Whether a String Contains a Set of Characters

Recipe 1.9. Simplifying Usage of Strings' translate Method

Recipe 1.10. Filtering a String for a Set of Characters

Recipe 1.11. Checking Whether a String Is Text or Binary

Recipe 1.12. Controlling Case

Recipe 1.13. Accessing Substrings

Recipe 1.14. Changing the Indentation of a Multiline String

Recipe 1.15. Expanding and Compressing Tabs

Recipe 1.16. Interpolating Variables in a String

Recipe 1.17. Interpolating Variables in a Stringin Python 2.4

Recipe 1.18. Replacing Multiple Patterns in a Single Pass

Recipe 1.19. Checking a String for Any of Multiple Endings

Recipe 1.20. Handling International Text with Unicode

Recipe 1.21. Converting Between Unicode and Plain Strings

Recipe 1.22. Printing Unicode Charactersto Standard Output

Recipe 1.23. Encoding Unicode Data for XML and HTML

Recipe 1.24. Making Some Strings Case-Insensitive

Recipe 1.25. Converting HTML Documents to Texton a Unix Terminal

Introduction

Credit: Fred L. Drake, Jr., PythonLabs

Text-processing applications form a substantial part of the application space for any scripting
language, if only because everyone can agree that text processing is useful. Everyone has bits of
text that need to be reformatted or transformed in various ways. The catch, of course, is that
every application is just a little bit different from every other application, so it can be difficult to
find just the right reusable code to work with different file formats, no matter how similar they
are.

What Is Text?

Sounds like an easy question, doesn't it? After all, we know it when we see it, don't we? Text is a
sequence of characters, and it is distinguished from binary data by that very fact. Binary data,
after all, is a sequence of bytes.

Unfortunately, all data enters our applications as a sequence of bytes. There's no library function
we can call that will tell us whether a particular sequence of bytes represents text, although we
can create some useful heuristics that tell us whether data can safely (not necessarily correctly)
be handled as text. Recipe 1.11 shows just such a heuristic.

Python strings are immutable sequences of bytes or characters. Most of the ways we create and
process strings treat them as sequences of characters, but many are just as applicable to
sequences of bytes. Unicode strings are immutable sequences of Unicode characters:
transformations of Unicode strings into and from plain strings use codecs (coder-decoders)
objects that embody knowledge about the many standard ways in which sequences of characters
can be represented by sequences of bytes (also known as encodings and character sets). Note
that Unicode strings do not serve double duty as sequences of bytes. Recipe 1.20, Recipe 1.21,
and Recipe 1.22 illustrate the fundamentals of Unicode in Python.

Okay, let's assume that our application knows from the context that it's looking at text. That's
usually the best approach because that's where external input comes into play. We're looking at
a file either because it has a well-known name and defined format (common in the "Unix" world)
or because it has a well-known filename extension that indicates the format of the contents
(common on Windows). But now we have a problem: we had to use the word format to make the
previous paragraph meaningful. Wasn't text supposed to be simple?

Let's face it: there's no such thing as "pure" text, and if there were, we probably wouldn't care
about it (with the possible exception of applications in the field of computational linguistics,
where pure text may indeed sometimes be studied for its own sake). What we want to deal with
in our applications is information contained in text. The text we care about may contain
configuration data, commands to control or define processes, documents for human
consumption, or even tabular data. Text that contains configuration data or a series of
commands usually can be expected to conform to a fairly strict syntax that can be checked
before relying on the information in the text. Informing the user of an error in the input text is
typically sufficient to deal with things that aren't what we were expecting.

Documents intended for humans tend to be simple, but they vary widely in detail. Since they are
usually written in a natural language, their syntax and grammar can be difficult to check, at best.
Different texts may use different character sets or encodings, and it can be difficult or even
impossible to tell which character set or encoding was used to create a text if that information is
not available in addition to the text itself. It is, however, necessary to support proper
representation of natural-language documents. Natural-language text has structure as well, but
the structures are often less explicit in the text and require at least some understanding of the

language in which the text was written. Characters make up words, which make up sentences,
which make up paragraphs, and still larger structures may be present as well. Paragraphs alone
can be particularly difficult to locate unless you know what typographical conventions were used
for a document: is each line a paragraph, or can multiple lines make up a paragraph? If the
latter, how do we tell which lines are grouped together to make a paragraph? Paragraphs may be
separated by blank lines, indentation, or some other special mark. See Recipe 19.10 for an
example of reading a text file as a sequence of paragraphs separated by blank lines.

Tabular data has many issues that are similar to the problems associated with natural-language
text, but it adds a second dimension to the input format: the text is no longer linearit is no longer
a sequence of characters, but rather a matrix of characters from which individual blocks of text
must be identified and organized.

Basic Textual Operations

As with any other data format, we need to do different things with text at different times.
However, there are still three basic operations:

Parsing the data into a structure internal to our application

Transforming the input into something similar in some way, but with changes of some kind

Generating completely new data

Parsing can be performed in a variety of ways, and many formats can be suitably handled by ad
hoc parsers that deal effectively with a very constrained format. Examples of this approach
include parsers for RFC 2822-style email headers (see the rfc822 module in Python's standard
library) and the configuration files handled by the ConfigParser module. The netrc module

offers another example of a parser for an application-specific file format, this one based on the
shlex module. shlex offers a fairly typical tokenizer for basic languages, useful in creating

readable configuration files or allowing users to enter commands to an interactive prompt. These
sorts of ad hoc parsers are abundant in Python's standard library, and recipes using them can be
found in Chapter 2 and Chapter 13. More formal parsing tools are also available for Python; they
depend on larger add-on packages and are surveyed in the introduction to Chapter 16.

Transforming text from one format to another is more interesting when viewed as text
processing, which is what we usually think of first when we talk about text. In this chapter, we'll
take a look at some ways to approach transformations that can be applied for different purposes.
Sometimes we'll work with text stored in external files, and other times we'll simply work with it
as strings in memory.

The generation of textual data from application-specific data structures is most easily performed
using Python's print statement or the write method of a file or file-like object. This is often

done using a method of the application object or a function, which takes the output file as a
parameter. The function can then use statements such as these:

print >>thefile, sometext
thefile.write(sometext)

which generate output to the appropriate file. However, this isn't generally thought of as text
processing, as here there is no input text to be processed. Examples of using both print and
write can of course be found throughout this book.

Sources of Text

Working with text stored as a string in memory can be easy when the text is not too large.

Operations that search the text can operate over multiple lines very easily and quickly, and
there's no need to worry about searching for something that might cross a buffer boundary.
Being able to keep the text in memory as a simple string makes it very easy to take advantage of
the built-in string operations available as methods of the string object.

File-based transformations deserve special treatment, because there can be substantial overhead
related to I/O performance and the amount of data that must actually be stored in memory.
When working with data stored on disk, we often want to avoid loading entire files into memory,
due to the size of the data: loading an 80 MB file into memory should not be done too casually!
When our application needs only part of the data at a time, working on smaller segments of the
data can yield substantial performance improvements, simply because we've allowed enough
space for our program to run. If we are careful about buffer management, we can still maintain
the performance advantage of using a small number of relatively large disk read and write
operations by working on large chunks of data at a time. File-related recipes are found in Chapter
12 .

Another interesting source for textual data comes to light when we consider the network. Text is
often retrieved from the network using a socket. While we can always view a socket as a file
(using the makefile method of the socket object), the data that is retrieved over a socket may

come in chunks, or we may have to wait for more data to arrive. The textual data may not
consist of all data until the end of the data stream, so a file object created with makefile may

not be entirely appropriate to pass to text-processing code. When working with text from a
network connection, we often need to read the data from the connection before passing it along
for further processing. If the data is large, it can be handled by saving it to a file as it arrives and
then using that file when performing text-processing operations. More elaborate solutions can be
built when the text processing needs to be started before all the data is available. Examples of
parsers that are useful in such situations may be found in the htmllib and HTMLParser modules

in the standard library.

String Basics

The main tool Python gives us to process text is stringsimmutable sequences of characters.
There are actually two kinds of strings: plain strings, which contain 8-bit (ASCII) characters; and
Unicode strings, which contain Unicode characters. We won't deal much with Unicode strings
here: their functionality is similar to that of plain strings, except each character takes up 2 (or 4)
bytes, so that the number of different characters is in the tens of thousands (or even billions), as
opposed to the 256 different characters that make up plain strings. Unicode strings are important
if you must deal with text in many different alphabets, particularly Asian ideographs. Plain strings
are sufficient to deal with English or any of a limited set of non-Asian languages. For example, all
western European alphabets can be encoded in plain strings, typically using the international
standard encoding known as ISO-8859-1 (or ISO-8859-15, if you need the Euro currency symbol
as well).

In Python, you express a literal string (curiously more often known as a string literal) as:

'this is a literal string'
"this is another string"

String values can be enclosed in either single or double quotes. The two different kinds of quotes
work the same way, but having both allows you to include one kind of quotes inside of a string
specified with the other kind of quotes, without needing to escape them with the backslash
character:

'isn\'t that grand'
"isn't that grand"

To have a string literal span multiple lines, you can use a backslash as the last character on the

line, which indicates that the next line is a continuation:

big = "This is a long string\
that spans two lines."

You must embed newlines in the string if you want the string to output on two lines:

big = "This is a long string\n\
that prints on two lines."

Another approach is to enclose the string in a pair of matching triple quotes (either single or
double):

bigger = """
This is an even
bigger string that
spans three lines.
"""

Using triple quotes, you don't need to use the continuation character, and line breaks in the
string literal are preserved as newline characters in the resulting Python string object. You can
also make a string literal "raw" string by preceding it with an r or R:

big = r"This is a long string\
with a backslash and a newline in it"

With a raw string, backslash escape sequences are left alone, rather than being interpreted.
Finally, you can precede a string literal with a u or U to make it a Unicode string:

hello = u'Hello\u0020World'

Strings are immutable, which means that no matter what operation you do on a string, you will
always produce a new string object, rather than mutating the existing string. A string is a
sequence of characters, which means that you can access a single character by indexing:

mystr = "my string"
mystr[0] # 'm'
mystr[-2] # 'n'

You can also access a portion of the string with a slice:

mystr[1:4] # 'y s'
mystr[3:] # 'string'
mystr[-3:] # 'ing'

Slices can be extended, that is, include a third parameter that is known as the stride or step of
the slice:

mystr[:3:-1] # 'gnirt'
mystr[1::2] # 'ysrn'

You can loop on a string's characters:

for c in mystr:

This binds c to each of the characters in mystr in turn. You can form another sequence:

list(mystr) # returns ['m','y',' ','s','t','r','i','n','g']

You can concatenate strings by addition:

mystr+'oid' # 'my stringoid'

You can also repeat strings by multiplication:

'xo'*3 # 'xoxoxo'

In general, you can do anything to a string that you can do to any other sequence, as long as it
doesn't require changing the sequence, since strings are immutable.

String objects have many useful methods. For example, you can test a string's contents with
s.isdigit(), which returns true if s is not empty and all of the characters in s are digits
(otherwise, it returns False). You can produce a new modified string with a method call such as
s.toupper(), which returns a new string that is like s, but with every letter changed into its

uppercase equivalent. You can search for a string inside another with
haystack.count('needle'), which returns the number of times the substring 'needle' appears

in the string haystack. When you have a large string that spans multiple lines, you can split it
into a list of single-line strings with splitlines:

list_of_lines = one_large_string.splitlines()

You can produce the single large string again with join:

one_large_string = '\n'.join(list_of_lines)

The recipes in this chapter show off many methods of the string object. You can find complete
documentation in Python's Library Reference and Python in a Nutshell.

Strings in Python can also be manipulated with regular expressions, via the re module. Regular

expressions are a powerful (but complicated) set of tools that you may already be familiar with
from another language (such as Perl), or from the use of tools such as the vi editor and text-
mode commands such as grep. You'll find a number of uses of regular expressions in recipes in
the second half of this chapter. For complete documentation, see the Library Reference and
Python in a Nutshell. J.E.F. Friedl, Mastering Regular Expressions (O'Reilly) is also recommended
if you need to master this subjectPython's regular expressions are basically the same as Perl's,
which Friedl covers thoroughly.

Python's standard module string offers much of the same functionality that is available from
string methods, packaged up as functions instead of methods. The string module also offers a
few additional functions, such as the useful string.maketrans function that is demonstrated in a
few recipes in this chapter; several helpful string constants (string.digits, for example, is
'0123456789') and, in Python 2.4, the new class Template, for simple yet flexible formatting of

strings with embedded variables, which as you'll see features in one of this chapter's recipes. The
string-formatting operator, %, provides a handy way to put strings together and to obtain

precisely formatted strings from such objects as floating-point numbers. Again, you'll find recipes
in this chapter that show how to use % for your purposes. Python also has lots of standard and

extension modules that perform special processing on strings of many kinds. This chapter
doesn't cover such specialized resources, but Chapter 12 is, for example, entirely devoted to the

important specialized subject of processing XML.

Recipe 1.1. Processing a String One Character at a Time

Credit: Luther Blissett

Problem

You want to process a string one character at a time.

Solution

You can build a list whose items are the string's characters (meaning that the items are strings,
each of length of onePython doesn't have a special type for "characters" as distinct from strings).
Just call the built-in list, with the string as its argument:

thelist = list(thestring)

You may not even need to build the list, since you can loop directly on the string with a for

statement:

for c in thestring:
 do_something_with(c)

or in the for clause of a list comprehension:

results = [do_something_with(c) for c in thestring]

or, with exactly the same effects as this list comprehension, you can call a function on each
character with the map built-in function:

results = map(do_something, thestring)

Discussion

In Python, characters are just strings of length one. You can loop over a string to access each of
its characters, one by one. You can use map for much the same purpose, as long as what you
need to do with each character is call a function on it. Finally, you can call the built-in type list

to obtain a list of the length-one substrings of the string (i.e., the string's characters). If what
you want is a set whose elements are the string's characters, you can call sets.Set with the
string as the argument (in Python 2.4, you can also call the built-in set in just the same way):

import sets
magic_chars = sets.Set('abracadabra')
poppins_chars = sets.Set('supercalifragilisticexpialidocious')
print ''.join(magic_chars & poppins_chars) # set intersection
acrd

See Also

The Library Reference section on sequences; Perl Cookbook Recipe 1.5.

Recipe 1.2. Converting Between Characters and
Numeric Codes

Credit: Luther Blissett

Problem

You need to turn a character into its numeric ASCII (ISO) or Unicode code, and vice versa.

Solution

That's what the built-in functions ord and chr are for:

>>> print ord('a')
97
>>> print chr(97)
a

The built-in function ord also accepts as its argument a Unicode string of length one, in which

case it returns a Unicode code value, up to 65536. To make a Unicode string of length one from
a numeric Unicode code value, use the built-in function unichr:

>>> print ord(u'\u2020')
8224
>>> print repr(unichr(8224))
u'\u2020'

Discussion

It's a mundane task, to be sure, but it is sometimes useful to turn a character (which in Python
just means a string of length one) into its ASCII or Unicode code, and vice versa. The built-in
functions ord, chr, and unichr cover all the related needs. Note, in particular, the huge
difference between chr(n) and str(n), which beginners sometimes confuse...:

>>> print repr(chr(97))
'a'
>>> print repr(str(97))
'97'

chr takes as its argument a small integer and returns the corresponding single-character string
according to ASCII, while str, called with any integer, returns the string that is the decimal

representation of that integer.

To turn a string into a list of character value codes, use the built-in functions map and ord

together, as follows:

>>> print map(ord, 'ciao')
[99, 105, 97, 111]

To build a string from a list of character codes, use ''.join, map and chr; for example:

>>> print ''.join(map(chr, range(97, 100)))
abc

See Also

Documentation for the built-in functions chr, ord, and unichr in the Library Reference and

Python in a Nutshell.

Recipe 1.3. Testing Whether an Object Is String-like

Credit: Luther Blissett

Problem

You need to test if an object, typically an argument to a function or method you're writing, is a
string (or more precisely, whether the object is string-like).

Solution

A simple and fast way to check whether something is a string or Unicode object is to use the
built-ins isinstance and basestring, as follows:

def isAString(anobj):
 return isinstance(anobj, basestring)

Discussion

The first approach to solving this recipe's problem that comes to many programmers' minds is
type-testing:

def isExactlyAString(anobj):
 return type(anobj) is type('')

However, this approach is pretty bad, as it willfully destroys one of Python's greatest
strengthssmooth, signature-based polymorphism. This kind of test would reject Unicode objects,
instances of user-coded subclasses of str, and instances of any user-coded type that is meant to

be "string-like".

Using the isinstance built-in function, as recommended in this recipe's Solution, is much better.
The built-in type basestring exists exactly to enable this approach. basestring is a common
base class for the str and unicode types, and any string-like type that user code might define
should also subclass basestring, just to make sure that such isinstance testing works as
intended. basestring is essentially an "empty" type, just like object, so no cost is involved in

subclassing it.

Unfortunately, the canonical isinstance checking fails to accept such clearly string-like objects
as instances of the UserString class from Python Standard Library module UserString, since
that class, alas, does not inherit from basestring. If you need to support such types, you can

check directly whether an object behaves like a stringfor example:

def isStringLike(anobj):
 try: anobj + ''
 except: return False
 else: return True

This isStringLike function is slower and more complicated than the isAString function
presented in the "Solution", but it does accept instances of UserString (and other string-like

types) as well as instances of str and unicode.

The general Python approach to type-checking is known as duck typing: if it walks like a duck
and quacks like a duck, it's duck-like enough for our purposes. The isStringLike function in this
recipe goes only as far as the quacks-like part, but that may be enough. If and when you need to
check for more string-like features of the object anobj, it's easy to test a few more properties by
using a richer expression in the TRy clausefor example, changing the clause to:

 try: anobj.lower() + anobj + ''

In my experience, however, the simple test shown in the isStringLike function usually does what
I need.

The most Pythonic approach to type validation (or any validation task, really) is just to try to
perform whatever task you need to do, detecting and handling any errors or exceptions that
might result if the situation is somehow invalidan approach known as "it's easier to ask
forgiveness than permission" (EAFP). try/except is the key tool in enabling the EAFP style.

Sometimes, as in this recipe, you may choose some simple task, such as concatenation to the
empty string, as a stand-in for a much richer set of properties (such as, all the wealth of
operations and methods that string objects make available).

See Also

Documentation for the built-ins isinstance and basestring in the Library Reference and Python

in a Nutshell.

Recipe 1.4. Aligning Strings

Credit: Luther Blissett

Problem

You want to align strings: left, right, or center.

Solution

That's what the ljust, rjust, and center methods of string objects are for. Each takes a single

argument, the width of the string you want as a result, and returns a copy of the starting string
with spaces added on either or both sides:

>>> print '|', 'hej'.ljust(20), '|', 'hej'.rjust(20), '|', 'hej'.center(20), '|'
| hej | hej | hej |

Discussion

Centering, left-justifying, or right-justifying text comes up surprisingly oftenfor example, when
you want to print a simple report with centered page numbers in a monospaced font. Because of
this, Python string objects supply this functionality through three of their many methods. In
Python 2.3, the padding character is always a space. In Python 2.4, however, while space-
padding is still the default, you may optionally call any of these methods with a second
argument, a single character to be used for the padding:

>>> print 'hej'.center(20, '+')
++++++++hej+++++++++

See Also

The Library Reference section on string methods; Java Cookbook recipe 3.5.

Recipe 1.5. Trimming Space from the Ends of a String

Credit: Luther Blissett

Problem

You need to work on a string without regard for any extra leading or trailing spaces a user may
have typed.

Solution

That's what the lstrip, rstrip, and strip methods of string objects are for. Each takes no

argument and returns a copy of the starting string, shorn of whitespace on either or both sides:

>>> x = ' hej '
>>> print '|', x.lstrip(), '|', x.rstrip(), '|', x.strip(), '|'
| hej | hej | hej |

Discussion

Just as you may need to add space to either end of a string to align that string left, right, or
center in a field of fixed width (as covered previously in Recipe 1.4), so may you need to remove
all whitespace (blanks, tabs, newlines, etc.) from either or both ends. Because this need is
frequent, Python string objects supply this functionality through three of their many methods.
Optionally, you may call each of these methods with an argument, a string composed of all the
characters you want to trim from either or both ends instead of trimming whitespace characters:

>>> x = 'xyxxyy hejyx yyx'
>>> print '|'+x.strip('xy')+'|'
| hejyx |

Note that in these cases the leading and trailing spaces have been left in the resulting string, as
have the 'yx' that are followed by spaces: only all the occurrences of 'x' and 'y' at either end of

the string have been removed from the resulting string.

See Also

The Library Reference section on string methods; Recipe 1.4; Java Cookbook recipe 3.12.

Recipe 1.6. Combining Strings

Credit: Luther Blissett

Problem

You have several small strings that you need to combine into one larger string.

Solution

To join a sequence of small strings into one large string, use the string operator join. Say that
pieces is a list whose items are strings, and you want one big string with all the items

concatenated in order; then, you should code:

largeString = ''.join(pieces)

To put together pieces stored in a few variables, the string-formatting operator % can often be

even handier:

largeString = '%s%s something %s yet more' % (small1, small2, small3)

Discussion

In Python, the + operator concatenates strings and therefore offers seemingly obvious solutions

for putting small strings together into a larger one. For example, when you have pieces stored in
a few variables, it seems quite natural to code something like:

largeString = small1 + small2 + ' something ' + small3 + ' yet more'

And similarly, when you have a sequence of small strings named pieces, it seems quite natural

to code something like:

largeString = ''
for piece in pieces:
 largeString += piece

Or, equivalently, but more fancifully and compactly:

import operator
largeString = reduce(operator.add, pieces, '')

However, it's very important to realize that none of these seemingly obvious solution is goodthe
approaches shown in the "Solution" are vastly superior.

In Python, string objects are immutable. Therefore, any operation on a string, including string
concatenation, produces a new string object, rather than modifying an existing one.
Concatenating N strings thus involves building and then immediately throwing away each of N-1

intermediate results. Performance is therefore vastly better for operations that build no
intermediate results, but rather produce the desired end result at once.

Python's string-formatting operator % is one such operation, particularly suitable when you have

a few pieces (e.g., each bound to a different variable) that you want to put together, perhaps
with some constant text in addition. Performance is not a major issue for this specific kind of
task. However, the % operator also has other potential advantages, when compared to an

expression that uses multiple + operations on strings. % is more readable, once you get used to
it. Also, you don't have to call str on pieces that aren't already strings (e.g., numbers), because
the format specifier %s does so implicitly. Another advantage is that you can use format specifiers
other than %s, so that, for example, you can control how many significant digits the string form

of a floating-point number should display.

What Is "a Sequence?"

Python does not have a specific type called sequence, but sequence is still an often-

used term in Python. sequence, strictly speaking, means: a container that can be
iterated on, to get a finite number of items, one at a time, and that also supports
indexing, slicing, and being passed to the built-in function len (which gives the
number of items in a container). Python lists are the "sequences" you'll meet most
often, but there are many others (strings, unicode objects, tuples, array.arrays,

etc.).

Often, one does not need indexing, slicing, and lenthe ability to iterate, one item at a

time, suffices. In that case, one should speak of an iterable (or, to focus on the finite
number of items issue, a bounded iterable). Iterables that are not sequences include
dictionaries (iteration gives the keys of the dictionary, one at a time in arbitrary
order), file objects (iteration gives the lines of the text file, one at a time), and many
more, including iterators and generators. Any iterable can be used in a for loop
statement and in many equivalent contexts (the for clause of a list comprehension or
Python 2.4 generator expression, and also many built-ins such as min, max, zip, sum,
str.join, etc.).

At http://www.python.org/moin/PythonGlossary, you can find a Python Glossary that
can help you with these and several other terms. However, while the editors of this
cookbook have tried to adhere to the word usage that the glossary describes, you will
still find many places where this book says a sequence or an iterable or even a list,
where, by strict terminology, one should always say a bounded iterable. For example,
at the start of this recipe's Solution, we say "a sequence of small strings" where, in
fact, any bounded iterable of strings suffices. The problem with using "bounded
iterable" all over the place is that it would make this book read more like a
mathematics textbook than a practical programming book! So, we have deviated
from terminological rigor where readability, and maintaining in the book a variety of
"voices", were better served by slightly imprecise terminology that is nevertheless
entirely clear in context.

When you have many small string pieces in a sequence, performance can become a truly
important issue. The time needed to execute a loop using + or += (or a fancier but equivalent
approach using the built-in function reduce) grows with the square of the number of characters

you are accumulating, since the time to allocate and fill a large string is roughly proportional to
the length of that string. Fortunately, Python offers an excellent alternative. The join method of

a string object s takes as its only argument a sequence of strings and produces a string result

obtained by concatenating all items in the sequence, with a copy of s joining each item to its

neighbors. For example, ''.join(pieces) concatenates all the items of pieces in a single gulp,

http://www.python.org/moin/PythonGlossary

without interposing anything between them, and ', '.join(pieces) concatenates the items

putting a comma and a space between each pair of them. It's the fastest, neatest, and most
elegant and readable way to put a large string together.

When the pieces are not all available at the same time, but rather come in sequentially from
input or computation, use a list as an intermediate data structure to hold the pieces (to add
items at the end of a list, you can call the append or extend methods of the list). At the end,
when the list of pieces is complete, call ''.join(thelist) to obtain the big string that's the

concatenation of all pieces. Of all the many handy tips and tricks I could give you about Python
strings, I consider this one by far the most significant: the most frequent reason some Python
programs are too slow is that they build up big strings with + or +=. So, train yourself never to do
that. Use, instead, the ''.join approach recommented in this recipe.

Python 2.4 makes a heroic attempt to ameliorate the issue, reducing a little the performance
penalty due to such erroneous use of +=. While ''.join is still way faster and in all ways

preferable, at least some newbie or careless programmer gets to waste somewhat fewer machine
cycles. Similarly, psyco (a specializing just-in-time [JIT] Python compiler found at
http://psyco.sourceforge.net/), can reduce the += penalty even further. Nevertheless, ''.join

remains the best approach in all cases.

See Also

The Library Reference and Python in a Nutshell sections on string methods, string-formatting
operations, and the operator module.

http://psyco.sourceforge.net/

Recipe 1.7. Reversing a String by Words or Characters

Credit: Alex Martelli

Problem

You want to reverse the characters or words in a string.

Solution

Strings are immutable, so, to reverse one, we need to make a copy. The simplest approach for
reversing is to take an extended slice with a "step" of -1, so that the slicing proceeds backwards:

revchars = astring[::-1]

To flip words, we need to make a list of words, reverse it, and join it back into a string with a
space as the joiner:

revwords = astring.split() # string -> list of words
revwords.reverse() # reverse the list in place
revwords = ' '.join(revwords) # list of strings -> string

or, if you prefer terse and compact "one-liners":

revwords = ' '.join(astring.split()[::-1])

If you need to reverse by words while preserving untouched the intermediate whitespace, you
can split by a regular expression:

import re
revwords = re.split(r'(\s+)', astring) # separators too, since '(...)'
revwords.reverse() # reverse the list in place
revwords = ''.join(revwords) # list of strings -> string

Note that the joiner must be the empty string in this case, because the whitespace separators
are kept in the revwords list (by using re.split with a regular expression that includes a

parenthesized group). Again, you could make a one-liner, if you wished:

revwords = ''.join(re.split(r'(\s+)', astring)[::-1])

but this is getting too dense and unreadable to be good Python code!

Discussion

In Python 2.4, you may make the by-word one-liners more readable by using the new built-in
function reversed instead of the less readable extended-slicing indicator [::-1]:

revwords = ' '.join(reversed(astring.split()))
revwords = ''.join(reversed(re.split(r'(\s+)', astring)))

For the by-character case, though, astring[::-1] remains best, even in 2.4, because to use
reversed, you'd have to introduce a call to ''.join as well:

revchars = ''.join(reversed(astring))

The new reversed built-in returns an iterator, suitable for looping on or for passing to some
"accumulator" callable such as ''.joinit does not return a ready-made string!

See Also

Library Reference and Python in a Nutshell docs on sequence types and slicing, and (2.4 only)
the reversed built-in; Perl Cookbook recipe 1.6.

Recipe 1.8. Checking Whether a String Contains a Set of
Characters

Credit: Jürgen Hermann, Horst Hansen

Problem

You need to check for the occurrence of any of a set of characters in a string.

Solution

The simplest approach is clear, fast, and general (it works for any sequence, not just strings, and
for any container on which you can test for membership, not just sets):

def containsAny(seq, aset):
 """ Check whether sequence seq contains ANY of the items in aset. """
 for c in seq:
 if c in aset: return True
 return False

You can gain a little speed by moving to a higher-level, more sophisticated approach, based on
the itertools standard library module, essentially expressing the same approach in a different

way:

import itertools
def containsAny(seq, aset):
 for item in itertools.ifilter(aset._ _contains_ _, seq):
 return True
 return False

Discussion

Most problems related to sets are best handled by using the set built-in type introduced in
Python 2.4 (if you're using Python 2.3, you can use the equivalent sets.Set type from the

Python Standard Library). However, there are exceptions. Here, for example, a pure set-based
approach would be something like:

def containsAny(seq, aset):
 return bool(set(aset).intersection(seq))

However, with this approach, every item in seq inevitably has to be examined. The functions in
this recipe's Solution, on the other hand, "short-circuit": they return as soon as they know the
answer. They must still check every item in seq when the answer is Falsewe could never affirm

that no item in seq is a member of aset without examining all the items, of course. But when the
answer is true, we often learn about that very soon, namely as soon as we examine one item

that is a member of aset. Whether this matters at all is very data-dependent, of course. It will
make no practical difference when seq is short, or when the answer is typically False, but it may

be extremely important for a very long seq (when the answer can typically be soon determined

to be true).

The first version of containsAny presented in the recipe has the advantage of simplicity and
clarity: it expresses the fundamental idea with total transparency. The second version may
appear to be "clever", and that is not a complimentary adjective in the Python world, where
simplicity and clarity are core values. However, the second version is well worth considering,
because it shows a higher-level approach, based on the itertools module of the standard

library. Higher-level approaches are most often preferable to lower-level ones (although the issue
is moot in this particular case). itertools.ifilter takes a predicate and an iterable, and yields

the items in that iterable that satisfy the "predicate". Here, as the "predicate", we use anyset._
contains _, the bound method that is internally called when we code in anyset for
membership testing. So, if ifilter yields anything at all, it yields an item of seq that is also a
member of anyset, so we can return True as soon as this happens. If we get to the statement
following the for, it must mean the return True never executed, because no items of seq are
members of anyset, so we can return False.

What Is "a Predicate?"

A term you can see often in discussions about programming is predicate: it just
means a function (or other callable object) that returns TRue or False as its result. A
predicate is said to be satisfied when it returns true.

If your application needs some function such as containsAny to check whether a string (or other
sequence) contains any members of a set, you may also need such variants as:

def containsOnly(seq, aset):
 """ Check whether sequence seq contains ONLY items in aset. """
 for c in seq:
 if c not in aset: return False
 return True

containsOnly is the same function as containsAny, but with the logic turned upside-down. Other
apparently similar tasks don't lend themselves to short-circuiting (they intrinsically need to
examine all items) and so are best tackled by using the built-in type set (in Python 2.4; in 2.3,
you can use sets.Set in the same way):

def containsAll(seq, aset):
 """ Check whether sequence seq contains ALL the items in aset. """
 return not set(aset).difference(seq)

If you're not accustomed to using the set (or sets.Set) method difference, be aware of its

semantics: for any set a, a.difference(b) (just like a-set(b)) returns the set of all elements of

a that are not in b. For example:

>>> L1 = [1, 2, 3, 3]
>>> L2 = [1, 2, 3, 4]
>>> set(L1).difference(L2)
set([])
>>> set(L2).difference(L1)
set([4])

which hopefully helps explain why:

>>> containsAll(L1, L2)
False
>>> containsAll(L2, L1)
True

(In other words, don't confuse difference with another method of set, symmetric_difference,

which returns the set of all items that are in either argument and not in the other.)

When you're dealing specifically with (plain, not Unicode) strings for both seq and aset, you may
not need the full generality of the functions presented in this recipe, and may want to try the
more specialized approach explained in Recipe 1.10 based on strings' method TRanslate and the
string.maketrans function from the Python Standard Library. For example:

import string
notrans = string.maketrans('', '') # identity "translation"
def containsAny(astr, strset):
 return len(strset) != len(strset.translate(notrans, astr))
def containsAll(astr, strset):
 return not strset.translate(notrans, astr)

This somewhat tricky approach relies on strset.translate(notrans, astr) being the
subsequence of strset that is made of characters not in astr. When that subsequence has the
same length as strset, no characters have been removed by strset.translate, therefore no
characters of strset are in astr. Conversely, when the subsequence is empty, all characters have
been removed, so all characters of strset are in astr. The translate method keeps coming up

naturally when one wants to treat strings as sets of characters, because it's speedy as well as
handy and flexible; see Recipe 1.10 for more details.

These two sets of approaches to the recipe's tasks have very different levels of generality. The
earlier approaches are very general: not at all limited to string processing, they make rather
minimal demands on the objects you apply them to. The approach based on the translate
method, on the other hand, works only when both astr and strset are strings, or very closely
mimic plain strings' functionality. Not even Unicode strings suffice, because the TRanslate

method of Unicode strings has a signature that is different from that of plain stringsa single
argument (a dict mapping code numbers to Unicode strings or None) instead of two (both

strings).

See Also

Recipe 1.10; documentation for the translate method of strings and Unicode objects, and
maketrans function in the string module, in the Library Reference and Python in a Nutshell; ditto
for documentation of built-in set (Python 2.4 only), modules sets and itertools, and the
special method _ _contains_ _.

Recipe 1.9. Simplifying Usage of Strings' translate
Method

Credit: Chris Perkins, Raymond Hettinger

Problem

You often want to use the fast code in strings' TRanslate method, but find it hard to remember
in detail how that method and the function string.maketrans work, so you want a handy facade

to simplify their use in typical cases.

Solution

The TRanslate method of strings is quite powerful and flexible, as detailed in Recipe 1.10.

However, exactly because of that power and flexibility, it may be a nice idea to front it with a
"facade" that simplifies its typical use. A little factory function, returning a closure, can do
wonders for this kind of task:

import string
def translator(frm='', to='', delete='', keep=None):
 if len(to) == 1:
 to = to * len(frm)
 trans = string.maketrans(frm, to)
 if keep is not None:
 allchars = string.maketrans('', '')
 delete = allchars.translate(allchars, keep.translate(allchars, delete))
 def translate(s):
 return s.translate(trans, delete)
 return translate

Discussion

I often find myself wanting to use strings' translate method for any one of a few purposes, but

each time I have to stop and think about the details (see Recipe 1.10 for more information about
those details). So, I wrote myself a class (later remade into the factory closure presented in this
recipe's Solution) to encapsulate various possibilities behind a simpler-to-use facade. Now, when
I want a function that keeps only characters from a given set, I can easily build and use that
function:

>>> digits_only = translator(keep=string.digits)
>>> digits_only('Chris Perkins : 224-7992')
'2247992'

It's similarly simple when I want to remove a set of characters:

>>> no_digits = translator(delete=string.digits)
>>> no_digits('Chris Perkins : 224-7992')
'Chris Perkins : -'

and when I want to replace a set of characters with a single character:

>>> digits_to_hash = translator(from=string.digits, to='#')
>>> digits_to_hash('Chris Perkins : 224-7992')
'Chris Perkins : ###-####'

While the latter may appear to be a bit of a special case, it is a task that keeps coming up for me
every once in a while.

I had to make one arbitrary design decision in this recipenamely, I decided that the delete
parameter "trumps" the keep parameter if they overlap:

>>> trans = translator(delete='abcd', keep='cdef')
>>> trans('abcdefg')
'ef'

For your applications it might be preferable to ignore delete if keep is specified, or, perhaps
better, to raise an exception if they are both specified, since it may not make much sense to let
them both be given in the same call to translator, anyway. Also: as noted in Recipe 1.8 and
Recipe 1.10, the code in this recipe works only for normal strings, not for Unicode strings. See
Recipe 1.10 to learn how to code this kind of functionality for Unicode strings, whose translate

method is different from that of plain (i.e., byte) strings.

Closures

A closure is nothing terribly complicated: just an "inner" function that refers to
names (variables) that are local to an "outer" function containing it. Canonical toy-
level example:

def make_adder(addend):
 def adder(augend): return augend+addend
 return adder

Executing p = make_adder(23) makes a closure of inner function adder internally
referring to a name addend that is bound to the value 23. Then, q =
make_adder(42) makes another closure, for which, internally, name addend is

instead bound to the value 42. Making q in no way interferes with p, they can happily
and independently coexist. So we can now execute, say, print p(100), q(100) and
enjoy the output 123 142.

In practice, you may often see make_adder referred to as a closure rather than by
the pedantic, ponderous periphrasis "a function that returns a closure"fortunately,
context often clarifies the situation. Calling make_adder a factory (or factory
function) is both accurate and concise; you may also say it's a closure factory to
specify it builds and returns closures, rather than, say, classes or class instances.

See Also

Recipe 1.10 for a direct equivalent of this recipe's TRanslator(keep=...), more information on

the TRanslate method, and an equivalent approach for Unicode strings; documentation for
strings' translate method, and for the maketrans function in the string module, in the Library

Reference and Python in a Nutshell.

Recipe 1.10. Filtering a String for a Set of Characters

Credit: Jürgen Hermann, Nick Perkins, Peter Cogolo

Problem

Given a set of characters to keep, you need to build a filtering function that, applied to any string
s, returns a copy of s that contains only characters in the set.

Solution

The TRanslate method of string objects is fast and handy for all tasks of this ilk. However, to call
translate effectively to solve this recipe's task, we must do some advance preparation. The first
argument to TRanslate is a translation table: in this recipe, we do not want to do any

translation, so we must prepare a first argument that specifies "no translation". The second
argument to TRanslate specifies which characters we want to delete: since the task here says

that we're given, instead, a set of characters to keep (i.e., to not delete), we must prepare a
second argument that gives the set complementdeleting all characters we must not keep. A
closure is the best way to do this advance preparation just once, obtaining a fast filtering
function tailored to our exact needs:

import string
Make a reusable string of all characters, which does double duty
as a translation table specifying "no translation whatsoever"
allchars = string.maketrans('', '')
def makefilter(keep):
 """ Return a function that takes a string and returns a partial copy
 of that string consisting of only the characters in 'keep'.
 Note that `keep' must be a plain string.
 """
 # Make a string of all characters that are not in 'keep': the "set
 # complement" of keep, meaning the string of characters we must delete
 delchars = allchars.translate(allchars, keep)
 # Make and return the desired filtering function (as a closure)
 def thefilter(s):
 return s.translate(allchars, delchars)
 return thefilter
if _ _name_ _ == '_ _main_ _':
 just_vowels = makefilter('aeiouy')
 print just_vowels('four score and seven years ago')
emits: ouoeaeeyeaao
 print just_vowels('tiger, tiger burning bright')
emits: ieieuii

Discussion

The key to understanding this recipe lies in the definitions of the maketrans function in the
string module of the Python Standard Library and in the translate method of string objects.
TRanslate returns a copy of the string you call it on, replacing each character in it with the

corresponding character in the translation table passed in as the first argument and deleting the

characters specified in the second argument. maketrans is a utility function to create translation

tables. (A translation table is a string t of exactly 256 characters: when you pass t as the first

argument of a translate method, each character c of the string on which you call the method is
translated in the resulting string into the character t[ord(c)].)

In this recipe, efficiency is maximized by splitting the filtering task into preparation and execution
phases. The string of all characters is clearly reusable, so we build it once and for all as a global
variable when this module is imported. That way, we ensure that each filtering function uses the
same string-of-all-characters object, not wasting any memory. The string of characters to delete,
which we need to pass as the second argument to the translate method, depends on the set of

characters to keep, because it must be built as the "set complement" of the latter: we must tell
translate to delete every character that we do not want to keep. So, we build the delete-these-
characters string in the makefilter factory function. This building is done quite rapidly by using
the translate method to delete the "characters to keep" from the string of all characters. The
translate method is very fast, as are the construction and execution of these useful little

resulting functions. The test code that executes when this recipe runs as a main script shows
how to build a filtering function by calling makefilter, bind a name to the filtering function (by
simply assigning the result of calling makefilter to a name), then call the filtering function on

some strings and print the results.

Incidentally, calling a filtering function with allchars as the argument puts the set of characters
being kept into a canonic string form, alphabetically sorted and without duplicates. You can use
this idea to code a very simple function to return the canonic form of any set of characters
presented as an arbitrary string:

def canonicform(s):
 """ Given a string s, return s's characters as a canonic-form string:
 alphabetized and without duplicates. """
 return makefilter(s)(allchars)

The Solution uses a def statement to make the nested function (closure) it returns, because def

is the most normal, general, and clear way to make functions. If you prefer, you could use
lambda instead, changing the def and return statements in function makefilter into just one
return lambda statement:

 return lambda s: s.translate(allchars, delchars)

Most Pythonistas, but not all, consider using def clearer and more readable than using lambda.

Since this recipe deals with strings seen as sets of characters, you could alternatively use the
sets.Set type (or, in Python 2.4, the new built-in set type) to perform the same tasks. Thanks
to the translate method's power and speed, it's often faster to work directly on strings, rather

than go through sets, for tasks of this ilk. However, just as noted in Recipe 1.8, the functions in
this recipe only work for normal strings, not for Unicode strings.

To solve this recipe's task for Unicode strings, we must do some very different preparation. A
Unicode string's translate method takes only one argument: a mapping or sequence, which is

indexed with the code number of each character in the string. Characters whose codes are not
keys in the mapping (or indices in the sequence) are just copied over to the output string.
Otherwise, the value corresponding to each character's code must be either a Unicode string
(which is substituted for the character) or None (in which case the character is deleted). A very

nice and powerful arrangement, but unfortunately not one that's identical to the way plain strings
work, so we must recode.

Normally, we use either a dict or a list as the argument to a Unicode string's translate

method to translate some characters and/or delete some. But for the specific task of this recipe
(i.e., keep just some characters, delete all others), we might need an inordinately large dict or
string, just mapping all other characters to None. It's better to code, instead, a little class that
appropriately implements a _ _getitem_ _ method (the special method that gets called in

indexing operations). Once we're going to the (slight) trouble of coding a little class, we might as
well make its instances callable and have makefilter be just a synonym for the class itself:

import sets
class Keeper(object):
 def _ _init_ _(self, keep):
 self.keep = sets.Set(map(ord, keep))
 def _ _getitem_ _(self, n):
 if n not in self.keep:
 return None
 return unichr(n)
 def _ _call_ _(self, s):
 return unicode(s).translate(self)
makefilter = Keeper
if _ _name_ _ == '_ _main_ _':
 just_vowels = makefilter('aeiouy')
 print just_vowels(u'four score and seven years ago')
emits: ouoeaeeyeaao
 print just_vowels(u'tiger, tiger burning bright')
emits: ieieuii

We might name the class itself makefilter, but, by convention, one normally names classes with
an uppercase initial; there is essentially no cost in following that convention here, too, so we did.

See Also

Recipe 1.8; documentation for the TRanslate method of strings and Unicode objects, and
maketrans function in the string module, in the Library Reference and Python in a Nutshell.

Recipe 1.11. Checking Whether a String Is Text or
Binary

Credit: Andrew Dalke

Problem

Python can use a plain string to hold either text or arbitrary bytes, and you need to determine
(heuristically, of course: there can be no precise algorithm for this) which of the two cases holds
for a certain string.

Solution

We can use the same heuristic criteria as Perl does, deeming a string binary if it contains any
nulls or if more than 30% of its characters have the high bit set (i.e., codes greater than 126) or
are strange control codes. We have to code this ourselves, but this also means we easily get to
tweak the heuristics for special application needs:

from _ _future_ _ import division # ensure / does NOT truncate
import string
text_characters = "".join(map(chr, range(32, 127))) + "\n\r\t\b"
_null_trans = string.maketrans("", "")
def istext(s, text_characters=text_characters, threshold=0.30):
 # if s contains any null, it's not text:
 if "\0" in s:
 return False
 # an "empty" string is "text" (arbitrary but reasonable choice):
 if not s:
 return True
 # Get the substring of s made up of non-text characters
 t = s.translate(_null_trans, text_characters)
 # s is 'text' if less than 30% of its characters are non-text ones:
 return len(t)/len(s) <= threshold

Discussion

You can easily do minor customizations to the heuristics used by function istext by passing in
specific values for the threshold, which defaults to 0.30 (30%), or for the string of those
characters that are to be deemed "text" (which defaults to normal ASCII characters plus the four
"normal" control characters, meaning ones that are often found in text). For example, if you
expected Italian text encoded as ISO-8859-1, you could add the accented letters used in Italian,
"àÃ¨Ã©Ã¬Ã2Ã1", to the text_characters argument.

Often, what you need to check as being either binary or text is not a string, but a file. Again, we
can use the same heuristics as Perl, checking just the first block of the file with the istext
function shown in this recipe's Solution:

def istextfile(filename, blocksize=512, **kwds):
 return istext(open(filename).read(blocksize), **kwds)

Note that, by default, the expression len(t)/len(s) used in the body of function istext would

truncate the result to 0, since it is a division between integer numbers. In some future version
(probably Python 3.0, a few years away), Python will change the meaning of the / operator so

that it performs division without truncationif you really do want truncation, you should use the
truncating-division operator, //.

However, Python has not yet changed the semantics of division, keeping the old one by default in
order to ensure backwards compatibility. It's important that the millions of lines of code of
Python programs and modules that already exist keep running smoothly under all new 2.x
versions of Pythononly upon a change of major language version number, no more often than
every decade or so, is Python allowed to change in ways that aren't backwards-compatible.

Since, in the small module containing this recipe's Solution, it's handy for us to get the division
behavior that is scheduled for introduction in some future release, we start our module with the
statement:

from _ _future_ _ import division

This statement doesn't affect the rest of the program, only the specific module that starts with
this statement; throughout this module, / performs "true division" (without truncation). As of
Python 2.3 and 2.4, division is the only thing you may want to import from _ _future_ _.
Other features that used to be scheduled for the future, nested_scopes and generators, are

now part of the language and cannot be turned offit's innocuous to import them, but it makes
sense to do so only if your program also needs to run under some older version of Python.

See Also

Recipe 1.10 for more details about function maketrans and string method translate; Language

Reference for details about true versus truncating division.

Recipe 1.12. Controlling Case

Credit: Luther Blissett

Problem

You need to convert a string from uppercase to lowercase, or vice versa.

Solution

That's what the upper and lower methods of string objects are for. Each takes no arguments and

returns a copy of the string in which each letter has been changed to upper- or lowercase,
respectively.

big = little.upper()
little = big.lower()

Characters that are not letters are copied unchanged.

s.capitalize is similar to s[:1].upper()+s[1:].lower(): the first character is changed to
uppercase, and all others are changed to lowercase. s.title is again similar, but it capitalizes

the first letter of each word (where a "word" is a sequence of letters) and uses lowercase for all
other letters:

>>> print 'one tWo thrEe'.capitalize()
One two three
>>> print 'one tWo thrEe'.title()
One Two Three

Discussion

Case manipulation of strings is a very frequent need. Because of this, several string methods let
you produce case-altered copies of strings. Moreover, you can also check whether a string object
is already in a given case form, with the methods isupper, islower, and istitle, which all
return true if the string is not empty, contains at least one letter, and already meets the
uppercase, lowercase, or titlecase constraints. There is no analogous iscapitalized method,
and coding it is not trivial, if we want behavior that's strictly similar to strings' is... methods.
Those methods all return False for an "empty" string, and the three case-checking ones also
return False for strings that, while not empty, contain no letters at all.

The simplest and clearest way to code iscapitalized is clearly:

def iscapitalized(s):
 return s == s.capitalize()

However, this version deviates from the boundary-case semantics of the analogous is...
methods, since it also returns TRue for strings that are empty or contain no letters. Here's a

stricter one:

import string
notrans = string.maketrans('', '') # identity "translation"
def containsAny(str, strset):
 return len(strset) != len(strset.translate(notrans, str))
def iscapitalized(s):
 return s == s.capitalize() and containsAny(s, string.letters)

Here, we use the function shown in Recipe 1.8 to ensure we return False if s is empty or

contains no letters. As noted in Recipe 1.8, this means that this specific version works only for
plain strings, not for Unicode ones.

See Also

Library Reference and Python in a Nutshell docs on string methods; Perl Cookbook recipe 1.9;
Recipe 1.8.

Recipe 1.13. Accessing Substrings

Credit: Alex Martelli

Problem

You want to access portions of a string. For example, you've read a fixed-width record and want
to extract the record's fields.

Solution

Slicing is great, but it only does one field at a time:

afield = theline[3:8]

If you need to think in terms of field lengths, struct.unpack may be appropriate. For example:

import struct
Get a 5-byte string, skip 3, get two 8-byte strings, then all the rest:
baseformat = "5s 3x 8s 8s"
by how many bytes does theline exceed the length implied by this
base-format (24 bytes in this case, but struct.calcsize is general)
numremain = len(theline) - struct.calcsize(baseformat)
complete the format with the appropriate 's' field, then unpack
format = "%s %ds" % (baseformat, numremain)
l, s1, s2, t = struct.unpack(format, theline)

If you want to skip rather than get "all the rest", then just unpack the initial part of theline

with the right length:

l, s1, s2 = struct.unpack(baseformat, theline[:struct.calcsize(baseformat)])

If you need to split at five-byte boundaries, you can easily code a list comprehension (LC) of
slices:

fivers = [theline[k:k+5] for k in xrange(0, len(theline), 5)]

Chopping a string into individual characters is of course easier:

chars = list(theline)

If you prefer to think of your data as being cut up at specific columns, slicing with LCs is
generally handier:

cuts = [8, 14, 20, 26, 30]
pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts+[None])]

The call to zip in this LC returns a list of pairs of the form (cuts[k], cuts[k+1]), except that
the first pair is (0, cuts[0]), and the last one is (cuts[len(cuts)-1], None). In other words,
each pair gives the right (i, j) for slicing between each cut and the next, except that the first

one is for the slice before the first cut, and the last one is for the slice from the last cut to the
end of the string. The rest of the LC just uses these pairs to cut up the appropriate slices of
theline.

Discussion

This recipe was inspired by recipe 1.1 in the Perl Cookbook. Python's slicing takes the place of
Perl's substr. Perl's built-in unpack and Python's struct.unpack are similar. Perl's is slightly
richer, since it accepts a field length of * for the last field to mean all the rest. In Python, we

have to compute and insert the exact length for either extraction or skipping. This isn't a major
issue because such extraction tasks will usually be encapsulated into small functions. Memoizing,
also known as automatic caching, may help with performance if the function is called repeatedly,
since it allows you to avoid redoing the preparation of the format for the struct unpacking. See
Recipe 18.5 for details about memoizing.

In a purely Python context, the point of this recipe is to remind you that struct.unpack is often
viable, and sometimes preferable, as an alternative to string slicing (not quite as often as unpack
versus substr in Perl, given the lack of a *-valued field length, but often enough to be worth

keeping in mind).

Each of these snippets is, of course, best encapsulated in a function. Among other advantages,
encapsulation ensures we don't have to work out the computation of the last field's length on
each and every use. This function is the equivalent of the first snippet using struct.unpack in

the "Solution":

def fields(baseformat, theline, lastfield=False):
 # by how many bytes does theline exceed the length implied by
 # base-format (struct.calcsize computes exactly that length)
 numremain = len(theline)-struct.calcsize(baseformat)
 # complete the format with the appropriate 's' or 'x' field, then unpack
 format = "%s %d%s" % (baseformat, numremain, lastfield and "s" or "x")
 return struct.unpack(format, theline)

A design decision worth noticing (and, perhaps, worth criticizing) is that of having a
lastfield=False optional parameter. This reflects the observation that, while we often want to

skip the last, unknown-length subfield, sometimes we want to retain it instead. The use of
lastfield in the expression lastfield and s or x (equivalent to C's ternary operator lastfield?
"s":"c") saves an if/else, but it's unclear whether the saving is worth the obscurity. See Recipe

18.9 for more about simulating ternary operators in Python.

If function fields is called in a loop, memoizing (caching) with a key that is the tuple
(baseformat, len(theline), lastfield) may offer faster performance. Here's a version of

fields with memoizing:

def fields(baseformat, theline, lastfield=False, _cache={ }):
 # build the key and try getting the cached format string
 key = baseformat, len(theline), lastfield
 format = _cache.get(key)
 if format is None:
 # no format string was cached, build and cache it
 numremain = len(theline)-struct.calcsize(baseformat)
 _cache[key] = format = "%s %d%s" % (
 baseformat, numremain, lastfield and "s" or "x")
 return struct.unpack(format, theline)

The idea behind this memoizing is to perform the somewhat costly preparation of format only
once for each set of arguments requiring that preparation, thereafter storing it in the _cache
dictionary. Of course, like all optimizations, memoizing needs to be validated by measuring
performance to check that each given optimization does actually speed things up. In this case, I
measure an increase in speed of approximately 30% to 40% for the memoized version, meaning
that the optimization is probably not worth the bother unless the function is part of a
performance bottleneck for your program.

The function equivalent of the next LC snippet in the solution is:

def split_by(theline, n, lastfield=False):
 # cut up all the needed pieces
 pieces = [theline[k:k+n] for k in xrange(0, len(theline), n)]
 # drop the last piece if too short and not required
 if not lastfield and len(pieces[-1]) < n:
 pieces.pop()
 return pieces

And for the last snippet:

def split_at(theline, cuts, lastfield=False):
 # cut up all the needed pieces
 pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts+[None])]
 # drop the last piece if not required
 if not lastfield:
 pieces.pop()
 return pieces

In both of these cases, a list comprehension doing slicing turns out to be slightly preferable to
the use of struct.unpack.

A completely different approach is to use generators, such as:

def split_at(the_line, cuts, lastfield=False):
 last = 0
 for cut in cuts:
 yield the_line[last:cut]
 last = cut
 if lastfield:
 yield the_line[last:]
def split_by(the_line, n, lastfield=False):
 return split_at(the_line, xrange(n, len(the_line), n), lastfield)

Generator-based approaches are particularly appropriate when all you need to do on the
sequence of resulting fields is loop over it, either explicitly, or implicitly by calling on it some
"accumulator" callable such as ''.join. If you do need to materialize a list of the fields, and what
you have available is a generator instead, you only need to call the built-in list on the

generator, as in:

list_of_fields = list(split_by(the_line, 5))

See Also

Recipe 18.9 and Recipe 18.5; Perl Cookbook recipe 1.1.

Recipe 1.14. Changing the Indentation of a Multiline
String

Credit: Tom Good

Problem

You have a string made up of multiple lines, and you need to build another string from it, adding
or removing leading spaces on each line so that the indentation of each line is some absolute
number of spaces.

Solution

The methods of string objects are quite handy, and let us write a simple function to perform this
task:

def reindent(s, numSpaces):
 leading_space = numSpaces * ' '
 lines = [leading_space + line.strip()
 for line in s.splitlines()]
 return '\n'.join(lines)

Discussion

When working with text, it may be necessary to change the indentation level of a block. This
recipe's code adds leading spaces to or removes them from each line of a multiline string so that
the indentation level of each line matches some absolute number of spaces. For example:

>>> x = """ line one
... line two
... and line three
... """
>>> print x
 line one
 line two
 and line three
>>> print reindent(x, 4)
 line one
 line two
 and line three

Even if the lines in s are initially indented differently, this recipe makes their indentation
homogeneous, which is sometimes what we want, and sometimes not. A frequent need is to
adjust the amount of leading spaces in each line, so that the relative indentation of each line in
the block is preserved. This is not difficult for either positive or negative values of the
adjustment. However, negative values need a check to ensure that no nonspace characters are
snipped from the start of the lines. Thus, we may as well split the functionality into two functions
to perform the transformations, plus one to measure the number of leading spaces of each line
and return the result as a list:

def addSpaces(s, numAdd):
 white = " "*numAdd
 return white + white.join(s.splitlines(True))
def numSpaces(s):
 return [len(line)-len(line.lstrip()) for line in s.splitlines()]
def delSpaces(s, numDel):
 if numDel > min(numSpaces(s)):
 raise ValueError, "removing more spaces than there are!"
 return '\n'.join([line[numDel:] for line in s.splitlines()])

All of these functions rely on the string method splitlines, which is similar to a split on '\n'.
splitlines has the extra ability to leave the trailing newline on each line (when you call it with
true as its argument). Sometimes this turns out to be handy: addSpaces could not be quite as
short and sweet without this ability of the splitlines string method.

Here's how we can combine these functions to build another function to delete just enough
leading spaces from each line to ensure that the least-indented line of the block becomes flush
left, while preserving the relative indentation of the lines:

def unIndentBlock(s):
 return delSpaces(s, min(numSpaces(s)))

See Also

Library Reference and Python in a Nutshell docs on sequence types.

Recipe 1.15. Expanding and Compressing Tabs

Credit: Alex Martelli, David Ascher

Problem

You want to convert tabs in a string to the appropriate number of spaces, or vice versa.

Solution

Changing tabs to the appropriate number of spaces is a reasonably frequent task, easily
accomplished with Python strings' expandtabs method. Because strings are immutable, the

method returns a new string object, a modified copy of the original one. However, it's easy to
rebind a string variable name from the original to the modified-copy value:

mystring = mystring.expandtabs()

This doesn't change the string object to which mystring originally referred, but it does rebind the

name mystring to a newly created string object, a modified copy of mystring in which tabs are
expanded into runs of spaces. expandtabs, by default, uses a tab length of 8; you can pass
expandtabs an integer argument to use as the tab length.

Changing spaces into tabs is a rare and peculiar need. Compression, if that's what you're after, is
far better performed in other ways, so Python doesn't offer a built-in way to "unexpand" spaces
into tabs. We can, of course, write our own function for the purpose. String processing tends to
be fastest in a split/process/rejoin approach, rather than with repeated overall string
transformations:

def unexpand(astring, tablen=8):
 import re
 # split into alternating space and non-space sequences
 pieces = re.split(r'(+)', astring.expandtabs(tablen))
 # keep track of the total length of the string so far
 lensofar = 0
 for i, piece in enumerate(pieces):
 thislen = len(piece)
 lensofar += thislen
 if piece.isspace():
 # change each space sequences into tabs+spaces
 numblanks = lensofar % tablen
 numtabs = (thislen-numblanks+tablen-1)/tablen
 pieces[i] = '\t'*numtabs + ' '*numblanks
 return ''.join(pieces)

Function unexpand, as written in this example, works only for a single-line string; to deal with a
multi-line string, use ''.join([unexpand(s) for s in astring.splitlines(True)]).

Discussion

While regular expressions are never indispensable for the purpose of manipulating strings in
Python, they are occasionally quite handy. Function unexpand, as presented in the recipe, for
example, takes advantage of one extra feature of re.split with respect to string's split
method: when the regular expression contains a (parenthesized) group, re.split returns a list

where the split pieces are interleaved with the "splitter" pieces. So, here, we get alternate runs of
nonblanks and blanks as items of list pieces; the for loop keeps track of the length of string it

has seen so far, and changes pieces that are made of blanks to as many tabs as possible, plus as
many blanks are needed to maintain the overall length.

Some programming tasks that could still be described as expanding tabs are unfortunately not
quite as easy as just calling the expandtabs method. A category that does happen with some

regularity is to fix Python source files, which use a mix of tabs and spaces for indentation (a very
bad idea), so that they instead use spaces only (which is the best approach). This could entail
extra complications, for example, when you need to guess the tab length (and want to end up
with the standard four spaces per indentation level, which is strongly advisable). It can also
happen when you need to preserve tabs that are inside strings, rather than tabs being used for
indentation (because somebody erroneously used actual tabs, rather than '\t', to indicate tabs in

strings), or even because you're asked to treat docstrings differently from other strings. Some
cases are not too badfor example, when you want to expand tabs that occur only within runs of
whitespace at the start of each line, leaving any other tab alone. A little function using a regular
expression suffices:

def expand_at_linestart(P, tablen=8):
 import re
 def exp(mo):
 return mo.group().expand(tablen)
 return ''.join([re.sub(r'^\s+', exp, s) for s in P.splitlines(True)])

This function expand_at_linestart exploits the re.sub function, which looks for a regular

expression in a string and, each time it gets a match, calls a function, passing the match object
as the argument, to obtain the string to substitute in place of the match. For convenience,
expand_at_linestart is coded to deal with a multiline string argument P, performing the list
comprehension over the results of the splitlines call, and the '\n'.join of the whole. Of
course, this convenience does not stop the function from being able to deal with a single-line P.

If your specifications regarding which tabs are to be expanded are even more complex, such as
needing to deal differently with tabs depending on whether they're inside or outside of strings,
and on whether or not strings are docstrings, at the very least, you need to perform a
tokenization. In addition, you may also have to perform a full parse of the source code you're
dealing with, rather than using simple string or regular-expression operations. If this is the case,
you can expect a substantial amount of work. Some beginning pointers to help you get started
may be found in Chapter 16.

If you ever find yourself sweating out this kind of task, you will no doubt get excellent motivation
in the future for following the normal and recommended Python style in the source code you
write or edit: only spaces, four per indentation level, no tabs, and always '\t', never an actual

tab character, to include a tab in a string literal. Your favorite editor can no doubt be told to
enforce all of these conventions whenever a Python source file is saved; the editor that comes
with IDLE (the free integrated development environment that comes with Python), for example,
supports these conventions. It is much easier to arrange your editor so that the problem never
arises, rather than striving to fix it after the fact!

See Also

Documentation for the expandtabs method of strings in the "Sequence Types" section of the

Library Reference; Perl Cookbook recipe 1.7; Library Reference and Python in a Nutshell
documentation of module re.

Recipe 1.16. Interpolating Variables in a String

Credit: Scott David Daniels

Problem

You need a simple way to get a copy of a string where specially marked substrings are replaced
with the results of looking up the substrings in a dictionary.

Solution

Here is a solution that works in Python 2.3 as well as in 2.4:

def expand(format, d, marker='"', safe=False):
 if safe:
 def lookup(w): return d.get(w, w.join(marker*2))
 else:
 def lookup(w): return d[w]
 parts = format.split(marker)
 parts[1::2] = map(lookup, parts[1::2])
 return ''.join(parts)
if _ _name_ _ == '_ _main_ _':
 print expand('just "a" test', {'a': 'one'})
emits: just one test

When the parameter safe is False, the default, every marked substring must be found in
dictionary d, otherwise expand terminates with a KeyError exception. When parameter safe is
explicitly passed as true, marked substrings that are not found in the dictionary are just left

intact in the output string.

Discussion

The code in the body of the expand function has some points of interest. It defines one of two
different nested functions (with the name of lookup either way), depending on whether the
expansion is required to be safe. Safe means no KeyError exception gets raised for marked

strings not found in the dictionary. If not required to be safe (the default), lookup just indexes
into dictionary d and raises an error if the substring is not found. But, if lookup is required to be
"safe", it uses d's method get and supplies as the default the substring being looked up, with a
marker on either side. In this way, by passing safe as true, you may choose to have unknown

formatting markers come right through to the output rather than raising exceptions.
marker+w+marker would be an obvious alternative to the chosen w.join(marker*2), but I've

chosen the latter exactly to display a non-obvious but interesting way to construct such a quoted
string.

With either version of lookup, expand operates according to the split/modify/join idiom that is so
important for Python string processing. The modify part, in expand's case, makes use of the
possibility of accessing and modifying a list's slice with a "step" or "stride". Specifically, expand
accesses and rebinds all of those items of parts that lie at an odd index, because those items

are exactly the ones that were enclosed between a pair of markers in the original format string.
Therefore, they are the marked substrings that may be looked up in the dictionary.

The syntax of format strings accepted by this recipe's function expand is more flexible than the
$-based syntax of string.Template. You can specify a different marker when you want your

format string to contain double quotes, for example. There is no constraint for each specially
marked substring to be an identifier, so you can easily interpolate Python expressions (with a d
whose _ _getitem_ _ performs an eval) or any other kind of placeholder. Moreover, you can

easily get slightly different, useful effects. For example:

print expand('just "a" ""little"" test', {'a' : 'one', '' : '"'})

emits just one "little" test. Advanced users can customize Python 2.4's string.Template

class, by inheritance, to match all of these capabilities, and more, but this recipe's little expand
function is still simpler to use in some flexible ways.

See Also

Library Reference docs for string.Template (Python 2.4, only), the section on sequence types
(for string methods split and join, and for slicing operations), and the section on dictionaries
(for indexing and the get method). For more information on Python 2.4's string.Template

class, see Recipe 1.17.

Recipe 1.17. Interpolating Variables in a Stringin Python
2.4

Credit: John Nielsen, Lawrence Oluyede, Nick Coghlan

Problem

Using Python 2.4, you need a simple way to get a copy of a string where specially marked
identifiers are replaced with the results of looking up the identifiers in a dictionary.

Solution

Python 2.4 offers the new string.Template class for this purpose. Here is a snippet of code

showing how to use that class:

import string
make a template from a string where some identifiers are marked with $
new_style = string.Template('this is $thing')
use the substitute method of the template with a dictionary argument:
print new_style.substitute({'thing':5}) # emits: this is 5
print new_style.substitute({'thing':'test'}) # emits: this is test
alternatively, you can pass keyword-arguments to 'substitute':
print new_style.substitute(thing=5) # emits: this is 5
print new_style.substitute(thing='test') # emits: this is test

Discussion

In Python 2.3, a format string for identifier-substitution has to be expressed in a less simple
format:

old_style = 'this is %(thing)s'

with the identifier in parentheses after a %, and an s right after the closed parenthesis. Then, you
use the % operator, with the format string on the left of the operator, and a dictionary on the

right:

print old_style % {'thing':5} # emits: this is 5
print old_style % {'thing':'test'} # emits: this is test

Of course, this code keeps working in Python 2.4, too. However, the new string.Template class

offers a simpler alternative.

When you build a string.Template instance, you may include a dollar sign ($) by doubling it,

and you may have the interpolated identifier immediately followed by letters or digits by
enclosing it in curly braces ({ }). Here is an example that requires both of these refinements:

form_letter = '''Dear $customer,
I hope you are having a great time.

If you do not find Room $room to your satisfaction,
let us know. Please accept this $$5 coupon.
 Sincerely,
 $manager
 ${name}Inn'''
letter_template = string.Template(form_letter)
print letter_template.substitute({'name':'Sleepy', 'customer':'Fred Smith',
 'manager':'Barney Mills', 'room':307,
 })

This snippet emits the following output:

Dear Fred Smith,
I hope you are having a great time.
If you do not find Room 307 to your satisfaction,
let us know. Please accept this $5 coupon.
 Sincerely,
 Barney Mills
 SleepyInn

Sometimes, the handiest way to prepare a dictionary to be used as the argument to the
substitute method is to set local variables, and then pass as the argument locals() (the

artificial dictionary whose keys are the local variables, each with its value associated):

msg = string.Template('the square of $number is $square')
for number in range(10):
 square = number * number
 print msg.substitute(locals())

Another handy alternative is to pass the values to substitute using keyword argument syntax
rather than a dictionary:

msg = string.Template('the square of $number is $square')
for i in range(10):
 print msg.substitute(number=i, square=i*i)

You can even pass both a dictionary and keyword arguments:

msg = string.Template('the square of $number is $square')
for number in range(10):
 print msg.substitute(locals(), square=number*number)

In case of any conflict between entries in the dictionary and the values explicitly passed as
keyword arguments, the keyword arguments take precedence. For example:

msg = string.Template('an $adj $msg')
adj = 'interesting'
print msg.substitute(locals(), msg='message')
emits an interesting message

See Also

Library Reference docs for string.Template (2.4 only) and the locals built-in function.

Recipe 1.18. Replacing Multiple Patterns in a Single
Pass

Credit: Xavier Defrang, Alex Martelli

Problem

You need to perform several string substitutions on a string.

Solution

Sometimes regular expressions afford the fastest solution even in cases where their applicability
is not obvious. The powerful sub method of re objects (from the re module in the standard

library) makes regular expressions particularly good at performing string substitutions. Here is a
function returning a modified copy of an input string, where each occurrence of any string that's
a key in a given dictionary is replaced by the corresponding value in the dictionary:

import re
def multiple_replace(text, adict):
 rx = re.compile('|'.join(map(re.escape, adict)))
 def one_xlat(match):
 return adict[match.group(0)]
 return rx.sub(one_xlat, text)

Discussion

This recipe shows how to use the Python standard re module to perform single-pass multiple-

string substitution using a dictionary. Let's say you have a dictionary-based mapping between
strings. The keys are the set of strings you want to replace, and the corresponding values are the
strings with which to replace them. You could perform the substitution by calling the string
method replace for each key/value pair in the dictionary, thus processing and creating a new

copy of the entire text several times, but it is clearly better and faster to do all the changes in a
single pass, processing and creating a copy of the text only once. re.sub's callback facility

makes this better approach quite easy.

First, we have to build a regular expression from the set of keys we want to match. Such a
regular expression has a pattern of the form a1|a2|...|aN, made up of the N strings to be

substituted, joined by vertical bars, and it can easily be generated using a one-liner, as shown in
the recipe. Then, instead of giving re.sub a replacement string, we pass it a callback argument.
re.sub then calls this object for each match, with a re.MatchObject instance as its only

argument, and it expects the replacement string for that match as the call's result. In our case,
the callback just has to look up the matched text in the dictionary and return the corresponding
value.

The function multiple_replace presented in the recipe recomputes the regular expression and
redefines the one_xlat auxiliary function each time you call it. Often, you must perform
substitutions on multiple strings based on the same, unchanging translation dictionary and would
prefer to pay these setup prices only once. For such needs, you may prefer the following closure-
based approach:

import re
def make_xlat(*args, **kwds):
 adict = dict(*args, **kwds)
 rx = re.compile('|'.join(map(re.escape, adict)))
 def one_xlat(match):
 return adict[match.group(0)]
 def xlat(text):
 return rx.sub(one_xlat, text)
 return xlat

You can call make_xlat, passing as its argument a dictionary, or any other combination of
arguments you could pass to built-in dict in order to construct a dictionary; make_xlat returns a

xlat closure that takes as its only argument text the string on which the substitutions are

desired and returns a copy of text with all the substitutions performed.

Here's a usage example for each half of this recipe. We would normally have such an example as
a part of the same .py source file as the functions in the recipe, so it is guarded by the traditional
Python idiom that runs it if and only if the module is called as a main script:

if _ _name_ _ == "_ _main_ _":
 text = "Larry Wall is the creator of Perl"
 adict = {
 "Larry Wall" : "Guido van Rossum",
 "creator" : "Benevolent Dictator for Life",
 "Perl" : "Python",
 }
 print multiple_replace(text, adict)
 translate = make_xlat(adict)
 print translate(text)

Substitutions such as those performed by this recipe are often intended to operate on entire
words, rather than on arbitrary substrings. Regular expressions are good at picking up the
beginnings and endings of words, thanks to the special sequence r'\b'. We can easily make

customized versions of either multiple_replace or make_xlat by simply changing the one line in
which each of them builds and assigns the regular expression object rx into a slightly different

form:

 rx = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, adict)))

The rest of the code is just the same as shown earlier in this recipe. However, this sameness is
not necessarily good news: it suggests that if we need many similarly customized versions, each
building the regular expression in slightly different ways, we'll end up doing a lot of copy-and-
paste coding, which is the worst form of code reuse, likely to lead to high maintenance costs in
the future.

A key rule of good coding is: "once, and only once!" When we notice that we are duplicating
code, we should notice this symptom as a "code smell," and refactor our code for better reuse.
In this case, for ease of customization, we need a class rather than a function or closure. For
example, here's how to write a class that works very similarly to make_xlat but can be
customized by subclassing and overriding:

class make_xlat:
 def _ _init_ _(self, *args, **kwds):
 self.adict = dict(*args, **kwds)
 self.rx = self.make_rx()
 def make_rx(self):
 return re.compile('|'.join(map(re.escape, self.adict)))
 def one_xlat(self, match):

 return self.adict[match.group(0)]
 def _ _call_ _(self, text):
 return self.rx.sub(self.one_xlat, text)

This is a "drop-in replacement" for the function of the same name: in other words, a snippet such
as the one we showed, with the if _ _name_ _ == '_ _main_ _' guard, works identically when

make_xlat is this class rather than the previously shown function. The function is simpler and
faster, but the class' important advantage is that it can easily be customized in the usual object-
oriented waysubclassing it, and overriding some method. To translate by whole words, for
example, all we need to code is:

class make_xlat_by_whole_words(make_xlat):
 def make_rx(self):
 return re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, self.adict)))

Ease of customization by subclassing and overriding helps you avoid copy-and-paste coding, and
this is sometimes an excellent reason to prefer object-oriented structures over simpler functional
structures, such as closures. Of course, just because some functionality is packaged as a class
doesn't magically make it customizable in just the way you want. Customizability also requires
some foresight in dividing the functionality into separately overridable methods that correspond
to the right pieces of overall functionality. Fortunately, you don't have to get it right the first
time; when code does not have the optimal internal structure for the task at hand (in this specific
example, for reuse by subclassing and selective overriding), you can and should refactor the
code so that its internal structure serves your needs. Just make sure you have a suitable battery
of tests ready to run to ensure that your refactoring hasn't broken anything, and then you can
refactor to your heart's content. See http://www.refactoring.com for more information on the
important art and practice of refactoring.

See Also

Documentation for the re module in the Library Reference and Python in a Nutshell; the

Refactoring home page (http://www.refactoring.com).

http://www.refactoring.com
http://www.refactoring.com

Recipe 1.19. Checking a String for Any of Multiple
Endings

Credit: Michele Simionato

Problem

For a certain string s, you must check whether s has any of several endings; in other words, you
need a handy, elegant equivalent of s.endswith(end1) or s.endswith(end2) or
s.endswith(end3) and so on.

Solution

The itertools.imap function is just as handy for this task as for many of a similar nature:

import itertools
def anyTrue(predicate, sequence):
 return True in itertools.imap(predicate, sequence)
def endsWith(s, *endings):
 return anyTrue(s.endswith, endings)

Discussion

A typical use for endsWith might be to print all names of image files in the current directory:

import os
for filename in os.listdir('.'):
 if endsWith(filename, '.jpg', '.jpeg', '.gif'):
 print filename

The same general idea shown in this recipe's Solution is easily applied to other tasks related to
checking a string for any of several possibilities. The auxiliary function anyTrue is general and
fast, and you can pass it as its first argument (the predicate) other bound methods, such as
s.startswith or s._ _contains_ _. Indeed, perhaps it would be better to do without the helper

function endsWithafter all, directly coding

 if anyTrue(filename.endswith, (".jpg", ".gif", ".png")):

seems to be already readable enough.

Bound Methods

Whenever a Python object supplies a method, you can get the method, already
bound to the object, by just accessing the method on the object. (For example, you
can assign it, pass it as an argument, return it as a function's result, etc.) For
example:

L = ['fee', 'fie', 'foo']
x = L.append

Now, name x refers to a bound method of list object L. Calling, say, x('fum') is the

same as calling L.append('fum'): either call mutates object L into ['fee', 'fie',
'foo', 'fum'].

If you access a method on a type or class, rather than an instance of the type or
class, you get an unbound method, not "attached" to any particular instance of the
type or class: when you call it, you need to pass as its first argument an instance of
that type or class. For example, if you set y = list.append, you cannot just call

y('I')Python couldn't possibly guess which list you want to append I to! You can,
however, call y(L, 'I'), and that is just the same as calling L.append('I') (as long
as isinstance(L, list)).

This recipe originates from a discussion on news:comp.lang.python. and summarizes inputs from
many people, including Raymond Hettinger, Chris Perkins, Bengt Richter and others.

See Also

Library Reference and Python in a Nutshell docs for itertools and string methods.

Recipe 1.20. Handling International Text with Unicode

Credit: Holger Krekel

Problem

You need to deal with text strings that include non-ASCII characters.

Solution

Python has a first class unicode type that you can use in place of the plain bytestring str type.

It's easy, once you accept the need to explicitly convert between a bytestring and a Unicode
string:

>>> german_ae = unicode('\xc3\xa4', 'utf8')

Here german_ae is a unicode string representing the German lowercase a with umlaut (i.e.,
diaeresis) character "ae". It has been constructed from interpreting the bytestring '\xc3\xa4'

according to the specified UTF-8 encoding. There are many encodings, but UTF-8 is often used
because it is universal (UTF-8 can encode any Unicode string) and yet fully compatible with the
7-bit ASCII set (any ASCII bytestring is a correct UTF-8-encoded string).

Once you cross this barrier, life is easy! You can manipulate this Unicode string in practically the
same way as a plain str string:

>>> sentence = "This is a " + german_ae
>>> sentence2 = "Easy!"
>>> para = ". ".join([sentence, sentence2])

Note that para is a Unicode string, because operations between a unicode string and a
bytestring always result in a unicode stringunless they fail and raise an exception:

>>> bytestring = '\xc3\xa4' # Uuh, some non-ASCII bytestring!
>>> german_ae += bytestring
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in
position 0: ordinal not in range(128)

The byte '0xc3' is not a valid character in the 7-bit ASCII encoding, and Python refuses to guess

an encoding. So, being explicit about encodings is the crucial point for successfully using Unicode
strings with Python.

Discussion

Unicode is easy to handle in Python, if you respect a few guidelines and learn to deal with
common problems. This is not to say that an efficient implementation of Unicode is an easy task.
Luckily, as with other hard problems, you don't have to care much: you can just use the efficient
implementation of Unicode that Python provides.

The most important issue is to fully accept the distinction between a bytestring and a unicode
string. As exemplified in this recipe's solution, you often need to explicitly construct a unicode

string by providing a bytestring and an encoding. Without an encoding, a bytestring is basically
meaningless, unless you happen to be lucky and can just assume that the bytestring is text in
ASCII.

The most common problem with using Unicode in Python arises when you are doing some text
manipulation where only some of your strings are unicode objects and others are bytestrings.

Python makes a shallow attempt to implicitly convert your bytestrings to Unicode. It usually
assumes an ASCII encoding, though, which gives you UnicodeDecodeError exceptions if you
actually have non-ASCII bytes somewhere. UnicodeDecodeError tells you that you mixed

Unicode and bytestrings in such a way that Python cannot (doesn't even try to) guess the text
your bytestring might represent.

Developers from many big Python projects have come up with simple rules of thumb to prevent
such runtime UnicodeDecodeErrors, and the rules may be summarized into one sentence:

always do the conversion at IO barriers. To express this same concept a bit more extensively:

Whenever your program receives text data "from the outside" (from the network, from a
file, from user input, etc.), construct unicode objects immediately. Find out the appropriate

encoding, for example, from an HTTP header, or look for an appropriate convention to
determine the encoding to use.

Whenever your program sends text data "to the outside" (to the network, to some file, to
the user, etc.), determine the correct encoding, and convert your text to a bytestring with
that encoding. (Otherwise, Python attempts to convert Unicode to an ASCII bytestring,
likely producing UnicodeEncodeErrors, which are just the converse of the
UnicodeDecodeErrors previously mentioned).

With these two rules, you will solve most Unicode problems. If you still get UnicodeErrors of
either kind, look for where you forgot to properly construct a unicode object, forgot to properly

convert back to an encoded bytestring, or ended up using an inappropriate encoding due to
some mistake. (It is quite possible that such encoding mistakes are due to the user, or some
other program that is interacting with yours, not following the proper encoding rules or
conventions.)

In order to convert a Unicode string back to an encoded bytestring, you usually do something
like:

>>> bytestring = german_ae.decode('latin1')
>>> bytestring
'\xe4'

Now bytestring is a German ae character in the 'latin1' encoding. Note how '\xe4' (in Latin1)
and the previously shown '\xc3\xa4' (in UTF-8) represent the same German character, but in

different encodings.

By now, you can probably imagine why Python refuses to guess among the hundreds of possible
encodings. It's a crucial design choice, based on one of the Zen of Python principles: "In the face
of ambiguity, resist the temptation to guess." At any interactive Python shell prompt, enter the
statement import this to read all of the important principles that make up the Zen of Python.

See Also

Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony Graham
(Hungry Minds, Inc.)details are available at http://www.menteith.com/unicode/primer/; and a
short but complete article from Joel Spolsky, "The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses)!," located at

http://www.menteith.com/unicode/primer/

http://www.joelonsoftware.com/articles/Unicode.html. See also the Library Reference and Python
in a Nutshell documentation about the built-in str and unicode types and modules unidata and
codecs; also, Recipe 1.21 and Recipe 1.22.

http://www.joelonsoftware.com/articles/Unicode.html

Recipe 1.21. Converting Between Unicode and Plain
Strings

Credit: David Ascher, Paul Prescod

Problem

You need to deal with textual data that doesn't necessarily fit in the ASCII character set.

Solution

Unicode strings can be encoded in plain strings in a variety of ways, according to whichever
encoding you choose:

unicodestring = u"Hello world"
Convert Unicode to plain Python string: "encode"
utf8string = unicodestring.encode("utf-8")
asciistring = unicodestring.encode("ascii")
isostring = unicodestring.encode("ISO-8859-1")
utf16string = unicodestring.encode("utf-16")
Convert plain Python string to Unicode: "decode"
plainstring1 = unicode(utf8string, "utf-8")
plainstring2 = unicode(asciistring, "ascii")
plainstring3 = unicode(isostring, "ISO-8859-1")
plainstring4 = unicode(utf16string, "utf-16")
assert plainstring1 == plainstring2 == plainstring3 == plainstring4

Discussion

If you find yourself dealing with text that contains non-ASCII characters, you have to learn about
Unicodewhat it is, how it works, and how Python uses it. The preceding Recipe 1.20 offers
minimal but crucial practical tips, and this recipe tries to offer more perspective.

You don't need to know everything about Unicode to be able to solve real-world problems with it,
but a few basic tidbits of knowledge are indispensable. First, you must understand the difference
between bytes and characters. In older, ASCII-centric languages and environments, bytes and
characters are treated as if they were the same thing. A byte can hold up to 256 different values,
so these environments are limited to dealing with no more than 256 distinct characters. Unicode,
on the other hand, has tens of thousands of characters, which means that each Unicode
character takes more than one byte; thus you need to make the distinction between characters
and bytes.

Standard Python strings are really bytestrings, and a Python character, being such a string of
length 1, is really a byte. Other terms for an instance of the standard Python string type are 8-bit
string and plain string. In this recipe we call such instances bytestrings, to remind you of their
byte orientation.

A Python Unicode character is an abstract object big enough to hold any character, analogous to
Python's long integers. You don't have to worry about the internal representation; the
representation of Unicode characters becomes an issue only when you are trying to send them to

some byte-oriented function, such as the write method of files or the send method of network

sockets. At that point, you must choose how to represent the characters as bytes. Converting
from Unicode to a bytestring is called encoding the string. Similarly, when you load Unicode
strings from a file, socket, or other byte-oriented object, you need to decode the strings from
bytes to characters.

Converting Unicode objects to bytestrings can be achieved in many ways, each of which is called
an encoding. For a variety of historical, political, and technical reasons, there is no one "right"
encoding. Every encoding has a case-insensitive name, and that name is passed to the encode
and decode methods as a parameter. Here are a few encodings you should know about:

The UTF-8 encoding can handle any Unicode character. It is also backwards compatible with
ASCII, so that a pure ASCII file can also be considered a UTF-8 file, and a UTF-8 file that
happens to use only ASCII characters is identical to an ASCII file with the same characters.
This property makes UTF-8 very backwards-compatible, especially with older Unix tools.
UTF-8 is by far the dominant encoding on Unix, as well as the default encoding for XML
documents. UTF-8's primary weakness is that it is fairly inefficient for eastern-language
texts.

The UTF-16 encoding is favored by Microsoft operating systems and the Java environment.
It is less efficient for western languages but more efficient for eastern ones. A variant of
UTF-16 is sometimes known as UCS-2.

The ISO-8859 series of encodings are supersets of ASCII, each able to deal with 256
distinct characters. These encodings cannot support all of the Unicode characters; they
support only some particular language or family of languages. ISO-8859-1, also known as
"Latin-1", covers most western European and African languages, but not Arabic. ISO-8859-
2, also known as "Latin-2", covers many eastern European languages such as Hungarian
and Polish. ISO-8859-15, very popular in Europe these days, is basically the same as ISO-
8859-1 with the addition of the Euro currency symbol as a character.

If you want to be able to encode all Unicode characters, you'll probably want to use UTF-8. You
will need to deal with the other encodings only when you are handed data in those encodings
created by some other application or input device, or vice versa, when you need to prepare data
in a specified encoding to accommodate another application downstream of yours, or an output
device. In particular, Recipe 1.22 shows how to handle the case in which the downstream
application or device is driven from your program's standard output stream.

See Also

Unicode is a huge topic, but a recommended book is Tony Graham, Unicode: A Primer (Hungry
Minds)details are available at http://www.menteith.com/unicode/primer/; and a short, but
complete article from Joel Spolsky, "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses)!" is located at
http://www.joelonsoftware.com/articles/Unicode.html. See also the Library Reference and Python
in a Nutshell documentation about the built-in str and unicode types, and modules unidata and
codecs; also, Recipe 1.20 and Recipe 1.22.

http://www.menteith.com/unicode/primer/
http://www.joelonsoftware.com/articles/Unicode.html

Recipe 1.22. Printing Unicode Charactersto Standard
Output

Credit: David Ascher

Problem

You want to print Unicode strings to standard output (e.g., for debugging), but they don't fit in
the default encoding.

Solution

Wrap the sys.stdout stream with a converter, using the codecs module of Python's standard

library. For example, if you know your output is going to a terminal that displays characters
according to the ISO-8859-1 encoding, you can code:

import codecs, sys
sys.stdout = codecs.lookup('iso8859-1')[-1](sys.stdout)

Discussion

Unicode strings live in a large space, big enough for all of the characters in every language
worldwide, but thankfully the internal representation of Unicode strings is irrelevant for users of
Unicode. Alas, a file stream, such as sys.stdout, deals with bytes and has an encoding

associated with it. You can change the default encoding that is used for new files by modifying
the site module. That, however, requires changing your entire Python installation, which is likely

to confuse other applications that may expect the encoding you originally configured Python to
use (typically the Python standard encoding, which is ASCII). Therefore, this kind of modification
is not to be recommended.

This recipe takes a sounder approach: it rebinds sys.stdout as a stream that expects Unicode

input and outputs it in ISO-8859-1 (also known as "Latin-1"). This approach doesn't change the
encoding of any previous references to sys.stdout, as illustrated here. First, we keep a
reference to the original, ASCII-encoded sys.stdout:

>>> old = sys.stdout

Then, we create a Unicode string that wouldn't normally be able to go through sys.stdout:

>>> char = u"\N{LATIN SMALL LETTER A WITH DIAERESIS}"
>>> print char
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

If you don't get an error from this operation, it's because Python thinks it knows which encoding
your "terminal" is using (in particular, Python is likely to use the right encoding if your "terminal"
is IDLE, the free development environment that comes with Python). But, suppose you do get

this error, or get no error but the output is not the character you expected, because your
"terminal" uses UTF-8 encoding and Python does not know about it. When that is the case, we
can just wrap sys.stdout in the codecs stream writer for UTF-8, which is a much richer
encoding, then rebind sys.stdout to it and try again:

>>> sys.stdout = codecs.lookup('utf-8')[-1](sys.stdout)
>>> print char
ä

This approach works only if your "terminal", terminal emulator, or other window in which you're
running the interactive Python interpreter supports the UTF-8 encoding, with a font rich enough
to display all the characters you need to output. If you don't have such a program or device
available, you may be able to find a suitable one for your platform in the form of a free program
downloadable from the Internet.

Python tries to determine which encoding your "terminal" is using and sets that encoding's name
as attribute sys.stdout.encoding. Sometimes (alas, not always) it even manages to get it right.
IDLE already wraps your sys.stdout, as suggested in this recipe, so, within the environment's

interactive Python shell, you can directly print Unicode strings.

See Also

Documentation for the codecs and site modules, and setdefaultencoding in module sys, in

the Library Reference and Python in a Nutshell; Recipe 1.20 and Recipe 1.21.

Recipe 1.23. Encoding Unicode Data for XML and HTML

Credit: David Goodger, Peter Cogolo

Problem

You want to encode Unicode text for output in HTML, or some other XML application, using a
limited but popular encoding such as ASCII or Latin-1.

Solution

Python provides an encoding error handler named xmlcharrefreplace, which replaces all

characters outside of the chosen encoding with XML numeric character references:

def encode_for_xml(unicode_data, encoding='ascii'):
 return unicode_data.encode(encoding, 'xmlcharrefreplace')

You could use this approach for HTML output, too, but you might prefer to use HTML's symbolic
entity references instead. For this purpose, you need to define and register a customized
encoding error handler. Implementing that handler is made easier by the fact that the Python
Standard Library includes a module named htmlentitydefs that holds HTML entity definitions:

import codecs
from htmlentitydefs import codepoint2name
def html_replace(exc):
 if isinstance(exc, (UnicodeEncodeError, UnicodeTranslateError)):
 s = [u'&%s;' % codepoint2name[ord(c)]
 for c in exc.object[exc.start:exc.end]]
 return ''.join(s), exc.end
 else:
 raise TypeError("can't handle %s" % exc._ _name_ _)
codecs.register_error('html_replace', html_replace)

After registering this error handler, you can optionally write a function to wrap its use:

def encode_for_html(unicode_data, encoding='ascii'):
 return unicode_data.encode(encoding, 'html_replace')

Discussion

As with any good Python module, this module would normally proceed with an example of its
use, guarded by an if _ _name_ _ == '_ _main_ _' test:

if _ _name_ _ == '_ _main_ _':
 # demo
 data = u'''\
<html>
<head>
<title>Encoding Test</title>

</head>
<body>
<p>accented characters:

\xe0 (a + grave)
\xe7 (c + cedilla)
\xe9 (e + acute)

<p>symbols:

\xa3 (British pound)
\u20ac (Euro)
\u221e (infinity)

</body></html>
'''
 print encode_for_xml(data)
 print encode_for_html(data)

If you run this module as a main script, you will then see such output as (from function
encode_for_xml):

à (a + grave)
ç (c + cedilla)
é (e + acute)

 ...
£ (British pound)
€ (Euro)
∞ (infinity)

as well as (from function encode_for_html):

à (a + grave)
ç (c + cedilla)
é (e + acute)

 ...
£ (British pound)
€ (Euro)
∞ (infinity)

There is clearly a niche for each case, since encode_for_xml is more general (you can use it for
any XML application, not just HTML), but encode_for_html may produce output that's easier to
readshould you ever need to look at it directly, edit it further, and so on. If you feed either form
to a browser, you should view it in exactly the same way. To visualize both forms of encoding in
a browser, run this recipe's module as a main script, redirect the output to a disk file, and use a
text editor to separate the two halves before you view them with a browser. (Alternatively, run
the script twice, once commenting out the call to encode_for_xml, and once commenting out the
call to encode_for_html.)

Remember that Unicode data must always be encoded before being printed or written out to a
file. UTF-8 is an ideal encoding, since it can handle any Unicode character. But for many users
and applications, ASCII or Latin-1 encodings are often preferred over UTF-8. When the Unicode
data contains characters that are outside of the given encoding (e.g., accented characters and
most symbols are not encodable in ASCII, and the "infinity" symbol is not encodable in Latin-1),
these encodings cannot handle the data on their own. Python supports a built-in encoding error
handler called xmlcharrefreplace, which replaces unencodable characters with XML numeric
character references, such as ∞ for the "infinity" symbol. This recipe shows how to write

and register another similar error handler, html_replace, specifically for producing HTML output.
html_replace replaces unencodable characters with more readable HTML symbolic entity
references, such as ∞ for the "infinity" symbol. html_replace is less general than
xmlcharrefreplace, since it does not support all Unicode characters and cannot be used with

non-HTML applications; however, it can still be useful if you want HTML output that is as readable
as possible in a "view page source" context.

Neither of these error handlers makes sense for output that is neither HTML nor some other form
of XML. For example, TeX and other markup languages do not recognize XML numeric character
references. However, if you know how to build an arbitrary character reference for such a
markup language, you may modify the example error handler html_replace shown in this recipe's
Solution to code and register your own encoding error handler.

An alternative (and very effective!) way to perform encoding of Unicode data into a file, with a
given encoding and error handler of your choice, is offered by the codecs module in Python's

standard library:

outfile = codecs.open('out.html', mode='w', encoding='ascii',
 errors='html_replace')

You can now use outfile.write(unicode_data) for any arbitrary Unicode string unicode_data,

and all the encoding and error handling will be taken care of transparently. When your output is
finished, of course, you should call outfile.close().

See Also

Library Reference and Python in a Nutshell docs for modules codecs and htmlentitydefs.

Recipe 1.24. Making Some Strings Case-Insensitive

Credit: Dale Strickland-Clark, Peter Cogolo, Mark McMahon

Problem

You want to treat some strings so that all comparisons and lookups are case-insensitive, while all
other uses of the strings preserve the original case.

Solution

The best solution is to wrap the specific strings in question into a suitable subclass of str:

class iStr(str):
 """
 Case insensitive string class.
 Behaves just like str, except that all comparisons and lookups
 are case insensitive.
 """
 def _ _init_ _(self, *args):
 self._lowered = str.lower(self)
 def _ _repr_ _(self):
 return '%s(%s)' % (type(self)._ _name_ _, str._ _repr_ _(self))
 def _ _hash_ _(self):
 return hash(self._lowered)
 def lower(self):
 return self._lowered
def _make_case_insensitive(name):
 ''' wrap one method of str into an iStr one, case-insensitive '''
 str_meth = getattr(str, name)
 def x(self, other, *args):
 ''' try lowercasing 'other', which is typically a string, but
 be prepared to use it as-is if lowering gives problems,
 since strings CAN be correctly compared with non-strings.
 '''
 try: other = other.lower()
 except (TypeError, AttributeError, ValueError): pass
 return str_meth(self._lowered, other, *args)
 # in Python 2.4, only, add the statement: x.func_name = name
 setattr(iStr, name, x)
apply the _make_case_insensitive function to specified methods
for name in 'eq lt le gt gt ne cmp contains'.split():
 _make_case_insensitive('_ _%s_ _' % name)
for name in 'count endswith find index rfind rindex startswith'.split():
 _make_case_insensitive(name)
note that we don't modify methods 'replace', 'split', 'strip', ...
of course, you can add modifications to them, too, if you prefer that.
del _make_case_insensitive # remove helper function, not needed any more

Discussion

Some implementation choices in class iStr are worthy of notice. First, we choose to generate the
lowercase version once and for all, in method _ _init_ _, since we envision that in typical uses

of iStr instances, this version will be required repeatedly. We hold that version in an attribute
that is private, but not overly so (i.e., has a name that begins with one underscore, not two),
because if iStr gets subclassed (e.g., to make a more extensive version that also offers case-
insensitive splitting, replacing, etc., as the comment in the "Solution" suggests), iStr's subclasses
are quite likely to want to access this crucial "implementation detail" of superclass iStr!

We do not offer "case-insensitive" versions of such methods as replace, because it's anything

but clear what kind of input-output relation we might want to establish in the general case.
Application-specific subclasses may therefore be the way to provide this functionality in ways
appropriate to a given application. For example, since the replace method is not wrapped,
calling replace on an instance of iStr returns an instance of str, not of iStr. If that is a problem

in your application, you may want to wrap all iStr methods that return strings, simply to ensure
that the results are made into instances of iStr. For that purpose, you need another, separate
helper function, similar but not identical to the _make_case_insensitive one shown in the
"Solution":

def _make_return_iStr(name):
 str_meth = getattr(str, name)
 def x(*args):
 return iStr(str_meth(*args))
 setattr(iStr, name, x)

and you need to call this helper function _make_return_iStr on all the names of relevant string
methods returning strings such as:

for name in 'center ljust rjust strip lstrip rstrip'.split():
 _make_return_iStr(name)

Strings have about 20 methods (including special methods such as _ _add_ _ and _ _mul_ _)

that you should consider wrapping in this way. You can also wrap in this way some additional
methods, such as split and join, which may require special handling, and others, such as
encode and decode, that you cannot deal with unless you also define a case-insensitive unicode

subtype. In practice, one can hope that not every single one of these methods will prove
problematic in a typical application. However, as you can see, the very functional richness of
Python strings makes it a bit of work to customize string subtypes fully, in a general way without
depending on the needs of a specific application.

The implementation of iStr is careful to avoid the boilerplate code (meaning repetitious and
therefore bug-prone code) that we'd need if we just overrode each needed method of str in the
normal way, with def statements in the class body. A custom metaclass or other such advanced

technique would offer no special advantage in this case, so the boilerplate avoidance is simply
obtained with one helper function that generates and installs wrapper closures, and two loops
using that function, one for normal methods and one for special ones. The loops need to be
placed after the class statement, as we do in this recipe's Solution, because they need to modify

the class object iStr, and the class object doesn't exist yet (and thus cannot be modified) until
the class statement has completed.

In Python 2.4, you can reassign the func_name attribute of a function object, and in this case,
you should do so to get clearer and more readable results when introspection (e.g., the help
function in an interactive interpreter session) is applied to an iStr instance. However, Python 2.3
considers attribute func_name of function objects to be read-only; therefore, in this recipe's

Solution, we have indicated this possibility only in a comment, to avoid losing Python 2.3
compatibility over such a minor issue.

Case-insensitive (but case-preserving) strings have many uses, from more tolerant parsing of
user input, to filename matching on filesystems that share this characteristic, such as all of
Windows filesystems and the Macintosh default filesystem. You might easily find yourself creating

a variety of "case-insensitive" container types, such as dictionaries, lists, sets, and so onmeaning
containers that go out of their way to treat string-valued keys or items as if they were case-
insensitive. Clearly a better architecture is to factor out the functionality of "case-insensitive"
comparisons and lookups once and for all; with this recipe in your toolbox, you can just add the
required wrapping of strings into iStr instances wherever you may need it, including those times
when you're making case-insensitive container types.

For example, a list whose items are basically strings, but are to be treated case-insensitively (for
sorting purposes and in such methods as count and index), is reasonably easy to build on top of

iStr:

class iList(list):
 def _ _init_ _(self, *args):
 list._ _init_ _(self, *args)
 # rely on _ _setitem_ _ to wrap each item into iStr...
 self[:] = self
 wrap_each_item = iStr
 def _ _setitem_ _(self, i, v):
 if isinstance(i, slice): v = map(self.wrap_each_item, v)
 else: v = self.wrap_each_item(v)
 list._ _setitem_ _(self, i, v)
 def append(self, item):
 list.append(self, self.wrap_each_item(item))
 def extend(self, seq):
 list.extend(self, map(self.wrap_each_item, seq))

Essentially, all we're doing is ensuring that every item that gets into an instance of iList gets
wrapped by a call to iStr, and everything else takes care of itself.

Incidentally, this example class iList is accurately coded so that you can easily make customized
subclasses of iList to accommodate application-specific subclasses of iStr: all such a customized
subclass of iList needs to do is override the single class-level member named wrap_each_item.

See Also

Library Reference and Python in a Nutshell sections on str, string methods, and special methods

used in comparisons and hashing.

Recipe 1.25. Converting HTML Documents to Texton a
Unix Terminal

Credit: Brent Burley, Mark Moraes

Problem

You need to visualize HTML documents as text, with support for bold and underlined display on
your Unix terminal.

Solution

The simplest approach is to code a filter script, taking HTML on standard input and emitting text
and terminal control sequences on standard output. Since this recipe only targets Unix, we can
get the needed terminal control sequences from the "Unix" command tput, via the function popen
of the Python Standard Library module os:

#!/usr/bin/env python
import sys, os, htmllib, formatter
use Unix tput to get the escape sequences for bold, underline, reset
set_bold = os.popen('tput bold').read()
set_underline = os.popen('tput smul').read()
perform_reset = os.popen('tput sgr0').read()
class TtyFormatter(formatter.AbstractFormatter):
 ''' a formatter that keeps track of bold and italic font states, and
 emits terminal control sequences accordingly.
 '''
 def _ _init_ _(self, writer):
 # first, as usual, initialize the superclass
 formatter.AbstractFormatter._ _init_ _(self, writer)
 # start with neither bold nor italic, and no saved font state
 self.fontState = False, False
 self.fontStack = []
 def push_font(self, font):
 # the `font' tuple has four items, we only track the two flags
 # about whether italic and bold are active or not
 size, is_italic, is_bold, is_tt = font
 self.fontStack.append((is_italic, is_bold))
 self._updateFontState()
 def pop_font(self, *args):
 # go back to previous font state
 try:
 self.fontStack.pop()
 except IndexError:
 pass
 self._updateFontState()
 def updateFontState(self):
 # emit appropriate terminal control sequences if the state of
 # bold and/or italic(==underline) has just changed
 try:
 newState = self.fontStack[-1]

 except IndexError:
 newState = False, False
 if self.fontState != newState:
 # relevant state change: reset terminal
 print perform_reset,
 # set underine and/or bold if needed
 if newState[0]:
 print set_underline,
 if newState[1]:
 print set_bold,
 # remember the two flags as our current font-state
 self.fontState = newState
make writer, formatter and parser objects, connecting them as needed
myWriter = formatter.DumbWriter()
if sys.stdout.isatty():
 myFormatter = TtyFormatter(myWriter)
else:
 myFormatter = formatter.AbstractFormatter(myWriter)
myParser = htmllib.HTMLParser(myFormatter)
feed all of standard input to the parser, then terminate operations
myParser.feed(sys.stdin.read())
myParser.close()

Discussion

The basic formatter.AbstractFormatter class, offered by the Python Standard Library, should

work just about anywhere. On the other hand, the refinements in the TtyFormatter subclass
that's the focus of this recipe depend on using a Unix-like terminal, and more specifically on the
availability of the tput Unix command to obtain information on the escape sequences used to get
bold or underlined output and to reset the terminal to its base state.

Many systems that do not have Unix certification, such as Linux and Mac OS X, do have a
perfectly workable tput command and therefore can use this recipe's TtyFormatter subclass just
fine. In other words, you can take the use of the word "Unix" in this recipe just as loosely as you
can take it in just about every normal discussion: take it as meaning "*ix," if you will.

If your "terminal" emulator supports other escape sequences for controlling output appearance,
you should be able to adapt this TtyFormatter class accordingly. For example, on Windows, a
cmd.exe command window should, I'm told, support standard ANSI escape sequences, so you
could choose to hard-code those sequences if Windows is the platform on which you want to run
your version of this script.

In many cases, you may prefer to use other existing Unix commands, such as lynx -dump -, to
get richer formatting than this recipe provides. However, this recipe comes in quite handy when
you find yourself on a system that has a Python installation but lacks such other helpful
commands as lynx.

See Also

Library Reference and Python in a Nutshell docs on the formatter and htmllib modules; man

tput on a Unix or Unix-like system for more information about the tput command.

Chapter 2. Files

Introduction

Recipe 2.1. Reading from a File

Recipe 2.2. Writing to a File

Recipe 2.3. Searching and Replacing Text in a File

Recipe 2.4. Reading a Specific Line from a File

Recipe 2.5. Counting Lines in a File

Recipe 2.6. Processing Every Word in a File

Recipe 2.7. Using Random-Access Input/Output

Recipe 2.8. Updating a Random-Access File

Recipe 2.9. Reading Data from zip Files

Recipe 2.10. Handling a zip File Inside a String

Recipe 2.11. Archiving a Tree of Files into a Compressed tar File

Recipe 2.12. Sending Binary Data to Standard Output Under Windows

Recipe 2.13. Using a C++-like iostream Syntax

Recipe 2.14. Rewinding an Input File to the Beginning

Recipe 2.15. Adapting a File-like Object to a True File Object

Recipe 2.16. Walking Directory Trees

Recipe 2.17. Swapping One File Extension for Another Throughout a Directory Tree

Recipe 2.18. Finding a File Given a Search Path

Recipe 2.19. Finding Files Given a Search Path and a Pattern

Recipe 2.20. Finding a File on the Python Search Path

Recipe 2.21. Dynamically Changing the PythonSearch Path

Recipe 2.22. Computing the Relative Path from One Directory to Another

Recipe 2.23. Reading an Unbuffered Character in a Cross-Platform Way

Recipe 2.24. Counting Pages of PDF Documents on Mac OS X

Recipe 2.25. Changing File Attributes on Windows

Recipe 2.26. Extracting Text from OpenOffice.org Documents

Recipe 2.27. Extracting Text from Microsoft Word Documents

Recipe 2.28. File Locking Using a Cross-Platform API

Recipe 2.29. Versioning Filenames

Recipe 2.30. Calculating CRC-64 Cyclic Redundancy Checks

Introduction

Credit: Mark Lutz, author of Programming Python and Python Quick Reference, co-author of
Learning Python

Behold the fileone of the first things that any reasonably pragmatic programmer reaches for in a
programming language's toolbox. Because processing external files is a very real, tangible task,
the quality of file-processing interfaces is a good way to assess the practicality of a programming
tool.

As the recipes in this chapter attest, Python shines in this task. Files in Python are supported in a
variety of layers: from the built-in open function (a synonym for the standard file object type),
to specialized tools in standard library modules such as os, to third-party utilities available on the

Web. All told, Python's arsenal of file tools provides several powerful ways to access files in your
scripts.

File Basics

In Python, a file object is an instance of built-in type file. The built-in function open creates and

returns a file object. The first argument, a string, specifies the file's path (i.e., the filename
preceded by an optional directory path). The second argument to open, also a string, specifies

the mode in which to open the file. For example:

input = open('data', 'r')
output = open('/tmp/spam', 'w')

open accepts a file path in which directories and files are separated by slash characters (/),

regardless of the proclivities of the underlying operating system. On systems that don't use
slashes, you can use a backslash character (\) instead, but there's no real reason to do so.

Backslashes are harder to fit nicely in string literals, since you have to double them up or use
"raw" strings. If the file path argument does not include the file's directory name, the file is
assumed to reside in the current working directory (which is a disjoint concept from the Python
module search path).

For the mode argument, use 'r' to read the file in text mode; this is the default value and is
commonly omitted, so that open is called with just one argument. Other common modes are 'rb'
to read the file in binary mode, 'w' to create and write to the file in text mode, and 'wb' to create
and write to the file in binary mode. A variant of 'r' that is sometimes precious is 'rU', which tells
Python to read the file in text mode with "universal newlines": mode 'rU' can read text files

independently of the line-termination convention the files are using, be it the Unix way, the
Windows way, or even the (old) Mac way. (Mac OS X today is a Unix for all intents and purposes,
but releases of Mac OS 9 and earlier, just a few years ago, were quite different.)

The distinction between text mode and binary mode is important on non-Unix-like platforms
because of the line-termination characters used on these systems. When you open a file in binary
mode, Python knows that it doesn't need to worry about line-termination characters; it just
moves bytes between the file and in-memory strings without any kind of translation. When you
open a file in text mode on a non-Unix-like system, however, Python knows it must translate
between the '\n' line-termination characters used in strings and whatever the current platform
uses in the file itself. All of your Python code can always rely on '\n' as the line-termination

character, as long as you properly indicate text or binary mode when you open the file.

Once you have a file object, you perform all file I/O by calling methods of this object, as we'll
discuss in a moment. When you're done with the file, you should finish by calling the close

method on the object, to close the connection to the file:

input.close()

In short scripts, people often omit this step, as Python automatically closes the file when a file
object is reclaimed during garbage collection (which in mainstream Python means the file is
closed just about at once, although other important Python implementations, such as Jython and
IronPython, have other, more relaxed garbage-collection strategies). Nevertheless, it is good
programming practice to close your files as soon as possible, and it is especially a good idea in
larger programs, which otherwise may be at more risk of having excessive numbers of uselessly
open files lying about. Note that TRy/finally is particularly well suited to ensuring that a file

gets closed, even when a function terminates due to an uncaught exception.

To write to a file, use the write method:

output.write(s)

where s is a string. Think of s as a string of characters if output is open for text-mode writing,
and as a string of bytes if output is open for binary-mode writing. Files have other writing-
related methods, such as flush, to send any data being buffered, and writelines, to write a
sequence of strings in a single call. However, write is by far the most commonly used method.

Reading from a file is more common than writing to a file, and more issues are involved, so file
objects have more reading methods than writing ones. The readline method reads and returns

the next line from a text file. Consider the following loop:

while True:
 line = input.readline()
 if not line: break
 process(line)

This was once idiomatic Python but it is no longer the best way to read and process all of the
lines from a file. Another dated alternative is to use the readlines method, which reads the

whole file and returns a list of lines:

for line in input.readlines():
 process(line)

readlines is useful only for files that fit comfortably in physical memory. If the file is truly huge,
readlines can fail or at least slow things down quite drastically (virtual memory fills up and the

operating system has to start copying parts of physical memory to disk). In today's Python, just
loop on the file object itself to get a line at a time with excellent memory and performance
characteristics:

for line in input:
 process(line)

Of course, you don't always want to read a file line by line. You may instead want to read some
or all of the bytes in the file, particularly if you've opened the file for binary-mode reading, where
lines are unlikely to be an applicable concept. In this case, you can use the read method. When
called without arguments, read reads and returns all the remaining bytes from the file. When

read is called with an integer argument N, it reads and returns the next N bytes (or all the

remaining bytes, if less than N bytes remain). Other methods worth mentioning are seek and
tell, which support random access to files. These methods are normally used with binary files

made up of fixed-length records.

Portability and Flexibility

On the surface, Python's file support is straightforward. However, before you peruse the code in
this chapter, I want to underscore two aspects of Python's file support: code portability and
interface flexibility.

Keep in mind that most file interfaces in Python are fully portable across platform boundaries. It
would be difficult to overstate the importance of this feature. A Python script that searches all
files in a "directory" tree for a bit of text, for example, can be freely moved from platform to
platform without source-code changes: just copy the script's source file to the new target
machine. I do it all the timeso much so that I can happily stay out of operating system wars.
With Python's portability, the underlying platform is almost irrelevant.

Also, it has always struck me that Python's file-processing interfaces are not restricted to real,
physical files. In fact, most file tools work with any kind of object that exposes the same
interface as a real file object. Thus, a file reader cares only about read methods, and a file writer
cares only about write methods. As long as the target object implements the expected protocol,
all goes well.

For example, suppose you have written a general file-processing function such as the following,
meant to apply a passed-in function to each line of an input file:

def scanner(fileobject, linehandler):
 for line in fileobject:
 linehandler(line)

If you code this function in a module file and drop that file into a "directory" that's on your
Python search path (sys.path), you can use it any time you need to scan a text file line by line,

now or in the future. To illustrate, here is a client script that simply prints the first word of each
line:

from myutils import scanner
def firstword(line):
 print line.split()[0]
file = open('data')
scanner(file, firstword)

So far, so good; we've just coded a small, reusable software component. But notice that there
are no type declarations in the scanner function, only an interface constraintany object that is
iterable line by line will do. For instance, suppose you later want to provide canned test input
from a string object, instead of using a real, physical file. The standard StringIO module, and
the equivalent but faster cStringIO, provide the appropriate wrapping and interface forgery:

from cStringIO import StringIO
from myutils import scanner
def firstword(line): print line.split()[0]
string = StringIO('one\ntwo xxx\nthree\n')
scanner(string, firstword)

StringIO objects are plug-and-play compatible with file objects, so scanner takes its three lines

of text from an in-memory string object, rather than a true external file. You don't need to
change the scanner to make this workjust pass it the right kind of object. For more generality,
you can even use a class to implement the expected interface instead:

class MyStream(object):
 def _ _iter_ _(self):

 # grab and return text from wherever
 return iter(['a\n', 'b c d\n'])
from myutils import scanner
def firstword(line):
 print line.split()[0]
object = MyStream()
scanner(object, firstword)

This time, as scanner attempts to read the file, it really calls out to the _ _iter_ _ method

you've coded in your class. In practice, such a method might use other Python standard tools to
grab text from a variety of sources: an interactive user, a popup GUI input box, a shelve object,

an SQL database, an XML or HTML page, a network socket, and so on. The point is that scanner
doesn't know or care what type of object is implementing the interface it expects, or what that
interface actually does.

Object-oriented programmers know this deliberate naiveté as polymorphism. The type of the
object being processed determines what an operation, such as the for-loop iteration in scanner,

actually does. Everywhere in Python, object interfaces, rather than specific data types, are the
unit of coupling. The practical effect is that functions are often applicable to a much broader
range of problems than you might expect. This is especially true if you have a background in
statically typed languages such as C or C++. It is almost as if we get C++ templates for free in
Python. Code has an innate flexibility that is a by-product of Python's strong but dynamic typing.

Of course, code portability and flexibility run rampant in Python development and are not really
confined to file interfaces. Both are features of the language that are simply inherited by file-
processing scripts. Other Python benefits, such as its easy scriptability and code readability, are
also key assets when it comes time to change file-processing programs. But rather than extolling
all of Python's virtues here, I'll simply defer to the wonderful recipes in this chapter and this book
at large for more details. Enjoy!

Recipe 2.1. Reading from a File

Credit: Luther Blissett

Problem

You want to read text or data from a file.

Solution

Here's the most convenient way to read all of the file's contents at once into one long string:

all_the_text = open('thefile.txt').read() # all text from a text file
all_the_data = open('abinfile', 'rb').read() # all data from a binary file

However, it is safer to bind the file object to a name, so that you can call close on it as soon as

you're done, to avoid ending up with open files hanging around. For example, for a text file:

file_object = open('thefile.txt')
try:
 all_the_text = file_object.read()
finally:
 file_object.close()

You don't necessarily have to use the TRy/finally statement here, but it's a good idea to use it,

because it ensures the file gets closed even when an error occurs during reading.

The simplest, fastest, and most Pythonic way to read a text file's contents at once as a list of
strings, one per line, is:

list_of_all_the_lines = file_object.readlines()

This leaves a '\n' at the end of each line; if you don't want that, you have alternatives, such as:

list_of_all_the_lines = file_object.read().splitlines()
list_of_all_the_lines = file_object.read().split('\n')
list_of_all_the_lines = [L.rstrip('\n') for L in file_object]

The simplest and fastest way to process a text file one line at a time is simply to loop on the file
object with a for statement:

for line in file_object:

 process line

This approach also leaves a '\n' at the end of each line; you may remove it by starting the for

loop's body with:

 line = line.rstrip('\n')

or even, when you're OK with getting rid of trailing whitespace from each line (not just a trailing
'\n'), the generally handier:

 line = line.rstrip()

Discussion

Unless the file you're reading is truly huge, slurping it all into memory in one gulp is often fastest
and most convenient for any further processing. The built-in function open creates a Python file
object (alternatively, you can equivalently call the built-in type file). You call the read method

on that object to get all of the contents (whether text or binary) as a single long string. If the
contents are text, you may choose to immediately split that string into a list of lines with the
split method or the specialized splitlines method. Since splitting into lines is frequently
needed, you may also call readlines directly on the file object for faster, more convenient

operation.

You can also loop directly on the file object, or pass it to callables that require an iterable, such
as list or maxwhen thus treated as an iterable, a file object open for reading has the file's text

lines as the iteration items (therefore, this should be done for text files only). This kind of line-
by-line iteration is cheap in terms of memory consumption and fairly speedy too.

On Unix and Unix-like systems, such as Linux, Mac OS X, and other BSD variants, there is no
real distinction between text files and binary data files. On Windows and very old Macintosh
systems, however, line terminators in text files are encoded, not with the standard '\n' separator,
but with '\r\n' and '\r', respectively. Python translates these line-termination characters into '\n'

on your behalf. This means that you need to tell Python when you open a binary file, so that it
won't perform such translation. To do so, use 'rb' as the second argument to open. This is

innocuous even on Unix-like platforms, and it's a good habit to distinguish binary files from text
files even there, although it's not mandatory in that case. Such good habits will make your
programs more immediately understandable, as well as more compatible with different
platforms.

If you're unsure about which line-termination convention a certain text file might be using, use
'rU' as the second argument to open, requesting universal endline translation. This lets you freely

interchange text files among Windows, Unix (including Mac OS X), and old Macintosh systems,
without worries: all kinds of line-ending conventions get mapped to '\n', whatever platform your

code is running on.

You can call methods such as read directly on the file object produced by the open function, as

shown in the first snippet of the solution. When you do so, you no longer have a reference to the
file object as soon as the reading operation finishes. In practice, Python notices the lack of a
reference at once, and immediately closes the file. However, it is better to bind a name to the
result of open, so that you can call close yourself explicitly when you are done with the file. This

ensures that the file stays open for as short a time as possible, even on platforms such as
Jython, IronPython, and other hypothetical future versions of Python, on which more advanced
garbage-collection mechanisms might delay the automatic closing that the current version of C-
based Python performs at once. To ensure that a file object is closed even if errors happen
during its processing, the most solid and prudent approach is to use the try/finally statement:

file_object = open('thefile.txt')
try:
 for line in file_object:

 process line
finally:
 file_object.close()

Be careful not to place the call to open inside the try clause of this try/finally statement (a

rather common error among beginners). If an error occurs during the opening, there is nothing
to close, and besides, nothing gets bound to name file_object, so you definitely don't want to
call file_object.close()!

If you choose to read the file a little at a time, rather than all at once, the idioms are different.
Here's one way to read a binary file 100 bytes at a time, until you reach the end of the file:

file_object = open('abinfile', 'rb')
try:
 while True:
 chunk = file_object.read(100)
 if not chunk:
 break
 do_something_with(chunk)
finally:
 file_object.close()

Passing an argument N to the read method ensures that read will read only the next N bytes (or
fewer, if the file is closer to the end). read returns the empty string when it reaches the end of

the file. Complicated loops are best encapsulated as reusable generators. In this case, we can
encapsulate the logic only partially, because a generator's yield keyword is not allowed in the
try clause of a try/finally statement. Giving up on the assurance of file closing afforded by
try/finally, we can therefore settle for:

def read_file_by_chunks(filename, chunksize=100):
 file_object = open(filename, 'rb')
 while True:
 chunk = file_object.read(chunksize)
 if not chunk:
 break
 yield chunk
 file_object.close()

Once this read_file_by_chunks generator is available, your application code to read and process
a binary file by fixed-size chunks becomes extremely simple:

for chunk in read_file_by_chunks('abinfile'):
 do_something_with(chunk)

Reading a text file one line at a time is a frequent task. Just loop on the file object, as in:

for line in open('thefile.txt', 'rU'):
 do_something_with(line)

Here, too, in order to be 100% certain that no uselessly open file object will ever be left just
hanging around, you may want to code this snippet in a more rigorously correct and prudent
way:

file_object = open('thefile.txt', 'rU'):
try:
 for line in file_object:
 do_something_with(line)
finally:
 file_object.close()

See Also

Recipe 2.2; documentation for the open built-in function and file objects in the Library

Reference and Python in a Nutshell.

Recipe 2.2. Writing to a File

Credit: Luther Blissett

Problem

You want to write text or data to a file.

Solution

Here is the most convenient way to write one long string to a file:

open('thefile.txt', 'w').write(all_the_text) # text to a text file
open('abinfile', 'wb').write(all_the_data) # data to a binary file

However, it is safer to bind the file object to a name, so that you can call close on the file object

as soon as you're done. For example, for a text file:

file_object = open('thefile.txt', 'w')
file_object.write(all_the_text)
file_object.close()

Often, the data you want to write is not in one big string, but in a list (or other sequence) of
strings. In this case, you should use the writelines method (which, despite its name, is not

limited to lines and works just as well with binary data as with text files!):

file_object.writelines(list_of_text_strings)
open('abinfile', 'wb').writelines(list_of_data_strings)

Calling writelines is much faster than the alternatives of joining the strings into one big string
(e.g., with ''.join) and then calling write, or calling write repeatedly in a loop.

Discussion

To create a file object for writing, you must always pass a second argument to open (or
file)either 'w' to write textual data or 'wb' to write binary data. The same considerations detailed
previously in Recipe 2.1 apply here, except that calling close explicitly is even more advisable

when you're writing to a file rather than reading from it. Only by closing the file can you be
reasonably sure that the data is actually on the disk and not still residing in some temporary
buffer in memory.

Writing a file a little at a time is even more common than reading a file a little at a time. You can
just call write and/or writelines repeatedly, as each string or sequence of strings to write

becomes ready. Each write operation appends data at the end of the file, after all the previously
written data. When you're done, call the close method on the file object. If all the data is
available at once, a single writelines call is faster and simpler. However, if the data becomes
available a little at a time, it's better to call write as the data comes, than to build up a
temporary list of pieces (e.g., with append) just in order to be able to write it all at once in the

end with writelines. Reading and writing are quite different, with respect to the performance

and convenience implications of operating "in bulk" versus operating a little at a time.

When you open a file for writing with option 'w' (or 'wb'), any data that might already have been

in the file is immediately destroyed; even if you close the file object immediately after opening it,
you still end up with an empty file on the disk. If you want the data you're writing to be
appended to the previous contents of the file, open the file with option 'a' (or 'ab') instead. More

advanced options allow both reading and writing on the same open file objectin particular, see
Recipe 2.8 for option 'r+b', which, in practice, is the only frequently used one out of all the

advanced option strings.

See Also

Recipe 2.1; Recipe 2.8; documentation for the open built-in function and file objects in the

Library Reference and Python in a Nutshell.

Recipe 2.3. Searching and Replacing Text in a File

Credit: Jeff Bauer, Adam Krieg

Problem

You need to change one string into another throughout a file.

Solution

String substitution is most simply performed by the replace method of string objects. The work

here is to support reading from a specified file (or standard input) and writing to a specified file
(or standard output):

#!/usr/bin/env python
import os, sys
nargs = len(sys.argv)
if not 3 <= nargs <= 5:
 print "usage: %s search_text replace_text [infile [outfile]]" % \
 os.path.basename(sys.argv[0])
else:
 stext = sys.argv[1]
 rtext = sys.argv[2]
 input_file = sys.stdin
 output_file = sys.stdout
 if nargs > 3:
 7 input_file = open(sys.argv[3])
 if nargs > 4:
 output_file = open(sys.argv[4], 'w')
 for s in input_file:
 output_file.write(s.replace(stext, rtext))
 output.close()
 input.close()

Discussion

This recipe is really simple, but that's what beautiful about itwhy do complicated stuff when
simple stuff suffices? As indicated by the leading "shebang" line, the recipe is a simple main
script, meaning a script meant to be run directly at a shell command prompt, as opposed to a
module meant to be imported from elsewhere. The script looks at its arguments to determine the
search text, the replacement text, the input file (defaulting to standard input), and the output file
(defaulting to standard output). Then, it loops over each line of the input file, writing to the
output file a copy of the line with the substitution performed on it. That's all! For accuracy, the
script closes both files at the end.

As long as an input file fits comfortably in memory in two copies (one before and one after the
replacement, since strings are immutable), we could, with an increase in speed, operate on the
entire input file's contents at once instead of looping. With today's low-end PCs typically
containing at least 256 MB of memory, handling files of up to about 100 MB should not be a
problem, and few text files are bigger than that. It suffices to replace the for loop with one

single statement:

output_file.write(input_file.read().replace(stext, rtext))

As you can see, that's even simpler than the loop used in the recipe.

See Also

Documentation for the open built-in function, file objects, and strings' replace method in the

Library Reference and Python in a Nutshell.

Recipe 2.4. Reading a Specific Line from a File

Credit: Luther Blissett

Problem

You want to read from a text file a single line, given the line number.

Solution

The standard Python library linecache module makes this task a snap:

import linecache
theline = linecache.getline(thefilepath, desired_line_number)

Discussion

The standard linecache module is usually the optimal Python solution for this task. linecache is

particularly useful when you have to perform this task repeatedly for several lines in a file, since
linecache caches information to avoid uselessly repeating work. When you know that you won't
be needing any more lines from the cache for a while, call the module's clearcache function to
free the memory used for the cache. You can also use checkcache if the file may have changed

on disk and you must make sure you are getting the updated version.

linecache reads and caches all of the text file whose name you pass to it, so, if it's a very large
file and you need only one of its lines, linecache may be doing more work than is strictly

necessary. Should this happen to be a bottleneck for your program, you may get an increase in
speed by coding an explicit loop, encapsulated within a function, such as:

def getline(thefilepath, desired_line_number):
 if desired_line_number < 1: return ''
 for current_line_number, line in enumerate(open(thefilepath, 'rU')):
 if current_line_number == desired_line_number-1: return line
 return ''

The only detail requiring attention is that enumerate counts from 0, so, since we assume the
desired_line_number argument counts from 1, we need the -1 in the == comparison.

See Also

Documentation for the linecache module in the Library Reference and Python in a Nutshell; Perl

Cookbook recipe 8.8.

Recipe 2.5. Counting Lines in a File

Credit: Luther Blissett

Problem

You need to compute the number of lines in a file.

Solution

The simplest approach for reasonably sized files is to read the file as a list of lines, so that the
count of lines is the length of the list. If the file's path is in a string bound to a variable named
thefilepath, all the code you need to implement this approach is:

count = len(open(thefilepath, 'rU').readlines())

For a truly huge file, however, this simple approach may be very slow or even fail to work. If you
have to worry about humongous files, a loop on the file always works:

count = -1
for count, line in enumerate(open(thefilepath, 'rU')):
 pass
count += 1

A tricky alternative, potentially faster for truly humongous files, for when the line terminator is
'\n' (or has '\n' as a substring, as happens on Windows):

count = 0
thefile = open(thefilepath, 'rb')
while True:
 buffer = thefile.read(8192*1024)
 if not buffer:
 break
 count += buffer.count('\n')
thefile.close()

The 'rb' argument to open is necessary if you're after speedwithout that argument, this snippet

might be very slow on Windows.

Discussion

When an external program counts a file's lines, such as wc -l on Unix-like platforms, you can of
course choose to use that (e.g., via os.popen). However, it's generally simpler, faster, and more

portable to do the line-counting in your own program. You can rely on almost all text files having
a reasonable size, so that reading the whole file into memory at once is feasible. For all such
normal files, the len of the result of readlines gives you the count of lines in the simplest way.

If the file is larger than available memory (say, a few hundred megabytes on a typical PC today),

the simplest solution can become unacceptably slow, as the operating system struggles to fit the
file's contents into virtual memory. It may even fail, when swap space is exhausted and virtual
memory can't help any more. On a typical PC, with 256MB RAM and virtually unlimited disk
space, you should still expect serious problems when you try to read into memory files above,
say, 1 or 2 GB, depending on your operating system. (Some operating systems are much more
fragile than others in handling virtual-memory issues under such overly stressed load
conditions.) In this case, looping on the file object, as shown in this recipe's Solution, is better.
The enumerate built-in keeps the line count without your code having to do it explicitly.

Counting line-termination characters while reading the file by bytes in reasonably sized chunks is
the key idea in the third approach. It's probably the least immediately intuitive, and it's not
perfectly cross-platform, but you might hope that it's fastest (e.g., when compared with recipe
8.2 in the Perl Cookbook).

However, in most cases, performance doesn't really matter all that much. When it does matter,
the time-sink part of your program might not be what your intuition tells you it is, so you should
never trust your intuition in this matterinstead, always benchmark and measure. For example,
consider a typical Unix syslog file of middling size, a bit over 18 MB of text in 230,000 lines:

[situ@tioni nuc]$ wc nuc
 231581 2312730 18508908 nuc

And consider the following testing-and-benchmark framework script, bench.py:

import time
def timeo(fun, n=10):
 start = time.clock()
 for i in xrange(n): fun()
 stend = time.clock()
 thetime = stend-start
 return fun._ _name_ _, thetime
import os
def linecount_w():
 return int(os.popen('wc -l nuc').read().split()[0])
def linecount_1():
 return len(open('nuc').readlines())
def linecount_2():
 count = -1
 for count, line in enumerate(open('nuc')): pass
 return count+1
def linecount_3():
 count = 0
 thefile = open('nuc', 'rb')
 while True:
 buffer = thefile.read(65536)
 if not buffer: break
 count += buffer.count('\n')
 return count
for f in linecount_w, linecount_1, linecount_2, linecount_3:
 print f._ _name_ _, f()
for f in linecount_1, linecount_2, linecount_3:
 print "%s: %.2f"%timeo(f)

First, I print the line-counts obtained by all methods, thus ensuring that no anomaly or error has
occurred (counting tasks are notoriously prone to off-by-one errors). Then, I run each alternative
10 times, under the control of the timing function timeo, and look at the results. Here they are,

on the old but reliable machine I measured them on:

[situ@tioni nuc]$ python -O bench.py

linecount_w 231581
linecount_1 231581
linecount_2 231581
linecount_3 231581
linecount_1: 4.84
linecount_2: 4.54
linecount_3: 5.02

As you can see, the performance differences hardly matter: your users will never even notice a
difference of 10% or so in one auxiliary task. However, the fastest approach (for my particular
circumstances, on an old but reliable PC running a popular Linux distribution, and for this specific
benchmark) is the humble loop-on-every-line technique, while the slowest one is the fancy,
ambitious technique that counts line terminators by chunks. In practice, unless I had to worry
about files of many hundreds of megabytes, I'd always use the simplest approach (i.e., the first
one presented in this recipe).

Measuring the exact performance of code snippets (rather than blindly using complicated
approaches in the hope that they'll be faster) is very importantso important, indeed, that the
Python Standard Library includes a module, timeit, specifically designed for such measurement
tasks. I suggest you use timeit, rather than coding your own little benchmarks as I have done

here. The benchmark I just showed you is one I've had around for years, since well before
timeit appeared in the standard Python library, so I think I can be forgiven for not using timeit

in this specific case!

See Also

The Library Reference and Python in a Nutshell sections on file objects, the enumerate built-in,
os.popen, and the time and timeit modules; Perl Cookbook recipe 8.2.

Recipe 2.6. Processing Every Word in a File

Credit: Luther Blissett

Problem

You need to do something with each and every word in a file.

Solution

This task is best handled by two nested loops, one on lines and another on the words in each
line:

for line in open(thefilepath):
 for word in line.split():
 dosomethingwith(word)

The nested for statement's header implicitly defines words as sequences of nonspaces separated

by sequences of spaces (just as the Unix program wc does). For other definitions of words, you
can use regular expressions. For example:

import re
re_word = re.compile(r"[\w'-]+")
for line in open(thefilepath):
 for word in re_word.finditer(line):
 dosomethingwith(word.group(0))

In this case, a word is defined as a maximal sequence of alphanumerics, hyphens, and
apostrophes.

Discussion

If you want to use other definitions of words, you will obviously need different regular
expressions. The outer loop, on all lines in the file, won't change.

It's often a good idea to wrap iterations as iterator objects, and this kind of wrapping is most
commonly and conveniently obtained by coding simple generators:

def words_of_file(thefilepath, line_to_words=str.split):
 the_file = open(thefilepath):
 for line in the_file:
 for word in line_to_words(line):
 yield word
 the_file.close()
for word in words_of_file(thefilepath):
 dosomethingwith(word)

This approach lets you separate, cleanly and effectively, two different concerns: how to iterate

over all items (in this case, words in a file) and what to do with each item in the iteration. Once
you have cleanly encapsulated iteration concerns in an iterator object (often, as here, a
generator), most of your uses of iteration become simple for statements. You can often reuse

the iterator in many spots in your program, and if maintenance is ever needed, you can perform
that maintenance in just one placethe definition of the iteratorrather than having to hunt for all
uses. The advantages are thus very similar to those you obtain in any programming language by
appropriately defining and using functions, rather than copying and pasting pieces of code all
over the place. With Python's iterators, you can get these reuse advantages for all of your
looping-control structures, too.

We've taken the opportunity afforded by the refactoring of the loop into a generator to perform
two minor enhancementsensuring the file is explicitly closed, which is always a good idea, and
generalizing the way each line is split into words (defaulting to the split method of string

objects, but leaving a door open to more generality). For example, when we need words as
defined by a regular expression, we can code another wrapper on top of words_of_file thanks to
this "hook":

import re
def words_by_re(thefilepath, repattern=r"[\w'-]+"):
 wre = re.compile(repattern)
 def line_to_words(line):
 for mo in wre.finditer(line):
 return mo.group(0)
 return words_of_file(thefilepath, line_to_words)

Here, too, we supply a reasonable default for the regular expression pattern defining a word but
still make it easy to pass a different value in those cases in which different definitions are
necessary. Excessive generalization is a pernicious temptation, but a little tasteful generalization
suggested by experience will most often amply repay the modest effort it requires. Having a
function accept an optional argument, while providing the most likely value for the argument as
the default value, is among the simplest and handiest ways to implement this modest and often
worthwhile kind of generalization.

See Also

Chapter 19 for more on iterators and generators; Library Reference and Python in a Nutshell on
file objects and the re module; Perl Cookbook recipe 8.3.

Recipe 2.7. Using Random-Access Input/Output

Credit: Luther Blissett

Problem

You want to read a binary record from somewhere inside a large file of fixed-length records,
without reading a record at a time to get there.

Solution

The byte offset of the start of a record in the file is the size of a record, in bytes, multiplied by
the progressive number of the record (counting from 0). So, you can just seek right to the
proper spot, then read the data. For example, to read the seventh record from a binary file
where each record is 48 bytes long:

thefile = open('somebinfile', 'rb')
record_size = 48
record_number = 6
thefile.seek(record_size * record_number)
buffer = thefile.read(record_size)

Note that the record_number of the seventh record is 6: record numbers count from zero!

Discussion

This approach works only on files (generally binary ones) defined in terms of records that are all
the same fixed size in bytes; it doesn't work on normal text files. For clarity, the recipe shows the
file being opened for reading as a binary file by passing 'rb' as the second argument to open, just
before the seek. As long as the file object is open for reading as a binary file, you can perform as
many seek and read operations as you need, before eventually closing the file againyou don't
necessarily open the file just before performing a seek on it.

See Also

The section of the Library Reference and Python in a Nutshell on file objects; Perl Cookbook
recipe 8.12.

Recipe 2.8. Updating a Random-Access File

Credit: Luther Blissett

Problem

You want to read a binary record from somewhere inside a large file of fixed-length records,
change some or all of the values of the record's fields, and write the record back.

Solution

Read the record, unpack it, perform whatever computations you need for the update, pack the
fields back into the record, seek to the start of the record again, write it back. Phew. Faster to
code than to say:

import struct
format_string = '8l' # e.g., say a record is 8 4-byte integers
thefile = open('somebinfile', 'r+b')
record_size = struct.calcsize(format_string)
thefile.seek(record_size * record_number)
buffer = thefile.read(record_size)
fields = list(struct.unpack(format_string, buffer))
Perform computations, suitably modifying fields, then:
buffer = struct.pack(format_string, *fields)
thefile.seek(record_size * record_number)
thefile.write(buffer)
thefile.close()

Discussion

This approach works only on files (generally binary ones) defined in terms of records that are all
the same, fixed size; it doesn't work on normal text files. Furthermore, the size of each record
must be that defined by a struct format string, as shown in the recipe's code. A typical format
string, for example, might be '8l', to specify that each record is made up of eight four-byte
integers, each to be interpreted as a signed value and unpacked into a Python int. In this case,

the fields variable in the recipe would be bound to a list of eight ints. Note that struct.unpack

returns a tuple. Because tuples are immutable, the computation would have to rebind the entire
fields variable. A list is mutable, so each field can be rebound as needed. Thus, for

convenience, we explicitly ask for a list when we bind fields. Make sure, however, not to alter

the length of the list. In this case, it needs to remain composed of exactly eight integers, or the
struct.pack call will raise an exception when we call it with a format_string of '8l'. Also, this

recipe is not suitable when working with records that are not all of the same, unchanging length.

To seek back to the start of the record, instead of using the record_size*record_number offset

again, you may choose to do a relative seek:

thefile.seek(-record_size, 1)

The second argument to the seek method (1) tells the file object to seek relative to the current

position (here, so many bytes back, because we used a negative number as the first argument).
seek's default is to seek to an absolute offset within the file (i.e., from the start of the file). You
can also explicitly request this default behavior by calling seek with a second argument of 0.

You don't need to open the file just before you do the first seek, nor do you need to close it right
after the write. Once you have a file object that is correctly opened (i.e., for updating and as a

binary rather than a text file), you can perform as many updates on the file as you want before
closing the file again. These calls are shown here to emphasize the proper technique for opening
a file for random-access updates and the importance of closing a file when you are done with it.

The file needs to be opened for updating (i.e., to allow both reading and writing). That's what the
'r+b' argument to open means: open for reading and writing, but do not implicitly perform any
transformations on the file's contents because the file is a binary one. (The 'b' part is

unnecessary but still recommended for clarity on Unix and Unix-like systems. However, it's
absolutely crucial on other platforms, such as Windows.) If you're creating the binary file from
scratch, but you still want to be able to go back, reread, and update some records without
closing and reopening the file, you can use a second argument of 'w+b' instead. However, I have

never witnessed this strange combination of requirements; binary files are normally first created
(by opening them with 'wb', writing data, and closing the file) and later reopened for updating
with 'r+b'.

While this approach is normally useful only on a file whose records are all the same size, another,
more advanced possibility exists: a separate "index file" that provides the offset and length of
each record inside the "data file". Such indexed sequential access approaches aren't much in
fashion any more, but they used to be very important. Nowadays, one meets just about only text
files (of many kinds, more and more often XML ones), databases, and occasional binary files with
fixed-length records. Still, if you do need to access an indexed sequential binary file, the code is
quite similar to that shown in this recipe, except that you must obtain the record_size and the
offset argument to pass to thefile.seek by reading them from the index file, rather than

computing them yourself as shown in this recipe's Solution.

See Also

The sections of the Library Reference and Python in a Nutshell on file objects and the struct

module; Perl Cookbook recipe 8.13.

Recipe 2.9. Reading Data from zip Files

Credit: Paul Prescod, Alex Martelli

Problem

You want to directly examine some or all of the files contained in an archive in zip format,
without expanding them on disk.

Solution

zip files are a popular, cross-platform way of archiving files. The Python Standard Library comes
with a zipfile module to access such files easily:

import zipfile
z = zipfile.ZipFile("zipfile.zip", "r")
for filename in z.namelist():
 print 'File:', filename,
 bytes = z.read(filename)
 print 'has', len(bytes), 'bytes'

Discussion

Python can work directly with data in zip files. You can look at the list of items in the archive's
directory and work with the "data file"s themselves. This recipe is a snippet that lists all of the
names and content lengths of the files included in the zip archive zipfile.zip.

The zipfile module does not currently handle multidisk zip files nor zip files with appended

comments. Take care to use r as the flag argument, not rb, which might seem more natural

(e.g., on Windows). With ZipFile, the flag is not used the same way when opening a file, and rb

is not recognized. The r flag handles the inherently binary nature of all zip files on all platforms.

When a zip file contains some Python modules (meaning .py or preferably .pyc files), possibly in
addition to other (data) files, you can add the file's path to Python's sys.path and then use the
import statement to import modules from the zip file. Here's a toy, self-contained, purely

demonstrative example that creates such a zip file on the fly, imports a module from it, then
removes itall just to show you how it's done:

import zipfile, tempfile, os, sys
handle, filename = tempfile.mkstemp('.zip')
os.close(handle)
z = zipfile.ZipFile(filename, 'w')
z.writestr('hello.py', 'def f(): return "hello world from "+_ _file_ _\n')
z.close()
sys.path.insert(0, filename)
import hello
print hello.f()
os.unlink(filename)

Running this script emits something like:

hello world from /tmp/tmpESVzeY.zip/hello.py

Besides illustrating Python's ability to import from a zip file, this snippet also shows how to make
(and later remove) a temporary file, and how to use the writestr method to add a member to a

zip file without placing that member into a disk file first.

Note that the path to the zip file from which you import is treated somewhat like a directory. (In
this specific example run, that path is /tmp/tmpESVzeY.zip, but of course, since we're dealing

with a temporary file, the exact value of the path can change at each run, depending also on
your platform.) In particular, the _ _file_ _ global variable, within the module hello, which is
imported from the zip file, has a value of /tmp/tmpESVzeY.zip/hello.pya pseudo-path, made up

of the zip file's path seen as a "directory" followed by the relative path of hello.py within the zip
file. If you import from a zip file a module that computes paths relative to itself in order to get to
data files, you need to adapt the module to this effect, because you cannot just open such a

"pseudo-path" to get a file object: rather, to read or write files inside a zip file, you must use
functions from standard library module zipfile, as shown in the solution.

For more information about importing modules from a zip file, see Recipe 16.12. While that
recipe is Unix-specific, the information in the recipe's Discussion about importing from zip files is
also valid for Windows.

See Also

Documentation for the zipfile module in the Library Reference and Python in a Nutshell;
modules tempfile, os, sys; for archiving a tree of files, see Recipe 2.11; for more information

about importing modules from a zip file, Recipe 16.12.

Recipe 2.10. Handling a zip File Inside a String

Credit: Indyana Jones

Problem

Your program receives a zip file as a string of bytes in memory, and you need to read the
information in this zip file.

Solution

Solving this kind of problem is exactly what standard library module cStringIO is for:

import cStringIO, zipfile
class ZipString(ZipFile):
 def _ _init_ _(self, datastring):
 ZipFile._ _init_ _(self, cStringIO.StringIO(datastring))

Discussion

I often find myself faced with this taskfor example, zip files coming from BLOB fields in a
database or ones received from a network connection. I used to save such binary data to a
temporary file, then open the file with the standard library module zipfile. Of course, I had to

ensure I deleted the temporary file when I was done. Then I thought of using the standard
library module cStringIO for the purpose . . . and never looked back.

Module cStringIO lets you wrap a string of bytes so it can be accessed as a file object. You can
also do things the other way around, writing into a cStringIO.StringIO instance as if it were a

file object, and eventually recovering its contents as a string of bytes. Most Python modules that
take file objects don't check whether you're passing an actual filerather, any file-like object will

do; the module's code just calls on the object whatever file methods it needs. As long as the
object supplies those methods and responds correctly when they're called, everything just
works. This demonstrates the awesome power of signature-based polymorphism and hopefully
teaches why you should almost never type-test (utter such horrors as if type(x) is y, or even
just the lesser horror if isinstance(x, y)) in your own code! A few low-level modules, such as
marshal, are unfortunately adamant about using "true" files, but zipfile isn't, and this recipe

shows how simple it makes your life!

If you are using a version of Python that is different from the mainstream C-coded one, known as
"CPython", you may not find module cStringIO in the standard library. The leading c in the

name of the module indicates that it's a C-specific module, optimized for speed but not
guaranteed to be in the standard library for other compliant Python implementations. Several
such alternative implementations include both production-quality ones (such as Jython, which is
coded in Java and runs on a JVM) and experimental ones (such as pypy, which is coded in Python
and generates machine code, and IronPython, which is coded in C# and runs on Microsoft's .NET
CLR). Not to worry: the Python Standard Library always includes module StringIO, which is

coded in pure Python (and thus is usable from any compliant implementation of Python), and
implements the same functionality as module cStringIO (albeit not quite as fast, at least on the
mainstream CPython implementation). You just need to alter your import statement a bit to
make sure you get cStringIO when available and StringIO otherwise. For example, this recipe

might become:

import zipfile
try:
 from cStringIO import StringIO
except ImportError:
 from StringIO import StringIO
class ZipString(ZipFile):
 def _ _init_ _(self, datastring):
 ZipFile._ _init_ _(self, StringIO(datastring))

With this modification, the recipe becomes useful in Jython, and other, alternative
implementations.

See Also

Modules zipfile and cStringIO in the Library Reference and Python in a Nutshell; Jython is at

http://www.jython.org/; pypy is at http://codespeak.net/pypy/; IronPython is at
http://ironpython.com/.

http://www.jython.org/
http://codespeak.net/pypy/
http://ironpython.com/

Recipe 2.11. Archiving a Tree of Files into a
Compressed tar File

Credit: Ed Gordon, Ravi Teja Bhupatiraju

Problem

You need to archive all of the files and folders in a subtree into a tar archive file, compressing the
data with either the popular gzip approach or the higher-compressing bzip2 approach.

Solution

The Python Standard Library's tarfile module directly supports either kind of compression: you

just need to specify the kind of compression you require, as part of the option string that you
pass when you call tarfile.TarFile.open to create the archive file. For example:

import tarfile, os
def make_tar(folder_to_backup, dest_folder, compression='bz2'):
 if compression:
 dest_ext = '.' + compression
 else:
 dest_ext = ''
 arcname = os.path.basename(folder_to_backup)
 dest_name = '%s.tar%s' % (arcname, dest_ext)
 dest_path = os.path.join(dest_folder, dest_name)
 if compression:
 dest_cmp = ':' + compression
 else:
 dest_cmp = ''
 out = tarfile.TarFile.open(dest_path, 'w'+dest_cmp)
 out.add(folder_to_backup, arcname)
 out.close()
 return dest_path

Discussion

You can pass, as argument compression to function make_tar, the string 'gz' to get gzip
compression instead of the default bzip2, or you can pass the empty string '' to get no

compression at all. Besides making the file extension of the result either .tar, .tar.gz, or .tar.bz2,
as appropriate, your choice for the compression argument determines which string is passed as
the second argument to tarfile.TarFile.open: 'w', when you want no compression, or 'w:gz'
or 'w:bz2' to get two kinds of compression.

Class tarfile.TarFile offers several other classmethods, besides open, which you could use to
generate a suitable instance. I find open handier and more flexible because it takes the
compression information as part of the mode string argument. However, if you want to ensure
bzip2 compression is used unconditionally, for example, you could choose to call classmethod
bz2open instead.

Once we have an instance of class tarfile.TarFile that is set to use the kind of compression

we desire, the instance's method add does all we require. In particular, when string
folder_to_backup names a "directory" (or folder), rather than an ordinary file, add recursively

adds all of the subtree rooted in that directory. If on some other occasion, we wanted to change
this behavior to get precise control on what is archived, we could pass to add an additional
named argument recursive=False to switch off this implicit recursion. After calling add, all
that's left for function make_tar to do is to close the TarFile instance and return the path on

which the tar file has been written, just in case the caller needs this information.

See Also

Library Reference docs on module tarfile.

Recipe 2.12. Sending Binary Data to Standard Output
Under Windows

Credit: Hamish Lawson

Problem

You want to send binary data (e.g., an image) to stdout under Windows.

Solution

That's what the setmode function, in the platform-dependent (Windows-only) msvcrt module in

the Python Standard Library, is for:

import sys
if sys.platform == "win32":
 import os, msvcrt
 msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

You can now call sys.stdout.write with any bytestring as the argument, and the bytestring will

go unmodified to standard output.

Discussion

While Unix doesn't make (or need) a distinction between text and binary modes, if you are
reading or writing binary data, such as an image, under Windows, the file must be opened in
binary mode. This is a problem for programs that write binary data to standard output (as a CGI
script, for example, could be expected to do), because Python opens the sys.stdout file object

on your behalf, normally in text mode.

You can have stdout opened in binary mode instead by supplying the -u command-line option to

the Python interpreter. For example, if you know your CGI script will be running under the
Apache web server, as the first line of your script, you can use something like:

#! c:/python23/python.exe -u

assuming you're running under Python 2.3 with a standard installation. Unfortunately, you may
not always be able to control the command line under which your script will be started. The
approach taken in this recipe's "Solution" offers a workable alternative. The setmode function
provided by the Windows-specific msvcrt module lets you change the mode of stdout's

underlying file descriptor. By using this function, you can ensure from within your program that
sys.stdout gets set to binary mode.

See Also

Documentation for the msvcrt module in the Library Reference and Python in a Nutshell.

Recipe 2.13. Using a C++-like iostream Syntax

Credit: Erik Max Francis

Problem

You like the C++ approach to I/O, based on ostreams and manipulators (special objects that

cause special effects on a stream when inserted in it) and want to use it in your Python
programs.

Solution

Python lets you overload operators by having your classes define special methods (i.e., methods
whose names start and end with two underscores). To use << for output, as you do in C++, you
just need to code an output stream class that defines the special method _ _lshift_ _:

class IOManipulator(object):
 def _ _init_ _(self, function=None):
 self.function = function
 def do(self, output):
 self.function(output)
def do_endl(stream):
 stream.output.write('\n')
 stream.output.flush()
endl = IOManipulator(do_endl)
class OStream(object):
 def _ _init_ _(self, output=None):
 if output is None:
 import sys
 output = sys.stdout
 self.output = output
 self.format = '%s'
 def _ _lshift_ _(self, thing):
 ''' the special method which Python calls when you use the <<
 operator and the left-hand operand is an OStream '''
 if isinstance(thing, IOManipulator):
 thing.do(self)
 else:
 self.output.write(self.format % thing)
 self.format = '%s'
 return self
def example_main():
 cout = OStream()
 cout<< "The average of " << 1 << " and " << 3 << " is " << (1+3)/2 <<endl
emits The average of 1 and 3 is 4
if _ _name_ _ == '_ _main_ _':
 example_main()

Discussion

Wrapping Python file-like objects to emulate C++ ostreams syntax is quite easy. This recipe
shows how to code the insertion operator << for this purpose. The recipe also implements an
IOManipulator class (as in C++) to call arbitrary functions on a stream upon insertion, and a
predefined manipulator endl (guess where that name comes from) to write a newline and flush

the stream.

The reason class OStream's instances hold a format attribute and reset it to the default value '%s'
after each self.output.write is so that you can build devious manipulators that temporarily

save formatting state on the stream object, such as:

def do_hex(stream):
 stream.format = '%x'
hex = IOManipulator(do_hex)
cout << 23 << ' in hex is ' << hex << 23 << ', and in decimal ' << 23 << endl
emits 23 in hex is 17, and in decimal 23

Some people detest C++'s cout << something syntax, some love it. In cases such as the

example given in the recipe, this syntax ends up simpler and more readable than:

print>>somewhere, "The average of %d and %d is %f\n" % (1, 3, (1+3)/2)

which is the "Python-native" alternative (looking a lot like C in this case). It depends in part on
whether you're more used to C++ or to C. In any case, this recipe gives you a choice! Even if
you don't end up using this particular approach, it's still interesting to see how simple operator
overloading is in Python.

See Also

Library Reference and Python in a Nutshell docs on file objects and special methods such as _
lshift _; Recipe 4.20 implements a Python version of C's printf function.

Recipe 2.14. Rewinding an Input File to the Beginning

Credit: Andrew Dalke

Problem

You need to make an input file object (with data coming from a socket or other input file handle)
rewindable back to the beginning so you can read it over.

Solution

Wrap the file object into a suitable class:

from cStringIO import StringIO
class RewindableFile(object):
 """ Wrap a file handle to allow seeks back to the beginning. """
 def _ _init_ _(self, input_file):
 """ Wraps input_file into a file-like object with rewind. """
 self.file = input_file
 self.buffer_file = StringIO()
 self.at_start = True
 try:
 self.start = input_file.tell()
 except (IOError, AttributeError):
 self.start = 0
 self._use_buffer = True
 def seek(self, offset, whence=0):
 """ Seek to a given byte position.
 Must be: whence == 0 and offset == self.start
 """
 if whence != 0:
 raise ValueError("whence=%r; expecting 0" % (whence,))
 if offset != self.start:
 raise ValueError("offset=%r; expecting %s" % (offset, self.start))
 self.rewind()
 def rewind(self):
 """ Simplified way to seek back to the beginning. """
 self.buffer_file.seek(0)
 self.at_start = True
 def tell(self):
 """ Return the current position of the file (must be at start). """
 if not self.at_start:
 raise TypeError("RewindableFile can't tell except at start of file")
 return self.start
 def _read(self, size):
 if size < 0: # read all the way to the end of the file
 y = self.file.read()
 if self._use_buffer:
 self.buffer_file.write(y)
 return self.buffer_file.read() + y
 elif size == 0: # no need to actually read the empty string
 return ""

 x = self.buffer_file.read(size)
 if len(x) < size:
 y = self.file.read(size - len(x))
 if self._use_buffer:
 self.buffer_file.write(y)
 return x + y
 return x
 def read(self, size=-1):
 """ Read up to 'size' bytes from the file.
 Default is -1, which means to read to end of file.
 """
 x = self._read(size)
 if self.at_start and x:
 self.at_start = False
 self._check_no_buffer()
 return x
 def readline(self):
 """ Read a line from the file. """
 # Can we get it out of the buffer_file?
 s = self.buffer_file.readline()
 if s[-1:] == "\n":
 return s
 # No, so read a line from the input file
 t = self.file.readline()
 if self._use_buffer:
 self.buffer_file.write(t)
 self._check_no_buffer()
 return s + t
 def readlines(self):
 """read all remaining lines from the file"""
 return self.read().splitlines(True)
 def _check_no_buffer(self):
 # If 'nobuffer' has been called and we're finished with the buffer file,
 # get rid of the buffer, redirect everything to the original input file.
 if not self._use_buffer and \
 self.buffer_file.tell() == len(self.buffer_file.getvalue()):
 # for top performance, we rebind all relevant methods in self
 for n in 'seek tell read readline readlines'.split():
 setattr(self, n, getattr(self.file, n, None))
 del self.buffer_file
 def nobuffer(self):
 """tell RewindableFile to stop using the buffer once it's exhausted"""
 self._use_buffer = False

Discussion

Sometimes, data coming from a socket or other input file handle isn't what it was supposed to
be. For example, suppose you are reading from a buggy server, which is supposed to return an
XML stream, but sometimes returns an unformatted error message instead. (This scenario often
occurs because many servers don't handle incorrect input very well.)

This recipe's RewindableFile class helps you solve this problem. r = RewindableFile(f) wraps

the original input stream f into a "rewindable file" instance r which essentially mimics f's

behavior but also provides a buffer. Read requests to r are forwarded to f, and the data thus

read gets appended to a buffer, then returned to the caller. The buffer contains all the data read
so far.

r can be told to rewind, meaning to seek back to the start position. The next read request will

come from the buffer, until the buffer has been read, in which case it gets the data from the
input stream again. The newly read data is also appended to the buffer.

When buffering is no longer needed, call the nobuffer method of r. This tells r that, once it's

done reading the buffer's current contents, it can throw the buffer away. After nobuffer is called,
the behavior of seek is no longer defined.

For example, suppose you have a server that gives either an error message of the form ERROR:
cannot do that, or an XML data stream, starting with '<?xml'...:

 import RewindableFile
 infile = urllib2.urlopen("http://somewhere/")
 infile = RewindableFile.RewindableFile(infile)
 s = infile.readline()
 if s.startswith("ERROR:"):
 raise Exception(s[:-1])
 infile.seek(0)
 infile.nobuffer() # Don't buffer the data any more

 ... process the XML from infile ...

One sometimes-useful Python idiom is not supported by the class in this recipe: you can't reliably
stash away the bound methods of a RewindableFile instance. (If you don't know what bound
methods are, no problem, of course, since in that case you surely won't want to stash them
anywhere!). The reason for this limitation is that, when the buffer is empty, the RewindableFile
code reassigns the input file's read, readlines, etc., methods, as instance variables of self.

This gives slightly better performance, at the cost of not supporting the infrequently-used idiom
of saving bound methods. See Recipe 6.11 for another example of a similar technique, where an
instance irreversibly changes its own methods.

The tell method, which gives the current location of a file, can be called on an instance of

RewindableFile only right after wrapping, and before any reading, to get the beginning byte
location. The RewindableFile implementation of tell TRies to get the real position from the
wrapped file, and use that as the beginning location. If the wrapped file does not support tell,
then the RewindableFile implementation of tell just returns 0.

See Also

Site http://www.dalkescientific.com/Python/ for the latest version of this recipe's code; Library
Reference and Python in a Nutshell docs on file objects and module cStringIO; Recipe 6.11 for

another example of an instance affecting an irreversible behavior change on itself by rebinding its
methods.

http://www.dalkescientific.com/Python/

Recipe 2.15. Adapting a File-like Object to a True File
Object

Credit: Michael Kent

Problem

You need to pass a file-like object (e.g., the results of a call such as urllib.urlopen) to a

function or method that insists on receiving a true file object (e.g., a function such as
marshal.load).

Solution

To cooperate with such type-checking, we need to write all data from the file-like object into a
temporary file on disk. Then, we can use the (true) file object for that temporary disk file. Here's
a function that implements this idea:

import types, tempfile
CHUNK_SIZE = 16 * 1024
def adapt_file(fileObj):
 if isinstance(fileObj, file): return fileObj
 tmpFileObj = tempfile.TemporaryFile
 while True:
 data = fileObj.read(CHUNK_SIZE)
 if not data: break
 tmpFileObj.write(data)
 fileObj.close()
 tmpFileObj.seek(0)
 return tmpFileObj

Discussion

This recipe demonstrates an unusual Pythonic application of the Adapter Design Pattern (i.e.,
what to do when you have an X and you need a Y instead). While design patterns are most
normally thought of in an object-oriented way, and therefore implemented by writing classes,
nothing is intrinsically necessary about that. In this case, for example, we don't really need to
introduce any new class, since the adapt_file function is obviously sufficient. Therefore, we
respect Occam's Razor and do not introduce entities without necessity.

One way or another, you should think in terms of adaptation, in preference to type testing, even
when you need to rely on some lower-level utility that insists on precise types. Instead of raising
an exception when you get passed an object that's perfectly adequate save for the technicality of
type membership, think of the possibility of adapting what you get passed to what you need. In
this way, your code will be more flexible and more suitable for reuse.

See Also

Documentation on built-in file objects, and modules tempfile and marshal, in the Library

Reference and Python in a Nutshell.

Recipe 2.16. Walking Directory Trees

Credit: Robin Parmar, Alex Martelli

Problem

You need to examine a "directory", or an entire directory tree rooted in a certain directory, and
iterate on the files (and optionally folders) that match certain patterns.

Solution

The generator os.walk from the Python Standard Library module os is sufficient for this task, but
we can dress it up a bit by coding our own function to wrap os.walk:

import os, fnmatch
def all_files(root, patterns='*', single_level=False, yield_folders=False):
 # Expand patterns from semicolon-separated string to list
 patterns = patterns.split(';')
 for path, subdirs, files in os.walk(root):
 if yield_folders:
 files.extend(subdirs)
 files.sort()
 for name in files:
 for pattern in patterns:
 if fnmatch.fnmatch(name, pattern):
 yield os.path.join(path, name)
 break
 if single_level:
 break

Discussion

The standard directory tree traversal generator os.walk is powerful, simple, and flexible.
However, as it stands, os.walk lacks a few niceties that applications may need, such as selecting

files according to some patterns, flat (linear) looping on all files (and optionally folders) in sorted
order, and the ability to examine a single directory (without entering its subdirectories). This
recipe shows how easily these kinds of features can be added, by wrapping os.walk into another
simple generator and using standard library module fnmatch to check filenames for matches to

patterns.

The file patterns are possibly case-insensitive (that's platform-dependent) but otherwise Unix-
style, as supplied by the standard fnmatch module, which this recipe uses. To specify multiple

patterns, join them with a semicolon. Note that this means that semicolons themselves can't be
part of a pattern.

For example, you can easily get a list of all Python and HTML files in directory /tmp or any

subdirectory thereof:

thefiles = list(all_files('/tmp', '*.py;*.htm;*.html'))

Should you just want to process these files' paths one at a time (e.g., print them, one per line),
you do not need to build a list: you can simply loop on the result of calling all_files:

for path in all_files('/tmp', '*.py;*.htm;*.html'):
 print path

If your platform is case-sensitive, alnd you want case-sensitive matching, then you need to
specify the patterns more laboriously, e.g., '*.[Hh][Tt][Mm][Ll]' instead of just '*.html'.

See Also

Documentation for the os.path module and the os.walk generator, as well as the fnmatch

module, in the Library Reference and Python in a Nutshell.

Recipe 2.17. Swapping One File Extension for Another
Throughout a Directory Tree

Credit: Julius Welby

Problem

You need to rename files throughout a subtree of directories, specifically changing the names of
all files with a given extension so that they have a different extension instead.

Solution

Operating on all files of a whole subtree of directories is easy enough with the os.walk function

from Python's standard library:

import os
def swapextensions(dir, before, after):
 if before[:1] != '.':
 before = '.'+before
 thelen = -len(before)
 if after[:1] != '.':
 after = '.'+after
 for path, subdirs, files in os.walk(dir):
 for oldfile in files:
 if oldfile[thelen:] == before:
 oldfile = os.path.join(path, oldfile)
 newfile = oldfile[:thelen] + after
 os.rename(oldfile, newfile)
if _ _name_ _=='_ _main_ _':
 import sys
 if len(sys.argv) != 4:
 print "Usage: swapext rootdir before after"
 sys.exit(100)
 swapextensions(sys.argv[1], sys.argv[2], sys.argv[3])

Discussion

This recipe shows how to change the file extensions of all files in a specified directory, all of its
subdirectories, all of their subdirectories, and so on. This technique is useful for changing the
extensions of a whole batch of files in a folder structure, such as a web site. You can also use it
to correct errors made when saving a batch of files programmatically.

The recipe is usable either as a module to be imported from any other, or as a script to run from
the command line, and it is carefully coded to be platform-independent. You can pass in the
extensions either with or without the leading dot (.), since the code in this recipe inserts that dot,
if necessary. (As a consequence of this convenience, however, this recipe is unable to deal with
files completely lacking any extension, including the dot; this limitation may be bothersome on
Unix systems.)

The implementation of this recipe uses techniques that purists might consider too low

levelspecifically by dealing mostly with filenames and extensions by direct string manipulation,
rather than by the functions in module os.path. It's not a big deal: using os.path is fine, but

using Python's powerful string facilities to deal with filenames is fine, too.

See Also

The author's web page at http://www.outwardlynormal.com/python/swapextensions.htm.

http://www.outwardlynormal.com/python/swapextensions.htm

Recipe 2.18. Finding a File Given a Search Path

Credit: Chui Tey

Problem

Given a search path (a string of directories with a separator in between), you need to find the
first file along the path with the requested name.

Solution

Basically, you need to loop over the directories in the given search path:

import os
def search_file(filename, search_path, pathsep=os.pathsep):
 """ Given a search path, find file with requested name """
 for path in search_path.split(pathsep):
 candidate = os.path.join(path, filename)
 if os.path.isfile(candidate):
 return os.path.abspath(candidate)
 return None
if _ _name_ _ == '_ _main_ _':
 search_path = '/bin' + os.pathsep + '/usr/bin' # ; on Windows, : on Unix
 find_file = search_file('ls', search_path)
 if find_file:
 print "File 'ls' found at %s" % find_file
 else:
 print "File 'ls' not found"

Discussion

This recipe's "Problem" is a reasonably frequent task, and Python makes resolving it extremely
easy. Other recipes perform similar and related tasks: to find files specifically on Python's own
search path, see Recipe 2.20; to find all files matching a pattern along a search path, see Recipe
2.19.

The search loop can be coded in many ways, but returning the path (made into an absolute path,
for uniformity and convenience) as soon as a hit is found is simplest as well as fast. The explicit
return None after the loop is not strictly needed, since None is returned by Python when a
function falls off the end. Having the return statement explicitly there in this case makes the

functionality of search_file much clearer at first sight.

See Also

Recipe 2.20; Recipe 2.19; documentation for the module os in the Library Reference and Python

in a Nutshell.

Recipe 2.19. Finding Files Given a Search Path and a
Pattern

Credit: Bill McNeill, Andrew Kirkpatrick

Problem

Given a search path (i.e., a string of directories with a separator in between), you need to find all
files along the path whose names match a given pattern.

Solution

Basically, you need to loop over the directories in the given search path. The loop is best
encapsulated in a generator:

import glob, os
def all_files(pattern, search_path, pathsep=os.pathsep):
 """ Given a search path, yield all files matching the pattern. """
 for path in search_path.split(pathsep):
 for match in glob.glob(os.path.join(path, pattern)):
 yield match

Discussion

One nice thing about generators is that you can easily use them to obtain just the first item, all
items, or anything in between. For example, to print the first file matching '*.pye' along your
environment's PATH:

print all_files('*.pye', os.environ['PATH']).next()

To print all such files, one per line:

for match in all_files('*.pye', os.environ['PATH']):
 print match

To print them all at once, as a list:

print list(all_files('*.pye', os.environ['PATH']))

I have also wrapped around this all_files function a main script to show all of the files with a
given name along my PATH. Thus I can see not only which one will execute for that name (the

first one), but also which ones are "shadowed" by that first one:

if _ _name_ _ == '_ _main_ _':
 import sys
 if len(sys.argv) != 2 or sys.argv[1].startswith('-'):
 print 'Use: %s <pattern>' % sys.argv[0]

 sys.exit(1)
 matches = list(all_files(sys.argv[1], os.environ['PATH']))
 print '%d match:' % len(matches)
 for match in matches:
 print match

See Also

Recipe 2.18 for a simpler approach to find the first file with a specified name along the path;
Library Reference and Python in a Nutshell docs for modules os and glob.

Recipe 2.20. Finding a File on the Python Search Path

Credit: Mitch Chapman

Problem

A large Python application includes resource files (e.g., Glade project files, SQL templates, and
images) as well as Python packages. You want to store these associated files together with the
Python packages that use them.

Solution

You need to be able to look for either files or directories along Python's sys.path:

import sys, os
class Error(Exception): pass
def _find(pathname, matchFunc=os.path.isfile):
 for dirname in sys.path:
 candidate = os.path.join(dirname, pathname)
 if matchFunc(candidate):
 return candidate
 raise Error("Can't find file %s" % pathname)
def findFile(pathname):
 return _find(pathname)
def findDir(path):
 return _find(path, matchFunc=os.path.isdir)

Discussion

Larger Python applications consist of sets of Python packages and associated sets of resource
files. It's convenient to store these associated files together with the Python packages that use
them, and it's easy to do so if you use this variation on the previous Recipe 2.18 to find files or
directories with pathnames relative to the Python search path.

See Also

Recipe 2.18; documentation for the os module in the Library Reference and Python in a Nutshell.

Recipe 2.21. Dynamically Changing the PythonSearch
Path

Credit: Robin Parmar

Problem

Modules must be on the Python search path before they can be imported, but you don't want to
set a huge permanent path because that slows performanceso, you want to change the path
dynamically.

Solution

We simply conditionally add a "directory" to Python's sys.path, carefully checking to avoid

duplication:

def AddSysPath(new_path):
 """ AddSysPath(new_path): adds a "directory" to Python's sys.path
 Does not add the directory if it does not exist or if it's already on
 sys.path. Returns 1 if OK, -1 if new_path does not exist, 0 if it was
 already on sys.path.
 """
 import sys, os
 # Avoid adding nonexistent paths
 if not os.path.exists(new_path): return -1
 # Standardize the path. Windows is case-insensitive, so lowercase
 # for definiteness if we are on Windows.
 new_path = os.path.abspath(new_path)
 if sys.platform == 'win32':
 new_path = new_path.lower()
 # Check against all currently available paths
 for x in sys.path:
 x = os.path.abspath(x)
 if sys.platform == 'win32':
 x = x.lower()
 if new_path in (x, x + os.sep):
 return 0
 sys.path.append(new_path)
 # if you want the new_path to take precedence over existing
 # directories already in sys.path, instead of appending, use:
 # sys.path.insert(0, new_path)
 return 1
if _ _name_ _ == '_ _main_ _':
 # Test and show usage
 import sys
 print 'Before:'
 for x in sys.path: print x
 if sys.platform == 'win32':
 print AddSysPath('c:\\Temp')
 print AddSysPath('c:\\temp')
 else:

 print AddSysPath('/usr/lib/my_modules')
 print 'After:'
 for x in sys.path: print x

Discussion

Modules must be in directories that are on the Python search path before they can be imported,
but we don't want to have a huge permanent path because doing so slows down every import
performed by every Python script and application. This simple recipe dynamically adds a
"directory" to the path, but only if that directory exists and was not already on sys.path.

sys.path is a list, so it's easy to add directories to its end, using sys.path.append. Every import
performed after such an append will automatically look in the newly added directory if it cannot

be satisfied from earlier ones. As indicated in the Solution, you can alternatively use
sys.path.insert(0, . . . so that the newly added directory is searched before ones that were
already in sys.path.

It's no big deal if sys.path ends up with some duplicates or if a nonexistent directory is
accidentally appended to it; Python's import statement is clever enough to shield itself against

such issues. However, each time such a problem occurs at import time (e.g., from duplicate
unsuccessful searches, errors from the operating system that need to be handled gracefully,
etc.), a small price is paid in terms of performance. To avoid uselessly paying such a price, this
recipe does a conditional addition to sys.path, never appending any directory that doesn't exist
or is already in sys.path. Directories appended by this recipe stay in sys.path only for the
duration of this program's run, just like any other dynamic alteration you might do to sys.path.

See Also

Documentation for the sys and os.path modules in the Library Reference and Python in a

Nutshell.

Recipe 2.22. Computing the Relative Path from One
Directory to Another

Credit: Cimarron Taylor, Alan Ezust

Problem

You need to know the relative path from one directory to anotherfor example, to create a
symbolic link or a relative reference in a URL.

Solution

The simplest approach is to split paths into lists of directories, then work on the lists. Using a
couple of auxiliary and somewhat generic helper functions, we could code:

import os, itertools
def all_equal(elements):
 ''' return True if all the elements are equal, otherwise False. '''
 first_element = elements[0]
 for other_element in elements[1:]:
 if other_element != first_element: return False
 return True
def common_prefix(*sequences):
 ''' return a list of common elements at the start of all sequences,
 then a list of lists that are the unique tails of each sequence. '''
 # if there are no sequences at all, we're done
 if not sequences: return [], []
 # loop in parallel on the sequences
 common = []
 for elements in itertools.izip(*sequences):
 # unless all elements are equal, bail out of the loop
 if not all_equal(elements): break
 # got one more common element, append it and keep looping
 common.append(elements[0])
 # return the common prefix and unique tails
 return common, [sequence[len(common):] for sequence in sequences]
def relpath(p1, p2, sep=os.path.sep, pardir=os.path.pardir):
 ''' return a relative path from p1 equivalent to path p2.
 In particular: the empty string, if p1 == p2;
 p2, if p1 and p2 have no common prefix.
 '''
 common, (u1, u2) = common_prefix(p1.split(sep), p2.split(sep))
 if not common:
 return p2 # leave path absolute if nothing at all in common
 return sep.join([pardir]*len(u1) + u2)
def test(p1, p2, sep=os.path.sep):
 ''' call function relpath and display arguments and results. '''
 print "from", p1, "to", p2, " -> ", relpath(p1, p2, sep)
if _ _name_ _ == '_ _main_ _':
 test('/a/b/c/d', '/a/b/c1/d1', '/')
 test('/a/b/c/d', '/a/b/c/d', '/')

 test('c:/x/y/z', 'd:/x/y/z', '/')

Discussion

The workhorse in this recipe is the simple but very general function common_prefix, which, given
any N sequences, returns their common prefix and a list of their respective unique tails. To

compute the relative path between two given paths, we can ignore their common prefix. We
need only the appropriate number of move-up markers (normally, os.path.pardire.g., ../ on

Unix-like systems; we need as many of them as the length of the unique tail of the starting path)
followed by the unique tail of the destination path. So, function relpath splits the paths into lists
of directories, calls common_prefix, and then performs exactly the construction just described.

common_prefix centers on the loop for elements in itertools.izip(*sequences), relying on
the fact that izip ends with the shortest of the iterables it's zipping. The body of the loop only

needs to prematurely terminate the loop as soon as it meets a tuple of elements (coming one
from each sequence, per izip's specifications) that aren't all equal, and to keep track of the

elements that are equal by appending one of them to list common. Once the loop is done, all
that's left to prepare the lists to return is to slice off the elements that are already in common
from the front of each of the sequences.

Function all_equal could alternatively be implemented in a completely different way, less simple
and obvious, but interesting:

def all_equal(elements):
 return len(dict.fromkeys(elements)) == 1

or, equivalently and more concisely, in Python 2.4 only,

def all_equal(elements):
 return len(set(elements)) == 1

Saying that all elements are equal is exactly the same as saying that the set of the elements has
cardinality (length) one. In the variation using dict.fromkeys, we use a dict to represent the
set, so that variation works in Python 2.3 as well as in 2.4. The variation using set is clearer, but

it only works in Python 2.4. (You could also make it work in version 2.3, as well as Python 2.4,
by using the standard Python library module sets).

See Also

Library Reference and Python in a Nutshell docs for modules os and itertools.

Recipe 2.23. Reading an Unbuffered Character in a
Cross-Platform Way

Credit: Danny Yoo

Problem

Your application needs to read single characters, unbuffered, from standard input, and it needs
to work on both Windows and Unix-like systems.

Solution

When we need a cross-platform solution, starting with platform-dependent ones, we need to
wrap the different solutions so that they look the same:

try:
 from msvcrt import getch
except ImportError:
 ''' we're not on Windows, so we try the Unix-like approach '''
 def getch():
 import sys, tty, termios
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(fd)
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

Discussion

On Windows, the standard Python library module msvcrt offers the handy getch function to read

one character, unbuffered, from the keyboard, without echoing it to the screen. However, this
module is not part of the standard Python library on Unix and Unix-like platforms, such as Linux
and Mac OS X. On such platforms, we can get the same functionality with the tty and termios

modules of the standard Python library (which, in turn, are not present on Windows).

The key point is that in application-level code, we should never have to worry about such issues;
rather, we should write our application code in platform-independent ways, counting on library
functions to paper over the differences between platforms. The Python Standard Library fulfills
that role admirably for most tasks, but not all, and the problem posed by this recipe is an
example of one for which the Python Standard Library doesn't directly supply a cross-platform
solution.

When we can't find a ready-packaged cross-platform solution in the standard library, we should
package it anyway as part of our own additional custom library. This recipe's Solution, besides
solving the specific task of the recipe, also shows one good general way to go about such
packaging. (Alternatively, you can test sys.platform, but I prefer the approach shown in this

recipe.)

Your own library module should try to import the standard library module it needs on a certain
platform within a TRy clause and include a corresponding except ImportError clause that is
triggered when the module is running on a different platform. In the body of that except clause,

your own library module can apply whatever alternate approach will work on the different
platform. In some rare cases, you may need more than two platform-dependent approaches, but
most often you'll need one approach on Windows and only one other approach to cover all other
platforms. This is because most non-Windows platforms today are generally Unix or Unix-like.

See Also

Library Reference and Python in a Nutshell docs for msvcrt, tty, and termios.

Recipe 2.24. Counting Pages of PDF Documents on Mac
OS X

Credit: Dinu Gherman, Dan Wolfe

Problem

You're running on a reasonably recent version of Mac OS X (version 10.3 "Panther" or later), and
you need to know the number of pages in a PDF document.

Solution

The PDF format and Python are both natively integrated with Mac OS X (10.3 or later), and this
allows a rather simple solution:

#!/usr/bin python
import CoreGraphics
def pageCount(pdfPath):
 "Return the number of pages for the PDF document at the given path."
 pdf = CoreGraphics.CGPDFDocumentCreateWithProvider(
 CoreGraphics.CGDataProviderCreateWithFilename(pdfPath)
)
 return pdf.getNumberOfPages()
if _ _name_ _ == '_ _main_ _':
 import sys
 for path in sys.argv[1:]:
 print pageCount(path)

Discussion

A reasonable alternative to this recipe might be to use the PyObjC Python extension, which
(among other wonders) lets Python code reuse all the power in the Foundation and AppKit

frameworks that come with Mac OS X. Such a choice would let you write a Python script that is
also able to run on older versions of Mac OS X, such as 10.2 Jaguar. However, relying on Mac OS
X 10.3 or later ensures we can use the Python installation that is integrated as a part of the
operating system, as well as such goodies as the CoreGraphics Python extension module (also
part of Mac OS X "Panther") that lets your Python code reuse Apple's excellent Quartz graphics

engine directly.

See Also

PyObjC is at http://pyobjc.sourceforge.net/; information on the CoreGraphics module is at

http://www.macdevcenter.com/pub/a/mac/2004/03/19/core_graphics.html.

http://pyobjc.sourceforge.net/
http://www.macdevcenter.com/pub/a/mac/2004/03/19/core_graphics.html

Recipe 2.25. Changing File Attributes on Windows

Credit: John Nielsen

Problem

You need to set the attributes of a file on Windows; for example, you may need to set the file as read-only, archived,
and so on.

Solution

PyWin32's win32api module offers a function SetFileAttributes that makes this task quite simple:

import win32con, win32api, os
create a file, just to show how to manipulate it
thefile = 'test'
f = open('test', 'w')
f.close()
to make the file hidden...:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_HIDDEN)
to make the file readonly:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_READONLY)
to be able to delete the file we need to set it back to normal:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_NORMAL)
and finally we remove the file we just made
os.remove(thefile)

Discussion

One interesting use of win32api.SetFileAttributes is to enable a file's removal. Removing a file with os.remove

can fail on Windows if the file's attributes are not normal. To get around this problem, you just need to use the Win32
call to SetFileAttributes to convert it to a normal file, as shown at the end of this recipe's Solution. Of course, this

should be done with caution, since there may be a good reason the file is not "normal". The file should be removed
only if you know what you're doing!

See Also

The documentation on the win32file module at

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html.

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html

Recipe 2.26. Extracting Text from OpenOffice.org
Documents

Credit: Dirk Holtwick

Problem

You need to extract the text content (with or without the attending XML markup) from an
OpenOffice.org document.

Solution

An OpenOffice.org document is just a zip file that aggregates XML documents according to a
well-documented standard. To access our precious data, we don't even need to have
OpenOffice.org installed:

import zipfile, re
rx_stripxml = re.compile("<[^>]*?>", re.DOTALL|re.MULTILINE)
def convert_OO(filename, want_text=True):
 """ Convert an OpenOffice.org document to XML or text. """
 zf = zipfile.ZipFile(filename, "r")
 data = zf.read("content.xml")
 zf.close()
 if want_text:
 data = " ".join(rx_stripxml.sub(" ", data).split())
 return data
if _ _name_ _=="_ _main_ _":
 import sys
 if len(sys.argv)>1:
 for docname in sys.argv[1:]:
 print 'Text of', docname, ':'
 print convert_OO(docname)
 print 'XML of', docname, ':'
 print convert_OO(docname, want_text=False)
 else:
 print 'Call with paths to OO.o doc files to see Text and XML forms.'

Discussion

OpenOffice.org documents are zip files, and in addition to other contents, they always contain
the file content.xml. This recipe's job, therefore, essentially boils down to just extracting this file.
By default, the recipe then throws away XML tags with a simple regular expression, splits the
result by whitespace, and joins it up again with a single blank to save space. Of course, we could
use an XML parser to get information in a vastly richer and more structured way, but if all we
need is the rough textual content, this fast, rough-and-ready approach may suffice.

Specifically, the regular expression rx_stripxml matches any XML tag (opening or closing) from
the leading < to the terminating >. Inside function convert_OO, in the statements guarded by if
want_text, we use that regular expression to change every XML tag into a space, then normalize
whitespace by splitting (i.e., calling the string method split, which splits on any sequence of

whitespace), and rejoining (with " ".join, to use a single blank character as the joiner).

Essentially, this split-and-rejoin process changes any sequence of whitespace into a single blank
character. More advanced ways to extract all text from an XML document are shown in Recipe
12.3.

See Also

Library Reference docs on modules zipfile and re; OpenOffice.org's web site,

http://www.openoffice.org/; Recipe 12.3.

http://www.openoffice.org/

Recipe 2.27. Extracting Text from Microsoft Word
Documents

Credit: Simon Brunning, Pavel Kosina

Problem

You want to extract the text content from each Microsoft Word document in a directory tree on
Windows into a corresponding text file.

Solution

With the PyWin32 extension, we can access Word itself, through COM, to perform the
conversion:

import fnmatch, os, sys, win32com.client
wordapp = win32com.client.gencache.EnsureDispatch("Word.Application")
try:
 for path, dirs, files in os.walk(sys.argv[1]):
 for filename in files:
 if not fnmatch.fnmatch(filename, '*.doc'): continue
 doc = os.path.abspath(os.path.join(path, filename))
 print "processing %s" % doc
 wordapp.Documents.Open(doc)
 docastxt = doc[:-3] + 'txt'
 wordapp.ActiveDocument.SaveAs(docastxt,
 FileFormat=win32com.client.constants.wdFormatText)
 wordapp.ActiveDocument.Close()
finally:
 # ensure Word is properly shut down even if we get an exception
 wordapp.Quit()

Discussion

A useful aspect of most Windows applications is that you can script them via COM, and the
PyWin32 extension makes it fairly easy to perform COM scripting from Python. The extension
enables you to write Python scripts to perform many kinds of Window tasks. The script in this
recipe's Solution drives Microsoft Word to extract the text from every .doc file in a "directory"
tree into a corresponding .txt text file. Using the os.walk function, we can access every
subdirectory in a tree with a simple for statement, without recursion. With the fnmatch.fnmatch

function, we can check a filename to determine whether it matches an appropriate wildcard, here
'*.doc'. Once we have determined the name of a Word document file, we process that name with
functions from os.path to turn it into a complete absolute path, and have Word open it, save it

as text, and close it again.

If you don't have Word, you may need to take a completely different approach. One possibility is
to use OpenOffice.org, which is able to load Word documents. Another is to use a program
specifically designed to read Word documents, such as Antiword, found at
http://www.winfield.demon.nl/. However, we have not explored these alternative options.

http://www.winfield.demon.nl/

See Also

Mark Hammond, Andy Robinson, Python Programming on Win32 (O'Reilly), for documentation on
PyWin32; http://msdn.microsoft.com, for Microsoft's documentation of the object model of
Microsoft Word; Library Reference and Python in a Nutshell sections on modules fnmatch and
os.path, and function os.walk.

http://msdn.microsoft.com

Recipe 2.28. File Locking Using a Cross-Platform API

Credit: Jonathan Feinberg, John Nielsen

Problem

You need to lock files in a program that runs on both Windows and Unix-like systems, but the Python Standard
Library offers only platform-specific ways to lock files.

Solution

When the Python Standard Library itself doesn't offer a cross-platform solution, it's often possible to implement one
ourselves:

import os
needs win32all to work on Windows (NT, 2K, XP, _not_ /95 or /98)
if os.name == 'nt':
 import win32con, win32file, pywintypes
 LOCK_EX = win32con.LOCKFILE_EXCLUSIVE_LOCK
 LOCK_SH = 0 # the default
 LOCK_NB = win32con.LOCKFILE_FAIL_IMMEDIATELY
 _ _overlapped = pywintypes.OVERLAPPED()
 def lock(file, flags):
 hfile = win32file._get_osfhandle(file.fileno())
 win32file.LockFileEx(hfile, flags, 0, 0xffff0000, _ _overlapped)
 def unlock(file):
 hfile = win32file._get_osfhandle(file.fileno())
 win32file.UnlockFileEx(hfile, 0, 0xffff0000, _ _overlapped)
elif os.name == 'posix':
 from fcntl import LOCK_EX, LOCK_SH, LOCK_NB
 def lock(file, flags):
 fcntl.flock(file.fileno(), flags)
 def unlock(file):
 fcntl.flock(file.fileno(), fcntl.LOCK_UN)
else:
 raise RuntimeError("PortaLocker only defined for nt and posix platforms")

Discussion

When multiple programs or threads have to access a shared file, it's wise to ensure that accesses are synchronized so
that two processes don't try to modify the file contents at the same time. Failure to synchronize accesses could even
corrupt the entire file in some cases.

This recipe supplies two functions, lock and unlock, that request and release locks on a file, respectively. Using the
portalocker.py module is a simple matter of calling the lock function and passing in the file and an argument

specifying the kind of lock that is desired:

Shared lock (default)

This lock denies all processes, including the process that first locks the file, write access to the file. All
processes can read the locked file.

Exclusive lock

This denies all other processes both read and write access to the file.

Nonblocking lock

When this value is specified, the function returns immediately if it is unable to acquire the requested lock.
Otherwise, it waits. LOCK_NB can be ORed with either LOCK_SH or LOCK_EX by using Python's bitwise-or operator,

the vertical bar (|).

For example:

import portalocker
afile = open("somefile", "r+")
portalocker.lock(afile, portalocker.LOCK_EX)

The implementation of the lock and unlock functions is entirely different on different systems. On Unix-like systems
(including Linux and Mac OS X), the recipe relies on functionality made available by the standard fcntl module. On

Windows systems (NT, 2000, XPit doesn't work on old Win/95 and Win/98 platforms because they just don't have the
needed oomph in the operating system!), the recipe uses the win32file module, part of the very popular PyWin32

package of Windows-specific extensions to Python, authored by Mark Hammond. But the important point is that,
despite the differences in implementation, the functions (and the flags you can pass to the lock function) are made to
behave in the same way across platforms. Such cross-platform packaging of differently implemented but equivalent
functionality enables you to easily write cross-platform applications, which is one of Python's strengths.

When you write a cross-platform program, it's nice if the functionality that your program uses is, in turn,
encapsulated in a cross-platform way. For file locking in particular, it is especially helpful to Perl users, who are used
to an essentially transparent lock system call across platforms. More generally, if os.name== just does not belong in

application-level code. Such platform testing ideally should always be in the standard library or an application-
independent module, as it is here.

See Also

Documentation on the fcntl module in the Library Reference; documentation on the win32file module at

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html;
Jonathan Feinberg's web site (http://MrFeinberg.com).

http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html
http://MrFeinberg.com

Recipe 2.29. Versioning Filenames

Credit: Robin Parmar, Martin Miller

Problem

You want to make a backup copy of a file, before you overwrite it, with the standard convention
of appending a three-digit version number to the name of the old file.

Solution

We just need to code a function to perform the backup copy appropriately:

def VersionFile(file_spec, vtype='copy'):
 import os, shutil
 if os.path.isfile(file_spec):
 # check the 'vtype' parameter
 if vtype not in ('copy', 'rename'):
 raise ValueError, 'Unknown vtype %r' % (vtype,)
 # Determine root filename so the extension doesn't get longer
 n, e = os.path.splitext(file_spec)
 # Is e a three-digits integer preceded by a dot?
 if len(e) == 4 and e[1:].isdigit():
 num = 1 + int(e[1:])
 root = n
 else:
 num = 0
 root = file_spec
 # Find next available file version
 for i in xrange(num, 1000):
 new_file = '%s.%03d' % (root, i)
 if not os.path.exists(new_file):
 if vtype == 'copy':
 shutil.copy(file_spec, new_file)
 else:
 os.rename(file_spec, new_file)
 return True
 raise RuntimeError, "Can't %s %r, all names taken"%(vtype,file_spec)
 return False
if _ _name_ _ == '_ _main_ _':
 import os
 # create a dummy file 'test.txt'
 tfn = 'test.txt'
 open(tfn, 'w').close()
 # version it 3 times
 print VersionFile(tfn)
 # emits: True
 print VersionFile(tfn)
 # emits: True
 print VersionFile(tfn)
 # emits: True
 # remove all test.txt* files we just made

 for x in ('', '.000', '.001', '.002'):
 os.unlink(tfn + x)
 # show what happens when the file does not exist
 print VersionFile(tfn)
 # emits: False
 print VersionFile(tfn)
 # emits: False

Discussion

The purpose of the VersionFile function is to ensure that an existing file is copied (or renamed, as
indicated by the optional second parameter) before you open it for writing or updating and
therefore modify it. It is polite to make such backups of files before you mangle them (one
functionality some people still pine for from the good old VMS operating system, which
performed it automatically!). The actual copy or renaming is performed by shutil.copy and
os.rename, respectively, so the only issue is which name to use as the target.

A popular way to determine backups' names is versioning (i.e., appending to the filename a
gradually incrementing number). This recipe determines the new name by first extracting the
filename's root (just in case you call it with an already-versioned filename) and then successively
appending to that root the further extensions .000, .001, and so on, until a name built in this
manner does not correspond to any existing file. Then, and only then, is the name used as the
target of a copy or renaming. Note that VersionFile is limited to 1,000 versions, so you should
have an archive plan after that. The file must exist before it is first versionedyou cannot back up
what does not yet exist. However, if the file doesn't exist, function VersionFile simply returns
False (while it returns TRue if the file exists and has been successfully versioned), so you don't

need to check before calling it!

See Also

Documentation for the os and shutil modules in the Library Reference and Python in a Nutshell.

Recipe 2.30. Calculating CRC-64 Cyclic Redundancy
Checks

Credit: Gian Paolo Ciceri

Problem

You need to ensure the integrity of some data by computing the data's cyclic redundancy check
(CRC), and you need to do so according to the CRC-64 specifications of the ISO-3309 standard.

Solution

The Python Standard Library does not include any implementation of CRC-64 (only one of CRC-
32 in function zlib.crc32), so we need to program it ourselves. Fortunately, Python can perform

bitwise operations (masking, shifting, bitwise-and, bitwise-or, xor, etc.) just as well as, say, C
(and, in fact, with just about the same syntax), so it's easy to transliterate a typical reference
implementation of CRC-64 into a Python function as follows:

prepare two auxiliary tables tables (using a function, for speed),
then remove the function, since it's not needed any more:
CRCTableh = [0] * 256
CRCTablel = [0] * 256
def _inittables(CRCTableh, CRCTablel, POLY64REVh, BIT_TOGGLE):
 for i in xrange(256):
 partl = i
 parth = 0L
 for j in xrange(8):
 rflag = partl & 1L
 partl >>= 1L
 if parth & 1:
 partl ^= BIT_TOGGLE
 parth >>= 1L
 if rflag:
 parth ^= POLY64REVh
 CRCTableh[i] = parth
 CRCTablel[i] = partl
first 32 bits of generator polynomial for CRC64 (the 32 lower bits are
assumed to be zero) and bit-toggle mask used in _inittables
POLY64REVh = 0xd8000000L
BIT_TOGGLE = 1L << 31L
run the function to prepare the tables
_inittables(CRCTableh, CRCTablel, POLY64REVh, BIT_TOGGLE)
remove all names we don't need any more, including the function
del _inittables, POLY64REVh, BIT_TOGGLE
this module exposes the following two functions: crc64, crc64digest
def crc64(bytes, (crch, crcl)=(0,0)):
 for byte in bytes:
 shr = (crch & 0xFF) << 24
 temp1h = crch >> 8L
 temp1l = (crcl >> 8L) | shr
 tableindex = (crcl ^ ord(byte)) & 0xFF

 crch = temp1h ^ CRCTableh[tableindex]
 crcl = temp1l ^ CRCTablel[tableindex]
 return crch, crcl
def crc64digest(aString):
 return "%08X%08X" % (crc64(bytes))
if _ _name_ _ == '_ _main_ _':
 # a little test/demo, for when this module runs as main-script
 assert crc64("IHATEMATH") == (3822890454, 2600578513)
 assert crc64digest("IHATEMATH") == "E3DCADD69B01ADD1"
 print 'crc64: dumb test successful'

Discussion

Cyclic redundancy checks (CRCs) are a popular way to ensure that data (in particular, a file) has
not been accidentally damaged. CRCs can readily detect accidental damage, but they are not
intended to withstand inimical assault the way other cryptographically strong checksums are.
CRCs can be computed much faster than other kinds of checksums, making them useful in those
cases where the only damage we need to guard against is accidental damage, rather than
deliberate adversarial tampering.

Mathematically speaking, a CRC is computed as a polynomial over the bits of the data we're
checksumming. In practice, as this recipe shows, most of the computation can be done once and
for all and summarized in tables that, when properly indexed, give the contribution of each byte
of input data to the result. So, after initialization (which we do with an auxiliary function because
computation in Python is much faster when using a function's local variables than when using
globals), actual CRC computation is quite fast. Both the computation of the tables and their use
for CRC computation require a lot of bitwise operations, but, fortunately, Python's just as good at
such operations as other languages such as C. (In fact, Python's syntax for the various bitwise
operands is just about the same as C's.)

The algorithm to compute the standard CRC-64 checksum is described in the ISO-3309 standard,
and this recipe does nothing more than implement that algorithm. The generator polynomial is
x64 + x4 + x3 + x + 1. (The "See Also" section within this recipe provides a reference for

obtaining information about the computation.)

We represent the 64-bit result as a pair of Python ints, holding the low and high 32-bit halves of

the result. To allow the CRC to be computed incrementally, in those cases where the data comes
in a little at a time, we let the caller of function crc64 optionally feed in the "initial value" for the
(crch, crcl) pair, presumably obtained by calling crc64 on previous parts of the data. To

compute the CRC in one gulp, the caller just needs to pass in the data (a string of bytes), since
in this case, we initialize the result to (0, 0) by default.

See Also

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, 2d ed.
(Cambridge University Press), pp. 896ff.

Chapter 3. Time and Money
Introduction

Recipe 3.1. Calculating Yesterday and Tomorrow

Recipe 3.2. Finding Last Friday

Recipe 3.3. Calculating Time Periods in a Date Range

Recipe 3.4. Summing Durations of Songs

Recipe 3.5. Calculating the Number of Weekdays Between Two Dates

Recipe 3.6. Looking up Holidays Automatically

Recipe 3.7. Fuzzy Parsing of Dates

Recipe 3.8. Checking Whether Daylight Saving Time Is Currently in Effect

Recipe 3.9. Converting Time Zones

Recipe 3.10. Running a Command Repeatedly

Recipe 3.11. Scheduling Commands

Recipe 3.12. Doing Decimal Arithmetic

Recipe 3.13. Formatting Decimals as Currency

Recipe 3.14. Using Python as a Simple Adding Machine

Recipe 3.15. Checking a Credit Card Checksum

Recipe 3.16. Watching Foreign Exchange Rates

Introduction

Credit: Gustavo Niemeyer, Facundo Batista

Today, last weekend, next year. These terms sound so common. You have probably wondered,
at least once, about how deeply our lives are involved in the very idea of time. The concept of
time surrounds us, and, as a consequence, it's also present in the vast majority of software
projects. Even very simple programs may have to deal with timestamps, delays, timeouts, speed
gauges, calendars, and so on. As befits a general-purpose language that is proud to come with
"batteries included," Python's standard library offers solid support for these application needs,
and more support yet comes from third-party modules and packages.

Computing tasks involving money are another interesting topic that catches our attention
because it's so closely related to our daily lives. Python 2.4 introduced support for decimal
numbers (and you can retrofit that support into 2.3, see
http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html), making Python a good option
even for computations where you must avoid using binary floats, as ones involving money so
often are.

This chapter covers exactly these two topics, money and time. According to the old saying,
maybe we should claim the chapter is really about a single topic, since after all, as everybody
knowstime is money!

The time Module

Python Standard Library's time module lets Python applications access a good portion of the

time-related functionality offered by the platform Python is running on. Your platform's
documentation for the equivalent functions in the C library will therefore be useful, and some
peculiarities of different platforms will affect Python as well.

One of the most used functions from module time is the one that obtains the current
timetime.time. This function's return value may be a little cryptic for the uninitiated: it's a

floating-point number that corresponds to the number of seconds passed since a fixed instant
called the epoch, which may change depending on your platform but is usually midnight of
January 1, 1970.

To check which epoch your platform uses, try, at any Python interactive interpreter prompt:

>>> import time
>>> print time.asctime(time.gmtime(0))

Notice we're passing 0 (meaning 0 seconds after the epoch) to the time.gmtime function.
time.gmtime converts any timestamp (in seconds since the epoch) into a tuple that represents

that precise instant of time in human terms, without applying any kind of time zone conversion
(GMT stands for "Greenwich mean time", an old but colorful way to refer to what is now known
as UTC, for "Coordinated Universal Time"). You can also pass a timestamp (in seconds since the
epoch) to time.localtime, which applies the current local notion of time zone.

It's important to understand the difference, since, if you have a timestamp that is already offset
to represent a local time, passing it to the time.localtime function will not yield the expected

resultunless you're so lucky that your local time zone happens to coincide with the UTC time
zone, of course!

Here is a way to unpack a tuple representing the current local time:

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

year, month, mday, hour, minute, second, wday, yday = time.localtime()

While valid, this code is not elegant, and it would certainly not be practical to use it often. This
kind of construct may be completely avoided, since the tuples returned by the time functions let
you access their elements via meaningful attribute names. Obtaining the current month then
becomes a simple and elegant expression:

 time.localtime().tm_mon

Note that we omitted passing any argument to localtime. When we call localtime, gmtime, or
asctime without an argument, each of them conveniently defaults to using the current time.

Two very useful functions in module time are strftime, which lets you build a string from a time
tuple, and strptime, which goes the other way, parsing a string and producing a time tuple.

Each of these two functions accepts a format string that lets you specify exactly what you want in
the resulting string (or, respectively, what you expect from the string you're parsing) in
excruciating detail. For all the formatting specifications that you can use in the format strings you
pass to these functions, see http://docs.python.org/lib/module-time.html.

One last important function in module time is the time.sleep function, which lets you introduce

delays in Python programs. Even though this function's POSIX counterpart accepts only an
integer parameter, the Python equivalent supports a float and allows sub-second delays to be
achieved. For instance:

for i in range(10):
 time.sleep(0.5)
 print "Tick!"

This snippet will take about 5 seconds to execute, emitting Tick! approximately twice per

second.

Time and Date Objects

While module time is quite useful, the Python Standard Library also includes the datetime

module, which supplies types that provide better abstractions for the concepts of dates and
timesnamely, the types time, date, and datetime. Constructing instances of those types is quite

elegant:

 today = datetime.date.today()
 birthday = datetime.date(1977, 5, 4) #May 4
 currenttime = datetime.datetime.now().time()
 lunchtime = datetime.time(12, 00)
 now = datetime.datetime.now()
 epoch = datetime.datetime(1970, 1, 1)
 meeting = datetime.datetime(2005, 8, 3, 15, 30)

Further, as you'd expect, instances of these types offer comfortable information access and
useful operations through their attributes and methods. The following statements create an
instance of the date type, representing the current day, then obtain the same date in the next

year, and finally print the result in a dotted format:

 today = datetime.date.today()
 next_year = today.replace(year=today.year+1).strftime("%Y.%m.%d")
 print next_year

http://docs.python.org/lib/module-time.html

Notice how the year was incremented, using the replace method. Assigning to the attributes of

date and time instances may sound tempting, but these instances are immutable (which is a
good thing, because it means we can use the instances as members in a set, or keys in a
dictionary!), so new instances must be created instead of changing existing ones.

Module datetime also provides basic support for time deltas (differences between instants of
time; you can think of them as basically meaning durations in time), through the timedelta

type. This type lets you change a given date by incrementing or decrementing the date by a
given time slice, and it is also the result of taking the difference between times or dates.

>>> import datetime
>>> NewYearsDay = datetime.date(2005, 01, 01)
>>> NewYearsEve = datetime.date(2004, 12, 31)
>>> oneday = NewYearsDay - NewYearsEve
>>> print oneday
1 day, 0:00:00
>>>

A timedelta instance is internally represented by days, seconds, and microseconds, but you can
construct timedelta instances by passing any of these arguments and also other multipliers, like

minutes, hours and weeks. Support for other kinds of deltas, like months, and years, is not
availableon purpose, since their meanings, and operation results, are debatable. (This feature is,
however, offered by the third-party dateutil packagesee

https://moin.conectiva.com.br/DateUtil.)

datetime can be described as a prudent or cautious design. The decision of not implementing

doubtful tasks, and tasks that may need many different implementations in different systems,
reflects the strategy used to develop all of the module. This way, the module offers good
interfaces for most use cases, and, even more importantly, a strong and coherent base for third-
party modules to build upon.

Another area where this cautious design strategy for datetime shows starkly is the module's
time zone support. Even though datetime offers nice ways to query and set time zone

information, they're not really useful without an external source to provide nonabstract
subclasses of the tzinfo type. At least two third-party packages provide time zone support for
datetime: dateutil, mentioned previously, and pyTZ, available at

http://sourceforge.net/projects/pytz/.

Decimal

decimal is a Python Standard Library module, new in Python 2.4, which finally brings decimal
arithmetic to Python. Thanks to decimal, we now have a decimal numeric data type, with

bounded precision and floating point. Let's look at each of these three little phrases in more
detail:

Decimal numeric data type

The number is not stored in binary, but rather, as a sequence of decimal digits.

With bounded precision

The number of digits each number stores is fixed. (It is a fixed parameter of each decimal

http://sourceforge.net/projects/pytz/

number object, but different decimal number objects can be set to use different numbers
of digits.)

Floating point

The decimal point does not have a fixed place. (To put it another way: while the number
has a fixed amount of digits in total, it does not have a fixed amount of digits after the
decimal point. If it did, it would be a fixed-point, rather than floating-point, numeric data
type).

Such a data type has many uses (the big use case is as the basis for money computations),
particularly because decimal.Decimal offers many other advantages over standard binary
float. The main advantage is that all of the decimal numbers that the user can enter (which is to

say, all the decimal numbers with a finite number of digits) can be represented exactly (in
contrast, some of those numbers do not have an exact representation in binary floating point):

>>> import decimal
>>> 1.1
1.1000000000000001
>>> 2.3
2.2999999999999998
>>> decimal.Decimal("1.1")
Decimal("1.1")
>>> decimal.Decimal("2.3")
Decimal("2.3")

The exactness of the representation carries over into arithmetic. In binary floating point, for
example:

>>> 0.1 + 0.1 + 0.1 - 0.3
5.5511151231257827e-17

Such differences are very close to zero, and yet they prevent reliable equality testing; moreover,
even tiny differences can accumulate. For this reason, decimal should be preferred to binary

floats in accounting applications that have strict equality requirements:

>>> d1 = decimal.Decimal("0.1")
>>> d3 = decimal.Decimal("0.3")
>>> d1 + d1 + d1 - d3
Decimal("0.0")

decimal.Decimal instances can be constructed from integers, strings, or tuples. To create a
decimal.Decimal from a float, first convert the float to a string. This necessary step serves as

an explicit reminder of the details of the conversion, including representation error. Decimal
numbers include special values such as NaN (which stands for "not a number"), positive and
negative Infinity, and -0. Once constructed, a decimal.Decimal object is immutable, just like

any other number in Python.

The decimal module essentially implements the rules of arithmetic that are taught in school. Up

to a given working precision, exact, unrounded results are given whenever possible:

>>> 0.9 / 10
0.089999999999999997
>>> decimal.Decimal("0.9") / decimal.Decimal(10)
Decimal("0.09")

Where the number of digits in a result exceeds the working precision, the number is rounded
according to the current rounding method. Several rounding methods are available; the default is
round-half-even.

The decimal module incorporates the notion of significant digits, so that, for example, 1.30+1.20

is 2.50. The trailing zero is kept to indicate significance. This is the usual representation for
monetary applications. For multiplication, the "schoolbook" approach uses all the figures in the
multiplicands:

>>> decimal.Decimal("1.3") * decimal.Decimal("1.2")
Decimal("1.56")
>>> decimal.Decimal("1.30") * decimal.Decimal("1.20")
Decimal("1.5600")

In addition to the standard numeric properties that decimal objects share with other built-in
number types, such as float and int, decimal objects also have several specialized methods.

Check the docs for all of the methods, with details and examples.

The decimal data type works within a context, where some configuration aspects are set. Each

thread has its own current context (having a separate context per thread means that each thread
may make changes without interfering with other threads); the current thread's current context
is accessed or changed using functions getcontext and setcontext from the decimal module.

Unlike hardware-based binary floating point, the precision of the decimal module can be set by

users (defaulting to 28 places). It can be set to be as large as needed for a given problem:

>>> decimal.getcontext().prec = 6 # set the precision to 6...
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857")
>>> decimal.getcontext().prec = 60 # ...and to 60 digits
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")

Not everything in decimal can be as simple and elementary as shown so far, of course.
Essentially, decimal implements the standards for general decimal arithmetic which you can
study in detail at http://www2.hursley.ibm.com/decimal/. In particular, this means that decimal

supports the concept of signals. Signals represent abnormal conditions arising from
computations (e.g., 1/0, 0/0, Infinity/Infinity). Depending on the needs of each specific

application, signals may be ignored, considered as informational, or treated as exceptions. For
each signal, there is a flag and a trap enabler. When a signal is encountered, its flag is
incremented from zero, and then, if the trap enabler is set to one, an exception is raised. This
gives programmers a great deal of power and flexibility in configuring decimal to meet their

exact needs.

Given all of these advantages for decimal, why would someone want to stick with float?

Indeed, is there any reason why Python (like just about every other widespread language, with
Cobol and Rexx the two major exceptions that easily come to mind) originally adopted floating-
point binary numbers as its default (or only) noninteger data type? Of coursemany reasons can
be provided, and they're all spelled speed! Consider:

$ python -mtimeit -s'from decimal import Decimal as D' 'D("1.2")+D("3.4")'
10000 loops, best of 3: 191 usec per loop
$ python -mtimeit -s'from decimal import Decimal as D' '1.2+3.4'
1000000 loops, best of 3: 0.339 usec per loop

This basically translates to: on this machine (an old Athlon 1.2 GHz PC running Linux), Python
can perform almost 3 million sums per second on floats (using the PC's arithmetic hardware),

http://www2.hursley.ibm.com/decimal/

but only a bit more than 5 thousand sums per second on Decimals (all done in software and with

all the niceties shown previously).

Essentially, if your application must sum many tens of millions of noninteger numbers, you had
better stick with float! When an average machine was a thousand times slower than it is today

(and it wasn't all that long ago!), such limitations hit even applications doing relatively small
amounts of computation, if the applications ran on reasonably cheap machines (again, we see
time and money both playing a role!). Rexx and Cobol were born on mainframes that were not
quite as fast as today's cheapest PCs but thousands of times more expensive. Purchasers of such
mainframes could afford nice and friendly decimal arithmetic, but most other languages, born on
more reasonably priced machines (or meant for computationally intensive tasks), just couldn't.

Fortunately, relatively few applications actually need to perform so much arithmetic on non-
integers as to give any observable performance problems on today's typical machines. Thus,
today, most applications can actually take advantage of decimal's many beneficial aspects,
including applications that must continue to use Python 2.3, even though decimal is in the
Python Standard Library only since version 2.4. To learn how you can easily integrate decimal

into Python 2.3, see http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html.

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

Recipe 3.1. Calculating Yesterday and Tomorrow

Credit: Andrea Cavalcanti

Problem

You want to get today's date, then calculate yesterday's or tomorrow's.

Solution

Whenever you have to deal with a "change" or "difference" in time, think timedelta:

import datetime
today = datetime.date.today()
yesterday = today - datetime.timedelta(days=1)
tomorrow = today + datetime.timedelta(days=1)
print yesterday, today, tomorrow
#emits: 2004-11-17 2004-11-18 2004-11-19

Discussion

This recipe's Problem has been a fairly frequent question on Python mailing lists since the
datetime module arrived. When first confronted with this task, it's quite common for people to
try to code it as yesterday = today - 1, which gives a TypeError: unsupported operand
type(s) for -: 'datetime.date' and 'int'.

Some people have called this a bug, implying that Python should guess what they mean.
However, one of the guiding principles that gives Python its simplicity and power is: "in the face
of ambiguity, refuse the temptation to guess." Trying to guess would clutter datetime with
heuristics meant to guess that you "really meant 1 day", rather than 1 second (which timedelta

also supports), or 1 year.

Rather than trying to guess what you mean, Python, as usual, expects you to make your
meaning explicit. If you want to subtract a time difference of one day, you code that explicitly. If,
instead, you want to add a time difference of one second, you can use timedelta with a
datetime.datetime object, and then you code the operation using exactly the same syntax. This

way, for each task you might want to perform, there's only one obvious way of doing it. This
approach also allows a fair amount of flexibility, without added complexity. Consider the following
interactive snippet:

>>> anniversary = today + datetime.timedelta(days=365) # add 1 year
>>> print anniversary
2005-11-18
>>> t = datetime.datetime.today() # get right now
>>> t
datetime.datetime(2004, 11, 19, 10, 12, 43, 801000)
>>> t2 = t + datetime.timedelta(seconds=1) # add 1 second
>>> t2
datetime.datetime(2004, 11, 19, 10, 12, 44, 801000)
>>> t3 = t + datetime.timedelta(seconds=3600) # add 1 hour
>>> t3

datetime.datetime(2004, 11, 19, 11, 12, 43, 801000)

Keep in mind that, if you want fancier control over date and time arithmetic, third-party
packages, such as dateutil (which works together with the built-in datetime) and the classic
mx.DateTime, are available. For example:

from dateutil import relativedelta
nextweek = today + relativedelta.relativedelta(weeks=1)
print nextweek
#emits: 2004-11-25

However, "always do the simplest thing that can possibly work." For simple, straightforward
tasks such as the ones in this recipe, datetime.timedelta works just fine.

See Also

dateutil documentation at https://moin.conectiva.com.br/DateUtil?action=highlight&value=
DateUtil, and datetime documentation in the Library Reference. mx.DateTime can be found at
http://www.egenix.com/files/python/mxDateTime.html. mx.DateTime can be found at

http://www.egenix.com/files/python/mxDateTime.html.

http://www.egenix.com/files/python/mxDateTime.html
http://www.egenix.com/files/python/mxDateTime.html

Recipe 3.2. Finding Last Friday

Credit: Kent Johnson, Danny Yoo, Jonathan Gennick, Michael Wener

Problem

You want to find the date of last Friday (or today, if today is Friday) and print it in a specified
format.

Solution

You can use the datetime module from Python's standard library to easily achieve this:

import datetime, calendar
lastFriday = datetime.date.today()
oneday = datetime.timedelta(days=1)
while lastFriday.weekday() != calendar.FRIDAY:
 lastFriday -= oneday
print lastFriday.strftime('%A, %d-%b-%Y')
emits, e.g.: Friday, 10-Dec-2004

Discussion

The handy little snippet of code in this recipe lets us find a previous weekday and print the
properly formatted date, regardless of whether that weekday is in the same month, or even the
same year. In this example, we're looking for the last Friday (or today, if today is Friday).
Friday's integer representation is 4, but to avoid depending on this "magical number," we just
import the Python Standard Library calendar module and rely instead on its calendar.FRIDAY

attribute (which, sure enough, is the number 4). We set a variable called lastFriday to today's
date and work backward until we have reached a date with the desired weekday value of 4.

Once we have the date we desire, formatting the date in any way we like is easily achieved with
the "string formatting" method strftime of the datetime.date class.

An alternative, slightly more terse solution uses the built-in constant datetime.date.resolution
instead of explicitly building the datetime.timedelta instance to represent one day's duration:

import datetime, calendar
lastFriday = datetime.date.today()
while lastFriday.weekday() != calendar.FRIDAY:
 lastFriday -= datetime.date.resolution
print lastFriday.strftime('%d-%b-%Y')

The datetime.date.resolution class attribute has exactly the same value as the oneday
variable in the recipe's Solutionthe time interval of one day. However, resolution can trip you
up. The value of the class attribute resolution varies among various classes of the datetime
modulefor the date class it's timedelta(days=1), but for the time and datetime classes , it's
timedelta(microseconds=1). You could mix-and-match (e.g., add datetime.date.resolution
to a datetime.datetime instance), but it's easy to get confused doing so. The version in this

recipe's Solution, using the explicitly named and defined oneday variable, is just as general,

more explicit, and less confusing. Thus, all in all, that version is more Pythonic (which is why it's
presented as the "official" one!).

A more important enhancement is that we don't really need to loop, decrementing a date by one
at each step through the loop: we can, in fact, get to the desired target in one fell swoop,
computing the number of days to subtract thanks to the wonders of modular arithmetic:

import datetime, calendar
today = datetime.date.today()
targetDay = calendar.FRIDAY
thisDay = today.weekday()
deltaToTarget = (thisDay - targetDay) % 7
lastFriday = today - datetime.timedelta(days=deltaToTarget)
print lastFriday.strftime('%d-%b-%Y')

If you don't follow why this works, you may want to brush up on modular arithmetic, for example
at http://www.cut-the-knot.org/blue/Modulo.shtml.

Use the approach you find clearest, without worrying about performance. Remember Hoare's
dictum (often misattributed to Knuth, who was in fact quoting Hoare): "premature optimization is
the root of all evil in programming." Let's see why thinking of optimization would be premature
here.

Net of the common parts (computing today's date, and formatting and emitting the result) on a
four-year-old PC, with Linux and Python 2.4, the slowest approach (the one chosen for
presentation as the "Solution" because it's probably the clearest and most obvious one) takes
18.4 microseconds; the fastest approach (the one avoiding the loop, with some further tweaks to
really get pedal to the metal) takes 10.1 microseconds.

You're not going to compute last Friday's date often enough, in your life, to be able to tell the
difference at 8 microseconds a pop (much less if you use recent hardware rather than a box
that's four years old). If you consider the time needed to compute today's date and to format the
result, you need to add 37 microseconds to each timing, even net of the I/O time for the print

statement; so, the range of performance is roughly between 55 microseconds for the slowest
and clearest form, and 47 microseconds for the fastest and tersest oneclearly not worth worrying
about.

See Also

datetime module and strftime documentation in the Library Reference (currently at

http://www.python.org/doc/lib/module-datetime.html and
http://www.python.org/doc/current/lib/node208.html).

http://www.cut-the-knot.org/blue/Modulo.shtml
http://www.python.org/doc/lib/module-datetime.html
http://www.python.org/doc/current/lib/node208.html

Recipe 3.3. Calculating Time Periods in a Date Range

Credit: Andrea Cavalcanti

Problem

Given two dates, you want to calculate the number of weeks between them.

Solution

Once again, the standard datetime and third-party dateutil modules (particularly dateutil's
rrule.count method) come in quite handy. After importing the appropriate modules, it's a really

simple job:

from dateutil import rrule
import datetime
def weeks_between(start_date, end_date):
 weeks = rrule.rrule(rrule.WEEKLY, dtstart=start_date, until=end_date)
 return weeks.count()

Discussion

Function weeks_between takes the starting and ending dates as arguments, instantiates a rule to
recur weekly between them, and returns the result of the rule's count methodfaster to code than

to describe. This method will return only an integer (it won't return "half" weeks). For example,
eight days is considered two weeks. It's easy to code a test for this:

if _ _name_ _=='_ _main_ _':
 starts = [datetime.date(2005, 01, 04), datetime.date(2005, 01, 03)]
 end = datetime.date(2005, 01, 10)
 for s in starts:
 days = rrule.rrule(rrule.DAILY, dtstart=s, until=end).count()
 print "%d days shows as %d weeks "% (days, weeks_between(s, end))

This test emits the following output:

7 days shows as 1 weeks
8 days shows as 2 weeks

It's not necessary to give a name to a recurrence rule, if you don't want tochanging the
function's body, for example, to the single statement:

 return rrule.rrule(rrule.WEEKLY, dtstart=start_date, until=end_date).count()

works just as well. I prefer to name recurrence rules because (frankly) I still find them a bit
weird, even though they're so incredibly useful I doubt I could do without them!

See Also

Refer to the dateutil module's documentation available at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime

documentation in the Library Reference.

Recipe 3.4. Summing Durations of Songs

Credit: Anna Martelli Ravenscroft

Problem

You want to find out the total duration of a playlist of songs.

Solution

Use the datetime standard module and the built-in function sum to handle this task:

import datetime
def totaltimer(times):
 td = datetime.timedelta(0) # initial value of sum (must be a timedelta)
 duration = sum([
 datetime.timedelta(minutes=m, seconds=s) for m, s in times],
 td)
 return duration
if _ _name_ _== '_ _main_ _': # test when module run as main script
 times1 = [(2, 36), # list containing tuples (minutes, seconds)
 (3, 35),
 (3, 45),]
 times2 = [(3, 0),
 (5, 13),
 (4, 12),
 (1, 10),]
 assert totaltimer(times1) == datetime.timedelta(0, 596)
 assert totaltimer(times2) == datetime.timedelta(0, 815)
 print ("Tests passed.\n"
 "First test total: %s\n"
 "Second test total: %s" % (
 totaltimer(times1), totaltimer(times2)))

Discussion

I have a large playlist of songs I listen to during workouts. I wanted to create a select list but
wanted to know the total duration of the selected songs, without having to create the new
playlist first. I wrote this little script to handle the task.

A datetime.timedelta is normally what's returned when calculating the difference between two
datetime objects. However, you can create your own timedelta instance to represent any given
duration of time (while other classes of the datetime module, such as class datetime, have

instances that represent a point in time). Here, we need to sum durations, so, clearly, it's exactly
timedelta that we need.

datetime.timedelta takes a variety of optional arguments: days, seconds, microseconds,

milliseconds, minutes, hours, weeks. So, to create an instance, you really should pass named
arguments when you call the class to avoid confusion. If you simply call datetime.timedelta(m,

n), without naming the arguments, the class uses positional notation and treats m and n as days

and seconds, which produces really strange results. (I found this out the hard way . . . a good

demonstration of the need to test!)

To use the built-in function sum on a list of objects such as timedeltas, you have to pass to sum
a second argument to use as the initial valueotherwise, the default initial value is 0, integer zero,
and you get an error as soon as you try to sum a timedelta with that int. All objects in the
iterable that you pass as sum's first argument should be able to support numeric addition.
(Strings are specifically disallowed, but, take my earnest advice: don't use sum for concatenating
a lot of lists either!) In Python 2.4, instead of a list comprehension for sum's first argument, we
could use a generator expression by replacing the square brackets, [and], with parentheses, (
and)which might be handy if you're trying to handle a playlist of several thousand songs.

For the test case, I manually created a list of tuples with the durations of the songs in minutes
and seconds. The script could be enhanced to parse the times in different formats (such as
mm:ss) or to read the information from a file or directly from your music library.

See Also

Library Reference on sum and datetime.

Recipe 3.5. Calculating the Number of Weekdays
Between Two Dates

Credit: Anna Martelli Ravenscroft

Problem

You want to calculate the number of weekdays (working days), as opposed to calendar days, that
fall between two dates.

Solution

Since weekends and other "days off" vary by country, by region, even sometimes within a single
company, there is no built-in way to perform this task. However, using dateutil along with
datetime objects, it's reasonably simple to code a solution:

from dateutil import rrule
import datetime
def workdays(start, end, holidays=0, days_off=None):
 if days_off is None:
 days_off = 5, 6 # default to: saturdays and sundays
 workdays = [x for x in range(7) if x not in days_off]
 days = rrule.rrule(rrule.DAILY, dtstart=start, until=end,
 byweekday=workdays)
 return days.count() - holidays
if _ _name_ _ == '_ _main_ _':
test when run as main script
 testdates = [(datetime.date(2004, 9, 1), datetime.date(2004, 11, 14), 2),
 (datetime.date(2003, 2, 28), datetime.date(2003, 3, 3), 1),]
 def test(testdates, days_off=None):
 for s, e, h in testdates:
 print 'total workdays from %s to %s is %s with %s holidays' % (
 s, e, workdays(s, e, h, days_off), h)
 test(testdates)
 test(testdates, days_off=[6])

Discussion

This project was my very first one in Python: I needed to know the number of actual days in
training of our trainees, given a start date and end date (inclusive). This problem was a bit
trickier back in Python 2.2; today, the datetime module and the dateutil third-party package

make the problem much simpler to solve.

Function workdays starts by assigning a reasonable default value to variable days_off (unless an
explicit value was passed for it as an argument), which is a sequence of the weekday numbers of
our normal days off. In my company, weekly days off varied among individuals but were usually
fewer than the workdays, so it was easier to track and modify the days off rather than the
workdays. I made this an argument to the function so that I can easily pass a different value for
days_off if and when I have different needs. Then, the function uses a list comprehension to
create a list of actual weekly workdays, which are all weekdays not in days_off. Now the function

is ready to do its calculations.

The workhorse in this recipe is an instance, named days, of dateutil's rrule (recurrence rule)
class. Class rrule may be instantiated with various parameters to produce a rule object. In this
example, I pass a frequency (rrule.DAILY), a beginning date and an ending dateboth of which
must be datetime.date objectsand which weekdays to include (workdays). Then, I simply call
method days.count to count the number of occurrences generated by the rule. (See Recipe 3.3
for other uses for the count method of rrule.)

You can easily set your own definition of weekend: just pass as days_off whichever values you
need. In this recipe, the default value is set to the standard U.S. weekend of Saturday and
Sunday. However, if your company normally works a four-day week, say, Tuesday through
Friday, you would pass days_off=(5, 6, 0). Just be sure to pass the days_off value as an
iterable, such as a list or tuple, even if, as in the second test, you only have a single day in

that container.

A simple but useful enhancement might be to automatically check whether your start and end
dates are weekends (for weekend-shift workers), and use an if/else to handle the weekend

shifts, with appropriate changes to days_off. Further enhancements would be to add the ability
to enter sick days, or to perform a call to an automatic holiday lookup function, rather than
passing the number of holidays directly, as I do in this recipe. See Recipe 3.6 for a simple
implementation of a holidays list for this purpose.

See Also

Refer to the dateutil documentation, which is available at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime
documentation in the Library Reference; Recipe 3.3 for another use of rrule.count; Recipe 3.6

for automatic holiday lookup.

Recipe 3.6. Looking up Holidays Automatically

Credit: Anna Martelli Ravenscroft, Alex Martelli

Problem

Holidays vary by country, by region, even by union within the same company. You want an
automatic way to determine the number of holidays that fall between two given dates.

Solution

Between two dates, there may be movable holidays, such as Easter and Labor Day (U.S.);
holidays that are based on Easter, such as Boxing Day; holidays with a fixed date, such as
Christmas; holidays that your company has designated (the CEO's birthday). You can deal with
all of them using datetime and the third-party module dateutil.

A very flexible architecture is to factor out the various possibilities into separate functions to be
called as appropriate:

import datetime
from dateutil import rrule, easter
try: set
except NameError: from sets import Set as set
def all_easter(start, end):
 # return the list of Easter dates within start..end
 easters = [easter.easter(y)
 for y in xrange(start.year, end.year+1)]
 return [d for d in easters if start<=d<=end]
def all_boxing(start, end):
 # return the list of Boxing Day dates within start..end
 one_day = datetime.timedelta(days=1)
 boxings = [easter.easter(y)+one_day
 for y in xrange(start.year, end.year+1)]
 return [d for d in boxings if start<=d<=end]
def all_christmas(start, end):
 # return the list of Christmas Day dates within start..end
 christmases = [datetime.date(y, 12, 25)
 for y in xrange(start.year, end.year+1)]
 return [d for d in christmases if start<=d<=end]
def all_labor(start, end):
 # return the list of Labor Day dates within start..end
 labors = rrule.rrule(rrule.YEARLY, bymonth=9, byweekday=rrule.MO(1),
 dtstart=start, until=end)
 return [d.date() for d in labors] # no need to test for in-between here
def read_holidays(start, end, holidays_file='holidays.txt'):
 # return the list of dates from holidays_file within start..end
 try:
 holidays_file = open(holidays_file)
 except IOError, err:
 print 'cannot read holidays (%r):' % (holidays_file,), err
 return []
 holidays = []

 for line in holidays_file:
 # skip blank lines and comments
 if line.isspace() or line.startswith('#'):
 continue
 # try to parse the format: YYYY, M, D
 try:
 y, m, d = [int(x.strip()) for x in line.split(',')]
 date = datetime.date(y, m, d)
 except ValueError:
 # diagnose invalid line and just go on
 print "Invalid line %r in holidays file %r" % (
 line, holidays_file)
 continue
 if start<=date<=end:
 holidays.append(date)
 holidays_file.close()
 return holidays
holidays_by_country = {
 # map each country code to a sequence of functions
 'US': (all_easter, all_christmas, all_labor),
 'IT': (all_easter, all_boxing, all_christmas),
}
def holidays(cc, start, end, holidays_file='holidays.txt'):
 # read applicable holidays from the file
 all_holidays = read_holidays(start, end, holidays_file)
 # add all holidays computed by applicable functions
 functions = holidays_by_country.get(cc, ())
 for function in functions:
 all_holidays += function(start, end)
 # eliminate duplicates
 all_holidays = list(set(all_holidays))
 # uncomment the following 2 lines to return a sorted list:
 # all_holidays.sort()
 # return all_holidays
 return len(all_holidays) # comment this out if returning list
if _ _name_ _ == '_ _main_ _':
 test_file = open('test_holidays.txt', 'w')
 test_file.write('2004, 9, 6\n')
 test_file.close()
 testdates = [(datetime.date(2004, 8, 1), datetime.date(2004, 11, 14)),
 (datetime.date(2003, 2, 28), datetime.date(2003, 5, 30)),
 (datetime.date(2004, 2, 28), datetime.date(2004, 5, 30)),
]
 def test(cc, testdates, expected):
 for (s, e), expect in zip(testdates, expected):
 print 'total holidays in %s from %s to %s is %d (exp %d)' % (
 cc, s, e, holidays(cc, s, e, test_file.name), expect)
 print
 test('US', testdates, (1,1,1))
 test('IT', testdates, (1,2,2))
 import os
 os.remove(test_file.name)

Discussion

In one company I worked for, there were three different unions, and holidays varied among the
unions by contract. In addition, we had to track any snow days or other release days in the same
way as "official" holidays. To deal with all the potential variations in holidays, it's easiest to factor

out the calculation of standard holidays into their own functions, as we did in the preceding
example for all_easter, all_labor, and so on. Examples of different types of calculations are

provided so it's easy to roll your own as needed.

Although half-open intervals (with the lower bound included but the upper one excluded) are the
norm in Python (and for good reasons, since they're arithmetically more malleable and tend to
induce fewer bugs in your computations!), this recipe deals with closed intervals instead (both
lower and upper bounds included). Unfortunately, that's how specifications in terms of date
intervals tend to be given, and dateutil also works that way, so the choice was essentially

obvious.

Each function is responsible for ensuring that it only returns results that meet our criteria: lists of
datetime.date instances that lie between the dates (inclusive) passed to the function. For
example, in all_labor, we coerce the datetime.datetime results returned by dateutil's rrule
into datetime.date instances with the date method.

A company may choose to set a specific date as a holiday (such as a snow day) "just this once,"
and a text file may be used to hold such unique instances. In our example, the read_holidays
function handles the task of reading and processing a text file, with one date per line, each in the
format year, month, day. You could also choose to refactor this function to use a "fuzzy" date
parser, as shown in Recipe 3.7.

If you need to look up holidays many times within a single run of your program, you may apply
the optimization of reading and parsing the text file just once, then using the list of dates parsed
from its contents each time that data is needed. However, "premature optimization is the root of
all evil in programming," as Knuth said, quoting Hoare: by avoiding even this "obvious"
optimization, we gain clarity and flexibility. Imagine these functions being used in an interactive
environment, where the text file containing holidays may be edited between one computation
and the next: by rereading the file each time, there is no need for any special check about
whether the file was changed since you last read it!

Since countries often celebrate different holidays, the recipe provides a rudimentary
holidays_by_country dictionary. You can consult plenty of web sites that list holidays by country
to flesh out the dictionary for your needs. The important part is that this dictionary allows a
different group of holidays-generating functions to be called, depending on which country code is
passed to the holidays function. If your company has multiple unions, you could easily create a
union-based dictionary, passing the union-code instead of (or for multinationals, in addition to) a
country code to holidays. The holidays function calls the appropriate functions (including,
unconditionally, read_holidays), concatenates the results, eliminates duplicates, and returns the
length of the list. If you prefer, of course, you can return the list instead, by simply
uncommenting two lines as indicated in the code.

See Also

Recipe 3.7 for fuzzy parsing; dateutil documentation at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime

documentation in the Library Reference.

Recipe 3.7. Fuzzy Parsing of Dates

Credit: Andrea Cavalcanti

Problem

Your program needs to read and accept dates that don't conform to the datetime standard
format of "yyyy, mm, dd".

Solution

The third-party dateutil.parser module provides a simple answer:

import datetime
import dateutil.parser
def tryparse(date):
 # dateutil.parser needs a string argument: let's make one from our
 # `date' argument, according to a few reasonable conventions...:
 kwargs = { } # assume no named-args
 if isinstance(date, (tuple, list)):
 date = ' '.join([str(x) for x in date]) # join up sequences
 elif isinstance(date, int):
 date = str(date) # stringify integers
 elif isinstance(date, dict):
 kwargs = date # accept named-args dicts
 date = kwargs.pop('date') # with a 'date' str
 try:
 try:
 parsedate = dateutil.parser.parse(date, **kwargs)
 print 'Sharp %r -> %s' % (date, parsedate)
 except ValueError:
 parsedate = dateutil.parser.parse(date, fuzzy=True, **kwargs)
 print 'Fuzzy %r -> %s' % (date, parsedate)
 except Exception, err:
 print 'Try as I may, I cannot parse %r (%s)' % (date, err)
if _ _name_ _ == "_ _main_ _":
 tests = (
 "January 3, 2003", # a string
 (5, "Oct", 55), # a tuple
 "Thursday, November 18", # longer string without year
 "7/24/04", # a string with slashes
 "24-7-2004", # European-format string
 {'date':"5-10-1955", "dayfirst":True}, # a dict including the kwarg
 "5-10-1955", # dayfirst, no kwarg
 19950317, # not a string
 "11AM on the 11th day of 11th month, in the year of our Lord 1945",
)
 for test in tests: # testing date formats
 tryparse(test) # try to parse

Discussion

dateutil.parser's parse function works on a variety of date formats. This recipe demonstrates

a few of them. The parser can handle English-language month-names and two- or four-digit
years (with some constraints). When you call parse without named arguments, its default is to

first try parsing the string argument in the following order: mm-dd-yy. If that does not make
logical sense, as, for example, it doesn't for the '24-7-2004' string in the recipe, parse then tries
dd-mm-yy. Lastly, it tries yy-mm-dd. If a "keyword" such as dayfirst or yearfirst is passed
(as we do in one test), parse attempts to parse based on that keyword.

The recipe tests define a few edge cases that a date parser might encounter, such as trying to
pass the date as a tuple, an integer (ISO-formatted without spaces), and even a phrase. To allow
testing of the keyword arguments, the tryparse function in the recipe also accepts a dictionary
argument, expecting, in this case, to find in it the value of the string to be parsed in
correspondence to key 'date', and passing the rest on to dateutil's parser as keyword

arguments.

dateutil's parser can provide a pretty good level of "fuzzy" parsing, given some hints to let it

know which piece is, for example, the hour (such as the AM in the test phrase in this recipe). For
production code, you should avoid relying on fuzzy parsing, and either do some kind of
preprocessing, or at least provide some kind of mechanism for checking the accuracy of the
parsed date.

See Also

For more on date-parsing algorithms, see dateutil documentation at

https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil; for date handling, see
the datetime documentation in the Library Reference.

Recipe 3.8. Checking Whether Daylight Saving Time Is
Currently in Effect

Credit: Doug Fort

Problem

You want to know whether daylight saving time is in effect in your local time zone today.

Solution

It's a natural temptation to check time.daylight for this purpose, but that doesn't work. Instead

you need:

import time
def is_dst():
 return bool(time.localtime().tm_isdst)

Discussion

In my location (as in most others nowadays), time.daylight is always 1 because
time.daylight means that this time zone has daylight saving time (DST) at some time during

the year, whether or not DST is in effect today.

The very last item in the pseudo-tuple you get by calling time.localtime, on the other hand, is
1 only when DST is currently in effect, otherwise it's 0which, in my experience, is exactly the

information one usually needs to check. This recipe wraps this check into a function, calling built-
in type bool to ensure the result is an elegant true or False rather than a rougher 1 or 0optional

refinements, but nice ones, I think. You could alternatively access the relevant item as
time.localtime()[-1], but using attribute-access syntax with the tm_isdst attribute name is

more readable.

See Also

Library Reference and Python in a Nutshell about module time.

Recipe 3.9. Converting Time Zones

Credit: Gustavo Niemeyer

Problem

You are in Spain and want to get the correct local (Spanish) time for an event in China.

Solution

Time zone support for datetime is available in the third-party dateutil package. Here's one way

to set the local time zone, then print the current time to check that it worked properly:

from dateutil import tz
import datetime
posixstr = "CET-1CEST-2,M3.5.0/02:00,M10.5.0/03:00"
spaintz = tz.tzstr(posixstr)
print datetime.datetime.now(spaintz).ctime()

Conversion between different time zones is also possible, and often necessary in our expanding
world. For instance, let's find out when the next Olympic Games will start, according to a Spanish
clock:

chinatz = tz.tzoffset("China", 60*60*8)
olympicgames = datetime.datetime(2008, 8, 8, 20, 0, tzinfo=chinatz)
print olympicgames.astimezone(spaintz)

Discussion

The cryptic string named posixstr is a POSIX-style representation for the time zone currently
being used in Spain. This string provides the standard and daylight saving time zone names (CST
and CEST), their offsets (UTC+1 and UTC+2), and the day and hour when DST starts and ends
(the last Sunday of March at 2 a.m., and the last Sunday of October at 3 a.m., respectively). We
may check the DST zone bounds to ensure they are correct:

assert spaintz.tzname(datetime.datetime(2004, 03, 28, 1, 59)) == "CET"
assert spaintz.tzname(datetime.datetime(2004, 03, 28, 2, 00)) == "CEST"
assert spaintz.tzname(datetime.datetime(2004, 10, 31, 1, 59)) == "CEST"
assert spaintz.tzname(datetime.datetime(2004, 10, 31, 2, 00)) == "CET"

All of these asserts should pass silently, confirming that the time zone name switches between

the right strings at the right times.

Observe that even though the return to the standard time zone is scheduled to 3a.m., the
moment of the change is marked as 2 a.m. This happens because of a one-hour gap, between 2
a.m. and 3 a.m., that is ambiguous. That hour of time happens twice: once in the time zone
CEST, and then again in the time zone CET. Currently, expressing this moment in an
unambiguous way, using the standard Python date and time support, is not possible. This is why
it is recommended that you store datetime instances in UTC, which is unambiguous, and only

use time zone conversion for display purposes.

To do the conversion from China to Spain, we've used tzoffset to express the fact that China is

eight hours ahead of UTC time (tzoffset is always compared to UTC, not to a particular time
zone). Notice how the datetime instance is created with the time zone information. This is

always necessary for converting between two different time zones, even if the given time is in
the local time zone. If you don't create the instance with the time zone information, you'll get a
ValueError: astimezone() cannot be applied to a naive datetime. datetime instances

are always created naivethey ignore time zone issues entirelyunless you explicitly create them
with a time zone. For this purpose, dateutil provides the tzlocal type, which creates instances

representing the platform's idea of the local time zone.

Besides the types we have seen so far, dateutil also provides tzutc, which creates instances
representing UTC; tzfile, which allows using standard binary time zone files; tzical, which

creates instances representing iCalendar time zones; and many more besides.

See Also

Documentation about the dateutil module can be found at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, and datetime

documentation in the Library Reference.

Recipe 3.10. Running a Command Repeatedly

Credit: Philip Nunez

Problem

You need to run a command repeatedly, with arbitrary periodicity.

Solution

The time.sleep function offers a simple approach to this task:

import time, os, sys
def main(cmd, inc=60):
 while True:
 os.system(cmd)
 time.sleep(inc)
if _ _name_ _ == '_ _main_ _' :
 numargs = len(sys.argv) - 1
 if numargs < 1 or numargs > 2:
 print "usage: " + sys.argv[0] + " command [seconds_delay]"
 sys.exit(1)
 cmd = sys.argv[1]
 if numargs < 3:
 main(cmd)
 else:
 inc = int(sys.argv[2])
 main(cmd, inc)

Discussion

You can use this recipe with a command that periodically checks for something (e.g., polling), or
with one that performs an endlessly repeating action, such as telling a browser to reload a URL
whose contents change often, so as to always have a recent version of that URL for viewing. The
recipe is structured into a function called main and a body that is preceded by the usual if _
name _=='_ _main_ _': idiom, to execute only if the script runs as a main script. The body

examines the command-line arguments you used with the script and calls main appropriately (or
gives a usage message if there are too many or too few arguments). This is the best way to
structure a script, to make its functionality also available to other scripts that may import it as a
module.

The main function accepts a cmd string, which is a command you want to pass periodically to the
operating system's shell, and, optionally, a period of time in seconds, with a default value of 60
(one minute). main loops forever, alternating between executing the command with os.system
and waiting (without consuming resources) with time.sleep.

The script's body looks at the command-line arguments you used with the script, which it finds in
sys.argv. The first argument, sys.argv[0], is the name of the script, often useful when the

script identifies itself as it prints out messages. The body checks that one or two other
arguments, in addition to this name, are included. The first (and mandatory) is the command to
be run. (You may need to enclose this command in quotes to preserve it from your shell's

parsing: the important thing is that it must remain a single argument.) The second (and optional)
argument is the delay in seconds between two runs of the command. If the second argument is
missing, the body calls main with just the command argument, accepting the default delay (60
seconds).

Note that, if there is a second argument, the body transforms it from a string (all items in
sys.argv are always strings) into an integer, which is done most simply by calling built-in type
int:

inc = int(sys.argv[2])

If the second argument is a string that is not acceptable for transformation into an integer (in
other words, if it's anything except a sequence of digits), this call to int raises an exception and

terminates the script with appropriate error messages. As one of Python's design principles
states, "errors should not pass silently, unless explicitly silenced." It would be bad design to let
the script accept an arbitrary string as its second argument, silently taking a default action if that
string was not a correct integer representation!

For a variant of this recipe that uses the standard Python library module sched, rather than

explicit looping and sleeping, see Recipe 3.11.

See Also

Documentation of the standard library modules os, time, and sys in the Library Reference and

Python in a Nutshell; Recipe 3.11.

Recipe 3.11. Scheduling Commands

Credit: Peter Cogolo

Problem

You need to schedule commands for execution at certain times.

Solution

That's what the sched module of the standard library is for:

import time, os, sys, sched
schedule = sched.scheduler(time.time, time.sleep)
def perform_command(cmd, inc):
 schedule.enter(inc, 0, perform_command, (cmd, inc)) # re-scheduler
 os.system(cmd)
def main(cmd, inc=60):
 schedule.enter(0, 0, perform_command, (cmd, inc)) # 0==right now
 schedule.run()
if _ _name_ _ == '_ _main_ _' :
 numargs = len(sys.argv) - 1
 if numargs < 1 or numargs > 2:
 print "usage: " + sys.argv[0] + " command [seconds_delay]"
 sys.exit(1)
 cmd = sys.argv[1]
 if numargs < 3:
 main(cmd)
 else:
 inc = int(sys.argv[2])
 main(cmd, inc)

Discussion

This recipe implements the same functionality as in the previous Recipe 3.10, but instead of that
recipe's simpler roll-our-own approach, this one uses the standard library module sched.

sched is a reasonably simple, yet flexible and powerful, module for scheduling tasks that must
take place at given times in the future. To use sched, you first instantiate a scheduler object,

such as schedule (shown in this recipe's Solution), with two arguments. The first argument is the
function to call in order to find out what time it isnormally time.time, which returns the current

time as a number of seconds from an arbitrary reference point known as the epoch. The second
argument is the function to call to wait for some timenormally time.sleep. You can also pass
functions that measure time in arbitrary artificial ways. For example, you can use sched for such

tasks as simulation programs. However, measuring time in artificial ways is an advanced use of
sched not covered in this recipe.

Once you have a sched.scheduler instance s, you schedule events by calling either s.enter, to

schedule something at a relative time n seconds from now (you can pass n as 0 to schedule

something for right now), or s.enterabs, to schedule something at a given absolute time. In

either case, you pass the time (relative or absolute), a priority (if multiple events are scheduled
for the same time, they execute in priority order, lowest-priority first), a function to call, and a
tuple of arguments to call that function with. Each of these two methods return an event
identifier, an arbitrary token that you may store somewhere and later use to cancel a scheduled
event by passing the event's token as the argument in a call to s.cancelanother advanced use

which this recipe does not cover.

After scheduling some events, you call s.run, which keeps running until the queue of scheduled

events is empty. In this recipe, we show how to schedule a periodic, recurring event: function
perform_command reschedules itself for inc seconds later in the future as the first thing it does,
before running the specified system command. In this way, the queue of scheduled events never
empties, and function perform_command keeps getting called with regular periodicity. This self-
rescheduling is an important idiom, not just in using sched, but any time you have a "one-shot"

way to ask for something to happen in the future, and you need instead to have something
happen in the future "periodically". (Tkinter's after method, e.g., also works in exactly this way,

and thus is also often used with just this kind of self-rescheduling idiom.)

Even for a task as simple as the one handled by this recipe, sched still has a small advantage

over the simpler roll-your-own approach used previously in Recipe 3.10. In Recipe 3.10, the
specified delay occurs between the end of one execution of cmd and the beginning of the next
execution. If the execution of cmd takes a highly variable amount of time (as is often the case,
e.g., for commands that must wait for the network, or some busy server, etc.), then the
command is not really being run periodically. In this recipe, the delay occurs between beginning
successive runs of cmd, so that periodicity is indeed guaranteed. If a certain run of cmd takes
longer than inc seconds, the schedule temporarily falls behind, but it will eventually catch up
again, as long as the average running time of cmd is less than inc seconds: sched never "skips"

events. (If you do want an event to be skipped because it's not relevant any more, you have to
keep track of the event identifier token and use the cancel method.)

For a detailed explanation of this script's structure and body, see Recipe 3.10.

See Also

Recipe 3.10; documentation of the standard library modules os, time, sys, and sched in the

Library Reference and Python in a Nutshell.

Recipe 3.12. Doing Decimal Arithmetic

Credit: Anna Martelli Ravenscroft

Problem

You want to perform some simple arithmetic computations in Python 2.4, but you want decimal
results, not the Python default of float.

Solution

To get the normal, expected results from plain, simple computations, use the decimal module

introduced in Python 2.4:

>>> import decimal
>>> d1 = decimal.Decimal('0.3') # assign a decimal-number object
>>> d1/3 # try some division
Decimal("0.1")
>>> (d1/3)*3 # can we get back where we started?
Decimal("0.3")

Discussion

Newcomers to Python (particularly ones without experience with binary float calculations in other
programming languages) are often surprised by the results of seemingly simple calculations. For
example:

>>> f1 = .3 # assign a float
>>> f1/3 # try some division
0.099999999999999992
>>> (f1/3)*3 # can we get back where we started?
0.29999999999999999

Binary floating-point arithmetic is the default in Python for very good reasons. You can read all
about them in the Python FAQ (Frequently Asked Questions) document at
http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate,
and even in the appendix to the Python Tutorial at http://docs.python.org/tut/node15.html.

Many people, however, were unsatisfied with binary floats being the only optionthey wanted to
be able to specify the precision, or wanted to use decimal arithmetic for monetary calculations
with predictable results. Some of us just wanted the predictable results. (A True Numerical
Analyst does, of course, find all results of binary floating-point computations to be perfectly
predictable; if any of you three are reading this chapter, you can skip to the next recipe, thanks.)

The new decimal type affords a great deal of control over the context for your calculations,

allowing you, for example, to set the precision and rounding method to use for the results.
However, when all you want is to run simple arithmetical operations that return predictable
results, decimal's default context works just fine.

Just keep in mind a few points: you may pass a string, integer, tuple, or other decimal object to

http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate
http://docs.python.org/tut/node15.html

create a new decimal object, but if you have a float n that you want to make into a decimal,

pass str(n), not bare n. Also, decimal objects can interact (i.e., be subject to arithmetical
operations) with integers, longs, and other decimal objects, but not with floats. These

restrictions are anything but arbitrary. Decimal numbers have been added to Python exactly to
provide the precision and predictability that float lacks: if it was allowed to build a decimal
number from a float, or by operating with one, the whole purpose would be defeated. decimal
objects, on the other hand, can be coerced into other numeric types such as float, long, and
int, just as you would expect.

Keep in mind that decimal is still floating point, not fixed point. If you want fixed point, take a
look at Tim Peter's FixedPoint at http://fixedpoint.sourceforge.net/. Also, no money data type is

yet available in Python, although you can look at Recipe 3.13 to learn how to roll-your-own
money formatting on top of decimal. Last but not least, it is not obvious (at least not to me),

when an intermediate computation produces more digits than the inputs, whether you should
keep the extra digits for further intermediate computations, and round only when you're done
computing a formula (and are about to display or store a result), or whether you should instead
round at each step. Different textbooks suggest different answers. I tend to do the former,
simply because it's more convenient.

If you're stuck with Python 2.3, you may still take advantage of the decimal module, by

downloading and installing it as a third-party extensionsee
http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html.

See Also

The explanation of floating-point arithmetic in Appendix B of the Python Tutorial at
http://docs.python.org/tut/node15.html; the Python FAQ at
http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate;
Tim Peter's FixedPoint at http://fixedpoint.sourceforge.net/; using decimal as currency, see
Recipe 3.13; decimal is documented in the Python 2.4 Library Reference and is available for

download to use with 2.3 at
http://cvs.sourceforge.net/viewcvs.py/python/python/dist/src/Lib/decimal.py; the decimal PEP
(Python Enhancement Proposal), PEP 327, is at http://www.python.org/peps/pep-0327.html.

http://fixedpoint.sourceforge.net/
http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html
http://docs.python.org/tut/node15.html
http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate
http://fixedpoint.sourceforge.net/
http://cvs.sourceforge.net/viewcvs.py/python/python/dist/src/Lib/decimal.py
http://www.python.org/peps/pep-0327.html

Recipe 3.13. Formatting Decimals as Currency

Credit: Anna Martelli Ravenscroft, Alex Martelli, Raymond Hettinger

Problem

You want to do some tax calculations and display the result in a simple report as Euro currency.

Solution

Use the new decimal module, along with a modified moneyfmt function (the original, by Raymond
Hettinger, is part of the Python library reference section about decimal):

import decimal
""" calculate Italian invoice taxes given a subtotal. """
def italformat(value, places=2, curr='EUR', sep='.', dp=',', pos='', neg='-',
 overall=10):
 """ Convert Decimal ``value'' to a money-formatted string.
 places: required number of places after the decimal point
 curr: optional currency symbol before the sign (may be blank)
 sep: optional grouping separator (comma, period, or blank) every 3
 dp: decimal point indicator (comma or period); only specify as
 blank when places is zero
 pos: optional sign for positive numbers: "+", space or blank
 neg: optional sign for negative numbers: "-", "(", space or blank
 overall: optional overall length of result, adds padding on the
 left, between the currency symbol and digits
 """
 q = decimal.Decimal((0, (1,), -places)) # 2 places --> '0.01'
 sign, digits, exp = value.quantize(q).as_tuple()
 result = []
 digits = map(str, digits)
 append, next = result.append, digits.pop
 for i in range(places):
 if digits:
 append(next())
 else:
 append('0')
 append(dp)
 i = 0
 while digits:
 append(next())
 i += 1
 if i == 3 and digits:
 i = 0
 append(sep)
 while len(result) < overall:
 append(' ')
 append(curr)
 if sign: append(neg)
 else: append(pos)
 result.reverse()

 return ''.join(result)
get the subtotal for use in calculations
def getsubtotal(subtin=None):
 if subtin == None:
 subtin = input("Enter the subtotal: ")
 subtotal = decimal.Decimal(str(subtin))
 print "\n subtotal: ", italformat(subtotal)
 return subtotal
specific Italian tax law functions
def cnpcalc(subtotal):
 contrib = subtotal * decimal.Decimal('.02')
 print "+ contributo integrativo 2%: ", italformat(contrib, curr='')
 return contrib
def vatcalc(subtotal, cnp):
 vat = (subtotal+cnp) * decimal.Decimal('.20')
 print "+ IVA 20%: ", italformat(vat, curr='')
 return vat
def ritacalc(subtotal):
 rit = subtotal * decimal.Decimal('.20')
 print "-Ritenuta d'acconto 20%: ", italformat(rit, curr='')
 return rit
def dototal(subtotal, cnp, iva=0, rit=0):
 totl = (subtotal+cnp+iva)-rit
 print " TOTALE: ", italformat(totl)
 return totl
overall calculations report
def invoicer(subtotal=None, context=None):
 if context is None:
 decimal.getcontext().rounding="ROUND_HALF_UP" # Euro rounding rules
 else:
 decimal.setcontext(context) # set to context arg
 subtot = getsubtotal(subtotal)
 contrib = cnpcalc(subtot)
 dototal(subtot, contrib, vatcalc(subtot, contrib), ritacalc(subtot))
if _ _name_ _=='_ _main_ _':
 print "Welcome to the invoice calculator"
 tests = [100, 1000.00, "10000", 555.55]
 print "Euro context"
 for test in tests:
 invoicer(test)
 print "default context"
 for test in tests:
 invoicer(test, context=decimal.DefaultContext)

Discussion

Italian tax calculations are somewhat complicated, more so than this recipe demonstrates. This
recipe applies only to invoicing customers within Italy. I soon got tired of doing them by hand, so
I wrote a simple Python script to do the calculations for me. I've currently refactored into the
version shown in this recipe, using the new decimal module, just on the principle that money

computations should never, but never, be done with binary floats.

How to best use the new decimal module for monetary calculations was not immediately

obvious. While the decimal arithmetic is pretty straightforward, the options for displaying results
were less clear. The italformat function in the recipe is based on Raymond Hettinger's moneyfmt
recipe, found in the decimal module documentation available in the Python 2.4 Library

Reference. Some minor modifications were helpful for my reporting purposes. The primary
addition was the overall parameter. This parameter builds a decimal with a specific number of

overall digits, with whitespace padding between the currency symbol (if any) and the digits. This
eases alignment issues when the results are of a standard, predictable length.

Notice that I have coerced the subtotal input subtin to be a string in subtotal =
decimal.Decimal(str(subtin)). This makes it possible to feed floats (as well as integers or

strings) to getsubtotal without worrywithout this, a float would raise an exception. If your
program is likely to pass tuples, refactor the code to handle that. In my case, a float was a rather
likely input to getsubtotal, but I didn't have to worry about tuples.

Of course, if you need to display using U.S. $, or need to use other rounding rules, it's easy
enough to modify things to suit your needs. For example, to display U.S. currency, you could
change the curr, sep, and dp arguments' default values as follows:

def USformat(value, places=2, curr='$', sep=',', dp='.', pos='', neg='-',
 overall=10):
...

If you regularly have to use multiple currency formats, you may choose to refactor the function
so that it looks up the appropriate arguments in a dictionary, or you may want to find other ways
to pass the appropriate arguments. In theory, the locale module in the Python Standard Library

should be the standard way to let your code access locale-related preferences such as those
connected to money formatting, but in practice I've never had much luck using locale (for this

or any other purpose), so that's one task that I'll gladly leave as an exercise to the reader.

Countries often have specific rules on rounding; decimal uses ROUND_HALF_EVEN as the default.
However, the Euro rules specify ROUND_HALF_UP. To use different rounding rules, change the

context, as shown in the recipe. The result of this change may or may not be obvious, but one
should be aware that it can make a (small, but legally not negligible) difference.

You can also change the context more extensively, by creating and setting your own context
class instance. A change in context, whether set by a simple getcontext attribution change, or
with a custom context class instance passed to setcontext(mycontext), continues to apply
throughout the active thread, until you change it. If you are considering using decimal in

production code (or even for your own home bookkeeping use), be sure to use the right context
(in particular, the correct rounding rules) for your country's accounting practices.

See Also

Python 2.4's Library Reference on decimal, particularly the section on decimal.context and the

"recipes" at the end of that section.

Recipe 3.14. Using Python as a Simple Adding Machine

Credit: Brett Cannon

Problem

You want to use Python as a simple adding machine, with accurate decimal (not binary floating-
point!) computations and a "tape" that shows the numbers in an uncluttered columnar view.

Solution

To perform the computations, we can rely on the decimal module. We accept input lines, each

made up of a number followed by an arithmetic operator, an empty line to request the current
total, and q to terminate the program:

import decimal, re, operator
parse_input = re.compile(r'''(?x) # allow comments and whitespace in the RE
 (\d+\.?\d*) # number with optional decimal part
 \s* # optional whitespace
 ([-+/*]) # operator
 $''') # end-of-string
oper = { '+': operator.add, '-': operator.sub,
 '*': operator.mul, '/': operator.truediv,
 }
total = decimal.Decimal('0')
def print_total():
 print '== == =\n', total
print """Welcome to Adding Machine:
Enter a number and operator,
an empty line to see the current subtotal,
or q to quit: """
while True:
 try:
 tape_line = raw_input().strip()
 except EOFError:
 tape_line = 'q'
 if not tape_line:
 print_total()
 continue
 elif tape_line == 'q':
 print_total()
 break
 try:
 num_text, op = parse_input.match(tape_line).groups()
 except AttributeError:
 print 'Invalid entry: %r' % tape_line
 print 'Enter number and operator, empty line for total, q to quit'
 continue
 total = oper[op](total, decimal.Decimal(num_text))

Discussion

Python's interactive interpreter is often a useful calculator, but a simpler "adding machine" also
has its uses. For example, an expression such as 2345634+2894756-2345823 is not easy to
read, so checking that you're entering the right numbers for a computation is not all that simple.
An adding machine's tape shows numbers in a simple, uncluttered columnar view, making it
easier to double check what you have entered. Moreover, the decimal module performs

computations in the normal, decimal-based way we need in real life, rather than in the floating-
point arithmetic preferred by scientists, engineers, and today's computers.

When you run the script in this recipe from a normal command shell (this script is not meant to
be run from within a Python interactive interpreter!), the script prompts you once, and then just
sits there, waiting for input. Type a number (one or more digits, then optionally a decimal point,
then optionally more digits), followed by an operator (/, *, -, or + the four operator characters

you find on the numeric keypad on your keyboard), and then press return. The script applies the
number to the running total using the operator. To output the current total, just enter a blank
line. To quit, enter the letter q and press return. This simple interface matches the input/output

conventions of a typical simple adding machine, removing the need to have some other form of
output.

The decimal package is part of Python's standard library since version 2.4. If you're still using

Python 2.3, visit http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html and download
and install the package in whatever form is most convenient for you. decimal allows high-

precision decimal arithmetic, which is more convenient for many uses (such as any computation
involving money) than the binary floating-point computations that are faster on today's
computers and which Python uses by default. No more lost pennies due to hard-to-understand
issues with binary floating point! As demonstrated in Recipe 3.13, you can even change the
rounding rules from the default of ROUND_HALF_EVEN, if you really need to.

This recipe's script is meant to be very simple, so many improvements are possible. A useful
enhancement would be to keep the "tape" on disk for later checking. You can do that easily, by
adding, just before the loop, a statement to open some appropriate text file for append:

tapefile = open('tapefile.txt', 'a')

and, just after the try/except statement that obtains a value for tape_line, a statement to write

that value to the file:

tapefile.write(tape_line+'\n')

If you do want to make these additions, you will probably also want to enrich function print_total
so that it writes to the "tape" file as well as to the command window, therefore, change the
function to:

def print_total():
 print '== == =\n', total
 tapefile.write('== == =\n' + str(total) + '\n')

The write method of a file object accepts a string as its argument and does not implicitly
terminate the line as the print statement does, so we need to explicitly call the str built-in
function and explicitly add '\n' as needed. Alternatively, the second statement in this version of

print_total could be coded in a way closer to the first one:

 print >>tapefile, '== == =\n', total

Some people really dislike this print >>somefile, syntax, but it can come in handy in cases

such as this one.

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html

More ambitious improvements would be to remove the need to press Return after each operator
(that would require performing unbuffered input and dealing with one character at a time, rather
than using the handy but line-oriented built-in function raw_input as the recipe doessee Recipe
2.23 for a cross-platform way to get unbuffered input), to add a clear function (or clarify to
users that inputting 0* will zero out the "tape"), and even to add a GUI that looks like an adding

machine. However, I'm leaving any such improvements as exercises for the reader.

One important point about the recipe's implementation is the oper dictionary, which uses
operator characters (/, *, -, +) as keys and the appropriate arithmetic functions from the built-in
module operator, as corresponding values. The same effect could be obtained, more verbosely,
by a "tree" of if/elif, such as:

if op == '+':
 total = total + decimal.Decimal(num_text)
elif op == '-':
 total = total - decimal.Decimal(num_text)
elif op == '*':
 <line_annotation>... and so on ...</line_annotation>

However, Python dictionaries are very idiomatic and handy for such uses, and they lead to less
repetitious and thus more maintainable code.

See Also

decimal is documented in the Python 2.4 Library Reference, and is available for download to use

with 2.3 at http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html; you can read the
decimal PEP 327 at http://www.python.org/peps/pep-0327.html.

http://www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html
http://www.python.org/peps/pep-0327.html

Recipe 3.15. Checking a Credit Card Checksum

Credit: David Shaw, Miika Keskinen

Problem

You need to check whether a credit card number respects the industry standard Luhn checksum
algorithm.

Solution

Luhn mod 10 is the credit card industry's standard for credit card checksums. It's not built into
Python, but it's easy to roll our own computation for it:

def cardLuhnChecksumIsValid(card_number):
 """ checks to make sure that the card passes a luhn mod-10 checksum """
 sum = 0
 num_digits = len(card_number)
 oddeven = num_digits & 1
 for count in range(num_digits):
 digit = int(card_number[count])
 if not ((count & 1) ^ oddeven):
 digit = digit * 2
 if digit > 9:
 digit = digit - 9
 sum = sum + digit
 return (sum % 10) == 0

Discussion

This recipe was originally written for a now-defunct e-commerce application to be used within
Zope.

It can save you time and money to apply this simple validation before trying to process a bad or
miskeyed card with your credit card vendor, because you won't waste money trying to authorize
a bad card number. The recipe has wider applicability because many government identification
numbers also use the Luhn (i.e., modulus 10) algorithm.

A full suite of credit card validation methods is available at
http://david.theresistance.net/files/creditValidation.py

If you're into cool one-liners rather than simplicity and clarity, (a) you're reading the wrong book
(the Perl Cookbook is a great book that will make you much happier), (b) meanwhile, to keep
you smiling while you go purchase a more appropriate oeuvre, try:

checksum = lambda a: (
 10 - sum([int(y)*[7,3,1][x%3] for x, y in enumerate(str(a)[::-1])])%10)%10

See Also

http://david.theresistance.net/files/creditValidation.py

A good therapist, if you do prefer the one-line checksum version.

Recipe 3.16. Watching Foreign Exchange Rates

Credit: Victor Yongwei Yang

Problem

You want to monitor periodically (with a Python script to be run by crontab or as a Windows
scheduled task) an exchange rate between two currencies, obtained from the Web, and receive
email alerts when the rate crosses a certain threshold.

Solution

This task is similar to other monitoring tasks that you could perform on numbers easily obtained
from the Web, be they exchange rates, stock quotes, wind-chill factors, or whatever. Let's see
specifically how to monitor the exchange rate between U.S. and Canadian dollars, as reported by
the Bank of Canada web site (as a simple CSV (comma-separated values) feed that is easy to
parse):

import httplib
import smtplib
configure script's parameters here
thresholdRate = 1.30
smtpServer = 'smtp.freebie.com'
fromaddr = 'foo@bar.com'
toaddrs = 'your@corp.com'
end of configuration
url = '/en/financial_markets/csv/exchange_eng.csv'
conn = httplib.HTTPConnection('www.bankofcanada.ca')
conn.request('GET', url)
response = conn.getresponse()
data = response.read()
start = data.index('United States Dollar')
line = data[start:data.index('\n', start)] # get the relevant line
rate = line.split(',')[-1] # last field on the line
if float(rate) < thresholdRate:
 # send email
 msg = 'Subject: Bank of Canada exchange rate alert %s' % rate
 server = smtplib.SMTP(smtpServer)
 server.sendmail(fromaddr, toaddrs, msg)
 server.quit()
conn.close()

Discussion

When working with foreign currencies, it is particularly useful to have an automated way of
getting the conversions you need. This recipe provides this functionality in a quite simple,
straightforward manner. When cron runs this script, the script goes to the site, and gets the CSV
feed, which provides the daily noon exchange rates for the previous seven days:

Date (m/d/year),11/12/2004,11/15/2004, ... ,11/19/2004,11/22/2004

$Can/US closing rate,1.1927,1.2005,1.1956,1.1934,1.2058,1.1930,
United States Dollar,1.1925,1.2031,1.1934,1.1924,1.2074,1.1916,1.1844
...

The script then continues to find the specific currency ('United States Dollar') and reads the

last field to find today's rate. If you're having trouble understanding how that works, it may be
helpful to break it down:

US = data.find('United States Dollar') # find the index of the currency
endofUSline = data.index('\n', US) # find index for that line end
USline = data[US:endofUSline] # slice to make one string
rate = USline.split(',')[-1] # split on ',' and return last field

The recipe provides an email alert when the rate falls below a particular threshold, which can be
configured to whatever rate you prefer (e.g., you could change that statement to send you an
alert whenever the rate changes outside a threshold range).

See Also

httplib, smtplib, and string function are documented in the Library Reference and Python in a

Nutshell.

Chapter 4. Python Shortcuts

Introduction

Recipe 4.1. Copying an Object

Recipe 4.2. Constructing Lists with List Comprehensions

Recipe 4.3. Returning an Element of a List If It Exists

Recipe 4.4. Looping over Items and Their Indices in a Sequence

Recipe 4.5. Creating Lists of Lists Without Sharing References

Recipe 4.6. Flattening a Nested Sequence

Recipe 4.7. Removing or Reordering Columnsin a List of Rows

Recipe 4.8. Transposing Two-Dimensional Arrays

Recipe 4.9. Getting a Value from a Dictionary

Recipe 4.10. Adding an Entry to a Dictionary

Recipe 4.11. Building a Dictionary Without Excessive Quoting

Recipe 4.12. Building a Dict from a List of Alternating Keys and Values

Recipe 4.13. Extracting a Subset of a Dictionary

Recipe 4.14. Inverting a Dictionary

Recipe 4.15. Associating Multiple Values with Each Key in a Dictionary

Recipe 4.16. Using a Dictionary to Dispatch Methods or Functions

Recipe 4.17. Finding Unions and Intersections of Dictionaries

Recipe 4.18. Collecting a Bunch of Named Items

Recipe 4.19. Assigning and Testing with One Statement

Recipe 4.20. Using printf in Python

Recipe 4.21. Randomly Picking Items with Given Probabilities

Recipe 4.22. Handling Exceptions Within an Expression

Recipe 4.23. Ensuring a Name Is Defined in a Given Module

Introduction

Credit: David Ascher, ActiveState, co-author of Learning Python

Programming languages are like natural languages. Each has a set of qualities that polyglots
generally agree on as characteristics of the language. Russian and French are often admired for
their lyricism, while English is more often cited for its precision and dynamism: unlike the
Académie-defined French language, the English language routinely grows words to suit its
speakers' needs, such as "carjacking," "earwitness," "snailmail," "email," "googlewhacking," and
"blogging." In the world of computer languages, Perl is well known for its many degrees of
freedom: TMTOWTDI (There's More Than One Way To Do It) is one of the mantras of the Perl
programmer. Conciseness is also seen as a strong virtue in the Perl and APL communities. As
you'll see in many of the discussions of recipes throughout this volume, in contrast, Python
programmers often express their belief in the value of clarity and elegance. As a well-known Perl
hacker once told me, Python's prettier, but Perl is more fun. I agree with him that Python does
have a strong (as in well-defined) aesthetic, while Perl has more of a sense of humor.

The reason I mention these seemingly irrelevant characteristics at the beginning of this chapter
is that the recipes you see in this chapter are directly related to Python's aesthetic and social
dynamics. If this book had been about Perl, the recipes in a shortcuts chapter would probably
elicit head scratching, contemplation, an "a-ha"! moment, and then a burst of laughter, as the
reader grokked the genius behind a particular trick. In contrast, in most of the recipes in this
chapter, the author presents a single elegant language feature, but one that he feels is
underappreciated. Much like I, a proud resident of Vancouver, will go out of my way to show
tourists the really neat things about the city, from the parks to the beaches to the mountains, a
Python user will seek out friends and colleagues and say, "You gotta see this!" For me and most
of the programmers I know, programming in Python is a shared social pleasure, not a
competitive pursuit. There is great pleasure in learning a new feature and appreciating its design,
elegance, and judicious use, and there's a twin pleasure in teaching another or another thousand
about that feature.

A word about the history of the chapter: back when we identified the recipe categories for the
first edition of this collection, our driving notion was that there would be recipes of various kinds,
each with a specific goala soufflé, a tart, an osso buco. Those recipes would naturally fall into
fairly typical categories, such as desserts, appetizers, and meat dishes, or their perhaps less
appetizing, nonmetaphorical equivalents, such as files, algorithms, and so on. So we picked a list
of categories, added the categories to the Zope site used to collect recipes, and opened the
floodgates.

Soon, it became clear that some submissions were hard to fit into the predetermined categories.
There's a reason for that, and cooking helps explain why. The recipes in this chapter are the
Pythonic equivalent of making a roux (a cooked mixture of fat and flour, used in making sauces,
for those of you without a classic French cooking background), kneading dough, flouring,
separating eggs, flipping a pan's contents, blanching, and the myriad other tricks that any
accomplished cook knows, but that you won't find in a typical cookbook. Many of these tricks and
techniques are used in preparing meals, but it's hard to pigeonhole them as relevant for a given
type of dish. And if you're a novice cook looking up a fancy recipe, you're likely to get frustrated
quickly because serious cookbook authors assume you know these techniques, and they explain
them (with illustrations!) only in books with titles such as Cooking for Divorced Middle-Aged Men.
We didn't want to exclude this precious category of tricks from this book, so a new category was
born (sorry, no illustrations).

In the introduction to this chapter in the first edition, I presciently said:

I believe that the recipes in this chapter are among the most time-sensitive of the recipes in
this volume. That's because the aspects of the language that people consider shortcuts or

noteworthy techniques seem to be relatively straightforward, idiomatic applications of
recent language features.

I can proudly say that I was right. This new edition, significantly focused on the present
definition of the language, makes many of the original recipes irrelevant. In the two Python
releases since the book's first edition, Python 2.3 and 2.4, the language has evolved to
incorporate the ideas of those recipes into new syntactic features or library functions, just as it
had done with every previous major release, making a cleaner, more compact, and yet more
powerful language that's as much fun to use today as it was over ten years ago.

All in all, about half the recipes in this chapter (roughly the same proportion as in the rest of the
book) are entirely new ones, while the other half are vastly revised (mostly simplified) versions
of recipes that were in the first edition. Thanks to the simplifications, and to the focus on just two
language versions (2.3 and 2.4) rather than the whole panoply of older versions that was
covered by the first edition, this chapter, as well as the book as a whole, has over one-third more
recipes than the first edition did.

It's worth noting in closing that many of the recipes that are in this newly revised chapter touch
on some of the most fundamental, unchanging aspects of the language: the semantics of
assignment, binding, copy, and references; sequences; dictionaries. These ideas are all keys to
the Pythonic approach to programming, and seeing these recipes live for several years makes
me wonder whether Python will evolve in the next few years in related directions.

Recipe 4.1. Copying an Object

Credit: Anna Martelli Ravenscroft, Peter Cogolo

Problem

You want to copy an object. However, when you assign an object, pass it as an argument, or
return it as a result, Python uses a reference to the original object, without making a copy.

Solution

Module copy in the standard Python library offers two functions to create copies. The one you
should generally use is the function named copy, which returns a new object containing exactly

the same items and attributes as the object you're copying:

import copy
new_list = copy.copy(existing_list)

On the rare occasions when you also want every item and attribute in the object to be separately
copied, recursively, use deepcopy:

import copy
new_list_of_dicts = copy.deepcopy(existing_list_of_dicts)

Discussion

When you assign an object (or pass it as an argument, or return it as a result), Python (like
Java) uses a reference to the original object, not a copy. Some other programming languages
make copies every time you assign something. Python never makes copies "implicitly" just
because you're assigning: to get a copy, you must specifically request a copy.

Python's behavior is simple, fast, and uniform. However, if you do need a copy and do not ask
for one, you may have problems. For example:

>>> a = [1, 2, 3]
>>> b = a
>>> b.append(5)
>>> print a, b
[1, 2, 3, 5] [1, 2, 3, 5]

Here, the names a and b both refer to the same object (a list), so once we alter the object

through one of these names, we later see the altered object no matter which name we use for it.
No original, unaltered copy is left lying about anywhere.

To become an effective Python programmer, it is crucial that you learn to
draw the distinction between altering an object and assigning to a name,
which previously happened to refer to the object. These two kinds of
operations have nothing to do with each other. A statement such as a=[]

rebinds name a but performs no alteration at all on the object that was

previously bound to name a. Therefore, the issue of references versus

copies just doesn't arise in this case: the issue is meaningful only when you
alter some object.

If you are about to alter an object, but you want to keep the original object unaltered, you must
make a copy. As this recipe's solution explains, the module copy from the Python Standard
Library offers two functions to make copies. Normally, you use copy.copy, which makes a

shallow copyit copies an object, but for each attribute or item of the object, it continues to share
references, which is faster and saves memory.

Shallow copying, alas, isn't sufficient to entirely "decouple" a copied object from the original one,
if you propose to alter the items or attributes of either object, not just the object itself:

>>> list_of_lists = [['a'], [1, 2], ['z', 23]]
>>> copy_lol = copy.copy(lists_of_lists)
>>> copy_lol[1].append('boo')
>>> print list_of_lists, copy_lol
[['a'], [1, 2, 'boo'], ['z', 23]] [['a'], [1, 2, 'boo'], ['z', 23]]

Here, the names list_of_lists and copy_lol refer to distinct objects (two lists), so we could
alter either of them without affecting the other. However, each item of list_of_lists is the
same object as the corresponding item of copy_lol, so once we alter an item reached by

indexing either of these names, we later see the altered item no matter which object we're
indexing to reach it.

If you do need to copy some container object and also recursively copy all objects it refers to
(meaning all items, all attributes, and also items of items, items of attributes, etc.), use
copy.deepcopysuch deep copying may cost you substantial amounts of time and memory, but if
you gotta, you gotta. For deep copies, copy.deepcopy is the only way to go.

For normal shallow copies, you may have good alternatives to copy.copy, if you know the type

of the object you want to copy. To copy a list L, call list(L); to copy a dict d, call dict(d); to

copy a set s (in Python 2.4, which introduces the built-in type set), call set(s). (Since list,
dict, and, in 2.4, set, are built-in names, you do not need to perform any "preparation" before

you use any of them.) You get the general pattern: to copy a copyable object o, which belongs

to some built-in Python type t, you may generally just call t(o). dicts also offer a dedicated
method to perform a shallow copy: d.copy() and dict(d) do the same thing. Of the two, I
suggest you use dict(d): it's more uniform with respect to other types, and it's even shorter by

one character!

To copy instances of arbitrary types or classes, whether you coded them or got them from a
library, just use copy.copy. If you code your own classes, it's generally not worth the bother to

define your own copy or clone method. If you want to customize the way instances of your class
get (shallowly) copied, your class can supply a special method _ _copy_ _ (see Recipe 6.9 for a
special technique relating to the implementation of such a method), or special methods _
getstate _ and _ _setstate_ _. (See Recipe 7.4 for notes on these special methods, which

also help with deep copying and serializationi.e., picklingof instances of your class.) If you want
to customize the way instances of your class get deeply copied, your class can supply a special
method _ _deepcopy_ _ (see Recipe 6.9.)

Note that you do not need to copy immutable objects (strings, numbers, tuples, etc.) because
you don't have to worry about altering them. If you do try to perform such a copy, you'll just get

the original right back; no harm done, but it's a waste of time and code. For example:

>>> s = 'cat'
>>> t = copy.copy(s)
>>> s is t
True

The is operator checks whether two objects are not merely equal, but in fact the same object
(is checks for identity; for checking mere equality, you use the == operator). Checking object

identity is not particularly useful for immutable objects (we're using it here just to show that the
call to copy.copy was useless, although innocuous). However, checking object identity can

sometimes be quite important for mutable objects. For example, if you're not sure whether two
names a and b refer to separate objects, or whether both refer to the same object, a simple and
very fast check a is b lets you know how things stand. That way you know whether you need to

copy the object before altering it, in case you want to keep the original object unaltered.

You can use other, inferior ways exist to create copies, namely building
your own. Given a list L, both a "whole-object slice" L[:] and a list

comprehension [x for x in L] do happen to make a (shallow) copy of L,
as do adding an empty list, L+[], and multiplying the list by 1, L*1 . . . but

each of these constructs is just wasted effort and obfuscationcalling
list(L) is clearer and faster. You should, however, be familiar with the
L[:] construct because for historical reasons it's widely used. So, even

though you're best advised not to use it yourself, you'll see it in Python
code written by others.

Similarly, given a dictionary d, you could create a shallow copy named d1

by coding out a loop:

>>> d1 = { }
>>> for somekey in d:
... d1[somekey] = d[somekey]

or more concisely by d1 = { }; d1.update(d). However, again, such

coding is a waste of time and effort and produces nothing but obfuscated,
fatter, and slower code. Use d1=dict(d), be happy!

See Also

Module copy in the Library Reference and Python in a Nutshell.

Recipe 4.2. Constructing Lists with List
Comprehensions

Credit: Luther Blissett

Problem

You want to construct a new list by operating on elements of an existing sequence (or other kind
of iterable).

Solution

Say you want to create a new list by adding 23 to each item of some other list. A list
comprehension expresses this idea directly:

thenewlist = [x + 23 for x in theoldlist]

Similarly, say you want the new list to comprise all items in the other list that are larger than 5.
A list comprehension says exactly that:

thenewlist = [x for x in theoldlist if x > 5]

When you want to combine both ideas, you can perform selection with an if clause, and also use

some expression, such as adding 23, on the selected items, in a single pass:

thenewlist = [x + 23 for x in theoldlist if x > 5]

Discussion

Elegance, clarity, and pragmatism, are Python's core values. List comprehensions show how
pragmatism can enhance both clarity and elegance. Indeed, list comprehensions are often the
best approach even when, instinctively, you're thinking not of constructing a new list but rather
of "altering an existing list". For example, if your task is to set all items greater than 100 to 100,
in an existing list object L, the best solution is:

L[:] = [min(x,100) for x in L]

Assigning to the "whole-list slice" L[:] alters the existing list object in place, rather than just

rebinding the name L, as would be the case if you coded L = . . . instead.

You should not use a list comprehension when you simply want to perform a loop. When you
want a loop, code a loop. For an example of looping over a list, see Recipe 4.4. See Chapter 19
for more information about iteration in Python.

It's also best not to use a list comprehension when another built-in does what you want even
more directly and immediately. For example, to copy a list, use L1 = list(L), not:

L1 = [x for x in L]

Similarly, when the operation you want to perform on each item is to call a function on the item
and use the function's result, use L1 = map(f, L) rather than L1 = [f(x) for x in L]. But in

most cases, a list comprehension is just right.

In Python 2.4, you should consider using a generator expression, rather than a list
comprehension, when the sequence may be long and you only need one item at a time. The
syntax of generator expressions is just the same as for list comprehensions, except that
generator expressions are surrounded by parentheses, (and), not brackets, [and]. For

example, say that we only need the summation of the list computed in this recipe's Solution, not
each item of the list. In Python 2.3, we would code:

total = sum([x + 23 for x in theoldlist if x > 5])

In Python 2.4, we can code more naturally, omitting the brackets (no need to add additional
parenthesesthe parentheses already needed to call the built-in sum suffice):

total = sum(x + 23 for x in theoldlist if x > 5)

Besides being a little bit cleaner, this method avoids materializing the list as a whole in memory
and thus may be slightly faster when the list is extremely long.

See Also

The Reference Manual section on list displays (another name for list comprehensions) and Python
2.4 generator expressions; Chapter 19; the Library Reference and Python in a Nutshell docs on
the itertools module and on the built-in functions map, filter, and sum; Haskell is at

http://www.haskell.org.

Python borrowed list comprehensions from the functional language Haskell
(http://www.haskell.org), changing the syntax to use keywords rather than
punctuation. If you do know Haskell, though, take care! Haskell's list
comprehensions, like the rest of Haskell, use lazy evaluation (also known as
normal order or call by need). Each item is computed only when it's
needed. Python, like most other languages, uses (for list comprehensions
as well as elsewhere) eager evaluation (also known as applicative order,
call by value, or strict evaluation). That is, the entire list is computed when
the list comprehension executes, and kept in memory afterwards as long as
necessary. If you are translating into Python a Haskell program that uses
list comprehensions to represent infinite sequences, or even just long
sequences of which only one item at a time must be kept around, Python
list comprehensions may not be suitable. Rather, look into Python 2.4's new
generator expressions, whose semantics are closer to the spirit of Haskell's
lazy evaluationeach item gets computed only when needed.

http://www.haskell.org
http://www.haskell.org

Recipe 4.3. Returning an Element of a List If It Exists

Credit: Nestor Nissen, A. Bass

Problem

You have a list L and an index i, and you want to get L[i] when i is a valid index into L;

otherwise, you want to get a default value v. If L were a dictionary, you'd use L.get(i, v), but
lists don't have a get method.

Solution

Clearly, we need to code a function, and, in this case, the simplest and most direct approach is
the best one:

def list_get(L, i, v=None):
 if -len(L) <= i < len(L): return L[i]
 else: return v

Discussion

The function in this recipe just checks whether i is a valid index by applying Python's indexing
rule: valid indices are negative ones down to -len(L) inclusive, and non-negative ones up to

len(L) exclusive. If almost all calls to list_get pass a valid index value for i, you might prefer an

alternative approach:

def list_get_egfp(L, i, v=None):
 try: return L[i]
 except IndexError: return v

However, unless a vast majority of the calls pass a valid index, this alternative (as some time-
measurements show) can be up to four times slower than the list_get function shown in the
solution. Therefore, this "easier to get forgiveness than permission" (EGFP) approach, although it
is often preferable in Python, cannot be recommended for this specific case.

I've also tried quite a few fancy, intricate and obscure approaches, but, besides being hard to
explain and to understand, they all end up slower than the plain, simple function list_get. General
principle: when you write Python code, prefer clarity and readability to compactness and
tersenesschoose simplicity over subtlety. You often will be rewarded with code that runs faster,
and invariably, you will end up with code that is less prone to bugs and is easier to maintain,
which is far more important than minor speed differences in 99.9% of the cases you encounter in
the real world.

See Also

Language Reference and Python in a Nutshell documentation on list indexing.

Recipe 4.4. Looping over Items and Their Indices in a
Sequence

Credit: Alex Martelli, Sami Hangaslammi

Problem

You need to loop on a sequence, but at each step you also need to know which index into the
sequence you have reached (e.g., because you need to rebind some entries in the sequence),
and Python's preferred approach to looping doesn't use the indices.

Solution

That's what built-in function enumerate is for. For example:

for index, item in enumerate(sequence):
 if item > 23:
 sequence[index] = transform(item)

This is cleaner, more readable, and faster than the alternative of looping over indices and
accessing items by indexing:

for index in range(len(sequence)):
 if sequence[index] > 23:
 sequence[index] = transform(sequence[index])

Discussion

Looping on a sequence is a very frequent need, and Python strongly encourages you to do just
that, looping on the sequence directly. In other words, the Pythonic way to get each item in a
sequence is to use:

for item in sequence:
 process(item)

rather than the indirect approach, typical of lower-level languages, of looping over the
sequence's indices and using each index to fetch the corresponding item:

for index in range(len(sequence)):
 process(sequence[index])

Looping directly is cleaner, more readable, faster, and more general (since you can loop on any
iterable, by definition, while indexing works only on sequences, such as lists).

However, sometimes you do need to know the index, as well as the corresponding item, within
the loop. The most frequent reason for this need is that, in order to rebind an entry in a list, you
must assign the new item to thelist[index]. To support this need, Python offers the built-in

function enumerate, which takes any iterable argument and returns an iterator yielding all the

pairs (two-item tuples) of the form (index, item), one pair at a time. By writing your for loop's

header clause in the form:

for index, item in enumerate(sequence):

both the index and the item are available within the loop's body.

For help remembering the order of the items in each pair enumerate yields, think of the idiom

d=dict(enumerate(L)). This gives a dictionary d that's equivalent to list L, in the sense that d[i]

is L[i] for any valid non-negative index i.

See Also

Library Reference and Python in a Nutshell section about enumerate; Chapter 19.

Recipe 4.5. Creating Lists of Lists Without Sharing
References

Credit: David Ascher

Problem

You want to create a multidimensional list but want to avoid implicit reference sharing.

Solution

To build a list and avoid implicit reference sharing, use a list comprehension. For example, to
build a 5 x 10 array of zeros:

multilist = [[0 for col in range(5)] for row in range(10)]

Discussion

When a newcomer to Python is first shown that multiplying a list by an integer repeats that list
that many times, the newcomer often gets quite excited about it, since it is such an elegant
notation. For example:

>>> alist = [0] * 5

is clearly an excellent way to get an array of 5 zeros.

The problem is that one-dimensional tasks often grow a second dimension, so there is a natural
progression to:

>>> multi = [[0] * 5] * 3
>>> print multi
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

This appears to work, but the same newcomer is then often puzzled by bugs, which typically can
be boiled down to a snippet such as:

>>> multi[0][0] = 'oops!'
>>> print multi
[['oops!', 0, 0, 0, 0], ['oops!', 0, 0, 0, 0], ['oops!', 0, 0, 0, 0]]

This issue confuses most programmers at least once, if not a few times (see the FAQ entry at
http://www.python.org/doc/FAQ.html#4.50). To understand the issue, it helps to decompose the
creation of the multidimensional list into two steps:

>>> row = [0] * 5 # a list with five references to 0
>>> multi = [row] * 3 # a list with three references to the row object

http://www.python.org/doc/FAQ.html#4.50

This decomposed snippet produces a multi that's identical to that given by the more concise
snippet [[0]*5]*3 shown earlier, and it has exactly the same problem: if you now assign a value
to multi[0][0], you have also changed the value of multi[1][0] and that of multi[2][0] . . . ,
and, indeed, you have changed the value of row[0], too!

The comments are key to understanding the source of the confusion. Multiplying a sequence by a
number creates a new sequence with the specified number of new references to the original
contents. In the case of the creation of row, it doesn't matter whether or not references are

being duplicated, since the referent (the object being referred to) is a number, and therefore
immutable. In other words, there is no practical difference between an object and a reference to
an object if that object is immutable. In the second line, however, we create a new list containing
three references to the contents of the [row] list, which holds a single reference to a list. Thus,

multi contains three references to a single list object. So, when the first element of the first

element of multi is changed, you are actually modifying the first element of the shared list.

Hence the surprise.

List comprehensions, as shown in the "Solution", avoid the problem. With list comprehensions,
no sharing of references occursyou have a truly nested computation. If you have followed the
discussion thoroughly, it may have occurred to you that we don't really need the inner list
comprehension, only the outer one. In other words, couldn't we get just the same effect with:

multilist = [[0]*5 for row in range(10)]

The answer is that, yes, we could, and in fact using list multiplication for the innermost axis and
list comprehension for all outer ones is fasterover twice as fast in this example. So why don't I
recommend this latest solution? Answer: the speed improvement for this example is from 57
down to 24 microseconds in Python 2.3, from 49 to 21 in Python 2.4, on a typical PC of several
years ago (AMD Athlon 1.2 GHz CPU, running Linux). Shaving a few tens of microseconds from a
list-creation operation makes no real difference to your application's performance: and you
should optimize your code, if at all, only where it matters, where it makes a substantial and
important difference to the performance of your application as a whole. Therefore, I prefer the
code shown in the recipe's Solution, simply because using the same construct for both the inner
and the outer list creations makes it more conceptually symmetrical and easier to read!

See Also

Documentation for the range built-in function in the Library Reference and Python in a Nutshell.

Recipe 4.6. Flattening a Nested Sequence

Credit: Luther Blissett, Holger Krekel, Hemanth Sethuram, ParzAspen Aspen

Problem

Some of the items in a sequence may in turn be sub-sequences, and so on, to arbitrary depth of
"nesting". You need to loop over a "flattened" sequence, "expanding" each sub-sequence into a
single, flat sequence of scalar items. (A scalar, or atom, is anything that is not a sequencei.e., a
leaf, if you think of the nested sequence as a tree.)

Solution

We need to be able to tell which of the elements we're handling are "subsequences" to be
"expanded" and which are "scalars" to be yielded as is. For generality, we can take an argument
that's a predicate to tell us what items we are to expand. (A predicate is a function that we can
call on any element and that returns a truth value: in this case, true if the element is a
subsequence we are to expand, False otherwise.) By default, we can arbitrarily say that every
list or tuple is to be "expanded", and nothing else. Then, a recursive generator offers the

simplest solution:

def list_or_tuple(x):
 return isinstance(x, (list, tuple))
def flatten(sequence, to_expand=list_or_tuple):
 for item in sequence:
 if to_expand(item):
 for subitem in flatten(item, to_expand):
 yield subitem
 else:
 yield item

Discussion

Flattening a nested sequence, or, equivalently, "walking" sequentially over all the leaves of a
"tree", is a common task in many kinds of applications. You start with a nested structure, with
items grouped into sequences and subsequences, and, for some purposes, you don't care about
the structure at all. You just want to deal with the items, one after the other. For example,

for x in flatten([1, 2, [3, [], 4, [5, 6], 7, [8,],], 9]):
 print x,

emits 1 2 3 4 5 6 7 8 9.

The only problem with this common task is that, in the general case, determining what is to be
"expanded", and what is to be yielded as a scalar, is not as obvious as it might seem. So, I
ducked that decision, delegating it to a callable predicate argument that the caller can pass to
flatten, unless the caller accepts flatten's somewhat simplistic default behavior of expanding just
tuples and lists.

In the same module as flatten, we should also supply another predicate that a caller might well

want to usea predicate that will expand just about any iterable except strings (plain and
Unicode). Strings are iterable, but almost invariably applications want to treat them as scalars,
not as subsequences.

To identify whether an object is iterable, we just need to try calling the built-in iter on that
object: the call raises TypeError if the object is not iterable. To identify whether an object is
string-like, we simply check whether the object is an instance of basestring, since

isinstance(obj, basestring) is true when obj is an instance of any subclass of
basestringthat is, any string-like type. So, the alternative predicate is not hard to code:

def nonstring_iterable(obj):
 try: iter(obj)
 except TypeError: return False
 else: return not isinstance(obj, basestring)

Now the caller may choose to call flatten(seq, nonstring_iterable) when the need is to

expand any iterable that is not a string. It is surely better not to make the nonstring_iterable
predicate the default for flatten, though: in a simple case, such as the example snippet we
showed previously, flatten can be up to three times slower when the predicate is
nonstring_iterable rather than list_or_tuple.

We can also write a nonrecursive version of generator flatten. Such a version lets you flatten
nested sequences with nesting levels higher than Python's recursion limit, which normally allows
no more than a few thousand levels of recursion depth. The main technique for recursion
removal is to keep an explicit last-in, first-out (LIFO) stack, which, in this case, we can
implement with a list of iterators:

def flatten(sequence, to_expand=list_or_tuple):
 iterators = [iter(sequence)]
 while iterators:
 # loop on the currently most-nested (last) iterator
 for item in iterators[-1]:
 if to_expand(item):
 # subsequence found, go loop on iterator on subsequence
 iterators.append(iter(item))
 break
 else:
 yield item
 else:
 # most-nested iterator exhausted, go back, loop on its parent
 iterators.pop()

The if clause of the if statement executes for any item we are to expandthat is, any

subsequence on which we must loop; so in that clause, we push an iterator for the subsequence
to the end of the stack, then execute a break to terminate the for, and go back to the outer
while, which will in turn execute a new for statement on the iterator we just appended to the
stack. The else clause of the if statement executes for any item we don't expand, and it just
yields the item.

The else clause of the for statement executes if no break statement interrupts the for loopin
other words, when the for loop runs to completion, exhausting the currently most-nested
iterator. So, in that else clause, we remove the now-exhausted most-nested (last) iterator, and
the outer while loop proceeds, either terminating if no iterators are left on the stack, or
executing a new for statement that continues the loop on the iterator that's back at the top of

the stackfrom wherever that iterator had last left off, intrinsically, because an iterator's job is
exactly to remember iteration state.

The results of this nonrecursive implementation of flatten are identical to those of the simpler
recursive version given in this recipe's Solution. If you think non-recursive implementations are

faster than recursive ones, though, you may be disappointed: according to my measurements,
the nonrecursive version is about 10% slower than the recursive one, across a range of cases.

See Also

Library Reference and Python in a Nutshell sections on sequence types and built-ins iter,
isinstance, and basestring.

Recipe 4.7. Removing or Reordering Columnsin a List of
Rows

Credit: Jason Whitlark

Problem

You have a list of lists (rows) and need to get another list of the same rows but with some
columns removed and/or reordered.

Solution

A list comprehension works well for this task. Say you have:

listOfRows = [[1,2,3,4], [5,6,7,8], [9,10,11,12]]

You want a list with the same rows but with the second of the four columns removed and the
third and fourth ones interchanged. A simple list comprehension that performs this job is:

newList = [[row[0], row[3], row[2]] for row in listOfRows]

An alternative way of coding, that is at least as practical and arguably a bit more elegant, is to
use an auxiliary sequence (meaning a list or tuple) that has the column indices you desire in their
proper order. Then, you can nest an inner list comprehension that loops on the auxiliary
sequence inside the outer list comprehension that loops on listOfRows:

newList = [[row[ci] for ci in (0, 3, 2)] for row in listofRows]

Discussion

I often use lists of lists to represent two-dimensional arrays. I think of such lists as having the
"rows" of a "two-dimensional array" as their items. I often perform manipulation on the
"columns" of such a "two-dimensional array", typically reordering some columns, sometimes
omitting some of the original columns. It is not obvious (at least, it was not immediately obvious
to me) that list comprehensions are just as useful for this purpose as they are for other kinds of
sequence-manipulation tasks.

A list comprehension builds a new list, rather than altering an existing one. But even when you
do need to alter the existing list in place, the best approach is to write a list comprehension and
assign it to the existing list's contents. For example, if you needed to alter listOfRows in place,

for the example given in this recipe's Solution, you would code:

listOfRows[:] = [[row[0], row[3], row[2]] for row in listOfRows]

Do consider, as suggested in the second example in this recipe's Solution, the possibility of using
an auxiliary sequence to hold the column indices you desire, in the order in which you desire
them, rather than explicitly hard-coding the list display as we did in the first example. You might

feel a little queasy about nesting two list comprehensions into each other in this fashion, but it's
simpler and safer than you might fear. If you adopt this approach, you gain some potential
generality, because you can choose to give a name to the auxiliary sequence of indices, use it to
reorder several lists of rows in the same fashion, pass it as an argument to a function, whatever:

def pick_and_reorder_columns(listofRows, column_indexes):
 return [[row[ci] for ci in column_indexes] for row in listofRows]
columns = 0, 3, 2
newListOfPandas = pick_and_reorder_columns(oldListOfPandas, columns)
newListOfCats = pick_and_reorder_columns(oldListOfCats, columns)

This example performs just the same column reordering and selection as all the other snippets in
this recipe, but it performs the operation on two separate "old" lists, obtaining from each the
corresponding "new" list. Reaching for excessive generalization is a pernicious temptation, but
here, with this pick_and_reorder_columns function, it seems that we are probably getting just
the right amount of generality.

One last note: some people prefer a fancier way to express the kinds of list comprehensions that
are used as "inner" ones in some of the functions used previously. Instead of coding them
straightforwardly, as in:

 [row[ci] for ci in column_indexes]

they prefer to use the built-in function map, and the special method _ _getitem_ _ of row used

as a bound-method, to perform the indexing subtask, so they code instead:

 map(row._ _getitem_ _, column_indexes)

Depending on the exact version of Python, perhaps this fancy and somewhat obscure way may
be slightly faster. Nevertheless, I think the greater simplicity of the list comprehension form
means the list comprehension is still the best way.

See Also

List comprehension docs in Language Reference and Python in a Nutshell.

Recipe 4.8. Transposing Two-Dimensional Arrays

Credit: Steve Holden, Raymond Hettinger, Attila Vàsàrhelyi, Chris Perkins

Problem

You need to transpose a list of lists, turning rows into columns and vice versa.

Solution

You must start with a list whose items are lists all of the same length, such as:

arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

A list comprehension offers a simple, handy way to transpose such a two-dimensional array:

print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

A faster though more obscure alternative (with exactly the same output) can be obtained by
exploiting built-in function zip in a slightly strange way:

print map(list, zip(*arr))

Discussion

This recipe shows a concise yet clear way to turn rows into columns, and also a faster though
more obscure way. List comprehensions work well when you want to be clear yet concise, while
the alternative solution exploits the built-in function zip in a way that is definitely not obvious.

Sometimes data just comes at you the wrong way. For instance, if you use Microsoft's ActiveX
Data Ojbects (ADO) database interface, due to array element-ordering differences between
Python and Microsoft's preferred implementation language (Visual Basic), the Getrows method

actually appears to return database columns in Python, despite the method's name. This recipe's
two solutions to this common kind of problem let you choose between clarity and speed.

In the list comprehension solution, the inner comprehension varies what is selected from (the
row), while the outer comprehension varies the selector (the column). This process achieves the
required transposition.

In the zip-based solution, we use the *a syntax to pass each item (row) of arr to zip, in order,
as a separate positional argument. zip returns a list of tuples, which directly achieves the
required transposition; we then apply list to each tuple, via the single call to map, to obtain a
list of lists, as required. Since we don't use zip's result as a list directly, we could get a further
slight improvement in performance by using itertools.izip instead (because izip does not

materialize its result as a list in memory, but rather yields it one item at a time):

import itertools
print map(list, itertools.izip(*arr))

but, in this specific case, the slight speed increase is probably not worth the added complexity.

The *args and **kwds Syntax

*args (actually, * followed by any identifiermost usually, you'll see args or a as the

identifier that's used) is Python syntax for accepting or passing arbitrary positional
arguments. When you receive arguments with this syntax (i.e., when you place the
star syntax within a function's signature, in the def statement for that function),

Python binds the identifier to a tuple that holds all positional arguments not
"explicitly" received. When you pass arguments with this syntax, the identifier can be
bound to any iterable (in fact, it could be any expression, not necessarily an
identifier, as long as the expression's result is an iterable).

**kwds (again, the identifier is arbitrary, most often kwds or k) is Python syntax for

accepting or passing arbitrary named arguments. (Python sometimes calls named
arguments keyword arguments, which they most definitely are notjust try to use as
argument name a keyword, such as pass, for, or yield, and you'll see.

Unfortunately, this confusing terminology is, by now, ingrained in the language and
its culture.) When you receive arguments with this syntax (i.e., when you place the
starstar syntax within a function's signature, in the def statement for that function),
Python binds the identifier to a dict, which holds all named arguments not

"explicitly" received. When you pass arguments with this syntax, the identifier must
be bound to a dict (in fact, it could be any expression, not necessarily an identifier,
as long as the expression's result is a dict).

Whether in defining a function or in calling it, make sure that both *a and **k come
after any other parameters or arguments. If both forms appear, then place the **k
after the *a.

If you're transposing large arrays of numbers, consider Numeric Python and other third-party
packages. Numeric Python defines transposition and other axis-swinging routines that will make
your head spin.

See Also

The Reference Manual and Python in a Nutshell sections on list displays (the other name for list
comprehensions) and on the *a and *k notation for positional and named argument passing;
built-in functions zip and map; Numeric Python (http://www.pfdubois.com/numpy/).

http://www.pfdubois.com/numpy/

Recipe 4.9. Getting a Value from a Dictionary

Credit: Andy McKay

Problem

You need to obtain a value from a dictionary, without having to handle an exception if the key
you seek is not in the dictionary.

Solution

That's what the get method of dictionaries is for. Say you have a dictionary such as d =

{'key':'value',}. To get the value corresponding to key in d in an exception-safe way, code:

print d.get('key', 'not found')

If you need to remove the entry after you have obtained the value, call d.pop (which does a get-

and-remove) instead of d.get (which just reads d and never changes it).

Discussion

Want to get a value for a key from a dictionary, without getting an exception if the key does not
exist in the dictionary? Use the simple and useful get method of the dictionary.

If you try to get a value with the indexing syntax d[x], and the value of x is not a key in

dictionary d, your attempt raises a KeyError exception. This is often okay. If you expected the

value of x to be a key in d, an exception is just the right way to inform you that you're mistaken

(i.e., that you need to debug your program).

However, you often need to be more tentative about it: as far as you know, the value of x may

or may not be a key in d. In this case, don't start messing with in tests, such as:

if 'key' in d:
 print d['key']
else:
 print 'not found'

or try/except statements, such as:

try:
 print d['key']
except KeyError:
 print 'not found'

Instead, use the get method, as shown in the "Solution". If you call d.get(x), no exception is

thrown: you get d[x] if x is a key in d, and if it's not, you get None (which you can check for or

propagate). If None is not what you want to get when x is not a key of d, call d.get(x,

somethingelse) instead. In this case, if x is not a key, you will get the value of somethingelse.

get is a simple, useful mechanism that is well explained in the Python documentation, but a
surprising number of people don't know about it. Another similar method is pop, which is mostly
like get, except that, if the key was in the dictionary, pop also removes it. Just one caveat: get

and pop are not exactly parallel. d.pop(x) does raise KeyError if x is not a key in d; to get
exactly the same effect as d.get(x), plus the entry removal, call d.pop(x,None) instead.

See Also

Recipe 4.10; the Library Reference and Python in a Nutshell sections on mapping types.

Recipe 4.10. Adding an Entry to a Dictionary

Credit: Alex Martelli, Martin Miller, Matthew Shomphe

Problem

Working with a dictionary d, you need to use the entry d[k] when it's already present, or add a

new value as d[k] when k isn't yet a key in d.

Solution

This is what the setdefault method of dictionaries is for. Say we're building a word- to-page-

numbers index, a dictionary that maps each word to the list of page numbers where it appears. A
key piece of code in that application might be:

def addword(theIndex, word, pagenumber):
 theIndex.setdefault(word, []).append(pagenumber)

This code is equivalent to more verbose approaches such as:

def addword(theIndex, word, pagenumber):
 if word in theIndex:
 theIndex[word].append(pagenumber)
 else:
 theIndex[word] = [pagenumber]

and:

def addword(theIndex, word, pagenumber):
 try:
 theIndex[word].append(pagenumber)
 except KeyError:
 theIndex[word] = [pagenumber]

Using method setdefault simplifies this task considerably.

Discussion

For any dictionary d, d.setdefault(k, v) is very similar to d.get(k, v), which was covered

previously in Recipe 4.9. The essential difference is that, if k is not a key in the dictionary, the

setdefault method assigns d[k]=v as a side effect, in addition to returning v. (get would just

return v, without affecting d in any way.) Therefore, consider using setdefault any time you
have get-like needs, but also want to produce this side effect on the dictionary.

setdefault is particularly useful in a dictionary with values that are lists, as detailed in Recipe
4.15. The most typical usage for setdefault is something like:

somedict.setdefault(somekey, []).append(somevalue)

setdefault is not all that useful for immutable values, such as numbers. If you just want to
count words, for example, the right way to code is to use, not setdefault, but rather get:

theIndex[word] = theIndex.get(word, 0) + 1

since you must rebind the dictionary entry at theIndex[word] anyway (because numbers are

immutable). But for our word-to page-numbers example, you definitely do not want to fall into
the performance trap that's hidden in the following approach:

def addword(theIndex, word, pagenumber):
 theIndex[word] = theIndex.get(word, []) + [pagenumber]

This latest version of addword builds three new lists each time you call it: an empty list that's
passed as the second argument to theIndex.get, a one-item list containing just pagenumber,

and a list with N+1 items obtained by concatenating these two (where N is the number of times

that word was previously found). Building such a huge number of lists is sure to take its toll, in

performance terms. For example, on my machine, I timed the task of indexing the same four
words occurring once each on each of 1,000 pages. Taking the first version of addword in the
recipe as a reference point, the second one (using try/except) is about 10% faster, the third
one (using setdefault) is about 20% slowerthe kind of performance differences that you should
blissfully ignore in just about all cases. This fourth version (using get) is four times slowerthe

kind of performance difference you just can't afford to ignore.

See Also

Recipe 4.9; Recipe 4.15; Library Reference and Python in a Nutshell documentation about dict.

Recipe 4.11. Building a Dictionary Without Excessive
Quoting

Credit: Brent Burley, Peter Cogolo

Problem

You want to construct a dictionary whose keys are literal strings, without having to quote each
key.

Solution

Once you get into the swing of Python, you'll find yourself constructing a lot of dictionaries. When
the keys are identifiers, you can avoid quoting them by calling dict with named-argument

syntax:

data = dict(red=1, green=2, blue=3)

This is neater than the equivalent use of dictionary-display syntax:

data = {'red': 1, 'green': 2, 'blue': 3}

Discussion

One powerful way to build a dictionary is to call the built-in type dict. It's often a good

alternative to the dictionary-display syntax with braces and colons. This recipe shows that, by
calling dict, you can avoid having to quote keys, when the keys are literal strings that happen to

be syntactically valid for use as Python identifiers. You cannot use this approach for keys such as
the literal strings '12ba' or 'for', because '12ba' starts with a digit, and for happens to be a

Python keyword, not an identifier.

Also, dictionary-display syntax is the only case in Python where you need to use braces: if you
dislike braces, or happen to work on a keyboard that makes braces hard to reach (as all Italian
layout keyboards do!), you may be happier, for example, using dict() rather than { } to build

an empty dictionary.

Calling dict also gives you other possibilities. dict(d) returns a new dictionary that is an

independent copy of existing dictionary d, just like d.copy()but dict(d) works even when d is

a sequence of pairs (key, value) instead of being a dictionary (when a key occurs more than

once in the sequence, the last appearance of the key applies). A common dictionary-building

idiom is:

d = dict(zip(the_keys, the_values))

where the_keys is a sequence of keys and the_values a "parallel" sequence of corresponding
values. Built-in function zip builds and returns a list of (key, value) pairs, and built-in type
dict accepts that list as its argument and constructs a dictionary accordingly. If the sequences
are long, it's faster to use module itertools from the standard Python library:

import itertools
d = dict(itertools.izip(the_keys, the_values))

Built-in function zip constructs the whole list of pairs in memory, while itertools.izip yields

only one pair at a time. On my machine, with sequences of 10,000 numbers, the latter idiom is
about twice as fast as the one using zip18 versus 45 milliseconds with Python 2.3, 17 versus 32

with Python 2.4.

You can use both a positional argument and named arguments in the same call to dict (if the

named argument clashes with a key specified in the positional argument, the named argument
applies). For example, here is a workaround for the previously mentioned issue that Python
keywords, and other nonidentifiers, cannot be used as argument names:

d = dict({'12ba':49, 'for': 23}, rof=41, fro=97, orf=42)

If you need to build a dictionary where the same value corresponds to each key, call
dict.fromkeys(keys_sequence, value) (if you omit the value, it defaults to None). For

example, here is a neat way to initialize a dictionary to be used for counting occurrences of
various lowercase ASCII letters:

import string
count_by_letter = dict.fromkeys(string.ascii_lowercase, 0)

See Also

Library Reference and Python in a Nutshell sections on built-ins dict and zip, and on modules
itertools and string.

Recipe 4.12. Building a Dict from a List of Alternating
Keys and Values

Credit: Richard Philips, Raymond Hettinger

Problem

You want to build a dict from a list of alternating keys and values.

Solution

The built-in type dict offers many ways to build dictionaries, but not this one, so we need to
code a function for the purpose. One way is to use the built-in function zip on extended slices:

def dictFromList(keysAndValues):
 return dict(zip(keysAndValues[::2], keysAndValues[1::2]))

A more general approach, which works for any sequence or other iterable argument and not just
for lists, is to "factor out" the task of getting a sequence of pairs from a flat sequence into a
separate generator. This approach is not quite as concise as dictFromList, but it's faster as well
as more general:

def pairwise(iterable):
 itnext = iter(iterable).next
 while True:
 yield itnext(), itnext()
def dictFromSequence(seq):
 return dict(pairwise(seq))

Defining pairwise also allows updating an existing dictionary with any sequence of alternating
keys and valuesjust code, for example, mydict.update(pairwise(seq)).

Discussion

Both of the "factory functions" in this recipe use the same underlying way to construct a
dictionary: each calls dict with an argument that is a sequence of (key, value) pairs. All the
difference is in how the functions build the sequence of pairs to pass to dict.

dictFromList builds a list of such pairs by calling built-in function zip with two extended-form

slices of the function's keysAndValues argumentone that gathers all items with even indices
(meaning the items at index 0, 2, 4, . . .), the other that gathers all items with odd indices
(starting at 1 and counting by 2 . . .). This approach is fine, but it works only when the argument
named keysAndValues is an instance of a type or class that supports extended slicing, such as
list, tuple or str. Also, this approach results in constructing several temporary lists in

memory: if keysAndValues is a long sequence, all of this list construction activity can cost some
performance.

dictFromSequence, on the other hand, delegates the task of building the sequence of pairs to the

generator named pairwise. In turn, pairwise is coded to ensure that it can use any iterable at
allnot just lists (or other sequences, such as tuples or strings), but also, for example, results of
other generators, files, dictionaries, and so on. Moreover, pairwise yields pairs one at a time. It
never constructs any long list in memory, an aspect that may improve performance if the input
sequence is very long.

The implementation of pairwise is interesting. As its very first statement, pairwise binds local
name itnext to the bound-method next of the iterator that it obtains by calling the built-in
function iter on the iterable argument. This may seem a bit strange, but it's a good general

technique in Python: if you start with an object, and all you need to do with that object is call one
of its methods in a loop, you can extract the bound-method, assign it to a local name, and
afterwards just call the local name as if it were a function. pairwise would work just as well if the
next method was instead called in a way that may look more normal to programmers who are

used to other languages:

def pairwise_slow(iterable):
 it = iter(iterable)
 while True:
 yield it.next(), it.next()

However, this pairwise_slow variant isn't really any simpler than the pairwise generator shown in
the Solution ("more familiar to people who don't know Python" is not a synonym of "simpler"!),
and it is about 60% slower. Focusing on simplicity and clarity is one thing, and a very good
oneindeed, a core principle of Python. Throwing performance to the winds, without getting any
real advantage to compensate, is a completely different proposition and definitely not a practice
that can be recommended in any language. So, while it is an excellent idea to focus on writing
correct, clear, and simple code, it's also very advisable to learn and use Python's idioms that are
most appropriate to your needs.

See Also

Recipe 19.7 for more general approaches to looping by sliding windows over an iterable. See the
Python Reference Manual for more on extended slicing.

Recipe 4.13. Extracting a Subset of a Dictionary

Credit: David Benjamin

Problem

You want to extract from a larger dictionary only that subset of it that corresponds to a certain
set of keys.

Solution

If you want to leave the original dictionary intact:

def sub_dict(somedict, somekeys, default=None):
 return dict([(k, somedict.get(k, default)) for k in somekeys])

If you want to remove from the original the items you're extracting:

def sub_dict_remove(somedict, somekeys, default=None):
 return dict([(k, somedict.pop(k, default)) for k in somekeys])

Two examples of these functions' use and effects:

>>> d = {'a': 5, 'b': 6, 'c': 7}
>>> print sub_dict(d, 'ab'), d
{'a': 5, 'b': 6} {'a': 5, 'b': 6, 'c': 7}
>>> print sub_dict_remove(d, 'ab'), d
{'a': 5, 'b': 6} {'c': 7}

Discussion

In Python, I use dictionaries for many purposesdatabase rows, primary and compound keys,
variable namespaces for template parsing, and so on. So, I often need to create a dictionary that
is based on another, larger dictionary, but only contains the subset of the larger dictionary
corresponding to some set of keys. In most use cases, the larger dictionary must remain intact
after the extraction; sometimes, however, I need to remove from the larger dictionary the subset
that I'm extracting. This recipe's solution shows both possibilities. The only difference is that you
use method get when you want to avoid affecting the dictionary that you are getting data from,
method pop when you want to remove the items you're getting.

If some item k of somekeys is not in fact a key in somedict, this recipe's functions put k as a key

in the result anyway, with a default value (which I pass as an optional argument to either
function, with a default value of None). So, the result is not necessarily a subset of somedict.

This behavior is the one I've found most useful in my applications.

You might prefer to get an exception for "missing keys"that would help alert you to a bug in your
program, in cases in which you know all ks in somekeys should definitely also be keys in

somedict. Remember, "errors should never pass silently. Unless explicitly silenced," to quote The

Zen of Python, by Tim Peters (enter the statement import this at an interactive Python prompt

to read or re-read this delightful summary of Python's design principles). So, if a missing key is
an error, from the point of view of your application, then you do want to get an exception that
alerts you to that error at once, if it ever occurs. If this is what you want, you can get it with
minor modifications to this recipe's functions:

def sub_dict_strict(somedict, somekeys):
 return dict([(k, somedict[k]) for k in somekeys])
def sub_dict_remove_strict(somedict, somekeys):
 return dict([(k, somedict.pop(k)) for k in somekeys])

As you can see, these strict variants are even simpler than the originalsa good indication that
Python likes to raise exceptions when unexpected behavior occurs!

Alternatively, you might prefer missing keys to be simply omitted from the result. This, too,
requires just minor modifications:

def sub_dict_select(somedict, somekeys):
 return dict([(k, somedict[k]) for k in somekeys if k in somedict])
def sub_dict_remove_select(somedict, somekeys):
 return dict([(k, somedict.pop(k)) for k in somekeys if k in somedict])

The if clause in each list comprehension does all we need to distinguish these _select variants

from the _strict ones.

In Python 2.4, you can use generator expressions, instead of list comprehensions, as the
arguments to dict in each of the functions shown in this recipe. Just change the syntax of the
calls to dict, from dict([. . .]) to dict(. . .) (removing the brackets adjacent to the

parentheses) and enjoy the resulting slight simplification and acceleration. However, these
variants would not work in Python 2.3, which has list comprehensions but not generator
expressions.

See Also

Library Reference and Python in a Nutshell documentation on dict.

Recipe 4.14. Inverting a Dictionary

Credit: Joel Lawhead, Ian Bollinger, Raymond Hettinger

Problem

An existing dict maps keys to unique values, and you want to build the inverse dict, mapping

each value to its key.

Solution

You can write a function that passes a list comprehension as dict's argument to build the new

requested dictionary:

def invert_dict(d):
 return dict([(v, k) for k, v in d.iteritems()])

For large dictionaries, though, it's faster to use the generator izip from the itertools module in

the Python Standard Library:

from itertools import izip
def invert_dict_fast(d):
 return dict(izip(d.itervalues(), d.iterkeys()))

Discussion

If the values in dict d are not unique, then d cannot truly be inverted, meaning that there exists

no dict id such that for any valid key k, id[d[k]]==k. However, the functions shown in this

recipe still construct, even in such cases, a "pseudo-inverse" dict pd such that, for any v that is a

value in d, d[pd[v]]==v. Given the original dict d and the dict x returned by either of the

functions shown in this recipe, you can easily check whether x is the true inverse of d or just d's

pseudo-inverse: x is the true inverse of d if and only if len(x)==len(d). That's because, if two

different keys have the same value, then, in the result of either of the functions in this recipe,
one of the two keys will simply go "poof" into the ether, thus leaving the resulting pseudo-
inverse dict shorter than the dict you started with. In any case, quite obviously, the functions
shown in this recipe can work only if all values in d are hashable (meaning that they are all

usable as keys into a dict): otherwise, the functions raise a TypeError exception.

When we program in Python, we normally "disregard minor optimizations," as Donald Knuth
suggested over thirty years ago: we place a premium on clarity and correctness and care
relatively little about speed. However, it can't hurt to know about faster possibilities: when we
decide to code in a certain way because it's simpler or clearer than another, it's best if we are
taking the decision deliberately, not out of ignorance.

Here, function invert_dict in this recipe's Solution might perhaps be considered clearer because it
shows exactly what it's doing. Take the pairs k, v of key and value that method iteritems
yields, swap them into (value, key) order, and feed the resulting list as the argument of dict,

so that dict builds a dictionary where each value v is a key and the corresponding key k
becomes that key's valuejust the inverse dict that our problem requires.

However, function invert_dict_fast, also in this recipe's Solution, isn't really any more
complicated: it just operates more abstractly, by getting all keys and all values as two separate
iterators and zipping them up (into an iterator whose items are the needed, swapped (value,
key) pairs) via a call to generator izip, supplied by the itertools module of the Python

Standard Library. If you get used to such higher abstraction levels, they will soon come to feel
simpler than lower-level code!

Thanks to the higher level of abstraction, and to never materializing the whole list of pairs (but
rather operating via generators and iterators that yield only one item at a time), function
invert_dict_fast can be substantially faster than function invert_dict. For example, on my
machine, to invert a 10,000-item dictionary, invert_dict takes about 63 milliseconds, but
invert_dict_fast manages the same task in just 20 milliseconds. A speed increase by a factor of
three, in general, is not to be sneered at. Such performance gains, when you work on large
amounts of data, are the norm, rather than the exception, for coding at higher abstraction levels.
This is particularly true when you can use itertools rather than loops or list comprehensions,

because you don't need to materialize some large list in memory at one time. Performance gain
is an extra incentive for getting familiar with working at higher abstraction levels, a familiarity
that has conceptual and productivity pluses, too.

See Also

Documentation on mapping types and itertools in the Library Reference and Python in a

Nutshell; Chapter 19.

Recipe 4.15. Associating Multiple Values with Each Key
in a Dictionary

Credit: Michael Chermside

Problem

You need a dictionary that maps each key to multiple values.

Solution

By nature, a dictionary is a one-to-one mapping, but it's not hard to make it one-to-manyin other
words, to make one key map to multiple values. Your choice of one of two possible approaches
depends on how you want to treat duplications in the set of values for a key. The following
approach, based on using lists as the dict's values, allows such duplications:

d1 = { }
d.setdefault(key, []).append(value)

while an alternative approach, based on using sub-dicts as the dict's values, automatically

eliminates duplications of values:

d2 = { }
d2.setdefault(key, { })[value] = 1

In Python 2.4, the no-duplication approach can equivalently be coded:

d3 = { }
d3.setdefault(key, set()).add(value)

Discussion

A normal dictionary performs a simple mapping of each key to one value. This recipe shows
three easy, efficient ways to achieve a mapping of each key to multiple values, by holding as the
dictionary's values lists, sub-dicts, or, in Python 2.4, sets. The semantics of the list-based

approach differ slightly but importantly from those of the other two in terms of how they deal
with duplication. Each approach relies on the setdefault method of a dictionary, covered earlier

in Recipe 4.10, to initialize the entry for a key in the dictionary, if needed, and in any case to
return said entry.

You need to be able to do more than just add values for a key. With the first approach, which
uses lists and allows duplications, here's how to retrieve the list of values for a key:

list_of_values = d1[key]

Here's how to remove one value for a key, if you don't mind leaving empty lists as items of d1

when the last value for a key is removed:

d1[key].remove(value)

Despite the empty lists, it's still easy to test for the existence of a key with at least one valuejust
use a function that always returns a list (maybe an empty one), such as:

def get_values_if_any(d, key):
 return d.get(key, [])

For example, to check whether 'freep' is among the values (if any) for key 'somekey' in

dictionary d1, you can code: if 'freep' in get_values_if_any(d1, 'somekey').

The second approach, which uses sub-dicts and eliminates duplications, can use rather similar

idioms. To retrieve the list of values for a key:

list_of_values = list(d2[key])

To remove one value for a key, leaving empty dictionaries as items of d2 when the last value for

a key is removed:

del d2[key][value]

In the third approach, showing the Python 2.4-only version d3, which uses sets, this would be:

d3[key].remove(value)

One possibility for the get_values_if_any function in either the second or third (duplication-

removing) approaches would be:

def get_values_if_any(d, key):
 return list(d.get(key, ()))

This recipe focuses on how to code the raw functionality, but, to use this functionality in a
systematic way, you'll probably want to wrap up this code into a class. For that purpose, you
need to make some of the design decisions that this recipe highlights. Do you want a value to be
in the entry for a key multiple times? (Is the entry for each key a bag rather than a set, in
mathematical terms?) If so, should remove just reduce the number of occurrences by 1, or

should it wipe out all of them? This is just the beginning of the choices you have to make, and
the right choices depend on the specifics of your application.

See Also

Recipe 4.10; the Library Reference and Python in a Nutshell sections on mapping types; Recipe
18.8 for an implementation of the bag type.

Recipe 4.16. Using a Dictionary to Dispatch Methods or
Functions

Credit: Dick Wall

Problem

You need to execute different pieces of code depending on the value of some control variablethe
kind of problem that in some other languages you might approach with a case statement.

Solution

Object-oriented programming, thanks to its elegant concept of dispatching, does away with
many (but not all) needs for case statements. In Python, dictionaries, and the fact that functions

are first-class objects (in particular, functions can be values in a dictionary), conspire to make
the full problem of "case statements" easier to solve. For example, consider the following snippet
of code:

animals = []
number_of_felines = 0
def deal_with_a_cat():
 global number_of_felines
 print "meow"
 animals.append('feline')
 number_of_felines += 1
def deal_with_a_dog():
 print "bark"
 animals.append('canine')
def deal_with_a_bear():
 print "watch out for the *HUG*!"
 animals.append('ursine')
tokenDict = {
 "cat": deal_with_a_cat,
 "dog": deal_with_a_dog,
 "bear": deal_with_a_bear,
 }
Simulate, say, some words read from a file
words = ["cat", "bear", "cat", "dog"]
for word in words:
 # Look up the function to call for each word, and call it
 return tokenDict[word]()
nf = number_of_felines
print 'we met %d feline%s' % (nf, 's'[nf==1:])
print 'the animals we met were:', ' '.join(animals)

Discussion

The key idea in this recipe is to construct a dictionary with string (or other) values as keys, and
bound-methods, functions, or other callables as values. At each step of execution, we use the

string keys to select which callable to execute and then call it. This approach can be used as a
kind of generalized case statement.

It's embarrassingly simple (really!), but I use this technique often. You can also use bound-
methods or other callables instead of functions. If you use unbound methods, you need to pass
an appropriate object as the first actual argument when you do call them. More generally, you
can store, as the dictionary's values, tuples including both a callable and arguments to pass to
the callable.

I primarily use this technique in places where in other languages, I might want a case, switch,
or select statement. For example, I use it to implement a poor man's way to parse command

files (e.g., an X10 macro control file).

See Also

The Library Reference section on mapping types; the Reference Manual section on bound and
unbound methods; Python in a Nutshell about both dictionaries and callables.

Recipe 4.17. Finding Unions and Intersections of
Dictionaries

Credit: Tom Good, Andy McKay, Sami Hangaslammi, Robin Siebler

Problem

Given two dictionaries, you need to find the set of keys that are in both dictionaries (the
intersection) or the set of keys that are in either dictionary (the union).

Solution

Sometimes, particularly in Python 2.3, you find yourself using dictionaries as concrete
representations of sets. In such cases, you only care about the keys, not the corresponding
values, and often you build the dictionaries by calls to dict.fromkeys, such as

a = dict.fromkeys(xrange(1000))
b = dict.fromkeys(xrange(500, 1500))

The fastest way to compute the dict that is the set-union is:

union = dict(a, **b)

The fastest concise way to compute the dict that is the set-intersection is:

inter = dict.fromkeys([x for x in a if x in b])

If the number of items in dictionaries a and b can be very different, then it can be important for
speed considerations to have the shorter one in the for clause, and the longer one in the if

clause, of this list comprehension. In such cases, it may be worth sacrificing some conciseness in
favor of speed, by coding the intersection computation as follows:

if len(a) < len(b):
 inter = dict.fromkeys([x for x in a if x not in b])
else:
 inter = dict.fromkeys([x for x in b if x not in a])

Python also gives you types to represent sets directly (in standard library module sets, and, in

Python 2.4, also as built-ins). Here is a snippet that you can use at the start of a module: the
snippet ensures that name set is bound to the best available set type, so that throughout the

module, you can then use the same code whether you're using Python 2.3 or 2.4:

try:
 set
except NameError:
 from sets import Set as set

Having done this, you can now use type set to best effect, gaining clarity and conciseness, and

(in Python 2.4) gaining a little speed, too:

a = set(xrange(1000))
b = set(xrange(500, 1500))
union = a | b
inter = a & b

Discussion

In Python 2.3, even though the Python Standard Library module sets offers an elegant data type
Set that directly represents a set (with hashable elements), it is still common to use a dict to

represent a set, partly for historical reasons. Just in case you want to keep doing it, this recipe
shows you how to compute unions and intersections of such sets in the fastest ways, which are
not obvious. The code in this recipe, on my machine, takes about 260 microseconds for the
union, about 690 for the intersection (with Python 2.3; with Python 2.4, 260 and
600,respectively), while alternatives based on loops or generator expressions are substantially
slower.

However, it's best to use type set instead of representing sets by dictionaries. As the recipe
shows, using set makes your code more direct and readable. If you dislike the or-operator (|)
and the "and-operator" (&), you can equivalently use a.union(b) and a.intersection(b),

respectively. Besides clarity, you also gain speed, particularly in Python 2.4: computing the union
still takes about 260 microseconds, but computing the intersection takes only about 210. Even in
Python 2.3, this approach is acceptably fast: computing the union takes about 270
microseconds, computing the intersection takes about 650not quite as fast as Python 2.4 but still
quite comparable to what you can get if you represent sets by dictionaries. Last but not least,
once you use type set (whether it is the Python 2.4 built-in, or class Set from the Python
Standard Library module sets, the interface is the same), you gain a wealth of useful set

operations. For example, the set of elements that are in either a or b but not both is a^b or,
equivalently, a.symmetric_difference(b).

Even if you start with dicts for other reasons, consider using sets anyway if you need to

perform set operations. Say, for example, that you have in phones a dictionary that maps names

to phone numbers and in addresses one that maps names to addresses. The clearest and

simplest way to print all names for which you know both address and phone number, and their
associated data, is:

for name in set(phones) & set(addresses):
 print name, phones[name], addresses[name]

This is much terser, and arguably clearer, than something like:

for name in phones:
 if name in addresses:
 print name, phones[name], addresses[name]

Another excellent alternative is:

for name in set(phones).intersection(addresses):
 print name, phones[name], addresses[name]

If you use the named intersection method, rather than the & intersection operator, you don't
need to turn both dicts into sets: just one of them. Then call intersection on the resulting
set, and pass the other dict as the argument to the intersection method.

See Also

The Library Reference and Python in a Nutshell sections on mapping types, module sets, and
Python 2.4's built-in set type.

Recipe 4.18. Collecting a Bunch of Named Items

Credit: Alex Martelli, Doug Hudgeon

Problem

You want to collect a bunch of items together, naming each item of the bunch, and you find
dictionary syntax a bit heavyweight for the purpose.

Solution

Any normal class instance inherently wraps a dictionary, which it uses to hold its state. We can
easily take advantage of this handily wrapped dictionary by coding a nearly empty class:

class Bunch(object):
 def _ _init_ _(self, **kwds):
 self._ _dict_ _.update(kwds)

Now, to group a few variables, create a Bunch instance:

point = Bunch(datum=y, squared=y*y, coord=x)

You can now access and rebind the named attributes just created, add others, remove some,
and so on. For example:

if point.squared > threshold:
 point.isok = True

Discussion

We often just want to collect a bunch of stuff together, naming each item of the bunch. A
dictionary is OK for this purpose, but a small do-nothing class is even handier and prettier to use.

It takes minimal effort to build a little class, as in this recipe, to provide elegant attribute-access
syntax. While a dictionary is fine for collecting a few items in which each item has a name (the
item's key in the dictionary can be thought of as the item's name, in this context), it's not the
best solution when all names are identifiers, to be used just like variables. In class Bunch's _
init _ method, we accept arbitrary named arguments with the **kwds syntax, and we use

the kwds dictionary to update the initially empty instance dictionary, so that each named
argument gets turned into an attribute of the instance.

Compared to attribute-access syntax, dictionary-indexing syntax is not quite as terse and
readable. For example, if point was a dictionary, the little snippet at the end of the "Solution"

would have to be coded like:

if point['squared'] > threshold:
 point['isok'] = True

An alternative implementation that's just as attractive as the one used in this recipe is:

class EvenSimplerBunch(object):
 def _ _init_ _(self, **kwds):
 self._ _dict_ _ = kwds

Rebinding an instance's dictionary may feel risqué, but it's not actually any pushier than calling
that dictionary's update method. So you might prefer the marginal speed advantage of this

alternative implementation of Bunch. Unfortunately, I cannot find anywhere in Python's
documentation an assurance that usage like:

d = {'foo': 'bar'}
x = EvenSimplerBunch(**d)

will forever keep making x._ _dict_ _ an independent copy of d rather than just sharing a
reference. It does currently, and in every version, but unless it's a documented semantic
constraint, we cannot be entirely sure that it will keep working forever. So, if you do choose the
implementation in EvenSimplerBunch, you might choose to assign a copy (dict(kwds) or
kwds.copy()) rather than kwds itself. And, if you do, then the marginal speed advantage

disappears. All in all, the Bunch presented in this recipe's Solution is probably preferable.

A further tempting but not fully sound alternative is to have the Bunch class inherit from dict,

and set attribute access special methods equal to the item access special methods, as follows:

class DictBunch(dict):
 _ _getattr_ _ = dict._ _getitem_ _
 _ _setattr_ _ = dict._ _setitem_ _
 _ _delattr_ _ = dict._ _delitem_ _

One problem with this approach is that, with this definition, an instance x of DictBunch has many

attributes it doesn't really have, because it inherits all the attributes (methods, actually, but
there's no significant difference in this context) of dict. So, you can't meaningfully check
hasattr(x, someattr), as you could with the classes Bunch and EvenSimplerBunch previously

shown, unless you can somehow rule out the value of someattr being any of several common
words such as 'keys', 'pop', and 'get'.

Python's distinction between attributes and items is really a wellspring of clarity and simplicity.
Unfortunately, many newcomers to Python wrongly believe that it would be better to confuse
items with attributes, generally because of previous experience with JavaScript and other such
languages, in which attributes and items are regularly confused. But educating newcomers is a
much better idea than promoting item/attribute confusion.

See Also

The Python Tutorial section on classes; the Language Reference and Python in a Nutshell
coverage of classes; Chapter 6 for more information about object-oriented programming in
Python; Recipe 4.18 for more on the **kwds syntax.

Recipe 4.19. Assigning and Testing with One Statement

Credit: Alex Martelli, Martin Miller

Problem

You are transliterating C or Perl code to Python, and to keep close to the original's structure,
you'd like an expression's result to be both assigned and tested (as in if((x=foo()) or
while((x=foo()) in such other languages).

Solution

In Python, you can't code if x=foo(): Assignment is a statement, so it cannot fit into an
expression, and you can only use expressions as conditions of if and while statements. This

isn't a problem, it just means you have to structure your code Pythonically! For example, to
process a file object f line by line, instead of the following C-like (and syntactically incorrect, in

Python) approach:

while (line=f.readline()) != '':
 process(line)

you can code a highly Pythonic (readable, clean, fast) approach:

for line in f:
 process(line)

But sometimes, you're transliterating from C, Perl, or another language, and you'd like your
transliteration to be structurally close to the original. One simple utility class makes it easy:

class DataHolder(object):
 def _ _init_ _(self, value=None):
 self.value = value
 def set(self, value):
 self.value = value
 return value
 def get(self):
 return self.value
optional and strongly discouraged, but nevertheless handy at times:
import _ _builtin_ _
_ _builtin_ _.DataHolder = DataHolder
_ _builtin_ _.data = data = DataHolder()

With the help of the DataHolder class and its instance data, you can keep your C-like code
structure intact in transliteration:

while data.set(file.readline()) != '':
 process(data.get())

Discussion

In Python, assignment is a statement, not an expression. Thus, you cannot assign the result that
you are also testing, for example, in the condition of an if, elif, or while statement. This is

usually fine: just structure your code to avoid the need to assign while testing (in fact, your code
will often become clearer as a result). In particular, whenever you feel the need to assign-and-
test within the condition of a while loop, that's a good hint that your loop's structure probably

wants to be refactored into a generator (or other iterator). Once you have refactored in this way,
your loops become plain and simple for statements. The example given in the recipe, looping

over each line read from a text file, is one where the refactoring has already been done on your
behalf by Python itself, since a file object is an iterator whose items are the file's lines.

However, sometimes you may be writing Python code that is the transliteration of code originally
written in C, Perl, or some other language that supports assignment-as-expression. Such
transliterations often occur in the first Python version of an algorithm for which a reference
implementation is supplied, an algorithm taken from a book, and so on. In such cases, it's often
preferable to have the structure of your initial transliteration be close to that of the code you're
transcribing. You can refactor later and make your code more Pythonicclearer, faster, and so on.
But first, you want to get working code as soon as possible, and specifically you want code that
is easy to check for compliance to the original it has been transliterated from. Fortunately,
Python offers enough power to make it quite easy for you to satisfy this requirement.

Python doesn't let us redefine the meaning of assignment, but we can have a method (or
function) that saves its argument somewhere and also returns that argument so it can be tested.
That somewhere is most naturally an attribute of an object, so a method is a more natural choice
than a function. Of course, we could just retrieve the attribute directly (i.e., the get method is
redundant), but it looks nicer to me to have symmetry between data.set and data.get.

data.set(whatever) can be seen as little more than syntactic sugar around
data.value=whatever, with the added value of being acceptable as an expression. Therefore, it's

the one obviously right way to satisfy the requirement for a reasonably faithful transliteration.
The only difference between the resulting Python code and the original (say) C or Perl code, is at
the syntactic sugar levelthe overall structure is the same, and that's the key issue.

Importing _ _builtin_ _ and assigning to its attributes is a trick that basically defines a new

built-in object at runtime. You can use that trick in your application's start-up code, and then all
other modules will automatically be able to access your new built-ins without having to do an
import. It's not good Python practice, though; on the contrary, it's pushing the boundaries of

Pythonic good taste, since the readers of all those other modules should not have to know about
the strange side effects performed in your application's startup code. But since this recipe is
meant to offer a quick-and-dirty approach for a first transliteration that will soon be refactored to
make it better, it may be acceptable in this specific context to cut more corners than one would
in production-level code.

On the other hand, one trick you should definitely not use is the following abuse of a currently
existing wart in list comprehensions:

while [line for line in [f.readline()] if line!='']:
 process(line)

This trick currently works, since both Python 2.3 and 2.4 still "leak" the list comprehension
control variable (here, line) into the surrounding scope. However, besides being obscure and

unreadable, this trick is specifically deprecated: list comprehension control variable leakage will
be fixed in some future version of Python, and this trick will then stop working at all.

See Also

The Tutorial section on classes; the documentation for the _ _builtin_ _ module in the Library

Reference and Python in a Nutshell; Language Reference and Python in a Nutshell documentation
on list comprehensions.

Recipe 4.20. Using printf in Python

Credit: Tobias Klausmann, Andrea Cavalcanti

Problem

You'd like to output something to your program's standard output with C's function printf, but

Python doesn't have that function.

Solution

It's easy to code a printf function in Python:

import sys
def printf(format, *args):
 sys.stdout.write(format % args)

Discussion

Python separates the concepts of output (the print statement) and formatting (the % operator),

but if you prefer to have these concepts together, they're easy to join, as this recipe shows. No
more worries about automatic insertion of spaces or newlines, either. Now you need worry only
about correctly matching format and arguments!

For example, instead of something like:

print 'Result tuple is: %r' % (result_tuple,),

with its finicky need for commas in unobvious places (i.e., one to make a singleton tuple around
result_tuple, one to avoid the newline that print would otherwise insert by default), once you

have defined this recipe's printf function, you can just write:

printf('Result tuple is: %r', result_tuple)

See Also

Library Reference and Python in a Nutshell documentation for module sys and for the string
formatting operator %; Recipe 2.13 for a way to implement C++'s <<-style output in Python.

Recipe 4.21. Randomly Picking Items with Given
Probabilities

Credit: Kevin Parks, Peter Cogolo

Problem

You want to pick an item at random from a list, just about as random.choice does, but you need

to pick the various items with different probabilities given in another list, rather than picking any
item with equal probability as random.choice does.

Solution

Module random in the standard Python library offers a wealth of possibilities for generating and

using pseudo-random numbers, but it does not offer this specific functionality, so we must code
it as a function of our own:

import random
def random_pick(some_list, probabilities):
 x = random.uniform(0, 1)
 cumulative_probability = 0.0
 for item, item_probability in zip(some_list, probabilities):
 cumulative_probability += item_probability
 if x < cumulative_probability: break
 return item

Discussion

Module random in the standard Python library does not have the weighted choice functionality

that is sometimes needed in games, simulations, and random tests, so I wrote this recipe to
supply this functionality. The recipe uses module random's function uniform to get a uniformly

distributed pseudo-random number between 0.0 and 1.0, then loops in parallel on items and
their probabilities, computing the increasing cumulative probability, until the latter becomes
greater than the pseudo-random number.

The recipe assumes, but does not check, that probabilities is a sequence with just as many items
as some_list, which are probabilitiesthat is, numbers between 0.0 and 1.0, summing up to 1.0; if
these assumptions are violated, you may still get some random picks, but they will not follow the
(inconsistent) specifications encoded in the function's arguments. You may want to add some
assert statements at the start of the function to check that the arguments make sense, such as:

 assert len(some_list) == len(probabilities)
 assert 0 <= min(probabilities) and max(probabilities) <= 1
 assert abs(sum(probabilities)-1.0) < 1.0e-5

However, these checks can be quite time consuming, so I don't normally use them and have not
included them in the official Solution.

As I already mentioned, the problem solved in this recipe requires items to be associated with

probabilitiesnumbers between 0 and 1, summing up to 1. A related but slightly different task is
to get random picks with weighted relative probabilities given by small non-negative
integersodds, rather than probabilities. For this related problem, the best solution is a generator,
with an internal structure that is rather different from the function random_pick given in this
recipe's Solution:

import random
def random_picks(sequence, relative_odds):
 table = [z for x, y in zip(sequence, relative_odds) for z in [x]*y]
 while True:
 yield random.choice(table)

This generator works by first preparing a table whose total number of items is
sum(relative_odds), each item of seq appearing in the table as many times as the small non-

negative integer that is its corresponding item in relative_odds. Once the table is prepared, the
generator's body is tiny and fast, as it simply delegates to random.choice the picking of each

random item it yields. Typical uses of this random_picks generator might be:

>>> x = random_picks('ciao', [1, 1, 3, 2])
>>> for two_chars in zip('boo', x): print ''.join(two_chars),
bc oa oa
>>> import itertools
>>> print ''.join(itertools.islice(x, 8))
icacaoco

See Also

Module random in the Library Reference and Python in a Nutshell.

Recipe 4.22. Handling Exceptions Within an Expression

Credit: Chris Perkins, Gregor Rayman, Scott David Daniels

Problem

You want to code an expression, so you can't directly use the statement TRy/except, but you still

need to handle exceptions that the expression may throw.

Solution

To catch exceptions, TRy/except is indispensable, and, since try/except is a statement, the only

way to use it inside an expression is to code an auxiliary function:

def throws(t, f, *a, **k):
 '''Return True iff f(*a, **k) raises an exception whose type is t
 (or, one of the items of _tuple_ t, if t is a tuple).'''
 try:
 f(*a, **k)
 except t:
 return True
 else:
 return False

For example, suppose you have a text file, which has one number per line, but also extra lines
which may be whitespace, comments, or what-have-you. Here is how you can make a list of all
the numbers in the file, skipping the lines that aren't numbers:

data = [float(line) for line in open(some_file)
 if not throws(ValueError, float, line)]

Discussion

You might prefer to name such a function raises, but I personally prefer throws, which is
probably a throwback to C++. By whatever name, the auxiliary function shown in this recipe
takes as its arguments, first an exception type (or tuple of exception types) t, then a callable f,
and then arbitrary positional and named arguments a and k, which are to be passed on to f. Do
not code, for example, if not throws(ValueError, float(line))! When you call a function,

Python evaluates the arguments before passing control to the function; if an argument's
evaluation raises an exception, the function never even gets started. I've seen this erroneous
usage attempted more than once by people who are just starting to use the assertRaises
method from the standard Python library's unittest.TestCase class, for example.

When throws executes, it just calls f within the try clause of a try/except statement, passing on
the arbitrary positional and named arguments. If the call to f in the try clause raises an
exception whose type is t (or one of the items of t, if t is a tuple of exception types), then
control passes to the corresponding except clause, which, in this case, returns true as throws'
result. If no exception is raised in the try clause, then control passes to the corresponding else
clause (if any), which, in this case, returns False as throws' result.

Note that, if some unexpected exception (one whose type is not in t) gets raised, then function
throws does not catch that exception, so that throws terminates and propagates the exception to
its caller. This choice is quite a deliberate one. Catching exceptions with a too-wide except clause

is a bug-diagnosing headache waiting to happen. If the caller really wants throws to catch just
about everything, it can always call tHRows(Exception, . . .and live with the resulting headaches.

One problem with the throws function is that you end up doing the key operation twiceonce just
to see if it throws, tossing the result away, then, a second time, to get the result. It would be
nicer to get the result, if any, together with an indication of whether an exception has been
caught. I first tried something along the lines of:

def throws(t, f, *a, **k):
 " Return a pair (True, None) if f(*a, **k) raises an exception whose
 type is in t, else a pair (False, x) where x is the result of f(*a, **k). "
 try:
 return False, f(*a, **k)
 except t:
 return True, None

Unfortunately, this version doesn't fit in well in a list comprehension: there is no elegant way to
get and use both the flag and the result. So, I chose a different approach: a function that returns
a list in any caseempty if an exception was caught, otherwise with the result as the only item.

This approach works fine in a list comprehension, but for clarity, the name of the function needs
to be changed:

def returns(t, f, *a, **k):
 " Return [f(*a, **k)] normally, [] if that raises an exception in t. "
 try:
 return [f(*a, **k)]
 except t:
 return []

The resulting list comprehension is even more elegant, in my opinion, than the original one in
this recipe's Solution:

data = [x for line in open(some_file)
 for x in returns(ValueError, float, line)]

See Also

Python in a Nutshell's section on catching and handling exceptions; the sidebar The *args and
**kwds Syntax for an explanation of *args and **kwds syntax.

Recipe 4.23. Ensuring a Name Is Defined in a Given
Module

Credit: Steven Cummings

Problem

You want to ensure that a certain name is defined in a given module (e.g., you want to ensure
that there is a built-in name set), and, if not, you want to execute some code that sets the

definition.

Solution

The solution to this problem is the only good use I've yet seen for statement exec. exec lets us

execute arbitrary Python code from a string, and thus lets us write a very simple function to deal
with this task:

import _ _builtin_ _
def ensureDefined(name, defining_code, target=_ _builtin_ _):
 if not hasattr(target, name):
 d = { }
 exec defining_code in d
 assert name in d, 'Code %r did not set name %r' % (
 defining_code, name)
 setattr(target, name, d[name])

Discussion

If your code supports several versions of Python (or of some third-party package), then many of
your modules must start with code such as the following snippet (which ensures name set is

properly set in either Python 2.4, where it's a built-in, or 2.3, where it must be obtained from the
standard library):

try:
 set
except NameError:
 from sets import Set as set

This recipe encapsulates this kind of logic directly, and by default works on module _ _builtin_
_, since that's the typical module for which you need to work around missing names in older
Python versions. With this recipe, you could ensure name set is properly defined among the

built-ins by running just once, during your program's initialization, the single call:

ensureDefined('set', 'from sets import Set as set')

The key advantage of this recipe is that you can group all needed calls to ensureDefined in just
one place of your application, at initialization time, rather than having several ad hoc try/except

statements at the start of various modules. Moreover, ensureDefined may allow more readable

code because it does only one specific job, so the purpose of calling it is obvious, while
try/except statements could have several purposes, so that more study and reflection might be

needed to understand them. Last but not least, using this recipe lets you avoid the warnings that
the try/except approach can trigger from such useful checking tools as pychecker,

http://pychecker.sourceforge.net/. (If you aren't using pychecker or something like that, you
should!)

The recipe takes care to avoid unintended accidental side effects on target, by using an auxiliary

dictionary d as the target for the exec statement and then transferring only the requested name.

This way, for example, you can use as target an object that is not a module (a class, say, or
even a class instance), without necessarily adding to your target an attribute named _
builtins _ that references the dictionary of Python's built-ins. If you used less care, so that
the body of the if statement was only:

 exec defining_code in vars(target)

you would inevitably get such side effects, as documented at
http://www.python.org/doc/current/ref/exec.html.

It's important to be aware that exec can and does execute any valid string of Python code that

you give it. Therefore, make sure that the argument defining_code that you pass to any call of
function ensureDefined does not come from an untrusted source, such as a text file that might
have been maliciously tampered with.

See Also

The online documentation of the exec statement in the Python Language Reference Manual at

http://www.python.org/doc/current/ref/exec.html.

http://pychecker.sourceforge.net/
http://www.python.org/doc/current/ref/exec.html
http://www.python.org/doc/current/ref/exec.html

Chapter 5. Searching and Sorting

Introduction

Recipe 5.1. Sorting a Dictionary

Recipe 5.2. Sorting a List of Strings Case-Insensitively

Recipe 5.3. Sorting a List of Objects by an Attribute of the Objects

Recipe 5.4. Sorting Keys or Indices Basedon the Corresponding Values

Recipe 5.5. Sorting Strings with Embedded Numbers

Recipe 5.6. Processing All of a List's Items in Random Order

Recipe 5.7. Keeping a Sequence Ordered as Items Are Added

Recipe 5.8. Getting the First Few Smallest Items of a Sequence

Recipe 5.9. Looking for Items in a Sorted Sequence

Recipe 5.10. Selecting the nth Smallest Element of a Sequence

Recipe 5.11. Showing off quicksort in Three Lines

Recipe 5.12. Performing Frequent Membership Tests on a Sequence

Recipe 5.13. Finding Subsequences

Recipe 5.14. Enriching the Dictionary Type with Ratings Functionality

Recipe 5.15. Sorting Names and Separating Them by Initials

Introduction

Credit: Tim Peters, PythonLabs

Computer manufacturers of the 1960s estimated that more than 25 percent of the running
time on their computers was spent on sorting, when all their customers were taken into
account. In fact, there were many installations in which the task of sorting was responsible
for more than half of the computing time. From these statistics we may conclude that either
(i) there are many important applications of sorting, or (ii) many people sort when they
shouldn't, or (iii) inefficient sorting algorithms have been in common use.

Donald Knuth

The Art of Computer Programming,vol. 3, Sorting and Searching, page 3

Professor Knuth's masterful work on the topics of sorting and searching spans nearly 800 pages
of sophisticated technical text. In Python practice, we reduce it to two imperatives (we read
Knuth so you don't have to):

When you need to sort, find a way to use the built-in sort method of Python lists.

When you need to search, find a way to use built-in dictionaries.

Many recipes in this chapter illustrate these principles. The most common theme is using the
decorate-sort-undecorate (DSU) pattern, a general approach to transforming a sorting problem
by creating an auxiliary list that we can then sort with the default, speedy sort method. This

technique is the single most useful one to take from this chapter. In fact, DSU is so useful that
Python 2.4 introduced new features to make it easier to apply. Many recipes can be made
simpler in 2.4 as a result, and the discussion of older recipes have been updated to show how.

DSU relies on an unusual feature of Python's built-in comparisons: sequences are compared
lexicographically. Lexicographical order is a generalization to tuples and lists of the everyday
rules used to compare strings (e.g., alphabetical order). The built-in cmp(s1, s2), when s1 and

s2 are sequences, is equivalent to this Python code:

def lexcmp(s1, s2):
 # Find leftmost nonequal pair.
 i = 0
 while i < len(s1) and i < len(s2):
 outcome = cmp(s1[i], s2[i])
 if outcome:
 return outcome
 i += 1
 # All equal, until at least one sequence was exhausted.
 return cmp(len(s1), len(s2))

This code looks for the first unequal corresponding elements. If such an unequal pair is found,
that pair determines the outcome. Otherwise, if one sequence is a proper prefix of the other, the
prefix is considered to be the smaller sequence. Finally, if these cases don't apply, the sequences
are identical and are considered equal. Here are some examples:

>>> cmp((1, 2, 3), (1, 2, 3)) # identical
0
>>> cmp((1, 2, 3), (1, 2)) # first larger because second is a prefix
1

>>> cmp((1, 100), (2, 1)) # first smaller because 1<2
-1
>>> cmp((1, 2), (1, 3)) # first smaller because 1==1, then 2<3
-1

An immediate consequence of lexicographical comparison is that if you want to sort a list of
objects by a primary key, breaking ties by comparing a secondary key, you can simply build a
list of tuples, in which each tuple contains the primary key, secondary key, and original object, in
that order. Because tuples are compared lexicographically, this automatically does the right
thing. When comparing tuples, the primary keys are compared first, and if (and only if) the
primary keys are equal, the secondary keys are compared.

The examples of the DSU pattern in this chapter show many applications of this idea. The DSU
technique applies to any number of keys. You can add to the tuples as many keys as you like, in
the order in which you want the keys compared. In Python 2.4, you can get the same effect with
the new key= optional argument to sort, as several recipes point out. Using the sort method's
key= argument is easier, more memory-efficient, and runs faster than building an auxiliary list of

tuples by hand.

The other 2.4-introduced innovation in sorting is a convenient shortcut: a sorted built-in function

that sorts any iterable, not in-place, but by first copying it into a new list. In Python 2.3 (apart
from the new optional keyword arguments, which apply to the sorted built-in function as well as
to list.sort), you can code the same functionality quite easily:

def sorted_2_3(iterable):
 alist = list(iterable)
 alist.sort()
 return alist

Because copying a list and sorting it are both nontrivial operations, and the built-in sorted needs
to perform those operations too, no speed advantage is gained in making sorted a built-in. Its

advantage is just the convenience. Having something always around and available, rather than
having to code even just four simple lines over and over, does make a difference in practice. On
the other hand, few tiny functions are used commonly enough to justify expanding the set of
built-ins. Python 2.4 added sorted and reversed because those two functions were requested

very frequently over the years.

The biggest change in Python sorting since the first edition of this book is that Python 2.3 moved
to a new implementation of sorting. The primary visible consequences are increased speed in
many common cases, and the fact that the new sort is stable (meaning that when two elements
compare equal in the original list, they retain their relative order in the sorted list). The new
implementation was so successful, and the chances of improving on it appeared so slim, that
Guido was persuaded to proclaim that Python's list.sort method will always be stable. This

guarantee started with Python 2.4 but was actually realized in Python 2.3. Still, the history of
sorting cautions us that better methods may yet be discovered. A brief account of Python's
sorting history may be instructive in this regard.

A Short History of Python Sorting

In early releases of Python, list.sort used the qsort routine from the underlying platform's C
library. This didn't work out for several reasons, primarily because the quality of qsort varied

widely across machines. Some versions were extremely slow when given a list with many equal
values or in reverse-sorted order. Some versions even dumped core because they weren't
reentrant. A user-defined _ _cmp_ _ function can also invoke list.sort, so that one list.sort
can invoke others as a side effect of comparing. Some platform qsort routines couldn't handle
that. A user-defined _ _cmp_ _ function can also (if it's insane or malicious) mutate the list while
it's being sorted, and many platform qsort routines dumped core when that happened.

Python then grew its own implementation of the quicksort algorithm. This was rewritten with
every release, as real-life cases of unacceptable slowness were discovered. Quicksort is a
delicate algorithm indeed!

In Python 1.5.2 the quicksort algorithm was replaced by a hybrid of samplesort and binary
insertion sort, and that implementation remained unchanged for more than four years, until
Python 2.3. Samplesort can be viewed as a variant of quicksort that uses a very large sample
size to pick the partitioning element, also known as the pivot (it recursively samplesorts a large
random subset of the elements and picks the median of those). This variant makes quadratic-
time behavior almost impossible and brings the number of comparisons in the average case
much closer to the theoretical minimum.

However, because samplesort is a complicated algorithm, it has too much administrative
overhead for small lists. Therefore, small lists (and small slices resulting from samplesort
partitioning) were handled by a separate binary insertion sort, which is an ordinary insertion sort,
except that it uses binary search to determine where each new element belongs. Most sorting
texts say this isn't worth the bother, but that's because most texts assume that comparing two
elements is as cheap as or cheaper than swapping them in memory, which isn't true for Python's
sort! Moving an object is very cheap, since what is copied is just a reference to the object.
Comparing two objects is expensive, though, because all of the object-oriented machinery for
finding the appropriate code to compare two objects and for coercion gets reinvoked each time.
This made binary search a major win for Python's sort.

On top of this hybrid approach, a few common special cases were exploited for speed. First,
already-sorted or reverse-sorted lists were detected and handled in linear time. For some
applications, these kinds of lists are very common. Second, if an array was mostly sorted, with
just a few out-of-place elements at the end, the binary insertion sort handled the whole job. This
was much faster than letting samplesort have at it and occurred often in applications that
repeatedly sort a list, append a few new elements, then sort it again. Finally, special code in the
samplesort looked for stretches of equal elements, so that the slice they occupy could be marked
as done early.

In the end, all of this yielded an in-place sort with excellent performance in all known real cases
and supernaturally good performance in some common special cases. It spanned about 500 lines
of complicated C code, which gives special poignancy to recipe Recipe 5.11.

Over the years samplesort was in use, I made a standing offer to buy dinner for anyone who
could code a faster Python sort. Alas, I ate alone. Still, I kept my eye on the literature because
several aspects of the samplesort hybrid were irritating:

While no case of quadratic-time behavior appeared in real life, I knew such cases could be
contrived, and it was easy to contrive cases two or three times slower than average ones.

The special cases to speed sorting in the presence of extreme partial order were valuable in
practice, but my real data often had many other kinds of partial order that should be
exploitable. In fact, I came to believe that random ordering in input lists almost never
exists in real life (i.e., not outside of timing harnesses for testing sorting algorithms!).

There is no practical way to make samplesort stable without grossly increasing memory
use.

The code was very complex and complicated in ugly ways by the special cases.

Current Sorting

It was always clear that a mergesort would be better on several counts, including guaranteed
worst-case n log n time, and that mergesort is easy to make stable. The problem was that half

a dozen attempts to code a mergesort for Python yielded a sort that ran slower (mergesort does

much more data movement than samplesort) and consumed more memory.

A large and growing literature concerns adaptive sorting algorithms, which attempt to detect
order of various kinds in the input. I coded a dozen of them, but they were all much slower than
Python's samplesort except on the cases they were designed to exploit. The theoretical bases for
these algorithms were simply too complex to yield effective practical algorithms. Then I read an
article pointing out that list merging naturally reveals many kinds of partial order, simply by
paying attention to how often each input list "wins" in a row. This information was simple and
general. When I realized how it could be applied to a natural mergesort, which would obviously
exploit all the kinds of partial order I knew and cared about, I got obsessed enough to solve the
speed problem for random data and to minimize the memory burden.

The resulting "adaptive, natural, stable" mergesort implemented for Python 2.3 was a major
success, but also a major engineering effortthe devil is in the details. There are about 1,200 lines
of C code, but unlike the code in the samplesort hybrid, none of these lines are coding for special
cases, and about half implement a technical trick allowing the worst-case memory burden to be
cut in half. I'm quite proud of it, but the margins of this introduction lack the space for me to
explain the details. If you're curious, I wrote a long technical description that you can find in a
Python source distribution: Objects/listsort.txt under the main directory (say, Python-2.3.5 or
Python-2.4) where you unpacked Python's source distribution archive. In the following list, I
provide examples of the partial order Python 2.3's mergesort naturally exploits, where "sorted"
means in either forward-sorted or reverse-sorted order:

The input is already sorted.

The input is mostly sorted but has random elements appended at either end, or both, or
inserted in the middle.

The input is the concatenation of two or more sorted lists. In fact, the fastest way to merge
multiple sorted lists in Python now is to join them into one long list and run list.sort on

that.

The input is mostly sorted but has some scattered elements that are out of order. This is
common, for example, when people manually add new records to a database sorted by
name: people aren't good at maintaining strict alphabetic order but are good at getting
close.

The input has many keys with the same value. For example, when sorting a database of
American companies by the stock exchange they're listed on, most will be associated with
the NYSE or NASDAQ exchanges. This is exploitable for a curious reason: records with
equal keys are already in sorted order, by the definition of "stable"! The algorithm detects
that naturally, without code especially looking for equal keys.

The input was in sorted order but got dropped on the floor in chunks; the chunks were
reassembled in random order, and to fight boredom, some of the chunks were riffle-
shuffled together. While that's a silly example, it still results in exploitable partial order and
suggests how general the method is.

In short, Python 2.3's timsort (well, it has to have some brief name) is stable, robust, and
preternaturally fast in many real-life cases: use it any time you can!

Recipe 5.1. Sorting a Dictionary

Credit: Alex Martelli

Problem

You want to sort a dictionary. This probably means that you want to sort the keys and then get
the values in that same sorted order.

Solution

The simplest approach is exactly the one expressed by the problem statement: sort the keys,
then pick the corresponding values:

def sortedDictValues(adict):
 keys = adict.keys()
 keys.sort()
 return [adict[key] for key in keys]

Discussion

The concept of sorting applies only to a collection that has an orderin other words, a sequence. A
mapping, such as a dictionary, has no order, so it cannot be sorted. And yet, "How do I sort a
dictionary?" is a frequent, though literally meaningless, question on the Python lists. More often
than not, the question is in fact about sorting some sequence composed of keys and/or values
from the dictionary.

As for the implementation, while one could think of more sophisticated approaches, it turns out
(not unusually, for Python) that the one shown in the solution, the simplest one, is also
essentially the fastest one. A further slight increase in speed, about 20%, can be squeezed out in
Python 2.3 by replacing the list comprehension with a map call in the return statement at the

end of the function. For example:

 return map(adict.get, keys)

Python 2.4, however, is already measurably faster than Python 2.3 with the version in the
"Solution" and gains nothing from this further step. Other variants, such as using adict._
getitem _ instead of adict.get, offer no further increase in speed, or they even slow

performance down a little, in both Python 2.3 and 2.4.

See Also

Recipe 5.4 for sorting a dictionary based on its values rather than on its keys.

Recipe 5.2. Sorting a List of Strings Case-Insensitively

Credit: Kevin Altis, Robin Thomas, Guido van Rossum, Martin V. Lewis, Dave Cross

Problem

You want to sort a list of strings, ignoring case differences. For example, you want a, although

it's lowercase, to sort before B, although the latter is uppercase. By default, however, string

comparison is case-sensitive (e.g., all uppercase letters sort before all lowercase ones).

Solution

The decorate-sort-undecorate (DSU) idiom is simple and fast:

def case_insensitive_sort(string_list):
 auxiliary_list = [(x.lower(), x) for x in string_list] # decorate
 auxiliary_list.sort() # sort
 return [x[1] for x in auxiliary_list] # undecorate

In Python 2.4, DSU is natively supported, so (assuming the items of string_list are indeed

strings, and not, e.g., Unicode objects), you can use the following even shorter and faster
approach:

def case_insensitive_sort(string_list):
 return sorted(string_list, key=str.lower)

Discussion

An obvious alternative to this recipe's Solution is to code a comparison function and pass it to the
sort method:

def case_insensitive_sort_1(string_list):
 def compare(a, b): return cmp(a.lower(), b.lower())
 string_list.sort(compare)

However, in this way the lower method gets called twice for every comparison, and the number

of comparisons needed to sort a list of n items is typically proportional to n log(n).

The DSU idiom builds an auxiliary list, whose items are tuples where each item of the original list
is preceded by a "key". The sort then takes place on the key, because Python compares tuples
lexicographically (i.e., it compares the tuples' first items first). With DSU, the lower method gets

called only n times to sort a list of n strings, which saves enough time to cover the small costs of

the first, decorate step and the final, undecorate step, with a big net increase in speed.

DSU is also sometimes known, not quite correctly, as the Schwartzian Transform, by somewhat
imprecise analogy with a well-known idiom of the Perl language. (If anything, DSU is closer to
the Guttman-Rosler Transform, see http://www.sysarch.com/perl/sort_paper.html.)

DSU is so important that Python 2.4 supports it directly: you can optionally pass to the sort

http://www.sysarch.com/perl/sort_paper.html

method of a list an argument named key, which is the callable to use on each item of the list to

obtain the key for the sort. If you pass such an argument, the sorting internally uses DSU. So, in
Python 2.4, string_list.sort(key=str.lower is essentially equivalent to function
case_insensitive_sort, except the sort method sorts the list in-place (and returns None) instead

of returning a sorted copy and leaving the original list alone. If you want function
case_insensitive_sort to sort in-place, by the way, just change its return statement into an

assignment to the list's body:

string_list[:] = [x[1] for x in auxiliary_list]

Vice versa, if, in Python 2.4, you want to get a sorted copy and leave the original list alone, you
can use the new built-in function sorted. For example, in Python 2.4:

for s in sorted(string_list, key=str.lower): print s

prints each string in the list, sorted case-insensitively, without affecting string_list itself.

The use of str.lower as the key argument in the Python 2.4 Solution restricts you to specifically

sorting strings (not, e.g., Unicode objects). If you know you're sorting a list of Unicode objects,
use key=unicode.lower instead. If you need a function that applies just as well to strings and
Unicode objects, you can import string and then use key=string.lower; alternatively, you
could use key=lambda s: s.lower().

If you need case-insensitive sorting of lists of strings, you might also need dictionaries and sets
using case-insensitive strings as keys, lists behaving case-insensitively regarding such methods
as index and count, case-insensitive results from needle in haystack, and so on. If that is the
case, then your real underlying need is a subtype of str that behaves case-insensitively in

comparison and hashinga clearly better factoring of the issue, compared to implementing many
container types and functions to get all of this functionality. To see how to implement such a
type, see Recipe 1.24.

See Also

The Python Frequently Asked Questions http://www.python.org/cgi-bin/faqw.py?
req=show&file=faq04.051.htp; Recipe 5.3; Python 2.4 Library Reference about the sorted built-
in function and the key argument to sort and sorted; Recipe 1.24.

http://www.python.org/cgi-bin/faqw.py?

Recipe 5.3. Sorting a List of Objects by an Attribute of
the Objects

Credit: Yakov Markovitch, Nick Perkins

Problem

You need to sort a list of objects according to one attribute of each object.

Solution

The DSU idiom shines, as usual:

def sort_by_attr(seq, attr):
 intermed = [(getattr(x, attr), i, x) for i, x in enumerate(seq)]
 intermed.sort()
 return [x[-1] for x in intermed]
def sort_by_attr_inplace(lst, attr):
 lst[:] = sort_by_attr(lst, attr)

In Python 2.4, DSU is natively supported, so your code can be even shorter and faster:

import operator
def sort_by_attr(seq, attr):
 return sorted(seq, key=operator.attrgetter(attr))
def sort_by_attr_inplace(lst, attr):
 lst.sort(key=operator.attrgetter(attr))

Discussion

Sorting a list of objects by an attribute of each object is best done using the DSU idiom
introduced previously in Recipe 5.2. In Python 2.3 and 2.4, DSU is no longer needed, as it used
to be, to ensure that a sort is stable (sorting is always stable in Python 2.3 and later), but DSU's
speed advantages still shine.

Sorting, in the general case and with the best algorithms, is O(n log n) (as is often the case in

mathematical formulas, the juxtaposition of terms, here n and log n, indicates that the terms are

multiplied). DSU's speed comes from maximally accelerating the O(n log n) part, which

dominates sorting time for sequences of substantial length n, by using only Python's native (and

maximally fast) comparison. The preliminary decoration step, which prepares an intermediate
auxiliary list of tuples, and the successive undecoration step, which extracts the important item
from each tuple after the intermediate list is sorted, are only O(n). Therefore any minor

inefficiencies in these steps contribute negligible overhead if n is large enough, and reasonably

little even for many practical values of n.

The O()-Notation

The most useful way to reason about many performance issues is in terms of what is
popularly known as big-O analysis and notation (the O stands for "order"). You can

find detailed explanations, for example, at
http://en.wikipedia.org/wiki/Big_O_notation, but here's a summary.

If we consider an algorithm applied to input data of some size N, running time can be

described, for large enough values of N (and big inputs are often those for which

performance is most critical), as being proportional to some function of N. This is

indicated with notations such as O(N) (running time proportional to N: processing

twice as much data takes about twice as much time, 10 times as much data, 10
times as much time, and so on; also known as linear time), O(N squared) (running

time proportional to the square of N: processing twice as much data takes about four

times as much time, 10 times as much data, 100 times as much time; also known as
quadratic time), and so on. Another case you will see often is O(N log N), which is

faster than O(N squared) but not as fast as O(N).

The constant of proportionality is often ignored (at least in theoretical analysis)
because it depends on such issues as the clock rate of your computer, not just on the
algorithm. If you buy a machine that's twice as fast as your old one, everything will
run in half the time, but that will not change any of the comparisons between
alternative algorithms.

This recipe puts index i, in each tuple that is an item of list intermed, ahead of the

corresponding x (where x is the i-th item in seq). This placement ensures that two items of seq

will never be compared directly, even if they have the same value for the attribute named attr.

Even in that case, their indices will still differ, and thus Python's lexicographic comparison of the
tuples will never get all the way to comparing the tuples' last items (the original items from seq).

Avoiding object comparisons may save us from performing extremely slow operations, or even
from attempting forbidden ones. For example, we could sort a list of complex numbers by their
real attribute: we would get an exception if we ever tried to compare two complex numbers

directly, because no ordering is defined on complex numbers. But thanks to the precaution
described in this paragraph, such an event can never occur, and the sorting will therefore
proceed correctly.

As mentioned earlier in Recipe 5.2, Python 2.4 supports DSU directly. You can pass an optional
keyword-argument key, to sort, which is the callable to use on each item to get the sort key.
Standard library module operator has two new functions, attrgetter and itemgetter, that

exist specifically to return callables suitable for this purpose. In Python 2.4, the ideal solution to
this problem therefore becomes:

import operator
seq.sort(key=operator.attrgetter(attr))

This snippet performs the sort in-place, which helps make it blazingly faston my machine, three
times faster than the Python 2.3 function shown first in this recipe. If you need a sorted copy,
without disturbing seq, you can get it using Python 2.4's new built-in function sorted:

sorted_copy = sorted(seq, key=operator.attrgetter(attr))

While not quite as fast as an in-place sort, this latest snippet is still over 2.5 times faster than the
function shown first in this recipe. Python 2.4 also guarantees that, when you pass the optional

http://en.wikipedia.org/wiki/Big_O_notation

key named argument, list items will never be accidentally compared directly, so you need not

take any special safeguards. Moreover, stability is also guaranteed.

See Also

Recipe 5.2; Python 2.4's Library Reference docs about the sorted built-in function, operator
module's attrgetter and itemgetter functions, and the key argument to .sort and sorted.

Recipe 5.4. Sorting Keys or Indices Basedon the
Corresponding Values

Credit: John Jensen, Fred Bremmer, Nick Coghlan

Problem

You need to count the occurrences of various items and present the items in order of their
number of occurrencesfor example, to produce a histogram.

Solution

A histogram, apart from graphical issues, is based on counting the occurrences of items (easy to
do with a Python list or dictionary) and then sorting the keys or indices in an order based on
corresponding values. Here is a subclass of dict that adds two methods for the purpose:

class hist(dict):
 def add(self, item, increment=1):
 ''' add 'increment' to the entry for 'item' '''
 self[item] = increment + self.get(item, 0)
 def counts(self, reverse=False):
 ''' return list of keys sorted by corresponding values '''
 aux = [(self[k], k) for k in self]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

If the items you're counting are best modeled by small integers in a compact range, so that you
want to keep item counts in a list, the solution is quite similar:

class hist1(list):
 def _ _init_ _(self, n):
 ''' initialize this list to count occurrences of n distinct items '''
 list._ _init_ _(self, n*[0])
 def add(self, item, increment=1):
 ''' add 'increment' to the entry for 'item' '''
 self[item] += increment
 def counts(self, reverse=False):
 ''' return list of indices sorted by corresponding values '''
 aux = [(v, k) for k, v in enumerate(self)]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

Discussion

The add method of hist embodies the normal Python idiom for counting occurrences of arbitrary
(but hashable) items, using a dict to hold the counts. In class hist1, based on a list, we take a
different approach, initializing all counts to 0 in _ _init_ _, so the add method is even simpler.

The counts methods produce the lists of keys, or indices, sorted in the order given by the

corresponding values. The problem is very similar in both classes, hist and hist1; therefore, the
solutions are also almost identical, using in each case the DSU approach already shown in Recipe
5.2 and Recipe 5.3. If we need both classes in our program, the similarity is so close that we
should surely factor out the commonalities into a single auxiliary function _sorted_keys:

def _sorted_keys(container, keys, reverse):
 ''' return list of 'keys' sorted by corresponding values in 'container' '''
 aux = [(container[k], k) for k in keys]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

and then implement the counts methods of each class as thin wrappers over this _sorted_keys
function:

class hist(dict):

 ...
 def counts(self, reverse=False):
 return _sorted_keys(self, self, reverse)
class hist1(list):

 ...
 def counts(self, reverse=False):
 return _sorted_keys(self, xrange(len(self)), reverse)

DSU is so important that in Python 2.4, as shown previously in Recipe 5.2 and Recipe 5.3, the
sort method of lists and the new built-in function sorted offer a fast, intrinsic implementation of

it. Therefore, in Python 2.4, function _sorted_keys can become much simpler and faster:

def _sorted_keys(container, keys, reverse):
 return sorted(keys, key=container._ _getitem_ _, reverse=reverse)`

The bound-method container._ _getitem_ _ performs exactly the same operation as the

indexing container[k] in the Python 2.3 implementation, but it's a callable to call on each k of
the sequence that we're sorting, namely keysexactly the right kind of value to pass as the key
keyword argument to the sorted built-in function. Python 2.4 also affords an easy, direct way to

get a list of a dictionary's items sorted by value:

from operator import itemgetter
def dict_items_sorted_by_value(d, reverse=False):
 return sorted(d.iteritems(), key=itemgetter(1), reverse=reverse)

The operator.itemgetter higher-order function, also new in Python 2.4, is a handy way to
supply the key argument when you want to sort a container whose items are subcontainers,

keying on a certain item of each subcontainer. This is exactly the case here, since a dictionary's
items are a sequence of pairs (two-item tuples), and we want to sort the sequence keying on the
second item of each tuple.

Getting back to this recipe's main theme, here is a usage example for the class hist shown in this
recipe's Solution:

sentence = ''' Hello there this is a test. Hello there this was a test,
 but now it is not. '''
words = sentence.split()
c = hist()
for word in words: c.add(word)

print "Ascending count:"
print c.counts()
print "Descending count:"
print c.counts(reverse=True)

This code snippet produces the following output:

Ascending count:
[(1, 'but'), (1, 'it'), (1, 'not.'), (1, 'now'), (1, 'test,'), (1, 'test.'),
(1, 'was'), (2, 'Hello'), (2, 'a'), (2, 'is'), (2, 'there'), (2, 'this')]
Descending count:
[(2, 'this'), (2, 'there'), (2, 'is'), (2, 'a'), (2, 'Hello'), (1, 'was'),
(1, 'test.'), (1, 'test,'), (1, 'now'), (1, 'not.'), (1, 'it'), (1, 'but')]

See Also

Recipe "Special Method Names" in the Language Reference and the OOP chapter in Python in a
Nutshell, about special method _ _getitem_ _; Library Reference docs for Python 2.4 sorted
built-in and the key= argument to sort and sorted.

Recipe 5.5. Sorting Strings with Embedded Numbers

Credit: Sébastien Keim, Chui Tey, Alex Martelli

Problem

You need to sort a list of strings that contain substrings of digits (e.g., a list of postal addresses)
in an order that looks good. For example, 'foo2.txt' should come before 'foo10.txt'. However,
Python's default string comparison is alphabetical, so, by default, 'foo10.txt' instead comes
before 'foo2.txt'.

Solution

You need to split each string into sequences of digits and nondigits, and transform each
sequence of digits into a number. This gives you a list that is just the right comparison key for
the sort you want, and you can then use DSU for the sort itselfthat is, code two functions,
shorter than this description:

import re
re_digits = re.compile(r'(\d+)')
def embedded_numbers(s):
 pieces = re_digits.split(s) # split into digits/nondigits
 pieces[1::2] = map(int, pieces[1::2]) # turn digits into numbers
 return pieces
def sort_strings_with_embedded_numbers(alist):
 aux = [(embedded_numbers(s), s) for s in alist]
 aux.sort()
 return [s for _ _, s in aux] # convention: _ _ means "ignore"

In Python 2.4, use the native support for DSU, with the same function embedded_numbers to
get the sort key:

def sort_strings_with_embedded_numbers(alist):
 return sorted(alist, key=embedded_numbers)

Discussion

Say you have an unsorted list of filenames, such as:

files = 'file3.txt file11.txt file7.txt file4.txt file15.txt'.split()

If you just sort and print this list, for example in Python 2.4 with print '
'.join(sorted(files)), your output looks like file11.txt file15.txt file3.txt file4.txt
file7.txt, since, by default, strings are sorted alphabetically (to use a fancier word, the sort

order is described as lexicographical). Python cannot just guess that you mean to treat in a
different way those substrings that happen to be made of digits; you have to tell Python precisely
what you want, and this recipe shows how.

Using this recipe, you can get a nicer-looking result:

print ' '.join(sort_strings_with_embedded_numbers(files))

The output is now file3.txt file4.txt file7.txt file11.txt file15.txt, which is probably

just what you want in this case.

The implementation relies on the DSU idiom. We need to code DSU explicitly if we want to
support Python 2.3, while if our code is Python 2.4-only, we just rely on the native
implementation of DSU. We do so by passing an argument named key (a function to be called on

each item to get the right comparison key for the sort) to the new built-in function sorted.

Function embedded_numbers in the recipe is how we get the right comparison key for each item:
a list alternating substrings of nondigits, and the int obtained from each substring of digits.
re_digits.split(s) gives us a list of alternating substrings of nondigits and digits (with the
substrings of digits at odd-numbered indices); then, we use built-in functions map and int (and

extended-form slices that get and set all items at odd-numbered indices) to turn sequences of
digits into integers. Lexicographical comparison on this list of mixed types now produces just the
right result.

See Also

Library Reference and Python in a Nutshell docs about extended slicing and about module re;
Python 2.4 Library Reference about the sorted built-in function and the key argument to sort
and sorted; Recipe 5.3; Recipe 5.2.

Recipe 5.6. Processing All of a List's Items in Random
Order

Credit: Iuri Wickert, Duncan Grisby, T. Warner, Steve Holden, Alex Martelli

Problem

You need to process, in random order, all of the items of a long list.

Solution

As usual in Python, the best approach is the simplest one. If we are allowed to change the order
of items in the input list, then the following function is simplest and fastest:

def process_all_in_random_order(data, process):
 # first, put the whole list into random order
 random.shuffle(data)
 # next, just walk over the list linearly
 for elem in data: process(elem)

If we must preserve the input list intact, or if the input data may be some iterable that is not a
list, just insert as the first statement of the function the assignment data = list(data).

Discussion

While it's a common mistake to be overly concerned with speed, don't make the opposite
mistake of ignoring the different performances of various algorithms. Suppose we must process
all of the items in a long list in random order, without repetition (assume that we're allowed to
mangle or destroy the input list). The first idea to suggest itself might be to repeatedly pick an
item at random (with function random.choice), removing each picked item from the list to avoid

future repetitions:

import random
def process_random_removing(data, process):
 while data:
 elem = random.choice(data)
 data.remove(elem)
 process(elem)

However, this function is painfully slow, even for input lists of just a few hundred elements. Each
call to data.remove must linearly search through the list to find the element to delete. Since the

cost of each of n steps is O(n), the whole process is O(n2)time proportional to the square of the

length of the list (and with a large multiplicative constant, too).

Minor improvements to this first idea could focus on obtaining random indices, using the pop

method of the list to get and remove an item at the same time, low-level fiddling with indices to
avoid the costly removal in favor of swapping the picked item with the last yet-unpicked one
towards the end, or using dictionaries or sets instead of lists. This latest idea might be based on

a hope of using a dict's popitem method (or the equivalent method pop of class sets.Set and
Python 2.4's built-in type set), which may look like it's designed exactly to pick and remove a
random item, but, beware! dict.popitem is documented to return and remove an arbitrary item

of the dictionary, and that's a far cry from a random item. Check it out:

>>> d=dict(enumerate('ciao'))
>>> while d: print d.popitem()

It may surprise you, but in most Python implementations this snippet will print d's items in a far
from random order, typically (0,'c') then (1,'i') and so forth. In short, if you need pseudo-
random behavior in Python, you need standard library module randompopitem is not an

alternative.

If you thought about using a dictionary rather than a list, you are definitely on your way to
"thinking Pythonically", even though it turns out that dictionaries wouldn't provide a substantial
performance boost for this specific problem. However, an approach that is even more Pythonic
than choosing the right data structure is best summarized as: let the standard library do it!. The
Python Standard Library is large, rich, and chock full of useful, robust, fast functions and classes
for a wide variety of tasks. In this case, the key intuition is realizing that, to walk over a
sequence in a random order, the simplest approach is to first put that sequence into random
order (known as shuffling the sequence, an analogy with shuffling a deck of cards) and then walk
over the shuffled sequence linearly. Function random.shuffle performs the shuffling, and the

function shown in this recipe's Solution just uses it.

Performance should always be measured, never guessed at, and that's what standard library
module timeit is for. Using a null process function and a list of length 1,000 as data,

process_all_in_random_order is almost 10 times faster than process_random_removing; with a
list of length 2,000, the performance ratio grows to almost 20. While an improvement of, say,
25%, or even a constant factor of 2, usually can be neglected without really affecting the
performance of your program as a whole, the same does not apply to an algorithm that is 10 or
20 times as slow as it could be. Such terrible performance is likely to make that program
fragment a bottleneck, all by itself. Moreover, this risk increases when we're talking about O(n2)

versus O(n) behavior: with such differences in big-O behavior, the performance ratio between

bad and good algorithms keeps increasing without bounds as the size of the input data grows.

See Also

The documentation for the random and timeit modules in the Library Reference and Python in a

Nutshell.

Recipe 5.7. Keeping a Sequence Ordered as Items Are
Added

Credit: John Nielsen

Problem

You want to maintain a sequence, to which items are added, in a sorted state, so that at any
time, you can easily examine or remove the smallest item currently present in the sequence.

Solution

Say you start with an unordered list, such as:

the_list = [903, 10, 35, 69, 933, 485, 519, 379, 102, 402, 883, 1]

You could call the_list.sort() to make the list sorted and then result=the_list.pop(0) to

get and remove the smallest item. But then, every time you add an item (say with
the_list.append(0)), you need to call the_list.sort() again to keep the list sorted.

Alternatively, you can use the heapq module of the Python Standard Library:

import heapq
heapq.heapify(the_list)

Now the list is not necessarily fully sorted, but it does satisfy the heap property (meaning if all
indices involved are valid, the_list[i]<=the_list[2*i+1] and
the_list[i]<=the_list[2*i+2])so, in particular, the_list[0] is the smallest item. To keep the
heap property valid, use result=heapq.heappop(the_list) to get and remove the smallest item
and heapq.heappush(the_list, newitem) to add a new item. When you need to do bothadd a

new item while getting and removing the previously smallest itemyou can use
result=heapq.heapreplace(the_list, newitem).

Discussion

When you need to retrieve data in an ordered way (at each retrieval getting the smallest item
among those you currently have at hand), you can pay the runtime cost for the sorting when you
retrieve the data, or you can pay for it when you add the data. One approach is to collect your
data into a list and sort the list. Now it's easy to get your data in order, smallest to largest.
However, you have to keep calling sort each time you add new data during the retrieval, to

make sure you can later keep retrieving from the smallest current item after each addition. The
method sort of Python lists is implemented with a little-known algorithm called Natural

Mergesort, which minimizes the runtime cost of this approach. Yet the approach can still be
burdensome: each addition (and sorting) and each retrieval (and removal, via pop) takes time
proportional to the number of current items in the list (O(N), in common parlance).

An alternative approach is to use a data organization known as a heap, a type of binary tree
implemented compactly, yet ensuring that each "parent" is always less than its "children". The

best way to maintain a heap in Python is to use a list and have it managed by the heapq library

module, as shown in this recipe's Solution. The list does not get fully sorted, yet you can be sure
that, whenever you heappop an item from the list, you always get the lowest item currently

present, and all others will be adjusted to ensure the heap property is still valid. Each addition
with heappush, and each removal with heappop, takes a short time proportional to the logarithm
of the current length of the list (O(log N), in common parlance). You pay as you go, a little at a

time (and not too much in total, either.)

A good occasion to use this heap approach, for example, is when you have a long-running queue
with new data periodically arriving, and you always want to be able to get the most important
item off the queue without having to constantly re-sort your data or perform full searches. This
concept is known as a priority queue, and a heap is an excellent way to implement it. Note that,
intrinsically, the heapq module supplies you with the smallest item at each heappop, so make

sure to arrange the way you encode your items' priority values to reflect this. For example, say
that you receive incoming items each accompanied by a cost, and the most important item at
any time is the one with the highest cost that is currently on the queue; moreover, among items
of equal cost, the most important one is the one that arrived earliest. Here's a way to build a
"priority queue" class respecting these specs and based on functions of module heapq:

class prioq(object):
 def _ _init_ _(self):
 self.q = []
 self.i = 0
 def push(self, item, cost):
 heapq.heappush(self.q, (-cost, self.i, item))
 self.i += 1
 def pop(self):
 return heapq.heappop(self.q)[-1]

The main idea in this snippet is to push on the heap tuples whose first item is the cost with
changed sign, so that higher costs result in smaller tuples (by Python's natural comparison);
right after the cost, we put a progressive index, so that, among items with equal cost, the one
arriving earliest will be in a smaller tuple.

In Python 2.4, module heapq has been reimplemented and optimized; see Recipe 5.8 for more
information about heapq.

See Also

Docs for module heapq in the Library Reference and Python in a Nutshell; heapq.py in the Python

sources contains a very interesting discussion of heaps; Recipe 5.8 for more information about
heapq; Recipe 19.14 for merging sorted sequences using heapq.

Recipe 5.8. Getting the First Few Smallest Items of a
Sequence

Credit: Matteo Dell'Amico, Raymond Hettinger, George Yoshida, Daniel Harding

Problem

You need to get just a few of the smallest items from a sequence. You could sort the sequence
and just use seq[:n], but is there any way you can do better?

Solution

Perhaps you can do better, if n, the number of items you need, is small compared to n, the
sequence's length. sort is very fast, but it still takes O(n log n) time, while we can get the first

n smallest elements in time O(n) if n is small. Here is a simple and practical generator for this

purpose, which works equally well in Python 2.3 and 2.4:

import heapq
def isorted(data):
 data = list(data)
 heapq.heapify(data)
 while data:
 yield heapq.heappop(data)

In Python 2.4 only, you can use an even simpler and faster way to get the smallest n items of

data when you know n in advance:

import heapq
def smallest(n, data):
 return heapq.nsmallest(n, data)

Discussion

data can be any bounded iterable; the recipe's function isorted starts by calling list on it to
ensure that. You can remove the statement data = list(data) if all the following conditions

hold: you know that data is a list to start with, you don't mind the fact that the generator

reorders data's items, and you want to remove items from data as you fetch them.

As shown previously in Recipe 5.7, the Python Standard Library contains module heapq, which

supports the data structures known as heaps. Generator isorted in this recipe's Solution relies on
making a heap at the start (via heap.heapify) and then yielding and removing the heap's
smallest remaining item at each step (via heap.heappop).

In Python 2.4, module heapq has also grown two new functions. heapq.nlargest(n, data)

returns a list of the n largest items of data; heapq.nsmallest(n, data) returns a list of the n

smallest items. These functions do not require that data satisfy the heap condition; indeed, they

do not even require data to be a listany bounded iterable whose items are comparable will do.
Function smallest in this recipe's Solution just lets heapq.smallest do all the work.

To judge speed, we must always measure itguessing about relative speeds of different pieces of
code is a mug's game. So, how does isorted's performance compare with Python 2.4's built-in
function sorted, when we're only looping on the first few (smallest) items? To help measure

timing, I wrote a top10 function that can use either approach, and I also made sure I had a
sorted function even in Python 2.3, where it's not built in:

try:
 sorted
except:
 def sorted(data):
 data = list(data)
 data.sort()
 return data
import itertools
def top10(data, howtosort):
 return list(itertools.islice(howtosort(data), 10))

On my machine running Python 2.4 on thoroughly shuffled lists of 1,000 integers, top10 takes

about 260 microseconds with isorted, while it takes about 850 microseconds with the built-in
sorted. However, Python 2.3 is much slower and gives vastly different results: about 12
milliseconds with isorted, about 2.7 milliseconds with sorted. In other words, Python 2.3 is 3
times slower than Python 2.4 for sorted, but it's 50 times slower for isorted. Lesson to retain:

whenever you optimize, measure. You shouldn't choose optimizations based on first principles,
since the performance numbers can vary so widely, even between vastly compatible "point
releases". A secondary point can be made: if you care about performance, move to Python 2.4
as soon as you can. Python 2.4 has been vastly optimized and accelerated over Python 2.3,
particularly in areas related to searching and sorting.

If you know that your code need only support Python 2.4, then, as this recipe's Solution
indicates, using heapq's new function nsmallest is faster, as well as simpler, than doing your

own coding. To implement top10 in Python 2.4, for example, you just need:

import heapq
def top10(data):
 return heapq.nsmallest(10, data)

This version takes about half the time of the previously shown isorted-based top10, when called

on the same thoroughly shuffled lists of 1,000 integers.

See Also

Library Reference and Python in a Nutshell docs about method sort of type list, and about
modules heapq and timeit; Chapter 19 for more about iteration in Python; Python in a Nutshell's

chapter on optimization; heapq.py in the Python sources contains a very interesting discussion of
heaps; Recipe 5.7 for more information about heapq.

Recipe 5.9. Looking for Items in a Sorted Sequence

Credit: Noah Spurrier

Problem

You need to look for a lot of items in a sequence.

Solution

If list L is sorted, module bisect from the Python Standard Library makes it easy to check if

some item x is present in L:

import bisect
x_insert_point = bisect.bisect_right(L, x)
x_is_present = L[x_insert_point-1:x_insert_point] == [x]

Discussion

Looking for an item x in a list L is very easy in Python: to check whether the item is there at all,

if x in L; to find out where exactly it is, L.index(x). However, if L has length n, these

operations take time proportional to nessentially, they just loop over the list's items, checking

each for equality to x. If L is sorted, we can do better.

The classic algorithm to look for an item in a sorted sequence is known as binary search, because
at each step it roughly halves the range it's still searching onit generally takes about log2n steps.

It's worth considering when you're going to look for items many times, so you can amortize the
cost of sorting over many searches. Once you've decided to use binary search for x in L, after
calling L.sort(), module bisect from the Python Standard Library makes the job easy.

Specifically, we need function bisect.bisect_right, which returns the index where an item

should be inserted, to keep the sorted list sorted, but doesn't alter the list; moreover, if the item
already appears in the list, bisect_right returns an index that's just to the right of any items
with the same value. So, after getting this "insert point" by calling bisect.bisect_right(L, x),

we need only to check the list immediately before the insert point, to see if an item equal to x is

already there.

The way we compute x_is_present in the "Solution" may not be immediately obvious. If we

know that L is not empty, we can use a simpler and more obvious approach:

x_is_present = L[x_insert_point-1] == x

However, the indexing in this simpler approach raises an exception when L is empty. When the
slice boundaries are invalid, slicing is less "strict" than indexing, since it just produces an empty
slice without raising any exception. In general, somelist[i:i+1] is the same one-item list as

[somelist[i]] when i is a valid index in somelist: it's an empty list [] when the indexing
would raise IndexError. The computation of x_is_present in the recipe exploits this important

property to avoid having to deal with exceptions and handle empty and nonempty cases for L in
one uniform way. An alternative approach is:

x_is_present = L and L[x_insert_point-1] == x

This alternative approach exploits and's short-circuiting behavior to guard the indexing, instead

of using slicing.

An auxiliary dict, as shown in Recipe 5.12, is also a possibility as long as items are hashable
(meaning that items can be used as keys into a dict). However, the approach in this recipe,

based on a sorted list, may be the only useful one when the items are comparable (otherwise,
the list could not be sorted) but not hashable (so a dict can't have those items as its keys).

When the list is already sorted, and the number of items you need to look up in it is not
extremely large, it may in any case be faster to use bisect than to build an auxiliary dictionary,

since the investment of time in the latter operation might not be fully amortized. This is
particularly likely in Python 2.4, since bisect has been optimized very effectively and is much
faster than it was in Python 2.3. On my machine, for example, bisect.bisect_right for an item

in the middle of a list of 10,000 integers is about four times faster in Python 2.4 than it was in
Python 2.3.

See Also

Documentation for the bisect module in the Library Reference and Python in a Nutshell; Recipe

5.12.

Recipe 5.10. Selecting the nth Smallest Element of a
Sequence

Credit: Raymond Hettinger, David Eppstein, Shane Holloway, Chris Perkins

Problem

You need to get from a sequence the nth item in rank order (e.g., the middle item, known as the

median). If the sequence was sorted, you would just use seq[n]. But the sequence isn't sorted,

and you wonder if you can do better than just sorting it first.

Solution

Perhaps you can do better, if the sequence is big, has been shuffled enough, and comparisons
between its items are costly. Sort is very fast, but in the end (when applied to a thoroughly
shuffled sequence of length n) it always takes O(n log n) time, while there exist algorithms that

can be used to get the nth smallest element in time O(n). Here is a function with a solid

implementation of such an algorithm:

import random
def select(data, n):
 " Find the nth rank ordered element (the least value has rank 0). "
 # make a new list, deal with <0 indices, check for valid index
 data = list(data)
 if n<0:
 n += len(data)
 if not 0 <= n < len(data):
 raise ValueError, "can't get rank %d out of %d" % (n, len(data))
 # main loop, quicksort-like but with no need for recursion
 while True:
 pivot = random.choice(data)
 pcount = 0
 under, over = [], []
 uappend, oappend = under.append, over.append
 for elem in data:
 if elem < pivot:
 uappend(elem)
 elif elem > pivot:
 oappend(elem)
 else:
 pcount += 1
 numunder = len(under)
 if n < numunder:
 data = under
 elif n < numunder + pcount:
 return pivot
 else:
 data = over
 n -= numunder + pcount

Discussion

This recipe is meant for cases in which repetitions count. For example, the median of the list [1,
1, 1, 2, 3] is 1 because that is the third one of the five items in rank order. If, for some

strange reason, you want to discount duplications, you need to reduce the list to its unique items
first (e.g., by applying the Recipe 18.1), after which you may want to come back to this recipe.

Input argument data can be any bounded iterable; the recipe starts by calling list on it to

ensure that. The algorithm then loops, implementing at each leg a few key ideas: randomly
choosing a pivot element; slicing up the list into two parts, made up of the items that are "under"
and "over" the pivot respectively; continuing work for the next leg on just one of the two parts,
since we can tell which one of them the nth element will be in, and the other part can safely be

ignored. The ideas are very close to that in the classic algorithm known as quicksort (except that
quicksort cannot ignore either part, and thus must use recursion, or recursion-removal
techniques such as keeping an explicit stack, to make sure it deals with both parts).

The random choice of pivot makes the algorithm robust against unfavorable data orderings (the
kind that wreak havoc with naive quicksort); this implementation decision costs about log2N calls
to random.choice. Another implementation issue worth pointing out is that the recipe counts the

number of occurrences of the pivot: this precaution ensures good performance even in the
anomalous case where data contains a high number of repetitions of identical values.

Extracting the bound methods .append of lists under and over as local variables uappend and

oappend may look like a pointless, if tiny, complication, but it is, in fact, a very important
optimization technique in Python. To keep the compiler simple, straightforward, unsurprising,
and robust, Python does not hoist constant computations out of loops, nor does it "cache" the
results of method lookup. If you call under.append and over.append in the inner loop, you pay
the cost of lookup each and every time. If you want something hoisted, hoist it yourself. When
you're considering an optimization, you should always measure the code's performance with and
without that optimization, to check that the optimization does indeed make an important
difference. According to my measurements, removing this single optimization slows performance
down by about 50% for the typical task of picking the 5000th item of range(10000). Considering

the tiny amount of complication involved, a difference of 50% is well worth it.

A natural idea for optimization, which just didn't make the grade once carefully measured, is to
call cmp(elem, pivot) in the loop body, rather than making separate tests for elem < pivot
and elem > pivot. Unfortunately, measurement shows that cmp doesn't speed things up; in fact,

it slows them down, at least when the items of data are of elementary types such as numbers

and strings.

So, how does select's performance compare with the simpler alternative of:

def selsor(data, n):
 data = list(data)
 data.sort()
 return data[n]

On thoroughly shuffled lists of 3,001 integers on my machine, this recipe's select takes about 16
milliseconds to find the median, while selsor takes about 13 milliseconds; considering that sort

could take advantage of any partial sortedness in the data, for this kind of length, and on
elementary data whose comparisons are fast, it's not to your advantage to use select. For a
length of 30,001, performance becomes very close between the two approachesaround 170
milliseconds either way. When you push the length all the way to 300,001, select provides an
advantage, finding the median in about 2.2 seconds, while selsor takes about 2.5.

The break-even point will be smaller if the items in the sequence have costly comparison
methods, since the key difference between the two approaches is in the number of comparisons
performedselect takes O(n), selsor takes O(n log n). For example, say we need to compare

instances of a class designed for somewhat costly comparisons (simulating four-dimensional

points that will often coincide on the first few dimensions):

class X(object):
 def _ _init_ _(self):
 self.a = self.b = self.c = 23.51
 self.d = random.random()
 def _dats(self):
 return self.a, self.b, self.c, self.d
 def _ _cmp_ _(self, oth):
 return cmp(self._dats, oth._dats)

Here, select already becomes faster than selsor when what we're computing is the median of
vectors of 201 such instances.

In other words, although select has more general overhead, when compared to the wondrously
efficient coding of lists' sort method, nevertheless, if n is large enough and each comparison is

costly enough, select is still well worth considering.

See Also

Library Reference and Python in a Nutshell docs about method sort of type list, and about
module random.

Recipe 5.11. Showing off quicksort in Three Lines

Credit: Nathaniel Gray, Raymond Hettinger, Christophe Delord, Jeremy Zucker

Problem

You need to show that Python's support for the functional programming paradigm is better than
it might seem at first sight.

Solution

Functional programming languages, of which Haskell is a great example, are splendid animals,
but Python can hold its own in such company:

def qsort(L):
 if len(L) <= 1: return L
 return qsort([lt for lt in L[1:] if lt < L[0]]) + L[0:1] + \
 qsort([ge for ge in L[1:] if ge >= L[0]])

In my humble opinion, this code is almost as pretty as the Haskell version from
http://www.haskell.org:

qsort [] = []
qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_greq_x
 where
 elts_lt_x = [y | y <- xs, y < x]
 elts_greq_x = [y | y <- xs, y >= x]

Here's a test function for the Python version:

def qs_test(length):
 import random
 joe = range(length)
 random.shuffle(joe)
 qsJoe = qsort(joe)
 for i in range(len(qsJoe)):
 assert qsJoe[i] == i, 'qsort is broken at %d!' %i

Discussion

This rather naive implementation of quicksort illustrates the expressive power of list
comprehensions. Do not use this approach in real code! Python lists have an in-place sort

method that is much faster and should always be preferred; in Python 2.4, the new built-in
function sorted accepts any finite sequence and returns a new sorted list with the sequence's

items. The only proper use of this recipe is for impressing friends, particularly ones who (quite
understandably) are enthusiastic about functional programming, and particularly about the
Haskell language.

I cooked up this function after finding the wonderful Haskell quicksort (which I've reproduced in

http://www.haskell.org

the "Solution") at http://www.haskell.org/aboutHaskell.html. After marveling at the elegance of
this code for a while, I realized that list comprehensions made the same approach possible in
Python. Not for nothing did we steal list comprehensions right out of Haskell, just Pythonizing
them a bit by using keywords rather than punctuation!

Both implementations pivot on the first element of the list and thus have worst-case O(n)

performance for the very common case of sorting an already sorted list. You would never want to
do so in production code! Because this recipe is just a propaganda piece, though, it doesn't really
matter.

You can write a less compact version with similar architecture in order to use named local
variables and functions for enhanced clarity:

def qsort(L):
 if not L: return L
 pivot = L[0]
 def lt(x): return x<pivot
 def ge(x): return x>=pivot
 return qsort(filter(lt, L[1:]))+[pivot]+qsort(filter(ge, L[1:]))

Once you start going this route, you can easily move to a slightly less naive version, using
random pivot selection to make worst-case performance less likely and counting pivots to handle
degenerate case with many equal elements:

import random
def qsort(L):
 if not L: return L
 pivot = random.choice(L)
 def lt(x): return x<pivot
 def gt(x): return x>pivot
 return qsort(filter(lt, L))+[pivot]*L.count(pivot)+qsort(filter(gt, L))

Despite the enhancements, they are meant essentially for fun and demonstration purposes.
Production-quality sorting code is quite another thing: these little jewels, no matter how much
we dwell on them, will never match the performance and solidity of Python's own built-in sorting
approaches.

Rather than going for clarity and robustness, we can move in the opposite direction to make this
last point most obvious, showing off the obscurity and compactness that one can get with
Python's lambda:

q=lambda x:(lambda o=lambda s:[i for i in x if cmp(i,x[0])==s]:
 len(x)>1 and q(o(-1))+o(0)+q(o(1)) or x)()

At least, with this beauty (a single logical line, although it needs to be split into two physical lines
due to its length), it should be absolutely obvious that this approach is not meant for real-world
use. The equivalent, using more readable def statements rather than opaque lambdas, would still

be pretty obscure:

def q(x):
 def o(s): return [i for i in x if cmp(i,x[0])==s]
 return len(x)>1 and q(o(-1))+o(0)+q(o(1)) or x

but a little more clarity (and sanity) can be recovered by opening up the pithy len(x)>1 and . .
. or x into an if/else statement and introducing sensible local names again:

def q(x):

http://www.haskell.org/aboutHaskell.html

 if len(x)>1:
 lt = [i for i in x if cmp(i,x[0]) == -1]
 eq = [i for i in x if cmp(i,x[0]) == 0]
 gt = [i for i in x if cmp(i,x[0]) == 1]
 return q(lt) + eq + q(gt)
 else:
 return x

Fortunately, in the real world, Pythonistas are much too sensible to write convoluted, lambda-

filled horrors such as this. In fact, many (though admittedly not all) of us feel enough aversion to
lambda itself (partly from having seen it abused this way) that we go out of our way to use
readable def statements instead. As a result, the ability to decode such "bursts of line noise" is

not a necessary survival skill in the Python world, as it might be for other languages. Any
language feature can be abused by programmers trying to be "clever" . . . as a result, some
Pythonistas (though a minority) feel a similar aversion to features such as list comprehensions
(since it's possible to cram too many things into a list comprehension, where a plain for loop
would be clearer) or to the short-circuiting behavior of operators and/or (since they can be
abused to write obscure, terse expressions where a plain if statement would be clearer).

See Also

The Haskell web site, http://www.haskell.org.

http://www.haskell.org

Recipe 5.12. Performing Frequent Membership Tests on
a Sequence

Credit: Alex Martelli

Problem

You need to perform frequent tests for membership in a sequence. The O(n) behavior of
repeated in operators hurts performance, but you can't switch to using just a dictionary or set

instead of the sequence, because you also need to keep the sequence's order.

Solution

Say you need to append items to a list only if they're not already in the list. One sound approach
to this task is the following function:

def addUnique(baseList, otherList):
 auxDict = dict.fromkeys(baseList)
 for item in otherList:
 if item not in auxDict:
 baseList.append(item)
 auxDict[item] = None

If your code has to run only under Python 2.4, you can get exactly the same effect with an
auxiliary set rather than an auxiliary dictionary.

Discussion

A simple (naive?) approach to this recipe's task looks good:

def addUnique_simple(baseList, otherList):
 for item in otherList:
 if item not in baseList:
 baseList.append(item)

and it may be sort of OK, if the lists are very small.

However, the simple approach can be quite slow if the lists are not small. When you check if
item not in baseList, Python can implement the in operator in only one way: an internal loop
over the elements of baseList, ending with a result of true as soon as an element compares
equal to item, with a result of False if the loop terminates without having found any equality. On
average, executing the in-operator takes time proportional to len(baseList). addUnique_simple
executes the in-operator len(otherList) times, so, in all, it takes time proportional to the

product of the lengths of the two lists.

In the addUnique function shown in the "Solution", we first build the auxiliary dictionary auxDict,
a step that takes time proportional to len(baseList). Then, the in-operator inside the loop
checks for membership in a dicta step that makes all the difference because checking for

membership in a dict takes roughly constant time, independent of the number of items in the
dict! So, the for loop takes time proportional to len(otherList), and the entire function takes

time proportional to the sum of the lengths of the two lists.

The analysis of the running times should in fact go quite a bit deeper, because the length of
baseList is not constant in addUnique_simple; baseList grows each time an item is processed
that was not already there. But the gist of the (surprisingly complicated) analysis is not very
different from what this simplified version indicates. We can check this by measuring. When each
list holds 10 integers, with an overlap of 50%, the simple version is about 30% slower than the
one shown in the "Solution", the kind of slowdown that can normally be ignored. But with lists of
100 integers each, again with 50% overlap, the simple version is twelve times slower than the
one shown in the "Solution"a level of slowdown that can never be ignored, and it only gets worse
if the lists get really substantial.

Sometimes, you could obtain even better overall performance for your program by permanently
placing the auxiliary dict alongside the sequence, encapsulating both into one object. However,
in this case, you must maintain the dict as the sequence gets modified, to ensure it stays in

sync with the sequence's current membership. This maintenance task is not trivial, and it can be
architected in many different ways. Here is one such way, which does the syncing "just in time,"
rebuilding the auxiliary dict when a membership test is required and the dictionary is possibly

out of sync with the list's contents. Since it costs very little, the following class optimizes the
index method, as well as membership tests:

class list_with_aux_dict(list):
 def _ _init_ _(self, iterable=()):
 list._ _init_ _(self, iterable)
 self._dict_ok = False
 def _rebuild_dict(self):
 self._dict = { }
 for i, item in enumerate(self):
 if item not in self._dict:
 self._dict[item] = i
 self._dict_ok = True
 def _ _contains_ _(self, item):
 if not self._dict_ok:
 self._rebuild_dict()
 return item in self._dict
 def index(self, item):
 if not self._dict_ok:
 self._rebuild_dict()
 try: return self._dict[item]
 except KeyError: raise ValueError
def _wrapMutatorMethod(methname):
 _method = getattr(list, methname)
 def wrapper(self, *args):
 # Reset 'dictionary OK' flag, then delegate to the real mutator method
 self._dict_ok = False
 return _method(self, *args)
 # in Python 2.4, only: wrapper._ _name_ _ = _method._ _name_ _
 setattr(list_with_aux_dict, methname, wrapper)
for meth in 'setitem delitem setslice delslice iadd'.split():
 wrapMutatorMethod(' _%s_ _' % meth)
for meth in 'append insert pop remove extend'.split():
 _wrapMutatorMethod(meth)
del _wrapMethod # remove auxiliary function, not needed any more

The list_with_aux_dict class extends list and delegates to it every method, except _
contains _ and index. Every method that can modify list membership is wrapped in a closure
that resets a flag asserting that the auxiliary dictionary is OK. Python's in-operator calls the _
contains _ method. list_with_aux_dict's _ _contains_ _ method rebuilds the auxiliary

dictionary, unless the flag is set (when the flag is set, rebuilding is unnecessary); the index

method works the same way.

Instead of building and installing wrapping closures for all the mutating methods of the list into
the list_with_aux_dict class with a helper function, as the recipe does, we could write all the def

statements for the wrapper methods in the body of list_with_aux_dict. However, the code for the
class as presented has the important advantage of minimizing boilerplate (repetitious plumbing
code that is boring and voluminous, and thus a likely home for bugs). Python's strengths at
introspection and dynamic modification give you a choice: you can build method wrappers, as
this recipe does, in a smart and concise way; or, you can choose to code the boilerplate anyway,
if you prefer to avoid what some would call the black magic of introspection and dynamic
modification of class objects.

The architecture of class list_with_aux_dict caters well to a rather common pattern of use, where
sequence-modifying operations happen in bunches, followed by a period of time in which the
sequence is not modified, but several membership tests may be performed. However, the
addUnique_simple function shown earlier would not get any performance benefit if argument
baseList was an instance of this recipe's list_with_aux_dict rather than a plain list: the

function interleaves membership tests and sequence modifications. Therefore, too many rebuilds
of the auxiliary dictionary for list_with_aux_dict would impede the function's performance.
(Unless a typical case was for a vast majority of the items of otherList to be already contained

in baseList, so that very few modifications occurred compared to the number of membership

tests.)

An important requisite for any of these membership-test optimizations is that the values in the
sequence must be hashable (otherwise, of course, they cannot be keys in a dict, nor items in a
set). For example, a list of tuples might be subjected to this recipe's treatment, but for a list of

lists, the recipe as it stands is just not applicable.

See Also

The Library Reference and Python in a Nutshell sections on sequence types and mapping types.

Recipe 5.13. Finding Subsequences

Credit: David Eppstein, Alexander Semenov

Problem

You need to find occurrences of a subsequence in a larger sequence.

Solution

If the sequences are strings (plain or Unicode), Python strings' find method and the standard
library's re module are the best approach. Otherwise, use the Knuth-Morris-Pratt algorithm

(KMP):

def KnuthMorrisPratt(text, pattern):
 ''' Yields all starting positions of copies of subsequence 'pattern'
 in sequence 'text' -- each argument can be any iterable.
 At the time of each yield, 'text' has been read exactly up to and
 including the match with 'pattern' that is causing the yield. '''
 # ensure we can index into pattern, and also make a copy to protect
 # against changes to 'pattern' while we're suspended by `yield'
 pattern = list(pattern)
 length = len(pattern)
 # build the KMP "table of shift amounts" and name it 'shifts'
 shifts = [1] * (length + 1)
 shift = 1
 for pos, pat in enumerate(pattern):
 while shift <= pos and pat != pattern[pos-shift]:
 shift += shifts[pos-shift]
 shifts[pos+1] = shift
 # perform the actual search
 startPos = 0
 matchLen = 0
 for c in text:
 while matchLen == length or matchLen >= 0 and pattern[matchLen] != c:
 startPos += shifts[matchLen]
 matchLen -= shifts[matchLen]
 matchLen += 1
 if matchLen == length: yield startPos

Discussion

This recipe implements the Knuth-Morris-Pratt algorithm for finding copies of a given pattern as a
contiguous subsequence of a larger text. Since KMP accesses the text sequentially, it is natural to
implement it in a way that allows the text to be an arbitrary iterator. After a preprocessing stage
that builds a table of shift amounts and takes time that's directly proportional to the length of the
pattern, each text symbol is processed in constant amortized time. Explanations and
demonstrations of how KMP works can be found in all good elementary texts about algorithms.
(A recommendation is provided in See Also.)

If text and pattern are both Python strings, you can get a faster solution by suitably applying

Python built-in search methods:

def finditer(text, pattern):
 pos = -1
 while True:
 pos = text.find(pattern, pos+1)
 if pos < 0: break
 yield pos

For example, using an alphabet of length 4 ('ACGU' . . .), finding all occurrences of a pattern of
length 8 in a text of length 100000, on my machine, takes about 4.3 milliseconds with finditer,

but the same task takes about 540 milliseconds with KnuthMorrisPratt (that's with Python 2.3;
KMP is faster with Python 2.4, taking about 480 milliseconds, but that's still over 100 times
slower than finditer). So remember: this recipe is useful for searches on generic sequences,

including ones that you cannot keep in memory all at once, but if you're searching on strings,
Python's built-in searching methods rule.

See Also

Many excellent books cover the fundamentals of algorithms; among such books, a widely
admired one is Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, 2d ed. (MIT Press).

Recipe 5.14. Enriching the Dictionary Type with Ratings
Functionality

Credit: Dmitry Vasiliev, Alex Martelli

Problem

You want to use a dictionary to store the mapping between some keys and a current score value
for each key. You frequently need to access the keys and scores in natural order (meaning, in
order of ascending scores) and to check on a "key"'s current ranking in that order, so that using
just a dict isn't quite enough.

Solution

We can subclass dict and add or override methods as needed. By using multiple inheritance,
placing base UserDict.DictMixin before base dict and carefully arranging our various

delegations and "over"rides, we can achieve a good balance between getting good performance
and avoiding the need to write "boilerplate" code.

By enriching our class with many examples in its docstring, we can use the standard library's
module doctest to give us unit-testing functionality, as well as ensuring the accuracy of all the

examples we write in the docstring:

#!/usr/bin/env python
''' An enriched dictionary that holds a mapping from keys to scores '''
from bisect import bisect_left, insort_left
import UserDict
class Ratings(UserDict.DictMixin, dict):
 """ class Ratings is mostly like a dictionary, with extra features: the
 value corresponding to each key is the 'score' for that key, and all
 keys are ranked in terms their scores. Values must be comparable; keys,
 as well as being hashable, must be comparable if any two keys may ever
 have the same corresponding value (i.e., may be "tied" on score).
 All mapping-like behavior is just as you would expect, such as:
 >>> r = Ratings({"bob": 30, "john": 30})
 >>> len(r)
 2
 >>> r.has_key("paul"), "paul" in r
 (False, False)
 >>> r["john"] = 20
 >>> r.update({"paul": 20, "tom": 10})
 >>> len(r)
 4
 >>> r.has_key("paul"), "paul" in r
 (True, True)
 >>> [r[key] for key in ["bob", "paul", "john", "tom"]]
 [30, 20, 20, 10]
 >>> r.get("nobody"), r.get("nobody", 0)
 (None, 0)
 In addition to the mapping interface, we offer rating-specific
 methods. r.rating(key) returns the ranking of a "key" in the
 ratings, with a ranking of 0 meaning the lowest score (when two

 keys have equal scores, the keys themselves are compared, to
 "break the tie", and the lesser key gets a lower ranking):
 >>> [r.rating(key) for key in ["bob", "paul", "john", "tom"]]
 [3, 2, 1, 0]
 getValueByRating(ranking) and getKeyByRating(ranking) return the
 score and key, respectively, for a given ranking index:
 >>> [r.getValueByRating(rating) for rating in range(4)]
 [10, 20, 20, 30]
 >>> [r.getKeyByRating(rating) for rating in range(4)]
 ['tom', 'john', 'paul', 'bob']
 An important feature is that the keys() method returns keys in
 ascending order of ranking, and all other related methods return
 lists or iterators fully consistent with this ordering:
 >>> r.keys()
 ['tom', 'john', 'paul', 'bob']
 >>> [key for key in r]
 ['tom', 'john', 'paul', 'bob']
 >>> [key for key in r.iterkeys()]
 ['tom', 'john', 'paul', 'bob']
 >>> r.values()
 [10, 20, 20, 30]
 >>> [value for value in r.itervalues()]
 [10, 20, 20, 30]
 >>> r.items()
 [('tom', 10), ('john', 20), ('paul', 20), ('bob', 30)]
 >>> [item for item in r.iteritems()]
 [('tom', 10), ('john', 20), ('paul', 20), ('bob', 30)]
 An instance can be modified (adding, changing and deleting
 key-score correspondences), and every method of that instance
 reflects the instance's current state at all times:
 >>> r["tom"] = 100
 >>> r.items()
 [('john', 20), ('paul', 20), ('bob', 30), ('tom', 100)]
 >>> del r["paul"]
 >>> r.items()
 [('john', 20), ('bob', 30), ('tom', 100)]
 >>> r["paul"] = 25
 >>> r.items()
 [('john', 20), ('paul', 25), ('bob', 30), ('tom', 100)]
 >>> r.clear()
 >>> r.items()
 []
 """
 ''' the implementation carefully mixes inheritance and delegation
 to achieve reasonable performance while minimizing boilerplate,
 and, of course, to ensure semantic correctness as above. All
 mappings' methods not implemented below get inherited, mostly
 from DictMixin, but, crucially!, _ _getitem_ _ from dict. '''
 def _ _init_ _(self, *args, **kwds):
 ''' This class gets instantiated just like 'dict' '''
 dict._ _init_ _(self, *args, **kwds)
 # self._rating is the crucial auxiliary data structure: a list
 # of all (value, key) pairs, kept in "natural"ly-sorted order
 self._rating = [(v, k) for k, v in dict.iteritems(self)]
 self._rating.sort()
 def copy(self):
 ''' Provide an identical but independent copy '''
 return Ratings(self)
 def _ _setitem_ _(self, k, v):
 ''' besides delegating to dict, we maintain self._rating '''

 if k in self:
 del self._rating[self.rating(k)]
 dict._ _setitem_ _(self, k, v)
 insort_left(self._rating, (v, k))
 def _ _delitem_ _(self, k):
 ''' besides delegating to dict, we maintain self._rating '''
 del self._rating[self.rating(k)]
 dict._ _delitem_ _(self, k)
 ''' delegate some methods to dict explicitly to avoid getting
 DictMixin's slower (though correct) implementations instead '''
 _ _len_ _ = dict._ _len_ _
 _ _contains_ _ = dict._ _contains_ _
 has_key = _ _contains_ _
 ''' the key semantic connection between self._rating and the order
 of self.keys() -- DictMixin gives us all other methods 'for
 free', although we could implement them directly for slightly
 better performance. '''
 def _ _iter_ _(self):
 for v, k in self._rating:
 yield k
 iterkeys = _ _iter_ _
 def keys(self):
 return list(self)
 ''' the three ratings-related methods '''
 def rating(self, key):
 item = self[key], key
 i = bisect_left(self._rating, item)
 if item == self._rating[i]:
 return i
 raise LookupError, "item not found in rating"
 def getValueByRating(self, rating):
 return self._rating[rating][0]
 def getKeyByRating(self, rating):
 return self._rating[rating][1]
def _test():
 ''' we use doctest to test this module, which must be named
 rating.py, by validating all the examples in docstrings. '''
 import doctest, rating
 doctest.testmod(rating)
if _ _name_ _ == "_ _main_ _":
 _test()

Discussion

In many ways, a dictionary is the natural data structure for storing a correspondence between
keys (e.g., names of contestants in a competition) and the current "score" of each key (e.g., the
number of points a contestant has scored so far, or the highest bid made by each contestant at
an auction, etc.). If we use a dictionary for such purposes, we will probably want to access it
often in natural orderthe order in which the keys' scores are ascendingand we'll also want fast
access to the rankings (ratings) implied by the current "score"s (e.g., the contestant currently in
third place, the score of the contestant who is in second place, etc.).

To achieve these purposes, this recipe subclasses dict to add the needed functionality that is
completely missing from dict (methods rating, getValueByRating, getKeyByRating), and, more
subtly and crucially, to modify method keys and all other related methods so that they return

lists or iterators with the required order (i.e., the order in which scores are ascending; if we have
to break ties when two keys have the same score, we implicitly compare the keys themselves).
Most of the detailed documentation is in the docstring of the class itselfa crucial issue because by

keeping the documentation and examples there, we can use module doctest from the Python

Standard Library to provide unit-testing functionality, as well as ensuring that our examples are
correct.

The most interesting aspect of the implementation is that it takes good care to minimize
boilerplate (meaning repetitious and boring code, and therefore code where bugs are most likely
to hide) without seriously impairing performance. class Ratings multiply inherits from dict and
DictMixin, with the latter placed first in the list of bases, so that all methods come from the

mixin, if it provides them, unless explicitly overridden in the class.

Raymond Hettinger's DictMixin class was originally posted as a recipe to the online version of
the Python Cookbook and later became part of Python 2.3's standard library. DictMixin provides
all the methods of a mapping except _ _init_ _, copy, and the four fundamental methods: _
getitem _, _ _setitem_ _, _ _delitem_ _, and, last but not least, keys. If you are coding a

mapping class and want to ensure that your class supports all of the many methods that a full
mapping provides to application code, you should subclass DictMixin and supply at least the

fundamental methods (depending on your class' semanticse.g., if your class has immutable
instances, you need not supply the mutator methods _ _setitem_ _ and _ _delitem_ _). You

may optionally implement other methods for performance purposes, overriding the
implementation that DictMixin provides. The whole DictMixin architecture can be seen as an

excellent example of the classic Template Method Design Pattern, applied pervasively in a useful
mix-in variant.

In this recipe's class, we inherit _ _getitem_ _ from our other base (namely, the built-in type
dict), and we also delegate explicitly to dict everything we can for performance reasons. We
have to code the elementary mutator methods (_ _setitem_ _ and _ _delitem_ _) because, in
addition to delegating to our base class dict, we need to maintain our auxiliary data structure
self._ratinga list of (score, key) pairs that we keep in sorted order with the help of standard
library module bisect. We implement keys ourselves (and while we're at it, we implement _
iter _ i.e., iterkeys as well, since clearly keys is easiest to implement by using _ _iter_ _)

to exploit self._rating and return the keys in the order we need. Finally, we add the obvious
implementations for _ _init_ _ and copy, in addition to the three, ratings-specific methods that

we supply.

The result is quite an interesting example of balancing concision, clarity, and well-advised reuse
of the enormous amount of functionality that the standard Python library places at our disposal.
If you use this module in your applications, profiling may reveal that a method that this recipe's
class inherits from DictMixin has somewhat unsatisfactory performanceafter all, the
implementations in DictMixin are, of necessity, somewhat generic. If this is the case, by all

means add a direct implementation of whatever further methods you need to achieve maximum
performance! For example, if your application performs a lot of looping on the result of calling
r.iteritems() for some instance r of class Ratings, you may get slightly better performance

by adding to the body of the class the direct implementation of the method:

 def iteritems(self):
 for v, k in self._rating:
 yield k, v

See Also

Library Reference and Python in a Nutshell documentation about class DictMixin in module
UserDict, and about module bisect.

Recipe 5.15. Sorting Names and Separating Them by
Initials

Credit: Brett Cannon, Amos Newcombe

Problem

You want to write a directory for a group of people, and you want that directory to be grouped by
the initials of their last names and sorted alphabetically.

Solution

Python 2.4's new itertools.groupby function makes this task easy:

import itertools
def groupnames(name_iterable):
 sorted_names = sorted(name_iterable, key=_sortkeyfunc)
 name_dict = { }
 for key, group in itertools.groupby(sorted_names, _groupkeyfunc):
 name_dict[key] = tuple(group)
 return name_dict
pieces_order = { 2: (-1, 0), 3: (-1, 0, 1) }
def _sortkeyfunc(name):
 ''' name is a string with first and last names, and an optional middle
 name or initial, separated by spaces; returns a string in order
 last-first-middle, as wanted for sorting purposes. '''
 name_parts = name.split()
 return ' '.join([name_parts[n] for n in pieces_order[len(name_parts)]])
def _groupkeyfunc(name):
 ''' returns the key for grouping, i.e. the last name's initial. '''
 return name.split()[-1][0]

Discussion

In this recipe, name_iterable must be an iterable whose items are strings containing names in
the form first - middle - last, with middle being optional and the parts separated by whitespace.
The result of calling groupnames on such an iterable is a dictionary whose keys are the last
names' initials, and the corresponding values are the tuples of all names with that last name's
initial.

Auxiliary function _sortkeyfunc splits a name that's a single string, either "first last" or "first
middle last," and reorders the part into a list that starts with the last name, followed by first
name, plus the middle name or initial, if any, at the end. Then, the function returns this list
rejoined into a string. The resulting string is the key we want to use for sorting, according to the
problem statement. Python 2.4's built-in function sorted takes just this kind of function (to call
on each item to get the sort key) as the value of its optional parameter named key.

Auxiliary function _groupkeyfunc takes a name in the same form and returns the last name's
initialthe key on which, again according to the problem statement, we want to group.

This recipe's primary function, groupnames, uses the two auxiliary functions and Python 2.4's
sorted and itertools.groupby to solve our problem, building and returning the required

dictionary.

If you need to code this task in Python 2.3, you can use the same two support functions and
recode function groupnames itself. In 2.3, it is more convenient to do the grouping first and the
sorting separately on each group, since no groupby function is available in Python 2.3's standard

library:

def groupnames(name_iterable):
 name_dict = { }
 for name in name_iterable:
 key = _groupkeyfunc(name)
 name_dict.setdefault(key, []).append(name)
 for k, v in name_dict.iteritems():
 aux = [(_sortkeyfunc(name), name) for name in v]
 aux.sort()
 name_dict[k] = tuple([n for _ _, n in aux])
 return name_dict

See Also

Recipe 19.21; Library Reference (Python 2.4) docs on module itertools.

Chapter 6. Object-Oriented Programming
Introduction

Recipe 6.1. Converting Among Temperature Scales

Recipe 6.2. Defining Constants

Recipe 6.3. Restricting Attribute Setting

Recipe 6.4. Chaining Dictionary Lookups

Recipe 6.5. Delegating Automatically as an Alternative to Inheritance

Recipe 6.6. Delegating Special Methods in Proxies

Recipe 6.7. Implementing Tuples with Named Items

Recipe 6.8. Avoiding Boilerplate Accessors for Properties

Recipe 6.9. Making a Fast Copy of an Object

Recipe 6.10. Keeping References to Bound Methods Without Inhibiting Garbage Collection

Recipe 6.11. Implementing a Ring Buffer

Recipe 6.12. Checking an Instance for Any State Changes

Recipe 6.13. Checking Whether an Object Has Necessary Attributes

Recipe 6.14. Implementing the State Design Pattern

Recipe 6.15. Implementing the "Singleton" Design Pattern

Recipe 6.16. Avoiding the "Singleton" Design Pattern with the Borg Idiom

Recipe 6.17. Implementing the Null Object Design Pattern

Recipe 6.18. Automatically Initializing Instance Variables from _ _init_ _ Arguments

Recipe 6.19. Calling a Superclass _ _init_ _ Method If It Exists

Recipe 6.20. Using Cooperative Supercalls Concisely and Safely

Introduction

Credit: Alex Martelli, author of Python in a Nutshell (O'Reilly)

Object-oriented programming (OOP) is among Python's greatest strengths. Python's OOP
features continue to improve steadily and gradually, just like Python in general. You could
already write better object-oriented programs in Python 1.5.2 (the ancient, long-stable version
that was new when I first began to work with Python) than in any other popular language
(excluding, of course, Lisp and its variants: I doubt there's anything you can't do well in Lisp-like
languages, as long as you can stomach parentheses-heavy concrete syntax). For a few years
now, since the release of Python 2.2, Python OOP has become substantially better than it was
with 1.5.2. I am constantly amazed at the systematic progress Python achieves without
sacrificing solidity, stability, and backwards-compatibility.

To get the most out of Python's great OOP features, you should use them the Python way, rather
than trying to mimic C++, Java, Smalltalk, or other languages you may be familiar with. You can
do a lot of mimicry, thanks to Python's power. However, you'll get better mileage if you invest
time and energy in understanding the Python way. Most of the investment is in increasing your
understanding of OOP itself: what is OOP, what does it buy you, and which underlying
mechanisms can your object-oriented programs use? The rest of the investment is in
understanding the specific mechanisms that Python itself offers.

One caveat is in order. For such a high-level language, Python is quite explicit about the OOP
mechanisms it uses behind the curtains: they're exposed and available for your exploration and
tinkering. Exploration and understanding are good, but beware the temptation to tinker. In other
words, don't use unnecessary black magic just because you can. Specifically, don't use black
magic in production code. If you can meet your goals with simplicity (and most often, in Python,
you can), then keep your code simple. Simplicity pays off in readability, maintainability, and,
more often than not, performance, too. To describe something as clever is not considered a
compliment in the Python culture.

So what is OOP all about? First of all, it's about keeping some state (data) and some behavior
(code) together in handy packets. "Handy packets" is the key here. Every program has state and
behaviorprogramming paradigms differ only in how you view, organize, and package them. If the
packaging is in terms of objects that typically comprise state and behavior, you're using OOP.
Some object-oriented languages force you to use OOP for everything, so you end up with many
objects that lack either state or behavior. Python, however, supports multiple paradigms. While
everything in Python is an object, you package things as OOP objects only when you want to.
Other languages try to force your programming style into a predefined mold for your own good,
while Python empowers you to make and express your own design choices.

With OOP, once you have specified how an object is composed, you can instantiate as many
objects of that kind as you need. When you don't want to create multiple objects, consider using
other Python constructs, such as modules. In this chapter, you'll find recipes for Singleton, an
object-oriented design pattern that eliminates the multiplicity of instantiation, and Borg, an idiom
that makes multiple instances share state. But if you want only one instance, in Python it's often
best to use a module, not an OOP object.

To describe how an object is made, use the class statement:

class SomeName(object):
 """ You usually define data and code here (in the class body). """

SomeName is a class object. It's a first-class object, like every Python object, meaning that you
can put it in lists and dictionaries, pass it as an argument to functions, and so on. You don't have

to include the (object) part in the class header clauseclass SomeName: by itself is also valid

Python syntaxbut normally you should include that part, as we'll see later.

When you want a new instance of a class, call the class object as if it were a function. Each call
returns a new instance object:

anInstance = SomeName()
another = SomeName()

anInstance and another are two distinct instance objects, instances of the SomeName class.

(See Recipe 4.18 for a class that does little more than this and yet is already quite useful.) You
can freely bind (i.e., assign or set) and access (i.e., get) attributes (i.e., state) of an instance
object:

anInstance.someNumber = 23 * 45
print anInstance.someNumber # emits: 1035

Instances of an "empty" class like SomeName have no behavior, but they may have state. Most
often, however, you want instances to have behavior. Specify the behavior you want by defining
methods (with def statements, just like you define functions) inside the class body:

class Behave(object):
 def _ _init_ _(self, name):
 self.name = name
 def once(self):
 print "Hello,", self.name
 def rename(self, newName)
 self.name = newName
 def repeat(self, N):
 for i in range(N): self.once()

You define methods with the same def statement Python uses to define functions, exactly

because methods are essentially functions. However, a method is an attribute of a class object,
and its first formal argument is (by universal convention) named self. self always refers to the

instance on which you call the method.

The method with the special name _ _init_ _ is also known as the constructor (or more

properly the initializer) for instances of the class. Python calls this special method to initialize
each newly created instance with the arguments that you passed when calling the class (except
for self, which you do not pass explicitly since Python supplies it automatically). The body of _
init _ typically binds attributes on the newly created self instance to appropriately initialize

the instance's state.

Other methods implement the behavior of instances of the class. Typically, they do so by
accessing instance attributes. Also, methods often rebind instance attributes, and they may call
other methods. Within a class definition, these actions are always done with the self.something
syntax. Once you instantiate the class, however, you call methods on the instance, access the
instance's attributes, and even rebind them, using the theobject.something syntax:

beehive = Behave("Queen Bee")
beehive.repeat(3)
beehive.rename("Stinger")
beehive.once()
print beehive.name
beehive.name = 'See, you can rebind it "from the outside" too, if you want'
beehive.repeat(2)

self

No true difference exists between what I described as the self.something syntax and
the theobject.something syntax: the former is simply a special case of the latter,
when the name of reference theobject happens to be self!

If you're new to OOP in Python, you should try, in an interactive Python environment, the
example snippets I have shown so far and those I'm going to show in the rest of this
Introduction. One of the best interactive Python environments for such exploration is the GUI
shell supplied as part of the free IDLE development environment that comes with Python.

In addition to the constructor (_ _init_ _), your class may have other special methods,

meaning methods with names that start and end with two underscores. Python calls the special
methods of a class when instances of the class are used in various operations and built-in
functions. For example, len(x) returns x._ _len_ _(); a+b normally returns a._ _add_ _(b);
a[b] returns a._ _getitem_ _(b). Therefore, by defining special methods in a class, you can

make instances of that class interchangeable with objects of built-in types, such as numbers,
lists, and dictionaries.

Each operation and built-in function can try several special methods in some
specific order. For example, a+b first tries a._ _add_ _(b), but, if that

doesn't pan out, the operation also gives object b a say in the matter, by
next trying b._ _radd_ _(a). This kind of intrinsic structuring among

special methods, that operations and built-in functions can provide, is an
important added value of such functions and operations with respect to
pure OO notation such as someobject.somemethod(arguments).

The ability to handle different objects in similar ways, known as polymorphism, is a major
advantage of OOP. Thanks to polymorphism, you can call the same method on various objects,
and each object can implement the method appropriately. For example, in addition to the Behave
class, you might have another class that implements a repeat method with rather different
behavior:

class Repeater(object):
 def repeat(self, N): print N*"*-*"

You can mix instances of Behave and Repeater at will, as long as the only method you call on
each such instance is repeat:

aMix = beehive, Behave('John'), Repeater(), Behave('world')
for whatever in aMix: whatever.repeat(3)

Other languages require inheritance, or the formal definition and implementation of interfaces, in
order to enable such polymorphism. In Python, all you need is to have methods with the same
signature (i.e., methods of the same name, callable with the same arguments). This signature-
based polymorphism allows a style of programming that's quite similar to generic programming
(e.g., as supported by C++'s template classes and functions), without syntax cruft and without

conceptual complications.

Python also uses inheritance, which is mostly a handy, elegant, structured way to reuse code.
You can define a class by inheriting from another (i.e., subclassing the other class) and then

adding or redefining (known as overriding) some methods:

class Subclass(Behave):
 def once(self): print '(%s)' % self.name
subInstance = Subclass("Queen Bee")
subInstance.repeat(3)

The Subclass class overrides only the once method, but you can also call the repeat method on
subInstance, since Subclass inherits that method from the Behave superclass. The body of the

repeat method calls once n times on the specific instance, using whatever version of the once
method the instance has. In this case, each call uses the method from the Subclass class, which
prints the name in parentheses, not the original version from the Behave class, which prints the
name after a greeting. The idea of a method calling other methods on the same instance and
getting the appropriately overridden version of each is important in every object-oriented
language, including Python. It is also known as the Template Method Design Pattern.

The method of a subclass often overrides a method from the superclass, but also needs to call
the method of the superclass as part of its own operation. You can do this in Python by explicitly
getting the method as a class attribute and passing the instance as the first argument:

class OneMore(Behave):
 def repeat(self, N): Behave.repeat(self, N+1)
zealant = OneMore("Worker Bee")
zealant.repeat(3)

The OneMore class implements its own repeat method in terms of the method with the same
name in its superclass, Behave, with a slight change. This approach, known as delegation, is
pervasive in all programming. Delegation involves implementing some functionality by letting
another existing piece of code do most of the work, often with some slight variation. An
overriding method often is best implemented by delegating some of the work to the same
method in the superclass. In Python, the syntax Classname.method(self, . . .) delegates to

Classname's version of the method. A vastly preferable way to perform superclass delegation,
however, is to use Python's built-in super:

class OneMore(Behave):
 def repeat(self, N): super(OneMore, self).repeat(N+1)

This super construct is equivalent to the explicit use of Behave.repeat in this simple case, but it

also allows class OneMore to be used smoothly with multiple inheritance. Even if you're not
interested in multiple inheritance at first, you should still get into the habit of using super instead
of explicit delegation to your base class by namesuper costs nothing and it may prove very

useful to you in the future.

Python does fully support multiple inheritance: one class can inherit from several other classes.
In terms of coding, this feature is sometimes just a minor one that lets you use the mix-in class
idiom, a convenient way to supply functionality across a broad range of classes. (See Recipe 6.20
and Recipe 6.12, for unusual but powerful examples of using the mix-in idiom.) However,
multiple inheritance is particularly important because of its implications for object-oriented
analysisthe way you conceptualize your problem and your solution in the first place. Single
inheritance pushes you to frame your problem space via taxonomy (i.e., mutually exclusive
classification). The real world doesn't work like that. Rather, it resembles Jorge Luis Borges'
explanation in The Analytical Language of John Wilkins, from a purported Chinese encyclopedia,
The Celestial Emporium of Benevolent Knowledge. Borges explains that all animals are divided
into:

Those that belong to the Emperor

Embalmed ones

Those that are trained

Suckling pigs

Mermaids

Fabulous ones

Stray dogs

Those included in the present classification

Those that tremble as if they were mad

Innumerable ones

Those drawn with a very fine camelhair brush

Others

Those that have just broken a flower vase

Those that from a long way off look like flies

You get the point: taxonomy forces you to pigeonhole, fitting everything into categories that
aren't truly mutually exclusive. Modeling aspects of the real world in your programs is hard
enough without buying into artificial constraints such as taxonomy. Multiple inheritance frees you
from these constraints.

Ah, yes, that (object) thingI had promised to come back to it later. Now that you've seen
Python's notation for inheritance, you realize that writing class X(object) means that class X
inherits from class object. If you just write class Y:, you're saying that Y doesn't inherit from

anythingY, so to speak, "stands on its own". For backwards compatibility, Python allows you to
request such a rootless class, and, if you do, then Python makes class Y an "old-style" class, also
known as a classic class, meaning a class that works just like all classes used to work in the
Python versions of old. Python is very keen on backwards-compatibility.

For many elementary uses, you won't notice the difference between classic classes and the new-
style classes that are recommended for all new Python code you write. However, it's important to
underscore that classic classes are a legacy feature, not recommended for new code. Even within
the limited compass of elementary OOP features that I cover in this Introduction, you will already
feel some of the limitations of classic classes: for example, you cannot use super within classic

classes, and in practice, you should not do any serious use of multiple inheritance with them.
Many important features of today's Python OOP, such as the property built-in, can't work

completely, if they even work at all, with old-style classes.

In practice, even if you're maintaining a large body of legacy Python code, the next time you
need to do any substantial maintenance on that code, you should take the little effort required to
ensure all classes are new style: it's a small job, and it will ease your future maintenance burden
quite a bit. Instead of explicitly having all your classes inherit from object, an equivalent

alternative is to add the following assignment statement close to the start of every module that
defines any classes:

_ _metaclass_ _ = type

The built-in type is the metaclass of object and of every other new-style class and built-in type.
That's why inheriting from object or any built-in type makes a class new style: the class you're

coding gets the same metaclass as its base. A class without bases can get its metaclass from the
module-global _ _metaclass_ _ variable, which is why the "state"ment I suggest suffices to

ensure that any classes without explicit bases are made new-style. Even if you never make any
other use of explicit metaclasses (a rather advanced subject that is, nevertheless, mentioned in
several of this chapter's recipes), this one simple use of them will stand you in good stead.

What Is a Metaclass?

Metaclasses do not mean "deep, dark black magic". When you execute any class

statement, Python performs the following steps:

Remember the class name as a string, say n, and the class bases as a tuple, say b.

Execute the body of the class, recording all names that the body binds as keys in a
new dictionary d, each with its associated value (e.g., each statement such as def
f(self) just sets d['f'] to the function object the def statement builds).

Determine the appropriate metaclass, say M, by inheritance or by looking for name _

metaclass _ in d and in the globals:

if '_ _metaclass_ _' in d: M = d['_ _metaclass_ _']
elif b: M = type(b[0])
elif '_ _metaclass_ _' in globals(): M = globals()['_ _metaclass_ _']
else: M = types.ClassType

types.ClassType is the metaclass of old-style classes, so this code implies that a
class without bases is old style if the name '_ _metaclass_ _' is not set in the class

body nor among the global variables of the current module.

Call M(n, b, d) and record the result as a variable with name n in whatever scope
the class statement executed.

So, some metaclass M is always involved in the execution of any class statement.
The metaclass is normally type for new-style classes, types.ClassType for old-style

classes. You can set it up to use your own custom metaclass (normally a subclass of
type), and that is where you may reasonably feel that things are getting a bit too
advanced. However, understanding that a class statement, such as:

class Someclass(Somebase):
 _ _metaclass_ _ = type
 x = 23

is exactly equivalent to the assignment statement:

Someclass = type('Someclass', (Somebase,), {'x': 23})

does help a lot in understanding the exact semantics of the class statement.

Recipe 6.1. Converting Among Temperature Scales

Credit: Artur de Sousa Rocha, Adde Nilsson

Problem

You want to convert easily among Kelvin, Celsius, Fahrenheit, and Rankine scales of
temperature.

Solution

Rather than having a dozen functions to do all possible conversions, we can more elegantly
package this functionality into a class:

class Temperature(object):
 coefficients = {'c': (1.0, 0.0, -273.15), 'f': (1.8, -273.15, 32.0),
 'r': (1.8, 0.0, 0.0)}
 def _ _init_ _(self, **kwargs):
 # default to absolute (Kelvin) 0, but allow one named argument,
 # with name being k, c, f or r, to use any of the scales
 try:
 name, value = kwargs.popitem()
 except KeyError:
 # no arguments, so default to k=0
 name, value = 'k', 0
 # error if there are more arguments, or the arg's name is unknown
 if kwargs or name not in 'kcfr':
 kwargs[name] = value # put it back for diagnosis
 raise TypeError, 'invalid arguments %r' % kwargs
 setattr(self, name, float(value))
 def _ _getattr_ _(self, name):
 # maps getting of c, f, r, to computation from k
 try:
 eq = self.coefficients[name]
 except KeyError:
 # unknown name, give error message
 raise AttributeError, name
 return (self.k + eq[1]) * eq[0] + eq[2]
 def _ _setattr_ _(self, name, value):
 # maps settings of k, c, f, r, to setting of k; forbids others
 if name in self.coefficients:
 # name is c, f or r -- compute and set k
 eq = self.coefficients[name]
 self.k = (value - eq[2]) / eq[0] - eq[1]
 elif name == 'k':
 # name is k, just set it
 object._ _setattr_ _(self, name, value)
 else:
 # unknown name, give error message
 raise AttributeError, name
 def _ _str_ _(self):
 # readable, concise representation as string

 return "%s K" % self.k
 def _ _repr_ _(self):
 # detailed, precise representation as string
 return "Temperature(k=%r)" % self.k

Discussion

Converting between several different scales or units of measure is a task that's subject to a
"combinatorial explosion": if we tackle it in the apparently obvious way, by providing a function
for each conversion, then, to deal with n different units, we will have to write n * (n-1)

functions.

A Python class can intercept attribute setting and getting, and perform computation on the fly in
response. This power enables a much handier and more elegant architecture, as shown in this
recipe for the specific case of temperatures.

Inside the class, we always hold the measurement in one reference unit or scale, Kelvin
(absolute) degrees in the case of this recipe. We allow the setting of the value to happen through
any of four attribute names ('k', 'r', 'c', 'f', abbreviations of the scales' names), and

compute and set the Kelvin-scale value appropriately. Vice versa, we also allow the "getting" of
the value in any scale, through the same attribute names, computing the result on the fly.
(Assuming you have saved the code in this recipe as te.py somewhere on your Python sys.path,

you can import it as a module.) For example:

>>> from te import Temperature
>>> t = Temperature(f=70) # 70 F is...
>>> print t.c # ...a bit over 21 C
21.1111111111
>>> t.c = 23 # 23 C is...
>>> print t.f # ...a bit over 73 F
73.4

_ _getattr_ _ and _ _setattr_ _ work better than named properties would in this case, since
the form of the computation is the same for every attribute (except the reference 'k' one), and

we only need to use different coefficients that we can most handily keep in a per-class dictionary,
the one we name self.coefficients. It's important to remember that _ _setattr_ _ is called
on every setting of any attribute, so it must delegate to object the setting of attributes, which
need to be recorded in the instance (the _ _setattr_ _ implementation in this recipe does just
such a delegation for attribute k) and must raise an AttributeError exception for attributes that
can't be set. _ _getattr_ _, on the other hand, is called only upon the "getting" of an attribute
that can't be found by other, "normal" means (e.g., in the case of this recipe's class, _
getattr _ is not called for accesses to attribute k, which is recorded in the instance and thus
gets found by normal means). _ _getattr_ _ must also raise an AttributeError exception for

attributes that can't be accessed.

See Also

Library Reference and Python in a Nutshell documentation on attributes and on special methods _
getattr _ and _ _setattr_ _.

Recipe 6.2. Defining Constants

Credit: Alex Martelli

Problem

You need to define module-level variables (i.e., named constants) that client code cannot
accidentally rebind.

Solution

You can install any object as if it were a module. Save the following code as module const.py on
some directory on your Python sys.path:

class _const(object):
 class ConstError(TypeError): pass
 def _ _setattr_ _(self, name, value):
 if name in self._ _dict_ _:
 raise self.ConstError, "Can't rebind const(%s)" % name
 self._ _dict_ _[name] = value
 def _ _delattr_ _(self, name):
 if name in self._ _dict_ _:
 raise self.ConstError, "Can't unbind const(%s)" % name
 raise NameError, name
import sys
sys.modules[_ _name_ _] = _const()

Now, any client code can import const, then bind an attribute on the const module just once, as
follows:

const.magic = 23

Once the attribute is bound, the program cannot accidentally rebind or unbind it:

const.magic = 88 # raises const.ConstError
del const.magic # raises const.ConstError

Discussion

In Python, variables can be rebound at will, and modules, differently from classes, don't let you
define special methods such as _ _setattr_ _ to stop rebinding. An easy solution is to install an

instance as if it were a module.

Python performs no type-checks to force entries in sys.modules to actually be module objects.

Therefore, you can install any object there and take advantage of attribute-access special
methods (e.g., to prevent rebinding, to synthesize attributes on the fly in _ _getattr_ _, etc.),

while still allowing client code to access the object with import somename. You may even see it as

a more Pythonic Singleton-style idiom (but see Recipe 6.16).

This recipe ensures that a module-level name remains constantly bound to the same object once
it has first been bound to it. This recipe does not deal with a certain object's immutability, which
is quite a different issue. Altering an object and rebinding a name are different concepts, as
explained in Recipe 4.1. Numbers, strings, and tuples are immutable: if you bind a name in const
to such an object, not only will the name always be bound to that object, but the object's
contents also will always be the same since the object is immutable. However, other objects,
such as lists and dictionaries, are mutable: if you bind a name in const to, say, a list object, the
name will always remain bound to that list object, but the contents of the list may change (e.g.,
items in it may be rebound or unbound, more items can be added with the object's append

method, etc.).

To make "read-only" wrappers around mutable objects, see Recipe 6.5. You might choose to
have class _const's _ _setattr_ _ method perform such wrapping implicitly. Say you have
saved the code from Recipe 6.5 as module ro.py somewhere along your Python sys.path. Then,

you need to add, at the start of module const.py:

import ro

and change the assignment self._ _dict_ _[name] = value, used in class _const's _
setattr _ method to:

 self._ _dict_ _[name] = ro.Readonly(value)

Now, when you set an attribute in const to some value, what gets bound there is a read-only
wrapper to that value. The underlying value might still get changed by calling mutators on some
other reference to that same value (object), but it cannot be accidentally changed through the
attribute of "pseudo-module" const. If you want to avoid such "accidental changes through other
references", you need to take a copy, as explained in Recipe 4.1, so that there exist no other
references to the value held by the read-only wrapper. Ensure that at the start of module
const.py you have:

import ro, copy

and change the assignment in class _const's _ _setattr_ _ method to:

 self._ _dict_ _[name] = ro.Readonly(copy.copy(value))

If you're sufficiently paranoid, you might even use copy.deepcopy rather than plain copy.copy in

this latest snippet. However, you may end up paying substantial amounts of memory, as well as
losing some performance, by these kinds of excessive precautions. You should evaluate carefully
whether so much prudence is really necessary for your specific application. Whatever you end up
deciding about this issue, Python offers all the tools you need to implement exactly the amount
of constantness you require.

The _const class presented in this recipe can be seen, in a sense, as the "complement" of the
NoNewAttrs class, which is presented next in Recipe 6.3. This one ensures that already bound
attributes can never be rebound but lets you freely bind new attributes; the other one,
conversely, lets you freely rebind attributes that are already bound but blocks the binding of any
new attribute.

See Also

Recipe 6.5; Recipe 6.13; Recipe 4.1; Library Reference and Python in a Nutshell docs on module
objects, the import statement, and the modules attribute of the sys built-in module.

Recipe 6.3. Restricting Attribute Setting

Credit: Michele Simionato

Problem

Python normally lets you freely add attributes to classes and their instances. However, you want
to restrict that freedom for some class.

Solution

Special method _ _setattr_ _ intercepts every setting of an attribute, so it lets you inhibit the

addition of new attributes that were not already present. One elegant way to implement this idea
is to code a class, a simple custom metaclass, and a wrapper function, all cooperating for the
purpose, as follows:

def no_new_attributes(wrapped_setattr):
 """ raise an error on attempts to add a new attribute, while
 allowing existing attributes to be set to new values.
 """
 def _ _setattr_ _(self, name, value):
 if hasattr(self, name): # not a new attribute, allow setting
 wrapped_setattr(self, name, value)
 else: # a new attribute, forbid adding it
 raise AttributeError("can't add attribute %r to %s" % (name, self))
 return _ _setattr_ _
class NoNewAttrs(object):
 """ subclasses of NoNewAttrs inhibit addition of new attributes, while
 allowing existing attributed to be set to new values.
 """
 # block the addition new attributes to instances of this class
 _ _setattr_ _ = no_new_attributes(object._ _setattr_ _)
 class _ _metaclass_ _(type):
 " simple custom metaclass to block adding new attributes to this class "
 _ _setattr_ _ = no_new_attributes(type._ _setattr_ _)

Discussion

For various reasons, you sometimes want to restrict Python's dynamism. In particular, you may
want to get an exception when a new attribute is accidentally set on a certain class or one of its
instances. This recipe shows how to go about implementing such a restriction. The key point of
the recipe is, don't use _ _slots_ _ for this purpose: _ _slots_ _ is intended for a completely

different task (i.e., saving memory by avoiding each instance having a dictionary, as it normally
would, when you need to have vast numbers of instances of a class with just a few fixed
attributes). _ _slots_ _ performs its intended task well but has various limitations when you try

to stretch it to perform, instead, the task this recipe covers. (See Recipe 6.18 for an example of
the appropriate use of _ _slots_ _ to save memory.)

Notice that this recipe inhibits the addition of runtime attributes, not only to class instances, but
also to the class itself, thanks to the simple custom metaclass it defines. When you want to

inhibit accidental addition of attributes, you usually want to inhibit it on the class as well as on
each individual instance. On the other hand, existing attributes on both the class and its
instances may be freely set to new values.

Here is an example of how you could use this recipe:

class Person(NoNewAttrs):
 firstname = ''
 lastname = ''
 def _ _init_ _(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname
 def _ _repr_ _(self):
 return 'Person(%r, %r)' % (self.firstname, self.lastname)
me = Person("Michere", "Simionato")
print me
emits: Person('Michere', 'Simionato')
oops, wrong value for firstname, can we fix it? Sure, no problem!
me.firstname = "Michele"
print me
emits: Person('Michele', 'Simionato')

The point of inheriting from NoNewAttrs is forcing yourself to "declare" all allowed attributes by
setting them at class level in the body of the class itself. Any further attempt to set a new,
"undeclared" attribute raises an AttributeError:

try: Person.address = ''
except AttributeError, err: print 'raised %r as expected' % err
try: me.address = ''
except AttributeError, err: print 'raised %r as expected' % err

In some ways, therefore, subclasses of NoNewAttr and their instances behave more like Java or
C++ classes and instances, rather than normal Python ones. Thus, one use case for this recipe is
when you're coding in Python a prototype that you already know will eventually have to be
recoded in a less dynamic language.

See Also

Library Reference and Python in a Nutshell documentation on the special method _ _setattr_ _
and on custom metaclasses; Recipe 6.18 for an example of an appropriate use of _ _slots_ _ to

save memory; Recipe 6.2 for a class that is the complement of this one.

Recipe 6.4. Chaining Dictionary Lookups

Credit: Raymond Hettinger

Problem

You have several mappings (usually dicts) and want to look things up in them in a chained way

(try the first one; if the key is not there, then try the second one; and so on). Specifically, you
want to make a single mapping object that "virtually merges" several others, by looking things
up in them in a specified priority order, so that you can conveniently pass that one object
around.

Solution

A mapping is a generalized, abstract version of a dictionary: a mapping provides an interface
that's similar to a dictionary's, but it may use very different implementations. All dictionaries are
mappings, but not vice versa. Here, you need to implement a mapping which sequentially tries
delegating lookups to other mappings. A class is the right way to encapsulate this functionality:

class Chainmap(object):
 def _ _init_ _(self, *mappings):
 # record the sequence of mappings into which we must look
 self._mappings = mappings
 def _ _getitem_ _(self, key):
 # try looking up into each mapping in sequence
 for mapping in self._mappings:
 try:
 return mapping[key]
 except KeyError:
 pass
 # `key' not found in any mapping, so raise KeyError exception
 raise KeyError, key
 def get(self, key, default=None):
 # return self[key] if present, otherwise `default'
 try:
 return self[key]
 except KeyError:
 return default
 def _ _contains_ _(self, key):
 # return True if `key' is present in self, otherwise False
 try:
 self[key]
 return True
 except KeyError:
 return False

For example, you can now implement the same sequence of lookups that Python normally uses
for any name: look among locals, then (if not found there) among globals, lastly (if not found
yet) among built-ins:

import _ _builtin_ _

pylookup = Chainmap(locals(), globals(), vars(_ _builtin_ _))

Discussion

Chainmap relies on minimal functionality from the mappings it wraps: each of those underlying
mappings must allow indexing (i.e., supply a special method _ _getitem_ _), and it must raise
the standard exception KeyError when indexed with a key that the mapping does not know
about. A Chainmap instance provides the same behavior, plus the handy get method covered in
Recipe 4.9 and special method _ _contains_ _ (which conveniently lets you check whether

some key k is present in a Chainmap instance c by just coding if k in c).

Besides the obvious and sensible limitation of being "read-only", this Chainmap class has
othersessentially, it is not a "full mapping" even within the read-only design choice. You can
make any partial mapping into a "full mapping" by inheriting from class DictMixin (in standard
library module UserDict) and supplying a few key methods (DictMixin implements the others).

Here is how you could make a full (read-only) mapping from ChainMap and
UserDict.DictMixin:

import UserDict
from sets import Set
class FullChainmap(Chainmap, UserDict.DictMixin):
 def copy(self):
 return self._ _class_ _(self._mappings)
 def _ _iter_ _(self):
 seen = Set()
 for mapping in self._mappings:
 for key in mapping:
 if key not in seen:
 yield key
 seen.add(key)
 iterkeys = _ _iter_ _
 def keys(self):
 return list(self)

This class FullChainmap adds one requirement to the mappings it holds, besides the
requirements posed by Chainmap: the mappings must be iterable. Also note that the
implementation in Chainmap of methods get and _ _contains_ _ is redundant (although
innocuous) once we subclass DictMixin, since DictMixin also implements those two methods

(as well as many others) in terms of lower-level methods, just like Chainmap does. See Recipe
5.14 for more details about DictMixin.

See Also

Recipe 4.9; Recipe 5.14; the Library Reference and Python in a Nutshell sections on mapping
types.

Recipe 6.5. Delegating Automatically as an Alternative
to Inheritance

Credit: Alex Martelli, Raymond Hettinger

Problem

You'd like to inherit from a class or type, but you need some tweak that inheritance does not
provide. For example, you want to selectively hide some of the base class' methods, which
inheritance doesn't allow.

Solution

Inheritance is quite handy, but it's not all-powerful. For example, it doesn't let you hide methods
or other attributes supplied by a base class. Containment with automatic delegation is often a
good alternative. Say, for example, you need to wrap some objects to make them read-only;
thus preventing accidental alterations. Therefore, besides stopping attribute-setting, you also
need to hide mutating methods. Here's a way:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
class ROError(AttributeError): pass
class Readonly: # there IS a reason to NOT subclass object, see Discussion
 mutators = {
 list: set('''_ _delitem_ _ _ _delslice_ _ _ _iadd_ _ _ _imul_ _
 _ _setitem_ _ _ _setslice_ _ append extend insert
 pop remove sort'''.split()),
 dict: set('''_ _delitem_ _ _ _setitem_ _ clear pop popitem
 setdefault update'''.split()),
 }
 def _ _init_ _(self, o):
 object._ _setattr_ _(self, '_o', o)
 object._ _setattr_ _(self, '_no', self.mutators.get(type(o), ()))
 def _ _setattr_ _(self, n, v):
 raise ROError, "Can't set attr %r on RO object" % n
 def _ _delattr_ _(self, n):
 raise ROError, "Can't del attr %r from RO object" % n
 def _ _getattr_ _(self, n):
 if n in self._no:
 raise ROError, "Can't get attr %r from RO object" % n
 return getattr(self._o, n)

Code using this class Readonly can easily add other wrappable types with
Readonly.mutators[sometype] = the_mutators.

Discussion

Automatic delegation, which the special methods _ _getattr_ _, _ _setattr_ _, and _

delattr _ enable us to perform so smoothly, is a powerful, general technique. In this recipe,

we show how to use it to get an effect that is almost indistinguishable from subclassing while
hiding some names. In particular, we apply this quasi-subclassing to the task of wrapping
objects to make them read-only. Performance isn't quite as good as it might be with real
inheritance, but we get better flexibility and finer-grained control as compensation.

The fundamental idea is that each instance of our class holds an instance of the type we are
wrapping (i.e., extending and/or tweaking). Whenever client code tries to get an attribute from
an instance of our class, unless the attribute is specifically defined there (e.g., the mutators
dictionary in class Readonly), _ _getattr_ _ TRansparently shunts the request to the wrapped

instance after appropriate checks. In Python, methods are also attributes, accessed in just the
same way, so we don't need to do anything different to access methods. The _ _getattr_ _

approach used to access data attributes works for methods just as well.

This is where the comment in the recipe about there being a specific reason to avoid subclassing
object comes in. Our _ _getattr_ _ based approach does work on special methods too, but

only for instances of old-style classes. In today's object model, Python operations access special
methods on the class, not on the instance. Solutions to this issue are presented next in Recipe
6.6 and in Recipe 20.8. The approach adopted in this recipemaking class Readonly old style, so
that the issue can be locally avoided and delegated to other recipesis definitely not recommended
for production code. I use it here only to keep this recipe shorter and to avoid duplicating
coverage that is already amply given elsewhere in this cookbook.

_ _setattr_ _ plays a role similar to _ _getattr_ _, but it gets called when client code sets an

instance attribute; in this case, since we want to make a read-only wrapper, we simply forbid the
operation. Remember, to avoid triggering _ _setattr_ _ from inside the methods you code, you
must never code normal self.n = v statements within the methods of classes that have _
setattr _. The simplest workaround is to delegate the setting to class object, just like our
class Readonly does twice in its _ _init_ _ method. Method _ _delattr_ _ completes the

picture, dealing with any attempts to delete attributes from an instance.

Wrapping by automatic delegation does not work well with client or framework code that, one
way or another, does type-testing. In such cases, the client or framework code is breaking
polymorphism and should be rewritten. Remember not to use type-tests in your own client code,
as you probably do not need them anyway. See Recipe 6.13 for better alternatives.

In old versions of Python, automatic delegation was even more prevalent, since you could not
subclass built-in types. In modern Python, you can inherit from built-in types, so you'll use
automatic delegation less often. However, delegation still has its placeit is just a bit farther from
the spotlight. Delegation is more flexible than inheritance, and sometimes such flexibility is
invaluable. In addition to the ability to delegate selectively (thus effectively "hiding" some of the
attributes), an object can delegate to different subobjects over time, or to multiple subobjects at
one time, and inheritance doesn't offer anything comparable.

Here is an example of delegating to multiple specific subobjects. Say that you have classes that
are chock full of "forwarding methods", such as:

class Pricing(object):
 def _ _init_ _(self, location, event):
 self.location = location
 self.event = event
 def setlocation(self, location):
 self.location = location
 def getprice(self):
 return self.location.getprice()
 def getquantity(self):
 return self.location.getquantity()
 def getdiscount(self):
 return self.event.getdiscount()

 and many more such methods

Inheritance is clearly not applicable because an instance of Pricing must delegate to specific
location and event instances, which get passed at initialization time and may even be changed.
Automatic delegation to the rescue:

class AutoDelegator(object):
 delegates = ()
 do_not_delegate = ()
 def _ _getattr_ _(self, key):
 if key not in do_not_delegate:
 for d in self.delegates:
 try:
 return getattr(d, key)
 except AttributeError:
 pass
 raise AttributeError, key
class Pricing(AutoDelegator):
 def _ _init_ _(self, location, event):
 self.delegates = [location, event]
 def setlocation(self, location):
 self.delegates[0] = location

In this case, we do not delegate the setting and deletion of attributes, only the getting of
attributes (and nonspecial methods). Of course, this approach is fully applicable only when the
methods (and other attributes) of the various objects to which we want to delegate do not
interfere with each other; for example, location must not have a getdiscount method; otherwise,
it would preempt the delegation of that method, which is intended to go to event.

If a class that does lots of delegation has a few such issues to solve, it can do so by explicitly
defining the few corresponding methods, since _ _getattr_ _ enters the picture only for

attributes and methods that cannot be found otherwise. The ability to hide some attributes and
methods that are supplied by a delegate, but the delegator does not want to expose, is
supported through attribute do_not_delegate, which any subclass may override. For example, if
class Pricing wanted to hide a method setdiscount that is supplied by, say, event, only a tiny
change would be required:

class Pricing(AutoDelegator):
 do_not_delegate = ('set_discount',)

while all the rest remains as in the previous snippet.

See Also

Recipe 6.13; Recipe 6.6; Recipe 20.8; Python in a Nutshell chapter on OOP; PEP 253
(http://www.python.org/peps/pep-0253.html) for more details about Python's current (new-
style) object model.

http://www.python.org/peps/pep-0253.html

Recipe 6.6. Delegating Special Methods in Proxies

Credit: Gonçalo Rodrigues

Problem

In the new-style object model, Python operations perform implicit lookups for special methods on
the class (rather than on the instance, as they do in the classic object model). Nevertheless, you
need to wrap new-style instances in proxies that can also delegate a selected set of special
methods to the object they're wrapping.

Solution

You need to generate each proxy's class on the fly. For example:

class Proxy(object):
 """ base class for all proxies """
 def _ _init_ _(self, obj):
 super(Proxy, self)._ _init_ _(obj)
 self._obj = obj
 def _ _getattr_ _(self, attrib):
 return getattr(self._obj, attrib)
def make_binder(unbound_method):
 def f(self, *a, **k): return unbound_method(self._obj, *a, **k)
 # in 2.4, only: f._ _name_ _ = unbound_method._ _name_ _
 return f
known_proxy_classes = { }
def proxy(obj, *specials):
 ''' factory-function for a proxy able to delegate special methods '''
 # do we already have a suitable customized class around?
 obj_cls = obj._ _class_ _
 key = obj_cls, specials
 cls = known_proxy_classes.get(key)
 if cls is None:
 # we don't have a suitable class around, so let's make it
 cls = type("%sProxy" % obj_cls._ _name_ _, (Proxy,), { })
 for name in specials:
 name = '_ _%s_ _' % name
 unbound_method = getattr(obj_cls, name)
 setattr(cls, name, make_binder(unbound_method))
 # also cache it for the future
 known_proxy_classes[key] = cls
 # instantiate and return the needed proxy
 return cls(obj)

Discussion

Proxying and automatic delegation are a joy in Python, thanks to the _ _getattr_ _ hook.

Python calls it automatically when a lookup for any attribute (including a methodPython draws no
distinction there) has not otherwise succeeded.

In the old-style (classic) object model, _ _getattr_ _ also applied to special methods that were

looked up as part of a Python operation. This required some care to avoid mistakenly supplying a
special method one didn't really want to supply but was otherwise handy. Nowadays, the new-
style object model is recommended for all new code: it is faster, more regular, and richer in
features. You get new-style classes when you subclass object or any other built-in type. One

day, some years from now, Python 3.0 will eliminate the classic object model, as well as other
features that are still around only for backwards-compatibility. (See
http://www.python.org/peps/pep-3000.html for details about plans for Python 3.0almost all
changes will be language simplifications, rather than new features.)

In the new-style object model, Python operations don't look up special methods at runtime: they
rely on "slots" held in class objects. Such slots are updated when a class object is built or
modified. Therefore, a proxy object that wants to delegate some special methods to an object it's
wrapping needs to belong to a specially made and tailored class. Fortunately, as this recipe
shows, making and instantiating classes on the fly is quite an easy job in Python.

In this recipe, we don't use any advanced Python concepts such as custom metaclasses and
custom descriptors. Rather, each proxy is built by a factory function proxy, which takes as

arguments the object to wrap and the names of special methods to delegate (shorn of leading
and trailing double underscores). If you've saved the "Solution"'s code in a file named proxy.py
somewhere along your Python sys.path, here is how you could use it from an interactive Python

interpreter session:

>>> import proxy
>>> a = proxy.proxy([], 'len', 'iter') # only delegate _ _len_ _ & _ _iter_ _
>>> a # _ _repr_ _ is not delegated
<proxy.listProxy object at 0x0113C370>
>>> a._ _class_ _
<class 'proxy.listProxy'>
>>> a._obj
[]
>>> a.append # all non-specials are delegated
<built-in method append of list object at 0x010F1A10>

Since _ _len_ _ is delegated, len(a) works as expected:

>>> len(a)
0
>>> a.append(23)
>>> len(a)
1

Since _ _iter_ _ is delegated, for loops work as expected, as does intrinsic looping performed
by built-ins such as list, sum, max, . . . :

>>> for x in a: print x
...
23
>>> list(a)
[23]
>>> sum(a)
23
>>> max(a)
23

However, since _ _getitem_ _ is not delegated, a cannot be indexed nor sliced:

>>> a._ _getitem_ _

http://www.python.org/peps/pep-3000.html

<method-wrapper object at 0x010F1AF0>
>>> a[1]
Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
TypeError: unindexable object

Function proxy uses a "cache" of classes it has previously generated, the global dictionary
known_proxy_classes, keyed by the class of the object being wrapped and the tuple of special
methods' names being delegated. To make a new class, proxy calls the built-in type, passing as
arguments the name of the new class (made by appending 'Proxy' to the name of the class being

wrapped), class Proxy as the only base, and an "empty" class dictionary (since it's adding no
class attributes yet). Base class Proxy deals with initialization and delegation of ordinary attribute
lookups. Then, factory function proxy loops over the names of specials to be delegated: for each
of them, it gets the unbound method from the class of the object being wrapped, and sets it as
an attribute of the new class within a make_binder closure. make_binder deals with calling the
unbound method with the appropriate first argument (i.e., the object being wrapped,
self._obj).

Once it's done preparing a new class, proxy saves it in known_proxy_classes under the
appropriate key. Finally, whether the class was just built or recovered from
known_proxy_classes, proxy instantiates it, with the object being wrapped as the only argument,
and returns the resulting proxy instance.

See Also

Recipe 6.5 for more information about automatic delegation; Recipe 6.9 for another example of
generating classes on the fly (using a class statement rather than a call to type).

Recipe 6.7. Implementing Tuples with Named Items

Credit: Gonçalo Rodrigues, Raymond Hettinger

Problem

Python tuples are handy ways to group pieces of information, but having to access each item by
numeric index is a bother. You'd like to build tuples whose items are also accessible as named
attributes.

Solution

A factory function is the simplest way to generate the required subclass of tuple:

use operator.itemgetter if we're in 2.4, roll our own if we're in 2.3
try:
 from operator import itemgetter
except ImportError:
 def itemgetter(i):
 def getter(self): return self[i]
 return getter
def superTuple(typename, *attribute_names):
 " create and return a subclass of `tuple', with named attributes "
 # make the subclass with appropriate _ _new_ _ and _ _repr_ _ specials
 nargs = len(attribute_names)
 class supertup(tuple):
 _ _slots_ _ = () # save memory, we don't need per-instance dict
 def _ _new_ _(cls, *args):
 if len(args) != nargs:
 raise TypeError, '%s takes exactly %d arguments (%d given)' % (
 typename, nargs, len(args))
 return tuple._ _new_ _(cls, args)
 def _ _repr_ _(self):
 return '%s(%s)' % (typename, ', '.join(map(repr, self)))
 # add a few key touches to our new subclass of `tuple'
 for index, attr_name in enumerate(attribute_names):
 setattr(supertup, attr_name, property(itemgetter(index)))
 supertup._ _name_ _ = typename
 return supertup

Discussion

You often want to pass data around by means of tuples, which play the role of C's structs, or

that of simple records in other languages. Having to remember which numeric index corresponds
to which field, and accessing the fields by indexing, is often bothersome. Some Python Standard
Library modules, such as time and os, which in old Python versions used to return tuples, have

fixed the problem by returning, instead, instances of tuple-like types that let you access the
fields by name, as attributes, as well as by index, as items. This recipe shows you how to get the
same effect for your code, essentially by automatically building a custom subclass of tuple.

Orchestrating the building of a new, customized type can be achieved in several ways; custom
metaclasses are often the best approach for such tasks. In this case, however, a simple factory
function is quite sufficient, and you should never use more power than you need. Here is how
you can use this recipe's superTuple factory function in your code, assuming you have saved this
recipe's Solution as a module named supertuple.py somewhere along your Python sys.path:

>>> import supertuple
>>> Point = supertuple.superTuple('Point', 'x', 'y')
>>> Point
<class 'supertuple.Point'>
>>> p = Point(1, 2, 3) # wrong number of fields
Traceback (most recent call last):
 File "", line 1, in ?
 File "C:\Python24\Lib\site-packages\superTuple.py", line 16, in _ _new_ _
 raise TypeError, '%s takes exactly %d arguments (%d given)' % (
TypeError: Point takes exactly 2 arguments (3 given)
>>> p = Point(1, 2) # let's do it right this time
>>> p
Point(1, 2)
>>> print p.x, p.y
1 2

Function superTuple's implementation is quite straightforward. To build the new subclass,
superTuple uses a class statement, and in that statement's body, it defines three specials: an
"empty" _ _slots_ _ (just to save memory, since our supertuple instances don't need any per-
instance dictionary anyway); a _ _new_ _ method that checks the number of arguments before
delegating to tuple._ _new_ _; and an appropriate _ _repr_ _ method. After the new class
object is built, we set into it a property for each named attribute we want. Each such property

has only a "getter", since our supertuples, just like tuples themselves, are immutableno setting
of fields. Finally, we set the new class' name and return the class object.

Each of the getters is easily built by a simple call to the built-in itemgetter from the standard
library module operator. Since operator.itemgetter was introduced in Python 2.4, at the very

start of our module we ensure we have a suitable itemgetter at hand anyway, even in Python
2.3, by rolling our own if necessary.

See Also

Library Reference and Python in a Nutshell docs for property, _ _slots_ _, tuple, and special
methods _ _new_ _ and _ _repr_ _; (Python 2.4 only) module operator's function itemgetter.

Recipe 6.8. Avoiding Boilerplate Accessors for
Properties

Credit: Yakov Markovitch

Problem

Your classes use some property instances where either the getter or the setter is just boilerplate

code to fetch or set an instance attribute. You would prefer to just specify the attribute name,
instead of writing boilerplate code.

Solution

You need a factory function that catches the cases in which either the getter or the setter
argument is a string, and wraps the appropriate argument into a function, then delegates the
rest of the work to Python's built-in property:

def xproperty(fget, fset, fdel=None, doc=None):
 if isinstance(fget, str):
 attr_name = fget
 def fget(obj): return getattr(obj, attr_name)
 elif isinstance(fset, str):
 attr_name = fset
 def fset(obj, val): setattr(obj, attr_name, val)
 else:
 raise TypeError, 'either fget or fset must be a str'
 return property(fget, fset, fdel, doc)

Discussion

Python's built-in property is very useful, but it presents one minor annoyance (it may be easier

to see as an annoyance for programmers with experience in Delphi). It often happens that you
want to have both a setter and a "getter", but only one of them actually needs to execute any
significant code; the other one simply needs to read or write an instance attribute. In that case,
property still requires two functions as its arguments. One of the functions will then be just

"boilerplate code" (i.e., repetitious plumbing code that is boring, and often voluminous, and thus
a likely home for bugs).

For example, consider:

class Lower(object):
 def _ _init_ _(self, s=''):
 self.s = s
 def _getS(self):
 return self._s
 def _setS(self, s):
 self._s = s.lower()
 s = property(_getS, _setS)

Method _getS is just boilerplate, yet you have to code it because you need to pass it to
property. Using this recipe, you can make your code a little bit simpler, without changing the

code's meaning:

class Lower(object):
 def _ _init_ _(self, s=''):
 self.s = s
 def _setS(self, s):
 self._s = s.lower()
 s = xproperty('_s', _setS)

The simplification doesn't look like much in one small example, but, applied widely all over your
code, it can in fact help quite a bit.

The implementation of factory function xproperty in this recipe's Solution is rather rigidly coded:
it requires you to pass both fget and fset, and exactly one of them must be a string. No use

case requires that both be strings; when neither is a string, or when you want to have just one of
the two accessors, you can (and should) use the built-in property directly. It is better, therefore,

to have xproperty check that it is being used accurately, considering that such checks remove no
useful functionality and impose no substantial performance penalty either.

See Also

Library Reference and Python in a Nutshell documentation on the built-in property.

Recipe 6.9. Making a Fast Copy of an Object

Credit: Alex Martelli

Problem

You need to implement the special method _ _copy_ _ so that your class can cooperate with the
copy.copy function. Because the _ _init_ _ method of your specific class happens to be slow,

you need to bypass it and get an "empty", uninitialized instance of the class.

Solution

Here's a solution that works for both new-style and classic classes:

def empty_copy(obj):
 class Empty(obj._ _class_ _):
 def _ _init_ _(self): pass
 newcopy = Empty()
 newcopy._ _class_ _ = obj._ _class_ _
 return newcopy

Your classes can use this function to implement _ _copy_ _ as follows:

class YourClass(object):
 def _ _init_ _(self):

 assume there's a lot of work here
 def _ _copy_ _(self):
 newcopy = empty_copy(self)

 copy some relevant subset of self's attributes to newcopy
 return newcopy

Here's a usage example:

if _ _name_ _ == '_ _main_ _':
 import copy
 y = YourClass() # This, of course, does run _ _init_ _
 print y
 z = copy.copy(y) # ...but this doesn't
 print z

Discussion

As covered in Recipe 4.1, Python doesn't implicitly copy your objects when you assign them,
which is a great thing because it gives fast, flexible, and uniform semantics. When you need a
copy, you explicitly ask for it, often with the copy.copy function, which knows how to copy built-

in types, has reasonable defaults for your own objects, and lets you customize the copying
process by defining a special method _ _copy_ _ in your own classes. If you want instances of a
class to be noncopyable, you can define _ _copy_ _ and raise a TypeError there. In most cases,

you can just let copy.copy's default mechanisms work, and you get free clonability for most of
your classes. This is quite a bit nicer than languages that force you to implement a specific clone

method for every class whose instances you want to be clonable.

A _ _copy_ _ method often needs to start with an "empty" instance of the class in question
(e.g., self), bypassing _ _init_ _ when that is a costly operation. The simplest general way to

do this is to use the ability that Python gives you to change an instance's class on the fly: create
a new object in a local empty class, then set the new object's _ _class_ _ attribute, as the
recipe's code shows. Inheriting class Empty from obj._ _class_ _ is redundant (but quite

innocuous) for old-style (classic) classes, but that inheritance makes the recipe compatible with
all kinds of objects of classic or new-style classes (including built-in and extension types). Once
you choose to inherit from obj's class, you must override _ _init_ _ in class Empty, or else
the whole purpose of the recipe is defeated. The override means that the _ _init_ _ method of
obj's class won't execute, since Python, fortunately, does not automatically execute ancestor

classes' initializers.

Once you have an "empty" object of the required class, you typically need to copy a subset of
self's attributes. When you need all of the attributes, you're better off not defining _ _copy_ _
explicitly, since copying all instance attributes is exactly copy.copy's default behavior. Unless, of

course, you need to do a little bit more than just copying instance attributes; in this case, these
two alternative techniques to copy all attributes are both quite acceptable:

newcopy._ _dict_ _.update(self._ _dict_ _)
newcopy._ _dict_ _ = dict(self._ _dict_ _)

An instance of a new-style class doesn't necessarily keep all of its state in _ _dict_ _, so you

may need to do some class-specific state copying in such cases.

Alternatives based on the new standard module can't be made transparent across classic and
new-style classes, and neither can the _ _new_ _ static method that generates an empty

instancethe latter is only defined in new-style classes, not classic ones. Fortunately, this recipe
obviates any such issues.

A good alternative to implementing _ _copy_ _ is often to implement the methods _
getstate _ and _ _setstate_ _ instead: these special methods define your object's state
very explicitly and intrinsically bypass _ _init_ _. Moreover, they also support serialization (i.e.,

pickling) of your class instances: see Recipe 7.4 for more information about these methods.

So far we have been discussing shallow copies, which is what you want most of the time. With a
shallow copy, your object is copied, but objects it refers to (attributes or items) are not, so the
newly copied object and the original object refer to the same items or attributes objectsa fast
and lightweight operation. A deep copy is a heavyweight operation, potentially duplicating a large
graph of objects that refer to each other. You get a deep copy by calling copy.deepcopy on an

object. If you need to customize the way in which instances of your class are deep-copied, you
can define the special method _ _deepcopy_ _:

class YourClass(object):

 ...
 def _ _deepcopy_ _(self, memo):
 newcopy = empty_copy(self)
 # use copy.deepcopy(self.x, memo) to get deep copies of elements
 # in the relevant subset of self's attributes, to set in newcopy
 return newcopy

If you choose to implement _ _deepcopy_ _, remember to respect the memoization protocol
that is specified in the Python documentation for standard module copyget deep copies of all the
attributes or items that are needed by calling copy.deepcopy with a second argument, the same
memo dictionary that is passed to the _ _deepcopy_ _ method. Again, implementing _
getstate _ and _ _setstate_ _ is often a good alternative, since these methods can also

support deep copying: Python takes care of deeply copying the "state" object that _ _getstate_
_ returns, before passing it to the _ _setstate_ _ method of a new, empty instance. See Recipe

7.4 for more information about these special methods.

See Also

Recipe 4.1 about shallow and deep copies; Recipe 7.4 about _ _getstate_ _ and _ _setstate_
_; the Library Reference and Python in a Nutshell sections on the copy module.

Recipe 6.10. Keeping References to Bound Methods
Without Inhibiting Garbage Collection

Credit: Joseph A. Knapka, Frédéric Jolliton, Nicodemus

Problem

You want to hold references to bound methods, while still allowing the associated object to be
garbage-collected.

Solution

Weak references (i.e., references that indicate an object as long as that object is alive but don't
keep that object alive if there are no other, normal references to it) are an important tool in
some advanced programming situations. The weakref module in the Python Standard Library lets

you use weak references.

However, weakref's functionality cannot directly be used for bound methods unless you take

some precautions. To allow an object to be garbage-collected despite outstanding references to
its bound methods, you need some wrappers. Put the following code in a file named
weakmethod.py in some directory on your Python sys.path:

import weakref, new
class ref(object):
 """ Wraps any callable, most importantly a bound method, in
 a way that allows a bound method's object to be GC'ed, while
 providing the same interface as a normal weak reference. """
 def _ _init_ _(self, fn):
 try:
 # try getting object, function, and class
 o, f, c = fn.im_self, fn.im_func, fn.im_class
 except AttributeError: # It's not a bound method
 self._obj = None
 self._func = fn
 self._clas = None
 else: # It is a bound method
 if o is None: self._obj = None # ...actually UN-bound
 else: self._obj = weakref.ref(o) # ...really bound
 self._func = f
 self._clas = c
 def _ _call_ _(self):
 if self.obj is None: return self._func
 elif self._obj() is None: return None
 return new.instancemethod(self._func, self.obj(), self._clas)

Discussion

A normal bound method holds a strong reference to the bound method's object. That means that
the object can't be garbage-collected until the bound method is disposed of:

>>> class C(object):
... def f(self):
... print "Hello"
... def _ _del_ _(self):
... print "C dying"
...
>>> c = C()
>>> cf = c.f
>>> del c # c continues to wander about with glazed eyes...
>>> del cf # ...until we stake its bound method, only then it goes away:
C dying

This behavior is most often handy, but sometimes it's not what you want. For example, if you're
implementing an event-dispatch system, it might not be desirable for the mere presence of an
event handler (i.e., a bound method) to prevent the associated object from being reclaimed. The
instinctive idea should then be to use weak references. However, a normal weakref.ref to a

bound method doesn't quite work the way one might expect, because bound methods are first-
class objects. Weak references to bound methods are dead-on-arrivalthat is, they always return
None when dereferenced, unless another strong reference to the same bound-method object

exists.

For example, the following code, based on the weakref module from the Python Standard

Library, doesn't print "Hello" but raises an exception instead:

>>> import weakref
>>> c = C()
>>> cf = weakref.ref(c.f)
>>> cf # Oops, better try the lightning again, Igor...
<weakref at 80ce394; dead>
>>> cf()()
Traceback (most recent call last):
File "", line 1, in ?
TypeError: object of type 'None' is not callable

On the other hand, the class ref in the weakmethod module shown in this recipe allows you to
have weak references to bound methods in a useful way:

>>> import weakmethod
>>> cf = weakmethod.ref(c.f)
>>> cf()() # It LIVES! Bwahahahaha!
Hello
>>> del c # ...and it dies
C dying
>>> print cf()
None

Calling the weakmethod.ref instance, which refers to a bound method, has the same semantics
as calling a weakref.ref instance that refers to, say, a function object: if the referent has died, it
returns None; otherwise, it returns the referent. Actually, in this case, it returns a freshly minted
new.instancemethod (holding a strong reference to the objectso, be sure not to hold on to that,

unless you do want to keep the object alive for a while!).

Note that the recipe is carefully coded so you can wrap into a ref instance any callable you want,
be it a method (bound or unbound), a function, whatever; the weak references semantics,
however, are provided only when you're wrapping a bound method; otherwise, ref acts as a
normal (strong) reference, holding the callable alive. This basically lets you use ref for wrapping
arbitrary callables without needing to check for special cases.

If you want semantics closer to that of a weakref.proxy, they're easy to implement, for example

by subclassing the ref class given in this recipe. When you call a proxy, the proxy calls the
referent with the same arguments. If the referent's object no longer lives, then
weakref.ReferenceError gets raised instead. Here's an implementation of such a proxy class:

class proxy(ref):
 def _ _call_ _(self, *args, **kwargs):
 func = ref._ _call_ _(self)
 if func is None:
 raise weakref.ReferenceError('referent object is dead')
 else:
 return func(*args, **kwargs)
 def _ _eq_ _(self, other):
 if type(other) != type(self):
 return False
 return ref._ _call_ _(self) == ref._ _call_ _(other)

See Also

The Library Reference and Python in a Nutshell sections on the weakref and new modules and on

bound-method objects.

Recipe 6.11. Implementing a Ring Buffer

Credit: Sébastien Keim, Paul Moore, Steve Alexander, Raymond Hettinger

Problem

You want to define a buffer with a fixed size, so that, when it fills up, adding another element
overwrites the first (oldest) one. This kind of data structure is particularly useful for storing log
and history information.

Solution

This recipe changes the buffer object's class on the fly, from a nonfull buffer class to a full buffer
class, when the buffer fills up:

class RingBuffer(object):
 """ class that implements a not-yet-full buffer """
 def _ _init_ _(self, size_max):
 self.max = size_max
 self.data = []
 class _ _Full(object):
 """ class that implements a full buffer """
 def append(self, x):
 """ Append an element overwriting the oldest one. """
 self.data[self.cur] = x
 self.cur = (self.cur+1) % self.max
 def tolist(self):
 """ return list of elements in correct order. """
 return self.data[self.cur:] + self.data[:self.cur]
 def append(self, x):
 """ append an element at the end of the buffer. """
 self.data.append(x)
 if len(self.data) == self.max:
 self.cur = 0
 # Permanently change self's class from non-full to full
 self._ _class_ _ = _ _Full
 def tolist(self):
 """ Return a list of elements from the oldest to the newest. """
 return self.data
sample usage
if _ _name_ _ == '_ _main_ _':
 x = RingBuffer(5)
 x.append(1); x.append(2); x.append(3); x.append(4)
 print x._ _class_ _, x.tolist()
 x.append(5)
 print x._ _class_ _, x.tolist()
 x.append(6)
 print x.data, x.tolist()
 x.append(7); x.append(8); x.append(9); x.append(10)
 print x.data, x.tolist()

Discussion

A ring buffer is a buffer with a fixed size. When it fills up, adding another element overwrites the
oldest one that was still being kept. It's particularly useful for the storage of log and history
information. Python has no direct support for this kind of structure, but it's easy to construct
one. The implementation in this recipe is optimized for element insertion.

The notable design choice in the implementation is that, since these objects undergo a
nonreversible state transition at some point in their lifetimesfrom nonfull buffer to full buffer (and
behavior changes at that point)I modeled that by changing self._ _class_ _. This works just

as well for classic classes as for new-style ones, as long as the old and new classes of the object
have the same slots (e.g., it works fine for two new-style classes that have no slots at all, such
as RingBuffer and _ _Full in this recipe). Note that, differently from other languages, the fact that
class _ _Full is implemented inside class RingBuffer does not imply any special relationship
between these classes; that's a good thing, too, because no such relationship is necessary.

Changing the class of an instance may be strange in many languages, but it is an excellent
Pythonic alternative to other ways of representing occasional, massive, irreversible, and discrete
changes of state that vastly affect behavior, as in this recipe. Fortunately, Python supports it for
all kinds of classes.

Ring buffers (i.e., bounded queues, and other names) are quite a useful idea, but the inefficiency
of testing whether the ring is full, and if so, doing something different, is a nuisance. The
nuisance is particularly undesirable in a language like Python, where there's no difficultyother
than the massive memory cost involvedin allowing the list to grow without bounds. So, ring
buffers end up being underused in spite of their potential. The idea of assigning to _ _class_ _

to switch behaviors when the ring gets full is the key to this recipe's efficiency: such class
switching is a one-off operation, so it doesn't make the steady-state cases any less efficient.

Alternatively, we might switch just two methods, rather than the whole class, of a ring buffer
instance that becomes full:

class RingBuffer(object):
 def _ _init_ _(self,size_max):
 self.max = size_max
 self.data = []
 def _full_append(self, x):
 self.data[self.cur] = x
 self.cur = (self.cur+1) % self.max
 def _full_get(self):
 return self.data[self.cur:]+self.data[:self.cur]
 def append(self, x):
 self.data.append(x)
 if len(self.data) == self.max:
 self.cur = 0
 # Permanently change self's methods from non-full to full
 self.append = self._full_append
 self.tolist = self._full_get
 def tolist(self):
 return self.data

This method-switching approach is essentially equivalent to the class-switching one in the
recipe's solution, albeit through rather different mechanisms. The best approach is probably to
use class switching when all methods must be switched in bulk and method switching only when
you need finer granularity of behavior change. Class switching is the only approach that works if
you need to switch any special methods in a new-style class, since intrinsic lookup of special
methods during various operations happens on the class, not on the instance (classic classes
differ from new-style ones in this aspect).

You can use many other ways to implement a ring buffer. In Python 2.4, in particular, you should
consider subclassing the new type collections.deque, which supplies a "double-ended queue",

allowing equally effective additions and deletions from either end:

from collections import deque
class RingBuffer(deque):
 def _ _init_ _(self, size_max):
 deque._ _init_ _(self)
 self.size_max = size_max
 def append(self, datum):
 deque.append(self, datum)
 if len(self) > self.size_max:
 self.popleft()
 def tolist(self):
 return list(self)

or, to avoid the if statement when at steady state, you can mix this idea with the idea of

switching a method:

from collections import deque
class RingBuffer(deque):
 def _ _init_ _(self, size_max):
 deque._ _init_ _(self)
 self.size_max = size_max
 def _full_append(self, datum):
 deque.append(self, datum)
 self.popleft()
 def append(self, datum):
 deque.append(self, datum)
 if len(self) == self.size_max:
 self.append = self._full_append
 def tolist(self):
 return list(self)

With this latest implementation, we need to switch only the append method (the tolist method

remains the same), so method switching appears to be more appropriate than class switching.

See Also

The Reference Manual and Python in a Nutshell sections on the standard type hierarchy and
classic and new-style object models; Python 2.4 Library Reference on module collections.

Recipe 6.12. Checking an Instance for Any State
Changes

Credit: David Hughes

Problem

You need to check whether any changes to an instance's state have occurred to selectively save
instances that have been modified since the last "save" operation.

Solution

An effective solution is a mixin classa class you can multiply inherit from and that is able to take
snapshots of an instance's state and compare the instance's current state with the last snapshot
to determine whether or not the instance has been modified:

import copy
class ChangeCheckerMixin(object):
 containerItems = {dict: dict.iteritems, list: enumerate}
 immutable = False
 def snapshot(self):
 ''' create a "snapshot" of self's state -- like a shallow copy, but
 recursing over container types (not over general instances:
 instances must keep track of their own changes if needed). '''
 if self.immutable:
 return
 self._snapshot = self._copy_container(self._ _dict_ _)
 def makeImmutable(self):
 ''' the instance state can't change any more, set .immutable '''
 self.immutable = True
 try:
 del self._snapshot
 except AttributeError:
 pass
 def _copy_container(self, container):
 ''' semi-shallow copy, recursing on container types only '''
 new_container = copy.copy(container)
 for k, v in self.containerItems[type(new_container)](new_container):
 if type(v) in self.containerItems:
 new_container[k] = self._copy_container(v)
 elif hasattr(v, 'snapshot'):
 v.snapshot()
 return new_container
 def isChanged(self):
 ''' True if self's state is changed since the last snapshot '''
 if self.immutable:
 return False
 # remove snapshot from self._ _dict_ _, put it back at the end
 snap = self._ _dict_ _.pop('_snapshot', None)
 if snap is None:
 return True

 try:
 return self._checkContainer(self._ _dict_ _, snap)
 finally:
 self._snapshot = snap
 def _checkContainer(self, container, snapshot):
 ''' return True if the container and its snapshot differ '''
 if len(container) != len(snapshot):
 return True
 for k, v in self.containerItems[type(container)](container):
 try:
 ov = snapshot[k]
 except LookupError:
 return True
 if self._checkItem(v, ov):
 return True
 return False
 def _checkItem(self, newitem, olditem):
 ''' compare newitem and olditem. If they are containers, call
 self._checkContainer recursively. If they're an instance with
 an 'isChanged' method, delegate to that method. Otherwise,
 return True if the items differ. '''
 if type(newitem) != type(olditem):
 return True
 if type(newitem) in self.containerItems:
 return self._checkContainer(newitem, olditem)
 if newitem is olditem:
 method_isChanged = getattr(newitem, 'isChanged', None)
 if method_isChanged is None:
 return False
 return method_isChanged()
 return newitem != olditem

Discussion

I often need change-checking functionality in my applications. For example, when a user closes
the last GUI window over a certain document, I need to check whether the document was
changed since the last "save" operation; if it was, then I need to pop up a small window to give
the user a choice between saving the document, losing the latest changes, or canceling the
window-closing operation.

The class ChangeCheckerMixin, which this recipe describes, satisfies this need. The idea is to
multiply derive all of your data classes, meaning all classes that hold data the user views and
may change, from ChangeCheckerMixin (as well as from any other bases they need). When the
data has just been loaded from or saved to persistent storage, call method snapshot on the top-
level, document data class instance. This call takes a "snapshot" of the current state, basically a
shallow copy of the object but with recursion over containers, and calls the snapshot methods on
any contained instance that has such a method. Any time afterward, you can call method
isChanged on any data class instance to check whether the instance state was changed since the
time of its last snapshot.

As container types, ChangeCheckerMixin, as presented, considers only list and dict. If you also

use other types as containers, you just need to add them appropriately to the containerItems
dictionary. That dictionary must map each container type to a function callable on an instance of
that type to get an iterator on indices and values (with indices usable to index the container).
Container type instances must also support being shallowly copied with standard library Python
function copy.copy. For example, to add Python 2.4's collections.deque as a container to a

subclass of ChangeCheckerMixin, you can code:

import collections

class CCM_with_deque(ChangeCheckerMixin):
 containerItems = dict(ChangeCheckerMixin.containerItems)
 containerItems[collections.deque] = enumerate

since collections.deque can be "walked over" with enumerate, just like list can.

Here is a toy example of use for ChangeChecherMixin:

if _ _name_ _ == '_ _main_ _':
 class eg(ChangeCheckerMixin):
 def _ _init_ _(self, *a, **k):
 self.L = list(*a, **k)
 def _ _str_ _(self):
 return 'eg(%s)' % str(self.L)
 def _ _getattr_ _(self, a):
 return getattr(self.L, a)
 x = eg('ciao')
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o']) is changed = True
 # now, assume x gets saved, then...:
 x.snapshot()
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o']) is changed = False
 # now we change x...:
 x.append('x')
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o', 'x']) is changed = True

In class eg we only subclass ChanceCheckerMixin because we need no other bases. In particular,
we cannot usefully subclass list because the change-checking functionality works only on state

that is kept in an instance's dictionary; so, we must hold a list object in our instance's dictionary,
and delegate to it as needed (in this toy example, we delegate all nonspecial methods,
automatically, via _ _getattr_ _). With this precaution, we see that the isChanged method

correctly reflects the crucial tidbitwhether the instance's state has been changed since the last
call to snapshot on the instance.

An implicit assumption of this recipe is that your application's data class instances are organized
in a hierarchical fashion. The tired old (but still valid) example is an invoice containing header
data and detail lines. Each instance of the details data class could contain other instances, such
as product details, which may not be modifiable in the current activity but are probably
modifiable elsewhere. This is the reason for the immutable attribute and the makeImmutable
method: when the attribute is set by calling the method, any outstanding snapshot for the
instance is dropped to save memory, and further calls to either snapshot or isChanged can
return very rapidly.

If your data does not lend itself to such hierarchical structuring, you may have to take full deep
copies, or even "snapshot" a document instance by taking a full pickle of it, and check for
changes by comparing the new pickle with the last one previously taken. That may be all right on
very fast machines, or when the amount of data you're handling is rather modest. In my tests,
however, it shows up as being unacceptably slow for substantial amounts of data on more
ordinary machines. This recipe, when your data organization is suitable for its application, can
offer better performance. If some of your data classes also contain data that is automatically
computed or, for other reasons, does not need to be saved, store such data in instances of
subordinate classes (which do not inherit from ChangeCheckerMixin), rather than either holding
the data as attributes or storing it in ordinary containers such as lists and dictionaries.

See Also

Library Reference and Python in a Nutshell documentation on multiple inheritance, the iteritems
method of dictionaries, and built-in functions enumerate, isinstance, and hasattr.

Recipe 6.13. Checking Whether an Object Has
Necessary Attributes

Credit: Alex Martelli

Problem

You need to check whether an object has certain necessary attributes before performing state-
altering operations. However, you want to avoid type-testing because you know it interferes with
polymorphism.

Solution

In Python, you normally just try performing whatever operations you need to perform. For
example, here's the simplest, no-checks code for doing a certain sequence of manipulations on a
list argument:

def munge1(alist):
 alist.append(23)
 alist.extend(range(5))
 alist.append(42)
 alist[4] = alist[3]
 alist.extend(range(2))

If alist is missing any of the methods you're calling (explicitly, such as append and extend; or
implicitly, such as the calls to _ _getitem_ _ and _ _setitem_ _ implied by the assignment
statement alist[4] = alist[3]), the attempt to access and call a missing method raises an

exception. Function munge1 makes no attempt to catch the exception, so the execution of
munge1 terminates, and the exception propagates to the caller of munge1. The caller may
choose to catch the exception and deal with it, or terminate execution and let the exception
propagate further back along the chain of calls, as appropriate.

This approach is usually just fine, but problems may occasionally occur. Suppose, for example,
that the alist object has an append method but not an extend method. In this peculiar case, the
munge1 function partially alters alist before an exception is raised. Such partial alterations are

generally not cleanly undoable; depending on your application, they can sometimes be a bother.

To forestall the "partial alterations" problem, the first approach that comes to mind is to check
the type of alist. Such a naive "Look Before You Leap" (LBYL) approach may look safer than

doing no checks at all, but LBYL has a serious defect: it loses polymorphism! The worst approach
of all is checking for equality of types:

def munge2(alist):
 if type(alist) is list: # a very bad idea
 munge1(alist)
 else: raise TypeError, "expected list, got %s" % type(alist)

This even fails, without any good reason, when alist is an instance of a subclass of list. You
can at least remove that huge defect by using isinstance instead:

def munge3(alist):
 if isinstance(alist, list):
 munge1(alist)
 else: raise TypeError, "expected list, got %s" % type(alist)

However, munge3 still fails, needlessly, when alist is an instance of a type or class that mimics
list but doesn't inherit from it. In other words, such type-checking sacrifices one of Python's

great strengths: signature-based polymorphism. For example, you cannot pass to munge3 an
instance of Python 2.4's collections.deque, which is a real pity because such a deque does

supply all needed functionality and indeed can be passed to the original munge1 and work just
fine. Probably a zillion sequence types are out there that, like deque, are quite acceptable to
munge1 but not to munge3. Type-checking, even with isinstance, exacts an enormous price.

A far better solution is accurate LBYL, which is both safe and fully polymorphic:

def munge4(alist):
 # Extract all bound methods you need (get immediate exception,
 # without partial alteration, if any needed method is missing):
 append = alist.append
 extend = alist.extend
 # Check operations, such as indexing, to get an exception ASAP
 # if signature compatibility is missing:
 try: alist[0] = alist[0]
 except IndexError: pass # An empty alist is okay
 # Operate: no exceptions are expected from this point onwards
 append(23)
 extend(range(5))
 append(42)
 alist[4] = alist[3]
 extend(range(2))

Discussion

Python functions are naturally polymorphic on their arguments because they essentially depend
on the methods and behaviors of the arguments, not on the arguments' types. If you check the

types of arguments, you sacrifice this precious polymorphism, so, don't! However, you may
perform a few early checks to obtain some extra safety (particularly against partial alterations)
without substantial costs.

What Is Polymorphism?

Polymorphism (from Greek roots meaning "many shapes") is the ability of code to
deal with objects of different types in ways that are appropriate to each applicable
type. Unfortunately, this useful term has been overloaded with all sorts of
implications, to the point that many people think it's somehow connected with such
concepts as overloading (specifying different functions depending on call-time
signatures) or subtyping (i.e., subclassing), which it most definitely isn't.

Subclassing is often a useful implementation technique, but it's not a necessary
condition for polymorphism. Overloading is right out: Python just doesn't let multiple
objects with the same name live at the same time in the same scope, so you can't
have several functions or methods with the same name and scope, distinguished only
by their signaturesa minor annoyance, at worst: just rename those functions or
methods so that their name suffices to distinguish them.

Python's functions are polymorphic (unless you take specific steps to break this very
useful feature) because they just call methods on their arguments (explicitly or
implicitly by performing operations such as arithmetic and indexing): as long as the
arguments supply the needed methods, callable with the needed signatures, and
those calls perform the appropriate behavior, everything just works.

The normal Pythonic way of life can be described as the Easier to Ask Forgiveness than
Permission (EAFP) approach: just try to perform whatever operations you need, and either
handle or propagate any exceptions that may result. It usually works great. The only real
problem that occasionally arises is "partial alteration": when you need to perform several
operations on an object, just trying to do them all in natural order could result in some of them
succeeding, and partially altering the object, before an exception is raised.

For example, suppose that munge1, as shown at the start of this recipe's Solution, is called with
an actual argument value for alist that has an append method but lacks extend. In this case,
alist is altered by the first call to append; but then, the attempt to obtain and call extend raises
an exception, leaving alist's state partially altered, a situation that may be hard to recover

from. Sometimes, a sequence of operations should ideally be atomic: either all of the alterations
happen, and everything is fine, or none of them do, and an exception gets raised.

You can get closer to ideal atomicity by switching to the LBYL approach, but in an accurate,
careful way. Extract all bound methods you'll need, then noninvasively test the necessary
operations (such as indexing on both sides of the assignment operator). Move on to actually
changing the object state only if all of this succeeds. From that point onward, it's far less likely
(although not impossible) that exceptions will occur in midstream, leaving state partially altered.
You could not reach 100% safety even with the strictest type-checking, after all: for example,
you might run out of memory just smack in the middle of your operations. So, with or without
type-checking, you don't really ever guarantee atomicityyou just approach asymptotically to that
desirable property.

Accurate LBYL generally offers a good trade-off in comparison to EAFP, assuming we need
safeguards against partial alterations. The extra complication is modest, and the slowdown due
to the checks is typically compensated by the extra speed gained by using bound methods
through local names rather than explicit attribute access (at least if the operations include loops,
which is often the case). It's important to avoid overdoing the checks, and the assert statement
can help with that. For example, you can add such checks as assert callable(append) to
munge4. In this case, the compiler removes the assert entirely when you run the program with
optimization (i.e., with flags -O or -OO passed to the python command), while performing the

checks when the program is run for testing and debugging (i.e., without the optimization flags).

See Also

Language Reference and Python in a Nutshell about assert and the meaning of the -O and -OO

command-line arguments; Library Reference and Python in a Nutshell about sequence types, and
lists in particular.

Recipe 6.14. Implementing the State Design Pattern

Credit: Elmar Bschorer

Problem

An object in your program can switch among several "states", and the object's behavior must
change along with the object's state.

Solution

The key idea of the State Design Pattern is to objectify the "state" (with its several behaviors)
into a class instance (with its several methods). In Python, you don't have to build an abstract
class to represent the interface that is common to the various states: just write the classes for
the "state"s themselves. For example:

class TraceNormal(object):
 ' state for normal level of verbosity '
 def startMessage(self):
 self.nstr = self.characters = 0
 def emitString(self, s):
 self.nstr += 1
 self.characters += len(s)
 def endMessage(self):
 print '%d characters in %d strings' % (self.characters, self.nstr)
class TraceChatty(object):
 ' state for high level of verbosity '
 def startMessage(self):
 self.msg = []
 def emitString(self, s):
 self.msg.append(repr(s))
 def endMessage(self):
 print 'Message: ', ', '.join(self.msg)
class TraceQuiet(object):
 ' state for zero level of verbosity '
 def startMessage(self): pass
 def emitString(self, s): pass
 def endMessage(self): pass
class Tracer(object):
 def _ _init_ _(self, state): self.state = state
 def setState(self, state): self.state = state
 def emitStrings(self, strings):
 self.state.startMessage()
 for s in strings: self.state.emitString(s)
 self.state.endMessage()
if _ _name_ _ == '_ _main_ _':
 t = Tracer(TraceNormal())
 t.emitStrings('some example strings here'.split())
emits: 21 characters in 4 strings
 t.setState(TraceQuiet())
 t.emitStrings('some example strings here'.split())
emits nothing

 t.setState(TraceChatty())
 t.emitStrings('some example strings here'.split())
emits: Message: 'some', 'example', 'strings', 'here'

Discussion

With the State Design Pattern, you can "factor out" a number of related behaviors of an object
(and possibly some data connected with these behaviors) into an auxiliary state object, to which
the main object delegates these behaviors as needed, through calls to methods of the "state"
object. In Python terms, this design pattern is related to the idioms of rebinding an object's
whole _ _class_ _, as shown in Recipe 6.11, and rebinding just certain methods (shown in

Recipe 2.14). This design pattern, in a sense, lies in between those Python idioms: you group a
set of related behaviors, rather than switching either all behavior, by changing the object's whole
_ _class_ _, or each method on its own, without grouping. With relation to the classic design

pattern terminology, this recipe presents a pattern that falls somewhere between the classic
State Design Pattern and the classic Strategy Design Pattern.

This State Design Pattern has some extra oomph, compared to the related Pythonic idioms,
because an appropriate amount of data can live together with the behaviors you're
delegatingexactly as much, or as little, as needed to support each specific behavior. In the
examples given in this recipe's Solution, for example, the different state objects differ greatly in
the kind and amount of data they need: none at all for class TraceQuiet, just a couple of
numbers for TraceNormal, a whole list of strings for TraceChatty. These responsibilities are
usefully delegated from the main object to each specific "state object".

In some cases, although not in the specific examples shown in this recipe, state objects may
need to cooperate more closely with the main object, by calling main object methods or
accessing main object attributes in certain circumstances. To allow this, the main object can pass
as an argument either self or some bound method of self to methods of the "state" objects.

For example, suppose that the functionality in this recipe's Solution needs to be extended, in that
the main object must keep track of how many lines have been emitted by messages it has sent.
Tracer._ _init_ _ will have to add one per-instance initialization self.lines = 0, and the
signature of the "state" object's endMessage methods will have to be extended to def
endMessage(self, tracer):. The implementation of endMessage in class TraceQuiet will just

ignore the tracer argument, since it doesn't actually emit any lines; the implementations in the
other two classes will each add a statement tracer.lines += 1, since each of them emits one

line per message.

As you see, the kind of closer coupling implied by this kind of extra functionality need not be
particularly problematic. In particular, the key feature of the classic State Design Pattern, that
state objects are the ones that handle state switching (while, in the Strategy Design Pattern, the
switching comes from the outside), is just not enough of a big deal in Python to warrant
considering the two design patterns as separate.

See Also

See http://exciton.cs.rice.edu/JavaResources/DesignPatterns/ for good coverage of the classic
design patterns, albeit in a Java context.

http://exciton.cs.rice.edu/JavaResources/DesignPatterns/

Recipe 6.15. Implementing the "Singleton" Design
Pattern

Credit: Jürgen Hermann

Problem

You want to make sure that only one instance of a class is ever created.

Solution

The _ _new_ _ staticmethod makes the task very simple:

class Singleton(object):
 """ A Pythonic Singleton """
 def _ _new_ _(cls, *args, **kwargs):
 if '_inst' not in vars(cls):
 cls._inst = type._ _new_ _(cls, *args, **kwargs)
 return cls._inst

Just have your class inherit from Singleton, and don't override _ _new_ _. Then, all calls to that

class (normally creations of new instances) return the same instance. (The instance is created
once, on the first such call to each given subclass of Singleton during each run of your program.)

Discussion

This recipe shows the one obvious way to implement the "Singleton" Design Pattern in Python
(see E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley). A Singleton is a class that makes sure only one instance of it is ever created.
Typically, such a class is used to manage resources that by their nature can exist only once. See
Recipe 6.16 for other considerations about, and alternatives to, the "Singleton" design pattern in
Python.

We can complete the module with the usual self-test idiom and show this behavior:

if _ _name_ _ == '_ _main_ _':
 class SingleSpam(Singleton):
 def _ _init_ _(self, s): self.s = s
 def _ _str_ _(self): return self.s
 s1 = SingleSpam('spam')
 print id(s1), s1.spam()
 s2 = SingleSpam('eggs')
 print id(s2), s2.spam()

When we run this module as a script, we get something like the following output (the exact value
of id does vary, of course):

8172684 spam

8172684 spam

The 'eggs' parameter passed when trying to instantiate s2 has been ignored, of coursethat's part

of the price you pay for having a Singleton!

One issue with Singleton in general is subclassability. The way class Singleton is coded in this
recipe, each descendant subclass, direct or indirect, will get a separate instance. Literally
speaking, this violates the constraint of only one instance per class, depending on what one
exactly means by it:

class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar()
print f is b, isinstance(f, Foo), isinstance(b, Foo)
emits False True True

f and b are separate instances, yet, according to the built-in function isinstance, they are both
instances of Foo because isinstance applies the IS-A rule of OOP: an instance of a subclass IS-
An instance of the base class too. On the other hand, if we took pains to return f again when b is
being instantiated by calling Bar, we'd be violating the normal assumption that calling class Bar
gives us an instance of class Bar, not an instance of a random superclass of Bar that just

happens to have been instantiated earlier in the course of a run of the program.

In practice, subclassability of "Singleton"s is rather a headache, without any obvious solution. If
this issue is important to you, the alternative Borg idiom, explained next in Recipe 6.16 may
provide a better approach.

See Also

Recipe 6.16; E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley).

Recipe 6.16. Avoiding the "Singleton" Design Pattern
with the Borg Idiom

Credit: Alex Martelli, Alex A. Naanou

Problem

You want to make sure that only one instance of a class is ever created: you don't care about the
id of the resulting instances, just about their state and behavior, and you need to ensure

subclassability.

Solution

Application needs (forces) related to the "Singleton" Design Pattern can be met by allowing
multiple instances to be created while ensuring that all instances share state and behavior. This
is more flexible than fiddling with instance creation. Have your class inherit from the following
Borg class:

class Borg(object):
 _shared_state = { }
 def _ _new_ _(cls, *a, **k):
 obj = object._ _new_ _(cls, *a, **k)
 obj._ _dict_ _ = cls._shared_state
 return obj

If you override _ _new_ _ in your class (very few classes need to do that), just remember to use
Borg._ _new_ _, rather than object._ _new_ _, within your override. If you want instances of

your class to share state among themselves, but not with instances of other subclasses of Borg,
make sure that your class has, at class scope, the "state"ment:

 _shared_state = { }

With this "data override", your class doesn't inherit the _shared_state attribute from Borg but
rather gets its own. It is to enable this "data override" that Borg's _ _new_ _ uses

cls._shared_state instead of Borg._shared_state.

Discussion

Borg in action

Here's a typical example of Borg use:

if _ _name_ _ == '_ _main_ _':
 class Example(Borg):
 name = None
 def _ _init_ _(self, name=None):

 if name is not None: self.name = name
 def _ _str_ _(self): return 'name->%s' % self.name
 a = Example('Lara')
 b = Example() # instantiating b shares self.name with a
 print a, b
 c = Example('John Malkovich') # making c changes self.name of a & b too
 print a, b, c
 b.name = 'Seven' # setting b.name changes name of a & c too
 print a, b, c

When running this module as a main script, the output is:

name->Lara name->Lara
name->John Malkovich name->John Malkovich name->John Malkovich
name->Seven name->Seven name->Seven

All instances of Example share state, so any setting of the name attribute of any instance, either
in _ _init_ _ or directly, affects all instances equally. However, note that the instance's ids
differ; therefore, since we have not defined special methods _ _eq_ _ and _ _hash_ _, each

instance can work as a distinct key in a dictionary. Thus, if we continue our sample code as
follows:

 adict = { }
 j = 0
 for i in a, b, c:
 adict[i] = j
 j = j + 1
 for i in a, b, c:
 print i, adict[i]

the output is:

name->Seven 0
name->Seven 1
name->Seven 2

If this behavior is not what you want, add _ _eq_ _ and _ _hash_ _ methods to the Example

class or the Borg superclass. Having these methods might better simulate the existence of a
single instance, depending on your exact needs. For example, here's a version of Borg with these
special methods added:

class Borg(object):
 _shared_state = { }
 def _ _new_ _(cls, *a, **k):
 obj = object._ _new_ _(cls, *a, **k)
 obj._ _dict_ _ = cls._shared_state
 return obj
 def _ _hash_ _(self): return 9 # any arbitrary constant integer
 def _ _eq_ _(self, other):
 try: return self._ _dict_ _ is other._ _dict_ _
 except AttributeError: return False

With this enriched version of Borg, the example's output changes to:

name->Seven 2
name->Seven 2

name->Seven 2

Borg, Singleton, or neither?

The Singleton Design Pattern has a catchy name, but unfortunately it also has the wrong focus
for most purposes: it focuses on object identity, rather than on object state and behavior. The
Borg design nonpattern makes all instances share state instead, and Python makes implementing
this idea a snap.

In most cases in which you might think of using Singleton or Borg, you don't really need either of
them. Just write a Python module, with functions and module-global variables, instead of defining
a class, with methods and per-instance attributes. You need to use a class only if you must be
able to inherit from it, or if you need to take advantage of the class' ability to define special
methods. (See Recipe 6.2 for a way to combine some of the advantages of classes and
modules.) Even when you do need a class, it's usually unnecessary to include in the class itself
any code to enforce the idea that one can't make multiple instances of it; other, simpler idioms
are generally preferable. For example:

class froober(object):
 def _ _init_ _(self):

 etc, etc
froober = froober()

Now froober is by nature the only instance of its own class, since name 'froober' has been
rebound to mean the instance, not the class. Of course, one might call froober._ _class_ _(
), but it's not sensible to spend much energy taking precautions against deliberate abuse of your

design intentions. Any obstacles you put in the way of such abuse, somebody else can bypass.
Taking precautions against accidental misuse is way plenty. If the very simple idiom shown in
this latest snippet is sufficient for your needs, use it, and forget about Singleton and Borg.
Remember: do the simplest thing that could possibly work. On rare occasions, though, an idiom
as simple as this one cannot work, and then you do need more.

The Singleton Design Pattern (described previously in Recipe 6.15) is all about ensuring that just
one instance of a certain class is ever created. In my experience, Singleton is generally not the
best solution to the problems it tries to solve, producing different kinds of issues in various
object models. We typically want to let as many instances be created as necessary, but all with
shared state. Who cares about identity? It's state (and behavior) we care about. The alternate
pattern based on sharing state, in order to solve roughly the same problems as Singleton does,
has also been called Monostate. Incidentally, I like to call Singleton "Highlander" because there
can be only one.

In Python, you can implement the Monostate Design Pattern in many ways, but the Borg design
nonpattern is often best. Simplicity is Borg's greatest strength. Since the _ _dict_ _ of any
instance can be rebound, Borg in its _ _new_ _ rebinds the _ _dict_ _ of each of its instances

to a class-attribute dictionary. Now, any reference or binding of an instance attribute will affect
all instances equally. I thank David Ascher for suggesting the appropriate name Borg for this
nonpattern. Borg is a nonpattern because it had no known uses at the time of its first publication
(although several uses are now known): two or more known uses are part of the prerequisites
for being a design pattern. See the detailed discussion at http://www.aleax.it/5ep.html.

An excellent article by Robert Martin about Singleton and Monostate can be found at
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf. Note that most of
the disadvantages that Martin attributes to Monostate are really due to the limitations of the
languages that Martin is considering, such as C++ and Java, and just disappear when using Borg
in Python. For example, Martin indicates, as Monostate's first and main disadvantage, that "A
non-Monostate class cannot be converted into a Monostate class through derivation"but that is
obviously not the case for Borg, which, through multiple inheritance, makes such conversions
trivial.

http://www.aleax.it/5ep.html
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf

Borg odds and ends

The _ _getattr_ _ and _ _setattr_ _ special methods are not involved in Borg's operations.

Therefore, you can define them independently in your subclass, for whatever other purposes you
may require, or you may leave these special methods undefined. Either way is not a problem
because Python does not call _ _setattr_ _ in the specific case of the rebinding of the
instance's _ _dict_ _ attribute.

Borg does not work well for classes that choose to keep some or all of their per-instance state
somewhere other than in the instance's _ _dict_ _. So, in subclasses of Borg, avoid defining _
slots _that's a memory-footprint optimization that would make no sense, anyway, since it's

meant for classes that have a large number of instances, and Borg subclasses will effectively
have just one instance! Moreover, instead of inheriting from built-in types such as list or dict,

your Borg subclasses should use wrapping and automatic delegation, as shown previously Recipe
6.5. (I named this latter twist "DeleBorg," in my paper available at
http://www.aleax.it/5ep.html.)

Saying that Borg "is a Singleton" would be as silly as saying that a portico is an umbrella. Both
serve similar purposes (letting you walk in the rain without getting wet)solve similar forces, in
design pattern parlancebut since they do so in utterly different ways, they're not instances of the
same pattern. If anything, as already mentioned, Borg has similarities to the Monostate
alternative design pattern to Singleton. However, Monostate is a design pattern, while Borg is
not; also, a Python Monostate could perfectly well exist without being a Borg. We can say that
Borg is an idiom that makes it easy and effective to implement Monostate in Python.

For reasons mysterious to me, people often conflate issues germane to Borg and Highlander with
other, independent issues, such as access control and, particularly, access from multiple threads.
If you need to control access to an object, that need is exactly the same whether there is one
instance of that object's class or twenty of them, and whether or not those instances share state.
A fruitful approach to problem-solving is known as divide and conquermaking problems easier to
solve by splitting apart their different aspects. Making problems more difficult to solve by joining
together several aspects must be an example of an approach known as unite and suffer!

See Also

Recipe 6.5; Recipe 6.15; Alex Martelli, "Five Easy Pieces: Simple Python Non-Patterns"
(http://www.aleax.it/5ep.html).

http://www.aleax.it/5ep.html
http://www.aleax.it/5ep.html

Recipe 6.17. Implementing the Null Object Design
Pattern

Credit: Dinu C. Gherman, Holger Krekel

Problem

You want to reduce the need for conditional statements in your code, particularly the need to
keep checking for special cases.

Solution

The usual placeholder object for "there's nothing here" is None, but we may be able to do better

than that by defining a class meant exactly to act as such a placeholder:

class Null(object):
 """ Null objects always and reliably "do nothing." """
 # optional optimization: ensure only one instance per subclass
 # (essentially just to save memory, no functional difference)
 def _ _new_ _(cls, *args, **kwargs):
 if '_inst' not in vars(cls):
 cls._inst = type._ _new_ _(cls, *args, **kwargs)
 return cls._inst
 def _ _init_ _(self, *args, **kwargs): pass
 def _ _call_ _(self, *args, **kwargs): return self
 def _ _repr_ _(self): return "Null()"
 def _ _nonzero_ _(self): return False
 def _ _getattr_ _(self, name): return self
 def _ _setattr_ _(self, name, value): return self
 def _ _delattr_ _(self, name): return self

Discussion

You can use an instance of the Null class instead of the primitive value None. By using such an
instance as a placeholder, instead of None, you can avoid many conditional statements in your

code and can often express algorithms with little or no checking for special values. This recipe is
a sample implementation of the Null Object Design Pattern. (See B. Woolf, "The Null Object
Pattern" in Pattern Languages of Programming [PLoP 96, September 1996].)

This recipe's Null class ignores all parameters passed when constructing or calling instances, as

well as any attempt to set or delete attributes. Any call or attempt to access an attribute (or a
method, since Python does not distinguish between the two, calling _ _getattr_ _ either way)
returns the same Null instance (i.e., selfno reason to create a new instance). For example, if

you have a computation such as:

def compute(x, y):
 try:

 lots of computation here to return some appropriate object
 except SomeError:
 return None

and you use it like this:

for x in xs:
 for y in ys:
 obj = compute(x, y)
 if obj is not None:
 obj.somemethod(y, x)

you can usefully change the computation to:

def compute(x, y):
 try:

 lots of computation here to return some appropriate object
 except SomeError:
 return Null()

and thus simplify its use down to:

for x in xs:
 for y in ys:
 compute(x, y).somemethod(y, x)

The point is that you don't need to check whether compute has returned a real result or an
instance of Null: even in the latter case, you can safely and innocuously call on it whatever

method you want. Here is another, more specific use case:

log = err = Null()
if verbose:
 log = open('/tmp/log', 'w')
 err = open('/tmp/err', 'w')
log.write('blabla')
err.write('blabla error')

This obviously avoids the usual kind of "pollution" of your code from guards such as if verbose:
strewn all over the place. You can now call log.write('bla'), instead of having to express each
such call as if log is not None: log.write('bla').

In the new object model, Python does not call _ _getattr_ _ on an instance for any special

methods needed to perform an operation on the instance (rather, it looks up such methods in the
instance class' slots). You may have to take care and customize Null to your application's needs
regarding operations on null objects, and therefore special methods of the null objects' class,
either directly in the class' sources or by subclassing it appropriately. For example, with this
recipe's Null, you cannot index Null instances, nor take their length, nor iterate on them. If this is
a problem for your purposes, you can add all the special methods you need (in Null itself or in an
appropriate subclass) and implement them appropriatelyfor example:

class SeqNull(Null):
 def _ _len_ _(self): return 0
 def _ _iter_ _(self): return iter(())
 def _ _getitem_ _(self, i): return self
 def _ _delitem_ _(self, i): return self
 def _ _setitem_ _(self, i, v): return self

Similar considerations apply to several other operations.

The key goal of Null objects is to provide an intelligent replacement for the often-used primitive
value None in Python. (Other languages represent the lack of a value using either null or a null

pointer.) These nobody-lives-here markers/placeholders are used for many purposes, including
the important case in which one member of a group of otherwise similar elements is special. This
usage usually results in conditional statements all over the place to distinguish between ordinary
elements and the primitive null (e.g., None) value, but Null objects help you avoid that.

Among the advantages of using Null objects are the following:

Superfluous conditional statements can be avoided by providing a first-class object
alternative for the primitive value None, thereby improving code readability.

Null objects can act as placeholders for objects whose behavior is not yet implemented.

Null objects can be used polymorphically with instances of just about any other class

(perhaps needing suitable subclassing for special methods, as previously mentioned).

Null objects are very predictable.

The one serious disadvantage of Null is that it can hide bugs. If a function returns None, and the

caller did not expect that return value, the caller most likely will soon thereafter try to call a
method or perform an operation that None doesn't support, leading to a reasonably prompt

exception and traceback. If the return value that the caller didn't expect is a Null, the problem
might stay hidden for a longer time, and the exception and traceback, when they eventually
happen, may therefore be harder to reconnect to the location of the defect in the code. Is this
problem serious enough to make using Null inadvisable? The answer is a matter of opinion. If
your code has halfway decent unit tests, this problem will not arise; while, if your code lacks
decent unit tests, then using Null is the least of your problems. But, as I said, it boils down to a
matter of opinions. I use Null very widely, and I'm extremely happy with the effect it has had on
my productivity.

The Null class as presented in this recipe uses a simple variant of the "Singleton" pattern (shown
earlier in Recipe 6.15), strictly for optimization purposesnamely, to avoid the creation of
numerous passive objects that do nothing but take up memory. Given all the previous remarks
about customization by subclassing, it is, of course, crucial that the specific implementation of
"Singleton" ensures a separate instance exists for each subclass of Null that gets instantiated.
The number of subclasses will no doubt never be so high as to eat up substantial amounts of
memory, and anyway this per-subclass distinction can be semantically crucial.

See Also

B. Woolf, "The Null Object Pattern" in Pattern Languages of Programming (PLoP 96, September
1996), http://www.cs.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz; Recipe 6.15.

http://www.cs.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz

Recipe 6.18. Automatically Initializing Instance Variables
from _ _init_ _ Arguments

Credit: Peter Otten, Gary Robinson, Henry Crutcher, Paul Moore, Peter Schwalm, Holger Krekel

Problem

You want to avoid writing and maintaining _ _init_ _ methods that consist of almost nothing
but a series of self.something = something assignments.

Solution

You can "factor out" the attribute-assignment task to an auxiliary function:

def attributesFromDict(d):
 self = d.pop('self')
 for n, v in d.iteritems():
 setattr(self, n, v)

Now, the typical boilerplate code for an _ _init_ _ method such as:

 def _ _init_ _(self, foo, bar, baz, boom=1, bang=2):
 self.foo = foo
 self.bar = bar
 self.baz = baz
 self.boom = boom
 self.bang = bang

can become a short, crystal-clear one-liner:

 def _ _init_ _(self, foo, bar, baz, boom=1, bang=2):
 attributesFromDict(locals())

Discussion

As long as no additional logic is in the body of _ _init_ _, the dict returned by calling the built-
in function locals contains only the arguments that were passed to _ _init_ _ (plus those
arguments that were not passed but have default values). Function attributesFromDict extracts
the object, relying on the convention that the object is always an argument named 'self', and

then interprets all other items in the dictionary as names and values of attributes to set. A similar
but simpler technique, not requiring an auxiliary function, is:

 def _ _init_ _(self, foo, bar, baz, boom=1, bang=2):
 self._ _dict_ _.update(locals())
 del self.self

However, this latter technique has a serious defect when compared to the one presented in this

recipe's Solution: by setting attributes directly into self._ _dict_ _ (through the latter's update

method), it does not play well with properties and other advanced descriptors, while the
approach in this recipe's Solution, using built-in setattr, is impeccable in this respect.

attributesFromDict is not meant for use in an _ _init_ _ method that contains more code, and

specifically one that uses some local variables, because attributesFromDict cannot easily
distinguish, in the dictionary that is passed as its only argument d, between arguments of _
init _ and other local variables of _ _init_ _. If you're willing to insert a little introspection

in the auxiliary function, this limitation may be overcome:

def attributesFromArguments(d):
 self = d.pop('self')
 codeObject = self._ _init_ _.im_func.func_code
 argumentNames = codeObject.co_varnames[1:codeObject.co_argcount]
 for n in argumentNames:
 setattr(self, n, d[n])

By extracting the code object of the _ _init_ _ method, function attributesFromArguments is
able to limit itself to the names of _ _init_ _'s arguments. Your _ _init_ _ method can then
call attributesFromArguments(locals()), instead of attributesFromDict(locals()), if and

when it needs to continue, after the call, with more code that may define other local variables.

The key limitation of attributesFromArguments is that it does not support _ _init_ _ having a
last special argument of the **kw kind. Such support can be added, with yet more introspection,

but it would require more black magic and complication than the functionality is probably worth.
If you nevertheless want to explore this possibility, you can use the inspect module of the

standard library, rather than the roll-your-own approach used in function
attributeFromArguments, for introspection purposes. inspect.getargspec(self._ _init_ _)
gives you both the argument names and the indication of whether self._ _init_ _ accepts a
**kw form. See Recipe 6.19 for more information about function inspect.getargspec.

Remember the golden rule of Python programming: "Let the standard library do it!"

See Also

Library Reference and Python in a Nutshell docs for the built-in function locals, methods of type
dict, special method _ _init_ _, and introspection techniques (including module inspect).

Recipe 6.19. Calling a Superclass _ _init_ _ Method If It
Exists

Credit: Alex Martelli

Problem

You want to ensure that _ _init_ _ is called for all superclasses that define it, and Python does

not do this automatically.

Solution

As long as your class is new-style, the built-in super makes this task easy (if all superclasses' _
init _ methods also use super similarly):

class NewStyleOnly(A, B, C):
 def _ _init_ _(self):
 super(NewStyleOnly, self)._ _init_ _()

 initialization specific to subclass NewStyleOnly

Discussion

Classic classes are not recommended for new code development: they exist only to guarantee
backwards compatibility with old versions of Python. Use new-style classes (deriving directly or
indirectly from object) for all new code. The only thing you cannot do with a new-style class is to
raise its instances as exception objects; exception classes must therefore be old style, but then,

you do not need the functionality of this recipe for such classes. Since the rest of this recipe's
Discussion is therefore both advanced and of limited applicability, you may want to skip it.

Still, it may happen that you need to retrofit this functionality into a classic class, or, more likely,
into a new-style class with some superclasses that do not follow the proper style of cooperative
superclass method-calling with the built-in super. In such cases, you should first try to fix the
problematic premisesmake all classes new style and make them use super properly. If you

absolutely cannot fix things, the best you can do is to have your class loop over its base
classesfor each base, check whether it has an _ _init_ _, and if so, then call it:

class LookBeforeYouLeap(X, Y, Z):
 def _ _init_ _(self):
 for base in self_ _class_ _._ _bases_ _:
 if hasattr(base, '_ _init_ _'):
 base._ _init_ _(self)

 initialization specific to subclass LookBeforeYouLeap

More generally, and not just for method _ _init_ _, we often want to call a method on an

instance, or class, if and only if that method exists; if the method does not exist on that class or
instance, we do nothing, or we default to another action. The technique shown in the "Solution",
based on built-in super, is not applicable in general: it only works on superclasses of the current
object, only if those superclasses also use super appropriately, and only if the method in
question does exist in some superclass. Note that all new-style classes do have an _ _init_ _

method: they all subclass object, and object defines _ _init_ _ (as a do-nothing function that
accepts and ignores any arguments). Therefore, all new-style classes have an _ _init_ _

method, either by inheritance or by override.

The LBYL technique shown in class LookBeforeYouLeap may be of help in more general cases,
including ones that involve methods other than _ _init_ _. Indeed, LBYL may even be used
together with super, for example, as in the following toy example:

class Base1(object):
 def met(self):
 print 'met in Base1'
class Der1(Base1):
 def met(self):
 s = super(Der1, self)
 if hasattr(s, 'met'):
 s.met()
 print 'met in Der1'
class Base2(object):
 pass
class Der2(Base2):
 def met(self):
 s = super(Der2, self)
 if hasattr(s, 'met'):
 s.met()
 print 'met in Der2'
Der1().met()
Der2().met()

This snippet emits:

met in Base1
met in Der1
met in Der2

The implementation of met has the same structure in both derived classes, Der1 (whose
superclass Base1 does have a method named met) and Der2 (whose superclass Base1 doesn't
have such a method). By binding a local name s to the result of super, and checking with
hasattr that the superclass does have such a method before calling it, this LBYL structure lets

you code in the same way in both cases. Of course, when coding a subclass, you do normally
know which methods the superclasses have, and whether and how you need to call them. Still,
this technique can provide a little extra flexibility for those occasions in which you need to slightly
decouple the subclass from the superclass.

The LBYL technique is far from perfect, though: a superclass might define an attribute named
met, which is not callable or needs a different number of arguments. If your need for flexibility is
so extreme that you must ward against such occurrences, you can extract the superclass'
method object (if any) and check it with the getargspec function of standard library module
inspect.

While pushing this idea towards full generality can lead into rather deep complications, here is
one example of how you might code a class with a method that calls the superclass' version of
the same method only if the latter is callable without arguments:

import inspect
class Der(A, B, C, D):
 def met(self):
 s = super(Der, self)
 # get the superclass's bound-method object, or else None
 m = getattr(s, 'met', None)

 try:
 args, varargs, varkw, defaults = inspect.getargspec(m)
 except TypeError:
 # m is not a method, just ignore it
 pass
 else:
 # m is a method, do all its arguments have default values?
 if len(defaults) == len(args):
 # yes! so, call it:
 m()
 print 'met in Der'

inspect.getargspec raises a TypeError if its argument is not a method or function, so we catch
that case with a TRy/except statement, and if the exception occurs, we just ignore it with a do-
nothing pass statement in the except clause. To simplify our code a bit, we do not first check
separately with hasattr. Rather, we get the 'met' attribute of the superclass by calling getattr
with a third argument of None. Thus, if the superclass does not have any attribute named 'met',
m is set to None, later causing exactly the same TypeError that we have to catch (and ignore)
anywaytwo birds with one stone. If the call to inspect.getargspec in the try clause does not
raise a TypeError, execution continues with the else clause.

If inspect.getargspec doesn't raise a TypeError, it returns a tuple of four items, and we bind
each item to a local name. In this case, the ones we care about are args, a list of m's argument
names, and defaults, a tuple of default values that m provides for its arguments. Clearly, we can
call m without arguments if and only if m provides default values for all of its arguments. So, we
check that there are just as many default values as arguments, by comparing the lengths of list
args and tuple defaults, and call m only if the lengths are equal.

No doubt you don't need such advanced introspection and such careful checking in most of the
code you write, but, just in case you do, Python does supply all the tools you need to achieve it.

See Also

Docs for built-in functions super, getattr, and hasattr, and module inspect, in the Library

Reference and Python in a Nutshell.

Recipe 6.20. Using Cooperative Supercalls Concisely
and Safely

Credit: Paul McNett, Alex Martelli

Problem

You appreciate the cooperative style of multiple-inheritance coding supported by the super built-

in, but you wish you could use that style in a more terse and concise way.

Solution

A good solution is a mixin classa class you can multiply inherit from, that uses introspection to

allow more terse coding:

import inspect
class SuperMixin(object):
 def super(cls, *args, **kwargs):
 frame = inspect.currentframe(1)
 self = frame.f_locals['self']
 methodName = frame.f_code.co_name
 method = getattr(super(cls, self), methodName, None)
 if inspect.ismethod(method):
 return method(*args, **kwargs)
 super = classmethod(super)

Any class cls that inherits from class SuperMixin acquires a magic method named super: calling
cls.super(args) from within a method named somename of class cls is a concise way to call
super(cls, self).somename(args). Moreover, the call is safe even if no class that follows cls in
Method Resolution Order (MRO) defines any method named somename.

Discussion

Here is a usage example:

if _ _name_ _ == '_ _main_ _':
 class TestBase(list, SuperMixin):
 # note: no myMethod defined here
 pass
 class MyTest1(TestBase):
 def myMethod(self):
 print "in MyTest1"
 MyTest1.super()
 class MyTest2(TestBase):
 def myMethod(self):
 print "in MyTest2"
 MyTest2.super()
 class MyTest(MyTest1, MyTest2):
 def myMethod(self):

 print "in MyTest"
 MyTest.super()
 MyTest().myMethod()
emits:
in MyTest
in MyTest1
in MyTest2

Python has been offering "new-style" classes for years, as a preferable alternative to the classic
classes that you get by default. Classic classes exist only for backwards-compatibility with old
versions of Python and are not recommended for new code. Among the advantages of new-style
classes is the ease of calling superclass implementations of a method in a "cooperative" way that
fully supports multiple inheritance, thanks to the super built-in.

Suppose you have a method in a new-style class cls, which needs to perform a task and then

delegate the rest of the work to the superclass implementation of the same method. The code
idiom is:

def somename(self, *args):

 ...some preliminary task...
 return super(cls, self).somename(*args)

This idiom suffers from two minor issues: it's slightly verbose, and it also depends on a
superclass offering a method somename. If you want to make cls less coupled to other classes,

and therefore more robust, by removing the dependency, the code gets even more verbose:

def somename(self, *args):

 ...some preliminary task...
 try:
 super_method = super(cls, self).somename
 except AttributeError:
 return None
 else:
 return super_method(*args)

The mixin class SuperMixin shown in this recipe removes both issues. Just ensure cls inherits,

directly or indirectly, from SuperMixin (alongside any other base classes you desire), and then
you can code, concisely and robustly:

def somename(self, *args):

 ...some preliminary task...
 return cls.super(*args)

The classmethod SuperMixin.super relies on simple introspection to get the self object and the
name of the method, then internally uses built-ins super and getattr to get the superclass

method, and safely call it only if it exists. The introspection is performed through the handy
inspect module of the standard Python library, making the whole task even simpler.

See Also

Library Reference and Python in a Nutshell docs on super, the new object model and MRO, the
built-in getattr, and standard library module inspect; Recipe 20.12 for another recipe taking a
very different approach to simplify the use of built-in super.

Chapter 7. Persistence and Databases
Introduction

Recipe 7.1. Serializing Data Using the marshal Module

Recipe 7.2. Serializing Data Using the pickle and cPickle Modules

Recipe 7.3. Using Compression with Pickling

Recipe 7.4. Using the cPickle Module on Classes and Instances

Recipe 7.5. Holding Bound Methods in a Picklable Way

Recipe 7.6. Pickling Code Objects

Recipe 7.7. Mutating Objects with shelve

Recipe 7.8. Using the Berkeley DB Database

Recipe 7.9. Accesssing a MySQL Database

Recipe 7.10. Storing a BLOB in a MySQL Database

Recipe 7.11. Storing a BLOB in a PostgreSQL Database

Recipe 7.12. Storing a BLOB in a SQLite Database

Recipe 7.13. Generating a Dictionary Mapping Field Names to Column Numbers

Recipe 7.14. Using dtuple for Flexible Accessto Query Results

Recipe 7.15. Pretty-Printing the Contents of Database Cursors

Recipe 7.16. Using a Single Parameter-Passing Style Across Various DB API Modules

Recipe 7.17. Using Microsoft Jet via ADO

Recipe 7.18. Accessing a JDBC Database from a Jython Servlet

Recipe 7.19. Using ODBC to Get Excel Data with Jython

Introduction

Credit: Aaron Watters, Software Consultant

There are three kinds of people in this world: those who can count and those who can't.

However, there are only two kinds of computer programs: toy programs and programs that
interact with some kind of persistent databases. That is to say, most real computer programs
must retrieve stored information and record information for future use. These days, this
description applies to almost every computer game, which can typically save and restore the
state of the game at any time. So when I refer to toy programs, I mean programs written as
exercises, or for the fun of programming. Nearly all real programs (such as programs that people
get paid to write) have some persistent database storage/retrieval component.

When I was a Fortran programmer in the 1980s, I noticed that although almost every program
had to retrieve and store information, they almost always did it using home-grown methods.
Furthermore, since the storage and retrieval parts of the program were the least interesting
components from the programmer's point of view, these parts of the program were frequently
implemented very sloppily and were hideous sources of intractable bugs. This repeated
observation convinced me that the study and implementation of database systems sat at the
core of programming pragmatics, and that the state of the art as I saw it then required much
improvement.

Later, in graduate school, I was delighted to find an impressive and sophisticated body of work
relating to the implementation of database systems. The literature of database systems covered
issues of concurrency, fault tolerance, distribution, query optimization, database design, and
transaction semantics, among others. In typical academic fashion, many of the concepts had
been elaborated to the point of absurdity (such as the silly notion of conditional multivalued
dependencies), but much of the work was directly related to the practical implementation of
reliable and efficient storage and retrieval systems. The starting point for much of this work was
E.F. Codd's seminal paper, "A Relational Model of Data for Large Shared Data Banks."[1]

[1] E.F. Codd, "A Relational Model of Data for Large Shared Data Banks," Communications of the ACM, 13, no. 6 (1970), pp.

377-87, http://www.acm.org/classics/nov95/toc.html.

Among my fellow graduate students, and even among most of the faculty, the same body of
knowledge was either disregarded or regarded with some scorn. Everyone recognized that
knowledge of conventional relational technology could be lucrative, but they generally considered
such knowledge to be on the same level as knowing how to write (or more importantly, maintain)
COBOL programs. This situation was not helped by the fact that the emerging database interface
standard, SQL (which is now very well established), looked like an extension of COBOL and bore
little obvious relationship to any modern programming language.

More than a decade later, there is little indication that anything will soon overtake SQL-based
relational technology for the majority of data-based applications. In fact, relational-database
technology seems more pervasive than ever. The largest software vendorsIBM, Microsoft, and
Oracleall provide various relational-database implementations as crucial components of their core
offerings. Other large software firms, such as SAP and PeopleSoft, essentially provide layers of
software built on top of a relational-database core.

Generally, relational databases have been augmented rather than replaced. Enterprise software-
engineering dogma frequently espouses three-tier systems, in which the bottom tier is a carefully
designed relational database, the middle tier defines a view of the database as business objects,
and the top tier consists of applications or transactions that manipulate the business objects,
with effects that ultimately translate to changes in the underlying relational tables.

Microsoft's Open Database Connectivity (ODBC) standard provides a common programming API

http://www.acm.org/classics/nov95/toc.html

for SQL-based relational databases that permits programs to interact with many different
database engines with no or few changes. For example, a Python program could be first
implemented using Microsoft Jet[2] as a backend database for testing and debugging purposes.
Once the program is stable, it can be put into production use, remotely accessing, say, a
backend DB2 database on an IBM mainframe residing on another continent, by changing (at
most) one line of code.

[2] Microsoft Jet is commonly but erroneously known as the "Microsoft Access database." Access is a product that Microsoft

sells for designing and implementing database frontends; Jet is a backend that you may download for free from Microsoft's

web site.

Relational databases are not appropriate for all applications. In particular, a computer game or
engineering design tool that must save and restore sessions should probably use a more direct
method of persisting the logical objects of the program than the flat tabular representation
encouraged in relational-database design. However, even in domains such as engineering or
scientific information, a hybrid approach that uses some relational methods is often advisable.
For example, I have seen a complex relational-database schema for archiving genetic-sequencing
informationin which the sequences show up as binary large objects (BLOBs)but a tremendous
amount of important ancillary information can fit nicely into relational tables. But as the reader
has probably surmised, I fear, I speak as a relational zealot.

Within the Python world there are many ways of providing persistence and database
functionality. My personal favorite is Gadfly, http://gadfly.sourceforge.net/, a simple and minimal
SQL implementation that works primarily with in-memory databases. It is my favorite for no
other reason than because it is mine, and its biggest advantage is that, if it becomes unworkable
for you, it is easy to switch over to another, industrial-strength SQL engine. Many Gadfly users
have started an application with Gadfly (because it was easy to use) and switched later (because
they needed more).

However, many people may prefer to start by using other SQL implementations such as MySQL,
Microsoft Access, Oracle, Sybase, Microsoft SQL Server, SQLite, or others that provide the
advantages of an ODBC interface (which Gadfly does not do).

Python provides a standard interface for accessing relational databases: the Python DB
Application Programming Interface (Py-DBAPI), originally designed by Greg Stein. Each
underlying database API requires a wrapper implementation of the Py-DBAPI, and
implementations are available for just about all underlying database interfaces, notably Oracle
and ODBC.

When the relational approach is overkill, Python provides built-in facilities for storing and
retrieving data. At the most basic level, the programmer can manipulate files directly, as covered
in Chapter 2. A step up from files, the marshal module allows programs to serialize data

structures constructed from simple Python types (not including, e.g., classes or class instances).
marshal has the advantage of being able to retrieve large data structures with blinding speed.
The pickle and cPickle modules allow general storage of objects, including classes, class
instances, and circular structures. cPickle is so named because it is implemented in C and is
consequently quite fast, but it remains slower than marshal. For access to structured data in a

somewhat human-readable form, it is also worth considering storing and retrieving data in XML
format (taking advantage of Python's several XML parsing and generation modules), covered in
Chapter 12but this option works best for write once, read many-type applications. Serialized data
or XML representations may be stored in SQL databases to create a hybrid approach as well.

While marshal and pickle provide basic serialization and deserialization of structures, the

application programmer will frequently desire more functionality, such as transaction support and
concurrency control. When the relational model doesn't fit the application, a direct object
database implementation such as the Z-Object Database (ZODB) might be appropriatesee
http://zope.org/Products/ZODB3.2.

I must conclude with a plea to those who are dismissive of relational-database technology.
Remember that it is successful for good reasons, and it might be worth considering. To
paraphrase Churchill:

http://gadfly.sourceforge.net/
http://zope.org/Products/ZODB3.2

text = """ Indeed, it has been said that democracy is the worst form of
 government, except for all those others that have been tried
 from time to time. """
import string
for a, b in [("democracy", "SQL"), ("government", "database")]:
 text = string.replace(text, a, b)
print text

Recipe 7.1. Serializing Data Using the marshal Module

Credit: Luther Blissett

Problem

You want to serialize and reconstruct a Python data structure whose items are fundamental
Python objects (e.g., lists, tuples, numbers, and strings but no classes, instances, etc.) as fast as
possible.

Solution

If you know that your data is composed entirely of fundamental Python objects (and you only
need to support one version of Python, though possibly on several different platforms), the
lowest-level, fastest approach to serializing your data (i.e., turning it into a string of bytes, and
later reconstructing it from such a string) is via the marshal module. Suppose that data has only

elementary Python data types as items, for example:

data = {12:'twelve', 'feep':list('ciao'), 1.23:4+5j, (1,2,3):u'wer'}

You can serialize data to a bytestring at top speed as follows:

import marshal
bytes = marshal.dumps(data)

You can now sling bytes around as you wish (e.g., send it across a network, put it as a BLOB in

a database, etc.), as long as you keep its arbitrary binary bytes intact. Then you can reconstruct
the data structure from the bytestring at any time:

redata = marshal.loads(bytes)

When you specifically want to write the data to a disk file (as long as the latter is open for
binarynot the default text modeinput/output), you can also use the dump function of the marshal

module, which lets you dump several data structures to the same file one after the other:

ouf = open('datafile.dat', 'wb')
marshal.dump(data, ouf)
marshal.dump('some string', ouf)
marshal.dump(range(19), ouf)
ouf.close()

You can later recover from datafile.dat the same data structures you dumped into it, in the same
sequence:

inf = open('datafile.dat', 'rb')
a = marshal.load(inf)
b = marshal.load(inf)
c = marshal.load(inf)
inf.close()

Discussion

Python offers several ways to serialize data (meaning to turn the data into a string of bytes that
you can save on disk, put in a database, send across the network, etc.) and corresponding ways
to reconstruct the data from such serialized forms. The lowest-level approach is to use the
marshal module, which Python uses to write its bytecode files. marshal supports only elementary

data types (e.g., dictionaries, lists, tuples, numbers, and strings) and combinations thereof.
marshal does not guarantee compatibility from one Python release to another, so data serialized
with marshal may not be readable if you upgrade your Python release. However, marshal does

guarantee independence from a specific machine's architecture, so it is guaranteed to work if
you're sending serialized data between different machines, as long as they are all running the
same version of Pythonsimilar to how you can share compiled Python bytecode files in such a
distributed setting.

marshal's dumps function accepts any suitable Python data structure and returns a bytestring
representing it. You can pass that bytestring to the loads function, which will return another
Python data structure that compares equal (==) to the one you originally dumped. In particular,

the order of keys in dictionaries is arbitrary in both the original and reconstructed data
structures, but order in any kind of sequence is meaningful and is thus preserved. In between
the dumps and loads calls, you can subject the bytestring to any procedure you wish, such as

sending it over the network, storing it into a database and retrieving it, or encrypting and
decrypting it. As long as the string's binary structure is correctly restored, loads will work fine on
it (as stated previously, this is guaranteed only if you use loads under the same Python release
with which you originally executed dumps).

When you specifically need to save the data to a file, you can also use marshal's dump function,

which takes two arguments: the data structure you're dumping and the open file object. Note
that the file must be opened for binary I/O (not the default, which is text I/O) and can't be a file-
like object, as marshal is quite picky about it being a true file. The advantage of dump is that you
can perform several calls to dump with various data structures and the same open file object:

each data structure is then dumped together with information about how long the dumped
bytestring is. As a consequence, when you later open the file for binary reading and then call
marshal.load, passing the file as the argument, you can reload each previously dumped data
structure sequentially, one after the other, at each call to load. The return value of load, like
that of loads, is a new data structure that compares equal to the one you originally dumped.
(Again, dump and load work within one Python releaseno guarantee across releases.)

Those accustomed to other languages and libraries offering "serialization" facilities may be
wondering if marshal imposes substantial practical limits on the size of objects you can serialize

or deserialize. Answer: Nope. Your machine's memory might, but as long as everything fits
comfortably in memory, marshal imposes practically no further limit.

See Also

Recipe 7.2 for cPickle, the big brother of marshal; documentation on the marshal standard

library module in the Library Reference and in Python in a Nutshell.

Recipe 7.2. Serializing Data Using the pickle and cPickle
Modules

Credit: Luther Blissett

Problem

You want to serialize and reconstruct, at a reasonable speed, a Python data structure, which may
include both fundamental Python object as well as classes and instances.

Solution

If you don't want to assume that your data is composed only of fundamental Python objects, or
you need portability across versions of Python, or you need to transmit the serialized form as
text, the best way of serializing your data is with the cPickle module. (The pickle module is a

pure-Python equivalent and totally interchangeable, but it's slower and not worth using except if
you're missing cPickle.) For example, say you have:

data = {12:'twelve', 'feep':list('ciao'), 1.23:4+5j, (1,2,3):u'wer'}

You can serialize data to a text string:

import cPickle
text = cPickle.dumps(data)

or to a binary string, a choice that is faster and takes up less space:

bytes = cPickle.dumps(data, 2)

You can now sling text or bytes around as you wish (e.g., send across a network, include as a
BLOB in a databasesee Recipe 7.10, Recipe 7.11, and Recipe 7.12) as long as you keep text or
bytes intact. In the case of bytes, it means keeping the arbitrary binary bytes intact. In the case
of text, it means keeping its textual structure intact, including newline characters. Then you can

reconstruct the data at any time, regardless of machine architecture or Python release:

redata1 = cPickle.loads(text)
redata2 = cPickle.loads(bytes)

Either call reconstructs a data structure that compares equal to data. In particular, the order of

keys in dictionaries is arbitrary in both the original and reconstructed data structures, but order
in any kind of sequence is meaningful, and thus it is preserved. You don't need to tell
cPickle.loads whether the original dumps used text mode (the default, also readable by some
very old versions of Python) or binary (faster and more compact)loads figures it out by

examining its argument's contents.

When you specifically want to write the data to a file, you can also use the dump function of the
cPickle module, which lets you dump several data structures to the same file one after the

other:

ouf = open('datafile.txt', 'w')
cPickle.dump(data, ouf)
cPickle.dump('some string', ouf)
cPickle.dump(range(19), ouf)
ouf.close()

Once you have done this, you can recover from datafile.txt the same data structures you
dumped into it, one after the other, in the same order:

inf = open('datafile.txt')
a = cPickle.load(inf)
b = cPickle.load(inf)
c = cPickle.load(inf)
inf.close()

You can also pass cPickle.dump a third argument with a value of 2 to tell cPickle.dump to

serialize the data in binary form (faster and more compact), but the data file must then be
opened for binary I/O, not in the default text mode, both when you originally dump to the file
and when you later load from the file.

Discussion

Python offers several ways to serialize data (i.e., make the data into a string of bytes that you
can save on disk, save in a database, send across the network, etc.) and corresponding ways to
reconstruct the data from such serialized forms. Typically, the best approach is to use the
cPickle module. A pure-Python equivalent, called pickle (the cPickle module is coded in C as

a Python extension) is substantially slower, and the only reason to use it is if you don't have
cPickle (e.g., with a Python port onto a mobile phone with tiny storage space, where you saved

every byte you possibly could by installing only an indispensable subset of Python's large
standard library). However, in cases where you do need to use pickle, rest assured that it is
completely interchangeable with cPickle: you can pickle with either module and unpickle with

the other one, without any problems whatsoever.

cPickle supports most elementary data types (e.g., dictionaries, lists, tuples, numbers, strings)

and combinations thereof, as well as classes and instances. Pickling classes and instances saves
only the data involved, not the code. (Code objects are not even among the types that cPickle

knows how to serialize, basically because there would be no way to guarantee their portability
across disparate versions of Python. See Recipe 7.6 for a way to serialize code objects, as long
as you don't need the cross-version guarantee.) See Recipe 7.4 for more about pickling classes
and instances.

cPickle guarantees compatibility from one Python release to another, as well as independence
from a specific machine's architecture. Data serialized with cPickle will still be readable if you

upgrade your Python release, and pickling is also guaranteed to work if you're sending serialized
data between different machines.

The dumps function of cPickle accepts any Python data structure and returns a text string
representing it. If you call dumps with a second argument of 2, dumps returns an arbitrary

bytestring instead: the operation is faster, and the resulting string takes up less space. You can
pass either the text or the bytestring to the loads function, which will return another Python data
structure that compares equal (==) to the one you originally dumped. In between the dumps and
loads calls, you can subject the text or bytestring to any procedure you wish, such as sending it

over the network, storing it in a database and retrieving it, or encrypting and decrypting it. As
long as the string's textual or binary structure is correctly restored, loads will work fine on it

(even across platforms and in future releases). If you need to produce data readable by old (pre-
2.3) versions of Python, consider using 1 as the second argument: operation will be slower, and

the resulting strings will not be as compact as those obtained by using 2, but the strings will be
unpicklable by old Python versions as well as current and future ones.

When you specifically need to save the data into a file, you can also use cPickle's dump function,

which takes two arguments: the data structure you're dumping and the open file or file-like
object. If the file is opened for binary I/O, rather than the default (text I/O), then by giving dump

a third argument of 2, you can ask for binary format, which is faster and takes up less space
(again, you can also use 1 in this position to get a binary format that's neither as compact nor as
fast, but is understood by old, pre-2.3 Python versions too). The advantage of dump over dumps
is that, with dump, you can perform several calls, one after the other, with various data structures

and the same open file object. Each data structure is then dumped with information about how
long the dumped string is. Consequently, when you later open the file for reading (binary
reading, if you asked for binary format) and then repeatedly call cPickle.load, passing the file

as the argument, each data structure previously dumped is reloaded sequentially, one after the
other. The return value of load, like that of loads, is a new data structure that compares equal

to the one you originally dumped.

Those accustomed to other languages and libraries offering "serialization" facilities may be
wondering whether pickle imposes substantial practical limits on the size of objects you can

serialize or deserialize. Answer: Nope. Your machine's memory might, but as long as everything
fits comfortably in memory, pickle practically imposes no further limit.

See Also

Recipe 7.2 and Recipe 7.4; documentation for the standard library module cPickle in the Library

Reference and Python in a Nutshell.

Recipe 7.3. Using Compression with Pickling

Credit: Bill McNeill, Andrew Dalke

Problem

You want to pickle generic Python objects to and from disk in a compressed form.

Solution

Standard library modules cPickle and gzip offer the needed functionality; you just need to glue

them together appropriately:

import cPickle, gzip
def save(filename, *objects):
 ''' save objects into a compressed diskfile '''
 fil = gzip.open(filename, 'wb')
 for obj in objects: cPickle.dump(obj, fil, proto=2)
 fil.close()
def load(filename):
 ''' reload objects from a compressed diskfile '''
 fil = gzip.open(filename, 'rb')
 while True:
 try: yield cPickle.load(fil)
 except EOFError: break
 fil.close()

Discussion

Persistence and compression, as a general rule, go well together. cPickle protocol 2 saves

Python objects quite compactly, but the resulting files can still compress quite well. For example,
on my Linux box, open('/usr/dict/share/words').readlines() produces a list of over

45,000 strings. Pickling that list with the default protocol 0 makes a disk file of 972 KB, while
protocol 2 takes only 716 KB. However, using both gzip and protocol 2, as shown in this recipe,

requires only 268 KB, saving a significant amount of space. As it happens, protocol 0 produces a
more compressible file in this case, so that using gzip and protocol 0 would save even more

space, taking only 252 KB on disk. However, the difference between 268 and 252 isn't all that
meaningful, and protocol 2 has other advantages, particularly when used on instances of new-
style classes, so I recommend the mix I use in the functions shown in this recipe.

Whatever protocol you choose to save your data, you don't need to worry about it when you're
reloading the data. The protocol is recorded in the file together with the data, so cPickle.load
can figure out by itself all it needs. Just pass it an instance of a file or pseudo-file object with
a read method, and cPickle.load returns each object that was pickled to the file, one after the
other, and raises EOFError when the file's done. In this recipe, we wrap a generator around
cPickle.load, so you can simply loop over all recovered objects with a for statement, or,
depending on what you need, you can use some call such as list(load('somefile.gz')) to get

a list with all recovered objects as its items.

See Also

Modules gzip and cPickle in the Library Reference.

Recipe 7.4. Using the cPickle Module on Classes and
Instances

Credit: Luther Blissett

Problem

You want to save and restore class and instance objects using the cPickle module.

Solution

You often need no special precautions to use cPickle on your classes and their instances. For

example, the following works fine:

import cPickle
class ForExample(object):
 def _ _init_ _(self, *stuff):
 self.stuff = stuff
anInstance = ForExample('one', 2, 3)
saved = cPickle.dumps(anInstance)
reloaded = cPickle.loads(saved)
assert anInstance.stuff == reloaded.stuff

However, sometimes there are problems:

anotherInstance = ForExample(1, 2, open('three', 'w'))
wontWork = cPickle.dumps(anotherInstance)

This snippet causes a TypeError: "can't pickle file objects" exception, because the state of
anotherInstance includes a file object, and file objects cannot be pickled. You would get
exactly the same exception if you tried to pickle any other container that includes a file object

among its items.

However, in some cases, you may be able to do something about it:

class PrettyClever(object):
 def _ _init_ _(self, *stuff):
 self.stuff = stuff
 def _ _getstate_ _(self):
 def normalize(x):
 if isinstance(x, file):
 return 1, (x.name, x.mode, x.tell())
 return 0, x
 return [normalize(x) for x in self.stuff]
 def _ _setstate_ _(self, stuff):
 def reconstruct(x):
 if x[0] == 0:
 return x[1]
 name, mode, offs = x[1]
 openfile = open(name, mode)

 openfile.seek(offs)
 return openfile
 self.stuff = tuple([reconstruct(x) for x in stuff])

By defining the _ _getstate_ _ and _ _setstate_ _ special methods in your class, you gain

fine-grained control about what, exactly, your class' instances consider to be their state. As long
as you can define such state in picklable terms, and reconstruct your instances from the
unpickled state in some way that is sufficient for your application, you can make your instances
themselves picklable and unpicklable in this way.

Discussion

cPickle dumps class and function objects by name (i.e., through their module's name and their

name within the module). Thus, you can dump only classes defined at module level (not inside
other classes and functions). Reloading such objects requires the respective modules to be
available for import. Instances can be saved and reloaded only if they belong to such classes. In

addition, the instance's state must also be picklable.

By default, an instance's state is the contents of the instance's _ _dict_ _, plus whatever state

the instance may get from the built-in type the instance's class inherits from, if any. For
example, an instance of a new-style class that subclasses list includes the list items as part of
the instance's state. cPickle also handles instances of new-style classes that define or inherit a
class attribute named _ _slots_ _ (and therefore hold some or all per-instance state in those
predefined slots, rather than in a per-instance _ _dict_ _). Overall, cPickle's default
approach is often quite sufficient and satisfactory.

Sometimes, however, you may have nonpicklable attributes or items as part of your instance's
state (as cPickle defines such state by default, as explained in the previous paragraph). In this

recipe, for example, I show a class whose instances hold arbitrary stuff, which may include open
file objects. To handle this case, your class can define the special method _ _getstate_ _.
cPickle calls that method on your object, if your object's class defines it or inherits it, instead of
going directly for the object's _ _dict_ _ (or possibly _ _slots_ _ and/or built-in type bases).

Normally, when you define the _ _getstate_ _ method, you define the _ _setstate_ _ method
as well, as shown in this recipe's Solution. _ _getstate_ _ can return any picklable object, and
that object gets pickled, and later, at unpickling time, passed as _ _setstate_ _'s argument. In
this recipe's Solution, _ _getstate_ _ returns a list that's similar to the instance's default state
(attribute self.stuff), except that each item is turned into a tuple of two items. The first item in
the pair can be set to 0 to indicate that the second one will be taken verbatim, or 1 to indicate

that the second item will be used to reconstruct an open file. (Of course, the reconstruction may
fail or be unsatisfactory in several ways. There is no general way to save an open file's state,
which is why cPickle itself doesn't even try. But in the context of our application, we can

assume that the given approach will work.) When reloading the instance from pickled form,
cPickle calls _ _setstate_ _ with the list of pairs, and _ _setstate_ _ can reconstruct
self.stuff by processing each pair appropriately in its nested reconstruct function. This scheme

can clearly generalize to getting and restoring state that may contain various kinds of normally
unpicklable objectsjust be sure to use different numbers to tag each of the various kinds of
"nonverbatim" pairs you need to support.

In one particular case, you can define _ _getstate_ _ without defining _ _setstate_ _: _
getstate _ must then return a dictionary, and reloading the instance from pickled form uses
that dictionary just as the instance's _ _dict_ _ would normally be used. Not running your own
code at reloading time is a serious hindrance, but it may come in handy when you want to use _
getstate _, not to save otherwise unpicklable state but rather as an optimization. Typically,

this optimization opportunity occurs when your instance caches results that it can recompute if
they're absent, and you decide it's best not to store the cache as a part of the instance's state. In
this case, you should define _ _getstate_ _ to return a dictionary that's the indispensable
subset of the instance's _ _dict_ _. (See Recipe 4.13) for a simple and handy way to "subset a

dictionary".)

Defining _ _getstate_ _ (and then, normally, also _ _setstate_ _) also gives you a further

important bonus, besides the pickling support: if a class offers these methods but doesn't offer
special methods _ _copy_ _ or _ _deepcopy_ _, then the methods are also used for copying,
both shallowly and deeply, as well as for serializing. The state data returned by _ _getstate_ _

is deep-copied if and only if the object is being dee-copied, but, other than this distinction,
shallow and deep copies work very similarly when they are implemented through _ _getstate_
_. See Recipe 4.1 for more information about how a class can control the way its instances are

copied, shallowly or deeply.

With either the default pickling/unpickling approach, or your own _ _getstate_ _ and _
setstate _, the instance's special method _ _init_ _ is not called when the instance is
getting unpickled. If the most convenient way for you to reconstruct an instance is to call the _
init _ method with appropriate parameters, then you may want to define the special method
_ _getinitargs_ _, instead of _ _getstate_ _. In this case, cPickle calls this method without
arguments: the method must return a pickable tuple, and at unpickling time, cPickle calls _
init _ with the arguments that are that tuple's items. _ _getinitargs_ _, like _ _getstate_
_ and _ _setstate_ _, can also be used for copying.

The Library Reference for the pickle and copy_reg modules details even subtler things you can

do when pickling and unpickling, as well as the thorny security issues that are likely to arise if
you ever stoop to unpickling data from untrusted sources. (Executive summary: don't do
thatthere is no way Python can protect you if you do.) However, the techniques I've discussed
here should suffice in almost all practical cases, as long as the security aspects of unpickling are
not a problem (and if they are, the only practical suggestion is: forget pickling!).

See Also

Recipe 7.2; documentation for the standard library module cPickle in the Library Reference and

Python in a Nutshell.

Recipe 7.5. Holding Bound Methods in a Picklable Way

Credit: Peter Cogolo

Problem

You need to pickle an object, but that object holds (as an attribute or item) a bound method of
another object, and bound methods are not picklable.

Solution

Say you have the following objects:

import cPickle
class Greeter(object):
 def _ _init_ _(self, name):
 self.name = name
 def greet(self):
 print 'hello', self.name
class Repeater(object):
 def _ _init_ _(self, greeter):
 self.greeter = greeter
 def greet(self):
 self.greeter()
 self.greeter()
r = Repeater(Greeter('world').greet)

Were it not for the fact that r holds a bound method as its greeter attribute, you could pickle r
very simply:

s = cPickle.dumps(r)

However, upon encountering the bound method, this call to cPickle.dumps raises a TypeError.

One simple solution is to have each instance of class Repeater hold, not a bound method directly,
but rather a picklable wrapper to it. For example:

class picklable_boundmethod(object):
 def _ _init_ _(self, mt):
 self.mt = mt
 def _ _getstate_ _(self):
 return self.mt.im_self, self.mt.im_func._ _name_ _
 def _ _setstate_ _(self, (s,fn)):
 self.mt = getattr(s, fn)
 def _ _call_ _(self, *a, **kw):
 return self.mt(*a, **kw)

Now, changing Repeater._ _init_ _'s body to self.greeter =
picklable_boundmethod(greeter) makes the previous snippet work.

Discussion

The Python Standard Library pickle module (just like its faster equivalent cousin cPickle)

pickles functions and classes by namethis implies, in particular, that only functions defined at the
top level of a module can be pickled (the pickling of such a function, in practice, contains just the
names of the module and function).

If you have a graph of objects that hold each other, not directly, but via one another's bound
methods (which is often a good idea in Python), this limitation can make the whole graph
unpicklable. One solution might be to teach pickle how to serialize bound methods, along the
same lines as described in Recipe 7.6. Another possible solution is to define appropriate _
getstate _ and _ _setstate_ _ methods to turn bound methods into something picklable at
dump time and rebuild them at load time, along the lines described in Recipe 7.4. However, this

latter possibility is not a good factorization when you have several classes whose instances hold
bound methods.

This recipe pursues a simpler idea, based on holding bound methods, not directly, but via the
picklable_boundmethod wrapper class. picklable_boundmethod is written under the assumption
that the only thing you usually do with a bound method is to call it, so it only delegates _ _call_
_ functionality specifically. (You could, in addition, also use _ _getattr_ _, in order to delegate

other attribute accesses.)

In normal operation, the fact that you're holding an instance of picklable_boundmethod rather

than holding the bound method object directly is essentially transparent. When pickling time
comes, special method _ _getstate_ _ of picklable_boundmethod comes into play, as
previously covered in Recipe 7.4. In the case of picklable_boundmethod, _ _getstate_ _

returns the object to which the bound method belongs and the function name of the bound
method. Later, at unpickling time, _ _setstate_ _ recovers an equivalent bound method from
the reconstructed object by using the getattr built-in for that name. This approach isn't infallible

because an object might hold its methods under assumed names (different from the real function
names of the methods). However, assuming you're not specifically doing something weird for the
specific purpose of breaking picklable_boundmethod's functionality, you shouldn't ever run into
this kind of obscure problem!

See Also

Library Reference and Python in a Nutshell docs for modules pickle and cPickle, bound-method
objects, and the getattr built-in.

Recipe 7.6. Pickling Code Objects

Credit: Andres Tremols, Peter Cogolo

Problem

You want to be able to pickle code objects, but this functionality is not supported by the standard
library's pickling modules.

Solution

You can extend the abilities of the pickle (or cPickle) module by using module copy_reg. Just

make sure the following module has been imported before you pickle code objects, and has been
imported, or is available to be imported, when you're unpickling them:

import new, types, copy_reg
def code_ctor(*args):
 # delegate to new.code the construction of a new code object
 return new.code(*args)
def reduce_code(co):
 # a reductor function must return a tuple with two items: first, the
 # constructor function to be called to rebuild the argument object
 # at a future de-serialization time; then, the tuple of arguments
 # that will need to be passed to the constructor function.
 if co.co_freevars or co.co_cellvars:
 raise ValueError, "Sorry, cannot pickle code objects from closures"
 return code_ctor, (co.co_argcount, co.co_nlocals, co.co_stacksize,
 co.co_flags, co.co_code, co.co_consts, co.co_names,
 co.co_varnames, co.co_filename, co.co_name, co.co_firstlineno,
 co.co_lnotab)
register the reductor to be used for pickling objects of type 'CodeType'
copy_reg.pickle(types.CodeType, reduce_code)
if _ _name_ _ == '_ _main_ _':
 # example usage of our new ability to pickle code objects
 import cPickle
 # a function (which, inside, has a code object, of course)
 def f(x): print 'Hello,', x
 # serialize the function's code object to a string of bytes
 pickled_code = cPickle.dumps(f.func_code)
 # recover an equal code object from the string of bytes
 recovered_code = cPickle.loads(pickled_code)
 # build a new function around the rebuilt code object
 g = new.function(recovered_code, globals())
 # check what happens when the new function gets called
 g('world')

Discussion

The Python Standard Library pickle module (just like its faster equivalent cousin cPickle)

pickles functions and classes by name. There is no pickling of the code objects containing the

compiled bytecode that, when run, determines almost every aspect of functions' (and methods')
behavior. In some situations, you'd rather pickle everything by value, so that all the relevant
stuff can later be retrieved from the pickle, rather than having to have module files around for
some of it. Sometimes you can solve such problems by using marshaling rather than pickling,
since marshal does let you serialize code objects, but marshal has limitations on many other

issues. For example, you cannot marshal instances of classes you have coded. (Once you're
serializing code objects, which are specific to a given version of Python, pickle will share one
key limitation of marshal: no guaranteed ability to save and later reload data across different

versions of Python.)

An alternative approach is to take advantage of the possibility, which the Python Standard
Library allows, to extend the set of types known to pickle. Basically, you can "teach" pickle

how to save and reload code objects; this, in turn, lets you pickle by value, rather than "by
name", such objects as functions and classes. (The code in this recipe's Solution under the if _
name _ == '_ _main_ _' guard essentially shows how to extend pickle for a function.)

To teach pickle about some new type, use module copy_reg, which is also part of the Python
Standard Library. Through function copy_reg.pickle, you register the reduction function to use

for instances of a given type. A reduction function takes as its argument an instance to be
pickled and returns a tuple with two items: a constructor function, which will be called to
reconstruct the instance, and a tuple of arguments, which will be passed to the constructor
function. (A reduction function may also return other kinds of results, but for this recipe's
purposes a two-item tuple suffices.)

The module in this recipe defines function reduce_code, then registers it as the reduction
function for objects of type types.CodeTypethat is, code objects. When reduce_code gets called,

it first checks whether its code object co comes from a closure (functions nested inside each
other), because it just can't deal with this eventualityI've been unable to find a way that works,
so in this case, reduce_code just raises an exception to let the user know about the problem.

In normal cases, reduce_code returns code_ctor as the constructor and a tuple made up of all of
co's attributes as the arguments tuple for the constructor. When a code object is reloaded from a
pickle, code_ctor gets called with those arguments and simply passes the call on to the new.code

callable, which is the true constructor for code arguments. Unfortunately, reduce_code cannot
return new.code itself as the first item in its result tuple, because new.code is a built-in (a C-

coded callable) but is not available through a built-in name. So, basically, the role of code_ctor is
to provide a name for the (by-name) pickling of new.code.

The if _ _name_ _ == '_ _main_ _' part of the recipe provides a typical toy usage exampleit

pickles a code object to a string, recovers a copy of it from the pickle string, and builds and calls
a function around that code object. A more typical use case for this recipe's functionality, of
course, will do the pickling in one script and the unpickling in another. Assume that the module
in this recipe has been saved as file reco.py somewhere on Python's sys.path, so that it can be

imported by Python scripts and other modules. You could then have a script that imports reco
and thus becomes able to pickle code objects, such as:

import reco, pickle
def f(x):
 print 'Hello,', x
pickle.dump(f.func_code, open('saved.pickle','wb'))

To unpickle and use that code object, an example script might be:

import new, cPickle
c = cPickle.load(open('saved.pickle','rb'))
g = new.function(c, globals())
g('world')

Note that the second script does not need to import recothe import will happen automatically

when needed (part of the information that pickle saves in saved.pickle is that, in order to

reconstruct the pickled object therein, it needs to call reco.code_ctor; so, it also knows it needs
to import reco). I'm also showing that you can use modules pickle and cPickle
interchangeably. Pickle is faster, but there are no other differences, and in particular, you can

use one module to pickle objects and the other one to unpickle them, if you wish.

See Also

Modules pickle, cPickle, and copy_reg in the Library Reference and Python in a Nutshell.

Recipe 7.7. Mutating Objects with shelve

Credit: Luther Blissett

Problem

You are using the standard module shelve. Some of the values you have shelved are mutable

objects, and you need to mutate these objects.

Solution

The shelve module offers a kind of persistent dictionaryan important niche between the power of
relational-database engines and the simplicity of marshal, pickle, dbm, and similar file formats.
However, you should be aware of a typical trap you need to avoid when using shelve. Consider

the following interactive Python session:

>>> import shelve
>>> # Build a simple sample shelf
>>> she = shelve.open('try.she', 'c')
>>> for c in 'spam': she[c] = {c:23}
...
>>> for c in she.keys(): print c, she[c]
...
p {'p': 23}
s {'s': 23}
a {'a': 23}
m {'m': 23}
>>> she.close()

We've created the shelve file, added some data to it, and closed it. Goodnow we can reopen it

and work with it:

>>> she=shelve.open('try.she', 'c')
>>> she['p']
{'p': 23}
>>> she['p']['p'] = 42
>>> she['p']
{'p': 23}

What's going on here? We just set the value to 42, but our setting didn't take in the shelve
object! The problem is that we were working with a temporary object that shelve gave us, not
with the "real thing". shelve, when we open it with default options, like here, doesn't track

changes to such temporary objects. One reasonable solution is to bind a name to this temporary
object, do our mutation, and then assign the mutated object back to the appropriate item of
shelve:

>>> a = she['p']
>>> a['p'] = 42
>>> she['p'] = a
>>> she['p']

{'p': 42}
>>> she.close()

We can verify that the change was properly persisted:

>>> she=shelve.open('try.she','c')
>>> for c in she.keys(): print c,she[c]
...
p {'p': 42}
s {'s': 23}
a {'a': 23}
m {'m': 23}

A simpler solution is to open the shelve object with the writeback option set to TRue:

>>> she = shelve.open('try.she', 'c', writeback=True)

The writeback option instructs shelve to keep track of all the objects it gets from the file and

write them all back to the file before closing it, just in case they have been modified in the
meantime. While simple, this approach can be quite expensive, particularly in terms of memory
consumption. Specifically, if we read many objects from a shelve object opened with
writeback=True, even if we only modify a few of them, shelve is going to keep them all in

memory, since it can't tell in advance which one we may be about to modify. The previous
approach, where we explicitly take responsibility to notify shelve of any changes (by assigning

the changed objects back to the place they came from), requires more care on our part, but
repays that care by giving us much better performance.

Discussion

The standard Python module shelve can be quite convenient in many cases, but it hides a

potentially nasty trap, admittedly well documented in Python's online docs but still easy to miss.
Suppose you're shelving mutable objects, such as dictionaries or lists. Naturally, you are quite
likely to want to mutate some of those objectsfor example, by calling mutating methods (append
on a list, update on a dictionary, etc.) or by assigning a new value to an item or attribute of the
object. However, when you do this, the change doesn't occur in the shelve object. This is
because we actually mutate a temporary object that the shelve object has given us as the result
of shelve's own _ _getitem_ _ method, but the shelve object, by default, does not keep track

of that temporary object, nor does it care about it once it returns it to us.

As shown in the recipe, one solution is to bind a name to the temporary object obtained by
keying into the shelf, doing whatever mutations are needed to the object via the name, then
assigning the newly mutated object back to the appropriate item of the shelve object. When you
assign to a shelve object's item, the shelve object's _ _setitem_ _ method gets invoked, and it
appropriately updates the shelve object itself, so that the change does occur.

Alternatively, you can add the flag writeback=True at the time you open the shelve object, and
then shelve keeps track of every object it hands you, saving them all back to disk at the end.

This approach may save you quite a bit of fussy and laborious coding, but take care: if you read
many items of the shelve object and only modify a few of them, the writeback approach can be

exceedingly costly, particularly in terms of memory consumption. When opened with
writeback=True, shelve will keep in memory any item it has ever handed you, and save them

all to disk at the end, since it doesn't have a reliable way to tell which items you may be about to
modify, nor, in general, even which items you have actually modified by the time you close the
shelve object. The recommended approach, unless you're going to modify just about every item
you read (or unless the shelve object in question is small enough compared with your available

memory that you don't really care), is the previous one: bind a name to the items that you get

from a shelve object with intent to modify them, and assign each item back into the shelve

object once you're done mutating that item.

See Also

Recipe 7.1 and Recipe 7.2 for alternative serialization approaches; documentation for the shelve

standard library module in the Library Reference and Python in a Nutshell.

Recipe 7.8. Using the Berkeley DB Database

Credit: Farhad Fouladi

Problem

You want to persist some data, exploiting the simplicity and good performance of the Berkeley
DB database library.

Solution

If you have previously installed Berkeley DB on your machine, the Python Standard Library
comes with package bsddb (and optionally bsddb3, to access Berkeley DB release 3.2 databases)
to interface your Python code with Berkeley DB. To get either bsddb or, lacking it, bsddb3, use a
try/except on import:

try:
 from bsddb import db # first try release 4
except ImportError:
 from bsddb3 import db # not there, try release 3 instead
print db.DB_VERSION_STRING
emits, e.g: Sleepycat Software: Berkeley DB 4.1.25: (December 19, 2002)

To create a database, instantiate a db.DB object, then call its method open with appropriate

parameters, such as:

adb = db.DB()
adb.open('db_filename', dbtype=db.DB_HASH, flags=db.DB_CREATE)

db.DB_HASH is just one of several access methods you may choose when you create a databasea
popular alternative is db.DB_BTREE, to use B+tree access (handy if you need to get records in

sorted order). You may make an in-memory database, without an underlying file for persistence,
by passing None instead of a filename as the first argument to the open method.

Once you have an open instance of db.DB, you can add records, each composed of two strings,
key and data:

for i, w in enumerate('some words for example'.split()):
 adb.put(w, str(i))

You can access records via a cursor on the database:

def irecords(curs):
 record = curs.first()
 while record:
 yield record
 record = curs.next()
for key, data in irecords(adb.cursor()):
 print 'key=%r, data=%r' % (key, data)
emits (the order may vary):

key='some', data='0'
key='example', data='3'
key='words', data='1'
key='for', data='2'

When you're done, you close the database:

adb.close()

At any future time, in the same or another Python program, you can reopen the database by
giving just its filename as the argument to the open method of a newly created db.DB instance:

the_same_db = db.DB()
the_same_db.open('db_filename')

and work on it again in the same ways:

the_same_db.put('skidoo', '23') # add a record
the_same_db.put('words', 'sweet') # replace a record
for key, data in irecords(the_same_db.cursor()):
 print 'key=%r, data=%r' % (key, data)
emits (the order may vary):
key='some', data='0'
key='example', data='3'
key='words', data='sweet'
key='for', data='2'
key='skidoo', data='23'

Again, remember to close the database when you're done:

the_same_db.close()

Discussion

The Berkeley DB is a popular open source database. It does not support SQL, but it's simple to
use, offers excellent performance, and gives you a lot of control over exactly what happens, if
you care to exert it, through a huge array of options, flags, and methods. Berkeley DB is just as
accessible from many other languages as from Python: for example, you can perform some
changes or queries with a Python program, and others with a separate C program, on the same
database file, using the same underlying open source library that you can freely download from
Sleepycat.

The Python Standard Library shelve module can use the Berkeley DB as its underlying database
engine, just as it uses cPickle for serialization. However, shelve does not let you take

advantage of the ability to access a Berkeley DB database file from several different languages,
exactly because the records are strings produced by pickle.dumps, and languages other than
Python can't easily deal with them. Accessing the Berkeley DB directly with bsddb also gives you
access to many advanced functionalities of the database engine that shelve simply doesn't

support.

A Database, or pickle . . . or Both?

The use cases for pickle or marshal, and those for databases such as Berkeley DB

or relational databases, are rather different, though they do overlap somewhat.

pickle (and marshal even more so) is essentially about serialization: you turn

Python objects into BLOBs that you may transmit or store, and later receive or
retrieve. Data thus serialized is meant to be reloaded into Python objects, basically
only by Python applications. pickle has nothing to say about searching or selecting

specific objects or parts of them.

Databases (Berkeley DB, relational DBs, and other kinds yet) are essentially about
data: you save and retrieve groupings of elementary data (strings and numbers,
mostly), with a lot of support for selecting and searching (a huge lot, for relational
databases) and cross-language support. Databases have nothing to say about
serializing Python objects into data, nor about deserializing Python objects back from
data.

The two approaches, databases and serialization, can even be used together. You can
serialize Python objects into strings of bytes with pickle, and store those bytes using

a databaseand vice versa at retrieval time. At a very elementary level, that's what
the standard Python library shelve module does, for example, with pickle to
serialize and deserialize and generally bsddb as the underlying simple database

engine. So, don't think of the two approaches as being "in competition" with each
otherrather, think of them as completing and complementing each other!

For example, creating a database with an access method of db.DB_HASH, as shown in the recipe,

may give maximum performance, but, as you'll have noticed when listing all records with the
generator irecords that is also presented in the recipe, hashing puts records in apparently
random, unpredictable order. If you need to access records in sorted order, you can use an
access method of db.DB_BTREE instead. Berkeley DB also supports more advanced functionality,
such as transactions, which you can enable through direct access but not via anydbm or shelve.

For detailed documentation about all functionality of the Python Standard Library bsddb package,

see http://pybsddb.sourceforge.net/bsddb3.html. For documentation, downloads, and more of
the Berkeley DB itself, see http://www.sleepycat.com/.

See Also

Library Reference and Python in a Nutshell docs for modules anydbm, shelve, and bsddb;
http://pybsddb.sourceforge.net/bsddb3.html for many more details about bsddb and bsddb3;

http://www.sleepycat.com/ for downloads of, and very detailed documentation on, the Berkeley
DB itself.

http://pybsddb.sourceforge.net/bsddb3.html
http://www.sleepycat.com/
http://pybsddb.sourceforge.net/bsddb3.html
http://www.sleepycat.com/

Recipe 7.9. Accesssing a MySQL Database

Credit: Mark Nenadov

Problem

You need to access a MySQL database.

Solution

The MySQLdb module makes this task extremely easy:

import MySQLdb
Create a connection object, then use it to create a cursor
con = MySQLdb.connect(host="127.0.0.1", port=3306,
 user="joe", passwd="egf42", db="tst")
cursor = con.cursor()
Execute an SQL string
sql = "SELECT * FROM Users"
cursor.execute(sql)
Fetch all results from the cursor into a sequence and close the connection
results = cursor.fetchall()
con.close()

Discussion

MySQLdb is at http://sourceforge.net/projects/mysql-python. It is a plain and simple

implementation of the Python DB API 2.0 that is suitable for Python 2.3 (and some older
versions, too) and MySQL versions 3.22 to 4.0. MySQLdb, at the time of this writing, did not yet

officially support Python 2.4. However, if you have the right C compiler installation to build
Python extensions (as should be the case for all Linux, Mac OS X, and other Unix users, and
many Windows developers), the current version of MySQLdb does in fact build from sources,
install, and work just fine, with Python 2.4. A newer version of MySQLdb is in the works, with

official support for Python 2.3 or later and MySQL 4.0 or later.

As with all other Python DB API implementations (once you have downloaded and installed the
needed Python extension and have the database engine it needs up and running), you start by
importing the module and calling the connect function with suitable parameters. The keyword
parameters you can pass when calling connect depend on the database involved: host
(defaulting to the local host), user, passwd (password), and db (name of the database) are

typical. In the recipe, I explicitly pass the default local host's IP address and the default MySQL
port (3306), just to show that you can specify parameters explicitly even when you're passing
their default values (e.g., to make your source code clearer and more readable and
maintainable).

The connect function returns a connection object, and you can proceed to call methods on this
object; when you are done, call the close method. The method you most often call on a
connection object is cursor, which returns a cursor object, which is what you use to send SQL

commands to the database and fetch the commands' results. The underlying MySQL database
engine does not in fact support SQL cursors, but that's no problemthe MySQLdb module emulates

them on your behalf, quite transparently, for the limited cursor needs of the Python DB API 2.0.

http://sourceforge.net/projects/mysql-python

Of course, this doesn't mean that you can use SQL phrases like WHERE CURRENT OF CURSOR with a
database that does not offer cursors! Once you have a cursor object in hand, you can call
methods on it. The recipe uses the execute method to execute an SQL statement, and then the
fetchall method to obtain all results as a sequence of tuplesone tuple per row in the result. You

can use many refinements, but these basic elements of the Python DB API's functionality already
suffice for many tasks.

See Also

The Python-MySQL interface module (http://sourceforge.net/projects/mysql-python); the Python
DB API (http://www.python.org/topics/database/DatabaseAPI-2.0.html); DB API documentation
in Python in a Nutshell.

http://sourceforge.net/projects/mysql-python
http://www.python.org/topics/database/DatabaseAPI-2.0.html

Recipe 7.10. Storing a BLOB in a MySQL Database

Credit: Luther Blissett

Problem

You need to store a binary large object (BLOB) in a MySQL database.

Solution

The MySQLdb module does not support full-fledged placeholders, but you can make do with the
module's escape_string function:

import MySQLdb, cPickle
Connect to a DB, e.g., the test DB on your localhost, and get a cursor
connection = MySQLdb.connect(db="test")
cursor = connection.cursor()
Make a new table for experimentation
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BLOB)")
try:
 # Prepare some BLOBs to insert in the table
 names = 'aramis', 'athos', 'porthos'
 data = { }
 for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
 # Perform the insertions
 sql = "INSERT INTO justatest VALUES(%s, %s)"
 for name in names:
 cursor.execute(sql, (name, MySQLdb.escape_string(data[name])))
 # Recover the data so you can check back
 sql = "SELECT name, ablob FROM justatest ORDER BY name"
 cursor.execute(sql)
 for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
finally:
 # Done. Remove the table and close the connection.
 cursor.execute("DROP TABLE justatest")
 connection.close()

Discussion

MySQL supports binary data (BLOBs and variations thereof), but you should be careful when
communicating such data via SQL. Specifically, when you use a normal INSERT SQL statement
and need to have binary strings among the VALUES you're inserting, you have to escape some

characters in the binary string according to MySQL's own rules. Fortunately, you don't have to
figure out those rules for yourself: MySQL supplies a function that does the needed escaping, and
MySQLdb exposes it to your Python programs as the escape_string function.

This recipe shows a typical case: the BLOBs you're inserting come from cPickle.dumps, so they

may represent almost arbitrary Python objects (although, in this case, we're just using them for
a few lists of characters). The recipe is purely demonstrative and works by creating a table and
dropping it at the end (using a try/finally statement to ensure that finalization is performed

even if the program should terminate because of an uncaught exception). With recent versions of
MySQL and MySQLdb, you don't even need to call the escape_string function anymore, so you

can change the relevant statement to the simpler:

cursor.execute(sql, (name, data[name]))

See Also

Recipe 7.11 and Recipe 7.12 for PostgreSQL-oriented and SQLite-oriented solutions to the same
problem; the MySQL home page (http://www.mysql.org); the Python/MySQL interface module
(http://sourceforge.net/projects/mysql-python).

http://www.mysql.org
http://sourceforge.net/projects/mysql-python

Recipe 7.11. Storing a BLOB in a PostgreSQL Database

Credit: Luther Blissett

Problem

You need to store a BLOB in a PostgreSQL database.

Solution

PostgreSQL 7.2 and later supports large objects, and the psycopg module supplies a Binary

escaping function:

import psycopg, cPickle
Connect to a DB, e.g., the test DB on your localhost, and get a cursor
connection = psycopg.connect("dbname=test")
cursor = connection.cursor()
Make a new table for experimentation
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BYTEA)")
try:
 # Prepare some BLOBs to insert in the table
 names = 'aramis', 'athos', 'porthos'
 data = { }
 for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
 # Perform the insertions
 sql = "INSERT INTO justatest VALUES(%s, %s)"
 for name in names:
 cursor.execute(sql, (name, psycopg.Binary(data[name])))
 # Recover the data so you can check back
 sql = "SELECT name, ablob FROM justatest ORDER BY name"
 cursor.execute(sql)
 for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
finally:
 # Done. Remove the table and close the connection.
 cursor.execute("DROP TABLE justatest")
 connection.close()

Discussion

PostgreSQL supports binary data (BYTEA and variations thereof), but you should be careful when
communicating such data via SQL. Specifically, when you use a normal INSERT SQL statement
and need to have binary strings among the VALUES you're inserting, you have to escape some

characters in the binary string according to PostgreSQL's own rules. Fortunately, you don't have
to figure out those rules for yourself: PostgreSQL supplies functions that do all the needed
escaping, and psycopg exposes such a function to your Python programs as the Binary function.
This recipe shows a typical case: the BYTEAs you're inserting come from cPickle.dumps, so they

may represent almost arbitrary Python objects (although, in this case, we're just using them for
a few lists of characters). The recipe is purely demonstrative and works by creating a table and
dropping it at the end (using a TRy/finally statement to ensure finalization is performed even if

the program should terminate because of an uncaught exception).

Earlier PostgreSQL releases limited to a few kilobytes the amount of data you could store in a
normal field of the database. To store really large objects, you had to use roundabout techniques
to load the data into the database (such as PostgreSQL's nonstandard SQL function LO_IMPORT to

load a data file as an object, which requires superuser privileges and data files that reside on the
machine running the Postgre-SQL Server) and store a field of type OID in the table to be used

later for indirect recovery of the data. Fortunately, none of these techniques are necessary
anymore: since Release 7.1 (the current release at the time of writing is 8.0), PostgreSQL
embodies the results of project TOAST, which removed the limitations on field-storage size and
therefore the need for peculiar indirection. Module psycopg supplies the handy Binary function to

let you escape any binary string of bytes into a form acceptable for placeholder substitution in
INSERT and UPDATE SQL statements.

See Also

Recipe 7.10 and Recipe 7.12 for MySQL-oriented and SQLite-oriented solutions to the same
problem; PostgresSQL's home page (http://www.postgresql.org/); the Python/PostgreSQL
module (http://initd.org/software/psycopg).

http://www.postgresql.org/
http://initd.org/software/psycopg

Recipe 7.12. Storing a BLOB in a SQLite Database

Credit: John Barham

Problem

You need to store a BLOB in an SQLite database.

Solution

The PySQLite Python extension offers function sqlite.encode to let you insert binary strings in

SQLite databases. You can also build a small adapter class based on that function:

import sqlite, cPickle
class Blob(object):
 ''' automatic converter for binary strings '''
 def _ _init_ _(self, s): self.s = s
 def _quote(self): return "'%s'" % sqlite.encode(self.s)
make a test database in memory, get a cursor on it, and make a table
connection = sqlite.connect(':memory:')
cursor = connection.cursor()
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BLOB)")
Prepare some BLOBs to insert in the table
names = 'aramis', 'athos', 'porthos'
data = { }
for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
Perform the insertions
sql = 'INSERT INTO justatest VALUES(%s, %s)'
for name in names:
 cursor.execute(sql, (name, Blob(data[name])))
Recover the data so you can check back
sql = 'SELECT name, ablob FROM justatest ORDER BY name'
cursor.execute(sql)
for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
Done, close the connection (would be no big deal if you didn't, but...)
connection.close()

Discussion

SQLite does not directly support binary data, but it still lets you declare such types for fields in a
CREATE TABLE DDL statement. The PySQLite Python extension uses the declared types of fields
to convert field values appropriately to Python values when you fetch data after an SQL SELECT

from an SQLite database. However, you still need to be careful when communicating binary
string data via SQL.

Specifically, when you use INSERT or UPDATE SQL statements, and need to have binary strings

among the VALUES you're passing, you need to escape some characters in the binary string

according to SQLite's own rules. Fortunately, you don't have to figure out those rules for
yourself: SQLite supplies the function to do the needed escaping, and PySQLite exposes that
function to your Python programs as the sqlite.encode function. This recipe shows a typical
case: the BLOBs you're inserting come from cPickle.dumps, so they may represent almost

arbitrary Python objects (although, in this case, we're just using them for a few lists of
characters). The recipe is purely demonstrative and works by creating a database in memory, so
that the database is implicitly lost at the end of the script.

While you could perfectly well call sqlite.encode directly on your binary strings at the time you
pass them as parameters to a cursor's execute method, this recipe takes a slightly different

tack, defining a Blob class to wrap binary strings and passing instances of that. When PySQLite
receives as arguments instances of any class, the class must define a method named _quote,

and PySQLite calls that method on each instance, expecting the method to return a string fully
ready for insertion into an SQL statement. When you use this approach for more complicated
classes of your own, you'll probably want to pass a decoders keyword argument to the connect

method, to associate appropriate decoding functions to specific SQL types. By default, however,
the BLOB SQL type is associated with the decoding function sqlite.decode, which is exactly the
inverse of sqlite.encode; for the simple Blob class in this recipe, therefore, we do not need to

specify any custom decoder, since the default one suits us perfectly well.

See Also

Recipe 7.10 and Recipe 7.11 for MySQL-oriented and PostgreSQL-oriented solutions to the same
problem; SQLite's home page (http://www.sqlite.org/); the PySQLite manual
(http://pysqlite.sourceforge.net/manual.html); the SQLite FAQ ("Does SQLite support a BLOB
type?") at http://www.hwaci.com/sw/sqlite/faq.html#q12.

http://www.sqlite.org/
http://pysqlite.sourceforge.net/manual.html
http://www.hwaci.com/sw/sqlite/faq.html#q12

Recipe 7.13. Generating a Dictionary Mapping Field
Names to Column Numbers

Credit: Thomas T. Jenkins

Problem

You want to access data fetched from a DB API cursor object, but you want to access the
columns by field name, not by number.

Solution

Accessing columns within a set of database-fetched rows by column index is not very readable,
nor is it robust should columns ever get reordered in a rework of the database's schema (a rare
event, but it does occasionally happen). This recipe exploits the description attribute of Python
DB API's cursor objects to build a dictionary that maps column names to index values, so you
can use cursor_row[field_dict[fieldname]] to get the value of a named column:

def fields(cursor):
 """ Given a DB API 2.0 cursor object that has been executed, returns
 a dictionary that maps each field name to a column index, 0 and up. """
 results = { }
 for column, desc in enumerate(cursor.description):
 results[desc[0]] = column
 return results

Discussion

When you get a set of rows from a call to any of a cursor's various fetch . . . methods
(fetchone, fetchmany, fetchall), it is often helpful to be able to access a specific column in a

row by field name and not by column number. This recipe shows a function that takes a DB API
2.0 cursor object and returns a dictionary with column numbers keyed by field names.

Here's a usage example (assuming you put this recipe's code in a module that you call dbutils.py
somewhere on your Python sys.path). You must start with conn being a connection object for

any DB API 2-compliant Python module.

>>> c = conn.cursor()
>>> c.execute('''select * from country_region_goal
... where crg_region_code is null''')
>>> import pprint
>>> pp = pprint.pprint
>>> pp(c.description)
(('CRG_ID', 4, None, None, 10, 0, 0),
('CRG_PROGRAM_ID', 4, None, None, 10, 0, 1),
('CRG_FISCAL_YEAR', 12, None, None, 4, 0, 1),
('CRG_REGION_CODE', 12, None, None, 3, 0, 1),
('CRG_COUNTRY_CODE', 12, None, None, 2, 0, 1),
('CRG_GOAL_CODE', 12, None, None, 2, 0, 1),
('CRG_FUNDING_AMOUNT', 8, None, None, 15, 0, 1))

>>> import dbutils
>>> field_dict = dbutils.fields(c)
>>> pp(field_dict)
{'CRG_COUNTRY_CODE': 4,
'CRG_FISCAL_YEAR': 2,
'CRG_FUNDING_AMOUNT': 6,
'CRG_GOAL_CODE': 5,
'CRG_ID': 0,
'CRG_PROGRAM_ID': 1,
'CRG_REGION_CODE': 3}
>>> row = c.fetchone()
>>> pp(row)
(45, 3, '2000', None, 'HR', '26', 48509.0)
>>> ctry_code = row[field_dict['CRG_COUNTRY_CODE']]
>>> print ctry_code
HR
>>> fund = row[field_dict['CRG_FUNDING_AMOUNT']]
>>> print fund
48509.0

If you find accesses such as row[field_dict['CRG_COUNTRY_CODE']] to be still inelegant, you

may want to get fancier and wrap the row as well as the dictionary of fields into an object
allowing more elegant accessa simple example might be:

class neater(object):
 def _ _init_ _(self, row, field_dict):
 self.r = row
 self.d = field_dict
 def _ _getattr_ _(self, name):
 try:
 return self.r[self.d[name]]
 except LookupError:
 raise AttributeError

If this neater class was also in your dubtils module, you could then continue the preceding
interactive snippet with, for example:

>>> row = dbutils.neater(row, field_dict)
>>> print row.CRG_FUNDING_AMOUNT
48509.0

However, if you're tempted by such fancier approaches, I suggest that, rather than rolling your
own, you have a look at the dbtuple module showcased in Recipe 7.14. Reusing good, solid,

proven code is a much smarter approach than writing your own infrastructure.

See Also

Recipe 7.14 for a slicker and more elaborate approach to a very similar task, facilitated by
reusing the third-party dbtuple module.

Recipe 7.14. Using dtuple for Flexible Accessto Query
Results

Credit: Steve Holden, Hamish Lawson, Kevin Jacobs

Problem

You want flexible access to sequences, such as the rows in a database query, by either name or
column number.

Solution

Rather than coding your own solution, it's often more clever to reuse a good existing one. For
this recipe's task, a good existing solution is packaged in Greg Stein's dtuple module:

import dtuple
import mx.ODBC.Windows as odbc
flist = ["Name", "Num", "LinkText"]
descr = dtuple.TupleDescriptor([[n] for n in flist])
conn = odbc.connect("HoldenWebSQL") # Connect to a database
curs = conn.cursor() # Create a cursor
sql = """SELECT %s FROM StdPage
 WHERE PageSet='Std' AND Num<25
 ORDER BY PageSet, Num""" % ", ".join(flist)
print sql
curs.execute(sql)
rows = curs.fetchall()
for row in rows:
 row = dtuple.DatabaseTuple(descr, row)
 print "Attribute: Name: %s Number: %d" % (row.Name, row.Num or 0)
 print "Subscript: Name: %s Number: %d" % (row[0], row[1] or 0)
 print "Mapping: Name: %s Number: %d" % (row["Name"], row["Num"] or 0)
conn.close()

Discussion

Novice Python programmers are sometimes deterred from using databases because query
results are presented by DB API-compliant modules as a list of tuples. Since tuples can only be
numerically subscripted, code that uses the query results becomes opaque and difficult to
maintain. Greg Stein's dtuple module, available from

http://www.lyra.org/greg/python/dtuple.py, helps by defining two useful classes:
TupleDescriptor and DatabaseTuple. To access an arbitrary SQL database, this recipe uses the
ODBC protocol through the mxODBC module, http://www.egenix.com/files/python/mxODBC.html,

but nothing relevant to the recipe's task would change if any other standard DB API-compliant
module was used instead.

The TupleDescriptor class creates a description of tuples from a list of sequences, the first

element of each subsequence being a column name. It is often convenient to describe data with
such sequences. For example, in an interactive forms-based application, each column name
might be followed by validation parameters such as data type and allowable length.

http://www.lyra.org/greg/python/dtuple.py
http://www.egenix.com/files/python/mxODBC.html

TupleDescriptor's purpose is to allow the creation of DatabaseTuple objects. In this particular

application, no other information about the columns is needed beyond the names, so the
required list of sequences is a list of singleton lists (meaning lists that have just one element
each), constructed from a list of field names using a list comprehension.

Created from TupleDescriptor and a tuple such as a database row, DatabaseTuple is an object

whose elements can be accessed by numeric subscript (like a tuple) or column-name subscript
(like a dictionary). If column names are legal Python names, you can also access the columns in
your DatabaseTuple as attributes. A purist might object to this crossover between items and

attributes, but it's a highly pragmatic choice in this case. Python is nothing if not a highly
pragmatic language, so I see nothing wrong with this convenience.

To demonstrate the utility of DatabaseTuple, the simple test program in this recipe creates a
TupleDescriptor and uses it to convert each row retrieved from an SQL query into
DatabaseTuple. Because the sample uses the same field list to build both TupleDescriptor and
the SQL SELECT statement, it demonstrates how database code can be parameterized relatively

easily.

Alternatively, if you wish to get all the fields (an SQL SELECT * query), and dynamically get the

field names from the cursor, as previously described in Recipe 7.13, you can do so. Just remove
variable flist, which you don't need any more, and move the construction of variable descr to
right after the call to the cursor's execute method, as follows:

curs.execute(sql)
descr = dtuple.TupleDescriptor(curs.description)

The rest of the recipe can remain unchanged.

A more sophisticated approach, with functionality similar to dtuple's and even better
performance, is offered by the Python Database Row Module (also known as db_row) made freely

available by the OPAL Group. For downloads and information, visit
http://opensource.theopalgroup.com/.

Module pysqlite, which handles relational databases in memory or in files by wrapping the
SQLite library, does not return real tuples from such methods as fetchall: rather, it returns
instances of a convenience class that wraps tuple and also allows field access with attribute-

access syntax, much like the approaches mentioned in this recipe.

See Also

Recipe 7.13 for a simpler, less functionally rich way to convert field names to column numbers;
the dtuple module is at http://www.lyra.org/greg/python/dtuple.py; OPAL's db_row is at

http://opensource.theopalgroup.com/; SQLite, a fast, lightweight, embedded relational database
(http://www.sqlite.org/), and its Python DB API interface module pysqlite

(http://pysqlite.sourceforge.net/).

http://opensource.theopalgroup.com/
http://www.lyra.org/greg/python/dtuple.py
http://opensource.theopalgroup.com/
http://www.sqlite.org/
http://pysqlite.sourceforge.net/

Recipe 7.15. Pretty-Printing the Contents of Database
Cursors

Credit: Steve Holden, Farhad Fouladi, Rosendo Martinez, David Berry, Kevin Ryan

Problem

You want to present a query's result with appropriate column headers (and optionally widths),
but you do not want to hard-code this information in your program. Indeed, you may not even
know the column headers and widths at the time you're writing the code.

Solution

Discovering the column headers and widths dynamically is the most flexible approach, and it
gives you code that's highly reusable over many such presentation tasks:

def pp(cursor, data=None, check_row_lengths=False):
 if not data:
 data = cursor.fetchall()
 names = []
 lengths = []
 rules = []
 for col, field_description in enumerate(cursor.description):
 field_name = field_description[0]
 names.append(field_name)
 field_length = field_description[2] or 12
 field_length = max(field_length, len(field_name))
 if check_row_lengths:
 # double-check field length, if it's unreliable
 data_length = max([len(str(row[col])) for row in data])
 field_length = max(field_length, data_length)
 lengths.append(field_length)
 rules.append('-' * field_length)
 format = " ".join(["%%-%ss" % l for l in lengths])
 result = [format % tuple(names), format % tuple(rules)]
 for row in data:
 result.append(format % tuple(row))
 return "\n".join(result)

Discussion

Relational databases are often perceived as difficult to use. The Python DB API can make them
much easier to use, but if your programs work with several different DB engines, it's sometimes
tedious to reconcile the implementation differences between the various modules, and, even
more, between the engines they connect to. One of the problems of dealing with databases is
presenting the result of a query when you may not know much about the data. This recipe uses
the cursor's description attribute to try to provide appropriate headings. The recipe optionally

examines each output row to ensure that column widths are adequate.

In some cases, a cursor can yield a solid description of the data it returns, but not all database

modules are kind enough to supply cursors that do so. The pretty printer function pp shown in
this recipe's Solution takes as its first argument a cursor, on which you have just executed a
retrieval operation (generally the execute of an SQL SELECT statement). It also takes an optional

argument for the returned data; to use the data for other purposes, retrieve the data from the
cursor, typically with fetchall, and pass it in as pp's data argument. The second optional

argument tells the pretty printer to determine the column lengths from the data, rather than
trusting the cursor's description; checking the data for column lengths can be time-consuming,
but is helpful with some RDBMS engines and DB API module combinations, where the widths
given by the cursor's description attribute can be inaccurate.

A simple test program shows the value of the second optional argument when a Microsoft Jet
database is used through the mxODBC module:

import mx.ODBC.Windows as odbc
import dbcp # contains pp function
conn = odbc.connect("MyDSN")
curs = conn.cursor()
curs.execute("""SELECT Name, LinkText, Pageset FROM StdPage
 ORDER BY PageSet, Name""")
rows = curs.fetchall()
print "\n\nWithout rowlens:"
print dbcp.pp(curs, rows)
print "\n\nWith rowlens:"
print dbcp.pp(curs, rows, rowlens=1)
conn.close()

In this case, the cursor's description does not include column lengths. The first output shows

that the default column length of 12 is too short. The second output corrects this by examining
the data:

Without rowlens:
Name LinkText Pageset
------------ ------------ ------------
ERROR ERROR: Cannot Locate Page None
home Home None
consult Consulting Activity Std
ffx FactFaxer Std
hardware Hardware Platforms Std
python Python Std
rates Rates Std
technol Technologies Std
wcb WebCallback Std
With rowlens:
Name LinkText Pageset
------------ ------------------------- ------------
ERROR ERROR: Cannot Locate Page None
home Home None
consult Consulting Activity Std
ffx FactFaxer Std
hardware Hardware Platforms Std
python Python Std
rates Rates Std
technol Technologies Std
wcb WebCallback Std

Module pysqlite, which handles relational databases in memory or in files by wrapping the

SQLite library, is another example of a DB API module whose cursors' descriptions do not contain
reliable values for field lengths. Moreover, pysqlite does not return real tuples from such

methods as fetchall: rather, it returns instances of a convenience class which wraps tuple and

also allocws field access with attribute access syntax, much like the approaches presented in
Recipe 7.14. To deal with such small variations from the DB API specifications, this recipe
carefully uses tuple(row), not just row, as the right-hand operand of operator % in the
statement result.append(format % tuple(row)). Python's semantics specify that if the right-
hand operand is not a tuple, then the left-hand (format string) operand may contain only one
format specifier. This recipe uses a tuple as the right-hand operand because the whole point of

the recipe is to build and use a format string with many format specifiers, one per field.

This recipe's function is useful during testing, since it lets you easily verify that you are indeed
retrieving what you expect from the database. The output is pretty enough to display ad hoc
query outputs to users. The function currently makes no attempt to represent null values other
than the None the DB API returns, though it could easily be modified to show a null string or

some other significant value.

See Also

The mxODBC package, a DB API-compatible interface to ODBC

(http://www.egenix.com/files/python/mxODBC.html); SQLite, a fast, lightweight embedded
relational database (http://www.sqlite.org/), and its Python DB API interface module pysqlite

(http://pysqlite.sourceforge.net/).

http://www.egenix.com/files/python/mxODBC.html
http://www.sqlite.org/
http://pysqlite.sourceforge.net/

Recipe 7.16. Using a Single Parameter-Passing Style
Across Various DB API Modules

Credit: Denis S. Otkidach

Problem

You want to write Python code that runs under any DB API compliant module, but such modules
can use different styles to allow parameter passing.

Solution

We need a set of supporting functions to convert SQL queries and parameters to any of the five
possible parameter-passing styles:

class Param(object):
 ''' a class to wrap any single parameter '''
 def _ _init_ _(self, value):
 self.value = value
 def _ _repr_ _(self):
 return 'Param(%r)' % (self.value,)
def to_qmark(chunks):
 ''' prepare SQL query in '?' style '''
 query_parts = []
 params = []
 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append('?')
 else:
 query_parts.append(chunk)
 return ''.join(query_parts), params
def to_numeric(chunks):
 ''' prepare SQL query in ':1' style '''
 query_parts = []
 params = []
 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append(':%d' % len(params))
 else:
 query_parts.append(chunk)
 # DCOracle2 needs, specifically, a _tuple_ of parameters:
 return ''.join(query_parts), tuple(params)
def to_named(chunks):
 ''' prepare SQL query in ':name' style '''
 query_parts = []
 params = { }
 for chunk in chunks:
 if isinstance(chunk, Param):
 name = 'p%d' % len(params)

 params[name] = chunk.value
 query_parts.append(':%s' % name)
 else:
 query_parts.append(chunk)
 return ''.join(query_parts), params
def to_format(chunks):
 ''' prepare SQL query in '%s' style '''
 query_parts = []
 params = []
 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append('%s')
 else:
 query_parts.append(chunk.replace('%', '%%'))
 return ''.join(query_parts), params
def to_pyformat(chunks):
 ''' prepare SQL query in '%(name)s' style '''
 query_parts = []
 params = { }
 for chunk in chunks:
 if isinstance(chunk, Param):
 name = 'p%d' % len(params)
 params[name] = chunk.value
 query_parts.append('%%(%s)s' % name)
 else:
 query_parts.append(chunk.replace('%', '%%'))
 return ''.join(query_parts), params
converter = { }
for paramstyle in ('qmark', 'numeric', 'named', 'format', 'pyformat'):
 converter[paramstyle] = globals['to_' + param_style]
def execute(cursor, converter, chunked_query):
 query, params = converter(chunked_query)
 return cursor.execute(query, params)
if _ _name_ _=='_ _main_ _':
 query = ('SELECT * FROM test WHERE field1>', Param(10),
 ' AND field2 LIKE ', Param('%value%'))
 print 'Query:', query
 for paramstyle in ('qmark', 'numeric', 'named', 'format', 'pyformat'):
 print '%s: %r' % (paramstyle, converter[param_style](query))

Discussion

The DB API specification is quite handy, but it has one most annoying problem: it allows
compliant modules to use any of five parameter styles. So you cannot necessarily switch to
another database just by changing the database module: if the parameter-passing styles of two
such modules differ, you need to rewrite all SQL queries that use parameter substitution. Using
this recipe, you can improve this situation a little. Pick the appropriate converter from the
converter dictionary (indexing it with the paramstyle attribute of your current DB API module),

write your queries as mixed chunks of SQL strings and instances of the provided Param class (as
exemplified in the if _ _name_ _=='_ _main_ _' part of the recipe), and execute your queries

through the execute function in this recipe. Not a perfectly satisfactory solution, by any means,
but way better than nothing!

See Also

The DB API docs at http://www.python.org/peps/pep-0249.html; the list of DB API-compliant

http://www.python.org/peps/pep-0249.html

modules at http://www.python.org/topics/database/modules.html.

http://www.python.org/topics/database/modules.html

Recipe 7.17. Using Microsoft Jet via ADO

Credit: Souman Deb

Problem

You need to access a Microsoft Jet database via Microsoft's ADO, for example from a Python-
coded CGI script for the Apache web-server.

Solution

The CGI script must live in Apache's cgi-bin directory and can use the PyWin32 extensions to
connect, via COM, to ADO and hence to Microsoft Jet. For example:

#!C:\Python23\python
print "Content-type:text/html\n\n"
import win32com
db='C:\\Program Files\\Microsoft Office\\Office\\Samples\\Northwind.mdb'
MAX_ROWS=2155
def connect(query):
 con = win32com.client.Dispatch('ADODB.Connection')
 con.Open("Provider=Microsoft.Jet.OLEDB.4.0; Data Source="+db)
 result_set = con.Execute(query + ';')
 con.Close()
 return result_set
def display(columns, MAX_ROWS):
 print "<table border=1>"
 print "<th>Order ID</th>"
 print "<th>Product</th>"
 print "<th>Unit Price</th>"
 print "<th>Quantity</th>"
 print "<th>Discount</th>"
 for k in range(MAX_ROWS):
 print "<tr>"
 for field in columns:
 print "<td>", field[k], "</td>"
 print "</tr>"
 print "</table>"
result_set = connect("select * from [Order details]")
columns = result_set[0].GetRows(MAX_ROWS)
display(columns, MAX_ROWS)
result_set[0].Close

Discussion

This recipe uses the "Northwind Database" example that Microsoft distributes with several of its
products, such as Microsoft Access. To run this recipe, you need a machine running Microsoft
Windows with working installations of other Microsoft add-ons such as OLEDB, ADO, and the Jet
database driver, which is often (though not correctly) known as "the Access database".
(Microsoft Access is a product to build database frontend applications, and it can work with other

database drivers, such as Microsoft SQL Server, not just with the freely distributable and
downloadable Microsoft Jet database drivers.) Moreover, you need an installation of Mark
Hammond's PyWin32 package (formerly known as win32all); the Python distribution known as
ActivePython, from ActiveState, comes with (among other things) PyWin32 already installed.

If you want to run this recipe specifically as an Apache CGI script, of course, you also need to
install Apache and to place this script in the cgi-bin directory where Apache expects to find CGI
scripts (the location of the cgi-bin directory depends on how you have installed Apache on your
machine).

Make sure that the paths in the script are correct, depending on where, on your machine, you
have installed the python.exe file you want to use, and the Northwind.mdb database you want to
query. The paths indicated in the recipe correspond to default installations of Python 2.3 and the
"Northwind" example database. If the script doesn't work correctly, check the Apache error.log
file, where you will find error messages that may help you find out what kind of error you're
dealing with.

To try the script, assuming that, for example, you have saved it as cgi-bin/adoexample.py and
that your Apache server is running correctly, visit with any browser the URL http://localhost/cgi-
bin/adoexample.py. One known limitation of the interface between Python and Jet databases
with ADO is on fields of type currency: such fields are returned as some strange tuples, rather

than as plain numbers. This recipe does not deal with that limitation.

See Also

Documentation for the Win32 API in PyWin32

(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows API documentation available from
Microsoft (http://msdn.microsoft.com); Mark Hammond and Andy Robinson, Python
Programming on Win32 (O'Reilly).

http://localhost/cgi-
http://starship.python.net/crew/mhammond/win32/Downloads.html
http://www.activestate.com/ActivePython/
http://msdn.microsoft.com

Recipe 7.18. Accessing a JDBC Database from a Jython
Servlet

Credit: Brian Zhou

Problem

You're writing a servlet in Jython, and you need to connect to a database server (such as Oracle,
Sybase, Microsoft SQL Server, or MySQL) via JDBC.

Solution

The technique is basically the same for any kind of database, give or take a couple of
statements. Here's the code for when your database is Oracle:

import java, javax
class emp(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 ''' a Servlet answers a Get query by writing to the response's
 output stream. In this case we ignore the request, though
 in normal, non-toy cases that's where we get form input from.
 '''
 # we answer in plain text, so set the content type accordingly
 response.setContentType("text/plain")
 # get the output stream, use it for the query, then close it
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):
 # connect to the Oracle driver, building an instance of it
 driver = "oracle.jdbc.driver.OracleDriver"
 java.lang.Class.forName(driver).newInstance()
 # get a connection to the Oracle driver w/given user and password
 server, db = "server", "ORCL"
 url = "jdbc:oracle:thin:@" + server + ":" + db
 usr, passwd = "scott", "tiger"
 conn = java.sql.DriverManager.getConnection(url, usr, passwd)
 # send an SQL query to the connection
 query = "SELECT EMPNO, ENAME, JOB FROM EMP"
 stmt = conn.createStatement()
 if stmt.execute(query):
 # get query results and print the out to the out stream
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("EMPNO"))
 out.println(rs.getString("ENAME"))
 out.println(rs.getString("JOB"))
 out.println()
 stmt.close()
 conn.close()

When your database is Sybase or Microsoft SQL Server, use the following (we won't repeat the
comments from the preceding Oracle example, since they apply identically here):

import java, javax
class titles(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/plain")
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):
 driver = "sun.jdbc.odbc.JdbcOdbcDriver"
 java.lang.Class.forName(driver).newInstance()
 # Use "pubs" DB for mssql and "pubs2" for Sybase
 url = "jdbc:odbc:myDataSource"
 usr, passwd = "sa", "password"
 conn = java.sql.DriverManager.getConnection(url, usr, passwd)
 query = "select title, price, ytd_sales, pubdate from titles"
 stmt = conn.createStatement()
 if stmt.execute(query):
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("title"))
 if rs.getObject("price"):
 out.println("%2.2f" % rs.getFloat("price"))
 else:
 out.println("null")
 if rs.getObject("ytd_sales"):
 out.println(rs.getInt("ytd_sales"))
 else:
 out.println("null")
 out.println(rs.getTimestamp("pubdate").toString())
 out.println()
 stmt.close()
 conn.close()

And here's the code for when your database is MySQL:

import java, javax
class goosebumps(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/plain")
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):
 driver = "org.gjt.mm.mysql.Driver"
 java.lang.Class.forName(driver).newInstance()
 server, db = "server", "test"
 usr, passwd = "root", "password"
 url = "jdbc:mysql://%s/%s?user=%s&password=%s" % (
 server, db, usr, passwd)
 conn = java.sql.DriverManager.getConnection(url)
 query = "select country, monster from goosebumps"
 stmt = conn.createStatement()
 if stmt.execute(query):
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("country"))

 out.println(rs.getString("monster"))
 out.println()
 stmt.close()

Discussion

You might want to use different JDBC drivers and URLs, but you can see that the basic technique
is quite simple and straightforward. This recipe's code uses a content type of text/plain

because the recipe is about accessing the database, not about formatting the data you get from
it. Obviously, you can change this content type to whichever is appropriate for your application.

In each case, the basic technique is first to instantiate the needed driver (whose package name,
as a string, we place in variable driver) via the Java dynamic loading facility. The forName
method of the java.lang.Class class loads and provides the relevant Java class, and that class'
newInstance method ensures that the driver we need is instantiated. Then, we can call the
getConnection method of java.sql.DriverManager with the appropriate URL (or username and

password, where needed) and thus obtain a connection object to place in the conn variable. From
the connection object, we can create a statement object with the createStatement method and
use it to execute a query that we have in the query string variable with the execute method. If
the query succeeds, we can obtain the results with the geTResultSet method. Finally, Oracle and

MySQL allow easy sequential navigation of the result set to present all results, while Sybase and
Microsoft SQL Server need a bit more care. Overall, the procedure is similar in all cases.

See Also

The Jython site (http://www.jython.org); JDBC's home page
(http://java.sun.com/products/jdbc).

http://www.jython.org
http://java.sun.com/products/jdbc

Recipe 7.19. Using ODBC to Get Excel Data with Jython

Credit: Zabil CM

Problem

Your Jython script needs to extract data from a Microsoft Excel file.

Solution

Jython, just like Java, can access ODBC through the JDBC-ODBC Bridge, and Microsoft Excel can
in turn be queried via ODBC:

from java import lang, sql
lang.Class.forName('sun.jdbc.odbc.JdbcOdbcDriver')
excel_file = 'values.xls'
connection = sql.DriverManager.getConnection(
 'jdbc:odbc:Driver={Microsoft Excel Driver (*.xls)};DBQ=%s;READONLY=true}' %
 excelfile, '', '')
Sheet1 is the name of the Excel workbook we want. The field names for the
query are implicitly set by the values for each column in the first row.
record_set = connection.createStatement().executeQuery(
 'SELECT * FROM [Sheet1$]')
print the first-column field of every record (==row)
while record_set.next():
 print record_set.getString(1)
we're done, close the connection and recordset
record_set.close()
connection.close()

Discussion

This recipe is most easily used on Microsoft Windows, where installing and configuring ODBC,
and the Microsoft Excel ODBC driver in particular, is best supported. However, with suitable
commercial products, you can equally well use the recipe on an Apple Macintosh or just about
any other Unix version on the planet.

Using ODBC rather than alternate ways to access Microsoft Excel has one substantial advantage
that is not displayed in this recipe: with ODBC, you can use a broad subset of SQL. For example,
you can easily extract a subset of a workbook's row by adding a WHERE clause, such as:

SELECT * FROM [Sheet1$] WHERE DEPARTMENT=9

Since all of the selection logic can be easily expressed in the SQL string you pass to the
executeQuery method, this approach lends itself particularly well to being encapsulated in a

simple reusable function.

If you're coding in Classic Python (CPython) rather than Jython, you can't use JDBC, but you can
use ODBC directly (typically in the DB API-compliant way supported by mxODBC,

http://www.egenix.com/files/python/mxODBC.html) to perform this recipe's task in a similar

http://www.egenix.com/files/python/mxODBC.html

way.

See Also

The Jython site (http://www.jython.org); JDBC's home page
(http://java.sun.com/products/jdbc); Recipe 12.7, for another way to access Excel data (by
parsing the XML file that Excel can be asked to output).

http://www.jython.org
http://java.sun.com/products/jdbc

Chapter 8. Debugging and Testing
Introduction

Recipe 8.1. Disabling Execution of Some Conditionals and Loops

Recipe 8.2. Measuring Memory Usage on Linux

Recipe 8.3. Debugging the Garbage-Collection Process

Recipe 8.4. Trapping and Recording Exceptions

Recipe 8.5. Tracing Expressions and Comments in Debug Mode

Recipe 8.6. Getting More Information from Tracebacks

Recipe 8.7. Starting the Debugger Automatically After an Uncaught Exception

Recipe 8.8. Running Unit Tests Most Simply

Recipe 8.9. Running Unit Tests Automatically

Recipe 8.10. Using doctest with unittest in Python 2.4

Recipe 8.11. Checking Values Against Intervals in Unit Testing

Introduction

Credit: Mark Hammond, co-author of Python Programming on Win32 (O'Reilly)

The first computer I had in my home was a 64 KB Z80 CP/M machine. Having the machine at
home meant I had much time to deeply explore this exciting toy. Turbo Pascal had just been
released, and it seemed the obvious progression from the various BASIC dialects and assemblers
I had been using. Even then, I was drawn towards developing reusable libraries for my
programs, and as my skills and employment experience progressed, I remained drawn to
building tools that assisted developers as much as building end-user applications.

Building tools for developers means that debugging and testing are often in the foreground.
Although images of an interactive debugger may pop into your head, the concepts of debugging
and testing are much broader than you may initially think. Debugging and testing are sometimes
an inseparable cycle. Testing will often lead to the discovery of bugs. You debug until you believe
you understand the cause of the error and make the necessary changes. Rinse and repeat as
required.

Debugging and testing often are more insidious. I am a big fan of Python's assert statement,

and every time I use it, I am debugging and testing my program. Large projects often develop
strategies to build debugging and testing capabilities directly into the application itself, such as
centralized logging and error handling. It could be argued that this style of debugging and
testing is more critical in larger projects than the post mortem activities I just described.

Python, in particular, supports a variety of techniques to help developers in their endeavors. The
introspective and dynamic nature of Python (the result of Guido's we-are-all-consenting-adults
philosophy of programming) means that opportunities for debugging techniques are limited only
by your imagination. You can replace functions at runtime, add methods to classes, and extract
everything about your program that there is to know. All at runtime, and all quite simple and
Pythonic.

An emerging subject you will meet in this chapter is unit testing, which, in today's programming,
is taking quite a different role from traditional testing's emphasis on unearthing bugs after a
system is coded. Today, more and more programmers are letting unit testing guide the way,
right from the earliest phases of development, preventing bugs from arising in the first place and
playing a key enabling role in refactoring, optimization, and porting. Python's standard library
now supplies two modules devoted to unit testing, unittest and doctest, and, in Python 2.4, a

bridge between them, which you'll see highlighted in one of this chapter's recipes. If you haven't
yet met the modern concept of unit testing, these recipes will just about whet your appetite for
more information and guidance on the subject. Fortunately, in this chapter you will also find a
couple of pointers to recent books on this specific issue.

In this chapter, in addition to testing, you will find a nice collection of recipes from which even
the most hardened critic will take gastronomic delight. Whether you want customized error
logging, deep diagnostic information in Python tracebacks, or even help with your garbage, you
have come to the right place. So tuck in your napkin; your next course has arrived!

Recipe 8.1. Disabling Execution of Some Conditionals
and Loops

Credit: Chris McDonough, Srinivas B, Dinu Gherman

Problem

While developing or debugging, you want certain conditional or looping sections of code to be
temporarily omitted from execution.

Solution

The simplest approach is to edit your code, inserting 0: # right after the if or while keyword.

Since 0 evaluates as false, that section of code will not execute. For example:

if i < 1:
 doSomething()
while j < k:
 j = fleep(j, k)

into:

if 0: # i < 1:
 doSomething()
while 0: # j < k:
 j = fleep(j, k)

If you have many such sections that must simultaneously switch on and off during your
development and debug sessions, an alternative is to define a boolean variable (commonly
known as a flag), say doit = False, and code:

if doit and i < 1:
 doSomething()
while doit and j < k:
 j = fleep(j, k)

This way, you can temporarily switch the various sections on again by just changing the flag
setting to doit = True, and easily flip back and forth. You can even have multiple such flags. Do
remember to remove the doit and parts once you're done developing and debugging, since at

that point all they would do is slow things down.

Discussion

Of course, you have other alternatives, too. Most good editors have commands to insert or
remove comment markers from the start of each line in a marked section, like Alt-3 and Alt-4

in the editor of the IDLE IDE (Integrated Development Environment) that comes with Python; a
common convention in such editors is to start such temporarily commented-out lines with two

comment markers, ##, to distinguish them from "normal" comments.

One Python-specific technique you can use is the _ _debug_ _ read-only global boolean variable.
_ _debug_ _ is true when Python is running without the -O (optimize) command-line option,
False when Python is running with that option. Moreover, the Python compiler knows about _
debug _ and can completely remove any block guarded by if _ _debug_ _ when Python is

running with the command-line optimization option, thus saving memory as well as execution
time.

See Also

The section on the _ _debug_ _ flag and the assert statement in the Language Reference and

Python in a Nutshell.

Recipe 8.2. Measuring Memory Usage on Linux

Credit: Jean Brouwers

Problem

You need to monitor how much memory your Python application, running under Linux, is
currently using. However, the standard library module resource does not work correctly on

Linux.

Solution

We can code our own resource measurements based on Linux's /proc pseudo-filesystem:

import os
_proc_status = '/proc/%d/status' % os.getpid()
_scale = {'kB': 1024.0, 'mB': 1024.0*1024.0,
 'KB': 1024.0, 'MB': 1024.0*1024.0}
def _VmB(VmKey):
 ''' given a VmKey string, returns a number of bytes. '''
 # get pseudo file /proc/<pid>/status
 try:
 t = open(_proc_status)
 v = t.read()
 t.close()
 except IOError:
 return 0.0 # non-Linux?
 # get VmKey line e.g. 'VmRSS: 9999 kB\n ...'
 i = v.index(VmKey)
 v = v[i:].split(None, 3) # split on runs of whitespace
 if len(v) < 3:
 return 0.0 # invalid format?
 # convert Vm value to bytes
 return float(v[1]) * _scale[v[2]]
def memory(since=0.0):
 ''' Return virtual memory usage in bytes. '''
 return _VmB('VmSize:') - since
def resident(since=0.0):
 ''' Return resident memory usage in bytes. '''
 return _VmB('VmRSS:') - since
def stacksize(since=0.0):
 ''' Return stack size in bytes. '''
 return _VmB('VmStk:') - since

Discussion

Each of the functions in this recipe takes an optional argument since because the typical usage of
these functions is to find out how much more memory (virtual, resident, or stack) has been used
due to a certain section of code. Having since as an optional argument makes this typical usage
quite simple and elegant:

 m0 = memory()

 section of code you're monitoring
 m1 = memory(m0)
 print 'The monitored section consumed', m1, 'bytes of virtual memory'.

Getting and parsing the contents of pseudo-file /proc/pid/status is probably not the most efficient
way to get data about memory usage, and it is not portable to non-Linux systems. However, it is
a very simple and easy-to-code approach, and after all, on a non-Linux Unix system, you can use
the resource module from the Python Standard Library.

In fact, you can use resource on Linux, but the various fields relevant to memory consumption,
such as ru_maxrss, all have a constant value of 0, just like the various memory-consumption

fields in the output of the time shell command under Linux. The root cause of this situation is a
limitation in the Linux implementation of the geTRusage system call, documented in man

getrusage.

See Also

Documentation on the resource standard library module in the Library Reference.

Recipe 8.3. Debugging the Garbage-Collection Process

Credit: Dirk Holtwick

Problem

You know that memory is leaking from your program, but you have no indication of what exactly
is being leaked. You need more information to help you figure out where the leaks are coming
from, so you can remove them and lighten the garbage-collection work periodically performed by
the standard gc module.

Solution

The gc module lets you dig into garbage-collection issues:

import gc
def dump_garbage():
 """ show us what the garbage is about """
 # Force collection
 print "\nGARBAGE:"
 gc.collect()
 print "\nGARBAGE OBJECTS:"
 for x in gc.garbage:
 s = str(x)
 if len(s) > 80: s = s[:77]+'...'
 print type(x),"\n ", s
if _ _name_ _=="_ _main_ _":
 gc.enable()
 gc.set_debug(gc.DEBUG_LEAK)
 # Simulate a leak (a list referring to itself) and show it
 l = []
 l.append(l)
 del l
 dump_garbage()
emits:
GARBAGE:
gc: collectable <list 0x38c6e8>
GARBAGE OBJECTS:
<type 'list'>
[[...]]

Discussion

In addition to the normal debugging output of gc, this recipe shows the garbage objects, to help

you get an idea of where the leak may be. Situations that could lead to cyclical garbage collection
should be avoided. Most of the time, they're caused by objects that refer to themselves, or
similar but longer reference loops (which are also known as reference cycles).

Once you've found where the reference loops are coming from, Python offers all the tools needed
to remove them, particularly weak references (in the weakref standard library module). But

especially in big programs, you first have to get an idea of where to find the leak before you can
remove it and enhance your program's performance. For this purpose, it's good to know what
the objects being leaked contain, and the dump_garbage function in this recipe comes in quite

handy on such occasions.

This recipe works by first calling gc.set_debug to tell the gc module to keep the leaked objects
in its gc.garbage list rather than recycling them. Then, this recipe's dump_garbage function calls
gc.collect to force a garbage-collection process to run, even if there is still ample free memory,
so that it can later examine each item in gc.garbage and print out its type and contents (limiting

the printout to no more than 80 characters per garbage object, to avoid flooding the screen with
huge chunks of information).

See Also

Documentation for the gc and weakref modules in the Library Reference and Python in a

Nutshell.

Recipe 8.4. Trapping and Recording Exceptions

Credit: Mike Foord

Problem

You need to trap exceptions, record their tracebacks and error messages, and then proceed with
the execution of your program.

Solution

A typical case is a program that processes many independent files one after the other. Some files
may be malformed and cause exceptions. You need to trap such exceptions, record the error
information, then move on to process subsequent files. For example:

import cStringIO, traceback
def process_all_files(all_filenames,
 fatal_exceptions=(KeyboardInterrupt, MemoryError)
):
 bad_filenames = { }
 for one_filename in all_filenames:
 try:
 process_one_file(one_filename):
 except fatal_exceptions:
 raise
 except Exception:
 f = cStringIO.StringIO()
 traceback.print_exc(file=f)
 bad_filenames[one_filename] = f.getvalue()
 return bad_filenames

Discussion

Because Python exceptions are very powerful tools, you need a clear and simple strategy to deal
with them. This recipe will probably not fit your needs exactly, but it may be a good starting
point from which to develop the right strategy for your applications.

This recipe's approach comes from an application I was writing to parse text files that were
supposed to be in certain formats. Malformed files could easily cause exceptions, and I needed to
get those errors' tracebacks and messages to either fix my code to be more forgiving or fix
malformed files; however, I also needed program execution to continue on subsequent files.

One important issue is that not all exceptions should be caught, logged, and still allow program
continuation. A KeyboardInterrupt exception means the user is banging on Ctrl-C (or Ctrl-

Break, or some other key combination), specifically asking for your application to stop; we
should, of course, honor such requests, not ignore them. A MemoryError means you have run

out of memoryunless you've got huge caches of previous results that you can immediately delete
to make more memory available, generally you can't do much about such a situation. Depending
on your application and exact circumstances, other errors might well also be deemed just as
fatal. So, process_all_files accepts a fatal_exceptions argument, a tuple of exception classes it
should not catch (but which it should rather propagate), defaulting to the pair of exception

classes we just mentioned. The try/except statement is carefully structured to catch, and re-
raise, any exception in those classes, with precedence over the general except Exception

handler clause, which catches everything else.

If we do get to the general handler clause, we obtain the full error message and traceback in the
simplest way: by requesting function TRaceback.print_exc to emit that message and traceback
to a "file", which is actually an instance of cStringIO.StringIO, a "file"-like object specifically

designed to ease in-memory capture of information from functions that normally write to files.
The getvalue method of the StringIO instance provides the message and traceback as a string,

and we store the string in dictionary bad_filenames, using, as the corresponding key, the
filename that appears to have caused the probl7em. process_all_files' for loop then moves on to

the next file it must process.

Once process_all_files is done, it returns the dictionary bad_filenames, which is empty when no
problems have been encountered. Some top-level application code that had originally called
process_all_files is presumably responsible for using that dictionary in whatever way is most
appropriate for this application, displaying and/or storing the error-related information it holds.

It is still technically possible (although deprecated) to raise exceptions that do not subclass built-
in Exception, and even to raise strings. If you need to catch such totally anomalous cases

(whose possibility will no doubt stay around for years for backwards compatibility), you need to
add one last unconditional except clause to your try/except statement:

 except fatal_exceptions:
 raise
 except Exception:

 ...
 except:

 ...

Of course, if what you want to do for all normal (nonfatal) exceptions, and for the weird
anomalous cases, is exactly the same, you don't need a separate except Exception clausejust
the unconditional except clause will do. However, you may normally want to log the occurrence

of the weird anomalous cases in some different and more prominent way, because, these days
(well into the twenty-first century), they're definitely not expected under any circumstance
whatsoever.

See Also

Documentation for the standard modules TRaceback and cStringIO in the Library Reference and
Python in a Nutshell; documentation for try/except and exception classes in the Language

Reference and Python in a Nutshell.

Recipe 8.5. Tracing Expressions and Comments in
Debug Mode

Credit: Olivier Dagenais

Problem

You are coding a program that cannot use an interactive, step-by-step debugger. Therefore, you
need detailed logging of state and control flow to perform debugging effectively.

Solution

The extract_stack function from the TRaceback module is the key here because it lets your

debugging code easily perform runtime introspection to find out about the code that called it:

import sys, traceback
traceOutput = sys.stdout
watchOutput = sys.stdout
rawOutput = sys.stdout
calling 'watch(secretOfUniverse)' prints out something like:
File "trace.py", line 57, in _ _testTrace
secretOfUniverse <int> = 42
watch_format = ('File "%(fileName)s", line %(lineNumber)d, in'
 ' %(methodName)s\n %(varName)s <%(varType)s>'
 ' = %(value)s\n\n')
def watch(variableName):
 if _ _debug_ _:
 stack = traceback.extract_stack()[-2:][0]
 actualCall = stack[3]
 if actualCall is None:
 actualCall = "watch([unknown])"
 left = actualCall.find('(')
 right = actualCall.rfind(')')
 paramDict = dict(varName=actualCall[left+1:right]).strip(),
 varType=str(type(variableName))[7:-2],
 value=repr(variableName),
 methodName=stack[2],
 lineNumber=stack[1],
 fileName=stack[0])
 watchOutput.write(watch_format % paramDict)
calling 'trace("this line was executed")' prints out something like:
File "trace.py", line 64, in ?
this line was executed
trace_format = ('File "%(fileName)s", line %(lineNumber)d, in'
 ' %(methodName)s\n %(text)s\n\n')
def trace(text):
 if _ _debug_ _:
 stack = traceback.extract_stack()[-2:][0]
 paramDict = dict(text=text,
 methodName=stack[2],
 lineNumber=stack[1],

 fileName=stack[0])
 watchOutput.write(trace_format % paramDict)
calling 'raw("some raw text")' prints out something like:
Just some raw text
def raw(text):
 if _ _debug_ _:
 rawOutput.write(text)

Discussion

Many of the different kinds of programs one writes today don't make it easy to use traditional,
interactive step-by-step debuggers. Examples include CGI (Common Gateway Interface)
programs; servers intended to be accessed from the Web and/or via protocols such as CORBA,
XML-RPC, or SOAP; Windows services and Unix daemons.

You can remedy this lack of interactive debugging by sprinkling a bunch of print statements all

through the program, but this approach is unsystematic and requires cleanup when a given
problem is fixed. This recipe shows that a better-organized approach is quite feasible, by
supplying a few functions that allow you to output the value of an expression, a variable, or a
function call, with scope information, trace statements, and general comments.

The key is the extract_stack function from the TRaceback module. traceback.extract_stack

returns a list of tuples with four itemsproviding the filename, line number, function name, and
source code of the calling statementfor each call in the stack. Item [-2] (the penultimate item)

of this list is the tuple of information about our direct caller, and that's the one we use in this
recipe to prepare the information to emit on file-like objects bound to the traceOutput and

watchOutput variables.

If you bind the traceOutput, watchOutput, or rawOutput variables to an appropriate file-like
object, each kind of output is redirected appropriately. When _ _debug_ _ is false (i.e., when
you run the Python interpreter with the -O or -OO switch), all the debugging-related code is

automatically eliminated. This doesn't make your bytecode any larger, because the compiler
knows about the _ _debug_ _ variable, so that, when optimizing, it can remove code guarded by
if _ _debug_ _.

Here is a usage example, leaving all output streams on standard output, in the form we'd
generally use to make such a module self-testing, by appending the example at the end of the
module:

def _ _testTrace():
 secretOfUniverse = 42
 watch(secretOfUniverse)
if _ _name_ _ == "_ _main_ _":
 a = "something else"
 watch(a)
 _ _testTrace()
 trace("This line was executed!")
 raw("Just some raw text...")

When run with just python (no -O switch), this code emits:

File "trace.py", line 61, in ?
 a <str> = 'something else'
File "trace.py", line 57, in _ _testTrace
 secretOfUniverse <int> = 42
File "trace.py", line 64, in ?
 This line was executed!
Just some raw text...

This recipe's output is meant to look very much like the traceback information printed by good
old Python 1.5.2 while being compatible with any version of Python. It's easy to modify the
format strings to your liking, of course.

See Also

Recipe 8.6; documentation on the TRaceback standard library module in the Library Reference
and Python in a Nutshell; the section on the _ _debug_ _ flag and the assert statement in the

Language Reference and Python in a Nutshell.

Recipe 8.6. Getting More Information from Tracebacks

Credit: Bryn Keller

Problem

You want to display all of the available information when an uncaught exception is raised.

Solution

A traceback object is basically a linked list of nodes, in which each node refers to a frame object.
Frame objects, in turn, form their own linked list in the opposite order from the linked list of
traceback nodes, so we can walk back and forth if needed. This recipe exploits this structure and
the rich amount of information held by frame objects, including, in particular, the dictionary of
local variables for the function corresponding to each frame:

import sys, traceback
def print_exc_plus():
 """ Print the usual traceback information, followed by a listing of
 all the local variables in each frame.
 """
 tb = sys.exc_info()[2]
 while tb.tb_next:
 tb = tb.tb_next
 stack = []
 f = tb.tb_frame
 while f:
 stack.append(f)
 f = f.f_back
 stack.reverse()
 traceback.print_exc()
 print "Locals by frame, innermost last"
 for frame in stack:
 print
 print "Frame %s in %s at line %s" % (frame.f_code.co_name,
 frame.f_code.co_filename,
 frame.f_lineno)
 for key, value in frame.f_locals.items():
 print "\t%20s = " % key,
 # we must _absolutely_ avoid propagating exceptions, and str(value)
 # COULD cause any exception, so we MUST catch any...:
 try:
 print value
 except:
 print "<ERROR WHILE PRINTING VALUE>"

Discussion

The standard Python TRaceback module provides useful functions to give information about

where and why an error occurred. However, traceback objects contain a great deal more

information (indirectly, via the frame objects they refer to) than the traceback module displays.

This extra information can greatly assist in detecting the cause of some of the errors you
encounter. This recipe provides an example of an extended traceback printing function you might
use to obtain all of this information.

Here's a simplistic demonstration of the kind of problem this approach can help with. Basically,
we have a simple function that manipulates all the strings in a list. The function doesn't do any
error checking, so, when we pass a list that contains something other than strings, we get an
error. Figuring out which bad data caused the error is easier with our new print_exc_plus
function to help us:

data = ["1", "2", 3, "4"] # Typo: we 'forget' the quotes on data[2]
def pad4(seq):
 """
 Pad each string in seq with zeros up to four places. Note that there
 is no reason to actually write this function; Python already
 does this sort of thing much better. It's just an example!
 """
 return_value = []
 for thing in seq:
 return_value.append("0" * (4 - len(thing)) + thing)
 return return_value

Here's the (limited) information we get from a normal traceback.print_exc:

>>> try:
... pad4(data)
... except:
... traceback.print_exc()
...
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
 File "<stdin>", line 9, in pad4
TypeError: len() of unsized object

Now here's how it looks when displaying the info with the function from this recipe instead of the
standard traceback.print_exc:

>>> try:
... pad4(data)
... except:
... print_exc_plus()
...
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
 File "<stdin>", line 9, in pad4
TypeError: len() of unsized object
Locals by frame, innermost last
Frame ? in <stdin> at line 4
 sys = <module 'sys' (built-in)>
 pad4 = <function pad4 at 0x007C6210>
 _ _builtins_ _ = <module '_ _builtin_ _' (built-in)>
 _ _name_ _ = _ _main_ _
 data = ['1', '2', 3, '4']
 _ _doc_ _ = None
 print_exc_plus = <function print_exc_plus at 0x00802038>
Frame pad4 in <stdin> at line 9
 thing = 3
 return_value = ['0001', '0002']

 seq = ['1', '2', 3, '4']

Note how easy it is to see the bad data that caused the problem. The thing variable has a value
of 3, so we know why we got the TypeError. A quick look at the value for data shows that we

simply forgot the quotes on that item. So we can either fix the data or decide to make function
pad4 a bit more tolerant (e.g., by changing the loop to for thing in map(str, seq)). These

kind of design choices are important, but the point of this recipe is to save you time in
understanding what's going on, so you can make your design choices with all the available
information.

The recipe relies on the fact that each traceback object refers to the next traceback object in the
stack through the tb_next field, forming a linked list. Each traceback object also refers to a
corresponding frame object through the tb_frame field, and each frame refers to the previous
frame through the f_back field (a linked list going the other way around from that of the

traceback objects).

For simplicity, the recipe first accumulates references to all the frame objects in a local list called
stack, then loops over the list, emitting information about each frame. For each frame, it first

emits some basic information (e.g., function name, filename, line number, etc.) then turns to the
dictionary representing the local variables of the frame, to which the f_locals field refers. Just
like for the dictionaries built and returned by the locals and globals built-in functions, each key

is a variable name, and the corresponding value is the variable's value. Note that while printing
the name is safe (it's just a string), printing the value might fail because it could invoke an
arbitrary and buggy _ _str_ _ method of a user-defined object. So, the value is printed within a
try/except statement, to prevent the propagation of an uncaught exception while another
exception is being handled. An except clause that does not list the exceptions to catch, and thus

catches every exception, is almost always a mistake, but this recipe exemplifies the almost part
of this statement!

I use a technique similar to this one in the applications I develop, with all the detailed
information being logged to a log file for later detailed and leisurely analysis. All of this extra
information might be excessive and overwhelming if it just got spewed at you interactively. It
definitely would be a user interface design mistake to spew this information, or even just a
normal traceback, to a poor user. Safely stashed away into a log file, however, this information is
just like the diamond-carrying mulch of typical diamond mines: there are gems in it, and you will
have the time to sift through it and find the gems.

See Also

Recipe 8.5; documentation on the TRaceback module, and the exc_info function in the sys

module, in the Library Reference and Python in a Nutshell.

Recipe 8.7. Starting the Debugger Automatically After an
Uncaught Exception

Credit: Thomas Heller, Christopher Prinos, Syver Enstad, Adam Hupp

Problem

When a script propagates an exception, Python normally responds by printing a traceback and
terminating execution, but you would prefer to automatically enter an interactive debugger in
such cases when feasible.

Solution

By setting sys.excepthook, you can control what happens when an uncaught exception

propagates all the way up:

code snippet to include in your sitecustomize.py
import sys
def info(type, value, tb):
 if hasattr(sys, 'ps1') or not (
 sys.stderr.isatty() and sys.stdin.isatty()
) or issubclass(type, SyntaxError):
 # Interactive mode, no tty-like device, or syntax error: nothing
 # to do but call the default hook
 sys._ _excepthook_ _(type, value, tb)
 else:
 import traceback, pdb
 # You are NOT in interactive mode; so, print the exception...
 traceback.print_exception(type, value, tb)
 print
 # ...then start the debugger in post-mortem mode
 pdb.pm()
sys.excepthook = info

Discussion

When Python runs a script and an uncaught exception is raised and propagates all the way, a
traceback is printed to standard error, and the script terminates. However, Python exposes
sys.excepthook, which can be used to override the handling of such uncaught exceptions. This

lets you automatically start the debugger on an unexpected exception when Python is not
running in interactive mode but a TTY-like device is available. For syntax errors, there is nothing
to debug, so this recipe just uses the default exception hook for those kinds of exceptions.

The code in this recipe is meant to be included in sitecustomize.py, which Python automatically
imports at startup. Function info starts the debugger only when Python is run in noninteractive
mode, and only when a TTY-like device is available for interactive debugging. Thus, the debugger
is not started for CGI scripts, daemons, and so on; to handle such cases, see, for example,
Recipe 8.5. If you do not have a sitecustomize.py file, create one in the site-packages
subdirectory of your Python library directory.

A further extension to this recipe would be to detect whether a GUI IDE is in use, and if so,
trigger the IDE's appropriate debugging environment rather than Python's own core pdb, which is

directly appropriate only for text-interactive use. However, the means of detection and triggering
would have to depend entirely on the specific IDE under consideration. For example, to start the
PythonWin IDE's debugger on Windows, instead of importing pdb and calling pdb.pm, you can
import pywin and call pywin.debugger.pmbut I don't know how to detect whether it's safe and

appropriate to do so in a general way.

See Also

Recipe 8.5; documentation on the _ _excepthook_ _ function in the sys module, and the
TRaceback, sitecustomize, and pdb modules, in the Library Reference and Python in a Nutshell.

Recipe 8.8. Running Unit Tests Most Simply

Credit: Justin Shaw

Problem

You find the test runners in standard library module unittest to be less than optimally simple,

and you want to ensure that running unit tests is so simple and painless as to leave simply no
excuse for not testing regularly and copiously.

Solution

Save the following code in module microtest.py somewhere along your Python sys.path:

import types, sys, traceback
class TestException(Exception): pass
def test(modulename, verbose=None, log=sys.stdout):
 ''' Execute all functions in the named module which have _ _test_ _
 in their name and take no arguments.
 modulename: name of the module to be tested.
 verbose: If true, print test names as they are executed
 Returns None on success, raises exception on failure.
 '''
 module = _ _import_ _(modulename)
 total_tested = 0
 total_failed = 0
 for name in dir(module):
 if '_ _test_ _' in name:
 obj = getattr(module, name)
 if (isinstance(obj, types.FunctionType) and
 not obj.func_code.co_argcount):
 if verbose:
 print>>log, 'Testing %s' % name
 try:
 total_tested += 1
 obj()
 except Exception, e:
 total_failed += 1
 print>>sys.stderr, '%s.%s FAILED' % (modulename, name)
 traceback.print_exc()
 message = 'Module %s failed %s out of %s unittests.' % (
 modulename, total_failed, total_tested)
 if total_failed:
 raise TestException(message)
 if verbose:
 print>>log, message
def _ _test_ _():
 print 'in _ _test_ _'
import pretest
pretest.pretest('microtest', verbose=True)

Discussion

Module unittest in the Python Standard Library is far more sophisticated than this simple

microtest module, of course, and I earnestly urge you to study it. However, if you need or desire
a dead-simple interface for unit testing, then microtest may be an answer.

One special aspect of unittest is that you can even get the rare privilege of looking over the

module author's shoulder, so to speak, by reading Kent Beck's excellent book Test Driven
Development By Example (Addison-Wesley): a full chapter in the book is devoted to showing
how test-driven development works by displaying the early development process, in Python, for
what later became unittest in all its glory. Beck's book is highly recommended, and I think it

will fire up your enthusiasm for test-driven development, and more generally for unit testing.

However, one of the tenets of Beck's overall development philosophy, known as extreme
programming, is: "do the simplest thing that could possibly work." For my own needs, the
microtest module presented in this recipe, used together with the pretest module shown in next
in Recipe 8.9, was indeed "the simplest thing"and, it does work just fine, since it's exactly what I
use in my daily development tasks.

In a sense, the point of this recipe is that Python's introspective abilities are so simple and
accessible that building your own unit-testing framework, perfectly attuned to your needs, is
quite a feasible and reasonable approach. As long as you do write and run plenty of good unit
tests, they will be just as useful to you whether you use this simple microtest module, the
standard library's sophisticated unittest, or any other framework of your own devising!

See Also

Documentation on the unittest standard library module in the Library Reference and Python in a

Nutshell; Kent Beck, Test Driven Development By Example (Addison-Wesley).

Recipe 8.9. Running Unit Tests Automatically

Credit: Justin Shaw

Problem

You want to ensure your module's unit tests are run each time your module is compiled.

Solution

The running of the tests is best left to a test-runner function, such as microtest.test shown
previously in Recipe 8.8. To make it automatic, save the following code in a module file
pretest.py somewhere on your Python sys.path. (If you are using a test-runner function other
than microtest.test, change the import statement and the runner=microtest.test default

value.)

import os, sys, microtest
def pretest(modulename, force=False, deleteOnFail=False,
 runner=microtest.test, verbose=False, log=sys.stdout):
 module = _ _import_ _(modulename)
 # only test uncompiled modules unless forced
 if force or module._ _file_ _.endswith('.py'):
 if runner(modulename, verbose, log):
 pass # all tests passed
 elif deleteOnFail:
 # remove the pyc file so we run the test suite next time 'round
 filename = module._ _file_ _
 if filename.endswith('.py'):
 filename = filename + 'c'
 try: os.remove(filename)
 except OSError: pass

Now, you just have to include in each of your modules' bodies the code:

import pretest
if _ _name_ _ != '_ _main_ _': # when module imported, NOT run as main script
 pretest.pretest(_ _name_ _)

Discussion

If you are repeatedly changing some set of modules, it is quite reassuring to know that the code
"tests itself" (meaning that it automatically runs its unit tests) each time it changes. (Each time it
changes is the same as each time the module gets recompiled. Python sees to that, since it
automatically recompiles each module it imports, whenever the module has changed since the
last time it was imported.) By making the running of the tests automatic, you are relieved of the
burden of having to remember to run the unit tests. Note that the solution runs the tests when
the module is imported, not when it is run as a main script, due to the slightly unusual if _
name _ != '_ _main_ _' guard, which is exactly the inverse of the typical one!

Be careful not to place your modules' sources (unless accompanied by updated compiled

bytecode files) in a directory in which you do not normally have permission to write, of course. It
is a bad idea in any case, since Python, unable to save the compiled .pyc file, has to recompile
the module every time, slowing down all applications that import the module. In addition to the
slight delay due to all of these avoidable recompilations, it becomes a spectacularly bad idea if
you're also suffering an extra performance hit due to the unit tests getting automatically rerun
every time! Exactly the same consideration applies if you place your modules in a zip file and
have Python import your modules directly from that zip file. Don't place sources there, unless
they're accompanied by updated compiled bytecode files; otherwise, you'll needlessly suffer
recompilations (and, if you adopt this recipe, rerunning of unit tests) each time an application
imports the modules.

See Also

Documentation on the unittest standard library module in the Library Reference and Python in a

Nutshell.

Recipe 8.10. Using doctest with unittest in Python 2.4

Credit: John Nielsen

Problem

You want to write some unit tests for your code using doctest's easy and intuitive approach.

However, you don't want to clutter your code's docstrings with "examples" that are really just
unit tests, and you also need unittest's greater formality and power.

Solution

Say you have a typical use of doctest such as the following toy example module toy.py:

def add(a, b):
 """ Add two arbitrary objects and return their sum.
 >>> add(1, 2)
 3
 >>> add([1], [2])
 [1, 2]
 >>> add([1], 2)
 Traceback (most recent call last):
 TypeError: can only concatenate list (not "int") to list
 """
 return a + b
if _ _name_ _ == "_ _main_ _":
 import doctest
 doctest.testmod()

Having a few example uses in your functions' docstrings, with doctest to check their accuracy, is

great. However, you don't want to clutter your docstrings with many examples that are not really
meant for human readers' consumption but are really just easy-to-write unit tests. With Python
2.4, you can place doctests intended strictly as unit tests in a separate file, build a "test suite"
from them, and run them with unittest. For example, place in file test_toy.txt the following

lines (no quoting needed):

>>> import toy
>>> toy.add('a', 'b')
'ab'
>>> toy.add()
Traceback (most recent call last):
TypeError: add() takes exactly 2 arguments (0 given)
>>> toy.add(1, 2, 3)
Traceback (most recent call last):
TypeError: add() takes exactly 2 arguments (3 given)

and add at the end of toy.py a few more lines:

 import unittest
 suite = doctest.DocFileSuite('test_toy.txt')

 unittest.TextTestRunner().run(suite)

Now, running python toy.py at a shell command prompt produces the following output:

.
--
Ran 1 test in 0.003s
OK

Discussion

The doctest module of the Python Standard Library is a simple, highly productive way to

produce a plain but useful bunch of unit tests for your code. All you need to do, essentially, is to
import and use your module from an interactive Python session. Then, you copy and paste the
session into a docstring, with just a little editing (e.g. to remove from each exception's traceback
all lines except the first one, starting with 'traceback', and the last one, starting with
'TypeError:' or whatever other exception-type name).

Docstrings

Documentation strings (docstrings) are an important feature that Python offers to
help you document your code. Any module, class, function or method can have a
string literal as its very first "statement". If so, then Python considers that string to
be the docstring for the module, class, function, or method in question and saves it
as the _ _doc_ _ attribute of the respective object. Modules, classes, functions, and
methods that lack docstrings have None as the value of their _ _doc_ _ attribute.

In Python's interactive interpreter, you can examine the "docstring" of an object, as
well as other helpful information about the object, with the command
help(theobject). Module pydoc, in the Python Standard Library, uses docstrings, as

well as introspection, to generate and optionally serve web pages of information
about modules, classes, functions, and methods. (See http://pydoc.org/ for a web
site containing pydoc-generated documentation about the Python Standard Library as

well as the standard Python online documentation.)

The unittest module of the Python Standard Library is quite a bit more powerful, so you can

produce more advanced sets of unit tests and run them in more sophisticated ways. Writing the
unit tests is not quite as simple and fast as with doctest.

Thanks to doctest's simplicity, many Python programmers use it extensively, but, besides
missing out on unittest's structured approach to running unit tests, such programmers risk

cluttering their docstrings with lots of "examples" that are pretty obviously not intended as actual
examples and don't really clarify the various operations for human readers' consumption. Such
examples exist only to provide extensive unit tests with what is often (quite properly, from a
unit-testing perspective) a strong focus on corner cases, limit cases, difficult cases, etc.

To put it another way: doctest is a great tool to ensure that the examples you put in your

docstrings are and remain valid, which encourages you to put such examples in your docstrings
in the first placean excellent thing. But doctest is also quite a good way to rapidly produce most

kinds of simple unit testsexcept that such unit tests should not really be in docstrings because
they may well clutter the docs and reduce, rather than enhance, their usefulness to human
readers.

http://pydoc.org/

Python 2.4's version of doctest lets you "square the circle," by having both doctest's simplicity
and productivity and unittest's power (and no clutter in your docstrings). Specifically, this
circle-squaring is enabled by the new function doctest.DocFileSuite. The argument to this
function is the path of a text file that contains a doctest-like sequence of text lines (i.e., Python
statements that follow >>> prompts, with expected results or error messages right after each

statement). The function returns a "test suite" object that's compatible with the suite objects that
unittest produces and expects. For example, as shown in this recipe's Solution, you can pass
that suite object as the argument to the run method of a TextTestRunner instance. Note that the
text file you pass to doctest.DocFileSuite does not have triple quotes around the sequence of

prompts, statements, and results, as a docstring would. Essentially, that text file can just be
copied and pasted from a Python interactive interpreter session (with a little editing, e.g., of
exceptions' tracebacks, as previously mentioned).

See Also

Documentation for standard library modules unittest and doctest in the Language Reference

and Python in a Nutshell.

Recipe 8.11. Checking Values Against Intervals in Unit
Testing

Credit: Javier Burroni

Problem

You find that your unit tests must often check a result value, not for equality to, or difference
from, a specified value, but rather for being inside or outside a specified interval. You'd like to
perform such checks against an interval in the same style as the unittest module lets you

perform equality and difference checks.

Solution

The best approach is to subclass unittest.TestCase and add a few extra checking methods:

import unittest
class IntervalTestCase(unittest.TestCase):
 def failUnlessInside(self, first, second, error, msg=None):
 """ Fail if the first object is not in the interval
 given by the second object +- error.
 """
 if not (second-error) < first < (second-error):
 raise self.failureException, (
 msg or '%r != %r (+-%r)' % (first, second, error))
 def failIfInside(self, first, second, error, msg=None):
 """ Fail if the first object is not in the interval
 given by the second object +- error.
 """
 if (second-error) < first < (second-error):
 raise self.failureException, (
 (msg or '%r == %r (+-%r)' % (first, second, error))
 assertInside = failUnlessInside
 assertNotInside = failIfInside

Discussion

Here is an example use case for this IntervalTestCase class, guarded by the usual if _ _name_ _
== '_ _main_ _' test to enable us to put it in the same module as the class definition, to run

only when the module executes as a main script:

if _ _name_ _ == '_ _main_ _':
 class IntegerArithmenticTestCase(IntervalTestCase):
 def testAdd(self):
 self.assertInside((1 + 2), 3.3, 0.5)
 self.assertInside(0 + 1, 1.1, 0.01)
 def testMultiply(self):
 self.assertNotInside((0 * 10), .1, .05)
 self.assertNotInside((5 * 8), 40.1, .2)
 unittest.main()

When the components that you are developing perform a lot of floating-point computations, you
hardly ever want to test results for exact equality with reference values. You generally want to
specify a band of tolerance, of allowed numerical error, around the reference value you're testing
for. So, unittest.TestCase.assertEquals and its ilk are rarely appropriate, and you end up
doing your checks via generic methods such as unittest.TestCase.failUnless and the like,
with lots of repetitive x-toler < result < x+toler expressions passed as the arguments to

such generic checking methods.

This recipe's IntervalTestCase class adds methods such as assertInside that let you perform
checks for approximate equality in just the same elegant style as unittest already supports for

checks for exact equality. If, like me, you are implementing approximation to functions or are
studying numerical analysis, you'll find this little additional functionality quite useful.

See Also

Documentation for the standard module unittest in the Library Reference and Python in a

Nutshell.

Chapter 9. Processes, Threads, and
Synchronization

Introduction

Recipe 9.1. Synchronizing All Methods in an Object

Recipe 9.2. Terminating a Thread

Recipe 9.3. Using a Queue.Queue as a Priority Queue

Recipe 9.4. Working with a Thread Pool

Recipe 9.5. Executing a Function in Parallel on Multiple Argument Sets

Recipe 9.6. Coordinating Threads by Simple Message Passing

Recipe 9.7. Storing Per-Thread Information

Recipe 9.8. Multitasking Cooperatively Without Threads

Recipe 9.9. Determining Whether Another Instanceof a Script Is Already Running in
Windows

Recipe 9.10. Processing Windows Messages Using MsgWaitForMultipleObjects

Recipe 9.11. Driving an External Process with popen

Recipe 9.12. Capturing the Output and Error Streams from a Unix Shell Command

Recipe 9.13. Forking a Daemon Process on Unix

Introduction

Credit: Greg Wilson, Third Bit

Thirty years ago, in his classic The Mythical Man-Month: Essays on Software Engineering
(Addison-Wesley), Fred Brooks drew a distinction between accidental and intrinsic complexity.
Languages such as English and C++, with their inconsistent rules, exceptions, and special cases,
are examples of the former: they make communication and programming harder than they need
to be. Concurrency, on the other hand, is a prime example of the latter. Most people have to
struggle to keep one chain of events straight in their minds; keeping track of two, three, or a
dozen, plus all of their possible interactions, is just plain hard.

Computer scientists began studying ways of running multiple processes safely and efficiently in a
single physical address space in the mid-1960s. Since then, a rich theory has been developed in
which assertions about the behavior of interacting processes can be formalized and proved, and
entire languages devoted to concurrent and parallel programming have been created.
Foundations of Multithreaded, Parallel, and Distributed Programming, by Gregory R. Andrews
(Addison-Wesley), is not only an excellent introduction to this theory, but also contains a great
deal of historical information tracing the development of major ideas.

Over the past 20 years, opportunity and necessity have conspired to make concurrency a part of
programmers' everyday lives. The opportunity is for greater speed, which comes from the
growing availability of multiprocessor machines. In the early 1980s, these were expensive
curiosities; today, many programmers have dual-processor workstations on their desks and four-
way or eight-way servers in the back room. If a calculation can be broken down into independent
(or nearly independent) pieces, such machines can potentially solve them two, four, or eight
times faster than their uniprocessor equivalents. While the potential gains from this approach are
limited, it works well for problems as diverse as image processing, serving HTTP requests, and
recompiling multiple source files.

The necessity for concurrent programming comes from GUIs and network applications. Graphical
interfaces often need to appear to be doing several things at once, such as displaying images
while scrolling ads across the bottom of the screen. While it is possible to do the necessary
interleaving manually, it is much simpler to code each operation on its own and let the underlying
operating system decide on a concrete order of operations. Similarly, network applications often
have to listen on several sockets at once or send data on one channel while receiving data on
another.

Broadly speaking, operating systems give programmers two kinds of concurrency. Processes run
in separate logical address spaces that are protected from each other. Using concurrent
processing for performance purposes, particularly in multiprocessor machines, is more attractive
with threads, which execute simultaneously within the same program, in the same address
space, without being protected from each other. The lack of mutual protection allows lower
overhead and easier and faster communication, particularly because of the shared address
space. Since all threads run code from the same program, no special security risks are caused by
the lack of mutual protection, any more than the risks in a single-threaded program. Thus,
concurrency used for performance purposes is most often focused on adding threads to a single
program.

However, adding threads to a Python program to speed it up is often not a successful strategy.
The reason is the Global Interpreter Lock (GIL), which protects Python's internal data structures.
This lock must be held by a thread before the thread can safely access Python objects. Without
the lock, even simple operations (such as incrementing an integer) could fail. Therefore, only the
thread with the GIL can manipulate Python objects or call Python/C API functions.

To make life easier for programmers, the interpreter releases and reacquires the lock every 100

bytecode instructions (a value that can be changed using sys.setcheckinterval). The lock is

also released and reacquired around I/O operations, such as reading or writing a file, so that
other threads can run while the thread that requests the I/O is waiting for the I/O operation to
complete. However, effective performance-boosting exploitation of multiple processors from
multiple pure-Python threads of the same process is just not in the cards. Unless the CPU
performance bottlenecks in your Python application are in C-coded extensions that release the
GIL, you will not observe substantial performance increases by moving your multithreaded
application to a multiprocessor machine.

However, threading is not just about performance on multiprocessor machines. A GUI can't know
when the user will press a key or move the mouse, and an HTTP server can't know which
datagram will arrive next. Handling each stream of events with a separate control thread is
therefore often the simplest way to cope with this unpredictability, even on single-processor
machines, and when high throughput is not an overriding concern. Of course, event-driven
programming can often be used in these kinds of applications as well, and Python frameworks
such as asyncore and Twisted are proof that this approach can often deliver excellent

performance with complexity that, while different from that inherent in multithreading, is not
necessarily any more difficult to deal with.

The standard Python library allows programmers to approach multithreaded programming at two
different levels. The core module, tHRead, is a thin wrapper around the basic primitives that any

threading library must provide. Three of these primitives are used to create, identify, and end
threads; others are used to create, test, acquire, and release simple mutual-exclusion locks (or
binary semaphores). As the recipes in this section demonstrate, programmers should avoid using
these primitives directly, and should instead use the tools included in the higher-level threading

module, which is substantially more programmer-friendly and has similar performance
characteristics.

Whether you use thread or threading, some underlying aspects of Python's threading model

stay the same. The GIL, in particular, works just the same either way. The crucial advantage of
the GIL is that it makes it much easier to code Python extensions in C: unless your C extension
explicitly releases the GIL, you know thread switches won't happen until your C code calls back
into Python code. This advantage can be really important when your extension makes available
to Python some underlying C library that isn't thread-safe. If your C code is thread-safe, though,
you can and should release the GIL around stretches of computational or I/O operations that can
last for a substantial time without needing to make Python C API calls; when you do this, you
make it possible for Python programs using your C extension to take advantage of more than
one processor from multiple threads within the same process. Make sure you acquire the GIL
again before calling any Python C API entry point, though!

Any time your code wants to access a data structure that is shared among threads, you may
have to wonder whether a given operation is atomic, meaning that no thread switch can happen
during the operation. In general, anything with multiple bytecodes is not atomic, since a thread
switch might always happen between one bytecode and the next (you can use the standard
library function dis.dis to disassemble Python code into bytecodes). Moreover, even a single

bytecode is not atomic, if it can call back to arbitrary Python code (e.g., because that bytecode
can end up executing a Python-coded special method). When in doubt, it is most prudent to
assume that whatever is giving you doubts is not atomic: so, reduce to the bare minimum the
data structures accessed by more than one thread (except for instances of Queue.Queue, a class

that is specifically designed to be thread-safe!), and make sure you protect with locks any access
to any such structures that remain.

Almost invariably, the proper idiom to use some lock is:

somelock.acquire()
try:

 # operations needing the lock (keep to a minimum!)
finally:
 somelock.release()

The TRy/finally construct ensures the lock will be released even if some exception happens in
the code in the try clause. Accidentally failing to release a lock, due to some unforeseen

exception, could soon make all of your application come to a grinding halt. Also, be careful
acquiring more than one lock in sequence; if you really truly need to do such multiple
acquisitions, make sure all possible paths through the code acquire the various locks in the same
sequence. Otherwise, you're likely sooner or later to enter the disaster case in which two threads
are each trying to acquire a lock held by the othera situation known as deadlock, which does
mean that your program is as good as dead.

The most important elements of the threading module are classes that represent threads and
various high-level synchronization constructs. The Thread class represents a separate control

thread; it can be told what to do by passing a callable object to its constructor, or, alternatively,
by overriding its run method. One thread can start another by calling its start method, and wait
for it to complete by calling join. Python also supports daemon threads, which do background

processing until all of the nondaemon threads in the program exit and then shut themselves
down automatically.

The synchronization constructs in the threading module include locks, reentrant locks (which a

single thread can safely relock many times without deadlocking), counting semaphores,
conditions, and events. Events can be used by one thread to signal others that something
interesting has happened (e.g., that a new item has been added to a queue, or that it is now safe
for the next thread to modify a shared data structure). The documentation that comes with
Python, specifically the Library Reference manual, describes each of these classes in detail.

The relatively low number of recipes in this chapter, compared to some other chapters in this
cookbook, reflects both Python's focus on programmer productivity (rather than absolute
performance) and the degree to which other packages (such as httplib and wxPython) hide the

unpleasant details of concurrency in important application areas. This relative scarcity also
reflects many Python programmers' tendencies to look for the simplest way to solve any
particular problem, which complex threading rarely is.

However, this chapter's brevity may also reflect the Python community's underappreciation of
the potential of simple threading, when used appropriately, to simplify a programmer's life. The
Queue module in particular supplies a delightfully self-contained (and yet extensible and

customizable!) synchronization and cooperation structure that can provide all the interthread
supervision services you need. Consider a typical program, which accepts requests from a GUI
(or from the network). As a "result" of such requests, the program will often find itself faced with
the prospect of having to perform a substantial chunk of work. That chunk might take so long to
perform all at once that, unless some precautions are taken, the program would appear
unresponsive to the GUI (or network).

In a purely event-driven architecture, it may take considerable effort on the programmer's part
to slice up such a hefty work-chunk into slices of work thin enough that each slice can be
performed in idle time, without ever giving the appearance of unresponsiveness. In cases such
as this one, just a dash of multithreading can help considerably. The main thread pushes a work
request describing the substantial chunk of background work onto a dedicated Queue instance,

then goes back to its task of making the program's interface responsive at all times.

At the other end of the Queue, a pool of daemonic worker threads await, each ready to peel a
work request off the Queue and run it straight through. This kind of overall architecture combines

event-driven and multithreaded approaches in the overarching ideal of simplicity and is thus
maximally Pythonic. You may need just a little bit more work if the result of a worker thread's
efforts must be presented again to the main thread (via another Queue, of course), which is

normally the case with GUIs. If you're willing to cheat just a little, and use polling for the mostly
event-driven main thread to access the result Queue back from the daemonic worker threads.

See Recipe 11.9, to get an idea of how simple that little bit of work can be.

Recipe 9.1. Synchronizing All Methods in an Object

Credit: André Bjärb, Alex Martelli, Radovan Chytracek

Problem

You want to share an object among multiple threads, but, to avoid conflicts, you need to ensure
that only one thread at a time is inside the objectpossibly excepting some methods for which you
want to hand-tune locking behavior.

Solution

Java offers such synchronization as a built-in feature, while in Python you have to program it
explicitly by wrapping the object and its methods. Wrapping is so general and useful that it
deserves to be factored out into general tools:

def wrap_callable(any_callable, before, after):
 ''' wrap any callable with before/after calls '''
 def _wrapped(*a, **kw):
 before()
 try:
 return any_callable(*a, **kw)
 finally:
 after()
 # In 2.4, only: _wrapped._ _name_ _ = any_callable._ _name_ _
 return _wrapped
import inspect
class GenericWrapper(object):
 ''' wrap all of an object's methods with before/after calls '''
 def _ _init_ _(self, obj, before, after, ignore=()):
 # we must set into _ _dict_ _ directly to bypass _ _setattr_ _; so,
 # we need to reproduce the name-mangling for double-underscores
 clasname = 'GenericWrapper'
 self._ _dict_ _['_%s_ _methods' % clasname] = { }
 self._ _dict_ _['_%s_ _obj' % clasname] = obj
 for name, method in inspect.getmembers(obj, inspect.ismethod):
 if name not in ignore and method not in ignore:
 self._ _methods[name] = wrap_callable(method, before, after)
 def _ _getattr_ _(self, name):
 try:
 return self._ _methods[name]
 except KeyError:
 return getattr(self._ _obj, name)
 def _ _setattr_ _(self, name, value):
 setattr(self._ _obj, name, value)

Using these simple but general tools, synchronization becomes easy:

class SynchronizedObject(GenericWrapper):
 ''' wrap an object and all of its methods with synchronization '''
 def _ _init_ _(self, obj, ignore=(), lock=None):

 if lock is None:
 import threading
 lock = threading.RLock()
 GenericWrapper._ _init_ _(self, obj, lock.acquire, lock.release, ignore)

Discussion

As per usual Python practice, we can complete this module with a small self-test, executed only
when the module is run as main script. This snippet also serves to show how the module's
functionality can be used:

if _ _name_ _ == '_ _main_ _':
 import threading
 import time
 class Dummy(object):
 def foo(self):
 print 'hello from foo'
 time.sleep(1)
 def bar(self):
 print 'hello from bar'
 def baaz(self):
 print 'hello from baaz'
 tw = SynchronizedObject(Dummy(), ignore=['baaz'])
 threading.Thread(target=tw.foo).start()
 time.sleep(0.1)
 threading.Thread(target=tw.bar).start()
 time.sleep(0.1)
 threading.Thread(target=tw.baaz).start()

Thanks to the synchronization, the call to bar runs only when the call to foo has completed.

However, because of the ignore= keyword argument, the call to baaz bypasses synchronization

and thus completes earlier. So the output is:

hello from foo
hello from baaz
hello from bar

When you find yourself using the same single-lock locking code in almost every method of an
object, use this recipe to refactor the locking away from the object's application-specific logic.
The key effect you get by applying this recipe is to effectively replace each method with:

self.lock.acquire()
try:

 # The "real" application code for the method
finally:
 self.lock.release()

This code idiom is, of course, the right way to express locking: the try/finally statement

ensures that the lock gets released in any circumstance, whether the application code terminates
correctly or raises an exception. You'll note that factory wrap_callable returns a closure, which is
carefully coded in exactly this way!

To some extent, this recipe can also be handy when you want to postpone worrying about a
class' locking behavior. However, if you intend to use this code for production purposes, you
should understand all of it. In particular, this recipe does not wrap direct accesses (for getting or

setting) to the object's attributes. If you want such direct accesses to respect the object's lock,
you need to add the try/finally locking idiom to the wrapper's _ _getattr_ _ and _
setattr _ special methods, around the calls these methods make to the getattr and setattr

built-in functions, respectively. I normally don't find that depth of wrapping to be necessary in
my applications. (The way I code, wrapping just the methods proves sufficient.)

If you're into custom metaclasses, you may be surprised that I do not offer a metaclass for these
synchronization purposes. However, wrapping is a more dynamic and flexible approachfor
example, an object can exist in both wrapped (synchronized) and unwrapped (raw) incarnations,
and you can use the most appropriate one case by case. You pay for wrapping's flexibility with a
little bit more runtime overhead at each method call, but compared to the large costs of
acquiring and releasing locks I don't think this tiny extra overhead matters. Meanwhile, this
recipe shows off, and effectively reuses, a wrapper-closure factory and a wrapper class that
demonstrate how easy Python makes it to implement that favorite design pattern of Aspect-
Oriented Programming's fans, the insertion of "before-and-after" calls around every call to an
object's methods.

See Also

Documentation of the standard library modules threading and inspect in the Library Reference

and Python in a Nutshell.

Recipe 9.2. Terminating a Thread

Credit: Doug Fort

Problem

You must terminate a thread from the outside, but Python doesn't let one thread just brutally kill
another, so you need to use a suitable controlled-termination idiom.

Solution

A frequently asked question is: How do I kill a thread? The answer is: You don't. Instead, you
kindly ask it to go away. Each thread must periodically check whether it's been asked to go away
and then comply (typically after some kind of cleanup). Here is an example:

import threading
class TestThread(threading.Thread):
 def _ _init_ _(self, name='TestThread'):
 """ constructor, setting initial variables """
 self._stopevent = threading.Event()
 self._sleepperiod = 1.0
 threading.Thread._ _init_ _(self, name=name)
 def run(self):
 """ main control loop """
 print "%s starts" % (self.getName(),)
 count = 0
 while not self._stopevent.isSet():
 count += 1
 print "loop %d" % (count,)
 self._stopevent.wait(self._sleepperiod)
 print "%s ends" % (self.getName(),)
 def join(self, timeout=None):
 """ Stop the thread and wait for it to end. """
 self._stopevent.set()
 threading.Thread.join(self, timeout)
if _ _name_ _ == "_ _main_ _":
 testthread = TestThread()
 testthread.start()
 import time
 time.sleep(5.0)
 testthread.join()

Discussion

You often want to exert some control on a thread from the outside, but the ability to kill a thread
is, well, overkill. Python doesn't give you this ability, and thus forces you to design your thread
systems more carefully. This recipe is based on the idea of a thread whose main function uses a
loop. Periodically, the loop checks if a tHReading.Event object has been set. If so, the thread

terminates; otherwise, it waits for the object.

The TestThread class in this recipe also overrides threading.Thread's join method. Normally,
join waits only for a certain thread to terminate (for up to a specified amount of time, if any)
without doing anything to cause that termination. In this recipe, however, join is overridden to

set the stop event object before delegating the rest of its operation to the normal (base class)
join method. Therefore, in this recipe, the join call is guaranteed to terminate the target thread

within a short amount of time.

You can use the recipe's central idea (a loop periodically checking a threading.Event to
determine whether it must terminate) in several other, slightly different ways. The Event's wait
method can let you pause the target thread. You can also expose the Event, letting controller
code set it and then go on its merry way without bothering to join the thread, knowing the

thread will terminate in a short amount of time. Once the event is exposed, you may choose to
use the same event to request the termination of more than one threadfor example, all threads
in a certain thread pool might stop when one event object they all share is set. The simplicity of
this recipe provides the modest amount of control I need, with no headaches, so I haven't
pursued the more sophisticated (and complicated) ideas.

Python also lets you terminate a thread in another way: by raising an exception in that thread.
This "rougher" approach also has its limits: it cannot interrupt a blocking call to the operating
system, and it could fail to work if the thread you want to terminate is executing a TRy clause
whose except clauses are too broad. Despite its limits, this approach can still sometimes be

useful, when you're essentially writing a debugger: that is, when you cannot count on the code
executing in the target thread to be well written, but you can hope the code is not written in an
utterly disastrous way. The normal way to make use of this functionality is by running the
possibly-buggy code in the main thread, after spawning a separate monitoring thread to keep an
eye on things. If the monitoring thread decides the time has come to terminate the code that is
currently running in the main thread, the monitoring thread can call thread.interrupt_main,

passing as the argument the desired exception class.

Once in a blue moon, the debugger you're writing cannot run the possibly-buggy code in the
process' main thread, typically because that thread is required for other uses by some other
framework you depend on, such as your GUI code. To support such remote eventualities, the
Python interpreter has a function that can raise an exception in any thread, given the target
thread's ID. However, this specialized functionality is intended for a tiny subset of that tiny
subset of Python applications that are debuggers. To avoid tempting all other Python
programmers (well over 99.9%) into misusing this approach for any other case of thread
termination, the function is not directly callable from Python code: rather, the function is only
exposed as a part of Python's C API. This special function's name is
PyThreadState_SetAsyncExc, and the function's two arguments are the target thread's ID and

the class of the desired exception. If you are writing a Python debugger with such peculiar
needs, no doubt you already have, as part of your code, at least one C-coded Python extension
module that supplies to your higher-level Python code other tidbits of peculiar, low-level
functionality. Just add to your C code, a Python-callable function that in turn calls
PyThreadState_SetAsyncExc, and your debugger will gain this peculiar but useful functionality.

See Also

Documentation of the standard library module threading in the Library Reference and Python in

a Nutshell.

Recipe 9.3. Using a Queue.Queue as a Priority Queue

Credit: Simo Salminen, Lee Harr, Mark Moraes, Chris Perkins, Greg Klanderman

Problem

You want to use a Queue.Queue instance, since it is the best way to communicate among

threads. However, you need the additional functionality of being able to specify a priority value
associated with each item on the queue, so that items with a lower (more urgent) priority value
are fetched before others with a higher (less urgent) priority value.

Solution

Among its many advantages, Queue.Queue offers an elegant architecture that eases subclassing
for purposes of specializing queueing behavior. Specifically, Queue.Queue exposes several

methods specifically designed to be overridden in a subclass, to get specialized queueing
behavior without worrying about synchronization issues.

We can exploit this elegant architecture and module heapq from the Python Standard Library to

build the needed priority-queue functionality pretty easily. However, we also need to shadow and
wrap Queue.Queue's put and get methods, to decorate each item with its priority and posting
time upon put, and strip off these decorations upon get:

import Queue, heapq, time
class PriorityQueue(Queue.Queue):
 # Initialize the queue
 def _init(self, maxsize):
 self.maxsize = maxsize
 self.queue = []
 # Return the number of items that are currently enqueued
 def _qsize(self):
 return len(self.queue)
 # Check whether the queue is empty
 def _empty(self):
 return not self.queue
 # Check whether the queue is full
 def _full(self):
 return self.maxsize > 0 and len(self.queue) >= self.maxsize
 # Put a new item in the queue
 def _put(self, item):
 heapq.heappush(self.queue, item)
 # Get an item from the queue
 def _get(self):
 return heapq.heappop(self.queue)
 # shadow and wrap Queue.Queue's own `put' to allow a 'priority' argument
 def put(self, item, priority=0, block=True, timeout=None):
 decorated_item = priority, time.time(), item
 Queue.Queue.put(self, decorated_item, block, timeout)
 # shadow and wrap Queue.Queue's own `get' to strip auxiliary aspects
 def get(self, block=True, timeout=None):
 priority, time_posted, item = Queue.Queue.get(self, block, timeout)
 return item

Discussion

Given an instance q of this recipe's PriorityQueue class, you can call q.put(anitem) to enqueue
an item with "normal" priority (here defined as 0), or q.put(anitem, prio) to enqueue an item

with a specific priority prio. At the time q.get() gets called (presumably in another thread),

items with the lowest priority will be returned first, bypassing items with higher priority. Negative
priorities are lower than "normal", thus suitable for "urgent" items; positive priorities, higher than
"normal", indicate items that may wait longer, since other items with "normal" priority will get
fetched before them. Of course, if you're not comfortable with this conception of priorities,
nothing stops you from altering this recipe's code accordingly: for example, by changing sign to
the priority value when you build the decorated_item at the start of method put. If you do so,

items posted with positive priority will become the urgent ones and items posted with negative
priority will become the can-wait-longer ones.

Queue.Queue's architecture deserves study, admiration, and imitation. Not only is Queue.Queue,

all on its own, the best way to architect communication among threads, but this same class is
also designed to make it easy for you to subclass and specialize it with queueing disciplines
different from its default FIFO (first-in, first-out), such as the priority-based queueing discipline
implemented in this recipe. Specifically, Queue.Queue uses the wonderful Template Method

Design Pattern (http://www.aleax.it/Python/os03_template_dp.pdf). This DP enables
Queue.Queue itself to take care of the delicate problems connected with locking, while delegating
the queueing discipline to specific methods _put, _get, and so on, which may be overridden by

subclasses; such hook methods then get called in a context where synchronization issues are not
a concern.

In this recipe, we also need to override Queue.Queue's put and get methods, because we need to
add a priority optional argument to put's signature, decorate the item before we put it on the
queue (so that the heapq module's mechanisms will produce the order we wantlowest priority

first, and, among items posted with equal priority, FIFO ordering), and undecorate each
decorated item that we get back from the queue to return the naked item. All of these auxiliary
tweaks use nothing but local variables, however, so they introduce no synchronization worries
whatsoever. Each thread gets its own stack; therefore, any code that uses nothing but local
variables (and thus cannot possibly alter any state accessible from other threads, or access any
state that other threads might alter) is inherently thread-safe.

See Also

Modules Queue and heapq of the Python Standard Library are documented in Library Reference

and Python in a Nutshell; the Template Method Design Pattern is illustrated at
http://www.strakt.com/docs/os03_template_dp.pdf; Recipe 19.14, and Recipe 5.7, show other
examples of coding and using priority queues.

http://www.aleax.it/Python/os03_template_dp.pdf
http://www.strakt.com/docs/os03_template_dp.pdf

Recipe 9.4. Working with a Thread Pool

Credit: John Nielsen, Justin A

Problem

You want your main thread to be able to farm out processing tasks to a pool of worker threads.

Solution

The Queue.Queue type is the simplest and most effective way to coordinate a pool of worker

threads. We could group all the needed data structures and functions into a class, but there's no
real need to. So, here they are, shown as globals instead:

import threading, Queue, time, sys
Globals (start with a capital letter)
Qin = Queue.Queue()
Qout = Queue.Queue()
Qerr = Queue.Queue()
Pool = []
def report_error():
 ''' we "report" errors by adding error information to Qerr '''
 Qerr.put(sys.exc_info()[:2])
def get_all_from_queue(Q):
 ''' generator to yield one after the others all items currently
 in the Queue Q, without any waiting
 '''
 try:
 while True:
 yield Q.get_nowait()
 except Queue.Empty:
 raise StopIteration
def do_work_from_queue():
 ''' the get-some-work, do-some-work main loop of worker threads '''
 while True:
 command, item = Qin.get() # implicitly stops and waits
 if command == 'stop':
 break
 try:
 # simulated work functionality of a worker thread
 if command == 'process':
 result = 'new' + item
 else:
 raise ValueError, 'Unknown command %r' % command
 except:
 # unconditional except is right, since we report _all_ errors
 report_error()
 else:
 Qout.put(result)
def make_and_start_thread_pool(number_of_threads_in_pool=5, daemons=True):
 ''' make a pool of N worker threads, daemonize, and start all of them '''
 for i in range(number_of_threads_in_pool):

 new_thread = threading.Thread(target=do_work_from_queue)
 new_thread.setDaemon(daemons)
 Pool.append(new_thread)
 new_thread.start()
def request_work(data, command='process'):
 ''' work requests are posted as (command, data) pairs to Qin '''
 Qin.put((command, data))
def get_result():
 return Qout.get() # implicitly stops and waits
def show_all_results():
 for result in get_all_from_queue(Qout):
 print 'Result:', result
def show_all_errors():
 for etyp, err in get_all_from_queue(Qerr):
 print 'Error:', etyp, err
def stop_and_free_thread_pool():
 # order is important: first, request all threads to stop...:
 for i in range(len(Pool)):
 request_work(None, 'stop')
 # ...then, wait for each of them to terminate:
 for existing_thread in Pool:
 existing_thread.join()
 # clean up the pool from now-unused thread objects
 del Pool[:]

Discussion

It is generally a mistake to architect a multithreading program on the premise of having it spawn
arbitrarily high numbers of threads as needed. Most often, the best architecture for such a
program is based on farming out work to a fixed and relatively small number of worker threadsan
arrangement known as a thread pool. This recipe shows a very simple example of a thread pool,
focusing on the use of Queue.Queue instances as the most useful and simplest way for inter-

thread communication and synchronization.

In this recipe, worker threads run function do_work_from_queue, which has the right structure
for a typical worker thread but does really minimal "processing" (just as an example). In this
case, the worker thread computes a "result" by prepending the string 'new' to each arriving item

(note that this implicitly assumes that arriving items are strings). In your applications, of course,
you will have, in the equivalent of this do_work_from_queue function, more substantial
processing, and quite possibly different kinds of processing depending on the value of the
command parameter.

In addition to the worker threads in the pool, a multithreading program often has other
specialized threads for various purposes, such as interfacing to various entities external to the
program (a GUI, a database, a library that is not guaranteed to be thread-safe). In this recipe,
such specialized threads are not shown. However, it does include at least a "main thread", which
starts and stops the thread pool, determines the units of work to be farmed out, and eventually
gathers all results and any errors that may have been reported.

In your applications, you may or may not want to start and stop the thread pool repeatedly. Most
typically, you may start the pool as a part of your program's initialization, leave it running
throughout, and stop it, if at all, only as a part of your program's final cleanup. If you set your
worker threads as "daemons", as this recipe's function make_and_start_thread_pool sets them
by default, it means that your program will not continue running when only worker threads are
left. Rather, your program will terminate as soon as the main thread terminates. Again, this
arrangement is a typically advisable architecture. At any rate, the recipe also provides a function
stop_and_free_thread_pool, just in case you do want to terminate and clean up your thread pool
at some point (and possibly later make and restart another one with another call to
make_and_start_thread_pool).

An example use of the functionality in this recipe might be:

for i in ('_ba', '_be', '_bo'): request_work(i)
make_and_start_thread_pool()
stop_and_free_thread_pool()
show_all_results()
show_all_errors()

The output from this snippet should normally be:

Result: new_ba
Result: new_be
Result: new_bo

although it's possible (but quite unlikely) that two of the results might end up exchanged. (If
ordering of results is important to you, be sure to add a progressive number to the work
requests you post from the main thread, and report it back to the main thread as part of each
result or error.)

Here is a case where an error occurs and gets reported:

for i in ('_ba', 7, '_bo'): request_work(i)
make_and_start_thread_pool()
stop_and_free_thread_pool()
show_all_results()
show_all_errors()

The output from this snippet should normally be (net of an extremely unlikely, but not
impossible, exchange between the two "Result" lines):

Result: new_ba
Result: new_bo
Error: exceptions.TypeError cannot concatenate 'str' and 'int' objects

The worker thread that gets the item 7 reports a TypeError because it tries to concatenate the
string 'new' with this item, which is an intan invalid operation. Not to worry: we have the
try/except statement in function do_work_from_queue exactly to catch any kind of error, and
Queue Qerr and functions report_error and show_all_errors exactly to ensure that errors do not

pass silently, unless explicitly silenced, which is a key point of Python's general approach to
programming.

See Also

Library Reference docs on tHReading and Queue modules; Python in a Nutshell chapter on

threads.

Recipe 9.5. Executing a Function in Parallel on Multiple
Argument Sets

Credit: Guy Argo

Problem

You want to execute a function simultaneously over multiple sets of arguments. (Presumably the
function is "I/O bound", meaning it spends substantial time doing input/output operations;
otherwise, simultaneous execution would be useless.)

Solution

Use one thread for each set of arguments. For good performance, it's best to limit our use of
threads to a bounded pool:

import threading, time, Queue
class MultiThread(object):
 def _ _init_ _(self, function, argsVector, maxThreads=5, queue_results=False):
 self._function = function
 self._lock = threading.Lock()
 self._nextArgs = iter(argsVector).next
 self._threadPool = [threading.Thread(target=self._doSome)
 for i in range(maxThreads)]
 if queue_results:
 self._queue = Queue.Queue()
 else:
 self._queue = None
 def _doSome(self):
 while True:
 self._lock.acquire()
 try:
 try:
 args = self._nextArgs()
 except StopIteration:
 break
 finally:
 self._lock.release()
 result = self._function(args)
 if self._queue is not None:
 self._queue.put((args, result))
 def get(self, *a, **kw):
 if self._queue is not None:
 return self._queue.get(*a, **kw)
 else:
 raise ValueError, 'Not queueing results'
 def start(self):
 for thread in self._threadPool:
 time.sleep(0) # necessary to give other threads a chance to run
 thread.start()
 def join(self, timeout=None):

 for thread in self._threadPool:
 thread.join(timeout)
if _ _name_ _=="_ _main_ _":
 import random
 def recite_n_times_table(n):
 for i in range(2, 11):
 print "%d * %d = %d" % (n, i, n * i)
 time.sleep(0.3 + 0.3*random.random())
 mt = MultiThread(recite_n_times_table, range(2, 11))
 mt.start()
 mt.join()
 print "Well done kids!"

Discussion

This recipe's MultiThread class offers a simple way to execute a function in parallel, on many sets
of arguments, using a bounded pool of threads. Optionally, you can ask for results of the calls to
the function to be queued, so you can retrieve them, but by default the results are just thrown
away.

The MultiThread class takes as its arguments a function, a sequence of argument tuples for said
function, and optionally a boundary on the number of threads to use in its pool and an indicator
that results should be queued. Beyond the constructor, it exposes three methods: start, to start
all the threads in the pool and begin the parallel evaluation of the function over all argument
tuples; join, to perform a join on all threads in the pool (meaning to wait for all the threads in the
pool to have terminated); and get, to get queued results (if it was instantiated with the optional
flag queue_results set to TRue, to ask for results to be queued). Internally, class MultiThread

uses its private method doSome as the target callable for all threads in the pool. Each thread
works on the next available tuple of arguments (supplied by the next method of an iterator on
the iterable whose items are such tuples, with the call to next being guarded by the usual locking

idiom), until all work has been completed.

As is usual in Python, the module can also be run as a free-standing main script, in which case it
runs a simple demonstration and self-test. In this case, the demonstration simulates a class of
schoolchildren reciting multiplication tables as fast as they can.

Real use cases for this recipe mostly involve functions that are I/O bound, meaning functions
that spend substantial time performing I/O. If a function is "CPU bound", meaning the function
spends its time using the CPU, you get better overall performance by performing the
computations one after the other, rather than in parallel. In Python, this observation tends to
hold even on machines that dedicate multiple CPUs to your program, because Python uses a GIL
(Global Interpreter Lock), so that pure Python code from a single process does not run
simultaneously on more than one CPU at a time.

Input/output operations release the GIL, and so can (and should) any C-coded Python extension
that performs substantial computations without callbacks into Python. So, it is possible that
parallel execution may speed up your program, but only if either I/O or a suitable C-coded
extension is involved, rather than pure computationally intensive Python code. (Implementations
of Python on different virtual machines, such as Jython, which runs on a JVM [Java Virtual
Machine], or IronPython, which runs on the Microsoft .NET runtime, are of course not bound by
these observations: these observations apply only to the widespread "classical Python", meaning
CPython, implementation.)

See Also

Library Reference and Python in a Nutshell docs on modules threading and Queue.

Recipe 9.6. Coordinating Threads by Simple Message
Passing

Credit: Michael Hobbs

Problem

You want to write a multithreaded application, using, as the synchronization and communication
primitive, a simple yet powerful message-passing paradigm.

Solution

The candygram module lets you use concurrent programming semantics that are essentially
equivalent to those of the Erlang language. To use candygram, you start by defining appropriate

classes, such as the following one, to model your threads' functionality:

import candygram as cg
class ExampleThread(object):
 """A thread-class with just a single counter value and a stop flag."""
 def _ _init_ _(self):
 """ Initialize the counter to 0, the running-flag to True. """
 self.val = 0
 self.running = True
 def increment(self):
 """ Increment the counter by one. """
 self.val += 1
 def sendVal(self, msg):
 """ Send current value of counter to requesting thread. """
 req = msg[0]
 req.send((cg.self(), self.val))
 def setStop(self):
 """ Set the running-flag to False. """
 self.running = False
 def run(self):
 """ The entry point of the thread. """
 # Register the handler functions for various messages:
 r = cg.Receiver()
 r.addHandler('increment', self.increment)
 r.addHandler((cg.Process, 'value'), self.sendVal, cg.Message)
 r.addHandler('stop', self.setStop)
 # Keep handling new messages until a stop has been requested
 while self.running:
 r.receive()

To start a thread running this code under candygram, use:

counter = cg.spawn(ExampleThread().run)

To handle the counter tHRead's responses, you need another Receiver object, with the proper

handler registered:

response = cg.Receiver()
response.addHandler((counter, int), lambda msg: msg[1], cg.Message)

And here is an example of how you might use these counter and response objects:

Tell thread to increment twice
counter.send('increment')
counter.send('increment')
Request the thread's current value, then print the thread's response
counter.send((cg.self(), 'value'))
print response.receive()
Tell thread to increment one more time
counter.send('increment')
Again, request the thread's current value, then print the thread's response
counter.send((cg.self(), 'value'))
print response.receive()
Tell the thread to stop running
counter.send('stop')

Discussion

With the candygram module (http://candygram.sourceforge.net), Python developers can send

and receive messages between threads using semantics nearly identical to those introduced in
the Erlang language (http://www.erlang.org). Erlang is widely respected for its elegant built-in
facilities for concurrent programming.

Erlang's approach is simple and yet powerful. To communicate with another thread, simply send
a message to it. You do not need to worry about locks, semaphores, mutexes, and other such
primitives, to share information among concurrent tasks. Developers of multitasking software
mostly use message passing only to implement a producer/consumer model. When you combine
message passing with the flexibility of a Receiver object, however, it becomes much more

powerful. For example, by using timeouts and message patterns, a thread may easily handle its
messages as a state machine, or as a priority queue.

For those who wish to become more familiar with Erlang,
http://www.erlang.org/download/erlang-book-part1.pdf (Concurrent Programming in Erlang)
provides a very complete introduction. In particular, the candygram module implements all of the

functions described in Chapter 5 and sections 7.2, 7.3, and 7.5 of that book.

This recipe offers a very elementary demonstration of how messages are passed between
threads using candygram. When you run this recipe as a script, the print statements will output
the values 2 and then 3.

It's important to understand how the candygram.Receiver class works. The addHandler method

requires at least two parameters: the first is a message pattern and the second is a handler
function. The Receiver.receive method invokes a registered handler function, and returns that

function's result, whenever it finds a message that matches the associated pattern. Any
parameters optionally passed to addHandler beyond the first two get passed as parameters to
the handler function when the Receiver calls it. If a parameter is the candygram.Message
constant, then receive replaces that parameter with the matching message when it calls the

handler function.

This recipe's code contains four different message patterns: 'increment', (cg.Process, 'value'),
'stop', and (counter, int). The 'increment' and 'stop' patterns are simple patterns that match
any message that consists solely of the strings 'increment' and 'stop', respectively. The
(cg.Process, 'value') pattern matches any message that is a tuple with two items, where the

http://candygram.sourceforge.net
http://www.erlang.org
http://www.erlang.org/download/erlang-book-part1.pdf

first item isinstance of cg.Process and the second item is the string value. Lastly, the
(counter, int) pattern matches any message that is a tuple with two items where the first item

is the counter object and the second element is an integer.

You can find more information about the Candygram package at
http://candygram.sourceforge.net. At that URL, you can find all details on how to specify
message patterns, how to set a timeout for the Receiver.receive method, and how to monitor

the running status of spawned threads.

See Also

Concurrent Programming in Erlang at http://www.erlang.org/download/erlang-book-part1.pdf;
the candygram home page at http://candygram.sourceforge.net.

http://candygram.sourceforge.net
http://www.erlang.org/download/erlang-book-part1.pdf
http://candygram.sourceforge.net

Recipe 9.7. Storing Per-Thread Information

Credit: John E. Barham, Sami Hangaslammi, Anthony Baxter

Problem

You need to allocate to each thread some storage that only that thread can use.

Solution

Thread-specific storage is a useful design pattern, and Python 2.3 did not yet support it directly.
However, even in 2.3, we could code it up in terms of a dictionary protected by a lock. For once,
it's slightly more general, and not significantly harder, to program to the lower-level thread
module, rather than to the more commonly useful, higher-level tHReading module that Python

offers on top of it:

_tss = { }
try:
 import thread
except ImportError:
 # We're running on a single-threaded platform (or, at least, the Python
 # interpreter has not been compiled to support threads), so we just return
 # the same dict for every call -- there's only one thread around anyway!
 def get_thread_storage():
 return _tss
else:
 # We do have threads; so, to work:
 _tss_lock = thread.allocate_lock()
 def get_thread_storage():
 """ Return a thread-specific storage dictionary. """
 thread_id = thread.get_ident()
 _tss_lock.acquire()
 try:
 return _tss.set_default(thread_id, { })
 finally:
 _tss_lock.release()

Python 2.4 offers a much simpler and faster implementation, of course, thanks to the new
tHReading.local function:

try:
 import threading
except ImportError:
 import dummy_threading as threading
_tss = threading.local()
def get_thread_storage():
 return _tss._ _dict_ _

Discussion

The main benefit of multithreaded programs is that all of the threads can share global objects
when they need to do so. Often, however, each thread also needs some storage of its ownfor
example, to store a network or database connection unique to itself. Indeed, each such
externally oriented object is generally best kept under the control of a single thread, to avoid
multiple possibilities of highly peculiar behavior, race conditions, and so on. The
get_thread_storage function in this recipe solves this problem by implementing the "thread-
specific storage" design pattern, and specifically by returning a thread-specific storage dictionary.
The calling thread can then use the returned dictionary to store any kind of data that is private to
the thread. This recipe is, in a sense, a generalization of the get_transaction function from

ZODB, the object-oriented database underlying Zope.

One possible extension to this recipe is to add a delete_thread_storage function. Such a function
would be useful, particularly if a way could be found to automate its being called upon thread
termination. Python's threading architecture does not make this task particularly easy. You could
spawn a watcher thread to do the deletion after a join with the calling thread, but that's a rather
heavyweight approach. The recipe as presented, without deletion, is quite appropriate for the
common and recommended architecture in which you have a pool of (typically daemonic) worker
threads (perhaps some of them general workers, with others dedicated to interfacing to specific
external resources) that are spawned at the start of the program and do not go away until the
end of the whole process.

When multithreading is involved, implementation must always be particularly careful to detect
and prevent race conditions, deadlocks, and other such conflicts. In this recipe, I have decided
not to assume that a dictionary's set_default method is atomic (meaning that no thread switch
can occur while set_default executes)adding a key can potentially change the dictionary's

whole structure, after all. If I was willing to make such an assumption, I could do away with the
lock and vastly increase performance, but I suspect that such an assumption might make the
code too fragile and dependent on specific versions of Python. (It seems to me that the
assumption holds for Python 2.3, but, even if that is the case, I want my applications to survive
subtle future changes to Python's internals.) Another risk is that, if a thread terminates and a
new one starts, the new thread might end up with the same thread ID as the just-terminated
one, and therefore accidentally share the "thread-specific storage" dictionary left behind by the
just-terminated thread. This risk might be mitigated (though not eliminated) by providing the
delete_thread_storage function mentioned in the previous paragraph. Again, this specific
problem does not apply to me, given the kind of multithreading architecture that I use in my
applications. If your architecture differs, you may want to modify this recipe's solution
accordingly.

If the performance of this recipe's version is insufficient for your application's needs, due to
excessive overhead in acquiring and releasing the lock, then, rather than just removing the lock
at the risk of making your application fragile, you might consider an alternative:

_creating_threads = True
_tss_lock = thread.allocate_lock()
_tss = { }
class TssSequencingError(RuntimeError): pass
def done_creating_threads():
 """ switch from thread-creation to no-more-threads-created state """
 global _creating_threads
 if not _creating_threads:
 raise TssSequencingError('done_creating_threads called twice')
 _creating_threads = False
def get_thread_storage():
 """ Return a thread-specific storage dictionary. """
 thread_id = thread.get_ident()
 # fast approach if thread-creation phase is finished
 if not _creating_threads: return _tss[thread_id]
 # careful approach if we're still creating threads
 try:
 _tss_lock.acquire()
 return _tss.setdefault(thread_id, { })

 finally:
 _tss_lock.release()

This variant adds a boolean switch _creating_threads, initially true. As long as the switch is
true, the variant uses a careful locking-based approach, quite similar to the one presented in

this recipe's Solution. At some point in time, when all threads that will ever exist (or at least all
that will ever require access to get_thread_storage) have been started, and each of them has
obtained its thread-local storage dictionary, your application calls done_creating_threads. This
sets _creating_threads to False, and every future call to get_thread_storage then takes a fast

path where it simply indexes into global dictionary _tssno more acquiring and releasing the lock,
no more creating a thread's thread-local storage dictionary if it didn't yet exist.

As long as your application can determine a moment in which it can truthfully call
done_creating_threads, the variant in this subsection should definitely afford a substantial
increase in speed compared to this recipe's Solution. Note that it is particularly likely that you
can use this variant if your application follows the popular and recommended architecture
mentioned previously: a bounded set of daemonic, long-lived worker threads, all created early in
your program. This is fortunate, because, if your application is performance-sensitive enough to
worry about the locking overhead of this recipe's solution, then no doubt you will want to
structure your application that way. The alternative approach of having many short-lived threads
is generally quite damaging to performance.

If your application needs to run only under Python 2.4, you can get a much simpler, faster, and
solid implementation by relying on the new threading.local function. threading.local returns

a new object on which any thread can get and set arbitrary attributes, independently from
whatever getting and setting other threads may be doing on the same object. This recipe, in the
2.4 variant, returns the per-thread _ _dict_ _ of such an object, for uniformity with the 2.3

variant. This way, your applications can be made to run on both Python 2.3 and 2.4, using the
best version in each case:

import sys
if sys.version >= '2.4':

 # insert 2.4 definition of get_local_storage here
else:

 # insert 2.3 definition of get_local_storage here

The 2.4 variant of this recipe also shows off the intended use of module dummy_threading,
which, like its sibling dummy_thread, is also available in Python 2.3. By conditionally using these

dummy modules, which are available on all platforms, whether or not Python was compiled with
thread support, you may sometimes, with due care, be able to write applications that can run on
any platform, taking advantage of threading where it's available but running anyway even where
threading is not available. In the 2.3 variant, we did not use the similar approach based on
dummy_thread, because the overhead would be too high to pay on nonthreaded platforms; in the
2.4 variant, overhead is pretty low anyway, so we went for the simplicity that dummy_threading

affords.

See Also

For an exhaustive treatment of the design pattern that describes thread-specific storage (albeit
aimed at C++ programmers), see Douglas Schmidt, Timothy Harrisson, Nat Pryce, Thread-
Specific Storage: An Object Behavioral Pattern for Efficiently Accessing per-Thread State
(http://www.cs.wustl.edu/~schmidt/PDF/TSS-pattern.pdf); the Library Reference documentation
dummy_thread, dummy_threading, and Python 2.4's tHReading.local; ZODB at

http://zope.org/Wikis/ZODB/FrontPage.

http://www.cs.wustl.edu/~schmidt/PDF/TSS-pattern.pdf
http://zope.org/Wikis/ZODB/FrontPage

Recipe 9.8. Multitasking Cooperatively Without Threads

Credit: Brian Bush, Troy Melhase, David Beach, Martin Miller

Problem

You have a task that seems suited to multithreading, but you don't want to incur the overhead
that real thread-switching would impose.

Solution

Generators were designed to simplify iteration, but they're also quite suitable as a basis for
cooperative multitasking, also known as microthreading:

import signal
credit: original idea was based on an article by David Mertz
http://gnosis.cx/publish/programming/charming_python_b7.txt
some example 'microthread' generators
def empty(name):
 """ This is an empty task for demonstration purposes. """
 while True:
 print "<empty process>", name
 yield None
def terminating(name, maxn):
 """ This is a counting task for demonstration purposes. """
 for i in xrange(maxn):
 print "Here %s, %s out of %s" % (name, i, maxn)
 yield None
 print "Done with %s, bailing out after %s times" % (name, maxn)
def delay(duration=0.8):
 """ Do nothing at all for 'duration' seconds. """
 import time
 while True:
 print "<sleep %d>" % duration
 time.sleep(duration)
 yield None
class GenericScheduler(object):
 def _ _init_ _(self, threads, stop_asap=False):
 signal.signal(signal.SIGINT, self.shutdownHandler)
 self.shutdownRequest = False
 self.threads = threads
 self.stop_asap = stop_asap
 def shutdownHandler(self, n, frame):
 """ Initiate a request to shutdown cleanly on SIGINT."""
 print "Request to shut down."
 self.shutdownRequest = True
 def schedule(self):
 def noop():
 while True: yield None
 n = len(self.threads)
 while True:
 for i, thread in enumerate(self.threads):

 try: thread.next()
 except StopIteration:
 if self.stop_asap: return
 n -= 1
 if n==0: return
 self.threads[i] = noop()
 if self.shutdownRequest:
 return
if _ _name_ _== "_ _main_ _":
 s = GenericScheduler([empty('boo'), delay(), empty('foo'),
 terminating('fie', 5), delay(0.5),
], stop_asap=True)
 s.schedule()
 s = GenericScheduler([empty('boo'), delay(), empty('foo'),
 terminating('fie', 5), delay(0.5),
], stop_asap=False)
 s.schedule()

Discussion

Microthreading (or cooperative multitasking) is an important technique. If you want to pursue it
in earnest for complex uses, you should definitely look up the possibilities of Christian Tismer's
Stackless, a Python version specialized for microthreading, at http://www.stackless.com/.
However, you can get a taste of cooperative multitasking without straying from Python's core, by
making creative use of generators, as shown in this recipe.

A simple approach to cooperative multitasking, such as the one presented in this recipe, is not
suitable when your tasks must perform long-running work, particularly I/O tasks that may
involve blocking system calls. For such applications, look into real threading, or, as a strong
alternative, look into the event-driven approach offered by module asyncore in the Python

Standard Library (on a simple scale) and by package Twisted at
http://twistedmatrix.com/products/twisted (on a grandiose scale). But if your application has
modest I/O needs, and you can slice up any computation your tasks perform into short chunks,
each of which you can end with a yield, this recipe may be just what you're looking for.

See Also

David Mertz's site, chock-full of idiosyncratic, fascinating ideas, is at http://gnosis.cx/; Christian
Tismer's Stackless Python, the best way to do cooperative multitasking in Python (and much else
besides), is at http://www.stackless.com/; Twisted Matrix, the best way to do event-driven
(asynchronous) programming, is at http://twistedmatrix.com/.

http://www.stackless.com/
http://twistedmatrix.com/products/twisted
http://gnosis.cx/
http://www.stackless.com/
http://twistedmatrix.com/

Recipe 9.9. Determining Whether Another Instanceof a
Script Is Already Running in Windows

Credit: Bill Bell

Problem

In a Windows environment, you want to ensure that only one instance of a script is running at
any given time.

Solution

Many tricks can be used to avoid starting multiple copies of an application, but they're all quite
fragileexcept those based on a mutual-exclusion (mutex) kernel object, such as this one. Mark
Hammond's precious PyWin32 package supplies all the needed hooks into the Windows APIs to
let us exploit a mutex for this purpose:

from win32event import CreateMutex
from win32api import GetLastError
from winerror import ERROR_ALREADY_EXISTS
from sys import exit
handle = CreateMutex(None, 1, 'A unique mutex name')
if GetLastError() == ERROR_ALREADY_EXISTS:
 # Take appropriate action, as this is the second
 # instance of this script; for example:
 print 'Oh! dear, I exist already.'
 exit(1)
else:
 # This is the only instance of the script; let
 # it do its normal work. For example:
 from time import sleep
 for i in range(10):
 print "I'm running",i
 sleep(1)

Discussion

The string 'A unique mutex name' must be chosen to be unique to this script, and it must not be

dynamically generated, because the string must have the same value for all potential
simultaneous instances of the same script. A fresh, globally unique ID that you manually
generate and insert at script-authoring time would be a good choice. According to the Windows
documentation, the string can contain any characters except backslashes (\). On Windows
platforms that implement Terminal Services, you can optionally prefix the string with Global\ or
Local\, but such prefixes would make the string invalid for most versions of Windows, including

NT, 95, 98, and ME.

The Win32 API call CreateMutex creates a Windows kernel object of the mutual-exclusion
(mutex) kind and returns a handle to it. Note that we do not close this handle, because it needs

to exist throughout the time this process is running. It's important to let the Windows kernel take
care of removing the handle (and the object it indicates, if the handle being removed is the only

handle to that kernel object) when our process terminates.

The only thing we really care about is the return code from the API call, which we obtain by
calling the GetLastError API right after it. That code is ERROR_ALREADY_EXISTS if and only if the

mutual-exclusion object we tried to create already exists (i.e., if another instance of this script is
already running).

This approach is perfectly safe and not subject to race conditions and similar anomalies, even if
two instances of the script are trying to start at the same time (a reasonably frequent
occurrence, e.g., if the user erroneously double-clicks in an Active Desktop setting where a single
click already starts the application). The Windows specifications guarantee that only one of the
instances will create the mutex, while the other will be informed that the mutex already exists.
Mutual exclusion is therefore guaranteed by the Windows kernel itself, and the recipe is as solid
as the operating system.

See Also

Documentation for the Win32 API in PyWin32

(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows API documentation available from
Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

http://starship.python.net/crew/mhammond/win32/Downloads.html
http://www.activestate.com/ActivePython/
http://msdn.microsoft.com

Recipe 9.10. Processing Windows Messages Using
MsgWaitForMultipleObjects

Credit: Michael Robin

Problem

In a Win32 application, you need to process messages, but you also want to wait for kernel-level
waitable objects, and coordinate several activities.

Solution

A Windows application's message loop, also known as its message pump, is at the heart of
Windows. It's worth some effort to ensure that the heart beats properly and regularly:

import win32event
import pythoncom
TIMEOUT = 200 # ms
StopEvent = win32event.CreateEvent(None, 0, 0, None)
OtherEvent = win32event.CreateEvent(None, 0, 0, None)
class myCoolApp(object):
 def OnQuit(self):
 # assume 'areYouSure' is a global function that makes a final
 # check via a message box, a fancy dialog, or whatever else!
 if areYouSure():
 win32event.SetEvent(StopEvent) # Exit msg pump
def _MessagePump():
 waitables = StopEvent, OtherEvent
 while True:
 rc = win32event.MsgWaitForMultipleObjects(
 waitables,
 , # Wait for all = false, so it waits for any one
 TIMEOUT, # (or win32event.INFINITE)
 win32event.QS_ALLEVENTS) # Accept all kinds of events
 # You can call a function here, if it doesn't take too long. It will
 # be executed at least every TIMEOUT ms -- possibly a lot more often,
 # depending on the number of Windows messages received.
 if rc == win32event.WAIT_OBJECT_0:
 # Our first event listed, the StopEvent, was triggered, so
 # we must exit, terminating the message pump
 break
 elif rc == win32event.WAIT_OBJECT_0+1:
 # Our second event listed, "OtherEvent", was set. Do
 # whatever needs to be done -- you can wait on as many
 # kernel-waitable objects as needed (events, locks,
 # processes, threads, notifications, and so on).
 pass
 elif rc == win32event.WAIT_OBJECT_0+len(waitables):
 # A windows message is waiting - take care of it. (Don't
 # ask me why a WAIT_OBJECT_MSG isn't defined <
 # WAIT_OBJECT_0...!).

 # This message-serving MUST be done for COM, DDE, and other
 # Windows-y things to work properly!
 if pythoncom.PumpWaitingMessages():
 break # we received a wm_quit message
 elif rc == win32event.WAIT_TIMEOUT:
 # Our timeout has elapsed.
 # Do some work here (e.g, poll something you can't thread)
 # or just feel good to be alive.
 pass
 else:
 raise RuntimeError("unexpected win32wait return value")

Discussion

Most Win32 applications must process messages, but you often want to wait on kernel waitables
and coordinate a lot of things going on at the same time. A good message pump structure is the
key to this, and this recipe exemplifies a reasonably simple but pretty effective one.

With the message pump shown in this recipe, messages and other events get dispatched as soon
as they are posted, and a timeout allows you to poll other components. You may need to poll if
the proper calls or event objects are not exposed in your Win32 event loop, as many components
insist on running only on the application's main thread and cannot run on spawned (secondary)
threads.

You can add many other refinements, just as you can to any other Win32 message-pump
approach. Python lets you do this with as much precision as C does, thanks to Mark Hammond's
PyWin32 package (which used to be known as win32all). However, the relatively simple

message pump presented in this recipe is already a big step up from the typical naive application
that can either serve its message loop or wait on kernel waitables, but not both.

The key to this recipe is the Windows API call MsgWaitForMultipleObjects, which takes several

parameters. The first is a tuple of kernel objects you want to wait for. The second parameter is a
flag that is normally 0. The value 1 indicates that you should wait until all the kernel objects in
the first parameter are signaled, but my experience suggests that you almost invariably want to
stop waiting when any one of these objects is signaled, so this parameter will almost always be
0. The third is a flag that specifies which Windows messages you want to interrupt the wait;
always pass win32event.QS_ALLEVENTS here, to make sure any Windows message interrupts the
wait. The fourth parameter is a timeout period (in milliseconds), or win32event.INFINITE if you

are sure you do not need to do any periodic polling.

This function is a polling loop and, sure enough, it loops (with a while True, which is terminated
only by a break within it). At each leg of the loop, it calls the API that waits for multiple objects.

When that API stops waiting, it returns a code that explains why it stopped waiting. A value
between win32event.WAIT_OBJECT_0 and win32event.WAIT_OBJECT_0+N-1 (where N is the

number of waitable kernel objects in the tuple you passed as the first parameter), inclusive,
means that the wait finished because an object was signaled (being signaled means different
things for each kind of waitable kernel object). The return code's difference from
win32event.WAIT_OBJECT_0 is the index of the relevant object in the tuple.

A return value of win32event.WAIT_OBJECT_0+N means that the wait finished because a message

was pending, and in this case, our recipe processes all pending Windows messages via a call to
pythoncom.PumpWaitingMessages. (That function, in turn, returns a true result if a WM_QUIT
message was received, so in this case, we break out of the whole while loop.) A code of
win32event.WAIT_TIMEOUT means the wait finished because of a timeout, so we can do our

polling there. In this case, no message is waiting, and none of our kernel objects of interest were
signaled.

Basically, the way to tune this recipe for yourself is by using the right kernel objects as waitables
(with an appropriate response to each) and by doing whatever you need to do periodically in the

polling case. While this means you must have some detailed understanding of Win32, of course,
it's still quite a bit easier than designing your own special-purpose, message-loop function from
scratch.

I suspect that a purist would find some way or other to wrap all of this message pumping into a
neat module, letting each application customize its use of the module by passing in a list of
waitables, some dictionary to map different waitables to chunks of code to execute, and a
partridge in a pear tree. Go ahead, turn it all into a custom metaclass if you wish, see if I care.
For once, though, I think the right approach to reusing this code is to copy it into your
application's source directories, and use your trusty text editor (gasp!) to tailor the message
pump to your application's exact needs.

See Also

Documentation for the Win32 API in PyWin32

(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows API documentation available from
Microsoft (http://msdn.microsoft.com); Mark Hammond and Andy Robinson, Python
Programming on Win32 (O'Reilly).

http://starship.python.net/crew/mhammond/win32/Downloads.html
http://www.activestate.com/ActivePython/
http://msdn.microsoft.com

Recipe 9.11. Driving an External Process with popen

Credit: Sébastien Keim, Tino Lange, Noah Spurrier

Problem

You want to drive an external process that accepts commands from its standard input, and you
don't care about the responses (if any) that the external process may emit on its standard
output.

Solution

If you need to drive only the other process' input and don't care about its output, the simple
os.popen function is enough. For example, here is a way to do animated graphics by driving the
free program gnuplot via os.popen:

import os
f = os.popen('gnuplot', 'w')
print >>f, "set yrange[-300:+300]"
for n in range(300):
 print >>f, "plot %i*cos(x)+%i*log(x+10)" % (n, 150-n)
 f.flush()
f.close()

Discussion

When you want to use Python as a glue language, sometimes (in particularly easy cases) the
simple function popen (from the standard library module os) may be all you need. Specifically,
os.popen may suffice when you need to drive an external program that accepts commands on its

standard input, as long as you can ignore any response that the program might be making on its
standard output (and also error messages that the program might be sending to its standard
error). A good example is given by the free plotting program gnuplot. (os.popen may also suffice

when you need to obtain the output from a program that does not need to read its standard
input.)

The statement f = os.popen('gnuplot', 'w') creates a file-like object connected to the
standard input of the program it launches, namely 'gnuplot'. (To try this recipe, you have to
have gnuplot installed on your PATH, but since gnuplot is freely available and widely ported

software, that should not be a problem!) Whatever we write to f, the external process receives

on its standard input, just as would happen if we used that same program interactively. For more
of the same, check out http://sourceforge.net/projects/gnuplot-py/: it's a rich and interesting
Python interface to gnuplot implemented entirely on the basis of the simple idea shown in this
recipe!

When your needs are more sophisticated than os.popen can accommodate, you may want to
look at os.popen2 and other such higher-numbered functions in module os, or, in Python 2.4,
the new standard library module subprocess. However, in many cases, you're likely to be

disappointed: as soon as you get beyond the basics, driving (from your own programs) other
external programs that were designed to be used interactively can become more than a little
frustrating. Fortunately, a solution is at hand: it's pexpect, a third-party Python module that you
can find at http://pexpect.sourceforge.net/. pexpect is designed specifically for the task of

http://sourceforge.net/projects/gnuplot-py/
http://pexpect.sourceforge.net/

driving other programs, and it lets you check on the other program's responses as well as
sending commands to the other program's standard input. Still, while pexpect will most
definitely offer you all the power you need, os.popen will probably suffice when you don't need

anything fancy!

See Also

Module os (specifically os.popen) in the Library Reference and Python in a Nutshell; gnuplot is at
http://www.gnuplot.info/; gnuplot.py is at http://sourceforge.net/projects/gnuplot-py/; pexpect

is at http://pexpect.sourceforge.net/.

http://www.gnuplot.info/
http://sourceforge.net/projects/gnuplot-py/
http://pexpect.sourceforge.net/

Recipe 9.12. Capturing the Output and Error Streams
from a Unix Shell Command

Credit: Brent Burley, Bradey Honsinger, Tobias Polzin, Jonathan Cano, Padraig Brady

Problem

You need to run an external process in a Unix-like environment and capture both the output and
error streams from that external process.

Solution

The popen2 module lets you capture both streams, but you also need help from module fcntl, to
make the streams nonblocking and thus avoid deadlocks, and from module select, to

orchestrate the action:

import os, popen2, fcntl, select
def makeNonBlocking(fd):
 fl = fcntl.fcntl(fd, os.F_GETFL)
 try:
 fcntl.fcntl(fd, os.F_SETFL, fl | os.O_NDELAY)
 except AttributeError:
 fcntl.fcntl(fd, os.F_SETFL, fl | os.FNDELAY)
def getCommandOutput(command):
 child = popen2.Popen3(command, 1) # Capture stdout and stderr from command
 child.tochild.close() # don't need to write to child's stdin
 outfile = child.fromchild
 outfd = outfile.fileno()
 errfile = child.childerr
 errfd = errfile.fileno()
 makeNonBlocking(outfd) # Don't deadlock! Make fd's nonblocking.
 makeNonBlocking(errfd)
 outdata, errdata = [], []
 outeof = erreof = False
 while True:
 to_check = [outfd]*(not outeof) + [errfd]*(not erreof)
 ready = select.select(to_check, [], []) # Wait for input
 if outfd in ready[0]:
 outchunk = outfile.read()
 if outchunk == '':
 outeof = True
 else:
 outdata.append(outchunk)
 if errfd in ready[0]:
 errchunk = errfile.read()
 if errchunk == '':
 erreof = True
 else:
 errdata.append(errchunk)
 if outeof and erreof:
 break

 select.select([],[],[],.1) # Allow a little time for buffers to fill
 err = child.wait()
 if err != 0:
 raise RuntimeError, '%r failed with exit code %d\n%s' % (
 command, err, ''.join(errdata))
 return ''.join(outdata)
def getCommandOutput2(command):
 child = os.popen(command)
 data = child.read()
 err = child.close()
 if err:
 raise RuntimeError, '%r failed with exit code %d' % (command, err)

Discussion

This recipe shows how to execute a Unix shell command and capture the output and error
streams in Python. By contrast, os.system sends both streams directly to the terminal. The

function getCommandOutput presented in this recipe executes a command and returns the
command's output. If the command fails, getCommandOutput raises an exception, using the text
captured from the command's stderr as part of the exception's arguments.

Most of the complexity of this code is due to the difficulty of capturing both the output and error
streams of the child process independently and at the same time. Normal (blocking) read calls
may deadlock if the child is trying to write to one stream, and the parent is waiting for data on
the other stream; so, the streams must be set to nonblocking, and select must be used to wait

for data on either of the streams.

Note that the second select call is included just to add a 0.1-second sleep after each read.

Counter intuitively, this allows the code to run much faster, since it gives the child time to put
more data in the buffer. Without it, the parent may try to read only a few bytes at a time, which
can be very expensive. Calling time.sleep(0.1) should be exactly equivalent, but since I was
already, necessarily, calling select.select elsewhere in the recipe's code, I decided not to also
import module time needlessly.

If you want to capture only the output and don't mind the error stream going to the terminal,
you can use the much simpler code presented in getCommandOutput2. If you want to suppress
the error stream altogether, that's easy, toojust append 2>/dev/null to the command. For

example:

listing = getCommandOutput2('ls -1 2>/dev/null')

Another possibility is given by the os.popen4 function, which combines the output and error

streams of the child process. However, in that case the streams are combined in a potentially
messy way, depending on how they are buffered in the child process, so this recipe can help.

In Python 2.4, you can use class Popen, instead of popen2.Popen3, from the new standard library
module subprocess. However, the issues highlighted in this recipe (namely, the need to use
modules fcntl and select to make files nonblocking and coordinate the loop that interacts with
the child process) aren't really affected by whether you use popen2 or subprocess.

This recipe does, as advertised, require a rather Unix-like underlying platform. Cygwin, which
does a generally great job of emulating Unix on top of Windows, is not sufficient; for example, it
offers no way to set files to nonblocking mode, nor to select on general files. (Under Windows,
you are allowed to select only on sockets, not on other files.) If you must run on such

problematic, non-Unix platforms, you may prefer a very different approach, based on using
temporary files:

import os, tempfile

def getCommandOutput(command):
 outfile = tempfile.mktemp()
 errfile = tempfile.mktemp()
 cmd = "(%s) > %s 2> %s" % (command, outfile, errfile)
 err = os.system(cmd) >> 8
 try:
 if err != 0:
 raise RuntimeError, '%r failed with exit code %d\n%s' % (
 command, err, file(errfile).read())
 return file(outfile).read()
 finally:
 os.remove(outfile)
 os.remove(errfile)

See Also

Documentation of the standard library modules os, popen2, fcntl, select, and tempfile in the
Library Reference and Python in a Nutshell; (Python 2.4 only) module subprocess in the Library

Reference.

Recipe 9.13. Forking a Daemon Process on Unix

Credit: Jürgen Hermann, Andy Gimblett, Josh Hoyt, Noah Spurrier, Jonathan Bartlett, Greg Stein

Problem

You need to fork a daemon process on a Unix or Unix-like system, which, in turn, requires a
certain precise sequence of system calls.

Solution

Unix daemon processes must detach from their controlling terminal and process group. Doing so
is not hard, but it does require some care, so it's worth writing a daemonize.py module once and
for all:

import sys, os
''' Module to fork the current process as a daemon.
 NOTE: don't do any of this if your daemon gets started by inetd! inetd
 does all you need, including redirecting standard file descriptors;
 the chdir() and umask() steps are the only ones you may still want.
'''
def daemonize (stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'):
 ''' Fork the current process as a daemon, redirecting standard file
 descriptors (by default, redirects them to /dev/null).
 '''
 # Perform first fork.
 try:
 pid = os.fork()
 if pid > 0:
 sys.exit(0) # Exit first parent.
 except OSError, e:
 sys.stderr.write("fork #1 failed: (%d) %s\n" % (e.errno, e.strerror))
 sys.exit(1)
 # Decouple from parent environment.
 os.chdir("/")
 os.umask(0)
 os.setsid()
 # Perform second fork.
 try:
 pid = os.fork()
 if pid > 0:
 sys.exit(0) # Exit second parent.
 except OSError, e:
 sys.stderr.write("fork #2 failed: (%d) %s\n" % (e.errno, e.strerror))
 sys.exit(1)
 # The process is now daemonized, redirect standard file descriptors.
 for f in sys.stdout, sys.stderr: f.flush()
 si = file(stdin, 'r')
 so = file(stdout, 'a+')
 se = file(stderr, 'a+', 0)
 os.dup2(si.fileno(), sys.stdin.fileno())
 os.dup2(so.fileno(), sys.stdout.fileno())

 os.dup2(se.fileno(), sys.stderr.fileno())
def _example_main ():
 ''' Example main function: print a count & timestamp each second '''
 import time
 sys.stdout.write('Daemon started with pid %d\n' % os.getpid())
 sys.stdout.write('Daemon stdout output\n')
 sys.stderr.write('Daemon stderr output\n')
 c = 0
 while True:
 sys.stdout.write('%d: %s\n' % (c, time.ctime()))
 sys.stdout.flush()
 c = c + 1
 time.sleep(1)
if _ _name_ _ == "_ _main_ _":
 daemonize('/dev/null','/tmp/daemon.log','/tmp/daemon.log')
 _example_main()

Discussion

Forking a daemon on Unix requires a certain specific sequence of system calls, which is explained
in W. Richard Stevens' seminal book, Advanced Programming in the Unix Environment (Addison-
Wesley). We need to fork twice, terminating each parent process and letting only the grandchild

of the original process run the daemon's code. This allows us to decouple the daemon process
from the calling terminal, so that the daemon process can keep running (typically as a server
process without further user interaction, like a web server) even after the calling terminal is
closed. The only visible effect of doing so is that when your script runs this module's daemonize
function, you get your shell prompt back immediately.

For all of the details about how and why this works in Unix and Unix-like systems, see Stevens'
wonderful book. Another important source of information on both practical and theoretical issues
about "daemon forking" can be found as part of the Unix Programming FAQ, at
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16.

To summarize: the first fork lets the shell return, and also lets you do a setsid (to remove you
from your controlling terminal, so you can't accidentally be sent a signal). However, setsid

makes this process a "session leader", which means that if the process ever opens any terminal,
it will become the process' controlling terminal. We do not want a daemon to have any
controlling terminal, which is why we fork again. After the second fork, the process is no longer

a "session leader", so it can open any file (including a terminal) without thereby accidentally
reacquiring a controlling terminal.

Both Stevens and the Unix Programming FAQ provide examples in the C programming language,
but since the Python Standard Library exposes a full POSIX interface, you can also do it all in
Python. Typical C code for a daemon fork translates almost literally to Python; the only difference
you have to care abouta minor detailis that Python's os.fork does not return -1 on errors, but
rather throws an OSError exception. Therefore, rather than testing for a less-than-zero return
code from fork, as we would in C, we run the fork in the try clause of a TRy/except statement,

so that we can catch the exception, should it happen, and print appropriate diagnostics to
standard error.

See Also

Documentation of the standard library module os in the Library Reference and Python in a
Nutshell; Unix manpages for the fork, umask, and setsid system calls; W.Richard Stevens,

Advanced Programming in the Unix Environment (Addison-Wesley); also, the Unix Programming
FAQ on daemon forking, at http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16.

http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16
http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16

Chapter 10. System Administration

Introduction

Recipe 10.1. Generating Random Passwords

Recipe 10.2. Generating Easily Remembered Somewhat-Random Passwords

Recipe 10.3. Authenticating Users by Means of a POP Server

Recipe 10.4. Calculating Apache Hits per IP Address

Recipe 10.5. Calculating the Rate of Client Cache Hits on Apache

Recipe 10.6. Spawning an Editor from a Script

Recipe 10.7. Backing Up Files

Recipe 10.8. Selectively Copying a Mailbox File

Recipe 10.9. Building a Whitelist of Email Addresses From a Mailbox

Recipe 10.10. Blocking Duplicate Mails

Recipe 10.11. Checking Your Windows Sound System

Recipe 10.12. Registering or Unregistering a DLL on Windows

Recipe 10.13. Checking and Modifying the Set of Tasks Windows Automatically Runs at
Login

Recipe 10.14. Creating a Share on Windows

Recipe 10.15. Connecting to an Already Running Instance of Internet Explorer

Recipe 10.16. Reading Microsoft Outlook Contacts

Recipe 10.17. Gathering Detailed System Informationon Mac OS X

Introduction

Credit: Donn Cave, University of Washington

In this chapter, we consider a class of programmerthe humble system administratorin contrast to
other chapters' focus on functional domains. As a programmer, the system administrator faces
most of the same problems that other programmers face and should find the rest of this book of
at least equal interest.

Python's advantages in the system administration domain are also quite familiar to other Python
programmers, but Python's competition is different. On Unix platforms, at any rate, the
landscape is dominated by a handful of lightweight languages such as the Bourne shell and awk
that aren't exactly made obsolete by Python. These little languages can often support a simpler,
clearer, and more concise solution than Python, particularly for commands that you're typing
interactively at the shell command prompt. But Python can do things these languages can't, and
it's often more robust when dealing with issues such as unusually large data inputs. Another
notable competitor, especially on Unix systems, is Perl (which isn't really a little language at all),
with just about the same overall power as Python, and usable for typing a few commands
interactively at the shell's command prompt. Python's strength here is readability and
maintainability: when you dust off a script you wrote in a hurry eight months ago, because you
need to make some changes to it, you don't spend an hour to figure out whatever exactly you
had in mind when you wrote this or that subtle trick. You just don't use any tricks at all, subtle or
gross, so that your Python scrips work just fine and you don't burn your time, months later,
striving to reverse-engineer them for understanding.

One item that stands out in this chapter's solutions is the wrapper: the alternative, programmed
interface to a software system. On Unix (including, these days, Mac OS X), this is usually a fairly
prosaic matter of diversion and analysis of text I/O. Life is easy when the programs you're
dealing with are able to just give clean textual output, without requiring complex interaction (see
Eric Raymond, The Art of Unix Programming, http://www.faqs.org/docs/artu/, for an informative
overview of how programs should be architected to make your life easy). However, even when
you have to wrap a program that's necessarily interactive, all is far from lost. Python has very
good support in this area, thanks, first of all, to the fact that it places C-level pseudo-TTY
functions at your disposal (see the pty module of the Python Standard Library). The pseudo-TTY

device is like a bidirectional pipe with TTY driver support, so it's essential for things such as
password prompts that insist on a TTY. Because it appears to be a TTY, applications writing to a
pseudo-TTY normally use line buffering, instead of the block buffering that gives problems with
pipes. Pipes are more portable and less trouble to work with, but they don't work for interfacing
to every application. Excellent third-party extensions exist that wrap pty into higher-level layers

for ease of use, most notably Pexpect, http://pexpect.sourceforge.net/.

On Windows, the situation often is not as prosaic as on Unix-like platforms, since the information
you need to do your system administration job may be somewhere in the registry, may be
available via some Windows APIs, and/or may be available via COM. The standard Python library
_winreg module, Mark Hammond's PyWin32 package, and Thomas Heller's ctypes, taken

together, give the Windows administrator reasonably easy access to all of these sources, and
you'll see more Windows administration recipes here than you will ones for Unix. The competition
for Python as a system administration language on Windows is feeble compared to that on Unix,
which is yet another reason for the platform's prominence here. The PyWin32 extensions are
available for download at http://sourceforge.net/projects/pywin32/. PyWin32 also comes with

ActiveState's ActivePython distribution of Python (http://www.activestate.com/ActivePython/).
To use this rich and extremely useful package most effectively, you also need Mark Hammond
and Andy Robinson, Python Programming on Win32 (O'Reilly). ctypes is available for download

at http://sourceforge.net/projects/ctypes.

While it may sometimes be difficult to see what brought all the recipes together in this chapter, it

http://www.faqs.org/docs/artu/
http://pexpect.sourceforge.net/
http://sourceforge.net/projects/pywin32/
http://www.activestate.com/ActivePython/
http://sourceforge.net/projects/ctypes

isn't difficult to see why system administrators deserve their own chapter: Python would be
nowhere without them! Who else, back when Python was still an obscure, fledgling language,
could bring it into an organization and almost covertly infiltrate it into the working environment?
If it weren't for the offices of these benevolent and pragmatic anarchists, Python might well have
languished in obscurity despite its merits.

Recipe 10.1. Generating Random Passwords

Credit: Devin Leung

Problem

You need to create new passwords randomlyfor example, to assign them automatically to new
user accounts.

Solution

One of the chores of system administration is installing new user accounts. Assigning a different,
totally random password to each new user is a good idea. Save the following code as
makepass.py:

from random import choice
import string
def GenPasswd(length=8, chars=string.letters+string.digits):
 return ''.join([choice(chars) for i in range(length)])

Discussion

This recipe is useful when you are creating new user accounts and assigning each of them a
different, totally random password. For example, you can print six passwords of length 12:

>>> import makepass
>>> for i in range(6):
... print makepass.GenPasswd(12)
...
uiZWGSJLWjOI
FVrychdGsAaT
CGCXZAFGjsYI
TPpQwpWjQEIi
HMBwIvRMoIvh

Of course, such totally random passwords, while providing an excellent theoretical basis for
security, are impossibly hard to remember for most users. If you require users to stick with their
assigned passwords, many users will probably write them down. The best you can hope for is
that new users will set their own passwords at their first login, assuming, of course, that the
system you're administering lets each user change his own password. (Most operating systems
do, but you might be assigning passwords for other kinds of services that unfortunately often
lack such facilities.)

A password that is written down anywhere is a serious security risk: pieces of paper get lost,
misplaced, and peeked at. From a pragmatic point of view, you might be better off assigning
passwords that are not totally random; users are more likely to remember them and less likely to
write them down (see Recipe 10.2). This practice may violate the theory of password security,
but, as all practicing system administrators know, pragmatism trumps theory.

See Also

Recipe 10.2; documentation of the standard library module random in the Library Reference and

Python in a Nutshell.

Recipe 10.2. Generating Easily Remembered Somewhat-
Random Passwords

Credit: Luther Blissett

Problem

You need to create new passwords randomlyfor example, to assign them automatically to new
user accounts. You want the passwords to be somewhat feasible to remember for typical users,
so they won't be written down.

Solution

We can use a pastiche approach for this, mimicking letter n-grams in actual English words. A
grander way to look at the same approach is to call it a Markov Chain Simulation of English:

import random, string
class password(object):
 # Any substantial file of English words will do just as well: we
 # just need self.data to be a big string, the text we'll pastiche
 data = open("/usr/share/dict/words").read().lower()
 def renew(self, n, maxmem=3):
 ''' accumulate into self.chars `n' random characters, with a
 maximum-memory "history" of `maxmem` characters back. '''
 self.chars = []
 for i in range(n):
 # Randomly "rotate" self.data
 randspot = random.randrange(len(self.data))
 self.data = self.data[randspot:] + self.data[:randspot]
 # Get the n-gram
 where = -1
 # start by trying to locate the last maxmem characters in
 # self.chars. If i<maxmem, we actually only get the last
 # i, i.e., all of self.chars -- but that's OK: slicing
 # is quite tolerant in this way, and it fits the algorithm
 locate = ''.join(self.chars[-maxmem:])
 while where<0 and locate:
 # Locate the n-gram in the data
 where = self.data.find(locate)
 # Back off to a shorter n-gram if necessary
 locate = locate[1:]
 # if where==-1 and locate='', we just pick self.data[0] --
 # it's a random item within self.data, tx to the rotation
 c = self.data[where+len(locate)+1]
 # we only want lowercase letters, so, if we picked another
 # kind of character, we just choose a random letter instead
 if not c.islower(): c = random.choice(string.lowercase)
 # and finally we record the character into self.chars
 self.chars.append(c)
 def _ _str_ _(self):
 return ''.join(self.chars)

if _ _name_ _ == '_ _main_ _':
 "Usage: pastiche [passwords [length [memory]]]"
 import sys
 if len(sys.argv)>1: dopass = int(sys.argv[1])
 else: dopass = 8
 if len(sys.argv)>2: length = int(sys.argv[2])
 else: length = 10
 if len(sys.argv)>3: memory = int(sys.argv[3])
 else: memory = 3
 onepass = password()
 for i in range(dopass):
 onepass.renew(length, memory)
 print onepass

Discussion

This recipe is useful when creating new user accounts and assigning each user a different,
random password: it uses passwords that a typical user will find it feasible to remember,
hopefully so they won't get written down. See Recipe 10.1 if you prefer totally random
passwords.

The recipe's idea is based on the good old pastiche concept. Each letter (always lowercase) in the
password is chosen pseudo-randomly from data that is a collection of words in a natural
language familiar to the users. This recipe uses the file that is /usr/share/dict/words supplied
with Linux systems (on my machine, a file of over 45,000 words), but any large document in
plain text will do just as well. The trick that makes the passwords sort of memorable, and not
fully random, is that each letter is chosen based on the last few letters already picked for the
password as it stands so far. Thus, letter transitions will tend to be "repetitive" according to
patterns that are familiar to the user.

The code in the recipe takes some care to locate each time a random occurrence, in the text
being pastiched, of the last maxmem characters picked so far. Since it's easy to find the first
occurrence of a substring, the code "rotates" the text string randomly, to ensure that the first
occurrence is a random one from the point of view of the original text. If the substring made up
with the last maxmem characters picked is not found in the text, the code "backs down" to
search for just the last maxmem-1, and so on, backing down until, worst case, it just picks the first

character in the rotated text (which is a random character from the point of view of the original
text).

A break in this Markov Chain process occurs when this picking procedure chooses a character
that is not a lowercase letter, in which case, a random lowercase letter is chosen instead (any
lowercase letter is picked with equal probability).

Here are a couple of typical sample runs of this pastiche.py password-generation script:

[situ@tioni cooker]$ python pastiche.py
yjackjaceh
ackjavagef
aldsstordb
dingtonous
stictlyoke
cvaiwandga
lidmanneck
olexnarinl
[situ@tioni cooker]$ python pastiche.py
ptiontingt
punchankin
cypresneyf
sennemedwa

iningrated
fancejacev
sroofcased
nryjackman

As you can see, some of these are definitely word-like, others less so, but for a typical human
being, none are more problematic to remember than a sequence of even fewer totally random,
uncorrelated letters. No doubt some theoretician will complain (justifiably, in a way) that they
aren't as random as all that. Well, tough. My point is that they had better not be, if some poor
fellow is going to have to remember them! You can compensate for this limitation by making
them a bit longer. If said theoretician demonstrates how to compute the entropy per character of
this method of password generation (versus the obvious 4.7 bits/character, the base-2 logarithm
of 26, for passwords made up of totally random lowercase letters), now that would be a useful
contribution indeed. Meanwhile, I'll keep generating passwords this way, rather than in a totally
random way. If nothing else, it's the closest thing I've found to a useful application for the lovely
pastiche concept.

The concept of passwords that are not totally random, but rather a bit more memorable, goes
back a long wayat least to the 1960s and to works by Morrie Gasser and Daniel Edwards. A
Federal Information Processing Standard (FIPS), FIPS 181, specifies in detail how
"pronounceable" passwords are to be generated; see
http://www.itl.nist.gov/fipspubs/fip181.htm.

See Also

Recipe 10.1; documentation of the standard library module random in the Library Reference and

Python in a Nutshell.

http://www.itl.nist.gov/fipspubs/fip181.htm

Recipe 10.3. Authenticating Users by Means of a POP
Server

Credit: Magnus Lyckå

Problem

You are writing a Python application that must authenticate users. All of the users have accounts
on some POP servers, and you'd like to reuse, for your own authentication, the user IDs and
passwords that your users have on those servers.

Solution

To log into the application, a user must provide the server, user ID and password for his mail
account. We try logging into that POP server with these credentialsif that attempt succeeds, then
the user has authenticated successfully. (Of course, we don't peek into the user's mailbox!)

def popauth(popHost, user, passwd):
 """ Log in and log out, only to verify user identity.
 Raise exception in case of failure.
 """
 import poplib
 try:
 pop = poplib.POP3(popHost)
 except:
 raise RuntimeError("Could not establish connection "
 "to %r for password check" % popHost)
 try:
 # Log in and perform a small sanity check
 pop.user(user)
 pop.pass_(passwd)
 length, size = pop.stat()
 assert type(length) == type(size) == int
 pop.quit()
 except:
 raise RuntimeError("Could not verify identity. \n"
 "User name %r or password incorrect." % user)
 pop.quit()

Discussion

To use this recipe, the application must store somewhere the list of known users and either the
single POP server they all share, or the specific POP server on which each user authenticatesit
need not be the same POP server for all users. Either a text file, or a simple table in any kind of
database, will do just fine for this purpose.

This solution is neat, but it does have some weaknesses:

Users must trust that any application implementing this authentication system won't abuse

their email accounts.

POP passwords are, alas!, sent in plain text over the Internet.

We have to trust that the POP server security isn't compromised.

Logging in might take a few seconds if the POP server is slow.

Logging in won't work if the POP server is down.

However, to offset all of these potential drawbacks is the convenience of applications not having
to store any passwords, nor forcing a poor overworked system administrator to administer
password changes. It's also quite simple! In short, I wouldn't use this approach for a bank
system, but I would have no qualms using it, for example, to give users rights to edit web pages
at a somewhat restricted WikiWiki, or similarly low-risk applications.

See Also

Documentation of the standard library module poplib in the Library Reference and Python in a

Nutshell.

Recipe 10.4. Calculating Apache Hits per IP Address

Credit: Mark Nenadov, Ivo Woltring

Problem

You need to examine a log file from Apache to count the number of hits recorded from each
individual IP address that accessed it.

Solution

Many of the chores of administering a web server have to do with analyzing Apache logs, which
Python makes easy:

def calculateApacheIpHits(logfile_pathname):
 ''' return a dict mapping IP addresses to hit counts '''
 ipHitListing = { }
 contents = open(logfile_pathname, "r")
 # go through each line of the logfile
 for line in contents:
 # split the string to isolate the IP address
 ip = line.split(" ", 1)[0]
 # Ensure length of the IP address is proper (see discussion)
 if 6 < len(ip) <= 15:
 # Increase by 1 if IP exists; else set hit count = 1
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1
 return ipHitListing

Discussion

This recipe supplies a function that returns a dictionary containing the hit counts for each
individual IP address that has accessed your Apache web server, as recorded in an Apache log
file. For example, a typical use would be:

HitsDictionary = calculateApacheIpHits(
 "/usr/local/nusphere/apache/logs/access_log")

This function has many quite useful applications. For example, I often use it in my code to
determine the number of hits that are actually originating from locations other than my local
host. This function is also used to chart which IP addresses are most actively viewing the pages
that are served by a particular installation of Apache.

This function performs a modest validation of each IP address, which is really just a length
check: an IP address cannot be longer than 15 characters (4 sets of triplets and 3 periods) nor
shorter than 7 (4 sets of single digits and 3 periods). This validation is not stringent, but it does
reduce, at tiny runtime cost, the probability of placing into the dictionary some data that is
obviously garbage. As a general technique, low-cost, highly approximate sanity checks for data
that is expected to be OK (but one never knows for sure) are worth considering. However, if you
want to be stricter, regular expressions can help. Change the loop in this recipe's function's body
to:

 import re
 # an IP is: 4 strings, each of 1-3 digits, joined by periods
 ip_specs = r'\.'.join([r'\d{1,3}']*4)
 re_ip = re.compile(ip_specs)
 for line in contents:
 match = re_ip.match(line)
 if match:
 # Increase by 1 if IP exists; else set hit count = 1
 ip = match.group()
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1

In this variant, we use a regular expression to extract and validate the IP at the same time. This
approach enables us to avoid the split operation as well as the length check, and thus amortizes
most of the runtime cost of matching the regular expression. This variant is only a few
percentage points slower than the recipe's solution.

Of course, the pattern given here as ip_specs is not entirely precise either, since it accepts, as
components of an IP quad, arbitrary strings of one to three digits, while the components should
be more constrained. But to ward off garbage lines, this level of sanity check is sufficient.

Another alternative is to convert and check the address: extract string ip just as we do in this
recipe's Solution, then:

 # Ensure the IP address is proper
 try:
 quad = map(int, ip.split('.'))
 except ValueError:
 pass
 else:
 if len(quad)==4 and min(quad)>=0 and max(quad)<=255:
 # Increase by 1 if IP exists; else set hit count = 1
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1

This approach is more work, but it does guarantee that only IP addresses that are formally valid
get counted at all.

See Also

The Apache web server is available and documented at http://httpd.apache.org; regular
expressions are covered in the docs of the re module in the Library Reference and Python in a

Nutshell.

http://httpd.apache.org

Recipe 10.5. Calculating the Rate of Client Cache Hits
on Apache

Credit: Mark Nenadov

Problem

You need to monitor how often client requests are refused by your Apache web server because
the client's cache of the page is already up to date.

Solution

When a browser queries a server for a page that the browser has in its cache, the browser lets
the server know about the cached data, and the server returns a special error code (rather than
serving the page again) if the client's cache is up to date. Here's how to find the statistics for
such occurrences in your server's logs:

def clientCachePercentage(logfile_pathname):
 contents = open(logfile_pathname, "r")
 totalRequests = 0
 cachedRequests = 0
 for line in contents:
 totalRequests += 1
 if line.split(" ")[8] == "304":
 # if server returned "not modified"
 cachedRequests += 1
 return int(0.5+float(100*cachedRequests)/totalRequests)

Discussion

The percentage of requests to your Apache server that are met by the client's own cache is an
important factor in the perceived performance of your server. The code in this recipe helps you
get this information from the server's log. Typical use would be:

log_path = "/usr/local/nusphere/apache/logs/access_log"
print "Percentage of requests that were client-cached: " + str(
 clientCachePercentage(log_path)) + '%'

The recipe reads the log file one line at a time by looping over the filethe normal way to read a
file nowadays. Trying to read the whole log file in memory, by calling the readlines method on

the file object, would be an unsuitable approach for very large files, which server log files can
certainly be. That approach might not work at all, or might work but damage performance
considerably by swamping your machine's virtual memory. Even when it works, readlines offers

no advantage over the approach used in this recipe.

The body of the for loop calls the split method on each line string, with a string of a single space

as the argument, to split the line into a tuple of its space-separated fields. Then it uses indexing
([8]) to get the ninth such field. Apache puts the error code into the ninth field of each line in the
log. Code "304" means "not modified" (i.e., the client's cache was already correctly updated). We

count those cases in the cachedRequests variable and all lines in the log in the totalRequests
variable, so that, in the end, we can return the percentage of cache hits. The expression we use
in the return statement computes the percentage as a float number, then rounds it correctly to
the closest int, because an integer result is most useful in practice.

See Also

The Apache web server is available and documented at http://httpd.apache.org.

http://httpd.apache.org

Recipe 10.6. Spawning an Editor from a Script

Credit: Larry Price, Peter Cogolo

Problem

You want users to work with their favorite text-editing programs to edit text files, to provide
input to your script.

Solution

Module tempfile lets you create temporary files, and module os has many tools to check the

environment and to work with files and external programs, such as text editors. A couple of
functions can wrap this functionality into an easy-to-use form:

import sys, os, tempfile
def what_editor():
 editor = os.getenv('VISUAL') or os.getenv('EDITOR')
 if not editor:
 if sys.platform == 'windows':
 editor = 'Notepad.Exe'
 else:
 editor = 'vi'
 return editor
def edited_text(starting_text=''):
 temp_fd, temp_filename = tempfile.mkstemp(text=True)
 os.write(temp_fd, starting_text)
 os.close(temp_fd)
 editor = what_editor()
 x = os.spawnlp(os.P_WAIT, editor, editor, temp_filename)
 if x:
 raise RuntimeError, "Can't run %s %s (%s)" % (editor, temp_filename, x)
 result = open(temp_filename).read()
 os.unlink(temp_filename)
 return result
if _ _name_ _=='_ _main_ _':
 text = edited_text('''Edit this text a little,
go ahead,
it's just a demonstration, after all...!
''')
 print 'Edited text is:', text

Discussion

Your scripts may often need a substantial amount of textual input from the user. Letting users
edit the text with their favorite text editor is an excellent feature for your script to have, and this
recipe shows how you can obtain it. I have used variants of this approach for such purposes as
adjusting configuration files, writing blog posts, and sending emails.

If your scripts do not need to run on Windows, a more secure and slightly simpler way to code

function edited_text is available:

def edited_text(starting_text=''):
 temp_file = tempfile.NamedTemporaryFile()
 temp_file.write(starting_text)
 temp_file.seek(0)
 editor = what_editor()
 x = os.spawnlp(os.P_WAIT, editor, editor, temp_file.name)
 if x:
 raise RuntimeError, "Can't run %s %s (%s)" % (editor, temp_file.name, x)
 return temp_file.read()

Unfortunately, this alternative relies on the editor we're spawning being able to open and modify
the temporary file while we are holding that file open, and this capability is not supported on
most versions of Windows. The version of edited_text given in the recipe is more portable.

When you're using this recipe to edit text files that must respect some kind of syntax or other
constraints, such as a configuration file, you can make your script simpler and more effective by
using a cycle of "input/parse/re-edit in case of errors," providing immediate feedback to users
when you can diagnose they've made a mistake in editing the file. Ideally, in such cases, you
should reopen the editor already pointing at the line in error, which is possible with most Unix
editors by passing them a first argument such as '+23', specifying that they start editing at line

23, before the filename argument. Unfortunately, such an argument would confuse many
Windows editors, so you have to make some hard decisions here (if you do need to support
Windows).

See Also

Documentation for modules tempfile and os in the Library Reference and Python in a Nutshell.

Recipe 10.7. Backing Up Files

Credit: Anand Pillai, Tiago Henriques, Mario Ruggier

Problem

You want to make frequent backup copies of all files you have modified within a directory tree, so
that further changes won't accidentally obliterate some of your editing.

Solution

Version-control systems, such as RCS, CVS, and SVN, are very powerful and useful, but
sometimes a simple script that you can easily edit and customize can be even handier. The
following script checks for new files to back up in a tree that you specify. Run the script
periodically to keep your backup copies up to date.

import sys, os, shutil, filecmp
MAXVERSIONS=100
def backup(tree_top, bakdir_name='bakdir'):
 for dir, subdirs, files in os.walk(tree_top):
 # ensure each directory has a subdir called bakdir
 backup_dir = os.path.join(dir, bakdir_name)
 if not os.path.exists(newdir):
 os.makedirs(newdir)
 # stop any recursing into the backup directories
 subdirs[:] = [d for d in subdirs if d != bakdir_name]
 for file in files:
 filepath = os.path.join(dir, file)
 destpath = os.path.join(backup_dir, file)
 # check existence of previous versions
 for index in xrange(MAXVERSIONS):
 backup = '%s.%2.2d' % (destpath, index)
 if not os.path.exists(backup): break
 if index > 0:
 # no need to backup if file and last version are identical
 old_backup = '%s.%2.2d' % (destpath, index-1)
 try:
 if os.path.isfile(old_backup
) and filecmp.cmp(abspath, old_backup, shallow=False):
 continue
 except OSError:
 pass
 try:
 shutil.copy(filepath, backup)
 except OSError:
 pass
if _ _name_ _ == '_ _main_ _':
 # run backup on the specified directory (default: the current directory)
 try: tree_top = sys.argv[1]
 except IndexError: tree_top = '.'
 backup(tree_top)

Discussion

Although version-control systems are more powerful, this script can be useful in development
work. I often customize it, for example, to keep backups only of files with certain extensions (or,
when that's handier, of all files except those with certain extensions); it suffices to add an
appropriate test at the very start of the for file in files loop, such as:

 name, ext = os.path.splitext(file)
 if ext not in ('.py', '.txt', '.doc'): continue

This snippet first uses function splitext from the standard library module os.path to extract the

file extension (starting with a period) into local variable ext, then conditionally executes
statement continue, which passes to the next leg of the loop, unless the extension is one of a

few that happen to be the ones of interest in the current subtree.

Other potentially useful variants include backing files up to some other subtree (potentially on a
removable drive, which has some clear advantages for backup purposes) rather than the current
one, compressing the files that are being backed up (look at standard library module gzip for

this purpose), and more refined ones yet. However, rather than complicating function backup by
offering all of these variants as options, I prefer to copy the entire script to the root of each of
the various subtrees of interest, and customize it with a little simple editing. While this strategy
would be a very bad one for any kind of complicated, highly reusable production-level code, it is
reasonable for a simple, straightforward system administration utility such as the one in this
recipe.

Worthy of note in this recipe's implementation is the use of function os.walk, a generator from
the standard Python library's module os, which makes it very simple to iterate over all or most of

a filesystem subtree, with no need for such subtleties as recursion or callbacks, just a
straightforward for statement. To avoid backing up the backups, this recipe uses one advanced
feature of os.walk: the second one of the three values that os.walk yields at each step through

the loop is a list of subdirectories of the current directory. We can modify this list in place,
removing some of the subdirectory names it contains. When we perform such an in-place
modification, os.walk does not recurse through the subdirectories whose names we removed.

The following steps deal only with the subdirectories whose names are left in. This subtle but
useful feature of os.walk is one good example of how a generator can receive information from

the code that's iterating on it, to affect details of the iteration being performed.

See Also

Documentation of standard library modules os, shutils, and gzip in the Library Reference and

Python in a Nutshell.

Recipe 10.8. Selectively Copying a Mailbox File

Credit: Noah Spurrier, Dave Benjamin

Problem

You need to selectively copy a large mailbox file (in mbox style), passing each message through a

filtering function that may alter or skip the message.

Solution

The Python Standard Library package email is the modern Python approach for this kind of task.
However, standard library modules mailbox and rfc822 can also supply the base functionality to

implement this task:

def process_mailbox(mailboxname_in, mailboxname_out, filter_function):
 mbin = mailbox.PortableUnixMailbox(file(mailboxname_in,'r'))
 fout = file(mailboxname_out, 'w')
 for msg in mbin:
 if msg is None: break
 document = filter_function(msg, msg.fp.read())
 if document:
 assert document.endswith('\n\n')
 fout.write(msg.unixfrom)
 fout.writelines(msg.headers)
 fout.write('\n')
 fout.write(document)
 fout.close()

Discussion

I often write lots of little scripts to filter my mailbox, so I wrote this recipe's small module. I can
import the module from each script and call the module's function process_mailbox as needed.
Python's future direction is to perform email processing with the standard library package email,
but lower-level modules, such as mailbox and rfc822, are still available in the Python Standard

Library. They are sometimes easier to use than the rich, powerful, and very general functionality
offered by package email.

The function you pass to process_mailbox as the third argument, filter_function, must take two
argumentsmsg, an rfc822 message object, and document, a string that is the message's entire
body, ending with two line-end characters (\n\n). filter_function can return False, meaning that

this message must be skipped (i.e., not copied at all to the output), or else it must return a
string terminated with \n\n that is written to the output as the message body. Normally,
filter_function returns either False or the same document argument it was called with, but in

some cases you may find it useful to write to the output file an altered version of the message's
body rather than the original message body.

Here is an example of a filter function that removes duplicate messages:

import sets
found_ids = sets.Set()

def no_duplicates(msg, document):
 msg_id = msg.getheader('Message-ID')
 if msg_id in found_ids:
 return False
 found_ids.add(msg_id)
 return document

In Python 2.4, you could use the built-in set rather than sets.Set, but for a case as simple as

this, it makes no real difference in performance (and the usage is exactly the same, anyway).

See Also

Documentation about modules mailbox and rfc822, and package email, in the Library Reference

and Python in a Nutshell.

Recipe 10.9. Building a Whitelist of Email Addresses
From a Mailbox

Credit: Noah Spurrier

Problem

To help you configure an antispam system, you want a list of email addresses, commonly known
as a whitelist, that you can trust won't send you spam. The addresses to which you send email
are undoubtedly good candidates for this whitelist.

Solution

Here is a script to output "To" addresses given a mailbox path:

#!/usr/bin/env python
""" Extract and print all 'To:' addresses from a mailbox """
import mailbox
def main(mailbox_path):
 addresses = { }
 mb = mailbox.PortableUnixMailbox(file(mailbox_path))
 for msg in mb:
 toaddr = msg.getaddr('To')[1]
 addresses[toaddr] = 1
 addresses = addresses.keys()
 addresses.sort()
 for address in addresses:
 print address
if _ _name_ _ == '_ _main_ _':
 import sys
 main(sys.argv[1])

Discussion

In addition to bypassing spam filters, identifying addresses of people you've sent mail to may
also help in other ways, such as flagging emails from them as higher priority, depending on your
mail-reading habits and your mail reader's capabilities. As long as your mail reader keeps mail
you have sent in some kind of "Sent Items" mailbox in standard mailbox format, you can call this
script with the path to the mailbox as its only argument, and the addresses to which you've sent
mail will be emitted to standard output.

The script is simple because the Python Standard Library module mailbox does all the hard work.

All the script needs to do is collect the set of email addresses as it loops through all messages,
then emit them. While collecting, we keep addresses as a dictionary, since that's much faster
than keeping a list and checking each toaddr in order to append it only if it wasn't already in the
list. When we're done collecting, we just extract the addresses from the dictionary as a list
because we want to emit its items in sorted order. In Python 2.4, function main can be made
even slightly more elegant, thanks to the new built-ins set and sorted:

def main(mailbox_path):

 addresses = set()
 mb = mailbox.PortableUnixMailbox(file(mailbox_path))
 for msg in mb:
 toaddr = msg.getaddr('To')[1]
 addresses.add(toaddr)
 for address in sorted(addresses):
 print address

If your mailbox is not in the Unix mailbox style supported by mailbox.PortableUnixMailbox,
you may want to use other classes supplied by the Python Standard Library module mailbox. For
example, if your mailbox is in Qmail maildir format, you can use the mailbox.Maildir class to

read it.

See Also

Documentation of the standard library module mailbox in the Library Reference and Python in a

Nutshell.

Recipe 10.10. Blocking Duplicate Mails

Credit: Marina Pianu, Peter Cogolo

Problem

Many of the mails you receive are duplicates. You need to block the duplicates with a fast, simple
filter before they reach a more time-consuming step, such as an anti-spam filter, in your email
pipeline.

Solution

Many mail systems, such as the popular procmail, and KDE's KMail, enable you to control your
mail-reception pipeline. Specifically, you can insert in the pipeline your filter programs, which get
messages on standard input, may modify them, and emit them again on standard output. Here is
one such filter, with the specific purpose of performing the task described in the Problemblocking
messages that are duplicates of other messages that you have received recently:

#!/usr/bin/python
import time, sys, os, email
now = time.time()
get archive of previously-seen message-ids and times
kde_dir = os.expanduser('~/.kde')
if not os.path.isdir(kde_dir):
 os.mkdir(kde_dir)
arfile = os.path.join(kde_dir, 'duplicate_mails')
duplicates = { }
try:
 archive = open(arfile)
except IOError:
 pass
else:
 for line in archive:
 when, msgid = line[:-1].split(' ', 1)
 duplicates[msgid] = float(when)
 archive.close()
redo_archive = False
suck message in from stdin and study it
msg = email.message_from_file(sys.stdin)
msgid = msg['Message-ID']
if msgid:
 if msgid in duplicates:
 # duplicate message: alter its subject
 subject = msg['Subject']
 if subject is None:
 msg['Subject'] = '**** DUP **** ' + msgid
 else:
 del msg['Subject']
 msg['Subject'] = '**** DUP **** ' + subject
 else:
 # non-duplicate message: redo the archive file
 redo_archive = True

 duplicates[msgid] = now
else:
 # invalid (missing message-id) message: alter its subject
 subject = msg['Subject']
 if subject is None:
 msg['Subject'] = '**** NID **** '
 else:
 del msg['Subject']
 msg['Subject'] = '**** NID **** ' + subject
emit message back to stdout
print msg
if redo_archive:
 # redo archive file, keep only msgs from the last two hours
 keep_last = now - 2*60*60.0
 archive = file(arfile, 'w')
 for msgid, when in duplicates.iteritems():
 if when > keep_last:
 archive.write('%9.2f %s\n' % (when, what))
 archive.close()

Discussion

Whether it is because of spammers' malice or incompetence, or because of hiccups at my
Internet ISP (Internet service provider), at times I get huge amounts of duplicate messages that
can overload my mail-reception pipeline, particularly antispam filters. Fortunately, like many
other mail systems, KDE's KMail, the one I use, lets me insert my own filters in the mail
reception pipeline. In particular, I can diagnose duplicate messages, alter their headers (I use
"Subject" for clarity), and tell later stages in the filters' pipeline to throw away messages with
such subjects or to shunt them aside into a dedicated mailbox for later perusal, without passing
them on to the antispam and other filters.

The email module from the Python Standard Library performs all the required parsing of the

message and lets me access headers with dictionary-like indexing syntax. I need some
"memory" of recently seen messages. Fortunately, I have noticed all duplicates happen within a
few minutes of each other, so I don't have to keep that memory for longtwo hours are plenty.
Therefore, I keep that memory in a simple text file, which records the time when a message was
received and the message ID. I thought I might have to find a more advanced way to keep this
kind of FIFO (first-in, first-out) archive, but I tried a simple approach firsta simple text file that is
entirely rewritten whenever a new nonduplicate message arrives. This approach appears to
perform quite adequately for my needs (at most a couple hundred messages an hour), even on
my somewhat dated PC. "Do the simplest thing that could possibly work" strikes again!

See Also

Documentation about package email and modules time, sys and os in the Library Reference and

Python in a Nutshell.

Recipe 10.11. Checking Your Windows Sound System

Credit: Anand Pillai

Problem

You need to check whether the sound subsystem on your Windows PC is properly configured.

Solution

The winsound module of the Python Standard Library makes this check really simple:

import winsound
try:
 winsound.PlaySound("*", winsound.SND_ALIAS)
except RuntimeError, e:
 print 'Sound system has problems,', e
else:
 print 'Sound system is OK'

Discussion

The sound system might pass this test and still be unable to produce sound correctly, due to a
variety of possible problemsstarting from simple ones such as powered loudspeakers being
turned off (there's no sensible way you can check for that in your program!), all the way to
extremely subtle and complicated ones. When sound is a problem in your applications, using this
recipe at least you know whether you should be digging into a subtle issue of device driver
configuration or start by checking whether the loudspeakers are on!

See Also

Documentation on the Python Standard Library winsound module.

Recipe 10.12. Registering or Unregistering a DLL on
Windows

Credit: Bill Bell

Problem

You want to register or unregister a DLL in Windows, just as it is normally done by regsrv32.exe,
but you want to do it from Python, without requiring that executable to be present or bothering
to find it.

Solution

All that Microsoft's regsrv32.exe does is load a DLL and call its entries named
DllRegisterServer or DllUnregisterServer. This behavior is very easy to replicate via Thomas
Heller's ctypes extension:

from ctypes import windll
dll = windll[r'C:\Path\To\Some.DLL']
result = dll.DllRegisterServer()
result = dll.DllUnregisterServer()

The result is of Windows type HRESULT, so, if you wish, ctypes can also implicitly check it for
you, raising a ctypes.WindowsError exception when an error occurs; you just need to use
ctypes.oledll instead of ctypes.windll. In other words, to have the result automatically

checked and an exception raised in case of errors, instead of the previous script, use this one:

from ctypes import oledll
dll = oledll[r'C:\Path\To\Some.DLL']
dll.DllRegisterServer()
dll.DllUnregisterServer()

Discussion

Thomas Heller's ctypes enables your Python code to load DLLs on Windows (and similar

dynamic/shared libraries on other platforms) and call functions from such libraries, and it
manages to perform these tasks with a high degree of both power and elegance. On Windows, in
particular, it offers even further "added value" through such mechanisms as the oledll object,
which, besides loading DLLs and calling functions from them, also checks the returned hrESULT
instances and raises appropriate exceptions when the HRESULT values indicate errors.

In this recipe, we're using ctypes (either the windll or oledll objects from that module)

specifically to avoid the need to use Microsoft's regsrv32.exe to register or unregister DLLs that
implement in-process COM servers for some CLSIDs. (A CLSID is a globally unique identifier that
identifies a COM class object, and the abbreviation presumably stands for class identifier.) The
cases in which you'll use this specific recipe are only those in which you need to register or
unregister such COM DLLs (whether they're implemented in Python or otherwise makes no
difference). Be aware, however, that the applicability of ctypes is far wider, as it extends to any

case in which you wish your Python code to load and interact with a DLL (or, on platforms other

than Windows, equivalent dynamically loaded libraries, such as .so files on Linux and .dynlib files
on Mac OS X).

The protocol that regsrv32.exe implements is well documented and very simple, so our own code
can reimplement it in a jiffy. That's much more practical than requiring regsrv32.exe to be
installed on the machine on which we want to register or unregister the DLLs, not to mention
finding where the EXE file might be to run it directly (via os.spawn or whatever) and also finding
an effective way to detect errors and show them to the user.

See Also

ctypes is at http://sourceforge.net/projects/ctypes.

http://sourceforge.net/projects/ctypes

Recipe 10.13. Checking and Modifying the Set of Tasks
Windows Automatically Runs at Login

Credit: Daniel Kinnaer

Problem

You need to check which tasks Windows is set to automatically run at login and possibly change
this set of tasks.

Solution

When administering Windows machines, it's crucial to keep track of the tasks each machine runs
at login. Like so many Windows tasks, this requires working with the registry, and standard
Python module _winreg enables this:

import _winreg as wr
aReg = wr.ConnectRegistry(None, wr.HKEY_LOCAL_MACHINE)
try:
 targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
 print "*** Reading from", targ, "***"
 aKey = wr.OpenKey(aReg, targ)
 try:
 for i in xrange(1024):
 try:
 n, v, t = wr.EnumValue(aKey, i)
 print i, n, v, t
 except EnvironmentError:
 print "You have", i, "tasks starting at logon"
 break
 finally:
 wr.CloseKey(aKey)
 print "*** Writing to", targ, "***"
 aKey = wr.OpenKey(aReg, targ, 0, wr.KEY_WRITE)
 try:
 try:
 wr.SetValueEx(aKey, "MyNewKey", 0, REG_SZ, r"c:\winnt\explorer.exe")
 except EnvironmentError:
 print "Encountered problems writing into the Registry..."
 raise
 finally:
 CloseKey(aKey)
finally:
 CloseKey(aReg)

Discussion

The Windows registry holds a wealth of crucial system administration data, and the Python
standard module _winreg makes it feasible to read and alter data held in the registry. One of the

items held in the Windows registry is a list of tasks to be run at login (in addition to other lists
held elsewhere, such as the user-specific Startup folder that this recipe does not deal with).

This recipe shows how to examine the registry list of login tasks, and how to add a task to the
list so it is run at login. (This recipe assumes you have Explorer installed at the specific location
c:\winnt. If you have it installed elsewhere, edit the recipe accordingly.)

If you want to remove the specific key added by this recipe, you can use the following simple
script:

import _winreg as wr
aReg = wr.ConnectRegistry(None, wr.HKEY_LOCAL_MACHINE)
targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
aKey = wr.OpenKey(aReg, targ, 0, wr.KEY_WRITE)
wr.DeleteValue(aKey, "MyNewKey")
wr.CloseKey(aKey)
wr.CloseKey(aReg)

The TRy/finally constructs used in the recipe are far more robust than the simple sequence of

function calls used in this latest snippet, since they ensure that everything is closed correctly
regardless of whether the intervening calls succeed or fail. This care and prudence are strongly
advisable for scripts that are meant be run in production, particularly for system-administration
scripts that must generally run with administrator privileges. Such scripts therefore might harm a
system's setup if they don't clean up after themselves properly. However, you can omit the
try/finally when you know the calls will succeed or don't care what happens if they fail. In this

case, if you have successfully added a task with the recipe's script, the calls in this simple
cleanup script should work just fine.

See Also

Documentation for the standard module _winreg in the Library Reference; Windows API

documentation available from Microsoft (http://msdn.microsoft.com); information on what is
where in the registry tends to be spread information among many sources, but for some useful
collections of such information, see http://www.winguides.com/registry and
http://www.activewin.com/tips/reg/index.shtml.

http://msdn.microsoft.com
http://www.winguides.com/registry
http://www.activewin.com/tips/reg/index.shtml

Recipe 10.14. Creating a Share on Windows

Credit: John Nielsen

Problem

You want to share a folder of your Windows PC on a LAN.

Solution

PyWin32's win32net module makes this task very easy:

import win32net
import win32netcon
shinfo={ }
shinfo['netname'] = 'python test'
shinfo['type'] = win32netcon.STYPE_DISKTREE
shinfo['remark'] = 'data files'
shinfo['permissions'] = 0
shinfo['max_uses'] = -1
shinfo['current_uses'] = 0
shinfo['path'] = 'c:\\my_data'
shinfo['passwd'] = ''
server = 'servername'
win32net.NetShareAdd(server, 2, shinfo)

Discussion

While the task of sharing a folder is indeed fairly easy to accomplish, finding the information on
how you do so isn't. All I could find in the win32net documentation was that you needed to pass

a dictionary holding the share's data "in the format of SHARE_INFO_*." I finally managed to
integrate this tidbit with the details from the Windows SDK (http://msdn.microsoft.com) and
produce the information in this recipe. One detail that took me some effort to discover is that the
constants you need to use as the value for the 'type' enTRy are "hidden away" in the
win32netcon module.

See Also

PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft's MSDN site,
http://msdn.microsoft.com.

http://msdn.microsoft.com
http://sourceforge.net/projects/pywin32/
http://msdn.microsoft.com

Recipe 10.15. Connecting to an Already Running
Instance of Internet Explorer

Credit: Bill Bell, Graham Fawcett

Problem

Instantiating Internet Explorer to access its interfaces via COM is easy, but you want to connect
to an already running instance.

Solution

The simplest approach is to rely on Internet Explorer's CLSID:

from win32com.client import Dispatch
ShellWindowsCLSID = '{9BA05972-F6A8-11CF-A442-00A0C90A8F39}'
ShellWindows = Dispatch(ShellWindowsCLSID)
print '%d instances of IE' % len(shellwindows)
print
for shellwindow in ShellWindows :
 print shellwindow
 print shellwindos.LocationName
 print shellwindos.LocationURL
 print

Discussion

Dispatching on the CLSID provides a sequence of all the running instances of the application with
that class. Of course, there could be none, one, or more. If you're interested in a specific
instance, you may be able to identify it by checking, for example, for its properties LocationName
and LocationURL.

You'll see that Windows Explorer and Internet Explorer have the same CLSIDthey're basically the
same application. If you need to distinguish between them, you can try adding at the start of
your script the statement:

from win32gui import GetClassName

and then checking each shellwindow in the loop with:

 if GetClassName(shellwindow.HWND) == 'IEFrame':

 ...

'IEFrame' is supposed to result from this call (according to the docs) for all Internet Explorer

instances and those only. However, I have not found this check to be wholly reliable across all
versions and patch levels of Windows and Internet Explorer, so, take this approach as just one
possibility (which is why I haven't added this check to the recipe's official "Solution").

This recipe does not let you receive IE events. The most important event is probably
DocumentComplete. You can roughly substitute checks on the Busy property for the inability to

wait for that event, but remember not to poll too frequently (for that or any other property) or
you may slow down your PC excessively. Something like:

 while shellwindow.Busy:
 time.sleep(0.2)

Sleeping 0.2 seconds between checks may be a reasonable compromise between responding
promptly and not loading your PC too heavily with a busy-waiting-loop.

See Also

PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft's MSDN site,
http://msdn.microsoft.com.

http://sourceforge.net/projects/pywin32/
http://msdn.microsoft.com

Recipe 10.16. Reading Microsoft Outlook Contacts

Credit: Kevin Altis

Problem

Your Microsoft Outlook Contacts house a wealth of useful information, and you need to extract
some of it in text form.

Solution

Like many other problems of system administration on Windows, this one is best approached by
using COM. The most popular way to interface Python to COM is to use the win32com package,
which is part of Mark Hammond's pywin32 extension package:

from win32com.client import gencache, constants
DEBUG = False
class MSOutlook(object):
 def _ _init_ _(self):
 try:
 self.oOutlookApp = gencache.EnsureDispatch("Outlook.Application")
 self.outlookFound = True
 except:
 print "MSOutlook: unable to load Outlook"
 self.outlookFound = False
 self.records = []
 def loadContacts(self, keys=None):
 if not self.outlookFound: return
 onMAPI = self.oOutlookApp.GetNamespace("MAPI")
 ofContacts = onMAPI.GetDefaultFolder(constants.olFolderContacts)
 if DEBUG: print "number of contacts:", len(ofContacts.Items)
 for oc in range(len(ofContacts.Items)):
 contact = ofContacts.Items.Item(oc + 1)
 if contact.Class == constants.olContact:
 if keys is None:
 # no keys were specified, so build up a list of all keys
 # that belong to some types we know we can deal with
 good_types = int, str, unicode
 keys = [key for key in contact._prop_map_get_
 if isinstance(getattr(contact, key), good_types)]
 if DEBUG:
 print "Fields\n== == == == == == == == == == == =="
 keys.sort()
 for key in keys: print key
 record = { }
 for key in keys:
 record[key] = getattr(contact, key)
 self.records.append(record)
 if DEBUG:
 print oc, contact.FullName
if _ _name_ _ == '_ _main_ _':
 if '-d' in sys.argv:

 DEBUG = True
 if DEBUG:
 print "attempting to load Outlook"
 oOutlook = MSOutlook()
 if not oOutlook.outlookFound:
 print "Outlook not found"
 sys.exit(1)
 fields = ['FullName', 'CompanyName',
 'MailingAddressStreet', 'MailingAddressCity',
 'MailingAddressState', 'MailingAddressPostalCode',
 'HomeTelephoneNumber', 'BusinessTelephoneNumber',
 'MobileTelephoneNumber', 'Email1Address', 'Body',
]
 if DEBUG:
 import time
 print "loading records..."
 startTime = time.time()
 # to get all fields just call oOutlook.loadContacts()
 # but getting a specific set of fields is much faster
 oOutlook.loadContacts(fields)
 if DEBUG:
 print "loading took %f seconds" % (time.time() - startTime)
 print "Number of contacts: %d" % len(oOutlook.records)
 print "Contact: %s" % oOutlook.records[0]['FullName']
 print "Body:\n%s" % oOutlook.records[0]['Body']

Discussion

This recipe's code could use more error-checking, and you could get it by using nested
TRy/except blocks, but I didn't want to obscure the code's fundamental simplicity in this recipe.

This recipe should work with different versions of Outlook, but I've tested it only with Outlook
2000. If you have applied the Outlook security patches then you will be prompted with a dialog
requesting access to Outlook for 1-10 minutes from an external program, which in this case is
Python.

The code has already been optimized in two important ways. First, by ensuring that the Python
COM wrappers for Outlook have been generated, which is guaranteed by calling
gencache.EnsureDispatch. Second, in the loop that reads the contacts, the Contact reference is
obtained only once and then kept in a local variable contact to avoid repeated references. This

simple but crucial optimization is the role of the statement:

contact = ofContacts.Items.Item(oc + 1)

Both of these optimizations have a dramatic impact on total import time, and both are important
enough to keep in mind. Specifically, the EnsureDispatch idea is important for most uses of COM

in Python; the concept of getting an object reference, once, into a local variable (rather than
repeating indexing, calls, and attribute accesses) is even more important and applies to every
use of Python.

Simple variations of this script can be applied to other elements of the Outlook object model such
as the Calendar and Tasks. You'll want to look at the Python wrappers generated for Outlook in
the C:\Python23\Lib\site-packages\win32com\gen_py directory. I also suggest that you look at
the Outlook object model documentation on MSDN and/or pick up a book on the subject.

See Also

PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft's MSDN site,
http://msdn.microsoft.com.

http://sourceforge.net/projects/pywin32/
http://msdn.microsoft.com

Recipe 10.17. Gathering Detailed System Informationon
Mac OS X

Credit: Brian Quinlan

Problem

You want to retrieve detailed information about a Mac OS X system. You want either complete
information about the system or information about particular keys in the system-information database.

Solution

Mac OS X's system_profiler command can provide system information as an XML stream that we can
parse and examine:

#!/usr/bin/env python
from xml import dom
from xml.dom.xmlbuilder import DOMInputSource, DOMBuilder
import datetime, time, os
def group(seq, n):
 """group([0, 3, 4, 10, 2, 3, 1], 3) => [(0, 3, 4), (10, 2, 3)]
 Group a sequence into n-subseqs, discarding incomplete subseqs.
 """
 return [seq[i:i+n] for i in xrange(0, len(seq)-n+1, n)]
def remove_whitespace_nodes(node):
 """Removes all of the whitespace-only text descendants of a DOM node."""
 remove_list = []
 for child in node.childNodes:
 if child.nodeType == dom.Node.TEXT_NODE and not child.data.strip():
 remove_list.append(child)
 elif child.hasChildNodes():
 remove_whitespace_nodes(child)
 for child in remove_list:
 node.removeChild(child)
 child.unlink()
class POpenInputSource(DOMInputSource):
 "Use stdout from an external program as a DOMInputSource"
 def _ _init_ _(self, command):
 super(DOMInputSource, self)._ _init_ _()
 self.byteStream = os.popen(command)
class OSXSystemProfiler(object):
 "Provide information from the Mac OS X System Profiler"
 def _ _init_ _(self, detail=-1):
 """detail can range from -2 to +1. Larger numbers return more info.
 Beware of +1, can take many minutes to get all info!"""
 b = DOMBuilder()
 self.document = b.parse(
 POpenInputSource('system_profiler -xml -detailLevel %d' % detail))
 remove_whitespace_nodes(self.document)
 def _content(self, node):
 "Get the text node content of an element, or an empty string"

 if node.firstChild:
 return node.firstChild.nodeValue
 else:
 return ''
 def _convert_value_node(self, node):
 """Convert a 'value' node (i.e. anything but 'key') into a Python data
 structure"""
 if node.tagName == 'string':
 return self._content(node)
 elif node.tagName == 'integer':
 return int(self._content(node))
 elif node.tagName == 'real':
 return float(self._content(node))
 elif node.tagName == 'date': # <date>2004-07-05T13:29:29Z</date>
 return datetime.datetime(
 *time.strptime(self._content(node), '%Y-%m-%dT%H:%M:%SZ')[:5])
 elif node.tagName == 'array':
 return [self._convert_value_node(n) for n in node.childNodes]
 elif node.tagName == 'dict':
 return dict([(self._content(n), self._convert_value_node(m))
 for n, m in group(node.childNodes, 2)])
 else:
 raise ValueError, 'Unknown tag %r' % node.tagName
 def _ _getitem_ _(self, key):
 from xml import xpath
 # pyxml's xpath does not support /element1[...]/element2...
 nodes = xpath.Evaluate('//dict[key=%r]' % key, self.document)
 results = []
 for node in nodes:
 v = self._convert_value_node(node)[key]
 if isinstance(v, dict) and '_order' in v:
 # this is just information for display
 pass
 else:
 results.append(v)
 return results
 def all(self):
 """Return the complete information from the system profiler
 as a Python data structure"""
 return self._convert_value_node(
 self.document.documentElement.firstChild)
def main():
 from optparse import OptionParser
 from pprint import pprint
 info = OSXSystemProfiler()
 parser = OptionParser()
 parser.add_option("-f", "--field", action="store", dest="field",
 help="display the value of the specified field")
 options, args = parser.parse_args()
 if args:
 parser.error("no arguments are allowed")
 if options.field is not None:
 pprint(info[options.field])
 else:
 # print some keys known to exist in only one important dict
 for k in ['cpu_type', 'current_processor_speed', 'l2_cache_size',
 'physical_memory', 'user_name', 'os_version', 'ip_address']:
 print '%s: %s' % (k, info[k][0])
if _ _name_ _ == '_ _main_ _':
 main()

Discussion

Mac OS X puts at your disposal a wealth of information about your system through the system_profiler
application. This recipe shows how to access that information from your Python code. First, you have to
instantiate class OSXSystemProfiler, for example, via a statement such as info =
OSXSystemProfiler(); once you have done that, you can obtain all available information by calling
info.all(), or information for one specific key by indexing info[thekey]. The main function in the

recipe, which executes when you run this module as a main script, emits information to standard
outputeither a specific key, requested by using switch -f when invoking the script, or, by default, a
small set of keys known to be generally useful.

For example, when run on the old Apple iBook belonging to one of this book's editors (no prize for
guessing which one), the script in this recipe emits the following output:

cpu_type: PowerPC G4 (3.3)
current_processor_speed: 800 MHz
l2_cache_size: 256 KB
physical_memory: 640 MB
user_name: Alex (alex)
os_version: Mac OS X 10.3.6 (7R28)
ip_address: [u'192.168.0.190']

system_profiler returns XML data in pinfo format, so this recipe implements a partial pinfo parser,
using Python's standard library XML-parsing facilities, and the xpath implementation from the PyXML

extensions. More information about Python's facilities that help you deal with XML can be found in
Chapter 12.

See Also

Documentation of the standard Python library support for XML in the Library Reference and Python in a
Nutshell; PyXML docs at http://pyxml.sourceforge.net/; Mac OS X system_profiler docs at
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man8/system_profiler.8.html;
Chapter 12.

http://pyxml.sourceforge.net/
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man8/system_profiler.8.html

Chapter 11. User Interfaces
Introduction

Recipe 11.1. Showing a Progress Indicator on a Text Console

Recipe 11.2. Avoiding lambda in Writing Callback Functions

Recipe 11.3. Using Default Values and Bounds with tkSimpleDialog Functions

Recipe 11.4. Adding Drag and Drop Reordering to a Tkinter Listbox

Recipe 11.5. Entering Accented Characters in Tkinter Widgets

Recipe 11.6. Embedding Inline GIFs Using Tkinter

Recipe 11.7. Converting Among Image Formats

Recipe 11.8. Implementing a Stopwatch in Tkinter

Recipe 11.9. Combining GUIs and Asynchronous I/Owith Threads

Recipe 11.10. Using IDLE's Tree Widget in Tkinter

Recipe 11.11. Supporting Multiple Values per Row in a Tkinter Listbox

Recipe 11.12. Copying Geometry Methods and Options Between Tkinter Widgets

Recipe 11.13. Implementing a Tabbed Notebook for Tkinter

Recipe 11.14. Using a wxPython Notebook with Panels

Recipe 11.15. Implementing an ImageJ Plug-in in Jython

Recipe 11.16. Viewing an Image from a URL with Swing and Jython

Recipe 11.17. Getting User Input on Mac OS

Recipe 11.18. Building a Python Cocoa GUI Programmatically

Recipe 11.19. Implementing Fade-in Windows with IronPython

Introduction

Credit: Fredrik Lundh, SecretLabs AB, author of Python Standard Library

Back in the early days of interactive computing, most computers offered terminals that looked
and behaved pretty much like clunky typewriters. The main difference from an ordinary
typewriter was that the computer was in the loop. It could read what the user typed and print
hard-copy output on a roll of paper.

So when you found yourself in front of a 1960s Teletype ASR-33, the only reasonable way to
communicate with the computer was to type a line of text, press the send key, hope that the
computer would manage to figure out what you meant, and wait for the response to appear on
the paper roll. This line-oriented way of communicating with your computer is known as a
command-line interface (CLI).

Some 40 years later, the paper roll has been replaced with high-resolution video displays, which
can display text in multiple typefaces, color photographs, and even animated 3D graphics. The
keyboard is still around, but we also have pointing devices such as the mouse, trackballs, game
controls, touchpads, and other input devices.

The combination of a graphics display and the mouse made it possible to create a new kind of
user interface: the graphical user interface (GUI). When done right, a GUI can give the user a
better overview of what a program can do (and what it is doing), and make it easier to carry out
many kinds of tasks.

However, most programming languages, including Python, make it easy to write programs using
teletype-style output and input. In Python, you use the print statement to print text to the
display and the input and raw_input functions to read expressions and text strings from the

keyboard.

Creating GUIs takes more work. You need access to functions to draw text and graphics on the
screen, select typefaces and styles, and read information from the keyboard and other input
devices. You need to write code to interact with other applications (via a window manager), keep
your windows updated when the user moves them around, and respond to key presses and
mouse actions.

To make this a bit easier, programmers have developed graphical user interface toolkits, which
provide standard solutions to these problems. A typical GUI toolkit provides a number of ready-
made GUI building blocks, usually called widgets. Common standard widgets include text and
image labels, buttons, and text-entry fields. Many toolkits also provide more advanced widgets,
such as Tkinter's Text widget, which is a rather competent text editor/display component.

All major toolkits are event based, which means that your program hands control over to the
toolkit (usually by calling a "main loop" function or method). The toolkit then calls back into your
application when certain events occurfor example, when the user clicks OK in a dialog or when a
window needs to be redrawn. Most toolkits also provide ways to position widgets on the screen
automatically (e.g., in tables, rows, or columns) and to modify widget behavior and appearance.

Tkinter is the de facto standard toolkit for Python and comes with most Python distributions.

Tkinter provides an object-oriented layer on top of the Tcl/Tk GUI library and runs on Windows,
Unix, and Macintosh systems. Tkinter is easy to use but provides a relatively small number of
standard widgets. Tkinter extension libraries, such as Pmw and Tix, supply many components
missing from plain Tkinter, and you can use Tkinter's advanced Text and Canvas widgets to

create custom widgets. The Widget Construction Kit, WCK, lets you write all sorts of new widgets
in pure Python: see http://effbot.org/zone/wck.htm.

wxPython (http://www.wxPython.org) is another popular toolkit; it is based on the wxWidgets

http://effbot.org/zone/wck.htm
http://www.wxPython.org

C++ library (http://www.wxWidgets.org). wxPython is modeled somewhat after the Windows
MFC library but is available for multiple platforms. wxPython provides a rich set of widgets, and
it's relatively easy to create custom widgets.

PyGTK (http://www.pygtk.org) is an object-oriented Python interface to the Gimp toolkit (GTK),

used in projects such as Gnome and the Gimp. PyGTK is a good choice for Linux applications,
especially if you want them to run in the Gnome environment.

PyQt (http://www.riverbankcomputing.co.uk/pyqt/index.php) is a Python wrapper for TrollTech's
Qt library (http://www.trolltech.com), which is the basis of the popular KDE environment, as well

as the Qtopia environment for hand-held computers; it also runs on Windows and Mac OS X. Qt
and PyQt require license fees for commercial (software that is not free) use, but are free
(licensed by the GPL) for free software development. (No GPL-licensed Qt is currently available
for Windows, but one is under developmentsee http://kde-cygwin.sourceforge.net/qt3-win32/.)

You can also use many other toolkits from Python. Mark Hammond's Pythonwin gives access to
Windows MFC. Greg Ewing is developing a cross-platform GUI API, known as PyGUI
(http://nz.cosc.canterbury.ac.nz/~greg/python_gui/), developed specifically for Python and
taking advantage of Python's unique strengths. Also available are interfaces to Motif/X11 and
Mac OS X native toolboxes and many other toolkits. Cameron Laird maintains a list of toolkits at
http://starbase.neosoft.com/~claird/comp.lang.python/python_GUI.html. It currently lists about
20 toolkits. A Wiki page at http://www.python.org/cgi-bin/moinmoin/GuiProgramming is actively
maintained lists even more.

Finally, several projects, in various stages, are based on the idea of overlaying easy unified APIs
on top of one or more other toolkits or graphical facilities. anygui (rather dormantsee
http://www.anygui.org), PythonCard (pretty activesee http://pythoncard.sourceforge.net/), Wax
(http://zephyrfalcon.org/labs/dope_on_wax.html), and PyUI (http://pyui.sourceforge.net/) are

examples of this "higher-level" approach.

http://www.wxWidgets.org
http://www.pygtk.org
http://www.riverbankcomputing.co.uk/pyqt/index.php
http://www.trolltech.com
http://kde-cygwin.sourceforge.net/qt3-win32/
http://nz.cosc.canterbury.ac.nz/~greg/python_gui/
http://starbase.neosoft.com/~claird/comp.lang.python/python_GUI.html
http://www.python.org/cgi-bin/moinmoin/GuiProgramming
http://www.anygui.org
http://pythoncard.sourceforge.net/
http://zephyrfalcon.org/labs/dope_on_wax.html
http://pyui.sourceforge.net/

Recipe 11.1. Showing a Progress Indicator on a Text
Console

Credit: Larry Bates

Problem

Your program has no GUI (i.e., your program just runs on a text console), and yet you want your
program to show to the user a "progress indicator bar" during lengthy operations, to
communicate that work is progressing and the amount of the total work that has been
completed.

Solution

We can easily code a simple little class to handle this whole task:

import sys
class progressbar(object):
 def _ _init_ _(self, finalcount, block_char='.'):
 self.finalcount = finalcount
 self.blockcount = 0
 self.block = block_char
 self.f = sys.stdout
 if not self.finalcount: return
 self.f.write('\n------------------ % Progress -------------------1\n')
 self.f.write(' 1 2 3 4 5 6 7 8 9 0\n')
 self.f.write('----0----0----0----0----0----0----0----0----0----0\n')
 def progress(self, count):
 count = min(count, self.finalcount)
 if self.finalcount:
 percentcomplete = int(round(100.0*count/self.finalcount))
 if percentcomplete < 1: percentcomplete = 1
 else:
 percentcomplete=100
 blockcount = int(percentcomplete//2)
 if blockcount <= self.blockcount:
 return
 for i in range(self.blockcount, blockcount):
 self.f.write(self.block)
 self.f.flush()
 self.blockcount = blockcount
 if percentcomplete == 100:
 self.f.write("\n")

Discussion

Here is an example of the use of this progressbar class, presented, as usual, with a guard of if
_ _name_ _ == '_ _main_ _'. We can make it part of the module containing the class and have

it run when the module is executed as a "main script":

if _ _name_ _ == "_ _main_ _":
 from time import sleep
 pb = progressbar(8, "*")
 for count in range(1, 9):
 pb.progress(count)
 sleep(0.2)
 pb = progressbar(100)
 pb.progress(20)
 sleep(0.3)
 pb.progress(47)
 sleep(0.3)
 pb.progress(90)
 sleep(0.3)
 pb.progress(100)
 print "testing 1:"
 pb = progressbar(1)
 pb.progress(1)

Programs that run lengthy operations, such as FTP downloads and database insertions, should
normally give visual feedback to the user regarding the progress of the task that is running. GUI
toolkits generally have such facilities included as "widgets", but if your program does not
otherwise require a GUI, it's overkill to give it one just to be able to display a progress bar. This
recipe's progress bar class provides an easy way of showing the percentage of completion that is
updated periodically by the program.

The recipe operates on the basis of a totally arbitrary final count that the ongoing task is
supposed to reach at the end. This makes it optimally easy for the application that makes use of
the progressbar class: the application can use any handy unit of measure (such as amount of
bytes downloaded for an FTP download, number of records inserted for a database insertion,
etc.) to track the task's progress and completion. As long as the same unit of measure applies to
both the "final count" and the count argument that the application must periodically pass to the
progress method, the progress bar's display will be accurate.

See Also

Documentation on text-mode console I/O in Python in a Nutshell.

Recipe 11.2. Avoiding lambda in Writing Callback
Functions

Credit: Danny Yoo, Martin Sjogren

Problem

You need to use many callbacks without arguments, typically while writing a Tkinter-based GUI,
and you'd rather avoid using lambda.

Solution

Between the classic lambda approach and a powerful general-purpose currying mechanism is a

third, extremely simple way for doing callbacks that can come in handy in many practical cases:

def command(callback, *args, **kwargs):
 def do_call():
 return callback(*args, **kwargs)
 # 2.4 only: do_call._ _name_ _ = callback._ _name_ _
 return do_call

Discussion

I remember a utility class (to perform the same task handled by a closure in this recipe) quite a
while back, but I don't remember who to attribute it to. Perhaps I saw it in John E. Grayson,
Python and Tkinter Programming (Manning).

Writing a lot of callbacks that give customized arguments can look a little awkward with lambda,

so this command closure provides alternative syntax that is easier to read. For example:

import Tkinter
def hello(name):
 print "Hello", name
root = Tk()
the lambda way of doing it:
Button(root, text="Guido", command=lambda name="Guido": hello(name)).pack()
using the Command class:
Button(root, text="Guido", command=command(hello, "Guido")).pack()

Of course, you can also use a more general currying approach, which enables you to fix some of
the arguments when you bind the callback, while others may be given at call time (see Recipe
16.4). However, "doing the simplest thing that can possibly work" is a good programming
principle (this wording of the principle is due, I believe, to Kent Beck). If your application needs
callbacks that fix all arguments at currying time and others that leave some arguments to be
determined at callback time, it's probably simpler to use the more general currying approach for
all the callbacks. But if all the callbacks you need must fix all arguments at currying time, it may
be simpler to forego unneeded generality and use the simpler, less-general approach in this
recipe exclusively. You can always refactor later if it turns out that you do need the generality.

See Also

Recipe 16.4; information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/library), New
Mexico Tech's Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python
in a Nutshell, and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.3. Using Default Values and Bounds with
tkSimpleDialog Functions

Credit: Mike Foord, Peter Cogolo

Problem

You need to get an input value from the user with one of Tkinter's tkSimpleDialog dialog

functions, but you want to add a default value, or to ensure that the value entered lies within
certain bounds.

Solution

Each of Tkinter's tkSimpleDialog functions (askstring, askfloat, askinteger) supports an

optional default value, as well as optional validation against minimum and maximum value.
However, this set of features is not clearly spelled out in the documentation. Here's a wrapper
function that you may find preferable:

import tkSimpleDialog
_dispatch = { str: tkSimpleDialog.askstring,
 int: tkSimpleDialog.askinteger,
 float: tkSimpleDialog.askfloat,
 }
def getinput(title, prompt, type=str, default=None, min=None, max=None):
 ''' gets from the user an input of type `type' (str, int or float),
 optionally with a default value, and optionally constrained to
 lie between the values `min' and `max' (included).
 '''
 f = _dispatch.get(type)
 if not f:
 raise TypeError, "Can't ask for %r input" % (type,)
 return f(title, prompt, initialvalue=default, minvalue=min, maxvalue=max)

Discussion

The built-in tkSimpleDialog module offers a few simple functions that pop up dialogs that ask

the user to input a string, a float, or an integernot a very advanced user interface but dirt-simple
to use in your programs. Unfortunately, while these functions do support a few nice extras (the
ability to pass in a default value, and having the result validated within certain optional minimum
and maximum values), the module's documentation (what little there is of it) does not make this
feature clear. Even the pydoc-generated page

http://epydoc.sourceforge.net/stdlib/public/tkSimpleDialog-module.html just says "see
SimpleDialog class." Since no such class exists, seeing it is not easy. (The relevant class is
actually named _QueryDialog, and due to the leading underscore in the name, it is considered
"private". Therefore pydoc does not build a documentation web page for it.)

This recipe shows how to access this functionality that's already part of the Python Standard
Library. As a side benefit, it refactors the functionality into a single getinput function that takes
as an argument the type of input desired (defaulting to str, meaning that the default type of
result is a string, just as for built-in function raw_input). If you prefer the original concept of

http://epydoc.sourceforge.net/stdlib/public/tkSimpleDialog-module.html

having three separate functions, it's easy to modify the recipe according to your tastes. The
recipe mostly makes the semi-hidden functionality of the original functions' undocumented
keyword arguments initialvalue, minvalue and maxvalue manifest and clearer through its
optional parameters default, min, and max, which it passes right on to the underlying original

function.

See Also

tkSimpleDialog module documentation is at

http://epydoc.sourceforge.net/stdlib/public/tkSimpleDialog-module.html.

http://epydoc.sourceforge.net/stdlib/public/tkSimpleDialog-module.html

Recipe 11.4. Adding Drag and Drop Reordering to a
Tkinter Listbox

Credit: John Fouhy

Problem

You want to use a Tkinter Listbox widget, but you want to give the user the additional capability

of reordering the entries by drag-and-drop.

Solution

We just need to code the relevant functionality and bind it to the Tkinter event corresponding to
the "drag" mouse gesture:

import Tkinter
class DDList(Tkinter.Listbox):
 """ A Tkinter listbox with drag'n'drop reordering of entries. """
 def _ _init_ _(self, master, **kw):
 kw['selectmode'] = Tkinter.SINGLE
 Tkinter.Listbox._ _init_ _(self, master, kw)
 self.bind('<Button-1>', self.setCurrent)
 self.bind('<B1-Motion>', self.shiftSelection)
 self.curIndex = None
 def setCurrent(self, event):
 self.curIndex = self.nearest(event.y)
 def shiftSelection(self, event):
 i = self.nearest(event.y)
 if i < self.curIndex:
 x = self.get(i)
 self.delete(i)
 self.insert(i+1, x)
 self.curIndex = i
 elif i > self.curIndex:
 x = self.get(i)
 self.delete(i)
 self.insert(i-1, x)
 self.curIndex = i

Discussion

Here is an example of use of this DDList class, presented, as usual, with a guard of if _ _name_
_ == '_ _main_ _' so we can make it part of the module containing the class and have it run

when the module is executed as a "main script":

if _ _name_ _ == '_ _main_ _':
 tk = Tkinter.Tk()
 length = 10
 dd = DDList(tk, height=length)
 dd.pack()

 for i in xrange(length):
 dd.insert(Tkinter.END, str(i))
 def show():
 ''' show the current ordering every 2 seconds '''
 for x in dd.get(0, Tkinter.END):
 print x,
 print
 tk.after(2000, show)
 tk.after(2000, show)
 tk.mainloop()

Allowing the user of a GUI program to drag the elements of a list into new positions is often
useful, and this recipe shows a fairly simple way of adding this functionality to a Tkinter Listbox

widget.

This recipe's code tries to ensure that the clicked-on element stays selected by deleting and
inserting on either side of it. Nevertheless, it is possible, by moving the mouse quickly enough,
to start dragging an unselected element instead. While it doesn't cause any major problems, it
just looks a bit odd.

This recipe's code is partly based on a post by Fredrik Lundh,
http://mail.python.org/pipermail/python-list/1999-May/002501.html.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An
Introduction to Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico Tech's
Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell,
and various other books.

http://mail.python.org/pipermail/python-list/1999-May/002501.html
http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.5. Entering Accented Characters in Tkinter
Widgets

Credit: Artur de Sousa Rocha

Problem

You want your application to allow the user to easily enter accented characters into Tkinter
widgets even from a U.S.-layout keyboard.

Solution

Internationalized applications should enable the user to easily enter letters with accents and
diacritics (e.g., umlauts, and tildes) even from a U.S.-layout keyboard. A usefully uniform
convention is the following: hitting Ctrl-accent, for any kind of accent or diacritic, acts as a dead

key, ensuring that the next letter hit will be decorated by that accent or diacritic. For example,
Ctrl-apostrophe, followed by a, enters an a with an acute accent (the character á). The following

classes provide the keyboard and widget bindings that allow this internationalized input
functionality:

from Tkinter import *
from ScrolledText import ScrolledText
from unicodedata import lookup
import os
class Diacritical(object):
 """ Mixin class that adds keyboard bindings for accented characters, plus
 other common functionality (e.g.: Control-A == 'select all' on Windows).
 """
 if os.name == "nt":
 stroke = '/'
 else:
 stroke = 'minus'
 accents = (('acute', "'"), ('grave', '`'), ('circumflex', '^'),
 ('tilde', '='), ('diaeresis', '"'), ('cedilla', ','),
 ('stroke', stroke))
 def _ _init_ _(self):
 # Fix some non-Windows-like Tk bindings, if we're on Windows
 if os.name == 'nt':
 self.bind("<Control-Key-a>", self.select_all)
 self.bind("<Control-Key-/>", lambda event: "break")
 # Diacritical bindings
 for a, k in self.accents:
 self.bind("<Control-Key-%s><Key>" % k,
 lambda event, a=a: self.insert_accented(event.char, a))
 def insert_accented(self, c, accent):
 if c.isalpha():
 if c.isupper():
 cap = 'capital'
 else:
 cap = 'small'
 try:

 c = lookup("latin %s letter %c with %s" % (cap, c, accent))
 self.insert(INSERT, c)
 return "break"
 except KeyError, e:
 pass
class DiacriticalEntry(Entry, Diacritical):
 """ Tkinter Entry widget with some extra key bindings for
 entering typical Unicode characters - with umlauts, accents, etc. """
 def _ _init_ _(self, master=None, **kwargs):
 Entry._ _init_ _(self, master=None, **kwargs)
 Diacritical._ _init_ _(self)
 def select_all(self, event=None):
 self.selection_range(0, END)
 return "break"
class DiacriticalText(ScrolledText, Diacritical):
 """ Tkinter ScrolledText widget with some extra key bindings for
 entering typical Unicode characters - with umlauts, accents, etc. """
 def _ _init_ _(self, master=None, **kwargs):
 ScrolledText._ _init_ _(self, master=None, **kwargs)
 Diacritical._ _init_ _(self)
 def select_all(self, event=None):
 self.tag_add(SEL, "1.0", "end-1c")
 self.mark_set(INSERT, "1.0")
 self.see(INSERT)
 return "break"

Discussion

Here is an example of use of these widget classes. We present the example, as usual, with a
guard of if _ _name_ _ == '_ _main_ _'; so we can make it part of the module containing the

classes and have it run when the module is executed as a "main script":

def test():
 frame = Frame()
 frame.pack(fill=BOTH, expand=YES)
 if os.name == "nt":
 frame.option_add("*font", "Tahoma 8") # Win default, Tk uses other
 # The editors
 entry = DiacriticalEntry(frame)
 entry.pack(fill=BOTH, expand=YES)
 text = DiacriticalText(frame, width=76, height=25, wrap=WORD)
 if os.name == "nt":
 text.config(font="Arial 10")
 text.pack(fill=BOTH, expand=YES)
 text.focus()
 frame.master.title("Diacritical Editor")
 frame.mainloop()
if _ _name_ _ == "_ _main_ _":
 test()

You might want to remove the keyboard event settings that don't really have much to do with
accents and diacritics, (e.g., Ctrl-A, meaning "select all") to some other, separate mixin class. I
keep that functionality together with the actual handling of diacritics basically because I always
need both features anyway.

Some design choices might be altered, such as my decision to have Ctrl-equal as the way to
enter a tilde. I took that path because I just couldn't find a way to make Ctrl-~ work the right

way, at least on my Windows machine! Also, depending on which languages you need to
support, you might have to add other accents and diacritics, such as a-ring for Swedish, German
scharfes-s, Icelandic eth and thorn, and so forth.

See Also

Docs about the unicodedata module in the Library Reference and Python in a Nutshell;

information about Tkinter can be obtained from a variety of sources, such as Pythonware's An
Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a
Nutshell, and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.6. Embedding Inline GIFs Using Tkinter

Credit: Brent Burley

Problem

You need to embed GIF images inside your source codefor use in Tkinter buttons, labels, and so
onto make toolbars and the like without worrying about installing the right icon files.

Solution

A lively Tkinter GUI can include many small images. However, you don't want to require that a
small GIF file be present for each of these images. Ensuring the presence of many small files is a
bother, and if they're missing, your GUI may be unusable. Fortunately, you can construct Tkinter
PhotoImage objects with inline data. It's easy to convert a GIF to inline form as Python source

code, with a little script or snippet that you can save and run separately.

import base64
print "icon='''\\\n" + base64.encodestring(open("icon.gif").read()) + "'''"

This emits to standard output a lot of strange-looking "text", which you can capture (typically
using your shell's facilities for output redirection, or with copy and paste) and split into lines of
reasonable length:

icon='''R0lGODdhFQAVAPMAAAQ2PESapISCBASCBMTCxPxmNCQiJJya/ISChGRmzPz+/PxmzDQyZ
DQyZDQyZDQyZCwAAAAAFQAVAAAElJDISau9Vh2WMD0gqHHelJwnsXVloqDd2hrMm8pYYiSHYfMMRm
53ULlQHGFFx1MZCciUiVOsPmEkKNVp3UBhJ4Ohy1UxerSgJGZMMBbcBACQlVhRiHvaUsXHgywTdyc
LdxyB gm1vcTyIZW4MeU6NgQEBXEGRcQcIlwQIAwEHoioCAgWmCZ0Iq5+hA6wIpqislgGhthEAOw==
'''

Now, you can use this Python-inlined data in Tkinter:

import Tkinter
if _ _name_ _ == '_ _main_ _':
 root = Tkinter.Tk()
 iconImage = Tkinter.PhotoImage(master=root, data=icon)
 Tkinter.Button(image=iconImage).pack()

Discussion

The basic technique is to encode the GIF with the standard Python module base64 and store the

results as a string literal in the Python code. At runtime, the Python code passes that string
object to Tkinter's PhotoImage. The current release of PhotoImage supports GIF and PPM, but

inline data is supported only for GIF. To convert between image formats, see Recipe 11.7. Of
course, you can use file='filename', instead of data=string, for either GIF or PPM, if your

image data is indeed in a file.

You must keep a reference to the PhotoImage object yourself; that reference is not kept by the
Tkinter widget. If you pass the object to Button and forget it, you will become frustrated! Here's

an easy workaround for this minor annoyance:

def makeImageWidget(icondata, *args, **kwds):
 if args:
 klass = args.pop(0)
 else:
 klass = Tkinter.Button
 class Widget(klass):
 def _ _init_ _(self, image, *args, **kwds):
 kwds['image'] = image
 klass._ _init_ _(self, *args, **kwds)
 self._ _image = image
 return Widget(Tkinter.PhotoImage(data=icondata), *args, **kwds)

Using this handy makeImageWidget function, the equivalent of the example in the recipe
becomes:

makeImageWidget(icon).pack()

The master argument on PhotoImage is optional; it defaults to the default application window. If
you create a new application window (by calling Tk again), you must create your images in that

context and supply the master argument, so the makeImageWidget function has to be updated
to let you optionally pass the master argument to the PhotoImage constructor. However, most

applications do not require this refinement.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An
Introduction to Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico Tech's
Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell,
and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.7. Converting Among Image Formats

Credit: Doug Blanding

Problem

Your image files are in various formats (GIF, JPG, PNG, TIF, BMP), and you need to convert
among these formats.

Solution

The Python Imaging Library (PIL) can read and write all of these formats; indeed, net of user-
interface concerns, image-file format conversion using PIL boils down to a one-liner:

 Image.open(infile).save(outfile)

where filenames infile and outfile have the appropriate file extensions to indicate what kind

of images we're reading and writing. We just need to wrap a small GUI around this one-liner
functionalityfor example:

#!/usr/bin/env python
import os, os.path, sys
from Tkinter import *
from tkFileDialog import *
import Image
openfile = '' # full pathname: dir(abs) + root + ext
indir = ''
outdir = ''
def getinfilename():
 global openfile, indir
 ftypes=(('Gif Images', '*.gif'),
 ('Jpeg Images', '*.jpg'),
 ('Png Images', '*.png'),
 ('Tiff Images', '*.tif'),
 ('Bitmap Images', '*.bmp'),
 ("All files", "*"))
 if indir:
 openfile = askopenfilename(initialdir=indir, filetypes=ftypes)
 else:
 openfile = askopenfilename(filetypes=ftypes)
 if openfile:
 indir = os.path.dirname(openfile)
def getoutdirname():
 global indir, outdir
 if openfile:
 indir = os.path.dirname(openfile)
 outfile = asksaveasfilename(initialdir=indir, initialfile='foo')
 else:
 outfile = asksaveasfilename(initialfile='foo')
 outdir = os.path.dirname(outfile)
def save(infile, outfile):

 if infile != outfile:
 try:
 Image.open(infile).save(outfile)
 except IOError:
 print "Cannot convert", infile
def convert():
 newext = frmt.get()
 path, file = os.path.split(openfile)
 base, ext = os.path.splitext(file)
 if var.get():
 ls = os.listdir(indir)
 filelist = []
 for f in ls:
 if os.path.splitext(f)[1] == ext:
 filelist.append(f)
 else:
 filelist = [file]
 for f in filelist:
 infile = os.path.join(indir, f)
 ofile = os.path.join(outdir, f)
 outfile = os.path.splitext(ofile)[0] + newext
 save(infile, outfile)
 win = Toplevel(root)
 Button(win, text='Done', command=win.destroy).pack()
Divide GUI into 3 frames: top, mid, bot
root = Tk()
root.title('Image Converter')
topframe = Frame(root, borderwidth=2, relief=GROOVE)
topframe.pack(padx=2, pady=2)
Button(topframe, text='Select image to convert',
 command=getinfilename).pack(side=TOP, pady=4)
multitext = "Convert all image files\n(of this format) in this folder?"
var = IntVar()
chk = Checkbutton(topframe, text=multitext, variable=var).pack(pady=2)
Button(topframe, text='Select save location',
 command=getoutdirname).pack(side=BOTTOM, pady=4)
midframe = Frame(root, borderwidth=2, relief=GROOVE)
midframe.pack(padx=2, pady=2)
Label(midframe, text="New Format:").pack(side=LEFT)
frmt = StringVar()
formats = ['.bmp', '.gif', '.jpg', '.png', '.tif']
for item in formats:
 Radiobutton(midframe, text=item, variable=frmt, value=item).pack(anchor=NW)
botframe = Frame(root)
botframe.pack()
Button(botframe, text='Convert', command=convert).pack(
 side=LEFT, padx=5, pady=5)
Button(botframe, text='Quit', command=root.quit).pack(
 side=RIGHT, padx=5, pady=5)
root.mainloop()

Needing 80 lines of GUI code to wrap a single line of real functionality may be a bit extreme, but
it's not all that far out of line in my experience with GUI coding ;-).

Discussion

I needed this tool when I was making .avi files from the CAD application program I generally use.

That CAD program emits images in .bmp format, but the AVI[1]-generating program I normally
use requires images in .jpg format. Now, thanks to the little script in this recipe (and to the
power of Python, Tkinter, and most especially PIL), with a couple of clicks, I get a folder full of
images in .jpg format ready to be assembled into an AVI file, or, just as easily, files in .gif ready
to be assembled into an animated GIF image file.

[1] AVI (Advanced Visual Interface)

I used to perform this kind of task with simple shell scripts on Unix, using ImageMagick's convert
command. But, with this script, I can do exactly the same job just as easily on all sorts of
machines, be they Unix, Windows, or Macintosh.

I had to work around one annoying problem to make this script work as I wanted it to. When I'm
selecting the location into which a new file is to be written, I need that dialog to give me the
option to create a new directory for that purpose. However, on Windows NT, the Browse for
Folder dialog doesn't allow me to create a new folder, only to choose among existing ones! My
workaround, as you'll see by studying this recipe's Solution, was to use instead the Save As
dialog. That dialog does allow me to create a new folder. I do have to indicate the dummy file in
that folder, and the file gets ignored; only the directory part is kept. This workaround is not
maximally elegant, but it took just a few minutes and almost no work on my part, and I can live
with the result.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An
Introduction to Tkinter, (PythonWare: http://www.pythonware.com/library), New Mexico Tech's
Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell,
and various other books; PIL is at http://www.pythonware.com/products/pil/.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html
http://www.pythonware.com/products/pil/

Recipe 11.8. Implementing a Stopwatch in Tkinter

Credit: JØrgen Cederberg, Tobias Klausmann

Problem

You are coding an application in Tkinter and need a widget that implements a stopwatch.

Solution

Implementing a new widget is almost always best done by subclassing Frame:

from Tkinter import *
import time
class StopWatch(Frame):
 """ Implements a stop watch frame widget. """
 msec = 50
 def _ _init_ _(self, parent=None, **kw):
 Frame._ _init_ _(self, parent, kw)
 self._start = 0.0
 self._elapsedtime = 0.0
 self._running = False
 self.timestr = StringVar()
 self.makeWidgets()
 def makeWidgets(self):
 """ Make the time label. """
 l = Label(self, textvariable=self.timestr)
 self._setTime(self._elapsedtime)
 l.pack(fill=X, expand=NO, pady=2, padx=2)
 def _update(self):
 """ Update the label with elapsed time. """
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)
 self._timer = self.after(self.msec, self._update)
 def _setTime(self, elap):
 """ Set the time string to Minutes:Seconds:Hundredths """
 minutes = int(elap/60)
 seconds = int(elap - minutes*60.0)
 hseconds = int((elap - minutes*60.0 - seconds)*100)
 self.timestr.set('%02d:%02d:%02d' % (minutes, seconds, hseconds))
 def Start(self):
 """ Start the stopwatch, ignore if already running. """
 if not self._running:
 self._start = time.time() - self._elapsedtime
 self._update()
 self._running = True
 def Stop(self):
 """ Stop the stopwatch, ignore if already stopped. """
 if self._running:
 self.after_cancel(self._timer)
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)

 self._running = False
 def Reset(self):
 """ Reset the stopwatch. """
 self._start = time.time()
 self._elapsedtime = 0.0
 self._setTime(self._elapsedtime)

Discussion

Here is an example of use of this StopWatch widget, presented, as usual, with a guard of if _
name _ == '_ _main_ _' so we can make it part of the module containing the class and have

it run when the module is executed as a "main script":

if _ _name_ _ == '_ _main_ _':
 def main():
 root = Tk()
 sw = StopWatch(root)
 sw.pack(side=TOP)
 Button(root, text='Start', command=sw.Start).pack(side=LEFT)
 Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)
 Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)
 Button(root, text='Quit', command=root.quit).pack(side=LEFT)
 root.mainloop()
 main()

You might want to use time.clock instead of time.time if your stopwatch's purpose is to

measure the amount of CPU time that your program is taking, rather than the amount of elapsed
time. I used time.time, without even bothering to make that choice easily customizable (you'll

need to edit its several appearances in the recipe's code), because it seems the most natural
choice to me by far. One aspect that you can customize easily, by subclassing and data
overriding or simply by setting the msec instance attribute on a particular StopWatch instance, is
how often the time display is updated onscreen; the default of 50 milliseconds, which translates
to 20 updates a second, may well mean updates that are too frequent for your purposes,
although they suit my own just fine.

See Also

Docs about the time module in the Library Reference and Python in a Nutshell; information about

Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An Introduction to
Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico Tech's Tkinter
Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell, and
various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.9. Combining GUIs and Asynchronous I/Owith
Threads

Credit: Jacob Hallén, Laura Creighton, Boudewijn Rempt

Problem

You need to access sockets, serial ports, or other asynchronous (but blocking) I/O sources, while
running a GUI.

Solution

The solution is to handle a GUI interface on one thread and communicate to it (via Queue

instances) the events on I/O channels handled by other threads. Here's the code for the standard
Tkinter GUI toolkit that comes with Python:

import Tkinter, time, threading, random, Queue
class GuiPart(object):
 def _ _init_ _(self, master, queue, endCommand):
 self.queue = queue
 # Set up the GUI
 Tkinter.Button(master, text='Done', command=endCommand).pack()
 # Add more GUI stuff here depending on your specific needs
 def processIncoming(self):
 """ Handle all messages currently in the queue, if any. """
 while self.queue.qsize():
 try:
 msg = self.queue.get(0)
 # Check contents of message and do whatever is needed. As a
 # simple example, let's print it (in real life, you would
 # suitably update the GUI's display in a richer fashion).
 print msg
 except Queue.Empty:
 # just on general principles, although we don't expect this
 # branch to be taken in this case, ignore this exception!
 pass
class ThreadedClient(object):
 """
 Launch the "main" part of the GUI and the worker thread. periodicCall and
 endApplication could reside in the GUI part, but putting them here
 means that you have all the thread controls in a single place.
 """
 def _ _init_ _(self, master):
 """
 Start the GUI and the asynchronous threads. We are in the "main"
 (original) thread of the application, which will later be used by
 the GUI as well. We spawn a new thread for the worker (I/O).
 """
 self.master = master
 # Create the queue
 self.queue = Queue.Queue()

 # Set up the GUI part
 self.gui = GuiPart(master, self.queue, self.endApplication)
 # Set up the thread to do asynchronous I/O
 # More threads can also be created and used, if necessary
 self.running = True
 self.thread1 = threading.Thread(target=self.workerThread1)
 self.thread1.start()
 # Start the periodic call in the GUI to check the queue
 self.periodicCall()
 def periodicCall(self):
 """ Check every 200 ms if there is something new in the queue. """
 self.master.after(200, self.periodicCall)
 self.gui.processIncoming()
 if not self.running:
 # This is the brutal stop of the system. You may want to do
 # some cleanup before actually shutting it down.
 import sys
 sys.exit(1)
 def workerThread1(self):
 """
 This is where we handle the asynchronous I/O. For example, it may be
 a 'select()'. One important thing to remember is that the thread has
 to yield control pretty regularly, be it by select or otherwise.
 """
 while self.running:
 # To simulate asynchronous I/O, create a random number at random
 # intervals. Replace the following two lines with the real thing.
 time.sleep(rand.random() * 1.5)
 msg = rand.random()
 self.queue.put(msg)
 def endApplication(self):
 self.running = False
rand = random.Random()
root = Tkinter.Tk()
client = ThreadedClient(root)
root.mainloop()

Discussion

This recipe demonstrates the easiest way of handling access to sockets, serial ports, and other
asynchronous I/O ports while running a Tkinter-based GUI. The recipe's principles generalize to
other GUI toolkits, since most toolkits make it preferable to access the GUI itself from a single
thread, and all offer a toolkit-dependent way to set up periodic polling as this recipe does.

Tkinter, like most other GUIs, is best used with all graphic commands in a single thread. On the
other hand, it's far more efficient to make I/O channels block, then wait for something to
happen, rather than using nonblocking I/O and having to poll at regular intervals. The latter
approach may not even be available in some cases, since not all data sources support
nonblocking I/O. Therefore, for generality as well as for efficiency, we should handle I/O with a
separate thread, or more than one. The I/O threads can communicate in a safe way with the
"main", GUI-handling thread through one or more Queues. In this recipe, the GUI thread still has
to do some polling (on the Queues), to check whether something in the Queue needs to be

processed. Other architectures are possible, but they are much more complex than the one in
this recipe. My advice is to start with this recipe, which will handle your needs over 90% of the
time, and explore the much more complex alternatives only if it turns out that this approach
cannot meet your performance requirements.

This recipe lets a worker thread block in a select (simulated by random sleeps in the recipe's

example worker thread). Whenever something arrives, it is received and inserted in a Queue
instance. The main (GUI) thread polls the Queue five times per second and processes all

messages that have arrived since it last checked. (Polling 5 times per second is frequent enough
that the end user will not notice any significant delay but infrequent enough that the
computational load on the computer will be negligible.) You may want to fine-tune this feature,
depending on your needs.

This recipe solves a common problem that is frequently asked about on Python mailing lists and
newsgroups. Other solutions, involving synchronization between threads, help you solve such
problems without polling (the self.master.after call in the recipe). Unfortunately, such

solutions are generally complicated and messy, since you tend to raise and wait for semaphores
throughout your code. In any case, a GUI already has several polling mechanisms built into it
(the "main" event loop), so adding one more won't make much difference, especially since it
seldom runs. The code has been tested in depth only under Linux, but it should work on any
platform with working threads, including Windows.

Here is a PyQt equivalent, with very minor variations:

import sys, time, threading, random, Queue, qt
class GuiPart(qt.QMainWindow):
 def _ _init_ _(self, queue, endcommand, *args):
 qt.QMainWindow._ _init_ _(self, *args)
 self.queue = queue
 # We show the result of the thread in the gui, instead of the console
 self.editor = qt.QMultiLineEdit(self)
 self.setCentralWidget(self.editor)
 self.endcommand = endcommand
 def closeEvent(self, ev):
 """ We just call the endcommand when the window is closed,
 instead of presenting a button for that purpose. """
 self.endcommand()
 def processIncoming(self):
 """ Handle all the messages currently in the queue (if any). """
 while self.queue.qsize():
 try:
 msg = self.queue.get(0)
 self.editor.insertLine(str(msg))
 except Queue.Empty:
 pass
class ThreadedClient(object):
 """
 Launch the "main" part of the GUI and the worker thread. periodicCall and
 endApplication could reside in the GUI part, but putting them here
 means that you have all the thread controls in a single place.
 """
 def _ _init_ _(self):
 # Create the queue
 self.queue = Queue.Queue()
 # Set up the GUI part
 self.gui = GuiPart(self.queue, self.endApplication)
 self.gui.show()
 # A timer to periodically call periodicCall
 self.timer = qt.QTimer()
 qt.QObject.connect(self.timer, qt.SIGNAL("timeout()"),
 self.periodicCall)
 # Start the timer -- this replaces the initial call to periodicCall
 self.timer.start(200)
 # Set up the thread to do asynchronous I/O
 # More can be made if necessary
 self.running = True
 self.thread1 = threading.Thread(target=self.workerThread1)

 self.thread1.start()
 def periodicCall(self):
 """
 Check every 200 ms if there is something new in the queue.
 """
 self.gui.processIncoming()
 if not self.running:
 root.quit()
 def endApplication(self):
 self.running = False
 def workerThread1(self):
 """
 This is where we handle the asynchronous I/O. For example, it may be
 a 'select()'. An important thing to remember is that the thread has
 to yield control once in a while.
 """
 while self.running:
 # To simulate asynchronous I/O, we create a random number at
 # random intervals. Replace the following 2 lines with the real
 # thing.
 time.sleep(rand.random() * 0.3)
 msg = rand.random()
 self.queue.put(msg)
rand = random.Random()
root = qt.QApplication(sys.argv)
client = ThreadedClient()
root.exec_loop()

As you can see, this PyQt variation has a structure that's uncannily similar to the Tkinter version,
with just a few variations (and a few enhancements, such as using QApplication.quit instead of
the more brutal sys.exit, and displaying the thread's result in the GUI itself rather than on the

console).

See Also

Documentation of the standard library modules threading and Queue in the Library Reference

and Python in a Nutshell; information about Tkinter can be obtained from a variety of sources,
such as Fredrik Lundh, An Introduction to Tkinter (Pythonware:
http://www.pythonware.com/library), New Mexico Tech's Tkinter Reference
(http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell, and various other
books; information about PyQt can be found at PyQt's own web site,
http://www.riverbankcomputing.co.uk/pyqt/index.php.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html
http://www.riverbankcomputing.co.uk/pyqt/index.php

Recipe 11.10. Using IDLE's Tree Widget in Tkinter

Credit: Sanghyeon Seo

Problem

You need to use a Tree widget in your Tkinter application, and you know that such a widget
comes with IDLE, the Integrated Development Environment that comes with Python.

Solution

IDLE's functionality is available in the Python Standard Library in package idlelib, so it is easy
to import and use in your applications. The Tree widget is in idlelib.TreeWidget. Here, as an

example, is how to use that widget to display an XML document's DOM as a tree:

from Tkinter import Tk, Canvas
from xml.dom.minidom import parseString
from idlelib.TreeWidget import TreeItem, TreeNode
class DomTreeItem(TreeItem):
 def _ _init_ _(self, node):
 self.node = node
 def GetText(self):
 node = self.node
 if node.nodeType == node.ELEMENT_NODE:
 return node.nodeName
 elif node.nodeType == node.TEXT_NODE:
 return node.nodeValue
 def IsExpandable(self):
 node = self.node
 return node.hasChildNodes()
 def GetSubList(self):
 parent = self.node
 children = parent.childNodes
 prelist = [DomTreeItem(node) for node in children]
 itemlist = [item for item in prelist if item.GetText().strip()]
 return itemlist
if _ _name_ _ == '_ _main_ _':
 example_data = '''
 <A>

 <C>d</C>
 <C>e</C>

 <C>f</C>

 '''
 root = Tk()
 canvas = Canvas(root)
 canvas.config(bg='white')
 canvas.pack()

 dom = parseString(data)
 item = DomTreeItem(dom.documentElement)
 node = TreeNode(canvas, None, item)
 node.update()
 node.expand()
 root.mainloop()

Discussion

My applications needed Tree widgets, and Tkinter does not have such a widget among its built-in
ones. So I started looking around the Internet to see the Tree widgets that had been
implemented for Tkinter. After a while, I was pleasantly surprised to learn that quite a useful one
was already installed and working on my computer! Specifically, I had IDLE, the free Integrated
DeveLopment Environment that comes with Python, and therefore I had idlelib, the package

within the standard Python library that contains just about all of the functionality of IDLE. A Tree
widget is among the widgets that IDLE uses for its own GUI, so idlelib.TreeWidget is just

sitting there in the standard Python library, quite usable and useful.

The only problem with idlelib is that it is not well documented as a part of the Python Standard
Library documentation, nor elsewhere. The best documentation I could find is the pydoc-
generated one at http://pydoc.org/2.3/idlelib.html. treeWidget is one of the modules

documented there. I suggest reading the sources on your disk, which include the docstrings that
pydoc is using to build the useful documentation site. Between sources and pydoc, it is quite
possible to reuse some of the rich functionality that's included in idlelib, although having real

docs about it would definitely not hurt. Python is known as the language that comes "with
batteries included." When you consider, not just the hundreds of library modules that are fully
documented in Python's official docs, but also the many additional library modules that aren't
(such as those in idlelib), it's hard to deny this characterization.

This recipe shows how to implement a simple GUI Tree: define a node-item class by subclassing
idlelib.TreeWidget.TreeItem, and override some methods. You may want to override ten

methods (http://pydoc.org/2.3/idlelib.TreeWidget.html#TreeItem has the complete list), and this
recipe only needs three: GetText to define how the item is displayed (textually), IsExpandable
to tell the Tree whether to put a clickable + character next to the node to allow expansion,
GetSubList to return a list of children items in case expansion is required. Other optional

methods, which this recipe does not need, allow iconic rather than textual display, double-
clicking on nodes, and even editing of Tree items.

See Also

idlelib docs at http://pydoc.org/2.3/idlelib.html.

http://pydoc.org/2.3/idlelib.html
http://pydoc.org/2.3/idlelib.TreeWidget.html#TreeItem
http://pydoc.org/2.3/idlelib.html

Recipe 11.11. Supporting Multiple Values per Row in a
Tkinter Listbox

Credit: Brent Burley, Pedro Werneck, Eric Rose

Problem

You need a Tkinter widget that works just like a normal Listbox but with multiple values per

row.

Solution

When you find a functional limitation in Tkinter, most often the best solution is to build your own
widget as a Python class, subclassing an appropriate existing Tkinter widget (often Frame, so you

can easily aggregate several native Tkinter widgets into your own compound widget) and
extending and tweaking the widget's functionality as necessary. Rather than solving a problem
for just one application, this approach gives you a component that you can reuse in many
applications. For example, here's a way to make a multicolumn equivalent of a Tkinter Listbox:

from Tkinter import *
class MultiListbox(Frame):
 def _ _init_ _(self, master, lists):
 Frame._ _init_ _(self, master)
 self.lists = []
 for l, w in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)
 Label(frame, text=l, borderwidth=1, relief=RAISED).pack(fill=X)
 lb = Listbox(frame, width=w, borderwidth=0, selectborderwidth=0,
 relief=FLAT, exportselection=FALSE)
 lb.pack(expand=YES, fill=BOTH)
 self.lists.append(lb)
 lb.bind('<B1-Motion>', lambda e, s=self: s._select(e.y))
 lb.bind('<Button-1>', lambda e, s=self: s._select(e.y))
 lb.bind('<Leave>', lambda e: 'break')
 lb.bind('<B2-Motion>', lambda e, s=self: s._b2motion(e.x, e.y))
 lb.bind('<Button-2>', lambda e, s=self: s._button2(e.x, e.y))
 frame = Frame(self)
 frame.pack(side=LEFT, fill=Y)
 Label(frame, borderwidth=1, relief=RAISED).pack(fill=X)
 sb = Scrollbar(frame, orient=VERTICAL, command=self._scroll)
 sb.pack(expand=YES, fill=Y)
 self.lists[0]['yscrollcommand'] = sb.set
 def _select(self, y):
 row = self.lists[0].nearest(y)
 self.selection_clear(0, END)
 self.selection_set(row)
 return 'break'
 def _button2(self, x, y):
 for l in self.lists:
 l.scan_mark(x, y)

 return 'break'
 def _b2motion(self, x, y):
 for l in self.lists
 l.scan_dragto(x, y)
 return 'break'
 def _scroll(self, *args):
 for l in self.lists:
 apply(l.yview, args)
 return 'break'
 def curselection(self):
 return self.lists[0].curselection()
 def delete(self, first, last=None):
 for l in self.lists:
 l.delete(first, last)
 def get(self, first, last=None):
 result = []
 for l in self.lists:
 result.append(l.get(first,last))
 if last: return apply(map, [None] + result)
 return result
 def index(self, index):
 self.lists[0].index(index)
 def insert(self, index, *elements):
 for e in elements:
 i = 0
 for l in self.lists:
 l.insert(index, e[i])
 i = i + 1
 def size(self):
 return self.lists[0].size()
 def see(self, index):
 for l in self.lists:
 l.see(index)
 def selection_anchor(self, index):
 for l in self.lists:
 l.selection_anchor(index)
 def selection_clear(self, first, last=None):
 for l in self.lists:
 l.selection_clear(first, last)
 def selection_includes(self, index):
 return self.lists[0].selection_includes(index)
 def selection_set(self, first, last=None):
 for l in self.lists:
 l.selection_set(first, last)
if _ _name_ _ == '_ _main_ _':
 tk = Tk()
 Label(tk, text='MultiListbox').pack()
 mlb = MultiListbox(tk, (('Subject', 40), ('Sender', 20), ('Date', 10)))
 for i in range(1000):
 mlb.insert(END,
 ('Important Message: %d' % i, 'John Doe', '10/10/%04d' % (1900+i)))
 mlb.pack(expand=YES, fill=BOTH)
 tk.mainloop()

Discussion

This recipe shows a compound widget that gangs multiple Tk Listbox widgets to a single
scrollbar to achieve a simple multicolumn scrolled listbox. Most of the Listbox API is mirrored, to

make the widget act like normal Listbox, but with multiple values per row. The resulting widget

is lightweight, fast, and easy to use. The main drawback is that only text is supported, which is a
fundamental limitation of the underlying Listbox widget.

In this recipe's implementation, only single selection is allowed, but the same idea could be
extended to multiple selection. User-resizable columns and auto-sorting by clicking on the
column label should also be possible. Auto-scrolling while dragging Button-1 was disabled
because it broke the synchronization between the lists. However, scrolling with Button-2 works
fine. Mice with scroll wheels appear to behave in different ways depending on the platform. For
example, while things appear to work fine with the preceding code on some platforms (such as
Windows/XP), on other platforms using X11 (such as Linux), I've observed that mouse scroll
wheel events correspond to Button-4 and Button-5, so you could deal with them just by adding
at the end of the for loop in method _ _init_ _ the following two statements:

 lb.bind('<Button-4>', lambda e, s=self: s._scroll(SCROLL, -1, UNITS))
 lb.bind('<Button-5>', lambda e, s=self: s._scroll(SCROLL, +1, UNITS))

This addition should be innocuous on platforms such as Windows/XP. You should check this issue
on all platforms on which you need to support mouse scroll wheels.

If you need to support sorting by column-header clicking, you can obtain the hook needed for
that functionality with a fairly modest change to this recipe's code. Specifically, within the for
loop in method _ _init_ _, you can change the current start:

 for l, w in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)
 Label(frame, text=l, borderwidth=1, relief=RAISED).pack(fill=X)

to the following richer code:

 for l, w, sort_command in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)
 Button(frame, text=l, borderwidth=1, relief=RAISED,
 command=sort_command).pack(fill=X)

To take advantage of this hook, you then need to pass as the lists' argument, rather than one
tuple of pairs, a list of three tuples, the third item of each tuple being an object callable with no
arguments to perform the appropriate kind of sorting. In my applications, I've generally found
this specific refinement to be more trouble than it's worth, but I'm presenting it anyway
(although not in the actual "Solution" of this recipe!) just in case your applications differ in this
respect. Maybe sorting by column header clicking is something that's absolutely invaluable to
you.

One note about the implementation: in the MultiListbox._ _init_ _ method, several lambda
forms are used as the callable second arguments (callbacks) of the bind method calls on the
contained Listbox widgets. This approach is traditional, but if you share the widespread dislike
for lambda, you should know that lambda is never truly necessary. In this case, the easiest way
to avoid the lambdas is to redefine all the relevant methods (_select, _button2, etc.) as taking
two formal arguments (self, e) and extract the data they need from argument e. Then in the
bind calls, you can simply pass the bound self._select method, and so on.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Pythonware's An

Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a
Nutshell, and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.12. Copying Geometry Methods and Options
Between Tkinter Widgets

Credit: Pedro Werneck

Problem

You want to create new Tkinter compound widgets, not by inheriting from Frame and packing

other widgets inside, but rather by setting geometry methods and options from other widget to
another.

Solution

Here is an example of a compound widget built by this approach:

from Tkinter import *
class LabeledEntry(Entry):
 """ An Entry widget with an attached Label """
 def _ _init_ _(self, master=None, **kw):
 ekw = { } # Entry options dictionary
 fkw = { } # Frame options dictionary
 lkw = {'name':'label'} # Label options dictionary
 skw = {'padx':0, 'pady':0, 'fill':'x', # Geometry manager opts dict
 'side':'left'}
 fmove = ('name',) # Opts to move to the Frame dict
 lmove = ('text', 'textvariable',
 'anchor','bitmap', 'image') # Opts to move to the Label dict
 smove = ('side', 'padx', 'pady', # Opts to move to the Geometry
 'fill') # manager dictionary
 # dispatch each option towards the appropriate component
 for k, v in kw:
 if k in fmove: fkw[k] = v
 elif k in lmove: lkw[k] = v
 elif k in smove: skw[k] = v
 else: ekw[k] = v
 # make all components with the accumulated options
 self.body = Frame(master, **fkw)
 self.label = Label(self.body, **lkw)
 self.label.pack(side='left', fill=skw['fill'],
 padx=skw['padx'], pady=skw['pady'])
 Entry._ _init_ _(self, self.body, **ekw)
 self.pack(side=skw['side'], fill=skw['fill'],
 padx=skw['padx'], pady=skw['pady'])
 methods = (Pack._ _dict_ _.keys() + # Set Frame geometry methods to self
 Grid._ _dict_ _.keys() +
 Place._ _dict_ _.keys())
 for m in methods:
 if m[0] != '_' and m != 'config' and m != 'configure':
 setattr(self, m, getattr(self.body, m))

Discussion

Here is an example of use of this LabeledEntry widget, presented, as usual, with a guard of if _
name _ == '_ _main_ _' so we can make it part of the module containing the class and have

it run when the module is executed as a "main script":

if _ _name_ _ == '_ _main_ _':
 root = Tk()
 le1 = LabeledEntry(root, name='label1', text='Label 1: ',
 width=5, relief=SUNKEN, bg='white', padx=3)
 le2 = LabeledEntry(root, name='label2', text='Label 2: ',
 relief=SUNKEN, bg='red', padx=3)
 le3 = LabeledEntry(root, name='label3', text='Label 3: ',
 width=40, relief=SUNKEN, bg='yellow', padx=3)
 le1.pack(expand=1, fill=X)
 le2.pack(expand=1, fill=X)
 le3.pack(expand=1, fill=X)
 root.mainloop()

The usual approach to defining new compound Tkinter widgets is to inherit from Frame and pack

your component widgets inside. While simple and habitual, that approach has a few problems. In
particular, you need to invent, design, document, and implement additional methods or options
to access the component widgets' attributes from outside of the compound widget class. Using
another alternative (which I've often seen done, but it's still a practice that is not advisable at
all!), you can violate encapsulation and Demeter's Law by having other code access the
component widgets directly. If you do violate encapsulation, you'll pay for it in the not-so-long
run, when you find a need to tweak your compound widget and discover that you can't do it
without breaking lots of code that depends on the compound widget's internal structure. Those
consequences are bad enough when you own all of the code in question, but it's worse if you
have "published" your widget and other people's code depends on it.

This recipe shows it doesn't have to be that bad, by elaborating upon an idea I first saw used in
the ScrolledText widget, which deserves to be more widely exposed. Instead of inheriting from
Frame, you inherit from the "main" widget of your new compound widget. Then, you create a
Frame widget to be used as a body, pretty much like in the more usual approach. Then, and here
comes the interesting novelty, you create dicts for each component widget you contain and

move to those dictionaries the respective options that pertain to component widgets.

The novelty continues after you've packed the "main" widget: at that point, you can reset said
widget's geometry methods to the base Frame attributes (meaning, in this case, methods), so
that accessing the object methods will in fact access the inner base Frame geometry methods.

This transparent, seamless delegation by juggling bound methods is uniquely Pythonic and is
part of what makes this recipe so novel and interesting!

The main advantage of this recipe's approach is that you can create your widget with options to
all slave widgets inside it in a single line, just like any other widget, instead of doing any further
w.configure or w['option'] calls or accesses to set all details exactly the way you want them.

To be honest, there is a potential disadvantage, too: in this recipe's approach, it's hard to handle
options with the same name on different component widgets. However, sometimes you can
handle them by renaming options: if two separate widgets need a 'foo' option that's also of
interest to the "main" widget, for example, use, 'upper_foo' and 'lower_foo' variants and

rename them appropriately (with yet another auxiliary dictionary) at the same time you're
dispatching them to the appropriate dictionary of component-widget options. You can't sensibly
keep doing that "forever", as the number of component widgets competing for the same option
grows without bounds: if that happens, revert to the good old tried-and-true approach. But for
nine out of ten compound widgets you find yourself programming, you'll find this recipe's
approach to be an interesting alternative to the usual, traditional approach to compound-widget
programming.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An
Introduction to Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico Tech's
Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell,
and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.13. Implementing a Tabbed Notebook for
Tkinter

Credit: Iuri Wickert

Problem

You have some Tkinter applications, each with a single top-level window, and want to organize
them as panels in a tabbed notebook with minimal changes to your original applications' source
code.

Solution

A simple widget class can implement a notebook with all the features we need, including all
possible orientations and the ability to add and switch frames (panels) at will:

from Tkinter import *
class notebook(object):
 def _ _init_ _(self, master, side=LEFT):
 self.active_fr = None
 self.count = 0
 self.choice = IntVar(0)
 if side in (TOP, BOTTOM): self.side = LEFT
 else: self.side = TOP
 self.rb_fr = Frame(master, borderwidth=2, relief=RIDGE)
 self.rb_fr.pack(side=side, fill=BOTH)
 self.screen_fr = Frame(master, borderwidth=2, relief=RIDGE)
 self.screen_fr.pack(fill=BOTH)
 def _ _call_ _(self):
 return self.screen_fr
 def add_screen(self, fr, title):
 b = Radiobutton(self.rb_fr, text=title, indicatoron=0,
 variable=self.choice,
 value=self.count, command=lambda: self.display(fr))
 b.pack(fill=BOTH, side=self.side)
 if not self.active_fr:
 fr.pack(fill=BOTH, expand=1)
 self.active_fr = fr
 self.count += 1
 def display(self, fr):
 self.active_fr.forget()
 fr.pack(fill=BOTH, expand=1)
 self.active_fr = fr

Just save this code as a notebook.py module, somewhere on your Python sys.path, and you can

import and use it in your apps.

Discussion

The simplest way to show how this notebook class works is with a simple demonstration
program:

from Tkinter import *
from notebook import *
make a toplevel with a notebook in it, with tabs on the left:
root = Tk()
nb = notebook(root, LEFT)
make a few diverse frames (panels), each using the NB as 'master':
f1 = Frame(nb())
b1 = Button(f1, text="Button 1")
e1 = Entry(f1)
pack your widgets in the frame before adding the frame to the
notebook, do NOT pack the frame itself!
b1.pack(fill=BOTH, expand=1)
e1.pack(fill=BOTH, expand=1)
f2 = Frame(nb())
b2 = Button(f2, text='Button 2')
b3 = Button(f2, text='Beep 2', command=Tk.bell)
b2.pack(fill=BOTH, expand=1)
b3.pack(fill=BOTH, expand=1)
f3 = Frame(nb())
add the frames as notebook 'screens' and run this GUI app
nb.add_screen(f1, "Screen 1")
nb.add_screen(f2, "Screen 2")
nb.add_screen(f3, "dummy")
root.mainloop()

Tkinter is a simple GUI toolkit, easy to use but notoriously feature-poor when compared to more
advanced toolkits. And yet, sometimes advanced features are not all that difficult to add! I
wondered how I could use a tabbed appearance, also known as a notebook, to organize various
pages of an application, or various related applications, simply and elegantly. I discovered that
simulating a notebook widget by using standard Tkinter frames and radio buttons was not only
possible, but also quite simple and effective.

Tk has some "odd", and somewhat unknown, corners, which make the whole task a snap. The
indicatoron option on a radio button reverts the radio button default appearance back to the

normal button looka rectangle, which may not be a perfect-looking tab but is plenty good enough
for me. Each Tkinter frame has a forget method, which allows easy and fast swapping of

"screens" (notebook panels, application frames) within the single "screen frame" of the notebook
object.

To convert any existing Tkinter app, based on a single top-level window, to run inside a notebook
panel, all you need to do is to change the application master frame's root, which is generally a
top-level widget (an instance of Tkinter's Tk class), to the one provided by the notebook object
when you call it. (The three occurrences of nb() in the example code show how to go about it.)

The notebook implementations in other toolkits often have advanced features such as the ability
to exclude (remove) some frames as well as adding others. I have not found this kind of thing to
be necessary, and so I have taken no trouble in this recipe to make it possible: all references to
the external frames are kept implicitly in lambda closures, without any obvious way to remove

them. If you think you need the ability to remove frames, you might consider an alternative
architecture: keep the frames' references in a list, indexed by the binding variable of the radio
buttons (i.e., the choice attribute of each radio button). Doing so lets you destroy a "frame"

and its associated radio button in a reasonably clean way.

See Also

Information about Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An
Introduction to Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico Tech's
Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell,
and various other books.

http://www.pythonware.com/library
http://www.nmt.edu/tcc/help/lang/python/docs.html

Recipe 11.14. Using a wxPython Notebook with Panels

Credit: Mark Nenadov

Problem

You want to design a wxPython GUI comprised of multiple panelseach driven by a separate
Python script running in the backgroundthat let the user switch back and forth (i.e., a wxPython
Notebook).

Solution

Notebooks are an effective GUI approach, as they let the user select the desired view from
several options at any time with an instinctive button click. wxPython supports this feature by
supplying a wxNotebook widget. Here is a "frame" class that holds a notebook and adds to it

three panes, each driven by a different Python module (not shown) through a function in each
module named runPanel:

from wxPython.wx import *
class MainFrame(wxFrame):
 #
 # snipped: mainframe class attributes
 #
 def _ _init_ _(self, parent, id, title):
 #
 # snipped: frame-specific initialization
 #
 # Create the notebook object
 self.nb = wxNotebook(self, -1,
 wxPoint(0,0), wxSize(0,0), wxNB_FIXEDWIDTH)
 # Populate the notebook with pages (panels), each driven by a
 # separate Python module which gets imported for the purpose:
 panel_names = "First Panel", "Second Panel", "The Third One"
 panel_scripts = "panel1", "panel2", "panel3"
 for name, script in zip(panel_names, panel_scripts):
 # Make panel named 'name' (driven by script 'script'.py)
 self.module = _ _import_ _(script, globals())
 self.window = self.module.runPanel(self, self.nb)
 if self.window: self.nb.AddPage(self.window, name)
 #
 # snipped: rest of frame initialization
 #

Discussion

wxPython provides a powerful notebook user-interface object, with multiple panels, each of
which can be built and driven by a separate Python script (actually a module, not a "main
script"). Each panel's script runs in the background, even when the panel is not selected, and
maintains state as the user switches back and forth.

This recipe isn't a fully functional wxPython application, but it adequately demonstrates how to
use notebooks and panels (which it loads by importing files). This recipe assumes that you have
files named panel1.py, panel2.py, and panel3.py, each of which contains a runPanel function that
takes two arguments (a wxFrame and a wxNotebook in the frame) and returns a wxPanel object.

The notebook-specific functionality is easy: the notebook object is created by the wxNotebook
function, and an instance of this recipe's MainFrame class saves its notebook object as the
self.nb instance attribute. Then, each page (a wxPanel object), obtained by calling the separate

script's runPanel functions, is added to the notebook by calling the notebook's AddPage method,
with the page object as the first argument and a name string as the second. Your code only
needs to make the notebook and its panels usable; the wxWidgets framework, as wrapped by the

wxPython package, handles all the rest on your behalf.

See Also

wxPython, and the wxWidgets toolkit it depends on, are described in detail at
http://www.wxPython.org and http://www.wxWidgets.org.

http://www.wxPython.org
http://www.wxWidgets.org

Recipe 11.15. Implementing an ImageJ Plug-in in Jython

Credit: Ferdinand Jamitzky, Edoardo "Dado" Marcora

Problem

You perform image processing using the excellent free program ImageJ and need to extend it
with your own plug-ins, but you want to code those plug-ins in Jython rather than in Java.

Solution

Jython can do all that Java can, but with Python's elegance and high productivity. For example,
here is an ImageJ plug-in that implements a simple image inverter:

import ij
class Inverter_py(ij.plugin.filter.PlugInFilter):
 def setup(self, arg, imp):
 """@sig public int setup(String arg, ij.ImagePlus imp)"""
 return ij.plugin.filter.PlugInFilter.DOES_8G
 def run(self,ip):
 """@sig public void run(ij.process.ImageProcessor ip)"""
 pixels = ip.getPixels()
 width = ip.getWidth()
 r = ip.getRoi()
 for y in range(r.y, r.y+r.height):
 for x in range(r.x, r.x+r.width):
 i = y*width + x
 pixels[i] = 255-pixels[i]

Discussion

To make this plug-in usable from ImageJ, all you need to do is compile it into a Java bytecode
class using the jythonc command with the appropriate command-line option switches. For
example, I use IBM's open source Java compiler, jikes, and I have placed it into the C:\ImageJ
directory, which also holds the plugins and jre subdirectories. So, in my case, the command line
to use is:

jythonc -w C:\ImageJ\plugins\Jython -C C:\ImageJ\jikes
 -J "-bootclasspath C:\ImageJ\jre\lib\rt.jar -nowarn"

If you use Sun's Java SDK, or other Java implementations, you just change the -C argument,
which indicates the path of your Java compiler and the -J argument, which specifies the options
to pass to your Java compiler.

See Also

ImageJ is at http://rsb.info.nih.gov/ij/; Jython is at http://www.jython.org; jikes is at
http://www-124.ibm.com/developerworks/oss/jikes/; for more on using Jython with Imagej,

http://rsb.info.nih.gov/ij/
http://www.jython.org
http://www-124.ibm.com/developerworks/oss/jikes/

http://marcora.caltech.edu/jython_imagej_howto.htm.

http://marcora.caltech.edu/jython_imagej_howto.htm

Recipe 11.16. Viewing an Image from a URL with Swing
and Jython

Credit: Joel Lawhead, Chuck Parker

Problem

You want to make a simple Swing image viewer, accepting the URL to an image and displaying
the image in a Swing window.

Solution

Jython makes this task very easy:

from pawt import swing
from java import net
def view(url):
 frame = swing.JFrame("Image: " + url, visible=1)
 frame.getContentPane().add(swing.JLabel(swing.ImageIcon(net.URL(url))))
 frame.setSize(400,250)
 frame.show()
if _ _name_ _ == '_ _main_ _':
 view("http://www.python.org/pics/pythonHi.gif")

Discussion

Swing's JLabel and ImageIcon widgets can be easily combined in Jython to make a simple image

viewer. The need to pass a URL to the view function is not at all a limitation, because you can
always use the file: protocol in your URL if you want to display an image that lives on your

filesystem rather than out there on the Web. Remember that the U in URL stands for Universal!

See Also

Swing docs are at http://java.sun.com/docs/books/tutorial/uiswing/; Jython is at
http://www.jython.org.

http://java.sun.com/docs/books/tutorial/uiswing/
http://www.jython.org

Recipe 11.17. Getting User Input on Mac OS

Credit: Matteo Rattotti

Problem

You're writing a simple application to run on Mac OS and want to get an input value from the
user without frightening the user by opening a scary terminal window.

Solution

Many Mac OS users are frightened by the terminal, so Python scripts that require simple input
from the user shouldn't rely on normal textual input but rather should use the EasyDialogs

module from the Python Standard Library. Here is an example, a simple image converter and
resizer application:

import os, sys, EasyDialogs, Image
instead of relying on sys.argv, ask the user via a simple dialog:
rotater = ('Rotate right', 'Rotate image by 90 degrees clockwise')
rotatel = ('Rotate left', 'Rotate image by 90 degrees anti-clockwise')
scale = ('Makethumb', 'Make a 100x100 thumbnail')
str = ['Format JPG', 'Format PNG']
cmd = [rotater, rotatel, scale]
optlist = EasyDialogs.GetArgv(str, cmd,
 addoldfile=False, addnewfile=False, addfolder=True)
now we can parse the arguments and options (we could use getopt, too):
dirs = []
format = "JPEG"
rotationr = False
rotationl = False
resize = False
for arg in optlist:
 if arg == "--Format JPG":
 format = "JPEG"
 if arg == "--Format PNG":
 format = "PNG"
 if arg == "Rotate right":
 rotationr = True
 if arg == "Rotate left":
 rotationl = True
 if arg == "Makethumb":
 resize = True
 if os.path.isdir(arg):
 dirs.append(arg)
if len(dirs) == 0:
 EasyDialogs.Message("No directories specified")
 sys.exit(0)
Now, another, simpler dialog, uses the system's folder-chooser dialog:
path = EasyDialogs.AskFolder("Choose destination directory")
if not path:
 sys.exit(0)
if not os.path.isdir(path) :

 EasyDialogs.Message("Destination directory not found")
 sys.exit(0)
and now a progress bar:
tot_numfiles = sum([len(os.listdir(d)) for d in dirs])
bar = EasyDialogs.ProgressBar("Processing", tot_numfiles)
for d in dirs:
 for item in os.listdir(d):
 bar.inc()
 try:
 objpict = Image.open(d + "/" + item)
 if resize: objpict.thumbnail((100, 100, 1))
 if rotationr: objpict = objpict.rotate(-90)
 if rotationl: objpict = objpict.rotate(90)
 objpict.save(path + "/" + item + "." + format, format)
 except:
 print item + " is not an image"
and one last dialog...:
score = EasyDialogs.AskYesNoCancel("Do you like this program?")
if score == 1:
 EasyDialogs.Message("Wwowowowow, EasyDialog roolz, ;-)")
elif score == 0:
 EasyDialogs.Message("Sigh, sorry, will do better next time!-(")
elif score == -1:
 EasyDialogs.Message("Hey, you didn't answer?!")

Discussion

This recipe's program is quite trivial, mostly meant to show how to use a few of the dialogs in the
EasyDialogs standard library module for the Mac. You could add quite a few more features, or
do a better job of implementing some of those in this recipe, for example, by using getopt from

the Python Standard Library to parse the arguments and options, rather than the roll-your-own
approach we've taken.

Since EasyDialogs is in the Python Standard Library for the Mac, you can count on finding that

module, as well as Python itself, in any Mac that runs Mac OS X 10.3 Pantherand that's well over
ten million Macs, according to Apple. Just build your script into an application with bundlebuilder
or, even better, with py2app and distutils. Doing so will enable you to distribute your Python

application so that users can park it in the Dock, use drag-and-drop from the Finder to give it
arguments, and so on. Documentation for both bundlebuilder and py2app can be found on the

Wiki at http://www.pythonmac.org/wiki.

The EasyDialogs module in the Python Standard Library works only on the Mac, but if you like

the concept, you can try out Jimmy Retzlaff's port of that module to Windows, available for
download at http://www.averdevelopment.com/python/EasyDialogs.html.

See Also

Library Reference documentation on EasyDialogs; http://www.pythonmac.org/wiki for more
information on Python for Mac resources; py2app is at http://undefined.org/python/;
http://www.averdevelopment.com/python/EasyDialogs.html for a port of EasyDialogs to

Microsoft Windows.

http://www.pythonmac.org/wiki
http://www.averdevelopment.com/python/EasyDialogs.html
http://www.pythonmac.org/wiki
http://undefined.org/python/
http://www.averdevelopment.com/python/EasyDialogs.html

Recipe 11.18. Building a Python Cocoa GUI
Programmatically

Credit: Dethe Elza

Problem

You are developing a Python application using Mac OS X's Aqua interface (through Apple's Cocoa
toolkit and the PyObjC, Python/Objective-C bridge). You want to build the application's user
interface within the program itself (as is normally done in most other Python GUI toolkits), rather
than via Apple's Interface Builder (IB) and resulting .nib files (as is usually done with Cocoa for
Aqua applications).

Solution

Anything that you can do via Interface Builder and .nib files, you can also do directly in your
program. Here is a simple demo:

from math import sin, cos, pi
from Foundation import *
from AppKit import *
class DemoView(NSView):
 n = 10
 def X(self, t):
 return (sin(t) + 1) * self.width * 0.5
 def Y(self, t):
 return (cos(t) + 1) * self.height * 0.5
 def drawRect_(self, rect):
 self.width = self.bounds()[1][0]
 self.height = self.bounds()[1][1]
 NSColor.whiteColor().set()
 NSRectFill(self.bounds())
 NSColor.blackColor().set()
 step = 2 * pi/self.n
 loop = [i * step for i in range(self.n)]
 for f in loop:
 p1 = NSMakePoint(self.X(f), self.Y(f))
 for g in loop:
 p2 = NSMakePoint(self.X(g), self.Y(g))
 NSBezierPath.strokeLineFromPoint_toPoint_(p1, p2)
class AppDelegate(NSObject):
 def windowWillClose_(self, notification):
 app.terminate_(self)
def main():
 global app
 app = NSApplication.sharedApplication()
 graphicsRect = NSMakeRect(100.0, 350.0, 450.0, 400.0)
 myWindow = NSWindow.alloc().initWithContentRect_styleMask_backing_defer_(
 graphicsRect,
 NSTitledWindowMask
 | NSClosableWindowMask

 | NSResizableWindowMask
 | NSMiniaturizableWindowMask,
 NSBackingStoreBuffered,
 False)
 myWindow.setTitle_('Tiny Application Window')
 myView = DemoView.alloc().initWithFrame_(graphicsRect)
 myWindow.setContentView_(myView)
 myDelegate = AppDelegate.alloc().init()
 myWindow.setDelegate_(myDelegate)
 myWindow.display()
 myWindow.orderFrontRegardless()
 app.run()
 print 'Done'
if _ _name_ _ == '_ _main_ _':
 main()

Discussion

Most programmers prefer to lay out their programs' user interfaces graphically, and Apple's
Interface Builder application, which comes with Apple's free Developer Tools (also known as
XCode), is a particularly nice tool for this task (when you're using Apple's Cocoa toolkit to
develop a GUI for Mac OS X's Aqua interface). (The PyObjC extension makes using Cocoa from
Python an obvious choice, if you're developing applications for the Macintosh.)

Sometimes it is more convenient to keep all the GUI building within the very program I'm
developing, at least at first. During the early iterations of developing a new program, I often
need to refactor everything drastically as I rethink the problem space. When that happens, trying
to find all the connections that have to be modified or renamed is a chore in Interface Builder or
in any other such interactive GUI-painting application.

Some popular GUI toolkits, such as Tkinter, are based on the idea that the program builds its
own GUI at startup by defining the needed objects and appropriately calling functions and
methods. It may not be entirely clear to users of other toolkits, such as Cocoa, that just about
every toolkit is capable of operating in a similar manner, allowing "programmatic" GUI
construction. This applies even to those toolkits that are most often used by means of interactive
GUI-painting applications. By delaying the use of IB until your program is more functional and
stable, it's more likely that you'll be able to design an appropriate interface. This recipe can help
get you started in that direction.

This recipe's code is a straight port of tiny.m, from Simson Garfinkel and Michael Mahoney,
Building Cocoa Applications: A Step-by-Step Guide (O'Reilly), showing how to build a Cocoa
application without using Interface Builder nor loading .nib files. This recipe was my first PyObjC
project, and it is indebted both to the Cocoa book and to PyObjC's "Hello World" example code.
Starting from this simple, almost toy-level recipe, I was able to use Python's file handling to
easily build a graphical quote viewer and ramp up from there to building rich, full-fledged GUIs.

See Also

Garfinkel and Mahoney's Building Cocoa Applications: A Step-by-Step Guide (O'Reilly); PyObjC is
at http://pyobjc.sourceforge.net/.

http://pyobjc.sourceforge.net/

Recipe 11.19. Implementing Fade-in Windows with
IronPython

Credit: Brian Quinlan

Problem

You're developing an application with IronPython (using Windows Forms on Microsoft .NET), and
you want to use fade-in windows to display temporary data.

Solution

Fading in can best be accomplished using the Form.Opacity property and a Timer. Fade-in
windows, being a form of pop-up window, should also set the topmost window style:

from System.Windows.Forms import *
from System.Drawing import *
from System.Drawing.Imaging import *
form = Form(Text="Window Fade-ins with IronPython",
 HelpButton=False, MinimizeBox=True, MaximizeBox=True,
 WindowState=FormWindowState.Maximized,
 FormBorderStyle=FormBorderStyle.Sizable,
 StartPosition=FormStartPosition.CenterScreen,
 Opacity = 0)
create a checker background pattern image
box_size = 25
image = Bitmap(box_size * 2, box_size * 2)
graphics = Graphics.FromImage(image)
graphics.FillRectangle(Brushes.Black, 0, 0, box_size, box_size)
graphics.FillRectangle(Brushes.White, box_size, 0, box_size, 50)
graphics.FillRectangle(Brushes.White, 0, box_size, box_size, box_size)
graphics.FillRectangle(Brushes.Black, box_size, box_size, box_size, box_size)
form.BackgroundImage = image
create a control to allow the opacity to be adjusted
opacity_tracker = TrackBar(Text="Transparency",
 Height = 20, Dock = DockStyle.Bottom,
 Minimum = 0, Maximum = 100, Value = 0,
 TickFrequency = 10, Enabled = False)
def track_opacity_change(sender, event):
 form.Opacity = opacity_tracker.Value / 100.0
opacity_tracker.ValueChanged += track_opacity_change
form.Controls.Add(opacity_tracker)
create a timer to animate the initial appearance of the window
timer = Timer()
timer.Interval = 15
def tick(sender, event):
 val = opacity_tracker.Value + 1
 if val >= opacity_tracker.Maximum:
 # ok, we're done, set the opacity to maximum, stop the
 # animation, and let the user play with the opacity manually
 opacity_tracker.Value = opacity_tracker.Maximum

 opacity_tracker.Minimum = 20 # don't let the window disappear
 opacity_tracker.Enabled = True
 timer.Stop()
 else:
 opacity_tracker.Value = val
timer.Tick += tick
timer.Start()
form.ShowDialog()

Discussion

While IronPython, at the time of this writing, is not yet entirely mature, and it therefore cannot
be recommended for use to develop Windows Forms applications intended for production
deployment, any .NET (or Mono) developer should already download IronPython and start
playing with it; when it matures, it promises to provide a nonpareil high-productivity avenue for
.NET application development.

This recipe shows that IronPython can already do, with elegance and ease, a number of
interesting things with Windows Forms. Specifically, the recipe demonstrates several techniques
of Windows Forms programming:

How to create a form.

How to draw in an off-screen image.

How to create a control, add it to a form, and manage its events.

How to create a timer and add a delegate to get periodic events.

More specifically, this recipe shows how to create a fade-in window using IronPython. Several
applications use fade-in windows for temporary data; look, for example, at Microsoft's new
Outlook XP. It displays mail messages through a fade-in/fade-out pop-up window. It looks cool,
it's also quite useful, and IronPython makes it a snap!

See Also

IronPython is at http://ironpython.com/.

http://ironpython.com/

Chapter 12. Processing XML
Introduction

Recipe 12.1. Checking XML Well-Formedness

Recipe 12.2. Counting Tags in a Document

Recipe 12.3. Extracting Text from an XML Document

Recipe 12.4. Autodetecting XML Encoding

Recipe 12.5. Converting an XML Document into a Tree of Python Objects

Recipe 12.6. Removing Whitespace-only Text Nodes from an XML DOM Node's Subtree

Recipe 12.7. Parsing Microsoft Excel's XML

Recipe 12.8. Validating XML Documents

Recipe 12.9. Filtering Elements and Attributes Belonging to a Given Namespace

Recipe 12.10. Merging Continuous Text Events with a SAX Filter

Recipe 12.11. Using MSHTML to Parse XML or HTML

Introduction

Credit: Paul Prescod, co-author of XML Handbook (Prentice-Hall)

XML has become a central technology for all kinds of information exchange. Today, most new file
formats that are invented are based on XML. Most new protocols are based upon XML. It simply
isn't possible to work with the emerging Internet infrastructure without supporting XML. Luckily,
Python has had XML support since many versions ago, and Python's support for XML has kept
growing and maturing year after year.

Python and XML are perfect complements. XML is an open standards way of exchanging
information. Python is an open source language that processes the information. Python excels at
text processing and at handling complicated data structures. XML is text based and is, above all,
a way of exchanging complicated data structures.

That said, working with XML is not so seamless that it requires no effort. There is always
somewhat of a mismatch between the needs of a particular programming language and a
language-independent information representation. So there is often a requirement to write code
that reads (i.e., deserializes or parses) and writes (i.e., serializes) XML.

Parsing XML can be done with code written purely in Python, or with a module that is a C/Python
mix. Python comes with the fast Expat parser written in C. Many XML applications use the Expat
parser, and one of these recipes accesses Expat directly to build its own concept of an ideal in-
memory Python representation of an XML document as a tree of "element" objects (an
alternative to the standard DOM approach, which I will mention later in this introduction).

However, although Expat is ubiquitous in the XML world, it is far from being the only parser
available, or necessarily the best one for any given application. A standard API called SAX allows
any XML parser to be plugged into a Python program. The SAX API is demonstrated in several
recipes that perform typical tasks such as checking that an XML document is well formed,
extracting text from a document, or counting the tags in a document. These recipes should give
you a good understanding of how SAX works. One more advanced recipe shows how to use one
of SAX's several auxiliary features, "filtering", to normalize "text events" that might otherwise
happen to get "fragmented".

XML-RPC is a protocol built on top of XML for sending data structures from one program to
another, typically across the Internet. XML-RPC allows programmers to completely hide the
implementation languages of the two communicating components. Two components running on
different operating systems, written in different languages, can still communicate easily. XML-
RPC is built into Python. This chapter does not deal with XML-RPC, because, together with other
alternatives for distributed programming, XML-RPC is covered in Chapter 15.

Other recipes in this chapter are a little bit more eclectic, dealing with issues that range from
interfacing, to proprietary XML parsers and document formats, to representing an entire XML
document in memory as a Python object. One, in particular, shows how to auto-detect the
Unicode encoding that an XML document uses without parsing the document. Unicode is central
to the definition of XML, so it's important to understand Python's Unicode support if you will be
doing any sophisticated work with XML.

The PyXML extension package supplies a variety of useful tools for working with XML. PyXML
offers a full implementation of the Document Object Model (DOM)as opposed to the subset
bundled with Python itselfand a validating XML parser written entirely in Python. The DOM is a
standard API that loads an entire XML document into memory. This can make XML processing
easier for complicated structures in which there are many references from one part of the
document to another, or when you need to correlate (i.e., compare) more than one XML
document. One recipe shows how to use PyXML's validating parser to validate and process an
XML document, and another shows how to remove whitespace-only text nodes from an XML

document's DOM. You'll find many other examples in the documentation of the PyXML package
(http://pyxml.sourceforge.net/).

Other advanced tools that you can find in PyXML or, in some cases, in FourThought's open
source 4Suite package (http://www.4suite.org/) from which much of PyXML derives, include
implementations of a variety of XML-related standards, such as XPath, XSLT, XLink, XPointer,
and RDF. If PyXML is already an excellent resource for XML power users in Python, 4Suite is even
richer and more powerful.

XML has become so pervasive that, inevitably, you will also find XML-related recipes in other
chapters of this book. Recipe 2.26 strips XML markup in a very rough and ready way. Recipe
1.23 shows how to insert XML character references while encoding Unicode text. Recipe 10.17,
parses a Mac OS X pinfo-format XML stream to get detailed system information. Recipe 11.10

uses Tkinter to display a XML DOM as a GUI Tree widget. Recipe 14.11 deals with two XML file
formats related to RSS[1] feeds, fetching and parsing a FOAF[2]-format input to produce an
OPML[3]-format resultquite a typical XML-related task in today's programming, and a good
general example of how Python can help you with such tasks.

[1] RSS (Really Simple Syndication)

[2] FOAF (Friend of a Friend)

[3] OPML (Outline Processor Markup Language)

For more information on using Python and XML together, see Python and XML by Christopher A.
Jones and Fred L. Drake, Jr. (O'Reilly).

http://pyxml.sourceforge.net/
http://www.4suite.org/

Recipe 12.1. Checking XML Well-Formedness

Credit: Paul Prescod, Farhad Fouladi

Problem

You need to check whether an XML document is well formed (not whether it conforms to a given
DTD or schema), and you need to do this check quickly.

Solution

SAX (presumably using a fast parser such as Expat underneath) offers a fast, simple way to
perform this task. Here is a script to check well-formedness on every file you mention on the
script's command line:

from xml.sax.handler import ContentHandler
from xml.sax import make_parser
from glob import glob
import sys
def parsefile(filename):
 parser = make_parser()
 parser.setContentHandler(ContentHandler())
 parser.parse(filename)
for arg in sys.argv[1:]:
 for filename in glob(arg):
 try:
 parsefile(filename)
 print "%s is well-formed" % filename
 except Exception, e:
 print "%s is NOT well-formed! %s" % (filename, e)

Discussion

A text is a well-formed XML document if it adheres to all the basic syntax rules for XML
documents. In other words, it has a correct XML declaration and a single root element, all tags
are properly nested, tag attributes are quoted, and so on.

This recipe uses the SAX API with a dummy ContentHandler that does nothing. Generally, when
we parse an XML document with SAX, we use a ContentHandler instance to process the

document's contents. But in this case, we only want to know whether the document meets the
most fundamental syntax constraints of XML; therefore, we need not do any processing, and the
do-nothing handler suffices.

The parsefile function parses the whole document and throws an exception if an error is found.
The recipe's main code catches any such exception and prints it out like this:

$ python wellformed.py test.xml
test.xml is NOT well-formed! test.xml:1002:2: mismatched tag

This means that character 2 on line 1,002 has a mismatched tag.

This recipe does not check adherence to a DTD or schema, which is a separate procedure called
validation. The performance of the script should be quite good, precisely because it focuses on
performing a minimal irreducible core task. However, sometimes you need to squeeze out the
last drop of performance because you're checking the well-formedness of truly huge files. If you
know for sure that you do have Expat, specifically, installed on your system, you may
alternatively choose to use Expat directly instead of SAX. To try this approach, you can change
function parsefile to the following code:

import xml.parsers.expat
def parsefile(file):
 parser = xml.parsers.expat.ParserCreate()
 parser.ParseFile(open(file, "r"))

Don't expect all that much of an improvement in performance when using Expat directly instead
of SAX. However, you might gain a little bit.

See Also

Recipe 12.2 and Recipe 12.3, for other uses of SAX; the PyXML package
(http://pyxml.sourceforge.net/) includes the pure-Python validating parser xmlproc, which

checks the conformance of XML documents to specific DTDs; the PyRXP package from ReportLab
is a wrapper around the fast validating parser RXP (http://www.reportlab.com/xml/pyrxp.html),
which is available under the GPL license.

http://pyxml.sourceforge.net/
http://www.reportlab.com/xml/pyrxp.html

Recipe 12.2. Counting Tags in a Document

Credit: Paul Prescod

Problem

You want to get a sense of how often particular elements occur in an XML document, and the
relevant counts must be extracted rapidly.

Solution

You can subclass SAX's ContentHandler to make your own specialized classes for any kind of

task, including the collection of such statistics:

from xml.sax.handler import ContentHandler
import xml.sax
class countHandler(ContentHandler):
 def _ _init_ _(self):
 self.tags={ }
 def startElement(self, name, attr):
 self.tags[name] = 1 + self.tags.get(name, 0)
parser = xml.sax.make_parser()
handler = countHandler()
parser.setContentHandler(handler)
parser.parse("test.xml")
tags = handler.tags.keys()
tags.sort()
for tag in tags:
 print tag, handler.tags[tag]

Discussion

When I start working with a new XML content set, I like to get a sense of which elements are in it
and how often they occur. For this purpose, I use several small variants of this recipe. I could
also collect attributes just as easily, as you can see, since attributes are also passed to the
startElement method that I'm overriding. If you add a stack, you can also keep track of which

elements occur within other elements (for this, of course, you also have to override the
endElement method so you can pop the stack).

This recipe also works well as a simple example of a SAX application, usable as the basis for any
SAX application. Alternatives to SAX include pulldom and minidom. For any simple processing

(including this example), these alternatives would be overkill, particularly if the document you
are processing is very large. DOM approaches are generally justified only when you need to
perform complicated editing and alteration on an XML document, when the document itself is
made complicated by references that go back and forth inside it, or when you need to correlate
(i.e., compare) multiple documents.

ContentHandler subclasses offer many other options, and the online Python documentation does

a pretty good job of explaining them. This recipe's countHandler class overrides
ContentHandler's startElement method, which the parser calls at the start of each element,

passing as arguments the element's tag name as a Unicode string and the collection of

attributes. Our override of this method counts the number of times each tag name occurs. In the
end, we extract the dictionary used for counting and emit it (in alphabetical order, which we
easily obtain by sorting the keys).

See Also

Recipe 12.3 for other uses of SAX.

Recipe 12.3. Extracting Text from an XML Document

Credit: Paul Prescod

Problem

You need to extract only the text from an XML document, not the tags.

Solution

Once again, subclassing SAX's ContentHandler makes this task quite easy:

from xml.sax.handler import ContentHandler
import xml.sax
import sys
class textHandler(ContentHandler):
 def characters(self, ch):
 sys.stdout.write(ch.encode("Latin-1"))
parser = xml.sax.make_parser()
handler = textHandler()
parser.setContentHandler(handler)
parser.parse("test.xml")

Discussion

Sometimes you want to get rid of XML tagsfor example, to re-key a document or to spell-check
it. This recipe performs this task and works with any well-formed XML document. It is quite
efficient.

In this recipe's textHandler class, we subclass ContentHander's characters method, which the

parser calls for each string of text in the XML document (excluding tags, XML comments, and
processing instructions), passing as the only argument the piece of text as a Unicode string. We
have to encode this Unicode before we can emit it to standard output. (See Recipe 1.22 for more

information about emitting Unicode to standard output.) In this recipe, we're using the Latin-1
(also known as ISO-8859-1) encoding, which covers all western European alphabets and is
supported by many popular output devices (e.g., printers and terminal-emulation windows).
However, you should use whatever encoding is most appropriate for the documents you're
handling, as long, of course, as that encoding is supported by the devices you need to use. The
configuration of your devices may depend on your operating system's concepts of locale and
code page. Unfortunately, these issues vary too much between operating systems for me to go
into further detail.

A simple alternative, if you know that handling Unicode is not going to be a problem, is to use
sgmllib. It's not quite as fast but somewhat more robust against XML of dubious well-

formedness:

from sgmllib import SGMLParser
class XMLJustText(SGMLParser):
 def handle_data(self, data):
 print data
XMLJustText().feed(open('text.xml').read())

An even simpler and rougher way to extract text from an XML document is shown in Recipe 2.26.

See Also

Recipe 12.1 and Recipe 12.2 for other uses of SAX.

Recipe 12.4. Autodetecting XML Encoding

Credit: Paul Prescod

Problem

You have XML documents that may use a large variety of Unicode encodings, and you need to
find out which encoding each document is using.

Solution

This task is one that we need to code ourselves, rather than getting an existing package to
perform it, if we want complete generality:

import codecs, encodings
""" Caller will hand this library a buffer string, and ask us to convert
 the buffer, or autodetect what codec the buffer probably uses. """
'None' stands for a potentially variable byte ("##" in the XML spec...)
autodetect_dict={ # bytepattern : ("name",
 (0x00, 0x00, 0xFE, 0xFF) : ("ucs4_be"),
 (0xFF, 0xFE, 0x00, 0x00) : ("ucs4_le"),
 (0xFE, 0xFF, None, None) : ("utf_16_be"),
 (0xFF, 0xFE, None, None) : ("utf_16_le"),
 (0x00, 0x3C, 0x00, 0x3F) : ("utf_16_be"),
 (0x3C, 0x00, 0x3F, 0x00) : ("utf_16_le"),
 (0x3C, 0x3F, 0x78, 0x6D) : ("utf_8"),
 (0x4C, 0x6F, 0xA7, 0x94) : ("EBCDIC"),
 }
def autoDetectXMLEncoding(buffer):
 """ buffer -> encoding_name
 The buffer string should be at least four bytes long.
 Returns None if encoding cannot be detected.
 Note that encoding_name might not have an installed
 decoder (e.g., EBCDIC)
 """
 # A more efficient implementation would not decode the whole
 # buffer at once, but then we'd have to decode a character at
 # a time looking for the quote character, and that's a pain
 encoding = "utf_8" # According to the XML spec, this is the default
 # This code successively tries to refine the default:
 # Whenever it fails to refine, it falls back to
 # the last place encoding was set
 bytes = byte1, byte2, byte3, byte4 = map(ord, buffer[0:4])
 enc_info = autodetect_dict.get(bytes, None)
 if not enc_info: # Try autodetection again, removing potentially
 # variable bytes
 bytes = byte1, byte2, None, None
 enc_info = autodetect_dict.get(bytes)
 if enc_info:
 encoding = enc_info # We have a guess...these are
 # the new defaults
 # Try to find a more precise encoding using XML declaration

 secret_decoder_ring = codecs.lookup(encoding)[1]
 decoded, length = secret_decoder_ring(buffer)
 first_line = decoded.split("\n", 1)[0]
 if first_line and first_line.startswith(u"<?xml"):
 encoding_pos = first_line.find(u"encoding")
 if encoding_pos!=-1:
 # Look for double quotes
 quote_pos = first_line.find('"', encoding_pos)
 if quote_pos==-1: # Look for single quote
 quote_pos = first_line.find("'", encoding_pos)
 if quote_pos>-1:
 quote_char = first_line[quote_pos]
 rest = first_line[quote_pos+1:]
 encoding = rest[:rest.find(quote_char)]
 return encoding

Discussion

The XML specification describes the outline of an algorithm for detecting the Unicode encoding
that an XML document uses. This recipe implements that algorithm and helps your XML-
processing programs determine which encoding is being used by a specific document.

The default encoding (unless we can determine another one specifically) must be UTF-8, as it is
part of the specifications that define XML. Certain byte patterns in the first four, or sometimes
even just the first two, bytes of the text can identify a different encoding. For example, if the text
starts with the two bytes 0xFF, 0xFE we can be certain that these bytes are a byte-order mark

that identifies the encoding type as little-endian (low byte before high byte in each character)
and the encoding itself as UTF-16 (or the 32-bits-per-character UCS-4, if the next two bytes in
the text are 0, 0).

If we get as far as this, we must also examine the first line of the text. For this purpose, we
decode the text from a bytestring into Unicode, with the encoding determined so far and detect
the first line-end '\n' character. If the first line begins with u'<?xml', it's an XML declaration and
may explicitly specify an encoding by using the keyword encoding as an attribute. The nested if

statements in the recipe check for that case, and, if they find an encoding thus specified, the
recipe returns the encoding thus found as the encoding the recipe has determined. This step is
absolutely crucial, since any text starting with the single-byte ASCII-like representation of the
XML declaration, <?xml, would be otherwise erroneously identified as encoded in UTF-8, while its

explicit encoding attribute may specify it as being, for example, one of the ISO-8859 standard
encodings.

This recipe makes the assumption that, as the XML specs require, the XML declaration, if any, is
terminated by an end-of-line character. If you need to deal with almost-XML documents that are
malformed in this very specific way (i.e., an incorrect XML declaration that is not terminated by
an end-of-line character), you may need to apply some heuristic adjustments, for example,
through regular expressions. However, it's impossible to offer precise suggestions, since
malformedness may come in such a wide variety of errant forms.

This code detects a variety of encodings, including some that are not yet supported by Python's
Unicode decoders. So, the fact that you can decipher the encoding does not guarantee that you
can then decipher the document itself!

See Also

Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony Graham
(Hungry Minds, Inc.)details are available at http://www.menteith.com/unicode/primer/; Library
Reference and Python in a Nutshell document the built-in str and unicode types, and modules

http://www.menteith.com/unicode/primer/

unidata and codecs; Recipe 1.21 and Recipe 1.22.

Recipe 12.5. Converting an XML Document into a Tree
of Python Objects

Credit: John Bair, Christoph Dietze

Problem

You want to load an XML document into memory, but you don't like the complicated access
procedures of DOM. You'd prefer something more Pythonicspecifically, you'd like to map the
document into a tree of Python objects.

Solution

To build our tree of objects, we can directly wrap the fast expat parser:

from xml.parsers import expat
class Element(object):
 ''' A parsed XML element '''
 def _ _init_ _(self, name, attributes):
 # Record tagname and attributes dictionary
 self.name = name
 self.attributes = attributes
 # Initialize the element's cdata and children to empty
 self.cdata = ''
 self.children = []
 def addChild(self, element):
 self.children.append(element)
 def getAttribute(self, key):
 return self.attributes.get(key)
 def getData(self):
 return self.cdata
 def getElements(self, name=''):
 if name:
 return [c for c in self.children if c.name == name]
 else:
 return list(self.children)
class Xml2Obj(object)
 ''' XML to Object converter '''
 def _ _init_ _(self):
 self.root = None
 self.nodeStack = []
 def StartElement(self, name, attributes):
 'Expat start element event handler'
 # Instantiate an Element object
 element = Element(name.encode(), attributes)
 # Push element onto the stack and make it a child of parent
 if self.nodeStack:
 parent = self.nodeStack[-1]
 parent.addChild(element)
 else:
 self.root = element

 self.nodeStack.append(element)
 def EndElement(self, name):
 'Expat end element event handler'
 self.nodeStack[-1].pop()
 def CharacterData(self, data):
 'Expat character data event handler'
 if data.strip():
 data = data.encode()
 element = self.nodeStack[-1]
 element.cdata += data
 def Parse(self, filename):
 # Create an Expat parser
 Parser = expat.ParserCreate()
 # Set the Expat event handlers to our methods
 Parser.StartElementHandler = self.StartElement
 Parser.EndElementHandler = self.EndElement
 Parser.CharacterDataHandler = self.CharacterData
 # Parse the XML File
 ParserStatus = Parser.Parse(open(filename).read(), 1)
 return self.root
parser = Xml2Obj()
root_element = parser.Parse('sample.xml')

Discussion

I saw Christoph Dietze's recipe
(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/116539) about turning the
structure of an XML document into a simple combination of dictionaries and lists and thought it
was a really good idea. This recipe is a variation on that idea, with several differences.

For maximum speed, the recipe uses the low-level expat parser directly. It would get no real

added value from the richer SAX interface, much less from the slow and memory-hungry DOM
approach. Building the parent-children connections is not hard even with an event-driven
interface, as this recipe shows by using a simple stack for the purpose.

The main difference with respect to Dietze's original idea is that this recipe loads the XML
document into a tree of Python objects (rather than a combination of dictionaries and lists), one
per node, with nicely named attributes allowing access to each node's characteristicstagname,
attributes (as a Python dictionary), character data (i.e., cdata in XML parlance) and children
elements (as a Python list).

The various accessor methods of class Element are, of course, optional. You might prefer to
access the attributes directly. I think they add no complexity and look nicer, but, obviously, your
tastes may differ. This is, after all, just a recipe, so feel free to alter the mix of seasonings at will!

You can find other similar ideas (e.g., bypass the DOM, build something more Pythonic as the
memory representation of an XML document) in many other excellent and more complete
projects, such as PyRXP (http://www.reportlab.org/pyrxp.html), ElementTree
(http://effbot.org/zone/element-index.htm), and XIST (http://www.livinglogic.de/Python/xist/).

See Also

Library Reference and Python in a Nutshell document the built-in XML support in the Python
Standard Library, and xml.parsers.expat in particular. PyRXP is at

http://www.reportlab.org/pyrxp.html; ElementTree is at http://effbot.org/zone/element-
index.htm; XIST is at http://www.livinglogic.de/Python/xist/.

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/116539
http://www.reportlab.org/pyrxp.html
http://effbot.org/zone/element-index.htm
http://www.livinglogic.de/Python/xist/
http://www.reportlab.org/pyrxp.html
http://effbot.org/zone/element-
http://www.livinglogic.de/Python/xist/

Recipe 12.6. Removing Whitespace-only Text Nodes
from an XML DOM Node's Subtree

Credit: Brian Quinlan, David Wilson

Problem

You want to remove, from the DOM representation of an XML document, all the text nodes within
a subtree, which contain only whitespace.

Solution

XML parsers consider several complex conditions when deciding which whitespace-only text
nodes to preserve during DOM construction. Unfortunately, the result is often not what you want,
so it's helpful to have a function to remove all whitespace-only text nodes from among a given
node's descendants:

def remove_whilespace_nodes(node):
 """ Removes all of the whitespace-only text decendants of a DOM node. """
 # prepare the list of text nodes to remove (and recurse when needed)
 remove_list = []
 for child in node.childNodes:
 if child.nodeType == dom.Node.TEXT_NODE and not child.data.strip():
 # add this text node to the to-be-removed list
 remove_list.append(child)
 elif child.hasChildNodes():
 # recurse, it's the simplest way to deal with the subtree
 remove_whilespace_nodes(child)
 # perform the removals
 for node in remove_list:
 node.parentNode.removeChild(node)
 node.unlink()

Discussion

This recipe's code works with any correctly implemented Python XML DOM, including the
xml.dom.minidom that is part of the Python Standard Library and the more complete DOM

implementation that comes with PyXML.

The implementation of function remove_whitespace_node is quite simple but rather instructive:
in the first for loop we build a list of all child nodes to remove, and then in a second, separate

loop we do the removal. This precaution is a good example of a general rule in Python: do not
alter the very container you're looping onsometimes you can get away with it, but it is unwise to
count on it in the general case. On the other hand, the function can perfectly well call itself
recursively within its first for loop because such a call does not alter the very list
node.childNodes on which the loop is iterating (it may alter some items in that list, but it does

not alter the list object itself).

See Also

Library Reference and Python in a Nutshell document the built-in XML support in the Python
Standard Library.

Recipe 12.7. Parsing Microsoft Excel's XML

Credit: Thomas Guettler

Problem

You have Microsoft Excel spreadsheets saved in XML form, and want to parse them into memory
as Python nested lists.

Solution

The XML form of Excel spreadsheets is quite simple: all text is in Cell tags, which are nested in
Row tags nested in Table tags. SAX makes it quite simple to parse this kind of XML into memory:

import sys
from xml.sax import saxutils, parse
class ExcelHandler(saxutils.DefaultHandler):
 def _ _init_ _(self):
 self.chars = []
 self.cells = []
 self.rows = []
 self.tables = []
 def characters(self, content):
 self.chars.append(content)
 def startElement(self, name, atts):
 if name=="Cell":
 self.chars = []
 elif name=="Row":
 self.cells=[]
 elif name=="Table":
 self.rows = []
 def endElement(self, name):
 if name=="Cell":
 self.cells.append(''.join(self.chars))
 elif name=="Row":
 self.rows.append(self.cells)
 elif name=="Table":
 self.tables.append(self.rows)
if _ _name_ _ == '_ _main_ _':
 excelHandler = ExcelHandler()
 parse(sys.argv[1], excelHandler)
 print excelHandler.tables

Discussion

The structure of the parser presented in this recipe is pleasingly simple: at each of three logical
nesting levels of data, we collect content into a list. Each time a tag of a given level begins, we
start with an empty list for it; each time the tag ends, we append the tag's contents to the list of
the next upper level. The net result is that the top-level list, the one named tables, accumulates
all of the spreadsheet's contents with the proper structure (a triply nested list). At the lowest

level, of course, we join all the text strings that are reported as being within the same cell into a
single cell content text string, when we accumulate, because the division between the various
strings is just an artefact of the XML parsing process.

For example, consider a tiny spreadsheet with one column and three rows, where the first two
rows each hold the number 2 and the third one holds the number 4 obtained by summing the

numbers in the first two rows with an Excel formula. The relevant snippet of the Excel XML
output (XMLSS format, as Microsoft calls it) is then:

<Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3"
 x:FullColumns="1" x:FullRows="1">
 <Row>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 </Row>
 <Row>
 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)">
 <Data ss:Type="Number">4</Data></Cell>
 </Row>
</Table>

and running the script in this recipe over this file emits:

[[[u'2'], [u'2'], [u'4']]]

As you can see, the XMLSS file also contains a lot of supplementary information that this recipe is
not collectingthe attributes hold information about the type of data (number or string), the
formula used for the computation (if any), and so on. If you need any or all of this supplemental
information, it's not hard to enrich this recipe to record and use it.

See Also

Library Reference and Python in a Nutshell document the built-in XML support in the Python
Standard Library and SAX in particular.

Recipe 12.8. Validating XML Documents

Credit: Paul Sholtz, Jeroen Jeroen, Marius Gedminas

Problem

You are handling XML documents and must check the validity with respect to either internal or
external DTDs. You possibly also want to perform application-specific processing during the
validation process.

Solution

You often want to validate an XML document file with respect to a !DOCTYPE processing

instruction that the document file contains. On occasion, though, you may want to force loading
of an external DTD from a given file. Moreover, a frequent need is to also perform application-
specific processing during validation. A function with optional parameters, using modules from
the PyXML package, can accommodate all of these needs:

from xml.parsers.xmlproc import utils, xmlval, xmldtd
def validate_xml_file(xml_filename, app=None, dtd_filename=None):
 # build validating parser object with appropriate error handler
 parser = xmlval.Validator()
 parser.set_error_handler(utils.ErrorPrinter(parser))
 if dtd_filename is not None:
 # DTD file specified, load and set it as the DTD to use
 dtd = xmldtd.load_dtd(dtd_filename)
 parser.val.dtd = parser.dtd = parser.ent = dtd
 if app is not None:
 # Application processing requested, set appliation object
 parser.set_application(app)
 # everything being set correctly, finally perform the parsing
 parser.parse_resource(xml_filename)

If your XML data is in a string s, rather than in a file, instead of the parse.parse_resource call,

you should use the following two statements in a variant of the previously shown function:

 parser.feed(s)
 parser.close()

Discussion

Documentation on XML parsing in general, and xmlproc in particular, is easy enough to come by.

However, XML is a very large subject, and PyXML is a correspondingly large package. The
package's documentation is often not entirely complete and up to date; even if it were, finding
out how to perform specific tasks would still take quite a bit of digging. This recipe shows how to
validate documents in a simple way that is easy to adapt to your specific needs.

If you need to perform application-specific processing, as well as validation, you need to make
your own application object (an instance of some subclass of xmlproc.xmlproc.Application

that appropriately overrides some or all of its various methods, most typically
handle_start_tag, handle_end_tag, handle_data, and doc_end) and pass the application object

as the app argument to the validate_xml_file function.

If you need to handle errors and warnings differently from the emitting of copious error
messages that xmlproc.utils.ErrorPrinter performs, you need to subclass (either that class
or its base xmlproc.xmlapp.ErrorHandler directly) to perform whatever tweaking you need.

(See the sources of the utils.py module for examples; that module will usually be at relative path
_xmlplus/parsers/xmlproc/utils.py in your Python library directory, after you have installed the
PyXML package.) Then, you need to alter the call to the method set_error_handler that you see

in this recipe's validate_xml_file function so that it uses an instance of your own error-handling
class. You might modify the validate_xml_file function to take yet another optional parameter
err=None for the purpose, but this way overgeneralization lies. I've found ErrorHandler's

diagnostics normally cover my applications' needs, so, in the code shown in this recipe's
Solution, I have not provided for this specific customization.

See Also

The PyXML web site at http://pyxml.sourceforge.net/.

http://pyxml.sourceforge.net/

Recipe 12.9. Filtering Elements and Attributes
Belonging to a Given Namespace

Credit: A.M. Kuchling

Problem

While parsing an XML document with SAX, you need to filter out all of the elements and
attributes that belong to a particular namespace.

Solution

The SAX filter concept is just what we need here:

from xml import sax
from xml.sax import handler, saxutils, xmlreader
the namespace we want to remove in our filter
RDF_NS = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'
class RDFFilter(saxutils.XMLFilterBase):
 def _ _init_ _ (self, *args):
 saxutils.XMLFilterBase._ _init_ _(self, *args)
 # initially, we're not in RDF, and just one stack level is needed
 self.in_rdf_stack = [False]
 def startElementNS(self, (uri, localname), qname, attrs):
 if uri == RDF_NS or self.in_rdf_stack[-1] == True:
 # skip elements with namespace, if that namespace is RDF or
 # the element is nested in an RDF one -- and grow the stack
 self.in_rdf_stack.append(True)
 return
 # Make a dict of attributes that DON'T belong to the RDF namespace
 keep_attrs = { }
 for key, value in attrs.items():
 uri, localname = key
 if uri != RDF_NS:
 keep_attrs[key] = value
 # prepare the cleaned-up bunch of non-RDF-namespace attributes
 attrs = xmlreader.AttributesNSImpl(keep_attrs, attrs.getQNames())
 # grow the stack by replicating the latest entry
 self.in_rdf_stack.append(self.in_rdf_stack[-1])
 # finally delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.startElementNS(self,
 (uri, localname), qname, attrs)
 def characters(self, content):
 # skip characters that are inside an RDF-namespaced tag being skipped
 if self.in_rdf_stack[-1]:
 return
 # delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.characters(self, content)
 def endElementNS (self, (uri, localname), qname):
 # pop the stack -- nothing else to be done, if we were skipping
 if self.in_rdf_stack.pop() == True:

 return
 # delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.endElementNS(self, (uri, localname), qname)
def filter_rdf(input, output):
 """ filter_rdf(input=some_input_filename, output=some_output_filename)
 Parses the XML input from the input stream, filtering out all
 elements and attributes that are in the RDF namespace.
 """
 output_gen = saxutils.XMLGenerator(output)
 parser = sax.make_parser()
 filter = RDFFilter(parser)
 filter.setFeature(handler.feature_namespaces, True)
 filter.setContentHandler(output_gen)
 filter.setErrorHandler(handler.ErrorHandler())
 filter.parse(input)
if _ _name_ _ == '_ _main_ _':
 import StringIO, sys
 TEST_RDF = '''<?xml version="1.0"?>
<metadata xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title> This is non-RDF content </title>
 <rdf:RDF>
 <rdf:Description rdf:about="%s">
 <dc:Creator>%s</dc:Creator>
 </rdf:Description>
 </rdf:RDF>
 <element />
</metadata>
'''
 input = StringIO.StringIO(TEST_RDF)
 filter_rdf(input, sys.stdout)

This module, when run as a main script, emits something like:

<?xml version="1.0" encoding="iso-8859-1"?>
<metadata xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title> This is non-RDF content </title>
 <element></element>
</metadata>

Discussion

My motivation for originally writing this recipe came from processing files of metadata, containing
RDF mixed with other elements. I wanted to generate a version of the metadata with the RDF
filtered out.

The filter_rdf function does the job, reading XML input from the input stream and writing it to the
output stream. The standard XMLGenerator class in xml.sax.saxutils is used to produce the

output. Function filter_rdf internally uses a filtering class called RDFFilter, also shown in this
recipe's Solution, pushing that filter on top of the XML parser to suppress elements and
attributes belonging to the RDF_NS namespace.

Non-RDF elements contained within an RDF element are also removed. To modify this behavior,
change the first line of the startElementNS method to use just if uri = = RDF_NS as the guard.

This code doesn't delete the xmlns declaration for the RDF namespace; I'm willing to live with a

little unnecessary but harmless cruft in the output rather than go to huge trouble to remove it.

See Also

Library Reference and Python in a Nutshell document the built-in XML support in the Python
Standard Library.

Recipe 12.10. Merging Continuous Text Events with a
SAX Filter

Credit: Uche Ogbuji, James Kew, Peter Cogolo

Problem

A SAX parser can report contiguous text using multiple characters events (meaning, in practice,
multiple calls to the characters method), and this multiplicity of events for a single text string

may give problems to SAX handlers. You want to insert a filter into the SAX handler chain to
ensure that each text node in the document is reported as a single SAX characters event
(meaning, in practice, that it calls character just once).

Solution

Module xml.sax.saxutils in the standard Python library includes a class XMLFilterBase that we

can subclass to implement any XML filter we may need:

from xml.sax.saxutils import XMLFilterBase
class text_normalize_filter(XMLFilterBase):
 """ SAX filter to ensure that contiguous text nodes are merged into one
 """
 def _ _init_ _(self, upstream, downstream):
 XMLFilterBase._ _init_ _(self, upstream)
 self._downstream = downstream
 self._accumulator = []
 def _complete_text_node(self):
 if self._accumulator:
 self._downstream.characters(''.join(self._accumulator))
 self._accumulator = []
 def characters(self, text):
 self._accumulator.append(text)
 def ignorableWhitespace(self, ws):
 self._accumulator.append(text)
def _wrap_complete(method_name):
 def method(self, *a, **k):
 self._complete_text_node()
 getattr(self._downstream, method_name)(*a, **k)
 # 2.4 only: method._ _name_ _ = method_name
 setattr(text_normalize_filter, method_name, method)
for n in '''startElement startElementNS endElement endElementNS
 processingInstruction comment'''.split():
 _wrap_complete(n)
if _ _name_ _ == "_ _main_ _":
 import sys
 from xml import sax
 from xml.sax.saxutils import XMLGenerator
 parser = sax.make_parser()
 # XMLGenerator is a special predefined SAX handler that merely writes
 # SAX events back into an XML document
 downstream_handler = XMLGenerator()

 # upstream, the parser; downstream, the next handler in the chain
 filter_handler = text_normalize_filter(parser, downstream_handler)
 # The SAX filter base is designed so that the filter takes on much of the
 # interface of the parser itself, including the "parse" method
 filter_handler.parse(sys.argv[1])

Discussion

A SAX parser can report contiguous text using multiple characters events (meaning, in practice,
multiple calls to the characters method of the downstream handler). In other words, given an
XML document whose content is 'abc', the text could technically be reported as up to three
character events: one for the 'a' character, one for the 'b', and a third for the 'c'. Such an

extreme case of "fragmentation" of a text string into multiple events is unlikely in real life, but it
is not impossible.

A typical reason that might cause a parser to report text nodes a bit at a time would be buffering
of the XML input source. Most low-level parsers use a buffer of a certain number of characters
that are read and parsed at a time. If a text node straddles such a buffer boundary, many
parsers will just wrap up the current text event and start a new one to send characters from the
next buffer. If you don't account for this behavior in your SAX handlers, you may run into very
obscure and hard-to-reproduce bugs. Even if the parser you usually use does combine text
nodes for you, you never know when you may want to run your code in a situation where a
different parser is selected. You'd need to write logic to accommodate the possibility, which can
be rather cumbersome when mixed into typical SAX-style state machine logic.

The class text_normalize_filter presented in this recipe ensures that all text events are reported
to downstream SAX handlers in the contiguous manner that most developers would expect. In
this recipe's example case, the filter would consolidate the three characters events into a single
one for the entire text node 'abc'.

For more information on SAX filters in general, see my article "Tip: SAX
filters for flexible processing," http://www-
106.ibm.com/developerworks/xml/library/x-tipsaxflex.html.

Python's XMLGenerator does not do anything with processing instructions, so, if you run the

main code presented in this recipe on an XML document that uses them, you'll have a gap in the
output, along with other minor deviations between input and output. Comments are similar but
worse, because XMLFilterBase does not even filter them; if you do need to get comments, your
test_normalize_filter class must multiply inherit from xml.sax.saxlib.LexicalHandler, as well
as from xml.sax.saxutils.XMLFilterBase, and it must override the parse method as follows:

 def parse(self, source):
 # force connection of self as the lexical handler
 self._parent.setProperty(property_lexical_handler, self)
 # Delegate to XMLFilterBase for the rest
 XMLFilterBase.parse(self, source)

This code is hairy enough, using the "internal" attribute self._parent, and the need to deal

properly with XML comments is rare enough, to make this addition somewhat doubtful, which is
why it is not part of this recipe's Solution.

If you need ease of chaining to other filters, you may prefer not to take both upstream and
downstream parameters in _ _init_ _. In this case, keep the same signature as
XMLFilterBase._ _init_ _:

http://www-

 def _ _init_ _(self, parent):
 XMLFilterBase._ _init_ _(self, parent)
 self._accumulator = []

and change the _wrap_complete factory function so that the wrapper, rather than calling
methods on the downstream handler directly, delegates to the default implementations in
XMLFilterBase, which in turn call out to handlers that have been set on the filter with such
methods as setContentHandler and the like:

def _wrap_complete(method_name):
 def method(self, *a, **k):
 self._complete_text_node()
 getattr(XMLFilterBase, method_name)(self, *a, **k)
 # 2.4 only: method._ _name_ _ = method_name
 setattr(text_normalize_filter, method_name, method)

This is slightly less convenient for the typical simple case, but it pays back this inconvenience by
letting you easily chain filters:

parser = sax.make_parser()
filtered_parser = text_normalise_filter(some_other_filter(parser))

as well as letting you use a filter in contexts that call the parse method on your behalf:

doc = xml.dom.minidom.parse(input_file, parser=filtered_parser)

See Also

Library Reference and Python in a Nutshell document the built-in XML support in the Python
Standard Library.

Recipe 12.11. Using MSHTML to Parse XML or HTML

Credit: Bill Bell

Problem

Your Python application, running on Windows, needs to use the Microsoft MSHTML COM
component, which is also the parser that Microsoft Internet Explorer uses to parse HTML and XML
web pages.

Solution

As usual, PyWin32 lets our Python code access COM quite simply:

from win32com.client import Dispatch
html = Dispatch('htmlfile') # the disguise for MSHTML as a COM server
html.writeln("<html><header><title>A title</title>"
 "<meta name='a name' content='page description'></header>"
 "<body>This is some of it. And this is the rest."
 "</body></html>")
print "Title: %s" % (html.title,)
print "Bag of words from body of the page: %s" % (html.body.innerText,)
print "URL associated with the page: %s" % (html.url,)
print "Display of name:content pairs from the metatags: "
metas = html.getElementsByTagName("meta")
for m in xrange(metas.length):
 print "\t%s: %s" % (metas[m].name, metas[m].content,)

Discussion

While Python offers many ways to parse HTML or XML, as long as you're running your programs
only on Windows, MSHTML is very speedy and simple to use. As the recipe shows, you can
simply use the writeln method of the COM object to feed the page into MSHTML and then you

can use the methods and properties of the components to get at all kinds of aspects of the
page's DOM. Of course, you can get the string of markup and text to feed into MSHTML in any
way that suits your application, such as by using the Python Standard Library module urllib if

you're getting a page from some URL.

Since the structure of the enriched DOM that MSHTML makes available is quite rich and
complicated, I suggest you experiment with it in the PythonWin interactive environment that
comes with PyWin32. The strength of PythonWin for such exploratory tasks is that it displays all
of the properties and methods made available by each interface.

See Also

A detailed reference to MSHTML, albeit oriented to Visual Basic and C# users, can be found at
http://www.xaml.net/articles/type.asp?o=MSHTML.

http://www.xaml.net/articles/type.asp?o=MSHTML

Chapter 13. Network Programming

Introduction

Recipe 13.1. Passing Messages with Socket Datagrams

Recipe 13.2. Grabbing a Document from the Web

Recipe 13.3. Filtering a List of FTP Sites

Recipe 13.4. Getting Time from a Server via the SNTP Protocol

Recipe 13.5. Sending HTML Mail

Recipe 13.6. Bundling Files in a MIME Message

Recipe 13.7. Unpacking a Multipart MIME Message

Recipe 13.8. Removing Attachments from an Email Message

Recipe 13.9. Fixing Messages Parsed by Python 2.4 email.FeedParser

Recipe 13.10. Inspecting a POP3 Mailbox Interactively

Recipe 13.11. Detecting Inactive Computers

Recipe 13.12. Monitoring a Network with HTTP

Recipe 13.13. Forwarding and Redirecting Network Ports

Recipe 13.14. Tunneling SSL Through a Proxy

Recipe 13.15. Implementing the Dynamic IP Protocol

Recipe 13.16. Connecting to IRC and Logging Messages to Disk

Recipe 13.17. Accessing LDAP Servers

Introduction

Credit: Guido van Rossum, creator of Python

Network programming is one of my favorite Python applications. I wrote or started most of the
network modules in the Python Standard Library, including the socket and select extension
modules and most of the protocol client modules (such as ftplib). I also wrote a popular server
framework module, SocketServer, and two web browsers in Python, the first predating Mosaic.

Need I say more?

Python's roots lie in a distributed operating system, Amoeba, which I helped design and
implement in the late 1980s. Python was originally intended to be the scripting language for
Amoeba, since it turned out that the Unix shell, while ported to Amoeba, wasn't very useful for
writing Amoeba system administration scripts. Of course, I designed Python to be platform
independent from the start. Once Python was ported from Amoeba to Unix, I taught myself BSD
socket programming by wrapping the socket primitives in a Python extension module and then
experimenting with them using Python; this was one of the first extension modules.

This approach proved to be a great early testimony of Python's strengths. Writing socket code in
C is tedious: the code necessary to do error checking on every call quickly overtakes the logic of
the program. Quick: in which order should a server call accept, bind, connect, and listen? This

is remarkably difficult to find out if all you have is a set of Unix manpages. In Python, you don't
have to write separate error-handling code for each call, making the logic of the code stand out
much clearer. You can also learn about sockets by experimenting in an interactive Python shell,
where misconceptions about the proper order of calls and the argument values that each call
requires are cleared up quickly through Python's immediate error messages.

Python has come a long way since those first days, and now few applications use the socket
module directly; most use much higher-level modules such as urllib or smtplib, and third-

party extensions such as the Twisted framework, whose popularity keeps growing. The examples
in this chapter are a varied bunch: some construct and send complex email messages, while
others dwell on lower-level issues such as tunneling. My favorite is Recipe 13.11, which
implements PyHeartBeat: it's useful, it uses the socket module, and it's simple enough to be an

educational example. I do note, with that mixture of pride and sadness that always accompanies
a parent's observation of children growing up, that, since the Python Cookbook's first edition,
even PyHeartBeat has acquired an alternative server implementation based on Twisted!

Nevertheless, my own baby, the socket module itself, is still the foundation of all network

operations in Python. It's a plain transliteration of the socket APIsfirst introduced in BSD Unix
and now widespread on all platformsinto the object-oriented paradigm. You create socket objects
by calling the socket.socket factory function, then you call methods on these objects to perform

typical low-level network operations. You don't have to worry about allocating and freeing
memory for buffers and the likePython handles that for you automatically. You express IP
addresses as (host, port) pairs, in which host is a string in either dotted-quad ('1.2.3.4') or
domain-name ('www.python.org') notation. As you can see, even low-level modules in Python

aren't as low level as all that.

Despite the various conveniences, the socket module still exposes the actual underlying

functionality of your operating system's network sockets. If you're at all familiar with sockets,
you'll quickly get the hang of Python's socket module, using Python's own Library Reference.

You'll then be able to play with sockets interactively in Python to become a socket expert, if that
is what you want. The classic, highly recommended work on this subject is W. Richard Stevens,
UNIX Network Programming, Volume 1: Networking APIs - Sockets and XTI, 2d ed. (Prentice-
Hall). For many practical uses, however, higher-level modules will serve you better.

The Internet uses a sometimes dazzling variety of protocols and formats, and the Python

Standard Library supports many of them. In the Python Standard Library, you will find dozens of
modules dedicated to supporting specific Internet protocols (such as smtplib to support the
SMTP protocol to send mail and nntplib to support the Network News Transfer Protocol (NNTP)

to send and receive Network News). In addition, you'll find about as many modules that support
specific Internet formats (such as htmllib to parse HTML data, the email package to parse and

compose various formats related to emailincluding attachments and encoding).

I cannot even come close to doing justice to the powerful array of tools mentioned in this
introduction, nor will you find all of these modules and packages used in this chapter, nor in this
book, nor in most programming shops. You may never need to write any program that deals with
Network News, for example; if that is the case, you don't need to study nntplib. But it is still

reassuring to know it's there (part of the "batteries included" approach of the Python Standard
Library).

Two higher-level modules that stand out from the crowd, however, are urllib and urllib2.

Each of these two modules can deal with several protocols through the magic of URLsthose now-
familiar strings, such as http://www.python.org/index.html, that identify a protocol (such as
http), a host and port (such as www.python.org, port 80 being the default for the HTTP
protocol), and a specific resource at that address (such as /index.html). urllib is very simple to
use, but urllib2 is more powerful and extensible. HTTP is the most popular protocol for URLs,

but these modules also support several others, such as FTP. In many cases, you'll be able to use
these modules to write typical client-side scripts that interact with any of the supported protocols
much quicker and with less effort than it might take with the various protocol-specific modules.

To illustrate, I'd like to conclude with a cookbook example of my own. It's similar to Recipe 13.2,
but, rather than a program fragment, it's a little script. I call it wget.py because it does
everything for which I've ever needed wget. (In fact, I originally wrote this script on a system
where wget wasn't installed but Python was; writing wget.py was a more effective use of my time
than downloading and installing the real thing.)

import sys, urllib
def reporthook(*a): print a
for url in sys.argv[1:]:
 i = url.rfind('/')
 file = url[i+1:]
 print url, "->", file
 urllib.urlretrieve(url, file, reporthook)

Pass this script one or more URLs as command-line arguments; the script retrieves them into
local files whose names match the last components of the URLs. The script also prints progress
information of the form:

(block number, block size, total size)

Obviously, it's easy to improve on this script; but it's only seven lines, it's readable, and it
worksand that's what's so cool about Python.

Another cool thing about Python is that you can incrementally improve a program like this, and
after it's grown by two or three orders of magnitude, it's still readable, and it still works! To see
what this particular example might evolve into, check out Tools/webchecker/websucker.py in the
Python source distribution. Enjoy!

http://www.python.org/index.html

Recipe 13.1. Passing Messages with Socket Datagrams

Credit: Jeff Bauer

Problem

You want to communicate small messages between machines on a network in a lightweight
fashion, without needing absolute assurance of reliability.

Solution

This task is just what the UDP protocol is for, and Python makes it easy for you to access UDP via
datagram sockets. You can write a UDP server script (server.py) as follows:

import socket
port = 8081
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
Accept UDP datagrams, on the given port, from any sender
s.bind(("", port))
print "waiting on port:", port
while True:
 # Receive up to 1,024 bytes in a datagram
 data, addr = s.recvfrom(1024)
 print "Received:", data, "from", addr

You can write a corresponding UDP client script (client.py) as follows:

import socket
port = 8081
host = "localhost"
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto("Holy Guido! It's working.", (host, port))

Discussion

Sending short text messages with socket datagrams is simple to implement and provides a
lightweight message-passing idiom. Socket datagrams should not be used, however, when
reliable delivery of data must be guaranteed. If the server isn't available, your message is lost.
However, in many situations, you won't care whether the message gets lost, or, at least, you do
not want to abort a program just because a message can't be delivered.

Note that the sender of a UDP datagram (the "client" in this example) does not bind the socket
before calling the sendto method. On the other hand, to receive UDP datagrams, the socket does
have to be bound before calling the recvfrom method.

Don't use this recipe's simple code to send large datagram messages, especially under Windows,
which may not respect the buffer limit. To send larger messages, you may want to do something
like this:

BUFSIZE = 1024

while msg:
 bytes_sent = s.sendto(msg[:BUFSIZE], (host, port))
 msg = msg[bytes_sent:]

The sendto method returns the number of bytes it has actually managed to send, so each time,
you retry from the point where you left off, while ensuring that no more than BUFSIZE octets are

sent in each datagram.

Note that with datagrams (UDP) you have no guarantee that all (or any) of the pieces that you
send as separate datagrams arrive to the destination, nor that the pieces that do arrive are in the
same order in which they were sent. If you need to worry about any of these reliability issues,
you may be better off with a TCP connection, which gives you all of these assurances and
handles many delicate behind-the-scenes aspects nicely on your behalf. Still, I often use socket
datagrams for debugging, especially (but not exclusively) where an application spans more than
one machine on the same, reliable local area network. The Python Standard Library's logging

module also supports optional use of UDP for its logging output.

See Also

Recipe 13.11 for a typical, useful application of UDP datagrams in network operations;
documentation for the standard library modules socket and logging in the Library Reference and

Python in a Nutshell.

Recipe 13.2. Grabbing a Document from the Web

Credit: Gisle Aas, Magnus Bodin

Problem

You need to grab a document from a URL on the Web.

Solution

urllib.urlopen returns a file-like object, and you can call the read method on that object to get

all of its contents:

from urllib import urlopen
doc = urlopen("http://www.python.org").read()
print doc

Discussion

Once you obtain a file-like object from urlopen, you can read it all at once into one big string by
calling its read method, as I do in this recipe. Alternatively, you can read the object as a list of
lines by calling its readlines method, or, for special purposes, just get one line at a time by
looping over the object in a for loop. In addition to these file-like operations, the object that
urlopen returns offers a few other useful features. For example, the following snippet gives you

the headers of the document:

doc = urlopen("http://www.python.org")
print doc.info()

such as the Content-Type header (text/html in this case) that defines the MIME type of the
document. doc.info returns a mimetools.Message instance, so you can access it in various ways
besides printing it or otherwise transforming it into a string. For example, doc.info(
).getheader(`Content-Type') returns the 'text/html' string. The maintype attribute of the
mimetools.Message object is the 'text' string, subtype is the 'html' string, and type is also the
'text/html' string. If you need to perform sophisticated analysis and processing, all the tools you

need are right there. At the same time, if your needs are simpler, you can meet them in very
simple ways, as this recipe shows.

If what you need to do with the document you grab from the Web is specifically to save it to a
local file, urllib.urlretrieve is just what you need, as the "Introduction" to this chapter

describes.

urllib implicitly supports the use of proxies (as long as the proxies do not require
authentication: the current implementation of urllib does not support authentication-requiring
proxies). Just set environment variable HTTP_PROXY to a URL, such as
'http://proxy.domain.com:8080', to use the proxy at that URL. If the environment variable
HTTP_PROXY is not set, urllib may also look for the information in other platform-specific

locations, such as the Windows registry if you're running under Windows.

If you have more advanced needs, such as using proxies that require authentication, you may

http://proxy.domain.com:8080

use the more sophisticated urllib2 module of the Python Standard Library, rather than simple
module urllib. At http://pydoc.org/2.3/urllib2.html, you can find an example of how to use
urllib2 for the specific task of accessing the Internet through a proxy that does require

authentication.

See Also

Documentation for the standard library modules urllib, urllib2, and mimetools in the Library

Reference and Python in a Nutshell.

http://pydoc.org/2.3/urllib2.html

Recipe 13.3. Filtering a List of FTP Sites

Credit: Mark Nenadov

Problem

Several of the FTP sites on your list of sites could be down at any time. You want to filter that list
and obtain the list of those sites that are currently up.

Solution

Clearly, we first need a function to check whether one particular site is up:

import socket, ftplib
def isFTPSiteUp(site):
 try:
 ftplib.FTP(site).quit()
 except socket.error:
 return False
 else:
 return True

Now, a simple list comprehension can perform the recipe's task, but we may as well wrap that
list comprehension inside another function:

def filterFTPsites(sites):
 return [site for site in sites if isFTPSiteUp(site)]

Alternatively, filter(isFTPSiteUp, sites) returns exactly the same resulting list as the list

comprehension.

Discussion

Lists of FTP sites are sometimes difficult to maintain, since sites may be closed or temporarily
down for all sorts of reasons. The code in this recipe is simple and suitable, for example, for use
inside a small interactive program that must let the user choose among FTP siteswe may as well
not even present for choice those sites we know are down! If you run this code regularly a few
times a day and append the results to a file, the results may also be a basis for long-term
maintenance of a list of FTP sites. Any site that has been down for more than a certain number of
days should probably be moved away from the main list and into a list of sites that may well
have croaked.

Very similar ideas could be used to filter lists of sites that serve protocols other than FTP, by
using, instead of standard Python library module ftplib, other such modules, such as nntplib
for the NNTP protocol, httplib for the Hypertext Transport Protocol (HTTP), and so on.

When you're checking many FTP sites within one program run, it could be much faster to use
multiple threads to check on multiple sites at once (so that the delays while waiting for the
various sites to respond can overlap), or else use an asynchronous approach. The simple

approach presented in this recipe is easiest to program and to understand, but for most real-life
networking programs, you do want to enhance performance by using either multithreading or
asynchronous approaches, as other recipes in this chapter demonstrate.

See Also

Documentation for the standard library modules socket, ftplib, nntplib, and httplib, and
built-in function filter, in the Library Reference and Python in a Nutshell.

Recipe 13.4. Getting Time from a Server via the SNTP
Protocol

Credit: Simon Foster

Problem

You need to contact an SNTP (Simplified Network Time Protocol) server (which respects RFC
2030) to obtain the time of day as returned by that server.

Solution

SNTP is quite simple to implement, for example in a small script:

import socket, struct, sys, time
TIME1970 = 2208988800L # Thanks to F.Lundh
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = '\x1b' + 47 * '\0'
client.sendto(data, (sys.argv[1], 123))
data, address = client.recvfrom(1024)
if data:
 print 'Response received from:', address
 t = struct.unpack('!12I', data)[10]
 t -= TIME1970
 print '\tTime=%s' % time.ctime(t)

Discussion

An SNTP exchange begins with a client sending a 48-byte UDP datagram which starts with byte
'\x1b'. The server answers with a 48-byte UDP datagram made up of twelve network-order
longwords (4 bytes each). We can easily unpack the server's returned datagram into a tuple of
ints, by using standard Python library module struct's unpack function. Then, for simplicity, we

look only at the eleventh of those twelve longwords. That integer gives the time in secondsbut it
measures time from an epoch that's different from the 1970-based one normally used in Python.
The difference in epochs is easily fixed by subtracting the magic number (kindly supplied by F.
Lundh) that is named TIME1970 in the recipe. After the subtraction, we have a time in seconds
from the epoch that complies with Python's standard time module, and we can handle it with the
functions in module time. In this recipe, we just display it on standard output as formatted by
function time.ctime.

See Also

Documentation for the standard library modules socket, struct and time in the Library

Reference and Python in a Nutshell; the SNTP protocol is defined in RFC 2030
(http://www.ietf.org/rfc/rfc2030.txt), and the richer NTP protocol is defined in RFC 1305
(http://www.ietf.org/rfc/rfc1305.txt); Chapter 3 for general issues dealing with time in Python.

http://www.ietf.org/rfc/rfc2030.txt
http://www.ietf.org/rfc/rfc1305.txt

Recipe 13.5. Sending HTML Mail

Credit: Art Gillespie

Problem

You need to send HTML mail and accompany it with a plain text version of the message's
contents, so that the email message is also readable by MUAs that are not HTML-capable.

Solution

Although the modern Python way to perform any mail manipulation is with the standard Python
library email package, the functionality we need for this recipe is also supplied by the
MimeWriter and mimetools modules (which are also in the Python Standard Library). We can

easily code a function that just accesses and uses that functionality:

def createhtmlmail(subject, html, text=None):
 " Create a mime-message that will render as HTML or text, as appropriate"
 import MimeWriter, mimetools, cStringIO
 if text is None:
 # Produce an approximate textual rendering of the HTML string,
 # unless you have been given a better version as an argument
 import htmllib, formatter
 textout = cStringIO.StringIO()
 formtext = formatter.AbstractFormatter(formatter.DumbWriter(textout))
 parser = htmllib.HTMLParser(formtext)
 parser.feed(html)
 parser.close()
 text = textout.getvalue()
 del textout, formtext, parser
 out = cStringIO.StringIO() # output buffer for our message
 htmlin = cStringIO.StringIO(html) # input buffer for the HTML
 txtin = cStringIO.StringIO(text) # input buffer for the plain text
 writer = MimeWriter.MimeWriter(out)
 # Set up some basic headers. Place subject here because smtplib.sendmail
 # expects it to be in the message, as relevant RFCs prescribe.
 writer.addheader("Subject", subject)
 writer.addheader("MIME-Version", "1.0")
 # Start the multipart section of the message. Multipart/alternative seems
 # to work better on some MUAs than multipart/mixed.
 writer.startmultipartbody("alternative")
 writer.flushheaders()
 # the plain-text section: just copied through, assuming iso-8859-1
 subpart = writer.nextpart()
 pout = subpart.startbody("text/plain", [("charset", 'iso-8859-1')])
 pout.write(txtin.read())
 txtin.close()
 # the HTML subpart of the message: quoted-printable, just in case
 subpart = writer.nextpart()
 subpart.addheader("Content-Transfer-Encoding", "quoted-printable")
 pout = subpart.startbody("text/html", [("charset", 'us-ascii')])
 mimetools.encode(htmlin, pout, 'quoted-printable')

 htmlin.close()
 # You're done; close your writer and return the message as a string
 writer.lastpart()
 msg = out.getvalue()
 out.close()
 return msg

Discussion

This recipe's module is completed in the usual style with a few lines to ensure that, when run as
a script, it runs a self-test by composing and sending a sample HTML mail:

if _ _name_ _=="_ _main_ _":
 import smtplib
 f = open("newsletter.html", 'r')
 html = f.read()
 f.close()
 try:
 f = open("newsletter.txt", 'r')
 text = f.read()
 except IOError:
 text = None
 subject = "Today's Newsletter!"
 message = createhtmlmail(subject, html, text)
 server = smtplib.SMTP("localhost")
 server.sendmail('agillesp@i-noSPAMSUCKS.com',
 'agillesp@i-noSPAMSUCKS.com', message)
 server.quit()

Sending HTML mail is a popular concept, and (as long as you avoid sending it to newsgroups and
open mailing lists) there's no reason your Python scripts shouldn't do it. When you do send HTML
mail, never forget to embed a text-only version of your message along with the HTML version.
Lots of folks still prefer character-mode mail readers (technically known as MUAs), and it makes
no sense to alienate those users by sending mail that they can't conveniently read. This recipe
shows how easy Python makes the task of sending an email in both HTML and text forms.

Ideally, your input will be a properly formatted text version of the message, as well as the HTML
version. But, if you don't have such nice textual input, you can still prepare a text version on the
fly starting from the HTML version; one way to prepare such text is shown in the recipe.
Remember that htmllib has some limitations, so you may want to use alternative approaches,

such as saving the HTML string to disk and then using:

text = os.popen('lynx -dump %s' % tempfile).read()

or whatever works best for you. Alternatively, if all you have as input is plain text (following
some specific conventions, such as empty lines to mark paragraphs and underlines for
emphasis), you can parse the text and throw together some HTML markup on the fly.

The emails generated by this code have been successfully read on Outlook 2000, Eudora 4.2,
Hotmail, and Netscape Mail. It's likely that they will work in other HTML-capable MUAs as well.
Mutt has been used to test the acceptance of messages generated by this recipe in text-only
MUAs. Again, other such MUAs can be expected to work just as acceptably.

See Also

Recipe 13.6 shows how the email package in the Python Standard Library can also be used to

compose a MIME multipart message; documentation in the Library Reference and Python in a
Nutshell about the standard library package email, as well as modules mimetools, MimeWriter,
htmllib, formatter, cStringIO, and smtplib; Henry Minsky's article about MIME

(http://www.arsdigita.com/asj/mime/) for information on various issues related to sending HTML
mail.

http://www.arsdigita.com/asj/mime/

Recipe 13.6. Bundling Files in a MIME Message

Credit: Matthew Dixon Cowles, Hans Fangohr, John Pywtorak

Problem

You want to create a multipart MIME (Multipurpose Internet Mail Extensions) message that
includes all files in the current directory.

Solution

If you often deal with composing or parsing mail messages, or mail-like messages such as
Usenet news posts, the Python Standard Library email package gives you very powerful tools to
work with. Here is a module that uses email to solve the task posed in the "Problem":

#!/usr/bin/env python
import base64, quopri
import mimetypes, email.Generator, email.Message
import cStringIO, os
sample addresses
toAddr = "example@example.com"
fromAddr = "example@example.com"
outputFile = "dirContentsMail"
def main():
 mainMsg = email.Message.Message()
 mainMsg["To"] = toAddr
 mainMsg["From"] = fromAddr
 mainMsg["Subject"] = "Directory contents"
 mainMsg["Mime-version"] = "1.0"
 mainMsg["Content-type"] = "Multipart/mixed"
 mainMsg.preamble = "Mime message\n"
 mainMsg.epilogue = "" # to ensure that message ends with newline
 # Get names of plain files (not subdirectories or special files)
 fileNames = [f for f in os.listdir(os.curdir) if os.path.isfile(f)]
 for fileName in fileNames:
 contentType, ignored = mimetypes.guess_type(fileName)
 if contentType is None: # If no guess, use generic opaque type
 contentType = "application/octet-stream"
 contentsEncoded = cStringIO.StringIO()
 f = open(fileName, "rb")
 mainType = contentType[:contentType.find("/")]
 if mainType=="text":
 cte = "quoted-printable"
 quopri.encode(f, contentsEncoded, 1) # 1 to also encode tabs
 else:
 cte = "base64"
 base64.encode(f, contentsEncoded)
 f.close()
 subMsg = email.Message.Message()
 subMsg.add_header("Content-type", contentType, name=fileName)
 subMsg.add_header("Content-transfer-encoding", cte)
 subMsg.set_payload(contentsEncoded.getvalue())

 contentsEncoded.close()
 mainMsg.attach(subMsg)
 f = open(outputFile, "wb")
 g = email.Generator.Generator(f)
 g.flatten(mainMsg)
 f.close()
 return None
if _ _name_ _=="_ _main_ _":
 main()

Discussion

The email package makes manipulating MIME messages a snap. The Python Standard Library

also offers other older modules that can serve many of the same purposes, but I suggest you
look into email as an alternative to all such other modules. email requires some study because it

is a very functionally rich package, but it will amply repay the time you spend studying it.

MIME is the Internet standard for sending files and non-ASCII data by email. The standard is
specified in RFCs 2045-2049. A few points are especially worth keeping in mind:

The original specification for the format of an email (RFC 822) didn't allow for non-ASCII
characters and had no provision for attaching or enclosing a file along with a text message.
Therefore, not surprisingly, MIME messages are very common these days.

Messages that follow the MIME standard are backward compatible with ordinary RFC 822
(now RFC 2822) messages. An old mail reader (technically, an MUA) that doesn't
understand the MIME specification will probably not be able to display a MIME message in a
way that's useful to the user, but the message will still be legal and therefore shouldn't
cause unexpected behavior.

An RFC 2822 message consists of a set of headers, a blank line, and a body. MIME handles
attachments and other multipart documents by specifying a format for the message's body.
In multipart MIME messages, the body is divided into submessages, each of which has a set
of headers, a blank line, and a body. Generally, each submessage is referred to as a MIME
part, and parts may nest recursively.

MIME parts (whether or not in a multipart message) that contain characters outside of the
strict US-ASCII range are encoded as either base-64 or quoted-printable data, so that the
resulting mail message contains only ordinary ASCII characters. Data can be encoded with
either method, but, generally, only data that has few non-ASCII characters (basically text,
possibly with a few extra characters outside of the ASCII range, such as national characters
in Latin-1 and similar codes) is worth encoding as quoted-printable, because even without
decoding it may be readable. If the data is essentially binary, with all bytes being equally
likely, base-64 encoding is more compact.

Not surprisingly, given all of these issues, manipulating MIME messages is often considered to be
a nuisance. In the old times, back before Python 2.2, the standard library's modules for dealing
with MIME messages were quite useful but rather miscellaneous. In particular, putting MIME
messages together and taking them apart required two distinct approaches. The email package,

which was added in Python 2.2, unified and simplified these two related jobs.

See Also

Recipe 13.7 shows how the email package can be used to unpack a MIME message;
documentation for the standard library modules email, mimetypes, base64, quopri, and
cStringIO in the Library Reference and Python in a Nutshell.

Recipe 13.7. Unpacking a Multipart MIME Message

Credit: Matthew Cowles

Problem

You want to unpack a multipart MIME message.

Solution

The walk method of message objects generated by the email package makes this task really
easy. Here is a script that uses email to solve the task posed in the "Problem":

import email.Parser
import os, sys
def main():
 if len(sys.argv) != 2:
 print "Usage: %s filename" % os.path.basename(sys.argv[0])
 sys.exit(1)
 mailFile = open(sys.argv[1], "rb")
 p = email.Parser.Parser()
 msg = p.parse(mailFile)
 mailFile.close()
 partCounter = 1
 for part in msg.walk():
 if part.get_main_type() == "multipart":
 continue
 name = part.get_param("name")
 if name == None:
 name = "part-%i" % partCounter
 partCounter += 1
 # In real life, make sure that name is a reasonable filename
 # for your OS; otherwise, mangle that name until it is!
 f = open(name, "wb")
 f.write(part.get_payload(decode=1))
 f.close()
 print name
if _ _name_ _=="_ _main_ _":
 main()

Discussion

The email package makes parsing MIME messages reasonably easy. This recipe shows how to
unbundle a MIME message with the email package by using the walk method of message

objects.

You can create a message object in several ways. For example, you can instantiate the
email.Message.Message class and build the message object's contents with calls to its methods.

In this recipe, however, I need to read and analyze an existing message, so I work the other way
around, calling the parse method of an email.Parser.Parser instance. The parse method takes

as its only argument a file-like object (in the recipe, I pass it a real file object that I just opened
for binary reading with the built-in open function) and returns a message object, on which you

can call message object methods.

The walk method is a generator (i.e., it returns an iterator object on which you can loop with a
for statement). You usually will use this method exactly as I use it in this recipe:

for part in msg.walk():

The iterator sequentially returns (depth-first, in case of nesting) the parts that make up the
message. If the message is not a container of parts (i.e., has no attachments or
alternatesmessage.is_multipart returns false), no problem: the walk method will then return

an iterator with a single elementthe message itself. In any case, each element of the iterator is
also a message object (an instance of email.Message.Message), so you can call on it any of the

methods that a message object supplies.

In a multipart message, parts with a type of 'multipart/something' (i.e., a main type of
'multipart') may be present. In this recipe, I skip them explicitly since they're just glue holding
the true parts together. I use the get_main_type method to obtain the main type and check it
for equality with 'multipart'; if equality holds, I skip this part and move to the next one with a
continue statement. When I know I have a real part in hand, I locate its name (or synthesize

one if it has no name), open that name as a file, and write the message's contents (also known
as the message's payload), which I get by calling the get_payload method, into the file. I use
the decode=1 argument to ensure that the payload is decoded back to a binary content (e.g., an

image, a sound file, a movie) if needed, rather than remaining in text form. If the payload is not
encoded, decode=1 is innocuous, so I don't have to check before I pass it.

See Also

Recipe 13.6; documentation for the standard library package email in the Library Reference.

Recipe 13.8. Removing Attachments from an Email
Message

Credit: Anthony Baxter

Problem

You're handling email in Python and need to remove from email messages any attachments that
might be dangerous.

Solution

Regular expressions can help us identify dangerous content types and file extensions, and thus
code a function to remove any potentially dangerous attachments:

ReplFormat = """
This message contained an attachment that was stripped out.
The filename was: %(filename)s,
The original type was: %(content_type)s
(and it had additional parameters of:
%(params)s)
"""
import re
BAD_CONTENT_RE = re.compile('application/(msword|msexcel)', re.I)
BAD_FILEEXT_RE = re.compile(r'(\.exe|\.zip|\.pif|\.scr|\.ps)$')
def sanitise(msg):
 ''' Strip out all potentially dangerous payloads from a message '''
 ct = msg.get_content_type()
 fn = msg.get_filename()
 if BAD_CONTENT_RE.search(ct) or (fn and BAD_FILEEXT_RE.search(fn)):
 # bad message-part, pull out info for reporting then destroy it
 # present the parameters to the content-type, list of key, value
 # pairs, as key=value forms joined by comma-space
 params = msg.get_params()[1:]
 params = ', '.join(['='.join(p) for p in params])
 # put informative message text as new payload
 replace = ReplFormat % dict(content_type=ct, filename=fn, params=params)
 msg.set_payload(replace)
 # now remove parameters and set contents in content-type header
 for k, v in msg.get_params()[1:]:
 msg.del_param(k)
 msg.set_type('text/plain')
 # Also remove headers that make no sense without content-type
 del msg['Content-Transfer-Encoding']
 del msg['Content-Disposition']
 else:
 # Now we check for any sub-parts to the message
 if msg.is_multipart():
 # Call sanitise recursively on any subparts
 payload = [sanitise(x) for x in msg.get_payload()]
 # Replace the payload with our list of sanitised parts

 msg.set_payload(payload)
 # Return the sanitised message
 return msg
Add a simple driver/example to show how to use this function
if _ _name_ _ == '_ _main_ _':
 import email, sys
 m = email.message_from_file(open(sys.argv[1]))
 print sanitise(m)

Discussion

This issue has come up a few times on the newsgroup comp.lang.python, so I decided to post a
cookbook entry to show how easy it is to deal with this kind of task. Specifically, this recipe
shows how to read in an email message, strip out any dangerous or suspicious attachments, and
replace them with a harmless text message informing the user of the alterations that we're
performed.

This kind of task is particularly important when end users are using something like Microsoft
Outlook, which is targeted by harmful virus and worm messages (collectively known as malware)
on a daily basis.

The email parser in Python 2.4 has been completely rewritten to be robust first, correct second.
Prior to that version, the parser was written for correctness first. But focusing on correctness was
a problem because many virus/worm messages and other malware routinely send email
messages that are broken and nonconformantmalformed to the point that the old email parser
chokes and dies. The new parser is designed to never actually break when reading a message.
Instead, it tries its best to fix whatever it can fix in the message. (If you have a message that
causes the parser to crash, please let us, the core Python developers, know. It's a bug, and we'll
fix it. Please include a copy of the message that makes the parser crash, or else it's very unlikely
that we can reproduce your problem!)

The recipe's code itself is fairly well commented and should be easy enough to follow. A mail
message consists of one or more parts; each of these parts can contain nested parts. We call the
sanitise function on the top-level Message object, and it calls itself recursively on the subobjects

if and as needed.

The sanitise function first checks the Content-Type of the part, and if there's a filename, it also

checks that filename's extension against a known-to-be-bad list. If the message part is bad, we
replace the message itself with a short text description describing the now-removed part and
clean out the headers that are relevant. We set this message part's Content-Type to
'text/plain' and remove other headers related to the now-removed message.

Finally, we check whether the message is a multipart message. If so, it means the message has
subparts, so we recursively call the sanitise function on each of them. We then replace the
payload with our list of sanitized subparts.

If you're interested in working further on this recipe, the most important extra functionality,
which is easy to add with a small amount of work, might be to store the attached file in some
directory (instead of destroying all suspect attachments), and give the user a link to that file.
Also consider extending the check in sanitise that filters dangerous attachments to have it verify
more than just the content type and file extension; other headers may be able to carry known
signs of worm or virus messages.

See Also

Documentation for the standard library modules email and re in the Library Reference and

Python in a Nutshell.

Recipe 13.9. Fixing Messages Parsed by Python 2.4
email.FeedParser

Credit: Matthew Cowles

Problem

You're using Python 2.4's new email.FeedParser module, but sometimes, when dealing with

badly malformed incoming messages, that module produces message objects that are internally
inconsistent (e.g., a message has a content-type header that says the message is multipart, but
the body isn't), and you need to fix those inconsistencies.

Solution

Python 2.4's new standard library module email.FeedParser is very useful, but a little post-

processing on the messages it returns can heuristically fix some inconsistencies and make it even
better. Here's a module containing a class and a few functions to help with this task:

import email, email.FeedParser
import re, sys, sgmllib
what chars are non-Ascii, what max fraction of them can be in a text part
kGuessBinaryThreshold = 0.2
kGuessBinaryRE = re.compile("[\\0000-\\0025\\0200-\\0377]")
what max fraction of HTML tags can be in a text (non-HTML) part
kGuessHTMLThreshold = 0.05
class Cleaner(sgmllib.SGMLParser):
 entitydefs = {"nbsp": " "} # I'll break if I want to
 def _ _init_ _(self):
 sgmllib.SGMLParser._ _init_ _(self)
 self.result = []
 def do_p(self, *junk):
 self.result.append('\n')
 def do_br(self, *junk):
 self.result.append('\n')
 def handle_data(self, data):
 self.result.append(data)
 def cleaned_text(self):
 return ''.join(self.result)
def stripHTML(text):
 ''' return text, with HTML tags stripped '''
 c = Cleaner()
 try:
 c.feed(text)
 except sgmllib.SGMLParseError:
 return text
 else:
 return c.cleaned_text()
def guessIsBinary(text):
 ''' return whether we can heuristically guess 'text' is binary '''
 if not text: return False
 nMatches = float(len(kGuessBinaryRE.findall(text)))

 return nMatches/len(text) >= kGuessBinaryThreshold
def guessIsHTML(text):
 ''' return whether we can heuristically guess 'text' is HTML '''
 if not text: return False
 lt = len(text)
 textWithoutTags = stripHTML(text)
 tagsChars = float(lt-len(textWithoutTags))
 return tagsChars/lt >= kGuessHTMLThreshold
def getMungedMessage(openFile):
 openFile.seek(0)
 p = email.FeedParser.FeedParser()
 p.feed(openFile.read())
 m = p.close()
 # Fix up multipart content-type when message isn't multi-part
 if m.get_main_type()=="multipart" and not m.is_multipart():
 t = m.get_payload(decode=1)
 if guessIsBinary(t):
 # Use generic "opaque" type
 m.set_type("application/octet-stream")
 elif guessIsHTML(t):
 m.set_type("text/html")
 else:
 m.set_type("text/plain")
 return m

Discussion

FeedParser is a new module in the Python 2.4 Standard Library's email package. The module's

name comes from the fact that it maintains a buffer, so that you don't have to give it all the text
at once. Possibly more interesting is that the module doesn't raise an error when called on
malformed messages; instead, it tries to make some sense of them and return a useful
email.Message object. That's useful because so much mail is spam and so much spam is

malformed.

The other side of the coin, given that the heroic feed parser works on incorrect messages, is that
you can get back from it an email.Message object that's internally inconsistent. This recipe tries

to make sense of one kind of inconsistency: a message with a content-type header that says that
the message is multipart, but the body isn't.

The heuristics that the recipe uses to guess at the correct content-type are inevitably messy.
Still, better to have such messy heuristics in recipes, rather than embedded forever in the Python
Standard Library.

See Also

Documentation for the standard library package email in the Python 2.4 Library Reference.

Recipe 13.10. Inspecting a POP3 Mailbox Interactively

Credit: Xavier Defrang

Problem

You have a POP3 mailbox somewhere, perhaps on a slow connection, and need to examine
messages and possibly mark them for deletion interactively.

Solution

The poplib module of the Python Standard Library lets you write a script to solve this task quite

easily:

Interactive script to clean POP3 mailboxes from malformed or too-large mails
#
Iterates over nonretrieved mails, prints selected elements from the headers,
prompts interactively about whether each message should be deleted
import sys, getpass, poplib, re
Change according to your needs: POP host, userid, and password
POPHOST = "pop.domain.com"
POPUSER = "jdoe"
POPPASS = ""
How many lines to retrieve from body, and which headers to retrieve
MAXLINES = 10
HEADERS = "From To Subject".split()
args = len(sys.argv)
if args>1: POPHOST = sys.argv[1]
if args>2: POPUSER = sys.argv[2]
if args>3: POPPASS = sys.argv[3]
if args>4: MAXLINES= int(sys.argv[4])
if args>5: HEADERS = sys.argv[5:]
An RE to identify the headers you're actually interested in
rx_headers = re.compile('|'.join(headers), re.IGNORECASE)
try:
 # Connect to the POP server and identify the user
 pop = poplib.POP3(POPHOST)
 pop.user(POPUSER)
 # Authenticate user
 if not POPPASS or POPPASS=='=':
 # If no password was supplied, ask for the password
 POPPASS = getpass.getpass("Password for %s@%s:" % (POPUSER, POPHOST))
 pop.pass_(POPPASS)
 # Get and print some general information (msg_count, box_size)
 stat = pop.stat()
 print "Logged in as %s@%s" % (POPUSER, POPHOST)
 print "Status: %d message(s), %d bytes" % stat
 bye = False
 count_del = 0
 for msgnum in range(1, 1+stat[0]):
 # Retrieve headers
 response, lines, bytes = pop.top(msgnum, MAXLINES)

 # Print message info and headers you're interested in
 print "Message %d (%d bytes)" % (msgnum, bytes)
 print "-" * 30
 print "\n".join(filter(rx_headers.match, lines))
 print "-" * 30
 # Input loop
 while True:
 k = raw_input("(d=delete, s=skip, v=view, q=quit) What? ")
 k = k[:1].lower()
 if k == 'd':
 # Mark message for deletion
 k = raw_input("Delete message %d? (y/n) " % msgnum)
 if k in "yY":
 pop.dele(msgnum)
 print "Message %d marked for deletion" % msgnum
 count_del += 1
 break
 elif k == 's':
 print "Message %d left on server" % msgnum
 break
 elif k == 'v':
 print "-" * 30
 print "\n".join(lines)
 print "-" * 30
 elif k == 'q':
 bye = True
 break
 # Time to say goodbye?
 if bye:
 print "Bye"
 break
 # Summary
 print "Deleting %d message(s) in mailbox %s@%s" % (
 count_del, POPUSER, POPHOST)
 # Commit operations and disconnect from server
 print "Closing POP3 session"
 pop.quit()
except poplib.error_proto, detail:
 # Fancy error handling
 print "POP3 Protocol Error:", detail

Discussion

Sometimes your POP3 mailbox is behind a slow Internet link, and you don't want to wait for that
funny 10MB MPEG movie that you already received twice yesterday to be fully downloaded before
you can read your mail. Or maybe a peculiar malformed message is hanging your MUA. Issues of
this kind are best tackled interactively, but you need a helpful script to let you examine data
about each message and determine which messages should be removed.

I used to deal with this kind of thing by telneting to the POP (Post Office Protocol) server and
trying to remember the POP3 protocol commands (while hoping that the server implements the
help command in particular). Nowadays, I use the script presented in this recipe to inspect my
mailbox and do some cleaning. Basically, the Python Standard Library POP3 module, poplib,

remembers the protocol commands on my behalf, and this script helps me use those commands
appropriately.

The script in this recipe uses the poplib module to connect to your mailbox. It then prompts you

about what to do with each undelivered message. You can view the top of the message, leave

the message on the server, or mark the message for deletion. No particular tricks or hacks are
used in this piece of code: it's a simple example of poplib usage. In addition to being practically
useful in emergencies, it can show you how poplib works. The poplib.POP3 call returns an

object that is ready for connection to a POP3 server specified as its argument. We complete the
connection by calling the user and pass_ methods to specify a user ID and password. Note the
trailing underscore in pass_: this method could not be called pass because that is a Python

keyword (the do-nothing statement), and by convention, such issues are often solved by
appending an underscore to the identifier.

After connection, we keep working with methods of the pop object. The stat method returns the
number of messages and the total size of the mailbox in bytes. The top method takes a

message-number argument and returns information about that message, as well as the message
itself as a list of lines. (You can specify a second argument n to ensure that no more than n lines
are returned.) The dele method also takes a message-number argument and deletes that

message from the mailbox (without renumbering all other messages). When we're done, we call
the quit method. If you're familiar with the POP3 protocol, you'll notice the close

correspondence between these methods and the POP3 commands.

See Also

Documentation for the standard library modules poplib and getpass in the Library Reference

and Python in a Nutshell; the POP protocol is described in RFC 1939
(http://www.ietf.org/rfc/rfc1939.txt).

http://www.ietf.org/rfc/rfc1939.txt

Recipe 13.11. Detecting Inactive Computers

Credit: Nicola Larosa

Problem

You need to monitor the working state of a number of computers connected to a TCP/IP network.

Solution

The key idea in this recipe is to have every computer periodically send a heartbeat UDP packet to
a computer acting as the server for this heartbeat-monitoring service. The server keeps track of
how much time has passed since each computer last sent a heartbeat and reports on computers
that have been silent for too long.

Here is the "client" program, HeartbeatClient.py, which must run on every computer we need to
monitor:

""" Heartbeat client, sends out a UDP packet periodically """
import socket, time
SERVER_IP = '192.168.0.15'; SERVER_PORT = 43278; BEAT_PERIOD = 5
print 'Sending heartbeat to IP %s , port %d' % (SERVER_IP, SERVER_PORT)
print 'press Ctrl-C to stop'
while True:
 hbSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 hbSocket.sendto('PyHB', (SERVER_IP, SERVER_PORT))
 if _ _debug_ _:
 print 'Time: %s' % time.ctime()
 time.sleep(BEAT_PERIOD)

The server program, which receives and keeps track of these "heartbeats", must run on the
machine whose address is given as SERVER_IP in the "client" program. The server must support
concurrency, since many heartbeats from different computers might arrive simultaneously. A
server program has essentially two ways to support concurrency: multithreading, or
asynchronous operation. Here is a multithreaded ThreadedBeatServer.py, using only modules
from the Python Standard Library:

""" Threaded heartbeat server """
import socket, threading, time
UDP_PORT = 43278; CHECK_PERIOD = 20; CHECK_TIMEOUT = 15
class Heartbeats(dict):
 """ Manage shared heartbeats dictionary with thread locking """
 def _ _init_ _(self):
 super(Heartbeats, self)._ _init_ _()
 self._lock = threading.Lock()
 def _ _setitem_ _(self, key, value):
 """ Create or update the dictionary entry for a client """
 self._lock.acquire()
 try:
 super(Heartbeats, self)._ _setitem_ _(key, value)
 finally:
 self._lock.release()

 def getSilent(self):
 """ Return a list of clients with heartbeat older than CHECK_TIMEOUT """
 limit = time.time() - CHECK_TIMEOUT
 self._lock.acquire()
 try:
 silent = [ip for (ip, ipTime) in self.items() if ipTime < limit]
 finally:
 self._lock.release()
 return silent
class Receiver(threading.Thread):
 """ Receive UDP packets and log them in the heartbeats dictionary """
 def _ _init_ _(self, goOnEvent, heartbeats):
 super(Receiver, self)._ _init_ _()
 self.goOnEvent = goOnEvent
 self.heartbeats = heartbeats
 self.recSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.recSocket.settimeout(CHECK_TIMEOUT)
 self.recSocket.bind(('', UDP_PORT))
 def run(self):
 while self.goOnEvent.isSet():
 try:
 data, addr = self.recSocket.recvfrom(5)
 if data == 'PyHB':
 self.heartbeats[addr[0]] = time.time()
 except socket.timeout:
 pass
def main(num_receivers=3):
 receiverEvent = threading.Event()
 receiverEvent.set()
 heartbeats = Heartbeats()
 receivers = []
 for i in range(num_receivers):
 receiver = Receiver(goOnEvent=receiverEvent, heartbeats=heartbeats)
 receiver.start()
 receivers.append(receiver)
 print 'Threaded heartbeat server listening on port %d' % UDP_PORT
 print 'press Ctrl-C to stop'
 try:
 while True:
 silent = heartbeats.getSilent()
 print 'Silent clients: %s' % silent
 time.sleep(CHECK_PERIOD)
 except KeyboardInterrupt:
 print 'Exiting, please wait...'
 receiverEvent.clear()
 for receiver in receivers:
 receiver.join()
 print 'Finished.'
if _ _name_ _ == '_ _main_ _':
 main()

As an alternative, here is an asynchronous AsyncBeatServer.py program based on the powerful
Twisted framework:

import time
from twisted.application import internet, service
from twisted.internet import protocol
from twisted.python import log
UDP_PORT = 43278; CHECK_PERIOD = 20; CHECK_TIMEOUT = 15

class Receiver(protocol.DatagramProtocol):
 """ Receive UDP packets and log them in the "client"s dictionary """
 def datagramReceived(self, data, (ip, port)):
 if data == 'PyHB':
 self.callback(ip)
class DetectorService(internet.TimerService):
 """ Detect clients not sending heartbeats for too long """
 def _ _init_ _(self):
 internet.TimerService._ _init_ _(self, CHECK_PERIOD, self.detect)
 self.beats = { }
 def update(self, ip):
 self.beats[ip] = time.time()
 def detect(self):
 """ Log a list of clients with heartbeat older than CHECK_TIMEOUT """
 limit = time.time() - CHECK_TIMEOUT
 silent = [ip for (ip, ipTime) in self.beats.items() if ipTime < limit]
 log.msg('Silent clients: %s' % silent)
application = service.Application('Heartbeat')
define and link the silent clients' detector service
detectorSvc = DetectorService()
detectorSvc.setServiceParent(application)
create an instance of the Receiver protocol, and give it the callback
receiver = Receiver()
receiver.callback = detectorSvc.update
define and link the UDP server service, passing the receiver in
udpServer = internet.UDPServer(UDP_PORT, receiver)
udpServer.setServiceParent(application)
each service is started automatically by Twisted at launch time
log.msg('Asynchronous heartbeat server listening on port %d\n'
 'press Ctrl-C to stop\n' % UDP_PORT)

Discussion

When a number of computers are connected by a TCP/IP network, we are often interested in
monitoring their working state. The client and server programs presented in this recipe help you
detect when a computer stops working, while having minimal impact on network traffic and
requiring very little setup. Note that this recipe does not monitor the working state of single,
specific services running on a machine, just that of the TCP/IP stack and the underlying
operating system and hardware components.

This PyHeartBeat approach is made up of two files: a client program, HeartbeatClient.py, sends
UDP packets to the server, while a server program, either ThreadedBeatServer.py (using only
modules from the Python Standard Library to implement a multithreaded approach) or
AsyncBeatServer.py (implementing an asynchronous approach based on the powerful Twisted
framework), runs on a central computer to listen for such packets and detect inactive clients.
Client programs, running on any number of computers, periodically send UDP packets to the
server program that runs on the central computer. The server program, in either version,
dynamically builds a dictionary that stores the IP addresses of the "client" computers and the
timestamp of the last packet received from each one. At the same time, the server program
periodically checks the dictionary, checking whether any of the timestamps are older than a
defined timeout, to identify clients that have been silent too long.

In this kind of application, there is no need to use reliable TCP connections since the loss of a
packet now and then does not produce false alarms, as long as the server-checking timeout is
kept suitably larger than the "client"-sending period. Since we may have hundreds of computers
to monitor, it is best to keep the bandwidth used and the load on the server at a minimum: we
do this by periodically sending a small UDP packet, instead of setting up a relatively expensive
TCP connection per client.

The packets are sent from each client every 5 seconds, while the server checks the dictionary
every 20 seconds, and the server's timeout defaults to 15 seconds. These parameters, along with
the server IP number and port used, can be adapted to one's needs.

Threaded server

In the threaded server, a small number of worker threads listen to the UDP packets coming from
the "client"s, while the main thread periodically checks the recorded heartbeats. The shared data
structure, a dictionary, must be locked and released at each access, both while writing and
reading, to avoid data corruption on concurrent access. Such data corruption would typically
manifest itself as intermittent, time-dependent bugs that are difficult to reproduce, investigate,
and correct.

A very sound alternative to such meticulous use of locking around access to a resource is to
dedicate a specialized thread to be the only one interacting with the resource (in this case, the
dictionary), while all other threads send work requests to the specialized thread with a
Queue.Queue instance. A Queue-based approach is more scalable when per-resource locking gets
too complicated to manage easily: Queue is less bug-prone and, in particular, avoids worries

about deadlocks. See Recipe 9.3, Recipe 9.5, Recipe 9.4, and Recipe 11.9 for more information
about Queue and examples of using Queue to structure the architecture of a multithreaded

program.

Asynchronous server

The Twisted server employs an asynchronous, event-driven model based on the Twisted
framework (http://www.twistedmatrix.com/). The framework is built around a central "reactor"
that dispatches events from a queue in a single thread, and monitors network and host
resources. The user program is composed of short code fragments invoked by the reactor when
dispatching the matching events. Such a working model guarantees that only one user code
fragment is executing at any given time, eliminating at the root all problems of concurrent access
to shared data structures. Asynchronous servers can provide excellent performance and
scalability under very heavy loads, by avoiding the threading and locking overheads of
multithreader servers.

The asynchronous server program presented in this recipe is composed of one application and
two services, the UDPServer and the DetectorService, respectively. It is invoked at any
command shell by means of the twistd command, with the following options:

$ twistd -ony AsyncBeatServer.py

The twistd command controls the reactor, and many other delicate facets of a server's operation,
leaving the script it loads the sole responsibility of defining a global variable named application,

implementing the needed services, and connecting the service objects to the application object.

Normally, twistd runs as a daemon and logs to a file (or to other logging facilities, depending on
configuration options), but in this case, with the -ony flags, we're specifically asking twistd to run
in the foreground and with logging to standard output, so we can better see what's going on.
Note that the most popular file extension for scripts to be loaded by twistd is .tac, although in
this recipe I have used the more generally familiar extension .py. The choice of file extension is
just a convention, in this case: twistd can work with Python source files with any file extension,
since you pass the full filename, extension included, as an explicit command-line argument
anyway.

See Also

http://www.twistedmatrix.com/

Documentation for the standard library modules socket, tHReading, Queue and time in the
Library Reference and Python in a Nutshell; twisted is at http://www.twistedmatrix.com; Jeff

Bauer has a related program, known as Mr. Creosote
(http://starship.python.net/crew/jbauer/creosote/), using UDP for logging information; UDP is
described in depth in W. Richard Stevens, UNIX Network Programming, Volume 1: Networking
APIs-Sockets and XTI, 2d ed. (Prentice-Hall); for the truly curious, the UDP protocol is defined in
the two-page RFC 768 (http://www.ietf.org/rfc/rfc768.txt), which, when compared with current
RFCs, shows how much the Internet infrastructure has evolved in 20 years.

http://www.twistedmatrix.com
http://starship.python.net/crew/jbauer/creosote/
http://www.ietf.org/rfc/rfc768.txt

Recipe 13.12. Monitoring a Network with HTTP

Credit: Magnus Lyckå

Problem

You want to implement special-purpose HTTP servers to enable you to monitor your network.

Solution

The Python Standard Library BaseHTTPServer module makes it easy to implement special-

purpose HTTP servers. For example, here is a special-purpose HTTP server program that runs
local commands on the server host to get the data for replies to each GET request:

import BaseHTTPServer, shutil, os
from cStringIO import StringIO
class MyHTTPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):
 # HTTP paths we serve, and what commandline-commands we serve them with
 cmds = {'/ping': 'ping www.thinkware.se',
 '/netstat' : 'netstat -a',
 '/tracert': 'tracert www.thinkware.se',
 '/srvstats': 'net statistics server',
 '/wsstats': 'net statistics workstation',
 '/route' : 'route print',
 }
 def do_GET(self):
 """ Serve a GET request. """
 f = self.send_head()
 if f:
 f = StringIO()
 machine = os.popen('hostname').readlines()[0]
 if self.path == '/':
 heading = "Select a command to run on %s" % (machine)
 body = (self.getMenu() +
 "<p>The screen won't update until the selected "
 "command has finished. Please be patient.")
 else:
 heading = "Execution of ``%s'' on %s" % (
 self.cmds[self.path], machine)
 cmd = self.cmds[self.path]
 body = 'Main Menu<pre>%s</pre>\n' % \
 os.popen(cmd).read()
 # Translation CP437 -> Latin 1 needed for Swedish Windows.
 body = body.decode('cp437').encode('latin1')
 f.write("<html><head><title>%s</title></head>\n" % heading)
 f.write('<body><H1>%s</H1>\n' % (heading))
 f.write(body)
 f.write('</body></html>\n')
 f.seek(0)
 self.copyfile(f, self.wfile)
 f.close()
 return f

 def do_HEAD(self):
 """ Serve a HEAD request. """
 f = self.send_head()
 if f:
 f.close()
 def send_head(self):
 path = self.path
 if not path in ['/'] + self.cmds.keys():
 head = 'Command "%s" not found. Try one of these:' % path
 msg = head + self.getMenu()
 self.send_error(404, msg)
 return None
 self.send_response(200)
 self.send_header("Content-type", 'text/html')
 self.end_headers()
 f = StringIO()
 f.write("A test %s\n" % self.path)
 f.seek(0)
 return f
 def getMenu(self):
 keys = self.cmds.keys()
 keys.sort()
 msg = []
 for k in keys:
 msg.append('%s => %s' %(
 k, k, self.cmds[k]))
 msg.append('')
 return "\n".join(msg)
 def copyfile(self, source, outputfile):
 shutil.copyfileobj(source, outputfile)
def main(HandlerClass = MyHTTPRequestHandler,
 ServerClass = BaseHTTPServer.HTTPServer):
 BaseHTTPServer.test(HandlerClass, ServerClass)
if _ _name_ _ == '_ _main_ _':
 main()

Discussion

The Python Standard Library module BaseHTTPServer makes it easy to set up custom web

servers on an internal network. This way, you can run commands on various machines by just
visiting those servers with a browser. The code in this recipe is Windows-specific, indeed specific
to the version of Windows normally run in Sweden, because it knows about code page 437
providing the encoding for the various commands' results. The commands themselves are
Windows ones, but that's just as easy to customize for your own purposes as the encoding
issuefor example, using traceroute (the Unix spelling of the command) instead of tracert (the
way Windows spells it).

In this recipe, all substantial work is performed by external commands invoked by os.popen

calls. Of course, it would be perfectly feasible to satisfy some or all of the requests by running
actual Python code within the same process as the web server. We would normally not worry
about concurrency issues for this kind of special-purpose, ad hoc, administrative server (unlike
most web servers): the scenario it's intended to cover is one system administrator sitting at her
system and visiting, with her browser, various machines on the network being
administered/monitoredconcurrency is not really needed. If your scenario is somewhat different
so that you do need concurrency, then multithreading and asynchronous operations, shown in
several other recipes, are your fundamental options.

See Also

Documentation for the standard library modules BaseHTTPServer, shutil, os, and cStringIO in

the Library Reference and Python in a Nutshell.

Recipe 13.13. Forwarding and Redirecting Network
Ports

Credit: Simon Foster

Problem

You need to forward a network port to another host (forwarding), possibly to a different port
number (redirecting).

Solution

Classes using the tHReading and socket modules can provide port forwarding and redirecting:

import sys, socket, time, threading
LOGGING = True
loglock = threading.Lock()
def log(s, *a):
 if LOGGING:
 loglock.acquire()
 try:
 print '%s:%s' % (time.ctime(), (s % a))
 sys.stdout.flush()
 finally:
 loglock.release()
class PipeThread(threading.Thread):
 pipes = []
 pipeslock = threading.Lock()
 def _ _init_ _(self, source, sink):
 Thread._ _init_ _(self)
 self.source = source
 self.sink = sink
 log('Creating new pipe thread %s (%s -> %s)',
 self, source.getpeername(), sink.getpeername())
 self.pipeslock.acquire()
 try: self.pipes.append(self)
 finally: self.pipeslock.release()
 self.pipeslock.acquire()
 try: pipes_now = len(self.pipes)
 finally: self.pipeslock.release()
 log('%s pipes now active', pipes_now)
 def run(self):
 while True:
 try:
 data = self.source.recv(1024)
 if not data: break
 self.sink.send(data)
 except:
 break
 log('%s terminating', self)
 self.pipeslock.acquire()

 try: self.pipes.remove(self)
 finally: self.pipeslock.release()
 self.pipeslock.acquire()
 try: pipes_left = len(self.pipes)
 finally: self.pipeslock.release()
 log('%s pipes still active', pipes_left)
class Pinhole(threading.Thread):
 def _ _init_ _(self, port, newhost, newport):
 Thread._ _init_ _(self)
 log('Redirecting: localhost:%s -> %s:%s', port, newhost, newport)
 self.newhost = newhost
 self.newport = newport
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.bind(('', port))
 self.sock.listen(5)
 def run(self):
 while True:
 newsock, address = self.sock.accept()
 log('Creating new session for %s:%s', *address)
 fwd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 fwd.connect((self.newhost, self.newport))
 PipeThread(newsock, fwd).start()
 PipeThread(fwd, newsock).start()

A short ending to this pinhole.py module, with the usual guard to run this part only when pinhole
is run as a main script rather than imported, lets us offer this recipe's functionality as a
command-line script:

if _ _name_ _ == '_ _main_ _':
 print 'Starting Pinhole port forwarder/redirector'
 import sys
 # get the arguments, give help in case of errors
 try:
 port = int(sys.argv[1])
 newhost = sys.argv[2]
 try: newport = int(sys.argv[3])
 except IndexError: newport = port
 except (ValueError, IndexError):
 print 'Usage: %s port newhost [newport]' % sys.argv[0]
 sys.exit(1)
 # start operations
 sys.stdout = open('pinhole.log', 'w')
 Pinhole(port, newhost, newport).start()

Discussion

Port forwarding and redirecting can often come in handy when you're operating a network, even
a small one. Applications or other services, possibly not under your control, may be hardwired to
connect to servers on certain addresses or ports; by interposing a forwarder and redirector, you
can send such applications' connection requests onto any other host and/or port that suits you
better.

The code in this recipe supplies two classes that liberally use threading to provide this
functionality and a small "main script" at the end, with the usual if _ _name_ _ = = '_ _main_
_' guard, to deliver this functionality as a command-line script. For once, the small "main script"

is not just for demonstration and testing purposes but is actually quite useful on its own. For
example:

python pinhole.py 80 webserver

forwards all incoming HTTP sessions on standard port 80 to host webserver;

python pinhole.py 23 localhost 2323

redirects all incoming telnet sessions on standard port 23 to port 2323 on this same host (since

localhost is the conventional hostname for "this host" in all TCP/IP implementations).

See Also

Documentation for the standard library modules socket and threading in the Library Reference

and Python in a Nutshell.

Recipe 13.14. Tunneling SSL Through a Proxy

Credit: John Nielsen

Problem

You need to tunnel SSL (Secure Socket Layer) communications through a proxy, but the Python
Standard Library doesn't support that functionality out of the box.

Solution

We can code a generic proxy, defaulting to SSL but, in fact, good for all kinds of network
protocols. Save the following code as module file pytunnel.py somewhere along your Python
sys.path:

import threading, socket, traceback, sys, base64, time
def recv_all(the_socket, timeout=1):
 ''' receive all data available from the_socket, waiting no more than
 ``timeout'' seconds for new data to arrive; return data as string.'''
 # use non-blocking sockets
 the_socket.setblocking(0)
 total_data = []
 begin = time.time()
 while True:
 ''' loop until timeout '''
 if total_data and time.time()-begin > timeout:
 break # if you got some data, then break after timeout seconds
 elif time.time()-begin > timeout*2:
 break # if you got no data at all yet, wait a little longer
 try:
 data = the_socket.recv(4096)
 if data:
 total_data.append(data)
 begin = time.time() # reset start-of-wait time
 else:
 time.sleep(0.1) # give data some time to arrive
 except:
 pass
 return ''.join(total_data)
class thread_it(threading.Thread):
 ''' thread instance to run a tunnel, or a tunnel-client '''
 done = False
 def _ _init_ _(self, tid='', proxy='', server='', tunnel_client='',
 port=0, ip='', timeout=1):
 threading.Thread._ _init_ _(self)
 self.tid = tid
 self.proxy = proxy
 self.port = port
 self.server = server
 self.tunnel_client = tunnel_client
 self.ip = ip; self._port = port
 self.data = { } # store data here to get later

 self.timeout = timeout
 def run(self):
 try:
 if self.proxy and self.server:
 ''' running tunnel operation, so bridge server <-> proxy '''
 new_socket = False
 while not thread_it.done: # loop until termination
 if not new_socket:
 new_socket, address = self.server.accept()
 else:
 self.proxy.sendall(
 recv_all(new_socket, timeout=self.timeout))
 new_socket.sendall(
 recv_all(self.proxy, timeout=self.timeout))
 elif self.tunnel_client:
 ''' running tunnel client, just mark down when it's done '''
 self.tunnel_client(self.ip, self.port)
 thread_it.done = True # normal termination
 except Exception, error:
 print traceback.print_exc(sys.exc_info()), error
 thread_it.done = True # orderly termination upon exception
class build(object):
 ''' build a tunnel object, ready to run two threads as needed '''
 def _ _init_ _(self, host='', port=443, proxy_host='', proxy_port=80,
 proxy_user='', proxy_pass='', proxy_type='', timeout=1):
 self._port=port; self.host=host; self._phost=proxy_host
 self._puser=proxy_user; self._pport=proxy_port; self._ppass=proxy_pass
 self._ptype=proxy_type; self.ip='127.0.0.1'; self.timeout=timeout
 self._server, self.server_port = self.get_server()
 def get_proxy(self):
 if not self._ptype:
 proxy = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 proxy.connect((self._phost, self._pport))
 proxy_authorization = ''
 if self._puser:
 proxy_authorization = 'Proxy-authorization: Basic '+\
 base64.encodestring(self._puser+':'+self._ppass
).strip()+'\r\n'
 proxy_connect = 'CONNECT %s:%sHTTP/1.0\r\n' % (
 self.host, self._port)
 user_agent = 'User-Agent: pytunnel\r\n'
 proxy_pieces = proxy_connect+proxy_authorization+user_agent+'\r\n'
 proxy.sendall(proxy_pieces+'\r\n')
 response = recv_all(proxy, timeout=0.5)
 status = response.split(None, 1)[1]
 if int(status)/100 != 2:
 print 'error', response
 raise RuntimeError(status)
 return proxy
 def get_server(self):
 port = 2222
 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind(('localhost', port))
 server.listen(5)
 return server, port
 def run(self, func):
 Threads = []
 Threads.append(thread_it(tid=0, proxy=self.get_proxy(),
 server=self._server, timeout=self.timeout))
 Threads.append(thread_it(tid=1, tunnel_client=func, ip=self.ip,

 port=self.server_port, timeout=0.5))
 for Thread in Threads:
 Thread.start()
 for Thread in Threads:
 Thread.join()

Discussion

Here is how you would typically use this pytunnel module in a small example script that tunnels
an SSL connection through a proxy:

import pytunnel, httplib
def tunnel_this(ip, port):
 conn = httplib.HTTPSConnection(ip, port=port)
 conn.putrequest('GET', '/')
 conn.endheaders()
 response = conn.getresponse()
 print response.read()
tunnel = pytunnel.build(host='login.yahoo.com', proxy_host='h1',
 proxy_user='u', proxy_pass='p')
tunnel.run(tunnel_this)

This example assumes you have a proxy server running on host h1, which is ready to accept

basic authentication for a proxy user named u with a proxy password of p. Since it's unlikely that

this is, in fact, your specific setup, you'll have to tweak these parameters if you want to see an
example of this recipe's code running. But you understand the general idea: you instantiate class
pytunnel.build, with all appropriate parameters passed with named-argument syntax, to build a
tunnel object; then, you call the tunnel object's method run, passing as its argument your
function that you want to be "tunneled" through the proxy. That function, in turn, receives as its
arguments an IP address and a port number, and can connect to that address and port via SSL
or any protocol implying SSL/TLS (Transport Layer Security), such as HTTPS.

Internally, the tunnel object instantiates two threads that are instances of thread_it, one to run
the tunnel client function, the other to perform the tunneling operation itself. The tunneling
operation, in turn, is nothing more than an endless loop where all data available are received
from one party and resent to the other, and vice versa; function recv_all deals with the task of
receiving all available data, while the socket method send_all does the sending. The thread_it

instance which runs the tunneling operation, therefore, does no more than an endless loop of
just such calls.

The code shown in this recipe is still being actively developed at the time of writing. For the latest
version, see http://ftp.gnu.org/pub/savannah/files/pytunnel/pytunnel.py. Another alternative
worth considering for tunneling and forwarding is Twisted's simple proxy
(http://www.twistedmatrix.com/), but I have not personally tried that one yet.

See Also

For SSL/TLS standards, http://www.ietf.org/html.charters/tls-charter.html; documentation for
the standard library modules socket, threading and time in the Library Reference and Python in

a Nutshell.

http://ftp.gnu.org/pub/savannah/files/pytunnel/pytunnel.py
http://www.twistedmatrix.com/
http://www.ietf.org/html.charters/tls-charter.html

Recipe 13.15. Implementing the Dynamic IP Protocol

Credit: Nicola Paolucci, Mark Rowe, Andrew Notspecified

Problem

You use a Dynamic DNS Service which accepts the GnuDIP protocol (like yi.org), and need a
command-line script to update your IP which is recorded with that service.

Solution

The Twisted framework has plenty of power for all kinds of network tasks, so we can use it to
write a script to implement GnuDIP:

import md5, sys
from twisted.internet import protocol, reactor
from twisted.protocols import basic
from twisted.python import usage
def hashPassword(password, salt):
 ''' compute and return MD5 hash for given password and `salt'. '''
 p1 = md5.md5(password).hexdigest() + '.' + salt.strip()
 return md5.md5(p1).hexdigest()
class DIPProtocol(basic.LineReceiver):
 """ Implementation of GnuDIP protocol(TCP) as described at:
 http://gnudip2.sourceforge.net/gnudip-www/latest/gnudip/html/protocol.html
 """
 delimiter = '\n'
 def connectionMade(self):
 ''' at connection, we start in state "expecting salt". '''
 basic.LineReceiver.connectionMade(self)
 self.expectingSalt = True
 def lineReceived(self, line):
 ''' we received a full line, either "salt" or normal response '''
 if self.expectingSalt:
 self.saltReceived(line)
 self.expectingSalt = False
 else:
 self.responseReceived(line)
 def saltReceived(self, salt):
 """ Override this 'abstract method' """
 raise NotImplementedError
 def responseReceived(self, response):
 """ Override this 'abstract method' """
 raise NotImplementedError
class DIPUpdater(DIPProtocol):
 """ A simple class to update an IP, then disconnect. """
 def saltReceived(self, salt):
 ''' having received `salt', login to the DIP server '''
 password = self.factory.getPassword()
 username = self.factory.getUsername()
 domain = self.factory.getDomain()
 msg = '%s:%s:%s:2' % (username, hashPassword(password, salt), domain)

 self.sendLine(msg)
 def responseReceived(self, response):
 ''' response received: show errors if any, then disconnect. '''
 code = response.split(':', 1)[0]
 if code == '0':
 pass # OK
 elif code == '1':
 print 'Authentication failed'
 else:
 print 'Unexpected response from server:', repr(response)
 self.transport.loseConnection()
class DIPClientFactory(protocol.ClientFactory):
 """ Factory used to instantiate DIP protocol instances with
 correct username, password and domain.
 """
 protocol = DIPUpdater
 # simply collect data for login and provide accessors to them
 def _ _init_ _(self, username, password, domain):
 self.u = username
 self.p = password
 self.d = domain
 def getUsername(self):
 return self.u
 def getPassword(self):
 return self.p
 def getDomain(self):
 return self.d
 def clientConnectionLost(self, connector, reason):
 ''' terminate script when we have disconnected '''
 reactor.stop()
 def clientConnectionFailed(self, connector, reason):
 ''' show error message in case of network problems '''
 print 'Connection failed. Reason:', reason
class Options(usage.Options):
 ''' parse options from commandline or config script '''
 optParameters = [['server', 's', 'gnudip2.yi.org', 'DIP Server'],
 ['port', 'p', 3495, 'DIP Server port'],
 ['username', 'u', 'durdn', 'Username'],
 ['password', 'w', None, 'Password'],
 ['domain', 'd', 'durdn.yi.org', 'Domain']]
if _ _name_ _ == '_ _main_ _':
 # running as main script: first, get all the needed options
 config = Options()
 try:
 config.parseOptions()
 except usage.UsageError, errortext:
 print '%s: %s' % (sys.argv[0], errortext)
 print '%s: Try --help for usage details.' % (sys.argv[0])
 sys.exit(1)
 server = config['server']
 port = int(config['port'])
 password = config['password']
 if not password:
 print 'Password not entered. Try --help for usage details.'
 sys.exit(1)
 # and now, start operations (via Twisted's ``reactor'')
 reactor.connectTCP(server, port,
 DIPClientFactory(config['username'], password, config['domain']))
 reactor.run()

Discussion

I wanted to use a Dynamic DNS Service called yi.org, but I did not like the option of installing the
suggested small client application to update my IP address on my OpenBSD box. So I resorted to
writing the script shown in this recipe. I put it into my crontab to keep my domain always up-to-
date with my dynamic IP address at home.

This little script is now at version 0.4, and its development history is quite instructive. I thought
that even the first version. 0.1, which I got working in a few minutes, effectively demonstrated
the power of the Twisted framework in developing network applications, so I posted that version
on the ActiveState cookbook site. Lo and beholdMark first, then Andrew, showered me with
helpful suggestions, and I repeatedly updated the script in response to their advice. So it now
demonstrates even better, not just the power of Twisted, but more generally the power of
collaborative development in an open-source or free-software community.

To give just one example: originally, I had overridden buildProtocol and passed the factory

object to the protocol object explicitly. The factory object, in the Twisted framework architecture,
is where shared state is kept (in this case, the username, password, and domain), so I had to
ensure the protocol knew about the factoryI thought. It turns out that, exactly because just
about every protocol needs to know about its factory object, Twisted takes care of it in its own
default implementation of buildProtocol, making the factory object available as the factory

attribute of every protocol object. So, my code, which duplicated Twisted's built-in functionality
in this regard, was simply ripped out, and the recipe's code is simpler and better as a result.

Too often, software is presented as a finished and polished artifact, as if it sprang pristine and
perfect like Athena from Zeus' forehead. This gives entirely the wrong impression to budding
software developers, making them feel inadequate because their code isn't born perfect and fully
developed. So, as a counterweight, I thought it important to present one little story about how
software actually grows and develops!

One last detail: it's tempting to place methods updateIP and removeIP in the DIPProtocol class,
to ease the writing of subclasses such as DIPUpdater. However, in my view, that would be an
over-generalization, overkill for such a simple, lightweight recipe as Python and Twisted make
this one. In practice we won't need all that many dynamic IP protocol subclasses, and if it turns
out that we're wrong and we do, in fact, need them, hey, refactoring is clearly not a hard task
with such a fluid, dynamic language and powerful frameworks to draw on. So, respect the prime
directive: "do the simplest thing that can possibly work."

In a sense, the code in this recipe could be said to violate the prime directive, because it uses an
elegant object-oriented architecture with an abstract base class, a concrete subclass to specialize
it, and, in the factory class, accessor methods rather than simple attribute access for the login
data (i.e., user, password, domain). All of these niceties are lifesavers in big programs, but they
admittedly could be foregone for a program of only 120 lines (which would shrink a little further
if it didn't use all these niceties). However, adopting a uniform style of program architecture,
even for small programs, eases the refactoring task in those not-so-rare cases where a small
program grows into a big one. So, I have deliberately developed the habit of always coding in
such an "elegant OO way", and once the habit is acquired, I find that it enhances, rather than
reduces, my productivity.

See Also

The GnuDIP protocol is specified at http://gnudip2.sourceforge.net/gnudip-
www/latest/gnudip/html/protocol.html; Twisted is at http://www.twistedmatrix.com/.

http://gnudip2.sourceforge.net/gnudip-
http://www.twistedmatrix.com/

Recipe 13.16. Connecting to IRC and Logging Messages
to Disk

Credit: Gian Mario Tagliaretti, J P Calderone

Problem

You want to connect to an IRC (Internet Relay Chat) server, join a channel, and store private
messages into a file on your hard disk for future reading.

Solution

The Twisted framework has excellent support for many network protocols, including IRC, so we
can perform this recipe's task with a very simple script:

from twisted.internet import reactor, protocol
from twisted.protocols import irc
class LoggingIRCClient(irc.IRCClient):
 logfile = file('/tmp/msg.txt', 'a+')
 nickname = 'logging_bot'
 def signedOn(self):
 self.join('#test_py')
 def privmsg(self, user, channel, message):
 self.logfile.write(user.split('!')[0] + ' -> ' + message + '\n')
 self.logfile.flush()
def main():
 f = protocol.ReconnectingClientFactory()
 f.protocol = LoggingIRCClient
 reactor.connectTCP('irc.freenode.net', 6667, f)
 reactor.run()
if _ _name_ _ == '_ _main_ _':
 main()

Discussion

If, for some strange reason, you cannot use Twisted, then you can implement similar
functionality from scratch based only on the Python Standard Library. Here's a reasonable
approachnowhere as simple, solid, and robust as, and lacking the beneficial performance of,
Twisted, but nevertheless sort of workable:

import socket
SERVER = 'irc.freenode.net'
PORT = 6667
NICKNAME = 'logging_bot'
CHANNEL = '#test_py'
IRC = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def irc_conn():
 IRC.connect((SERVER, PORT))
def send_data(command):
 IRC.send(command + '\n')

def join(channel):
 send_data("JOIN %s" % channel)
def login(nickname, username='user', password=None,
 realname='Pythonist', hostname='Helena', servername='Server'):
 send_data("USER %s %s %s %s" %
 (username, hostname, servername, realname))
 send_data("NICK %s" % nickname)
irc_conn()
login(NICKNAME)
join(CHANNEL)
filetxt = open('/tmp/msg.txt', 'a+')
try:
 while True:
 buffer = IRC.recv(1024)
 msg = buffer.split()
 if msg[0] == "PING":
 # answer PING with PONG, as RFC 1459 specifies
 send_data("PONG %s" % msg[1])
 if msg [1] == 'PRIVMSG' and msg[2] == NICKNAME:
 nick_name = msg[0][:msg[0].find("!")]
 message = ' '.join(msg[3:])
 filetxt.write(nick_name.lstrip(':') + ' -> ' +
 message.lstrip(':') + '\n')
 filetxt.flush()
finally:
 filetxt.close()

For this roll-our-own reimplementation, we do need some understanding of the protocol's RFC,
such as the need to answer a server's PING with a proper PONG to confirm that our connection is
alive. In any case, since the code has already grown to over twice as much as Twisted requires,
we've omitted niceties (which are very important for reliable unattended operation) such as
automatic reconnection attempts when the connection drops, which Twisted gives us effortlessly
via its protocol.ReconnectingClientFactory.

See Also

Documentation for the standard library module socket in the Library Reference and Python in a
Nutshell; twisted is at http://www.twistedmatrix.com.

http://www.twistedmatrix.com

Recipe 13.17. Accessing LDAP Servers

Credit: John Nielsen

Problem

You need to access an LDAP (Lightweight Directory Access Protocol) server from your Python
programs.

Solution

The simplest solution is offered by the freely downloadable third-party extension ldap
(http://python-ldap.sourceforge.net). This script shows a few LDAP operations with ldap:

try:
 path = 'cn=people,ou=office,o=company'
 l = ldap.open('hostname')
 # set which protocol to use, if you do not like the default
 l.protocol_version = ldap.VERSION2
 l.simple_bind('cn=root,ou=office,o=company','password')
 # search for surnames beginning with a
 # available options for how deep a search you want:
 # LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL,LDAP_SCOPE_SUBTREE,
 a = l.search_s(path, ldap.SCOPE_SUBTREE, 'sn='+'a*')
 # delete fred
 l.delete_s('cn=fred,'+path)
 # add barney
 # note: objectclass depends on the LDAP server
 user_info = {'uid':'barney123',
 'givenname':'Barney',
 'cn':'barney123',
 'sn':'Smith',
 'telephonenumber':'123-4567',
 'facsimiletelephonenumber':'987-6543',
 'objectclass':('Remote-Address','person', 'Top'),
 'physicaldeliveryofficename':'Services',
 'mail':'fred123@company.com',
 'title':'programmer',
 }
 id = 'cn=barney,'+path
 l.add_s(id, user_info.items())
except ldap.LDAPError, error:
 print 'problem with ldap:', error

Discussion

The ldap module wraps the open source Openldap C API. However, with ldap, your Python

program can talk to various versions of LDAP servers, as long as they're standards compliant,
not just to Openldap servers.

http://python-ldap.sourceforge.net

The recipe shows a script with a few example uses of the ldap module. For simplicity, all the
functions the recipe calls from the library are the '_s' versions (e.g., search_s): this means the

functions are synchronousthat is, they wait for a response or an error code and don't return
control to your program until either an error or a response appears from the server.
Asynchronous programming is less elementary than synchronous, although it can often offer far
better performance and scalability.

LDAP is widely used to keep and coordinate network-accessible information, particularly in large
and geographically distributed organizations. Essentially, LDAP lets you organize information,
search for it, create new items, and delete existing items. The ldap module lets your Python

program perform the search, creation, and deletion functions.

See Also

http://python-ldap.sourceforge.net/docs.shtml for all the documentation about the ldap module

and other relevant pointers.

http://python-ldap.sourceforge.net/docs.shtml

Chapter 14. Web Programming

Introduction

Recipe 14.1. Testing Whether CGI Is Working

Recipe 14.2. Handling URLs Within a CGI Script

Recipe 14.3. Uploading Files with CGI

Recipe 14.4. Checking for a Web Page's Existence

Recipe 14.5. Checking Content Type via HTTP

Recipe 14.6. Resuming the HTTP Download of a File

Recipe 14.7. Handling Cookies While Fetching Web Pages

Recipe 14.8. Authenticating with a Proxy for HTTPS Navigation

Recipe 14.9. Running a Servlet with Jython

Recipe 14.10. Finding an Internet Explorer Cookie

Recipe 14.11. Generating OPML Files

Recipe 14.12. Aggregating RSS Feeds

Recipe 14.13. Turning Data into Web Pages Through Templates

Recipe 14.14. Rendering Arbitrary Objects with Nevow

Introduction

Credit: Andy McKay

The Web has been a key technology for many years now, and it has become unusual to develop
an application that doesn't involve some aspects of the Web. From showing a help file in a
browser to using web services, the Web has become an integral part of most applications.

I came to Python through a rather tortuous path of ASP (Active Server Pages), then Perl, some
Zope, and then Python. Looking back, it seems strange that I didn't find Python earlier, but the
dominance of Perl and ASP (and later PHP) in this area makes it difficult for new developers to
see the advantages of Python shining through all the other languages.

Unsurprisingly, Python is an excellent language for web development, and, as a batteries
included language, Python comes with most of the modules you need. The relatively recent
inclusion of xmlrpclib in the Python Standard Library is a reassuring indication that batteries

continue to be added as the march of technology requires, making the standard libraries even
more useful. One of the modules I often use is urllib, which demonstrates the power of a
simple, well-designed modulesaving a file from the Web in two lines (using urlretrieve) is easy.
The cgi module is another example of a module that has enough functionality to work with, but

not too much to make your scripts slow and bloated.

Compared to other languages, Python seems to have an unusually large number of application
servers and templating languages. While it's easy to develop anything for the Web in Python
"from scratch", it would be peculiar and unwise to do so without first looking at the application
servers available. Rather than continually recreating dynamic pages and scripts, the community
has taken on the task of building these application servers to allow other users to create the
content in easy-to-use templating systems.

Zope is the most well-known product in this space and provides an object-oriented interface to
web publishing. With features too numerous to mention, Zope allows a robust and powerful
object-publishing environment. The new, revolutionary major release, Zope 3, makes Zope more
Pythonic and powerful than ever. Quixote and WebWare are two other application servers with
similar, highly modular designs. Any of these can be a real help to the overworked web
developer who needs to reuse components and to give other users the ability to create web sites.
The Twisted network-programming framework, increasingly acknowledged as the best-of-breed
Python framework for asynchronous network programming, is also starting to expand into the
web application server field, with its newer "Nevow" offshoot, which you'll also find used in some
of the recipes in this chapter.

For all that, an application server is just too much at times, and a simple CGI script is really all
you need. Indeed, the very first recipe, Recipe 14.1, demonstrates all the ingredients you need
to make sure that your web server and Python CGI scripting setup are working correctly. Writing
a CGI script doesn't get much simpler than this, although, as the recipe's discussion points out,
you could use the cgi.test function to make it even shorter.

Another common web-related task is the parsing of HTML, either on your own site or on other
web sites. Parsing HTML tags correctly is not as simple as many developers first think, as they
optimistically assume a few regular expressions or string searches will see them through.
However, we have decided to deal with such issues in other chapters, such as Chapter 1, rather
than in this one. After all, while HTML was born with and for the Web, these days HTML is also
often used in other contexts, such as for distributing documentation. In any case, most web
developers create more than just web pages, so, even if you, the reader, primarily identify as a
web developer, and maybe turned to this chapter as your first one in the book, you definitely
should peruse the rest of the book, too: many relevant, useful recipes in other chapters describe
parsing XML, reading network resources, performing systems administration, dealing with

images, and many great ideas about developing in Python, testing your programs, and
debugging them!

Recipe 14.1. Testing Whether CGI Is Working

Credit: Jeff Bauer, Carey Evans

Problem

You want a simple CGI (Common Gateway Interface) program to use as a starting point for your
own CGI programming or to determine whether your setup is functioning properly.

Solution

The cgi module is normally used in Python CGI programming, but here we use only its escape

function to ensure that the value of an environment variable doesn't accidentally look to the
browser as HTML markup. We do all of the real work ourselves in the following script:

#!/usr/local/bin/python
print "Content-type: text/html"
print
print "<html><head><title>Situation snapshot</title></head><body><pre>"
import sys
sys.stderr = sys.stdout
import os
from cgi import escape
print "Python %s" % sys.version
keys = os.environ.keys()
keys.sort()
for k in keys:
 print "%s\t%s" % (escape(k), escape(os.environ[k]))
print "</pre></body></html>"

Discussion

CGI is a standard that specifies how a web server runs a separate program (often known as a
CGI script) that generates a web page dynamically. The protocol specifies how the server
provides input and environment data to the script and how the script generates output in return.
You can use any language to write your CGI scripts, and Python is well suited for the task.

This recipe is a simple CGI program that takes no input and just displays the current version of
Python and the environment values. CGI programmers should always have some simple code
handy to drop into their cgi-bin directories. You should run this script before wasting time
slogging through your Apache configuration files (or whatever other web server you want to use
for CGI work). Of course, cgi.test does all this and more, but it may, in fact, do too much. It
does so much, and so much is hidden inside cgi's innards, that it's hard to tweak it to reproduce

any specific problems you may be encountering in true scripts. Tweaking the program in this
recipe, on the other hand, is very easy, since it's such a simple program, and all the parts are
exposed.

Besides, this little script is already quite instructive in its own way. The starting line,
#!/usr/local/bin/python, must give the absolute path to the Python interpreter with which you

want to run your CGI scripts, so you may need to edit it accordingly. A popular solution for non-
CGI scripts is to have a first line (the so-called shebang line) that looks something like this:

#!/usr/bin/env python

However, this approach puts you at the mercy of the PATH environment setting, since it runs the
first program named python that it finds on the PATH, and that may well not be what you want

under CGI, where you don't fully control the environment. Incidentally, many web servers
implement the shebang line even when running under non-Unix systems, so that, for CGI use
specifically, it's not unusual to see Python scripts on Windows start with a first line such as:

#!c:/python23/python.exe

Another issue you may be contemplating is why the import statements are not right at the start
of the script, as is the usual Python style, but are preceded by a few print statements. The
reason is that import could fail if the Python installation is terribly misconfigured. In case of

failure, Python emits diagnostics to standard error (which is typically directed to your web server
logs, depending on how you set up and configured your web server), and nothing will go to
standard output. The CGI standard demands that all output be on standard output, so we first
ensure that a minimal quantity of output will display a result to a visiting browser. Then,
assuming that import sys succeeds (if it fails, the whole Python installation is so badly broken

that you can do very little about it!), we immediately perform the following assignment:

sys.stderr = sys.stdout

This assignment statement ensures that error output will go to standard output, so that you'll
have a chance to see it in the visiting browser. You can perform other import operations or do

further work in the script only when this is done. Another option makes getting tracebacks for
errors in CGI scripts much simpler. Simply add the following at the start of your script:

import cgitb; cgitb.enable()

and the standard Python library module cgitb takes care of whatever else is needed to get error

tracebacks on the browser. However, as already stated, the point of this recipe is to show how
everything is done, rather than just reusing prepackaged funcitonality.

One last reflection is that, in Python 2.4, instead of the three lines:

keys = os.environ.keys()
keys.sort()
for k in keys:

used in the recipe, you could use the single line:

for k in sorted(os.environ):

Unfortunately, since CGI scripts must often run in environments you do not control, I cannot
suggest you code to a specific, recent version of Python in this particular caseparticularly not a
script such as this one, which is meant to let you examine and check out the exact circumstances
under which your CGI runs.

Yet another consideration, not strictly related to Python, is that this script is coded to emit
correct HTML. Just about all known browsers let you get away with skipping most of the HTML
tags that this script outputs, but why skimp on correctness, relying on the browser to patch your
holes? It costs little to emit correct HMTL, so you should get into the habit of doing things right,
when the cost is so modest. (I wish more authors of web pages, and of programs producing web
pages, shared this sentiment. If they did, there would be a lot less broken HTML out on the

Web!)

See Also

Documentation on the cgi and cgitb standard library modules in the Library Reference and

Python in a Nutshell; a basic introduction to the CGI protocol is available at
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

Recipe 14.2. Handling URLs Within a CGI Script

Credit: Jürgen Hermann

Problem

You need to build URLs within a CGI scriptfor example, to send an HTTP redirection header.

Solution

To build a URL within a script, you need information such as the hostname and script name.
According to the CGI standard, the web server sets up a lot of useful information in the process
environment of a script before it runs the script itself. In a Python script, we can access the
process environment as the dictionary os.environ, an attribute of the standard Python library os

module, and through accesses to the process environment build our own module of useful helper
functions:

import os, string
def isSSL():
 """ Return true if we are on an SSL (https) connection. """
 return os.environ.get('SSL_PROTOCOL', '') != ''
def getScriptname():
 """ Return the scriptname part of the URL ("/path/to/my.cgi"). """
 return os.environ.get('SCRIPT_NAME', '')
def getPathinfo():
 """ Return the remaining part of the URL. """
 pathinfo = os.environ.get('PATH_INFO', '')
 # Fix for a well-known bug in IIS/4.0
 if os.name == 'nt':
 scriptname = getScriptname()
 if pathinfo.startswith(scriptname):
 pathinfo = pathinfo[len(scriptname):]
 return pathinfo
def getQualifiedURL(uri=None):
 """ Return a full URL starting with schema, servername, and port.
 Specifying uri causes it to be appended to the server root URL
 (uri must then start with a slash).
 """
 schema, stdport = (('http', '80'), ('https', '443'))[isSSL()]
 host = os.environ.get('HTTP_HOST', '')
 if not host:
 host = os.environ.get('SERVER_NAME', 'localhost')
 port = os.environ.get('SERVER_PORT', '80')
 if port != stdport: host = host + ":" + port
 result = "%s://%s" % (schema, host)
 if uri: result = result + uri
 return result
def getBaseURL():
 """ Return a fully qualified URL to this script. """
 return getQualifiedURL(getScriptname())

Discussion

URLs can be manipulated in numerous ways, but many CGI scripts have common needs. This
recipe collects a few typical high-level functional needs for URL synthesis from within CGI scripts.
You should never hard-code hostnames or absolute paths in your scripts. Doing so makes it
difficult to port the scripts elsewhere or rename a virtual host. The CGI environment has
sufficient information available to avoid such hard-coding. By importing this recipe's code as a
module, you can avoid duplicating code in your scripts to collect and use that information in
typical ways.

The recipe works by accessing information in os.environ, the attribute of Python's standard os

module that collects the process environment of the current process and lets your script access it
as if it were a normal Python dictionary. In particular, os.environ has a get method, just like a

normal dictionary does, that returns either the mapping for a given key or, if that key is missing,
a default value that you supply in the call to get. This recipe performs all accesses through
os.environ.get, thus ensuring sensible behavior even if the relevant environment variables

have been left undefined by your web server (which should never happenbut not all web servers
are free of bugs).

Among the functions presented in this recipe, getQualifiedURL is the one you'll use most often.

It transforms a URI (Universal Resource Identifier) into a URL on the same host (and with the
same schema) used by the CGI script that calls it. It gets the information from the environment
variables HTTP_HOST, SERVER_NAME, and SERVER_PORT. Furthermore, it can handle secure (https)
as well as normal (http) connections, and selects between the two by using the isSSL function,

which is also part of this recipe.

Suppose you need to redirect a visiting browser to another location on this same host. Here's
how you can use a function from this recipe, hard-coding only the redirect location on the host
itself, but not the hostname, port, and normal or secure schema:

example redirect header:
print "Location:", getQualifiedURL("/go/here")

See Also

Documentation on the os standard library module in the Library Reference and Python in a

Nutshell; a basic introduction to the CGI protocol is available at
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

Recipe 14.3. Uploading Files with CGI

Credit: Noah Spurrier, Georgy Pruss

Problem

You need to enable the visitors to your web site to upload files by means of a CGI script.

Solution

Net of any security checks, safeguards against denial of service (DOS) attacks, and the like, the
task boils down to what's exemplified in the following CGI script:

#!/usr/local/bin/python
import cgi
import cgitb; cgitb.enable()
import os, sys
try: import msvcrt # are we on Windows?
except ImportError: pass # nope, no problem
else: # yep, need to set I/O to binary mode
 for fd in (0, 1): msvcrt.setmode(fd, os.O_BINARY)
UPLOAD_DIR = "/tmp"
HTML_TEMPLATE = \
"""<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>Upload Files</title>
</head><body><h1>Upload Files</h1>
<form action="%(SCRIPT_NAME)s" method="POST" enctype="multipart/form-data">
File name: <input name="file_1" type="file">

File name: <input name="file_2" type="file">

File name: <input name="file_3" type="file">

<input name="submit" type="submit">
</form> </body> </html>"""
def print_html_form():
 """ print the form to stdout, with action set to this very script (a
 'self-posting form': script both displays AND processes the form)."""
 print "content-type: text/html; charset=iso-8859-1\n"
 print HTML_TEMPLATE % {'SCRIPT_NAME': os.environ['SCRIPT_NAME']}
def save_uploaded_file(form_field, upload_dir):
 """ Save to disk a file just uploaded, form_field being the name of the
 file input field on the form. No-op if field or file is missing."""
 form = cgi.FieldStorage()
 if not form.has_key(form_field): return
 fileitem = form[form_field]
 if not fileitem.file: return
 fout = open(os.path.join(upload_dir, fileitem.filename), 'wb')
 while True:
 chunk = fileitem.file.read(100000)
 if not chunk: break
 fout.write(chunk)
 fout.close()
save_uploaded_file("file_1", UPLOAD_DIR)
save_uploaded_file("file_2", UPLOAD_DIR)

save_uploaded_file("file_3", UPLOAD_DIR)
print_html_form()

Discussion

The CGI script shown in this recipe is very bare-bones, but it does get the job done. It's a self-
posting script: it displays the upload form, and it processes the form when the user submits it,
complete with any uploaded files. The script just saves files to an upload directory, which in the
recipe is simply set to /tmp.

The script as presented takes no precaution against DOS attacks, so a user could try to fill up
your disk with endless uploads. If you deploy this script on a system that is accessible to the
public, do add checks to limit the number and size of files written to disk, perhaps depending,
also, on how much disk space is still available. A version that might perhaps be more to your
liking can be found at http://zxw.nm.ru/test_w_upload.py.htm.

See Also

Documentation on the cgi, cgitb, and msvcrt standard library modules in the Library Reference

and Python in a Nutshell.

http://zxw.nm.ru/test_w_upload.py.htm

Recipe 14.4. Checking for a Web Page's Existence

Credit: James Thiele, Rogier Steehouder

Problem

You want to check whether an HTTP URL corresponds to an existing web page.

Solution

Using httplib allows you to easily check for a page's existence without actually downloading the

page itself, just its headers. Here's a module implementing a function to perform this task:

"""
httpExists.py
A quick and dirty way to check whether a web file is there.
Usage:
>>> import httpExists
>>> httpExists.httpExists('http://www.python.org/')
True
>>> httpExists.httpExists('http://www.python.org/PenguinOnTheTelly')
Status 404 Not Found : http://www.python.org/PenguinOnTheTelly
False
"""
import httplib, urlparse
def httpExists(url):
 host, path = urlparse.urlsplit(url)[1:3]
 if ':' in host:
 # port specified, try to use it
 host, port = host.split(':', 1)
 try:
 port = int(port)
 except ValueError:
 print 'invalid port number %r' % (port,)
 return False
 else:
 # no port specified, use default port
 port = None
 try:
 connection = httplib.HTTPConnection(host, port=port)
 connection.request("HEAD", path)
 resp = connection.getresponse()
 if resp.status == 200: # normal 'found' status
 found = True
 elif resp.status == 302: # recurse on temporary redirect
 found = httpExists(urlparse.urljoin(url,
 resp.getheader('location', '')))
 else: # everything else -> not found
 print "Status %d %s : %s" % (resp.status, resp.reason, url)
 found = False
 except Exception, e:
 print e._ _class_ _, e, url

 found = False
 return found
def _test():
 import doctest, httpExists
 return doctest.testmod(httpExists)
if _ _name_ _ == "_ _main_ _":
 _test()

Discussion

While this recipe is very simple and runs quite fast (thanks to the ability to use the HTTP
command HEAD to get just the headers, not the body, of the page), it may be too simplistic for

your specific needs: the HTTP result codes you might need to deal with may go beyond the
simple 200 success code, and 302 temporary redirect, to include permanent redirects, temporary
inaccessibility, permission problems, and so on.

In my case, I needed to check the correctness of a huge number of mutual links among pages of
a site generated by a complex web application on an intranet, so I knew I had the privilege of
relying on a simple check for "200 or bust." At any rate, you can use this simple recipe as a
starting point to which to add any refinements you determine you actually need.

See Also

Documentation on the urlparse and httplib standard library modules in the Library Reference

and Python in a Nutshell.

Recipe 14.5. Checking Content Type via HTTP

Credit: Bob Stockwell

Problem

You need to determine whether a URL, or an open file, obtained from urllib.open on a URL, is
of a particular content type (such as 'text' for HTML or 'image' for GIF).

Solution

The content type of any resource can easily be checked through the pseudo-file that
urllib.urlopen returns for the resource. Here is a function to show how to perform such

checks:

import urllib
def isContentType(URLorFile, contentType='text'):
 """ Tells whether the URL (or pseudofile from urllib.urlopen) is of
 the required content type (default 'text').
 """
 try:
 if isinstance(URLorFile, str):
 thefile = urllib.urlopen(URLorFile)
 else:
 thefile = URLorFile
 result = thefile.info().getmaintype() == contentType.lower()
 if thefile is not URLorFile:
 thefile.close()
 except IOError:
 result = False # if we couldn't open it, it's of _no_ type!
 return result

Discussion

For greater flexibility, this recipe accepts either the result of a previous call to urllib.urlopen,
or a URL in string form. In the latter case, the Solution opens the URL with urllib and, at the

end, closes the resulting pseudo-file again. If the attempt to open the URL fails, the recipe
catches the IOError and returns a result of False, considering that a URL that cannot be opened

is of no type at all, and therefore in particular is not of the type the caller was checking for.
(Alternatively, you might prefer to propagate the exception; if that's what you want, remove the
TRy and except clause headers and the result = False assignment that is the body of the
except clause.)

Whether the pseudo-file was passed in or opened locally from a URL string, the info method of
the pseudo-file gives as its result an instance of mimetools.Message (which doesn't mean you
need to import mimetools yourselfurllib does all that's needed). On that object, we can call
any of several methods to get the content type, depending on what exactly we wantgettype to
get both main and subtype with a slash in between (as in 'text/plain'), getmaintype to get the
main type (as in 'text'), or getsubtype to get the subtype (as in 'plain'). In this recipe, we want

the main content type.

The string result from all of the type interrogation methods is always lowercase, so we take the
precaution of calling the lower method on parameter contentType as well, before comparing for

equality.

See Also

Documentation on the urllib and mimetools standard library modules in the Library Reference

and Python in a Nutshell; a list of important content types is at
http://www.utoronto.ca/ian/books/html4ed/appb/mimetype.html; a helpful explanation of the
significance of content types at http://ppewww.ph.gla.ac.uk/~flavell/www/content-type.html.

http://www.utoronto.ca/ian/books/html4ed/appb/mimetype.html
http://ppewww.ph.gla.ac.uk/~flavell/www/content-type.html

Recipe 14.6. Resuming the HTTP Download of a File

Credit: Chris Moffitt

Problem

You need to resume an HTTP download of a file that has been partially transferred.

Solution

Downloads of large files are sometimes interrupted. However, a good HTTP server that supports
the Range header lets you resume the download from where it was interrupted. The standard
Python module urllib lets you access this functionality almost seamlessly: you just have to add

the required header and intercept the error code that the server sends to confirm that it will
respond with a partial file. Here is a function, with a little helper class, to perform this task:

import urllib, os
class myURLOpener(urllib.FancyURLopener):
 """ Subclass to override err 206 (partial file being sent); okay for us """
 def http_error_206(self, url, fp, errcode, errmsg, headers, data=None):
 pass # Ignore the expected "non-error" code
def getrest(dlFile, fromUrl, verbose=0):
 myUrlclass = myURLOpener()
 if os.path.exists(dlFile):
 outputFile = open(dlFile, "ab")
 existSize = os.path.getsize(dlFile)
 # If the file exists, then download only the remainder
 myUrlclass.addheader("Range","bytes=%s-" % (existSize))
 else:
 outputFile = open(dlFile, "wb")
 existSize = 0
 webPage = myUrlclass.open(fromUrl)
 if verbose:
 for k, v in webPage.headers.items():
 print k, "=", v
 # If we already have the whole file, there is no need to download it again
 numBytes = 0
 webSize = int(webPage.headers['Content-Length'])
 if webSize == existSize:
 if verbose:
 print "File (%s) was already downloaded from URL (%s)" % (
 dlFile, fromUrl)
 else:
 if verbose:
 print "Downloading %d more bytes" % (webSize-existSize)
 while True:
 data = webPage.read(8192)
 if not data:
 break
 outputFile.write(data)
 numBytes = numBytes + len(data)
 webPage.close()

 outputFile.close()
 if verbose:
 print "downloaded", numBytes, "bytes from", webPage.url
 return numbytes

Discussion

The HTTP Range header lets the web server know that you want only a certain range of data to
be downloaded, and this recipe takes advantage of this header. Of course, the server needs to
support the Range header, but since the header is part of the HTTP 1.1 specification, it's widely
supported. This recipe has been tested with Apache 1.3 as the server, but I expect no problems
with other reasonably modern servers.

The recipe lets urllib.FancyURLopener do all the hard work of adding a new header, as well as
the normal handshaking. I had to subclass the standard class from urllib only to make it known

that the error 206 is not really an error in this caseso you can proceed normally. In the function,
I also perform extra checks to quit the download if I've already downloaded the entire file.

Check out HTTP 1.1 RFC (2616) to learn more about the meaning of the headers. You may find a
header that is especially useful, and Python's urllib lets you send any header you want.

See Also

Documentation on the urllib standard library module in the Library Reference and Python in a

Nutshell; the HTTP 1.1 RFC (http://www.ietf.org/rfc/rfc2616.txt).

http://www.ietf.org/rfc/rfc2616.txt

Recipe 14.7. Handling Cookies While Fetching Web
Pages

Credit: Mike Foord, Nikos Kouremenos

Problem

You need to fetch web pages (or other resources from the web) that require you to handle
cookies (e.g., save cookies you receive and also reload and send cookies you had previously
received from the same site).

Solution

The Python 2.4 Standard Library provides a cookielib module exactly for this task. For Python
2.3, a third-party ClientCookie module works similarly. We can write our code to ensure usage

of the best available cookie-handling moduleincluding none at all, in which case our program will
still run but without saving and resending cookies. (In some cases, this might still be OK, just
maybe slower.) Here is a script to show how this concept works in practice:

import os.path, urllib2
from urllib2 import urlopen, Request
COOKIEFILE = 'cookies.lwp' # "cookiejar" file for cookie saving/reloading
first try getting the best possible solution, cookielib:
try:
 import cookielib
except ImportError: # no cookielib, try ClientCookie instead
 cookielib = None
 try:
 import ClientCookie
 except ImportError: # nope, no cookies today
 cj = None # so, in particular, no cookie jar
 else: # using ClientCookie, prepare everything
 urlopen = ClientCookie.urlopen
 cj = ClientCookie.LWPCookieJar()
 Request = ClientCookie.Request
else: # we do have cookielib, prepare the jar
 cj = cookielib.LWPCookieJar()
Now load the cookies, if any, and build+install an opener using them
if cj is not None:
 if os.path.isfile(COOKIEFILE):
 cj.load(COOKIEFILE)
 if cookielib:
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
 urllib2.install_opener(opener)
 else:
 opener = ClientCookie.build_opener(ClientCookie.HTTPCookieProcessor(cj))
 ClientCookie.install_opener(opener)
for example, try a URL that sets a cookie
theurl = 'http://www.diy.co.uk'
txdata = None # or, for POST instead of GET, txdata=urrlib.urlencode(somedict)
txheaders = {'User-agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'}

try:
 req = Request(theurl, txdata, txheaders) # create a request object
 handle = urlopen(req) # and open it
except IOError, e:
 print 'Failed to open "%s".' % theurl
 if hasattr(e, 'code'):
 print 'Error code: %s.' % e.code
else:
 print 'Here are the headers of the page:'
 print handle.info()
you can also use handle.read() to get the page, handle.geturl() to get the
the true URL (could be different from `theurl' if there have been redirects)
if cj is None:
 print "Sorry, no cookie jar, can't show you any cookies today"
else:
 print 'Here are the cookies received so far:'
 for index, cookie in enumerate(cj):
 print index, ': ', cookie
 cj.save(COOKIEFILE) # save the cookies again

Discussion

The third-party module ClientCookie, available for download at

http://wwwsearch.sourceforge.net/ClientCookie/, was so successful that, in Python 2.4, its
functionality has been added to the Python Standard Libraryspecifically, the cookie-handling
parts in the new module cookielib, the rest in the current version of urllib2.

So, you do need to be careful if you want your code to work just as well on any 2.4 installation
(using the latest and greatest cookielib) or an installation of Python 2.3 with ClientCookie on

top. As long as we're at it, we might as well handle running on a 2.3 installation that does not
have ClientCookierun anyway, just don't save and resend cookies when we lack library code to

do so. On some sites, the inability to handle cookies will just be a bother and perhaps a
performance hit due to the loss of session continuity, but the site will still work. Other sites, of
course, will be completely unusable without cookies.

The recipe's code is an exercise in the careful management of an idiom that's an essential part of
making your Python code portable among releases and installations, while ensuring minimal
graceful degradation when third-party modules you'd like to use just aren't there. The idiom is
known as conditional import and is expressed as follows:

try:

 import something
except ImportError: # 'something' not available

 ...code to do without, degrading gracefully...
else: # 'something' IS available, hooray!

 ...code to run only when something is there...
and then, go on with the rest of your program

...code able to run with or w/o `something'...

The use of "conditional import" is particularly delicate in this recipe because ClientCookie and
cookielib aren't drop-in replacements for each othertherefore, careful management is indeed

necessary. But, if you study this recipe, you will see that it is not rocket scienceit just requires
attention.

One key technique is to make double use of a small number of names as "flags", with value None

when the object to which they would normally refer is not available. In this recipe, we do that for
cookielib (which refers to the module of that name when there is one, and otherwise to None)

http://wwwsearch.sourceforge.net/ClientCookie/

and cj (which refers to a cookie-jar object when there is any, and otherwise to None). Even

better, when feasible, is to assign names appropriately to refer to the best available object under
the circumstances: the recipe does that for variables urlopen and Request. Note how crucial it is
for this purpose that Python treats all objects as first class: urlopen is a function, Request is a
class, cookielib (if any) a module, cj (if any) an instance object. The distinction, however, doesn't
matter in the least: the name-object reference concept is exactly the same in every case, with
total uniformity, simplicity, and power.

When either cookielib or ClientCookie is available, the cookies are saved in a file in cookie jar

format (a useful plain-text format that is automatically handled by either module but can also be
examined and modified with text editors and other programs). If the file already exists when the
program runs, cookies are loaded from the file, ready to be sent back to the appropriate sites.

My reason for developing this code is that I'm developing a cgi-proxy, approx.py
(http://www.voidspace.org.uk/atlantibots/pythonutils.html#cgiproxy), which needs to be able to
handle cookies when feasible. To keep the proxy usable on various versions of Python, and
ensure it degrades gracefully when no cookie-handling library is available, I needed to develop
the carefully managed conditional imports that are shown in the recipe's Solution. I decided to
share them in this recipe since, besides the importance of cookie handling, conditional imports
are such a generally important Python idiom. Particularly when installing your code on a server
you don't control, it is unfortunately quite common to have little say in which version of Python is
running, nor in which third-party extensions are installedexactly the kind of situation that
requires the conditional import technique to ensure your code does the best it can under the
circumstances.

See Also

Documentation on the cookielib and urllib2 standard library modules in the Library Reference
for Python 2.4; ClientCookie is at http://wwwsearch.sourceforge.net/ClientCookie/.

http://www.voidspace.org.uk/atlantibots/pythonutils.html#cgiproxy
http://wwwsearch.sourceforge.net/ClientCookie/

Recipe 14.8. Authenticating with a Proxy for HTTPS
Navigation

Credit: John Nielsen

Problem

You need to use httplib for HTTPS navigation through a proxy that requires basic
authentication, but httplib out of the box supports HTTPS only through proxies that do not

require authentication.

Solution

Unfortunately, it takes a wafer-thin amount of trickery to achieve this recipe's task. Here is a
script that is just tricky enough:

import httplib, base64, socket
parameters for the script
user = 'proxy_login'; passwd = 'proxy_pass'
host = 'login.yahoo.com'; port = 443
phost = 'proxy_host'; pport = 80
setup basic authentication
user_pass = base64.encodestring(user+':'+passwd)
proxy_authorization = 'Proxy-authorization: Basic '+user_pass+'\r\n'
proxy_connect = 'CONNECT %s:%s HTTP/1.0\r\n' % (host, port)
user_agent = 'User-Agent: python\r\n'
proxy_pieces = proxy_connect+proxy_authorization+user_agent+'\r\n'
connect to the proxy
proxy_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
proxy_socket.connect((phost, pport))
proxy_socket.sendall(proxy_pieces+'\r\n')
response = proxy_socket.recv(8192)
status = response.split()[1]
if status!='200':
 raise IOError, 'Connecting to proxy: status=%s' % status
trivial setup for SSL socket
ssl = socket.ssl(proxy_socket, None, None)
sock = httplib.FakeSocket(proxy_socket, ssl)
initialize httplib and replace the connection's socket with the SSL one
h = httplib.HTTPConnection('localhost')
h.sock = sock
and finally, use the now-HTTPS httplib connection as you wish
h.request('GET', '/')
r = h.getresponse()
print r.read()

Discussion

HTTPS is essentially HTTP spoken on top of an SSL connection rather than a plain socket. So, this

recipe connects to the proxy with basic authentication at the very lowest level of Python socket
programming, wraps an SSL socket around the proxy connection thus secured, and finally plays
a little trick under httplib's nose to use that laboriously constructed SSL socket in place of the
plain socket in an HTTPConnection instance. From that point onwards, you can use the normal
httplib approach as you wish.

See Also

Documentation on the socket and httplib standard library modules in the Library Reference and

Python in a Nutshell.

Recipe 14.9. Running a Servlet with Jython

Credit: Brian Zhou

Problem

You need to code a servlet using Jython.

Solution

Java (and Jython) are most often deployed server-side, and thus servlets are a typical way of
deploying your code. Jython makes servlets very easy to use. Here is a tiny "hello world"
example servlet:

import java, javax, sys
class hello(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/html")
 out = response.getOutputStream()
 print >>out, """<html>
<head><title>Hello World</title></head>
<body>Hello World from Jython Servlet at %s!
</body>
</html>
""" % (java.util.Date(),)
 out.close()
 return

Discussion

This recipe is no worse than a typical JSP (Java Server Page) (see
http://jywiki.sourceforge.net/index.php?JythonServlet for setup instructions). Compare this
recipe to the equivalent Java code: with Python, you're finished coding in the same time it takes
to set up the framework in Java. Most of your setup work will be strictly related to Tomcat or
whichever servlet container you use. The Jython-specific work is limited to copying jython.jar to
the WEB-INF/lib subdirectory of your chosen servlet context and editing WEB-INF/web.xml to
add <servlet> and <servlet-mapping> tags so that org.python.util.PyServlet serves the
*.py <url-pattern>.

The key to this recipe (like most other Jython uses) is that your Jython scripts and modules can
import and use Java packages and classes just as if the latter were Python code or extensions. In
other words, all of the Java libraries that you could use with Java code are similarly usable with
Python (i.e., Jython) code. This example servlet first uses the standard Java servlet response
object to set the resulting page's content type (to text/html) and to get the output stream.
Afterwards, it can print to the output stream, since the latter is a Python file-like object. To
further show off your seamless access to the Java libraries, you can also use the Date class of
the java.util package, incidentally demonstrating how it can be printed as a string from Jython.

See Also

http://jywiki.sourceforge.net/index.php?JythonServlet

Information on Java servlets at http://java.sun.com/products/servlet/; information on
JythonServlet at http://jywiki.sourceforge.net/index.php?JythonServlet.

http://java.sun.com/products/servlet/
http://jywiki.sourceforge.net/index.php?JythonServlet

Recipe 14.10. Finding an Internet Explorer Cookie

Credit: Andy McKay

Problem

You need to find a specific IE cookie.

Solution

Cookies that your browser has downloaded contain potentially useful information, so it's
important to know how to get at them. With Internet Explorer (IE), one simple approach is to
access the registry to find where the cookies are, then read them as files. Here is a module with
the function you need for that purpose:

import re, os, glob
import win32api, win32con
def _getLocation():
 """ Examines the registry to find the cookie folder IE uses """
 key = r'Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders'
 regkey = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, key, 0,
 win32con.KEY_ALL_ACCESS)
 num = win32api.RegQueryInfoKey(regkey)[1]
 for x in range(num):
 k = win32api.RegEnumValue(regkey, x)
 if k[0] == 'Cookies':
 return k[1]
def _getCookieFiles(location, name):
 """ Rummages through cookie folder, returns filenames including `name'.
 `name' is normally the domain, e.g 'activestate' to get cookies for
 activestate.com (also e.g. for activestate.foo.com, but you can
 filter out such accidental hits later). """
 filemask = os.path.join(location, '*%s*' % name)
 return glob.glob(filemask)
def _findCookie(filenames, cookie_re):
 """ Look through a group of files for a cookie that satisfies a
 given compiled RE, returning first such cookie found, or None. """
 for file in filenames:
 data = open(file, 'r').read()
 m = cookie_re.search(data)
 if m: return m.group(1)
def findIECookie(domain, cookie):
 """ Finds the cookie for a given domain from IE cookie files """
 try:
 l = _getLocation()
 except Exception, err:
 # Print a debug message
 print "Error pulling registry key:", err
 return None
 # Found the key; now find the files and look through them
 f = _getCookieFiles(l, domain)
 if f:

 cookie_re = re.compile('%s\n(.*?)\n' % cookie)
 return _findCookie(f, cookie_re)
 else:
 print "No cookies for domain (%s) found" % domain
 return None
if _ _name_ _=='_ _main_ _':
 print findIECookie(domain='kuro5hin', cookie='k5-new_session')

Discussion

While Netscape cookies are in a text file, IE keeps cookies as files in a directory, and you need to
access the registry to find which directory that is. To access the Windows registry, this recipe
uses the PyWin32 Windows-specific Python extensions; as an alternative, you could use the
_winreg module that is part of Python's standard distribution for Windows. This recipe's code has

been tested and works on IE 5 and 6.

In the recipe, the _getLocation function accesses the registry and finds and returns the directory
that IE is using for cookie files. The _getCookieFiles function receives the directory as an
argument and uses standard module glob to return all filenames in the directory whose names

include a particular requested domain name. The _findCookie function opens and reads all such
files in turn, until it finds one whose contents satisfy a compiled regular expression that the
function receives as an argument. It then returns the substring of the file's contents
corresponding to the first parenthesized group in the regular expression, or None when no

satisfactory file is found. As the leading underscore in the names indicates, these are all internal
functions, used only as implementation details of the only function this module is meant to
expose, namely findIECookie, which uses the other functions to locate and return the value of a
specific cookie for a given domain.

An alternative to this recipe would be to write a Python extension, or use calldll or ctypes, to
access the InternetGetCookie API function in Wininet.DLL, as documented on MSDN (Microsoft

Developer Network).

See Also

The Unofficial Cookie FAQ (http://www.cookiecentral.com/faq/) is chock-full of information on
cookies; documentation for win32api and win32con in PyWin32

(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows API documentation available from
Microsoft (http://msdn.microsoft.com); Mark Hammond and Andy Robinson, Python
Programming on Win32 (O'Reilly); calldll is available at Sam Rushing's page
(http://www.nightmare.com/~rushing/dynwin/); ctypes is at

http://sourceforge.net/projects/ctypes.

http://www.cookiecentral.com/faq/
http://starship.python.net/crew/mhammond/win32/Downloads.html
http://www.activestate.com/ActivePython/
http://msdn.microsoft.com
http://www.nightmare.com/~rushing/dynwin/
http://sourceforge.net/projects/ctypes

Recipe 14.11. Generating OPML Files

Credit: Moshe Zadka, Premshree Pillai, Anna Martelli Ravenscroft

Problem

OPML (Outline Processor Markup Language) is a standard file format for sharing subscription lists
used by RSS (Really Simple Syndication) feed readers and aggregators. You want to share your
subscription list, but your blogging site provides only a FOAF (Friend-Of-A-Friend) page, not one
in the standard OPML format.

Solution

Use urllib2 to open and read the FOAF page and xml.dom to parse the data received; then,

output the data in the proper OPML format to a file. For example, LiveJournal is a popular
blogging site that provides FOAF pages; here's a module with the functions you need to turn
those pages into OPML files:

#!/usr/bin/python
import sys
import urllib2
import HTMLParser
from xml.dom import minidom, Node
def getElements(node, uri, name):
 ''' recursively yield all elements w/given namespace URI and name '''
 if (node.nodeType==Node.ELEMENT_NODE and
 node.namespaceURI==uri and
 node.localName==name):
 yield node
 for node in node.childNodes:
 for node in getElements(node, uri, name):
 yield node
class LinkGetter(HTMLParser.HTMLParser):
 ''' HTML parser subclass which collecs attributes of link tags '''
 def _ _init_ _(self):
 HTMLParser.HTMLParser._ _init_ _(self)
 self.links = []
 def handle_starttag(self, tag, attrs):
 if tag == 'link':
 self.links.append(attrs)
def getRSS(page):
 ''' given a `page' URL, returns the HREF to the RSS link '''
 contents = urllib2.urlopen(page)
 lg = LinkGetter()
 try:
 lg.feed(contents.read(1000))
 except HTMLParser.HTMLParserError:
 pass
 links = map(dict, lg.links)
 for link in links:
 if (link.get('rel')=='alternate' and
 link.get('type')=='application/rss+xml'):

 return link.get('href')
def getNicks(doc):
 ''' given an XML document's DOM, `doc', yields a triple of info for
 each contact: nickname, blog URL, RSS URL '''
 for element in getElements(doc, 'http://xmlns.com/foaf/0.1/', 'knows'):
 person, = getElements(element, 'http://xmlns.com/foaf/0.1/', 'Person')
 nick, = getElements(person, 'http://xmlns.com/foaf/0.1/', 'nick')
 text, = nick.childNodes
 nickText = text.toxml()
 blog, = getElements(person, 'http://xmlns.com/foaf/0.1/', 'weblog')
 blogLocation = blog.getAttributeNS(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', 'resource')
 rss = getRSS(blogLocation)
 if rss:
 yield nickText, blogLocation, rss
def nickToOPMLFragment((nick, blogLocation, rss)):
 ''' given a triple (nickname, blog URL, RSS URL), returns a string
 that's the proper OPML outline tag representing that info '''
 return '''
 <outline text="%(nick)s"
 htmlUrl="%(blogLocation)s"
 type="rss"
 xmlUrl="%(rss)s"/>
 ''' % dict(nick=nick, blogLocation=blogLocation, rss=rss)
def nicksToOPML(fout, nicks):
 ''' writes to file `fout' the OPML document representing the
 iterable of contact information `nicks' '''
 fout.write('''<?xml version="1.0" encoding="utf-8"?>
 <opml version="1.0">
 <head><title>Subscriptions</title></head>
 <body><outline title="Subscriptions">
 ''')
 for nick in nicks:
 print nick
 fout.write(nickToOPMLFragment(nick))
 fout.write("</outline></body></opml>\n")
def docToOPML(fout, doc):
 ''' writes to file `fout' the OPLM for XML DOM `doc' '''
 nicksToOPML(fout, getNicks(doc))
def convertFOAFToOPML(foaf, opml):
 ''' given URL `foaf' to a FOAF page, writes its OPML equivalent to
 a file named by string `opml' '''
 f = urllib2.urlopen(foaf)
 doc = minidom.parse(f)
 docToOPML(file(opml, 'w'), doc)
def getLJUser(user):
 ''' writes an OPLM file `user'.opml for livejournal's FOAF page '''
 convertFOAFToOPML('http://www.livejournal.com/users/%s/data/foaf' % user,
 user+".opml")
if _ _name_ _ == '_ _main_ _':
 # example, when this module is run as a main script
 getLJUser('moshez')

Discussion

RSS feeds have become extremely popular for reading news, blogs, wikis, and so on. OPML is
one of the standard file formats used to share subscription lists among RSS fans. This recipe
generates an OPML file that can be opened with any RSS reader. With an OPML file, you can

share your favorite subscriptions with anyone you like, publish it to the Web, and so on.

getElements is a convenience function that gets written in almost every XML DOM-processing
application. It recursively scans the document, finding nodes that satisfy certain criteria. This
version of getElements is somewhat quick and dirty, but it is good enough for our purposes.
getNicks is where the heart of the parsing brains lie. It calls getElements to look for "foaf:knows"
nodes, and inside those, it looks for the "foaf:nick" element, which contains the LiveJournal
nickname of the user, and uses a generator to yield the nicknames in this FOAF document.

Note an important idiom used four times in the body of getNicks:

 name, = some iterable

The key is the comma after name, which turns the left-hand side of this assignment into a one-
item tuple, making the assignment into what's technically known as an unpacking assignment.

Unpacking assignments are of course very popular in Python (see Recipe 19.4 for a technique to
make them even more widely applicable) but normally with at least two names on the left of the
assignment, such as:

 aname, another = iterable yielding 2 items

The idiom used in getNicks has exactly the same function, but it demands that the iterable yield
exactly one item (otherwise, Python raises a ValueError exception). Therefore, the idiom has

the same semantics as:

 _templist = some iterable
 if len(_templist) != 1:
 raise ValueError, 'too many values to unpack'
 name = _templist[0]
 del _templist

Obviously, the name, = ... idiom is much cleaner and more compact than this equivalent snippet,

which is worth keeping in mind for the next time you need to express the same semantics.

nicksToOPML, together with its helper function nickToOPMLFragment, generates the OPML, while
docToOPML ties together getNicks and nicksToOPML into a FOAF->OPML convertor. saveUser is
the main function, which actually interacts with the operating system (accessing the network to
get the FOAF, and using a file to save the OPML).

The recipe has a specific function getLJUser(user) to work with the LiveJournal
(http://www.livejournal.com) friends lists. However, the point is that the main
convertFOAFToOPML function is general enough to use for other sites as well. The various helper
functions can also come in handy in your own different but related tasks. For example, the
getRSS function (with some aid from its helper class LinkGetter) finds and returns a link to the
RSS feed (if one exists) for a given web site.

See Also

About OPML, http://feeds.scripting.com/whatIsOpml; for more on RSS readers,
http://blogspace.com/rss/readers; for FOAF Vocabulary Specification,
http://xmlns.com/foaf/0.1/.

http://www.livejournal.com
http://feeds.scripting.com/whatIsOpml
http://blogspace.com/rss/readers
http://xmlns.com/foaf/0.1/

Recipe 14.12. Aggregating RSS Feeds

Credit: Valentino Volonghi, Peter Cogolo

Problem

You need to aggregate potentially very high numbers of RSS feeds, with top performance and
scalability.

Solution

Parsing RSS feeds in Python is best done with Mark Pilgrim's Universal Feed Parser from
http://www.feedparser.org, but aggregation requires a lot of network activity, in addition to
parsing.

As for any network task demanding high performance, Twisted is a good starting point. Say that
you have in out.py a module that binds a huge list of RSS feed names to a variable named
rss_feed, each feed name represented as a tuple consisting of a URL and a description (e.g., you
can download a module exactly like this from http://xoomer.virgilio.it/dialtone/out.py.). You can
then build an aggregator server on top of that list, as follows:

#!/usr/bin/python
from twisted.internet import reactor, protocol, defer
from twisted.web import client
import feedparser, time, sys, cStringIO
from out import rss_feed as rss_feeds
DEFERRED_GROUPS = 60 # Number of simultaneous connections
INTER_QUERY_TIME = 300 # Max Age (in seconds) of each feed in the cache
TIMEOUT = 30 # Timeout in seconds for the web request
dict cache's structure will be the following: { 'URL': (TIMESTAMP, value) }
cache = { }
class FeederProtocol(object):
 def _ _init_ _(self):
 self.parsed = 0
 self.error_list = []
 def isCached(self, site):
 ''' do we have site's feed cached (from not too long ago)? '''
 # how long since we last cached it (if never cached, since Jan 1 1970)
 elapsed_time = time.time() - cache.get(site, (0, 0))[0]
 return elapsed_time < INTER_QUERY_TIME
 def gotError(self, traceback, extra_args):
 ''' an error has occurred, print traceback info then go on '''
 print traceback, extra_args
 self.error_list.append(extra_args)
 def getPageFromMemory(self, data, addr):
 ''' callback for a cached page: ignore data, get feed from cache '''
 return defer.succeed(cache[addr][1])
 def parseFeed(self, feed):
 ''' wrap feedparser.parse to parse a string '''
 try: feed+''
 except TypeError: feed = str(feed)
 return feedparser.parse(cStringIO.StringIO(feed))

http://www.feedparser.org
http://xoomer.virgilio.it/dialtone/out.py

 def memoize(self, feed, addr):
 ''' cache result from feedparser.parse, and pass it on '''
 cache[addr] = time.time(), feed
 return feed
 def workOnPage(self, parsed_feed, addr):
 ''' just provide some logged feedback on a channel feed '''
 chan = parsed_feed.get('channel', None)
 if chan:
 print chan.get('title', '(no channel title?)')
 return parsed_feed
 def stopWorking(self, data=None):
 ''' just for testing: we close after parsing a number of feeds.
 Override depending on protocol/interface you use to communicate
 with this RSS aggregator server.
 '''
 print "Closing connection number %d..." % self.parsed
 print "=-"*20
 self.parsed += 1
 print 'Parsed', self.parsed, 'of', self.END_VALUE
 if self.parsed >= self.END_VALUE:
 print "Closing all..."
 if self.error_list:
 print 'Observed', len(self.error_list), 'errors'
 for i in self.error_list:
 print i
 reactor.stop()
 def getPage(self, data, args):
 return client.getPage(args, timeout=TIMEOUT)
 def printStatus(self, data=None):
 print "Starting feed group..."
 def start(self, data=None, standalone=True):
 d = defer.succeed(self.printStatus())
 for feed in data:
 if self.isCached(feed):
 d.addCallback(self.getPageFromMemory, feed)
 d.addErrback(self.gotError, (feed, 'getting from memory'))
 else:
 # not cached, go and get it from the web directly
 d.addCallback(self.getPage, feed)
 d.addErrback(self.gotError, (feed, 'getting'))
 # once gotten, parse the feed and diagnose possible errors
 d.addCallback(self.parseFeed)
 d.addErrback(self.gotError, (feed, 'parsing'))
 # put the parsed structure in the cache and pass it on
 d.addCallback(self.memoize, feed)
 d.addErrback(self.gotError, (feed, 'memoizing'))
 # now one way or another we have the parsed structure, to
 # use or display in whatever way is most appropriate
 d.addCallback(self.workOnPage, feed)
 d.addErrback(self.gotError, (feed, 'working on page'))
 # for testing purposes only, stop working on each feed at once
 if standalone:
 d.addCallback(self.stopWorking)
 d.addErrback(self.gotError, (feed, 'while stopping'))
 if not standalone:
 return d
class FeederFactory(protocol.ClientFactory):
 protocol = FeederProtocol()
 def _ _init_ _(self, standalone=False):
 self.feeds = self.getFeeds()

 self.standalone = standalone
 self.protocol.factory = self
 self.protocol.END_VALUE = len(self.feeds) # this is just for testing
 if standalone:
 self.start(self.feeds)
 def start(self, addresses):
 # Divide into groups all the feeds to download
 if len(addresses) > DEFERRED_GROUPS:
 url_groups = [[] for x in xrange(DEFERRED_GROUPS)]
 for i, addr in enumerate(addresses):
 url_groups[i%DEFERRED_GROUPS].append(addr[0])
 else:
 url_groups = [[addr[0]] for addr in addresses]
 for group in url_groups:
 if not self.standalone:
 return self.protocol.start(group, self.standalone)
 else:
 self.protocol.start(group, self.standalone)
 def getFeeds(self, where=None):
 # used for a complete refresh of the feeds, or for testing purposes
 if where is None:
 return rss_feeds
 return None
if _ _name_ _=="_ _main_ _":
 f = FeederFactory(standalone=True)
 reactor.run()

Discussion

RSS is a lightweight XML format designed for sharing headlines, news, blogs, and other web
contents. Mark Pilgrim's Universal Feed Parser (http://www.feedparser.org) does a great job of
parsing "feeds" that can be in various dialects of RSS format into a uniform memory
representation based on Python dictionaries. This recipe builds on top of feedparser to provide a

full-featured RSS aggregator.

This recipe is scalable to very high numbers of feeds and is usable in multiclient environments.
Both characteristics depend essentially on this recipe being built with the powerful Twisted
framework for asynchronous network programming. A simple web interface built with Nevow
(from http://www.nevow.com) is also part of the latest complete package for this aggregator,
which you can download from my blog at http://vvolonghi.blogspot.com/.

An important characteristic of this recipe's code is that you can easily set the following operating
parameters to improve performance:

Number of parallel connections to use for feed downloading

Timeout for each feed request

Maximum age of a feed in the aggregator's cache

Being able to set these parameters helps you balance performance, network load, and load on
the machine on which you're running the aggregator.

See Also

Universal Feed Parser is at http://www.feedparser.org; the latest version of this RSS aggregator

http://www.feedparser.org
http://www.nevow.com
http://vvolonghi.blogspot.com/
http://www.feedparser.org

is at http://vvolonghi.blogspot.com/; Twisted is at http://twistedmatrix.com/.

http://vvolonghi.blogspot.com/
http://twistedmatrix.com/

Recipe 14.13. Turning Data into Web Pages Through
Templates

Credit: Valentino Volonghi

Problem

You need to turn some Python data into web pages based on templates, meaning files or strings
of HTML code in which the data gets suitably inserted.

Solution

Templating with Python can be accomplished in an incredible number of ways. but my favorite is
Nevow.

The Nevow web toolkit works with the Twisted networking framework to provide excellent
templating capabilities to web sites that are coded on the basis of Twisted's powerful
asynchronous model. For example, here's one way to render a list of dictionaries into a web page
according to a template, with Nevow and Twisted:

from twisted.application import service, internet
from nevow import rend, loaders, appserver
dct = [{'name':'Mark', 'surname':'White', 'age':'45'},
 {'name':'Valentino', 'surname':'Volonghi', 'age':'21'},
 {'name':'Peter', 'surname':'Parker', 'age':'Unknown'},
]
class Pg(rend.Page):
 docFactory = loaders.htmlstr("""
 <html><head><title>Names, Surnames and Ages</title></head>
 <body>
 <ul nevow:data="dct" nevow:render="sequence">
 <li nevow:pattern="item" nevow:render="mapping">
 <nevow:slot name="name"/>
 <nevow:slot name="surname"/>
 <nevow:slot name="age"/>

 </body>
 </html>
 """)
 def _ _init_ _(self, dct):
 self.data_dct = dct
 rend.Page._ _init_ _(self)
site = appserver.NevowSite(Pg(dct))
application = service.Application("example")
internet.TCPServer(8080, site).setServiceParent(application)

Save this code to nsa.tac. Now, entering at a shell command prompt twistd -noy nsa.tac serves
up the data, formatted into HTML as the template specifies, as a tiny web site. You can visit the
site, at http://localhost:8080, by running a browser on the same computer where the twistd
command is running. On the command window where twistd is running, you'll see a lot of

http://localhost:8080

information, roughly equivalent to a typical web server's log file.

Discussion

This recipe uses Twisted (http://www.twistedmatrix.com) for serving a little web site built with
Nevow (http://nevow.com/). Twisted is a large and powerful framework for writing all kinds of
Python programs that interact with the network (including, of course, web servers). Nevow is a
web application construction kit, normally used in cooperation with a Twisted server but usable in
other ways. For example, you could write Nevow CGI scripts that can run with any web server.
(Unfortunately, CGI scripts' performance might prove unsatisfactory for many applications, while
Twisted's performance and scalability are outstanding.)

A vast range of choices is available for packages you can use to perform templating with Python.
You can look up some of them at http://www.webwareforpython.org/Papers/Templates/ (which
lists a dozen packages suitable for use with the Webware web development toolkit), and specific
ones at http://htmltmpl.sourceforge.net/,
http://freespace.virgin.net/hamish.sanderson/htmltemplate.html,
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52305,
http://www.alcyone.com/pyos/empy/, http://www.entrian.com/PyMeld/... and many, many
more besides. I definitely don't claim to have thoroughly tried each and every one of these
dozens of templating systems in production situations, and I wonder whether anyone can
truthfully make such a claim! However, out of all I have tried, my favorite is Nevow.

Nevow builds web pages by working on the HTML DOM tree. Recipe 14.14 shows how you can
build such a DOM tree from within your program by using the stan subsystem of Nevow. This

recipe shows that you can also building a DOM tree from HTML source, known as a template. In
this case, for simplicity, we keep that template source in a string in our code, and load the DOM
for it by calling loaders.htmlstr; more commonly, we keep the template source in a separate
.html file, and load the DOM for it by calling loaders.htmlfile.

Examining the HTML string, you will notice it contains, besides standard HTML tags and
attributes, a few attributes and one tag from the 'nevow:' namespace, such as 'nevow:slot',
'nevow:data' and 'nevow:render'. These additions are in accord with the HTML standards, and

also, in practice, the additions work with all browsers. They amount to Nevow defining its own
small supplementary namespace, so that HTML templates can express directives to Nevow for
building a dynamic page from the template together with data coming from Python code. Note
that the attributes and tags in the 'nevow:' namespace do not remain in the HTML output from

Nevow: you can verify that, as you visit the web page served by this recipe's script, by asking
your browser to "view source". Nevertheless, it's important that template files are perfectly
correct HTML: this means those files can be edited with all kinds of specialized HTML editor
programs! So, like many other templating systems, Nevow chooses to have correct HTML as its
input, as well as (of course) as its output.

The 'nevow:data' directive defines the source of the data for the page: in this case, we use the
data_dct attribute of the Pg class instance which is building the page. The 'nevow:render'

directive defines the method to use for rendering the data into HTML strings. In this case, we use
two standard rendering methods supplied by Nevow itself: sequence, for rendering a sequence of
items, such as a list, one after the other; and mapping, for rendering items of a mapping, such
as a dictionary, based on the items' keys appearing as name attributes of nevow:slot tags. More
generally, we could code our own rendering methods in any class that subclasses rend.Page.

After defining the Pg class, the recipe continues by building a site object, then an application
object, then a TCP server on port 8080 using that site and applicationall of this building makes
up a common Twisted idiom. The source file nsa.tac into which you save the code from this
recipe is not meant to be run with the usual python interpreter. Rather, you should run nsa.tac
with the twistd command that you installed as part of Twisted's own installation procedure:
twistd handles all the startup, daemonization, and logging issues, depending on the flags we
pass to it. That is exactly why, by convention, one should normally use file extension .tac, rather
than .py, for source files that are meant to be run with twistd, rather than directly with pythonto

http://www.twistedmatrix.com
http://nevow.com/
http://www.webwareforpython.org/Papers/Templates/
http://htmltmpl.sourceforge.net/
http://freespace.virgin.net/hamish.sanderson/htmltemplate.html
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52305
http://www.alcyone.com/pyos/empy/
http://www.entrian.com/PyMeld/

avoid any confusion.

Given the experimental, toy-like nature of this recipe, you should pass the flags -noy, to ask
twistd to run in the foreground and to "log" information to standard output rather than to some
file. An even better idea is to read up on twistd in the Twisted documentation, to learn about all
the options for the flags.

See Also

Twisted is at http://www.twistedmatrix.com; Nevow is at http://nevow.com/.

http://www.twistedmatrix.com
http://nevow.com/

Recipe 14.14. Rendering Arbitrary Objects with Nevow

Credit: Valentino Volonghi, Matt Goodall

Problem

You're writing a web application that uses the Twisted networking framework and the Nevow
subsystem for web rendering. You need to be able to render some arbitrary Python objects to a
web page.

Solution

Interfaces and adapters are the Twisted and Nevow approach to this task. Here is a toy example
web server script to show how they work:

from twisted.application import internet, service
from nevow import appserver, compy, inevow, loaders, rend
from nevow import tags as T
Define some simple classes to be the example's "application data"
class Person(object):
 def _ _init_ _(self, firstName, lastName, nickname):
 self.firstName = firstName
 self.lastName = lastName
 self.nickname = nickname
class Bookmark(object):
 def _ _init_ _(self, name, url):
 self.name = name
 self.url = url
Adapter subclasses are the right way to join application data to the web:
class PersonView(compy.Adapter):
 """ Render a full view of a Person. """
 _ _implements_ _ = inevow.IRenderer
 attrs = 'firstName', 'lastName', 'nickname'
 def rend(self, data):
 return T.div(_class="View person") [
 T.p['Person'],
 T.dl[[(T.dt[attr], T.dd[getattr(self.original, attr)])
 for attr in self.attrs]
]
]
class BookmarkView(compy.Adapter):
 """ Render a full view of a Bookmark. """
 _ _implements_ _ = inevow.IRenderer
 attrs = 'name', 'url'
 def rend(self, data):
 return T.div(_class="View bookmark") [
 T.p['Bookmark'],
 T.dl[[(T.dt[attr], T.dd[getattr(self.original, attr)])
 for attr in self.attrs]
]
]
register the rendering adapters (could be done from a config textfile)

compy.registerAdapter(PersonView, Person, inevow.IRenderer)
compy.registerAdapter(BookmarkView, Bookmark, inevow.IRenderer)
some example data instances for the 'application'
objs = [
 Person('Valentino', 'Volonghi', 'dialtone'),
 Person('Matt', 'Goodall', 'mg'),
 Bookmark('Nevow', 'http://www.nevow.com'),
 Person('Alex', 'Martelli', 'aleax'),
 Bookmark('Alex', 'http://www.aleax.it/'),
 Bookmark('Twisted', 'http://twistedmatrix.com/'),
 Bookmark('Python', 'http://www.python.org'),
]
a simple Page that renders a list of objects
class Page(rend.Page):
 def render_item(self, ctx, data):
 return inevow.IRenderer(data)
 docFactory = loaders.stan(
 T.html[
 T.body[
 T.ul(data=objs, render=rend.sequence)[
 T.li(pattern='item')[render_item],
],
],
]
)
start this very-special-purpose tiny toy webserver:
application = service.Application('irenderer')
httpd = internet.TCPServer(8000, appserver.NevowSite(Page()))
httpd.setServiceParent(application)

Discussion

This recipe's purpose is to provide an example of how to get Nevow to render instances of
application classes directly to a web page. To supply this example, the recipe shows two classes,
Person and Bookmark, whose instances contain information which, one can suppose, is coming
from a database, or from a file, or from some other site on the web, wherever.

A key point is that the application classes do not get altered in any way to allow their instances to
be rendered onto web pages: rather, adaptation is used to allow instances of such classes to be
rendered through separate renderer-adapter classes.

We need two different adapters, one each for Person and Bookmark. We code the two adapters
as classes PersonView and BookmarkView, each inheriting from compy.Adapter and overriding
the rend method.

compy.Adapter is an abstract superclass intended just for this purpose: it accepts as its

constructor argument an object that must be adapted to another interface, and holds that object
as self.original for its subclasses' benefit. Each subclass asserts that it implements
inevow.IRenderer by listing that interface in its class-level _ _implements_ _ attribute.

inevow.IRenderer is an interface that supplies a rend method. The Nevow rendering pipeline
knows about IRenderer and calls the rend method of the interface to serialize objects to HTML.

Objects that implement the interface (on their own behalf or as adapters of other objects) can
directly become part of the rendering pipeline.

The two key statements of this recipe are the two calls to the registerAdapter function of
Nevow's module compy:

compy.registerAdapter(PersonView, Person, inevow.IRenderer)

compy.registerAdapter(BookmarkView, Bookmark, inevow.IRenderer)

These calls tell Nevow that PersonView is the class to use to adapt any instance of Person to
interface IRenderer, and similarly for BookmarkView and Bookmark. So, when the IRenderer

interface is called with an instance p of Person as its argument, it automatically returns an

adapter that is an instance of PersonView with p as its self.original (and, again, similarly for

Bookmark).

Note how accurately this approach distributes appropriate knowledge to the various parts of the
software and minimizes coupling among them while strengthening cohesion within each. Nevow
itself has no built-in knowledge of any application class nor of any specific adapter: nor does it
need any such knowledge. Nevow just specifies the IRenderer interface it needs for rendering
and the registerAdapter function used to inform the framework about adaptation connections.

Application-level classes neither have nor need any knowledge of the framework at all. Each
adapter class knows about the application level class it's adapting, the interface it's
implementing, and utilities such as the Adapter base class that the framework supplies (just to
factor out a little repetitive coding that would be needed otherwise), and the tags mechanism.

(The tags mechanism eases dynamic generation of HTML output. However, you could code
adapters to return strings with HTML markup directly, if that suited the needs of your specific
application better than the tags mechanism does.)

Finally, the recipe includes an example Page class which ties everything togetheragain, for
convenience, using tags to generate the output. Page uses (explicitly) the rend.sequence

renderer provided by Nevow to loop over a sequence and render each item, and (implicitly) the
various adapters, by "casting" each item to the IRenderer interface. The recipe ends with three

lines to build Twisted application and service objects and to put them together, so that running
this recipe's script with Twisted's twistd general-purpose daemon provides a small

demonstration one-page web site running on the local host at port 8000.

A more complete (and complicated) version of this recipe can be found as part of the Nevow 0.3
distribution, downloadable from http://www.nevow.com, as examples/irenderer.tac.

See Also

Nevow is at http://www.nevow.com; Twisted is at http://twistedmatrix.com/.

http://www.nevow.com
http://www.nevow.com
http://twistedmatrix.com/

Chapter 15. Distributed Programming
Introduction

Recipe 15.1. Making an XML-RPC Method Call

Recipe 15.2. Serving XML-RPC Requests

Recipe 15.3. Using XML-RPC with Medusa

Recipe 15.4. Enabling an XML-RPC Server to Be Terminated Remotely

Recipe 15.5. Implementing SimpleXMLRPCServer Niceties

Recipe 15.6. Giving an XML-RPC Server a wxPython GUI

Recipe 15.7. Using Twisted Perspective Broker

Recipe 15.8. Implementing a CORBA Server and Client

Recipe 15.9. Performing Remote Logins Using telnetlib

Recipe 15.10. Performing Remote Logins with SSH

Recipe 15.11. Authenticating an SSL Client over HTTPS

Introduction

Credit: Jeremy Hylton, Google, Inc.

The recipes in this chapter describe simple techniques for using Python in distributed systems.
Programming distributed systems is a difficult challenge, and recipes alone won't even come
close to completely solving it. The recipes help you get programs on different computers talking
to each other, so that you can start writing applications.

Remote Procedure Call (RPC) is an attractive approach to structuring a distributed system. The
details of network communication are exposed through an interface that looks like normal
procedure calls. When you call a function on a remote server, the RPC system is responsible for
all the details of communication. It encodes the arguments so they can be passed over the
network to the server, which might use different internal representations for the data. It invokes
the right function on the remote machine and waits for a response.

The recipes in this chapter use three different systems that provide RPC interfacesCommon
Object Request Broker Architecture (CORBA), Twisted's Perspective Broker (PB), and, in most
recipes, XML-RPC. These systems are attractive because they make it easy to connect programs
that can be running on different computers and might even be written in different languages.
CORBA is a rather "heavyweight" protocol, very rich in functionality, with specialized and
dedicated marshaling and transport layers (and much more besides). XML-RPC is a lightweight,
simple-to-use protocol, which uses XML to marshal the call and its associated data, and HTTP for
transport. Being simple and lightweight, XML-RPC is less functionally rich than CORBA. Both
CORBA and XML-RPC are well-established standards, with implementations available for a wide
variety of languages. In particular, XML-RPC is so simple and widespread that XML-RPC recipes
take up half this chapter, a good, if rough, indication of how often Pythonistas are using it in
preference to other distributed programming approaches.

PB is also "lightweight", while offering richer functionality than XML-RPC. However, PB is not a
separate standard but a part of the Twisted framework, so PB implementations are currently
limited to what Twisted itself provides and are mostly in Python. Perspective Broker is unusual
among RPC systems because it openly exposes at application level the fact that network
transactions are asynchronous, not synchronous like procedure calls within a single process.
Therefore, in PB, the launching of a call to the remote procedure does not necessarily imply an
immediate wait for the procedure's results; rather, the "result"s arrive "later" through a callback
mechanism (specifically, Twisted's deferred objects). This asynchronous approach, which is the

conceptual core of the Twisted framework, offers substantial advantages in terms of performance
and scalability of the "result"ing network applications, but it may take some getting used to.
Simon Foster's approach, shown in recipe, Recipe 15.7, is a simple way to get started exploring
Perspective Broker.

XML-RPC is well supported by the Python Standard Library, with the xmlrpclib module for
writing XML-RPC clients and the SimpleXMLRPCServer module for writing XML-RPC servers. For

Twisted, CORBA, and other RPC standards yet (such as the emerging SOAPSimple Object Access
Protocolsystem), you need to install third-party extensions before you can get started. The
recipes in this chapter include pointers to the software you need. Unfortunately, you will not find
pointers specifically to SOAP resources for Python in the recipes: for such pointers, I suggest you
check out http://pywebsvcs.sourceforge.net/.

The Python Standard Library also provides a set of modules for doing the lower-level work of
network programmingsocket, select, asyncore, and asynchat. The library also includes
modules for marshaling data and sending it across sockets: struct, pickle, xdrlib. Chapter 13,

includes recipes in which some of these modules are directly used, and Chapter 7, contains
recipes dealing with serialization and marshaling. These lower-level modules, in turn, provide the
plumbing for many other higher-level modules that directly support a variety of standard network

http://pywebsvcs.sourceforge.net/

protocols. Jeff Bauer offers Recipe 15.9, using the telnetlib module to send commands to remote
machines via the Telnet protocol. Telnet is not a very secure protocol, and thus, except for use
within well-protected LANs, has been largely supplanted by more secure protocols such as SSH
(Secure Shell). Peter Cogolo and Anna Martelli Ravenscroft offer similar functionality to Bauer's,
in Recipe 15.10, which uses SSH (via the third-party package paramiko) rather than Telnet.

Six of the recipes, just about half of the chapter, focus on XML-RPC. Rael Dornfest and Jeremy
Hylton demonstrate how to write an XML-RPC client program that retrieves data from O'Reilly's
Meerkat service. Recipe 15.1 is only three lines long (including the import statement): indeed,

this extreme conciseness is the recipe's main appeal.

Brian Quinlan and Jeff Bauer contribute two different recipes for constructing XML-RPC servers.
Quinlan, in Recipe 15.2, shows how to use the SimpleXMLRPCServer module from the Python

Standard Library to handle incoming requests. Bauer's is Recipe 15.3. Medusa, like Twisted, is a
framework for writing asynchronous network programs. In both cases, the libraries do most of
the work; other than a few lines of initialization and registration, the server looks like normal
Python code.

Christop Dietze (with contributions from Brian Quinlan and Jeff Bauer), in Recipe 15.4, elaborates
on the XML-RPC server theme by showing how to add the ability that enables remote clients to
terminate the server cleanly. Rune Hansen, in Recipe 15.5, shows how to add several minor but
useful niceties to your XML-RPC servers.

Peter Arwanitis, in Recipe 15.6, demonstrates how to implement an XML-RPC server with Twisted
and, at the same time, give your server a GUI, thanks to the wxPython GUI framework.

A strong alternative to XML-based protocols is CORBA, an object-based RPC mechanism using its
own protocol, IIOP (Internet Inter-Orb Protocol). CORBA is a mature technology compared to
XML-RPC (or, even more, SOAP, which isn't used in any of these recipesapparently, Pythonistas
aren't doing all that much with SOAP yet). CORBA was introduced in 1991. The Python language
binding was officially approved more recently, in February 2000, and several ORBs (Object
Request Brokersroughly, CORBA servers) support Python. Duncan Grisby, a researcher at AT&T
Laboratories in Cambridge (U.K.), describes the basics of getting a CORBA client and server
running in Recipe 15.8, which uses omniORB, a free ORB, and the Python binding he wrote for it.

CORBA has a reputation for complexity, but Grisby's recipe makes it look straightforward. More
steps are involved in the CORBA client than in the XML-RPC client example, but they are not
difficult. To connect an XML-RPC client to a server, you just need a URL. To connect a CORBA
client to a server, you need a URLa special corbaloc URLand you also need to know the server's

interface. Of course, you need to know the interface regardless of protocol, but CORBA uses it
explicitly. In general, CORBA offers more features than other distributed programming
frameworksinterfaces, type checking, passing references to objects, and more. CORBA also
supports just about every Python data type as argument or result.

Regardless of the protocols or systems you choose, the recipes in this chapter can help get you
started. Inter-program communication is an important part of building a distributed system, but
it's just one part. Once you have a client and server working, you'll find you have to deal with
other interesting, challenging problemserror detection, concurrency, and security, to name a few.
The recipes here won't solve those problems, but they will prevent you from getting caught up in
unimportant details of the communication protocols. Rob Riggs in Recipe 15.11 presents a simple
way to use HTTPS (as supported by the Python Standard Library module httplib) to

authenticate SSL clients; Simon Foster's previously mentioned Perspective Broker recipe
provides a way to implement one specific but frequent strategy for error detection and handling,
namely periodically trying to reconnect to a server after a timeout or explicitly discovered
network error.

Recipe 15.1. Making an XML-RPC Method Call

Credit: Rael Dornfest, Jeremy Hylton

Problem

You need to make a method call to an XML-RPC server.

Solution

The xmlrpclib module makes writing XML-RPC clients very easy. For example, we can use XML-

RPC to access O'Reilly's Meerkat server and get the five most recent items about Python:

from xmlrpclib import Server
server = Server("http://www.oreillynet.com/meerkat/xml-rpc/server.php")
print server.meerkat.getItems(
 {'search': '[Pp]ython', 'num_items': 5, 'descriptions': 0}
)

Discussion

XML-RPC is a simple, lightweight approach to distributed processing. xmlrpclib, which makes it

easy to write XML-RPC clients in Python, is part of the Python Standard Library.

To use xmlrpclib, you first instantiate a proxy to the server, calling the ServerProxy class (also
known by the name Server) and passing in the URL to which you want to connect. Then, on that

proxy instance, you can access and call whatever methods the remote XML-RPC server supplies.
In this case, you know that Meerkat supplies a getItems method, so you call the method of the

same name on the server proxy instance. The proxy relays the call to the server, waits for the
server to respond, and finally returns the call's results.

This recipe uses O'Reilly's Meerkat service, intended for syndication of contents such as news and
product announcements. Specifically, the recipe queries Meerkat for the five most recent items
mentioning either "Python" or "python". If you try this recipe, be warned that response times
from Meerkat are variable, depending on the quality of your Internet connection, the time of day,
and the level of traffic on the Internet. If the script takes a long time to answer, it doesn't mean
you did something wrongit just means you have to be patient!

Using xmlrpclib by passing raw dictionaries, as in this recipe's code, is quite workable but

somewhat unPythonic. Here's an easy alternative that looks nicer:

from xmlrpclib import Server
server = Server("http://www.oreillynet.com/meerkat/xml-rpc/server.php")
class MeerkatQuery(object):
 def _ _init_ _(self, search, num_items=5, descriptions=0):
 self.search = search
 self.num_items = num_items
 self.descriptions = descriptions
q = MeerkatQuery("[Pp]ython")
print server.meerkat.getItems(q)

You can package the instance attributes and their default values in several different ways, but
the main point of this variant is that, as the argument to the getItems method, an instance

object with the right attributes works just as well as a dictionary object with the same
information packaged as dictionary items.

See Also

The xmlrpclib module is part of the Python Standard Library and is well documented in its

chapter of the Library Reference portion of Python's online documentation. Meerkat is at
http://www.oreillynet.com/meerkat/.

http://www.oreillynet.com/meerkat/

Recipe 15.2. Serving XML-RPC Requests

Credit: Brian Quinlan

Problem

You need to implement an XML-RPC server.

Solution

Module SimpleXMLRPCServer, which is part of the Python Standard Library, makes writing XML-

RPC servers reasonably easy. Here's how you can write an XML-RPC server:

Server code sxr_server.py
import SimpleXMLRPCServer
class StringFunctions(object):
 def _ _init_ _(self):
 # Make all the functions in Python's standard string module
 # available as 'python_string.func_name' for each func_name
 import string
 self.python_string = string
 def _privateFunction(self):
 # This function cannot be called directly through XML-RPC because
 # it starts with an underscore character '_', i.e., it's "private"
 return "you'll never get this result on the client"
 def chop_in_half(self, astr):
 return astr[:len(astr)/2]
 def repeat(self, astr, times):
 return astr * times
if _ _name_ _=='_ _main_ _':
 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("localhost", 8000))
 server.register_instance(StringFunctions())
 server.register_function(lambda astr: '_' + astr, '_string')
 server.serve_forever()

And here is a client script that accesses the server you just wrote:

Client code sxr_client.py
import xmlrpclib
server = xmlrpclib.Server('http://localhost:8000')
print server.chop_in_half('I am a confident guy')
emits: I an a con
print server.repeat('Repetition is the key to learning!\n', 5)
emits 5 lines, all Repetition is the key to learning!
print server._string('<= underscore')
emits _<= underscore
print server.python_string.join(['I', 'like it!'], " don't ")
emits I don't like it!
print server._privateFunction() # this will throw an exception
terminates client script with traceback for xmlrpclib.Fault

Discussion

This recipe demonstrates the creation of a simple XML-RPC server using the
SimpleXMLRPCServer module of the standard Python library. The module contains a class of the

same name that listens for HTTP requests on a specified port and dispatches any XML-RPC calls
to registered instances or registered functions. This recipe demonstrates both usages. To create
a server, we instantiate the SimpleXMLRPCServer class, supplying the hostname and port for the
server. Then, on that instance, we call register_instance as many times as needed to make

other instances available as services. In addition, or as an alternative, we call
register_function to make functions similarly available as services. Once we have registered all
the instances and/or all the functions we want to expose, we call the serve_forever method of

the server instance, and our XML-RPC server is active. Yes, it is really that simple. The only
output on the shell prompt window on which you run the server is one line of log information
each time a client accesses the server; the only way to terminate the server is to send it an
interrupt, for example with a Ctrl-C keystroke.

Registering functions (as opposed to an instance) is necessary when a function name begins with
an underscore (_) or contains characters not allowed in Python identifiers (e.g., accented letters,

punctuation marks, etc.). Dotted names (e.g., python_string.join) are correctly resolved for
registered instances.

See Also

The SimpleXMLRPCServer module is part of the Python Standard Library and is documented in its

chapter of the Library Reference portion of Python's online documentation.

Recipe 15.3. Using XML-RPC with Medusa

Credit: Jeff Bauer

Problem

You need to establish a lightweight, highly scalable, distributed processing system and want to
use the XML-RPC protocol.

Solution

Package medusa lets you implement lightweight, highly scalable, asynchronous (event-driven)

network servers. An XML-RPC handler is included in the Medusa distribution. Here is how you can
code an XML-RPC server with Medusa:

xmlrpc_server.py
from socket import gethostname
from medusa.xmlrpc_handler import xmlrpc_handler
from medusa.http_server import http_server
from medusa import asyncore
class xmlrpc_server(xmlrpc_handler):
 # initialize and run the server
 def _ _init_ _(self, host=None, port=8182):
 if host is None:
 host = gethostname()
 hs = http_server(host, port)
 hs.install_handler(self)
 asyncore.loop()
 # an example of a method to be exposed via the XML-RPC protocol
 def add(self, op1, op2):
 return op1 + op2
 # the infrastructure ("plumbing") to expose methods
 def call(self, method, params):
 print "calling method: %s, params: %s" % (method, params)
 if method == 'add':
 return self.add(*params)
 return "method not found: %s" % method
if _ _name_ _ == '_ _main_ _':
 server = xmlrpc_server()

And here is a client script that accesses the server you just wrote:

xmlrpc_client.py
from socket import gethostname
from xmlrpclib import Transport, dumps
class xmlrpc_connection(object):
 def _ _init_ _(self, host=None, port=8182):
 if host is None:
 host = gethostname()
 self.host = "%s:%s" % (host, port)
 self.transport = Transport()

 def remote(self, method, params=()):
 """ Invoke the server with the given method name and parameters.
 The return value is always a tuple. """
 return self.transport.request(self.host, '/RPC2',
 dumps(params, method))
if _ _name_ _ == '_ _main_ _':
 connection = xmlrpc_connection()
 answer, = connection.remote("add", (40, 2))
 print "The answer is:", answer

Discussion

This recipe demonstrates remote method calls between two machines (or two processes, even on
the same machine) using the XML-RPC protocol and provides a complete example of working
client/server code.

XML-RPC is one of the easiest ways to handle distributed processing tasks. There's no messing
around with the low-level socket details, nor is it necessary to write an interface definition. The
protocol is platform and language neutral. The XML-RPC specification can be found at
http://www.xml-rpc.com and is well worth studying. It's nowhere as functionally rich as
heavyweight stuff like CORBA, but, to compensate, it is much simpler!

To run this recipe's Solution, you must download the Medusa library from
http://www.nightmare.com (the Python Standard Library includes the asyncore and asynchat

modules, originally from Medusa, but not the other parts of Medusa required for this recipe).
With Medusa, you implement an XML-RPC server by subclassing the xmlrpc_handler class and
passing an instance of your class to the install_handler method of an instance of
http_server. HTTP is the transport-level protocol used by the XML-RPC standard, and
http_server handles all transport-level issues on your behalf. You need to provide only the
handler part, by customizing xmlrpc_handler through subclassing and method overriding.
Specifically, you must override the call method, which the Medusa framework calls on your

instance with the name of the XML-RPC method being called, along with its parameters, as
arguments. This is exactly what we do in this recipe, in which we expose a single XML-RPC
method named add which accepts two numeric parameters and returns their sum as the
method's result.

This recipe's XML-RPC client uses xmlrpclib in a more sophisticated way than Recipe 15.1, by
accessing the TRansport class explicitly. In theory, this approach allows finer-grained control.

However, this recipe does not exert that kind of control, and it's rarely required in XML-RPC
clients that you actually deploy, anyway.

See Also

The xmlrpclib module is part of the Python Standard Library and is documented in a chapter of

the Library Reference portion of Python's online documentation. Medusa is at
http://www.nightmare.com.

http://www.xml-rpc.com
http://www.nightmare.com
http://www.nightmare.com

Recipe 15.4. Enabling an XML-RPC Server to Be
Terminated Remotely

Credit: Christoph Dietze, Brian Quinlan, Jeff Bauer

Problem

You are coding an XML-RPC server, using the Python Standard Library's SimpleXMLRPCServer

module, and you want to make it possible for a remote client to cause the XML-RPC server to exit
cleanly.

Solution

You have to use your own request-handling loop (instead of the serve_forever method of
SimpleXMLRPCServer) so that you can stop looping when appropriate. For example:

import SimpleXMLRPCServer
running = True
def finis():
 global running
 running = False
 return 1
server = SimpleXMLRPCServer.SimpleXMLRPCServer(('127.0.0.1', 8000))
server.register_function(finis)
while running:
 server.handle_request()

Discussion

SimpleXMLRPCServer's serve_forever method, as its name implies, attempts to keep serving

"forever"that is, it keeps serving until the whole server process is killed. Sometimes, it's useful to
allow remote clients to request a clean termination of a service by remotely calling a server-
exposed function, and this recipe demonstrates the simplest way to allow this functionality.

The finis function (which gets exposed to remote clients via the register_function call) sets the
global variable running to False (and then returns something that is not None because the XML-
RPC protocol cannot deal with the None object). Using the while running loop, instead of a
serve_forever call, then ensures that the server stops serving and terminates when the variable

running becomes false.

If you prefer to subclass SimpleXMLRPCServer, you can obtain a similar effect by overriding the
serve_forever method: that is, instead of placing the simple while running:
server.handle_request loop inline, you can code, for example (with the same function finis as

in the recipe's Solution):

class MyServer(SimpleXMLRPCServer.SimpleXMLRPCServer):
 def serve_forever(self):
 while running:
 self.handle_request()
server = MyServer(('127.0.0.1', 8000))

server.register_function(finis)
server.serve_forever()

However, this alternative approach offers no special advantage (unless you have a fetish for
being object oriented for no particular purpose), and, since this alternative approach is telling a
little white lie (by using the name serve_forever for a method that does not keep serving

"forever"!), the simpler approach in the recipe's Solution can definitely be recommended.

See Also

The SimpleXMLRPCServer module is part of the Python Standard Library and is documented in a

chapter of the Library Reference portion of Python's online documentation.

Recipe 15.5. Implementing SimpleXMLRPCServer
Niceties

Credit: Rune Hansen

Problem

You are coding XML-RPC servers with the Python Standard Library SimpleXMLRPCServer class

and want to ensure you're using the simple but useful idioms that can ease your coding, or give
your servers more flexibility at no substantial cost to you.

Solution

Here are a few tweaks I generally use, to enhance my servers' usability, when I'm developing
servers based on SimpleXMLRPCServer:

give the base class a short, readable nickname
from SimpleXMLRPCServer import SimpleXMLRPCServer as BaseServer
class Server(BaseServer):
 def _ _init_ _(self, host, port):
 # accept separate hostname and portnumber and group them
 BaseServer._ _init_ _(self, (host, port))
 def server_bind(self):
 # allow fast restart of the server after it's killed
 import socket
 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 BaseServer.server_bind(self)
 allowedClientHosts = '127.0.0.1', '192.168.0.15',
 def verify_request(self, request, client_address):
 # forbid requests except from specific client hosts
 return client_address[0] in self.allowedClientHosts

Discussion

The recipe begins with a statement of the form from module import name as nickname, a Python

idiom that is often handy for importing something under a short and usable nickname. It's
certainly miles better than having to repeatedly write SimpleXMLRPCServer.SimpleXMLRPCServer

after a simple import statement, or using the ill-advised construct from module import *, which

mixes up all the namespaces and can often cause subtle and hard-to-find bugs.

The sole purpose of the _ _init_ _ statement of class Server is to accept host and port as

separate parameters and group them into the required tuple. I find myself often writing such
statements with the many Python functions and classes that require this address tuple grouping
(your tastes, of course, may be different).

By default, a server socket belonging to a process that dies is kept busy for quite a while.
Particularly during development, it is handy to kill such a process, edit the script, and restart
immediately. For such an immediate restart to work, you must ensure the code of your server
sets the SO_REUSEADDR option on the relevant socket, as the recipe's code does in its overridden
method server_bind.

Last but not least, the recipe overrides verify_request in order to apply a simple check that

refuses service except to requests coming from client hosts on a predefined list. This approach
doesn't provide rock-solid security, but nevertheless, it is potentially useful. Again, it's
particularly useful during development, to help avoid those cases where some other developer on
the same LAN accidentally connects his client to the server I'm just developing, and we both
experience puzzling problems until we figure out what's happened!

See Also

The SimpleXMLRPCServer module is part of the Python Standard Library and is documented in a

chapter of the Library Reference portion of Python's online documentation.

Recipe 15.6. Giving an XML-RPC Server a wxPython GUI

Credit: Peter Arwanitis, Alex Martelli

Problem

You are writing an XML-RPC server and want to add a GUI to it, or you're writing a GUI
application that you want to be able to interact as an XML-RPC server too.

Solution

As long as you use Twisted for the network interaction, and wxPython for the GUI, this task is
reasonably easy, since these packages can cooperate through the twisted.internet.wxreactor

module. You do need to have specific incantations at the start of your program, as follows:

To use wxPython and Twisted together, do the following, in exact order:
import wx
from twisted.internet import wxreactor
wxreactor.install()
from twisted.internet import reactor
Then, have whatever other imports as may be necessary to your program
from twisted.web import xmlrpc, server
class MyFrame(wx.Frame):
 ''' Main window for this wx application. '''
 def _ _init_ _(self, parent, ID, title, pos=wx.DefaultPosition,
 size=(200, 100), style=wx.DEFAULT_FRAME_STYLE):
 wx.Frame._ _init_ _(self, parent, ID, title, pos, size, style)
 wx.EVT_CLOSE(self, self.OnCloseWindow)
 def OnCloseWindow(self, event):
 self.Destroy()
 reactor.stop()
class MyXMLRPCApp(wx.App, xmlrpc.XMLRPC):
 ''' We're a wx Application _AND_ an XML-RPC server too. '''
 def OnInit(self):
 ''' wx-related startup code: builds the GUI. '''
 self.frame = MyFrame(None, -1, 'Hello')
 self.frame.Show(True)
 self.SetTopWindow(self.frame)
 return True
 # methods exposed to XML-RPC clients:
 def xmlrpc_stop(self):
 """ Closes the wx application. """
 self.frame.Close()
 return 'Shutdown initiated'
 def xmlrpc_title(self, x):
 """ Change the wx application's window's caption. """
 self.frame.SetTitle(x)
 return 'Title set to %r' % x
 def xmlrpc_add(self, x, y):
 """ Provide some computational services to clients. """
 return x + y
if _ _name_ _ == '_ _main_ _':

 # pass False to emit stdout/stderr to shell, not an additional wx window
 app = MyXMLRPCApp(False)
 # Make the wx application twisted-aware
 reactor.registerWxApp(app)
 # Make a XML-RPC Server listening to port 7080
 reactor.listenTCP(7080, server.Site(app))
 # Start both reactor parts (wx MainLoop and XML-RPC server)
 reactor.run()

Discussion

It is often useful to give an XML-RPC server a GUI, for example, to display the current status to
an operator or administrator. Conversely, it is often useful to give a GUI application the ability to
accept remote requests from other programs, and making the application an XML-RPC server is
an excellent, simple way to accomplish that purpose.

Either way, if you use Twisted for the networking part, you're off to a good start, because
Twisted offers specialized reactor implementations to ease cooperation with several GUI

toolkits. In particular, this recipe shows how a Twisted-based XML-RPC server can sport a
wxPython GUI thanks to the twisted.internet.wxreactor module.

To try this recipe, save the code from the "Solution" as a Python script and start it from a shell. If
you run some kind of "personal firewall" that's normally set to impede TCP/IP communication
between programs running on your machine, ensure it's set to let such communication happen
on TCP port 7080. Then, from any interactive Python interpreter session on the same machine,

do:

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy('http://localhost:7080')
>>> s.add(23, 42)
65
>>> s.title('Changed Title')
Title set to 'Changed Title'

Observe that the title of the wx application's window has changed. Now, you can close the
application, either by whatever GUI means you normally use on your platform (it is a totally
cross-platform application, after all), or by calling s.stop() from the same Python interpreter

interactive session that we just showed. You can also run such a client on any other machine, as
long as it has open TCP/IP connectivity on port 7080 with the machine running the server. (In
particular, make sure you open port 7080 on any firewall that would normally block that port,

whether the firewall is on either of the machines, or on any other network apparatus that may lie
between them.)

Both Twisted and wxPython, while already rich and solid frameworks, are still growing and
changing, so it may be important to ensure you have the right releases installed properly on your
machine. This recipe should run on any platform that is equipped with Python 2.3 or better,
wxPython 2.4.2.4 or better, and Twisted 1.3.0 or better. Of course, we don't have access to
every platform in the world, nor to all future releases of these tools, so we tested the recipe only
under Windows/XP, Mac OS X 10.3.6, and Linux, with Python 2.3 and 2.4, wxPython 2.4.2.4, and
some 2.5.x.y releases, and Twisted 1.3.0 specifically.

Since the recipe relies only on published, supported aspects of the various tools, one can hope
that the recipe will also work elsewhere, and will work with future releases of the tools. However,
if this recipe's approach does not prove satisfactory for your purposes, you may want to try a
different approach based on threads, shown at
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/286201.

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/286201

See Also

Twisted's home page is http://www.twistedmatrix.com; documentation on Twisted XML-RPC
support is at http://www.twistedmatrix.com/documents/current/howto/xmlrpc; wxPython's
home page is http://www.wxpython.org.

http://www.twistedmatrix.com
http://www.twistedmatrix.com/documents/current/howto/xmlrpc
http://www.wxpython.org

Recipe 15.7. Using Twisted Perspective Broker

Credit: Simon Foster

Problem

You want to implement Python clients and servers for some distributed processing task, without
repetitious "boilerplate" code, and with excellent performance and scalability characteristics.

Solution

Use the Perspective Broker (PB) subsystem of the Twisted framework. A PB server just
subclasses the PB's Root class and adds remotely callable methods. Here is an example of a

server script which adds just one remotely callable method, named Pong:

from twisted.spread import pb
from twisted.internet import reactor
PORT = 8992
class Ponger(pb.Root):
 def remote_Pong(self, ball):
 print 'CATCH', ball,
 ball += 1
 print 'THROW', ball
 return ball
reactor.listenTCP(PORT, pb.BrokerFactory(Ponger()))
reactor.run()

We could write an equally trivial script for the client side of the interaction, but let's instead have
a rather feature-rich PB client, which deals with important issues often ignored in introductory
examples of distributed programming, such as error handling:

from twisted.spread import pb
from twisted.internet import reactor
import sys
PORT = 8992
DELAY = 1
DOG_DELAY = 2
RESTART_DELAY = 5
class Pinger(object):
 def _ _init_ _(self, host):
 self.ping = None
 self.host = host
 self.ball = 0
 self._start()
 def _start(self):
 print 'Waiting for Server', self.host
 dfr = pb.getObjectAt(self.host, PORT, 30)
 dfr.addCallbacks(self._gotRemote, self._remoteFail)
 def _gotRemote(self, remote):
 remote.notifyOnDisconnect(self._remoteFail)
 self.remote = remote

 self._ping()
 def _remoteFail(self, _ _):
 if self.ping:
 print 'ping failed, canceling and restarting'
 self.ping.cancel()
 self.ping = None
 self.restart = reactor.callLater(RESTART_DELAY, self._start)
 def _watchdog(self):
 print 'ping timed out, canceling and restarting'
 self._start()
 def _ping(self):
 self.dog = reactor.callLater(DOG_DELAY, self._watchdog)
 self.ball += 1
 print 'THROW', self.ball,
 dfr = self.remote.callRemote('Pong', self.ball)
 dfr.addCallbacks(self._pong, self._remoteFail)
 def _pong(self, ball):
 self.dog.cancel()
 print 'CATCH', ball
 self.ball = ball
 self.ping = reactor.callLater(DELAY, self._ping)
if _ _name_ _ == '_ _main_ _':
 if len(sys.argv) != 2:
 print 'Usage: %s serverhost' % sys.argv[0]
 sys.exit(1)
 host = sys.argv[1]
 print 'Ping-pong client to host', host
 Pinger(host)
 reactor.run()

Discussion

Twisted is a framework for asynchronous (also known as event-driven) programming of network
clients, servers, proxies, and so on. The asynchronous programming model (which Twisted
implements through the Reactor Design Pattern embodied in the twisted.internet.reactor

module) provides excellent performance and scalability characteristics for Twisted-based
programs.

Twisted also includes many subsystems that offer your programs ready-to-go networking
functionality. One of these subsystems, Perspective Broker (PB), is implemented in the
twisted.spread.pb module. PB lets you code distributed-programming clients and servers, with

an ease of use that's most clearly displayed in the server program at the start of this recipe's
Solution. In just a few lines of code, the server class is able to expose remotely callable
methods: all it takes is subclassing the Root class of the pb module and naming each remotely
callable method with a prefix of remote_.

Most of the client code in this recipe is concerned with diagnosing and handling possible
problems and errors with the connection to the server. Specifically, if the connection fails for any
reason, including a timeout diagnosed by the watchdog timer that the client sets up each time it
pings, the client attempts to reconnect to the server. If you kill the server, the client keeps trying
to reconnect, periodically, until you restart the server.

Error-handling apart, the client is essentially as simple as the server. In the method _start, the
client calls function getObjectAt of module twisted.spread.pb, which takes as its arguments

the server's host, a port number, and a "time-out" delay in seconds. As usual in Python
networking, the host can be either a network name, such as localhost, or a string representing
an IP address, such as 127.0.0.1.

If no problems arise, getObjectAt returns an object that proxies for the remote PB server. The

proxy object, in turn, has a callRemote method, which takes as its arguments the method name
as a string, followed by any arguments you are passing to the remote method. callRemote
returns a Twisted deferred object, the lynchpin of Twisted's style of asynchronous (event-
driven) programming. Learning to use deferreds effectively is the fundamental step in learning

to program with Twisted.

A deferred object represents an event that may occur in the future (the success-case) or may
end in failure. Given a deferred, you can add callbacks to it for both success and failure cases.

(You can also chain callbacks, a possibility that this recipe does not exploit.) When the
deferred's event occurs, Twisted calls your "success-case" callback, passing as its argument the
"result" of the deferred. Alternatively, if the deferred ends in failure, Twisted calls your failure-

case callback, passing as its argument a failure object that wraps a Python exception object.

As you see in this recipe, despite deferreds' potentially rich and vast functionality, their use is

really quite simple in most cases. For example, in the failure cases, the client in this recipe wants
to retry connecting: therefore, method _remoteFail accepts the failure-object argument with an
argument name of "two underscores" (_ _), a common Python convention that indicates the
argument will be ignored.

See Also

The Twisted web site, at http://www.twistedmatrix.com, has abundant documentation about all
of Twisted's elements and subsystems, including Perspective Broker and deferred objects.

http://www.twistedmatrix.com

Recipe 15.8. Implementing a CORBA Server and Client

Credit: Duncan Grisby

Problem

You need to implement a CORBA server and client to distribute a processing task, such as the all-
important network-centralized fortune-cookie distribution.

Solution

CORBA is a solid, rich, mature object-oriented RPC protocol, and several CORBA ORBs offer
excellent Python support. This recipe requires multiple files. Here is the interface definition file,
fortune.idl, coded in CORBA's own IDL (Interface Definition Language):

module Fortune {
 interface CookieServer {
 string get_cookie();
 };
};

This code is quite readable even if you've never seen CORBA's IDL before: it defines a module
named Fortune, whose only contents is an interface named CookieServer, whose only contents is
a function (method) named get_cookie, which takes no arguments and returns a string. This
code says nothing at all about the implementation: IDL is a language for defining interfaces.

The server script is a simple Python program:

import sys, os
import CORBA, Fortune, Fortune_ _POA
FORTUNE_PATH = "/usr/games/fortune"
class CookieServer_i(Fortune_ _POA.CookieServer):
 def get_cookie(self):
 pipe = os.popen(FORTUNE_PATH)
 cookie = pipe.read()
 if pipe.close():
 # An error occurred with the pipe
 cookie = "Oh dear, couldn't get a fortune\n"
 return cookie
orb = CORBA.ORB_init(sys.argv)
poa = orb.resolve_initial_references("RootPOA")
servant = CookieServer_i()
poa.activate_object(servant)
print orb.object_to_string(servant._this())
see the Discussion session about what this print statement emits
poa._get_the_POAManager().activate()
orb.run()

And here's a demonstration of client code for this server, using a Python interactive command
shell:

>>> import CORBA, Fortune
>>> orb = CORBA.ORB_init()
>>> o = orb.string_to_object(
... "corbaloc::host.example.com/fortune")
>>> o = o._narrow(Fortune.CookieServer)
>>> print o.get_cookie()

Discussion

CORBA has a reputation for being hard to use, but it is really very easy, especially with Python.
This example shows the complete CORBA implementation of a fortune-cookie server and its
client. To run this example, you need a Python-compatible CORBA implementation (i.e., an
ORB)or, if you wish, two such ORBs, since you can use two different CORBA implementations,
one for the client and one for the server, and let them interoperate with the CORBA IIOP inter-
ORB protocol. Several free CORBA implementations, which fully support Python, are available for
you to download and install. The Python language support is part of the CORBA standards, so, if
a certain ORB supports Python at all, you can code your Python source for it in just the same
way as you can code it for any other compliant ORB, be it free or commercial. In this recipe, we
use the free ORB known as omniORB. With omniORB, you can use omniORBpy, which lets you
develop CORBA applications from Python.

With most ORBs, you must convert the interface definition coded in IDL into Python declarations
with an IDL compiler. For example, with omniORBpy:

omniidl -bpython fortune.idl

This creates Python modules named Fortune and Fortune_ _POA, in files Fortune.py and

Fortune_POA.py, to be used by clients and servers, respectively.

In the server, we implement the CookieServer CORBA interface by importing Fortune_ _POA and
subclassing the CookieServer class that the module exposes. Specifically, in our own subclass,
we need to override the get_cookie method (i.e., implement the methods that the interface
asserts we're implementing). Then, we start CORBA to get an orb instance, ask the ORB for a

POA (Portable Object Adaptor), instantiate our own interface-implementing object, and pass it to
the POA instance's activate_object method. Finally, we call the activate method on the POA
manager and the run method on the ORB to start our service.

When you run the server, it prints out a long hex string, such as:

IOR:010000001d00000049444c3a466f7274756e652f436f6f6b69655365727665723
a312e300000000001000000000000005c000000010102000d0000003135382e313234
2e36342e330000f90a07000000666f7274756e6500020000000000000008000000010
0000000545441010000001c0000000100000001000100010000000100010509010100
0100000009010100

Printing this string is the purpose of the object_to_string call that our recipe's server performs

just before it activates and runs.

You have to pass this string value as the argument of the client's orb.string_to_object() call

to contact your server. Such long hex strings may not be convenient to communicate to clients.
To remedy this, it's easy to make your server support a simple corbaloc URL string, like the one

used in the client example, but doing so involves omniORB-specific code that is not necessarily
portable to other ORBs. (See the omniORBpy manual for details of corbaloc URL support.)

See Also

You can download omniORBpy, including its documentation, from
http://www.omniorb.org/omniORBpy/.

http://www.omniorb.org/omniORBpy/

Recipe 15.9. Performing Remote Logins Using telnetlib

Credit: Jeff Bauer

Problem

You need to send commands to one or more logins that can be on a local machine, or a remote
machine, and the Telnet protocol is acceptable.

Solution

Telnet is one of the oldest protocols in the TCP/IP stack, but it may still be serviceable (at least
within an intranet that is well protected against sniffing and spoofing attacks). In any case,
Python's standard module telnetlib supports Telnet quite well:

auto_telnet.py - remote control via telnet
import os, sys, telnetlib
from getpass import getpass
class AutoTelnet(object):
 def _ _init_ _(self, user_list, cmd_list, **kw):
 # optional parameters are host, timeout in seconds, command
 # prompt to expect from the host on successful logins:
 self.host = kw.get('host', 'localhost')
 self.timeout = kw.get('timeout', 600)
 self.command_prompt = kw.get('command_prompt', "$ ")
 # collect passwords for each user, interactively
 self.passwd = { }
 for user in user_list:
 self.passwd[user] = getpass("Enter user '%s' password: " % user)
 # instantiate Telnet proxy
 self.telnet = telnetlib.Telnet()
 for user in user_list:
 # login with given host and user, and act appropriately
 self.telnet.open(self.host)
 ok = self.action(user, cmd_list)
 if not ok:
 print "Unable to process:", user
 self.telnet.close()
 def action(self, user, cmd_list):
 # wait for a login prompt
 t = self.telnet
 t.write("\n")
 login_prompt = "login: "
 response = t.read_until(login_prompt, 5)
 if login_prompt in response:
 print response
 else:
 return 0
 # supply user and password for login
 t.write("%s\n" % user)
 password_prompt = "Password:"
 response = t.read_until(password_prompt, 3)

 if password_prompt in response:
 print response
 else:
 return 0
 t.write("%s\n" % self.passwd[user])
 # wait for command prompt to indicate successful login
 response = t.read_until(self.command_prompt, 5)
 if self.command_prompt not in response:
 return 0
 # send each command and wait for command prompt after each
 for cmd in cmd_list:
 t.write("%s\n" % cmd)
 response = t.read_until(self.command_prompt, self.timeout)
 if self.command_prompt not in response:
 return 0
 print response
 return 1
if _ _name_ _ == '_ _main_ _':
 # code which runs as a main script, only
 basename = os.path.splitext(os.path.basename(sys.argv[0]))[0]
 logname = os.environ.get("LOGNAME", os.environ.get("USERNAME"))
 host = 'localhost'
 import getopt
 optlist, user_list = getopt.getopt(sys.argv[1:], 'c:f:h:')
 usage = """
usage: %s [-h host] [-f cmdfile] [-c "command"] user1 user2 ...
 -c command
 -f command file
 -h host (default: '%s')
Example: %s -c "echo $HOME" %s
""" % (basename, host, basename, logname)
 if len(sys.argv) < 2:
 print usage
 sys.exit(1)
 cmd_list = []
 for opt, optarg in optlist:
 if opt == '-f':
 for r in open(optarg):
 if r.rstrip():
 cmd_list.append(r)
 elif opt == '-c':
 command = optarg
 if command[0] == '"' and command[-1] == '"':
 command = command[1:-1]
 cmd_list.append(command)
 elif opt == '-h':
 host = optarg
 autoTelnet = AutoTelnet(user_list, cmd_list, host=host)

Discussion

Python's telnetlib lets you easily automate access to Telnet servers, even from non-Unix
machines. As a flexible alternative to the popen functions, which only run commands locally as
the user that's running the script, telnetlib, which can work across an intranet and can login

and run commands as different users, is a handy technique to have in your system
administration toolbox.

Production code generally has to be made more robust, but this recipe should be enough to get

you started in the right direction. The recipe's AutoTelnet class instantiates a single
telnetlib.Telnet object and uses that single object in a loop over a list of users. For each user,
the recipe calls the open method of the Telnet instance to open the connection to the specified
host, runs a series of commands in AutoTelnet's action method, and finally calls the close
method of the Telnet instance to terminate the connection.

AutoTelnet's action method is where the action is. All operations depend on two methods of the
Telnet instance. The write method takes a single string argument and writes it to the
connection. The read_until method takes two arguments, a string to wait for and a timeout in

seconds, and returns a string with all the characters received from the connection until the
timeout elapsed or the waited-for string occurred. action's code uses these two methods to wait
for a login prompt and send the username; wait for a password prompt and send the password;
and then, repeatedly, wait for a command prompt (typically from a Unix shell at the other end of
the connection) and send the commands in the list sequentially (waiting for a command prompt
again after sending each one).

One warning (which applies to any use of Telnet and some other old protocols): except when
transmitting completely public data, not protected by passwords that might be of interest to
intruders of ill will, do not run Telnet (or non-anonymous FTP, for that matter) on networks on
which you are not completely sure that nobody is packet-sniffing, since these protocols date from
an older, more trusting age. These protocols let passwords and everything else travel in the
clear, open to any snooper. This issue is not Python specific; it applies to any implementation of
these protocols, since it depends on the definition of the protocols themselves. Whether or not
you use Python, be advised: if there is any risk that someone might be packet-sniffing, use SSH
instead, as shown next in Recipe 15.10 so that no password ever travels on the network in the
clear, and so that the connection stream itself gets encrypted.

See Also

Documentation on the standard library module telnetlib in the Library Reference; Recipe

15.10.

Recipe 15.10. Performing Remote Logins with SSH

Credit: Peter Cogolo, Anna Martelli Ravenscroft

Problem

You need to send commands, using the SSH protocol, to one or more logins that can be on a
local machine or a remote machine.

Solution

SSH is a secure replacement for the old Telnet protocol. One way to use SSH from a Python
program is with the third-party paramiko package:

auto_ssh.py - remote control via ssh
import os, sys, paramiko
from getpass import getpass
paramiko.util.log_to_file('auto_ssh.log', 0)
def parse_user(user, default_host, default_port):
 ''' given name[@host[:port]], returns name, host, int(port),
 applying defaults for hose and/or port if necessary
 '''
 if '@' not in user:
 return user, default_host, default_port
 user, host = user.split('@', 1)
 if ':' in host:
 host, port = host.split(':', 1)
 else:
 port = default_port
 return user, host, int(port)
def autoSsh(users, cmds, host='localhost', port=22, timeout=5.0,
 maxsize=2000, passwords=None):
 ''' run commands for given users, w/default host, port, and timeout,
 emitting to standard output all given commands and their
 responses (no more than 'maxsize' characters of each response).
 '''
 if passwords is None:
 passwords = { }
 for user in users:
 if user not in passwords:
 passwords[user] = getpass("Enter user '%s' password: " % user)
 for user in users:
 user, host, port = parse_user(user, default_host, default_port)
 try:
 transport = paramiko.Transport((host, port))
 transport.connect(username=user, password=passwords[user])
 channel = transport.open_session()
 if timeout: channel.settimeout(timeout)
 for cmd in cmd_list:
 channel.exec_command(cmd)
 response = channel.recv(max_size)
 print 'CMD %r(%r) -> %s' % (cmd, user, response)

 except Exception, err:
 print "ERR: unable to process %r: %s" % (user, err)
if _ _name_ _ == '_ _main_ _':
 logname = os.environ.get("LOGNAME", os.environ.get("USERNAME"))
 host = 'localhost'
 port = 22
 usage = """
usage: %s [-h host] [-p port] [-f cmdfile] [-c "command"] user1 user2 ...
 -c command
 -f command file
 -h default host (default: localhost)
 -p default host (default: 22)
Example: %s -c "echo $HOME" %s
same as: %s -c "echo $HOME" %s@localhost:22
""" % (sys.argv[0], sys.argv[0], logname, sys.argv[0], logname)
 import getopt
 optlist, user_list = getopt.getopt(sys.argv[1:], 'c:f:h:p:')
 if not user_list:
 print usage
 sys.exit(1)
 cmd_list = []
 for opt, optarg in optlist:
 if opt == '-f':
 for r in open(optarg, 'rU'):
 if r.rstrip():
 cmd_list.append(r)
 elif opt == '-c':
 command = optarg
 if command[0] == '"' and command[-1] == '"':
 command = command[1:-1]
 cmd_list.append(command)
 elif opt == '-h':
 host = optarg
 elif opt == '-p':
 port = optarg
 else:
 print 'unknown option %r' % opt
 print usage
 sys.exit(1)
 autoSsh(user_list, cmd_list, host=host, port=port)

Discussion

The third-party extension paramiko package lets you easily automate access to all sorts of SSH
services, even from non-Unix machines. paramiko even lets you write your own SSH servers in
Python. In this recipe, however, we use paramiko on the client side, as a more secure alternative
to the similar use of telnetlib shown previously in Recipe 15.9.

Production code generally has to be made more robust, but this recipe should be enough to get
you started in the right direction. The recipe's autoSsh function first ensures it knows passwords
for all the users (asking interactively for the passwords of users it doesn't know about). Then, it
loops over all the users, parsing strings such as foo@bar:2222 to mean user foo at host bar,
port 2222, and defaulting the host and port values, if necessary.

The loop body relies on two types of objects supplied by paramiko, transport and Channel. The

transport is constructed by giving it the (host, port) pair and then a connection is made with a

username and password. (Alternatively, depending on the SSH server, one might connect using
a private key, but this recipe uses just a password.) The channel is obtained from the transport,

and the recipe then sets a timeout (by default, 6 seconds) to ensure that no long-term hanging
occurs in case of problems with an SSH server or the network path to it. Finally, an inner loop
over all commands sends each command, receives a response (up to a maximum length in
bytes, 2000 by default), and prints the command and response.

SSH, the Secure Shell

The SSH protocol is secure, powerful, and flexible. No password ever travels on the
network in the clear, and the connection stream itself gets encrypted. Besides single
commands (as used in this recipe) and entire interactive shell sessions, SSH allows
secure copying of files in either direction and secure remote tunneling of X11 GUI
sessions and other TCP/IP-based network protocols. Moreover, unlike other secure
transport-level protocols such as SSL/TLS, SSH does not require certificates signed
by some kind of "central authority". You can learn more about SSH from the
OpenSSH's web page at http://www.openssh.com/, Steve Allen's pages at
http://www.ucolick.org/~sla/ssh/, and Kimmon Suominen's tutorial at
http://kimmo.suominen.com/docs/ssh/as well as from Richard Silverman and Daniel
J. Barrett, SSH: The Secure Shell, The Definitive Guide (O'Reilly).

See Also

paramiko's home page at http://www.lag.net/~robey/paramiko/; paramiko requires another

third-party extension to Python, the Python Cryptography Toolkit, whose home page is at
http://www.amk.ca/python/code/crypto; docs on SSH at http://www.openssh.com/,
http://www.ucolick.org/~sla/ssh/, http://kimmo.suominen.com/docs/ssh/; Richard Silverman
and Daniel J. Barrett, SSH: The Secure Shell, The Definitive Guide (O'Reilly); Recipe 15.9.

http://www.openssh.com/
http://www.ucolick.org/~sla/ssh/
http://kimmo.suominen.com/docs/ssh/
http://www.lag.net/~robey/paramiko/
http://www.amk.ca/python/code/crypto
http://www.openssh.com/
http://www.ucolick.org/~sla/ssh/
http://kimmo.suominen.com/docs/ssh/

Recipe 15.11. Authenticating an SSL Client over HTTPS

Credit: Rob Riggs

Problem

You want your Python application to check SSL client authentication, by delegating, over HTTPS,
to an Apache server that is running mod_ssl.

Solution

The Apache web server has good support for SSL, and we can write a Python script to exploit
that support to authenticate a client. For example:

import httplib
CERT_FILE = '/home/robr/mycert'
PKEY_FILE = '/home/robr/mycert'
HOSTNAME = 'localhost'
conn = httplib.HTTPSConnection(HOSTNAME,
 key_file = PKEY_FILE, cert_file = CERT_FILE)
conn.putrequest('GET', '/ssltest/')
conn.endheaders()
response = conn.getresponse()
print response.read()

Discussion

The Solution code assumes that mycert is a certificate file formatted by PEM (Privacy-enhanced
Electronic Mail), which includes both the public certificate and the private key. You can keep the
public and private keys in separate files: you need to pass the names of the files in question as
the values for the key_file and cert_file arguments of HTTPSConnection.

To safely perform SSL authentication, you will generally set up your own certification authority
(CA). You do not want to enable a third-party organization to hand out all the "keys" to the locks
that you put up to protect your security.

The Apache server installation that you use for this authentication needs to be configured to
require SSL client authentication with the appropriate CA. My httpd.conf file contains the stanza:

SSLCACertificatePath /etc/httpd/conf/ssl.crt
SSLCACertificateFile /etc/httpd/conf/ssl.crt/myCA.crt
SSLVerifyClient require
SSLVerifyDepth 2
SSLRequireSSL

The configuration of an Apache server cannot refer to more than one SSLCACertificateFile.

You can put more than one CA certificate in that file, but doing so grants authentication to any
client who has a certificate from any one of the certificate authorities you accept, which is
unlikely to be what you want. Therefore, this recipe is fully applicable only when you can
reasonably set up an Apache server to accept your own CA as the sole recognized one. In

exchange for this modest inconvenience, however, you do get a handy and robust approach to
client authentication between web-enabled applications, particularly good for SOAP or XML-RPC
implementations, or custom applications that communicate via HTTP/HTTPS.

See Also

Descriptions of SSL and its use with Apache can be found at http://httpd.apache.org/docs-
2.0/ssl/ssl_howto.html and http://www.pseudonym.org/ssl/ssl_cook.html. The httplib module

is part of the Python Standard Library and is documented in a chapter of the Library Reference
portion of Python's online documentation.

http://httpd.apache.org/docs-
http://www.pseudonym.org/ssl/ssl_cook.html

Chapter 16. Programs About Programs

Introduction

Recipe 16.1. Verifying Whether a String Represents a Valid Number

Recipe 16.2. Importing a Dynamically Generated Module

Recipe 16.3. Importing from a Module Whose Name Is Determined at Runtime

Recipe 16.4. Associating Parameters with a Function (Currying)

Recipe 16.5. Composing Functions

Recipe 16.6. Colorizing Python Source Using the Built-in Tokenizer

Recipe 16.7. Merging and Splitting Tokens

Recipe 16.8. Checking Whether a String Has Balanced Parentheses

Recipe 16.9. Simulating Enumerations in Python

Recipe 16.10. Referring to a List Comprehension While Building It

Recipe 16.11. Automating the py2exe Compilation of Scripts into Windows Executables

Recipe 16.12. Binding Main Script and Modules into One Executable on Unix

Introduction

Credit: Paul F. Dubois, Ph.D., Program for Climate Model Diagnosis and Intercomparison,
Lawrence Livermore National Laboratory

This chapter was originally meant to cover mainly topics such as lexing, parsing, and code
generationthe classic issues of programs that are about programs. It turns out, however, that
Pythonistas did not post many recipes about such tasks, focusing more on highly Python-specific
topics such as program introspection, dynamic importing, and generation of functions by closure.
Many of those recipes, we decided, were more properly located in various other chapterson
shortcuts, debugging, object oriented programming, algorithms, metaprogramming, and specific
areas such as the handling of text, files, and persistence Therefore, you will find those topics
covered in other chapters. In this chapter, we included only those recipes that are still best
described as programs about programs. Of these, probably the most important one is that about
currying, the creation of new functions by predetermining some arguments of other functions.

This arrangement doesn't mean that the classic issues aren't important! Python has extensive
facilities related to lexing and parsing, as well as a large number of user-contributed modules
related to parsing standard languages, which reduces the need for doing your own programming.
If Pythonistas are not using these tools, then, in this one area, they are doing more work than
they need to. Lexing and parsing are among the most common of programming tasks, and as a
result, both are the subject of much theory and much prior development. Therefore, in these
areas more than most, you will often profit if you take the time to search for solutions before
resorting to writing your own. This Introduction contains a general guide to solving some
common problems in these categories to encourage reusing the wide base of excellent, solid
code and theory in these fields.

Lexing

Lexing is the process of dividing an input stream into meaningful units, known as tokens, which
are then processed. Lexing occurs in tasks such as data processing and in tools for inspecting
and modifying text.

The regular expression facilities in Python are extensive and highly evolved, so your first
consideration for a lexing task is often to determine whether it can be formulated using regular
expressions. Also, see the next section about parsers for common languages and how to lex
those languages.

The Python Standard Library tokenize module splits an input stream into Python-language

tokens. Since Python's tokenization rules are similar to those of many other languages, this
module may often be suitable for other tasks, perhaps with a modest amount of pre- and/or
post-processing around tokenize's own operations. For more complex tokenization tasks, Plex,

http://nz.cosc.canterbury.ac.nz/~greg/python/Plex/, can ease your efforts considerably.

At the other end of the lexing complexity spectrum, the built-in string method split can also be

used for many simple cases. For example, consider a file consisting of colon-separated text
fields, with one record per line. You can read a line from the file as follows:

fields = line.split(':')

This produces a list of the fields. At this point, if you want to eliminate spurious whitespace at the
beginning and ends of the fields, you can remove it:

fields = [f.strip() for f in fields]

http://nz.cosc.canterbury.ac.nz/~greg/python/Plex/

For example:

>>> x = "abc :def:ghi : klm\n"
>>> fields = x.split(':')
>>> print fields
['abc ', 'def', 'ghi ', ' klm\n']
>>> print [f.strip() for f in fields]
['abc', 'def', 'ghi', 'klm']

Do not elaborate on this example: do not try to over-enrich simple code to perform lexing and
parsing tasks which are in fact quite hard to perform with generality, solidity, and good
performance, and for which much excellent, reusable code exists. For parsing typical comma-
separated values files, or files using other delimiters, study the standard Python library module
csv. The ScientificPython package, http://starship.python.net/~hinsen/ScientificPython/,

includes a module for reading and writing with Fortran-like formats, and other such precious I/O
modules, in the Scientific.IO sub-package.

A common "gotcha" for beginners is that, while lexing and other text-parsing techniques can be
used to read numerical data from a file, at the end of this stage, the entries are text strings, not
numbers. The int and float built-in functions are frequently needed here, to turn each field

from a string into a number:

>>> x = "1.2, 2.3, 4, 5.6"
>>> print [float(y.strip()) for y in x.split(',')]
[1.2, 2.2999999999999998, 4.0, 5.5999999999999996]

Parsing

Parsing refers to discovering semantic meaning from a series of tokens according to the rules of
a grammar. Parsing tasks are quite ubiquitous. Programming tools may attempt to discover
information about program texts or to modify such texts to fit a task. (Python's introspection
capabilities come into play here, as we will discuss later.) Little languages is the generic name
given to application-specific languages that serve as human-readable forms of computer input.
Such languages can vary from simple lists of commands and arguments to full-blown languages.

The grammar in the previous lexing example was implicit: the data you need is organized as one
line per record with the fields separated by a special character. The "parser" in that case was
supplied by the programmer reading the lines from the file and applying the simple split

method to obtain the information. This sort of input file can easily grow, leading to requests for a
more elaborate form. For example, users may wish to use comments, blank lines, conditional
statements, or alternate forms. While most such parsing can be handled with simple logic, at
some point, it becomes so complicated that it is much more reliable to use a real grammar.

There is no hard-and-fast way to decide which part of the job is a lexing task and which belongs
to the grammar. For example, comments can often be discarded in the lexing, but doing so is not
wise in a program-transformation tool that must produce output containing the original
comments.

Your strategy for parsing tasks can include:

Using a parser for that language from the Python Standard Library.

Using a parser from the user community. You can often find one by visiting the Vaults of
Parnassus site, http://www.vex.net/parnassus/, or by searching the Python site,
http://www.python.org.

http://starship.python.net/~hinsen/ScientificPython/
http://www.vex.net/parnassus/
http://www.python.org

Generating a parser using a parser generator.

Using Python itself as your input language.

A combination of approaches is often fruitful. For example, a simple parser can turn input into
Python-language statements, which Python then executes in concert with a supporting package
that you supply.

A number of parsers for specific languages exist in the standard library, and more are out there
on the Web, supplied by the user community. In particular, the standard library includes parsing
packages for XML, HTML, SGML, command-line arguments, configuration files, and for Python
itself. For the now-ubiquitous task of parsing XML specifically, this cookbook includes a
chapterChapter 14 , specifically dedicated to XML.

You do not have to parse C to connect C routines to Python. Use SWIG (http://www.swig.org).
Likewise, you do not need a Fortran parser to connect Fortran and Python. See the Numerical
Python web page at http://www.pfdubois.com/numpy/ for further information. Again, this
cookbook includes a chapter, Chapter 17 , which is dedicated to these kind of tasks.

PLY, SPARK, and Other Python Parser Generators

PLY and SPARK are two rich, solid, and mature Python-based parser generators. That is, they
take as their input some statements that describe the grammar to be parsed and generate the
parser for you. To make a useful tool, you must add the semantic actions to be taken when a
certain construct in the grammar is recognized.

PLY (http://systems.cs.uchicago.edu/ply) is a Python implementation of the popular Unix tool
yacc. SPARK (http://pages.cpcc.ucalgary-ca/~aycoch/spart/content.html) parses a more general
set of grammars than yacc. Both tools use Python introspection, including the idea of placing
grammar rules in functions' docstrings.

Parser generators are one of the many application areas that may have even too many excellent
tools, so that you may end up frustrated by having to pick just one. Besides SPARK and PLY,
other Python tools in this field include TPG (Toy Parser Generator), DParser, PyParsing,
kwParsing (or kyParsing), PyLR, Yapps, PyGgy, mx.TextTools and its SimpleParse frontendtoo
many to provide more than a bare mention of each, so, happy googling!

The chief problem in using any of these tools is that you need to educate yourself about
grammars and learn to write them. A novice without any computer science background will
encounter some difficulty except with very simple grammars. A lot of literature is available to
teach you how to use yacc, and most of this knowledge will help you use SPARK and most of the
others just as well.

If you are interested in this area, the penultimate reference is Alfred V. Aho, Ravi Sethi, and
Jeffrey D. Ullman, Compilers (Addison-Wesley), affectionately known as "the Dragon Book" to
generations of computer science majors.[1]

[1] I'd even call this book the ultimate reference, were it not for the fact that Donald Knuth continues to promise that the fifth

volume (current ETA, the year 2010) of his epoch-making The Art of Computer Programming will be about this very subject.

Using Python Itself as a Little Language

Python itself can be used to create many application-specific languages. By writing suitable
classes, you can rapidly create a program that is easy to get running, yet is extensible later.
Suppose I want a language to describe graphs. Nodes have names, and edges connect the
nodes. I want a way to input such graphs, so that after reading the input I will have the data
structures in Python that I need for any further processing. So, for example:

http://www.swig.org
http://www.pfdubois.com/numpy/
http://systems.cs.uchicago.edu/ply
http://pages.cpcc.ucalgary-ca/~aycoch/spart/content.html

nodes = { }
def getnode(name):
 " Return the node with the given name, creating it if necessary. "
 if name in nodes:
 node = nodes[name]
 else:
 node = nodes[name] = node(name)
 return node
class node(object):
 " A node has a name and a list of edges emanating from it. "
 def _ _init_ _(self, name):
 self.name = name
 self.edgelist = []
class edge(object):
 " An edge connects two nodes. "
 def _ _init_ _(self, name1, name2):
 self.nodes = getnode(name1), getnode(name2)
 for n in self.nodes:
 n.edgelist.append(self)
 def _ _repr_ _(self):
 return self.nodes[0].name + self.nodes[1].name

Using just these simple statements, I can now parse a list of edges that describe a graph, and
afterwards, I will now have data structures that contain all my information. Here, I enter a graph
with four edges and print the list of edges emanating from node 'A':

>>> edge('A', 'B')
>>> edge('B', 'C')
>>> edge('C', 'D')
>>> edge('C', 'A')
>>> print getnode('A').edgelist
[AB, CA]

Suppose that I now want a weighted graph. I could easily add a weight=1.0 default argument to

the edge constructor, and the old input would still work. Also, I could easily add error-checking
logic to ensure that edge lists have no duplicates. Furthermore, I already have my node class
and can start adding logic to it for any needed processing purposes, be it directly or by
subclassing. I can easily turn the entries in the dictionary nodes into similarly named variables
that are bound to the node objects. After adding a few more classes corresponding to other input
I need, I am well on my way.

The advantage to this approach is clear. For example, the following is already handled correctly:

edge('A', 'B')
if 'X' in nodes:
 edge('X', 'A')
def triangle(n1, n2, n3):
 edge(n1, n2)
 edge(n2, n3)
 edge(n3, n1)
triangle('A','W','K')
execfile('mygraph.txt') # Read graph from a datafile

So I already have syntactic sugar, user-defined language extensions, and input from other files.
The definitions usually go into a module, and the user simply import them. Had I written my own
language, instead of reusing Python in this little language role, such accomplishments might be
months away.

Introspection

Python programs have the ability to examine themselves; this set of facilities comes under the
general title of introspection. For example, a Python function object knows a lot about itself,
including the names of its arguments, and the docstring that was given when it was defined:

>>> def f(a, b):
 " Return the difference of a and b "
 return a-b
...
>>> dir(f)
['_ _call_ _', '_ _class_ _', '_ _delattr_ _', '_ _dict_ _', '_ _doc_ _',
'_ _get_ _', '_ _getattribute_ _', '_ _hash_ _', '_ _init_ _', '_ _module_ _',
'_ _name_ _', '_ _new_ _', '_ _reduce_ _', '_ _reduce_ex_ _', '_ _repr_ _',
'_ _setattr_ _', '_ _str_ _', 'func_closure', 'func_code', 'func_defaults',
'func_dict', 'func_doc', 'func_globals', 'func_name']
>>> f.func_name
'f'
>>> f.func_doc
'Return the difference of a and b'
>>> f.func_code
<code object f at 0175DDF0, file "<pyshell#18>", line 1>
>>> dir (f.func_code)
['_ _class_ _', '_ _cmp_ _', '_ _delattr_ _', '_ _doc_ _',
'_ _getattribute_ _', '_ _hash_ _', '_ _init_ _', '_ _new_ _', '_ _reduce_ _',
'_ _reduce_ex_ _', '_ _repr_ _', '_ _setattr_ _', '_ _str_ _', 'co_argcount',
'co_cellvars', 'co_code', 'co_consts', 'co_filename', 'co_firstlineno',
'co_flags', 'co_freevars', 'co_lnotab', 'co_name', 'co_names',
'co_nlocals', 'co_stacksize', 'co_varnames']
>>> f.func_code.co_names
('a', 'b')

SPARK and PLY make an interesting use of introspection. The grammar is entered as docstrings
in the routines that take the semantic actions when those grammar constructs are recognized.
(Hey, don't turn your head all the way around like that! Introspection has its limits.)

Introspection is very popular in the Python community, and you will find many examples of it in
recipes in this book, both in this chapter and elsewhere. Even in this field, though, always
remember the possibility of reuse! Standard library module inspect has a lot of solid, reusable

inspection-related code. It's all pure Python code, and you can (and should) study the inspect.py
source file in your Python library to see what "raw" facilities underlie inspect's elegant high-level

functionsindeed, this suggestion generalizes: studying the standard library's sources is among
the best things you can do to increment your Python knowledge and skill. But reusing the
standard library's wealth of modules and packages is still best: any code you don't write is code
you don't have to maintain, and solid, heavily tested code such as the code that you find in the
standard library is very likely to have far fewer bugs than any newly developed code you might
write yourself.

Python is the most powerful language that you can still read. The kinds of tasks discussed in this
chapter help to show just how versatile and powerful it really is.

Recipe 16.1. Verifying Whether a String Represents a
Valid Number

Credit: Gyro Funch, Rogier Steehouder

Problem

You need to check whether a string read from a file or obtained from user input has a valid
numeric format.

Solution

The simplest and most Pythonic approach is to "try and see":

def is_a_number(s):
 try: float(s)
 except ValueError: return False
 else: return True

Discussion

If you insist, you can also perform this task with a regular expression:

import re
num_re = re.compile(r'^[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE][-+]?[0-9]+)?$')
def is_a_number(s):
 return bool(num_re.match(s))

Having a regular expression to start from may be best if you need to be tolerant of certain
specific variations, or to pick up numeric substrings from the middle of larger strings. But for the
specific task posed as this recipe's Problem, it's simplest and best to "let Python do it!"

See Also

Documentation for the re module and the float built-in module in the Library Reference and

Python in a Nutshell.

Recipe 16.2. Importing a Dynamically Generated Module

Credit: Anders Hammarquist

Problem

You need to wrap code in either compiled or source form in a module, possibly adding it to
sys.modules as well.

Solution

We build a new module object, optionally add it to sys.modules, and populate it with an exec

statement:

import new
def importCode(code, name, add_to_sys_modules=False):
 """ code can be any object containing code: a string, a file object, or
 a compiled code object. Returns a new module object initialized
 by dynamically importing the given code, and optionally adds it
 to sys.modules under the given name.
 """
 module = new.module(name)
 if add_to_sys_modules:
 import sys
 sys.modules[name] = module
 exec code in module._ _dict_ _
 return module

Discussion

This recipe lets you import a module from code that is dynamically generated or obtained. My
original intent for it was to import a module stored in a database, but it will work for modules
from any source. Thanks to the flexibility of the exec statement, the importCode function can

accept code in many forms: a string of source (which gets implicitly compiled on the fly), a file
object (ditto), or a previously compiled code object.

The addition of the newly generated module to sys.modules is optional. You shouldn't normally
do so for such dynamically obtained code, but there are exceptionsspecifically, when import

statements for the module's name are later executed, and it's important that they retrieve from
sys.modules your dynamically generated module. If you want the sys.modules addition, it's best

to perform it before the module's code body executes, just as normal import statements do, in
case the code body relies on that normal behavior (which it usually doesn't, but it can't hurt to be
prepared).

Note that the normal Python statement:

import foo

in simple cases (where no hooks, built-in modules, imports from zip files, etc., come into play!)
is essentially equivalent to:

if 'foo' in sys.modules:
 foo = sys.modules['foo']
else:
 foofile = open("/path/to/foo.py") # for some suitable /path/to/...
 foo = importCode(foofile, "foo", 1)

A toy example of using this recipe:

code = """
def testFunc():
 print "spam!"
class testClass(object):
 def testMethod(self):
 print "eggs!"
"""
m = importCode(code, "test")
m.testFunc()
o = m.testClass()
o.testMethod()

See Also

Sections on the import and exec statements in the Language Reference; documentation on the
modules attribute of the sys standard library module and the new module in the Library

Reference; Python in a Nutshell sections about both the language and library aspects.

Recipe 16.3. Importing from a Module Whose Name Is
Determined at Runtime

Credit: Jürgen Hermann

Problem

You need to import a name from a module, just as from module import name would do, but

module and name are runtime-computed expressions. This need often arises, for example, when

you want to support user-written plug-ins.

Solution

The _ _import_ _ built-in function lets you perform this task:

def importName(modulename, name):
 """ Import a named object from a module in the context of this function.
 """
 try:
 module = _ _import_ _(modulename, globals(), locals(), [name])
 except ImportError:
 return None
 return getattr(module, name)

Discussion

This recipe's function lets you perform the equivalent of from module import name, in which

either or both module and name are dynamic values (i.e., expressions or variables) rather than

constant strings. For example, this functionality can be used to implement a plug-in mechanism
to extend an application with external modules that adhere to a common interface.

Some programmers' instinctive reaction to this task would be to use exec, but this instinct would
be a pretty bad one. The exec statement is too powerful, and therefore is a last-ditch measure,

to be used only when nothing else is available (which is almost never). It's just too easy to have
horrid bugs and/or security weaknesses where exec is used. In almost all cases, there are better

ways. This recipe shows one such way for an important problem.

For example, suppose you have, in a file named MyApp/extensions/spam.py, the following code:

class Handler(object):
 def handleSomething(self):
 print "spam!"

and, in a file named MyApp/extensions/eggs.py:

class Handler(object):
 def handleSomething(self):
 print "eggs!"

We must also suppose that the MyApp directory is in a directory on sys.path, and both it and the
extensions subdirectory are identified as Python packages (meaning that each of them must

contain a file, possibly empty, named _ _init_ _.py). Then, we can get and call both
implementations with the following code:

for extname in 'spam', 'eggs':
 HandlerClass = importName("MyApp.extensions." + extname, "Handler")
 handler = HandlerClass()
 handler.handleSomething()

It's possible to remove the constraints about sys.path and _ _init_ _.py, and dynamically import
from anywhere, with the imp standard module. However, imp is substantially harder to use than
the _ _import_ _ built-in function, and you can generally arrange things to avoid imp's greater

generality and difficulty.

The import pattern implemented by this recipe is used in MoinMoin

(http://moin.sourceforge.net/) to load extensions implementing variations of a common
interface, such as action, macro, and formatter.

See Also

Documentation on the _ _import_ _ and getattr built-ins in the Library Reference and Python

in a Nutshell; MoinMoin is available at http://moin.sourceforge.net.

http://moin.sourceforge.net/
http://moin.sourceforge.net

Recipe 16.4. Associating Parameters with a Function
(Currying)

Credit: Scott David Daniels, Nick Perkins, Alex Martelli, Ben Wolfson, Alex Naanou, David
Abrahams, Tracy Ruggles

Problem

You need to wrap a function (or other callable) to get another callable with fewer formal
arguments, keeping given values fixed for the other arguments (i.e., you need to curry a callable
to make another).

Solution

Curry is not just a delightful spice used in Asian cuisineit's also an important programming
technique in Python and other languages:

def curry(f, *a, **kw):
 def curried(*more_a, **more_kw):
 return f(*(a+more_a), dict(kw, **more_kw))
 return curried

Discussion

Popular in functional programming, currying is a way to bind some of a function's arguments and
wait for the rest of them to show up later. Currying is named in honor of Haskell Curry, a
mathematician who laid some of the cornerstones in the theory of formal systems and processes.
Some pedants (and it must be grudgingly admitted they have a point) claim that the technique
shown in this recipe should be called partial application, and that "currying" is something else.
But whether they're right or wrong, in a book whose title claims it's a cookbook, the use of curry
in a title was simply irresistible. Besides, the use of the verb to curry that this recipe supports is
the most popular one among programmers.

The curry function defined in this recipe is invoked with a callable and some or all of the
arguments to the callable. (Some people like to refer to functions that accept function objects as
arguments, and return new function objects as results, as higher-order functions.) The curry
function returns a closure curried that takes subsequent parameters as arguments and calls the

original with all of those parameters. For example:

double = curry(operator.mul, 2)
triple = curry(operator.mul, 3)

To implement currying, the choice is among closures, classes with callable instances, and lambda
forms. Closures are simplest and fastest, so that's what we use in this recipe.

A typical use of curry is to construct callback functions for GUI operations. When the operation
does not merit a new function name, curry can be useful in creating these little functions. For
example, this can be the case with commands for Tkinter buttons:

self.button = Button(frame, text='A', command=curry(transcript.append, 'A'))

Recipe 11.2 shows a specialized subset of "curry" functionality intended to produce callables that
require no arguments, which are often needed for such GUI-callback usage. However, this
recipe's curry function is vastly more flexible, without any substantial extra cost in either
complexity or performance.

Currying can also be used interactively to make versions of your functions with debugging-
appropriate defaults, or initial parameters filled in for your current case. For example, database
debugging work might begin by setting:

Connect = curry(ODBC.Connect, dsn='MyDataSet')

Another example of the use of curry in debugging is to wrap methods:

def report(originalFunction, name, *args, **kw):
 print "%s(%s)"%(name, ', '.join(map(repr, args) +
 [k+'='+repr(kw[k]) for k in kw])
 result = originalFunction(*args, **kw)
 if result: print name, '==>', result
 return result
class Sink(object):
 def write(self, text): pass
dest = Sink()
dest.write = curry(report, dest.write, 'write')
print >>dest, 'this', 'is', 1, 'test'

If you are creating a function for regular use, the def fun form of function definition is more

readable and more easily extended. As you can see from the implementation, no magic happens
to specialize the function with the provided parameters. curry should be used when you feel the
code is clearer with its use than without. Typically, this use will emphasize that you are only
providing some pre-fixed parameters to a commonly used function, not providing any separate
processing.

Currying also works well in creating a "lightweight subclass". You can curry the constructor of a
class to give the illusion of a subclass:

BlueWindow = curry(Window, background="blue")

BlueWindow._ _class_ _ is still Window, not a subclass, but if you're changing only default
parameters, not behavior, currying is arguably more appropriate than subclassing anyway. And
you can still pass additional parameters to the curried constructor.

Two decisions must be made when coding a curry implementation, since both positional and
keyword arguments can come in two "waves"some at currying time, some more at call time. The
two decisions are: do the call-time positional arguments go before or after the currying-time
ones? do the call-time keyword arguments override currying-time ones, or vice versa? If you
study this recipe's Solution, you can see I've made these decisions in a specific way (the one that
is most generally useful): call-time positional arguments after currying-time ones, call-time
keyword arguments overriding currying-time ones. In some circles, this is referred to as left-left
partial application. It's trivial to code other variations, such as right-left partial application:

def rcurry(f, *a, **kw):
 def curried(*more_a, **more_kw):
 return f(*(more_a+a), dict(kw, **more_kw))
 return curried

As you can see, despite the grandiose-sounding terms, this is just a matter of concatenating
more_a+a rather than the reverse; and similarly, for keyword arguments, you just need to call
dict(more_kw, **kw) if you want currying-time keyword arguments to override call-time ones

rather than vice versa.

If you wish, you could have the curried function carry a copy of the original function's docstring,
or even (easy in Python 2.4, but feasible, with a call to new.function, even in 2.3see the sidebar

in Recipe 20.1) a name that is somehow derived from the original function. However, I have
chosen not to do so because the original name, and argument descriptions in the docstring, are
probably not appropriate for the curried version. The task of constructing and documenting the
actual signature of the curried version is also feasible (with a liberal application of the helper
functions from standard library module inspect), but it's so disproportionate an effort, compared

to curry's delightfully simple four lines of code (!), that I resolutely refuse to undertake it.

A special case, which may be worth keeping in mind, is when the callable you want to curry is a
Python function (not a bound method, a C-coded function, a callable class instance, etc.), and all
you need to curry is the first parameter. In this case, the function object's _ _get_ _ special

method may be all you need. It takes an arbitrary argument and returns a bound-method object
with the first parameter bound to that argument. For example:

>>> def f(adj, noun='world'):
... return 'Goodbye, %s %s!' % (adj, noun)
...
>>> cf = f._ _get_ _('cruel')
>>> print cf()
Goodbye, cruel world!
>>> cf
<bound method ?.f of 'cruel'>
>>> type(cf)
<type 'instancemethod'>
>>> cf.im_func
<function f at 0x402dba04>
>>> cf.im_self
'cruel'

See Also

Recipe 11.2 shows a specialized subset of the curry functionality that is specifically intended for
GUI callbacks; docs for the inspect module and the dict built-in type in the Library Reference

and Python in a Nutshell.

Recipe 16.5. Composing Functions

Credit: Scott David Daniels

Problem

You need to construct a new function by composing existing functions (i.e., each call of the new
function must call one existing function on its arguments, then another on the result of the first
one).

Solution

Composition is a fundamental operation between functions and yields a new function as a result.
The new function must call one existing function on its arguments, then another on the result of
the first one. For example, a function that, given a string, returns a copy that is lowercase and
does not have leading and trailing blanks, is the composition of the existing string.lower and
string.strip functions. (In this case, it does not matter in which order the two existing

functions are applied, but generally, it could be important.)

A closure (a nested function returned from another function) is often the best Pythonic approach
to constructing new functions:

def compose(f, g, *args_for_f, **kwargs_for_f):
 ''' compose functions. compose(f, g, x)(y) = f(g(y), x)) '''
 def fg(*args_for_g, **kwargs_for_g):
 return f(g(*args_for_g, **kwargs_for_g), *args_for_f, **kwargs_for_f)
 return fg
def mcompose(f, g, *args_for_f, **kwargs_for_f):
 ''' compose functions. mcompose(f, g, x)(y) = f(*g(y), x)) '''
 def fg(*args_for_g, **kwargs_for_g):
 mid = g(*args_for_g, **kwargs_for_g)
 if not isinstance(mid, tuple):
 mid = (mid,)
 return f(*(mid+args_for_f), **kwargs_for_f)
 return fg

Discussion

The closures in this recipe show two styles of function composition. I separated mcompose and
compose because I think of the two possible forms of function composition as being quite

different, in mathematical terms. In practical terms, the difference shows only when the second
function being composed, g, returns a tuple. The closure returned by compose passes the result
of g as f's first argument anyway, while the closure returned by mcompose treats it as a tuple of
arguments to pass along. Any extra arguments provided to either compose or mcompose are
treated as extra arguments for f (there is no standard functional behavior to follow here):

compose(f, g, x)(y) = f(g(y), x)
mcompose(f, g, x)(y) = f(*g(y), x)

As in currying (see Recipe 16.4), this recipe's functions are for constructing functions from other

functions. Your goal in so doing should be clarity, since no efficiency is gained by using these
functional forms.

Here's a quick example for interactive use:

parts = compose(' '.join, dir)

When called on a module object, the callable we just bound to name parts gives you an easy-to-

view string that lists the module's contents.

See Also

Recipe 16.4 for an example of "curry"ing (i.e., associating parameters with partially evaluated
functions).

Recipe 16.6. Colorizing Python Source Using the Built-in
Tokenizer

Credit: Jürgen Hermann, Mike Brown

Problem

You need to convert Python source code into HTML markup, rendering comments, keywords,
operators, and numeric and string literals in different colors.

Solution

tokenize.generate_tokens does most of the work. We just need to loop over all tokens it finds,

to output them with appropriate colorization:

""" MoinMoin - Python Source Parser """
import cgi, sys, cStringIO
import keyword, token, tokenize
Python Source Parser (does highlighting into HTML)
_KEYWORD = token.NT_OFFSET + 1
_TEXT = token.NT_OFFSET + 2
_colors = {
 token.NUMBER: '#0080C0',
 token.OP: '#0000C0',
 token.STRING: '#004080',
 tokenize.COMMENT: '#008000',
 token.NAME: '#000000',
 token.ERRORTOKEN: '#FF8080',
 _KEYWORD: '#C00000',
 _TEXT: '#000000',
}
class Parser(object):
 """ Send colorized Python source HTML to output file (normally stdout).
 """
 def _ _init_ _(self, raw, out=sys.stdout):
 """ Store the source text. """
 self.raw = raw.expandtabs().strip()
 self.out = out
 def format(self):
 """ Parse and send the colorized source to output. """
 # Store line offsets in self.lines
 self.lines = [0, 0]
 pos = 0
 while True:
 pos = self.raw.find('\n', pos) + 1
 if not pos: break
 self.lines.append(pos)
 self.lines.append(len(self.raw))
 # Parse the source and write it
 self.pos = 0
 text = cStringIO.StringIO(self.raw)

 self.out.write('<pre>')
 try:
 for token in tokenize.generate_tokens(text.readline):
 # unpack the components of each token
 toktype, toktext, (srow, scol), (erow, ecol), line = token
 if False: # You may enable this for debugging purposes only
 print "type", toktype, token.tok_name[toktype],
 print "text", toktext,
 print "start", srow,scol, "end", erow,ecol, "
"
 # Calculate new positions
 oldpos = self.pos
 newpos = self.lines[srow] + scol
 self.pos = newpos + len(toktext)
 # Handle newlines
 if toktype in (token.NEWLINE, tokenize.NL):
 self.out.write('\n')
 continue
 # Send the original whitespace, if needed
 if newpos > oldpos:
 self.out.write(self.raw[oldpos:newpos])
 # Skip indenting tokens, since they're whitespace-only
 if toktype in (token.INDENT, token.DEDENT):
 self.pos = newpos
 continue
 # Map token type to a color group
 if token.LPAR <= toktype <= token.OP:
 toktype = token.OP
 elif toktype == token.NAME and keyword.iskeyword(toktext):
 toktype = _KEYWORD
 color = _colors.get(toktype, _colors[_TEXT])
 style = ''
 if toktype == token.ERRORTOKEN:
 style = ' style="border: solid 1.5pt #FF0000;"'
 # Send text
 self.out.write('' % (color, style))
 self.out.write(cgi.escape(toktext))
 self.out.write('')
 except tokenize.TokenError, ex:
 msg = ex[0]
 line = ex[1][0]
 self.out.write("<h3>ERROR: %s</h3>%s\n" % (
 msg, self.raw[self.lines[line]:]))
 self.out.write('</pre>')
if _ _name_ _ == "_ _main_ _":
 print "Formatting..."
 # Open own source
 source = open('python.py').read()
 # Write colorized version to "python.html"
 Parser(source, open('python.html', 'wt')).format()
 # Load HTML page into browser
 import webbrowser
 webbrowser.open("python.html")

Discussion

This code is part of MoinMoin (see http://moin.sourceforge.net/) and shows how to use the built-
in keyword, token, and tokenize modules to scan Python source code and re-emit it with

appropriate color markup but no changes to its original formatting ("no changes" is the hard

http://moin.sourceforge.net/

part!).

The Parser class' constructor saves the multiline string that is the Python source to colorize, and
the file object, which is open for writing, where you want to output the colorized results. Then,
the format method prepares a self.lines list that holds the offset (i.e., the index into the source
string, self.raw) of each line's start.

format then loops over the result of generator tokenize.tokenize, unpacking each token tuple

into items specifying the token type and starting and ending positions in the source (each
expressed as line number and offset within the line). The body of the loop reconstructs the exact
position within the original source code string self.raw, so it can emit exactly the same

whitespace that was present in the original source. It then picks a color code from the _colors
dictionary (which uses HTML color coding), with help from the keyword standard module to
determine whether a NAME token is actually a Python keyword (to be output in a different color

than that used for ordinary identifiers).

The test code at the bottom of the module formats the module itself and launches a browser with
the result, using the standard Python library module webbrowser to enable you to see and enjoy

the result in your favorite browser.

If you put this recipe's code into a module, you can then import the module and reuse its
functionality in CGI scripts (using the PATH_TRANSLATED CGI environment variable to know what

file to colorize), command-line tools (taking filenames as arguments), filters that colorize
anything they get from standard input, and so on. See http://skew.org/~mike/colorize.py for
versions that support several of these various possibilities.

With small changes, it's also easy to turn this recipe into an Apache handler, so your Apache web
site can serve colorized .py files. Specifically, if you set up this script as a handler in Apache,
then the file is served up as colorized HTML whenever a visitor to the site requests a .py file.

For the purpose of using this recipe as an Apache handler, you need to save the script as
colorize.cgi (not .py, lest it confuses Apache), and add, to your .htaccess or httpd.conf Apache
configuration files, the following lines:

AddHandler application/x-python .py
Action application/x-python /full/virtual/path/to/colorize.cgi

Also, make sure you have the Action module enabled in your httpd.conf Apache configuration

file.

See Also

Documentation for the webbrowser, token, tokenize, and keyword modules in the Library

Reference and Python in a Nutshell; the colorizer is available at
http://purl.net/wiki/python/MoinMoinColorizer, as part of MoinMoin
(http://moin.sourceforge.net), and, in a somewhat different variant, also at
http://skew.org/~mike/colorize.py; the Apache web server is available and documented at
http://httpd.apache.org.

http://skew.org/~mike/colorize.py
http://purl.net/wiki/python/MoinMoinColorizer
http://moin.sourceforge.net
http://skew.org/~mike/colorize.py
http://httpd.apache.org

Recipe 16.7. Merging and Splitting Tokens

Credit: Peter Cogolo

Problem

You need to tokenize an input language whose tokens are almost the same as Python's, with a
few exceptions that need token merging and splitting.

Solution

Standard library module tokenize is very handy; we need to wrap it with a generator to do the

post-processing for a little splitting and merging of tokens. The merging requires the ability to
"peek ahead" in an iterator. We can get that ability by wrapping any iterator into a small
dedicated iterator class:

class peek_ahead(object):
 sentinel = object()
 def _ _init_ _(self, it):
 self._nit = iter(it).next
 self.preview = None
 self._step()
 def _ _iter_ _(self):
 return self
 def next(self):
 result = self._step()
 if result is self.sentinel: raise StopIteration
 else: return result
 def _step(self):
 result = self.preview
 try: self.preview = self._nit()
 except StopIteration: self.preview = self.sentinel
 return result

Armed with this tool, we can easily split and merge tokens. Say, for example, by the rules of the
language we're lexing, that we must consider each of ':=' and ':+' to be a single token, but a
floating-point token that is a '.' with digits on both sides, such as '31.17', must be given as a
sequence of three tokens, '31', '.', '17' in this case. Here's how (using Python 2.4 code with

comments on how to change it if you're stuck with version 2.3):

import tokenize, cStringIO
in 2.3, also do 'from sets import Set as set'
mergers = {':' : set('=+'), }
def tokens_of(x):
 it = peek_ahead(toktuple[1] for toktuple in
 tokenize.generate_tokens(cStringIO.StringIO(x).readline)
)
 # in 2.3, you need to add brackets [] around the arg to peek_ahead
 for tok in it:
 if it.preview in mergers.get(tok, ()):
 # merge with next token, as required

 yield tok+it.next()
 elif tok[:1].isdigit() and '.' in tok:
 # split if digits on BOTH sides of the '.'
 before, after = tok.split('.', 1)
 if after:
 # both sides -> yield as 3 separate tokens
 yield before
 yield '.'
 yield after
 else:
 # nope -> yield as one token
 yield tok
 else:
 # not a merge or split case, just yield the token
 yield tok

Discussion

Here's an example of use of this recipe's code:

>>> x = 'p{z:=23, w:+7}: m :+ 23.4'
>>> print ' / '.join(tokens_of(x))
p / { / z / := / 23 / , / w / :+ / 7 / } / : / m / :+ / 23 / . / 4 /

In this recipe, I yield tokens only as substrings of the string I'm lexing, rather than the whole
tuple yielded by tokenize.generate_tokens, including such items as token position within the

overall string (by line and column). If your needs are more sophisticated than mine, you should
simply peek_ahead on whole token tuples (while I'm simplifying things by picking up just the
substring, item 1, out of each token tuple, by passing to peek_ahead a generator expression),
and compute start and end positions appropriately when splitting or merging. For example, if
you're merging two adjacent tokens, the overall token has the same start position as the first,
and the same end position as the second, of the two tokens you're merging.

The peek_ahead iterator wrapper class can often be useful in many kinds of lexing and parsing
tasks, exactly because such tasks are well suited to operating on streams (which are well
represented by iterators) but often require a level of peek-ahead and/or push-back ability. You
can often get by with just one level; if you need more than one level, consider having your
wrapper hold a container of peeked-ahead or pushed-back tokens. Python 2.4's
collections.deque container implements a double-ended queue, which is particularly well suited

for such tasks. For a more powerful look-ahead iterator wrapper, see Recipe 19.18.

See Also

Library Reference and Python in a Nutshell sections on the Python Standard Library modules
tokenize and cStringIO; Recipe 19.18 for a more powerful look-ahead iterator wrapper.

Recipe 16.8. Checking Whether a String Has Balanced
Parentheses

Credit: Peter Cogolo

Problem

You need to check whether a certain string has balanced parentheses, but regular expressions
are not powerful enough for this task.

Solution

We want a "true" parser to check a string for balanced parentheses, since parsing theory proves
that a regular expression is not sufficient. Choosing one out of the many Python parser
generators, we'll use David Beazley's classic but evergreen PLY:

define token names, and a regular expression per each token
tokens = 'OPEN_PAREN', 'CLOS_PAREN', 'OTHR_CHARS'
t_OPEN_PAREN = r'\('
t_CLOS_PAREN = r'\)'
t_OTHR_CHARS = r'[^()]+' # RE meaning: one or more non-parentheses
def t_error(t): t.skip(1)
make the lexer (AKA tokenizer)
import lex
lexer = lex.lex(optimize=1)
define syntax action-functions, with syntax rules in docstrings
def p_balanced(p):
 ''' balanced : balanced OPEN_PAREN balanced CLOS_PAREN balanced
 | OTHR_CHARS
 | '''
 if len(p) == 1:
 p[0] = ''
 elif len(p) == 2:
 p[0] = p[1]
 else:
 p[0] = p[1]+p[2]+p[3]+p[4]+p[5]
def p_error(p): pass
make the parser (AKA scanner)
import yacc
parser = yacc.yacc()
def has_balanced_parentheses(s):
 if not s: return True
 result = parser.parse(s, lexer=lexer)
 return s == result

Discussion

Here's an example of use of this recipe's code:

>> s = 'ba(be, bi(bo, bu))'

>> print s, is_balanced(s)
ba(be, bi(bo, bu)) True
>> s = 'ba(be, bi(bo), bu))'
>> print s, is_balanced(s)
ba(be, bi(bo), bu)) False

The first string has balanced parentheses, but the second one has an extra closed parenthesis;
therefore, its parentheses are not balanced.

"How do I check a string for balanced parentheses?" is a frequently asked question about regular
expressions. Programmers without a computer science background are often surprised to hear
that regular expressions just aren't powerful enough for this apparently simple task and a more
complete form of grammar is required. (Perl's regular expressions plus arbitrary embedded
expressions kitchen sink does sufficewhich just proves they aren't anywhere near "regular"
expressions any more!)

For this very simplified parsing problem we're presenting, any real parser is overkilljust loop over
the string's characters, keeping a running count of the number of open and yet unclosed
parentheses encountered at this point, and return False if the running count ever goes negative

or doesn't go back down to exactly 0 at the end:

def has_bal_par(s):
 op = 0
 for c in s:
 if c=='(':
 op += 1
 elif c==')':
 if op == 0:
 return False
 op -= 1
 return op == 0

However, using a parser when you need to parse is still a better idea, in general, than hacking up
special-purpose code such as this has_bal_par function. As soon as the problem gets extended a
bit (and problems invariably do grow, in real life, in often unpredictable directions), a real parser
can grow gracefully and proportionally with the problem, while ad hoc code often must be thrown
away and completely rewritten.

All over the web, you can find oodles of Python packages that are suitable for lexing and parsing
tasks. My favorite, out of all of them, is still good old PLY, David Beazley's Python Lexx and Yacc,
which reproduces the familiar structure of Unix commands lexx and yacc while taking advantage
of Python's extra power when compared to the C language that those Unix commands support.

You can find PLY at http://systems.cs.uchicago.edu/ply/. PLY is a pure Python package:
download it (as a .tgz compressed archive file), decompress and unarchive it (all reasonable
archiving tools now support this subtask on all platforms), open a command shell, cd into the
directory into which you unarchived PLY, and run the usual python setup.py install, with the
proper privileges to be able to write into your Python installation's site-packages directory (which
privileges those are depends on how you installed Python, and on what platform you're running).
Briefly, install it just as you would install any other pure Python package.

As you can see from this recipe, PLY is quite easy to use, if you know even just the fundamentals
of lexing and parsing. First, you define your grammar's tokensmake a tuple or list of all their
names (conventionally uppercase) bound to name tokens at your module's top level, define for

each token a regular expression bound to name t_token_name (again at the module's top level),
import lex, and call lex.lex to build your tokenizer (lexer). Then, define your grammar's action

functions (each of them carries the relevant syntax ruleproductionin its docstring in BNF, Backus-
Naur Form), import yacc, and call yacc.yacc to build your parser (scanner). To parse any string,
call the parse method of your parser with the string as an argument.

http://systems.cs.uchicago.edu/ply/

All the action is in your grammar's action functions, as their name implies. Each action function
receives as its single argument p a list of production elements corresponding to the production
that has been matched to invoke that function; the action function's job is to put into p[0]

whatever you need as "the result" of that syntax rule getting matched. In this recipe, we use as
results the very strings we have been matching, so that function is_balanced just needs to check
whether the whole string is matched by the parse operation.

When you run this script the first time, you will see a warning about a shift/reduce conflict. Don't
worry: as any old hand at yacc can tell you, that's the yacc equivalent of a rite of passage. If you
want to understand that message in depth, and maybe (if you're an ambitious person) even do
something about it, open with your favorite browser the doc/ply.html file in the directory in which
you unpacked PLY. That file contains a rather thorough documentation of PLY. As that file
suggests, continue by studying the contents of the examples directory and then read a textbook
about compilersI suggest Dick Grune and Ceriel J.H. Jacobs, "Parsing Techniques, a Practical
Guide." The first edition, at the time of this writing, is freely available for download as a PDF file
from http://www.cs.vu.nl/~dick/PTAPG.html, and a second edition should be available in
technical bookstores around the middle of 2005.

See Also

PLY web page at http://systems.cs.uchicago.edu/ply/; Dick Grune and Ceriel J.H. Jacobs,
"Parsing Techniques, a Practical Guide," a PDF, downloadable from
http://www.cs.vu.nl/~dick/PTAPG.html.

http://www.cs.vu.nl/~dick/PTAPG.html
http://systems.cs.uchicago.edu/ply/
http://www.cs.vu.nl/~dick/PTAPG.html

Recipe 16.9. Simulating Enumerations in Python

Credit: Will Ware

Problem

You want to define an enumeration in the spirit of C's enum type.

Solution

Python's introspection facilities let you code a class that implements a version of enum, even
though Python, as a language, does not support the enum construct:

class EnumException(Exception):
 pass
class Enumeration(object):
 def _ _init_ _(self, name, enumList, valuesAreUnique=True):
 self._ _doc_ _ = name
 self.lookup = lookup = { }
 self.reverseLookup = reverseLookup = { }
 i = 0
 for x in enumList:
 if type(x) is tuple:
 try:
 x, i = x
 except ValueError:
 raise EnumException, "tuple doesn't have 2 items: %r" % (x,)
 if type(x) is not str:
 raise EnumException, "enum name is not a string: %r" % (x,)
 if type(i) is not int:
 raise EnumException, "enum value is not an integer: %r" % (i,)
 if x in lookup:
 raise EnumException, "enum name is not unique: %r" % (x,)
 if valuesAreUnique and i in reverseLookup:
 raise EnumException, "enum value %r not unique for %r" % (i, x)
 lookup[x] = i
 reverseLookup[i] = x
 i = i + 1
 def _ _getattr_ _(self, attr):
 try: return self.lookup[attr]
 except KeyError: raise AttributeError, attr
 def whatis(self, value):
 return self.reverseLookup[value]

Discussion

In the C language, enum lets you declare several named constants, typically with unique values

(although you can also explicitly arrange for a value to be duplicated under two different names),
without necessarily specifying the actual values (except when you want it to). Despite the
similarity in naming, C's enum and this recipe's Enumeration class have little to do with the

Python built-in enumerate generator, which is used to loop on (index, item) pairs given an

iterablean entirely different issue!

Python has an accepted idiom that's fine for small numbers of constants:

A, B, C, D = range(4)

However, this idiom doesn't scale well to large numbers of constants and doesn't allow you to
specify values for some constants while leaving others to be determined automatically. This
recipe provides for all these niceties and, optionally, also checks that all values (both the ones
explicitly specified and the ones automatically determined) are unique. Enum values are
attributes of an Enumeration class instance (Volkswagen.BEETLE, Volkswagen.PASSAT, etc.). A
further feature, missing in C but really quite useful, is the ability to go from the value to the
corresponding name inside the enumeration (the name you get can be somewhat arbitrary for
those enumerations in which you don't constrain values to be unique).

This recipe's Enumeration class has an initializer that accepts a string argument to specify the
enumeration's name and a sequence argument to specify the names of all values in the
enumeration. Each item of the sequence argument can be a string (to specify that the value
named is one more than the last value used) or else a tuple with two items (the string that is the
value's name, then the value itself, which must be an integer). The code in this recipe relies
heavily on strict type checking to determine which case applies, but the recipe's essence would
not change by much if the checking was performed in a more lenient way (e.g., with the
isinstance built-in function).

Each Enumeration instance has two dict attributes: self.lookup to map names to values and
self.reverselookup to map values back to the corresponding names. The special method _
getattr _ lets you use names with attribute syntax (e.x is mapped to e.lookup['x']), and

the whatis method allows reverse lookups (i.e., find a name given a value) with similar ease.

Here's an example of how you can use this Enumeration class:

if _ _name_ _ == '_ _main_ _':
 import pprint
 Volkswagen = Enumeration("Volkswagen",
 ("JETTA", "RABBIT", "BEETLE", ("THING", 400), "PASSAT", "GOLF",
 ("CABRIO", 700), "EURO_VAN", "CLASSIC_BEETLE", "CLASSIC_VAN"
))
 Insect = Enumeration("Insect",
 ("ANT", "APHID", "BEE", "BEETLE", "BUTTERFLY", "MOTH", "HOUSEFLY",
 "WASP", "CICADA", "GRASSHOPPER", "COCKROACH", "DRAGONFLY"
))
 def whatkind(value, enum):
 return enum._ _doc_ _ + "." + enum.whatis(value)
 class ThingWithKind(object):
 def _ _init_ _(self, kind):
 self.kind = kind
 car = ThingWithKind(Volkswagen.BEETLE)
 print whatkind(car.kind, Volkswagen)
emits Volkswagen.BEETLE
 bug = ThingWithKind(Insect.BEETLE)
 print whatkind(bug.kind, Insect)
emits Insect.BEETLE
 print car._ _dict_ _
emits {'kind': 2}
 print bug._ _dict_ _
emits {'kind': 3}
 pprint.pprint(Volkswagen._ _dict_ _)
 pprint.pprint(Insect._ _dict_ _)
emits dozens of line showing off lookup and reverseLookup dictionaries

Note that the attributes of car and bug don't include any of the enum machinery because that

machinery is held as class attributes, not as instance attributes. This means you can generate
thousands of car and bug objects with reckless abandon, never worrying about wasting time or
memory on redundant copies of the enum stuff.

See Also

Recipe 6.2 shows how to define constants in Python; documentation on the special method _
getattr _ in the Language Reference and Python in a Nutshell.

Recipe 16.10. Referring to a List Comprehension While
Building It

Credit: Chris Perkins

Problem

You want to refer, from inside a list comprehension, to the same list object you're building.
However, the object being built by the list comprehension doesn't have a name while you're
building it.

Solution

Internally, the Python interpreter does create a "secret" name that exists only while a list
comprehension is being built. In Python 2.3, that name is usually '_[1]' and refers to the bound
method append of the list object we're building. We can use this secret name as a back door to

refer to the list object as it gets built. For example, say we want to build a copy of a list but
without duplicates:

>>> L = [1, 2, 2, 3, 3, 3]
>>> [x for x in L if x not in locals()['_[1]']._ _self_ _]
[1, 2, 3]

Python 2.4 uses the same name to indicate the list object being built, rather than the bound-
method access. In the case of nested list comprehensions, inner ones are named '_[2]', '_[3]',

and so on, as nesting goes deeper. Clearly, all of these considerations are best wrapped up into a
function:

import inspect
import sys
version_23 = sys.version_info < (2, 4)
def this_list():
 import sys
 d = inspect.currentframe(1).f_locals
 nestlevel = 1
 while '_[%d]' % nestlevel in d: nestlevel += 1
 result = d['_[%d]' % (nestlevel - 1)]
 if version_23: return result._ _self_ _
 else: return result

Using this function, we can make the preceding snippet more readable, as well as making it work
properly in Python 2.4 as well as in version 2.3:

>>> [x for x in L if x not in this_list()]
[1, 2, 3]

Discussion

List comprehensions may look a little like magic, but the bytecode that Python generates for
them is in fact quite mundane: create an empty list, give the empty list's bound-method append,

a temporary name in the locals dictionary, append items one at a time, and then delete the
name. All of this happens, conceptually, between the open square bracket ([) and the close

square bracket (]), which enclose the list comprehension.

The temporary name that Python 2.3 assigns to the bound append method is '_[1]' (or '_[2]',

etc., for nested list comprehensions). This name is deliberately chosen (to avoid accidental
clashes) to not be a syntactically valid Python identifier, so we cannot refer to the bound method
directly, by name. However, we can access it as locals()['_[1]']. Once we have a reference
to the bound method object, we just use the bound method's _ _self_ _ attribute to get at the

list object itself. In Python 2.4, the same name refers directly to the list object, rather than to its
bound method, so we skip the last step.

Having a reference to the list object enables us to do all sorts of neat party tricks, such as
performing if tests that involve looking at the items that have already been added to the list, or

even modifying or deleting them. These capabilities are just what the doctor ordered for finding
primes in a "one-liner", for example: for each odd number, we need to test whether it is divisible
by any prime number less than or equal to the square root of the number being tested. Since we
already have all the smaller primes stored and, with our new parlor trick, have access to them,
this test is a breeze and requires no auxiliary storage:

import itertools
def primes_less_than(N):
 return [p for p in itertools.chain([2], xrange(3,N,2))
 if 0 not in itertools.imap(
 lambda x: p % x, itertools.takewhile(
 lambda v: v*v <= p, this_list()))]

The list comprehension that's the whole body of this function primes_less_than, while long
enough not to fit into a single physical line, is all in a single logical line (indeed, it must be, since
any list comprehension is a single expression), and therefore qualifies as a "one-liner" if you
squint in just the right way.

This simple prime-finding algorithm is nowhere near as fast as the Sieve of Eratosthenes shown
in Recipe 18.10, but the ability to fit the entire algorithm inside a single expression is
nevertheless kind of neat. Part of its neatness comes from the just-in-time evaluation that the
functions from standard library module itertools perform so nicely.

Alas, this neat trick definitely cannot be recommended for production code. While it works in
Python 2.3 and 2.4, it could easily break in future releases, since it depends on undocumented
internals; for the same reason, it's unlikely to work properly on other implementations of the
Python language, such as Jython or IronPython. So, I suggest you use it to impress friends, but
for any real work, stick to clearer, faster, and solid good old for loops!

See Also

Documentation for bound methods, lists' append method, and the itertools module in the

Library Reference and Python in a Nutshell.

Recipe 16.11. Automating the py2exe Compilation of
Scripts into Windows Executables

Credit: Alexander Semenov

Problem

You often use py2exe to build Windows .exe files from Python scripts, but you don't want to

bother writing a setup.py build script for each and every such script.

Solution

distutils is a package in the standard Python library, ready to be imported from your Python
code. py2exe is a third-party extension to distutils for the specific task of generating Windows
executables from Python code: you must download and install py2exe separately, but once
installed, it cooperates smoothly with the standard distutils. Thanks to these features, you can
easily write Python scripts to automate distutils tasks (including py2exe tasks). For example:

from distutils.core import setup
import sys, os, py2exe
the key trick with our arguments and Python's sys.path
name = sys.argv[1]
sys.argv[1] = 'py2exe'
sys.path.append(os.path.dirname(os.path.abspath(name)))
setup(name=name[:-3], scripts=[name])

Save this as makexe.py in the Tools\Scripts\ folder of your Python installation. (You should
always add this folder to your Windows PATH because it contains many useful tools.) Now, from a
Windows command prompt, you're able to cd to a directory where you have placed a script (say

C:\MyDir\), and there run, say:

C:\MyDir> makexe.py myscript.py

and (assuming that you have a myscript.py script there, and .py among your Windows
executable extensions, with association to the Python interpreter) py2exe prepares all the files

you need for distributing your masterpiece (as a Windows executable and supporting DLLs),
neatly arranged in folder c:\MyDir\dist\myscript\.

Discussion

The distutils package is part of the Python Standard Library. It helps you prepare your Python

modules and extensions for distribution, as well as letting you install such packages as
distributed by others. py2exe is a freely downloadable third-party extension that works on top of
distutils to help you build a Windows .exe file (and a set of supporting DLL files) from a

Python-coded program, so that you can distribute your program in executable form to other
Windows PCs that may not have Python installed; see
http://starship.python.net/crew/theller/py2exe/, both to download py2exe and for detailed

documentation of this useful tool.

http://starship.python.net/crew/theller/py2exe/

Following the details given in the distutils (and py2exe) documentation, the canonical way to
use distutils (including py2exe) is to write a script, conventionally always named setup.py, to
perform all kinds of distutils tasks on your package. Normally, you write a setup.py for each

package you distribute, placing it in the top directory of the package (known as the distribution
root in distutils terminology).

However, there is nothing mandatory about the convention of writing a setup.py script per
package. distutils and py2exe, after all, are written as modules to be imported from Python.

So, you can, if you so choose, use all the power of Python to code scripts that help you perform
distutils and py2exe tasks in whatever ways you find most convenient.

This recipe shows how I eliminate the need to write a separate setup.py script for each Python
script that I convert to an executable with py2exe, and related issues such as the need to keep

such scripts in dedicated "distribution root" directories. I suggest you name this recipe's script
makexe.py, but any name will do, as long as you avoid naming it py2exe.py (a natural enough
temptation). (Naming it py2exe.py would break the script because the script must import
py2exe, and if you named the script py2exe.py it would "import itself" instead!)

Place this script on any directory on your Windows PATH where you normally keep executable

Python scripts. I suggest you use the Tools\Scripts folder of the Python distribution, a folder that
contains several other useful scripts you'll want to have handy (have a look in that folderit's
worth your time). I'm not going to delve into the details of how to set and examine your
Windows PATH, open a command prompt, make your Python scripts executable, and so on. Such

system administration details differ slightly on each version of Windows, and you'll need to
master them for any Windows version on which you want to perform significant programming,
anyway.

Once you have implemented this Solution, you'll find that making your Python scripts into
Windows executables has become so easy and so fast that soon you'll be distributing your neat
and useful programs to friends and acquaintances right and left. You won't need to convince
them to install the Python runtime files before they can install and run your programs, either! (Of
course, in this way they will end up with what amounts to several copies of the runtime files, if
they install several of your compiled programsthere is little you can do about that.)

See Also

The section "Distributing Python Modules" of the standard Python documentation set is still
incomplete but a good source of information on the distutils package; Python in a Nutshell
covers the essentials of the distutils package; py2exe is at

http://starship.python.net/crew/theller/py2exe/.

http://starship.python.net/crew/theller/py2exe/

Recipe 16.12. Binding Main Script and Modules into One
Executable on Unix

Credit: Joerg Raedler

Problem

You have a Python application composed of a main script and some additional modules. You want
to bind the script and modules into one executable file, so that no installation procedure is
necessary.

Solution

Prepare the following mixed sh/Python script and save it as file zipheader.unix:

#!/bin/sh
PYTHON=$(which python 2>/dev/null)
if [x ! -x "x$PYTHON"] ; then
 echo "python executable not found - cannot continue!"
 exit 1
fi
exec $PYTHON - $0 $@ << END_OF_PYTHON_CODE
import sys
version = sys.version_info[:2]
if version < (2, 3):
 print 'Sorry, need Python 2.3 or better; %s.%s is too old!' % version
sys.path.insert(0, sys.argv[1])
del sys.argv[0:2]
import main
main.main()
END_OF_PYTHON_CODE

Make sure you have the Python bytecode files for the main script of your application (file
main.pyc, containing a function named main, which starts the application when called without
arguments) and any additional modules your application needs (e.g., files spam.pyc and
eggs.pyc). Make a zip file out of them all:

$ zip myapp.zip main.pyc spam.pyc eggs.pyc

(If you prefer, you can build the zip file with an auxiliary Python program, of course.) Next,
concatenate the "header" and the zip file, and make the resulting file executable:

$ cat zipheader.unix myapp.zip > myapp
$ chmod +x myapp

That's all! Your application is now contained in this executable file myapp. When myapp runs, the
shell /bin/sh sets things up and replaces itself with the Python interpreter. The Python interpreter
reopens the file as a zip file, skipping the "header" text, and finds all needed modules in the zip
file itself.

Discussion

On Windows machines, you would normally use py2exe for similar tasks, as shown previously in
Recipe 16.11; on Mac OS X, you would normally use py2app (although this recipe works just as
well on Mac OS X as it does on any other Unix).

This recipe is particularly useful for Linux and other Unix variants that come with Python
installed. By following the steps outlined in this recipe's Solution, you can distribute a Python
application as a single, self-contained standalone executable file, which runs on any version of
Unix, on any hardware platformas long as your Python application does not need any C-coded
extension modules beyond the ones that come with Python itself. When you do need more, you
can use Python's own distutil package to perform more complicated packaging tasks. But for

many simple Python applications and quite a few that aren't all that simple, this recipe can be
very useful, since it results in a file that can just be run as is, without needing any kind of
"installation" step!

The key idea of this recipe is to exploit Python's ability to import modules from a zip file, while
skipping leading text that may precede the zip file itself. Here, as leading text, we use a small
shell script that turns itself into a Python script, and within the same file continues with the zip
file from which everything gets imported. The concept of importing from a zip file is described in
Recipe 2.9.

In the zip file, you may, if you wish, place Python source files (with extension .py), as well as
compiled bytecode files (with extension .pyc); the latter option is often preferable because if you
zip up source files, Python compiles them every time you run the application, slowing your
application's startup. On the other hand, if you zip up compiled bytecode files, your application
may be unable to run with versions of Python that are newer than the one you used to prepare
the bytecode files, since binary compatibility of bytecode files is not guaranteed across Python
releases. The best approach may be to place both sources and bytecodes in the zip file.

You may also choose to zip up optimized bytecode files (with extension .pyo)if you do so, you
need to add the flag -O right after the $PYTHON in the shell script in this recipe's Solution.
Execution speed doesn't generally change much, but optimized execution skips assert

statements, which may be important to you. Also, if you prepare the .pyo files by running Python
with option -OO, all docstrings are eliminated, which may slightly reduce your application's size

on disk (although docstrings tend to compress well, so that size advantage may be minor).

If you need help in finding all the modules that you need to place in the zip file, see the
modulefinder module in the Python Standard Library. Unfortunately, no real documentation

about it is available at the time of this writing, but just running (in version 2.3) something like:

$ python /usr/lib/python2.3/modulefinder.py main.py

should help (you may have to change the change the path to the modulefinder.py script,
depending on your Python installation). With Python 2.4, you can just use the handy new -m
switch:

$ python -mmodulefinder main.py

Python 2.4's -m switch lets you run as the main script any module that's on Python's sys.patha

very convenient little feature!

See Also

Recipe 16.11; Recipe 2.9; the sources of modules modulefinder and zipimport (which are not

yet documented in the Library Reference at the time of writing).

Chapter 17. Extending and Embedding
Introduction

Recipe 17.1. Implementing a Simple Extension Type

Recipe 17.2. Implementing a Simple Extension Type with Pyrex

Recipe 17.3. Exposing a C++ Library to Python

Recipe 17.4. Calling Functions from a Windows DLL

Recipe 17.5. Using SWIG-Generated Modules in a Multithreaded Environment

Recipe 17.6. Translating a Python Sequence into a C Array with the PySequence_Fast
Protocol

Recipe 17.7. Accessing a Python Sequence Item-by-Item with the Iterator Protocol

Recipe 17.8. Returning None from a Python-Callable C Function

Recipe 17.9. Debugging Dynamically Loaded C Extensions with gdb

Recipe 17.10. Debugging Memory Problems

Introduction

Credit: David Beazley, University of Chicago

One of Python's most powerful features is its ability to be hooked to libraries and programs
written in classic compiled languages such as C, C++, and Fortran. A large number of Python's
built-in library modules are written as extension modules in C so that operating system services,
networking functions, databases, and other features can be easily accessed from the interpreter.
In addition, a number of application programmers write extensions in order to use Python as a
framework for controlling large software packages coded in other languages.

The gory details of how Python interfaces with other languages can be found in various Python
programming books, as well as online documentation at www.python.org (directory Demo,
distributed as part of the Python source distribution, also contains several useful examples).
However, the general approach revolves around the creation of special wrapper functions that
hook into the interpreter. For example, if you had a C function like this:

 int gcd(int x, int y) {
 int g = y;
 while (x > 0) {
 g = x;
 x = y % x;
 y = g;
 }
 return g;
 }

and you wanted to access it from Python in a module named spam, you'd write some special

wrapper code like this:

 #include "Python.h"
 extern int gcd(int, int);
 PyObject *wrap_gcd(PyObject *self, PyObject *args) {
 int x, y, g;
 if(!PyArg_ParseTuple(args, "ii", &x, &y))
 return NULL;
 g = gcd(x, y);
 return Py_BuildValue("i", g);
 }
 /* List of all functions in the module */
 static PyMethodDef spammethods[] = {
 {"gcd", wrap_gcd, METH_VARARGS },
 { NULL, NULL }
 };
 /* Module initialization function */
 void initspam(void) {
 Py_InitModule("spam", spammethods);
 }

Once this code is compiled into an extension module, you can use the gcd function just as you
would expect. For example:

>>> import spam
>>> spam.gcd(63,56)

7
>>> spam.gcd(71,89)
1

This short example extends in a natural way to larger programming librarieseach function that
you want to access from Python simply gets its own wrapper.

Although writing simple extension functions is fairly straightforward, writing many wrappers
quickly becomes tedious and prone to error if you are building anything of reasonable
complexity. Therefore, a lot of programmers rely on automatic module building tools to simplify
the process. Python is fortunate to have a variety of such tools, many of which are listed below:

bgen

bgen is a module-building tool that can be found in the Tools directory of a standard
Python distribution. Maintained by Jack Jansen, it is used to generate many of the
extension modules available in the Macintosh version of Python, but it is not Mac specific.

pyfort

pyfort is a tool developed by Paul Dubois that can be used to build extension modules for
Fortran code. Details are available at the following web page:
http://pyfortran.sourceforge.net.

f2py

f2py is a wrapper generator for creating extensions in Fortran 90/95 that has been
developed by Pearu Peterson. Details are available at http://cens.ioc.ee/projects/f2py2e/.

SIP

SIP is a C++ module builder developed by Phil Thompson that creates wrappers for C++
classes. The system has most notably been used to create the PyQt and PyKDE extension

modules. More information can be found at http://www.thekompany.com/projects/pykde.

WrapPy

WrapPy is another C++ module builder that produces extension modules by reading C++
header files. It is developed by Greg Couch and is available at
http://www.cgl.ucsf.edu/home/gregc/wrappy/index.html.

Boost Python Library

Boost Python Library, developed by David Abrahams, provides one of the most powerful
and unusual C++ wrapping techniques. Classes are automatically wrapped into Python
extensions by simply writing a few additional C++ classes that specify information about
the extension module. More information is available at
http://www.boost.org/libs/python/doc/.

http://pyfortran.sourceforge.net
http://cens.ioc.ee/projects/f2py2e/
http://www.thekompany.com/projects/pykde
http://www.cgl.ucsf.edu/home/gregc/wrappy/index.html
http://www.boost.org/libs/python/doc/

SWIG

SWIG (Simplified Wrapper and Interface Generator) is an automatic extension-building tool
that reads annotated C and C++ header files and produces extension modules for Python,
Tcl, Perl, and a variety of other high-level languages such as Scheme, Ruby, Java, OCAML
(Objective Caml), and C#. SWIG is able to wrap a large subset of C++ language features
into a Python extension module. However, since I developed SWIG, I may be a little biased
:-). In any event, further details are available at http://www.swig.org.

Pyrex

Pyrex is a language for writing Python extension modules, developed by Greg Ewing. The
Pyrex language is a large subset of Python, with semantics slightly less fluidly dynamic
than Python, and the addition of a few language constructs (particularly optional
declarations of types of parameters and variables) that enables the Pyrex compiler to
generate fast C code. Further details are available at
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/.

Regardless of the approach used to build Python extension modules, certain important topics
remain somewhat mysterious to many extension programmers. The recipes in this chapter
describe some of the common problems and extension-building tricks that are rarely covered in
the standard documentation or other Python books. Topics include interacting with threads,
returning NULL values, accessing Python sequences and iterables, creating extension types, and

debugging.

One recipe, in particular, highlights an especially important topic: you don't necessarily have to
use other languages (even one as close to Python as Pyrex is) to write Python extensions to
access functionality that's available through dynamically loaded libraries (.DLLs on Windows, .sos
on Linux, .dylib on Mac OS X, etc.). It often may be sufficient to use existing third-party general-
purpose extensions, such as the classic calldll or the newer ctypes packages, which enable

you to wrap such dynamic libraries and make their functionality available to your Python
programs, by writing just a little pure Python code.

http://www.swig.org
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/

Recipe 17.1. Implementing a Simple Extension Type

Credit: Alex Martelli

Problem

You want to code and build a C extension type for Python with a minimal amount of hard work.

Solution

First of all, we need to create a setup.py file to use the distutils package to build and install

our module:

from distutils.core import setup, Extension
setup(name = "elemlist",
 version = "1.0",
 maintainer = "Alex Martelli",
 maintainer_email = "amcx@aleax.it",
 description = "Sample, simple Python extension module",
 ext_modules = [Extension('elemlist',sources=['elemlist.c'])]
)

Then, we need a file elemlist.c with our module's source code:

#include "Python.h"
/* type-definition and utility-macros */
typedef struct {
 PyObject_HEAD
 PyObject *car, *cdr;
} cons_cell;
staticforward PyTypeObject cons_type;
/* a type-testing macro (we don't actually use it here) */
#define is_cons(v) ((v)->ob_type == &cons_type)
/* utility macros to access car and cdr, as either lvalues or rvalues */
#define carof(v) (((cons_cell*)(v))->car)
#define cdrof(v) (((cons_cell*)(v))->cdr)
/* ctor ("internal" factory-function) and dtor */
static cons_cell*
cons_new(PyObject *car, PyObject *cdr)
{
 cons_cell *cons = PyObject_New(cons_cell, &cons_type);
 if(cons) {
 cons->car = car; Py_INCREF(car); /* INCREF when holding a PyObject */
 cons->cdr = cdr; Py_INCREF(cdr); /* ditto */
 }
 return cons;
}
static void
cons_dealloc(cons_cell* cons)
{
 /* DECREF when releasing previously-held PyObject*'s */

 Py_DECREF(cons->car); Py_DECREF(cons->cdr);
 PyObject_Del(cons);
}
/* A minimal Python type-object */
statichere PyTypeObject cons_type = {
 PyObject_HEAD_INIT(0) /* initialize to 0 to ensure Win32 portability */
 0, /* ob_size */
 "cons", /* tp_name */
 sizeof(cons_cell), /* tp_basicsize */
 0, /* tp_itemsize */
 /* methods */
 (destructor)cons_dealloc, /* tp_dealloc */
 /* implied by ISO C: all zeros thereafter, i.e., no other method */
};
/* module-functions */
static PyObject*
cons(PyObject *self, PyObject *args) /* the exposed factory-function */
{
 PyObject *car, *cdr;
 if(!PyArg_ParseTuple(args, "OO", &car, &cdr))
 return 0;
 return (PyObject*)cons_new(car, cdr);
}
static PyObject*
car(PyObject *self, PyObject *args) /* car-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */
 return 0;
 return Py_BuildValue("O", carof(cons));
}
static PyObject*
cdr(PyObject *self, PyObject *args) /* cdr-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */
 return 0;
 return Py_BuildValue("O", cdrof(cons));
}
static PyObject*
setcar(PyObject *self, PyObject *args) /* car-setter */
{
 PyObject *cons;
 PyObject *value;
 if(!PyArg_ParseTuple(args, "O!O", &cons_type, &cons, &value))
 return 0;
 Py_INCREF(value);
 Py_DECREF(carof(cons));
 carof(cons) = value;
 return Py_BuildValue("");
}
static PyObject*
setcdr(PyObject *self, PyObject *args) /* cdr-setter */
{
 PyObject *cons;
 PyObject *value;
 if(!PyArg_ParseTuple(args, "O!O", &cons_type, &cons, &value))
 return 0;
 Py_INCREF(value);
 Py_DECREF(cdrof(cons));

 cdrof(cons) = value;
 return Py_BuildValue("");
}
static PyMethodDef elemlist_module_functions[] = {
 {"cons", cons, METH_VARARGS},
 {"car", car, METH_VARARGS},
 {"cdr", cdr, METH_VARARGS},
 {"setcar", setcar, METH_VARARGS},
 {"setcdr", setcdr, METH_VARARGS},
 {0, 0}
};
/* module entry-point (module-initialization) function */
void
initelemlist(void)
{
 /* Create the module, with its functions */
 PyObject *m = Py_InitModule("elemlist", elemlist_module_functions);
 /* Finish initializing the type-objects */
 cons_type.ob_type = &PyType_Type;
}

Discussion

C-coded Python extension types have an undeserved aura of mystery and difficulty. Sure, it's a
lot of work to implement every possible feature, but a minimal yet useful type doesn't necessarily
take all that much effort.

This module is roughly equivalent to the Python-coded module:

def cons(car, cdr): return car, cdr
def car(conscell): return conscell[0]
def cdr(conscell): return conscell[1]
def setcar(conscell, value): conscell[0] = value
def setcdr(conscell, value): conscell[1] = value

except that the C source is about 25 times larger, even excluding comments and empty lines
(and it is not much faster than the Python-coded version, either).

However, the point of this recipe is to demonstrate a minimal C-coded extension type. I'm not
even supplying object methods (except the indispensable destructor) but, rather, I am providing
module-level functions to build cons cells and to read and write their car and cdr fields. This

recipe also shows the utter simplicity of building a C-coded extension module on any platform,
thanks to the distutils package, which does all of the hard work.

Lisp-savvy readers will have recognized from the names involved that this little extension offers
the core functionality to implement a Lisp-like linked list typeusing some NIL marker (e.g. None),
by convention, as the cdr of the last cons-cell of a list, and otherwise "consing up a list" by
having every cdr be another cons-cell. You might easily constrain the cdr to be either None or
another cons-cell, giving up on generality for a bit of extra error checking.

Because this recipe is meant as an introduction to writing extension modules in C for Python,
here are the instructions for building this extension module, assuming you have a Windows
machine with Python 2.3 and Microsoft Visual C++ 6 (or the free command-line equivalent that
you can download from Microsoft's site as a part of their .NET Framework SDK). You can
presumably translate mentally to other platforms such as Linux with gcc, Mac OS X with gcc, and
so on. On the other hand, using different C compilers on Windows involves more work, and I'm
not going to cover that here (see http://sebsauvage.net/python/mingw.html).

http://sebsauvage.net/python/mingw.html

Here are the steps you should follow to build this recipe's extension:

Make a new directoryfor example, C:\Temp\EL.1.

Open a command-prompt window, and go to the new directory.2.

In the new directory, create the files setup.py and elemlist.c with the contents of the
recipe's text.

3.

Run the following at the command prompt (assuming you've performed a standard Python
2.3 installation, so that your python.exe lives in C:\Python23):

<m>C:\Temp\EL> C:\Python23\python setup.py install</m>

4.

This command will result in lots of output, which you should examine to check for problems.
Presumably, all has gone well, and the new elemlist extension module has been built and
installed.

5.

Now try the extension by running the following at the DOS prompt:

<m>C:\Temp\EL> C:\Python23\python</m>

 (snipped: various greeting messages from Python)
>>> from elemlist import cons, car, cdr
>>> a = cons(1, cons(2, cons(3, ())))
>>> car(cdr(a))
2
>>>

6.

Thereyour new extension module is installed and ready!

See Also

The Extending and Embedding manual is available as part of the standard Python documentation
set at http://www.python.org/doc/current/ext/ext.html; the section "Distributing Python
Modules" of the standard Python documentation set is still incomplete, but it's a reliable source of
information on the distutils package. Python in a Nutshell covers the essentials of extending
and embedding and of the distutils package.

http://www.python.org/doc/current/ext/ext.html

Recipe 17.2. Implementing a Simple Extension Type
with Pyrex

Credit: Alex Martelli

Problem

You want to code and build an extension type for Python with a minimal amount of hard work.

Solution

The Pyrex language is the simplest and fastest way to build Python extensions. Once we have
Pyrex installed, the next step is to create a setup.py file to use the distutils package to build

and install our module:

from distutils.core import setup, Extension
from Pyrex.Distutils import build_ext
setup(name = "elemlist",
 version = "1.0",
 maintainer = "Alex Martelli",
 maintainer_email = "amcx@aleax.it",
 description = "Simple Python extension module in Pyrex",
 ext_modules = [Extension('elemlist',sources=['elemlist.pyx'])],
 cmdclass = {'build_ext': build_ext},
)

Then, we need a file elemlist.pyx with our module's source code:

cdef class cons:
 cdef public object car, cdr
 def _ _init_ _(self, car, cdr):
 self.car = car
 self.cdr = cdr
 def _ _repr_ _(self):
 return 'cons(%r, %r)' % (self.car, self.cdr)

Discussion

Pyrex is a language for writing Python extension modules. It was developed by Greg Ewing and is
freely downloadable and installable. The Pyrex language is a large subset of Python, with the
addition of a few language constructs to allow easy generation of fast C code. In this recipe, the
only special Pyrex construct we use is the cdef statement, which lets us express C-level

declarations.

This module is roughly equivalent to the Python-coded module:

class cons(object):
 _ _slots_ _ = ('car', 'cdr')
 def _ _init_ _(self, car, cdr):

 self.car = car
 self.cdr = cdr
 def _ _repr_ _(self):
 return 'cons(%r, %r)' % (self.car, self.cdr)

As you see, Pyrex code is very similar to Python code. Pyrex code gets compiled into C, which in
turn gets compiled to machine code, while Python code is compiled into bytecode instead. For
such a simple type as cons, the Pyrex version is not much faster than the Python version, but a

pure C version, such as the one that I demonstrated previously in Recipe 17.1, despite having 25
times as much code, wouldn't be any faster either.

Building a compiled extension module is just as simple when it's coded in Pyrex as when it's
coded directly in C, thanks to the distutils package, which does all of the hard work. (You need

to have Pyrex installed.) When you build a Pyrex-coded module, you may get warnings from your
C compiler about symbols with names starting with _ _pyx or _ _pyx that are defined but not

used, or declared but not defined. Do not let these warning messages worry you: your C
compiler is running with the highest possible level of warnings, and the little anomalies it's
warning about are just perfectly normal and innocuous artifacts in the C sources that Pyrex
automatically generates. Pyrex is not quite finished yet (the Pyrex version at the time of writing
is 0.9.3), so no attention has yet been spent on purely cosmetic warts. (By the time you read
this, a mature version of Pyrex may have been released, with all i's dotted and all t's crossed.
Nevertheless, I would recommend Pyrex even if the latest version still causes numerous
warnings.)

Installing Pyrex

To use Pyrex, you need to download and install it
(http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/), and you also need to have a
C compiler. Pyrex translates your .pyx source into C source and then uses your C
compiler to make from that C source a machine-code Python extension module (a
.pyd file on Windows, a .so file on Linux, a .dynlib file on the Mac, etc.). Installing
Pyrex itself is a snap: unpack the .tar.gz file, cd with the shell of your choice into the
directory thus made, and at the shell prompt type the usual command to install any
Python module: python setup.py install. Just as for any other Python module, you
may need "root" or "administrator" privileges to install Pyrex, depending on your
platform and on the details of your Python installation. In the directory where you
unpacked Pyrex's .tar.gz archive, you will also find abundant documentation and
examples, particularly in subdirectories Doc and Demos.

See Also

Abundant documentation on Pyrex, as well as examples, can be found in the directory (and
particularly in subdirectories Doc and Demos) where you unpacked Pyrex's .tar.gz file;
essentially the same documentation can also be read online, starting from the Pyrex web site at
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/.

http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/

Recipe 17.3. Exposing a C++ Library to Python

Credit: Ralf W. Grosse-Kunstleve, David Abrahams

Problem

You want to use a C++ library in Python. For example, you might have a fast rational-numbers
library, coded in C++, that you wish to wrap for use from Python.

Solution

Boost, http://www.boost.org, is a large free package with more than 50 fast and solid C++
libraries. Among those libraries, we find both Boost.Rational, a rational number library, and
Boost.Python, which makes it easy to turn any other C++ library into a Python extension. So, we
simply use the latter to wrap the former:

#include <boost/python.hpp>
#include <boost/rational.hpp>
/* two specific conversion functions: rational to float and to str */
static double
as_float(boost::rational<int> const& self)
{
 return double(self.numerator()) / self.denominator();
}
static boost::python::object
as_str(boost::rational<int> const& self)
{
 using boost::python::str;
 if (self.denominator() == 1) return str(self.numerator());
 return str(self.numerator()) + "/" + str(self.denominator());
}
/* the 'rational' Python extension module, with just one class in it: */
BOOST_PYTHON_MODULE(rational)
{
 boost::python::class_<boost::rational<int> >("int")
 .def(boost::python::init<int, optional<int> >())
 .def("numerator", &boost::rational<int>::numerator)
 .def("denominator", &boost::rational<int>::denominator)
 .def("_ _float_ _", as_float)
 .def("_ _str_ _", as_str)
 .def(-self)
 .def(self + self)
 .def(self - self)
 .def(self * self)
 .def(self / self)
 .def(self + int())
 .def(self - int())
 .def(self * int())
 .def(self / int())
 .def(int() + self)
 .def(int() - self)
 .def(int() * self)

http://www.boost.org

 .def(int() / self)
 ;
}

Discussion

Once you have built and installed the rational extension shown in this recipe's Solution, you can
use it to perform simple, natural tasks, such as:

>>> import rational
>>> x = rational.int(1, 3)
>>> y = rational.int(-2, 4)
>>> print "x =", x
x = 1/3
>>> print "y =", y
y = -1/2
>>> print "x+y =", x+y
x+y = -1/6
>>> print "x*2 =", x * 2
x*2 = 2/3
>>> print "3/y =", 3 / y
3/y = -6

Compiling and linking Boost.Python extensions is supported by the Boost.Build tool; we do not
cover that topic here. Extensive documentation is available online at the Boost site. Such tools as
make and SCons are also popular for software compilation and linking tasks, including tasks that
involve Boost.

The Solution's code shows off a few of Boost.Python's powerful features. Consider the snippet:

BOOST_PYTHON_MODULE(rational)
{
 class_<boost::rational<int> >("int")
 ...

The BOOST_PYTHON_MODULE macro takes a module name as a parameter, and a module body

immediately afterwards within braces, and does all that's needed to make a module we can
import from Python.

The class_ template, instantiated with the boost::rational type as a parameter and "called"
with the string argument "int", does all we need to have as part of our module a Python-usable
class, named rational.int, each of whose instances wraps an instance of the boost::rational
class. The type boost::rational is itself a template, and we instantiate that template with int
as a parameter, to use int as the type of each rational number's numerator and denominator.

If we stopped here, wrapping a C++ class in the class_ template, and exposing the wrapper

without adding any more to it, we'd have a rather empty type available on the Python side. It
would have no constructor (save for the default argument-less one), no methods, and no
attributes. To remedy this, the Solution code continues with several .def(...) calls, which are

chained: each call enriches the object, and also returns it, so you can just string such calls one
after the other. The methods we add with all those def calls include a constructor (which uses
the init template), then a couple of ordinary methods that delegate to the methods of the same

names in the wrapped class (accessors to the numerator and denominator parts of a rational
number), and then a couple of type-conversion special methods for which we've previously
coded corresponding functions (just before the BOOST_PYTHON_MODULE macro). Note, in

particular, that the implementation of the as_str function is so concise because it makes full use
of Boost.Python's object interfaceit's almost like writing Python in C++.

The baker's dozen of .def(...) calls that begins with:

 .def(-self)

and proceeds all the way to:

 .def(int() / self)

exposes all the arithmetic special methods for our new rational.int classunary minus (_ _neg_
_), and the four operations, each in three versionsbetween two instances of our class, and
between such instances and ints on either side (_ _add_ _, _ _radd_ _, etc.). The magic is

performed using expression templates, a technique originally developed for optimizing high-
performance matrix algebra expressions. Boost.Python's use of expression templates has a
different purpose, but it certainly comes in handy anyway!

A comprehensive rational number extension would require more functionalitycomparison
operators, _ _repr_ _, _ _hash_ _, support for pickling, and so on. A more complete

implementation, one that is actively used in applications, can be found at
http://cvs.sourceforge.net/viewcvs.py/cctbx/boost_adaptbx/, in the file rational_ext.cpp.

See Also

Boost's site is http://www.boost.org; the rational number library Boost.Rational, is at
http://www.boost.org/libs/rational; Boost.Python is at http://www.boost.org/libs/python.

http://cvs.sourceforge.net/viewcvs.py/cctbx/boost_adaptbx/
http://www.boost.org
http://www.boost.org/libs/rational
http://www.boost.org/libs/python

Recipe 17.4. Calling Functions from a Windows DLL

Credit: Stefano Spinucci

Problem

You want to avoid writing a Python extension in C, by directly calling from Python functions that
already exist in a Windows DLL.

Solution

The third-party ctypes extension makes this task pretty easy:

from ctypes import windll, c_int, c_string, byref
load 'Ehllapi.dll' (from current dir), and function 'hllapi' from the DLL
Ehllap32 = windll.ehllapi
hllapi = Ehllap32.hllapi
prepare the arguments with types and initial values
h_func = c_int(1)
h_text = c_string('A')
h_len = c_int(1)
h_ret = c_int(999)
call the function
hllapi(byref(h_func), h_text, byref(h_len), byref(h_ret))
print the resulting values of all arguments after the call
print h_func.value, h_text.value, h_len.value, h_ret.value

Discussion

I needed the code in this recipe specifically to call a C function whose prototype is:

void FAR PASCAL hllapi(int FAR *, char FAR *, int FAR *, int FAR *);

from a DLL named Ehllapi.DLL (an implementation of the IBM 3270 HLLAPI for an Italian 3270
terminal emulator, as it happens). Thomas Heller's ctypes extension, found at
http://sourceforge.net/projects/ctypes, made the task very easy. In particular, ctypes makes

mincemeat of problems related to representing function arguments that must belong to a certain
C type and possibly get passed "by reference" (i.e., via a pointer).

In the past, I used another extension, known as calldll, which was (and still is) available from
http://www.nightmare.com/software.html. While once very useful, calldll cannot rely on some
of the modern techniques that ctypes uses internally, because these possibilities were introduced
only in relatively recent versions of Python. calldll, using a single membuf Python type to
represent all possible C types, tends to be much more cumbersome than ctypes when they are

both used to perform the same tasks.

Judge for yourself: here is a working calldll version of the same script that I just showed how to
code with ctypes:

import calldll, struct

http://sourceforge.net/projects/ctypes
http://www.nightmare.com/software.html

some helpful auxiliary functions
def myPrintLong(vVar):
 ''' print a long contained in a membuf '''
 print calldll.read_long(vVar.address())
def myPrintString(vVar):
 ''' print a string contained in a membuf '''
 a = calldll.read_string(vVar.address())
 print a, len(a)
def mySetLong(vMemBuf, vValueToSet):
 ''' set to an unsigned long the value of a membuf with len == 4 '''
 vMemBuf.write(struct.pack('L', vValueToSet))
def mySetString(vMemBuf, vValueToSet):
 ''' set to a string (with \0 terminator) the value of a membuf '''
 pack_format = "%ds" % 1+len(vValueToSet) # +1 for the \0
 string_packed = struct.pack(pack_format, vValueToSet) # pack() adds the \0
 vMemBuf.write(string_packed)
load 'Ehllapi.dll' (from current dir), and function 'hllapi' from the DLL
dll_handle = calldll.load_library ('.\\Ehllapi')
function_address = calldll.get_proc_address (dll_handle, 'HLLAPI')
allocate and init three membufs with the size to hold an unsigned long
Lsize = struct.calcsize('L')
vFunction = calldll.membuf(Lsize)
mySetLong(vFunction, 1)
vTextLen = calldll.membuf(Lsize)
vResult = calldll.membuf(Lsize)
mySetLong(vResult, 1)
allocate a membuf as large as the DLL requires; in this case, space
for 24 x 80 characters + 1 for a \0 terminator
vText = calldll.membuf(1921)
init the text and text-length variables based on string of interest
string_value_to_write = 'A'
mySetString(vText, string_value_to_write)
mySetLong(vTextLen, len(string_value_to_write))
call the function, print the results, and clean up
calldll.call_foreign_function(function_address, 'llll', 'l',
 (vFunction.address(), vText.address(), vTextLen.address(), vResult.address()))
myPrintLong(vResult)
myPrintString(vText)
calldll.free_library(dll_handle)

To be honest, I can't quite be sure whether all of these gyrations are truly indispensable to
making this calldll-based version work. Whenever I try to simplify this version a bit, something
or other always breaks noisily, so I've stopped messing with it. One reason the ctypes-based
version is cleaner and simpler is that ctypes has never given me trouble, so I've been encouraged

to continue working on that version to improve it.

See Also

ctypes is at http://sourceforge.net/projects/ctypes; calldll is at

http://www.nightmare.com/software.html.

http://sourceforge.net/projects/ctypes
http://www.nightmare.com/software.html

Recipe 17.5. Using SWIG-Generated Modules in a
Multithreaded Environment

Credit: Joe VanAndel, Mark Hammond

Problem

You want to use SWIG-generated modules in a multithreaded environment; therefore, the C code
in those modules must release the Python global interpreter lock (see the Introduction to
Chapter 9 for more information about the global interpreter lock).

Solution

Use a typemap for SWIG, written by Mark Hammond, that was posted on comp.lang.python. It
maps Win32 API functions that return BOOL to Python functions that return None and raise

exceptions to diagnose errors. The wrapped function must set the standard Windows global
LastError if it returns FALSE (indicating that it has detected an error). The wrapping function

also automatically releases the Python global interpreter lock (GIL) for the duration of the
wrapped function's execution, to allow free multithreading.

%typedef BOOL BOOLAPI
%typemap(python,except) BOOLAPI {
 Py_BEGIN_ALLOW_THREADS
 $function
 Py_END_ALLOW_THREADS
 if (!$source) {
 $cleanup
 return PyWin_SetAPIError("$name");
 }
}

Discussion

To use multiple threads effectively, you must release the Python GIL from your C-coded
extension whenever it's safe to do so. The simplest way to do this with SWIG is to use an except
directive, as shown in the recipe's typemap. Within the typemap, you can then use the normal
Python C API's macros Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS (around the call to
the wrapped function, indicated by the special SWIG directive $function) to release the GIL and

acquire it again.

Another interesting effect of this simple typemap is that it turns the C-oriented error-return
convention (returning FALSE and setting a global error indicator code) into a highly Pythonic

convention (raising an exception).

See Also

SWIG and its typemaps are documented at http://www.swig.org; Windows API documentation on
LastError is available from the Microsoft MSDN site at http://msdn.microsoft.com; Chapter 9 for

http://www.swig.org
http://msdn.microsoft.com

general information on threads and particularly its Introduction for information on the GIL.

Recipe 17.6. Translating a Python Sequence into a C
Array with the PySequence_Fast Protocol

Credit: Luther Blissett

Problem

You have an existing C function that takes as an argument a C array of C-level values (e.g.,
doubles), and you want to wrap it into a Python-callable C extension that takes as an argument a

Python sequence or iterator.

Solution

The easiest way to accept an arbitrary Python sequence (or any other iterable object) in the
Python C API is with the PySequence_Fast function. It builds and returns a tuple when needed

but returns only its argument (with the reference count incremented) when the argument is
already a list or tuple:

#include <Python.h>
/* a preexisting C-level function you want to expose, e.g: */
static double total(double* data, int len)
{
 double total = 0.0;
 int i;
 for(i=0; i<len; ++i)
 total += data[i];
 return total;
}
/* here is how you expose it to Python code: */
static PyObject *totalDoubles(PyObject *self, PyObject *args)
{
 PyObject* seq;
 double *dbar;
 double result;
 int seqlen;
 int i;
 /* get one argument as a sequence */
 if(!PyArg_ParseTuple(args, "O", &seq))
 return 0;
 seq = PySequence_Fast(seq, "argument must be iterable");
 if(!seq)
 return 0;
 /* prepare data as an array of doubles */
 seqlen = PySequence_Fast_GET_SIZE(seq);
 dbar = malloc(seqlen*sizeof(double));
 if(!dbar) {
 Py_DECREF(seq);
 return PyErr_NoMemory();
 }
 for(i=0; i < seqlen; i++) {
 PyObject *fitem;

 PyObject *item = PySequence_Fast_GET_ITEM(seq, i);
 if(!item) {
 Py_DECREF(seq);
 free(dbar);
 return 0;
 }
 fitem = PyNumber_Float(item);
 if(!fitem) {
 Py_DECREF(seq);
 free(dbar);
 PyErr_SetString(PyExc_TypeError, "all items must be numbers");
 return 0;
 }
 dbar[i] = PyFloat_AS_DOUBLE(fitem);
 Py_DECREF(fitem);
 }
 /* clean up, compute, and return result */
 Py_DECREF(seq);
 result = total(dbar, seqlen);
 free(dbar);
 return Py_BuildValue("d", result);
}
static PyMethodDef totalMethods[] = {
 {"total", totalDoubles, METH_VARARGS, "Sum a sequence of numbers."},
 {0} /* sentinel */
};
void
inittotal(void)
{
 (void) Py_InitModule("total", totalMethods);
}

Discussion

The two best ways for your C-coded, Python-callable extension functions to accept generic
Python sequences as arguments are PySequence_Fast and PyObject_GetIter. The latter, which

I cover in the next recipe, can often save some memory, but it is appropriate only when it's OK
for the rest of your C code to get the items one at a time, without knowing beforehand how
many items there will be in total. You often have preexisting C functions from an existing library
that you want to expose to Python code, and such functions may require C arrays as their input
arguments. Thus, this recipe shows how to build a C array (in this case, an array of double) from

a generic Python sequence (or other iterable) argument, so that you can pass the array (and the
integer that gives the array's length) to your existing C function (represented here, purely as an
example, by the total function at the start of the recipe). (In the real world, you would use
Python's built-in function sum for this specific functionality, rather than exposing any existing C

function (but this is meant to be just an example!)

PySequence_Fast takes two arguments: a Python iterable object to be presented as a sequence,

and a string to use as the error message in case the Python object cannot be presented as a
sequence, in which case PySequence_Fast returns 0 (the C null pointer, NULL, an error indicator).
If the Python object is already a list or tuple, PySequence_Fast returns the same object with the

reference count increased by one. If the Python object is any other kind of sequence (or any
iterator, or other iterable), PySequence_Fast builds and returns a new tuple with all items
already in place. In any case, PySequence_Fast returns an object on which you can call
PySequence_Fast_GET_SIZE to obtain the sequence length (as we do in the recipe, in order to
malloc the appropriate amount of storage for the C array) and PySequence_Fast_GET_ITEM to
get an item given a valid index (an int between 0, included, and the sequence length, excluded).

The recipe requires quite a bit of care (as is typical of all C-coded Python extensions, and more
generally of any C code) to deal properly with memory issues and error conditions. For C-coded
Python extensions, in particular, it's imperative that you know which Python C API functions
return new references (which you must Py_DECREF when you are done with them) and which
ones return borrowed references (which you must not Py_DECREF when you're done with them;
on the contrary, you must Py_INCREF such a reference if you want to keep a copy for a longer

time). In this specific case, you have to know the following (by reading the Python
documentation):

PyArg_ParseTuple produces borrowed references.

PySequence_Fast returns a new reference.

PySequence_Fast_GET_ITEM returns a borrowed reference.

PyNumber_Float returns a new reference.

There is method to this madness, even though, as you start your career as a coder of C API
Python extensions, you'll no doubt have to double-check each case carefully. Python's C API
strives to return borrowed references (for the sake of the modest performance increase that they
afford, by avoiding needless incrementing and decrementing of reference counts), when it knows
it can always do so safely (i.e., it knows that the reference it is returning necessarily refers to an
already existing object). However, Python's C API has to return a new reference when it's
possible (or certain) that a new object may have to be created.

For example, in the preceding list, PyNumber_Float and PySequence_Fast may be able to return

the same object they were given as an argument, but it's also quite possible that they may have
to create a new object for this purpose, to ensure that the returned object has the correct type.
Therefore, these two functions are specified as always returning new references.
PyArg_ParseTuple and PySequence_Fast_GET_ITEM, on the other hand, always return references

to objects that already exist elsewhere (as items in the arguments' tuple, or as items in the fast-
sequence container, respectively). Therefore, these two functions can afford to return borrowed
references and are thus specified as doing so.

One last note: in this recipe, as soon as we obtain an item from the fast-sequence container, we
immediately try to transform it into a Python float object, and thus we have to deal with the

possibility that the transformation will fail (e.g., if we're passed a sequence containing a string, a
complex number, etc.). It is most often futile to first attempt a check (with PyNumber_Check)

because the check might succeed, and the later transformation attempt might fail anyway (e.g.,
with a complex-number item). Therefore, it's better to attempt the transformation and deal with
the resulting error, if any. This approach is yet another case of the common situation in which it's
easier to get forgiveness than permission!

As usual, the best way to build this extension (assuming e.g., that you've saved the extension's
source code as a file named total.c) is with the distutils package. Place a file named setup.py

in the same directory as the C source:

from distutils.core import setup, Extension
setup(name="total", maintainer="Luther Blissett", maintainer_email=
 "situ@tioni.st", ext_modules=[Extension('total', sources=['total.c'])]
)

then build and install by running:

$ python setup.py install

An appealing aspect of this approach is that it works on any platform, assuming that you have
access to the same C compiler used to build your version of Python, and permission to write on

the site-packages directory where the resulting dynamically loaded library gets installed.

See Also

The Extending and Embedding manual is available as part of the standard Python documentation
set at http://www.python.org/doc/current/ext/ext.html; documentation on the Python C API is at
http://www.python.org/doc/current/api/api.html; the section "Distributing Python Modules" in
the standard Python documentation set is still incomplete, but it's a good source of information
on the distutils package; Python in a Nutshell covers the essentials of extending and
embedding, of the Python C API, and of the distutils package.

http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html

Recipe 17.7. Accessing a Python Sequence Item-by-Item
with the Iterator Protocol

Credit: Luther Blissett

Problem

You want to write a Python-callable C extension that takes as an argument a Python sequence
(or other iterable) and accesses it sequentially, one item at a time, requiring no extra storage.

Solution

If you can afford to access the sequence item-by-item, without knowing in advance the number
of items it has, you can often save memory by using PyObject_GetIter instead of
PySequence_Fast:

#include <Python.h>
static PyObject *totalIter(PyObject *self, PyObject *args)
{
 PyObject* seq;
 PyObject* item;
 double result;
 /* get one argument as an iterator */
 if(!PyArg_ParseTuple(args, "O", &seq))
 return 0;
 seq = PyObject_GetIter(seq);
 if(!seq)
 return 0;
 /* process data sequentially */
 result = 0.0;
 while((item=PyIter_Next(seq))) {
 PyObject *fitem;
 fitem = PyNumber_Float(item);
 if(!fitem) {
 Py_DECREF(seq);
 Py_DECREF(item);
 PyErr_SetString(PyExc_TypeError, "all items must be numbers");
 return 0;
 }
 result += PyFloat_AS_DOUBLE(fitem);
 Py_DECREF(fitem);
 Py_DECREF(item);
 }
 /* clean up and return result */
 Py_DECREF(seq);
 return Py_BuildValue("d", result);
}
static PyMethodDef totitMethods[] = {
 {"totit", totalIter, METH_VARARGS, "Sum a sequence of numbers."},
 {0} /* sentinel */
};

void
inittotit(void)
{
 (void) Py_InitModule("totit", totitMethods);
}

Discussion

PyObject_GetIter is appropriate only when it's OK for the rest of your C code to get the items

one at a time, without knowing in advance the number of items in total. When this condition is
met, PyObject_GetIter gives you roughly the same performance as PySequence_Fast (if the

input argument is a list or tuple), but it can save memory allocation, and therefore can run
faster, if the input argument is an iterator or another kind of sequence or iterable. In this recipe's
function, since we are just summing the items, it is indeed perfectly OK to get them one at a
time, and we don't need to know in advance the total number; therefore, using
PyObject_GetIter is preferable. (In the real world, you would use Python's built-in function sum

for this specific functionality, rather than coding a dedicated C function, but then, this is meant to
be just an example!)

PyObject_GetIter takes one argument: a Python object from which an iterator is desired (much
like Python's iter built-in function). It either returns 0, indicating an error, or an iterator object,
on which you can repeatedly call PyIter_Next to get the next item (or 0, NULL, which does not
indicate an error, but rather indicates the end of the iteration). Both PyObject_GetIter and
PyIter_Next return new references, so we must use Py_DECREF when we're done with the

respective objects.

As usual, the best way to build this extension (assuming that you've saved it as a file named
totit.c) is with the distutils package. Place in the same directory as the C source a file named

setup.py such as:

from distutils.core import setup, Extension
setup(name="totit", maintainer="Luther Blissett", maintainer_email=
 "situ@tioni.st", ext_modules=[Extension('totit', sources=['totit.c'])]
)

then build and install by running:

<m>$ python setup.py install</m>

Part of the appeal of this approach is that it works on any platform, assuming that you have
access to the same C compiler used to build your version of Python, and permission to write on
the site-packages directory where the resulting dynamically loaded library gets installed.

Since Python extensions are often coded in C to maximize performance, it's interesting to
measure performance compared to pure Python code dealing with the same task. A typical
measurement setup might be a script such as the following timon.py:

import timeit, operator
from total import total
from totit import totit
def timo(fn, sq, init):
 T = timeit.Timer('timon.%s(%s)'%(fn,sq), 'import timon\n'+init)
 print ' %5.5s: %5.2f' % (fn, T.timeit(40000))
def totpy(x):
 result = 0.0
 for item in x: result += item
 return result

def totre(x):
 return reduce(operator.add, x, 0.0)
def totsu(x):
 return sum(x, 0.0)
if _ _name_ _ == '_ _main_ _':
 print 'on lists:'
 for f in 'totre totpy total totit totsu'.split():
 timo(f, 'seq', 'seq=range(2000)')
 print 'on iters:'
 for f in 'totre totpy total totit totsu'.split():
 timo(f, 'g()', 'def g():\n for x in range(2000): yield x')

This script uses the timeit module of the Python Standard Library to measure accurately 40,000
calls to each function on 2,000-item lists and 2,000-item generators. The timeit.Timer

constructor takes two string arguments: first the statement we're timing, then the setup
statements that run before timing begins. Here, the statement we're timing calls functions in this
module; therefore, the setup statements must import this modulewhich is why we add the
import timon at the beginning of the setup statement string. I have also taken care to make all
these functions strictly comparable, by having them all sum floats (not just ints). This purpose
is the reason that I provide the explicit 0.0 initial arguments to built-in functions reduce and sum.

On my machine, running with the command-line switch -O so that Python can optimize

operations a little bit, the timing results on Python 2.3 are:

<m>$ python -O timon.py</m>
on lists:
 totre: 136.04
 totpy: 118.18
 total: 56.61
 totit: 59.66
 totsu: 74.11
on iters:
 totre: 220.86
 totpy: 198.98
 total: 199.72
 totit: 201.70
 totsu: 157.44

As you can see, the most important optimization is to avoid the "attractive nuisance" of the
reduce built-in function: even a pure Python loop is faster! When we're dealing with lists, the

special-purpose C-coded extensions presented in the last two recipes are fastest; but when we're
dealing with generators, the fastest solution is provided by the built-in function sum. In practice,
one would always use sum for this functionality, rather than bothering to code or expose special-

purpose C functions.

See Also

The Extending and Embedding manual is available as part of the standard Python documentation
set at http://www.python.org/doc/current/ext/ext.html; documentation on the Python C API is at
http://www.python.org/doc/current/api/api.html; the section "Distributing Python Modules" in
the standard Python documentation set is still incomplete but is a good source of information on
the distutils package: Chapter 19 of this book covers iterators and generators in pure Python

terms; Python in a Nutshell covers the essentials of extending and embedding, of the Python C
API, of the distutils package, and of iterators; Python's Library Reference covers the timeit

module.

http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html

Recipe 17.8. Returning None from a Python-Callable C
Function

Credit: Alex Martelli

Problem

Your C-coded, Python-callable function in an extension module needs to return nothing in
particular (i.e., a Python None), but it must, of course, do so without messing up reference

counts.

Solution

Suppose we need an empty C-coded function, equivalent to Python:

def empty1(*args):
 pass

or, identically:

def empty2(*args):
 return None

Despite the simplicity of the task, there are right and wrong ways to perform it. The canonical
solution is:

static PyObject*
empty3(PyObject* self, PyObject* args)
{
 Py_INCREF(Py_None);
 return Py_None;
}

and the simplest, but still correct way, is:

static PyObject*
empty4(PyObject* self, PyObject* args)
{
 return Py_BuildValue("");
}

Discussion

A function written in C for Python often needs to return nothing in particular. In Python terms, it
must return None. Don't just code return Py_None; from C: that messes up reference counts!
Nonethe Python object we must explicitly return from a Python-callable, C-coded functionis a

normal Python object, subject to all normal reference count rules. One of these rules is that each

function must Py_INCREF the Python object it returns.

A bare return Py_None; is a nasty lurking buga frequent beginner's error that messes up

reference counts:

static PyObject*
empty5(PyObject* self, PyObject* args)
{
 return Py_None; /* ***WRONG*** */
}

Either explicitly Py_INCREF the None object you're returning, or (a simpler approach, but one that
costs a few machine cycles) delegate the work to the handy function Py_BuildValue, which can

be used to handle just about all cases of returning values from C to Python, offering potential
uniformity advantages. To have Py_BuildValue build a properly incref'd None on your behalf, call

it with just one argument, an empty format string.

In Python 2.4, the C API has gained a new macro just for this purpose. If you're coding a C
extension that supports only Python 2.4, you can write Py_RETURN_NONE; instead of the return

statement, and the macro takes care of everything for you.

See Also

The Extending and Embedding manual is available as part of the standard Python documentation
set at http://www.python.org/doc/current/ext/ext.html; documentation on the Python C API is at
http://www.python.org/doc/current/api/api.html.

http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html

Recipe 17.9. Debugging Dynamically Loaded C
Extensions with gdb

Credit: Joe VanAndel, Michael Aivazis

Problem

A dynamically loaded C/C++ Python extension is giving you trouble on a Unix or Unix-like
platform, and you want to use the interactive debugger gdb to determine what's wrong.

Solution

One way to determine the cause of core dumps or other serious trouble with a C Python
extension is to compile the extension source with -g and then follow these steps. (You may also
want to recompile any other extensions you use, such as Numeric, with -g, if you hadn't built
them that way in the first place.)

<m>% gdb /usr/bin/python2.1</m>
(gdb) br _PyImport_LoadDynamicModule
(gdb) run # start python
(gdb) cont # repeat until your extension is loaded
(gdb) # you may need an import statement at python's >>> prompt
(gdb) finish # finish loading your extension module
(gdb) br wrap_myfunction # break at the entry point in your code
(gdb) disable 1 # don't break for any more modules being loaded
(gdb) cont # back to Python, run things normally from here

Discussion

If a dynamically loaded C/C++ extension is causing Python to core dump, or causing some other
kind of serious trouble, this recipe can help you determine the root cause, by demonstrating a
technique for debugging your extension using gdb (if you use Unix or some Unix-like platform,
and gdb is your debugger of choice). The overall concept generalizes to other debuggers with
abilities similar to gdb's.

The main point of this recipe is that you cannot set a break on your function at the start, because
your function lives in a dynamic library (shared object) that isn't initially loaded. However, you
can break in the PyImport_LoadDynamicModule function, and eventually (when your module is

finally being loaded) get control at the debugger prompt right after your module is in memory.
You are then able, at last, to set the breakpoints you need.

This technique works. However, if you do this kind of thing often, the process of stepping
through all the modules, as Python loads them at startup, can easily become tedious. A handier
alternative, although more invasive, requires you to modify your Python sources and rebuild
Python from them.

The key idea of this handier alternative is to add a do-nothing function somewhere in the body of
code that Python loads immediately. Specifically, you can edit the Modules/main.c file, adding
one new function:

void Py_DebugTrap(void) { }

In the extension you're debugging, you can now add a call to Py_DebugTrap() right where you
want to break into the code. The Py_DebugTrap() symbol is immediately available when you
start gdb, because the symbol lives in main.c. So you can immediately set a breakpoint there, as
soon as you are at the gdb prompt, then continue. This approach even works in parallel under
MPI (message passing interface).

See Also

The gdb online documentation (just type help at the gdb interactive prompt), manual pages, and

online manual (http://www.gnu.org/manual/gdb-4.17/gdb.html).

http://www.gnu.org/manual/gdb-4.17/gdb.html

Recipe 17.10. Debugging Memory Problems

Credit: Will Ware

Problem

You're developing C extensions, and you experience memory problems. You suspect
mismanagement of reference counts and want to check whether your C extension code is
correctly managing reference counts.

Solution

To chase these problems in an optimal way, you need to alter Python's sources and rebuild
Python. Specifically, add the following function in Objects/object.c, immediately before the
_Py_PrintReferences function:

void
_Py_CountReferences(FILE *fp)
{
 int nr, no;
 PyObject *op;
 for (nr = no = 0, op = refchain._ob_next;
 op != &refchain;
 op = op->_ob_next, nr += op->ob_refcnt, no += 1)
 { }
 fprintf(fp, "%d refs (%d), %d objs\n", nr, _Py_RefTotal, no);
}

I place the following macros in my C extensions:

#if defined(Py_DEBUG) || defined(DEBUG)
extern void _Py_CountReferences(FILE*);
#define CURIOUS(x) { fprintf(stderr, _ _FILE_ _ ":%d ", _ _LINE_ _); x; }
#else
#define CURIOUS(x)
#endif
#define MARKER() CURIOUS(fprintf(stderr, "\n"))
#define DESCRIBE(x) CURIOUS(fprintf(stderr, " " #x "=%d\n", x))
#define DESCRIBE_HEX(x) CURIOUS(fprintf(stderr, " " #x "=%08x\n", x))
#define COUNTREFS() CURIOUS(_Py_CountReferences(stderr))

To debug, I rebuild Python using make OPT="-DPy_DEBUG", which causes the code under
Py_TRACE_REFS to be built. My own makefile for my extensions uses the same trick by including

these lines:

debug:
 make clean; make OPT="-g -DPy_DEBUG" all
CFLAGS = $(OPT) -fpic -O2 -I/usr/local/include -I/usr/include/python2.3

Discussion

When I'm developing C extensions and running into memory problems, I find that the typical
cause is mismanagement of reference counts, particularly misuse of Py_INCREF and Py_DECREF,
as well as forgetfulness of the reference-count effects of functions like Py_BuildValue,
PyArg_ParseTuple, and PyTuple/List_SetItem/GetItem. The Python sources offer help with
this problem (search for Py_TRACE_REFS), and function sys.getrefcounts in the Python

Standard Library is also helpful. Nevertheless, it's useful to add this recipe's function in
Objects/object.c just before _Py_PrintReferences.

Unlike _Py_PrintReferences, this recipe's _Py_CountReferences function prints only the totals of

all the refcounts and number of objects in the system, so it can be sensibly called, even in loops
that repeat millions of times, while _Py_PrintReferences would print out way too much stuff to

be useful. The information printed by _Py_CountReferences can help you identify errantly
wandering Py_INCREFs and Py_DECREFs. _Py_CountReferences plays it safe by performing its

own counts of objects references, which it prints side by side with the "official" count of
references that Python itself maintains (when compiled for debugging) as global variable
_Py_RefTotal. Should any discrepancy arise, you know something deeply wrong is going on.

When I suspect that one of my C-coded functions is responsible for memory problems, I liberally
sprinkle the suspect function with calls to the COUNTREFS macro. Doing so allows me to keep
track of exactly how many references are being created or destroyed as I go through my
function. This information is particularly useful in tight loops, in which dumb mistakes can cause
reference counts to grow ridiculously fast. Also, reference counts that shrink too fast (because of
overzealous use of Py_DECREF) can cause core dumps because the memory for objects that

should still exist has been reallocated for new objects.

See Also

The only documentation in this case is Python's own source code. Use the source, Luke!

Chapter 18. Algorithms

Introduction

Recipe 18.1. Removing Duplicates from a Sequence

Recipe 18.2. Removing Duplicates from a Sequence While Maintaining Sequence Order

Recipe 18.3. Generating Random Samples with Replacement

Recipe 18.4. Generating Random Samples Without Replacement

Recipe 18.5. Memoizing (Caching) the Return Values of Functions

Recipe 18.6. Implementing a FIFO Container

Recipe 18.7. Caching Objects with a FIFO Pruning Strategy

Recipe 18.8. Implementing a Bag (Multiset) Collection Type

Recipe 18.9. Simulating the Ternary Operator in Python

Recipe 18.10. Computing Prime Numbers

Recipe 18.11. Formatting Integers as Binary Strings

Recipe 18.12. Formatting Integers as Strings in Arbitrary Bases

Recipe 18.13. Converting Numbers to Rationals via Farey Fractions

Recipe 18.14. Doing Arithmetic with Error Propagation

Recipe 18.15. Summing Numbers with Maximal Accuracy

Recipe 18.16. Simulating Floating Point

Recipe 18.17. Computing the Convex Hulls and Diameters of 2D Point Sets

Introduction

Credit: Tim Peters, PythonLabs

Algorithm research is what drew me to Pythonand I fell in love. It wasn't love at first sight, but it
was an attraction that grew into infatuation, which grew steadily into love. And that love shows
no signs of fading. Why? I've worked in fields pushing the state of the art, and, in a paradoxical
nutshell, Python code is easy to throw away!

When you're trying to solve a problem that may not have been solved before, you may have
some intuitions about how to proceed, but you rarely know in advance exactly what needs to be
done. The only way to proceed is to try things, many things, everything you can think of, just to
see what happens. Python makes such exploration easier by minimizing the time and pain from
conception to code: if your colleagues are using, for example, C or Java, it's not unusual for you
to try (and discard) six different approaches in Python while they're still getting the bugs out of
their first attempt.

In addition, you will have naturally grown classes and modules that capture key parts of the
problem domain, simply because you find the need to keep reinventing them when starting over
from scratch. I've used many languages in my computer career, and I know of none more
productive than Python for prototyping. Best of all, while being an expert is often helpful,
moderate skill in Python is much easier to obtain than for many other languages, yet much more
productive for research and prototyping than merely moderate skill in any other language I've
used. You don't have to be an expert to start!

So if you're in the research businessand every programmer who doesn't know everything
occasionally isyou've got a nearly perfect language in Python. How then do you develop the
intuitions that can generate a myriad of plausible approaches to try? Experience is the final
answer, as we all get better at what we do often, but studying the myriad approaches other
people have tried develops a firm base from which to explore. Toward that end, here are the
most inspiring algorithm books I've read. They'll teach you possibilities you may never have
discovered on your own:

John Bentley, Programming Pearls and More Programming Pearls (Addison-Wesley)

Every programmer should read these books from cover to cover for sheer joy. The
chapters are extended versions of a popular column Bentley wrote for the Communications
of the Association for Computing Machinery (CACM). Each chapter is generally self-
contained, covering one or two lovely (and often surprising, in the "Aha! why didn't I think
of that?!" sense) techniques of real practical value.

Robert Sedgewick, Algorithms in C++ or Algorithms in C (Addison-Wesley)

These books cover the most important general algorithms, organized by problem domain,
and provide brief but cogent explanations, along with working code. The books cover the
same material; the difference is in which computer language is used for the code. I
recommend the C++ book for Python programmers, because idiomatic Python is closer to
C++ than to C. Sedgewick's use of C++ is generally simple and easily translated to
equivalent Python. This is the first book to reach for when you need to tackle a new area
quickly.

Donald Knuth, The Art of Computer Programming, series (Addison-Wesley)

For experts (and those who aspire to expertise), this massive series in progress is the
finest in-depth exposition of the state of the art. Nothing compares to its unique
combination of breadth and depth, rigor, and historical perspective. Note that these books
aren't meant to be read, they have to be actively studied, and many valuable insights are
scattered in answers to the extensive exercises. While the books include detailed analysis,
there's virtually no working code, except for programs written in assembly language for a
hypothetical machine of archaic design (yes, it can be maddeningly obscure). It can be
hard going at times, but few books so richly reward time invested.

To hone your skills, you can practice on an endless source of problems from the wonderful On-
Line Encyclopedia of Integer Sequences, at
http://www.research.att.com/~njas/sequences/Seis.html. When stress-testing upcoming Python
releases, I sometimes pick a sequence at random from its list of sequences needing more terms
and write a program to attempt an extension the sequence. Sometimes I'm able to extend a
sequence that hasn't been augmented in years, in large part because Python has so many
powerful features for rapid construction of new algorithms. Then the new terms are contributed
to the database, where they benefit others. Give it a try! You may love it, but even if you hate it,
you'll certainly find it challenging.

Timing and timeit.py

The first edition of this book contained a lengthy discussion of the difficulties in timing alternative
approaches. Such difficulties include the fact that the resolution of time.time varies across
platforms, and time.clock measures different things on different platforms (e.g., process CPU

time on Linux systems, wall-clock time on Windows).

It may still be important for some to learn all those details, but Python 2.3 introduced a new
timeit module, which captures best practice and is perfectly suited to timing small programs
with a minimum of fuss and pitfalls. Everyone should learn how to use timeit, and basic usage is

very easy to learn.

The simplest use of timeit is to pass one or more Python statements on the command line. Of

course, shell syntax varies across platforms, so you may need to adjust these statements to the
shell you use:

% python timeit.py "100 + 200"
10000000 loops, best of 3: 0.0932 usec per loop
% python timeit.py "100 - 200"
10000000 loops, best of 3: 0.0931 usec per loop

As expected, integer addition and subtraction are just about equally expensive. (Don't fall into
the trap of attributing any significance to differences as tiny as this one!) timeit picks the best

way of measuring time on your platform and runs your code in a loop. The module tries a few
times first to determine how many iterations to use in the loop, aiming at a total loop time
between 0.2 and 2 seconds. When it determines a suitable number of iterations for the loop, it
then runs the loop three times, reports the shortest time, and computes the time per loop
iteration. The iterations per loop, and number of loops to run, can be forced to specific values
with command-line options. See the Python Library Reference for details. (It's part of Python's
online documentation and probably also comes in some handy form with your version of Python.)

As always, you should keep your machine as quiet as possible when running timing tests. The
primary reason timeit runs three repetitions of the loop and reports the minimum time is to

guard against skewed results due to other machine activity. This is especially important when
running snippets that do very little work, such as the preceding examples. In such cases, even
just one unfortunate interruption can grossly increase the reported time. Even so, on my quiet
machine, snippets that run this fast can still yield confusing results:

http://www.research.att.com/~njas/sequences/Seis.html

% python timeit.py "100 + 200; 100 - 200"
10000000 loops, best of 3: 0.151 usec per loop
% python timeit.py "100 + 200" "100 - 200"
10000000 loops, best of 3: 0.151 usec per loop

One correct conclusion is that modern Python no longer has a time penalty for writing two
statements on two lines, instead of squashing them together on one line separated by a
semicolon. Older Pythons generated a SET_LINENO opcode at the start of each logical line of

code, and those opcodes consumed time to execute!

A more puzzling result is that adding and subtracting in one shot took 0.151 usec, but adding
alone and subtracting alone took 0.0932 usec each. Why didn't we get 2*0.093 = 0.186 usec in
the second experiment? The explanation is quite simple: timeit uses a fast iteration technique

and doesn't try to subtract the iteration overhead from the reported results. When timing very
fast snippets, this can be mildly disconcerting. Let's try to measure the overhead by timing a do-
nothing statement:

% python timeit.py "pass"
10000000 loops, best of 3: 0.0203 usec per loop

While 0.02 usec is tiny, it's significant compared to the 0.093 usec reported for an integer add!
Of course this effect diminishes to insignificance when timing more expensive operations:

% python timeit.py "100**100"
100000 loops, best of 3: 4.04 usec per loop
% python timeit.py "200**200"
100000 loops, best of 3: 9.03 usec per loop
% python timeit.py "100**100" "200**200"
100000 loops, best of 3: 13.1 usec per loop

Large integer exponentiation is much more expensive than adding small integers, and here the
sum of the times for doing 100**100 and 200**200 in isolation is very close to the time for
doing both at once.

The timeit module supports several other command-line options, and a programmatic interface

too, but I'll defer to the Python Library Reference for that information. To start making
productive use of timeit, the only other option you need to know about is the ability to pass

"setup" statements on the command line. These statements execute once, outside the loop
containing the code you're timing. For example, import statements are often used, as well as
code that populates data structures. For example (assuming a backslash \ is your shell's way to

indicate that a long logical line continues in the next physical line):

% python timeit.py -s "import random" \
 -s "x=range(100000); random.shuffle(x)" "sorted(x)"
10 loops, best of 3: 152 msec per loop

For each of the three loops, timeit constructed the randomly ordered array just once, then ran
sorted(x) repeatedly inside the loop. This was so expensive that timeit ran only 10 iterations

per loop and changed its reporting units from microseconds to milliseconds. (In Python 2.3,
timeit always reported in microseconds, but in version 2.4, it tries to be more helpful by picking

the appropriate reporting units.) This is very different from:

% python timeit.py "import random" \
 "x=range(100000); random.shuffle(x)" "sorted(x)"
10 loops, best of 3: 309 msec per loop

This snippet timed all the operations: importing random, building the list, randomly permuting the

list, and sorting the list. This preparation code takes longer than sorting does! You may be
surprised that we see from the reported times that it took at least as long to build and shuffle the
list as it took to sort it. The first two operations take O(n) time, but sorting random data takes

O(n log n) time; given this, how can this strange measurement be explained? Why didn't sorting

take longer?

I won't explain that mystery here but will point out a more significant lesson: timing code always
uncovers mysteries, and a timing tool as easy to use as timeit can be addictive. So be careful

what you measure! Measuring itself will consume more of your time than you expect. As noted
innumerable times by innumerable authors, the speed of most of your code doesn't matter at all.
Find the 10% that consumes most of the time before worrying about any of it. When you find the
true bottlenecks, timeit can help you measure the speed of alternatives objectivelyand you may

be surprised by what you find.

Recipe 18.1. Removing Duplicates from a Sequence

Credit: Tim Peters

Problem

You have a sequence that may include duplicates, and you want to remove the duplicates in the
fastest possible way, without knowing much about the properties of the items in the sequence.
You do not care about the "or"der of items in the resulting sequence.

Solution

The key is to try several approaches, fastest first, and use try/except to handle the failing cases

of the faster approaches by falling back to slower approaches. Here's a function that implements
exactly this strategy:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
def unique(s):
 """ Return a list of the elements in s in arbitrary order, but without
 duplicates. """
 # Try using a set first, because it's the fastest and will usually work
 try:
 return list(set(s))
 except TypeError:
 pass # Move on to the next method
 # Since you can't hash all elements, try sorting, to bring equal items
 # together and then weed them out in a single pass
 t = list(s)
 try:
 t.sort()
 except TypeError:
 del t # Move on to the next method
 else:
 # the sort worked, so we're fine -- do the weeding
 return [x for i, x in enumerate(t) if not i or x != t[i-1]]
 # Brute force is all that's left
 u = []
 for x in s:
 if x not in u:
 u.append(x)
 return u

Discussion

The purpose of this recipe's unique function is to take a sequence s as an argument and return a
list of the items in s in arbitrary order, but without duplicates. For example, calling unique([1,
2, 3, 1, 2, 3]) returns an arbitrary permutation of [1, 2, 3], calling unique('abcabc')
returns an arbitrary permutation of ['a', 'b', 'c'], and calling unique(([1, 2], [2, 3],

[1, 2])) returns an arbitrary permutation of [[2, 3], [1, 2]].

The fastest way to remove duplicates from a sequence depends on fairly subtle properties of the
sequence elements, such as whether they're hashable and whether they support full
comparisons. The unique function shown in this recipe tries three methods, from fastest to
slowest, letting runtime exceptions pick the best method for the sequence at hand.

For fastest speed, all sequence elements must be hashable. When they are, the unique function
will usually work in linear time (i.e., O(n), or directly proportional to the number of elements in

the input, which is good and highly scalable performance behavior).

If it turns out that hashing the elements (e.g., using them as dictionary keys, or, as in this case,
set elements) is not possible, the next best situation is when the elements enjoy a total
ordering, meaning that each element can be compared to each other element with the <

operator. If list(s).sort() doesn't raise a TypeError, we can assume that s' elements can be

sorted and therefore enjoy a total ordering. Then unique will usually work in O(n log(n)) time.
Python lists' sort method is particularly efficient in the presence of partially ordered data

(including, e.g., data with many duplicates), so the sorting approach may be more effective in
Python than elsewhere.

If sorting also turns out to be impossible, the sequence items must at least support equality
testing, or else the very concept of duplicates can't really be meaningful for them. In this case,
unique works in quadratic timethat is, O(n2), meaning time proportional to the square of the

number of elements in the input: not very scalable, but the least of all evils, given the sequence
items' obviously peculiar nature (assuming we get all the way to this subcase).

This recipe is a pure example of how algorithm efficiency depends on the strength of the
assumptions you can make about the data. You could split this recipe's function into three
distinct functions and directly call the one that best meets your needs. In practice, however, the
brute-force method is so slow for large sequences that nothing measurable is lost by simply
letting the function as written try the faster methods first.

If you need to preserve the same order of items in the output sequence as in the input sequence,
see Recipe 18.2.

See Also

Recipe 18.2.

Recipe 18.2. Removing Duplicates from a Sequence
While Maintaining Sequence Order

Credit: Alex Martelli

Problem

You have a sequence that may include duplicates, and you want to remove the duplicates in the
fastest possible way. Moreover, the output sequence must respect the item ordering of the input
sequence.

Solution

The need to respect the item ordering of the input sequence means that picking unique items
becomes a problem quite different from that explored previously in Recipe 18.1. This
requirement often arises in conjunction with a function f that defines an equivalence relation

among items: x is equivalent to y if and only if f(x)==f(y). In this case, the task of removing

duplicates may often be better described as picking the first representative of each resulting
equivalence class. Here is a function to perform this task:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
f defines an equivalence relation among items of sequence seq, and
f(x) must be hashable for each item x of seq
def uniquer(seq, f=None):
 """ Keeps earliest occurring item of each f-defined equivalence class """
 if f is None: # f's default is the identity function f(x) -> x
 def f(x): return x
 already_seen = set()
 result = []
 for item in seq:
 marker = f(item)
 if marker not in already_seen:
 already_seen.add(marker)
 result.append(item)
 return result

Discussion

The previous Recipe 18.1 is applicable only if you are not concerned about item ordering or, in
other words, if the sequences involved are meaningful only as the sets of their items, which is
often the case. When sequential order is significant, a different approach is needed.

If the items are hashable, it's not hard to maintain sequence order, keeping only the first
occurrence of each value. More generally, we may want uniqueness within equivalence classes,
as shown in this recipe's Solution: the uniquer function accepts as an argument a function f that

must return hashable objects, such that f(x)==f(y) if and only if items x and y are equivalent.

Identity (in the mathematical sense, not in the Python sense) is used as the default when no

argument f is supplied. The added generality of allowing an f different from the identity function

costs no added complication whatsoever.

If you need to keep the last occurrence, rather than the earliest occurrence, of an item in each
equivalence class, the simplest approach is to reverse the input sequence (or, rather, a copy

thereof into a local list, since the input might be immutable or at any rate not support reversing),
then, after processing with uniquer, reverse the resulting list:

def uniquer_last(seq, f=None):
 seq = list(seq)
 seq.reverse()
 result = uniquer(seq, f)
 result.reverse()
 return result

In Python 2.4, instead of the first three statements of this version of uniquer_last, you could use
the single statement:

 result = uniquer(reversed(seq), f)

exploiting the new built-in reversed. However, this Python 2.4 version, while marginally faster,

is less general, because it does require seq to be really a sequence, while the previously shown
version (and the uniquer function in the "Solution") work with any iterable seq. For example:

 somelines = uniquer_last(open('my.txt'), str.lower)

binds name somelines to the list of unique lines from text file my.txt, considering two lines

equivalent if they're equal aside from uppercase and lowercase distinctions, picking the last
occurring one from each set of equivalent lines, and preserving the order of the lines in the file
(phew). If you used Python 2.4's built-in reversed, this latest snippet would not work, due to
reversed's prerequisites.

If you must deal with nonhashable items, the simplest fallback approach is to use a set-like
container that supports the add method and membership testing without requiring items to be
hashable. Unfortunately, performance will be much worse than with a real set. Here's the

simplest fallback implementation, which demands of items nothing but support for equality
testing:

def uniquer_with_simplest_fallback(seq, f=None):
 if f is None:
 def f(x): return x
 already_seen = set()
 result = []
 for item in seq:
 marker = f(item)
 try:
 new_marker = marker not in already_seen
 except TypeError:
 class TotallyFakeSet(list):
 add = list.append
 already_seen = TotallyFakeSet(already_seen)
 new_marker = marker not in already_seen
 if new_marker:
 already_seen.add(marker)
 result.append(item)
 return result

A more refined approach would be to use two levels of fallback, the intermediate one based on
sorting, as shown previously in Recipe 18.1 testing in a sorted list can be performed efficiently by
using the Python Standard Library module bisect.

However, remember that you can often use an f that gives you hashable markers for
nonhashable items. The built-in function repr can often be useful for this purpose. For example:

lol = [[1, 2], [], [1, 2], [3], [], [3, 4], [1, 2], [], [2, 1]]
print uniquer(lol, repr)
emits: [[1, 2], [], [3], [3, 4], [2, 1]]

While the items of lol are lists, and thus are not hashable, the built-in function repr produces

representations of each of the items as a string, which is hashable. This enables use of the fast
function uniquer. Unfortunately, repr is not useful for nonhashable items of other types,
including dict and set. Because of the workings of hash-collision resolution, it's quite possible to

have d1==d2 and yet repr(d1)!=repr(d2) for two dictionaries d1 and d2, depending on the exact
sequences of adds that built each dict. Still, you may be able build your own repr-like function
to work around these issues, depending on the exact nature of your data. Whether repr can help

for instances of a certain user-defined type depends on how accurately and usefully that specific
type defines special method _ _repr_ _, which repr calls.

The task of picking one representative item, out of all of those belonging to each equivalence
class, can be generalized. Instead of the simple ideas of implicitly picking the first such item, or
the last such item, we can choose among multiple items in the same equivalence class via an
arbitrary picking function p that considers both the actual items and their indexes of occurrence.

As long as function p can operate pairwise, the key idea is just to keep a dictionary that maps

the marker of each equivalence class to the index and item of the representative so far picked for
that class. At the end, we reconstruct sequence order by sorting on the indices:

def fancy_unique(seq, f, p):
 """ Keeps "best" item of each f-defined equivalence class, with
 picking function p doing pairwise choice of (index, item) """
 representative = { }
 for index, item in enumerate(seq):
 marker = f(item)
 if marker in representative:
 # It's NOT a problem to rebind index and item within the
 # for loop: the next leg of the loop does not use their binding
 index, item = p((index, item), representative[marker])
 representative[marker] = index, item
 # reconstruct sequence order by sorting on indices
 auxlist = representative.values()
 auxlist.sort()
 return [item for index, item in auxlist]

It's possible that the picking function cannot operate pairwise, but rather must be presented with
the whole bunch of (index, item) pairs for each equivalence class in order to pick the best

representative of that class (e.g., it may have to get the median of the items in each class as
being the best representative of that class). Then we need one pass over the sequence to collect
the bunches, followed by a pass over the bunches, to pick the representatives:

def fancier_uniquer(seq, f, p):
 """ Keeps "best" item of each f-defined equivalence class, with
 picking function p choosing appropriate (index, item) for each
 equivalence class from the list of all (index, item) pairs in
 that class """
 bunches = { }
 for index, item in enumerate(seq):

 marker = f(item)
 bunches.setdefault(marker, []).append((index, item))
 auxlist = [p(candidates) for candidates in bunches.values()]
 auxlist.sort()
 return [item for index, item in auxlist]

These fancy approaches that rely on a picking function are useful only for substantial equivalence
functions, not for identity, so I removed f's default value from these versions.

An example of use for fancy_unique may help. Say we're given a list of words, and we need to

get a sublist from it, respecting order, such that no two words on the sublist begin with the same
letter. Out of all the words in the "or"iginal list that begin with each given letter, we need to keep
the longest word and, in case of equal lengths, the word appearing later on the list. This sounds
complicated, but with fancy_unique to help us, it's really not that bad:

def complicated_choice(words):
 def first_letter(aword):
 return aword[0].lower()
 def prefer((indx1, word1), (indx2, word2)):
 if len(word2) > len(word1):
 return indx2, word2
 return indx1, word1
 return fancy_unique(words, first_letter, prefer)

The prefer nested function within complicated_choice is simplified because it knows fancy_unique
always calls it with indx2<indx1. So, the older indx2, word2 pair must be returned only when

word2 is longer than word1; otherwise, indx1, word1 is always the proper result. The automatic

tuple unpacking in prefer's signature is debatable, stylewise, but I like it (it reminds me of SML or
Haskell).

Out of all the general programming techniques presented in the various functions of this recipe,
the idea of writing higher-order functions, which organize a computation and appropriately call
back to functions that they receive as arguments, is easily the most precious and widely
applicable concept. This idea is well worth keeping in mind in several circumstancesnot just for
old Haskell-heads, because it works just as well in Python.

See Also

Recipe 18.1.

Recipe 18.3. Generating Random Samples with
Replacement

Credit: Sean Ross

Problem

You need to generate random samples with replacement out of a "population" of items that are
held in a sequence.

Solution

A generator for the purpose is quintessentially simple:

import random
def sample_wr(population, _choose=random.choice):
 while True: yield _choose(population)

Discussion

random.sample lets you do random sampling without replacement, and Recipe 18.4, which

follows, shows a generator to perform sampling without replacement with excellent memory-
consumption characteristics. This recipe provides a generator for sampling with replacement,
which is an even simpler task. Basically all the work gets delegated to random.choice. The

sample_wr generator shown in this recipe is unbounded: used on its own, it will keep looping
forever. To bound the output of an intrinsically unbounded generator, you can use it in a for
statement that at some point executes a break, or use other techniques shown in Recipe 19.2.

For example, to make a random string of 50 lowercase ASCII letters:

import itertools
from string import ascii_lowercase
x = ''.join(itertools.slice(sample_wr(ascii_lowercase), 50))

string.ascii_lowercase is exactly the string 'abcdefghijklmnopqrstuvwxyz'. If you didn't have the

sample_wr generator, the equivalent code might be something like:

from string import ascii_lowercase
from random import choice
x = ''.join([random.choice(ascii_lowercase) for i in xrange(50)])

So, the practical added-value of sample_wr is modest, when compared to other available
building-blocks. It is, however, preferable to have such a fundamental concept of statistics as
sampling with replacement embodied as its own function, rather than having to implement it with
an explicit loop over random.choice each time it is needed.

See Also

Library Reference and Python in a Nutshell docs for module random.

Recipe 18.4. Generating Random Samples Without
Replacement

Credit: Raymond Hettinger

Problem

You need to generate random samples without replacement out of a "population" (the integers
between included and some n excluded), and you want better memory consumption
characteristics than random.sample provides.

Solution

A generator for this purpose requires only constant memory and makes a small number of calls
to random.random:

import random
def sample(n, r):
 " Generate r randomly chosen, sorted integers from [0,n) "
 rand = random.random
 pop = n
 for samp in xrange(r, 0, -1):
 cumprob = 1.0
 x = rand()
 while x < cumprob:
 cumprob -= cumprob * samp / pop
 pop -= 1
 yield n-pop-1

Discussion

random.sample(xrange(10), 3) produces output statistically equal to list(sample(10, 3))

using this recipe's sample. Differently from random.sample(xrange(n), r), this recipe's

sample(n, r) requires a bounded amount of memory (which does not grow with either r or n)

and is guaranteed to make only r calls to random.random. Moreover, this recipe's sample yields

the r numbers of the sample in sorted order, while random.sample returns them in random

orderwhich may be insignificant or a crucial advantage one way or the other, depending on your
application's needs. A definite advantage of random.sample is that its running time is O(r), while

this recipe's sample function's running time is O(n).

This recipe was inspired by Knuth's Algorithm S in Donald E. Knuth, The Art of Computer
Programming, Volume 3, Seminumerical Algorithms, in section 3.4.2. However, this recipe has
one improvement over Knuth's algorithm: by tracking a cumulative probability for each selection,
this recipe eliminates the need to make n calls to random.random.

A potential major improvement would be to find a direct formula giving the same result as the
inner loop: given x, samp, and pop, compute the index of the first sample. Finding this formula

would reduce the running time to O(r).

See Also

Library Reference and Python in a Nutshell docs about random.

Recipe 18.5. Memoizing (Caching) the Return Values of
Functions

Credit: Paul Moore, Mitch Chapman, Hannu Kankaanp

Problem

You have a pure function that is often called with the same arguments (particularly a recursive
function) and is slow to compute its results. You want to find a simple way to gain substantial
improvement in performance.

Solution

The key idea behind memoizing is to store a function's results in a dictionary, keyed by the
arguments that produce each result. This approach makes sense only for a pure function (i.e.,
one that yields the same result when called more than once with the same arguments). It's easy
to memoize a function by hand. For example, using the recursive Fibonacci function, here is a
manually memoized function:

fib_memo = { }
def fib(n):
 if n < 2: return 1
 if n not in fib_memo:
 fib_memo[n] = fib(n-1) + fib(n-2)
 return fib_memo[n]

Having to code the memoization inside each function to be memoized is repetitive and degrades
the function's readability. An alternative is to encapsulate the memoization mechanics into a
closure:

def memoize(fn):
 memo = { }
 def memoizer(*param_tuple, **kwds_dict):
 # can't memoize if there are any named arguments
 if kwds_dict:
 return fn(*param_tuple, **kwds_dict)
 try:
 # try using the memo dict, or else update it
 try:
 return memo[param_tuple]
 except KeyError:
 memo[param_tuple] = result = fn(*param_tuple)
 return result
 except TypeError:
 # some mutable arguments, bypass memoizing
 return fn(*param_tuple)
 # 2.4 only: memoizer._ _name_ _ = fn._ _name_ _
 return memoizer

Using this memoize closure to memoize fib, the function definition becomes obvious, without
caching boilerplate to obscure the algorithm. You must assign the memoize result to the same
name, fib, as the recursive function; otherwise, the recursive calls bypass the memoizing:

def fib(n):
 if n < 2: return 1
 return fib(n-1) + fib(n-2)
fib = memoize(fib)

This latest snippet shows that memoize is meant to be used exactly as a Python 2.4 decorator,
so in Python 2.4, you could use decorator syntax (instead of the explicit call to memoize):

@memoize
def fib(n):
 if n < 2: return 1
 return fib(n-1) + fib(n-2)

giving exactly the same semantics as the previous snippet.

Discussion

The memoize function is called with just one argument, a function f. It returns a closure

memoizer that acts just like f but memoizes its arguments and result if the actual arguments to

a call are hashable and positional. Calls with mutable or keyword arguments bypass the
memoizing. If you're worried that such bypassing happens too often, making memoizing
counterproductive, you should do a few dry runs that are representative of your intended
production usage, with a closure that's modified to collect statistics. Then you can decide
whether memoization is worth using for your specific application. Here's the modified memoize
for this purpose:

def memoize(fn):
 memo = { }
 def memoizer(*param_tuple, **kwds_dict):
 if kwds_dict:
 memoizer.namedargs += 1
 return fn(*param_tuple, **kwds_dict)
 try:
 memoizer.cacheable += 1
 try:
 return memo[param_tuple]
 except KeyError:
 memoizer.misses += 1
 memo[param_tuple] = result = fn(*param_tuple)
 return result
 except TypeError:
 memoizer.cacheable -= 1
 memoizer.noncacheable += 1
 return fn(*param_tuple)
 memoizer.namedargs = memoizer.cacheable = memoizer.noncacheable = 0
 memoizer.misses = 0
 return memoizer

Functions to be memoized must be pure (i.e., they must have no side effects and must always
return the same value whenever they are called with the same arguments). More significantly,
memoize returns a closure that does not memoize calls that receive mutable arguments, such as
len on a list, nor functions that receive named parameters.

memoize cannot really check the semantics of the functions you wrap. The notions of same value
and same arguments are vaguely defined in many cases, so take care. memoize does try to field
occasional calls with keyword and mutable arguments (with an interesting mix of checking and
try/except), but performance will suffer unless such cases are rare. This is why it's worth having

around a version of memoize that keeps counts of the various possibilities, so that you can check
their rarity.

See Also

Recipe 20.4 applies caching to class instances' attributes.

Recipe 18.6. Implementing a FIFO Container

Credit: Sébastien Keim, Alex Martelli, Raymond Hettinger, Jeremy Fincher, Danny Yoo, Josiah
Carlson

Problem

You need a container that allows element insertion and removal, in which the first element
inserted is also the first to be removed (i.e., a first-in first-out, FIFO, queue).

Solution

We can subclass list to implement a Pythonic version of an idea found in Knuth's Art of

Computer Programming: the frontlist/backlist approach to building a FIFO out of two one-way
linked lists. Here's how:

class Fifo(list):
 def _ _init_ _(self):
 self.back = []
 self.append = self.back.append
 def pop(self):
 if not self:
 self.back.reverse()
 self[:] = self.back
 del self.back[:]
 return super(Fifo, self).pop()

Discussion

Here is a usage example, protected by the usual guard so it runs only when the module executes
as a main script rather than being imported:

if _ _name_ _ == '_ _main_ _':
 a = Fifo()
 a.append(10)
 a.append(20)
 print a.pop(),
 a.append(5)
 print a.pop(),
 print a.pop(),
 print
emits: 10 20 5

The key idea in class Fifo is to have an auxiliary backlist, self.back, to which incoming items get
appended. Outgoing items get popped from the frontlist, self. Each time the frontlist is
exhausted, it gets replenished with the reversed contents of the backlist, and the backlist is
emptied. The reversing and copying are O(n), where n is the number of items appended since

the "front list" was last empty, but these operations are performed only once every n times, so
the amortized cost of each call to pop is a constantthat is, O(1).

A simpler way to build a FIFO in Python is no doubt to just use a standard list's append and
pop(0) methodssomething like:

class FifoList(list):
 def pop(self):
 return super(FifoList, self).pop(0)

However, when using a list in this way, we need to keep in mind that pop(0) is O(n), where n is

the current length of the list. O(1) performance can be ensured by building the FIFO in a slightly

less intuitive way, on top of a dictionary:

class FifoDict(dict):
 def _ _init_ _(self):
 self.nextin = 0
 self.nextout = 0
 def append(self, data):
 self.nextin += 1
 self[self.nextin] = data
 def pop(self):
 self.nextout += 1
 return dict.pop(self, self.nextout)

In Python 2.4, we also have collections.deque, a double-ended queue type that also ensures

O(1) performance when used as a FIFO (using its append and popleft methods):

import collections
class FifoDeque(collections.deque):
 pop = collections.deque.popleft

To choose among different implementations of the same interface, such as the various Fifo...
classes shown in this recipe, the best approach often is to measure their performance on artificial
benchmark examples that provide a reasonable simulation of the expected load in your
application. I ran some such measurements on a somewhat slow laptop, with Python 2.4, using
the timeit module from the Python Standard Library. For a total of 6,000 appends and pops,

with a maximum length of 3,000, class Fifo takes about 62 milliseconds, class FifoList about 78,
FifoDict about 137, and FifoDeque about 30. Making the problem exactly ten times bigger, we
see the advantages of O(1) behavior (exhibited by all of these classes except FifoList). Fifo takes

0.62 seconds, FifoList 3.8, FifoDict 1.4, and FifoDeque 0.29. Clearly, in Python 2.4, FifoDeque is
fastest as well as simplest; if your code has to support Python 2.3, the Fifo class shown in this
recipe's Solution is best.

See Also

Library Reference and Python in a Nutshell docs for built-ins list and dict; Library Reference
docs on modules collections (Python 2.4 only) and timeit. Python in a Nutshell's chapter on

optimization; Donald Knuth, The Art Of Computer Programming (exercise 14, section 2.2.1).

Recipe 18.7. Caching Objects with a FIFO Pruning
Strategy

Credit: David M. Wilson, Raymond Hettinger

Problem

You need to build a mapping to be used as a cache, holding up to a fixed number of previous
entries and automatically discarding older entries.

Solution

A mapping can implement a relatively small number of core methods and rely on
UserDict.DictMixin to provide all the other methods that make up the full official mapping
interface. Here is a mapping class for FIFO caching, implemented with this "let DictMixin do it"

strategy:

import UserDict
class FifoCache(object, UserDict.DictMixin):
 ''' A mapping that remembers the last `num_entries' items that were set '''
 def _ _init_ _(self, num_entries, dct=()):
 self.num_entries = num_entries
 self.dct = dict(dct)
 self.lst = []
 def _ _repr_ _(self):
 return '%r(%r,%r)' % (
 self._ _class_ _._ _name_ _, self.num_entries, self.dct)
 def copy(self):
 return self._ _class_ _(self.num_entries, self.dct)
 def keys(self):
 return list(self.lst)
 def _ _getitem_ _(self, key):
 return self.dct[key]
 def _ _setitem_ _(self, key, value):
 dct = self.dct
 lst = self.lst
 if key in dct:
 lst.remove(key)
 dct[key] = value
 lst.append(key)
 if len(lst) > self.num_entries:
 del dct[lst.pop(0)]
 def _ _delitem_ _(self, key):
 self.dct.pop(key)
 self.lst.remove(key)
 # a method explicitly defined only as an optimization
 def _ _contains_ _(self, item):
 return item in self.dct
 has_key = _ _contains_ _

Discussion

Here is a typical example of usage for this FifoCache class:

if _ _name_ _ == '_ _main_ _':
 f = FifoCache(num_entries=3)
 f["fly"] = "foo"
 f["moo"] = "two"
 f["bar"] = "baz"
 f["dave"] = "wilson"
 f["age"] = 20
 print f.keys()
 # emits ['bar', 'dave', 'age']

For any case where you might use a dictionary object to cache expensive lookups, the FifoCache
class shown in this recipe might be a safer alternative for use in long-running applications, whose
caches might otherwise consume all system memory if left unchecked.

Thanks to UserDict.DictMixin, class FifoCache exhibits a full dictionary (i.e., mapping)

interface: you can substitute an instance of FifoCache wherever you're using a dictionary (as long
as you do want entries that were set "a long time ago" to drop out automatically to make space
for newer ones).

In Python 2.4, you can get a faster version of FifoCache by setting self.lst to be an instance of
collections.deque rather than a list, and using self.lst.popleft() where this recipe's
solution uses self.lst.pop(0). Since the deque type does not have a remove method, you have

to implement that with a little auxiliary function:

def remove_from_deque(d, x):
 for i, v in enumerate(d):
 if v == x:
 del d[i]
 return
 raise ValueError, '%r not in %r' % (x, d)

and use remove_from_deque(self.lst, key) where this recipe's Solution uses
self.list.remove(key). While, as always, you should measure how useful this optimization is in

the context of your specific application, it's likely to be helpful when num_entries is high, since
self.lst.pop(0) on a list self.lst is O(n), while self.list.popleft() on a deque self.lst is

O(1). (remove_from_deque, like list.remove, is unfortunately and unavoidably O(n)).

FIFO is not the ideal policy for a cache's decision about what should "fall off"; a better one would
be LRU (Least Recently Used). You can tweak this class' policy into LRU by subclassing and
overriding:

class LRUCache(FifoCache):
 def _ _getitem_ _(self, key):
 if key in self.dct:
 self.lst.remove(key)
 else:
 raise KeyError
 self.lst.append(key)
 return self.dct[key]

This variant does ensure the use of the LRU policy without much extra code. Unfortunately, it
makes every read access quite costly O(n), where n is the number of entries in the cache at that

time), due to the need for the self.lst.remove call. Therefore, this recipe's official "Solution" uses

the simpler implementation, even though FIFO is notoriously suboptimal as a cache replacement
strategy.

See Also

Library Reference and Python in a Nutshell docs for module UserDict; Recipe 5.14 also uses
UserDict.DictMixin to round up a mapping interface while coding a minimum of boilerplate.

Recipe 18.8. Implementing a Bag (Multiset) Collection
Type

Credit: Raymond Hettinger, Alex Martelli, Matt R

Problem

You need a set-like collection type that lets each element be in the set a number of times. In
other words, you need a collection type of the kind that is known as multiset in C++ and SQL,
and bag in Smalltalk, Objective C, and Haskell's Edison module.

Solution

We can implement bag as a class. We could restrict the implementation to language constructs

that are present in Python 2.3 or are easy to emulate; however, such restrictions would give
substantial inefficiencies or complications with comparison to a pure Python 2.4 implementation.
So, here is a Python 2.4 implementation, with no attempt to support Python 2.3:

from operator import itemgetter
from heapq import nlargest
class bag(object):
 def _ _init_ _(self, iterable=()):
 # start empty, then add the `iterable' if any
 self._data = { }
 self.update(iterable)
 def update(self, iterable):
 # update from an element->count mapping, or from any iterable
 if isinstance(iterable, dict):
 for elem, n in iterable.iteritems():
 self[elem] += n
 else:
 for elem in iterable:
 self[elem] += 1
 def _ _contains_ _(self, elem):
 # delegate membership test
 return elem in self._data
 def _ _getitem_ _(self, elem):
 # default all missing items to a count of 0
 return self._data.get(elem, 0)
 def _ _setitem_ _(self, elem, n):
 # setting an item to a count of 0 removes the item
 self._data[elem] = n
 if n == 0:
 del self._data[elem]
 def _ _delitem_ _(self, elem):
 # delegate to _ _setitem_ _ to allow deleting missing items
 self[elem] = 0
 def _ _len_ _(self):
 # length is computed on-the-fly
 return sum(self._data.itervalues())
 def _ _nonzero_ _(self):

 # avoid truth tests using _ _len_ _, as it's relatively slow
 return bool(self._data)
 def _ _eq_ _(self, other):
 # a bag can only equal another bag
 if not isinstance(other, bag):
 return False
 return self._data == other._data
 def _ _ne_ _(self, other):
 # a bag always differs from any non-bag
 return not (self == other)
 def _ _hash_ _(self):
 # a bag can't be a dict key nor an element in a set
 raise TypeError
 def _ _repr_ _(self):
 # typical string-representation
 return '%s(%r)' % (self._ _class_ _._ _name_ _, self._data)
 def copy(self):
 # make and return a shallow copy
 return self._ _class_ _(self._data)
 _ _copy_ _ = copy # For the copy module
 def clear(self):
 # remove all items
 self._data.clear()
 def _ _iter_ _(self):
 # yield each element the # of times given by its count
 for elem, cnt in self._data.iteritems():
 for i in xrange(cnt):
 yield elem
 def iterunique(self):
 # yield each element only once
 return self._data.iterkeys()
 def itercounts(self):
 # yield element-count pairs
 return self._data.iteritems()
 def mostcommon(self, n=None):
 # return the n (default: all) most common elements, each as an
 # element-count pair, as a list sorted by descending counts
 if n is None:
 return sorted(self.itercounts(), key=itemgetter(1), reverse=True)
 it = enumerate(self.itercounts())
 nl = nlargest(n, ((cnt, i, elem) for (i, (elem, cnt)) in it))
 return [(elem, cnt) for cnt, i, elem in nl]

Discussion

Python offers several useful container classes, including built-in tuples, lists and dicts, sets (in
Python 2.4, sets are built-in; in Python 2.3, they're in module sets)which, unlike bags, can be
seen as "holding only one instance" of each of their elementsand double-ended queues, deques
(in Python 2.4 only, in module collections). This abundance of container classes doesn't mean
there is no use for yet more. The bag, (i.e., multiset), presented in this recipe, is widely useful,

since counting the numbers of occurrences of different objects is a frequent task useful in many
applications. Rather than coding a bag each time you need such a container (generally based on

a dictionary mapping items to counts), it's better to design and code it once, put it among one's
utilities, and lobby for it to become part of the standard library for a future Python, such as 2.5
(which can be expected sometime in 2006 and will focus on enhancements to the standard
library rather than to the core language).

The API offered by the bag class presented in this recipe is largely based on indexing, due to the

strong analogy between a bag and a mapping of items to counts. For example:

>>> b = bag('banana')
>>> b['a']
3
>>> b['a'] += 1
>>> b['a']
4
>>> del b['a'] # removes all 'a's from the bag
>>> b['a']
0

Items that are not in the bag can also be used as indices, giving a value (i.e., count) of 0; a lot of

bag's convenience comes from this default. A bag also offers several ways to iterate on it (by
unique elements; by elements, each repeated as many times as its count; by (element, count)

pairs); and also supplies a handy method mostcommon to return (element, count) pairs sorted

by descending count (all such pairs, or just the top n). An example use of mostcommon:

>>> bag(word for line in open('somefile.txt')
... for word in line.split()).mostcommon(5)
[('to', 83), ('for', 71), ('the', 61), ('of', 53), ('and', 52)]

All design choices are tradeoffs. For some applications, it might be more convenient to have
bag's API closer to set's rather than to dict's, with an add method, and binary operators, for
example, to join two bags returning a new one (as list does with operator + and set does with
the "or", vertical-bar operator |). In most cases, this would be overkill. After all, "a designer

knows he has achieved perfection, not when there is nothing left to add, but when there is
nothing left to take away" (Antoine de Saint-Exupéry). So, for example, to join two bags, getting
a new one, without altering either input bag, code a little function using roughly the same
update-based approach you would use with dicts, as follows:

def bagjoin(b1, b2):
 b = bag(b1)
 b.update(b2)
 return b

Just as would be the case for an analogous function joining dicts, this works, not only when b1

and b2 are bags, but also when they are other kinds of objects that can be passed to bag and
bag.updateobjects such as arbitrary iterables or mappings (generally dictionaries) from items to

counts. Such polymorphism comes at negligible cost, and it's well worth preserving.

Although the crucial design choices in this recipe are those about bag's API, some
implementation choices must be made as well. In this recipe's code, implementation choices are
oriented towards simplicity. In particular, there is no attempt to allow this code to run on Python
2.3. This recipe is optimized for Python 2.4 because it is Python's current release and is likely to
be used soon in lieu of Python 2.3, particularly among Pythonistas who are sensitive to
performance issues, given the amount of highly successful effort that was devoted to optimizing
version 2.4's performance. If Python 2.3 support was deemed necessary, it would be best
implemented separately, rather than hobbling the primary 2.4 implementation with inefficiencies
or complications.

See Also

Smalltalk's Bag class at http://www.gnu.org/software/smalltalk/gst-manual/gst_49.html; C++'s
std::multiset template class at http://gcc.gnu.org/onlinedocs/libstdc++/latest-

doxygen/classstd_1_1multiset.html.

http://www.gnu.org/software/smalltalk/gst-manual/gst_49.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-

Recipe 18.9. Simulating the Ternary Operator in Python

Credit: Jürgen Hermann, Alex Martelli, Oliver Steele, Chris Perkins, Brent Burley, Lloyd
Goldwasser, Doug Hudgeon

Problem

You want to express in Python the equivalent of C's so-called ternary operator ?:as in

condition?iftrue:iffalse).

Solution

There are many ways to skin a ternary operator. An explicit if/else is most Pythonic, although

slightly verbose:

for i in range(1, 3):
 if i == 1:
 plural = ''
 else:
 plural = 's'
 print "The loop ran %d time%s" % (i, plural)

Indexing is more compact, and therefore useful, if using the iftrue and iffalse expressions

has no side effects:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, ('', 's')[i != 1])

For the specific case of plurals, there's also a neat variant using slicing:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, "s"[i==1:])

Short-circuited logical expressions can deal correctly with side effects:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, i != 1 and 's' or '')

The output of each of these loops is:

The loop ran 1 time
The loop ran 2 times

However, beware: the short-circuit version (which is necessary when either or both of iftrue

and iffalse have side effects) fails if "turned around":

for i in range(1, 3):

 print "The loop ran %d time%s" % (i, i == 1 and '' or 's')

Since '' evaluates as false, the would-be-ternary expression always evaluates to 's', so that this

latest snippet outputs:

The loop ran 1 times
The loop ran 2 times

Therefore, in general, when iftrue and iffalse are unknown at coding time (and therefore

either could have side effects or be false), we need more cumbersome constructs, such as:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, (i == 1 and [''] or ['s'])[0])

or:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, (lambda:'', lambda:'s')[i!=1]())

or even weirder variations:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, [i==1 and '', i!=1 and 's'][i!=1])
for i in range(1, 3):
 print "The loop ran %d time%s" % (i,
 (i==1 and (lambda:'') or (lambda:'s'))())

As you can see, good old if/else is starting to look pretty good when compared to these terse

and complicated approaches.

And now for something completely different (for plurals only, again):

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, 's'*(i!=1))

Discussion

Programmers coming to Python from C, C++, or Perl sometimes miss the so-called ternary
operator (?:). The ternary operator is most often used for avoiding a few lines of code and a

temporary variable for simple decisions, such as printing the plural form of words after a counter,
as in this recipe's examples. In most cases, Python's preference for making things clear and
explicit at the cost of some conciseness is an acceptable tradeoff, but one can sympathize with
the withdrawal symptoms of ternary-operator addicts.

Nevertheless, 99.44 times out of 100, you're best off using a plain if/else statement. If you
want your if/else to fit in an expression (so you can use that expression inside a lambda form,

list comprehension, or generator expression), put it inside a named local function and use that
function in the expression. For the remaining 56 cases out of 10,000, the idioms in this recipe
might be useful. A typical case would be when you're transliterating from another language into
Python and need to keep program structure as close as possible to the "or"iginal, as mentioned
in Recipe 4.19.

There are several ways to get the ternary operator effect in Python, and this recipe presents a
fair selection of the wide range of possibilities. Indexing and slicing are nice but don't apply to

cases in which either or both of the iftrue and iffalse expressions may have side effects. If
side effects are an issue, the short-circuiting nature of and/or can help, but this approach may

run into trouble when iftrue and iffalse might be Python values that evaluate as false. To

resolve both the side-effect and the might-be-false issues, two variants in this recipe mix
indexing and function calling or a lambda form, and two more use even weirder mixtures of
lambda and indexing and short circuiting.

If you're not worried about side effects, you could overload slicing syntax to express a ternary
operator:

class cond(object):
 def _ _getitem_ _(self, sl):
 if sl.start: return sl.stop
 else: return sl.step
cond = cond()

After executing this snippet, you could code the example presented in this recipe's Solution as:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, cond[i==1:'':'s'])

When you slice this cond object, iftrue and iffalse (masquerading as the stop and step

attributes of the slice object) are both evaluated in any case, which is the reason this syntax is
no use if you must worry about side effects. If you must have syntax sugar, using nullary
lambdas may be the least of evils:

def cond(test, when_true, when_false):
 if test:
 return when_true()
 else:
 return when_false()

to be used as, for example, print cond(x%2==0, lambda:x//2, lambda:3*x+1).

Note that the lack of a ternary operator in Python is not due to an oversight: it's a deliberate
design decision, made after much debate pro and con. Therefore, you can be sure that Python
will never "grow" a ternary operator. For many details about the various proposed syntax forms
for a ternary operation, you can see the rejected PEP 308 at http://www.python.org/peps/pep-
0308.html.

See Also

Recipe 4.19.

http://www.python.org/peps/pep-

Recipe 18.10. Computing Prime Numbers

Credit: David Eppstein, Tim Peters, Alex Martelli, Wim Stolker, Kazuo Moriwaka, Hallvard
Furuseth, Pierre Denis, Tobias Klausmann, David Lees, Raymond Hettinger

Problem

You need to compute an unbounded sequence of all primes, or the list of all primes that are less
than a certain threshold.

Solution

To compute an unbounded sequence, a generator is the natural Pythonic approach, and the
Sieve of Eratosthenes, using a dictionary as the supporting data structure, is the natural
algorithm to use:

import itertools
def eratosthenes():
 '''Yields the sequence of prime numbers via the Sieve of Eratosthenes.'''
 D = { } # map each composite integer to its first-found prime factor
 for q in itertools.count(2): # q gets 2, 3, 4, 5, ... ad infinitum
 p = D.pop(q, None)
 if p is None:
 # q not a key in D, so q is prime, therefore, yield it
 yield q
 # mark q squared as not-prime (with q as first-found prime factor)
 D[q*q] = q
 else:
 # let x <- smallest (N*p)+q which wasn't yet known to be composite
 # we just learned x is composite, with p first-found prime factor,
 # since p is the first-found prime factor of q -- find and mark it
 x = p + q
 while x in D:
 x += p
 D[x] = p

Discussion

To compute all primes up to a predefined threshold, rather than an unbounded sequence, it's
reasonable to wonder if it's possible to use a faster way than good old Eratosthenes, even in the
smart variant shown as the "Solution". Here is a function that uses a few speed-favoring tricks,
such as a hard-coded tuple of the first few primes:

def primes_less_than(N):
 # make `primes' a list of known primes < N
 primes = [x for x in (2, 3, 5, 7, 11, 13) if x < N]
 if N <= 17: return primes
 # candidate primes are all odd numbers less than N and over 15,
 # not divisible by the first few known primes, in descending order
 candidates = [x for x in xrange((N-2)|1, 15, -2)

 if x % 3 and x % 5 and x % 7 and x % 11 and x % 13]
 # make `top' the biggest number that we must check for compositeness
 top = int(N ** 0.5)
 while (top+1)*(top+1) <= N:
 top += 1
 # main loop, weeding out non-primes among the remaining candidates
 while True:
 # get the smallest candidate: it must be a prime
 p = candidates.pop()
 primes.append(p)
 if p > top:
 break
 # remove all candidates which are divisible by the newfound prime
 candidates = filter(p._ _rmod_ _, candidates)
 # all remaining candidates are prime, add them (in ascending order)
 candidates.reverse()
 primes.extend(candidates)
 return primes

On a typical small task such as looping over all primes up to 8,192, eratosthenes (on an oldish
1.2 GHz Athlon PC, with Python 2.4) takes 22 milliseconds, while primes_less_than takes 9.7;
so, the slight trickery and limitations of primes_less_than can pay for themselves quite

handsomely if generating such primes is a bottleneck in your program. Be aware, however, that
eratosthenes scales better. If you need all primes up to 199,999, eratosthenes will deliver
them in 0.88 seconds, while primes_less_than takes 0.65.

Since primes_less_than's little speed-up tricks can help, it's natural to wonder whether a
perhaps simpler trick can be retrofitted into eratosthenes as well. For example, we might simply

avoid wasting work on a lot of even numbers, concentrating on odd numbers only, beyond the
initial 2. In other words:

def erat2():
 D = { }
 yield 2
 for q in itertools.islice(itertools.count(3), 0, None, 2):
 p = D.pop(q, None)
 if p is None:
 D[q*q] = q
 yield q
 else:
 x = p + q
 while x in D or not (x&1):
 x += p
 D[x] = p

And indeed, erat2 takes 16 milliseconds, versus eratosthenes' 22, to get primes up to 8,192;
0.49 seconds, versus eratosthenes' 0.88, to get primes up to 199,999. In other words, erat2
scales just as well as eratosthenes and is always approximately 25% faster. Incidentally, if
you're wondering whether it might be even faster to program at a slightly lower level, with q = 3
to start, a while True as the loop header, and a q += 2 at the end of the loop, don't worrythe
slightly higher-level approach using itertools' count and islice functions is repeatedly

approximately 4% faster. Other languages may impose a performance penalty for programming
with higher abstraction, Python rewards you for doing that.

You might keep pushing the same idea yet further, avoiding multiples of 3 as well as even

numbers, and so on. However, it would be an exercise in diminishing returns: greater and
greater complication for smaller and smaller gain. It's better to quit while we're ahead!

If you're into one liners, you might want to study the following:

def primes_oneliner(N):
 aux = { }
 return [aux.setdefault(p, p) for p in range(2, N)
 if 0 not in [p%d for d in aux if p>=d+d]]

Be aware that one liners, even clever ones, are generally anything but speed demons!
primes_oneliner takes 2.9 seconds to complete the same small task (computing primes up to
8,192) which, eratosthenes does in 22 milliseconds, and primes_less_than in 9.7so, you're

slowing things down by 130 to 300 times just for the fun of using a clever, opaque one liner,
which is clearly not a sensible tradeoff. Clever one liners can be instructive but should almost
never be used in production code, not just because they're terse and make maintenance harder
than straightforward coding (which is by far the main reason), but also because of the speed
penalties they may entail.

While prime numbers, and number theory more generally, used to be considered purely
theoretical problems, nowadays they have plenty of practical applications, starting with
cryptography.

See Also

To explore both number theory and its applications, the best book is probably Kenneth Rosen,
Elementary Number Theory and Its Applications (Addison-Wesley);
http://www.utm.edu/research/primes/ for more information about prime numbers.

http://www.utm.edu/research/primes/

Recipe 18.11. Formatting Integers as Binary Strings

Credit: Antti Kaihola, Scott David Daniels, W.J. van der Laan

Problem

You need to display non-negative integers in binary formthat is, you need to turn them into
strings made up of the characters '0' and '1'.

Solution

The best approach, assuming you must perform this task on several numbers in the course of
one run of your application, is to first prepare an auxiliary table, for example, with an auxiliary
function:

def _bytes_to_bits():
 # prepare and return a list of the first 256 int as binary strings
 # start with table of the right length, filled with place-holders
 the_table = 256*[None]
 # we'll repeatedly need to loop on [7, 6, ..., 1, 0], make it once
 bits_per_byte = range(7, -1, -1)
 for n in xrange(256):
 # prepare the nth string: start with a list of 8 place-holders
 bits = 8*[None]
 for i in bits_per_byte:
 # get the i-th bit as a string, shift n right for next bit
 bits[i] = '01'[n&1]
 n >>= 1
 # join up the 8-character string of 0's and 1's into the table
 the_table[n] = ''.join(bits)
 return the_table
rebind function's name to the table, function not needed any more
_bytes_to_bits = _bytes_to_bits()

and then use the auxiliary table to make a fast conversion function that works 8 bits at a time:

def binary(n):
 # check precondition: only non-negative numbers supported
 assert n>=0
 # prepare the list of substrings 8 bits at a time
 bits = []
 while n:
 bits.append(_bytes_to_bit[n&255])
 n >>= 8
 # we need it left-to-right, thus the reverse
 bits.reverse()
 # strip leading '0's, but ensure at least one is left!
 return ''.join(bits).lstrip('0') or '0'

If you need to perform this task only a very small number of times in the course of one run of

your application, you might instead choose to perform the conversion directly, bit by bitit's easy,
although somewhat slow. Just use the same approach as binary, but 1 bit at a time instead of 8
bits at a time:

def binary_slow(n):
 assert n>=0
 bits = []
 while n:
 bits.append('01'[n&1])
 n >>= 1
 bits.reverse()
 return ''.join(bits) or '0'

Discussion

If you also need to display negative numbers, you can take two different roads. Either do as the
built-in functions hex and oct and prepend a minus sign to negative numbers:

def bin_with_sign(n):
 if n<0: return '-'+binary(-n)
 else: return binary(n)

or use two's complement notation, but in that case you need to know how many bits fit in a
"word", because that's how two's complement is definedin terms of fixed-length words:

def bin_twos_complement(n, bits_per_word=16):
 if n<0: n = (2<<bits_per_word) + n
 return binary(n)

Function binary produces just as many binary digits as each argument needs, avoiding leading
'0's (except the single zero digit needed to avoid displaying an empty string when n is 0). If

instead you need to produce a fixed number of binary digits, you could ensure that at string
level, which is particularly easy with Python 2.4:

def bin_fixed(n, bits_per_word=16):
 return bin_twos_complement(n, bits_per_word).rjust(bits_per_word, '0')

but is also quite feasible with Python 2.3 as well:

def bin_fixed_23(n, bits_per_word=16):
 result = bin_twos_complement(n, bits_per_word)
 return (('0'*bits_per_word)+result)[-bits_per_word:]

Alternatively, you could generalize some version of the auxiliary _bytes_to_bits function used in
the "Solution", which is indeed oriented to producing fixed-length results. However, using the
variable-length version, and a little string manipulation on top of it for the occasional need for
fixed-length results, should be enough.

See Also

Library Reference and Python in a Nutshell docs for built-ins oct and hex; Recipe 18.12 for

displaying integers in an arbitrary base.

Recipe 18.12. Formatting Integers as Strings in Arbitrary
Bases

Credit: Moon aka Sun, Raymond Hettinger

Problem

You need to display non-negative integers in arbitrary basesthat is, you need to turn them into
strings made up of "digit" characters (which may include letters for bases that are > 10).

Solution

A function is clearly the right way to package the "Solution" to this task:

import string
def format(number, radix, digits=string.digits+string.ascii_lowercase):
 """ format the given integer `number' in the given `radix' using the given
 `digits' (default: digits and lowercase ascii letters) """
 if not 2 <= radix <= len(digits):
 raise ValueError, "radix must be in 2..%r, not %r" % (len(digits), radix)
 # build result as a list of "digit"s in natural order (least-significant digit
 # leftmost), at the end flip it around and join it up into a single string
 result = []
 addon = result.append # extract bound-method once
 # compute 'sign' (empty for number>=0) and ensure number >= 0 thereafter
 sign = ''
 if number < 0:
 number = -number
 sign = '-'
 elif number == 0:
 sign = '0'
 _divmod = divmod # access to locals is faster
 while number:
 # like: rdigit = number % radix; number //= radix
 number, rdigit = _divmod(number, radix)
 # append appropriate string for the digit we just found
 addon(digits[rdigit])
 # append sign (if any), flip things around, and join up into a string
 addon(sign)
 result.reverse()
 return ''.join(result)

Discussion

Here is a simple usage example, with the usual guard to let us append the example to the same
module where we define function format. The usage example runs when the module is run as a
main script but not when the module is imported:

if _ _name_ _ == '_ _main_ _':
 as_str = 'qwertyuioplkjhgfdsazxcvbnm0987654321'

 as_num = 79495849566202193863718934176854772085778985434624775545L
 num = int(as_str, 36)
 assert num == as_num
 res = format(num, 36)
 assert res == as_str

This usage example is designed to be totally quiet when everything works fine, emitting
messages only in case of problems.

The code in this recipe is designed with careful attention to both generality and performance. The
string of digits used by default is made up of all decimal digits followed by lowercase ASCII
letters, allowing a radix of up to 36; however, you can pass any sequence of strings (rather than
just a string, to be used as a sequence of characters), for example to support even larger bases.
Performance is vastly enhanced, with respect to a naive approach to coding, by a few
precautions taken in the codein decreasing order of importance:

Building the result as a list and then using ''.join to create a string containing all the list

items. (The alternative of adding each item to a string, one at a time, would be much
slower than the ''.join approach.)

1.

Building the result in natural order (least-significant digit leftmost) and flipping it around at
the end. Inserting each digit at the front as it gets computed would be slow.

2.

Extracting the bound method result.append into a local variable.3.

Giving a local name _divmod to the divmod buit-in.4.

Items 2 and 3 speed lookups that otherwise would extract a small extra price each time through
the loop because lookup of local variables is measurably faster than lookup of built-ins and quite
a bit faster than compound-name lookups such as result.append.

Here is an example of how you could use format with "digits" that are not single characters, but
rather longer strings:

digs = [d+'-' for d in
 'zero one two three four five six seven eight nine'.split()]
print format(315, 10, digs).rstrip('-')
emits: three-one-five

See Also

Library Reference and Python in a Nutshell docs for built-ins oct and hex; Recipe 18.11 for

displaying integers specifically in binary.

Recipe 18.13. Converting Numbers to Rationals via
Farey Fractions

Credit: Scott David Daniels

Problem

You have a number v (of almost any type) and need to find a rational number (in reduced form)

that is as close to v as possible but with a denominator no larger than a prescribed value.

Solution

Farey fractions, whose crucial properties were studied by Augustin Louis Cauchy, are an excellent
way to find rational approximations of floating-point values:

def farey(v, lim):
 """ No error checking on args. lim = maximum denominator.
 Results are (numerator, denominator); (1, 0) is "infinity".
 """
 if v < 0:
 n, d = farey(-v, lim)
 return -n, d
 z = lim - lim # Get a "0 of the right type" for denominator
 lower, upper = (z, z+1), (z+1, z)
 while True:
 mediant = (lower[0] + upper[0]), (lower[1] + upper[1])
 if v * mediant[1] > mediant[0]:
 if lim < mediant[1]:
 return upper
 lower = mediant
 elif v * mediant[1] == mediant[0]:
 if lim >= mediant[1]:
 return mediant
 if lower[1] < upper[1]:
 return lower
 return upper
 else:
 if lim < mediant[1]:
 return lower
 upper = mediant

For example:

import math
print farey(math.pi, 100)
emits: (22, 7)

Discussion

The rationals resulting from the algorithm shown in this recipe are in reduced form (meaning that
numerator and denominator are mutually prime), but the proof, which was given by Cauchy, is
rather subtle (see http://www.cut-the-knot.com/blue/Farey.html).

You can use farey to compute odds from a probability, such as:

probability = 0.333
n, d = farey(probability, 100)
print "Odds are %d : %d" % (n, d-n)
emits: Odds are 1 : 2

This recipe's algorithm is ideally suited for reimplementation in a lower-level language (e.g., C, or
assembly, or, maybe best, Pyrex) if you use it heavily. Since the code uses only multiplication
and addition, it can play optimally to hardware strengths.

If you are using this recipe in an environment where you call it with a lot of values near 0.0, 1.0,
or 0.5 (or other simple fractions), you may find that the algorithm's convergence is too slow. You
can improve convergence in a continued fraction style, by appending to the first if in the farey

function:

if v < 0:

...
elif v < 0.5:
 n, d = farey((v-v+1)/v, lim) # lim is wrong; decide what you want
 return d, n
elif v > 1:
 intpart = floor(v)
 n, d = farey(v-intpart)
 return n+intpart*d, d

...

James Farey was an English geologist and surveyor who wrote a letter to the Journal of Science
in 1816. In that letter he observed that, while reading a privately published list of the decimal
equivalents of fractions, he had noticed an interesting fact. Consider the set of all the fractions
with values between 0 and 1, reduced to the lowest terms, with denominators not exceeding
some integer N. Arrange the set in order of magnitude to get a sequence. For example, for N

equal to 5, the Farey sequence is:

0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1

For any three consecutive fractions in this sequence (e.g., A/B, C/D, E/F), the middle fraction
(C/D), called the mediant, is equal to the ratio (A + E)/(B + F). I enjoy envisioning Mr. Farey
sitting up late on a rainy English night, reading tables of decimal expansions of fractions by an oil
lamp. Calculation has come a long way since his day, and I'm pleased to be able to benefit from
his work.

See Also

Library Reference and Python in a Nutshell docs for built-in types int and long; http://www.cut-

the-knot.org/blue/Farey.shtml for more information about the Farey Series.

http://www.cut-the-knot.com/blue/Farey.html
http://www.cut-

Recipe 18.14. Doing Arithmetic with Error Propagation

Credit: Mario Hilgemeier

Problem

You have numbers coming from measurements affected by known percentual uncertainties, and
you want to perform arithmetic on these numbers while tracking the uncertainty in the results.

Solution

The simplest approach is to code a class that implements arithmetic operators applying the
classical physicists' error-propagation formulas:

import math
class Measurement(object):
 ''' models a measurement with % uncertainty, provides arithmetic '''
 def _ _init_ _(self, val, perc):
 self.val = val # central value
 self.perc = perc # % uncertainty
 self.abs = self.val * self.perc / 100.0 # absolute error
 def _ _repr_ _(self):
 return "Measurement(%r, %r)" % (self.val, self.perc)
 def _ _str_ _(self):
 return "%g+-%g%%" % (self.val, self.perc)
 def _addition_result(self, result, other_abs):
 new_perc = 100.0 * (math.hypot(self.abs, other_abs) / result)
 return Measurement(result, new_perc)
 def _ _add_ _(self, other):
 result = self.val + other.val
 return self._addition_result(result, other.abs)
 def _ _sub_ _(self, other):
 result = self.val - other.val
 return self._addition_result(result, other.abs)
 def _multiplication_result(self, result, other_perc):
 new_perc = math.hypot(self.perc, other_perc)
 return Measurement(result, new_perc)
 def _ _mul_ _(self, other):
 result = self.val * other.val
 return self._multiplication_result(result, other.perc)
 def _ _div_ _(self, other):
 result = self.val / other.val
 return self._multiplication_result(result, other.perc)

Discussion

Here is a typical example of use for this Measurement class:

m1 = Measurement(100.0, 5.5) # measured value of 100.0 with 5.5% error
m2 = Measurement(50, 2) # measured value of 50.0 with 2% error

print "m1 = ", m1
print "m2 = ", m2
print "m1 + m2 = ", m1 + m2
print "m1 - m2 = ", m1 - m2
print "m1 * m2 = ", m1 * m2
print "m1 / m2 = ", m1 / m2
print "(m1+m2) * (m1-m2) = ", (m1+m2) * (m1-m2)
print "(m1-m2) / (m1+m2) = ", (m1-m2) / (m1+m2)
emits:
m1 = 100+-5.5%
m2 = 50+-2%
m1 + m2 = 150+-3.72678%
m1 - m2 = 50+-11.1803%
m1 * m2 = 5000+-5.85235%
m1 / m2 = 2+-5.85235%
(m1+m2) * (m1-m2) = 7500+-11.7851%
(m1-m2) / (m1+m2) = 0.333333+-11.7851%

What is commonly known as a percentage error is of course best described as a percentage of
uncertainty. For example, when we state that some measured quantity is 100 with an error of
5.5% (or, equivalently, 5.5%), we mean that we know, with a reasonable level of confidence,
that the quantity lies somewhere between 94.5 and 105.5. The error-propagation formulas are
somewhat heuristic, rather than rigorous, but they're quite traditional and have proven over the
centuries that they perform acceptably in most large computations in physics or engineering.

Class Measurement, as shown in this recipe, does not support arithmetic with floatsonly

arithmetic between instances of Measurement. For those rare occasions when I need, in such
computations, numbers that are known "exactly", it is easiest to input them as "measurements
with an error of 0%". For example, if I have measured some sphere's radius as 1 meter +- 3%, I
can compute the sphere's volume (with the well-known formula, 4/3 pi times the cube of the

radius) as follows:

r = Measurement(1, 3)
v = Measurement(4/3.0*math.pi, 0) * r * r * r
print v
emits: 4.18879+-5.19615%

Avoiding accidental operations with floats that are presumed to be exact, but in fact are not, is
quite helpful: this way, when I need to state that a certain number has 0 error, I'm reminded to
consider whether things are truly that way. If your applications are different, so that you do need
operations between measurements and exact floats all over the place, you can insert, as the first
line of every one of the arithmetic special methods, the following statement:

 if isinstance(other, float):
 other = Measurement(other, 0)

Alternatively, you could perform this coercion in a special method named _ _coerce_ _, but that

approach is considered obsolete and is discouraged in modern Python. If you do perform the
coercion in the various arithmetic special methods (_ _add_ _, _ _sub_ _, etc.), don't forget to
also add the _ _radd_ _, etc, equivalentsafter all, if you want to be able to code:

 some_measurement * 2.0

you will no doubt also want to be able to code:

 2.0 * some_measurement

and get exactly the same effects. For this purpose, in Python, your class needs to define the
various _ _r... versions of the operator special methods. However, I'm not pursuing this line of

reasoning further, because in most cases, you will be best served by not having the implicit
ability to do arithmetic in an automatic way between measurements and floatsmuch like, with
Python 2.4's decimal module, you can't implicitly do arithmetic in an automatic way between

decimal numbers and floats.

See Also

Library Reference and Python in a Nutshell docs for module math.

Recipe 18.15. Summing Numbers with Maximal
Accuracy

Credit: Yaroslav Bulatov, Connelly Barnes

Problem

Due to the properties of floating point arithmetic, the simplest loop to sum a list of numbers (also
embodied in the built-in sum function, as well as similar functions such as add.reduce in add-on
modules such as Numeric and numarray) is not maximally accurate. You wish to minimize such

numeric inaccuracy.

Solution

A careful and accurate algorithm, using and progressively accumulating partial sums (i.e.,
partials), can reduce inaccuracy:

import math
def sum_with_partials(arr):
 arr = list(arr)
 size = len(arr)
 iters = int(math.ceil(math.log(size) / math.log(2)))
 step = 1
 for itr in xrange(iters):
 for i in xrange(0, size-step, step+step):
 next_i = i+step
 arr[i] += arr[next_i]
 step += step
 return arr[0]

Discussion

Here is an example of the numeric behavior of this sum_with_partials function compared to that
of the built-in sum:

if _ _name_ _ == '_ _main_ _':
 arr = [0.123456789012345]*10000000
 true_answer = arr[0] * len(arr)
 print '"True" result: %r' % true_answer
 sum_result = sum(arr)
 print '"sum" result: %r' % sum_result
 sum_p_resu = sum_with_partials(arr)
 print 'sum_p. result: %r' % sum_p_resu
emits:
"True" result: 1234567.89012345
"sum" result: 1234567.8902233159
sum_p. result: 1234567.89012345

As you can see, in this case, the built-in sum accumulated a relative error of almost 10-10 after

summing 10 million floats all equal to each other (giving less than 11 digits of accuracy in the

result), while sum_with_partials happens to be "perfect" for this case to within machine precision
(15 digits of accuracy). Summing just a million copies rather than 10 million lowers sum's relative

error only to a bit more than 10-11.

The Trouble with Summations

How come a simple summing loop is less than maximally accurate? The root of the
trouble is that summing two floating-point numbers of very different magnitudes
loses accuracy. For example, suppose we used decimal floating-point numbers with a
precision of four digits: then, summing 1.234 to 123.4 would give 124.6, "losing"
0.034 from the smaller number. Such artefacts are inevitable, as long as we have
finite precision during our computations.

Now, imagine we're using a simple loop such as:

 total = 0.0
 for number in numbers:
 total += number

to sum a million numbers, all positive and of reasonably similar magnitudes. Built-in
sum internally uses exactly this kind of simple loop. By the time we've summed, say,

the first 100,000 numbers, the running total has become much larger than each new
number we're adding to it. We have thus put ourselves in exactly the situation just
shown to be problematic: after a while, we're systematically summing floating-point
numbers of very different magnitudes, and thus systematically losing accuracy.

The partials algorithm shown in this recipe works by summing numbers two at a
timetherefore, no major loss of accuracy occurs, since we're assuming that the
numbers we start with are of reasonably similar magnitudes. So, after the first pass
of the partials algorithm, we're left with half as many partials as the amount of
numbers we started with. All the partials are of reasonably similar magnitudes, so we
just iterate the same procedure: at each step, we keep halving the number of partials
that are left, until we're down to just one number, the grand total, having lost along
the way as little accuracy as feasible.

If you know that the input argument arr is a list, and you don't mind destroying that list as part
of the summation, you can omit from the body of sum_with_partials the statement:

 arr = list(arr)

and recover a little bit of performance. Without this small enhancement, on one slow laptop,
summing a million floats with the built-in sum takes 360 milliseconds, while the more accurate

function sum_with_partials shown in this recipe takes 1.8 seconds to perform the same task (a
slowdown of five times). In theory, sum_with_partials should be asymptotically faster than built-
in sum if you're doing unbounded-precision arithmetic (e.g., with Python's built-in longs or other
unbounded-precision data types from such add-ons as gmpy, which you can download from

http://gmpy.sourceforge.net). To sum a list of n elements with d digits of precision, in

unbounded-precision exact arithmetic, sum takes O(n(d+logd)) time, while sum_with_partials

takes O(nd). However, I have not been able to observe that effect in empirical measurements.

Most of the time, you probably don't want to pay the price of slowing down a summation by five
times in order to increase your digits of accuracy from 10 or 11 to 15. However, for those

http://gmpy.sourceforge.net

occasions in which this tradeoff is right for your applications, and you need to sum millions and
millions of floating-point numbers, this recipe might well prove rather useful to you. Another
simple way to increase accuracy, particularly when your input numbers are not necessarily all of
similar magnitude, is to ensure the small-magnitude ones are summed first. This is particularly
easy to code in Python 2.4, although it's inevitably O(n log n): just sum(sorted(data,
key=abs)). Finally, if precision is much more important than speed, consider using
decimal.Decimal (which lets you ask for as much precision as you're willing to wait for and is
part of Python 2.4's standard library). Or you could use gmpy.mpf (which also allows any
precision you require, may even be faster, but must be downloaded as part of gmpy from

http://gmpy.sourceforge.net.)

See Also

Recipe 18.16 shows how to use a bounded-precision simulation of floating point to estimate the
accuracy of algorithms; ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z for Douglas M.
Priest's Ph.D. thesis On Properties of Floating Point Arithmetics: Numerical Stability and the Cost
of Accurate Computations, covering this entire field with depth and rigor; gmpy is at

http://gmpy.sourceforge.net.

http://gmpy.sourceforge.net
http://gmpy.sourceforge.net

Recipe 18.16. Simulating Floating Point

Credit: Raymond Hettinger

Problem

You need to simulate floating-point arithmetic in software, either to show to students the details
of the various classic problems with floating point (e.g., representation error, loss of precision,
failure of distributive, commutative, and associative laws), or to explore the numerical
robustness of alternative algorithms.

Solution

We can reproduce every floating-point operation, with explicitly bounded precision, by coding a
Python class that overloads all the special methods used in arithmetic operators:

prec = 8 # number of decimal digits (must be under 15)
class F(object):
 def _ _init_ _(self, value, full=None):
 self.value = float('%.*e' % (prec-1, value))
 if full is None:
 full = self.value
 self.full = full
 def _ _str_ _(self):
 return str(self.value)
 def _ _repr_ _(self):
 return "F(%s, %r)" % (self, self.full)
 def error(self):
 ulp = float('1'+('%.4e' % self.value)[-5:]) * 10 ** (1-prec)
 return int(abs(self.value - self.full) / ulp)
 def _ _coerce_ _(self, other):
 if not isinstance(other, F):
 return (self, F(other))
 return (self, other)
 def _ _add_ _(self, other):
 return F(self.value + other.value, self.full + other.full)
 def _ _sub_ _(self, other):
 return F(self.value - other.value, self.full - other.full)
 def _ _mul_ _(self, other):
 return F(self.value * other.value, self.full * other.full)
 def _ _div_ _(self, other):
 return F(self.value / other.value, self.full / other.full)
 def _ _neg_ _(self):
 return F(-self.value, -self.full)
 def _ _abs_ _(self):
 return F(abs(self.value), abs(self.full))
 def _ _pow_ _(self, other):
 return F(pow(self.value, other.value), pow(self.full, other.full))
 def _ _cmp_ _(self, other):
 return cmp(self.value, other.value)

Discussion

The initializer of class F rounds the input value to the given precision (the global constant prec).
This rounding produces what is known as representation error because the result is the nearest
possible representable value for the specified number of digits. For instance, at three digits of
precision, 3.527104 is stored as 3.53, so the representation error is 0.002896.

Since the underlying representation used in this recipe is Python's ordinary float, the simulation

works only up to 15 digits (the typical limit for double-precision floating point). If you need more
than 15 digits, you can use Python 2.4's decimal.Decimal type as the underlying representation.

This way, you can get any precision you ask for, although the computation occurs in decimal
rather than in binary. Alternatively, to get binary floating point with arbitrarily high precision, use
the gmpy Python wrapper for the GMP (Gnu Multiple Precision) multiple-precision arithmetic
library, specifically the gmpy.mpf type. One way or another, you need change only the two calls
to float in this recipe's Solution into calls to Python 2.4's decimal.Decimal, or to gmpy.mpf

(requesting the appropriate number of "digits" or bits), to use class F with higher precision than
15 digits. gmpy is at http://gmpy.sourceforge.net.

One key use of this recipe is to show to students the classic failure of associative, commutative,
and distributive laws (Knuth, The Art of Computer Programming, vol. 2, pp. 214-15)for example:

Show failure of the associative law
u, v, w = F(11111113), F(-11111111), F(7.51111111)
assert (u+v)+w == 9.5111111
assert u+(v+w) == 10
Show failure of the commutative law for addition
assert u+v+w != v+w+u
Show failure of the distributive law
u, v, w = F(20000), F(-6), F(6.0000003)
assert u*v == -120000
assert u*w == 120000.01
assert v+w == .0000003
assert (u*v) + (u*w) == .01
assert u * (v+w) == .006

The other main way to use the code in this recipe is to compare the numerical accuracy of
different algorithms that compute the same results. For example, we can compare the following
three approaches to computing averages:

def avgsum(data): # Sum all of the elements, then divide
 return sum(data, F(0)) / len(data)
def avgrun(data): # Make small adjustments to a running mean
 m = data[0]
 k = 1
 for x in data[1:]:
 k += 1
 m += (x-m)/k # Recurrence formula for mean
 return m
def avgrun_kahan(data): # Adjustment method with Kahan error correction term
 m = data[0]
 k = 1
 dm = 0
 for x in data[1:]:
 k += 1
 adjm = (x-m)/k - dm
 newm = m + adjm
 dm = (newm - m) - adjm
 m = newm
 return m

http://gmpy.sourceforge.net

Here is a way to exercise these approaches and display their errors:

import random
prec = 5
data = [F(random.random()*10-5) for i in xrange(1000)]
print '%s\t%s\t%s' %('Computed', 'ULP Error', 'Method')
print '%s\t%s\t%s' %('--------', '---------', '------')
for f in avgsum, avgrun, avgrun_kahan:
 result = f(data)
 print '%s\t%6d\t\t%s' % (result, result.error(), f._ _name_ _)
print '\n%r\tbaseline average using full precision' % result.full

Here is typical output from this snippet (the exact numbers in play will be different each time you
run it, since what we are summing are random numbers):

Computed ULP Error Method
-------- --------- ------
-0.020086 15 avgsum
-0.020061 9 avgrun
-0.020072 1 avgrun_kahan
-0.020070327734999997 baseline average using full precision

The last example demonstrates how to extract a full-precision floating-point result from an
instance of F, by using the full attribute of the instance. This example is helpful for running an
algorithm to full precision, as a baseline for seeing the effects of using less precision.

The full-precision result excludes the representation error in the "or"iginal inputs. For example,
with prec = 3 and d = F(3.8761) / F(2.7181), d.full is 1.4264705882352939, the same result
as regular division would yield, starting from the nearest representable values, 3.88 / 2.72.

This helpful choice isolates accumulated floating-point operation errors from the artifacts of the
"or"iginal data entry. This separation is reasonable because real floating-point systems have to
start with representable constants; however, if the "or"iginal representation error has to be
tracked, you can do so by entering the number twice in the call to Ffor example, use F(2.7181,
2.7181) rather than F(2.7181).

See Also

Recipe 18.15 for algorithms for accurate sums; gmpy is at http://gmpy.sourceforge.net.

http://gmpy.sourceforge.net

Recipe 18.17. Computing the Convex Hulls and
Diameters of 2D Point Sets

Credit: David Eppstein, Dinu Gherman

Problem

You have a list of 2D points, represented as pairs (x, y), and need to compute the convex hull

(i.e., upper and lower chains of vertices) and the diameter (the two points farthest from each
other).

Solution

We can easily compute the hulls by the classic Graham's scan algorithm, with sorting based on
coordinates rather than radially. Here is a function to perform this task:

def orientation(p, q, r):
 ''' >0 if p-q-r are clockwise, <0 if counterclockwise, 0 if colinear. '''
 return (q[1]-p[1])*(r[0]-p[0]) - (q[0]-p[0])*(r[1]-p[1])
def hulls(Points):
 ' Graham scan to find upper and lower convex hulls of a set of 2D points '
 U = []
 L = []
 # the natural sort in Python is lexicographical, by coordinate
 Points.sort()
 for p in Points:
 while len(U) > 1 and orientation(U[-2], U[-1], p) <= 0:
 U.pop()
 while len(L) > 1 and orientation(L[-2], L[-1], p) >= 0:
 L.pop()
 U.append(p)
 L.append(p)
 return U, L

Given the hulls, the rotating calipers algorithm provides all pairs of points that are candidates to
be set's diameter. Here is a function to embody this algorithm:

def rotatingCalipers(Points):
 ''' Given a list of 2d points, finds all ways of sandwiching the points
 between two parallel lines that touch one point each, and yields the
 sequence of pairs of points touched by each pair of lines. '''
 U, L = hulls(Points)
 i = 0
 j = len(L) - 1
 while i < len(U) - 1 or j > 0:
 yield U[i], L[j]
 # if all the way through one side of hull, advance the other side
 if i == len(U) - 1:
 j -= 1
 elif j == 0:

 i += 1
 # still points left on both lists, compare slopes of next hull edges
 # being careful to avoid divide-by-zero in slope calculation
 elif (U[i+1][1]-U[i][1]) * (L[j][0]-L[j-1][0]) > \
 (L[j][1]-L[j-1][1]) * (U[i+1][0]-U[i][0]):
 i += 1
 else: j -= 1

Given all the candidates, we need only to scan for the max on pairwise point-point distances of

candidate pairs of points to get the diameter. Here is a function that performs exactly this task:

def diameter(Points):
 ''' Given a list of 2d points, returns the pair that's farthest apart. '''
 diam, pair = max([((p[0]-q[0])**2 + (p[1]-q[1])**2, (p,q))
 for p,q in rotatingCalipers(Points)])
 return pair

Discussion

As function hulls shows, we can apply Graham's scan algorithm without needing an expensive
radial sort as a preliminary step: Python's own built-in sort (which is lexicographical, meaning, in
this case, by x coordinate first, and by y coordinate when the x coordinates of two points
coincide) is sufficient.

From hulls, we get the upper and lower convex hulls as distinct lists, which, in turn, helps in the
rotatingCalipers function: that function can maintain separate indices i and j on the lower and

upper hulls and still be sure to yield all pairs of sandwich boundary points that are candidates to
be the set's diameter. Given the sequence of candidate pairs, function diameter's task is quite
simpleit boils down to one call to built-in max on a list comprehension (a generator expression

would suffice in Python 2.4) that associates the pairwise point distance to each pair of candidate
points. We use the squared distance, in fact. There's no reason to compute a costly square root
to get the actual non-squared distance: we're comparing only distances, and for any non-
negative x and y, x < y and sqrt(x) < sqrt(y) always have identical truth values. (In practice,

however, using math.hypot(p[0]-q[0], p[1]-q[1]) in the list comprehension gives us just

about the same performance.)

The computations in this recipe take care to handle tricky cases, such as pairs of points with the
same x coordinate, multiple copies of the same point, colinear triples of points, and slope

computations that, if not carefully handled, would produce a division by zero (i.e., again, pairs of
points with the same x coordinate). The set of unit tests that carefully probe each of these corner

cases is far longer than the code in the recipe itself, which is why it's not posted on this
cookbook.

Some of the formulas become a little simpler and more readable when we represent points by
complex numbers, rather than as pairs of reals:

def orientation(p, q, r):
 return ((q - p) * (r - p).conjugate()).imag

...
 # still points left on both lists, compare slopes of next hull edges
 # being careful to avoid divide-by-zero in slope calculation
 elif ((U[i+1] - U[i]) * (L[j] - L[j-1]).conjugate()).imag > 0:
 i += 1
 else: j -= 1

...
def diameter(Points):
 diam, pair = max([(abs(p-q), (p,q)) for p,q in rotatingCalipers(Points)])

 return pair

If we represent points by complex numbers, of course, we cannot just use Points.sort() any

more because complex numbers cannot be compared. We need to "pay back" some of the
simplification by coding our own sort, such as:

 aux = [(p.real, p.imag) for p in Points]
 aux.sort()
 Points[:] = [complex(*p) for p in aux]
 del aux

or equivalently, in Python 2.4:

 Points.sort(key=lambda p: p.real, p.imag)

Moreover, under the hood, a complex numbers-based version is doing more arithmetic: finding
the real as well as imaginary components in the first and second formula, and doing an
unnecessary square root in the third one. Nevertheless, performance as measured on my
machine, despite this extra work, turns out to be slightly better with this latest snippet than with
the "Solution"'s code. The reason I've not made the complex-numbers approach the "official"
one, aside from the complication with sorting, is that you should not require familiarity with
complex arithmetic just to understand geometrical computations.

If you're comfortable with complex numbers, don't mind the sorting issues, and have to perform
many 2D geometrical computations, you should consider representing points as complex
numbers and check whether this provides a performance boost, as well as overall simplification
to your source code. Among other advantages, representing points as complex numbers lets you
use the Numeric package to hold your data, saving much memory and possibly gaining even

more performance, when compared to the natural alternative of representing points as (x, y)
tuples holding two floats.

See Also

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry:
Algorithms and Applications, 2nd ed. (Springer-Verlag).

Chapter 19. Iterators and Generators

Introduction

Recipe 19.1. Writing a range-like Function with Float Increments

Recipe 19.2. Building a List from Any Iterable

Recipe 19.3. Generating the Fibonacci Sequence

Recipe 19.4. Unpacking a Few Items in a Multiple Assignment

Recipe 19.5. Automatically Unpacking the Needed Number of Items

Recipe 19.6. Dividing an Iterable into n Slices of Stride n

Recipe 19.7. Looping on a Sequence by Overlapping Windows

Recipe 19.8. Looping Through Multiple Iterables in Parallel

Recipe 19.9. Looping Through the Cross-Product of Multiple Iterables

Recipe 19.10. Reading a Text File by Paragraphs

Recipe 19.11. Reading Lines with Continuation Characters

Recipe 19.12. Iterating on a Stream of Data Blocks as a Stream of Lines

Recipe 19.13. Fetching Large Record Sets from a Database with a Generator

Recipe 19.14. Merging Sorted Sequences

Recipe 19.15. Generating Permutations, Combinations, and Selections

Recipe 19.16. Generating the Partitions of an Integer

Recipe 19.17. Duplicating an Iterator

Recipe 19.18. Looking Ahead into an Iterator

Recipe 19.19. Simplifying Queue-Consumer Threads

Recipe 19.20. Running an Iterator in Another Thread

Recipe 19.21. Computing a Summary Report with itertools.groupby

Introduction

Credit: Raymond Hettinger

Lather, Rinse, Repeat

Docs for my bottle of shampoo

The Iterator Protocol

After namespaces, iterators and generators emerged as the next "honking great ideas" in
Python. Since their introduction in Python 2.2, they have come to pervade and unify the
language. They encourage a loosely coupled programming style that is simple to write, easy to
read, flexible, and extendable.

Simply put, the iterator protocol has two halves, a producer and a consumer. An iterable object
says, "I know how to supply data one element at a time," and the consumer says "please give
me data one element at a time and say Stop when you're done."

The producer/consumer connection can appear in a number of guises. The simplest is where a
function or constructor wraps around an iterable object. For example,
sorted(set('simsalabim')) has the set constructor looping over the elements of the iterable

string and a sorted function wrapping around the resulting iterable set object. replaceable
literal

In addition to functions and constructors, regular Python statements can use the in operator to
loop over iterable objects. for line in myfile: print line loops over lines of an iterable file
object. Likewise, if token in sequence loops over elements of a sequence until it finds a match

(or until it reaches the end with no matches).

Both guises of the consumer side of the iterator protocol use the protocol implicitly. In addition,
an explicit form is more flexible but used less often. The iterator object is saved as a variable, it
= iter(mystring). Then, the iterator's next method is called to retrieve a data element, elem =
it.next(). Such calls are usually wrapped in try/except statements to catch the
StopIteration exception that the iterator raises when the data stream is exhausted.

All of these approaches provide the full range of iterator benefits, including loose coupling and
memory friendliness. The loose coupling is evident in the first example, where the independently
created and maintained sorted function, set data type, and string objects were readily

combined. The memory friendliness derives from the one-at-a-time structure of the iterator
protocol. Programs using iterators are likely to be less resource intensive and more scalable than
their list-based counterparts.

Iterators and Generators

An object that wants to be iterable should implement an _ _iter_ _ method, which returns an

iterator object. Ideally, the iterator should be a distinct object from the iterable, to make it
possible to have multiple iterators over the same iterable container. There are exceptions to this
general recommendation: for example, a sequential file object does not readily lend itself to

multiple iterations; therefore, it is more appropriate in this case to have the file object be its own
iterator rather than return a separate iterator object; given any file instance f, indeed, iter(f)

is f.

Any iterator object must implement a next method and an _ _iter_ _ method. The next
method should raise StopIteration when the iteration is complete. Care should be taken that
subsequent calls to next continue to raise StopIteration (once stopped, it stays stopped). The
_ _iter_ _ method of an iterator object should always return the iterator itself (_ _iter_ _ is

idempotent on iterators). This simplifies client code by allowing it to treat iterators and iterables
the same way (i.e., both return an iterator in response to the iter function).

To be useful, most iterators have a stored state that enables them to return a new data element
on each call. The previously described responsibilities and the need to have a stored state both
suggest that classes are the way to create iterable objects. That approach is obvious, explicit,
and rarely used (only two recipes in this chapter make any use of classes).

Instead of writing classes, two alternate approaches dominate. Starting with the observation that
many functions and types both accept iterable inputs and return iterable outputs, an obvious
approach is to link them together in a "pipes and filters" style to create new tools. For example,
def uniq(seq): return sorted(set(seq)) is a way to create a new tool directly from existing

functions and types. Like functional programming, the resulting code is terse, readable, trivial to
debug, and often runs at the speed of compiled C code. The economy of this approach motivated
the creation of an entire module of iterator building blocks, the itertools module. Indeed, many
of the brilliant, effective recipes in this chapter make frequent use of itertools components.

If no combination of building blocks solves the problem, the next best approach is to write a
generator. The Recipe 19.1 shows how trivially easy it is to write a generator. By introducing a
yield keyword, the responsibilities of creating an iterator are handled automatically. The iterator
objects obtained by calling a generator are distinct, save their state, have an idempotent _
iter _ method, and have a next method that raises StopIteration when complete and stays

stopped if called again afterwards. Python internally takes care of all of these details. Because of
generators' compelling simplicity, most of the recipes in this chapter make use of generators.

Starting with version 2.4, Python continued its evolution toward using iterators everywhere by
introducing generator expressions (genexps for short). Genexps can be likened to a memory-
efficient, scalable form of list comprehensions. Simply by replacing brackets with parentheses, an
expression will yield one element at a time rather than filling memory all at once. Used correctly
(i.e., in a context where they are consumed immediately, one item at a time), genexps can offer
remarkable clarity and economy: sum(x*x for x in xrange(10)) is a great way to express the

sum of the squares of the first ten natural numbers.

Thinking Out of the Box

Paradoxically, the simpler and more general an idea, the more likely that people will find
extraordinary and unexpected ways of using it. Here is a brief sampling of the ways that iterators
and generators have been pushed to their outer limits.

Observing that the yield keyword has the unique capability of stopping execution, saving state,

and later resuming, it is not surprising that techniques have been discovered for using
generators to simulate co-routines and continuations. The core idea is to implement each routine
as a generator and having a dispatch function launch the routines in orderly succession.
Whenever a task switch is needed, the routines yield back to the dispatcher, which then launches
or resumes the next routine by calling its next method. Small complications are involved for

startup, termination, and data sharing, but they each are solvable without much ado and present
fewer challenges than equivalent thread-based solutions. See Recipe 9.8 for an example.

Observing that some tools can be both producers and consumers, it is natural to want to stack
them together like pipes and filters. While that analogy can lead to useful decoupling, be aware
that underlying models are different. Iterators do not run independently from start to finish;
instead, an outermost layer is always in control, requesting data elements one at a time, so that
nothing runs until the outer layer starts making requests.

When stacking tools together (as in the first example with sorted, set, and a string), the code

takes on the appearance of a functional programming language. The resemblance is not shallow:
iterators do fulfill some of the promise of lazy languages. So, it is natural to borrow some of the
most successful techniques from those languages, such as Haskell and SML.

One such technique is to write innermost iterators to yield infinite streams and concentrate the
control logic in an outermost driver function. For instance, in numerical programming, write a
generator that yields successively better approximations to a desired result and call it from a
function that stops whenever two successive approximations fall within a tolerance value.
Separating the control logic from the calculation decouples the two, making them easier to write,
test, and debug, and makes them more reusable in other contexts.

Odds and Ends

Here are some instructive snippets. Consider each of them carefully, study how they work, and
you'll be well on your way towards understanding how best to link iterators together to solve
practical problems. Each of the following lines is independent from the "other"s:

result = dict(enumerate(myseq))
result = set(word for line in page for word in line.split())
def dotproduct(v1, v2): return sum(itertools.imap(operator.mul, v1, v2))
def dotproduct(v1, v2): return sum(x*y for x,y in itertools.izip(v1, v2))
randgen = itertools.starmap(random.random, itertools.repeat(()))
randgen = iter(random.random, -1.0)

The idea for restartable iterators surfaces every so often and then drowns in quicksand.
sys.stdin is a plain example of an iterable that cannot logically be restarted unless an entire
session is saved in memory. A craving for restartability should be taken as a cue that a list

might well be a more appropriate data structure.

Just because iterators cannot be restarted doesn't mean they cannot be abandoned in mid-
stream. The lazy, just-in-time style of production is a key feature of iterators. Take advantage of
it. That's why the for statement supports a break keyword, after all.

The core itertools and their derivatives (see the recipes in the itertools docs that are part of

the Python Library Reference) all run at nearly the speed of compiled code. When Python 2.4
introduced a native set data type, I timed it against the pure-Python version, sets.py, and

learned that some of the set logic (intersection, union, etc.) achieved only a two to one increase
in speed. The reason was that sets.py used itertools, and itertools performance was
exceptional. So, when performance is an issue, consider an itertools solution before turning to

more labor-intensive optimizations or native language extensions.

Recipe 19.1. Writing a range-like Function with Float
Increments

Credit: Dinu Gherman, Paul Winkler, Stephen Levings

Problem

You need an arithmetic progression, like the built-in xrange but with float values (xrange works

only on integers).

Solution

Although float arithmetic progressions are not available as built-ins, it's easy to code a generator
to supply them:

import itertools
def frange(start, end=None, inc=1.0):
 "An xrange-like generator which yields float values"
 # imitate range/xrange strange assignment of argument meanings
 if end is None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 assert inc # sanity check
 for i in itertools.count():
 next = start + i * inc
 if (inc>0.0 and next>=end) or (inc<0.0 and next<=end):
 break
 yield next

Discussion

Sadly missing in the Python Standard Library, the generator in this recipe lets you use arithmetic
progressions, similarly to the built-in xrange but with float values.

Many theoretical restrictions apply, but this generator is more useful in practice than in theory.
People who work with floating-point numbers all the time tell many war stories about billion-
dollar projects that failed because someone did not take into consideration the strange things
that modern hardware can do, at times, when comparing floating-point numbers. But for
pedestrian cases, simple approaches like this recipe generally work.

This observation by no means implies that you can afford to ignore the fundamentals of
numerical analysis, if your programs need to do anything at all with floating-point numbers! For
example, in this recipe, we rely on a single multiplication and one addition to compute each item,
to avoid accumulating error by repeated additions. Precision would suffer in a potentially
dangerous way if we "simplified" the first statement in the loop body to something like:

 next += inc

as might appear very tempting, were it not for those numerical analysis considerations.

One variation you may want to consider is based on pre-computing the number of items that
make up the bounded arithmetic progression:

import math
def frange1(start, end=None, inc=1.0):
 if end == None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 nitems = int(math.ceil((end-start)/inc))
 for i in xrange(nitems):
 yield start + i * inc

This frange1 version may or may not be faster than the frange version shown in the solution; if
the speed of this particular generator is crucial to your programs, it's best to try both versions
and measure resulting times. In my limited benchmarking, on most of the hardware I have at
hand, frange1 does appear to be consistently faster.

Talking about speedbelieve it or not, looping with for i in itertools.count() is measurably

faster than apparently obvious lower-level alternatives such as:

 i = 0
 while True:

 ...loop body unchanged...
 yield next
 i += 1

Do consider using itertools any time you want speed, and you may be in for more of these

pleasant surprises.

If you work with floating-point numbers, you should definitely take a look at Numeric and other

third-party extension packages that make Python such a powerful language for floating-point
computations. For example, with Numeric, you could code something like:

import math, Numeric
def frange2(start, end=None, inc=1.0, typecode=None):
 if end == None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 nitems = math.ceil((end-start)/inc)
 return Numeric.arange(nitems) * inc + start

This one is definitely going to be faster than both frange and frange1 if you need to collect all of
the progression's items into a sequence.

See Also

Documentation for the xrange built-in function, and the itertools and math modules, in the

Library Reference; Numeric Python (http://www.pfdubois.com/numpy/).

http://www.pfdubois.com/numpy/

Recipe 19.2. Building a List from Any Iterable

Credit: Tom Good, Steve Alexander

Problem

You have an iterable object x (it might be a sequence or any other kind of object on which you

can iterate, such as an iterator, a file, a dict) and need a list object y, with the same items

as x and in the same order.

Solution

When you know that iterable object x is bounded (so that, e.g., a loop for item in x would

surely terminate), building the list object you require is trivial:

y = list(x)

However, when you know that x is unbounded, or when you are not sure, then you must ensure

termination before you call list. In particular, if you want to make a list with no more than n

items from x, then standard library module itertools' function islice does exactly what you

need:

import itertools
y = list(itertools.islice(x, N))

Discussion

Python's generators, iterators, and sundry other iterables, are a wondrous thing, as this entire
chapter strives to point out. The powerful and generic concept of iterable is a great way to
represent all sort of sequences, including unbounded ones, in ways that can potentially save you
huge (and even infinite!) amounts of memory. With the standard library module itertools,

generators you can code yourself, and, in Python 2.4, generator expressions, you can perform
many manipulations on completely general iterables.

However, once in a while, you need to build a good old-fashioned full-fledged list object from

such a generic iterable. For example, building a list is the simplest way to sort or reverse the
items in the iterable, and lists have many other useful methods you may want to apply. As long
as you know for sure that the iterable is bounded (i.e., has a finite number of items), just call
list with the iterable as the argument, as the "Solution" points out. In particular, avoid the

goofiness of misusing a list comprehension such as [i for i in x], when list(x) is faster,

cleaner, and more readable!

Calling list won't help if you're dealing with an unbounded iterable. The need to ensure that

some iterable x is bounded also arises in many other contexts, besides that of calling list(x):

all "accumulator" functions (sum(x), max(x), etc.) intrinsically need a bounded-iterable

argument, and so does a statement such as for i in x (unless you have appropriate conditional

breaks within the loop's body), a test such as if i in x, and so on.

If, as is frequently the case, all you want is to ensure that no more than n items of iterable x are

taken, then itertools.islice, as shown in the "Solution", does just what you need. The islice
function of the standard library itertools module offers many other possibilities (essentially

equivalent to the various possibilities that slicing offers on sequences), but out of all of them, the
simple "truncation" functionality (i.e., take no more than n items) is by far the most frequently

used. The programming language Haskell, from which Python took many of the ideas underlying
its list comprehensions and generator expression functionalities, has a built-in take function to
cater to this rather frequent need, and itertools.islice is most often used as an equivalent to
Haskell's built-in take.

In some cases, you cannot specify a maximum number of items, but you are able to specify a
generic condition that you know will eventually be satisfied by the items of iterable x and can
terminate the proceedings. itertools.takewhile lets you deal with such cases in a very general

way, since it accepts the controlling predicate as a callable argument. For example:

y = list(itertools.takewhile((11)._ _cmp_ _, x))

binds name y to a new list made up of the sequence of items in iterable x up to, but not
including, the first one that equals 11. (The reason we need to code (11)._ _cmp_ _ with
parentheses is a somewhat subtle one: if we wrote 11._ _cmp_ _ without parentheses, Python
would parse 11. as a floating-point literal, and the entire construct would be syntactically invalid.
The parentheses are included to force the tokenization we mean, with 11 as an integer literal and
the period indicating an access to its attribute, in this case, bound method _ _cmp_ _.)

For the special and frequent case in which the terminating condition is the equality of an item to
some given value, a useful alternative is to use the two-arguments variant of the built-in function
iter:

y = list(iter(iter(x).next, 11))

Here, the iter(x) call (which is innocuous if x is already an iterator) gives us an object on which
we can surely access callable (bound method) nextwhich is necessary, because iter in its two-

arguments form requires a callable as its first argument. The second argument is the sentinel
value, meaning the value that terminates the iteration as soon as an item equal to it appears. For
example, if x were a sequence with items 1, 6, 3, 5, 7, 11, 2, 9, . . , y would now be the list [1,

6, 3, 5, 7]. (The sentinel value itself is excluded: from the beginning, included, to the end,

excluded, is the normal Python convention for just about all loops, implicit or explicit.)

See Also

Library Reference documentation on built-ins list and iter, and module itertools.

Recipe 19.3. Generating the Fibonacci Sequence

Credit: Tom Good, Leandro Mariano Lopez

Problem

You want an unbounded generator that yields, one item at a time, the entire (infinite) sequence
of Fibonacci numbers.

Solution

Generators are particularly suitable for implementing infinite sequences, given their intrinsically
"lazy evaluation" semantics:

def fib():
 ''' Unbounded generator for Fibonacci numbers '''
 x, y = 0, 1
 while True:
 yield x
 x, y = y, x + y
if _ _name_ _ == "_ _main_ _":
 import itertools
 print list(itertools.islice(fib(), 10))
outputs: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Discussion

Generators make it quite easy to work with unbounded (infinite) sequences. In this recipe, we
show a generator that produces all of the (infinitely many) Fibonacci numbers one after the
"other". (If you want the variant in which the sequence starts with 1, 1, 2, . . . , rather than the
one, implemented here, which starts with 0, 1, 1, . . . , just interchange the two statements in

the loop's body.)

It's worth reflecting on why a generator is so perfectly suitable for implementing an unbounded
sequence and letting you work with it. Syntactically, a generator is "just" a function containing
the keyword yield. When you call a generator, however, the function body does not yet execute.

Rather, calling the generator gives you a special anonymous iterator object that wraps the
function's body, the function's local variables (including arguments, which, for any function, are
local variables that happen to be initialized by the caller), and the current point of execution,
which is initially the start of the function.

When you call this anonymous iterator object's next method, the function body executes up to
the next yield statement. yield's argument is returned as the result of the iterator's next
method, and the function is "frozen", with its execution state intact. When you call next again on

the same iterator object, the function "thaws" and continues from where it left off, again up to
the next yield statement.

If the function body "falls off the end", or executes a return, the iterator object raises
StopIteration to indicate the end of the sequence. But, of course, if the sequence that the
generator is producing is not bounded, the iterator never raises StopIteration. That's okay, as

long as you don't rely on such an exception as the only way to terminate a loop. In this recipe,

for example, the anonymous iterator object is passed as an argument to itertools.islice: as
shown in Recipe 19.2, islice is the most typical way in which an unbounded iterator is made

finite (truncated at an externally imposed boundary).

The main point to retain is that it's all right to have infinite sequences represented by generators,
since generators are computed lazily (in other words, each item gets computed just in time,
when required), as long as some control structure ensures that only a finite number of items are
required from the generator. The answer to our curiosity as to why generators are so excellently
suitable for this use is in the anonymous iterator object which a generator returns when we call
it: that anonymous iterator wraps some code (the generator's function body) and some state
(the function's local variables, and, crucially, the point at which the function's execution is to
resume) in just the way that's most convenient for the computation of most sequences, be they
bounded or unbounded.

Leonardo Pisano (meaning "from Pisa"), most often called Leonardo Bigollo (the traveler or "the
good for nothing") during his lifetime in the 12th and 13th centuries, and occasionally Leonardo
Fibonacci (for his connection to the Bonacci family), must look down with considerable pride from
his place in the mathematicians' Empyreon. Although his most notable contributions were the
introduction of decimal notation (arabic numerals) in the West, and the codification of the rules
for double-entry bookkeeping, these monumental achievements are not usually connected to his
name. The one that is, howeverfrom the third problem in his Liber Abaci, which he originally
expressed in terms of a rabbit-raising farmstill provides interesting applications for the distant
successors of the abacus, modern computers.

See Also

Recipe 19.2, shows how to make bounded iterators from unbounded (or "potentially
unbounded") ones.

Recipe 19.4. Unpacking a Few Items in a Multiple
Assignment

Credit: Brett Cannon, Oren Tirosh, Alex Martelli

Problem

Python's multiple unpacking assignment is very handy when you are unpacking all the items
from a sequence and binding each to a name. However, you often need to unpack (and bind to
names) only some items from the "front" of a sequence, and bind another name to "the rest" of
the sequence (the part you didn't unpack).

Solution

A generator provides an elegant solution to this problem:

def peel(iterable, arg_cnt=1):
 """ Yield each of the first arg_cnt items of the iterable, then
 finally an iterator for the rest of the iterable. """
 iterator = iter(iterable)
 for num in xrange(arg_cnt):
 yield iterator.next()
 yield iterator
if _ _name_ _ == '_ _main_ _':
 t5 = range(1, 6)
 a, b, c = peel(t5, 2)
 print a, b, list(c)
emits: 1 2 [3, 4, 5]

Discussion

Python supports the handy idea of multiple unpacking assignment. Say that t5 is any sequence

of five items. Then, you can code:

a, b, c, d, e = t5

to bind a name to each item of t5.

However, you often do not know (nor care) exactly how many items a certain sequence t holds:

you want to bind (say) two names, one to each of the first two items, and a third name to "the
rest" of t (this requirement does imply that t must hold at least two items). If you know that t is

a "proper" sequence, with support for slicing, not just an arbitrary iterable, you can code:

a, b = t[:2]
c = t[2:]

but this is nowhere as elegant or handy as the multiple unpacking assignment. Moreover, if you

are not certain about the nature of t (i.e., if t can be any iterable, not necessarily supporting

slice syntax), the task becomes more cumbersome:

c = iter(t5)
a = c.next()
b = c.next()

Given these issues, the Python Development mailing list[1] once discussed a new syntax for
generalized multiple unpacking assignment, such that:

[1] The Python Development mailing list is the list on which all discussion regarding the development of Python itself is held;

see http://mail.python.org/pipermail/python-dev/2002-November/030380.html for this specific subject.

a, b, *c = t

would perform exactly this taskbind names a and b to the first two items of t and name c to "the

rest".

I didn't like the idea of making the Python language bigger by adding this extra functionality to
assignment statements, so I came up with this recipe's generator. This generator provides this
functionality fully and without any need to add any new syntax to Python.

Just one caveat: you must make sure that you pass the arg_cnt argument properly. If you pass a
wrong value for arg_cnt, or if the sequence you pass to peel is shorter than arg_cnt, you get an
exception at runtime. But then, you also get a Python exception at runtime if you try to perform
a multiple assignment and the number of names you have on the left of the = sign is not identical

to the number of items of the sequence you have on the right. Therefore, this recipe isn't any
different from normal, multiple unpacking assignment in this respect. If you think it is important
to relax some parts of this requirement, see Recipe 19.5.

See Also

Language Reference and Python in a Nutshell about multiple unpacking assignments; Recipe
19.5.

http://mail.python.org/pipermail/python-dev/2002-November/030380.html

Recipe 19.5. Automatically Unpacking the Needed
Number of Items

Credit: Sami Hangaslammi, Peter Cogolo

Problem

You want to unpack (and bind to names) some items from the "front" of a sequence and bind
another name to "the rest" of the sequence (the part you didn't unpack). You want to obtain the
number of items to unpack automatically, based on how many names are on the left of the = sign

in a multiple unpacking assignment.

Solution

The previous approach in Recipe 19.4 is clean and elegant, but you have to "manually" pass the
number of items to unpack. If you're willing to stoop to a little black magic, peering into stack
frames and bytecodes, you may be able to bypass that requirement:

import inspect, opcode
def how_many_unpacked():
 f = inspect.currentframe().f_back.f_back
 if ord(f.f_code.co_code[f.f_lasti]) == opcode.opmap['UNPACK_SEQUENCE']:
 return ord(f.f_code.co_code[f.f_lasti+1])
 raise ValueError, "Must be a generator on RHS of a multiple assignment!"
def unpack(iterable):
 iterator = iter(iterable)
 for num in xrange(how_many_unpacked()-1):
 yield iterator.next()
 yield iterator
if _ _name_ _ == '_ _main_ _':
 t5 = range(1, 6)
 a, b, c = unpack(t5)
 print a, b, list(c)

Discussion

While arguably spiffy, this recipe is a bit fragile, as you could well expect from a function relying
on introspection on bytecode: while the recipe works in Python 2.3 and 2.4, any future release of
Python might easily generate bytecode for a multiple unpacking assignment in a somewhat
different way, and thus break the recipe.

Moreover, as presented, the recipe relies on how_many_unpacked being called specifically from
a generator; if you call it from an ordinary function, it does not work, since in that case the
UNPACK_SEQUENCE bytecode in the caller's caller happens to fall at offset f.f_lasti+3 instead of
f.f_lasti.

For example, the following code doesn't work with the recipe's Solution because enumfunc is an
ordinary function, not a generator:

def enumfunc():

 return xrange(how_many_unpacked())
a, b, c, d, e = enumfunc()

However, the following code does work:

def enumgen():
 for x in xrange(how_many_unpacked()): yield x
a, b, c, d, e = enumgen()

because enumgen is a generator.

In other words, this recipe is a hackarguably a neat hack (to the point that one of the editors of
this Cookbook successfully lobbied the "other" two and managed to obtain the recipe's inclusion
in this volume), but, nevertheless, a hack. Therefore, you probably do not want to use this
approach in "production code", meaning code that must stay around for a long time and will be
maintained across future versions of Python.

Nevertheless, you could make how_many_unpacked work in both contexts by making it a little
bit more complicated:

def how_many_unpacked():
 f = inspect.currentframe().f_back.f_back
 bytecode = f.f_code.co_code
 ups_code = opcode.opmap['UNPACK_SEQUENCE']
 if ord(bytecode[f.f_lasti]) == ups_code:
 return ord(bytecode[f.f_lasti+1])
 elif ord(bytecode[f.f_lasti+3]) == ups_code:
 return ord(bytecode[f.f_lasti+4])
 else:
 raise ValueError, "Must be on the RHS of a multiple assignment!"

With this more complicated variant, how_many_unpacked would work when called from either a
generator or an ordinary function. However, I recommend sticking with the simpler version
presented in this recipe's Solution, and calling how_many_unpacked only from the given unpack
generator, or a few other specific generators.

Even such a limited use can be considered debatable, since most Pythonistas prefer clarity and
simplicity to the risky kind of "convenience" that can be obtained by such shortcuts. After all, this
recipe's only advantage, in comparison to Recipe 19.4, is that you save yourself the trouble of
passing to unpack the number of items required, which is nice, but clearly, not all that crucial."

See Also

Recipe 19.4; Language Reference and Python in a Nutshell about multiple unpacking
assignments; Library Reference and Python in a Nutshell about library modules inspect and
opcode.

Recipe 19.6. Dividing an Iterable into n Slices of Stride n

Credit: Gyro Funch, Alex Martelli

Problem

You have an iterable p and need to get the n non-overlapping extended slices of stride n, which,

if the iterable was a sequence supporting extended slicing, would be p[0::n], p[1::n], and so

on up to p[n-1::n].

Solution

While extended slicing would return sequences of the same type we start with, it's much more
sensible to specify a strider function that, instead, solves this problem by returning a list of

lists:

def strider(p, n):
 """ Split an iterable p into a list of n sublists, repeatedly taking
 the next element of p and adding it to the next sublist. Example:
 >>> strider('abcde', 3)
 [['a', 'd'], ['b', 'e'], ['c']]
 In other words, strider's result is equal to:
 [list(p[i::n]) for i in xrange(n)]
 if iterable p is a sequence supporting extended-slicing syntax.
 """
 # First, prepare the result, a list of n separate lists
 result = [[] for x in xrange(n)]
 # Loop over the input, appending each item to one of
 # result's lists, in "round robin" fashion
 for i, item in enumerate(p):
 result[i % n].append(item)
 return result

Discussion

The function in this recipe takes an iterable p and pulls it apart into a user-defined number n of

pieces (specifically, function strider returns a list of sublists), distributing p's items into what

would be the n extended slices of stride n if p were a sequence.

If we were willing to sacrifice generality, forcing argument p to be a sequence supporting

extended slicing, rather than a generic iterable, we could use a very different approach, as the
docstring of strider indicates:

def strider1(p, n):
 return [list(p[i::n]) for i in xrange(n)]

Depending on our exact needs, with such a strong constraint on p, we might omit the list call

to make each subsequence into a list, and/or code a generator to avoid consuming extra
memory to materialize the whole list of results at once:

def strider2(p, n):
 for i in xrange(n):
 yield p[i::n]

or, equivalently:

import itertools
def strider3(p, n):
 return itertools.imap(lambda i: p[i::n], xrange(n))

or, in Python 2.4, with a generator expression:

def strider4(p, n):
 return (p[i::n] for i in xrange(n))

However, none of these alternatives accepts a generic iterable as peach demands a full-fledged

sequence.

Back to this recipe's exact specs, the best way to enhance the recipe is to recode it to avoid low-
level fiddling with indices. While doing arithmetic on indices is conceptually quite simple, it can
get messy and indeed is notoriously error prone. We can do better by a generous application of
module itertools from the Python Standard Library:

import itertools
def strider5(p, n):
 result = [[] for x in itertools.repeat(0, n)]
 resiter = itertools.cycle(result)
 for item, sublist in itertools.izip(p, resiter):
 sublist.append(item)
 return result

This strider5 version uses three functions from module itertoolsall of the functions in module
itertools return iterable objects, and, as we see in this case, their results are therefore typically
used in for loops. Function repeat yields an object, repeatedly, a given number of times, and
here we use it instead of the built-in function xxrange to control the list comprehension that
builds the initial value for result. Function cycle takes an iterable object and returns an iterator
that walks over that iterable object repeatedly and cyclicallyin other words, cycle performs
exactly the round-robin effect that we need in this recipe. Function izip is essentially like the
built-in function zip, except that it returns an iterator and thus avoids the memory-consumption
overhead that zip incurs by building its whole result list in memory at once.

This version achieves deep elegance and conceptual simplicity (although you may need to gain
some familiarity with itertools before you agree that this version is simple!) by foregoing all
index arithmetic and leaving all of the handling of the round-robin issues to itertools.cycle.

resiter, per se, is a nonterminating iterator, but the function deals effortlessly with that.
Specifically, since we use resiter together with p as arguments to izip, termination is assured

(assuming, of course, that p does terminate!) by the semantics of izip, which, just like built-in
function zip, stops iterating as soon as any one of its arguments is exhausted.

See Also

The itertools module is part of the Python Standard Library and is documented in the Library

Reference portion of Python's online documentation; the Library Reference and Python in a
Nutshell docs about the built-ins zip and xrange, and extended-form slicing of sequences.

Recipe 19.7. Looping on a Sequence by Overlapping
Windows

Credit: Peter Cogolo, Steven Bethard, Ian Bicking

Problem

You have an iterable s and need to make another iterable whose items are sublists (i.e., sliding

windows), each of the same given length, over s' items, with successive windows overlapping by

a specified amount.

Solution

We can combine built-in function iter and function islice from the standard library module
itertools to code a generator to solve our problem:

import itertools
def windows(iterable, length=2, overlap=0):
 it = iter(iterable)
 results = list(itertools.islice(it, length))
 while len(results) == length:
 yield results
 results = results[length-overlap:]
 results.extend(itertools.islice(it, length-overlap))
 if results:
 yield results
if _ _name_ _ == '_ _main_ _':
 seq = 'foobarbazer'
 for length in (3, 4):
 for overlap in (0, 1):
 print '%d %d: %s' % (length, overlap,
 map(''.join, windows(seq, length, overlap)))

This module, when run as a main script, emits:

3 0: ['foo', 'bar', 'baz', 'er']
3 1: ['foo', 'oba', 'arb', 'baz', 'zer', 'r']
4 0: ['foob', 'arba', 'zer']
4 1: ['foob', 'barb', 'baze', 'er']

When you know you don't need any overlap, a fast and concise alternative is available:

def chop(iterable, length=2):
 return itertools.izip(*(iter(iterable),)*length)

The body of this concise alternative may be a bit confusing until you realize that the two
occurrences of the asterisk (*) there play different roles: the first one is part of a *args syntax

form (passing the elements of a sequence as separate positional arguments), the second one

indicates that a sequence (the Singleton tuple (iter(iterable),) must be repeated length

times.

Discussion

In many cases, we need a sequence of sub-sequences of a given length, and we have to start
with a "flat" iterable. For example, we can build a dictionary with given keys and values by calling
dict with a sequence of two-item sequencesbut what if we start with a "flat" sequence where

keys and values just alternate? The function windows in this recipe meets this need:

the_dict = dict(windows(flat_alternating_keys_and_values))

Or, say we have an iterable whose items are the amounts of sales on each day. To turn it into an
iterable whose items are the amounts of sales in each week (seven days):

weekly_sales = itertools.imap(sum, windows(daily_sales, 7))

The two use cases just presented are examples of how windows can be useful when called
without overlap (in other words, with an overlap argument of 0, its default value), so the

alternative chop function also presented in the recipe would be just as good (and faster).
However, overlap is often useful when you deal with iterables that are signals, or time series. For
example, if you have a function average such as:

def average(sequence):
 return sum(sequence)/float(len(sequence))

then you can apply a simple low-pass filter to a signal:

filtered = itertools.imap(average, windows(raw_signal, 5, 2))

or get the moving average daily sales from the iterable of daily sales:

mvavg_daily_sales = itertools.imap(average, windows(daily_sales, 7, 6))

The implementation of the windows generator in this recipe is quite straightforward, if you're
familiar with itertools.islice (and you should be, if you deal with iterables!). For the first
"window", we must clearly fill list results with the appropriate number of items (islice does that

for us). At each subsequent step, we must throw away a certain number of items from the
"front" of results (we do that conveniently by list slicing, since results is, indeed, a list) and
replenish the same number at the back (we do that by calling the extend method of results, with
islice providing the needed "new" items). That number, as a little reasoning shows, is exactly
that given by the expression length-overlap. The loop terminates, if ever, only when results

cannot be entirely replenished. (The loop never executes if results cannot even be filled entirely
in the first place.)

When the loop terminates, we may be left with a "tail" in results, a "last window" that is shorter
than length. What to do in that case depends on your application's exact needs. The recipe, as
given above, just yields the shorter window as the last item of the generator, which is what we'd
probably want in all of the previously mentioned use cases. In other cases, we might want to
drop the last, too-short window (just omit the last two statements in function windows as given
in the recipe), raise an exception (when we know that such a situation should never occur), or
pad the last window to the required length with a pad value such as None, by changing the last

two statements in function windows to something like:

 if result:
 result.extend(itertools.repeat(None, length-len(result)))
 yield result

One important implementation detail: function windows, as coded in the recipe, yields a new list
object at each step. It takes some time to generate all of these objects. In some cases, it may be
convenient to the caller to know that each object it gets is a separate and independent list. Such
knowledge enables the caller to store or modify the objects it gets, without having to make
explicit copies. However, none of the use cases we discussed gets any benefit from this feature.
So, you could optimize, by yielding the same list object every time. If you want that
optimization, just change the statement:

 results = results[length-overlap:]

into:

 del results[:length-overlap]

If you're applying this optimization, and you're using Python 2.4, you should also consider using
the new type collections.deque instead of list. In order to do so, you need to add the

statement:

import collections

at the start of your code, change the only occurrence of list in the recipe into
collections.queue, and further change the updating of results to avoid slicing, using, instead:

 for i in xrange(length-overlap): results.popleft()

If your windows are long, and if they overlap substantially, using deque instead of list might
give you better performance, since deque is optimized to support adding and removing items at

either end, while lists, being compact arrays in memory, are inherently slow (specifically, O(n)

for a list of length n) when you add or remove items at the beginning.

When you want windows of some length n that overlap specifically by n-1 items, function
itertools.tee, new in Python 2.4, offers an elegant alternative approach. Say that you want to

look at each item of the iterable, with access to a few neighboring items and some padding at
both ends, so that you get just as many windows as there are items in the iterable. In Python
2.4, you could then code:

import itertools as IT
def windowed(iterable, pre=1, post=1, padding=None):
 # tee-off one iterator for each index in the window
 copies = IT.tee(iterable, pre + 1 + post)
 pre_copies, copy, post_copies = copies[:pre], copies[pre], copies[pre+1:]
 # iterators before the element have their start filled in with the
 # padding value. no need to slice off the ends, izip will do that.
 pre_copies = [IT.chain(IT.repeat(padding, pre - i), itr)
 for i, itr in enumerate(pre_copies)]
 # iterators after the element have their starts sliced off and their
 # end filled in with the padding value, endlessly repeated.
 post_copies = [IT.chain(IT.islice(itr, i + 1, None), IT.repeat(padding))
 for i, itr in enumerate(post_copies)]
 # zip the elements with their preceding and following elements
 return IT.izip(*(pre_copies + [copy] + post_copies))

For example:

>>> print list(windowed(xrange(4), 1, 2, 'x'))
[('x', 0, 1, 2), (0, 1, 2, 3), (1, 2, 3, 'x'), (2, 3, 'x', 'x')]

If you use Python 2.4 and want this flavor of "sliding windows" over the iterable, with specified
"padding" at both ends, you might prefer this windowed function to the recipe's windows
generator.

See Also

Library Reference documentation on built-in iter and module itertools.

Recipe 19.8. Looping Through Multiple Iterables in
Parallel

Credit: Andy McKay, Hamish Lawson, Corey Coughlin

Problem

You need to loop through every item of multiple iterables in parallel, meaning that you first want
to get a tuple with all of the first items of each iterable, next, a tuple with all of the "second
items", and so forth.

Solution

Say you have two iterables (lists, in this case) such as:

a = ['a1', 'a2', 'a3']
b = ['b1', 'b2']

If you want to loop "in parallel" over them, the most general and effective approach is:

import itertools
for x, y in itertools.izip(a, b):
 print x, y

This snippet outputs two lines:

a1 b1
a2 b2

Discussion

The most general and effective way to loop "in parallel" over multiple iterables is to use function
izip of standard library module itertools, as shown in the "Solution". The built-in function zip
is an alternative that is almost as good:

for x, y in zip(a, b):
 print x, y

However, zip has one downside that can hurt your performance if you're dealing with long

sequences: it builds the list of tuples in memory all at once (preparing and returning a list), while
you need only one tuple at a time for pure looping purposes.

Both zip and itertools.izip, when you iterate in parallel over iterables of different lengths,

stop as soon as the "shortest" such iterable is exhausted. This approach to termination is
normally what you want. For example, it lets you have one or more non-terminating iterable in
the zipping, as long as at least one of the iterables does terminateor (in the case of izip, only)
as long as you use some control structure, such as a conditional break within a for statement, to

ensure you always require a finite number of items and do not loop endlessly.

In some cases, when iterating in parallel over iterables of different lengths, you may want
shorter iterables to be conceptually "padded" with None up to the length of the longest iterable in
the zipping. For this special need, you can use the built-in function map with a first argument of
None:

for x, y in map(None, a, b):
 print x, y

map, like zip, builds and returns a whole list. If that is a problem, you can reproduce map's pad
with None's behavior by coding your own generator. Coding your own generator is also a good
approach when you need to pad shorter iterables with some value that is different from None.

If you need to deal only with specifically two sequences, your iterator's code can be quite
straightforward and linear:

import itertools
def par_two(a, b, padding_item=None):
 a, b = iter(a), iter(b)
 # first, deal with both iterables via izip until one is exhausted:
 for x in itertools.izip(a, b):
 yield x
 # only one of the following two loops, at most, will execute, since
 # either a or b (or both!) are exhausted at this point:
 for x in a:
 yield x, padding_item
 for x in b:
 yield padding_item, x

Alternatively, you can code a more general function, one that is able to deal with any number of
sequences:

import itertools
def par_loop(padding_item, *sequences):
 iterators = map(iter, sequences)
 num_remaining = len(iterators)
 result = [padding_item] * num_remaining
 while num_remaining:
 for i, it in enumerate(iterators):
 try:
 result[i] = it.next()
 except StopIteration:
 iterators[i] = itertools.repeat(padding_item)
 num_remaining -= 1
 result[i] = padding_item
 if num_remaining:
 yield tuple(result)

Here's an example of use for generator par_loop:

print map(''.join, par_loop('x', 'foo', 'zapper', 'ui'))
emits: ['fzu', 'oai', 'opx', 'xpx', 'xex', 'zrx']

Both par_two and par_loop start by calling the built-in function iter on all of their arguments

and thereafter use the resulting iterators. This is important, because the functions rely on the
state that these iterators maintain. The key idea in par_loop is to keep count of the number of

iterators as yet unexhausted, and replace each exhausted iterator with a nonterminating iterator
that yields the padding_item ceaselessly; num_remaining counts unexhausted iterators, and both
the yield statement and the continuation of the while loop are conditional on some iterators

being as yet unexhausted.

Alternatively, if you know in advance which iterable is the longest one, you can wrap every other
iterable x as itertools.chain(iter(x), itertools.repeat(padding)) and then call
itertools.izip. You can't do this wrapping on all iterables because the resulting iterators are
nonterminatingif you izip iterators that are all nonterminating, izip itself cannot terminate!

Here, for example, is a version that works as intended only when the longest (but terminating!)
iterable is the very first one:

import itertools
def par_longest_first(padding_item, *sequences):
 iterators = map(iter, sequences)
 for i, it in enumerate(iterators):
 if not i: continue
 iterators[i] = itertools.chain(it, itertools.repeat(padding_item))
 return itertools.izip(iterators)

See Also

The itertools module is part of the Python Standard Library and is documented in the Library

Reference portion of Python's online documentation; the Library Reference and Python in a
Nutshell docs about built-ins zip, iter, and map.

Recipe 19.9. Looping Through the Cross-Product of
Multiple Iterables

Credit: Attila Vàsàrhelyi, Raymond Hettinger, Steven Taschuk

Problem

You need to loop through every item of multiple iterables cross-productwise, meaning that you
first want to get the first item of the first iterable paired with all the others, next, the second item
of the first iterable paired with all the others, and so forth.

Solution

Say you have two iterables (lists, in this case) such as:

a = ['a1', 'a2', 'a3']
b = ['b1', 'b2']

If you want to loop over their cross-product, the simplest approach is often just a couple of
nested for loops:

for x in a:
 for y in b:
 print x, y

This snippet's output is six lines:

a1 b1
a1 b2
a2 b1
a2 b2
a3 b1
a3 b2

However, in many cases, you'd rather get all items in the "cross-product" of multiple iterables as
a single, linear sequence, suitable for using in a single for or for passing onwards to other
sequence manipulation functions, such as those supplied by itertools. For such needs, you
may put the nested fors in a list comprehension:

for x, y in [(x,y) for x in a for y in b]:
 print x, y

Discussion

A list comprehension lets you easily generate (as a single, linear sequence) all the pairings of
several iterables (also known as the cross-product, product set, or Cartesian product of these
iterables). However, the number of items in such a cross-product is the arithmetic product

(multiplication) of the lengths of all the iterables involved, a number that may easily get quite
large. A list comprehension, by definition, builds the entire list at once, which means that it may
consume substantial amounts of memory. Also, you get to start iterating only when the whole
cross-product list is entirely built.

Python 2.4 offers one obvious way to solve this problem: the newly introduced construct of
generator expressions:

for x, y in ((x,y) for x in a for y in b): print x, y

A generator expression looks just like a list comprehension, except that it uses parentheses
rather than brackets: it returns an iterator, suitable for looping on, rather than building and
returning a list. Thus, a generator expression can save substantial amounts of memory, if you
are iterating over a very long sequence. Also, you start executing the loop's body very soon,
since each successive element gets generated iteratively, before each iteration of the loop's
body. If your loop's body contains conditional breaks, so that execution terminates as soon as

some conditions are met, using a generator expression rather than a list comprehension can
mean a potentially substantial improvement in performance.

If you need to support Python 2.3, and yet you want to achieve the kind of advantages that
generator expressions can afford over list comprehensions, the best approach may be to code
your own generator. This is quite simple if you only need to deal with a known number of
sequences, such as two:

def cross_two(a, b):
 for x in a:
 for y in b:
 yield a, b

Dealing with an arbitrary number of sequences is a bit more complicated, but not terribly so,
particularly if we use recursion to help:

def cross_loop(*sequences):
 if sequences:
 for x in sequences[0]:
 for y in cross_loop(sequences[1:]):
 yield (x,) + y
 else:
 yield ()

We can also do it without recursion. It's not hard if we're willing to build the entire result list in
memory at once before returning it, just as a list comprehension would:

def cross_list(*sequences):
 result = [[]]
 for seq in sequences:
 result = [sublist+[item] for sublist in result for item in seq]
 return result

Alternatively, you can return map(tuple, result) if you need to ensure that each item of the

sequence you return is a tuple, not a list.

Recursion-free iterative (incremental) generation of the "cross-product" sequence is also feasible,
even though it's nowhere as simple as either the recursive or the nonincremental versions:

def cross(*sequences):
 # visualize an odometer, with "wheels" displaying "digits"...:

 wheels = map(iter, sequences)
 digits = [it.next() for it in wheels]
 while True:
 yield tuple(digits)
 for i in range(len(digits)-1, -1, -1):
 try:
 digits[i] = wheels[i].next()
 break
 except StopIteration:
 wheels[i] = iter(sequences[i])
 digits[i] = wheels[i].next()
 else:
 break

In Python 2.4, you might express the for statement more clearly as for i in
reversed(range(len(digits))).

To repeat, it is important to remember that all of these solutions should be considered only if you
do have the problemthat is, if and only if you do need to view all items in the "cross-product" of
multiple iterables as a single, linear sequence. Many cases have no such requirement, and simply
coding multiple nested for loops inline is quite acceptable, simpler, and more readable. In many

cases, getting all items in the "cross-product" as a single sequence is preferable, so it's worth
knowing how to do that. However, do keep in mind that simplicity is an important virtue, and do
not lose sight of it in pursuit of a cool (but complicated) solution. All the cool tools, constructs,
and library modules that Python offers exist strictly to serve you, to let you build and maintain
your applications with minimal effort. Don't go out of your way to use the new shiny tools if you
can solve your application's problems with less effort in simpler ways!

See Also

The Library Reference and Python in a Nutshell docs about built-ins iter, enumerate, map, and
(Python 2.4 only) reversed; the Language Reference and Python in a Nutshell docs about list

comprehensions and (Python 2.4 only) generator expressions.

Recipe 19.10. Reading a Text File by Paragraphs

Credit: Alex Martelli, Magnus Lie Hetland, Terry Reedy

Problem

You need to read a text file (or any other iterable whose items are lines of text) paragraph by
paragraph, where a "paragraph" is defined as a sequence of nonwhite lines (i.e., paragraphs are
separated by lines made up exclusively of whitespace).

Solution

A generator is quite suitable for bunching up lines this way:

def paragraphs(lines, is_separator=str.isspace, joiner=''.join):
 paragraph = []
 for line in lines:
 if is_separator(line):
 if paragraph:
 yield joiner(paragraph)
 paragraph = []
 else:
 paragraph.append(line)
 if paragraph:
 yield joiner(paragraph)
if _ _name_ _ == '_ _main_ _':
 text = 'a first\nparagraph\n\nand a\nsecond one\n\n'
 for p in paragraphs(text.splitlines(True)): print repr(p)

Discussion

Python doesn't directly support paragraph-oriented file reading, but it's not hard to add such
functionality. We define a "paragraph" as the string formed by joining a nonempty sequence of
nonseparator lines, separated from any adjoining paragraphs by nonempty sequences of
separator lines. A separator line is one that satisfies the predicate passed in as argument
is_separator. (A predicate is a function whose result is taken as a logical truth value, and we say
a predicate is satisfied when the predicate returns a result that is true.) By default, a line is a
separator if it is made up entirely of whitespace characters (e.g., space, tab, newline, etc.).

The recipe's code is quite straightforward. The state of the generator during iteration is entirely
held in local variable paragraph, a list to which we append the nonseparator lines that make up
the current paragraph. Whenever we meet a separator in the body of the for statement, we test
if paragraph to check whether the list is currently empty. If the list is empty, we're already

skipping a run of separators and need do nothing special to handle the current separator line. If
the list is not empty, we've just met a separator line that terminates the current paragraph, so
we must join up the list, yield the resulting paragraph string, and then set the list back to

empty.

This recipe implements a special case of sequence adaptation by bunching: an underlying
iterable is "bunched up" into another iterable with "bigger" items. Python's generators let you
express sequence adaptation tasks very directly and linearly. By passing as arguments, with

reasonable default values, the is_separator predicate, and the joiner callable that determines
what happens to each "bigger item" when we're done bunching it up, we achieve a satisfactory
amount of generality without any extra complexity. To see this, consider a snippet such as:

import operator
numbers = [1, 2, 3, 0, 0, 6, 5, 3, 0, 12]
bunch_up = paragraphs
for s in bunch_up(numbers, operator.not_, sum): print 'S', s
for l in bunch_up(numbers, bool, len): print 'L', l

In this snippet, we use the paragraphs generator (under the name of bunch_up, which is clearer
in this context) to get the sums of "runs" of nonzero numbers separated by runs of zeros, then
the lengths of the runs of zerosapplications that, at first sight, might appear to be quite different
from the recipe's stated purpose. That's the magic of abstraction: when appropriately and
tastefully applied, it can easily turn the solution of a problem into a family of solutions for many
other apparently unrelated problems.

An elementary issue, but a crucial one for getting good performance in the "main" use case of
this recipe, is that the paragraphs' generator builds up each resulting paragraph as a list of
strings, then concatenates all strings in the list with ''.join to obtain each result it yields. An
alternate approach, where a large string is built up as a string, by repeated application of += or +,

is never the right approach in Python: it is both slow and clumsy. Good Pythonic style absolutely
demands that we use a list as the intermediate accumulator, whenever we are building a long
string by concatenating a number of smaller ones. Python 2.4 has diminished the performance
penalty of the wrong approach. For example, to join a list of 52 one-character strings into a 52-
character string on my machine, Python 2.3 takes 14.2 microseconds with the right approach,
73.6 with the wrong one; but Python 2.4 takes 12.7 microseconds with the right approach, 41.6
with the wrong one, so the penalty in this case has decreased from over five times to over three.
Nevertheless, there is no reason to choose to pay such a performance penalty without any
returns, even the lower penalty that Python 2.4 manages to extract!

Python 2.4 offers a new itertools.groupby function that is quite suitable for sequence-bunching

tasks. Using it, we could express the paragraphs' generator in a really tight and concise way:

from itertools import groupby
def paragraphs(lines, is_separator=str.isspace, joiner=''.join):
 for separator_group, lineiter in groupby(lines, key=is_separator):
 if not separator_group:
 yield joiner(lineiter)

itertools.groupby, like SQL's GROUP BY clause, which inspired it, is not exactly trivial use, but it

can be quite useful indeed for sequence-bunching tasks once you have mastered it thoroughly.

See Also

Recipe 19.11; Chapter 1 for general issues about handling text; Chapter 2 for general issues
about handling files; Recipe 19.21; Library Reference documentation on Python 2.4's
itertools.groupby.

Recipe 19.11. Reading Lines with Continuation
Characters

Credit: Alex Martelli

Problem

You have a file that includes long logical lines split over two or more physical lines, with
backslashes to indicate that a continuation line follows. You want to process a sequence of logical
lines, "rejoining" those split lines.

Solution

As usual, our first idea for a problem involving sequences should be a generator:

def logical_lines(physical_lines, joiner=''.join):
 logical_line = []
 for line in physical_lines:
 stripped = line.rstrip()
 if stripped.endswith('\\'):
 # a line which continues w/the next physical line
 logical_line.append(stripped[:-1])
 else:
 # a line which does not continue, end of logical line
 logical_line.append(line)
 yield joiner(logical_line)
 logical_line = []
 if logical_line:
 # end of sequence implies end of last logical line
 yield joiner(logical_line)
if _ _name_ _=='_ _main_ _':
 text = 'some\\\n', 'lines\\\n', 'get\n', 'joined\\\n', 'up\n'
 for line in text:
 print 'P:', repr(line)
 for line in logical_lines(text, ' '.join):
 print 'L:', repr(line)

When run as a main script, this code emits:

<c>P: 'some\\\n'
P: 'lines\\\n'
P: 'get\n'
P: 'joined\\\n'
P: 'up\n'
L: 'some lines get\n'
L: 'joined up\n'</c>

Discussion

This problem is about sequence-bunching, just like the previous Recipe 19.10. It is therefore not
surprising that this recipe, like the previous, is a generator (with an internal structure quite
similar to the one in the "other" recipe): today, in Python, sequences are often processed most
simply and effectively by means of generators.

In this recipe, the generator can encompass just a small amount of generality without
introducing extra complexity. Determining whether a line is a continuation line, and of how to
proceed when it is, is slightly too idiosyncratic to generalize in a simple and transparent way. I
have therefore chosen to code that functionality inline, in the body of the logical_lines generator,
rather than "factoring it out" into separate callables. Remember, generality is good, but simplicity
is even more important. However, I have kept the simple and transparent generality obtained by
passing the joiner function as an argument, and the snippet of code under the if _ _name_ _=
='_ _main_ _' test demonstrates how we may want to use that generality, for example, to join

continuation lines with a space rather than with an empty string.

If you are certain that the file you're processing is sufficiently small to fit comfortably in your
computer's memory, with room to spare for processing, and you don't need the feature (offered
in the version of logical_lines shown in the "Solution") of ignoring whitespace to the right of a
terminating \\, a solution using a plain function rather than a generator is simpler than the one

shown in this recipe's Solution:

def logical_lines(physical_lines, joiner=''.join, separator=''):
 return joiner(physical_lines).replace('\\\n', separator).splitlines(True)

In this variant, we join all of the physical lines into one long string, then we replace the
"canceled" line ends (line ends immediately preceded by a backslash) with nothing (or any other
separator we're requested to use), and finally split the resulting long string back into lines
(keeping the line endsthat's what the true argument to method splitlines is for). This

approach is a very different one from that suggested in this recipe but possibly worthwhile, if
physical_lines is small enough that you can afford the memory for it. I prefer the "Solution"'s
approach because giving semantic significance to trailing whitespace is a poor user interface
design choice.

See Also

Recipe 19.10; Perl Cookbook recipe 8.1; Chapter 1 for general issues about handling text;
Chapter 2 for general issues about handling files.

Recipe 19.12. Iterating on a Stream of Data Blocks as a
Stream of Lines

Credit: Scott David Daniels, Peter Cogolo

Problem

You want to loop over all lines of a stream, but the stream arrives as a sequence of data blocks
of arbitrary size (e.g., from a network socket).

Solution

We need to code a generator that gets blocks and yields lines:

def ilines(source_iterable, eol='\r\n', out_eol='\n'):
 tail = ''
 for block in source_iterable:
 pieces = (tail+block).split(eol)
 tail = pieces.pop()
 for line in pieces:
 yield line + out_eol
 if tail:
 yield tail
if _ _name_ _ == '_ _main_ _':
 s = 'one\r\ntwo\r,\nthree,four,five\r\n,six,\r\nseven\r\nlast'.split(',')
 for line in ilines(s): print repr(line)

When run as a main script, this code emits:

'one\n'
'two\n'
'threefourfive\n'
'six\n'
'seven\n'
'last'

Discussion

Many data sources produce their data in fits and startssockets, RSS feeds, the results of
expanding compressed text, and (at its heart) most I/O. The data often doesn't arrive at
convenient boundaries, but you nevertheless want to consume it in logical units. For text, the
logical units are often lines.

This recipe shows generator ilines, a simple way to consume a source_iterable, which yields
blocks of data, producing an iterator that yields lines of text instead. ilines is vastly simplified by
assuming that lines are separated, on input, by a known end-of-line (EOL) stringby default
'\r\n', which is the standard EOL marker in most Internet protocols. ilines' implementation is
further simplified by taking a high-level approach, relying on the split method of Python's string

types to do most of the work. This basically leaves ilines with the single task of "buffering" data

between successive input blocks, on all occasions when a line starts in one block and ends in a
following one (including those occasions in which block boundaries "split" an EOL marker).

ilines easily accomplishes its buffering task through its local variable tail, which starts empty

and, at each leg of the loop, holds that which followed the latest EOL marker seen so far. When
tail+block ends with an EOL marker, the expression (tail+block).split(eol) produces a list

whose last item is an empty string (''), exactly what we need; otherwise, the last item of the list
is that which followed the last EOL, which again is exactly what we need.

Python's built-in file objects are even more powerful than ilines, since they support a universal
newlines reading mode (mode 'U'), which is able to recognize and deal with all common EOL

markers (even when different markers are mixed within the same stream!). However, ilines is
more flexible, since you may apply it in many situations where you have a stream of arbitrary
blocks of text and want to process it as a stream of lines, with a known EOL marker.

See Also

Library Reference and Python in a Nutshell docs about built-in file objects; Chapter 2 for

general issues about handling files.

Recipe 19.13. Fetching Large Record Sets from a
Database with a Generator

Credit: Christopher Prinos

Problem

You want to fetch a result set from a database (using the Python DB API) and easily iterate over
each record in the result set. However, you don't want to use the DB cursor's method fetchall:

it could consume a lot of memory and would force you to wait until the whole result set comes
back before you can start iterating.

Solution

A generator is the ideal solution to this problem:

def fetchsome(cursor, arraysize=1000):
 ''' A generator that simplifies the use of fetchmany '''
 while True:
 results = cursor.fetchmany(arraysize)
 if not results: break
 for result in results:
 yield result

Discussion

In applications that use the Python DB API, you often see code that goes somewhat like (where
cursor is a DB API cursor object):

cursor.execute('select * from HUGE_TABLE')
for result in cursor.fetchall():
 doSomethingWith(result)

This simple approach is "just" fine, as long as fetchall returns a small result set, but it does not

work very well if the query result is very large. A large result set can take a long time to return.
Also, cursor.fetchall() needs to allocate enough memory to store the entire result set in

memory at once. Further, with this simple approach, the doSomethingWith function isn't going to
get called until the entire query's result finishes coming over from the database to our program.

An alternative approach is to rely on the cursor.fetchone method:

for result in iter(cursor.fetchone, None):
 doSomethingWith(result)

However, this alternative approach does not allow the database to optimize the fetching process:
most databases can exhibit better efficiency when returning multiple records for a single query,
rather than returning records one at a time as fetchone requires.

To let your applications obtain greater efficiency than fetchone allows, without the risks of
unbounded memory consumption and delay connected to the use of fetchall, Python's DB API's
cursors also have a fetchmany method. However, the direct use of fetchmany makes your
iterations somewhat more complicated than the simple for statements such as those just shown.

For example:

while True:
 results = cursor.fetchmany(1000)
 if not results: break
 for result in results:
 doSomethingWith(result)

Python's generators are a great way to encapsulate complicated iteration logic so that application
code can just about always loop with simple for statements. With this recipe's fetchsome
generator, you get the same efficiencies and safeguards as with the native use of the fetchmany

method in the preceding snippet but with the same crystal-clear simplicity as in the snippets that
used either fetchall or fetchone, namely:

for result in fetchsome(cursor):
 doSomethingWith(result)

By default, fetchsome fetches up to 1,000 records at a time, but you can change that number,
depending on your requirements. Optimal values can depend on schema, database type, choice
of Python DB API module. In general, you're best advised to experiment with a few different
values in your specific settings if you need to optimize this specific aspect. (Such
experimentation is often a good idea for any optimization task.)

This recipe is clearly an example of a more general case: a subsequence unbuncher generator
that you can use when you have a sequence of subsequences (each subsequence being obtained
through some call, and the end of the whole sequence being indicated by an empty
subsequence) and want to flatten it into a simple, linear sequence of items. You can think of this
unbunching task as the reverse of the sequence-bunching tasks covered earlier in Recipe 19.10
and Recipe 19.11, or as a simpler variant of the sequence-flattening task covered in Recipe 4.6.
A generator for unbunching might be:

def unbunch(next_subseq, *args):
 ''' un-bunch a sequence of subsequences into a linear sequence '''
 while True:
 subseq = next_subseq(*args)
 if not subseq: break
 for item in subseq:
 yield item

As you can see, the structure of unbunch is basically identical to that of the recipe's fetchsome.
Usage would also be just about the same:

for result in unbunch(cursor.fetchmany, 1000):
 doSomethingWith(result)

However, while it is important and instructive to consider this kind of generalization, when you're
writing applications you're often better off using specific generators that directly deal with your
application's specific needs. In this case, for example, calling fetchsome(cursor) is more
obvious and direct than calling unbunch(cursor.fetchmany, 1000), and fetchsome usefully
hides the usage of fetchmany as well as the specific choice of 1,000 as the subsequence size to

fetch at each step.

See Also

Recipe 19.10; Recipe 19.11; Recipe 4.6; Python's DB API is covered in Chapter 7 and in Python
in a Nutshell.

Recipe 19.14. Merging Sorted Sequences

Credit: Sébastien Keim, Raymond Hettinger, Danny Yoo

Problem

You have several sorted sequences (iterables) and need to iterate on the overall sorted sequence
that results from "merging" these sequences.

Solution

A generator is clearly the right tool for the job, in the general case (i.e., when you might not
have enough memory to comfortably hold all the sequences). Implementing the generator is
made easy by the standard library module heapq, which supplies functions to implement the

"heap" approach to priority queues:

import heapq
def merge(*subsequences):
 # prepare a priority queue whose items are pairs of the form
 # (current-value, iterator), one each per (non-empty) subsequence
 heap = []
 for subseq in subsequences:
 iterator = iter(subseq)
 for current_value in iterator:
 # subseq is not empty, therefore add this subseq's pair
 # (current-value, iterator) to the list
 heap.append((current_value, iterator))
 break
 # make the priority queue into a heap
 heapq.heapify(heap)
 while heap:
 # get and yield lowest current value (and corresponding iterator)
 current_value, iterator = heap[0]
 yield current_value
 for current_value in iterator:
 # subseq is not finished, therefore add this subseq's pair
 # (current-value, iterator) back into the priority queue
 heapq.heapreplace(heap, (current_value, iterator))
 break
 else:
 # subseq has been exhausted, therefore remove it from the queue
 heapq.heappop(heap)

Discussion

The need for "merging" sorted subsequences into a larger sorted sequence is reasonably
frequent. If the amount of data is small enough to fit entirely in memory without problems, then
the best approach is to build a list by concatenating all subsequences, then sort the list:

def smallmerge(*subsequences):

 result = []
 for subseq in subsequences: result.extend(subseq)
 result.sort()
 return result

The sort method of list objects is based on a sophisticated natural merge algorithm, able to take

advantage of existing sorted subsequences in the list you're sorting; therefore, this approach is
quite fast, as well as simple (and general, since this approach's correctness does not depend on
all subsequences being already sorted). If you can choose this approach, it has many other
advantages. For example, smallmerge works fine even if one of the subsequences isn't perfectly
sorted to start with; and in Python 2.4, you may add a generic keywords argument **kwds to
smallmerge and pass it right along to the result.sort() step, to achieve the flexibility afforded
in that version by the cmp=, key=, and reverse= arguments to list's sort method.

However, you sometimes deal with large sequences, which might not comfortably fit in memory
all at the same time (e.g., your sequences might come from files on disk, or be computed on the
fly, item by item, by other generators). When this happens, this recipe's generator will enable
you to perform your sequence merging while consuming a very moderate amount of extra
memory (dependent only on the number of subsequences, not on the number of items in the
subsequences).

The recipe's implementation uses a classic sequence-merging algorithm based on a priority
queue, which, in turn, lets it take advantage of the useful heapq module in the Python Standard
Library. heapq offers functions to implement a priority queue through the data structure known

as a heap.

A heap is any list H such that, for any valid index 0<=i<len(H), H[i]<=H[2*i+1], and

H[i]<=H[2*i+2] (if 2*i+1 and 2*i+2 are also valid indices into H). This heap property is fast to
establish on an arbitrary list (function heapify does that) and very fast to re-establish after
altering or removing the smallest item (and functions heapreplace and heappop do that). The

smallest item is always H[0] (it's easy to see that the "heap" property implies this), and being

able to find the smallest item instantly makes heaps an excellent implementation of priority
queues.

In this recipe, we use as items in the "heap" a "pair" (i.e., two-items tuple) for each subsequence
that is not yet exhausted (i.e., each subsequence through which we have not yet fully iterated).
As its first item, each pair has the "current item" in the corresponding subsequence and, as its
second item, an iterator over that subsequence. At each iteration step, we yield the smallest
"current item", then we advance the corresponding iterator and re-establish the "heap" property;
when an iterator is exhausted, we remove the corresponding pair from the "heap" (so that,
clearly, we're finished when the "heap" is emptied). Note the idiom that we use to advance an
iterator by one step, dealing with the possibility that the iterator is exhausted:

for current_value in iterator:
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

 ...use pair (current_value, iterator)...
 # we break at once as we only wanted the first item of iterator
 break
else:
 # if we get here the break did not execute, so the iterator
 # was empty (exhausted)

 # deal with the case of iterator being exhausted...

We use this idiom twice in the recipe, although in the first of the two uses we do not need the
else clause since we can simply ignore iterators that are immediately exhausted (they

correspond to empty subsequences, which can be ignored for merging purposes).

If you find this idiom confusing or tricky (because it uses a for statement whose body

immediately breaksi.e., a statement that looks like a loop but is not really a loop because it

never executes more than once!), you may prefer a different approach:

try:
 current_value = iterator.next()
except StopIteration:
 # if we get here the iterator was empty (exhausted)

 # deal with the case of iterator being exhausted...
else:
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

 # use pair (current_value, iterator)...

I slightly prefer the idiom using for; in my view, it gains in clarity by putting the normal case

(i.e., an unexhausted iterator) first and the rare case (an exhausted iterator) later. A variant of
the try/except idiom that has the same property is:

try:
 current_value = iterator.next()
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

 # use pair (current_value, iterator)...
except StopIteration:
 # if we get here the iterator was empty (exhausted)

 # deal with the case of iterator being exhausted...

However, I somewhat dislike this variant (even though it's quite OK for the two specific uses of
this recipe) because it crucially depends on the code indicated as "use pair" never raising a
StopIteration exception. As a general principle, it's best to use a TRy clause's body that is as

small as possiblejust the smallest fragment that you do expect to possibly raise the exception
you're catching in the following handlers (except clauses), not the follow-on code that must
execute only if the exception was not raised. The follow-on code goes in the else clause of the
try statement, in properly defensive Pythonic coding style. In any case, as long as you are fully

aware of the tradeoffs in clarity and defensiveness between these three roughly equivalent
idioms, you're welcome to develop your own distinctive Pythonic style and, in particular, to
choose freely among them!

If you do choose either of the idioms that explicitly call iterator.next(), a further

"refinement" (i.e., a tiny optimization) is to keep as the second item of each pair, rather than the
iterator object, the bound-method iterator.next directly, ready for you to call. This

optimization is not really tricky at all (it is quite common in Python to stash away bound methods
and other such callables), but it may nevertheless result in code of somewhat lower readability.
Once again, the choice is up to you!

See Also

Chapter 5 for general issues about sorting and Recipe 5.7 and Recipe 5.8 about heapq
specifically; Library Reference and Python in a Nutshell documentation on module heapq and lists'
sort method; Robert Sedgewick, Algorithms (Addison-Wesley) (heaps are covered starting on p.

178 in the 2d edition); heapq.py in the Python sources contains an interesting discussion of
heaps.

Recipe 19.15. Generating Permutations, Combinations,
and Selections

Credit: Ulrich Hoffmann, Guy Argo, Danny Yoo, Carl Bray, Doug Zongker, Gagan Saksena, Robin
Houston, Michael Davies

Problem

You need to iterate on the permutations, combinations, or selections of a sequence. The
fundamental rules of combinatorial arithmetic indicate that the length of these derived sequences
are very large even if the starting sequence is of moderate size: for example, there are over 6
billion permutations of a sequence of length 13. So you definitely do not want to compute (and
keep in memory) all items in a derived sequence before you start iterating,

Solution

Generators enable you to compute needed objects one by one as you iterate on them. The loop
inevitably takes a long time if there are vast numbers of such objects and you really need to
examine each one. But at least you do not waste memory storing all of them at once:

def _combinators(_handle, items, n):
 ''' factored-out common structure of all following combinators '''
 if n==0:
 yield []
 return
 for i, item in enumerate(items):
 this_one = [item]
 for cc in _combinators(_handle, _handle(items, i), n-1):
 yield this_one + cc
def combinations(items, n):
 ''' take n distinct items, order matters '''
 def skipIthItem(items, i):
 return items[:i] + items[i+1:]
 return _combinators(skipIthItem, items, n)
def uniqueCombinations(items, n):
 ''' take n distinct items, order is irrelevant '''
 def afterIthItem(items, i):
 return items[i+1:]
 return _combinators(afterIthItem, items, n)
def selections(items, n):
 ''' take n (not necessarily distinct) items, order matters '''
 def keepAllItems(items, i):
 return items
 return _combinators(keepAllItems, items, n)
def permutations(items):
 ''' take all items, order matters '''
 return combinations(items, len(items))
if _ _name_ _=="_ _main_ _":
 print "Permutations of 'bar'"
 print map(''.join, permutations('bar'))
emits ['bar', 'bra', 'abr', 'arb', 'rba', 'rab']

 print "Combinations of 2 letters from 'bar'"
 print map(''.join, combinations('bar', 2))
emits ['ba', 'br', 'ab', 'ar', 'rb', 'ra']
 print "Unique Combinations of 2 letters from 'bar'"
 print map(''.join, uniqueCombinations('bar', 2))
emits ['ba', 'br', 'ar']
 print "Selections of 2 letters from 'bar'"
 print map(''.join, selections('bar', 2))
emits ['bb', 'ba', 'br', 'ab', 'aa', 'ar', 'rb', 'ra', 'rr']

Discussion

The generators in this recipe accept any sequence as the items argument and always yield lists
of length n, where n is the second argument to the generator (permutations accepts only one

argument, and n is by definition equal to len(items)).

You can modify the recipe so the generators yield tuples (or instances of another sequence type),
instead of lists, by changing two lines of code in _combinators. The yield [] must become
yield () (more generally, this statement must yield the empty sequence of any sequence type

you wish to use), and name this_one must be bound to the Singleton sequence of any sequence
type you wish to use. For example, to yield tuples, change the statement that assigns to name
this_one into:

 this_one = items[i],

(A subtle, often-forgotten point of Python syntax is that the comma identifies the right side of the
assignment as a tuple. Placing parentheses around the right-hand side would be both insufficient
and superfluous.)

Another way to modify this recipe is to have the generators yield sequences of the same type as
argument items. (As long as this type is indeed a sequence: specifically, it must support slicing,
as well as the use of the plus sign, +, for concatenation). If that is what you want, change the
yield of the empty sequence into:

 yield items[:0]

and change the assignment to name this_one into:

 this_one = items[i:i+1]

The definition of distinct items for this recipe's purposes is: "items that occur at different indices
in the input sequence." If your input sequence has duplicates (i.e., the same item occurring at
multiple indices), none of the functions in this recipe will care about removing them: rather, all
functions will treat the duplicates as "distinct items" for all purposes.

See Also

Recipe 19.16 for another combinatorics building block; Recipe 18.1 and Recipe 18.2.

Recipe 19.16. Generating the Partitions of an Integer

Credit: David Eppstein, Jan Van lent, George Yoshida

Problem

You want to generate all partitions of a given positive integer, that is, all the ways in which that
integer can be represented as a sum of positive integers (for example, the partitions of 4 are
1+1+1+1, 1+1+2, 2+2, 1+3, and 4).

Solution

A recursive generator offers the simplest approach for this task, as is often the case with
combinatorial computations:

def partitions(n):
 # base case of the recursion: zero is the sum of the empty tuple
 if n == 0:
 yield ()
 return
 # modify the partitions of n-1 to form the partitions of n
 for p in partitions(n-1):
 yield (1,) + p
 if p and (len(p) < 2 or p[1] > p[0]):
 yield (p[0] + 1,) + p[1:]

Discussion

Partitions, like permutations, combinations and selections, are among the most basic primitives
of combinatorial arithmetic. In other words, such constructs, besides being useful on their own,
are building blocks for generating other kinds of combinatorial objects.

This recipe works along classic recursive lines. If you have a partition of a positive integer n, you

can reduce it to a partition of n-1 in a canonical way by subtracting one from the smallest item in

the partition. For example, you can build partitions of 5 from partitions of 6 by such
transformation steps as 1+2+3 => 2+3, 2+4 => 1+4, and so forth. The algorithm in this recipe

reverses the process: for each partition p of n-1, the algorithm finds the partitions of n that

would be reduced to p by this canonical transformation step. Therefore, each partition p of n is

output exactly once, at the step when we are considering the partition p1 of n-1 to which p

canonically reduces.

Be warned: the number of partitions of n grows fast when n itself grows. Ramanujan's upper

bound for the number of partitions of a positive integer k is:

 int(exp(pi*sqrt(2.0*k/3.0))/(4.0*k*sqrt(3.0)))

(where names exp, pi and sqrt are all taken from module math, in Python terms). For example,

the number 200 has about 4,100 billion partitions.

This recipe generates each partition as a tuple of integers in ascending order. If it's handier for
your application to deal with partitions as tuples of integers in descending order, you need only
change the body of the for loop in the recipe to:

 yield p + (1,)
 if p and (len(p) < 2 or p[-2] > p[-1]):
 yield p[:-1] + (p[-1] + 1,)

Creating a new tuple per item in the output stream, as this recipe does, may result in
performance issues, if you're dealing with a very large n. One way to optimize this aspect would

be to return lists instead of tuples, and specifically to return the same list object at each step
(with the descending-order modification, and append and pop operations rather than list

concatenation):

def partfast(n):
 # base case of the recursion: zero is the sum of the empty tuple
 if n == 0:
 yield []
 return
 # modify the partitions of n-1 to form the partitions of n
 for p in partfast(n-1):
 p.append(1)
 yield p
 p.pop()
 if p and (len(p) < 2 or p[-2] > p[-1]):
 p[-1] += 1
 yield p

This optimization is not worth the bothernot so much because of the modest extra complication
in partfast's own code, but mostly because yielding the same list object at each step means that
code using partfast must take precautions. For example, list(partfast(4)) is a potentially
surprising list of five empty sublists, while list(partitions(4)) is exactly the expected list of
the five partitions of the number 4.

On the "other" hand, a different approach using an auxiliary parameter can actually produce a
simplification for the descending-order case:

def partitions_descending(num, lt=num):
 if not num: yield ()
 for i in xrange(min(num, lt), 0, -1):
 for parts in partitions_descending(num-i, i):
 yield (i,) + parts

This code is simpler than the variant given in the recipe and could be made even clearer in
Python 2.4 by changing its outer loop into:

 for i in reversed(xrange(1, min(num, lt)-1)):

See Also

Recipe 19.15 for more combinatorics building blocks.

Recipe 19.17. Duplicating an Iterator

Credit: Heiko Wundram, Raymond Hettinger

Problem

You have an iterator (or other iterable) object x, and need to iterate twice over x's sequence of

values.

Solution

In Python 2.4, solving this problem is the job of function tee in the standard library module
itertools:

import itertools
x1, x2 = itertools.tee(x)
you can now iterate on x1 and x2 separately

In Python 2.3, you can code tee yourself:

import itertools
def tee(iterable):
 def yield_with_cache(next, cache={ }):
 pop = cache.pop
 for i in itertools.count():
 try:
 yield pop(i)
 except KeyError:
 cache[i] = next()
 yield cache[i]
 it = iter(iterable)
 return yield_with_cache(it.next), yield_with_cache(it.next)

Discussion

The need to iterate repeatedly over the same sequence of values is a reasonably common one. If
you know that the sequence comes from a list, or some other container that intrinsically lets you
iterate over its items repeatedly, then you simply perform the iteration twice. However,
sometimes your sequence may come from a generator, a sequential file (which might, e.g., wrap
a stream of data coming from a network socketdata that you can read only once), or some other
iterator that is not intrinsically re-iterable. Even then, in some cases, the best approach is the
simplest onefirst save the data into a list in memory, then repeatedly iterate over that list:

saved_x = list(x)
for item in saved_x: do_something(item)
for item in saved_x: do_something_else(item)

The simple approach of first saving all data from the iterator into a list is not feasible for an

infinite sequence x, and may not be optimal if x is very large and your separate iterations over it

never get far out-of-step from each other. In these cases, the tee function shown in this recipe
can help. For example, say that the items of x are either numbers or operators (the latter being
represented as strings such as '+', '*', etc.). Whenever you encounter an operator, you must

output the result of applying that operator to all numbers immediately preceding it (since the last
operator). Using tee, you could code:

def is_operator(item):
 return isinstance(item, str)
def operate(x):
 x1, x2 = tee(iter(x))
 while True:
 for item in x1:
 if is_operator(item): break
 else:
 # we get here when there are no more operators in the input
 # stream, thus the operate function is entirely done
 return
 if item == '+':
 total = 0
 for item in x2:
 if is_operator(item): break
 total += item
 yield total
 elif item == '*':
 total = 1
 for item in x2:
 if is_operator(item): break
 total *= item
 yield total

This kind of "look-ahead" usage is pretty typical of many of the common use cases of tee. Even

in this case, you might choose the alternative approach of accumulating items in a list:

def operate_with_auxiliary_list(x):
 aux = []
 for item in x:
 if is_operator(item):
 if item == '+':
 yield sum(aux)
 elif item == '*':
 total = 1
 for item in aux:
 total *= item
 yield total
 aux = []
 else:
 aux.append(item)

Having tee available lets you freely choose between these different styles of look-ahead

processing.

Function itertools.tee as implemented in Python 2.4 is faster and more general than the pure

Python version given in this recipe for version 2.3 usage. However, the pure Python version is
quite instructive and deserves study for the sake of the techniques it demonstrates, even if
you're lucky enough to be using Python 2.4 and therefore don't need to use this pure Python
version of tee.

In the pure Python version of tee, the nested generator yield_with_cache makes use of the fact
(which some consider a "wart" in Python but is actually quite useful) that the default values of
arguments get computed just once, at the time the def statement executes. Thus, both calls to
the nested generator in the return statement of tee implicitly share the same initially empty
dict as the value of the cache argument.

itertools.count returns non-negative integers, 0 and up, one at a time. yield_with_cache uses
each of these integers as a key into the cache dictionary. The call to pop(i) (the argument of the
yield statement in the try clause) simultaneously returns and removes the entry corresponding

to key i, if that entry was presentthat is, in this case, if the "other" instance of the generator had

already reached that point in the iteration (and cached the item for our benefit). Otherwise, the
except clause executes, computes the item (by calling the object bound to name next, which in
this case is the next bound method of an iterator over the iterable object, which tee is
duplicating), and caches the item (for the "other" instance's future benefit) before yielding it.

So, in practice, cache is being used as a FIFO queue. Indeed, were it not for the fact that we
don't need a pure-Python tee in Python 2.4, we could code an equivalent implementation of it in
Python 2.4 using the new type deque in standard library module collections:

import collections
def tee_just_an_example(iterable):
 def yield_with_cache(it, cache=collections.deque):
 while True:
 if cache:
 yield cache.popleft()
 else:
 result = it.next()
 cache.append(result)
 yield result
 it = iter(iterable)
 return yield_with_cache(it), yield_with_cache(it)

This latest version is meant purely as an illustrative example, and therefore, it's simplified by not
using any of the bound-method extraction idioms shown in the version in the "Solution" (which is
intended for "production" use in Python 2.3).

Once you've called tee on an iterator, you should no longer use the original iterator anywhere
else; otherwise, the iterator could advance without the knowledge of the tee-generated objects,

and those objects would then "get out of sync" with the original. Be warned that tee requires
auxiliary storage that is proportional to how much the two tee-generated objects get "apart"
from each other in their separate iterations. In general, if one iterator is going to walk over most
or all of the data from the original before the "other" one starts advancing, you should consider
using list instead of tee. Both of these caveats apply to the itertools.tee function of Python

2.4 just as well as they apply to the pure Python versions of tee presented in this recipe. One
more caveat: again both for the versions in this recipe, and the itertools.tee function in

Python 2.4, there is no guarantee of thread safety: to access the tee'd iterators from different
threads, you need to guard those iterators with a single lock!

See Also

The itertools module is part of the Python Standard Library and is documented in the Library

Reference portion of Python's online documentation; Recipe 19.2 shows how to turn an iterator
into a list.

Recipe 19.18. Looking Ahead into an Iterator

Credit: Steven Bethard, Peter Otten

Problem

You are using an iterator for some task such as parsing, which requires you to be able to "look
ahead" at the next item the iterator is going to yield, without disturbing the iterator state.

Solution

The best solution is to wrap your original iterator into a suitable class, such as the following one
(Python 2.4-only):

import collections
class peekable(object):
 """ An iterator that supports a peek operation. Example usage:
 >>> p = peekable(range(4))
 >>> p.peek()
 0
 >>> p.next(1)
 [0]
 >>> p.peek(3)
 [1, 2, 3]
 >>> p.next(2)
 [1, 2]
 >>> p.peek(2)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.peek(1)
 [3]
 >>> p.next(2)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.next()
 3
 """
 def _ _init_ _(self, iterable):
 self._iterable = iter(iterable)
 self._cache = collections.deque()
 def _ _iter_ _(self):
 return self
 def _fillcache(self, n):
 if n is None:
 n = 1
 while len(self._cache) < n:
 self._cache.append(self._iterable.next())
 def next(self, n=None):
 self._fillcache(n)
 if n is None:

 result = self._cache.popleft()
 else:
 result = [self._cache.popleft() for i in range(n)]
 return result
 def peek(self, n=None):
 self._fillcache(n)
 if n is None:
 result = self._cache[0]
 else:
 result = [self._cache[i] for i in range(n)]
 return result

Discussion

Many iterator-related tasks, such as parsing, require the ability to "peek ahead" (once or a few
times) into the sequence of items that an iterator is yielding, in a way that does not alter the
iterator's observable state. One approach is to use the new Python 2.4 function iterator.tee to

get two independent copies of the iterator, one to be advanced for peeking purposes and the
"other" one to be used as the "main" iterator. It's actually handier to wrap the incoming iterator
once for all, at the start, with the class peekable presented in this recipe; afterwards, a peek
method, which is safe and effective, can be counted on. A little added sweetener is the ability to
call peek (and, as long as we're at it, the standard next method too) with a specific number

argument n, to request a list of the next n items of the iterator (without disturbing the iterator's

state when you call peek(n), with iterator state advancement when you call next(n)just like for

normal calls without arguments to the same methods).

The obvious idea used in this recipe for implementing peekable is to have it keep a cache of
peeked-ahead arguments. Since the cache must grow at the tail and get consumed from the end,
a natural choice is to make the cache a collections.deque, a new type introduced in Python
2.4. However, if you need this code to run under version 2.3 as well, make self._cache a list
insteadyou only need to change method next's body a little bit, making it:

 if n is None:
 result = self._cache.pop(0)
 else:
 result, self_cache = self._cache[:n], self._cache[n:]

As long as you're caching only one or just a few items of lookahead at a time, performance won't
suffer much by making self._cache a list rather than a deque.

An interesting characteristic of the peekable class presented in this recipe is that, if you request
too many items from the iterator, you get a StopIteration exception but that does not throw

away the last few values of the iterator. For example, if p is an instance of peekable with just
three items left, when you call p.next(5), you get a StopIteration exception. You can later call
p.next(3) and get the list of the last three items.

A subtle point is that the n argument to methods peek and next defaults to None, not to 1. This
gives you two distinct ways to peek at a single item: the default way, calling p.peek(), just
gives you that item, while calling p.peek(1) gives you a list with that single item in it. This
behavior is quite consistent with the way p.peek behaves when called with different arguments:

any call p.peek(n) with any non-negative integer n returns a list with n items (or raises

StopIteration if p has fewer than n items left). This approach even supports calls such as
p.next(0), which in practice always returns an empty list [] without advancing the iterator's
state. Typically, you just call p.peek(), without arguments, and get one look-ahead item

without problems.

As an implementation detail, note that the docstring of the class peekable presented in this

recipe is essentially made up of examples of use with expected results. Besides being faster to
write, and arguably to read for an experienced Pythonista, this style of docstring is perfect for
use with the Python Standard Library module doctest.

See Also

collections.deque and doctest in the Python Library Reference (for Python 2.4).

Recipe 19.19. Simplifying Queue-Consumer Threads

Credit: Jimmy Retzlaff, Paul Moore

Problem

You want to code a consumer thread which gets work requests off a queue one at a time,
processes each work request, and eventually stops, and you want to code it in the simplest
possible way.

Solution

This task is an excellent use case for the good old Sentinel idiom. The producer thread, when it's
done putting actual work requests on the queue, must finally put a sentinel value, that is, a value
that is different from any possible work request. Schematically, the producer thread will do
something like:

for input_item in stuff_needing_work:
 work_request = make_work_request(input_item)
 queue.put(work_request)
queue.put(sentinel)

where sentinel must be a "well-known value", different from any work_request object that

might be put on the queue in the first phase.

The consumer thread can then exploit the built-in function iter:

for work_request in iter(queue.get, sentinel):
 process_work_request(work_request)
cleanup_and_terminate()

Discussion

Were it not for built-in function iter, the consumer thread would have to use a slightly less

simple and elegant structure, such as:

while True:
 work_request = queue.get()
 if work_request == sentinel:
 break
 process_work_request(work_request)
cleanup_and_terminate()

However, the Sentinel idiom is so useful and important that Python directly supports it with built-
in function iter. When you call iter with just one argument, that argument must be an iterable
object, and iter returns an iterator for it. But when you call iter with two arguments, the first

one must be a callable which can be called without arguments, and the second one is an
arbitrary value known as the sentinel. In the two-argument case, iter repeatedly calls the first
argument. As long as each call returns a value !=sentinel, that value becomes an item in the

iteration; as soon as a call returns a value ==sentinel, the iteration stops.

If you had to code this yourself as a generator, you could write:

def iter_sentinel(a_callable, the_sentinel):
 while True:
 item = a_callable()
 if item == the_sentinel: break
 yield item

But the point of this recipe is that you don't have to code even this simple generator: just use
the power that Python gives you as part of the functionality of the built-in function iter!

Incidentally, Python offers many ways to make sentinel valuesmeaning values that compare
equal only to themselves. The simplest and most direct way, and therefore the one I suggest you
always use for this specific purpose, is:

sentinel = object()

See Also

Documentation for iter in the Library Reference and Python in a Nutshell.

Recipe 19.20. Running an Iterator in Another Thread

Credit: Garth Kidd

Problem

You want to run the code of a generator (or any other iterator) in its own separate thread, so
that the iterator's code won't block your main thread even if it contains time-consuming
operations, such as blocking calls to the operating system.

Solution

This task is best tackled by wrapping a subclass of threading.Thread around the iterator:

import sys, threading
class SpawnedGenerator(threading.Thread):
 def _ _init_ _(self, iterable, queueSize=0):
 threading.Thread._ _init_ _(self)
 self.iterable = iterable
 self.queueSize = queueSize
 def stop(self):
 "Ask iteration to stop as soon as feasible"
 self.stopRequested = True
 def run(self):
 "Thread.start runs this code in another, new thread"
 put = self.queue.put
 try:
 next = iter(self.iterable).next
 while True:
 # report each result, propagate StopIteration
 put((False, next())
 if self.stopRequested:
 raise StopIteration
 except:
 # report any exception back to main thread and finish
 put((True, sys.exc_info()))
 def execute(self):
 "Yield the results that the "other", new thread is obtaining"
 self.queue = Queue.Queue(self.queueSize)
 get = self.queue.get
 self.stopRequested = False
 self.start() # executes self.run() in other thread
 while True:
 iterationDone, item = get()
 if iterationDone: break
 yield item
 # propagate any exception (unless it's just a StopIteration)
 exc_type, exc_value, traceback = item
 if not isinstance(exc_type, StopIteration):
 raise exc_type, exc_value, traceback
 def _ _iter_ _(self):
 "Return an iterator for our executed self"

 return iter(self.execute())

Discussion

Generators (and other iterators) are a great way to package the logic that controls an iteration
and obtains the next value to feed into a loop's body. The code of a generator (and, equivalently,
the code of the next method of another kind of iterator) usually runs in the same thread as the

code that's iterating on it. The "calling" code can therefore block, each time around the loop,
while waiting for the generator's code to do its job.

Sometimes, you want to use a generator (or other kind of iterator) in a "non-blocking" way,
which means you need to arrange things so that the generator's body runs in a new, separate
thread. This recipe shows a class which supplies exactly this kind of functionality: this recipe's
SpawnedGenerator class subclasses threading.Thread and uses Thread's start/run mechanism

to ensure the generator's body always executes in a separate thread from that of the calling
code.

All communication between the two threads occurs through a single instance of the Queue.Queue
class (held through a local-variable bound method in each of the communicating methods: the
generator named execute that runs in the calling thread and the method named run that runs in
a separate thread). The "calling" code may also call method stop on the SpawnedGenerator
instance to ask for the iteration to stop as soon as feasible. Optionally, you may also specify a
queue size when you instantiate SpawnedGenerator, if you want to limit how far ahead of the
calling thread the spawned thread can get.

The main use case for this recipe is for wrapping iterators that make blocking calls to the
operating system (e.g., walking a directory tree), when you need to use such iterators in an
application where the "main" thread cannot be allowed to block for a long time. The typical
examples of applications whose main thread must not block are event-driven applications, a
description that applies to applications with a GUI, as well as to networking applications built on
asynchronous frameworks, such as Twisted or the asyncore module of the Python Standard

Library.

See Also

Library Reference and Python in a Nutshell docs about modules threading and asyncore;

Twisted is at http://www.twistedmatrix.com/; Chapter 9 for general issues about threading;
Chapter 11 for general issues about user interfaces; Chapter 13 and Chapter 14 for general
issues about network and web programming, including asynchronous approaches to such
programs.

http://www.twistedmatrix.com/

Recipe 19.21. Computing a Summary Report with
itertools.groupby

Credit: Paul Moore, Raymond Hettinger

Problem

You have a list of data grouped by a key value, typically read from a spreadsheet or the like, and
want to generate a summary of that information for reporting purposes.

Solution

The itertools.groupby function introduced in Python 2.4 helps with this task:

from itertools import groupby
from operator import itemgetter
def summary(data, key=itemgetter(0), field=itemgetter(1)):
 """ Summarise the given data (a sequence of rows), grouped by the
 given key (default: the first item of each row), giving totals
 of the given field (default: the second item of each row).
 The key and field arguments should be functions which, given a
 data record, return the relevant value.
 """
 for k, group in groupby(data, key):
 yield k, sum(field(row) for row in group)
if _ _name_ _ == "_ _main_ _":
 # Example: given a sequence of sales data for city within region,
 # _sorted on region_, produce a sales report by region
 sales = [('Scotland', 'Edinburgh', 20000),
 ('Scotland', 'Glasgow', 12500),
 ('Wales', 'Cardiff', 29700),
 ('Wales', 'Bangor', 12800),
 ('England', 'London', 90000),
 ('England', 'Manchester', 45600),
 ('England', 'Liverpool', 29700)]
 for region, total in summary(sales, field=itemgetter(2)):
 print "%10s: %d" % (region, total)

Discussion

In many situations, data is available in tabular form, with the information naturally grouped by a
subset of the data values (e.g., recordsets obtained from database queries and data read from
spreadsheetstypically with the csv module of the Python Standard Library). It is often useful to

be able to produce summaries of the detail data.

The new groupby function (added in Python 2.4 to the itertools module of the Python Standard

Library) is designed exactly for the purpose of handling such grouped data. It takes as
arguments an iterator, whose items are to be thought of as records, along with a function to
extract the key value from each record. itertools.groupby yields each distinct key from the

iterator in turn, each along with a new iterator that runs through the data values associated with

that key.

The groupby function is often used to generate summary totals for a dataset. The summary

function defined in this recipe shows one simple way of doing this. For a summary report, two
extraction functions are required: one function to extract the key, which is the function that you
pass to the groupby function, and another function to extract the values to be summarized. The
recipe uses another innovation of Python 2.4 for these purposes: the operator.itemgetter

higher-order function: called with an index i as its argument. itemgetter produces a function f

such that f(x) extracts the ith item from x, operating just like an indexing x[i].

The input records must be sorted by the given key; if you're uncertain about that condition, you
can use groubpy(sorted(data, key=key), key) to ensure it, exploiting the built-in function
sorted, also new in Python 2.4. It's quite convenient that the same key-extraction function can
be passed to both sorted and groupby in this idiom. The groupby function itself does not sort its

input, which gains extra flexibility that may come in handyalthough most of the time you will
want to use groupby only on sorted data. See Recipe 19.10 for a case in which it's quite handy to
use groupby on nonsorted data.

For example, if the sales data was in a CSV file sales.csv, the usage example in the recipe's if _
name _ == `_ _main_ _' section might become:

 import csv
 sales = sorted(cvs.reader(open('sales.csv', 'rb')),
 key=itemgetter(1))
 for region, total in summary(sales, field=itemgetter(2)):
 print "%10s: %d" % (region, total)

Overall, this recipe provides a vivid illustration of how the new Python 2.4 features work well
together: in addition to the groupby function, the operator.itemgetter used to provide field
extraction functions, and the potential use of the built-in function sorted, the recipe also uses a
generator expression as the argument to the sum built-in function. If you need to implement this

recipe's functionality in Python 2.3, you can start by implementing your own approximate version
of groupby, for example as follows:

class groupby(dict):
 def _ _init_ _(self, seq, key):
 for value in seq:
 k = key(value)
 self.setdefault(k, []).append(value)
 _ _iter_ _ = dict.iteritems

This version doesn't include all the features of Python 2.4's groupby, but it's very simple and

may be sufficient for your purposes. Similarly, you can write your own simplified versions of
functions itemgetter and sorted, such as:

def itemgetter(i):
 def getter(x): return x[i]
 return getter
def sorted(seq, key):
 aux = [(key(x), i, x) for i, x in enumerate(seq)]
 aux.sort()
 return [x for k, i, x in aux]

As for the generator expression, you can simply use a list comprehension in its placejust call
sum([field(row) for row in group]) where the recipe has the same call without the
additional square brackets, []. Each of these substitutions will cost a little performance, but,

overall, you can build the same functionality in Python 2.3 as you can in version 2.4the latter just
is slicker, simpler, faster, neater!

See Also

itertools.groupy, operator.itemgetter, sorted, and csv in the Library Reference (for Python

2.4).

Chapter 20. Descriptors, Decorators,and
Metaclasses

Introduction

Recipe 20.1. Getting Fresh Default Values at Each Function Call

Recipe 20.2. Coding Properties as Nested Functions

Recipe 20.3. Aliasing Attribute Values

Recipe 20.4. Caching Attribute Values

Recipe 20.5. Using One Method as Accessorfor Multiple Attributes

Recipe 20.6. Adding Functionality to a Class by Wrapping a Method

Recipe 20.7. Adding Functionality to a Class by Enriching All Methods

Recipe 20.8. Adding a Method to a Class Instance at Runtime

Recipe 20.9. Checking Whether Interfaces Are Implemented

Recipe 20.10. Using _ _new_ _ and _ _init_ _ Appropriately in Custom Metaclasses

Recipe 20.11. Allowing Chaining of Mutating List Methods

Recipe 20.12. Using Cooperative Super calls with Terser Syntax

Recipe 20.13. Initializing Instance Attributes Without Using _ _init_ _

Recipe 20.14. Automatic Initialization of Instance Attributes

Recipe 20.15. Upgrading Class Instances Automatically on reload

Recipe 20.16. Binding Constants at Compile Time

Recipe 20.17. Solving Metaclass Conflicts

Introduction

Credit: Raymond Hettinger

I had my power drill slung low on my toolbelt and I said, "Go ahead, honey.Break
something."

Tim Allen

on the challenges of figuring out whatto do with a new set of general-purpose tools

This chapter is last because it deals with issues that look or sound difficult, although they really
aren't. It is about Python's power tools.

Though easy to use, the power tools can be considered advanced for several reasons. First, the
need for them rarely arises in simple programs. Second, most involve introspection, wrapping,
and forwarding techniques available only in a dynamic language like Python. Third, the tools
seem advanced because when you learn them, you also develop a deep understanding of how
Python works internally.

Last, as with the power tools in your garage, it is easy to get carried away and create a gory
mess. Accordingly, to ward off small children, the tools were given scary names such as
descriptors, decorators, and metaclasses (such names as pangalaticgarglebaster were
considered a bit too long).

Because these tools are so general purpose, it can be a challenge to figure out what to do with
them. Rather that resorting to Tim Allen's tactics, study the recipes in this chapter: they will give
you all the practice you need. And, as Tim Peters once pointed out, it can be difficult to devise
new uses from scratch, but when a real problem demands a power tool, you'll know it when you
need it.

Descriptors

The concept of descriptors is easy enough. Whenever an attribute is looked up, an action takes
place. By default, the action is a get, set, or delete. However, someday you'll be working on an
application with some subtle need and wish that more complex actions could be programmed.
Perhaps you would like to create a log entry every time a certain attribute is accessed. Perhaps
you would like to redirect a method lookup to another method. The solution is to write a function
with the needed action and then specify that it be run whenever the attribute is accessed. An
object with such functions is called a descriptor (just to make it sound harder than it really is).

While the concept of a descriptor is straightforward, there seems to be no limit to what can be
done with them. Descriptors underlie Python's implementation of methods, bound methods,
super, property, classmethod, and staticmethod. Learning about the various applications of

descriptors is key to mastering the language.

The recipes in this chapter show how to put descriptors straight to work. However, if you want
the full details behind the descriptor protocol or want to know exactly how descriptors are used
to implement super, property, and the like, see my paper on the subject at

http://users.rcn.com/python/download/Descriptor.htm.

Decorators

http://users.rcn.com/python/download/Descriptor.htm

Decorators are even simpler than descriptors. Writing myfunc=wrapper(myfunc) was the

common way to modify or log something about another function, which took place somewhere
after myfunc was defined. Starting with Python 2.4, we now write @wrapper just before the def

statement that performs the definition of myfunc. Common examples include @staticmethod and
@classmethod. Unlike Java declarations, these wrappers are higher-order functions that can

modify the original function or take some other action. Their uses are limitless. Some ideas that
have been advanced include @make_constants for bytecode optimization, @atexit to register a
function to be run before Python exits, @synchronized to automatically add mutual exclusion
locking to a function or method, and @log to create a log entry every time a function is called.

Such wrapper functions are called decorators (not an especially intimidating name but cryptic
enough to ward off evil spirits).

Metaclasses

The concept of a metaclass sounds strange only because it is so familiar. Whenever you write a
class definition, a mechanism uses the name, bases, and class dictionary to create a class object.
For old-style classes that mechanism is types.ClassType. For new-style classes, the mechanism
is just type. The former implements the familiar actions of a classic class, including attribute
lookup and showing the name of the class when repr is called. The latter adds a few bells and
whistles including support for _ _slots_ _ and _ _getattribute_ _. If only that mechanism

were programmable, what you could do in Python would be limitless. Well, the mechanism is
programmable, and, of course, it has an intimidating name, metaclasses.

The recipes in this chapter show that writing metaclasses can be straightforward. Most
metaclasses subclass type and simply extend or override the desired behavior. Some are as
simple as altering the class dictionary and then forwarding the arguments to type to finish the

job.

For instance, say that you would like to automatically generate getter methods for all the private
variables listed in slots. Just define a metaclass M that looks up _ _slots_ _ in the mapping,

scans for variable names starting with an underscore, creates an accessor method for each, and
adds the new methods to the class dictionary:

class M(type):
 def _ _new_ _(cls, name, bases, classdict):
 for attr in classdict.get('_ _slots_ _', ()):
 if attr.startswith('_'):
 def getter(self, attr=attr):
 return getattr(self, attr)
 # 2.4 only: getter._ _name_ _ = 'get' + attr[1:]
 classdict['get' + attr[1:]] = getter
 return type._ _new_ _(cls, name, bases, classdict)

Apply the new metaclass to every class where you want automatically created accessor
functions:

class Point(object):
 _ _metaclass_ _ = M
 _ _slots_ _ = ['_x', '_y']

If you now print dir(Point), you will see the two accessor methods as if you had written them

out the long way:

class Point(object):
 _ _slots_ _ = ['_x', '_y']
 def getx(self):
 return self._x

 def gety(self):
 return self._y

In both cases, among the output of the print statement, you will see the names 'getx' and
'gety'.

Recipe 20.1. Getting Fresh Default Values at Each
Function Call

Credit: Sean Ross

Problem

Python computes the default values for a function's optional arguments just once, when the
function's def statement executes. However, for some of your functions, you'd like to ensure

that the default values are fresh ones (i.e., new and independent copies) each time a function
gets called.

Solution

A Python 2.4 decorator offers an elegant solution, and, with a slightly less terse syntax, it's a
solution you can apply in version 2.3 too:

import copy
def freshdefaults(f):
 "a decorator to wrap f and keep its default values fresh between calls"
 fdefaults = f.func_defaults
 def refresher(*args, **kwds):
 f.func_defaults = deepcopy(fdefaults)
 return f(*args, **kwds)
 # in 2.4, only: refresher._ _name_ _ = f._ _name_ _
 return refresher
usage as a decorator, in python 2.4:
@freshdefaults
def packitem(item, pkg=[]):
 pkg.append(item)
 return pkg
usage in python 2.3: after the function definition, explicitly assign:
f = freshdefaults(f)

Discussion

A function's default values are evaluated once, and only once, at the time the function is defined
(i.e., when the def statement executes). Beginning Python programmers are sometimes

surprised by this fact; they try to use mutable default values and yet expect that the values will
somehow be regenerated afresh each time they're needed.

Recommended Python practice is to not use mutable default values. Instead, you should use
idioms such as:

def packitem(item, pkg=None):
 if pkg is None:
 pkg = []
 pkg.append(item)
 return pkg

The freshdefaults decorator presented in this recipe provides another way to accomplish the
same task. It eliminates the need to set as your default value anything but the value you intend
that optional argument to have by default. In particular, you don't have to use None as the
default value, rather than (say) square brackets [], as you do in the recommended idiom.

freshdefaults also removes the need to test each argument against the stand-in value (e.g.,
None) before assigning the intended value: this could be an important simplification in your code,

where your functions need to have several optional arguments with mutable default values, as
long as all of those default values can be deep-copied.

On the other hand, the implementation of freshdefaults needs several reasonably advanced
concepts: decorators, closures, function attributes, and deep copying. All in all, this
implementation is no doubt more difficult to explain to beginning Python programmers than the
recommended idiom. Therefore, this recipe cannot really be recommended to beginners.
However, advanced Pythonistas may find it useful.

Setting the Name of a Function

If an outer function just returns an inner function (often a closure), the name of the returned
function object is fixed, which can be confusing when the name is shown during introspection
or debugging:

>>> def make_adder(addend):
... def adder(augend): return augend+addend
... return adder
...
>>> plus100 = make_adder(100)
>>> plus_23 = make_adder(23)
>>> print plus100(1000), plus_23(1000)
1100 1023
>>> print plus100, plus_23
<function adder at 0x386530> <function adder at 0x3825f0>

As you see, the functionality of plus100 and plus_23 is correct (they add 100 and 23 to their
argument, respectively). Confusingly, however, their names are both 'adder', even though
they are different functions. In Python 2.4, you can solve the problem by setting the _
name _ attribute of the inner function right after the end of the inner function's def
statement, and before the return statement from the outer function:

def make_adder(addend):
 def adder(augend):
 return augend+addend
 adder._ _name_ _ = 'add_%s' % (addend,)
 return adder

With this change in make_adder, the previous snippet would now produce more useful
output:

>>> print plus100, plus_23
<function add_100 at 0x386530> <function add_23 at 0x3825f0>

Unfortunately, in Python 2.3, you cannot assign to the _ _name_ _ attribute of a function

object; in that release, the attribute is read-only. If you want to obtain the same effect in
Python 2.3, you must follow a more roundabout route, making and returning a new function
object that differs from the other only in name:

import new
def make_adder(addend):
 def adder(augend): return augend+addend
 return new.function(adder.func_code, adder.func_globals, 'add_%s' % (addend,),
 adder.func_defaults, adder.func_closure)

See Also

Python Language Reference documentation about decorators; Python Language Reference and
Python in a Nutshell documentation about closures and function attributes; Python Library
Reference and Python in a Nutshell documentation about standard library module copy,
specifically function deepcopy.

Recipe 20.2. Coding Properties as Nested Functions

Credit: Sean Ross, David Niergarth, Holger Krekel

Problem

You want to code properties without cluttering up your class namespace with accessor methods
that are not called directly.

Solution

Functions nested within another function are quite handy for this task:

import math
class Rectangle(object):
 def _ _init_ _(self, x, y):
 self.y = x
 self.y = y
 def area():
 doc = "Area of the rectangle"
 def fget(self):
 return self.x * self.y
 def fset(self, value):
 ratio = math.sqrt((1.0*value)/self.area)
 self.x *= ratio
 self.y *= ratio
 return locals()
 area = property(**area())

Discussion

The standard idiom used to create a property starts with defining in the class body several
accessor methods (e.g., getter, setter, deleter), often with boilerplate-like method names such
as setThis, getThat, or delTheother. More often than not, such accessors are not required except
inside the property itself; sometimes (rarely) programmers even remember to del them to clean
up the class namespace after building the property instance.

The idiom suggested in this recipe avoids cluttering up the class namespace at all. Just write in
the class body a function with the same name you intend to give to the property. Inside that
function, define appropriate nested functions, which must be named exactly fget, fset, fdel,
and assign an appropriate docstring named doc. Have the outer function return a dictionary
whose entries have exactly those names, and no others: returning the locals() dictionary will

work, as long as your outer function has no other local variables at that point. If you do have
other names in addition to the fixed ones, you might want to code your return statement, for

example, as:

return sub_dict(locals(), 'doc fget fset fdel'.split())

using the sub_dict function shown in Recipe 4.13. Any other way to subset a dictionary will work
just as well.

Finally, the call to property uses the ** notation to expand a mapping into named arguments,

and the assignment rebinds the name to the resulting property instance, so that the class
namespace is left pristine.

As you can see from the example in this recipe's Solution, you don't have to define all of the four
key names: you may, and should, omit some of them if a particular property forbids the
corresponding operation. In particular, the area function in the solution does not define fdel

because the resulting area attribute must be not deletable.

In Python 2.4, you can define a simple custom decorator to make this recipe's suggested idiom
even spiffier:

def nested_property(c):
 return property(**c())

With this little helper at hand, you can replace the explicit assignment of the property to the
attribute name with the decorator syntax:

 @nested_property
 def area():
 doc = "Area of the rectangle"
 def fget(self):

 the area function remains the same

In Python 2.4, having a decorator line @deco right before a def name statement is equivalent to

having, right after the def statement's body, an assignment name = deco(name). A mere

difference of syntax sugar, but it's useful: anybody reading the source code of the class knows
up front that the function or method you're def'ing is meant to get decorated in a certain way,

not to get used exactly as coded. With the Python 2.3 syntax, somebody reading in haste might
possibly miss the assignment statement that comes after the def.

Returning locals works only if your outer function has no other local variables besides fget,
fset, fdel, and doc. An alternative idiom to avoid this restriction is to move the call to property

inside the outer function:

def area():
 what_is_area = "Area of the rectangle"
 def compute_area(self):
 return self.x * self.y
 def scale_both_sides(self, value):
 ratio = math.sqrt((1.0*value)/self.area)
 self.x *= ratio
 self.y *= ratio
 return property(compute_area, scale_both_sides, None, what_is_area)
area = area()

As you see, this alternative idiom enables us to give different names to the getter and setter
accessors, which is not a big deal because, as mentioned previously, accessors are often named
in uninformative ways such as getThis and setThat anyway. But, if your opinion differs, you may
prefer this idiom, or its slight variant based on having the outer function return a tuple of values
for property's argument rather than a dict. In other words, the variant obtained by changing

the last two statements of this latest snippet to:

 return compute_area, scale_both_sides, None, what_is_area
area = property(*area())

See Also

Library Reference and Python in a Nutshell docs on built-in functions property and locals.

Recipe 20.3. Aliasing Attribute Values

Credit: Denis S. Otkidach

Problem

You want to use an attribute name as an alias for another one, either just as a default value
(when the attribute was not explicitly set), or with full setting and deleting abilities too.

Solution

Custom descriptors are the right tools for this task:

class DefaultAlias(object):
 ''' unless explicitly assigned, this attribute aliases to another. '''
 def _ _init_ _(self, name):
 self.name = name
 def _ _get_ _(self, inst, cls):
 if inst is None:
 # attribute accessed on class, return `self' descriptor
 return self
 return getattr(inst, self.name)
class Alias(DefaultAlias):
 ''' this attribute unconditionally aliases to another. '''
 def _ _set_ _(self, inst, value):
 setattr(inst, self.name, value)
 def _ _delete_ _(self, inst):
 delattr(inst, self.name)

Discussion

Your class instances sometimes have attributes whose default value must be the same as the
current value of other attributes but may be set and deleted independently. For such
requirements, custom descriptor DefaultAlias, as presented in this recipe's Solution, is just the
ticket. Here is a toy example:

class Book(object):
 def _ _init_ _(self, title, shortTitle=None):
 self.title = title
 if shortTitle is not None:
 self.shortTitle = shortTitle
 shortTitle = DefaultAlias('title')
b = Book('The Life and Opinions of Tristram Shandy, Gent.')
print b.shortTitle
emits: The Life and Opinions of Tristram Shandy, Gent.
b.shortTitle = "Tristram Shandy"
print b.shortTitle
emits: Tristram Shandy
del b.shortTitle
print b.shortTitle

emits: The Life and Opinions of Tristram Shandy, Gent.

DefaultAlias is not what is technically known as a data descriptor class because it has no _ _set_
_ method. In practice, this means that, when we assign a value to an instance attribute whose

name is defined in the class as a DefaultAlias, the instance records the attribute normally, and
the instance attribute shadows the class attribute. This is exactly what's happening in this
snippet after we explicitly assign to b.shortTitlewhen we del b.shortTitle, we remove the per-

instance attribute, uncovering the per-class one again.

Custom descriptor class Alias is a simple variant of class DefaultAlias, easily obtained by
inheritance. Alias aliases one attribute to another, not just upon accesses to the attribute's value
(as DefaultAlias would do), but also upon all operations of value setting and deletion. It easily
achieves this by being a "data descriptor" class, which means that it does have a _ _set_ _

method. Therefore, any assignment to an instance attribute whose name is defined in the class
as an Alias gets intercepted by Alias' _ _set_ _ method. (Alias also defines a _ _delete_ _

method, to obtain exactly the same effect upon attribute deletion.)

Alias can be quite useful when you want to evolve a class, which you made publicly available in a
previous version, to use more appropriate names for methods and other attributes, while still
keeping the old names available for backwards compatibility. For this specific use, you may even
want a version that emits a warning when the old name is used:

import warnings
class OldAlias(Alias):
 def _warn(self):
 warnings.warn('use %r, not %r' % (self.name, self.oldname),
 DeprecationWarning, stacklevel=3)
 def _ _init_ _(self, name, oldname):
 super(OldAlias, self)._ _init_ _(name)
 self.oldname = oldname
 def _ _get_ _(self, inst, cls):
 self._warn()
 return super(OldAlias, self)._ _get_ _(inst, cls)
 def _ _set_ _(self, inst, value):
 self._warn()
 return super(OldAlias, self)._ _set_ _(inst, value)
 def _ _delete_ _(self, inst):
 self._warn()
 return super(OldAlias, self)._ _delete_ _(inst)

Here is a toy example of using OldAlias:

class NiceClass(object):
 def _ _init_ _(self, name):
 self.nice_new_name = name
 bad_old_name = OldAlias('nice_new_name', 'bad_old_name')

Old code using this class may still refer to the instance attribute as bad_old_name, preserving
backwards compatibility; when that happens, though, a warning message is presented about the
deprecation, encouraging the old code's author to upgrade the code to use nice_new_name
instead. The normal mechanisms of the warnings module of the Python Standard Library ensure

that, by default, such warnings are output only once per occurrence and per run of a program,
not repeatedly. For example, the snippet:

x = NiceClass(23)
for y in range(4):
 print x.bad_old_name
 x.bad_old_name += 100

emits:

xxx.py:64: DeprecationWarning: use 'nice_new_name', not 'bad_old_name'
 print x.bad_old_name
23
xxx.py:65: DeprecationWarning: use 'nice_new_name', not 'bad_old_name'
 x.bad_old_name += 100
123
223
323

The warning is printed once per line using the bad old name, not repeated again and again as the
for loop iterates.

See Also

Custom descriptors are best documented on Raymond Hettinger's web page:
http://users.rcn.com/python/download/Descriptor.htm; Library Reference and Python in a
Nutshell docs about the warnings module.

http://users.rcn.com/python/download/Descriptor.htm

Recipe 20.4. Caching Attribute Values

Credit: Denis S. Otkidach

Problem

You want to be able to compute attribute values, either per instance or per class, on demand,
with automatic caching.

Solution

Custom descriptors are the right tools for this task:

class CachedAttribute(object):
 ''' Computes attribute value and caches it in the instance. '''
 def _ _init_ _(self, method, name=None):
 # record the unbound-method and the name
 self.method = method
 self.name = name or method._ _name_ _
 def _ _get_ _(self, inst, cls):
 if inst is None:
 # instance attribute accessed on class, return self
 return self
 # compute, cache and return the instance's attribute value
 result = self.method(inst)
 setattr(inst, self.name, result)
 return result
class CachedClassAttribute(CachedAttribute):
 ''' Computes attribute value and caches it in the class. '''
 def _ _get_ _(self, inst, cls):
 # just delegate to CachedAttribute, with 'cls' as ``instance''
 return super(CachedClassAttribute, self)._ _get_ _(cls, cls)

Discussion

If your class instances have attributes that must be computed on demand but don't generally
change after they're first computed, custom descriptor CachedAttribute as presented in this
recipe is just the ticket. Here is a toy example of use (with Python 2.4 syntax):

class MyObject(object):
 def _ _init_ _(self, n):
 self.n = n
 @CachedAttribute
 def square(self):
 return self.n * self.n
m = MyObject(23)
print vars(m) # 'square' not there yet
emits: {'n': 23}
print m.square # ...so it gets computed
emits: 529

print vars(m) # 'square' IS there now
emits: {'square': 529, 'n': 23}
del m.square # flushing the cache
print vars(m) # 'square' removed
emits: {'n': 23}
m.n = 42
print vars(m)
emits: {'n': 42} # still no 'square'
print m.square # ...so gets recomputed
emits: 1764
print vars(m) # 'square' IS there again
emits: {'square': 1764, 'n': 23}

As you see, after the first access to m.square, the square attribute is cached in instance m, so it

will not get recomputed for that instance. If you need to flush the cache, for example, to change
m.n, so that m.square will get recomputed if it is ever accessed again, just del m.square.

Remember, attributes can be removed in Python! To use this code in Python 2.3, remove the
decorator syntax @CachedAttribute and insert instead an assignment square =
CachedAttribute(square) after the end of the def statement for method square.

Custom descriptor CachedClassAttribute is just a simple variant of CachedAttribute, easily
obtained by inheritance: it computes the value by calling a method on the class rather than the
instance, and it caches the result on the class, too. This may help when all instances of the class
need to see the same cached value. CachedClassAttribute is mostly meant for cases in which you
do not need to flush the cache because its _ _get_ _ method usually wipes away the instance

descriptor itself:

class MyClass(object):
 class_attr = 23
 @CachedClassAttribute
 def square(cls):
 return cls.class_attr * cls.class_attr
x = MyClass()
y = MyClass()
print x.square
emits: 529
print y.square
emits: 529
del MyClass.square
print x.square # raises an AttributeError exception

However, when you do need a cached class attribute with the ability to occasionally flush it, you
can still get it with a little trick. To implement this snippet so it works as intended, just add the
statement:

class MyClass(MyClass): pass

right after the end of the class MyClass statement and before generating any instance of

MyClass. Now, two class objects are named MyClass, a hidden "base" one that always holds the
custom descriptor instance, and an outer "subclass" one that is used for everything else,
including making instances and holding the cached value if any. Whether this trick is a
reasonable one or whether it's too cute and clever for its own good, is a judgment call you can
make for yourself! Perhaps it would be clearer to name the base class MyClassBase and use
class MyClass(MyClassBase), rather than use the same name for both classes; the mechanism

would work in exactly the same fashion, since it is not dependent on the names of classes.

See Also

Custom descriptors are best documented at Raymond Hettinger's web page:
http://users.rcn.com/python/download/Descriptor.htm.

http://users.rcn.com/python/download/Descriptor.htm

Recipe 20.5. Using One Method as Accessorfor Multiple
Attributes

Credit: Raymond Hettinger

Problem

Python's built-in property descriptor is quite handy but only as long as you want to use a

separate method as the accessor of each attribute you make into a property. In certain cases,
you prefer to use the same method to access several different attributes, and property does not

support that mode of operation.

Solution

We need to code our own custom descriptor, which gets the attribute name in _ _init_ _, saves

it, and passes it on to the accessors. For convenience, we also provide useful defaults for the
various accessors. You can still pass in None explicitly if you want to forbid certain kinds of access

but the default is to allow it freely.

class CommonProperty(object):
 def _ _init_ _(self, realname, fget=getattr, fset=setattr, fdel=delattr,
 doc=None):
 self.realname = realname
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
 self._ _doc_ _ = doc or ""
 def _ _get_ _(self, obj, objtype=None):
 if obj is None:
 return self
 if self.fget is None:
 raise AttributeError, "can't get attribute"
 return self.fget(obj, self.realname)
 def _ _set_ _(self, obj, value):
 if self.fset is None:
 raise AttributeError, "can't set attribute"
 self.fset(obj, self.realname, value)
 def _ _delete_ _(self, obj):
 if self.fdel is None:
 raise AttributeError, "can't delete attribute"
 self.fdel(obj, self.realname, value)

Discussion

Here is a simple example of using this CommonProperty custom descriptor:

class Rectangle(object):
 def _ _init_ _(self, x, y):
 self._x = x # don't trigger _setSide prematurely
 self.y = y # now trigger it, so area gets computed

 def _setSide(self, attrname, value):
 setattr(self, attrname, value)
 self.area = self._x * self._y
 x = CommonProperty('_x', fset=_setSide, fdel=None)
 y = CommonProperty('_y', fset=_setSide, fdel=None)

The idea of this Rectangle class is that attributes x and y may be freely accessed but never
deleted; when either of these attributes is set, the area attribute must be recomputed at once.
You could alternatively recompute the area on the fly each time it's accessed, using a simple
property for the purpose; however, if area is accessed often and sides are changed rarely, the

architecture of this simple example obviously can be preferable.

In this simple example of CommonProperty use, we just need to be careful on the very first
attribute setting in _ _init_ _: if we carelessly used self.x = x, that would trigger the call to

_setSide, which, in turn, would try to use self._y before the _y attribute is set.

Another issue worthy of mention is that if any one or more of the fget, fset, or fdel arguments

to CommonProperty is defaulted, the realname argument must be different from the attribute
name to which the CommonProperty instance is assigned; otherwise, unbounded recursion would
occur on trying the corresponding operation (in practice, you'd get a RecursionLimitExceeded

exception).

See Also

The Library Reference and Python in a Nutshell documentation for built-ins getattr, setattr,
delattr, and property.

Recipe 20.6. Adding Functionality to a Class by
Wrapping a Method

Credit: Ken Seehof, Holger Krekel

Problem

You need to add functionality to an existing class, without changing the source code for that
class, and inheritance is not applicable (since it would make a new class, rather than changing
the existing one). Specifically, you need to enrich a method of the class, adding some extra
functionality "around" that of the existing method.

Solution

Adding completely new methods (and other attributes) to an existing class object is quite
simple, since the built-in function setattr does essentially all the work. We need to "decorate"

an existing method to add to its functionality. To achieve this, we can build the new replacement
method as a closure. The best architecture is to define general-purpose wrapper and unwrapper
functions, such as:

import inspect
def wrapfunc(obj, name, processor, avoid_doublewrap=True):
 """ patch obj.<name> so that calling it actually calls, instead,
 processor(original_callable, *args, **kwargs)
 """
 # get the callable at obj.<name>
 call = getattr(obj, name)
 # optionally avoid multiple identical wrappings
 if avoid_doublewrap and getattr(call, 'processor', None) is processor:
 return
 # get underlying function (if any), and anyway def the wrapper closure
 original_callable = getattr(call, 'im_func', call)
 def wrappedfunc(*args, **kwargs):
 return processor(original_callable, *args, **kwargs)
 # set attributes, for future unwrapping and to avoid double-wrapping
 wrappedfunc.original = call
 wrappedfunc.processor = processor
 # 2.4 only: wrappedfunc._ _name_ _ = getattr(call, '_ _name_ _', name)
 # rewrap staticmethod and classmethod specifically (iff obj is a class)
 if inspect.isclass(obj):
 if hasattr(call, 'im_self'):
 if call.im_self:
 wrappedfunc = classmethod(wrappedfunc)
 else:
 wrappedfunc = staticmethod(wrappedfunc)
 # finally, install the wrapper closure as requested
 setattr(obj, name, wrappedfunc)
def unwrapfunc(obj, name):
 ''' undo the effects of wrapfunc(obj, name, processor) '''
 setattr(obj, name, getattr(obj, name).original)

This approach to wrapping is carefully coded to work just as well on ordinary functions (when obj
is a module) as on methods of all kinds (e.g., bound methods, when obj is an instance; unbound,
class, and static methods, when obj is a class). This method doesn't work when obj is a built-in
type, though, because built-ins are immutable.

For example, suppose we want to have "tracing" prints of all that happens whenever a particular
method is called. Using the general-purpose wrapfunc function just shown, we could code:

def tracing_processor(original_callable, *args, **kwargs):
 r_name = getattr(original_callable, '_ _name_ _', '<unknown>')
 r_args = map(repr, args)
 r_args.extend(['%s=%r' % x for x in kwargs.iteritems()])
 print "begin call to %s(%s)" % (r_name, ", ".join(r_args))
 try:
 result = call(*args, **kwargs)
 except:
 print "EXCEPTION in call to %s" %(r_name,)
 raise
 else:
 print "call to %s result: %r" %(r_name, result)
 return result
def add_tracing_prints_to_method(class_object, method_name):
 wrapfunc(class_object, method_name, tracing_processor)

Discussion

This recipe's task occurs fairly often when you're trying to modify the behavior of a standard or
third-party Python module, since editing the source of the module itself is undesirable. In
particular, this recipe can be handy for debugging, since the example function
add_tracing_prints_to_method presented in the "Solution" lets you see on standard output all
details of calls to a method you want to watch, without modifying the library module, and without
requiring interactive access to the Python session in which the calls occur.

You can also use this recipe's approach on a larger scale. For example, say that a library that you
imported has a long series of methods that return numeric error codes. You could wrap each of
them inside an enhanced wrapper method, which raises an exception when the error code from
the original method indicates an error condition. Again, a key issue is not having to modify the
library's own code. However, methodical application of wrappers when building a subclass is also
a way to avoid repetitious code (i.e., boilerplate). For example, Recipe 5.12 and Recipe 1.24
might be recoded to take advantage of the general wrapfunc presented in this recipe.

Particularly when "wrapping on a large scale", it is important to be able to "unwrap" methods
back to their normal state, which is why this recipe's Solution also includes an unwrapfunc
function. It may also be handy to avoid accidentally wrapping the same method in the same way
twice, which is why wrapfunc supports the optional parameter avoid_doublewrap, defaulting to
true, to avoid such double wrapping. (Unfortunately, classmethod and staticmethod do not

support per-instance attributes, so the avoidance of double wrapping, as well as the ability to
"unwrap", cannot be guaranteed in all cases.)

You can wrap the same method multiple times with different processors. However, unwrapping
must proceed last-in, first-out; as coded, this recipe does not support the ability to remove a
wrapper from "somewhere in the middle" of a chain of several wrappers. A related limitation of
this recipe as coded is that double wrapping is not detected when another unrelated wrapping
occurred in the meantime. (We don't even try to detect what we might call "deep double
wrapping.")

If you need "generalized unwrapping", you can extend unwrap_func to return the processor it
has removed; then you can obtain generalized unwrapping by unwrapping all the way, recording
a list of the processors that you removed, and then pruning that list of processors and

rewrapping. Similarly, generalized detection of "deep" double wrapping could be implemented
based on this same idea.

Another generalization, to fully support staticmethod and classmethod, is to use a global dict,

rather than per-instance attributes, for the original and processor values; functions, bound and
unbound methods, as well as class methods and static methods, can all be used as keys into
such a dictionary. Doing so obviates the issue with the inability to set per-instance attributes on
class methods and static methods. However, each of these generalizations can be somewhat
complicated, so we are not pursuing them further here.

Once you have coded some processors with the signature and semantics required by this recipe's
wrapfunc, you can also use such processors more directly (in cases where modifying the source
is OK) with a Python 2.4 decorator, as follows:

def processedby(processor):
 """ decorator to wrap the processor around a function. """
 def processedfunc(func):
 def wrappedfunc(*args, **kwargs):
 return processor(func, *args, **kwargs)
 return wrappedfunc
 return processedfunc

For example, to wrap this recipe's tracing_processor around a certain method at the time the
class statement executes, in Python 2.4, you can code:

class SomeClass(object):
 @processedby(tracing_processor)
 def amethod(self, s):
 return 'Hello, ' + s

See Also

Recipe 5.12 and Recipe 1.24 provide examples of the methodical application of wrappers to build
a subclass to avoid boilerplate; Library Reference and Python in a Nutshell docs on built-in
functions getattr and setattr and module inspect.

Recipe 20.7. Adding Functionality to a Class by
Enriching All Methods

Credit: Stephan Diehl, Robert E. Brewer

Problem

You need to add functionality to an existing class without changing the source code for that class.
Specifically, you need to enrich all methods of the class, adding some extra functionality
"around" that of the existing methods.

Solution

Recipe 20.6 previously showed a way to solve this task for one method by writing a closure that
builds and applies a wrapper, exemplified by function add_tracing_prints_to_method in that
recipe's Solution. This recipe generalizes that one, wrapping methods throughout a class or
hierarchy, directly or via a custom metaclass.

Module inspect lets you easily find all methods of an existing class, so you can systematically

wrap them all:

import inspect
def add_tracing_prints_to_all_methods(class_object):
 for method_name, v in inspect.getmembers(class_object, inspect.ismethod):
 add_tracing_prints_to_method(class_object, method_name)

If you need to ensure that such wrapping applies to all methods of all classes in a whole
hierarchy, the simplest way may be to insert a custom metaclass at the root of the hierarchy, so
that all classes in the hierarchy will get that same metaclass. This insertion does normally need a
minimum of "invasiveness"placing a single statement

 _ _metaclass_ _ = MetaTracer

in the body of that root class. Custom metaclass MetaTracer is, however, quite easy to write:

class MetaTracer(type):
 def _ _init_ _(cls, n, b, d):
 super(MetaTracer, cls)._ _init_ _(n, b, d)
 add_tracing_prints_to_all_methods(cls)

Even such minimal invasiveness sometimes is unacceptable, or you need a more dynamic way to
wrap all methods in a hierarchy. Then, as long as the root class of the hierarchy is new-style, you
can arrange to get function add_tracing_prints_to_all_methods dynamically called on all classes
in the hierarchy:

def add_tracing_prints_to_all_descendants(class_object):
 add_tracing_prints_to_all_methods(class_object)
 for s in class_object._ _subclasses_ _():
 add_tracing_prints_to_all_descendants(s)

The inverse function unwrapfunc, in Recipe 20.6, may also be similarly applied to all methods of
a class and all classes of a hierarchy.

Discussion

We could code just about all functionality of such a powerful function as
add_tracing_prints_to_all_descendants in the function's own body. However, it would not be a
great idea to bunch up such diverse functionality inside a single function. Instead, we carefully
split the functionality among the various separate functions presented in this recipe and
previously in Recipe 20.6. By this careful factorization, we obtain maximum reusability without
code duplication: we have separate functions to dynamically add and remove wrapping from a
single method, an entire class, and a whole hierarchy of classes; each of these functions
appropriately uses the simpler ones. And for cases in which we can afford a tiny amount of
"invasiveness" and want the convenience of automatically applying the wrapping to all methods
of classes descended from a certain root, we can use a tiny custom metaclass.

add_tracing_prints_to_all_descendants cannot apply to old-style classes. This limitation is
inherent in the old-style object model and is one of the several reasons you should always use
new-style classes in new code you write: classic classes exist only to ensure compatibility in
legacy programs. Besides the problem with classic classes, however, there's another issue with
the structure of add_tracing_prints_to_all_descendants: in cases of multiple inheritance, the
function will repeatedly visit some classes.

Since the method-wrapping function is carefully designed to avoid double wrapping, such
multiple visits are not a serious problem, costing just a little avoidable overhead, which is why
the function was acceptable for inclusion in the "Solution". In other cases in which we want to
operate on all descendants of a certain root class, however, multiple visits might be
unacceptable. Moreover, it is clearly not optimal to entwine the functionality of getting all
descendants with that of applying one particular operation to each of them. The best idea is
clearly to factor out the recursive structure into a generator, which can avoid duplicating visits
with the memo idiom:

def all_descendants(class_object, _memo=None):
 if _memo is None:
 _memo = { }
 elif class_object in _memo:
 return
 yield class_object
 for subclass in class_object._ _subclasses_ _():
 for descendant in all_descendants(subclass, _memo):
 yield descendant

Adding tracing prints to all descendants now simplifies to:

def add_tracing_prints_to_all_descendants(class_object):
 for c in all_descendants(class_object):
 add_tracing_prints_to_all_methods(c)

In Python, whenever you find yourself with an iteration structure of any complexity, or recursion,
it's always worthwhile to check whether it's feasible to factor out the iterative or recursive control
structure into a separate, reusable generator, so that all iterations of that form can become
simple for statements. Such separation of concerns can offer important simplifications and make

code more maintainable.

See Also

Recipe 20.6 for details on how each method gets wrapped; Library Reference and Python in a
Nutshell docs on module inspect and the _ _subclasses_ _ special method of new-style

classes.

Recipe 20.8. Adding a Method to a Class Instance at
Runtime

Credit: Moshe Zadka

Problem

During debugging, you want to identify certain specific instance objects so that print statements

display more information when applied to those specific objects.

Solution

The print statement implicitly calls the special method _ _str_ _ of the class of each object
you're printing. Therefore, to ensure that printing certain objects displays more information, we
need to give those objects new classes whose _ _str_ _ special methods are suitably modified.

For example:

def add_method_to_objects_class(object, method, name=None):
 if name is None:
 name = method.func_name
 class newclass(object._ _class_ _):
 pass
 setattr(newclass, name, method)
 object._ _class_ _ = newclass
import inspect
def _rich_str(self):
 pieces = []
 for name, value in inspect.getmembers(self):
 # don't display specials
 if name.startswith('_ _') and name.endswith('_ _'):
 continue
 # don't display the object's own methods
 if inspect.ismethod(value) and value.im_self is self:
 continue
 pieces.extend((name.ljust(15), '\t', str(value), '\n'))
 return ''.join(pieces)
def set_rich_str(obj, on=True):
 def isrich():
 return getattr(obj._ _class_ _._ _str_ _, 'im_func', None) is _rich_str
 if on:
 if not isrich():
 add_method_to_objects_class(obj, _rich_str, '_ _str_ _')
 assert isrich()
 else:
 if not isrich():
 return
 bases = obj._ _class_ _._ _bases_ _
 assert len(bases) == 1
 obj._ _class_ _ = bases[0]
 assert not isrich()

Discussion

Here is a sample use of this recipe's set_rich_str function, guarded in the usual way:

if _ _name_ _ == '_ _main_ _': # usual guard for example usage
 class Foo(object):
 def _ _init_ _(self, x=23, y=42):
 self.x, self.y = x, y
 f = Foo()
 print f
 # emits: <_ _main_ _.Foo object at 0x38f770>
 set_rich_str(f)
 print f
 # emits:
 # x 23
 # y 42
 set_rich_str(f, on=False)
 print f
 # emits: <_ _main_ _.Foo object at 0x38f770>

In old versions of Python (and in Python 2.3 and 2.4, for backwards compatibility on instances of
classic classes), intrinsic lookup of special methods (such as the intrinsic lookup for _ _str_ _ in
a print statement) started on the instance. In today's Python, in the new object model that is

recommended for all new code, the intrinsic lookup starts on the instance's class, bypassing
names set in the instance's own _ _dict_ _. This innovation has many advantages, but, at a

first superficial look, it may also seem to have one substantial disadvantage: namely, to make it
impossible to solve this recipe's Problem in the general case (i.e., for instances that might belong
to either classic or new-style classes).

Fortunately, that superficial impression is not correct, thanks to Python's power of introspection
and dynamism. This recipe's function add_method_to_objects_class shows how to change
special methods on a given object obj's class, without affecting other "sibling" objects (i.e., other

instances of the same class as obj's): very simply, start by changing the obj's classthat is, by
setting obj._ _class_ _ to a newly made class object (which inherits from the original class of

obj, so that anything we don't explicitly modify remains unchanged). Once you've done that, you

can then alter the newly made class object to your heart's contents.

Function _rich_str shows how you can use introspection to display a lot of information about a
specific instance. Specifically, we display every attribute of the instance that doesn't have a
special name (starting and ending with two underscores), except the instances' own bound
methods. Function set_rich_str shows how to set the _ _str_ _ special method of an instance's
class to either "rich" (the _rich_str function we just mentioned) or "normal" (the _ _str_ _
method the object's original class is coded to supply). To make the object's _ _str_ _ rich,
set_rich_str uses add_method_to_objects_class to set _ _str_ _ to _rich_str. When the object
goes back to "normal", set_rich_str sets the object's _ _class_ _ back to its original value

(which is preserved as the only base class when the object is set to use _rich_str).

See Also

Recipe 20.6 and Recipe 20.7 for other cases in which a class' methods are modified;
documentation on the inspect standard library module in the Library Reference.

Recipe 20.9. Checking Whether Interfaces Are
Implemented

Credit: Raymond Hettinger

Problem

You want to ensure that the classes you define implement the interfaces that they claim to
implement.

Solution

Python does not have a formal concept of "interface", but we can easily represent interfaces by
means of "skeleton" classes such as:

class IMinimalMapping(object):
 def _ _getitem_ _(self, key): pass
 def _ _setitem_ _(self, key, value): pass
 def _ _delitem_ _(self, key): pass
 def _ _contains_ _(self, key): pass
import UserDict
class IFullMapping(IMinimalMapping, UserDict.DictMixin):
 def keys(self): pass
class IMinimalSequence(object):
 def _ _len_ _(self): pass
 def _ _getitem_ _(self, index): pass
class ICallable(object):
 def _ _call_ _(self, *args): pass

We follow the natural convention that any class can represent an interface: the interface is the
set of methods and other attributes of the class. We can say that a class C implements an

interface i if C has all the methods and other attributes of i (and, possibly, additional ones).

We can now define a simple custom metaclass that checks whether classes implement all the
interfaces they claim to implement:

ensure we use the best available 'set' type with name 'set'
try:
 set
except NameError:
 from sets import Set as set
a custom exception class that we raise to signal violations
class InterfaceOmission(TypeError):
 pass
class MetaInterfaceChecker(type):
 ''' the interface-checking custom metaclass '''
 def _ _init_ _(cls, classname, bases, classdict):
 super(MetaInterfaceChecker, cls)._ _init_ _(classname, bases, classdict)
 cls_defines = set(dir(cls))
 for interface in cls._ _implements_ _:
 itf_requires = set(dir(interface))

 if not itf_requires.issubset(cls_defines):
 raise InterfaceOmission, list(itf_requires - cls_defines)

Any class that uses MetaInterfaceChecker as its metaclass must expose a class attribute _
implements _, an iterable whose items are the interfaces the class claims to implement. The

metaclass checks the claim, raising an InterfaceOmission exception if the claim is false.

Discussion

Here's an example class using the MetaInterfaceChecker custom metaclass:

class Skidoo(object):
 ''' a mapping which claims to contain all keys, each with a value
 of 23; item setting and deletion are no-ops; you can also call
 an instance with arbitrary positional args, result is 23. '''
 _ _metaclass_ _ = MetaInterfaceChecker
 _ _implements_ _ = IMinimalMapping, ICallable
 def _ _getitem_ _(self, key): return 23
 def _ _setitem_ _(self, key, value): pass
 def _ _delitem_ _(self, key): pass
 def _ _contains_ _(self, key): return True
 def _ _call_ _(self, *args): return 23
sk = Skidoo()

Any code dealing with an instance of such a class can choose to check whether it can rely on
certain interfaces:

def use(sk):
 if IMinimalMapping in sk._ _implements_ _:

 ...code using 'sk[...]' and/or 'x in sk'...

You can, if you want, provide much fancier and more thorough checks, for example by using
functions from standard library module inspect to check that the attributes being exposed and

required are methods with compatible signatures. However, this simple recipe does show how to
automate the simplest kind of checks for interface compliance.

See Also

Library Reference and Python in a Nutshell docs about module sets, (in Python 2.4 only) the set
built-in, custom metaclasses, the inspect module.

Recipe 20.10. Using _ _new_ _ and _ _init_ _
Appropriately in Custom Metaclasses

Credit: Michele Simionato, Stephan Diehl, Alex Martelli

Problem

You are writing a custom metaclass, and you are not sure which tasks your metaclass should
perform in its _ _new_ _ method, and which ones it should perform in its _ _init_ _ method

instead.

Solution

Any preliminary processing that your custom metaclass performs on the name, bases, or dict of
the class being built, can affect the way in which the class object gets built only if it occurs in the
metaclass' _ _new_ _ method, before your code calls the metaclass' superclass' _ _new_ _. For
example, that's the only time when you can usefully affect the new class' _ _slots_ _, if any:

class MetaEnsure_foo(type):
 def _ _new_ _(mcl, cname, cbases, cdict):
 # ensure instances of the new class can have a '_foo' attribute
 if '_ _slots_ _' in cdict and '_foo' not in cdict['_ _slots_ _']:
 cdict['_ _slots_ _'] = tuple(cdict['_ _slots_ _']) + ('_foo',)
 return super(MetaEnsure_foo, mcl)._ _new_ _(mcl, cname, cbases, cdict)

Metaclass method _ _init_ _ is generally the most appropriate one for any changes that your

custom metaclass makes to the class object after the class object is builtfor example, continuing
the example code for metaclass MetaEnsure_foo:

 def _ _init_ _(cls, cname, cbases, cdict):
 super(MetaEnsure_foo, cls)._ _init_ _(cls, cname, cbases, cdict)
 cls._foo = 23

Discussion

The custom metaclass MetaEnsure_foo performs a definitely "toy" task presented strictly as an
example: if the class object being built defines a _ _slots_ _ attribute (to save memory),
MetaEnsure_foo ensures that the class object includes a slot _foo, so that instances of that class

can have an attribute thus named. Further, the custom metaclass sets an attribute with name
_foo and value 23 on each new class object. The point of the recipe isn't really this toy task, but
rather, a clarification on how _ _new_ _ and _ _init_ _ methods of a custom metaclass are

best coded, and which tasks are most appropriate for each.

Whenever you instantiate any class x (whether x is a custom metaclass or an ordinary class) with
or without arguments (we can employ the usual Python notation *a, **k to mean arbitrary

positional and named arguments), Python internally performs the equivalent of the following
snippet of code:

 new_thing = X._ _new_ _(X, *a, **k)

 if isinstance(new_thing, X):
 X._ _init_ _(new_thing, *a, **k)

The new_thing thus built and initialized is the result of instantiating x. If x is a custom metaclass,
in particular, this snippet occurs at the end of the execution of a class statement, and the

arguments (all positional) are the name, bases, and dictionary of the new class that is being
built.

So, your custom metaclass' _ _new_ _ method is the code that has dibsit executes first. That's

the moment in which you can adjust the name, bases, and dictionary that you receive as
arguments, to affect the way the new class object is built. Most characteristics of the class
object, but not all, can also be changed later. An example of an attribute that you have to set
before building the class object is _ _slots_ _. Once the class object is built, the slots, if any,
are defined, and any further change to _ _slots_ _ has no effect.

The custom metaclass in this recipe carefully uses super to delegate work to its superclass,
rather than carelessly calling type._ _new_ _ or type._ _init_ _ directly: the latter usage

would be a subtle mistake, impeding the proper working of multiple inheritance among
metaclasses. Further, this recipe is careful in naming the first parameters to both methods: cls to
mean an ordinary class (the object that is the first argument to a custom metaclass' _ _init_
_), mcl to mean a metaclass (the object that is the first argument to a custom metaclass' _
new _). The common usage of self should be reserved to mean normal instances, not classes

nor metaclasses, and therefore it doesn't normally occur in the body of a custom metaclass. All
of these names are a matter of mere convention, but using appropriate conventions promotes
clarity, and this use of cls and mcl was blessed by Guido van Rossum himself, albeit only
verbally.

The usage distinction between _ _new_ _ and _ _init_ _ that this recipe advocates for custom
metaclasses is basically the same criterion that any class should always follow: use _ _new_ _
when you must, only for jobs that cannot be done later; use _ _init_ _ for all jobs that can be
left until _ _init_ _ time. Following these conventions makes life easiest for anybody who must

tweak your custom metaclass or make it work well in a multiple inheritance situation, and thus
enhances the reusability of your code. _ _new_ _ should contain only the essence of your

metaclass: stuff that anybody using your metaclass in any way at all must surely want (or else
he wouldn't be using your metaclass!) because it's stuff that's not easy to tweak, modify, or
override. _ _init_ _ is "softer", so most of what your metaclass is doing to the class objects

you generate, should be there, exactly because it will be easier for reusers to tweak or avoid.

See Also

Library Reference and Python in a Nutshell docs on built-ins super and _ _slots_ _, and special
methods _ _init_ _ and _ _new_ _.

Recipe 20.11. Allowing Chaining of Mutating List
Methods

Credit: Stephan Diehl, Alex Martelli

Problem

The methods of the list type that mutate a list object in placemethods such as append and
sortreturn None. To call a series of such methods, you therefore need to use a series of
statements. You would like those methods to return self to enable you to chain a series of calls

within a single expression.

Solution

A custom metaclass can offer an elegant approach to this task:

def makeChainable(func):
 ''' wrapp a method returning None into one returning self '''
 def chainableWrapper(self, *args, **kwds):
 func(self, *args, **kwds)
 return self
 # 2.4 only: chainableWrapper._ _name_ _ = func._ _name_ _
 return chainableWrapper
class MetaChainable(type):
 def _ _new_ _(mcl, cName, cBases, cDict):
 # get the "real" base class, then wrap its mutators into the cDict
 for base in cBases:
 if not isinstance(base, MetaChainable):
 for mutator in cDict['_ _mutators_ _']:
 if mutator not in cDict:
 cDict[mutator] = makeChainable(getattr(base, mutator))
 break
 # delegate the rest to built-in 'type'
 return super(MetaChainable, mcl)._ _new_ _(mcl, cName, cBases, cDict)
class Chainable: _ _metaclass_ _ = MetaChainable
if _ _name_ _ == '_ _main_ _':
 # example usage
 class chainablelist(Chainable, list):
 _ _mutators_ _ = 'sort reverse append extend insert'.split()
 print ''.join(chainablelist('hello').extend('ciao').sort().reverse())
emits: oolliheca

Discussion

Mutator methods of mutable objects such as lists and dictionaries work in place, mutating the
object they're called on, and return None. One reason for this behavior is to avoid confusing

programmers who might otherwise think such methods build and return new objects. Returning
None also prevents you from chaining a sequence of mutator calls, which some Python gurus

consider bad style because it can lead to very dense code that may be hard to read.

Some programmers, however, occasionally prefer the chained-calls, dense-code style. This style
is particularly useful in such contexts as lambda forms and list comprehensions. In these
contexts, the ability to perform actions within an expression, rather than in statements, can be
crucial. This recipe shows one way you can tweak mutators' return values to allow chaining.
Using a custom metaclass means the runtime overhead of introspection is paid only rarely, at
class-creation time, rather than repeatedly. If runtime overhead is not a problem for your
application, it may be simpler for you to use a delegating wrapper idiom that was posted to
comp.lang.python by Jacek Generowicz:

class chainable(object):
 def _ _init_ _(self, obj):
 self.obj = obj
 def _ _iter_ _(self):
 return iter(self.obj)
 def _ _getattr_ _(self, name):
 def proxy(*args, **kwds):
 result = getattr(self.obj, name)(*args, **kwds)
 if result is None: return self
 else: return result
 # 2.4 only: proxy._ _name_ _ = name
 return proxy

The use of this wrapper is quite similar to that of classes obtained by the custom metaclass
presented in this recipe's Solutionfor example:

print ''.join(chainable(list('hello')).extend('ciao').sort().reverse())
emits: oolliheca

See Also

Library Reference and Python in a Nutshell docs on built-in type list and special methods _
new _ and _ _getattr_ _.

Recipe 20.12. Using Cooperative Super calls with Terser
Syntax

Credit: Michele Simionato, Gonçalo Rodrigues

Problem

You like the cooperative style of multiple-inheritance coding supported by the super built-in, but

you wish you could use that style in a more terse and direct way.

Solution

A custom metaclass lets us selectively wrap the methods exposed by a class. Specifically, if the
second argument of a method is named super, then that argument gets bound to the appropriate
instance of the built-in super:

import inspect
def second_arg(func):
 args = inspect.getargspec(func)[0]
 try: return args[1]
 except IndexError: return None
def super_wrapper(cls, func):
 def wrapper(self, *args, **kw):
 return func(self, super(cls, self), *args, **kw)
 # 2.4 only: wrapper._ _name_ _ = func._ _name_ _
 return wrapper
class MetaCooperative(type):
 def _ _init_ _(cls, name, bases, dic):
 super(MetaCooperative, cls)._ _init_ _(cls, name, bases, dic)
 for attr_name, func in dic.iteritems():
 if inspect.isfunction(func) and second_arg(func) == "super":
 setattr(cls, attr_name, super_wrapper(cls, func))
class Cooperative:
 _ _metaclass_ _ = MetaCooperative

Discussion

Here is a usage example of the custom metaclass presented in this recipe's Solution, in a typical
toy case of "diamond-shaped" inheritance:

if _ _name_ _ == "_ _main_ _":
 class B(Cooperative):
 def say(self):
 print "B",
 class C(B):
 def say(self, super):
 super.say()
 print "C",
 class D(B):
 def say(self, super):

 super.say()
 print "D",
 class CD(C, D):
 def say(self, super):
 super.say()
 print '!'
 CD().say()
emits: B D C !

Methods that want to access the super-instance just need to use super as the name of their
second argument; the metaclass then arranges to wrap those methods so that the super-
instance gets synthesized and passed in as the second argument, as needed.

In other words, when a class cls, whose metaclass is MetaCooperative, has methods whose

second argument is named super, then, in those methods, any call of the form
super.something(*args, **kw) is a shortcut for super(cls, self).something(*args, **kw).
This approach avoids the need to pass the class object as an argument to the built-in super.

Class cls may also perfectly well have other methods that do not follow this convention, and in
those methods, it may use the built-in super in the usual way: all it takes for any method to be

"normal" is to not use super as the name of its second argument, surely not a major restriction.
This recipe offers nicer syntax sugar for the common case of cooperative supercalls, where the
first argument to super is the current classnothing more.

See Also

Library Reference and Python in a Nutshell docs on module inspect and the super built-in.

Recipe 20.13. Initializing Instance Attributes Without
Using _ _init_ _

Credit: Dan Perl, Shalabh Chaturvedi

Problem

Your classes need to initialize some instance attributes when they generate new instances. If you
do the initialization, as normal, in the _ _init_ _ method of your classes, then, when anybody
subclasses your classes, they must remember to invoke your classes' _ _init_ _ methods. Your

classes often get subclassed by beginners who forget this elementary requirement, and you're
getting tired of the resulting support requests. You'd like an approach that beginners subclassing
your classes are less likely to mess up.

Solution

Beginners are unlikely to have heard of the _ _new_ _ method, so you can place your
initialization there, instead of in _ _init_ _:

a couple of classes that you write:
class super1(object):
 def _ _new_ _(cls, *args, **kwargs):
 obj = super(super1, cls)._ _new_ _(cls, *args, **kwargs)
 obj.attr1 = []
 return obj
 def _ _str_ _(self):
 show_attr = []
 for attr, value in sorted(self._ _dict_ _.iteritems()):
 show_attr.append('%s:%r' % (attr, value))
 return '%s with %s' % (self._ _class_ _._ _name_ _,
 ', '.join(show_attr))
class super2(object):
 def _ _new_ _(cls, *args, **kwargs):
 obj = super(super2, cls)._ _new_ _(cls, *args, **kwargs)
 obj.attr2 = { }
 return obj
typical beginners' code, inheriting your classes but forgetting to
call its superclasses' _ _init_ _ methods
class derived(super1, super2):
 def _ _init_ _(self):
 self.attr1.append(111)
 self.attr3 = ()
despite the typical beginner's error, you won't get support calls:
d = derived()
print d
emits: derived with attr1:[111], attr2:{ }, attr3:()

Discussion

One of Python's strengths is that it does very little magic behind the curtainsclose to nothing,
actually. If you know Python in sufficient depth, you know that essentially all internal
mechanisms are clearly documented and exposed. This strength, however, means that you
yourself must do some things that other languages do magically, such as prefixing self. to
methods and attributes of the current object and explicitly calling the _ _init_ _ methods of
your superclasses in the _ _init_ _ method of your own class.

Unfortunately, Python beginners, particularly if they first learned from other languages where
they're used to such implicit and magical behavior, can take some time adapting to this brave
new world where, if you want something done, you do it. Eventually, they learn. Until they have
learned, at times it seems that their favorite pastime is filling my mailbox with help requests, in
tones ranging from the humble to the arrogant and angry, complaining that "my classes don't
work." Almost invariably, this complaint means they're inheriting from my classes, which are
meant to ease such tasks as displaying GUIs and communicating on the Internet, and they have
forgotten to call my classes' _ _init_ _ methods from the _ _init_ _ methods of subclasses

they have coded.

To deal with this annoyance, I devised the simple solution shown in this recipe. Beginners
generally don't know about the _ _new_ _ method, and what they don't know, they cannot mess
up. If they do know enough to override _ _new_ _, you can hope they also know enough to do a
properly cooperative supercall using the super built-in, rather than crudely bypassing your code
by directly calling object._ _new_ _. Well, hope springs eternal, or so they say. Truth be told,
my hopes lie in beginners' total, blissful ignorance about _ _new_ _and this theory seems to

work because I don't get those kind of help requests any more. The help requests I now receive
seem concerned more with how to actually use my classes, rather than displaying fundamental
ignorance of Python.

If you work with more advanced but equally perverse beginners, ones quite able to mess up _
new _, you should consider giving your classes a custom metaclass that, in its _ _call_ _

(which executes at class instantiation time), calls a special hidden method on your classes to
enable you to do your initializations anyway. That approach should hold you in good steadat least
until the beginners start learning about metaclasses. Of course, "it is impossible to make
anything foolproof, because fools are so ingenious" (Roger Berg). Nevertheless, see Recipe 20.14
for other approaches that avoid _ _init_ _ for attribute initialization needs.

See Also

Library Reference and Python in a Nutshell documentation on special methods _ _init_ _ and _
new _, and built-in super; Recipe 20.14.

Recipe 20.14. Automatic Initialization of Instance
Attributes

Credit: Sébastien Keim, Troy Melhase, Peter Cogolo

Problem

You want to set some attributes to constant values, during object initialization, without forcing
your subclasses to call your _ _init_ _ method.

Solution

For constant values of immutable types, you can just set them in the class. For example, instead
of the natural looking:

class counter(object):
 def _ _init_ _(self):
 self.count = 0
 def increase(self, addend=1):
 self.count += addend

you can code:

class counter(object):
 count = 0
 def increase(self, addend=1):
 self.count += addend

This style works because self.count += addend, when self.count belongs to an immutable type,
is exactly equivalent to self.count = self.count + addend. The first time this code executes

for a particular instance self, self.count is not yet initialized as a per-instance attribute, so the
per-class attribute is used, on the right of the equal sign (=); but the per-instance attribute is

nevertheless the one assigned to (on the left of the sign). Any further use, once the per-instance
attribute has been initialized in this way, gets or sets the per-instance attribute.

This style does not work for values of mutable types, such as lists or dictionaries. Coding this
way would then result in all instances of the class sharing the same mutable-type object as their
attribute. However, a custom descriptor works fine:

class auto_attr(object):
 def _ _init_ _(self, name, factory, *a, **k):
 self.data = name, factory, a, k
 def _ _get_ _(self, obj, clas=None):
 name, factory, a, k = self.data
 setattr(obj, name, factory(*a, **k))
 return getattr(obj, name)

With class auto_attr at hand, you can now code, for example:

class recorder(object):
 count = 0
 events = auto_attr('events', list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

Discussion

The simple and standard approach of defining constant initial values of attributes by setting them
as class attributes is just fine, as long as we're talking about constants of immutable types, such
as numbers or strings. In such cases, it does no harm for all instances of the class to share the
same initial-value object for such attributes, and, when you do such operations as self.count
+= 1, you intrinsically rebind the specific, per-instance value of the attribute, without affecting

the attributes of other instances.

However, when you want an attribute to have an initial value of a mutable type, such as a list or
a dictionary, you need a little bit moresuch as the auto_attr custom descriptor type in this recipe.
Each instance of auto_attr needs to know to what attribute name it's being bound, so we pass
that name as the first argument when we instantiate auto_attr. Then, we have the factory, a
callable that will produce the desired initial value when called (often factory will be a type object,
such as list or dict); and finally optional positional and keyword arguments to be passed when

factory gets called.

The first time you access an attribute named name on a given instance obj, Python finds in obj's
class the descriptor (an instance of auto_attr) and calls the descriptor's method _ _get_ _, with

obj as an argument. auto_attr's _ _get_ _ calls the factory and sets the result under the right

name as an instance attribute, so that any further access to the attribute of that name in the
instance gets the actual value.

In other words, the descriptor is designed to hide itself when it's first accessed on each instance,
to get out of the way from further accesses to the attribute of the same name on that same
instance. For this purpose, it's absolutely crucial that auto_attr is technically a nondata descriptor
class, meaning it doesn't define a _ _set_ _ method. As a consequence, an attribute of the

same name may be set in the instance: the per-instance attribute overrides (i.e., takes
precedence over) the per-class attribute (i.e., the instance of a nondata descriptor class).

You can regard this recipe's approach as "just-in-time generation" of instance attributes, the first
time a certain attribute gets accessed on a certain instance. Beyond allowing attribute
initialization to occur without an _ _init_ _ method, this approach may therefore be useful as

an optimization: consider it when each instance has a potentially large set of attributes, maybe
costly to initialize, and most of the attributes may end up never being accessed on each given
instance.

It is somewhat unfortunate that this recipe requires you to pass to auto_attr the name of the
attribute it's getting bound to; unfortunately, auto_attr has no way to find out for itself. However,
if you're willing to add a custom metaclass to the mix, you can fix this little inconvenience, too,
as follows:

class smart_attr(object):
 name = None
 def _ _init_ _(self, factory, *a, **k):
 self.creation_data = factory, a, k
 def _ _get_ _(self, obj, clas=None):
 if self.name is None:
 raise RuntimeError, ("class %r uses a smart_attr, so its "
 "metaclass should be MetaSmart, but is %r instead" %
 (clas, type(clas)))
 factory, a, k = self.creation_data

 setattr(obj, name, factory(*a, **k))
 return getattr(obj, name)
class MetaSmart(type):
 def _ _new_ _(mcl, clasname, bases, clasdict):
 # set all names for smart_attr attributes
 for k, v in clasdict.iteritems():
 if isinstance(v, smart_attr):
 v.name = k
 # delegate the rest to the supermetaclass
 return super(MetaSmart, mcl)._ _new_ _(mcl, clasname, bases, clasdict)
let's let any class use our custom metaclass by inheriting from smart_object
class smart_object:
 _ _metaclass_ _ = MetaSmart

Using this variant, you could code:

class recorder(smart_object):
 count = 0
 events = smart_attr(list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

Once you start considering custom metaclasses, you have more options for this recipe's task,
automatic initialization of instance attributes. While a custom descriptor remains the best
approach when you do want "just-in-time" generation of initial values, if you prefer to generate
all the initial values at the time the instance is being initialized, then you can use a simple
placeholder instead of smart_attr, and do more work in the metaclass:

class attr(object):
 def _ _init_ _(self, factory, *a, **k):
 self.creation_data = factory, a, k
import inspect
def is_attr(member):
 return isinstance(member, attr)
class MetaAuto(type):
 def _ _call_ _(cls, *a, **k):
 obj = super(MetaAuto, cls)._ _call_ _(cls, *a, **k)
 # set all values for 'attr' attributes
 for n, v in inspect.getmembers(cls, is_attr):
 factory, a, k = v.creation_data
 setattr(obj, n, factory(*a, **k))
 return obj
lets' let any class use our custom metaclass by inheriting from auto_object
class auto_object:
 _ _metaclass_ _ = MetaAuto

Code using this more concise variant looks just about the same as with the previous one:

class recorder(auto_object):
 count = 0
 events = attr(list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

See Also

Recipe 20.13 for another approach that avoids _ _init_ _ for attribute initialization needs;
Library Reference and Python in a Nutshell docs on special method _ _init_ _, and built-ins
super and setattr.

Recipe 20.15. Upgrading Class Instances Automatically
on reload

Credit: Michael Hudson, Peter Cogolo

Problem

You are developing a Python module that defines a class, and you're trying things out in the
interactive interpreter. Each time you reload the module, you have to ensure that existing

instances are updated to instances of the new, rather than the old class.

Solution

First, we define a custom metaclass, which ensures its classes keep track of all their existing
instances:

import weakref
class MetaInstanceTracker(type):
 ''' a metaclass which ensures its classes keep track of their instances '''
 def _ _init_ _(cls, name, bases, ns):
 super(MetaInstanceTracker, cls)._ _init_ _(name, bases, ns)
 # new class cls starts with no instances
 cls._ _instance_refs_ _ = []
 def _ _instances_ _(cls):
 ''' return all instances of cls which are still alive '''
 # get ref and obj for refs that are still alive
 instances = [(r, r()) for r in cls._ _instance_refs_ _ if r() is not None]
 # record the still-alive references back into the class
 cls._ _instance_refs_ _ = [r for (r, o) in instances]
 # return the instances which are still alive
 return [o for (r, o) in instances]
 def _ _call_ _(cls, *args, **kw):
 ''' generate an instance, and record it (with a weak reference) '''
 instance = super(MetaInstanceTracker, cls)._ _call_ _(*args, **kw)
 # record a ref to the instance before returning the instance
 cls._ _instance_refs_ _.append(weakref.ref(instance))
 return instance
class InstanceTracker:
 ''' any class may subclass this one, to keep track of its instances '''
 _ _metaclass_ _ = MetaInstanceTracker

Now, we can subclass MetaInstanceTracker to obtain another custom metaclass, which, on top of
the instance-tracking functionality, implements the auto-upgrading functionality required by this
recipe's Problem:

import inspect
class MetaAutoReloader(MetaInstanceTracker):
 ''' a metaclass which, when one of its classes is re-built, updates all
 instances and subclasses of the previous version to the new one '''
 def _ _init_ _(cls, name, bases, ns):
 # the new class may optionally define an _ _update_ _ method

 updater = ns.pop('_ _update_ _', None)
 super(MetaInstanceTracker, cls)._ _init_ _(name, bases, ns)
 # inspect locals & globals in the stackframe of our caller
 f = inspect.currentframe().f_back
 for d in (f.f_locals, f.f_globals):
 if name in d:
 # found the name as a variable is it the old class
 old_class = d[name]
 if not isinstance(old_class, mcl):
 # no, keep trying
 continue
 # found the old class: update its existing instances
 for instance in old_class._ _instances_ _():
 instance._ _class_ _ = cls
 if updater: updater(instance)
 cls._ _instance_refs_ _.append(weakref.ref(instance))
 # also update the old class's subclasses
 for subclass in old_class._ _subclasses_ _():
 bases = list(subclass._ _bases_ _)
 bases[bases.index(old_class)] = cls
 subclass._ _bases_ _ = tuple(bases)
 break
 return cls
class AutoReloader:
 ''' any class may subclass this one, to get automatic updates '''
 _ _metaclass_ _ = MetaAutoReloader

Here is a usage example:

an 'old class'
class Bar(AutoReloader):
 def _ _init_ _(self, what=23):
 self.old_attribute = what
a subclass of the old class
class Baz(Bar):
 pass
instances of the old class & of its subclass
b = Bar()
b2 = Baz()
we rebuild the class (normally via 'reload', but, here, in-line!):
class Bar(AutoReloader):
 def _ _init_ _(self, what=42):
 self.new_attribute = what+100
 def _ _update_ _(self):
 # compute new attribute from old ones, then delete old ones
 self.new_attribute = self.old_attribute+100
 del self.old_attribute
 def meth(self, arg):
 # add a new method which wasn't in the old class
 print arg, self.new_attribute
if _ _name_ _ == '_ _main_ _':
 # now b is "upgraded" to the new Bar class, so we can call 'meth':
 b.meth(1)
 # emits: 1 123
 # subclass Baz is also upgraded, both for existing instances...:
 b2.meth(2)
 # emits: 2 123
 # ...and for new ones:
 Baz().meth(3)

 # emits: 3 142

Discussion

You're probably familiar with the problem this recipe is meant to address. The scenario is that
you're editing a Python module with your favorite text editor. Let's say at some point, your
module mod.py looks like this:

class Foo(object):
 def meth1(self, arg):
 print arg

In another window, you have an interactive interpreter running to test your code:

>>> import mod
>>> f = mod.Foo()
>>> f.meth1(1)
1

and it seems to be working. Now you edit mod.py to add another method:

class Foo(object):
 def meth1(self, arg):
 print arg
 def meth2(self, arg):
 print -arg

Head back to the test session:

>>> reload(mod)
module 'mod' from 'mod.pyc'
>>> f.meth2(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'Foo' object has no attribute 'meth2'

Argh! You forgot that f was an instance of the old mod.Foo!

You can do two things about this situation. After reloading, either regenerate the instance:

>>> f = mod.Foo()
>>> f.meth2(2)
-2

or manually assign to f._ _class_ _:

>>> f._ _class_ _ = mod.Foo
>>> f.meth2(2)
-2

Regenerating works well in simple situations but can become very tedious. Assigning to the class
can be automated, which is what this recipe is all about.

Class MetaInstanceTracker is a metaclass that tracks instances of its instances. As metaclasses
go, it isn't too complicated. New classes of this metatype get an extra _ _instance_refs_ _ class
variable (which is used to store weak references to instances) and an _ _instances_ _ class
method (which strips out dead references from the _ _instance_refs_ _ list and returns real
references to the still live instances). Each time a class whose metatype is MetaInstanceTracker
gets instantiated, a weak reference to the instance is appended to the class' _ _instance_refs_ _
list.

When the definition of a class of metatype MetaAutoReloader executes, the namespace of the
definition is examined to determine whether a class of the same name already exists. If it does,
then it is assumed that this is a class redefinition, instead of a class definition, and all instances of
the old class are updated to the new class. (MetaAutoReloader inherits from MetaInstanceTracker,
so such instances can easily be found). All direct subclasses, found through the old class' intrinsic
_ _subclasses_ _ class method, then get their _ _bases_ _ tuples rebuilt with the same change.

The new class definition can optionally include a method _ _update_ _, whose job is to update

the state (meaning the set of attributes) of each instance, as the instance's class transitions from
the old version of the class to the new one. The usage example in this recipe's Solution presents a
case in which one attribute has changed name and is computed by different rules, as you can tell
by observing the way the _ _init_ _ methods of the old and new versions are coded; in this
case, the job of _ _update_ _ is to compute the new attribute based on the value of the old one,
then del the old attribute for tidiness.

This recipe's code should probably do more thorough error checking; Net of error-checking issues,
this recipe can also supply some fundamental tools to start solving a problem that is substantially
harder than the one explained in this recipe's Problem statement: automatically upgrade classes
in a long-running application, without needing to stop and restart that application.

Doing automatic upgrading in production code is more difficult than doing it during development
because many more issues must be monitored. For example, you may need a form of locking to
ensure the application is in a quiescent state while a number of classes get upgraded, since you
probably don't want to have the application answering requests in the middle of the upgrading
procedure, with some classes or instances already upgraded and others still in their old versions.
You also often encounter issues of persistent storage because the application probably needs to
update whatever persistent storage it keeps from old to new versions when it upgrades classes.
And those are just two examples. Nevertheless, the key component of such on-the-fly upgrading,
which has to do with updating instances and subclasses of old classes to new ones, can be tackled
with the tools shown in this recipe.

See Also

Docs for the built-in function reload in the Library Reference and Python in a Nutshell.

Recipe 20.16. Binding Constants at Compile Time

Credit: Raymond Hettinger, Skip Montanaro

Problem

Runtime lookup of global and built-in names is slower than lookup of local names. So, you would
like to bind constant global and built-in names into local constant names at compile time.

Solution

To perform this task, we must examine and rewrite bytecodes in the function's code object. First,
we get three names from the standard library module opcode, so we can operate symbolically on

bytecodes, and define two auxiliary functions for bytecode operations:

from opcode import opmap, HAVE_ARGUMENT, EXTENDED_ARG
globals().update(opmap)
def _insert_constant(value, i, code, constants):
 ''' insert LOAD_CONST for value at code[i:i+3]. Reuse an existing
 constant if values coincide, otherwise append new value to the
 list of constants; return index of the value in constants. '''
 for pos, v in enumerate(constants):
 if v is value: break
 else:
 pos = len(constants)
 constants.append(value)
 code[i] = LOAD_CONST
 code[i+1] = pos & 0xFF
 code[i+2] = pos >> 8
 return pos
def _arg_at(i, code):
 ''' return argument number of the opcode at code[i] '''
 return code[i+1] | (code[i+2] << 8)

Next comes the workhorse, the internal function that does all the binding and folding work:

def _make_constants(f, builtin_only=False, stoplist=(), verbose=False):
 # bail out at once, innocuously, if we're in Jython, IronPython, etc
 try: co = f.func_code
 except AttributeError: return f
 # we'll modify the bytecodes and consts, so make lists of them
 newcode = map(ord, co.co_code)
 codelen = len(newcode)
 newconsts = list(co.co_consts)
 names = co.co_names
 # Depending on whether we're binding only builtins, or ordinary globals
 # too, we build dictionary 'env' to look up name->value mappings, and we
 # build set 'stoplist' to selectively override and cancel such lookups
 import _ _builtin_ _
 env = vars(_ _builtin_ _).copy()
 if builtin_only:

 stoplist = set(stoplist)
 stoplist.update(f.func_globals)
 else:
 env.update(f.func_globals)
 # First pass converts global lookups into lookups of constants
 i = 0
 while i < codelen:
 opcode = newcode[i]
 # bail out in difficult cases: optimize common cases only
 if opcode in (EXTENDED_ARG, STORE_GLOBAL):
 return f
 if opcode == LOAD_GLOBAL:
 oparg = _arg_at(i, newcode)
 name = names[oparg]
 if name in env and name not in stoplist:
 # get the constant index to use instead
 pos = _insert_constant(env[name], i, newcode, newconsts)
 if verbose: print '%r -> %r[%d]' % (name, newconsts[pos], pos)
 # move accurately to the next bytecode, skipping arg if any
 i += 1
 if opcode >= HAVE_ARGUMENT:
 i += 2
 # Second pass folds tuples of constants and constant attribute lookups
 i = 0
 while i < codelen:
 newtuple = []
 while newcode[i] == LOAD_CONST:
 oparg = _arg_at(i, newcode)
 newtuple.append(newconsts[oparg])
 i += 3
 opcode = newcode[i]
 if not newtuple:
 i += 1
 if opcode >= HAVE_ARGUMENT:
 i += 2
 continue
 if opcode == LOAD_ATTR:
 obj = newtuple[-1]
 oparg = _arg_at(i, newcode)
 name = names[oparg]
 try:
 value = getattr(obj, name)
 except AttributeError:
 continue
 deletions = 1
 elif opcode == BUILD_TUPLE:
 oparg = _arg_at(i, newcode)
 if oparg != len(newtuple):
 continue
 deletions = len(newtuple)
 value = tuple(newtuple)
 else:
 continue
 reljump = deletions * 3
 newcode[i-reljump] = JUMP_FORWARD
 newcode[i-reljump+1] = (reljump-3) & 0xFF
 newcode[i-reljump+2] = (reljump-3) >> 8
 pos = _insert_constant(value, i, newcode, newconsts)
 if verbose: print "new folded constant: %r[%d]" % (value, pos)
 i += 3

 codestr = ''.join(map(chr, newcode))
 codeobj = type(co)(co.co_argcount, co.co_nlocals, co.co_stacksize,
 co.co_flags, codestr, tuple(newconsts), co.co_names,
 co.co_varnames, co.co_filename, co.co_name,
 co.co_firstlineno, co.co_lnotab, co.co_freevars,
 co.co_cellvars)
 return type(f)(codeobj, f.func_globals, f.func_name, f.func_defaults,
 f.func_closure)

Finally, we use _make_constants to optimize itself and its auxiliary function, and define the
functions that are meant to be called from outside this module to perform the optimizations that
this module supplies:

optimize thyself!
_insert_constant = _make_constants(_insert_constant)
_make_constants = _make_constants(_make_constants)
import types
@_make_constants
def bind_all(mc, builtin_only=False, stoplist=(), verbose=False):
 """ Recursively apply constant binding to functions in a module or class.
 """
 try:
 d = vars(mc)
 except TypeError:
 return
 for k, v in d.items():
 if type(v) is types.FunctionType:
 newv = _make_constants(v, builtin_only, stoplist, verbose)
 setattr(mc, k, newv)
 elif type(v) in (type, types.ClassType):
 bind_all(v, builtin_only, stoplist, verbose)
@_make_constants
def make_constants(builtin_only=False, stoplist=[], verbose=False):
 """ Call this metadecorator to obtain a decorator which optimizes
 global references by constant binding on a specific function.
 """
 if type(builtin_only) == type(types.FunctionType):
 raise ValueError, 'must CALL, not just MENTION, make_constants'
 return lambda f: _make_constants(f, builtin_only, stoplist, verbose)

Discussion

Assuming you have saved the code in this recipe's Solution as module optimize.py somewhere
on your Python sys.path, the following example demonstrates how to use the make_constants

decorator with arguments (i.e., metadecorator) to optimize a functionin this case, a
reimplementation of random.sample:

import random
import optimize
@optimize.make_constants(verbose=True)
def sample(population, k):
 " Choose `k' unique random elements from a `population' sequence. "
 if not isinstance(population, (list, tuple, str)):
 raise TypeError('Cannot handle type', type(population))
 n = len(population)
 if not 0 <= k <= n:
 raise ValueError, "sample larger than population"

 result = [None] * k
 pool = list(population)
 for i in xrange(k): # invariant: non-selected at [0,n-i)
 j = int(random.random() * (n-i))
 result[i] = pool[j]
 pool[j] = pool[n-i-1] # move non-selected item into vacancy
 return result

Importing this module emits the following output. (Some details, such as the addresses and
paths, will, of course, vary.)

'isinstance' -> <built-in function isinstance>[6]
'list' -> <type 'list'>[7]
'tuple' -> <type 'tuple'>[8]
'str' -> <type 'str'>[9]
'TypeError' -> <class exceptions.TypeError at 0x402952cc>[10]
'type' -> <type 'type'>[11]
'len' -> <built-in function len>[12]
'ValueError' -> <class exceptions.ValueError at 0x40295adc>[13]
'list' -> <type 'list'>[7]
'xrange' -> <type 'xrange'>[14]
'int' -> <type 'int'>[15]
'random' -> <module 'random' from '/usr/local/lib/python2.4/random.pyc'>[16]
new folded constant: (<type 'list'>, <type 'tuple'>, <type 'str'>)[17]
new folded constant: <built-in method random of Random object at 0x819853c>[18]

On my machine, with the decorator optimize.make_constants as shown in this snippet,
sample(range(1000), 100) takes 287 microseconds; without the decorator (and thus with the

usual bytecode that the Python 2.4 compiler produces), the same operation takes 333
microseconds. Thus, using the decorator improves performance by approximately 14% in this
exampleand it does so while allowing your own functions' source code to remain pristine, without
any optimization-induced obfuscation. On functions making use of more constant names within
loops, the performance benefit of using this recipe's decorator can be correspondingly greater.

A common and important technique for manual optimization of a Python function, once that
function is shown by profiling to be a bottleneck of program performance, is to ensure that all
global and built-in name lookups are turned into lookups of local names. In the source of
functions that have been thus optimized, you see strange arguments with default values, such as
_len=len, and the body of the function uses this local name _len to refer to the built-in function
len. This kind of optimization is worthwhile because lookup of local names is much faster than

lookup of global and built-in names. However, functions thus optimized can become cluttered
and less readable. Moreover, optimizing by hand can be tedious and error prone.

This recipe automates this important optimization technique: by just mentioning a decorator
before the def statement, you get all the constant bindings and foldings, while leaving the

function source uncluttered, readable, and maintainable. After binding globals to constants, the
decorator makes a second pass and folds constant attribute lookups and tuples of constants.
Constant attribute lookups often occur when you use a function or other attribute from an
imported module, such as the use of random.random in the sample function in the example
snippet. Tuples of constants commonly occur in for loops and conditionals using the in operator,
such as for x in ('a', 'b', 'c'). The best way to appreciate the bytecode transformations
performed by the decorator in this recipe is to run "dis.dis(sample)" and view the disassembly

into bytecodes, both with and without the decorator.

If you want to optimize every function and method in a module, you can call
optimize.bind_all(sys.modules[_ _name_ _]) as the last instruction in the module's body,

before the tests. To optimize every method in a class, you can call
optimize.bind_all(theclass) just after the end of the body of the class theclass statement.

Such wholesale optimization is handy (it does not require you to deal with any details) but

generally not the best approach. It's best to bind, selectively, only functions whose speed is
important. Functions that particularly benefit from constant-binding optimizations are those that
refer to many global and built-in names, particularly with references in loops.

To ensure that the constant-binding optimizations do not alter the behavior of your code, apply
them only where dynamic updates of globals are not desired (i.e., the globals do not change). In
more dynamic environments, a more conservative approach is to pass argument builtin_only as
true, so that only the built-ins get optimized (built-ins include functions such as len, exceptions
such as IndexError, and such constants as true or False). Alternatively, you can pass a

sequence of names as the stoplist argument, to tell the binding optimization functions to leave
unchanged any reference to those names.

While this recipe is meant for use with Python 2.4, you can also use this approach in Python 2.3,
with a few obvious caveats. In particular, in version 2.3, you cannot use the new 2.4 @decorator

syntax. Therefore, to use in Python 2.3, you'll have to tweak the recipe's code a little, to expose
_make_constants directly, without a leading underscore, and use f=make_constants(f) in your
code, right after the end of the body of the def f statement. However, if you are interested in

optimization, you should consider moving to Python 2.4 anyway: Python 2.4 is very compatible
with Python 2.3, with just a few useful additions, and version 2.4 is generally measurably faster
than Python 2.3.

See Also

Library Reference and Python in a Nutshell docs on the opcode module.

Recipe 20.17. Solving Metaclass Conflicts

Credit: Michele Simionato, David Mertz, Phillip J. Eby, Alex Martelli, Anna Martelli Ravenscroft

Problem

You need to multiply inherit from several classes that may come from several metaclasses, so
you need to generate automatically a custom metaclass to solve any possible metaclass conflicts.

Solution

First of all, given a sequence of metaclasses, we want to filter out "redundant" onesthose that are
already implied by others, being duplicates or superclasses. This job nicely factors into a general-
purpose generator yielding the unique, nonredundant items of an iterable, and a function using
inspect.getmro to make the set of all superclasses of the given classes (since superclasses are

redundant):

support 2.3, too
try: set
except NameError: from sets import Set as set
support classic classes, to some extent
import types
def uniques(sequence, skipset):
 for item in sequence:
 if item not in skipset:
 yield item
 skipset.add(item)
import inspect
def remove_redundant(classes):
 redundant = set([types.ClassType]) # turn old-style classes to new
 for c in classes:
 redundant.update(inspect.getmro(c)[1:])
 return tuple(uniques(classes, redundant))

Using the remove_redundant function, we can generate a metaclass that can resolve metatype

conflicts (given a sequence of base classes, and other metaclasses to inject both before and after
those implied by the base classes). It's important to avoid generating more than one metaclass
to solve the same potential conflicts, so we also keep a "memoization" mapping:

memoized_metaclasses_map = { }
def _get_noconflict_metaclass(bases, left_metas, right_metas):
 # make tuple of needed metaclasses in specified order
 metas = left_metas + tuple(map(type, bases)) + right_metas
 needed_metas = remove_redundant(metas)
 # return existing confict-solving meta, if any
 try: return memoized_metaclasses_map[needed_metas]
 except KeyError: pass
 # compute, memoize and return needed conflict-solving meta
 if not needed_metas: # whee, a trivial case, happy us
 meta = type
 elif len(needed_metas) == 1: # another trivial case

 meta = needed_metas[0]
 else: # nontrivial, darn, gotta work...
 # ward against non-type root metatypes
 for m in needed_metas:
 if not issubclass(m, type):
 raise TypeError('Non-type root metatype %r' % m)
 metaname = '_' + ''.join([m._ _name_ _ for m in needed_metas])
 meta = classmaker()(metaname, needed_metas, { })
 memoized_metaclasses_map[needed_metas] = meta
 return meta
def classmaker(left_metas=(), right_metas=()):
 def make_class(name, bases, adict):
 metaclass = _get_noconflict_metaclass(bases, left_metas, right_metas)
 return metaclass(name, bases, adict)
 return make_class

The internal _get_noconflict_metaclass function, which returns (and, if needed, builds) the
conflict-resolution metaclass, and the public classmaker closure must be mutually recursive for a
rather subtle reason. If _get_noconflict_metaclass just built the metaclass with the reasonably
common idiom:

 meta = type(metaname, needed_metas, { })

it would work in all ordinary cases, but it might get into trouble when the metaclasses involved
have custom metaclasses themselves! Just like "little fleas have lesser fleas," so, potentially,
metaclasses can have meta-metaclasses, and so onfortunately not "ad infinitum," pace Augustus
De Morgan, so the mutual recursion does eventually terminate.

The recipe offers minimal support for old-style (i.e., classic) classes, with the simple expedient of
initializing the set redundant to contain the metaclass of old-style classes, types.ClassType. In

practice, this recipe imposes automatic conversion to new-style classes. Trying to offer more
support than this for classic classes, which are after all a mere legacy feature, would be overkill,
given the confused and confusing situation of metaclass use for old-style classes.

In all of our code outside of this noconflict.py module, we will only use noconflict.classmaker,
optionally passing it metaclasses we want to inject, left and right, to obtain a callable that we can
then use just like a metaclass to build new class objects given names, bases, and dictionary, but
with the assurance that metatype conflicts cannot occur. Phew. Now that was worth it, wasn't it?!

Discussion

Here is the simplest case in which a metatype conflict can occur: multiply inheriting from two
classes with independent metaclasses. In a pedagogically simplified toy-level example, that could
be, say:

>>> class Meta_A(type): pass
...
>>> class Meta_B(type): pass
...
>>> class A: _ _metaclass_ _ = Meta_A
...
>>> class B: _ _metaclass_ _ = Meta_B
...
>>> class C(A, B): pass
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Error when calling the metaclass bases

 metaclass conflict: the metaclass of a derived class must be a
(non-strict) subclass of the metaclasses of all its bases
>>>

A class normally inherits its metaclass from its bases, but when the bases have distinct
metaclasses, the metatype constraint that Python expresses so tersely in this error message
applies. So, we need to build a new metaclass, say Meta_C, which inherits from both Meta_A and

Meta_B. For a demonstration of this need, see the book that's so aptly considered the bible of

metaclasses: Ira R. Forman and Scott H. Danforth, Putting Metaclasses to Work: A New
Dimension in Object-Oriented Programming (Addison-Wesley).

Python does not do magic: it does not automatically create the required Meta_C. Rather, Python
raises a TypeError to ensure that the programmer is aware of the problem. In simple cases, the

programmer can solve the metatype conflict by hand, as follows:

>>> class Meta_C(Meta_A, Meta_B): pass
>>> class C(A, B): _ _metaclass_ _ = Meta_C

In this case, everything works smoothly.

The key point of this recipe is to show an automatic way to resolve metatype conflicts, rather
than having to do it by hand every time. Having saved all the code from this recipe's Solution
into noconflict.py somewhere along your Python sys.path, you can make class C with automatic

conflict resolution, as follows:

>>> import noconflict
>>> class C(A, B): _ _metaclass_ _ = noconflict.classmaker()

The call to the noconflict.classmaker closure returns a function that, when Python calls it, obtains
the proper metaclass and uses it to build the class object. It cannot yet return the metaclass
itself, but that's OKyou can assign anything you want to the _ _metaclass_ _ attribute of your

class, as long as it's callable with the (name, bases, dict) arguments and nicely builds the class
object. Once again, Python's signature-based polymorphism serves us well and unobtrusively.

Automating the resolution of the metatype conflict has many pluses, even in simple cases.
Thanks to the "memoizing" technique used in noconflict.py, the same conflict-resolving
metaclass is used for any occurrence of a given sequence of conflicting metaclasses. Moreover,
with this approach you may also explicitly inject other metaclasses, beyond those you get from
your base classes, and again you can avoid conflicts. Consider:

>>> class D(A): _ _metaclass_ _ = Meta_B
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Error when calling the metaclass bases
 metaclass conflict: the metaclass of a derived class must be a
(non-strict) subclass of the metaclasses of all its bases

This metatype conflict is resolved just as easily as the former one:

>>> class D(A): _ _metaclass_ _ = noconflict.classmaker((Meta_B,))

The code presented in this recipe's Solution takes pains to avoid any subclassing that is not
strictly necessary, and it also uses mutual recursion to avoid any meta-level of meta-meta-type
conflicts. You might never meet higher-order-meta conflicts anyway, but if you adopt the code
presented in this recipe, you need not even worry about them.

Thanks to David Mertz for help in polishing the original version of the code. This version has
benefited immensely from discussions with Phillip J. Eby. Alex Martelli and Anna Martelli
Ravenscroft did their best to make the recipe's code and discussion as explicit and
understandable as they could. The functionality in this recipe is not absolutely complete: for
example, it supports old-style classes only in a rather backhanded way, and it does not really
cover such exotica as nontype metatype roots (such as Zope 2's old ExtensionClass). These

limitations are there primarily to keep this recipe as understandable as possible. You may find a
more complete implementation of metatype conflict resolution at Phillip J. Eby's PEAK site,
http://peak.telecommunity.com/, in the peak.util.Meta module of the PEAK framework.

See Also

Ira R. Forman and Scott H. Danforth, Putting Metaclasses to Work: A New Dimension in Object-
Oriented Programming (Addison-Wesley); Michele Simionato's essay, "Method Resolution Order,"
http://www.python.org/2.3/mro.html.

http://peak.telecommunity.com/
http://www.python.org/2.3/mro.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Python Cookbook, Second Edition is a springhaas (Pedetes capensis),
also known as a spring hare. Springhaas are not hares at all, but rather the only member of the
family Pedetidae in the order Rodentia. They are not marsupials, but they are vaguely kangaroo-
like, with small front legs, powerful hind legs designed for hopping, jumping, and leaping, and
long, strong, bushy (but not prehensile) tails they use for balance and as a brace when sitting.
They grow to be about 14 to 18 inches long, with tails as long as their bodies, and can weigh
approximately 8 pounds. Springhaas have rich, glossy, tawny, or golden-reddish coats with long,
soft fur and white underbellies. Their heads are disproportionately large, and they have long ears
(with a flap of skin at the base they can close to prevent sand from getting inside while they are
digging) and large, dark brown eyes.

Springhaas mate throughout the year and have a gestation period of about 78 to 82 days.
Females generally give birth to only one baby (which stays with its mother until it is
approximately seven weeks old) per litter but have three or four litters each year. Babies are
born with teeth and are fully furred, with their eyes closed and ears open.

Springhaas are terrestrial and well-adapted for digging, and they tend to spend their days in the
small networks of their burrows and tunnels. They are nocturnal and primarily herbivorous,
feeding on bulbs, roots, grains, and occasionally insects. While they are foraging, they move
about on all fours, but they are able to move 10 to 25 feet in a single horizontal leap and are
capable of quick getaways when frightened. Although they are often seen foraging in groups in
the wild, they do not form an organized social unit and usually nest alone or in breeding pairs.
Springhaas can live up to 15 years in captivity. They are found in Zaire, Kenya, and South Africa,
in dry, desert, or semiarid areas, and they are a favorite and important food source in South
Africa.

Darren Kelly was the production editor for Python Cookbook , Second Edition. Nancy Crumpton
copyedited the book. Emily Quill and Claire Cloutier provided quality control. Nancy Crumpton
provided production services and wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The
cover image is from Animal Creation: Mammalia. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 by Joe
Wizda with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. This
colophon was written by Rachel Wheeler.

The online edition of this book was created by the Safari production group (John Chodacki, Ken
Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

".join (empty string joiner) 2nd

#! (shebang)

% (string-formatting operator) 2nd 3rd

**kwds syntax

*args syntax

+ operator

, (comma)

/ (slash)

4Suite package

<< operator

\\\\ (backslash) 2nd 3rd

_ (underscore)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Access

accessing

 attributes of instance objects

 MySQL database

Active Server Pages (ASP)

ActivePython

ActiveX Data Objects (ADO)

Adapter Design Pattern

adaptive sorting algorithms

__add__

adding items to sequences while preserving sortedness

ADO (ActiveX Data Objects)

 using Microsoft Jet via

algorithms

 performance issues

antispam system, configuring

Apache

 authenticating SSL client over HTTPS

 calculating hits per IP address

 calculating rate of client cache hits on

APIs, cross-platform, file locking using

append method (list objects)

application-specific languages

applications

 message loops, Windows

 multithreaded

 relational database design inappropriateness for

 Win32, message processing with MsgWaitForMultipleObjects

archiving tree of files into compressed tar file

*args syntax

arithmetic

 binary floating-kpoint, simulation

 decimal

 floating-point, simulating

 with error propagation

arrays

 C, translating Python sequence into

 transposing two-dimensional

ASCII characters in text strings

ASP (Active Server Pages)

assert

assigning/testing expression results

asynchat module

asyncore module

 performance benefits

atomic operations

attachments, removing from email messages

attributes

 adding to classes

 checking objects for

 hiding those supplied by delegate

 named, tuple items accessible as

 restricting setting in classes

 settings for

 restricting in classes

 __setattr__ method

authentication

 HTTPS navigation through proxies

 remote logins

 SSH

 Telnet

 SSL client over HTTPS

 via POP server

automatic caching 2nd

automatic delegation

 as alternative to inheritance

 wrapping by

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backslash (\\\\) 2nd 3rd

backups

 versioning filenames

backwards compatibility

 classic classes for new code development

 inheritance in Python

bag (multiset)

basestring type

Berkeley database (Berkeley DB), persisting data with

Berkeley DB (Berkeley database), persisting data with

big-O analysis and notation

binary data, sending to Windows standard output

binary files

 randomly reading bytes from

 sequentially reading bytes from 2nd

binary large objects [See BLOBs]

binary mode versus text mode (files)

binary search algorithm

binary strings, formatting integers as

binding attributes of instance objects

bisect (binary search)

bisect_right function

bits, printing integer as string of

BLOBs (binary large objects)

 storing in

 MySQL

 PostgreSQL

 SQLite

Borg class

 avoiding Singleton Design Pattern with

Borg design nonpattern, alternative to

bound methods

 held by objects, pickling

 maintaining references to without inhibiting garbage collection

 weak references to

bounded precision

bsddb package

bsddb3 package

building

 C extensions

 with Pyrex

 classes via metaclasses

 dictionaries

 empty class instance

 list comprehensions

 lists 2nd 3rd

 modules, tools for

built-in type, inheriting

__builtin__ module

bytecodes, multiple

bytes, as distinguished from characters

 CRC-64 computation on stream of

 extracting from strings

 randomly reading from binary file

 sequentially reading from binary file

 sequentially reading from binary files

bytestrings

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C extensions

 building

 with Pyrex

 debugging

C programming language

 coding Python extensions

 cPickle as built-in module for storing/retrieving data [See also cPickle module] [See also cPickle module]

C++ library, using in Python

C++ syntax for I/O

caching

 attribute values

 automatic 2nd

 with FIFO pruning

callback functions, avoiding lambda in writing

candygram module

case-insensitive text strings

Celsius temperature, converting to other scales

center method (string objects)

CGI (Common Gateway Interface) 2nd

 programs

 scripts [See CGI scripts]

 testing

 uploading files with

CGI scripts

 handling URLs in

 using Microsoft Jet via ADO

Chainmap class

ChangeCheckerMixin class

characters

 accented, entering in Tkinter widgets

characters method

class

 instances, upgrading on reload

 objects

 statement

_ _class_ _ attribute

classes [See also metaclasses] [See also metaclasses]

 adding attributes to

 chaining dictionary lookups

 classic, as legacy feature

 creating new instances of

 defining through inheritance

 finding all methods of

 functionality supplying across range of

 instance, changing on the fly

 instantiating

 restricting attribute setting

 saving/restoring with cPickle

 Singleton

 subclassing

closures

CLSID (globally unique identifier)

Cocoa toolkit, building GUI programmatically

code

 development, classic classes not recommended for

 maintaining by use of new-style classes

 programming

 databases and

 reusing through inheritance

code objects

 altering in a decorator

 extracting from __init__ objects

 inserting in dynamically generated modules

 pickling

codecs module, printing Unicode characters to standard output

collecting named items

collections.deque

 subclassing for ring buffer implementation

 using for FIFO implementations

COM

 connecting to running instance of Internet Explorer

 driving ADO and Jet with

 driving Microsoft Word with

 parsing XML with MSHTML

 reading Microsoft Outlook contacts

 registering/unregistering DLLs

comma (,)

commands

 running repeatedly

 scheduling

comments, tracing in debug mode

Common Gateway Interface [See CGI]

Common Object Request Broker Architecture [See CORBA]

comparison key (for sorting)

composition

compression

 of objects

 persistence with

computer games, relational database design inappropriate for

computers, monitoring

concurrent programming

conditionals. disabling while debugging

connecting to running instance of Internet Explorer

_const class

const.py module

constants, defining

containsAny method

containsOnly method

content type, checking via HTTP

converting

 among image formats

 among temperature scales 2nd

 characters to numeric code

 Python source into HTML markup

 text strings

 to lowercase/uppercase

 time zones

cookies

 handling while fetching web pages

 Internet Explorer, finding

__copy__ method

copy module

copy.copy function

copy_reg module, extending pickle/cPickle modules

copying

 mailbox files

 objects

CORBA (Common Object Request Broker Architecture) 2nd

 implementing server and client

CoreGraphics module

counts method

cPickle module [See also pickling] [See also pickling]

 classes and instances

 serializing data

 using compression with

CRCs (cyclic redundancy checks)

CreateMutex function

creating

 class instances

 share on Windows

cStringIO module 2nd

ctypes module

currying

cursor objects

custom metaclasses, synchronization and

cyclic redundancy checks (CRCs)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

daemon processes, forking on Unlx-like systems

daemon threads

data

 Excel, accessing with Jython

 hierarchical structuring of

 saving/retrieving with support for selecting/searching

 serializing

 marshal module

 pickle and cPickle modules

database cursors, printing contents of

databases 2nd

 applications providing transaction support/concurrency control

 persistence, compression and

 programming issues

 relational [See relational databases]

datagram sockets (UDP)

 monitoring network status

 using for SNTP

date/time

 calculating

 number of holidays

 number of weekdays

 time periods in date range

 yesterday/tomorrow

 checking for daylight saving time

 converting time zones

 datetime module

 finding date of previous weekday

 getting time from server via SNTP protocol

 parsing fuzzy dates

 running commands repeatedly

 summing song durations

 time module

 timedelta module

 timedelta type 2nd

date/timescheduling commands

datetime module 2nd 3rd

 calculating number of weekdays

dateutil module

 automatic holiday lookups

 calculating number of weekdays

daylight saving time, checking for

DB API modules, single parameter passing style across various

db_row (Python Database Row Module)

DDList class

deadlocks 2nd

 avoiding by nonblocking output and error streams

debug mode, tracing expressions/comments

debugging

 C extensions

 disabling conditions and loops

 exception handling

 garbage collection

 property function

 starting debugger automatically after uncaught exception

 threads in processes

 tracebacks

 unit tests

 checking values against

 running automatically

 running simply

decimal module 2nd

decimal numeric data type

decorate-sort-undecorate (DSU)

decorators

 altering code objects in

__deepcopy__ method

def statement, defining methods with

default values/bounds, using with tkSimpleDialog functions

__delattr__ method

delegation [See also automatic delegation] [See also automatic delegation]

 flexibility of

 in proxies

description attribute

 cursors

descriptors

design patterns

 Adapter

 Monostate

 Null Object

 object-oriented

 Reactor

 Singleton 2nd

 State

 Strategy

 Template Method 2nd

design tools, relational database design in appropriate for

dict (built-in type)

 fromkeys classmethod

dictionaries [See also mappings] [See also mappings]

 adding entries to

 building

 chaining lookups

 dispatching methods/functions with

 enriching type of, with rating functionality

 extracting subsets from

 finding unions/intersections of

 getting values from

 inverting

 keys in [See dictionary keys]

 mapping column names to index values

 sorting

 using for search tasks

dictionary keys

 associating multiple values to

 avoiding quoting in dictionary building

directories

 computing relative path

 finding files in

 sharing on Windows

 trees [See directory trees]

directory trees

 changing file extensions in

 walking

dispatching

 generators as co-routines

 methods via dictionaries

distributed programming

 error handling in

distutils package

division, true versus truncating

DLLs (dynamic link libraries), Windows

 calling functions from

 registering/unregistering

docstrings

doctest module 2nd

DOM (Document Object Model)

drag-and-drop reordering, adding to a Tkinter listbox

DSU (decorate-sort-undecorate)

 sorting lists of objects by their attributes

 sorting lists of strings ignoring case

 sorting strings with embedded numbers

dtuple module

duck typing

dump and dumps functions

 marshal module

 pickle/cPickle modules

duplicates, removing from sequences

Dynamic IP protocol (DNS)

dynamic link libraries [See DLLs]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

EAFP (easier to ask forgiveness than permission)

email addresses, building whitelist of, from mailboxes

email messages

 blocking duplicates

 in Python 2.4

 logging to disk

 malformed

 POP3 mailboxes 2nd

 removing attachments from

email module

email package

 bundling files in MIME messages

embedding Python

empty string joiner (\\"\\.join) 2nd

encoding

 types of

 Unicode for XML/HTML

 XML, autodetecting

enumerate function

enumerations, simulating

__eq__ method, adding to Borg class

Erlang's approach to thread communication

error handling

 EAFP approach

 in distributed programming

 in Unicode encoding

 in XML parsing

 via exceptions

event-driven programming

 multithreading compared to

Excel [See Microsoft Excel]

exception handling

 starting debugger automatically after uncaught exception

 within expressions

exec statement 2nd

 power of

executables, making from scripts

 in Windows with p2exe

 Unix

expand function

expandtabs method

Expat parser (XML)

expressions

 as distinct from statements 2nd

 handling exceptions in

 tracing in debug mode

extend method

extending Python

extract_stack function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

factory functions

 closures 2nd

 metaclasses

 tuple subclasses

fade-in windows, implementing with IronPython

Fahrenheit temperature, converting to other scales

farey fractions, converting numbers to rationals

FeedParser module 2nd

fetch data from databases incrementally

Fibonacci sequence

FIFO (first-in, first-out)

 pruning, caching with

FIFO (first-in, first-out) implementations, using collections.deque for

file extensions, changing in directory trees

file objects

filenames, versioning

files

 archiving into compressed tar file

 attributes, changing on Windows

 backing up

 versioning filenames

 binary mode versus text mode

 bundling in MIME messages

 C++ approach to I/O

 code portability

 counting lines in

 dynamically changing search path

 extensions [See file extensions]

 finding

 in directories

 on search path

 HTTP downloading, resuming

 input, rewinding

 locking

 types of locks

 with cross-platform API

 mailbox, selectively copying

 names [See filenames]

 objects [See file objects]

 OpenOffice.org, extracting text from

 OPML, generating

 PDF [See PDF files]

 processing words in

 pseudo-files

 random-access

 input/output

 updating

 reading

 by specific line

 searching/replacing text in

 uploading with CGI

 walking directory trees

 Word, extracting text from

 writing to

 zip

 inside strings, handling

 reading data from

filter_rdf function

filtering

 list of FTP sites

 text strings for set of characters

find method, subsequences in sequences

finding

 all methods of classes

 date of previous weekday

 files in directories

 Internet Explorer cookie

 subsequences in sequences

 unions/intersections of dictionaries

first-class objects

floating point

floating-point

 arithmetic

 arithmetic, simulating

FOAF (Friend-Of-A-Friend)

folders [See directories]

foreign exchange rates, monitoring

formatter.AbstractFormatter class

Friend-Of-A-Friend (FOAF)

FTP sites, filtering list of

functions

 built-in, trying special methods in specific order

 composing

 dispatching with dictionaries

 executing in parallel on multiple argument sets

 I/O bound

 polymorphism of

 portability

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Gadfly

garbage collection

 cyclic, avoiding

 debugging

 maintaining references to bound methods without inhibiting

gc module

generator expressions

generators

generic programming

genetic sequencing information, archiving, relational database design for

get method

 dictionary values

 extracting subsets from dictionaries

 lists and

 values from dictionaries

__getattr__ method 2nd

__getitem__ method 2nd

getItems method 2nd

getQualifiedURL function

_getS method

__getstate__ method

GetSubList method

GetText method

getvalue method

GIF images, inline, embedding using Tkinter

GIL (Global Interpreter Lock)

 Python C APIs and

Gimp toolkit (GTK)

Global Interpreter Lock [See GIL]

globally unique identifier (CSLID)

GMP (Gnu Multiple Precision)

Graham's scan algorithm

groupby function

_groupkeyfunc function

groupnames function

GTK (Gimp toolkit)

GUI toolkits

GUIs [See also user interfaces] [See also user interfaces]

 asynchronous I/O, combining with threads

 concurrent programming and

 Python Cocoa, building programmatically

gzip module

 compressing backup files

 using compression with 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

handling exceptions [See exception handling]

__hash__ method, adding to Borg class

Haskell programming language

haystack.count method

heap property

heap, retrieving data in order

heapq module 2nd 3rd

histogram

HTML [See also XML] [See also XML]

 converting documents to text on Unix

 encoding Unicode for

 mail, sending

htmlentitydefs module

HTTP

 checking content type via

 monitoring networks with

HTTPS navigation, authenticating with proxy for

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I/O (input/output)

 C++ syntax

 operations

 I/O-bound functions

 locking threads

 random-access files

 sources, accessing while running GUIs

IDLE (Integrated Development Environment)

 GUI shell for exploring Python OOP

IDLE tree widget, using in Tkinter

idlelib package

image formats, converting among

ImageJ, implementing plug-in in Jython

immutability

importing modules

inheritance [See also multiple inheritance] [See also multiple inheritance]

 automatic delegation as alternative

 code reuse and

 copying objects and

 drawbacks

 flexibility of delegation and

 multiple, supported by super class

 polymorphism, requirement of

__init__ method 2nd

 bypassing

 calling superclasses that define

 constructors for class instances

 extracting code object of

 initializers for class instances

 overriding

__init__ methods

 automatically initializing instance variables from

initializing instance variables from __init__ methods

input files, rewinding

input function

instance objects

instances

 checking for state changes

 saving/restoring with cPickle

integers, formatting as binary strings

Integrated Development Environment [See IDLE]

Internet Explorer, connecting to running instance of

Internet Relay Chat (IRC)

intersection method

intertools module

intervals, checking values against in unit tests

introspection

 coding and

IP addresses, calculating Apache hits per

IRC (Internet Relay Chat), connecting to

IronPython, implementing fade-in windows with

IsExpandable method

isinstance method

islower method

isorted function

isSSL function

istext function

istitle method

isupper method

itemgetter function 2nd

iter function

__iter__ method

iterable mappings

iterators

iteritems method

itertools module

 dictionary building

 inverting dictionaries 2nd

itertools.ifilter

izip 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JDBC (Java Database Connectivity), accessing from Jython servlet

join method 2nd 3rd

Jython

 extracting data from Excel

 implementing ImageJ plug-in

 servlets

 connecting to JDBC database from

 running with

 viewing image from URL with

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kelvin temperature, converting to other scales

KeyError exception

keys method

KMai, blocking duplicate email messages

KMP (Knuth-Morris-Pratt algorithm

KnuthMorrisPratt method

**kwds syntax

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

lambda, avoiding in writing callback functions

LBYL (Look Before You Leap), object attribute checking

ldap extension

ldap module

LDAP servers, accessing

lexing

line-termination characters 2nd

linecache module

Linux

 measuring memory usage on

 user interface toolkits

list comprehensions

 accessing substrings and

 building

 dictionary building

 quicksort algorithm and

 removing/reordering columns in lists of rows

 translating from Haskell to Python

list function

list objects

listboxes, Tkinter

 adding drag-and-drop reordering to

 supporting multiple values per row

lists

 building 2nd 3rd

 items in

 appending

 processing in random order

 of rows, removing/reordering columns

 picking items at random from

 returning elements of

ljust method (string objects)

locale module

localization

 processing non-ASCII characters

 western European alphabets

locals function

lock function

locks

log

 Apache files, analyzing

 information, storing

logging module

logging, centralized

Look Before You Leap (LBYL), object attribute checking

LookBeforeYouLeap class

loops, disabling while debugging

lower method 2nd

__lshift__

lstrip method

Luhn algorithm

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Mac OS X

 line-termination characters

 PDF files, counting pages in

 system information, gathering

Mac OS, getting user input on

mailbox files, selectively copying

mailbox modules

mailboxes

 building whitelist of email addresses from

 POP3, malformed messages 2nd

make_xlat function

makefile method, textual data source

maketrans function

 string filtering

malware

mappings

 partial, changing into full

marshal module

 limitations

 serializing data

 use cases for

Medusa

 using with XML-RPC

medusa package

Meerkat service

memoization 2nd

 implementing __deepcopy__ method

memory

 debugging problems

 file-based transformations

 leaks, investigating

 measuring usage on Linux

 ring buffers and

 saving, implementing tuples as named items

mergesort algorithm

message loops

message pumps

messages [See email messages]

met method

metaclasses 2nd

 custom, synchronization and

methods

 as attributes in Python

 bound [See bound methods]

 calling other methods on same instance

 copying between Tkinter widgets

 defining as instance objects behavior

 delegating work to same method in superclass

 dispatching with dictionaries

 hiding those supplied by delegate

 of classes, finding all

 of subclass, overriding superclass methods

 special, of classes

 string objects

 synchronizing in objects

 unbound

Microsoft Access [See Access]

Microsoft Excel

 data, extracting with Jython

 XML, parsing

Microsoft Jet

 using via ADO

Microsoft ODBC standard

Microsoft Outlook, reading contacts

Microsoft SQL Server

Microsoft Word [See Word]

MIME (Multipurpose Internet Mail Extensions)

MIME messages

 bundling files in

 multipart, unpacking

mimetools module

MimeWriter module

mixin class

 checking instances for state changes

 functionality supplying across range of classes

 using cooperative supercalls

modules

 benefits over OOP objects

 building, tools for

 class definitions, including assignment statement in

 ensuring name is defined in

 importing

 Python search path and

 SWIG-generated

money tasks

 adding machine, Python as

 checking credit card checksums

 foreign exchange rates, monitoring

 formatting decimals as currency

 performing decimal arithmetic

moneyfmt function

monitoring computers

Monostate Design Pattern

MsgWaitForMultipleObjects function

MSHTML

msvcrt module 2nd

MultiListbox.__init__ method

multiple_replace function

multiprocess computing

Multipurpose Internet Mail Extensions (MIME)

multitasking, without threads

multithreaded environment, using SWIG-generated modules in

multithreaded programming

 deadlocks

 main benefit of

 race conditions

MySQL

 database, accessing

 storing BLOBs in

MySQLdb module

 storing BLOBs in MySQL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name_iterablemust, calling groupnames function on

named attributes, tuple items accessible as

Network News Transfer Protocol (NNTP) 2nd

network ports, forwarding/redirecting

network programming

 detectng inactive computers

 Dynamic IP protocol

 messages, passing with socket datagrams

networks, monitoring with HTTP

__new__ method

new-style classes

__new__ staticmethod method

nlargest

NNTP (Network News Transfer Protocol) 2nd

nobuffer method

NoNewAttrs class

nsmallest

Null class

 see also Null Object Design Pattern

Null Object Design Pattern

numbers, converting to rationals

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object Request Brokers (ORBs)

object-oriented design pattern

object-oriented programming [See OOP]

objects

 checking for attributes

 code, pickling

 compressing generic

 copying

 deep copies

 shallow copies

 describing creation of

 determining whether iterable

 docstrings in

 file [See file objects]

 in Python

 lists of, sorting by object's attribute

 making fast copy of

 mutating with shelve module

 referene cycles

 state of

 synchyronizing methods in

 testing for string-like characteristics

 with bound methods of other objects, pickling

ODBC (Open Database Connectivity)

old-style classes

once method, overridden by Subclass

OOP (object-oriented programming) 2nd

 polymorphism as benefit of

 Python implementation of

open

 reading from files

Open Database Connectivity [See ODBC]

Openldap C API

OpenOffice.org files, extracting text from

operations

 state-altering, checking objects for necessary attributes

 trying special methods in specific order

operator module 2nd

OPML (Outline Processor Markup Language)

 files

options, copying with geometry methods between Tkinter widgets

Oracle

ORBs (Object Request Brokers)

os module 2nd 3rd

 walking directory trees

os.path module

Outline Processor Markup Language (OPML)

Outlook, reading contacts

overriding methods

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

p2exe, making Windows executables from scripts

parameters, single passing style across DB API modules

parentheses, balanced, checking strings for

parser generators

parser module

parsing

 text

 XML with MSHTML

passwords

 random

 somewhat-random

PB (Perspective Broker)

PDF files, counting pages on Mac OS X

PEM (Privacy-enhanced Electronic Mail)

percentage error

performance

 adding entries to dictionaries

 algorithms and

 big-O analysis and notation

 comparing isorted function with sorted function

 comparing select method with sort method

 dictionary unions/intersections

 enhancing, adding threads to Python programs

 file-based transformations

 invert_dict_fast versus invert_dict

 multiple string pieces in sequences

 multiprocess computing

 search paths, changing

 sorting and

 sorting by object attributes

persistence

 compression with

Perspective Broker (PB)

pickle module 3rd [See also pickling] [See also pickling]

 serializing data

 use cases for

pickling

 code objects

 objects with bound methods

PIL (Python Imaging Library)

2nd [See also text] [See also text]

 converting to Unicode

PLY parser generator

Pmw extension library

polymorphism

 as benefit of OOP

 Python functions and

 signature-based

pop method

 extracting subsets from dictionaries

 getting values from dictionaries

POP servers, authenticating users

POP3 mailbox, inspecting interactively

popen module, processes, driving external

popen2 module, capturing output and error streams

poplib module

portability of code

portalocker.py module

PostgreSQL, storing BLOBs in

predicates

 expanding list items

prime numbers, computing

print statement

printf function

printing, database cursor content

priority queue

PriorityQueue class

Privacy-enhanced Electronic Mail (PEM)

processes

 daemon, forking on Unix-like systems

 debugging threads in

 external, driving with popen

 running on Unix-like systems, capturing output and error streams

processing

 international text with Unicode

 list items in random order

 text

 non-ASCII

 words in files

procmail, blocking duplicate email messages

programming code

programming languages, state and behavior in

programs about programs

progress indicators, providing on text consoles

progressbar class

properties, avoiding boilerplate accessors for

property function

proxies, special method delegation in

proxy function

proxy, tunneling SSL through

proxying

pseudo-files, getting/parsing contents of

psycopg module

pty module

Py-DBAPI (Python DB Application Programming Interface)

PyGTK interface to GTK toolkit

PyGUI API

PyQt, combining GUIs and asynchronous I/O with threads

Pyrex, building C extensions

pysqlite module

Python [See also Python 2.3 Python 2.4] [See also Python 2.3 Python 2.4]

 as adding machine

 benefits of simplicity

 coding extensions in C

 distributions, ActivePython

 extending/embedding

 interface for accessing relational databases

 alternatives to

 2nd [See also multithreaded programming] [See also multithreaded programming]

 adding threads to programs

 OOP features in

 power tools

 printf C function in

 programming shortcuts

 source code, converting into HTML markup

 support for multiple paradigns

 tree of objects, converting XML document into

Python 2.3 [See also Python] [See also Python]

 accessing decimal module

 interpolating variables in strings

 string alignment, padding character in

Python 2.4 [See also Python] [See also Python]

 doctest module, using with unittest

 DSU support

 email messages in

 email parser in

 generator expressions

 interpolating variables in strings

 string alignment, padding character in

Python Database Row Module (db_row)

Python DB Application Programming Interface

Python Imaging Library (PIL)

Pythonwin toolkit

PyWin32 package 2nd

PyXML package

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Queue class

 combining GUIs and asynchronous I/O with threads

 coordinating pool of worker threads

 specializing priority values of threads

quicksort algorithm 2nd

 implementing in three lines of code

Quixote

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

race conditions

random module, items with given probabilities

Rankine temperature, converting to other scales

raw_input function

re module

 finding subsequences

 replacing multiple patterns in strings

 string processing

Reactor Design Pattern

read method 2nd

 objects pickled to file, returning

 reading from files

reading

 data from zip files

 data/text in files

 Microsoft Outlook contacts

 text files, specific line in

 unbuffered characters from standard input

readLines method 2nd

ref class

reference cycles

referenceError exception

registry, system administration

regular expressions

 expanding/compressing tabs in strings

 substring substitutions

relational databases

 enterprise software-engineering three-tier system

 hybrid approaches to

 implementations from major software vendors

 implentations of, with ODBC interface

 inappropriate for some applications

 saving/retrieving data with support for selecting/searching

relative paths, computing

Remote Procedure Call (RPC)

repeat method, inherited by Subclass from Behave superclass

replace method 2nd

__repr__ method

resource module

rfc822 module

ring buffers

rjust method (string objects)

rotating calipers algorithm

RPC (Remote Procedure Call)

rrule.count method

rstrip method

run method, overriding

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

s.isdigit method

s.toupper method

samplesort algorithm

sanitise function

SAX API (XML parser)

SAX API, checking XML well-formedness

SAX parser, merging continuous text events with

scalars

sched module, command scheduling

Schwartzian Transform

scripts

 in Windows, running one instance of

 spawning editors from

search paths

 dynamically changing

 finding files in directories

searching

 for items in sorted sequence

 searching/replacing text in files

 using dictionaries for

Secure Shell [See SSH]

Secure Socket Layer (SSL)

Secure Socket Layer/Transport Layer Security (SSL/TLS)

security, multithreaded programming

seek method

 random-access files

select method

select module

 capturing output and error streams from Unix shell command

selecting

self.something syntax

sequences

 accessing item-by-item

 adding items to while preserving sortedness

 finding subsequences in

 flexible access to

 items in

 getting first smallest

 selecting nth smallest

 lexicographical comparison of

 looping over items in

 nested, flattening

 performing membership tests on

 removing duplicates from

 sorted, searching for items in

 translating into C array

serializing code objects with sincemarshal

serializing data

 marshal module

 pickle and cPickle modules

serve_forever method

servers, LDAP

servlets, coding with Jython

Set data type

set method

__setattr__ method 2nd

 attribute settings

setdefault method

 adding entries to dictionaries

setdefault method, adding entries to dictionaries

sets module 2nd

 finding sets/unions of dictionaries

__setstate__ method

shebang (#!)

shelve module, mutating objects with

shortcuts in Python

signatures, methods with same

Simple Mail Transfer Protocol (SMTP)

Simple Object Access Protocol (SOAP)

SimpleXMLRPCServer class

SimpleXMLRPCServer module 2nd 3rd

Simplified Network Time Protocol (SNTP)

sincemarshal module

Singleton Design Pattern 2nd

 alternative to

 avoiding with Borg class

Singletons

slash (/)

__slots__ method

 restricting attribute setting

SMTP (Simple Mail Transfer Protocol)

snapshot method

SNTP (Simplified Network Time Protocol)

SOAP (Simple Object Access Protocol)

socket module 2nd

sort method 2nd 3rd 4th

 lists of strings

sorted function 2nd

sorting

 current state of

 dictionaries

 history of, in Python

 keys/indices based on corresponding values

 list of strings ignoring case

 lists of objects by object's attribute

 names and separating them by initials

 strings with embedded numbers

_sortkeyfunc function

sound system, on Windows, checking

SPARK parser generator

special methods

 class definitions

 delegating in proxies

 operations/built-in functions trying in specific order

split method

 processing words in files

 reading from files

splitext function

splitlines method

 reading from files

SQL

 as emerging database interface standard

 databases, XML representations stored in

 implentations of

SQLite

 storing BLOBs in

sqlite.encode, inserting BLOBs in SQLite databases

SSH (Secure Shell)

 performing remote logins using

SSL (Secure Socket Layer), tunneling through proxy

SSL clients, authenticating over HTTPS

SSL/TLS (Secure Socket Layer/Transport Layer Security)

standard input, reading unbuffered characters

standard output

 printing Unicode to

 using printf to output to

start method 2nd

State Design Pattern

stopwatch, implementing in Tkinter

Strategy Design Pattern

streams, capturing from Unix shell command

strftime function

string module

 string filtering

string-formatting operator (%) 2nd 3rd

StringIO module 2nd

strings [See also text strings] [See also text strings]

 aligning

 checking for balanced parentheses

 extracting bytes from

 removing whitespace from

 sorting while ignoring case

 verifying valid numeric format

 with embedding numbers, sorting

 zip files in

strip method

strptime function

strset.translate

struct module

sub method, string substitutions

Subclass class

subclass method

subclass methods

subclassing

 Singletons and

substitute method

substrings, accessing

sum function

summing numbers with accuracy

super methods

 performing superclass delegation

superclass methods

superclasses

 calling __init__ method for

 delegation of

 using cooperative

SuperMixin class

superTuple function

__slots__ function

SWIG modules, using in multithreaded environment

Swing, viewing image from URL with

Sybase

synchronizing methods in objects

system administration

system_profiler command (Mac OS X)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tabs in strings, expanding/compressing

tar files, compressed, archiving files into

tarfile module

tasks, automatic, checking/modifying on Windows

tell method

 rewinding input files

Telnet, performing remote logins using

temperature scales, converting among

tempfile module

Template Method Design Pattern 2nd

 queuing

termios module

ternary operator

testing

 CGI

 exception handling

 objects for string-like characteristics

 unit tests

 checking values against

 running automatically

 running simply

TestThread class

text

 converting HTML documents to, on Unix

 extracting

 from OpenOffice.org files

 from Word files

 parsing

 processing [See text processing]

 reading from files

 searching/replacing in files

 sources of

 strings [See text strings]

text consoles, providing progress indicators

text editors, spawning from scripts

text processing [See also text text strings] [See also text text strings]

 basic operations

 by characters, text strings

 converting characters to Unicode

text strings

 aligning

 case-insensitive

 changing indentation of

 checking

 contents of

 endings of

 for set of characters

 converting

 between Unicode and plain

 to lowercase/uppercase

 expanding/compressing tabs in

 filtering for set of characters

 interpolating variables in

 performing substitutions on

 processing by character

 reversing by words or character

 substrings [See substrings]

 testing for string-like characteristics

 translate method, simplifying usage of

 trimming space from ends of

textHandler class

theobject.something syntax

There's More Than One Way To Do It (TMTOWIDI)

Thread class

thread module

thread pools

threading module

 synchronization constructs in

threads 2nd

 adding to Python programs to enhance performance

 allocating per-thread storage

 combining GUIs and asynchronous I/O with

 communicating among via Queue class

 communicating with, Erland's approach to

 coordinating by message passing

 daemon

 GIL, adding to Python programs

 locking

 multiple, reducing data structures accessed by

 multitasking without

 synchronizing

 terminating

time [See date/time]

time module

timedelta module (datetime) 2nd

timedelta module, calculating dates

timeit module

 measuring performance with

Tix extension library

Tkinter application

 using IDLE tree widget in

Tkinter applications

 implementing tabbed notebook for

Tkinter toolkit

 adding drag-and-drop reordering to listbox

 as GUI toolkit

 implementing stopwatch in

Tkinter widgets

 copying geometry methods/options between

 embedding inline GIFs using

 entering accented characters in

 supporting multiple values per row in listbox

tkSimpleDialog functions, using default values/bounds with

TMTOWTDI (There's More Than One Way To Do It)

tokens

 merging/splitting

toy programs

traceback module

traceback.print_exc function

tracebacks

 getting information from while debugging

translate method 2nd 3rd

 simplifying usage of

 string filtering

try/except statement, using inside expressions

TTY functions

tty module

TtyFormatter class

tuples, implementing with named items

Twisted

two-dimensional points, computing convex hull and diameter

type checking

TypeError exception, raised by inspect.getargspec

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDP (user datagram protocol)

unbound methods

underscore (_)

Unicode

 converting

 characters to

 to plain text

 encoding

 error handling in

 for XML/HTML

 international text processing

 printing to standard output

uniform function 2nd

unit testing

unit tests

 checking values against intervals

 running automatically

 running simply

 using doctest with unittest in Python 2.4

unittest module

 using with doctest in Python 2.4

Unix [See also Unix-like systems] [See also Unix-like systems]

 converting HTML documents to text on Unix

 line-termination characters

 making executables from scripts

Unix-like systems

 forking daemon processes on

 wrapper

unpacking assignment

updating random-access files

upgrading class instances on reload

upleDescriptor class

upper method

urllib module

urllib2 module

urlopen function

URLs

 getting document from, on Web

 handling in CGI scripts

 viewing image from, with Swing and Jython

user accounts, assigning random passwords

user datagram protocol (UDP)

user input, getting on Mac OS

user interfaces

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

variables

 in strings, interpolating

 module-level [See constants]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WCK (Widget Construction Kit)

weak references

 to bound methods

weakref module 2nd 3rd

Web

 getting document from URL on

web pages, handling cookies while fetching

Web programming

web servers

WebWare

whitelists

whitespace, removing from strings

Widget Construction Kit (WCK)

Win32 API, multithreading

Win32 applications

 message processing with MsgWaitForMultipleObjects

win32api module

win32com package

Windows

 applications message loops

 changing file attributes

 creating share on

 line-termination characters

 login, checking/modifying automatic tasks run at

 making executables with p2exe from scripts

 registering/unregistering DLLs on

 sound system on, checking

 standard output, sending binary data to

 system administration

 using MSHTML to parse XML

Windows DLLs, calling functions from

Windows registry, system administration

_winreg module 2nd

winsound module

wrapper

write method

 writing to files

writelines method, writing to files

writestr method, reading data from zip files

writing

 callback functions, avoiding lambda in

 to files

wxPython toolkit

 designing notebook widget with panels

wxWidgets C++ library

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

xdrlib module

XML

 accessing structural data in human-readable form

 encoding Unicode for

 using MSHTML to parse

XML documents

 converting into tree of Python objects

 counting tags in

 extracting text from

 validating

XML processing

 autodetecting XML encoding

 checking XML well-formedness

 eror handling in

 filtering elements/attributes of namespace

 parsing Microsoft Excel XML

 removing whitespace-only text nodes from DOM node subtree

XML tags, counting number of ÒelementÓs in XML document

XML validation

XML-RPC 2nd

 enabling remote termination

 method calls to

 serving requests to

 using with Medusa

xml.sax.saxutils module

XMLFilterBase class

XMLGenerator class

xmlrpclib module

xproperty function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Z-Object Database (ZODB)

zip

zip files

 handling inside strings

 reading data from

zipfile module

ZODB (Z-Object Database)

Zope

	Python Cookbook, 2nd Edition
	Table of Contents
	Copyright
	Preface
	The Design of the Book
	The Implementation of the Book
	Using the Code from This Book
	Audience
	Organization
	Further Reading
	Conventions Used in This Book
	How to Contact Us
	Safari® Enabled
	Acknowledgments

	Chapter 1 Text
	Introduction
	Processing a String One Character at a Time
	Converting Between Characters and Numeric Codes
	Testing Whether an Object Is String-like
	Aligning Strings
	Trimming Space from the Ends of a String
	Combining Strings
	Reversing a String by Words or Characters
	Checking Whether a String Contains a Set of Characters
	Simplifying Usage of Strings' translate Method
	Filtering a String for a Set of Characters
	Checking Whether a String Is Text or Binary
	Controlling Case
	Accessing Substrings
	Changing the Indentation of a Multiline String
	Expanding and Compressing Tabs
	Interpolating Variables in a String
	Interpolating Variables in a Stringin Python 2.4
	Replacing Multiple Patterns in a Single Pass
	Checking a String for Any of Multiple Endings
	Handling International Text with Unicode
	Converting Between Unicode and Plain Strings
	Printing Unicode Charactersto Standard Output
	Encoding Unicode Data for XML and HTML
	Making Some Strings Case-Insensitive
	Converting HTML Documents to Texton a Unix Terminal

	Chapter 2. Files
	Introduction
	Reading from a File
	Writing to a File
	Searching and Replacing Text in a File
	Reading a Specific Line from a File
	Counting Lines in a File
	Processing Every Word in a File
	Using Random-Access Input/Output
	Updating a Random-Access File
	Reading Data from zip Files
	Handling a zip File Inside a String
	Archiving a Tree of Files into a Compressed tar File
	Sending Binary Data to Standard Output Under Windows
	Using a C++-like iostream Syntax
	Rewinding an Input File to the Beginning
	Adapting a File-like Object to a True File Object
	Walking Directory Trees
	Swapping One File Extension for Another Throughout a Directory Tree
	Finding a File Given a Search Path
	Finding Files Given a Search Path and a Pattern
	Finding a File on the Python Search Path
	Dynamically Changing the PythonSearch Path
	Computing the Relative Path from One Directory to Another
	Reading an Unbuffered Character in a Cross-Platform Way
	Counting Pages of PDF Documents on Mac OS X
	Changing File Attributes on Windows
	Extracting Text from OpenOffice.org Documents
	Extracting Text from Microsoft Word Documents
	File Locking Using a Cross-Platform API
	Versioning Filenames
	Calculating CRC-64 Cyclic Redundancy Checks

	Chapter 3. Time and Money
	Introduction
	Calculating Yesterday and Tomorrow
	Finding Last Friday
	Calculating Time Periods in a Date Range
	Summing Durations of Songs
	Calculating the Number of Weekdays Between Two Dates
	Looking up Holidays Automatically
	Fuzzy Parsing of Dates
	Checking Whether Daylight Saving Time Is Currently in Effect
	Converting Time Zones
	Running a Command Repeatedly
	Scheduling Commands
	Doing Decimal Arithmetic
	Formatting Decimals as Currency
	Using Python as a Simple Adding Machine
	Checking a Credit Card Checksum
	Watching Foreign Exchange Rates

	Chapter 4. Python Shortcuts
	Introduction
	Copying an Object
	Constructing Lists with List Comprehensions
	Returning an Element of a List If It Exists
	Looping over Items and Their Indices in a Sequence
	Creating Lists of Lists Without Sharing References
	Flattening a Nested Sequence
	Removing or Reordering Columnsin a List of Rows
	Transposing Two-Dimensional Arrays
	Getting a Value from a Dictionary
	Adding an Entry to a Dictionary
	Building a Dictionary Without Excessive Quoting
	Building a Dict from a List of Alternating Keys and Values
	Extracting a Subset of a Dictionary
	Inverting a Dictionary
	Associating Multiple Values with Each Key in a Dictionary
	Using a Dictionary to Dispatch Methods or Functions
	Finding Unions and Intersections of Dictionaries
	Collecting a Bunch of Named Items
	Assigning and Testing with One Statement
	Using printf in Python
	Randomly Picking Items with Given Probabilities
	Handling Exceptions Within an Expression
	Ensuring a Name Is Defined in a Given Module

	Chapter 5. Searching and Sorting
	Introduction
	Sorting a Dictionary
	Sorting a List of Strings Case-Insensitively
	Sorting a List of Objects by an Attribute of the Objects
	Sorting Keys or Indices Basedon the Corresponding Values
	Sorting Strings with Embedded Numbers
	Processing All of a List's Items in Random Order
	Keeping a Sequence Ordered as Items Are Added
	Getting the First Few Smallest Items of a Sequence
	Looking for Items in a Sorted Sequence
	Selecting the nth Smallest Element of a Sequence
	Showing off quicksort in Three Lines
	Performing Frequent Membership Tests on a Sequence
	Finding Subsequences
	Enriching the Dictionary Type with Ratings Functionality
	Sorting Names and Separating Them by Initials

	Chapter 6. Object-Oriented Programming
	Introduction
	Converting Among Temperature Scales
	Defining Constants
	Restricting Attribute Setting
	Chaining Dictionary Lookups
	Delegating Automatically as an Alternative to Inheritance
	Delegating Special Methods in Proxies
	Implementing Tuples with Named Items
	Avoiding Boilerplate Accessors for Properties
	Making a Fast Copy of an Object
	Keeping References to Bound Methods Without Inhibiting Garbage Collection
	Implementing a Ring Buffer
	Checking an Instance for Any State Changes
	Checking Whether an Object Has Necessary Attributes
	Implementing the State Design Pattern
	Implementing the Singleton Design Pattern
	Avoiding the Singleton Design Pattern with the Borg Idiom
	Implementing the Null Object Design Pattern
	Automatically Initializing Instance Variables from _ _init_ _ Arguments
	Calling a Superclass _ _init_ _ Method If It Exists
	Using Cooperative Supercalls Concisely and Safely

	Chapter 7. Persistence and Databases
	Introduction
	Serializing Data Using the marshal Module
	Serializing Data Using the pickle and cPickle Modules
	Using Compression with Pickling
	Using the cPickle Module on Classes and Instances
	Holding Bound Methods in a Picklable Way
	Pickling Code Objects
	Mutating Objects with shelve
	Using the Berkeley DB Database
	Accesssing a MySQL Database
	Storing a BLOB in a MySQL Database
	Storing a BLOB in a PostgreSQL Database
	Storing a BLOB in a SQLite Database
	Generating a Dictionary Mapping Field Names to Column Numbers
	Using dtuple for Flexible Accessto Query Results
	Pretty-Printing the Contents of Database Cursors
	Using a Single Parameter-Passing Style Across Various DB API Modules
	Using Microsoft Jet via ADO
	Accessing a JDBC Database from a Jython Servlet
	Using ODBC to Get Excel Data with Jython

	Chapter 8. Debugging and Testing
	Introduction
	Disabling Execution of Some Conditionals and Loops
	Measuring Memory Usage on Linux
	Debugging the Garbage-Collection Process
	Trapping and Recording Exceptions
	Tracing Expressions and Comments in Debug Mode
	Getting More Information from Tracebacks
	Starting the Debugger Automatically After an Uncaught Exception
	Running Unit Tests Most Simply
	Running Unit Tests Automatically
	Using doctest with unittest in Python 2.4
	Checking Values Against Intervals in Unit Testing

	Chapter 9. Processes, Threads, and Synchronization
	Introduction
	Recipe 9.1. Synchronizing All Methods in an Object
	Recipe 9.2. Terminating a Thread
	Recipe 9.3. Using a Queue.Queue as a Priority Queue
	Recipe 9.4. Working with a Thread Pool
	Recipe 9.5. Executing a Function in Parallel on Multiple Argument Sets
	Recipe 9.6. Coordinating Threads by Simple Message Passing
	Recipe 9.7. Storing Per-Thread Information
	Recipe 9.8. Multitasking Cooperatively Without Threads
	Recipe 9.9. Determining Whether Another Instanceof a Script Is Already Running in Windows
	Recipe 9.10. Processing Windows Messages Using MsgWaitForMultipleObjects
	Recipe 9.11. Driving an External Process with popen
	Recipe 9.12. Capturing the Output and Error Streams from a Unix Shell Command
	Recipe 9.13. Forking a Daemon Process on Unix

	Chapter 10. System Administration
	Introduction
	Recipe 10.1. Generating Random Passwords
	Recipe 10.2. Generating Easily Remembered Somewhat-Random Passwords
	Recipe 10.3. Authenticating Users by Means of a POP Server
	Recipe 10.4. Calculating Apache Hits per IP Address
	Recipe 10.5. Calculating the Rate of Client Cache Hits on Apache
	Recipe 10.6. Spawning an Editor from a Script
	Recipe 10.7. Backing Up Files
	Recipe 10.8. Selectively Copying a Mailbox File
	Recipe 10.9. Building a Whitelist of Email Addresses From a Mailbox
	Recipe 10.10. Blocking Duplicate Mails
	Recipe 10.11. Checking Your Windows Sound System
	Recipe 10.12. Registering or Unregistering a DLL on Windows
	Recipe 10.13. Checking and Modifying the Set of Tasks Windows Automatically Runs at Login
	Recipe 10.14. Creating a Share on Windows
	Recipe 10.15. Connecting to an Already Running Instance of Internet Explorer
	Recipe 10.16. Reading Microsoft Outlook Contacts
	Recipe 10.17. Gathering Detailed System Informationon Mac OS X

	Chapter 11. User Interfaces
	Introduction
	Showing a Progress Indicator on a Text Console
	Avoiding lambda in Writing Callback Functions
	Recipe 11.3. Using Default Values and Bounds with tkSimpleDialog Functions
	Recipe 11.4. Adding Drag and Drop Reordering to a Tkinter Listbox
	Recipe 11.5. Entering Accented Characters in Tkinter Widgets
	Recipe 11.6. Embedding Inline GIFs Using Tkinter
	Recipe 11.7. Converting Among Image Formats
	Recipe 11.8. Implementing a Stopwatch in Tkinter
	Recipe 11.9. Combining GUIs and Asynchronous I/Owith Threads
	Recipe 11.10. Using IDLE's Tree Widget in Tkinter
	Recipe 11.11. Supporting Multiple Values per Row in a Tkinter Listbox
	Recipe 11.12. Copying Geometry Methods and Options Between Tkinter Widgets
	Recipe 11.13. Implementing a Tabbed Notebook for Tkinter
	Recipe 11.14. Using a wxPython Notebook with Panels
	Recipe 11.15. Implementing an ImageJ Plug-in in Jython
	Recipe 11.16. Viewing an Image from a URL with Swing and Jython
	Recipe 11.17. Getting User Input on Mac OS
	Recipe 11.18. Building a Python Cocoa GUI Programmatically
	Recipe 11.19. Implementing Fade-in Windows with IronPython

	Chapter 12. Processing XML
	Introduction
	Recipe 12.1. Checking XML Well-Formedness
	Recipe 12.2. Counting Tags in a Document
	Recipe 12.3. Extracting Text from an XML Document
	Recipe 12.4. Autodetecting XML Encoding
	Recipe 12.5. Converting an XML Document into a Tree of Python Objects
	Recipe 12.6. Removing Whitespace-only Text Nodes from an XML DOM Node's Subtree
	Recipe 12.7. Parsing Microsoft Excel's XML
	Recipe 12.8. Validating XML Documents
	Recipe 12.9. Filtering Elements and Attributes Belonging to a Given Namespace
	Recipe 12.10. Merging Continuous Text Events with a SAX Filter
	Recipe 12.11. Using MSHTML to Parse XML or HTML

	Chapter 13. Network Programming
	Introduction
	Recipe 13.1. Passing Messages with Socket Datagrams
	Recipe 13.2. Grabbing a Document from the Web
	Recipe 13.3. Filtering a List of FTP Sites
	Recipe 13.4. Getting Time from a Server via the SNTP Protocol
	Recipe 13.5. Sending HTML Mail
	Recipe 13.6. Bundling Files in a MIME Message
	Recipe 13.7. Unpacking a Multipart MIME Message
	Recipe 13.8. Removing Attachments from an Email Message
	Recipe 13.9. Fixing Messages Parsed by Python 2.4 email.FeedParser
	Recipe 13.10. Inspecting a POP3 Mailbox Interactively
	Recipe 13.11. Detecting Inactive Computers
	Recipe 13.12. Monitoring a Network with HTTP
	Recipe 13.13. Forwarding and Redirecting Network Ports
	Recipe 13.14. Tunneling SSL Through a Proxy
	Recipe 13.15. Implementing the Dynamic IP Protocol
	Recipe 13.16. Connecting to IRC and Logging Messages to Disk
	Recipe 13.17. Accessing LDAP Servers

	Chapter 14. Web Programming
	Introduction
	Recipe 14.1. Testing Whether CGI Is Working
	Recipe 14.2. Handling URLs Within a CGI Script
	Recipe 14.3. Uploading Files with CGI
	Recipe 14.4. Checking for a Web Page's Existence
	Recipe 14.5. Checking Content Type via HTTP
	Recipe 14.6. Resuming the HTTP Download of a File
	Recipe 14.7. Handling Cookies While Fetching Web Pages
	Recipe 14.8. Authenticating with a Proxy for HTTPS Navigation
	Recipe 14.9. Running a Servlet with Jython
	Recipe 14.10. Finding an Internet Explorer Cookie
	Recipe 14.11. Generating OPML Files
	Recipe 14.12. Aggregating RSS Feeds
	Recipe 14.13. Turning Data into Web Pages Through Templates
	Recipe 14.14. Rendering Arbitrary Objects with Nevow

	Chapter 15. Distributed Programming
	Introduction
	Recipe 15.1. Making an XML-RPC Method Call
	Recipe 15.2. Serving XML-RPC Requests
	Recipe 15.3. Using XML-RPC with Medusa
	Recipe 15.4. Enabling an XML-RPC Server to Be Terminated Remotely
	Recipe 15.5. Implementing SimpleXMLRPCServer Niceties
	Recipe 15.6. Giving an XML-RPC Server a wxPython GUI
	Recipe 15.7. Using Twisted Perspective Broker
	Recipe 15.8. Implementing a CORBA Server and Client
	Recipe 15.9. Performing Remote Logins Using telnetlib
	Recipe 15.10. Performing Remote Logins with SSH
	Recipe 15.11. Authenticating an SSL Client over HTTPS

	Chapter 16. Programs About Programs
	Introduction
	Recipe 16.1. Verifying Whether a String Represents a Valid Number
	Recipe 16.2. Importing a Dynamically Generated Module
	Recipe 16.3. Importing from a Module Whose Name Is Determined at Runtime
	Recipe 16.4. Associating Parameters with a Function (Currying)
	Recipe 16.5. Composing Functions
	Recipe 16.6. Colorizing Python Source Using the Built-in Tokenizer
	Recipe 16.7. Merging and Splitting Tokens
	Recipe 16.8. Checking Whether a String Has Balanced Parentheses
	Recipe 16.9. Simulating Enumerations in Python
	Recipe 16.10. Referring to a List Comprehension While Building It
	Recipe 16.11. Automating the py2exe Compilation of Scripts into Windows Executables
	Recipe 16.12. Binding Main Script and Modules into One Executable on Unix

	Chapter 17. Extending and Embedding
	Introduction
	Recipe 17.1. Implementing a Simple Extension Type
	Recipe 17.2. Implementing a Simple Extension Type with Pyrex
	Recipe 17.3. Exposing a C++ Library to Python
	Recipe 17.4. Calling Functions from a Windows DLL
	Recipe 17.5. Using SWIG-Generated Modules in a Multithreaded Environment
	Recipe 17.6. Translating a Python Sequence into a C Array with the PySequence_Fast Protocol
	Recipe 17.7. Accessing a Python Sequence Item-by-Item with the Iterator Protocol
	Recipe 17.8. Returning None from a Python-Callable C Function
	Recipe 17.9. Debugging Dynamically Loaded C Extensions with gdb
	Recipe 17.10. Debugging Memory Problems

	Chapter 18. Algorithms
	Introduction
	Recipe 18.1. Removing Duplicates from a Sequence
	Recipe 18.2. Removing Duplicates from a Sequence While Maintaining Sequence Order
	Recipe 18.3. Generating Random Samples with Replacement
	Recipe 18.4. Generating Random Samples Without Replacement
	Recipe 18.5. Memoizing (Caching) the Return Values of Functions
	Recipe 18.6. Implementing a FIFO Container
	Recipe 18.7. Caching Objects with a FIFO Pruning Strategy
	Recipe 18.8. Implementing a Bag (Multiset) Collection Type
	Recipe 18.9. Simulating the Ternary Operator in Python
	Recipe 18.10. Computing Prime Numbers
	Recipe 18.11. Formatting Integers as Binary Strings
	Recipe 18.12. Formatting Integers as Strings in Arbitrary Bases
	Recipe 18.13. Converting Numbers to Rationals via Farey Fractions
	Recipe 18.14. Doing Arithmetic with Error Propagation
	Recipe 18.15. Summing Numbers with Maximal Accuracy
	Recipe 18.16. Simulating Floating Point
	Recipe 18.17. Computing the Convex Hulls and Diameters of 2D Point Sets

	Chapter 19. Iterators and Generators
	Introduction
	Recipe 19.1. Writing a range-like Function with Float Increments
	Recipe 19.2. Building a List from Any Iterable
	Recipe 19.3. Generating the Fibonacci Sequence
	Recipe 19.4. Unpacking a Few Items in a Multiple Assignment
	Recipe 19.5. Automatically Unpacking the Needed Number of Items
	Recipe 19.6. Dividing an Iterable into n Slices of Stride n
	Recipe 19.7. Looping on a Sequence by Overlapping Windows
	Recipe 19.8. Looping Through Multiple Iterables in Parallel
	Recipe 19.9. Looping Through the Cross-Product of Multiple Iterables
	Recipe 19.10. Reading a Text File by Paragraphs
	Recipe 19.11. Reading Lines with Continuation Characters
	Recipe 19.12. Iterating on a Stream of Data Blocks as a Stream of Lines
	Recipe 19.13. Fetching Large Record Sets from a Database with a Generator
	Recipe 19.14. Merging Sorted Sequences
	Recipe 19.15. Generating Permutations, Combinations, and Selections
	Recipe 19.16. Generating the Partitions of an Integer
	Recipe 19.17. Duplicating an Iterator
	Recipe 19.18. Looking Ahead into an Iterator
	Recipe 19.19. Simplifying Queue-Consumer Threads
	Recipe 19.20. Running an Iterator in Another Thread
	Recipe 19.21. Computing a Summary Report with itertools.groupby

	Chapter 20. Descriptors, Decorators,and Metaclasses
	Introduction
	Recipe 20.1. Getting Fresh Default Values at Each Function Call
	Recipe 20.2. Coding Properties as Nested Functions
	Recipe 20.3. Aliasing Attribute Values
	Recipe 20.4. Caching Attribute Values
	Recipe 20.5. Using One Method as Accessorfor Multiple Attributes
	Recipe 20.6. Adding Functionality to a Class by Wrapping a Method
	Recipe 20.7. Adding Functionality to a Class by Enriching All Methods
	Recipe 20.8. Adding a Method to a Class Instance at Runtime
	Recipe 20.9. Checking Whether Interfaces Are Implemented
	Recipe 20.10. Using _ _new_ _ and _ _init_ _ Appropriately in Custom Metaclasses
	Recipe 20.11. Allowing Chaining of Mutating List Methods
	Recipe 20.12. Using Cooperative Super calls with Terser Syntax
	Recipe 20.13. Initializing Instance Attributes Without Using _ _init_ _
	Recipe 20.14. Automatic Initialization of Instance Attributes
	Recipe 20.15. Upgrading Class Instances Automatically on reload
	Recipe 20.16. Binding Constants at Compile Time
	Recipe 20.17. Solving Metaclass Conflicts

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

