Programming Python, 3rd Edition
By Mark Lutz

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-00925-9
Print ISBN-13: 978-0-59-600925-0
Pages: 1596

Table of Contents | Index
Overview

Already the industry standard for Python users, Programming
Python from

O'Reilly just got even better. This third edition has been updated to
reflect current best practices and

the abundance of changes introduced by the latest version of the
language, Python 2.5.

Whether you're a novice or an advanced

practitioner, you'll find this

refreshed book more than lives up to its reputation. Programming
Python, Third Edition teaches you the right

way to code. It explains Python language syntax and programming
techniques in a clear and concise

manner, with numerous examples that illustrate both correct usage and
common idioms. By reading this

comprehensive guide, you'll learn how to apply Python in real-world
problem domains such as:

¢ GUI programming

e Internet scripting

e Parallel processing

¢ Database management

e Networked applications

Programming Python, Third Edition covers

each of these

target domains

gradually, beginning with in-depth discussions of core concepts and
then progressing toward complete

programs. Large examples do appear, but only after you've learned

enough to understand their techniques and
code.

Along the way, you'll also learn how to use the Python language in

realistically scaled programs--concepts such as Object Oriented Programming (OOP) and code
reuse

are recurring side themes throughout this

text. If you're interested in Python programming, then this O'Reilly

classic needs to be within arm's reach. The

wealth of practical advice, snippets of code and patterns of program

design can all be put into use on a

daily basis--making your life easier and more productive.

Reviews of the second edition:

"...about as comprehensive as any book can be."
--Dr. Dobb's Journal

"If the language had manuals, they would undoubtedly

be the texts from O'Reilly...'Learning Python' and ‘Programming Python’
are definitive treatments.”

--SD Times

MNEXT B

Programming Python, 3rd Edition
By Mark Lutz

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-00925-9
Print ISBN-13: 978-0-59-600925-0
Pages: 1596

Table of Contents | Index

Copyright
Foreword

Preface
Part I: The Beginning

Chapter 1. Introducing Python

Section 1.1. "And Now for Something Completely Different"
Section 1.2. Python Philosophy 101

Section 1.3. The Life of Python

Section 1.4. Signs of the Python Times

Section 1.5. The Compulsory Features List
Section 1.6. What's Python Good For?
Section 1.7. What's Python Not Good For?
Section 1.8. Truth in Advertising

Chapter 2. A Sneak Preview

Section 2.1. "Programming Python: The Short Story"
Section 2.2. The Task
Section 2.3. Step 1: Representing Records

Section 2.4. Step 2: Storing Records Persistently
Section 2.5. Step 3: Stepping Up to OOP
Section 2.6. Step 4: Adding Console Interaction
Section 2.7. Step 5: Adding a GUI
Section 2.8. Step 6: Adding a Web Interface
Section 2.9. The End of the Demo

Part Il: System Programming

Chapter 3. System Tools

Section 3.1. "The os.path to Knowledge"

Section 3.2. System Scripting Overview

Section 3.3. Introducing the sys Module

Section 3.4. Introducing the os Module

Section 3.5. Script Execution Context

Section 3.6. Current Working Directory

Section 3.7. Command-Line Arguments

Section 3.8. Shell Environment Variables

Section 3.9. Standard Streams

Chapter 4. File and Directory Tools

Section 4.1. "Erase Your Hard Drive in Five Easy Steps!"

Section 4.2.

File Tools

Section 4.3.

Directory Tools

Chapter 5. Parallel System Tools

Section 5.1.

"Telling the Monkeys What to Do"

Section 5.2.

Forking Processes

Section 5.3.

Threads

Section 5.4.

Program Exits

Section 5.5.

Interprocess Communication

Section 5.6. Pipes

Section 5.7.

Signals

Section 5.8.

Other Ways to Start Programs

Section 5.9.

A Portable Program-Launch Framework

Section 5.10

. Other System Tools

Chapter 6. System Examples: Utilities

Section 6.1.

"Splits and Joins and Alien Invasions"

Section 6.2.

Splitting and Joining Files

Section 6.3.

Generating Forward-Link Web Pages

Section 6.4.

A Regression Test Script

Section 6.5.

Packing and Unpacking Files

Section 6.6.

Automated Program Launchers

Chapter 7. System Examples: Directories

Section 7.1.

"The Greps of Wrath"

Section 7.2.

Fixing DOS Line Ends

Section 7.3.

Fixing DOS Filenames

Section 7.4.

Searching Directory Trees

Section 7.5.

Visitor: Walking Trees Generically

Section 7.6.

Copying Directory Trees

Section 7.7.

Deleting Directory Trees

Section 7.8.

Comparing Directory Trees

Part Ill: GUI Programming

Chapter 8. Graphical User Interfaces

Section 8.1.

"Here's Looking at You, Kid"

Section 8.2.

Python GUI Development Options

Section 8.3.

Tkinter Overview

Section 8.4.

Climbing the GUI Learning Curve

Section 8.5.

Tkinter Coding Basics

Section 8.6.

Tkinter Coding Alternatives

Section 8.7.

Adding Buttons and Callbacks

Section 8.8.

Adding User-Defined Callback Handlers

Section 8.9.

Adding Multiple Widgets

Section 8.10.

Customizing Widgets with Classes

Section 8.11.

Reusable GUI Components with Classes

Section 8.12.

The End of the Tutorial

Section 8.13.

Python/TKkinter for Tcl/Tk Converts

Chapter 9. A Tkinter Tour, Part 1

Section 9.1.

"Widgets and Gadgets and GUls, Oh My!"

Section 9.2.

Configuring Widget Appearance

Section 9.3.

Top-Level Windows

Section 9.4.

Dialogs

Section 9.5.

Binding Events

Section 9.6. Message and Entry

Section 9.7. Checkbutton, Radiobutton, and Scale
Section 9.8. Running GUI Code Three Ways
Section 9.9. Images

Section 9.10. Viewing and Processing Images with PIL
Chapter 10. A Tkinter Tour, Part 2

Section 10.1. "On Today's Menu: Spam, Spam, and Spam"
Section 10.2. Menus

Section 10.3. Listboxes and Scrollbars

Section 10.4. Text

Section 10.5. Canvas

Section 10.6. Grids

Section 10.7. Time Tools, Threads, and Animation
Section 10.8. The End of the Tour

Section 10.9. The PyDemos and PyGadgets Launchers
Chapter 11. GUI Coding Technigues

Section 11.1. "Building a Better Mouse Trap"

Section 11.2. GuiMixin: Common Tool Mixin Classes

Section 11.3. GuiMaker: Automating Menus and Toolbars
Section 11.4. ShellGui: GUIs for Command-Line Tools
Section 11.5. GuiStreams: Redirecting Streams to Widgets

Section 11.6. Reloading Callback Handlers Dynamically

Section 11.7. Wrapping Up Top-Level Window Interfaces
Section 11.8. GUIs, Threads, and Queues

Section 11.9. More Ways to Add GUIs to Non-GUI Code
Chapter 12. Complete GUI Programs

Section 12.1. "Python, Open Source, and Camaros"
Section 12.2. PyEdit: A Text Editor Program/Object
Section 12.3. PyPhoto: An Image Viewer and Resizer

Section 12.4. PyView: An Image and Notes Slideshow

Section 12.5. PyDraw: Painting and Moving Graphics
Section 12.6. PyClock: An Analog/Digital Clock Widget
Section 12.7. PyToe: A Tic-Tac-Toe Game Widget
Section 12.8. Where to Go from Here

Part IV: Internet Programming

Chapter 13. Network Scripting

Section 13.1. "Tune In, Log On, and Drop Out"

Section 13.2. Plumbing the Internet

Section 13.3. Socket Programming

Section 13.4. Handling Multiple Clients

Section 13.5. A Simple Python File Server
Chapter 14. Client-Side Scripting

Section 14.1. "Socket to Me!"

Section 14.2. FTP: Transferring Files over the Net

Section 14.3. Processing Internet Email

Section 14.4. POP: Fetching Email

Section 14.5. SMTP: Sending Email

Section 14.6. email: Parsing and Composing Mails

Section 14.7. pymail: A Console-Based Email Client

Section 14.8. The mailtools Utility Package

Section 14.9. NNTP: Accessing Newsgroups
Section 14.10. HTTP: Accessing Web Sites
Section 14.11. Module urllib Revisited

Section 14.12. Other Client-Side Scripting Options
Chapter 15. The PyMailGUI Client

Section 15.1. "Use the Source, Luke"

Section 15.2. A PyMailGUI Demo

Section 15.3. PyMailGUI Implementation

Chapter 16. Server-Side Scripting

Section 16.1. "Oh What a Tangled Web We Weave"
Section 16.2. What's a Server-Side CGI Script?
Section 16.3. Running Server-Side Examples

Section 16.4. Climbing the CGI Learning Curve

Section 16.5. Saving State Information in CGI Scripts
Section 16.6. The Hello World Selector

Section 16.7. Refactoring Code for Maintainability
Section 16.8. More on HTML and URL Escapes
Section 16.9. Transferring Files to Clients and Servers
Chapter 17. The PyMailCGI Server

Section 17.1. "Things to Do When Visiting Chicago”
Section 17.2. The PyMailCGI Web Site

Section 17.3. The Root Page

Section 17.4. Sending Mail by SMTP

Section 17.5. Reading POP Email

Section 17.6. Processing Fetched Mail

Section 17.7. Utility Modules

Section 17.8. CGl Script Trade-Offs

Chapter 18. Advanced Internet Topics

Section 18.1. "Surfing on the Shoulders of Giants"

Section 18.2. Zope: A Web Application Framework
Section 18.3. HTMLgen: Web Pages from Objects
Section 18.4. Jython: Python for Java

Section 18.5. Grail: A Python-Based Web Browser
Section 18.6. XML Processing Tools

Section 18.7. Windows Web Scripting Extensions

Section 18.8. Python Server Pages

Section 18.9. Rolling Your Own Servers in Python
Section 18.10. And Other Cool Stuff
Part V: Tools and Techniques

Chapter 19. Databases and Persistence

Section 19.1. "Give Me an Order of Persistence, but Hold the Pickles"
Section 19.2. Persistence Options in Python

Section 19.3. DBM Files

Section 19.4. Pickled Objects

Section 19.5. Shelve Files

Section 19.6. The ZODB Object-Oriented Database

Section 19.7. SQL Database Interfaces

Section 19.8. PyForm: A Persistent Object Viewer

Chapter 20. Data Structures
Section 20.1. "Roses Are Red, Violets Are Blue; Lists Are Mutable, and So Is Set Foo"

Section 20.2. Implementing Stacks

Section 20.3. Implementing Sets

Section 20.4. Subclassing Built-In Types

Section 20.5. Binary Search Trees

Section 20.6. Graph Searching

Section 20.7. Reversing Sequences

Section 20.8. Permuting Sequences

Section 20.9. Sorting Sequences
Section 20.10. Data Structures Versus Python Built-Ins
Section 20.11. PyTree: A Generic Tree Object Viewer

Chapter 21. Text and Language

Section 21.1. "See Jack Hack. Hack, Jack, Hack"
Section 21.2. Strategies for Parsing Text in Python
Section 21.3. String Method Utilities

Section 21.4. Regular Expression Pattern Matching

Section 21.5. Advanced Language Tools

Section 21.6. Handcoded Parsers

Section 21.7. PyCalc: A Calculator Program/Object
Part VI: Integration

Chapter 22. Extending Python

Section 22.1. "I Am Lostat C"

Section 22.2. Integration Modes

Section 22.3. C Extensions Overview

Section 22.4. A Simple C Extension Module
Section 22.5. Extension Module Details

Section 22.6. The SWIG Integration Code Generator
Section 22.7. Wrapping C Environment Calls
Section 22.8. A C Extension Module String Stack
Section 22.9. A C Extension Type String Stack
Section 22.10. Wrapping C++ Classes with SWIG
Section 22.11. Other Extending Tools

Chapter 23. Embedding Python

Section 23.1. "Add Python. Mix Well. Repeat."
Section 23.2. C Embedding API Overview
Section 23.3. Basic Embedding Technigues

Section 23.4. Reqgistering Callback Handler Objects

Section 23.5. Using Python Classes in C
Section 23.6. A High-Level Embedding API: ppembed
Section 23.7. Other Integration Topics
Part VIlI: The End
Chapter 24. Conclusion: Python and the Development Cycle
Section 24.1. "That's the End of the Book, Now Here's the Meaning of Life"

Section 24.2. "Something's Wrong with the Way We Program Computers"
Section 24.3. The "Gilligan Factor"

Section 24.4. Doing the Right Thing

Section 24.5. Enter Python

Section 24.6. But What About That Bottleneck?

Section 24.7. On Sinking the Titanic

Section 24.8. So What's "Python: The Sequel"?

Section 24.9. In the Final Analysis.. . .

Section 24.10. Postscript to the Second Edition (2000)
Section 24.11. Postscript to the Third Edition (2006)
About the Author

Colophon
Index

=2

=a

Programming Python, Third Edition

by Mark Lutz

Copyright © 2006, 2001, 1996 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary O'Brien

Production Editor: Mary Brady

Copyeditor: Audrey Doyle

Proofreaders: Lydia Onofrei, Colleen Gorman, and Mary Brady
Indexer: Johnna VanHoose Dinse

Cover Designer: Edie Freedman

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

October 1996: First Edition.
March 2001: Second Edition.
August 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Programming Python, the image of an African rock python, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-00925-9

ISBN-13: 978-0-596-00925-0

[M]
=2

=1
Foreword

How Time Flies!

Ten years ago | completed the foreword for the first edition of this book. Python 1.3 was current
then, and 1.4 was in beta. | wrote about Python's origins and philosophy, and about how its first six
years changed my life. Python was still mostly a one-man show at the time, and | only mentioned
other contributors and the Python community in one paragraph near the end.

Five years later the second edition came out, much improved and quite a bit heftier, and | wrote a
new foreword. Python 2.0 was hot then, and the main topic of the foreword was evolution of the
language. Python 2.0 added a lot of new features, and many were concerned that the pace of change
would be unsustainable for the users of the language. | addressed this by promising feature-by-
feature backward compatibility for several releases and by regulating change through a community
process using Python Enhancement Proposals (PEPS).

By then, Python's development had become truly community-driven, with many developers (besides
myself) having commit privileges into the source tree. This move toward community responsibility
has continued ever since. My own role has become more limited over time, though have not yet been
reduced to playing a purely ceremonial function like that of the Dutch Queen.

Perhaps the biggest change in recent years is the establishment of the Python Software Foundation
(PSF), a non-profit organization that formally owns and manages the rights to the Python source
code and owns the Python trademark. Its board and members (helped by many nonmember
volunteers) also offer many services to the Python community, from the Python.org web site and
mailing lists to the yearly Python Conference. Membership in the PSF is by invitation only, but
donations are always welcome (and tax-deductible, at least in the U.S.).

The PSF does not directly control Python's development; however, the developers don't have to obey
any rules set by the PSF. Rather, it's the other way around: active Python developers make up the
majority of the PSF's membership. This arrangement, together with the open source nature of
Python's source code license, ensures that Python will continue to serve the goals of its users and
developers.

Coming Attractions

What developments can Python users expect to see in the coming years? Python 3000, which is
referred to in the foreword to the second edition as "intentionally vaporware,” will see the light of day
after all as Python 3.0. After half a decade of talk, it's finally time to start doing something about it.
I've created a branch of the 2.5 source tree, and, along with a handful of developers, I'm working on
transforming the code base into my vision for Python 3000. At the same time, I'm working with the
community on a detailed definition of Python 3000; there's a new mailing dedicated to Python 3000
and a series of PEPs, starting with PEP 3000.

This work is still in the early stages. Some changes, such as removing classic classes and string
exceptions, adopting Unicode as the only character type, and changing integer division so that 1/2

returns 0.5 instead of truncating toward zero, have been planned for years. But many other changes
are still being hotly debated, and new features are being proposed almost daily.

| see my own role in this debate as a force of moderation: there are many more good ideas than
could possibly be implemented in the given time, and, taken together, they would change the
language so much that it would be unrecognizable. My goal for Python 3000 is to fix some of my
oldest design mistakes, especially the ones that can't be fixed without breaking backward
compatibility. That alone will be a huge task. For example, a consequence of the choice to use
Unicode everywhere is the need for a total rewrite of the standard 1/0 library and a new data type to
represent binary ("noncharacter™) data, dubbed "bytes."

The biggest potential danger for Python 3000 is that of an "accidental paradigm shift": a change, or
perhaps a small set of changes that weren't considered together, that would unintentionally cause a
huge change to the way people program in Python. For example, adding optional static type checking
to the language could easily have the effect of turning Python into "Java without braces"which is
definitely not what most users would like to see happen! For this reason, | am making it my personal
responsibility to guide the Python 3000 development process. The new language should continue to
represent my own esthetics for language design, not a design-by-committee compromise or a radical
departure from today's Python. And if we don't get everything right, well, there's always Python
4000....

The timeline for 3.0 is roughly as follows: | expect the first alpha release in about a year and the first
production release a year later. | expect that it will then take another year to shake out various
usability issues and get major third-party packages ported, and, finally, another year to gain
widespread user acceptance. So, Mark should have about three to four years before he'll have to
start the next revision of this book.

To learn more about Python 3000 and how we plan to help users convert their code, start by reading
PEP 3000. (To find PEP 3000 online, search for it in Google.)

In the meantime, Python 2.x is not dead yet. Python 2.5 will be released around the same time as
this book (it's in late alpha as | am writing this). Python's normal release cycle produces a new
release every 1218 months. | fully expect version 2.6 to see the light of day while Python 3000 is still
in alpha, and it's likely that 2.7 will be released around the same time as 3.0 (and that more users
will download 2.7 than 3.0). A 2.8 release is quite likely; such a release might back-port certain
Python 3.0 features (while maintaining backward compatibility with 2.7) in order to help users
migrate code. A 2.9 release might happen, depending on demand. But in any case, 2.10 will be right
out!

(If you're not familiar with Python's release culture, releases like 2.4 and 2.5 are referred to as
"major releases." There are also "bug-fix releases," such as 2.4.3. Bug-fix releases are just that: they
fix bugs and, otherwise, maintain strict backward and forward compatibility within the same major
release. Major releases introduce new features and maintain backward compatibility with at least one
or two previous major releases, and, in most cases, many more than that. There's no specific name
for "earth-shattering" releases like 3.0, since they happen so rarely.)

Concluding Remarks

Programming Python was the first or second book on Python ever published, and it's the only one of
the early batch to endure to this day. | thank its author, Mark Lutz, for his unceasing efforts in
keeping the book up-to-date, and its publisher, O'Reilly, for keeping the page count constant for this
edition.

Some of my fondest memories are of the book's first editor, the late Frank Willison. Without Frank's
inspiration and support, the first two editions would never have been. He would be proud of this third

edition.

I must end in a fine tradition, with one of my favorite Monty Python quotes: "Take it away, Eric the
orchestra leader!™

Guido van Rossum

Belmont, California, May 2006

Foreword to the Second Edition (2001)

Less than five years ago, | wrote the Foreword for the first edition of Programming Python. Since
then, the book has changed about as much as the language and the Python community! I no longer
feel the need to defend Python: the statistics and developments listed in Mark's Preface speak for
themselves.

In the past year, Python has made great strides. We released Python 2.0, a big step forward, with
new standard library features such as Unicode and XML support, and several new syntactic
constructs, including augmented assignment: you can now write x += 1 instead of x = x+1. A few
people wondered what the big deal was (answer: instead of x, imagine di ct[key] or |ist[index]),
but overall this was a big hit with those users who were already used to augmented assignment in
other languages.

Less warm was the welcome for the extended print statement, print >>fil e, a shortcut for printing to
a different file object than standard output. Personally, it's the Python 2.0 feature | use most
frequently, but most people who opened their mouths about it found it an abomination. The
discussion thread on the newsgroup berating this simple language extension was one of the longest
everapart from the never-ending Python versus Perl thread.

Which brings me to the next topic. (No, not Python versus Perl. There are better places to pick a fight
than a Foreword.) I mean the speed of Python's evolution, a topic dear to the heart of the author of
this book. Every time | add a feature to Python, another patch of Mark's hair turns graythere goes
another chapter out of date! Especially the slew of new features added to Python 2.0, which appeared
just as he was working on this second edition, made him worry: what if Python 2.1 added as many
new things? The book would be out of date as soon as it was published!

Relax, Mark. Python will continue to evolve, but I promise that | won't remove things that are in
active use! For example, there was a lot of worry about the string module. Now that string objects
have methods, the string module is mostly redundant. | wish | could declare it obsolete (or
deprecated) to encourage Python programmers to start using string methods instead. But given that
a large majority of existing Python codeeven many standard library modulesimports the string
module, this change is obviously not going to happen overnight. The first likely opportunity to
remove the string module will be when we introduce Python 3000; and even at that point, there will
probably be a string module in the backwards compatibility library for use with old code.

Python 3000?! Yes, that's the nickname for the next generation of the Python interpreter. The name
may be considered a pun on Windows 2000, or a reference to Mystery Science Theater 3000, a
suitably Pythonesque TV show with a cult following. When will Python 3000 be released? Not for a
loooooong timealthough you won't quite have to wait until the year 3000.

Originally, Python 3000 was intended to be a complete rewrite and redesign of the language. It would
allow me to make incompatible changes in order to fix problems with the language design that
weren't solvable in a backwards compatible way. The current plan, however, is that the necessary
changes will be introduced gradually into the current Python 2.x line of development, with a clear
transition path that includes a period of backwards compatibility support.

Take, for example, integer division. In line with C, Python currently defines x/y with two integer
arguments to have an integer result. In other words, 1/2 yields 0! While most dyed-in-the-wool
programmers expect this, it's a continuing source of confusion for newbies, who make up an ever-
larger fraction of the (exponentially growing) Python user population. From a numerical perspective,
it really makes more sense for the / operator to yield the same value regardless of the type of the
operands: after all, that's what all other numeric operators do. But we can't simply change Python so
that 1/2 yields 0.5, because (like removing the string module) it would break too much existing code.
What to do?

The solution, too complex to describe here in detail, will have to span several Python releases, and
involves gradually increasing pressure on Python programmers (first through documentation, then
through deprecation warnings, and eventually through errors) to change their code. By the way, a
framework for issuing warnings will be introduced as part of Python 2.1. Sorry, Mark!

So don't expect the announcement of the release of Python 3000 any time soon. Instead, one day
you may find that you are already using Python 3000only it won't be called that, but rather
something like Python 2.8.7. And most of what you've learned in this book will still apply! Still, in the
meantime, references to Python 3000 will abound; just know that this is intentionally vaporware in
the purest sense of the word. Rather than worry about Python 3000, continue to use and learn more
about the Python version that you do have.

I'd like to say a few words about Python's current development model. Until early 2000, there were
hundreds of contributors to Python, but essentially all contributions had to go through my inbox. To
propose a change to Python, you would mail me a context diff, which I would apply to my work
version of Python, and if I liked it, | would check it into my CVS source tree. (CVS is a source code
version management system, and the subject of several books.) Bug reports followed the same path,
except | also ended up having to come up with the patch. Clearly, with the increasing number of
contributions, my inbox became a bottleneck. What to do?

Fortunately, Python wasn't the only open source project with this problem, and a few smart people at
VA Linux came up with a solution: SourceForge! This is a dynamic web site with a complete set of
distributed project management tools available: a public CVS repository, mailing lists (using Mailman,
a very popular Python application!), discussion forums, bug and patch managers, and a download
area, all made available to any open source project for the asking.

We currently have a development group of 30 volunteers with SourceForge checkin privileges, and a
development mailing list comprising twice as many folks. The privileged volunteers have all sworn
their allegiance to the BDFL (Benevolent Dictator For Lifethat's me :-). Introduction of major new
features is regulated via a lightweight system of proposals and feedback called Python Enhancement
Proposals (PEPs). Our PEP system proved so successful that it was copied almost verbatim by the Tcl
community when they made a similar transition from Cathedral to Bazaar.

So, it is with confidence in Python's future that I give the floor to Mark Lutz. Excellent job, Mark. And
to finish with my favorite Monty Python quote: Take it away, Eric, the orchestra leader!

Guido van Rossum

Reston, Virginia, January 2001

Foreword from the First Edition (1996)

As Python's creator, I'd like to say a few words about its origins, adding a bit of personal philosophy.

Over six years ago, in December 1989, | was looking for a "hobby" programming project that would
keep me occupied during the week around Christmas. My office (a government-run research lab in

Amsterdam) would be closed, but | had a home computer, and not much else on my hands. |
decided to write an interpreter for the new scripting language | had been thinking about lately: a
descendant of ABC that would appeal to UNIX/C hackers. | chose Python as a working title for the
project, being in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus).

Today, | can safely say that Python has changed my life. | have moved to a different continent. |
spend my working days developing large systems in Python, when I'm not hacking on Python or
answering Python-related email. There are Python T-shirts, workshops, mailing lists, a newsgroup,
and now a book. Frankly, my only unfulfilled wish right now is to have my picture on the front page
of the New York Times. But before | get carried away daydreaming, here are a few tidbits from
Python's past.

It all started with ABC, a wonderful teaching language that | had helped create in the early eighties.
It was an incredibly elegant and powerful language aimed at nonprofessional programmers. Despite
all its elegance and power and the availability of a free implementation, ABC never became popular in
the UNIX/C world. I can only speculate about the reasons, but here's a likely one: the difficulty of
adding new "primitive" operations to ABC. It was a monolithic closed system, with only the most
basic 1/0 operations: read a string from the console, write a string to the console. | decided not to
repeat this mistake in Python.

Besides this intention, | had a number of other ideas for a language that improved upon ABC, and
was eager to try them out. For instance, ABC's powerful data types turned out to be less efficient
than we hoped. There was too much emphasis on theoretically optimal algorithms, and not enough
tuning for common cases. | also felt that some of ABC's features, aimed at novice programmers,
were less desirable for the (then!) intended audience of experienced UNIX/C programmers. For
instance: ABC's idiosyncratic syntax (all uppercase keywords!), some terminology (for example,
"how-to" instead of "procedure"); and the integrated structured editor, which its users almost
universally hated. Python would rely more on the UNIX infrastructure and conventions, without being
UNIX-bound. And in fact, the first implementation was done on a Macintosh.

As it turned out, Python is remarkably free from many of the hang-ups of conventional programming
languages. This is perhaps due to my choice of examples: besides ABC, my main influence was
Modula-3. This is another language with remarkable elegance and power, designed by a small,
strong-willed team (most of whom | had met during a summer internship at DEC's Systems Research
Center in Palo Alto). Imagine what Python would have looked like if 1 had modeled it after the UNIX
shell and C instead! (Yes, | borrowed from C too, but only its least controversial features, in my
desire to please the UNIX/C audience.)

Any individual creation has its idiosyncracies, and occasionally its creator has to justify them. Perhaps
Python's most controversial feature is its use of indentation for statement grouping, which derives
directly from ABC. It is one of the language's features that is dearest to my heart. It makes Python
code more readable in two ways. First, the use of indentation reduces visual clutter and makes
programs shorter, thus reducing the attention span needed to take in a basic unit of code. Second, it
allows the programmer less freedom in formatting, thereby enabling a more uniform style, which
makes it easier to read someone else's code. (Compare, for instance, the three or four different
conventions for the placement of braces in C, each with strong proponents.)

This emphasis on readability is no accident. As an object-oriented language, Python aims to
encourage the creation of reusable code. Even if we all wrote perfect documentation all of the time,
code can hardly be considered reusable if it's not readable. Many of Python's features, in addition to
its use of indentation, conspire to make Python code highly readable. This reflects the philosophy of
ABC, which was intended to teach programming in its purest form, and therefore placed a high value
on clarity.

Readability is often enhanced by reducing unnecessary variability. When possible, there's a single,
obvious way to code a particular construct. This reduces the number of choices facing the
programmer who is writing the code, and increases the chance that it will appear familiar to a second

programmer reading it. Yet another contribution to Python's readability is the choice to use
punctuation mostly in a conservative, conventional manner. Most operator symbols are familiar to
anyone with even a vague recollection of high school math, and no new meanings have to be learned
for comic strip curse characters like @&3$!.

I will gladly admit that Python is not the fastest running scripting language. It is a good runner-up,
though. With ever-increasing hardware speed, the accumulated running time of a program during its
lifetime is often negligible compared to the programmer time needed to write and debug it. This, of
course, is where the real time savings can be made. While this is hard to assess objectively, Python
is considered a winner in coding time by most programmers who have tried it. In addition, many
consider using Python a pleasurea better recommendation is hard to imagine.

I am solely responsible for Python's strengths and shortcomings, even when some of the code has
been written by others. However, its success is the product of a community, starting with Python's
early adopters who picked it up when | first published it on the Net, and who spread the word about
it in their own environment. They sent me their praise, criticism, feature requests, code
contributions, and personal revelations via email. They were willing to discuss every aspect of Python
in the mailing list that | soon set up, and to educate me or nudge me in the right direction where my
initial intuition failed me. There have been too many contributors to thank individually. I'll make one
exception, however: this book's author was one of Python's early adopters and evangelists. With this
book's publication, his longstanding wish (and mine!) of having a more accessible description of
Python than the standard set of manuals, has been fulfilled.

But enough rambling. I highly recommend this book to anyone interested in learning Python, whether
for personal improvement or as a career enhancement. Take it away, Eric, the orchestra leader! (If
you don't understand this last sentence, you haven't watched enough Monty Python reruns.)

Guido van Rossum

Reston, Virginia, May 1996

=a

@ Frev |
Preface

"And Now for Something Completely Different ... Again"

This book teaches application-level programming with Python. That is, it is about what you can do
with the language once you've mastered its fundamentals.

By reading this book, you will learn to use Python in some of its most common roles: to build GUIs,
web sites, networked tools, scripting interfaces, system administration programs, database and text
processing utilities, and more.

Along the way, you will also learn how to use the Python language in realistically scaled
programsconcepts such as object-oriented programming (OOP) and code reuse are recurring side
themes throughout this text. And you will gain enough information to further explore the application
domains introduced in the book, as well as to explore others.

About This Book

Now that I've told you what this book is, | should tell you what it is not. First of all, this book is not a
reference manual. Although the index can be used to hunt for information, this text is not a dry
collection of facts; it is designed to be read. And while many larger examples are presented along the
way, this book is also not just a collection of minimally documented code samples.

Rather, this book is a tutorial that teaches the most common Python application domains from the
ground up. It covers each of Python's target domains gradually, beginning with in-depth discussions
of core concepts in each domain, before progressing toward complete programs. Large examples do
appear, but only after you've learned enough to understand their techniques and code.

For example, network scripting begins with coverage of network basics and protocols and progresses
through sockets, client-side tools, HTML and CGI fundamentals, and web frameworks. GUI
programming gets a similarly gentle presentation, with one introductory and two tutorial chapters,
before reaching larger, complete programs. And system interfaces are explored carefully before
being applied in real and useful scripts.

In a sense, this book is to application-level programming what the book Learning Python is to the
core Python languagea learning resource that makes no assumptions about your prior experience in
the domains it covers. Because of this focus, this book is designed to be a natural follow-up to the
core language material in Learning Python and a next step on the way to mastering the many facets
of Python programming.

In deference to all the topic suggestions | have received over the years, | should also point out that
this book is not intended to be an in-depth look at specific systems or tools. With perhaps one million
Python users in the world today, it would be impossible to cover in a useful way every Python-related
system that is of interest to users.

Instead, this book is designed as a tutorial for readers new to the application domains covered. The
web chapters, for instance, focus on core web scripting ideas, such as server-side scripts and state

retention options, not on specific systems, such as SOAP, Twisted, and Plone. By reading this book,
you will gain the groundwork necessary to move on to more specific tools such as these in the
domains that interest you.

About This Edition

To some extent, this edition's structure is a result of this book's history. The first edition of this book,
written in 1995 and 1996, was the first book project to present the Python language. Its focus was
broad. It covered the core Python language, and it briefly introduced selected application domains.
Over time, the core language and reference material in the first edition evolved into more focused
books Learning Python and Python Pocket Reference.

Given that evolution, the second edition of this book, written from 1999 to 2000, was an almost
completely new book on advanced Python topics. Its content was an expanded and more complete
version of the first edition's application domain material, designed to be an application-level follow-up
to the core language material in Learning Python, and supplemented by the reference material in
Python Pocket Reference. The second edition focused on application libraries and tools rather than on
the Python language itself, and it was oriented toward the practical needs of real developers and real
tasksGUIs, web sites, databases, text processing, and so on.

This third edition, which I wrote in 2005 and 2006, is exactly like the second in its scope and focus,
but it has been updated to reflect Python version 2.4, and to be compatible with the upcoming
Python 2.5. It is a minor update, and it retains the second edition's design and scope as well as much
of its original material. However, its code and descriptions have been updated to incorporate both
recent changes in the Python language, as well as current best practices in Python programming.

Python Changes

You'll find that new language features such as string methods, enclosing-function scope references,
list comprehensions, and new standard library tools, such as the emai | package, have been
integrated throughout this edition. Smaller code changesfor instance, replacing appl y calls and
exc_t ype usage with the newer func(*args) and exc_i nf o() have been applied globally as well (and
show up surprisingly often, because this book is concerned with building general tools).

All string-based, user-defined exceptions are now class-based, too; string exceptions appeared half a
dozen times in the book's examples, but are documented as deprecated today. This is usually just a
matter of changing to cl ass MyExc(Exception): pass, though, in one case, exception constructor
arguments must be extracted manually with the instance's ar gs attribute. ' X' also became repr (X)
across all examples, and I've replaced some appearances of whi |l e 1: with the newer and more
mnemonic whi | e True: , though either form works as advertised and C programmers often find the
former a natural pattern. Hopefully, these changes will future-proof the examples for as long as
possible; be sure to watch the updates page described later for future Python changes.

One futurisms note: some purists might notice that I have not made all classes in this book derive
from obj ect to turn on new-style class features (e.g., cl ass MyCl ass(obj ect)). This is partly because
the programs here don't employ the new-style model's slightly modified search pattern or advanced
extensions. This is also because Python's creator, Guido van Rossum, told me that he believes this
derivation will not be required in Python 3.0standalone classes will simply be new-style too,
automatically (in fact, the new-style class distinction is really just a temporary regression due to its
incompatible search order in particular rare, multiple-inheritance trees). This is impossible to predict
with certainty, of course, and Python 3.0 might abandon compatibility in other ways that break some
examples in this book. Be sure to both watch for 3.0 release notes and keep an eye on this book's
updates page over time.

Example Changes

You'll also notice that many of the second edition's larger examples have been upgraded
substantially, especially the two larger GUI and CGI email-based examples (which are arguably the
implicit goals of much of the book). For instance:

¢ The PyMailGUI email client is a complete rewrite and now supports sending and receiving
attachments, offline viewing from mail save files, true transfer thread overlap, header-only
fetches and mail caches, auto-open of attachments, detection of server inbox message number
synchronization errors, and more.

e The PyMailCGIl email web site was also augmented to support sending and receiving mail
attachments, locate an email’'s main text intelligently, minimize mail fetches to run more
efficiently, and use the PyCrypto extension for password encryption.

¢ The PyEdit text editor has grown a font dialog; unlimited undo and redo; a configuration module
for fonts, colors, and sizes; intelligent modified tests on quit, open, new, and run; and case-
insensitive searches.

e PyPhoto, a new, major example in Chapter 12, implements an image viewer GUI with Tkinter
and the optional PIL extension. It supports cached image thumbnails, image resizing, saving
images to files, and a variety of image formats thanks to PIL.

e PyClock has incorporated a countdown timer and a custom window icon; PyCalc has various
cosmetic and functionality upgrades; and PyDemos now automatically pops up examples’
source files.

In addition to the enhanced and new, major examples, you'll also find many other examples that
demonstrate new and advanced topics such as thread queues.

Topic Changes

In addition to example changes, new topics have been added throughout. Among these are the
following:

e Part Il, System Programming, looks at the struct, ni nmetool s, and Stri ngl O modules and has
been updated for newer tools such as file iterators.

e Part 111, GUI Programming, has fresh coverage of threading and queues, the PIL imaging
library, and techniques for linking a separately spawned GUI with pipes and sockets.

e Part IV, Internet Programming, now uses the new emai | package; covers running a web server
on your local machine for CGI scripts; has substantially more on cookies, Zope, and XML
parsing; and uses the PyCrypto encryption toolkit.

e Chapter 19, Databases and Persistence, has new ZODB examples and much-expanded coverage
of the SQL API, including dozens of new pages on using MySQL and ZODB.

¢ Chapter 21, Text and Language, has a new, gentler introduction to pattern matching and
mentions Python 2.4 templates.

e Chapter 22, Extending Python, now introduces Di stuti | s and includes overviews of Pyrex, SIP,
ctypes, Boost.Python, and CXX, in addition to offering updated SWIG coverage.

Beyond these specific kinds of changes, some material has been reorganized to simplify the overall
structure. For example, a few chapters have been split up to make them less challenging; appendixes
have been removed to save space (references are available separately); and the PyErrata web site
example chapter has been removed (it didn't present many new concepts, so we've made it and its
code available in the book's examples distribution as optional reading).

You'll also find a new "Sneak Preview" chapter for readers in a hurrya throwback to the first edition.
This chapter takes a single example from command line to GUI to web site, and introduces Python
and its libraries along the way.

Focus Unchanged

Fundamentally, though, this edition, like the second, is still focused on ways to use Python rather
than on the language itself. Python development concepts are explored along the wayin fact, they
really become meaningful only in the context of larger examples like those in this edition. Code
structure and reuse, for instance, are put into practice by refactoring and reusing examples
throughout the book.

But in general, this text assumes that you already have at least a passing acquaintance with Python

language fundamentals, and it moves on to present the rest of the Python storyits application to real
tasks. If you find code in this book confusing, | encourage you to read Learning Python as a prelude
to this text.

In the remainder of this preface, I'll explain some of the rationales for this design, describe the
structure of this edition in more detail, and give a brief overview of how to use the Python programs
shipped in the book examples package.

This Book's Motivation

Over the 10 years since the first edition of this book was written, Python has transitioned from an
emerging language that was of interest primarily to pioneers to a widely accepted tool used by
programmers for day-to-day development tasks. Along the way, the Python audience has changed as
well, and this book has been refocused with this new readership in mind. You will find that it is a
nuts-and-bolts text, geared less toward introducing and popularizing the language and more toward
showing you how to apply Python for realistically scaled programming tasks.

So, What's Python?

If you are looking for a concise definition of this book's topic, try this:

Python is a general-purpose, open source computer programming language optimized for
quality, productivity, portability, and integration. It is used by hundreds of thousands of
developers around the world in areas such as Internet scripting, systems programming,
user interfaces, product customization, and more.

As a popular programming language that shrinks the development time, Python is used
in a wide variety of products and roles. Counted among its current user base are Google,
Industrial Light & Magic, ESRI, the BitTorrent file sharing system, NASA's Jet Propulsion
Lab, and the U.S. National Weather Service. Python's application domains range from
system administration, web site development, cell phone scripting, and education to
hardware testing, investment analysis, computer games, and spacecraft control.

Among other things, Python sports OOP; a remarkably simple, readable, and
maintainable syntax; integration with C components; and a vast collection of precoded
interfaces and utilities. Its tool set makes it a flexible and agile language, ideal for both
quick tactical tasks as well as longer-range strategic application development efforts.

Although it is a general-purpose language, Python is often called a scripting language
because it makes it easy to utilize and direct other software components. Perhaps
Python's best asset is simply that it makes software development more rapid and
enjoyable. To truly understand how, read on; we'll expand on these concepts in the next
chapter.

Since writing the first edition, | have also had the opportunity to teach Python classes in the U.S. and
abroad some 170 times as of mid-2006, and this book reflects feedback garnered from these training
sessions. The application domain examples, for instance, reflect interests and queries common
among the thousands of students | have introduced to Python. Teaching Python to workers in the
trenches, many of whom are now compelled to use Python on the job, also inspired a new level of
practicality that you will notice in this book's examples and topics.

Other book examples are simply the result of me having fun programming Python. Yes, fun. One of
the most common remarks I hear from Python newcomers is that Python is actually enjoyable to
useit is able to both kindle the excitement of programming among beginners and rekindle that
excitement among those who have toiled for years with more demanding tools. When you can code
as fast as you can think, programming becomes a very different proposition and feels more like
pleasure than work.

As you will see in this book, Python makes it easy to play with advanced but practical tools such as
threads, sockets, GUIs, web sites, and OOPareas that can be both tedious and daunting in traditional
languages such as C and C++. It enables things you may not have considered or attempted with
other tools.

Frankly, even after 14 years as a bona fide Pythonista, | still find programming most enjoyable when
I do it in Python. Python is a remarkably productive and flexible language, and witnessing its
application firsthand is an aesthetic pleasure. | hope this edition, as much as the two before it, will
both demonstrate how to reap Python's productivity benefits and communicate some of the
excitement to be found in this rewarding tool.

This Book's Structure

Although code examples are reused throughout the book and later chapters build upon material in
earlier chapters (e.g., GUIs), topics in this book are covered fairly independently and are grouped
together in different parts. If a particular domain's part doesn't interest you, you can generally skip
ahead to a part that does.

As a result, it's not too much of a stretch to consider this edition as akin to four or five books in one.
Its top-level structure underscores its application-topics focus (see the Table of Contents for a more
fine-grained look at the book's structure):

Part I, The Beginning

| start off with an overview of some of the main ideas behind Python and a quick sneak-
preview chapter to whet your appetite. The sneak preview doesn't teach much, but it serves as
an introduction and demo for some of the topics to come, and as a refresher for core Python
concepts such as OOP.

Part 11, System Programming

This section explores the system-level interfaces in Python as well as their realistic applications.
We'll look at topics such as threading, directory walkers, processes, environment variables, and
streams, and we will apply such tools to common system administration tasks such as directory
searchers and file splitters.

Part 111, GUI Programming

In this section, you'll learn how to build portable GUIs with Python. The Tkinter toolkit is
covered from the ground up as you move from basics to techniques to constructing complete
programs. You'll build text editors, clocks, and more in this part. GUIs also show up throughout
the rest of the book, and they often reuse some of the tools you'll build here.

Part 1V, Internet Programming

In this section, you'll learn all about using Python on the Internet. | begin with network basics
and sockets, move through client-side tools like FTP and email, and end up using server-side
tools to implement interactive web sites. Along the way, I'll contrast different ways to move
bits around the Web with Python. You'll code GUI and web-based email programs, for example,
to help underscore trade-offs between client- and server-side techniques. A final chapter in this
part surveys more advanced toolkits and techniques for Internet-related application
developmentZope, Jython, XML, and the like.

Part V, Tools and Technigues

This part is a collection of tool topics that span application domainsdatabase interfaces and
object persistence, text and language processing, and data structure implementation. You'll
build GUIs here for browsing databases, viewing data structures, and performing calculations.

Part VI, Integration

This part of the book looks at the interfaces available for mixing Python with programs written
in C and C++. These interfaces allow Python to script existing libraries and to serve as an
embedded customization tool. As you'll see, by combining Python with compiled languages,
programs can be both flexible and efficient.

Part VII, The End

Finally, I'll wrap up with a conclusion that looks at some of the implications of Python's
scripting role.

Two notes about the structure: first of all, don't let these titles fool youalthough most have to do with
application topics, Python language features and general design concepts are still explored along the
way, in the context of real-world goals. Secondly, readers who use Python as a standalone tool can
safely skip the integration part, though | still recommend a quick glance. C programming isn't nearly
as fun or as easy as Python programming is. Yet, because integration is central to Python's role as a
scripting tool, a cursory understanding can be useful, regardless of whether you do integrating,
scripting, or both.

This Edition's Design

The best way to get a feel for any book is to read it, of course. But especially for people who are
familiar with the prior edition, this section will clarify regarding what is new this time around.

It's Been Updated for Python 2.4 (and 2.5)

All of the example code has been upgraded to use the latest features of the Python language and its
standard library. Python is still largely compatible with the code in the first two editions, but recent
language additions such as nested scopes and list comprehensions simplify many coding tasks. For
instance, default arguments are no longer required to pass objects into most lambda expressions,
and the new emai | package greatly simplifies the tasks of parsing and adding email attachments. See
the Python changes list earlier in this chapter for more on this subject.

Although the GUI examples in this book required almost no code changes, they have been updated to
run on Tk 8.4, the library used by Python 2.4 as its standard portable GUI toolkit. Among other
things, the latest Tk allows window icons to be set by the program. Although begun under 2.4, this
edition is also compatible with the upcoming Python 2.5 release.

It's Been Reorganized

A few chapters have been moved to make the flow more logical; for example, the sections on files
and directories and the PyMailGUI example are now in chapters of their own. In addition, all
appendixes were cut (this book is neither a reference nor a Python changes log), and a new initial
preview chapter was added to introduce topics explored throughout the book.

As mentioned earlier, in deference to space, one second-edition chapterthat on the PyErrata web
sitehas been cut in this edition. Its main, unique topics on state retention have been incorporated
into other chapters. The original source code for the PyErrata site still appears on the book's
examples package, as supplemental reading.[*1

[11 regret cutting this chapter, but new material was added, and as you can tell, this is already a substantial book. As my first editor,
Frank Willison, famously said when the second edition came out, if this book were run over by a truck, it would do damage....

It Covers New Topics

You'll find much-expanded coverage of Zope, the ZODB database, threading tools and techniques
including the queue module, SQL interfaces, XML parsing, and more. See the example and topic
changes lists provided earlier for additional details. Most of the new or expanded topics are a result of
the evolution of common practice in the Python world. While this book doesn't address core language
evolution directly (the basics of new language tools such as list comprehensions are the domain of
the text Learning Python), it does employ it throughout its examples.

It's Still Mostly Platform-Neutral

Except for some C integration examples, the majority of the programs in this edition were developed
on Windows XP computers, with an eye toward portability to Linux and other platforms. In fact, some
of the examples were born of my desire to provide portable Python equivalents of tools missing on
Windows (e.g., file splitters). When programs are shown in action, it's usually on Windows; they are
demonstrated on the Linux platform only if they exercise Unix-specific interfaces.

This is not meant as a political statement; it is mostly a function of the fact that | wrote this book
with Microsoft Word. When time is tight, it's more convenient to run scripts on the same platform as
your publishing tools than to frequently switch platforms. Luckily, because Python has become so
portable, the underlying operating system is largely irrelevant to developers. Python, its libraries, and
its Tkinter GUI framework work extremely well on all major platforms today.

Where platform issues do come into play, though, I've made the examples as platform-neutral as
possible, and | point out platform-specific issues along the way. Generally speaking, most of the
scripts should work unchanged on common Python platforms. For instance, all the GUI examples
were tested on both Windows (ME, XP) and Linux (KDE, Gnome), and most of the command-line and
thread examples were developed on Windows but work on Linux too. Because Python's system
interfaces are built to be portable, this is easier than it may sound; it's largely automatic.

On the other hand, this book does delve into platform-specific topics where appropriate. For instance,
there is coverage of many Windows-specific topicsActive Scripting, COM, program launch options,
and so on. Linux and Unix readers will also find material geared toward their platformsforks, pipes,
and the like.

C integration code platform issues

The one place where readers may still catch a glimpse of platform biases is in the Python/C
integration examples. For simplicity, the C compilation details covered in this text are still somewhat
Unix/Linux-oriented. One can make a reasonable case for such a focusnot only does Linux come with
C compilers, but the Unix development environment it provides grew up around that language. On
standard Windows, the C code shown in this book will work, but you may need to use different build
procedures (they vary per Windows compiler, some of which are very similar to Linux compilers).

In fact, for this third edition of the book, many of the C integration examples were run on the Cygwin
system, not on Linux. Cygwin provides a complete, Unix-like environment and library for Windows. It
includes C development tools, command-line utilities, and a version of Python that supports Unix
tools not present in the standard Windows Python, including process forks and fifos. Unlike Linux,
because it runs on Windows, Cygwin does not require a complete operating system installation (see

http://www.cygwin.com).

Cygwin has a GPL-style, open source license that requires giving away code (more on this later in the
book). If you do not wish to download and install Cygwin, you may have to translate some of the C
integration build files for your platform; the standard C development concepts apply. On standard
Windows, you'll have to translate for your C compiler. O'Reilly has published an outstanding text,
Python Programming on Win32, that covers Windows-specific Python topics like this, and it should
help address any disparity you may find here.

It's Still Focused for a More Advanced Audience

Becoming proficient in Python involves two distinct tasks: learning the core language itself, and then
learning how to apply it in applications. This book addresses the latter (and larger) of these tasks by
presenting Python libraries, tools, and programming techniques.

Learning Python syntax and datatypes is an important first step, and a prerequisite to this book. Very
soon after you've learned how to slice a list, though, you'll find yourself wanting to do real things, like
writing scripts to compare file directories, responding to user requests on the Internet, displaying
images in a window, reading email, and so on. Most of the day-to-day action is in applying the
language, not the language itself.

That's what this book is for. It covers libraries and tools beyond the core language, which become
paramount when you begin writing real applications. It also addresses larger software design issues
such as reusability and OOP, which can be illustrated only in the context of realistically scaled
programs. Because it assumes you already know Python, this is a somewhat advanced text; again, if
you find yourself lost, you might do well to learn the core language from other resources before
returning here.

It's Still Example-Oriented

Although this book teaches concepts before applying them, it still contains many larger working
programs that tie together concepts presented earlier in the book and demonstrate how to use
Python for realistically scaled tasks. Among them:

PyEdit
A Python/Tk text-file editor object and program

PyView

A photo image and note-file slideshow

PyDraw

A paint program for drawing and moving image objects

PyTree

http://www.cygwin.com

A tree data structure drawing program

PyClock

A Python/Tk analog and digital clock widget

PyToe

An Al-powered graphical tic-tac-toe program

PyForm

A persistent object table browser

PyCalc

A calculator widget in Python/Tk

PyMailGUI

A Python/Tkinter POP and SMTP email client

PyFtp

A simple Python/Tk file-transfer GUI

PyMailCGl

A web-based email client interface

PyPhoto
A new thumbnail picture viewer with resizing and saves

See the earlier example changes list for more about how some of these have mutated in this edition.
Besides the major examples listed here, there are also mixed-mode C integration examples (e.g.,
callback registration and class object processing); SWIG examples (with and without "shadow"
classes for C++); more Internet examples (FTP upload and download scripts, NNTP and HTTP
examples, email tools, and socket and sel ect module examples); many examples of Python threads
and thread queues; and coverage of Jython, HTMLgen, Zope, COM, XML parsing, and Python ZODB
and MySQL database interfaces. In addition, as mentioned earlier, the second edition's PyErrata web
site example appears in the examples distribution.

But It's Still Not a Reference Manual

This edition, like the first, is still more of a tutorial than a reference manual (despite
sharing a title pattern with a popular Perl reference text). This book aims to teach, not to
document. You can use its table of contents and index to track down specifics, and the
new structure helps make this easy to do. But this edition is still designed to be used in
conjunction with, rather than to replace, Python reference manuals. Because Python's
manuals are free, well written, available online, and change frequently, it would be folly
to devote space to parroting their content. For an exhaustive list of all tools available in
the Python system, consult other books (e.g., O'Reilly's Python Pocket Reference and
Python in a Nutshell) or the standard manuals at Python's web site (see
http://www.python.org/doc).

Using the Book's Examples

Because examples are central to the structure of this book, | want to briefly describe how to use
them here. In general, though, see the following text files in the examples directory for more details:

README-root.txt

Package structure notes

PP3E\README-PP3E.txt
General usage notes

Of these, the README-PP3E.txt file is the most informative. In addition, the PP3E\Config directory
contains low-level configuration file examples for Windows and Linux, which may or may not be
applicable to your usage. | give an overview of some setup details here, but the preceding files give
the complete description.

The Book Examples Tree

In a sense, the directory containing the book's examples is itself a fairly sophisticated Python
software system and the examples within it have been upgraded structurally in a number of
important ways:

Examples directory tree: a package

The entire examples distribution has been organized as one Python module package to facilitate
cross-directory imports and avoid name clashes with other Python code installed on your
computer. All cross-directory imports in book examples are package imports, relative to the
examples root directory.

http://www.python.org/doc

Using directory paths in import statements (instead of a complex PYTHONPATH) also tends to
make it easier to tell where modules come from. Moreover, you now need to add only one
directory to your PYTHONPATH search-path setting for the entire book examples tree: the
directory containing the PP3E examples root directory. To reuse code in this book within your
own applications, simply import through the PP3E package root (e.g., from PP3E. Launcher

i nport which, orinport PP3E. Gui.Tool s.threadtool s).

Example filenames

Module names are now descriptive and of arbitrary length (I punted on 8.3 DOS compatibility
long ago), and any remaining all-uppercase filenames are long gone.

Example listing titles

Labels of example listings give the full directory pathname of the example's source file to help
you locate it in the examples distribution. For instance, an example source-code file whose
name is given as Example N-M: PP3E\Internet\Ftp\sousa.py refers to the file sousa.py in the
PP3E\Internet\Ftp subdirectory of the examples directory. The examples directory is the
directory containing the top-level PP3E directory of the book examples tree. The examples tree
is simply the Examples directory of the book examples distribution, described further in the
next section.

Example command lines

Similarly, command lines give their directory context. For example, when a command line is
shown typed after a system prompt, as in ...\ PP3E\ Syst eml St reans>, it is really to be typed at
a system command-line prompt, while working in the PP3E\System\Streams subdirectory in
your examples directory. Unix and Linux users: think / when you see \ in filename paths.

Example launchers

Because it's just plain fun to click on things right away, there are also self-configuring demo
launcher programs (described later), to give you a quick look at Python scripts in action with
minimal configuration requirements. You can generally run them straight from the examples
package without any configuration.

The Book Examples Distribution Package

You can find the book examples distribution package on the book's web page at O'Reilly's web site,
http://www.oreilly.com/catalog/python3/. The book examples directory is located in the PP3E
subdirectory of the topmost Examples directory in the packagethat is, Examples\PP3E on Windows
and Examples/PP3E on Linux.

If you've copied the examples to your machine, the examples directory is wherever you copied the
PP3E root directory. Example titles reflect this tree's structure. For instance, an example title of
PP3E\Preview\mod.py refers to the Examples\PP3E\Preview\mod.py file at the top level of the book
examples distribution package.

You can run most of the examples from within the package directly, but if you obtained them on a
CD, you'll want to copy them to a writable medium such as your hard drive to make changes, and to
allow Python to save .pyc compiled bytecode files for quicker startups. See the example package's

http://www.oreilly.com/catalog/python3/

top-level README file for more details, or browse the examples directory in your favorite file explorer
for a quick tour.

Depending on how often the book's distribution package is maintained, it may also contain extra
open source packages such as the latest releases of Python, the SWIG code generator, and Windows
extensions, but you can always find up-to-date releases of Python and other packages on the Web
(see Python's web site, http://www.python.org, or search the Web). In fact, you shouldmost likely,
the Web will very quickly become more current than any extra software included in the book's
package.

Running Examples: The Short Story

Now the fun stuffif you want to see some Python examples right away, do this:

1. Install Python from the book's distribution package or from Python's web site
(http://www.python.orqg), unless it is already present on your computer. If you use a Linux or
recent Macintosh, Python is probably already installed. On Windows, click on the name of the
Python self-installer program and do a default install (click Yes or Next in response to every
prompt). On other systems, see the README file.

2. Start one of the following self-configuring scripts located in the top-level Examples\PP3E
directory of the book examples package. Either click on their icons in your file explorer, or run
them from your system prompt (e.g., a Windows console box, or Linux xterm) using command
lines of the form pyt hon scri pt nanme (you may need to use the full path to pyt hon if it's not

implicit on your system):

Launch_PyDemos.pyw

The main Python/Tk demo launcher toolbar

Launch_PyGadgets_ bar.pyw

A Python/Tk utilities launcher bar

Launch_PyGadgets.py

Starts the standard Python/Tk utilities

LaunchBrowser.py
Opens the web examples index page in your web browser

The Launch_* scripts start Python programs portablyl™l and require only that Python be installedyou
don't need to set any environment variables first to run them. LaunchBrowser will work if it can find a
web browser on your machine even if you don't have an Internet link (though some Internet
examples won't work completely without a live link).

t1 All the demo and launcher scripts are written portably but are known to work only on Windows and Linux at the time of this writing;
they may require minor changes on other platforms. Apologies if you're using a platform that | could not test: Tk runs on Windows,
X Windows, and Macs; Python itself runs on everything from PDAs, iPods, and cell phones to real-time systems, mainframes, and

http://www.python.org
http://www.python.org

supercomputers; and my advance for writing this book wasn't as big as you may think.

The demo launchers also include a number of web-based programs that use a web browser for their
interface. When run, these programs launch a locally running web server coded in Python (we'll meet
this server script later in this book). Although these programs can run on a remote server too, they
still require a local Python installation to be used with a server running on your machine.

Running Examples: The Details

This section goes into a few additional details about running the book's example programs. If you're
in a hurry, feel free to skip this and run the programs yourself now.

Demos and gadgets

To help organize the book's examples, I've provided a demo launcher program GUI, PyDemos2.pyw,
in the top-level PP3E directory of the examples distribution. Figure P-1 shows PyDemos in action on
Windows after pressing a few buttons. We'll meet in this text all the programs shown in the figure.
The launcher bar itself appears on the top right of the screen; with it, you can run most of the major
graphical examples in the book with a mouse click, and view their source code in pop-up windows.
The demo launcher bar can also be used to start major Internet book examples if a browser can be
located on your machine and a Python-coded server can be started.

Figure P-1. The PyDemos launcher with gadgets and demos

74 PyEdit 2.0 o |[Weesioe T LDEd

FRAFREF AR AR AR AN R iR =

¥ Pybemoss.pyw

¥ Programming Fython, @nd and 3rd Edivion (FF3IE), 1999--2006

¥ Verzion 2.0, March 06: add sourre " ey = - r

¥ [P PyltaibGUn 2.1 - pop.earthlink. net =4 CES
+

§ Thts 11 olsn secves g ind MG - Python Tl el e (b

F exsmples seen’t GUI-based, and

F build scripts in the examples

¥ Al=g seal

¥

¥ - Pyfadgeta.py, & simpler acrip

Ehar you wish £o use onm & cely

¥ - PyGadgers bar.pyw, which crea

'I proTEaEs on demand. not all &

4

[5ave | Cua| Copy| Patts] Fina

4 l-l‘I'I
bt b iilibctctiiollin ‘| mwmlnmlwhmhmhﬂlru

3.0 = -':i.u Links
3.14155265359 st
b c d

E [~ . :
| ..-._.l\

w | ;| e

Besides launching demos, the PyDemos source code provides pointers to major examples in the
examples tree; see its code for details. You'll also find automated build scripts for the Python/C
integration examples in the Integration examples directory, which serve as indexes to major C
examples.

I've also included a top-level program called PyGadgets.py, and its relative, PyGadgets_bar.pyw, to
launch some of the more useful GUI book examples for real use instead of demonstration (mostly,
the programs | use; configure as desired). Run PyGadget s_bar to see how it looksit's a simple row of
buttons that pop up many of the same programs shown in Figure P-1, but for everyday use, not for
demonstrations. All of its programs are presented in this book as well and are included in the
examples distribution package. See the end of Chapter 10 for more on PyDemos and PyGadgets.

Setup requirements

Most demos and gadgets require a Python with Tkinter GUI support, but that is the default
configuration for Python out-of-the-box on Windows. As a result, most of the demos and gadgets
should "just work" on Windows. On some other platforms, you may need to install or enable Tkinter
for your Python; try it and seeif you get an error about Tkinter not being found, you'll need to
configure it. If it's not already present, Tkinter support can be had freely on the Web for all major
platforms (more on this in the GUI part of this book, but search the Web with Google for quick
pointers).

Two external dependency notes: PyPhoto will not run without PIL, and PyMailCGI runs without
PyCrypto but uses it if installed. Both PIL and PyCrypto are open source third-party extension
packages, but must be installed in addition to Python. Some book examples use additional third-
party tools (for instance, ZODB and MySQL in the database chapter), but these are not launched
from the demos and gadgets interfaces.

To run the files listed in the preceding section directly, you'll also need to set up your Python module
search path, typically with your PYTHONPATH environment variable or a .pth file. The book examples
tree ships as a simple directory and does not use Python's Di stutil s scripts to install itself in your
Python's site packages directory (this system works well for packed software, but can add extra steps
for viewing book examples).

If you want to run a collection of Python demos from the book right away, though, and you don't
want to bother with setting up your environment first, simply run these self-launching utility scripts in
the PP3E directory instead:

e Launch_PyDemos.pyw
e Launch_PyGadgets bar.pyw
e Launch_PyGadgets.py

These Python-coded launcher scripts assume Python has already been installed, but will automatically
find your Python executable and the book examples distribution and set up your Python module and
system search paths as needed to run their programs. You can probably run these launcher scripts
by simply clicking on their names in a file explorer, and you should be able to run them directly from
the book's examples package tree (you can read more about these scripts in Part 1l of the book).

Web-based examples

Beginning with this edition of the book, its browser-based Internet examples are not installed on a
remote server. Instead, we'll be using a Python-coded web server running locally to test these
examples. If you launch this server, though, you can also test-drive browser-based examples too.
You can find more on this in the Internet section of this book.

For a quick look, though, PyDemos attempts to launch both a web server and a web browser on your
machine automatically for the major example web pages. You start the browser by running the
LaunchBrowser.py script in the examples root directory. That script tries to find a usable browser on
your machine, with generally good results; see the script for more details if it fails. The server is
implemented by a Python script, assuming you have permission to run an HTTP server on your
machine (you generally do on Windows).

Provided the server starts and LaunchBrowser can find a browser on your machine, some demo

buttons will pop up web pages automatically. Figure P-2, for example, shows the web examples index
page running under a local server and the Firefox browser.

Figure P-2. The PylnternetDemos web page

I
—
(=] 5]
b |

] E] <)

Ble Edt Wew G0 Bockmars Tock Hel

PP3E Internet examples

The briks below launch vanious browser-based Internet examples, which are deserbed inthe baok
Frogramming Python, 3rd edition. Most mvoke Python-coded CGI senpts on a server machine,
which will run ondy if you are runming a web server, There are many addibonal Internet exarnples in the
text (e g, the fip, emal, and socket programs hsted below), but they are desgned to be run from a
comrnand bne, Thinter GUI, or other context, not from a web browser. Alzo see the top level of the examples
dismbution for Tk-based GUT deme launchers. -

Browser-based examples
Full site examples

* PybdadlCGT a POPSIMTE web-bazsed email too] (see text for start-up)
+ PyErrata’ an automated error reportmg system (2nd Edition example)

Genernl CGI examples b |

+ languages hitml: Hello World m vanous languages
+ putfile html: Upload files to this ste by HTTE
+ gethile htral View any source file on thes site

CGI tutorial examples

* tutor(htmd: A sirnple page, defined by an BT file

+ putorl). py: Same. but generated by a Python CGI scopt

* tutorl py: Add an image, made by a Python COGT sonpt

* tutor? py. Generate a table in a Python CGI senpt v

Clicking this page's links runs various server-side Python CGI scripts presented in the book. Of
special interest, the getfile.html link on this page allows you to view the source code of any other file
in the book's web server directoryHTML code, Python CGI scripts, and so on; see Chapter 16 for
details.

Top-level programs

To summarize, here is what you'll find in the top-level Examples\PP3E directory of the book's
examples package:

PyDemos.pyw

Button bar for starting major GUI and Internet examples in demo mode

PyGadgets_bar.pyw

Button bar for starting GUIs in PyGadgets on demand

PyGadgets.py

Starts programs in nondemo mode for regular use

Launch_*.py*

Starts the PyDemos and PyGadgets programs using Launcher.py to autoconfigure search paths
(run these for a quick look)

LaunchBrowser.py

Opens example web pages with an automatically located web browser

Launcher.py

Utility used to start programs without environment settingsfinds Python, sets PYTHONPATH, and
spawns Python programs

You'll also find subdirectories for examples from each major topic area of the book. In addition, the
top-level PP3E\PyTools directory contains Python-coded command-line utilities for converting line
feeds in all example text files to DOS or Unix format (useful if they look odd in your text editor);
making all example files writable (useful if you drag-and-drop off a CD on some platforms); deleting

old .pyc bytecode files in the tree; and more. Again, see the example directory's README-PP3E.txt
file for more details on all example issues.

Conventions Used in This Book

The following font conventions are used in this book:

Italic

Used for file and directory names, to emphasize new terms when first introduced, and for some
comments within code sections

Constant wi dth

Used for code listings and to designate modules, methods, options, classes, functions,
statements, programs, objects, and HTML tags

Const ant wi dth bold

Used in code sections to show user input

Constant width italic

Used to mark replaceables

“'_—" This icon designates a note related to the nearby text.
o
wh o

SN

This icon designates a warning related to the nearby text.

N

Safari® Enabled

Safari

BOOKS ONLINE
| _ENABLED RVVIPNS you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

Where to Look for Updates

As before, updates, corrections, and supplements for this book will be maintained at the author's web
site, http://www.rmi.net/~lutz. Look for the third edition’s link on that page for all supplemental
information related to this version of the book. As for the first two editions, | will also be maintaining
a log on this web site of Python changes over time, which you should consider a supplemental
appendix to this text. O'Reilly's web site, http://www.oreilly.com, also has an errata report system,
and you should consider the union of these two lists to be the official word on book bugs and
updates.

Contacting O'Reilly

You can also address comments and questions about this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States and Canada)
707-827-7000 (international/local)
707-829-0104 (fax)

O'Reilly has a web page for this book, which lists errata, examples, and any additional information.
You can access this page at:

http://safari.oreilly.com
http://www.rmi.net/~lutz
http://www.oreilly.com

http://www.oreilly.com/catalog/python3

To comment or ask technical questions about this book, send email to:

bookqaesti ons@reilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product’'s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Python Programming, Third Edition, by Mark Lutz. Copyright
2006 O'Reilly Media, Inc., 978-0-596-00925-0."

Acknowledgments

In closing, | would like to extend appreciation to a few of the people who helped in some way during
all the incarnations of this book project:
¢ To this book's first editor, the late Frank Willison, for the early years.

e To this book's later editors, for tolerating my nondeterministic schedule: Laura Lewin on the
second edition, Jonathan Gennick on the third edition, and Mary O'Brien at the end.

e To the people who took part in a technical review of an early draft of this edition: Fredrik Lundh,
Valentino Volonghi, Anna Ravenscroft, and Kyle VanderBeek.

e To Python creator Guido van Rossum, for making this stuff fun again.

e To Tim O'Reilly and the staff of O'Reilly, both for producing this book and for supporting open
source software in general.

e To the Python community at large, for quality, simplicity, diligence, and humor.

e To C++, for frustrating me enough to compel me toward Python; I think I'd rather flip burgers
than go back :-).

e To the thousands of students of the 170 Python classes | have taught so far, for your feedback
on Python in general, and its applications. You taught me how to teach.

e To the scores of readers who took the time to send me comments about the first two editions of

http://www.oreilly.com/catalog/python3
http://www.oreilly.com

this book. Your opinions helped shape this book's evolution.

And finally, a few personal notes of thanks. To all the friends I've met on the training trail, for
hospitality. To my mom, for wisdom and courage. To OQO, for toys. To my brothers and sister, for
old days. To Guinness, for the beer in Dublin. To Birgit, for inspiration and spleenwurst. And to my
children, Michael, Samantha, and Roxanne, for hope.

Mark Lutz

April 2006

Somewhere in Colorado, or an airport near you

=2 wExT

=a

Part |I: The Beginning

This part of the book gets things started by introducing the Python language and taking us on a
quick tour of some of the most common ways it is applied.

Chapter 1

Here, we'll take a "behind the scenes” look at Python and its world by presenting some of
its history, its major uses, and the common reasons people choose it for their projects.
This is essentially a management-level, nontechnical introduction to Python.

Chapter 2

This chapter uses a simple examplerecording information about peopleto briefly introduce
some of the major Python application domains we'll be studying in this book. We'll
migrate the same example through multiple steps. Along the way, we'll meet databases,
GUls, web sites, and more. This is something of a demo chapter, designed to pique your
interest. We won't learn much here, but we'll have a chance to see Python in action before
digging into the details. This chapter also serves as a review of some core language ideas
you should be familiar with before starting this book, such as data representation and
object-oriented programming (OOP).

The point of this part of the book is not to give you an in-depth look at Python, but just to let

you sample its application. It will also provide you with a grounding in Python's broader goals
and purpose.

=2 wExT

Chapter 1. Introducing Python

Section 1.1.

"And Now for Something Completely Different”

Section

1.2.

Python Philosophy 101

Section

1.3.

The Life of Python

Section

1.4.

Signs of the Python Times

Section

1.5.

The Compulsory Features List

Section

1.6.

What's Python Good For?

Section

1.7.

What's Python Not Good For?

Section

1.8.

Truth in Advertising

NEXT B

1.1. "And Now for Something Completely Different”

This book is about using Python, an easy-to-use, flexible, object-oriented, mature, popular, and open
sourcel]l programming language designed to optimize development speed. Although it is completely
general purpose, Python is often called a scripting language, partly because of its sheer ease of use
and partly because it is commonly used to orchestrate or "glue" other software components in an
application. Python is also commonly known as a high-level language, because it automates most
low-level tasks that programmers must handle manually in traditional languages such as C.

[1 Open source systems are sometimes called freeware, in that their source code is freely distributed and community controlled.
Don't let that concept fool you, though; with roughly 1 million users in that community today, Python is very well supported. For more
information on open source, see http://opensource.org.

If you are new to Python, chances are you've heard about the language somewhere but are not quite
sure what it is about. To help you get started, this chapter provides a general introduction to
Python's features and roles. Most of it will make more sense once you have seen real Python
programs, but let's first take a quick pass over the forest before wandering among the trees. In this
chapter, we'll explore Python's philosophy, its history, and some of its most prominent benefits and
uses, before digging into the details.

http://opensource.org

=a

1.2. Python Philosophy 101

In the Preface, | mentioned that Python emphasizes concepts such as quality, productivity,
portability, and integration. Since these four terms summarize most of the reasons for using Python,
I'd like to define them in a bit more detail.

Software quality

Python makes it easy to write software that can be understood, reused, and modified. It was
deliberately designed to raise development quality expectations in the scripting world. Python's
clear syntax and coherent design, for example, almost force programmers to write readable
codea critical feature for software that may be changed or reused by others in the future.

Of equal importance, because the Python language tries to do better, so too do Python
developers and the Python community at large. In the Python world, one finds a refreshing
focus on quality concepts such as simplicity, explicitness, and readabilityideas often given little
more than a passing glance in some camps. (For more on this Python-inspired mindset, see the
sidebar "The Python 'Secret Handshake'," near the end of this chapter.)

The Python language really does look like it was designed and not accumulated. It has an
orthogonal, explicit, and minimalist design that makes code easy to understand and easy to
predict. Python approaches complexity by providing a simple core language and splitting
application-specific tools into a large set of modular library components.

As a popular slogan attests, the result is that Python "fits your brain"it's possible to use the
language without constantly flipping through reference manuals. This design makes Python
ideal as a customization language for nonexperts. Perhaps most important is that by limiting
the number of possible interactions in your code, Python reduces both program complexity and
the potential for bugs.

Besides being well designed, Python is also well tooled for modern software methodologies
such as structured, modular, and object-oriented design, which allow code to be written once
and reused many times. In fact, due to the inherent power and flexibility of the language,
writing high-quality Python components that may be applied in multiple contexts is almost
automatic.

Developer productivity

Python is optimized for speed of development. It's easy to write programs fast in Python,
because the interpreter handles details you must code explicitly in more complex, lower-level
languages. Things such as type declarations, storage layout, memory management, common
task implementations, and build procedures are nowhere to be found in Python scripts.

In fact, programs written in Python are typically one-third to one-fifth as large as they would be
in a language like C++ or Java, and these ratios directly correlate to improved programmer
speed. Because of Python's high-level design, Python developers have less to code, less to
debug, and less to maintain.

The result is a remarkably flexible and agile language, useful for both quick tactical tasks such
as testing and system administration, as well as larger and long-term strategic projects
employing design and analysis tools.

Today, developers use Python for everything from five-line scripts to systems composed of
more than 1 million lines of Python code (including IronPort's email security products suite). Its
tool set allows it to scale up as needed. In both modes, Python programmers gain a crucial
development speed advantage because of the language itself, as well as its library of precoded
tools.

For instance, the lack of type declarations alone accounts for much of the conciseness and
flexibility of Python code: because code is not restricted to a specific type, it is generally
applicable to many types. Any object with a compatible interface will do. And although Python
is dynamically typedtypes are tracked automatically instead of being declared (it is still strongly
typed)every operation is sanity checked as your program runs. Odd type combinations are
errors in Python, not invocations of arbitrary magic.

But fast initial development is only one component of productivity. In the real world,
programmers must write code both for a computer to execute and for other programmers to
read and maintain. Because Python's syntax resembles executable pseudocode, it yields
programs that are easy to understand, change, and use long after they have been written. In
addition, Python supports (but does not impose) advanced code reuse paradigms such as
object-oriented programming, which further boost developer productivity and shrink
development time.

Program portability

Most Python programs run without modification on nearly every computer system in use
todayon Windows, Linux, Macintosh, and everything from IBM mainframes and Cray
supercomputers to real-time systems and handheld PDAs. Python programs even run on more
exotic devices such as game consoles, cell phones, and the Apple iPod. Although some
platforms offer nonportable extensions, the core Python language and libraries are largely
platform neutral and provide tools for dealing with platform differences when they arise.

For example, most Python scripts developed on Windows, Linux, or Macintosh will generally run
on the other two platforms immediatelysimply copy the script's source code over to the other
platforms. Moreover, a GUI program written with Python's standard Tkinter library will run on
the X Windows system, Microsoft Windows, and the Macintosh, with native look-and-feel on
each and without modifying the program's source code. Alternative toolkits such as wxPython
and PyQt offer similar GUI portability.

Component integration

Python is not a closed box: it is also designed to be integrated with other tools. Programs
written in Python can be easily mixed with and can script (i.e., direct) other components of a
system. This makes Python ideal as a control language and as a customization tool. When
programs are augmented with a Python layer, their end users can configure and tailor them,
without shipping the system's entire source code.

More specifically, today Python scripts can call out to existing C and C++ libraries; use Java
classes; integrate with COM, .NET, and CORBA components; communicate with other
components over network protocols such as sockets, HTTP, XML-RPC, and SOAP; and more. In
addition, programs written in other languages can just as easily run Python scripts by calling C
and Java API functions, accessing Python-coded COM and network servers, and so on. Python
allows developers to open up their products to customization in a variety of ways.

In an era of increasingly short development schedules, faster machines, and heterogeneous
applications, these strengths have proven to be powerful allies to hundreds of thousands of
developers, in both small and large development projects.

Naturally, there are other aspects of Python that attract developers, such as its simple learning curve
for developers and users alike, vast libraries of precoded tools to minimize upfront development, and
a completely free nature that cuts product development and deployment costs.

Python's open source nature, for instance, means that it is controlled by its users, not by a financially
vested company. To put that more forcefully, because Python's implementation is freely available,
Python programmers can never be held hostage by a software vendor. Unlike commercial tools,
Python can never be arbitrarily discontinued. Access to source code liberates programmers and
provides a final form of documentation.

At the end of the day, though, Python's productivity focus is perhaps its most attractive and defining
quality. As | started writing the second edition of this book in the Internet bubble era of 1999, the
main problem facing the software development world was not just writing programs quickly, but
finding developers with the time to write programs at all. As | write this third edition in the post-
boom era of 2005, it is perhaps more common for programmers to be called on to accomplish the
same tasks as before, but with fewer resources. In both scenarios, developers' time is paramountin
fact, it's usually much more critical than raw execution speed, especially given the speed of today's
computers.

As a language optimized for developer productivity, Python seems to be the right answer to the
questions asked by the development world. It allows programmers to accomplish more in less time.
Not only can Python developers implement systems quickly, but the resulting systems will be
reusable, maintainable by others, portable across platforms, and easily integrated with other
application components.

Why Not Just Use C or C++?

I'm asked this question quite often, and if you're new to the scripting languages domain,
you might be puzzling over this question yourself. After all, C runs very fast and is widely
available. So how did Python become so popular?

The short storyone we'll see in action firsthand in this bookis that people use scripting
languages rather than compiled languages like C and C++ because scripting languages
are orders of magnitude easier and quicker to use. Python can be used in long-term
strategic roles too, but unlike compiled languages, it also works well in quick, tactical
mode. As an added benefit, the resulting systems you build are easier to change and
reuse over time.

This is especially true in the web domain, for example, where text processing is so
central, change is a constant, and development speed can make or break a project. In
domains like these:

¢ Python's string objects and pattern matching make text processing a breezethere is
no need to limit the size of strings, and tasks like searching, splitting,
concatenation, and slicing are trivial. In C, such tasks can be tedious, because
everything is constrained by a type and a size.

¢ Python's general support for data structures helps here tooyou just type a complex

nested dictionary literal, for example, and Python builds it. There is no need to lay
out memory, allocate and free space, and so on.

e The Python language itself is much simpler to code. Because you don't declare
types, for instance, your code not only becomes shorter, but also can be applied
and reused in a much wider range of contexts. When there is less to code,
programming is quicker. And the runtime error checking provided by scripting
languages like Python makes it easier to find and fix bugs.

e Just as important is that a vast collection of free, web-related software is available
for Python programmers to useeverything from the client and server-side protocol
modules in the standard library, to third-party web application frameworks such as
Zope, Plone, CherryPy, Django, and Webware. These greatly simplify the task of
building enterprise-level web sites.

In other domains, the same factors apply but with different available tool sets. In fact,
after you use Python for awhile, you'll probably find that it enables things that you would
have never considered doing in a compiled language because they would have been too
difficult. Network scripting, GUIs, multitasking, and so on, can be cumbersome in C but
are easy in Python.

The bottom line is that C is just too complex, rigid, and slow, especially for web work. In
such a dynamic domain, you need the flexibility and rapid development of a scripting
language like Python. Compiled languages can run faster (depending on the sort of code
you run), but speed of development tends to overshadow speed of execution on the
Web. You should be warned, thoughonce you start using Python, you may never want to
go back.

e prcy |

=a

1.3. The Life of Python

Python was invented around 1990 by Guido van Rossum, when he was at CWI in Amsterdam. It is
named after the BBC comedy series Monty Python 's Flying Circus, of which Guido is a fan (see this
chapter's sidebar "What's in a Name?"). Guido was also involved with the Amoeba distributed
operating system and the ABC language. In fact, his original motivation for creating Python was to
create an advanced scripting language for the Amoeba system. Moreover, Python borrowed many of
the usability-study-inspired ideas in ABC, but added practicality in the form of libraries, datatypes,
external interfaces, and more.

The net effect was that Python's design turned out to be general enough to address a wide variety of
domains. It is now used in increasingly diverse roles by hundreds of thousands of engineers around
the world. Companies use Python today in commercial products for tasks as diverse as web site
construction, hardware testing, numeric analysis, customizing C++ and Java class libraries, movie
animation, and much more (more on roles in the next section). In fact, because Python is a
completely general-purpose language, its target domains are limited only by the scope of computers
in general.

Since it first appeared on the public domain scene in 1991, Python has continued to attract a loyal
following and has spawned a dedicated Internet newsgroup, comp.lang.python, in 1994. As the first
edition of this book was being written in 1995, Python's home page debuted on the Web at
http://www.python.orgstill the official place to find all things Python. A supplemental site, the Vaults
of Parnassus, serves as a library of third-party extensions for Python application development (see
http://www.vex.net/parnassus). More recently, the Python Package Index site (PyPIl at
http://www.python.org/pypialso known as the "Python Cheese Shop"began providing a
comprehensive and automated catalog of third-party Python packages.

To help manage Python's growth, organizations that are aimed at supporting Python developers have
taken shape over the years: among them, the now defunct Python Software Activity (PSA) was
formed to help facilitate Python conferences and web sites, and the Python Consortium was formed
by organizations interested in helping to foster Python's growth. More recently, the Python Software
Foundation (PSF) was formed to own the intellectual property of Python and coordinate community
activities, and the Python Business Forum (PBF) nonprofit group addresses the needs of companies
whose businesses are based on Python. Additional resources are available for Python training,
consulting, and other services.

Today, Guido is employed by Google, the web search-engine maker and a major Python user, and he
devotes a portion of his time to Python. A handful of key Python developers are also employed by
Zope Corporation, home to the Python-based Zope web application toolkit (see http://www.zope.org
and Chapter 18; Zope is also the basis of the Plone web content management system). However, the
Python language is owned and managed by an independent body, and it remains a true open source,
community-driven, and self-organizing system. Hundreds, if not thousands, of individuals contribute
to Python's development, following a now formal Python Enhancement Proposal (PEP) procedure and
coordinating their efforts online.

Other companies have Python efforts underway as well. For instance, ActiveState and PythonWare
develop Python tools, O'Reilly (the publisher of this book) and the Python community organize annual
Python conferences (OSCON, PyCon, and EuroPython), and O'Reilly manages a supplemental Python
web site (see the O'Reilly Network's Python DevCenter at http://www.oreillynet.com/python).
Although the world of professional organizations and companies changes more frequently than do

http://www.python.org
http://www.vex.net/parnassus
http://www.python.org/pypi
http://www.zope.org
http://www.oreillynet.com/python

published books, the Python language will undoubtedly continue to meet the needs of its user
community.

=2 wExT

=a

1.4. Signs of the Python Times

It's been an exciting decade in the Python world. Since | wrote the first edition of this book in 1995
and 1996, Python has grown from a new kid on the scripting-languages block to an established and
widely used tool in companies around the world. In fact, today the real question is not who is using
Python, but who is not. Python is now used in some fashion in almost every software
organizationwhether as a tactical tool for quick tasks or an implementation language for longer-range
strategic projects.

Although measuring the popularity of an open source, freely distributed tool such as Python is not
always easy (there are no licenses to be tallied), most available statistics reveal exponential growth in
Python's popularity over the last decade. Among the most recent signs of Python's explosive growth
are:

Users

In 1999, one leading industry observer suggested that, based on various statistics, there were
as many as 300,000 Python users worldwide. Other estimates are still more optimistic. In early
2000, for instance, the Python web site was already on track to service 500,000 new Python
interpreter downloads by year end in addition to other Python distribution media. Python is also
a standard preinstalled item on Linux, Macintosh, and some Windows computers today and is
embedded in various applications and hardware.

Today, the best estimates, based on developer surveys and network activity, suggest that
there are likely between 750,000 and 1 million Python users worldwide. A better estimate is
impossible because of Python's open source nature, but Python clearly enjoys a large and
active user community.

Applications
Real organizations have adopted Python and Python-focused systems for real projects. It has
been used to:
¢ Animate movies (Industrial Light & Magic, Sony Pictures Imageworks, Disney, Pixar)
¢ Perform searches on the Internet (Google, Infoseek)
e Script GIS mapping products (ESRI)
e Distribute content downloads on the Internet (BitTorrent)
¢ Predict the weather (U.S. National Weather Service, NOAA)
e Test computer hardware (Seagate, Intel, Hewlett-Packard, Micron, KLA)

e Do numeric analysis (NASA, Los Alamos National Laboratory, Lawrence Livermore
National Laboratory, Fermi)

¢ Perform cryptography and stock market analysis (NSA, Getco)

e Script games and graphics (Origin, Corel, Blender, PyGame)

¢ Navigate spacecraft and control experiments (Jet Propulsion Laboratory)
¢ Serve up maps and directories on the Web (Yahoo!)

e Guide users through Linux installation and maintenance (Red Hat)

¢ Implement web sites and content (Disney, JPL, Zope, Plone, Twisted)

¢ Design missile defense systems (Lockheed Martin)

¢ Manage mail lists (Mailman)

e Deliver eGreeting cards (American Greetings)

¢ Implement Personal Information Managers (Chandler)

...and much more.[1 Some of the Python-based systems in the preceding list are very popular
in their own right. For example, the widely used Google search enginearguably responsible for
much of the Web's successmakes heavy use of the Python language and is likely the most
successful server-side application of Python so far. And in the latest release of its popular
ArcGIS geographical information system (GIS), ESRI has begun recommending Python as the
scripting tool for customization and automation to its reported 1 million licensees.

[*1 See http://www.python.org/moin/OrganizationsUsingPython or search Python.org
(http://www.python.org/about/success) for more examples of Python-based applications. Some companies
don't disclose their Python use for competitive reasons, though many eventually become known when one
of their web pages crashes and displays a Python error message in a browser. O'Reilly has also published a
list of Python success stories derived from a list of testimonials maintained by people interested in Python
advocacy; see the advocacy group's list at http://www.pythonology.com/success.

Of special note, BitTorrent, a distributed file-sharing system written in Python, is likely the
most successful client-side Python program to date. It already records 42 million lifetime
downloads on SourceForge.net as this chapter is being written, and it is listed as the number
three package for all-time top downloads at that site (this does not include the roughly 2
million new downloads per month, or alternative clients that embed the BitTorrent Python
backend). In addition, a late 2004 Reuters report noted that more than one-third of the
Internet's traffic was based on BitTorrent. Per other reports, BitTorrent accounted for 53
percent of all peer-to-peer (P2P) Internet traffic in mid-2004, and P2P traffic may be two-thirds
of all Internet traffic today.

Books

When | started the first edition of this book in 1995, no Python books were available. As |
wrote the second edition of this book in 2000, more than a dozen were available, with almost
that many more on the way. And as | write this third edition in 2005, far more than 50 Python
books are on the market, not counting non-English translations (a simple search for "Python
programming" books currently yields 91 hits on Amazon.com). Some of these books are
focused on a particular domain such as Windows or the Web, and some are available in
German, French, Japanese, and other language editions.

Domains

Python has grown to embrace Microsoft Windows developers, with support for .NET, COM, and

http://www.python.org/moin/OrganizationsUsingPython
http://www.python.org/about/success
http://www.pythonology.com/success

Active Scripting; Java developers, with the Jython Java-based implementation of the language;
Mac OS X developers, with integration of tools such as Cocoa and standard inclusion in the Mac
OS; and web developers, with a variety of toolkits such as Zope and Plone.

As we'll see in this book, the COM support allows Python scripts to be both a server and a client
of components and to interface with Microsoft Office products; Active Scripting allows Python
code to be embedded in HTML web page code and run on either clients or servers. The Jython
system compiles Python scripts to Java Virtual Machine (JVM) code so that they can be run in
Java-aware systems and seamlessly integrate Java class libraries for use by Python code.

As an open source tool for simplifying web site construction, the Python-based Zope web
application framework discussed in this edition has also captured the attention of webmasters
and CGI coders. Dynamic behavior in Zope web sites is scripted with Python and rendered with
a server-side templating system. By using a workflow model, the Plone web content
management system, based on Zope and Python, also allows webmasters to delegate the
management of web site content to people who produce the content. Other toolkits, such as
Django, Twisted, CherryPy, and Webware, similarly support network-based applications.

Compilers

As | write this third edition, two Python compilers are under development for the Microsoft
.NET framework and C# language environmentindependent implementations of the Python
language that provide seamless .NET integration for Python scripts.

For instance, the new lIronPython implementation of Python for .NET and Mono compiles Python
code for use in the .NET runtime environment (and is currently being developed in part by
Microsoft employees). It promises to be a new, alternative implementation of Python, along
with the standard C-based Python and the Jython Java-based implementation mentioned in the
prior section.

Other systems, such as the Psyco just-in-time bytecode compiler and the PyPy project, which
may subsume it the IronPython implementation, promise substantial speedups for Python
programs. See this chapter's sidebar "How Python Runs Your Code" for more details on
program execution and compilers.

Newsgroup

User traffic on the main Python Internet newsgroup, comp.lang.python, has risen dramatically
too. For instance, according to Yahoo! Groups (see http://groups.yahoo.com/group/python-
list), 76 articles were posted on that list in January 1994 and 2,678 in January 2000a 35-fold
increase. Later months were busier still (e.g., 4,226 articles during June 2000, and 7,675 in
February 2003roughly 275 per day), and growth has been generally constant since the list's
inception.

Python Internet newsgroup user trafficalong with all other user-base figures cited in this
chapteris likely to have increased by the time you read this text. But even at current traffic
rates, Python forums are easily busy enough to consume the full-time attention of anyone with
full-time attention to give. Other online forums, such as weblogs (blogs), host additional
Python-oriented discussions.

Conferences

There are now two or more annual Python conferences in the U.S., including the annual PyCon
event, organized by the Python community, and the Python conference held as part of the

http://groups.yahoo.com/group/python-

Press

Open Source Convention, organized by O'Reilly. Attendance at Python conferences roughly
doubled in size every year in their initial years. At least two annual conferences are also now
held in Europe each year, including EuroPython and PythonUK. Furthermore, there is now a
PyCon conference in Brazil, and conferences have also been held in other places around the
world.

Python is regularly featured in industry publications. In fact, since 1995, Python creator Guido
van Rossum has appeared on the cover of prominent tech magazines such as Linux Journal and
Dr. Dobb's Journal; the latter publication gave him a programming excellence award for
Python. Linux Journal also published a special Python supplement with its May 2000 issue, and
a Python-specific magazine, PyZine, was started up in recently.

Group therapy

Regional Python user groups have begun springing up in numerous sites in the U.S. and
abroad, including Oregon, San Francisco, Washington D.C., Colorado, Italy, Korea, and
England. Such groups work on Python-related enhancements, organize Python events, and
more.

Services

Jobs

Tools

On the pragmatics front, commercial support, consulting, prepackaged distributions, and
professional training for Python are now readily available from a variety of sources. For
instance, the Python interpreter can be obtained on CDs and packages sold by various
companies (including ActiveState), and Python usually comes prebuilt and free with most Linux
and recent Macintosh operating systems. In addition, there are now two primary sites for
finding third-party add-ons for Python programming: the Vaults of Parnassus and PyPIl (see
http://www.python.org for links).

It's now possible to make money as a Python programmer (without having to resort to writing
large, seminal books). As | write this book, the Python job board at
http://www.python.org/Jobs.html lists some 60 companies seeking Python programmers in the
U.S. and abroad, in a wide variety of domains. Searches for Python at popular employment
sites such as Monster.com and Dice.com yield hundreds of hits for Python-related jobs. And
according to one report, the number of Python jobs available in the Silicon Valley area
increased 400 percent to 600 percent in the year ending in mid-2005. Not that anyone should
switch jobs, of course, but it's nice to know that you can now make a living by using a
language that also happens to be fun.

Python has also played host to numerous tool development efforts. Among the most prominent
are the Software Carpentry project, which developed new core software tools in Python;
ActiveState, which provides a set of Windows- and Linux-focused Python development
products; the Eclipse development environment; and PythonWare, which offers a handful of
Python tools.

http://www.python.org
http://www.python.org/Jobs.html

Education

Python has also begun attracting the attention of educators, many of whom see Python as the
"Pascal of the 2000s"an ideal language for teaching programming due to its simplicity and
structure. Part of this appeal was spawned by Guido van Rossum's proposed Computer
Programming for Everybody (CP4E) project, aimed at making Python the language of choice for
first-time programmers worldwide.

CP4E itself is now defunct, but an active Python Special Interest Group (SIG) has been formed
to address education-related topics. Regardless of any particular initiative's outcome, Python
promises to make programming more accessible to the masses. As people grow tired of
clicking preprogrammed links, they may evolve from computer users to computer scripters.

1.4.1. Recent Growth (As of 2005, at Least)

As | was writing this third edition, | found that all signs pointed toward continued growth in the
Python world:

¢ Python.org traffic had increased 30 percent for the year that ended in March 2005.

e PyCon conference attendance essentially doubled, increasing to 400500 attendees in 2005
compared to 200300 in 2004.

e Python 2.4 was given a Jolt productivity award in early 2005 by Software Development
Magazine.

e Per a survey conducted by InfoWorld, Python popularity nearly doubled in 2004 (usage by
developers grew to 14 percent in late 2004, versus 8 percent in the prior year; another survey
in the same period measured Python use to be roughly 16 percent).

e Based on the Infoworld survey and the number of all developers, the Python user base is now
estimated to be from 750,000 to 1 million worldwide.

e Google, maker of the leading web search engine, launched an open source code site whose
initially featured components were mostly Python code.

e The IronPython port being developed in part by Microsoft reported an 80 percent performance
boost over the standard C-based Python 2.4 release on some benchmarks.

¢ As mentioned, the number of Python jobs available in Silicon Valley have reportedly increased
by a factor of 4 to 6.

¢ A web site that automatically tracks the frequency of references to programming languages in
online forums found that Python chatter more than doubled between 2004 and 2005. This site
also found that among scripting languages, only Python traffic showed the early stages of a
rapid growth curve.

e According to an article by O'Reilly, industry-wide book sales data shows that the Python book
market grew to two-thirds the size of the Perl book market as of April 2005. Two years earlier,
the Python book market was approximately one-sixth the size of the Perl book market. (Perl is
an older scripting language optimized for text processing tasks, which some see as being in
competition with Python for mindshare.)

In other words, it's not 1995 anymore. Much of the preceding list was unimaginable when the first
edition of this book was conceived. Naturally, this list is doomed to be out-of-date even before this

book hits the shelves, but it is nonetheless representative of the sorts of milestones that have
occurred over the last five years and will continue to occur for years to come. As a language
optimized to address the productivity demands of today's software world, Python's best is
undoubtedly yet to come.

What's in a Name?

Python gets its name from the 1970s British TV comedy series Monty Python's Flying
Circus. According to Python folklore, Guido van Rossum, Python's creator, was watching
reruns of the show at about the same time he needed a name for a new language he was
developing. And as they say in show business, "the rest is history."

Because of this heritage, references to the comedy group's work often show up in
examples and discussion. For instance, the words spam, lumberjack, and shrubbery have
a special connotation to Python users, and confrontations are sometimes referred to as
"The Spanish Inquisition.”" As a rule, if a Python user starts using phrases that have no
relation to reality, they're probably borrowed from the Monty Python series or movies.
Some of these phrases might even pop up in this book. You don't have to run out and
rent The Meaning of Life or The Holy Grail to do useful work in Python, of course, but it
can't hurt.

While "Python" turned out to be a distinctive name, it has also had some interesting side
effects. For instance, when the Python newsgroup, comp.lang.python, came online in
1994, its first few weeks of activity were almost entirely taken up by people wanting to
discuss topics from the TV show. More recently, a special Python supplement in the Linux
Journal magazine featured photos of Guido garbed in an obligatory "nice red uniform.”

Python's news list still receives an occasional post from fans of the show. For instance,
one poster innocently offered to swap Monty Python scripts with other fans. Had he
known the nature of the forum, he might have at least mentioned whether they ran on
Windows or Unix.

=2 wExT

=a

1.5. The Compulsory Features List

One way to describe a language is by listing its features. Of course, this will be more meaningful after
you've seen Python in action; the best | can do now is speak in the abstract. And it's really how
Python's features work together that make it what it is. But looking at some of Python's attributes
may help define it; Table 1-1 lists some of the common reasons cited for Python's appeal.

Table 1-1. Python language features

Features Benefits

No manual compile or link steps Rapid development cycle turnaround

No type declarations Simpler, shorter, and more flexible programs
Automatic memory management Garbage collection avoids bookkeeping code and errors

H|gh—|§vel datatypes and Fast development using built-in object types
operations

Object-oriented programming Code reuse; C++, Java, COM, and .NET integration
Embedding and extending in C Optimization, customization, legacy code, system "glue"

. Modular "programming-in-the-large" support for large-scale
Classes, modules, exceptions prog 9 9 bp 9

projects
A simple, clear syntax and design Esggablllty, maintainability, ease of learning, less potential for
Dynamic loading of C modules Simplified extensions, smaller binary files

Dynamic reloading of Python

modules Programs can be modified without stopping

Universal "first-class™ object Fewer restrictions, code flexibility

model
Runtime program construction Handles unforeseen needs, end-user coding
Interactive, dynamic nature Incremental development and testing

Access to interpreter information Metaprogramming, introspective objects
Wide interpreter portability Cross-platform programming without per-program ports
Compilation to portable bytecode Execution speed, portability

Standard portable GUI Tkinter scripts run on X, Windows, Macs; alternatives: wxPython,
framework PyQt, etc.

Standard Internet protocol

Easy access to email, FTP, HTTP, CGI, Telnet, etc.
support

Standard portable system calls Platform-neutral system scripting and system administration

Built-in and third-party libraries Vast collection of precoded software components

Features Benefits

True open source software May be freely embedded and shipped

To be fair, Python is really a conglomeration of features borrowed from other languages and
combined into a coherent whole. It includes elements taken from C, C++, Modula-3, ABC, Icon, and
others. For instance, Python's modules came from Modula and its slicing operation from Icon (as far
as anyone can seem to remember, at least). And because of Guido's background, Python borrows
many of ABC's ideas but adds practical features of its own, such as support for C-coded extensions.

To many, Python's feature combination seems to be "just right"it combines remarkable power with a
readable syntax and coherent design.

=2 wExT

=a

1.6. What's Python Good For?

Because Python is used in a wide variety of ways, it's almost impossible to give an authoritative
answer to this question. As a general-purpose language, Python can be used for almost anything
computers are capable of. Its feature set applies to both rapid and longer-term development modes.
And from an abstract perspective, any project that can benefit from the inclusion of a language
optimized for speed of development is a good target Python application domain. Given the ever-
shrinking schedules in software development, this is a very broad category.

A more specific answer is less easy to formulate. For instance, some use Python as an embedded
extension language, and others use it exclusively as a standalone programming tool. To some extent,
this entire book will answer this very questionit explores some of Python's most common roles. For
now, here's a summary of some of the more common ways Python is being applied today:

System utilities

Portable command-line tools, testing, system administration scripts

Internet scripting

CGI web sites, Java applets, XML, email, Zope/Plone, CherryPy, Webware, Twisted

GUIs

With tools such as Tk, wxPython, Qt, Gtk, PythonCard, Dabo, Swing, Anygui

Component integration

C/C++ library frontends, product customization

Database access

Persistent object stores, SQL database interfaces

Distributed programming

With client/server APIs like CORBA, CGI, COM, .NET, SOAP, XML-RPC

Rapid-prototyping/development

Tactical run-once programs or deliverable prototypes

Language-based modules

Replacing special-purpose parsers with Python

And more
Image processing, numeric programming, gaming, Al, etc.

On the other hand, Python is not really tied to any particular application area. For example, Python's
integration support makes it useful for almost any system that can benefit from a frontend,
programmable interface. In abstract terms, Python provides services that span domains. It is all of
the things described in the following list.

"Buses Considered Harmful"

The PSA organization described earlier was originally formed in response to an early
thread on the Python newsgroup that posed the semiserious question: "What would
happen if Guido was hit by a bus?" The more recent PSF group has been tasked to
address similar questions.

These days, Python creator Guido van Rossum is still the ultimate arbiter of proposed
Python changes. He was officially anointed the BDFLBenevolent Dictator For Lifeof
Python, at the first Python conference and still makes final yes and no decisions on
language changes (and usually says no: a good thing in the programming languages
domain, because Python tends to change slowly and in backward-compatible ways).

But Python's user base helps support the language, work on extensions, fix bugs, and so
on. It is a true community project. In fact, Python development is now a completely
open processanyone can inspect the latest source-code files or submit patches by visiting
a web site (see http://www.python.org for details).

As an open source package, Python development is really in the hands of a very large
cast of developers working in concert around the world. Given Python's popularity, bus
attacks seem less threatening now than they once did; of course, | can't speak for Guido.

¢ A dynamic programming language, ideal for situations in which a compile/link step is either
impossible (on-site customization) or inconvenient (prototyping, rapid development, system
utilities)

¢ A powerful but simple programming language designed for development speed, ideal for
situations in which the complexity of larger languages can be a liability (prototyping, end-user
coding, time to market)

¢ A generalized language tool, ideal for situations in which we might otherwise need to invent and
implement yet another "little language" (programmable system interfaces, configuration tools)

Given these general properties, you can apply Python to any area you're interested in by extending it
with domain libraries, embedding it in an application, or using it all by itself. For instance, Python's
role as a system tools language is due as much to its built-in interfaces to operating system services
as to the language itself.

In fact, because Python was built with integration in mind, it has naturally given rise to a growing

http://www.python.org

library of extensions and tools, available as off-the-shelf components to Python developers. Table 1-2
names just a few as a random sample (with apologies to the very many systems omitted here). You
can find more about most of these components in this book, on Python's web site, at the Vaults of
Parnassus and PyPl web sites mentioned earlier in this chapter, and by a simple Google web search.

How Python Runs Your Code

Today, Python is "interpreted"” in the same way Java is: Python source code is
automatically compiled (translated) to an intermediate and platform-neutral form called
bytecode, which is then executed by the Python virtual machine (that is, the Python
runtime system). Translation to bytecode happens when a module is first imported, and
it is avoided when possible to speed program startup: bytecode is automatically saved in
.pyc files and, unless you change the corresponding source file, loaded directly the next
time your program runs.

This bytecode compilation model makes Python scripts portable and faster than a pure
interpreter that runs raw source code lines. But it also makes Python slower than true
compilers that translate source code to binary machine code. Bytecode is not machine
code and is ultimately run by the Python (or other) virtual machine program, not directly
by your computer's hardware.

Keep in mind, though, that some of these details are specific to the standard Python
implementation. For instance, the Jython system compiles Python scripts to Java
bytecode, and the IronPython implementation compiles Python source code to the
bytecode used by the C#/.NET environment. In addition, Python compiler-related
projects have been spawned in the past and will likely continue into the future. For more
details on this front, see the following:

¢ The Psyco just-in-time compiler for Python, which replaces portions of a running
program’'s bytecode with optimized binary machine code tailored to specific
datatypes. Psyco can speed Python programs by any factor from 2 to 100. The high
end is more likely for heavily algorithmic code, whereas 1/0-bound programs don't
improve as much. (In my own experience, a 3x-5x speedup is common for typical
programsamazing for a simple install.)

e A related project, PyPy, which aims to reimplement the Python virtual machine to
better support optimizations. The PyPy project may incorporate and subsume
Psyco's techniques.

¢ The Parrot project, which seeks to develop a bytecode and virtual machine that will
be shared by many languages, including Python.

e The Installer, Py2Exe, and Freeze systems, which package Python programs as
standalone executables known as "frozen binaries"a combination of your bytecode
and the Python virtual machine. Frozen binaries do not require that Python be
installed on the receiving end.

¢ Other program distribution formats, including zip archives (with modules
automatically extracted on imports); Python eggs (an emerging package format);
Di stutils (an installation script system); and encrypted bytecode (for instance,
using PyCrypto and the import hooks).

¢ The emerging Shed Skin system, which translates Python source code to C++. This

system assumes that your code will not use the full range of Python's dynamic
typing, but this constraint allows highly efficient code to be generated, which is by
some accounts faster than Psyco and much faster than standard Python. Shed
Skin's own website reports speedups of 12 and 45 times faster on average than
Psyco and standard CPython, respectively, though results can vary greatly.

Psyco may provide a simpler optimization path for some programs than linked-in C
libraries, especially for algorithm-intensive code. Although Python's extreme dynamic
nature makes compilation complex (the behavior of "x + 1" cannot be easily predicted
until runtime), a future optimizing Python compiler might also make many of the

performance notes in this chapter moot points.

Table 1-2. Popular Python domains, tools, and extensions

Domain

Systems programming: support for all common
system-level tools

GUIs: a variety of portable GUI toolkits and
builders

Database interfaces: interfaces for both
relational and object-oriented databases

Microsoft Windows tools: access to a variety of
Windows-specific tools

Internet tools: sockets, CGl, client tools, server
tools, web frameworks, parsers, Apache
support, Java integration

Distributed objects: SOAP web services, XML-
RPC, CORBA, DCOM

Other popular tools: graphics, language,
visualization, numerics, cryptography,
integration, gaming, wikis...

Tools and extensions

Sockets, processes, threads, signals, pipes, RPC,
directories, POSIX bindings...

Tkinter, wxPython, PyQt, PyGTK, Anygui, Swing,
PythonCard, Dabo...

MySQL, Oracle, Sybase, PostgreSQL, SQLite,
persistence, ZODB, DBM...

MFC wrappers, COM interfaces, ActiveX scripting,
ASP, ODBC drivers, .NET...

Jython, XML, email, ElementTree, htmllib,
telnetlib, urllib, Zope, CherryPy, Twisted,
Webware, Django, mod_python, SSL...

PySOAP, SOAPy, xmlrpclib, ILU, Fnorb, omniORB,
PyWin32...

PIL, VPython, Blender, PyOpenGL, NLTK, YAPPS,
VTK, NumPy, PyCrypto, SWIG, ctypes, PyGame,
MoinMoin...

NEXT B

=a

1.7. What's Python Not Good For?

To be fair again, some tasks are outside of Python's scope. Like all dynamic interpreted languages,
Python, as currently implemented, isn't generally as fast or efficient as static, compiled languages
such as C (see the earlier sidebar, "How Python Runs Your Code," for the technical story). At least
when nontypical benchmarks are compared line for line, Python code runs more slowly than C code.

Whether you will ever care about this difference in execution speed depends upon the sorts of
applications you will write. In many domains, the difference doesn't matter at all; for programs that
spend most of their time interacting with users or transferring data over networks, Python is usually
more than adequate to meet the performance needs of the entire application by itself.

Moreover, most realistic Python programs tend to run very near the speed of the C language anyhow.
Because system interactions such as accessing files or creating GUls are implemented by linked-in C
language code in the standard implementation, typical Python programs are often nearly as fast as
equivalent C language programs. In fact, because Python programs use highly optimized data
structures and libraries, they are sometimes quicker than C programs that must implement such
tools manually.

In some domains, however, efficiency is still a main priority. Programs that spend most of their time
in intense number crunching, for example, will usually be slower in Python than in fully compiled
languages. Because it is interpreted today, Python alone usually isn't the best tool for the delivery of
such performance- critical components. Instead, computationally intensive operations can be
implemented as compiled extensions to Python and coded in a low-level language such as C. Python
can't be used as the sole implementation language for such components, but it works well as a
frontend scripting interface to them.

For example, numerical programming and image processing support has been added to Python by
combining optimized extensions with a Python language interface. In such a system, once the
optimized extensions have been developed, most of the programming occurs at the simpler level of
Python scripting. The net result is a numerical programming tool that's both efficient and easy to use.
The NumPy extension (and its NumArray and ScientificPython relatives), for instance, adds vector
processing to Python, turning it into what has been called an open source equivalent to Matlab.

Python can also still serve as a prototyping tool in such domains. Systems may be implemented in
Python first and later moved whole or piecemeal into a language such as C for delivery. C and Python
have distinct strengths and roles; a hybrid approach using C for compute-intensive modules and
Python for prototyping and frontend interfaces can leverage the benefits of both.

In some sense, Python solves the efficiency/flexibility trade-off by not solving it at all. It provides a
language optimized for ease of use, along with tools needed to integrate with other languages. By

combining components written in Python with compiled languages such as C and C++, developers
may select an appropriate mix of usability and performance for each particular application.

On a more fundamental level, while it's unlikely that it will ever be as fast as C, Python's speed of
development is at least as important as C's speed of execution in most modern software projects.

==a

=a

1.8. Truth in Advertising

In this book's conclusionafter we've had a chance to study Python in actionwe will return to some of
the bigger ideas introduced in this chapter. | want to point out up front, though, that my background
is in computer science, not marketing. | plan to be brutally honest in this book, both about Python's
features and about its downsides. Despite the fact that Python is one of the most easy-to-use and
flexible programming languages ever created, there are indeed some pitfalls, which we will not gloss
over in this book.

Let's start now. One of the first pitfalls you should know about, and a common remark made by
Python newcomers, is this: Python makes it incredibly easy to quickly throw together a bad design.
For some, it seems a genuine problem. Because developing programs in Python is so simple and fast
compared with using traditional languages, it's easy to get wrapped up in the act of programming
itself and pay less attention to the problem you are really trying to solve. If you haven't done any
Python development yet, you'll find that it is an incremental, interactive, and rapid experience that
encourages experimentation.

In fact, Python can be downright seductiveso much so that you may need to consciously resist the
temptation to quickly implement a program in Python that works, is loaded with features, and is
arguably "cool," but that leaves you as far from a maintainable implementation of your original
conception as you were when you started. The natural delays built into compiled language
developmentfixing compiler error messages, linking libraries, and the likearen't there in Python to
apply the brakes. In fact, it's not uncommon for a Python program to run the first time you try it;
there is much less syntax and there are far fewer procedures to get in your way.

This isn't necessarily all bad, of course. In most cases, the early designs that you throw together fast
are steppingstones to better designs that you later keep. That is the nature of prototyping, after all,
and often the reality of programming under tight schedules. But you should be warned: even with a
rapid development language such as Python, there is no substitute for brainsit's always best to think
before you start typing code. To date, at least, no computer programming language has managed to
make "wetware" obsolete.

The Python "Secret Handshake"

I've been involved with Python for some 14 years now as of this writing, and | have seen
it grow from an obscure language into one that is used in some fashion in almost every
development organization. It has been a fun ride.

But looking back over the years, it seems to me that if Python truly has a single legacy, it
is simply that Python has made quality a more central focus in the development world. It
was almost inevitable. A language that requires its users to line up code for readability
can't help but make people raise questions about good software practice in general.

Probably nothing summarizes this aspect of Python life better than the standard library

t hi s modulea sort of Easter egg in Python written by Python core developer, Tim Peters,
which captures much of the design philosophy behind the language. To see t hi s for
yourself, go to any Python interactive prompt and import the module (naturally, it's
available on all platforms):

>>> inmport this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than inplicit.

Sinple is better than conpl ex.

Conpl ex is better than conplicated.

Flat is better than nested.

Sparse is better than dense.

Readabi lity counts.

Speci al cases aren't special enough to break the rules.

Al t hough practicality beats purity.

Errors shoul d never pass silently.

Unl ess explicitly silenced.

In the face of anmbiguity, refuse the tenptation to guess.

There shoul d be one-- and preferably only one --obvious way to do it.
Al t hough that way may not be obvious at first unless you're Dutch
Now i s better than never

Al t hough never is often better than *right* now.

If the inplenentation is hard to explain, it's a bad idea.

If the inplenentation is easy to explain, it nmay be a good idea

Nanespaces are one honking great idea -- let's do nore of those!
>>>

Worth special mention, the "Explicit is better than implicit" rule has become known as
"EIBTI" in the Python worldone of Python's defining ideas, and one of its sharpest
contrasts with other languages. As anyone who has worked in this field for more than a
few years can attest, magic and engineering do not mix. Python has not always followed
all of these guidelines, of course, but it comes very close. And if Python's main
contribution to the software world is getting people to think about such things, it seems
like a win. Besides, it looked great on the T-shirt.

Chapter 2. A Sneak Preview

Section 2.1.

"Programming Python: The Short Story"

Section 2.2.

The Task

Section 2.3.

Step 1: Representing Records

Section 2.4.

Step 2: Storing Records Persistently

Section 2.5.

Step 3: Stepping Up to OOP

Section 2.6.

Step 4: Adding Console Interaction

Section 2.7.

Step 5: Adding a GUI

Section 2.8.

Step 6: Adding a Web Interface

Section 2.9.

The End of the Demo

MNEXT B

=a

2.1. "Programming Python: The Short Story"

If you are like most people, when you pick up a book as large as this one, you'd like to know a little
about what you're going to be learning before you roll up your sleeves. That's what this chapter is
forit provides a demonstration of some of the kinds of things you can do with Python, before getting
into the details. You won't learn much here, and if you're looking for explanations of the tools and
techniques applied in this chapter, you'll have to read on to later parts of the book. The point here is
just to whet your appetite, review a few Python basics, and preview some of the topics to come.

To do this, I'll pick a fairly simple application taskconstructing a database of recordsand migrate it
through multiple steps: interactive coding, command-line tools, console interfaces, GUIls, and simple
web-based interfaces. Along the way, we'll also peek at concepts such as data representation, object
persistence, and object-oriented programming (OOP); I'll mention some alternatives that we'll revisit
later in the book; and I'll review some core Python ideas that you should be aware of before reading
this book. Ultimately, we'll wind up with a database of Python class instances, which can be browsed
and changed from a variety of interfaces.

I'll cover additional topics in this book, of course, but the techniques you will see here are
representative of some of the domains we’ll explore later. And again, if you don't completely
understand the programs in this chapter, don't worry because you shouldn'tnot yet anyway. This is
just a Python demo. We'll fill in the details soon enough. For now, let's start off with a bit of fun.

=2 wExT

e Py |

2.2. The Task

Imagine, if you will, that you need to keep track of information about people for some reason; maybe
you want to store an address book on your computer, or perhaps you need to keep track of
employees in a small business. For whatever reason, you want to write a program that keeps track of
details about these people. In other words, you want to keep records in a databaseto permanently
store lists of people's attributes on your computer.

Naturally, there are off-the-shelf programs for managing databases like these. By writing a program
for this task yourself, however, you'll have complete control over its operation; you can add code for
special cases and behaviors that precoded software may not have anticipated. You won't have to
install and learn to use yet another database product. And you won't be at the mercy of a software
vendor to fix bugs or add new features. You decide to write a Python program to manage your
people.

=2 NEXT b

=a

2.3. Step 1. Representing Records

If we're going to store records in a database, the first step is probably deciding what those records
will look like. There are a variety of ways to represent information about people in the Python
language. Built-in object types such as lists and dictionaries are often sufficient, especially if we don't
care about processing the data we store.

2.3.1. Using Lists

Lists, for example, can collect attributes about people in a positionally ordered way. Start up your
Python interactive interpreter and type the following two statements (this works in the IDLE GUI,
after typing pyt hon at a shell prompt, and so on, and the >>> characters are Python's promptif you've
never run Python code this way before, see an introductory resource such as O'Reilly's Learning
Python for help with getting started):

>>> bob = ['Bob Snmith', 42, 30000, 'software']
>>> sue = [' Sue Jones', 45, 40000, 'nusic']

We've just made two records, albeit simple ones, to represent two people, Bob and Sue (my
apologies if you really are Bob or Sue, generically or otherwise[Z1). Each record is a list of four
properties: name, age, pay, and job field. To access these fields, we simply index by position (the
result is in parentheses here because it is a tuple of two results):

[1 No, I'm serious. For an example | present in Python classes | teach, | had for many years regularly used the named "Bob Smith,"
age 40.5, and jobs "developer" and "manager" as a supposedly fictitious database recorduntil a recent class in Chicago, where |
met a student name Bob Smith who was 40.5 and was a developer and manager. The world is stranger than it seems.

>>> bob[0], sue[2] # fetch name, pay
("Bob Smith', 40000)

Processing records is easy with this representation; we just use list operations. For example, we can
extract a last name by splitting the name field on blanks and grabbing the last part, and we may give
someone a raise by changing their list in-place:

>>> bob[0] .split()[-1] # what's bob's | ast nane?
"Smth'

>>> sue[2] *= 1.25 # give sue a 25%raise
>>> sue

[' Sue Jones', 45, 50000.0, 'music']

The last-name expression here proceeds from left to right: we fetch Bob's name, split it into a list of
substrings around spaces, and index his last name (run it one step at a time to see how).

2.3.1.1. A database list

Of course, what we really have at this point is just two variables, not a database; to collect Bob and
Sue into a unit, we might simply stuff them into another list:

>>> peopl e = [bob, sue]
>>> for person in people:
print person

['"Bob Snmith', 42, 30000, 'software']
['Sue Jones', 45, 50000.0, 'nusic']

Now, the people list represents our database. We can fetch specific records by their relative positions
and process them one at a time, in loops:

>>> peopl e[1] [0]
' Sue Jones'

>>> for person in people:

print person[O].split()[-1] # print |ast nanes
person[2] *= 1.20 # give each a 20%rai se
Smith
Jones
>>> for person in people: print person[2] # check new pay
36000. 0
60000. 0

Now that we have a list, we can also collect values from records using some of Python's more
powerful iteration tools, such as list comprehensions, maps, and generator expressions:

>>> pays = [person[2] for person in people] # collect all pay
>>> pays
[36000. 0, 60000. 0]

>>> pays = map((lanbda x: x[2]), people) # ditto
>>> pays
[36000. 0, 60000. 0]

>>> sum(person[2] for person in people) # generator expression sum (2.4)
96000. 0

To add a record to the database, the usual list operations, such as append and ext end, will suffice:

>>> peopl e. append([' Tom, 50, 0, None])
>>> | en(peopl e)

3

>>> peopl e[- 1] [0]

" Tom

Lists work for our people database, and they might be sufficient for some programs, but they suffer
from a few major flaws. For one thing, Bob and Sue, at this point, are just fleeting objects in memory
that will disappear once we exit Python. For another, every time we want to extract a last name or
give a raise, we'll have to repeat the kinds of code we just typed; that could become a problem if we
ever change the way those operations workwe may have to update many places in our code. We'll
address these issues in a few moments.

2.3.1.2. Field labels

Perhaps more fundamentally, accessing fields by position in a list requires us to memorize what each
position means: if you see a bit of code indexing a record on magic position 2, how can you tell it is
extracting a pay? In terms of understanding the code, it might be better to associate a field name
with a field value.

We might try to associate names with relative positions by using the Python r ange built-in function,
which builds a list of successive integers:

>>> NAME, AGE, PAY = range(3) # 10, 1, 2]
>>> bob = ['Bob Smith', 42, 10000]

>>> bob[NAME]

'"Bob Snmith'

>>> PAY, bob[PAY]

(2, 10000)

This addresses readability: the three variables essentially become field names. This makes our code
dependent on the field position assignments, thoughwe have to remember to update the range
assignments whenever we change record structure. Because they are not directly associated, the
names and records may become out of sync over time and require a maintenance step.

Moreover, because the field names are independent variables, there is no direct mapping from a
record list back to its field's names. A raw record, for instance, provides no way to label its values
with field names in a formatted display. In the preceding record, without additional code, there is no
path from value 42 to label AGE.

We might also try this by using lists of tuples, where the tuples record both a field name and a value;
better yet, a list of lists would allow for updates (tuples are immutable). Here's what that idea
translates to, with slightly simpler records:

>>> pbob = [['nane', 'Bob Snith'], ['age', 42], ['pay', 10000]]
>>> sue = [['nane', 'Sue Jones'], ['age', 45], ['pay', 20000]]
>>> peopl e = [bob, sue]

This really doesn't fix the problem, though, because we still have to index by position in order to
fetch fields:

>>> for person in people:
print person[0][1], person[2][1] # name, pay

Bob Smith 10000
Sue Jones 20000

>>> [person[0][1] for person in people] # col |l ect nanes
['"Bob Snmith', 'Sue Jones']

>>> for person in people:
print person[O0][1].split()[-1] # get |ast nanes
person[2][1] *= 1.10 # give a 10%rai se

Smi th
Jones
>>> for person in people: print person|2]

['"pay', 11000. 0]
['"pay', 22000. 0]

All we've really done here is add an extra level of positional indexing. To do better, we might inspect
field names in loops to find the one we want (the loop uses tuple assignment here to unpack the
name/value pairs):

>>> for person in people:
for (nane, value) in person:
if name == 'nane': print value # find a specific field

Bob Smith
Sue Jones

Better yet, we can code a fetcher function to do the job for us:

>>> def field(record, |abel):
for (fnane, fvalue) in record:
if fnane == | abel : # find any field by nane
return fval ue

>>> field(bob, 'name')
"Bob Smith'

>>> field(sue, 'pay')
22000.0

>>> for rec in people:
print field(rec, 'age') # print all ages

42
45

If we proceed down this path, we'll eventually wind up with a set of record interface functions that
generically map field names to field data. If you've done any Python coding in the past, you probably
already know that there is an easier way to code this sort of association, and you can probably guess
where we're headed in the next section.

2.3.2. Using Dictionaries

The list-based record representations in the prior section work, though not without some cost in
terms of performance required to search for field names (assuming you need to care about
milliseconds and such). But if you already know some Python, you also know that there are more
convenient ways to associate property names and values. The built-in dictionary object is a natural:

>>> pbob = {'nane': 'Bob Smith', 'age': 42, 'pay': 30000, 'job': 'dev'}
>>> sue = {'nane': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'nus'}

Now, Bob and Sue are objects that map field names to values automatically, and they make our code
more understandable and meaningful. We don't have to remember what a numeric offset means, and
we let Python search for the value associated with a field's name with its efficient dictionary indexing:

>>> bob[' nane'], sue['pay'] # not bob[0], sue[?2]
("Bob Smith', 40000)

>>> bob[' name'].split()[-1]
"Smth'

>>> sue['pay'] *= 1.10
>>> sue[’ pay']
44000. 0

Because fields are accessed mnemonically now, they are more meaningful to those who read your
code (including you).

2.3.2.1. Other ways to make dictionaries

Dictionaries turn out to be so useful in Python programming that there are even more convenient

ways to code them than the traditional literal syntax shown earliere.g., with keyword arguments and
the type constructor:

>>> pob = dict (name='Bob Snith', age=42, pay=30000, job='dev')
>>> bob
{'pay': 30000, 'job': "dev', "age': 42, 'name': 'Bob Smith'}

Other Uses for Lists

Lists are convenient any time we need an ordered container of other objects that may
need to change over time. A simple way to represent matrixes in Python, for instance, is
as a list of nested liststhe top list is the matrix, and the nested lists are the rows:

>> M= [[1, 2, 3], # 3x3, 2-di nmensional
[4, 5, 6],
[7, 8 9]]
>>> N=1[[2, 2, 2],
[3, 3, 3],
[4, 4, 4]]

Now, to combine one matrix's components with another's, step over their indexes with
nested loops; here's a simple pairwise multiplication:

>>> for i in range(3):
for j in range(3):
Coprint MiT[iT * NOPDLG T,
print
246
12 15 18
28 32 36

To build up a new matrix with the results, we just need to create the nested list structure
along the way:

>>> t bl
>>> for

r j in range(3):
row. append(Mi][j] * Ni][j])
t bl . append(r ow)

>>> t bl

[[2, 4, 6], [12, 15, 18], [28, 32, 36]]

Nested list comprehensions such as either of the following will do the same job, albeit at
some cost in complexity (if you have to think hard about expressions like these, so will
the next person who has to read your code!):

[[Mil[j] * N[i]J[j] for j in range(3)] for i in range(3)]

[[x *y for x, y in zip(rowl, row2)]
for rowl, row2 in zip(M N)]

List comprehensions are powerful tools, provided you restrict them to simple tasksfor
example, listing selected module functions, or stripping end-of-lines:

>>> jnport sys
>>> [x for x indir(sys) if x.startswith('getr')]
["getrecursionlinit', 'getrefcount']

>>> |ines = [line.rstrip() for line in open(' README. txt"')]
>>> | ines[0]
"This is Python version 2.4 al pha 3'

If you are interested in matrix processing, also see the mathematical and scientific
extensions available for Python in the public domain, such as those available through
NumPy and SciPy. The code here works, but extensions provide optimized tools. NumPy,
for instance, is seen by some as an open source Matlab equivalent.

by filling out a dictionary one field at a time:

>>> sye = {}

>>> sue[' nane'] = ' Sue Jones'
>>> sue['age'] = 45

>>> sue[' pay'] = 40000

>>> sue['job'] = 'nus'

>>> sue
{"job': "nus', 'pay': 40000, 'age': 45, 'name': 'Sue Jones'}

and by zipping together name/value lists:

>>> nanes ['nanme', 'age', 'pay', 'job']

>>> val ues = [' Sue Jones', 45, 40000, 'nus']

>>> zi p(names, val ues)

[("nane', 'Sue Jones'), ('age', 45), ('pay', 40000), ('job', "mus')]

>>> sue = dict(zi p(nanmes, val ues))
>>> sue
{"job'": "mus', 'pay': 40000, 'age': 45, 'nanme': 'Sue Jones'}

We can even make dictionaries today from a sequence of key values and an optional starting value
for all the keys (handy to initialize an empty dictionary):

>>> fjelds
>>> record
>>> record

{"job": "?', '"pay': '?'", 'age': '?', 'nane': '?'}

('nanme', 'age', 'job', 'pay')
dict.fronkeys(fields, '?")

2.3.2.2. Lists of dictionaries

Regardless of how we code them, we still need to collect our records into a database; a list does the
trick again, as long as we don't require access by key:

>>> peopl e = [bob, sue]
>>> for person in people:
print person['nane'], person['pay'] # all name, pay

Bob Smith 30000
Sue Jones 44000.0

>>> for person in people:
if person['name'] == 'Sue Jones': # fetch sue's pay
print person[' pay']

44000.0

Iteration tools work just as well here, but we use keys rather than obscure positions (in database
terms, the list comprehension and map in the following code project the database on the "name" field
column):

>>> names = [person[' nane'] for person in peopl €] # col |l ect nanes
>>> nanes
["Bob Snmith', 'Sue Jones']

>>> map((lanbda x: x['nanme']), people) # ditto
['"Bob Snmith', 'Sue Jones']

>>> sum(person[' pay'] for person in people) # sum al |l pay
74000.0

And because dictionaries are normal Python objects, these records can also be accessed and updated
with normal Python syntax:

>>> for person in people:
print person['nane'].split()[-1] # | ast nane
person[' pay'] *= 1.10 # a 10%rai se

Smth
Jones

>>> for person in people: print person['pay']

33000. 0
48400. 0

2.3.2.3. Nested structures

Incidentally, we could avoid the last-name extraction code in the prior examples by further
structuring our records. Because all of Python's compound datatypes can be nested inside each other
and as deeply as we like, we can build up fairly complex information structures easilysimply type the
object's syntax, and Python does all the work of building the components, linking memory structures,
and later reclaiming their space. This is one of the great advantages of a scripting language such as
Python.

The following, for instance, represents a more structured record by nesting a dictionary, list, and
tuple inside another dictionary:

>>> pob2 = {'nane': {'first': "Bob', 'last': "Smth'},
"age': 42,
"job': ['software', "witing],

pay': (40000, 50000)}

Because this record contains nested structures, we simply index twice to go two levels deep:

>>> bob2[' nane'] # bob's full nane
{'last': "Smith', "first': 'Bob'}

>>> pob2['name']['last'] # bob's | ast nane
"Smth'

>>> bob2[' pay'][1] # bob's upper pay
50000

The name field is another dictionary here, so instead of splitting up a string, we simply index to fetch
the last name. Moreover, people can have many jobs, as well as minimum and maximum pay limits.
In fact, Python becomes a sort of query language in such caseswe can fetch or change nested data
with the usual object operations:

>>> for job in bob2['job']: print job # all of bob's jobs

sof twar e

writing

>> bob2['job"'][-1] # bob's last job

"witing'

>>> bob2['job'].append('janitor') # bob gets a new job

>>> bobh2

{"job'": ['"software', "witing', "janitor'], 'pay': (40000, 50000), 'age': 42, 'nane':

{"last': "Smith', "first': 'Bob'}}

It's OK to grow the nested list with append, because it is really an independent object. Such nesting
can come in handy for more sophisticated applications; to keep ours simple, we'll stick to the original
flat record structure.

2.3.2.4. Dictionaries of dictionaries

One last twist on our people database: we can get a little more mileage out of dictionaries here by
using one to represent the database itself. That is, we can use a dictionary of dictionariesthe outer
dictionary is the database, and the nested dictionaries are the records within it. Rather than a simple
list of records, a dictionary-based database allows us to store and retrieve records by symbolic key:

>>> db = {}

>>> db[' bob'] = bob

>>> db['sue'] = sue

>>>

>>> db[' bob'][' nane'] # fetch bob's name
'"Bob Smith'

>>> db['sue'][pay'] = 50000 # change sue's pay
>>> db[' sue'][’ pay'] # fetch sue's pay
50000

Notice how this structure allows us to access a record directly instead of searching for it in a loop (we
get to Bob's name immediately by indexing on key bob). This really is a dictionary of dictionaries,
though you won't see all the gory details unless you display the database all at once:

>>> db
{"bob': {'pay': 33000.0, 'job': "dev', 'age': 42, 'nane': 'Bob Smith'},

sue': {'job': 'mus', 'pay': 50000, 'age': 45, 'nanme': 'Sue Jones'}}

If we still need to step through the database one record at a time, we can now rely on dictionary
iterators. In recent Python releases, a dictionary iterator produces one key in a f or loop each time
through (in earlier releases, call the keys method explicitly in the for loop: say db. keys() rather
than just db):

>>> for key in db
print key, '=>", db[key][' nane']

bob => Bob Snith
sue => Sue Jones

>>> for key in db
print key, '=>", db[key][' pay']

bob => 33000.0
sue => 50000

To visit all records, either index by key as you go:

>>> for key in db
print db[key]['nanme'].split()[-1]
db[key] [pay'] *= 1.10

Smth
Jones

or step through the dictionary's values to access records directly:

>>> for record in db.values(): print record[' pay']

36300. 0
55000. 0

>>> X
>>> X
['Bob Smith', 'Sue Jones']

[db[key][' name'] for key in db]

>>> x = [rec['nanme'] for rec in db.values()]
>>> X

['Bob Smith', 'Sue Jones']

And to add a new record, simply assign it to a new key; this is just a dictionary, after all:

>>> db['tom] = dict(name='Tom, age=50, job=None, pay=0)
>>>

>>> db['ton]

{"pay': 0, "job': None, 'age': 50, 'nane': 'Tom}

>>> db['tom][’ nane']

' Ton

>>> db. keys()

['bob', "sue', "tonl]

>>> | en(db)

Although our database is still a transient object in memory, it turns out that this dictionary-of-
dictionaries format corresponds exactly to a system that saves objects permanentlythe shelve (yes,
this should be shelf grammatically speaking, but the Python module name and term is shelve). To
learn how, let's move on to the next section.

=2 wExT

=a

2.4. Step 2: Storing Records Persistently

So far, we've settled on a dictionary-based representation for our database of records, and we've
reviewed some Python data structure concepts along the way. As mentioned, though, the objects
we've seen so far are temporarythey live in memory and they go away as soon as we exit Python or
the Python program that created them. To make our people persistent, they need to be stored in a
file of some sort.

2.4.1. Using Formatted Files

One way to keep our data around between program runs is to write all the data out to a simple text
file, in a formatted way. Provided the saving and loading tools agree on the format selected, we're
free to use any custom scheme we like.

2.4.1.1. Test data script

So that we don't have to keep working interactively, let's first write a script that initializes the data
we are going to store (if you've done any Python work in the past, you know that the interactive
prompt tends to become tedious once you leave the realm of simple one-liners). Example 2-1 creates
the sort of records and database dictionary we've been working with so far, but because it is a
module, we can import it repeatedly without having to retype the code each time. In a sense, this
module is a database itself, but its program code format doesn't support automatic or end-user
updates as is.

Other Uses for Dictionaries

Besides allowing us to associate meaningful labels with data rather than numeric
positions, dictionaries are often more flexible than lists, especially when there isn't a
fixed size to our problem. For instance, suppose you need to sum up columns of data
stored in a text file where the number of columns is not known or fixed:

>>> print open('data.txt').read()
001.1 002.2 003.3

010.1 020.2 030.3 040.4

100.1 200. 2 300.3

Here, we cannot preallocate a fixed-length list of sums because the number of columns
may vary. Splitting on whitespace extracts the columns, and fl oat converts to numbers,
but a fixed-size list won't easily accommodate a set of sums (at least, not without extra
code to manage its size). Dictionaries are more convenient here because we can use

column positions as keys instead of using absolute offsets Most of this code uses tools
added to Python in the last five years; see Chapter 4 for more on file iterators, Chapter
21 for text processing and alternative summers, and the library manual for the 2.3
enunerate and 2.4 sort ed functions this code uses:

>>> suns = {}
>>> for line in open('data.txt'):
cols = [float(col) for col inline.split()]
for pos, val in enunerate(cols):
sunms[pos] = sumns. get (pos, 0.0) + val

>>> for key in sorted(suns):

print key, '=', suns[key]
0 = 111.3
1 =222.6
2 = 333.9
3 =40.4
>>> suns

{0: 111.3, 1: 222.59999999999999, 2: 333.90000000000003,
3: 40. 399999999999999}

Dictionaries are often also a handy way to represent matrixes, especially when they are
mostly empty. The following two-entry dictionary, for example, suffices to represent a
potentially very large three-dimensional matrix containing two nonempty valuesthe keys
are coordinates and their values are data at the coordinates. You can use a similar
structure to index people by their birthdays (use month, day, and year for the key),
servers by their Internet Protocol (IP) numbers, and so on.

>>> D =
>>> O (
>>> O (= 46

>>> X, (5, 6, 7)

>>> D.get((X, Y, Z), 'Mssing')
46

>>> D.get((0, Y, Z), 'Mssing')
"M ssing'

>>> D

{(2, 4, 6): 43, (5, 6, 7): 46}

= 43 # 43 at position (2, 4, 6)

Example 2-1. PP3E\Preview\initdata.py

#initialize data to be stored in files, pickles, shelves

records

bob = {'name’': '"Bob Snmith', 'age': 42, 'pay': 30000, 'job': 'dev'}
sue = {'nane': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'nus'}
tom= {'name': 'Toni, "age': 50, 'pay': O, "job': None}

dat abase

db = {}
db[" bob'] = bob
db[' sue'] = sue
db['tom] = tom
if _ nane_ _=="'_ main_ _': # when run as a script
for key in db:
print key, '=>\n ', db[key]

As usual, the _ _nane_ _ test at the bottom of Example 2-1 is true only when this file is run, not
when it is imported. When run as a top-level script (e.g., from a command line, via an icon click, or
within the IDLE GUI), the file's self-test code under this test dumps the database's contents to the
standard output stream (remember, that's what pri nt statements do by default).

Here is the script in action being run from a system command line on Windows. Type the following
command in a Command Prompt window after a cd to the directory where the file is stored, and use a
similar console window on other types of computers:

...\ PP3E\ Previ ew> python initdata.py

bob =>

{"job'": "dev', 'pay': 30000, 'age': 42, 'nane': 'Bob Smith'}
sue =>

{"job'": "mus', 'pay': 40000, 'age': 45, 'nane': 'Sue Jones'}
tom=>

{"job": None, 'pay': 0, 'age': 50, 'nane': 'Toni}

Now that we've started running script files, here are a few quick startup hints:

¢ On some platforms, you may need to type the full directory path to the Python program on your
machine, and on recent Windows systems you don't need pyt hon on the command line at all
(just type the file's name to run it).

e You can also run this file inside Python's standard IDLE GUI (open the file and use the Run
menu in the text edit window), and in similar ways from any of the available third-party Python
IDEs (e.g., Komodo, Eclipse, and the Wing IDE).

e If you click the program'’s file icon to launch it on Windows, be sure to add a raw_i nput () call
to the bottom of the script to keep the output window up. On other systems, icon clicks may
require a #! line at the top and executable permission via a chnod command.

I'll assume here that you're able to run Python code one way or another. Again, if you're stuck, see

other books such as Learning Python for the full story on launching Python programs.
2.4.1.2. Data format script

Now, all we have to do is store all of this in-memory data on a file. There are a variety of ways to
accomplish this; one of the most basic is to write one piece of data at a time, with separators

between each that we can use to break the data apart when we reload. Example 2-2 shows one way
to code this idea.

Example 2-2. PP3E\Preview\make_ db_files.py

AR R T R R R T R R R R R R
save in-nmenory dat abase object to a file with customfornmatting;

assunme 'endrec.', 'enddb.', and '=>'" are not used in the data;

assunme db is dict of dict; warning: eval can be dangerous - it

runs strings as code; could also eval() record dict all at once
HAT R R R R T A R R R R R

dbfil ename = 'people-file'
ENDDB = 'enddb."

ENDREC = ' endrec.'

RECSEP = ' =>'

def storeDbase(db, dbfil enanme=dbfil enane):
"formatted dunp of database to flat file"
dbfile = open(dbfil enane, 'w)
for key in db:
print >> dbfile, key
for (nane, value) in db[key].itenms():
print >> dbfile, name + RECSEP + repr(val ue)
print >> dbfile, ENDREC
print >> dbfile, ENDDB
dbfile.close()

def | oadDbase(dbfil enane=dbfi |l enane):
"parse data to reconstruct database"
dbfile = open(dbfil enane)
i mport sys
sys.stdin = dbfile
db = {}
key = raw_i nput()
whi | e key !'= ENDDB
rec = {}
field = raw_input()
while field !'= ENDREC
nanme, value = field.split(RECSEP)
rec[nanme] = eval (val ue)
field = raw_input()
db[key] = rec
key = raw_i nput ()
return db

if name_ _=="'_ main_ _
frominitdata inport db
st or eDbase(db)

This is a somewhat complex program, partly because it has both saving and loading logic and partly
because it does its job the hard way; as we'll see in a moment, there are better ways to get objects
into files than by manually formatting and parsing them. For simple tasks, though, this does work;
running Example 2-2 as a script writes the database out to a flat file. It has no printed output, but we
can inspect the database file interactively after this script is run, either within IDLE or from a console
window where you're running these examples (as is, the database file shows up in the current
working directory):

...\ PP3E\ Previ ew> python nmake_db _file. py
...\ PP3E\ Previ ew> python
>>> for line in open(' people-file'):

print line,
bob
j ob=>' dev
pay=>30000
age=>42
name=>' Bob Snith'
endr ec.
sue
j ob=>' nmus’
pay=>40000
age=>45
nane=>' Sue Jones
endr ec.
tom
j ob=>None
pay=>0
age=>50
nane=>' Tonl
endr ec.
enddb.

This file is simply our database's content with added formatting. Its data originates from the test data
initialization module we wrote in Example 2-1 because that is the module from which Example 2-2's
self-test code imports its data. In practice, Example 2-2 itself could be imported and used to store a
variety of databases and files.

Notice how data to be written is formatted with the as-code repr() call and is re-created with the
eval () call which treats strings as Python code. That allows us to store and re-create things like the
None object, but it is potentially unsafe; you shouldn't use eval () if you can't be sure that the
database won't contain malicious code. For our purposes, however, there's probably no cause for
alarm.

2.4.1.3. Utility scripts

To test further, Example 2-3 reloads the database from a file each time it is run.

Example 2-3. PP3E\Preview\dump_db_file.py

frommake_db _file inport | oadDbase
db = | oadDbase()
for key in db:

print key, '=>\n ', db[key]
print db['sue'][' nane']

And Example 2-4 makes changes by loading, updating, and storing again.

Example 2-4. PP3E\Preview\update_db_file.py

frommake_db _file inport | oadDbase, storeDbase
db = | oadDbase()
db[*sue']["pay'] *
db['tom][' nane']
st or eDbase(db)

1.10
"Tom Tom

Here are the dump script and the update script in action at a system command line; both Sue's pay
and Tom's name change between script runs. The main point to notice is that the data stays around
after each script exitsour objects have become persistent simply because they are mapped to and
from text files:

...\ PP3E\ Previ ew> pyt hon dunp_db_file. py
bob =>

{' pay': 30000, '"job': '"dev', 'age': 42, 'name': 'Bob Snith'}
sue =>

{'pay': 40000, '"job': '"nus', 'age': 45, 'nane': 'Sue Jones'}
tom=>

{'pay': 0, "job': None, 'age': 50, 'nane': 'Tom}
Sue Jones

...\ PP3E\ Previ ew> pyt hon update_db_file. py
...\ PP3E\ Previ ew> pyt hon dunp_db_file. py

bob =>
{'pay': 30000, '"job': '"dev', 'age': 42, 'nane': 'Bob Snmith'}
sue =>

{'pay': 44000.0, 'job': "nmus', 'age': 45, 'nane': 'Sue Jones'}
tom=>
{"pay': 0, "job': None, 'age': 50, 'nanme': 'Tom Tom }

Sue Jones

As is, we'll have to write Python code in scripts or at the interactive command line for each specific
database update we need to perform (later in this chapter, we'll do better by providing generalized
console, GUI, and web-based interfaces instead). But at a basic level, our text file is a database of
records. As we'll learn in the next section, though, it turns out that we've just done a lot of pointless
work.

2.4.2. Using Pickle Files

The formatted file scheme of the prior section works, but it has some major limitations. For one
thing, it has to read the entire database from the file just to fetch one record, and it must write the
entire database back to the file after each set of updates. For another, it assumes that the data
separators it writes out to the file will not appear in the data to be stored: if the characters => happen
to appear in the data, for example, the scheme will fail. Perhaps worse, the formatter is already
complex without being general: it is tied to the dictionary-of-dictionaries structure, and it can't handle
anything else without being greatly expanded. It would be nice if a general tool existed that could
translate any sort of Python data to a format that could be saved on a file in a single step.

That is exactly what the Python pi ckl e module is designed to do. The pi ckl e module translates an in-
memory Python object into a serialized byte streama string of bytes that can be written to any file-
like object. The pi ckl e module also knows how to reconstruct the original object in memory, given
the serialized byte stream: we get back the exact same object. In a sense, the pi ckl e module
replaces proprietary data formatsits serialized format is general and efficient enough for any
program. With pi ckl e, there is no need to manually translate objects to data when storing them
persistently.

The net effect is that pickling allows us to store and fetch native Python objects as they are and in a
single stepwe use normal Python syntax to process pickled records. Despite what it does, the pi ckl e
module is remarkably easy to use. Example 2-5 shows how to store our records in a flat file, using

pi ckl e.

Example 2-5. PP3E\Preview\make_ db_pickle.py

frominitdata inport db

i mport pickle

dbfile = open(' people-pickle , "W)
pi ckl e. dunp(db, dbfile)
dbfile.close()

When run, this script stores the entire database (the dictionary of dictionaries defined in Example 2-
1) to a flat file named people-pickle in the current working directory. The pi ckl e module handles the
work of converting the object to a string. Example 2-6 shows how to access the pickled database
after it has been created; we simply open the file and pass its content back to pi ckl e to remake the
object from its serialized string.

Example 2-6. PP3E\Preview\dump_db_pickle.py

i mport pickle
dbfile = open(' peopl e-pickle')
db = pickle.load(dbfile)
for key in db:

print key, '"=>\n ', db[key]
print db['sue']['nane']

Here are these two scripts at work, at the system command line again; naturally, they can also be
run in IDLE, and you can open and inspect the pickle file by running the same sort of code
interactively as well:

...\ PP3E\ Previ ew> pyt hon nmake_db_pi ckl e. py
...\ PP3E\ Previ ew> pyt hon dunp_db_pi ckl e. py
bob =>

{"pay': 30000, "job': '"dev', 'age': 42, 'nane': 'Bob Smith'}
sue =>

{"pay': 40000, "job': 'nmus', 'age': 45, 'nane': ' Sue Jones'}
tom =>

{"pay': 0, "job': None, 'age': 50, 'nane': 'Tom}
Sue Jones

Updating with a pickle file is similar to a manually formatted file, except that Python is doing all of the
formatting work for us. Example 2-7 shows how.

Example 2-7. PP3E\Preview\update-db-pickle.py

i mport pickle

dbfile = open(' peopl e-pickle')
db = pickle.load(dbfile)
dbfile.close()

1.10
"Tom Tom

db['sue']['pay'] *=
db['tom][' nane'] =
dbfile = open(' people-pickle , "wW)
pi ckl e. dunp(db, dbfile)
dbfile.close()

Notice how the entire database is written back to the file after the records are changed in memory,
just as for the manually formatted approach; this might become slow for very large databases, but
we'll ignore this for the moment. Here are our update and dump scripts in actionas in the prior

section, Sue's pay and Tom's name change between scripts because they are written back to a file
(this time, a pickle file):

...\ PP3E\ Previ ew> pyt hon updat e_db_pi ckl e. py
...\ PP3E\ Previ ew> pyt hon dunp_db_pi ckl e. py
bob =>
{"pay': 30000, '"job': 'dev', 'age': 42, 'nane': 'Bob Snmith'}
sue =>
{'pay': 44000.0, 'job': '"nmus', 'age': 45, 'nane': 'Sue Jones'}
tom=>
{'pay': O,
Sue Jones

job": None, 'age': 50, 'nane': 'Tom Tom }

As we'll learn in Chapter 19, the Python pickling system supports nearly arbitrary object typeslists,
dictionaries, class instances, nested structures, and more. There, we'll also explore the faster cPi ckl e
module, as well as the pickler's binary storage protocols, which require files to be opened in binary
mode; the default text protocol used in the preceding examples is slightly slower, but it generates
readable ASCII data. As we'll see later in this chapter, the pickler also underlies shelves and ZODB
databases, and pickled class instances provide both data and behavior for objects stored.

In fact, pickling is more general than these examples may imply. Because they accept any object that
provides an interface compatible with files, pickling and unpickling may be used to transfer native
Python objects to a variety of media. Using a wrapped network socket, for instance, allows us to ship
pickled Python objects across a network and provides an alternative to larger protocols such as SOAP
and XML-RPC.

2.4.3. Using Per-Record Pickle Files

As mentioned earlier, one potential disadvantage of this section's examples so far is that they may
become slow for very large databases: because the entire database must be loaded and rewritten to
update a single record, this approach can waste time. We could improve on this by storing each
record in the database in a separate flat file. The next three examples show one way to do so;
Example 2-8 stores each record in its own flat file, using each record's original key as its filename
with a .pkl prepended (it creates the files bob.pkl, sue.pkl, and tom.pkl in the current working
directory).

Example 2-8. PP3E\Preview\make db_pickle_recs.py

frominitdata i nmport bob, sue, tom

i mport pickle
for (key, record) in [('bob', bob), ("tom, tom, ('sue', sue)]:
recfile = open(key+' .pkl', "w)

pi ckl e. dunp(record, recfile)
recfile.close()

Next, Example 2-9 dumps the entire database by using the standard library's gl ob module to do
filename expansion and thus collect all the files in this directory with a .pkl extension. To load a single
record, we open its file and deserialize with pi ckl e; we must load only one record file, though, not

the entire database, to fetch one record.

Example 2-9. PP3E\Preview\dump_db_pickle_recs.py

i nport pickle, glob

for filename in gl ob.glob("*.pkl"): # for '"bob','sue','tom
recfile = open(fil enane)
record = pickle.load(recfile)
print filename, '=>\n ', record

suefile = open(' sue. pkl ")
print pickle.load(suefile)[' nane'] # fetch sue's nane

Finally, Example 2-10 updates the database by fetching a record from its file, changing it in memory,
and then writing it back to its pickle file. This time, we have to fetch and rewrite only a single record

file, not the full database, to update.

Example 2-10. PP3E\Preview\update_ db_pickle_recs.py

i mport pickle

suefil e = open(' sue. pkl")
sue = pickle.load(suefile)
suefile.close()

sue['pay'] *= 1.10

suefile = open('sue.pkl', "w)
pi ckl e. dunp(sue, suefile)
suefile.close()

Here are our file-per-record scripts in action; the results are about the same as in the prior section,
but database keys become real filenames now. In a sense, the filesystem becomes our top-level
dictionaryfilenames provide direct access to each record.

...\ PP3E\ Previ ew> pyt hon make_db_pi ckl e_recs. py
...\ PP3E\ Previ ew> python dunp_db_pi ckl e_recs. py
bob. pkl =>
{'pay': 30000, '"job': '"dev', 'age': 42, 'nane': 'Bob Snmith'}
tom pkl =>
{'pay': 0, "job': None, 'age': 50, 'nane': 'Tom}
sue. pkl =>
{'pay': 40000, '"job': '"nus', 'age': 45, 'nane': 'Sue Jones'}

Sue Jones

...\ PP3E\ Previ ew> pyt hon update_db_pickl e_recs. py
...\ PP3E\ Previ ew> pyt hon dunp_db_pi ckl e_recs. py
bob. pkl =>

{'pay': 30000, '"job': '"dev', 'age': 42, 'nane': 'Bob Snmith'}
tom pkl =>

{*pay': 0, "job': None, 'age': 50, 'nane': 'Toni}
sue. pkl =>

{' pay': 44000.0, 'job': '"nus', 'age': 45, 'nane': 'Sue Jones'}
Sue Jones

2.4.4. Using Shelves

Pickling objects to files, as shown in the preceding section, is an optimal scheme in many
applications. In fact, some applications use pickling of Python objects across network sockets as a
simpler alternative to network protocols such as the SOAP and XML-RPC web services architectures
(also supported by Python, but much heavier than pi ckl e).

Moreover, assuming your filesystem can handle as many files as you'll need, pickling one record per
file also obviates the need to load and store the entire database for each update. If we really want
keyed access to records, though, the Python standard library offers an even higher-level tool:
shelves.

Shelves automatically pickle objects to and from a keyed-access filesystem. They behave much like
dictionaries that must be opened, and they persist after each program exits. Because they give us
key-based access to stored records, there is no need to manually manage one flat file per recordthe
shelve system automatically splits up stored records and fetches and updates only those records that
are accessed and changed. In this way, shelves provide utility similar to per-record pickle files, but
are usually easier to code.

The shel ve interface is just as simple as pi ckl e: it is identical to dictionaries, with extra open and
close calls. In fact, to your code, a shelve really does appear to be a persistent dictionary of
persistent objects; Python does all the work of mapping its content to and from a file. For instance,
Example 2-11 shows how to store our in-memory dictionary objects in a shelve for permanent
keeping.

Example 2-11. make_ db_shelve.py

frominitdata i nport bob, sue
i mport shel ve
db = shel ve. open(' peopl e-shel ve')

db[' bob'] = bob
db['sue'] = sue
db. cl ose()

This script creates one or more files in the current directory with the name people-shelve as a prefix;

you shouldn't delete these files (they are your database!), and you should be sure to use the same
name in other scripts that access the shelve. Example 2-12, for instance, reopens the shelve and
indexes it by key to fetch its stored records.

Example 2-12. dump_db_shelve.py

i nport shel ve

db = shel ve. open(' peopl e- shel ve")

for key in db:

print key, '=>\n
print db['sue'][' nane']
db. cl ose()

db[key]

We still have a dictionary of dictionaries here, but the top-level dictionary is really a shelve mapped
onto a file. Much happens when you access a shelve's keysit uses pi ckl e to serialize and deserialize,
and it interfaces with a keyed-access filesystem. From your perspective, though, it's just a persistent
dictionary. Example 2-13 shows how to code shelve updates.

Example 2-13. update_db_shelve.py

frominitdb i nport tom
i mport shel ve

db = shel ve. open(' peopl e-shel ve')

sue = db[' sue']

sue[' pay'] *= 1.50
db[' sue'] = sue
db['tom] = tom
db. cl ose()

fetch sue

update sue

add a new record

Notice how this code fetches sue by key, updates in memory, and then reassigns to the key to

update the shelve; this is a requirement of shelves, but not always of more advanced shelve-like
systems such as ZODB (covered in Chapter 19). Also note how shelve files are explicitly closed;
some underlying keyed-access filesystems may require this in order to flush output buffers after

changes.

Finally, here are the shelve-based scripts on the job, creating, changing, and fetching records. The
records are still dictionaries, but the database is now a dictionary-like shelve which automatically
retains its state in a file between program runs:

...\ PP3E\ Previ ew> pyt hon
...\ PP3E\ Previ ew> pyt hon
bob =>

{' pay' : 30000, 'job':
sue =>
{' pay' : 40000, 'job':

meke_db_shel ve. py
dunmp_db_shel ve. py

dev',

nus ,

age': 42, 'nane':

age' . 45, 'nane':

*Bob Smith'}

' Sue Jones'}

Sue Jones

...\ PP3E\ Previ ew> pyt hon update_db_shel ve. py
...\ PP3E\ Previ ew> pyt hon dunp_db_shel ve. py
tom=>

{*pay': 0, "job': None, 'age': 50, 'nane': 'Tonl}
bob =>

{'pay': 30000, 'job': '"dev', 'age': 42, 'nane': 'Bob Snmith'}
sue =>

{'pay': 60000.0, '"job': "nus', 'age': 45, 'nane': 'Sue Jones'}
Sue Jones

When we ran the update and dump scripts here, we added a new record for key t omand increased
Sue's pay field by 50 percent. These changes are permanent because the record dictionaries are
mapped to an external file by shelve. (In fact, this is a particularly good script for Suesomething she
might consider scheduling to run often, using a cron job on Unix, or a Startup folder or msconfig
entry on Windows.)

=a

=a

2.5. Step 3: Stepping Up to OOP

Let's step back for a moment and consider how far we've come. At this point, we've created a
database of records: the shelve, as well as per-record pickle file approaches of the prior section
suffice for basic data storage tasks. As is, our records are represented as simple dictionaries, which
provide easier-to-understand access to fields than do lists (by key, rather than by position).
Dictionaries, however, still have some limitations that may become more critical as our program
grows over time.

For one thing, there is no central place for us to collect record processing logic. Extracting last names
and giving raises, for instance, can be accomplished with code like the following:

>>> jnport shel ve
>>> db = shel ve. open(' peopl e-shel ve')
>>> bob = db[' bob']

>>> pob['nanme'].split()[-1] # get bob's |ast nane
"Smth'

>>> sue = db['sue']

>>> sue['pay'] *= 1.25 # give sue a raise

>>> sue[’ pay']

75000. 0

>>> db['sue'] = sue
>>> db. cl ose()

This works, and it might suffice for some short programs. But if we ever need to change the way last
names and raises are implemented, we might have to update this kind of code in many places in our
program. In fact, even finding all such magical code snippets could be a challenge; hardcoding or
cutting and pasting bits of logic redundantly like this in more than one place will almost always come
back to haunt you eventually.

It would be better to somehow hidethat is, encapsulatesuch bits of code. Functions in a module
would allow us to implement such operations in a single place and thus avoid code redundancy, but
still wouldn't naturally associate them with the records themselves. What we'd like is a way to bind
processing logic with the data stored in the database in order to make it easier to understand, debug,
and reuse.

Another downside to using dictionaries for records is that they are difficult to expand over time. For
example, suppose that the set of data fields or the procedure for giving raises is different for different
kinds of people (perhaps some people get a bonus each year and some do not). If we ever need to
extend our program, there is no natural way to customize simple dictionaries. For future growth,
we'd also like our software to support extension and customization in a natural way.

This is where Python's OOP support begins to become attractive:

Structure

With OOP, we can naturally associate processing logic with record dataclasses provide both a
program unit that combines logic and data in a single package and a hierarchy that allows code
to be easily factored to avoid redundancy.

Encapsulation

With OOP, we can also wrap up details such as name processing and pay increases behind
method functionsi.e., we are free to change method implementations without breaking their
users.

Customization

And with OOP, we have a natural growth path. Classes can be extended and customized by
coding new subclasses, without changing or breaking already working code.

That is, under OOP, we program by customizing and reusing, not by rewriting. OOP is an option in
Python and, frankly, is sometimes better suited for strategic than for tactical tasks. It tends to work
best when you have time for upfront planningsomething that might be a luxury if your users have
already begun storming the gates.

But especially for larger systems that change over time, its code reuse and structuring advantages
far outweigh its learning curve, and it can substantially cut development time. Even in our simple
case, the customizability and reduced redundancy we gain from classes can be a decided advantage.

2.5.1. Using Classes

OOP is easy to use in Python, thanks largely to Python's dynamic typing model. In fact, it's so easy
that we'll jump right into an example: Example 2-14 implements our database records as class
instances rather than as dictionaries.

Example 2-14. PP3E\Preview\person_start.py

cl ass Person:

def _ _init_ _(self, name, age, pay=0, job=None):
sel f. nane = nane
self.age = age
self.pay = pay
self.job = job
if _ _name_ _ =="'_ min_ _':

bob = Person('Bob Smith', 42, 30000, 'sweng')
sue = Person(' Sue Jones', 45, 40000, 'nusic')
print bob.nane, sue.pay

print bob.nane.split()[-1]
sue. pay *= 1.10
print sue. pay

There is not much to this classjust a constructor method that fills out the instance with data passed
in as arguments to the class name. It's sufficient to represent a database record, though, and it can
already provide tools such as defaults for pay and job fields that dictionaries cannot. The self-test
code at the bottom of this file creates two instances (records) and accesses their attributes (fields);
here is this file being run under IDLE:

>>>

Bob Smith 40000
Smith

44000. 0

This isn't a database yet, but we could stuff these objects into a list or dictionary as before in order to
collect them as a unit:

>>> from person_start inport Person
>>> bob = Person('Bob Snmith', 42)
>>> sue = Person(' Sue Jones', 45, 40000)

>>> peopl e = [bob, sue] # a "dat abase" |i st
>>> for person in people:
print person.nane, person.pay

Bob Smith O
Sue Jones 40000

>>> x = [(person.nane, person.pay) for person in people]
>>> X

[(*Bob Smith', 0), ('Sue Jones', 40000)]

Notice that Bob's pay defaulted to zero this time because we didn't pass in a value for that argument
(maybe Sue is supporting him now?). We might also implement a class that represents the database,
perhaps as a subclass of the built-in list or dictionary types, with insert and delete methods that
encapsulate the way the database is implemented. We'll abandon this path for now, though, because
it will be more useful to store these records persistently in a shelve, which already encapsulates
stores and fetches behind an interface for us. Before we do, though, let's add some logic.

2.5.2. Adding Behavior

So far, our class is just data: it replaces dictionary keys with object attributes, but it doesn't add
much to what we had before. To really leverage the power of classes, we need to add some behavior.
By wrapping up bits of behavior in class method functions, we can insulate clients from changes. And
by packaging methods in classes along with data, we provide a natural place for readers to look for
code. In a sense, classes combine records and the programs that process those records; methods
provide logic that interprets and updates the data.

For instance, Example 2-15 adds the last-name and raise logic as class methods; methods use the
sel f argument to access or update the instance (record) being processed.

Example 2-15. PP3E\Preview\person.py

cl ass Person:

def _ init_ (self, nane, age, pay=0, job=None):
sel f. nane = nane
self.age = age
self.pay = pay
self.job = job

def | ast Nane(sel f):
return self.nanme.split()[-1]
def gi veRai se(self, percent):
self.pay *= (1.0 + percent)
if name_ _=="'_ main_ _
bob = Person('Bob Smith', 42, 30000, 'sweng')
sue = Person(' Sue Jones', 45, 40000, 'nusic')
print bob.nane, sue.pay

print bob.|ast Name()
sue. gi veRai se(. 10)
print sue. pay

The output of this script is the same as the last, but the results are being computed by methods now,
not by hardcoded logic that appears redundantly wherever it is required:

>>>

Bob Smith 40000
Smith

44000. 0

2.5.3. Adding Inheritance

One last enhancement to our records before they become permanent: because they are implemented
as classes now, they naturally support customization through the inheritance search mechanism in
Python. Example 2-16, for instance, customizes the last section's Per son class in order to give a 10
percent bonus by default to managers whenever they receive a raise (any relation to practice in the
real world is purely coincidental).

Example 2-16. PP3E\Preview\manager.py

from person inport Person

cl ass Manager (Person):
def giveRai se(self, percent, bonus=0.1):
self.pay *= (1.0 + percent + bonus)
if _ nanme_ _=='"_ main_ _
tom = Manager (nane=' Tom Doe', age=50, pay=50000)
print tom |l astNanme()
tom gi veRai se(. 20)
print tom pay

>>>
Doe
65000. 0

Here, the Manager class appears in a module of its own, but it could have been added to the person
module instead (Python doesn't require just one class per file). It inherits the constructor and last-
name methods from its superclass, but it customizes just the rai se method. Because this change is
being added as a new subclass, the original Per son class, and any objects generated from it, will
continue working unchanged. Bob and Sue, for example, inherit the original raise logic, but Tom gets
the custom version because of the class from which he is created. In OOP, we program by
customizing, not by changing.

In fact, code that uses our objects doesn't need to be at all ware of what the raise method doesit's up
to the object to do the right thing based on the class from which it is created. As long as the object
supports the expected interface (here, a method called gi veRai se), it will be compatible with the
calling code, regardless of its specific type, and even if its method works differently than others.

If you've already studied Python, you may know this behavior as polymorphism; it's a core property

of the language, and it accounts for much of your code’s flexibility. When the following code calls the
gi veRai se method, for example, what happens depends on the obj object being processed; Tom gets
a 20 percent raise instead of 10 percent because of the Manager class's customization:

>>> from person inport Person
>>> from manager inport Manager

>>> bob = Person(nane='Bob Smith', age=42, pay=10000)
>>> sue = Person(nane=' Sue Jones', age=45, pay=20000)
>>> tom = Manager (nanme=' Tom Doe', age=55, pay=30000)
>>> db = [bob, sue, tonj

>>> for obj in db:
obj . gi veRai se(. 10) # default or custom

>>> for obj in db:
print obj.lastNanme(), '=>', obj.pay

Smith => 11000.0
Jones => 22000.0
Doe => 36000.0

2.5.4. Refactoring Code

Before we move on, there are a few coding alternatives worth noting here. Most of these underscore
the Python OOP model, and they serve as a quick review.

2.5.4.1. Augmenting methods

As a first alternative, notice that we have introduced some redundancy in Example 2-16: the raise
calculation is now repeated in two places (in the two classes). We could also have implemented the
customized Manager class by augmenting the inherited raise method instead of replacing it
completely:

cl ass Manager (Person):
def giveRai se(self, percent, bonus=0.1):
Per son. gi veRai se(sel f, percent + bonus)

The trick here is to call back the superclass's version of the method directly, passing in the sel f
argument explicitly. We still redefine the method, but we simply run the general version after adding
10 percent (by default) to the passed-in percentage. This coding pattern can help reduce code
redundancy (the original raise method's logic appears in only one place and so is easier to change)
and is especially handy for kicking off superclass constructor methods in practice.

If you've already studied Python OOP, you know that this coding scheme works because we can
always call methods through either an instance or the class name. In general, the following are
equivalent, and both forms may be used explicitly:

i nstance. net hod(argl, arg2)
cl ass. met hod(i nstance, argl, arg2)

In fact, the first form is mapped to the secondwhen calling through the instance, Python determines
the class by searching the inheritance tree for the method name and passes in the instance
automatically. Either way, within gi veRai se, sel f refers to the instance that is the subject of the call.

2.5.4.2. Display format

For more object-oriented fun, we could also add a few operator overloading methods to our people
classes. For example, a _ _str_ _ method, shown here, could return a string to give the display
format for our objects when they are printed as a wholemuch better than the default display we get
for an instance:

cl ass Person:
def _ str_ (self):

return ' <% => %> % (self._ _class_ _._ _nane_ _, self.nane)

tom = Manager (' Tom Jones', 50)

print tom # prints: <Manager => Tom Jones>
Here _ _class_ _ gives the lowest class from which sel f was made, even though _ _str_ _ may be
inherited. The net effect is that _ _str_ _ allows us to print instances directly instead of having to

print specific attributes. We could extend this _ _str_ _ to loop through the instance's _ _dict_ _
attribute dictionary to display all attributes generically.

We might even code an _ _add_ _ method to make + expressions automatically call the gi veRai se
method. Whether we should is another question; the fact that a + expression gives a person a raise
might seem more magical to the next person reading our code than it should.

2.5.4.3. Constructor customization

Finally, notice that we didn't pass the j ob argument when making a manager in Example 2-16; if we
had, it would look like this with keyword arguments:

tom = Manager (nanme=' Tom Doe', age=50, pay=50000, job='manager')

The reason we didn't include a job in the example is that it's redundant with the class of the object: if
someone is a manager, their class should imply their job title. Instead of leaving this field blank,
though, it may make more sense to provide an explicit constructor for managers, which fills in this
field automatically:

cl ass Manager (Person):
def _ _init_ (self, name, age, pay):
Person. _ _init_ _(self, name, age, pay, 'manager')

Now when a manager is created, its job is filled in automatically. The trick here is to call to the
superclass's version of the method explicitly, just as we did for the gi veRai se method earlier in this
section; the only difference here is the unusual name for the constructor method.

2.5.4.4. Alternative classes

We won't use any of this section's three extensions in later examples, but to demonstrate how they
work, Example 2-17 collects these ideas in an alternative implementation of our Per son classes.

Example 2-17. PP3E\Preview\people-alternative.py

alternative inplenmentati on of person cl asses
data, behavi or, and operator overl oading

cl ass Person:

a general person: data+l ogic

def _ _init_ (self, nane, age, pay=0, job=None):
sel f.nane = name
sel f.age = age
sel f.pay = pay
self.job = job

def | ast Name(sel f):
return self.name.split()[-1]
def giveRaise(self, percent):
self.pay *= (1.0 + percent)

def _ str_ (self):
return ('<% => %: %, %> %
(self.__class_ . __nane_ _, self.name, self.job, self.pay))

cl ass Manager (Person):
a person with customraise
i nherits general |astnane, str
def _ init_ (self, nane, age, pay):
Person. _ _init_ (self, name, age, pay, 'nanager')
def giveRai se(self, percent, bonus=0.1):
Per son. gi veRai se(sel f, percent + bonus)

if _ _nanme_ == _main

bob = Person('Bob Smth', 44)

sue = Person(' Sue Jones', 47, 40000, 'nusic')

tom = Manager (nane=' Tom Doe', age=50, pay=50000)

print sue, sue.pay, sue.lastNane()

for obj in (bob, sue, tom:
obj . gi veRai se(. 10) # run this obj's giveRaise
print obj # run comon _ _str_ _ method

Notice the polymorphism in this module's self-test loop: all three objects share the constructor, last-
name, and printing methods, but the raise method called is dependent upon the class from which an
instance is created. When run, Example 2-17 prints the following to standard outputthe manager’s
job is filled in at construction, we get the new custom display format for our objects, and the new

version of the manager's raise method works as before:

<Person => Sue Jones: nusic, 40000> 40000 Jones
<Person => Bob Smith: None, 0.0>

<Person => Sue Jones: nusic, 44000. 0>

<Manager => Tom Doe: manager, 60000. 0>

Such refactoring (restructuring) of code is common as class hierarchies grow and evolve. In fact, as
is, we still can't give someone a raise if his pay is zero (Bob is out of luck); we probably need a way
to set pay, too, but we'll leave such extensions for the next release. The good news is that Python's
flexibility and readability make refactoring easyit's simple and quick to restructure your code. If you
haven't used the language yet, you'll find that Python development is largely an exercise in rapid,

incremental, and interactive programming, which is well suited to the shifting needs of real-world
projects.

2.5.5. Adding Persistence

It's time for a status update. We now have encapsulated in the form of classes customizable
implementations of our records and their processing logic. Making our class-based records persistent
is a minor last step. We could store them in per-record pickle files again; a shelve-based storage
medium will do just as well for our goals and is often easier to code. Example 2-18 shows how.

Example 2-18. PP3E\Preview\make db_classes.py

i mport shel ve
fromperson inport Person
from manager inport Manager

bob = Person(' Bob Smith', 42, 30000, 'sweng')
sue = Person(' Sue Jones', 45, 40000, 'music')
tom = Manager (' Tom Doe', 50, 50000)

db = shel ve. open(' cl ass-shel ve')

db[' bob'] = bob
db[' sue'] = sue
db['tom] = tom
db. cl ose()

This file creates three class instances (two from the original class and one from its customization) and
assigns them to keys in a newly created shelve file to store them permanently. In other words, it
creates a shelve of class instances; to our code, the database looks just like a dictionary of class
instances, but the top-level dictionary is mapped to a shelve file again. To check our work, Example
2-19 reads the shelve and prints fields of its records.

Example 2-19. PP3E\Preview\dump_db_class.py

i nport shel ve
db = shel ve. open(' cl ass-shel ve')
for key in db:
print key, '=>\n ', db[key].nane, db[key].pay

bob = db[' bob']
print bob. |l ast Name()
print db['tom].|astNanme()

Note that we don't need to reimport the Per son class here in order to fetch its instances from the
shelve or run their methods. When instances are shelved or pickled, the underlying pickling system
records both instance attributes and enough information to locate their classes automatically when
they are later fetched (the class's module simply has to be on the module search path when an
instance is loaded). This is on purpose; because the class and its instances in the shelve are stored
separately, you can change the class to modify the way stored instances are interpreted when loaded
(more on this later in the book). Here is the shelve dump script running under IDLE just after
creating the shelve:

>>>
tom =>

Tom Doe 50000
bob =>

Bob Smith 30000
sue =>

Sue Jones 40000
Smith
Doe

As shown in Example 2-20, database updates are as simple as before, but dictionary keys become
object attributes and updates are implemented by method calls, not by hardcoded logic. Notice how
we still fetch, update, and reassign to keys to update the shelve.

Example 2-20. PP3E\Preview\update_db_class.py

i nport shel ve
db = shel ve. open(' cl ass-shel ve')

sue = db[' sue']
sue. gi veRai se(. 25)
db[' sue'] = sue

tom= db['tom]
tom gi veRai se(. 20)
db['tom] = tom
db. cl ose()

And last but not least, here is the dump script again after running the update script; Tom and Sue
have new pay values, because these objects are now persistent in the shelve. We could also open
and inspect the shelve by typing code at Python's interactive command line; despite its longevity, the
shelve is just a Python object containing Python objects.

>>>
tom =>

Tom Doe 65000. 0
bob =>

Bob Smith 30000
sue =>

Sue Jones 50000.0
Smith
Doe

Tom and Sue both get a raise this time around, because they are persistent objects in the shelve
database. Although shelves can store simpler object types such as lists and dictionaries, class
instances allow us to combine both data and behavior for our stored items. In a sense, instance
attributes and class methods take the place of records and processing programs in more traditional
schemes.

2.5.6. Other Database Options

At this point, we have a full-fledged database system: our classes simultaneously implement record
data and record processing, and they encapsulate the implementation of the behavior. And the
Python pi ckl e and shel ve modules provide simple ways to store our database persistently between
program executions. This is not a relational database (we store objects, not tables, and queries take
the form of Python object processing code), but it is sufficient for many kinds of programs.

If we need more functionality, we could migrate this application to even more powerful tools. For
example, should we ever need full-blown SQL query support, there are interfaces that allow Python
scripts to communicate with relational databases such as MySQL, PostgreSQL, and Oracle in portable
ways.

Moreover, the open source ZODB system provides a more comprehensive object database for

Python, with support for features missing in shelves, including concurrent updates, transaction
commits and rollbacks, automatic updates on in-memory component changes, and more. We'll
explore these more advanced third-party tools in Chapter 19. For now, let's move on to putting a
good face on our system.

=2 NEXT

=a

2.6. Step 4: Adding Console Interaction

So far, our database program consists of class instances stored in a shelve file, as coded in the
preceding section. It's sufficient as a storage medium, but it requires us to run scripts from the
command line or type code interactively in order to view or process its content. Improving on this is
straightforward: simply code more general programs that interact with users, either from a console
window or from a full-blown graphical interface.

2.6.1. A Console Shelve Interface

Let's start with something simple. The most basic kind of interface we can code would allow users to
type keys and values in a console window in order to process the database (instead of writing Python
program code). Example 2-21, for instance, implements a simple interactive loop that allows a user
to query multiple record objects in the shelve by key.

Example 2-21. PP3E\Preview\peopleinteract_query.py

interactive queries

i nport shel ve

fieldnames = (' nane', 'age', 'job', 'pay')
mexfield = max(len(f) for f in fieldnanes)
db = shel ve. open(' cl ass-shel ve')

whil e True:
key = raw_i nput (' \ nKey? => ") # key or enpty line, exc at eof
i f not key: break
try:
record = db[key] # fetch by key, show in console
except:
print 'No such key "%"!"' 9% key
el se:
for field in fieldnanes:

print field.ljust(maxfield), '=>'", getattr(record, field)

This script uses getattr to fetch an object's attribute when given its name string, and the | j ust left-
justify method of strings to align outputs (maxfi el d, derived from a comprehension expression, is the
length of the longest field name). When run, this script goes into a loop, inputting keys from the
interactive user (technically, from the standard input stream, which is usually a console window) and
displaying the fetched records field by field. An empty line ends the session:

Key? => sue
nane => Sue Jones
age => 45

job => nusic
pay => 40000

Key? => nobody
No such key "nobody"!

Key? =>

Example 2-22 goes further and allows interactive updates. For an input key, it inputs values for each
field and either updates an existing record or creates a new object and stores it under the key.

Example 2-22. PP3E\Preview\peopleinteract update.py

interactive updates
i mport shel ve

fromperson inport Person
fieldnames = (' nane', '

age', 'job', 'pay')
db = shel ve. open(' cl ass-shel ve')
whil e True:

key = raw_i nput (' \ nKey? => ")

if not key: break

if key in db.keys():

record = db[key] # update existing record

el se: # or make/store new rec
record = Person(nanme="?", age='?") # eval : quote strings

for field in fieldnanes:
currval = getattr(record, field)
newt ext = raw_input ('\t[%]=%\n\t\tnew?=>" % (field, currval))
if newtext:

setattr(record, field, eval (newtext))
db[key] = record
db. cl ose()

Notice the use of eval in this script to convert inputs (as usual, that allows any Python object type,
but it means you must quote string inputs explicitly) and the use of setattr call to assign an attribute
given its name string. When run, this script allows any number of records to be added and changed;
to keep the current value of a record's field, press the Enter key when prompted for a new value:

Key? => tom

[nane] =Tom Doe
new?=>

[age] =55
new?=>56

[j ob] =ngr
new?=>

[pay] =65000. 0
new?=>90000

Key? => nobody

Key? =>

[nane] =?
[age] =?
[j ob] =No
[pay] =0

new?=>"' John Doh'

new?=>55
ne
new?=>

new?=>None

This script is still fairly simplistic (e.g., errors aren't handled), but using it is much easier than

manually opening and modifying the shelve at the Python interactive prompt, especially for

nonprogrammers. Run the query script to check your work after an update (we could combine query
and update into a single script if this becomes too cumbersome, albeit at some cost in code and user-
experience complexity):

Key?
nanme
age
j ob
pay

Key?
nanme
age
j ob
pay

Key?

=>
=>
=>
=>
=>

=>
=>
=>
=>
=>

tom
Tom Doe
56

ngr
90000

nobody
John Doh
55

None
None

MNEXT B

=a

2.7. Step 5: Adding a GUI

The console-based interface approach of the preceding section works, and it may be sufficient for
some users assuming that they are comfortable with typing commands in a console window. With
just a little extra work, though, we can add a GUI that is more modern, easier to use and less error
prone, and arguably sexier.

2.7.1. GUI Basics

As we'll see later in this book, a variety of GUI toolkits and builders are available for Python
programmers: Tkinter, wxPython, PyQt, PythonCard, Dabo, and more. Of these, Tkinter ships with
Python, and it is something of a de facto standard.

Tkinter is a lightweight toolkit and so meshes well with a scripting language such as Python; it's easy
to do basic things with Tkinter, and it's straightforward to do more advanced things with extensions
and OOP-based code. As an added bonus, Tkinter GUIs are portable across Windows, Linux/Unix, and
Macintosh; simply copy the source code to the machine on which you wish to use your GUI.

Because Tkinter is designed for scripting, coding GUIs with it is straightforward. We'll study all of its
concepts and tools later in this book. But as a first example, the first program in Tkinter is just a few
lines of code, as shown in Example 2-23.

Example 2-23. PP3E\Preview\tkinterOO1l.py

fromTkinter inport *
Label (t ext =" Spam). pack()
mai nl oop()

This isn't the most useful GUI ever coded, but it demonstrates Tkinter basics and it builds the fully
functional window shown in Figure 2-1 in just three simple lines of code. From the Tkinter module,
we get widget (screen device) construction calls such as Label , geometry manager methods such as
pack, widget configuration constants such as TOP and RI GHT side hints for pack, and the nai nl oop call,
which starts event processing.

Figure 2-1. tkinterOOl1l.py window

ES -0 x|

Spam

You can launch this example in IDLE from a console command line by clicking its icon the same way

you can run other Python scripts. Tkinter itself is a standard part of Python and works out-of-the-box

on Windows, though you may need to install extras on some computers (more details later in this
book).

It's not much more work to code a GUI that actually responds to a user: Example 2-24 implements a
GUI with a button that runs the repl y function each time it is pressed.

Example 2-24. PP3E\Preview\ tkinterl101l.py

fromTkinter inport *
fromtkMessageBox inport show nfo

def reply():
showi nfo(title=" popup', nessage='Button pressed!")

wi ndow = Tk()

button = Button(w ndow, text='press', command=reply)
but t on. pack()

wi ndow. mai nl oop()

This example still isn't very sophisticatedit creates an explicit Tk main window for the application to
serve as the parent container of the button, and it builds the simple window shown in Figure 2-2 (in
Tkinter, containers are passed in as the first argument when making a new widget; they default to
the main window). But this time, each time you click the "press" button, the program responds by
running Python code that pops up the dialog window in Figure 2-3.

Figure 2-2. tkinter10l1l.py main window

B -0/

Figure 2-3. tkinter101l.py common dialog pop up
i

@ Button presszed!

Notice how the pop-up dialog looks like it should for Windows, the platform on which this screenshot
was taken; Tkinter gives us a native look and feel that is appropriate for the machine on which it is

running. We can customize this GUI in many ways (e.g., by changing colors and fonts, setting
window titles and icons, using photos on buttons instead of text), but part of the power of Tkinter is
that we need to set only the options we are interested in tailoring.

2.7.2. Using OOP for GUIs

All of our GUI examples so far have been top-level script code with a function for handling events. In
larger programs, it is often more useful to code a GUI as a subclass of the Tkinter Frane widgeta

container for other widgets. Example 2-25 shows our single-button GUI recoded in this way as a
class.

Example 2-25. PP3E\Preview\tkinter1l02.py

fromTkinter inport *
fromtkMessageBox i nport show nfo

class MyQui (Frane):
def _ init_ (self, parent=None):
Frame. _init_ (self, parent)
button = Button(sel f, text='press', conmmand=self.reply)
butt on. pack()
def reply(self):
showi nfo(title=" popup', nessage=' Button pressed!')
if _ nanme_ _=='"_ main_ _
wi ndow = MyQui ()
wi ndow. pack()
wi ndow. mai nl oop()

The button's event handler is a bound methodsel f. reply, an object that remembers both sel f and
reply when later called. This example generates the same window and pop up as Example 2-24
(Figures 2-2 and 2-3); but because it is now a subclass of Frane, it automatically becomes an
attachable componenti.e., we can add all of the widgets this class creates, as a package, to any other
GUI, just by attaching this Frane to the GUI. Example 2-26 shows how.

Example 2-26. PP3E\Preview\attachgui.py

fromTkinter inport *
fromtkinter102 inport MyGui

mai n app w ndow
mai nwi n = Tk()
Label (nmainwin, text=_ _nanme_ _).pack()

popup w ndow

popup = Topl evel ()

Label (popup, text="Attach').pack(si de=LEFT)

MyGui (popup) . pack(si de=RI GHT) # attach ny frane
mei nwi n. mai nl oop()

This example attaches our one-button GUI to a larger window, here a Topl evel pop-up window
created by the importing application and passed into the construction call as the explicit parent (you
will also get a Tk main window; as we'll learn later, you always do, whether it is made explicit in your
code or not). Our one-button widget package is attached to the right side of its container this time. If

you run this live, you'll get the scene captured in Figure 2-4; the "press" button is our attached
custom Frane.

Figure 2-4. Attaching GUIs

BT -loix|

__main__

" popup

@ Button preszed|
B -0/
Attach press | 0K |

Moreover, because W @i is coded as a class, the GUI can be customized by the usual inheritance
mechanism; simply define a subclass that replaces the parts that differ. The repl y method, for
example, can be customized this way to do something unique, as demonstrated in Example 2-27.

Example 2-27. PP3E\Preview\customizegui.py

fromtkMessageBox i nport show nfo
fromtkinter102 inport MyGui

class Custontui (MyGui): # inherit init
def reply(self): # replace reply
showi nfo(title=" popup', nessage=' Quch!")
if _ name_ _=='"_ main_ _

Cust ontaui () . pack()
mai nl oop()

When run, this script creates the same main window and button as the original MyGui class. But
pressing its button generates a different reply, as shown in Figure 2-5, because the custom version of
the reply method runs.

Figure 2-5. Customizing GUIs

- popup S
“ ;IEIEI @ Ouchl

press

Although these are still small GUIs, they illustrate some fairly large ideas. As we'll see later in the
book, using OOP like this for inheritance and attachment allows us to reuse packages of widgets in
other programscalculators, text editors, and the like can be customized and added as components to
other GUIs easily if they are classes.

2.7.3. Getting Input from a User

As a final introductory script, Example 2-28 shows how to input data from the user in an EnTRy widget
and display it in a pop-up dialog. The | anbda it uses defers the call to the repl y function so that
inputs can be passed ina common Tkinter coding pattern (we could also use ent as a global variable
within repl y, but that makes it less general). This example also demonstrates how to change the icon
and title of a top-level window; here, the window icon file is located in the same directory as the
script.

Example 2-28. PP3E\Preview\tkinter103.py

fromTkinter inport *
fromtkMessageBox i nport show nfo

def reply(nane):
showi nfo(title="Reply', nessage="Hello %! % nane)

top = Tk()
top.title(' Echo')
top.iconbitmap(' py-blue-trans-out.ico")

Label (top, text="Enter your nane:").pack(si de=TOP)

ent = Entry(top)

ent . pack(si de=TOP)

btn = Button(top, text="Submt", command=(|anbda: reply(ent.get())))
bt n. pack(si de=LEFT)

top. mai nl oop()

As is, this example is just three widgets attached to the Tk main top-level window; later we'll learn
how to use nested Frane container widgets in a window like this to achieve a variety of layouts for its
three widgets. Figure 2-6 gives the resulting main and pop-up windows after the Submit button is
pressed (shown here running on a different Windows machine). We'll see something very similar later
in this chapter, but rendered in a web browser with HTML.

Figure 2-6. Fetching input from a user

B Echo [||01][X]

E nter your name:

Bob mReply (X
Subrnit

% 1) Hello Bob!

The code we've seen so far demonstrates many of the core concepts in GUI programming, but
Tkinter is much more powerful than these examples imply. There are more than 20 widgets in Tkinter
and many more ways to input data from a user, including multiple-line text, drawing canvases, pull-
down menus, radio and check-buttons, scroll bars, as well as other layout and event handling
mechanisms. Beyond Tkinter itself, extensions such as the open source PMW and Tix libraries add
additional widgets we can use in our Python Tkinter GUIs and provide an even more professional look
and feel. To hint at what is to come, let's put Tkinter to work on our database of people.

2.7.4. A GUI Shelve Interface

For our database application, the first thing we probably want is a GUI for viewing the stored dataa
form with field names and valuesand a way to fetch records by key. It would also be useful to be able
to update a record with new field values given its key and to add new records from scratch by filling
out the form. To keep this simple, we'll use a single GUI for all of these tasks. Figure 2-7 shows the
window we are going to code as it looks in Windows; the record for the key sue has been fetched and
displayed. This record is really an instance of our class in our shelve file, but the user doesn't need to
care.

Figure 2-7. peoplegui.py main display/input window

People Shelye 8 [u]F1|
ken Jzue

name |'Sue Jones'

age |45

b | s’
pay 40000

Fetn::hl L||:u:|ate| I:!uitl

2.7.4.1. Coding the GUI

Also, to keep this simple, we'll assume that all records in the database have the same sets of fields.
It would be a minor extension to generalize this for any set of fields (and come up with a general
form GUI constructor tool in the process, such as this book's PyForm example), but we'll defer such
evolutions to later in this book. Example 2-29 implements the GUI shown in Figure 2-7.

Example 2-29. PP3E\Preview\peoplegui.py

HEH R R R R R R R R R R R R
inplenent a GU for view ng/updating class instances stored in a shelve;

the shelve lives on nmachine this script runs on, as 1 or nore local files
HEH R R R R R R R R R R

fromTkinter inport *
fromtkMessageBox i nport showerror
i nport shel ve

shel venanme = ' cl ass-shel ve'

fiel dnanes (' nane', '

age', 'job',

pay')

def makeW dgets():
gl obal entries
wi ndow = Tk()
wi ndow. titl e(' Peopl e Shel ve')
form = Frame(w ndow)
| abel s = Frane(form
val ues = Frane(form

| abel s. pack(si de=LEFT)
val ues. pack(si de=RI GHT)
form pack()
entries = {}
for label in ('key',) + fieldnanes:

Label (I abel s, text=label). pack()

ent = Entry(val ues)

ent. pack()

entries[label] = ent
Butt on(wi ndow, text="Fetch", comrand=fetchRecord). pack(si de=LEFT)
But t on(w ndow, text="Update", comrand=updateRecord). pack(si de=LEFT)
Butt on(wi ndow, text="Quit", command=wi ndow. qui t) . pack(si de=Rl GHT)
return wi ndow

def fetchRecord():
key = entries['key'].get()

try:

record = db[key] # fetch by key, showin GU
except:

showerror(title="Error', message='No such key!")
el se:

for field in fieldnanes:
entries[field].delete(0, END)
entries[field].insert(0, repr(getattr(record, field)))

def updat eRecord():
key = entries['key'].get()
if key in db. keys():

record = db[key] # update existing record

el se:
from person inport Person # make/ store new one for key
record = Person(nane='7?"', age='7?") # eval : strings nust be quoted

for field in fieldnanes:
setattr(record, field, eval (entries[field].get()))
db[key] = record

db = shel ve. open(shel venane)

wi ndow = nmakeW dgets()

wi ndow. mai nl oop()

db.close() # back here after quit or w ndow cl ose

Notice how the end of this script opens the shelve as a global variable and starts the GUI; the shelve
remains open for the lifespan of the GUI (mai nl oop returns only after the main window is closed). As
we'll see in the next section, this state retention is very different from the web model, where each
interaction is normally a standalone program. Also notice that the use of global variables makes this
code simple but unusable outside the context of our database; more on this later.

2.7.4.2. Using the GUI

The GUI we're building is fairly basic, but it provides a view on the shelve file and allows us to browse
and update the file without typing any code. To fetch a record from the shelve and display it on the
GUI, type its key into the GUI's "key" field and click Fetch. To change a record, type into its input

fields after fetching it and click Update; the values in the GUI will be written to the record in the
database. And to add a new record, fill out all of the GUI's fields with new values and click Updatethe
new record will be added to the shelve file using the key and field inputs you provide.

In other words, the GUI's fields are used for both display and input. Figure 2-8 shows the scene after
adding a new record (via Update), and Figure 2-9 shows an error dialog pop up issued when users
try to fetch a key that isn't present in the shelve.

Figure 2-8. peoplegui.py after adding a new persistent object

People Shelve 8[| 3
ken Jtorntom

name |'Tom Tom'

age |45

job |'music’
40000

pay
Fetchl Updatel I]uitl

Figure 2-9. peoplegui.py common error dialog pop up
- Eror S

Q Mo zuch keyl

Notice how we're using repr () again to display field values fetched from the shelve and eval () to
convert field values to Python objects before they are stored in the shelve. As mentioned previously,
this is potentially dangerous if someone sneaks some malicious code into our shelve, but we'll finesse
such concerns for now.

Keep in mind, though, that this scheme means that strings must be quoted in input fields other than
the keythey are assumed to be Python code. In fact, you could type an arbitrary Python expression in
an input field to specify a value for an update. (Typing " Tont' *3 in the name field, for instance, would
set the name to TonfToniTom after an update, though this was not by design! Fetch to see the result.)

Even though we now have a GUI for browsing and changing records, we can still check our work by
interactively opening and inspecting the shelve file or by running scripts such as the dump utility in

Example 2-19. Remember, despite the fact that we're now viewing records in a GUI's windows, the

database is a Python shelve file containing native Python class instance objects, so any Python code
can access it. Here is the dump script at work after adding and changing a few persistent objects in
the GUI:

...\ PP3E\ Previ ew> pyt hon dunp_db_cl ass. py
tom=>

Tom Doe 90000

peg =>

14
tomom =>

Tom Tom 40000
bob =>

Bob Smith 30000
sue =>

Sue Jones 40000
bill =>

bill 9999
nobody =>

John Doh None
Snmith
Doe

2.7.4.3. Future directions

Although this GUI does the job, there is plenty of room for improvement:

As coded, this GUI is a simple set of functions that share the global list of input fields (entri es)
and a global shelve (db). We might instead pass these two objects in as function arguments
using the | anbda TRick of the prior section; though not crucial in a script this small, as a rule of
thumb, making your external dependencies explicit makes your code both easier to understand
and reusable in other contexts.

We could also structure this GUI as a class to support attachment and customization, though it's
unlikely that we'll need to reuse such a specific GUI (but see peoplegui_class.py in the book
examples directory for a start).

More usefully, we could pass in the fi el dnanes tuple as an input parameter to the functions here
to allow them to be used for other record types in the future. Code at the bottom of the file
would similarly become a function with a passed-in shelve filename, and we would also need to
pass in a new record construction call to the update function because Per son could not be
hardcoded. (Such generalization is beyond the scope of this preview, but see people_general.py
in the book examples directory for a first implementation and the PyForm program later in this
book for a more general approach.)

To make this GUI more user friendly, it might also be nice to add an index window that displays
all the keys in the database in order to make browsing easier. Some sort of verification before
updates might be useful as well, and Delete and Clear buttons would be simple to code.
Furthermore, assuming that inputs are Python code may be more bother than it is worth; a
simpler input scheme might be easier and safer.

We could also support window resizing (as we'll learn, widgets can grow and shrink with the
window) and provide an interface for calling class methods (as is, the pay field can be updated,
but there is no way to invoke the gi veRai se method).

If we plan to distribute this GUI widely, we might package it up as a standalone executable
programa frozen binary in Python terminologyusing third-party tools such as Py2Exe, Installer,
and Freeze (search the Web for pointers). Such a program can be run directly without installing
Python on the receiving end.

We'll leave all such extensions as suggested exercises and revisit some of them later in this book.

Before we move on, two notes. First, | should mention that even more graphical packages are
available to Python programmers. For instance, if you need to do graphics beyond basic windows, the
Tkinter Canvas widget supports freeform graphics. Third-party extensions such as Blender, OpenGL,
VPython, PIL, VTK, and PyGame provide even more advanced graphics, visualization, and animation
tools for use in Python scripts. Moreover, the PMW and Tix widget kits mentioned earlier extend
Tkinter itself. Try the Vaults of Parnassus, PyPl, and Google for third-party graphics extensions.

And in deference to fans of other GUI toolkits such as wxPython and PyQt, | should also note that
there are other GUI options to choose from and that choice is sometimes very subjective. Tkinter is
shown here because it is mature, robust, fully open source, well documented, well supported,
lightweight, and a standard part of Python. By most accounts, it remains the standard for building
portable GUls in Python.

Other GUI toolkits for Python have pros and cons of their own, discussed later in this book. For
example, some exchange simplicity for richer widget sets. By and large, though, they are variations
on a themeonce you've learned one GUI toolkit, others are easy to pick up. Because of that, we'll
focus fully on learning one toolkit in its entirety in this book instead of sampling many partially. Some
consider web pages to be a kind of GUI as well, but you'll have to read the next and final section of
this chapter to judge that for yourself.

=2 wExT

=a

2.8. Step 6: Adding a Web Interface

GUI interfaces are easier to use than command lines and are often all we need to simplify access to
data. By making our database available on the Web, we can open it up to even wider use. Anyone
with Internet access and a web browser can access the data, regardless of where they are located
and which machine they are using. Anything from workstations to cell phones will suffice. Moreover,
web-based interfaces require only a web browser; there is no need to install Python to access the
data except on the single-server machine. Although web-based approaches may sacrifice some of the
utility and speed of in-process GUI toolkits, their portability gain can be compelling.

As we'll also see later in this book, there are a variety of ways to go about scripting interactive web
pages of the sort we'll need in order to access our data. Basic CGI scripting is more than adequate
for simple tasks like ours. For more advanced applications, toolkits and frameworks such as Zope,
Plone, Twisted, CherryPy, Webware, Django, TurboGears, mod_python, and Quixote can provide
tools that we would otherwise need to code from scratch. Zope, for instance, simplifies many CGI
scripting tasks and provides for security, load balancing on the server, and more. For now, let's keep
things simple and code a CGI script.

2.8.1. CGI Basics

CGI scripting in Python is easy as long as you already have a handle on things like HTML forms,
URLs, and the client/server model of the Web (all topics we'll address in detail later in this book).
Whether you're aware of all the underlying details or not, the basic interaction model is probably
familiar.

In a nutshell, a user visits a web site and receives a form, coded in HTML, to be filled out in her
browser. After submitting the form, a script, identified within either the form or the address used to
contact the server, is run on the server and produces another HTML page as a reply. Along the way,
data typically passes through three programs: from the client browser, to the web server, to the CGI
script, and back again to the browser. This is a natural model for the database access interaction
we're afterusers can submit a database key to the server and receive the corresponding record as a

reply page.

We'll go into CGI basics in depth later in this book, but as a first example, let's start out with a simple
interactive web page that requests, and then echoes back a user's name in a web browser. The first
page in this interaction is just an input form produced by the HTML file shown in Example 2-30. This
HTML file is stored on the web server machine and is transferred to the web browser when accessed.

Example 2-30. PP3E\Preview\cgil01l.html

<htm >

<title>Interactive Page</title>

<body>

<f or m net hod=PCOST acti on="cgi - bi n/ cgi 101. py">
<P>Ent er your nane: </ B>
<P><i nput type=text nanme=user>
<P><i nput type=submt>

</fornp

</ body></ht m >

Notice how this HTML form names the script that will process its input on the server in its acti on
attribute. The input form that this code produces is shown in Figure 2-10 (shown in the open source
Firefox web browser running on Windows).

Figure 2-10. cgil01l.html input form page

i Interactive Page - Mozilla Firefox 10l =]

File Edt Miew Go Bookmarks Tools Help £

<’|E| - |:> - ﬁ @ @ ID hitp: /flocalhostAcgil 07 ktml j

Enter your name:

|Bob

Submit Cluery

Dione 5

After the input form is submitted, the script in Example 2-31 is run on the web server machine to
handle the inputs and generate a reply to the browser on the client machine. Like the HTML file, this
Python script resides on the same machine as the web server; it uses the cgi module to parse the
form's input and insert it into the HTML reply stream, properly escaped. The cgi module gives us a
dictionary-like interface to form inputs sent by the browser, and the HTML code that this script prints
winds up rendering the next page on the client's browser. In the CGI world, the standard output
stream is connected to the client through a socket.

Example 2-31. PP3E\Preview\cgi-bin\cgil0l.py

#!/ usr/ bi n/ pyt hon

i nport cgi

form= cgi.FieldStorage() # parse formdata
print "Content-type: text/htm\n" # hdr plus blank Iine
print "<title>Reply Page</title>" # html reply page

if not form has_key('user'):
print "<hl1>Wo are you?</hl>"
el se:
print "<hl>Hello <i>%s</i>I</hl>" %cgi.escape(forn]'user'].value)

And if all goes well, we receive the reply page shown in Figure 2-1l1essentially, just an echo of the
data we entered in the input page. The page in this figure is produced by the HTML printed by the
Python CGI script running on the server. Along the way, the user's name was transferred from a
client to a server and back againpotentially across networks and miles. This isn't much of a web site,
of course, but the basic principles here apply, whether you're echoing inputs or doing full-blown e-
whatever.

Figure 2-11. cgil01l.py script reply page for input form

+ Reply Page - Mozilla Firefox . = |I:I|i|

File Edt Miew Go Bookmarks Tools Help i,

<"E| - E} - ﬁ @ @ ID http: / Alocalhost/cgi-bindcgi1 01, py j
Hello Bob!

Diane Y

If you have trouble getting this interaction to run on Unix-like systems, you may need to modify the
path to your Python in the #! line at the top of the script file and make it executable with a chnod
command, but this is dependent on your web server (more on servers in the next section).

Also note that the CGI script in Example 2-31 isn't printing complete HTML: the <ht nl > and <body>
tags of the static HTML file in Example 2-30 are missing. Strictly speaking, such tags should be
printed, but web browsers don't mind the omissions, and this book's goal is not to teach legalistic
HTML; see other resources for more on HTML.

Before moving on, it's worth taking a moment to compare this basic CGl example with the simple
GUI of Example 2-28 and Figure 2-6. Here, we're running scripts on a server to generate HTML that
is rendered in a web browser. In the GUI, we make calls to build the display and respond to events
within a single process and on a single machine. The GUI runs multiple layers of software, but not

multiple programs. By contrast, the CGI approach is much more distributedthe server, the browser,
and possibly the CGI script itself run as separate programs that usually communicate over a network.

Because of such differences, the GUI model may be simpler and more direct: there is no intermediate
server, replies do not require invoking a new program, no HTML needs to be generated, and the full
power of a GUI toolkit is at our disposal. On the other hand, a web-based interface can be viewed in
any browser on any computer and only requires Python on the server machine. And just to muddle
the waters further, a GUI can also employ Python's standard library networking tools to fetch and
display data from a remote server (that's how web browsers do their work). We'll revisit the trade-
offs of the GUI and CGI schemes later in this book. First, let's preview a handful of pragmatic issues
related to CGI work before we apply it to our people database.

2.8.2. Running a Web Server

To run CGI scripts at all, we need a web server that will serve up our HTML and launch our Python
scripts on request. The server is a required mediator between the browser and the CGI script. If you
don't have an account on a machine that has such a server available, you'll want to run one of your
own. We could configure and run a full-blown web server such as the open source Apache system
(which, by the way, can be tailored with Python-specific support by the nod_pyt hon extension). For
this chapter, however, | instead wrote a simple web server in Python using the code in Example 2-
32.

We'll revisit the tools used in this example later in this book. In short, because Python provides
precoded support for various types of network servers, we can build a CGl-capable and portable
HTTP web server in roughly 20 lines of code (including comments, whitespace, and a workaround
added to force the CGI script to run in-process because of a Windows problem | ran into on two of
my test machinesmore on this later).

As we'll see later in this book, it's also easy to build proprietary network servers with low-level socket
calls in Python, but the standard library provides canned implementations for many common server
types, web based or otherwise. The Socket Server module, for instance, provides threaded and
forking versions of TCP and UDP servers. Third-party systems such as Twisted provide even more
implementations. For serving up web content, the standard library modules used in Example 2-32
provide what we need.

Example 2-32. PP3E\Preview\webserver.py

B I SR R B I A A
i npl enent HTTP web server in Python that knows how to run server-

side CA scripts; serves files/scripts fromcurrent working dir;

Python scripts nust be stored in webdir\cgi-bin or webdir\htbin;
P T S

webdi r
port

where your htm files and cgi-bin script directory |ive
80 # default http://localhost/, else use http://Iocal host: xxxx/

i nport o0s, sys
from BaseHTTPServer inport HTTPServer
from CA HTTPServer inport CA HTTPRequest Handl er

hack for Wndows: o0s.environ not propagated
to subprocess by os.popen2, force in-process
if sys.platforn{:3] =="'wn":
CA HTTPRequest Handl er . have_popen2 Fal se
CA HTTPRequest Handl er. have_popen3 = Fal se

os. chdi r (webdi r) # run in HTM. root dir
srvraddr = ("", port) # ny hostnane, portnunber
srvrobj = HITPServer (srvraddr, CG HTTPRequest Handl er)

srvrobj.serve_forever() # run as perpetual denon

The classes this script uses assume that the HTML files to be served up reside in the current working
directory and that the CGI scripts to be run live in a /cgi-bin or /htbin subdirectory there. We're using
a /cgi-bin subdirectory for scripts, as suggested by the filename of Example 2-31. Some web servers
look at filename extensions to detect CGI scripts; our script uses this subdirectory-based scheme
instead.

To launch the server, simply run this script (in a console window, by an icon click, or otherwise); it
runs perpetually, waiting for requests to be submitted from browsers and other clients. The server
listens for requests on the machine on which it runs and on the standard HTTP port nhumber 80. To
use this script to serve up other web sites, either launch it from the directory that contains your
HTML files and a cgi-bin subdirectory that contains your CGI scripts, or change its webdi r variable to
reflect the site's root directory (it will automatically change to that directory and serve files located
there).

But where in cyberspace do you actually run the server script? If you look closely enough, you'll
notice that the server name in the addresses of the prior section's examples (near the top right of the
browser after the "http://") is always localhost. To keep this simple, | am running the web server on
the same machine as the web browser; that's what the server name "localhost" (and the equivalent
IP address "127.0.0.1") means. That is, the client and server machines are the same: the client (web
browser) and server (web server) are just different processes running at the same time on the same
computer.

This turns out to be a great way to test CGI scriptsyou can develop them on the same machine
without having to transfer code back to a remote server machine after each change. Simply run this
script from the directory that contains both your HTML files and a cgi-bin subdirectory for scripts and
then use "http://localhost/..." in your browser to access your HTML and script files. Here is the trace
output the web server script produces in a Windows console window that is running on the same
machine as the web browser and launched from the directory where the HTML files reside:

...\ PP3E\ Previ ew> pyt hon webserver. py

| ocal host - - [17/Jan/ 2005 14:30:44] "GET /cgi 101. html HTTP/ 1.1" 200 -

| ocal host - - [17/Jan/ 2005 14: 30: 45] code 404, message File not found

| ocal host - - [17/Jan/ 2005 14:30:45] "GET /favicon.ico HITP/1.1" 404 -

| ocal host - - [17/Jan/ 2005 14:31:30] "POST /cgi-bin/cgi101. py HTTP/ 1.1" 200 -

| ocal host - - [17/Jan/ 2005 14:31:30] CA script exited OK

| ocal host - - [17/Jan/ 2005 14:31:31] code 404, nmessage File not found

| ocal host - - [17/Jan/ 2005 14:31:31] "GET /favicon.ico HTTP/1.1" 404 -

| ocal host - - [17/Jan/ 2005 14:32:31] "CET /cgi-bin/cgi101. py?name=Sue+Sni th HTTP
/1.1" 200 -

| ocal host - - [17/Jan/ 2005 14:32:31] CGA script exited OK

To run this server on a different port, change the port number in the script and name it explicitly in
the URL (e.g., "http://localhost:8888/"). To run this server on a remote computer, upload the HTML
files and CGI scripts' subdirectory to the remote computer, launch the server script on that machine,
and replace "localhost"” in the URLs with the domain name or IP address of your server machine (e.g.,
"http://www.myserver.com/"). When running the server remotely, all the interaction will be as shown
here, but inputs and replies will be automatically shipped across network connections, not routed
between programs running in the same computer.

On systems that don't require custom code like the Windows workaround in our code, you can also
start a CGl-capable web server by simply running the file CGIHTTPServer.py in the Python standard
library (this script is located in the C:\Python24\Lib directory on Windows, for instance, under Python
2.4). This file's test code is similar to our script, but it defaults to port number 8000 unless a port
number is given on the command line as an argument. In Chapter 16, we'll expand Example 2-32 to
allow the directory name and port numbers to be passed in on the command line, and we'll augment
the module search path for platforms where the server runs the script in-process.[*1

I1 Technically speaking, the Windows workaround in Example 2-31 was related to a bug in the os. envi r on. updat e call, which
was used by the server classes; it did not correctly update on Windows XP, but it may by the time you read this sentence. At the
time of this writing, of the environment changes made by os. environ. update({' X': ‘'spani}) andos.environ['Y'] = 'ni"',
only the second was propagated to the subprocess aftera (i, 0) = os. popen2(' sub. py') call. This may seem obscure, but it
underscores one of the nice things about having access to the source code of an open source system such as Python: | was not at
the mercy of a software vendor to uncover this and provide me with a workaround.

2.8.3. Using Query Strings and urllib

In the basic CGl example shown earlier, we ran the Python script by filling out and submitting a form
that contained the name of the script. Really, CGI scripts can be invoked in a variety of wayseither by
submitting an input form as shown so far, or by sending the server an explicit URL (Internet address)
string that contains inputs at the end. Such an explicit URL can be sent to a server either in or
outside of a browser; in a sense, it bypasses the traditional input form page.

For instance, Figure 2-12 shows the reply generated by the server after typing a URL of the following
form in the address field at the top of the web browser (+ means a space here):

http://1 ocal host/cgi-bin/cgi101. py?user=Sue+Sm th

http://localhost:8888/
http://www.myserver.com/
http://localhost/cgi-bin/cgi101.py?user=Sue+Smith

Figure 2-12. cgil0l.py reply to GET-style query parameters

+ Reply Page - Mozilla Firefox = |EI|£|

File Edit Miew Go Bookmarks Tool: Help £t

QE] - $ - @ @ @ ID http: # flocalhost/cgi-bindcgil 01, peuser=Sue+Smith j
Hello Sue Smith!

Dione 4

The inputs here, known as query parameters, show up at the end of the URL after the ?; they are not
entered into a form's input fields. Adding inputs to URLs is sometimes called a GET request. Our
original input form uses the POST method, which instead ships inputs in a separate step. Luckily,
Python CGI scripts don't have to distinguish between the two; the cgi module's input parser handles
any data submission method differences for us.

It's even possible, and often useful, to submit URLs with inputs appended as query parameters
completely outside any web browser. The Python url i b module, for instance, allows us to read the
reply generated by a server for any valid URL. In effect, it allows us to visit a web page or invoke a
CGI script from within another script; your Python code acts as the web client. Here is this module in
action, run from the interactive command line:

>>> fromurllib inport urlopen

>>> conn = url open(' http://1ocal host/cgi-bin/cgi 101. py?user=Sue+Snith")
>>> reply = conn.read()

>>> reply

"<title>Reply Page</title>\n<hl>Hello <i>Sue Snith</i>!</hl>\n'

>>> url open(' http://1ocal host/cgi-bin/cgi101. py').read()
"<title>Reply Page</title>\n<hli>Wo are you?</hl>\n'

>>> url open(' http://1ocal host/cgi-bin/cgi 101. py?user=Bob"').read()
"<title>Reply Page</title>\ n<hl>Hello <i>Bob</i>!</hl1>\n'

The urlli b module gives us a file-like interface to the server's reply for a URL. Notice that the output
we read from the server is raw HTML code (normally rendered by a browser). We can process this
text with any of Python's text-processing tools, including string methods to search and split, the re
regular expression pattern-matching module, or the full-blown HTML parsing support in the standard
library. When combined with such tools, the url1ib module is a natural for interactive testing and
custom client-side GUIs, as well as implementing automated tools such as regression testing systems
for remote server-side CGI scripts.

2.8.4. Formatting Reply Text

One last fine point: because CGI scripts use text to communicate with clients, they need to format
their replies according to a set of rules. For instance, notice how Example 2-31 adds a blank line
between the reply's header and its HTML by printing an explicit newline (A n) in addition to the one
print adds automatically; this is a required separator.

Also note how the text inserted into the HTML reply is run through the cgi . escape call, just in case
the input includes a character that is special in HTML. For example, Figure 2-13 shows the reply we
receive on another machine for form input Bob </i > Snit hthe </i > in the middle becomes & t; /i > ;
in the reply, and so doesn't interfere with real HTML code (if not escaped, the rest of the name would
not be italicized).

Figure 2-13. Escaping HTML characters

©J Reply Page - Mozilla Firefox

Fle Edit ‘iew Go Bookmarks Tools Help o

<;E| - [> - %] @ @ |D http:) flocalhost fogi-binfcgilol . py V|
Hello Bob </i> Smith!

Escaping text like this isn't always required, but it is a good rule of thumb when its content isn't
known; scripts that generate HTML have to respect its rules. As we'll see later in this book, a related
call, urll'ib. quot e, applies URL escaping rules to text. As we'll also see, larger frameworks such as
Zope often handle text formatting tasks for us.

2.8.5. A Web-Based Shelve Interface

Now, to use the CGI techniques of the prior sections for our database application, we basically just
need a bigger input and reply form. Figure 2-14 shows the form we'll implement for accessing our
database in a web browser.

Figure 2-14. peoplecgi.html input page

=
File Edit “ew Go Bookmaks Tools Help ﬂ:?
<;E| - $ - [@ @ @ ID http: #Alocalhost/peoplecor. html j
Kev ||::u:||::| —
Namel
Age |
Job |
Pay |
Fetch | Update |
[
| Done 4

2.8.5.1. Coding the web site

To implement the interaction, we'll code an initial HTML input form, as well as a Python CGI script for
displaying fetch results and processing update requests. Example 2-33 shows the input form’'s HTML
code that builds the page in Figure 2-14.

Example 2-33. PP3E\Preview\peoplecgi.html

<htm >

<title>People Input Fornx/title>

<body>

<f or m net hod=POST acti on="cgi - bi n/ peopl ecgi . py" >
<t abl e>

<tr><t h>Key <td><input type=text name=key>
<t r ><t h>Nane<t d><i nput type=text name=nane>
<tr><t h>Age <td><input type=text nanme=age>
<tr><th>Job <td><input type=text name=job>
<tr><t h>Pay <td><input type=text name=pay>

</t abl e>

<p>

<i nput type=subnmit val ue="Fetch", nanme=action>

<i nput type=subnit val ue="Update", nane=action>
</forme

</ body></htnl >

To handle form (and other) requests, Example 2-34 implements a Python CGI script that fetches and
updates our shelve's records. It echoes back a page similar to that produced by Example 2-33, but
with the form fields filled in from the attributes of actual class objects in the shelve database.

As in the GUI, the same web page is used for both displaying results and inputting updates. Unlike
the GUI, this script is run anew for each step of user interaction, and it reopens the database each
time (the reply page's acti on field is a link back to the script). The basic CGI model provides no
automatic memory from page to page.

Example 2-34. PP3E\Preview\cgi-bin\peoplecgi.py

HEH R R R R R R R R R
i npl enent a web-based interface for view ng/updating class instances

stored in a shelve; shelve |ives on server (sane nmachine if |ocal host)
HEH R R R R R R R R R R

i nport cgi, shelve # cgi.test() dunps inputs
form= cgi.FieldStorage() # parse formdata
print "Content-type: text/htm" # hdr, blank line in string
shel venanme = 'cl ass-shel ve
fieldnames = (' nane', 'age', 'job', 'pay')
main htm tenplate
replyhtm ="""
<htm >
<title>People Input Fornx/title>
<body>
<f or m net hod=PCST act i on="peopl ecgi . py" >
<t abl e>
<tr><t h>key<t d><i nput type=t ext name=key val ue="% key)s" >
$RONES
</t abl e>
<p>
<i nput type=subnit val ue="Fetch", nanme=action>
<i nput type=subnit val ue="Update", nane=action>
</forne

</ body></ ht i >

insert html for data rows at $RONS$
rowhtm = ' <tr><t h>%s<t d><i nput type=text name=% val ue="%4%)s">\n'
rowshtm ="'
for fieldnane in fieldnanes:
rowshtm += (rowhtml % ((fieldnanme,) * 3))
replyhtm = replyhtm .replace(' $SRONES' , rowshtml)

def htnmlize(adict):
new = adi ct. copy()

for field in fieldnanes: # val ues may have &, >, etc.
val ue = newffield] # di splay as code: quoted
new field] = cgi.escape(repr(value)) # htm -escape special chars

return new

def fetchRecord(db, forn):
try:
key = forn{'key'].val ue
record = db[key]

fields = record. _ _dict_ _ # use attribute dict
fields['key'] = key # to fill reply string
except:
fields = dict.fronkeys(fieldnanes, '?')
fields['key'] = "Mssing or invalid key!'
return fields

def updateRecord(db, form:
if not form has_key('key'):
fields = dict.fronkeys(fieldnanes, '?')
fields['key'] = 'Mssing key input!’
el se:
key = forn{'key'].val ue
if key in db.keys():

record = db[key] # update existing record

el se:
from person inport Person # make/ store new one for key
record = Person(nane="'?"', age='7?") # eval : strings nust be quoted

for field in fieldnanes:
setattr(record, field, eval (fornifield].value))
db[key] = record
fields = record. _ _dict_
fields['key'] = key
return fields

db = shel ve. open(shel venane)
action = form has_key('action') and forn{'action'].val ue

if action == "'Fetch':
fields = fetchRecord(db, form
elif action == 'Update':
fields = updateRecord(db, form
el se:
fields = dict.fronkeys(fieldnanes, '?") # bad submit button val ue
fields['key'] = "Mssing or invalid action!’
db. cl ose()
print replyhtm %htmize(fields) # fill reply fromdict

This is a fairly large script, because it has to handle user inputs, interface with the database, and
generate HTML for the reply page. Its behavior is fairly straightforward, though, and similar to the
GUI of the prior section.

The only feat of semimagic it relies on is using a record's attribute dictionary (_ _dict_ _) as the
source of values when applying string formatting to the HTML reply template string in the last line of
the script. Recall that a % key) code replacement target fetches a value by key from a dictionary:

>>> D = {"'say': 5, 'get': 'shrubbery'}
>>> D' say’ |

5

>>> S = '9fsay)s => Y%get)s' %D

>>> S

"5 => shrubbery’

By using an object's attribute dictionary, we can refer to attributes by name in the format string. In
fact, part of the reply template is generated by code. If its structure is confusing, simply insert
statements to print repl yht i and to call sys. exi t, and run from a simple command line. This is how
the table's HTML in the middle of the reply is generated (slightly formatted here for readability):

<t abl e>

<tr><t h>key<t d><i nput type=t ext nane=key val ue="9% key)s">
<tr><t h>nane<t d><i nput type=text nane=nane val ue="9% nane)s">
<t r ><t h>age<t d><i nput type=t ext nane=age val ue="9% age) s">

<t r><t h>j ob<t d><i nput type=t ext nane=j ob val ue="%j ob)s">

<t r ><t h>pay<t d><i nput type=t ext nane=pay val ue="9% pay)s">
</tabl e>

This text is then filled in with key values from the record'’s attribute dictionary by string formatting at
the end of the script. This is done after running the dictionary through a utility to convert its values to
code text with repr and escape that text per HTML conventions with cgi . escape (again, the last step
isn't always required, but it's generally a good practice).

These HTML reply lines could have been hardcoded in the script, but generating them from a tuple of

field names is a more general approachwe can add new fields in the future without having to update
the HTML template each time. Python's string processing tools make this a snap.

2.8.5.2. Using the web site

Using the web interface is as simple as using the GUI. To fetch a record, fill in the Key field and click
Fetch; the script populates the page with field data grabbed from the corresponding class instance in
the shelve, as illustrated in Figure 2-15 for the key bob.

Figure 2-15. peoplecgi.py reply page

+ People Input Form - Mozilla Firefox = |EI|E|

Eile Edit Yew Go Bookmarks Toolz Help)
QEI b $ b @ @ @ II:] http: # flocalhost/cgi-bindpeoplecgi. py j
key |l:u:|b —

name |'Eh:|b Smmith!

age |4E

joh I'sweng'

pay 30000

Fetch | Update

a1

Dane

Figure 2-15 shows what happens when the key comes from the posted form. As usual, you can also

invoke the CGI script by instead passing inputs on a query string at the end of the URL; Figure 2-16
shows the reply we get when accessing a URL of the following form:

http://1 ocal host/ cgi - bi n/ peopl ecgi . py?acti on=Fet ch&ey=sue

Figure 2-16. peoplecgi.py reply for query parameters

i People Input Foim - Mozilla Firefox =10] x|
File Edt View Go EBookmark: Tools Help

<3§| v E} i ﬁ @' ID http: /flozalhost/cai-bindpeoplecgl. py?action=F etchikep=zue j

S

kev Isue i

name |'Sue Jones'

age |45

joh I'munir:'

pay [40000

Fetch | Updae

Clone

L

As we've seen, such a URL can be submitted either within your browser, or by scripts that use tools

such as the url i b module. Again, replace "localhost" with your server's domain name if you are
running the script on a remote machine.

To update a record, fetch it by key, enter new values in the field inputs, and click Update; the script

will take the input fields and store them in the attributes of the class instance in the shelve. Figure 2-
17 shows the reply we get after updating sue.

Figure 2-17. peoplecgi.py update reply

http://localhost/cgi-bin/peoplecgi.py?action=Fetch&key=sue

i+ People Input Foim - Mozilla Firefox o Ellil

File Edit Yiew Go EBookmark: Tool Help £ >
@ * $ x: @ @‘ ID hitp: / lozalhost/cor-bindpeoplecar. py j

key Isue

name |'Sue Smith'

age |45

joh I'mlmin'

pay [50000

Fetch | Updae

=
/

Done

Finally, adding a record works the same as in the GUI: fill in a new key and field values and click
Update; the CGI script creates a new class instance, fills out its attributes, and stores it in the shelve
under the new key. There really is a class object behind the web page here, but we don't have to deal
with the logic used to generate it. Figure 2-18 shows a record added to the database in this way.

Figure 2-18. peoplecgi.py after adding a new record

i+ People Input Form - Mozilla Firefox] i |EI|5|
File Edit “iew Go Bookmarks Tools Help *”'
<:E| E} [ﬁ @ @ ||_] http: # Alocalhost/coi-bindpeopleco. py J
key Igundcl i
name I'GVH'

age |N|:|ne

job |'BOFL

pay |'<?}'

Fetch | Upcdlate j
Done 7

In principle, we could also update and add records by submitting a URLeither from a browser or from
a scriptsuch as:

http://1ocal host/cgi-bin/

http://localhost/cgi-bin/

peopl ecgi . py?acti on=Updat e&key=sue&pay=50000&nane=Sue+Sni th& ... nore. ..

Except for automated tools, though, typing such a long URL will be noticeably more difficult than
filling out the input page. Here is part of the reply page generated for the "guido” record's display of
Figure 2-18 (use your browser's "view page source" option to see this for yourself). Note how the <
and > characters are translated to HTML escapes with cgi . escape before being inserted into the

reply:

<tr><t h>key<t d><i nput type=text nane=key val ue="gui do">

<t r ><t h>nane<t d><i nput type=t ext nanme=nane val ue="'G/R ">

<t r ><t h>age<t d><i nput type=t ext nanme=age val ue="None" >

<t r ><t h>j ob<t d><i nput type=text nane=job val ue=""'BDFL' ">

<t r ><t h>pay<t d><i nput type=text nane=pay val ue="'& t; ?>"'">

As usual, the standard library url i b module comes in handy for testing our CGI script; the output
we get back is raw HTML, but we can parse it with other standard library tools and use it as the basis
of a server-side script regression testing system run on any Internet-capable machine. We might
even parse the server's reply fetched this way and display its data in a client-side GUI coded with
Tkinter; GUIs and web pages are not mutually exclusive techniques. The last test in the following
interaction shows a portion of the error message page's HTML that is produced when the action is
missing or invalid in the inputs, with line breaks added for readability:

>>> fromurllib inport urlopen

>>> url ="'http://1ocal host/cgi-bin/peopl ecgi . py?acti on=Fet ch&ey=sue'
>>> url open(url).read()

"<htm >\ n<title>Peopl e I nput Fornx/title>\ n<body>\n

<f or m net hod=POST acti on="peopl ecgi . py">\n <tabl e>\n

<t r><t h>key<t d><i nput type=text nanme=key val ue="sue">\n

<t r><t h>nanme<t d><i nput type=text nane=nane val ue="\"'Sue Smith\'">\n
<tr><t ...nore deleted...

>>> url open(' http://1ocal host/cgi-bin/peopl ecgi.py').read()

"<htm >\ n<title>People Input Fornx/title>\ n<body>\n

<f or m net hod=POST acti on="peopl ecgi . py">\n <tabl e>\n

<tr><t h>key<t d><i nput type=text nane=key val ue="M ssing or invalid action!">\n
<tr ><t h>nane<t d><i nput type=text name=nanme val ue="\"'?\"">\n

<tr ><t h>age<t d><i nput type=text nane=age val ue="\"?\"">\n<tr><th>ob ...nore

del eted. ..

In fact, if you're running this CGI script on "localhost,” you can use both the last section's GUI and
this section's web interface to view the same physical shelve filethese are just alternative interfaces
to the same persistent Python objects. For comparison, Figure 2-19 shows what the record we saw in
Figure 2-18 looks like in the GUI; it's the same object, but we are not contacting an intermediate
server, starting other scripts, or generating HTML to view it.

Figure 2-19. Same object displayed in the GUI

People Shelve M |=] 1|
kep Jouido

hame | 3R’

age |Mone
job |'BOFL'

pay <
Fetu:hl Updatel E!uitl

And as before, we can always check our work on the server machine either interactively or by
running scripts. We may be viewing a database through web browsers and GUIs, but, ultimately, it is
just Python objects in a Python shelve file:

>>> jnmport shel ve

>>> db = shel ve. open(' cl ass-shel ve')
>>> db[' sue']. nane

'Sue Smith'

>>> db[' guido'].job

' BDFL'

>>> |jst(db['guido'].nane)

["G, '"v', "R]

2.8.5.3. Future directions

Naturally, there are plenty of improvements we could make here too:

¢ The HTML code of the initial input page in Example 2-33, for instance, is somewhat redundant
with the script in Example 2-34, and it could be automatically generated by another script that
shares common information. In fact, we could avoid hardcoding HTML completely if we use an
HTML generator tool such as HTMLgen, discussed later in this book.

e For ease of maintenance, it might also be better to split the CGI script's HTML code off to a
separate file in order to better divide display from logic (different parties with possibly different
skill sets could work on the different files).

e Moreover, if this web site might be accessed by many people simultaneously, we would have to
add file locking or move to a database such as ZODB or MySQL to support concurrent updates.
ZODB and other full-blown database systems would also provide transaction rollbacks in the
event of failures. For basic file locking, the fcnt| module and the os. open call and its flags
provide the tools we need.

¢ In the end, if our site grows much beyond a few interactive pages, we might also migrate from
basic CGI scripting to a more complete web framework such as Zope, CherryPy, Webware,
Django, TurboGears, or Python Server Pages and mod_python, all Python-based systems. If we
must retain information across pages, tools such as cookies, hidden inputs, mod_python
session data, and FastCGIl may help too.

e If our site eventually includes content produced by its own users, we might transition to Plone,
a popular open source Python- and Zope-based site builder that, using a workflow model,

delegates control of site content to its producers.

e And if wireless interfaces are on our agenda, we might eventually migrate our system to cell
phones using a port such as that currently available for Nokia platforms. Python tends to go
wherever technology trends lead.

For now, though, both the GUI and web-based interfaces we've coded get the job done.

==a

=a

2.9. The End of the Demo

And that concludes our sneak preview demo of Python in action. We've explored data representation,
OOP, object persistence, GUIs, and web site basics. We haven't studied any of these topics in any
sort of depth. Hopefully, though, this chapter has piqued your curiosity about Python applications
programming.

In the rest of this book, we'll delve into these and other application programming tools and topics, in
order to help you put Python to work in your own programs. In the next chapter, we begin our tour
with the systems programming tools available to Python programmers.

=2 wExT

=a

Part II: System Programming

This first in-depth part of the book presents Python's system programming toolsinterfaces to
services in the underlying operating system as well as the context of an executing program. It
consists of the following chapters:

Chapter 3, System Tools

This chapter is a comprehensive look at commonly used system interface tools. This
chapter teaches you how to process streams, command-line arguments, shell variables,
and more. This chapter starts slowly and is meant in part as a reference for tools and
techniques we'll be using later in the book.

Chapter 4, File and Directory Tools

This chapter continues our survey of system interfaces by focusing on tools and
techniques used to process files and directories in Python. We'll learn about binary files,
tree walkers, and so on.

Chapter 5, Parallel System Tools

This chapter is an introduction to Python's library support for running programs in
parallel. Here, you'll find coverage of threads, process forks, pipes, signals, queues, and
the like.

Chapter 6, System Examples: Utilities and Chapter 7, System Examples: Directories

This is a two-chapter collection of typical system programming examples that draw upon
the material of the prior three chapters. Among other things, Python scripts here
demonstrate how to do things like split and join files, compare and copy directories,
generate web pages from templates, and launch programs, files, and web browsers
portably. The second of these chapters focuses on advanced file and directory examples;
the first presents assorted system tools case studies.

Although this part of the book emphasizes systems programming tasks, the tools introduced are
general-purpose and are used often in later chapters.

e prcy |

=a

Chapter 3. System Tools

Section 3.1. "The os.path to Knowledge"

Section 3.2. System Scripting Overview

Section 3.3. Introducing the sys Module

Section 3.4. Introducing the os Module

Section 3.5. Script Execution Context

Section 3.6. Current Working Directory

Section 3.7. Command-Line Arguments

Section 3.8. Shell Environment Variables

Section 3.9. Standard Streams

=2 wExT

=a

3.1. "The os.path to Knowledge"

This chapter begins our in-depth look at ways to apply Python to real programming tasks. In this and
the following chapters, you'll see how to use Python to write system tools, GUls, database
applications, Internet scripts, web sites, and more. Along the way, we'll also study larger Python
programming concepts in action: code reuse, maintainability, object-oriented programming (OOP),
and so on.

In this first part of the book, we begin our Python programming tour by exploring the systems
application domain scripts that deal with files, programs, and the general environment surrounding a
program. Although the examples in this domain focus on particular kinds of tasks, the techniques
they employ will prove to be useful in later parts of the book as well. In other words, you should
begin your journey here, unless you are already a Python systems programming wizard.

3.1.1. Why Python Here?

Python's system interfaces span application domains, but for the next five chapters, most of our
examples fall into the category of system toolsprograms sometimes called command-line utilities,
shell scripts, and other permutations of such words. Regardless of their title, you are probably
already familiar with this sort of script; these scripts accomplish such tasks as processing files in a
directory, launching test scripts, and so on. Such programs historically have been written in
nonportable and syntactically obscure shell languages such as DOS batch files, csh, and awk.

Even in this relatively simple domain, though, some of Python's better attributes shine brightly. For
instance, Python's ease of use and extensive built-in library make it simple (and even fun) to use
advanced system tools such as threads, signals, forks, sockets, and their kin; such tools are much
less accessible under the obscure syntax of shell languages and the slow development cycles of
compiled languages. Python's support for concepts like code clarity and OOP also help us write shell
tools that can be read, maintained, and reused. When using Python, there is no need to start every
new script from scratch.

Moreover, we'll find that Python not only includes all the interfaces we need in order to write system
tools, but also fosters script portability. By employing Python's standard library, most system scripts
written in Python are automatically portable to all major platforms. For instance, you can usually run
in Linux a Python directory-processing script written in Windows without changing its source code at
allsimply copy over the source code. If used well, Python is the only system scripting tool you need
to know.

3.1.2. The Next Five Chapters

To make this part of the book easier to study, | have broken it down into five chapters:

¢ In this chapter, I'll introduce the main system-related modules in overview fashion, and then
use them to illustrate core system programming concepts: streams, command-line arguments,
environment variables, and so on.

¢ In Chapter 4, we'll focus on the tools Python provides for processing files and directories, as

well as focusing on directory trees.

e Chapter 5 moves on to cover Python's standard tools for parallel processingprocesses, threads,

queues, pipes, signals, and more.

e Chapters 6 and 7 wrap up by presenting larger and more realistic examples that use the tools
introduced in the prior three chapters. Chapter 6 is a collection of general system scripts, and

Chapter 7 focuses on scripts for processing directories of files.

Especially in the two example chapters at the end of this part of the book, we will be concerned as
much with system interfaces as with general Python development concepts. We'll see non-object-
oriented and object-oriented versions of some examples along the way, for instance, to help illustrate

the benefits of thinking in more strategic ways.

"Batteries Included”

This chapter, and those that follow, deal with both the Python language and its standard
librarya collection of precoded modules written in Python and C that are installed with the
Python interpreter. Although Python itself provides an easy-to-use scripting language,
much of the real action in Python development involves this vast library of programming
tools (a few hundred modules at last count) that ship with the Python package.

In fact, the standard library is so powerful that it is not uncommon to hear Python
described with the phrase "batteries included"a phrase generally credited to Frank
Stajano meaning that most of what you need for real day-to-day work is already there
for importing.

As we'll see, the standard library forms much of the challenge in Python programming.
Once you've mastered the core language, you'll find that you'll spend most of your time
applying the built-in functions and modules that come with the system. On the other
hand, libraries are where most of the fun happens. In practice, programs become most
interesting when they start using services external to the language interpreter: networks,
files, GUIs, databases, and so on. All of these are supported in the Python standard
library. Beyond the standard library, there is an additional collection of third-party
packages for Python that must be fetched and installed separately. As of this writing, you
can find most of these third-party extensions via searches and links at
http://www.python.org and at the PyPl and Vaults of Parnassus Python sites (also
reachable from links at http://www.python.org). Some third-party extensions are large
systems in their own rightNumPy and VPython, for instance, add vector processing and
visualization, respectively.

If you have to do something special with Python, chances are good that you can find a
free and open source module that will help. Most of the tools we'll employ in this text are
a standard part of Python, but I'll be careful to point out things that must be installed
separately.

NEXT B

http://www.python.org
http://www.python.org

=a

3.2. System Scripting Overview

We will take a quick tour through the standard library sys and os modules in the first few sections of
this chapter before moving on to larger system programming concepts. As you can tell from the
length of their attribute lists, both of these are large modules (their content may vary slightly per
Python version and platform):

>>> jnpport sys, 0S

>>> | en(dir(sys)) # 56 attributes

56

>>> | en(dir(os)) # 118 on Wndows, nore on Unix
118

>>> | en(dir(os. path)) # a nested nmodule within os

43

As I'm not going to demonstrate every item in every built-in module, the first thing | want to do is
show you how to get more details on your own. Officially, this task also serves as an excuse for
introducing a few core system scripting concepts; along the way, we'll code a first script to format
documentation.

3.2.1. Python System Modules

Most system-level interfaces in Python are shipped in just two modules: sys and os. That's somewhat
oversimplified; other standard modules belong to this domain too. Among them are the following:

gl ob
For filename expansion

socket

For network connections and Inter-Process Communication (IPC)

t hread and queue
For concurrent threads
time

For accessing system time details

fentl
For low-level file control

In addition, some built-in functions are actually system interfaces as well (e.g., open). But sys and os
together form the core of Python's system tools arsenal.

In principle at least, sys exports components related to the Python interpreter itself (e.g., the module
search path), and os contains variables and functions that map to the operating system on which
Python is run. In practice, this distinction may not always seem clear-cut (e.g., the standard input
and output streams show up in sys, but they are arguably tied to operating system paradigms). The
good news is that you'll soon use the tools in these modules so often that their locations will be
permanently stamped on your memory.[*1

[1 They may also work their way into your subconscious. Python newcomers sometimes appear on Internet discussion forums to
discuss their experiences "dreaming in Python" for the first time.

The os module also attempts to provide a portable programming interface to the underlying operating
system; its functions may be implemented differently on different platforms, but to Python scripts,
they look the same everywhere. In addition, the os module exports a nested submodule, os. pat h,
which provides a portable interface to file and directory processing tools.

3.2.2. Module Documentation Sources

As you can probably deduce from the preceding paragraphs, learning to write system scripts in
Python is mostly a matter of learning about Python's system modules. Luckily, there are a variety of
information sources to make this task easierfrom module attributes to published references and
books.

For instance, if you want to know everything that a built-in module exports, you can read its library
manual entry, study its source code (Python is open source software, after all), or fetch its attribute
list and documentation string interactively. Let's import sys and see what it has:

C.\...\PP3E\ Syst en> pyt hon
>>> jnport sys
>>> dir(sys)

['_ _displayhook ', ' doc_ ', ' _excepthook ', ' nanme_ ', ' _stderr_ ',
' stdin_ ', ' _stdout_ ', ' getfrane', 'api_version', 'argv',
"builtin_nodul e nanes', 'byteorder', 'call tracing', 'callstats', 'copyright',
"di spl ayhook', '"dll handle', "exc_clear', "exc_info', 'exc_traceback', 'exc_type'
"exc_val ue', 'excepthook', 'exec_prefix', 'executable', 'exit', 'exitfunc'
"getcheckinterval', 'getdefaul tencoding', 'getfil esystenencodi ng'
"getrecursionlimt', 'getrefcount', 'getw ndowsversion', 'hexversion', 'nmaxint',
"maxuni code', 'neta_path', 'nodules', 'path', 'path_hooks', 'path_inporter_cache'
"platform, "prefix', 'psl', 'ps2', 'setcheckinterval', 'setprofile',
"setrecursionlimt', 'settrace', 'stderr', 'stdin', 'stdout', 'version',
"version_info', "warnoptions', 'w nver']

The dir function simply returns a list containing the string names of all the attributes in any object
with attributes; it's a handy memory jogger for modules at the interactive prompt. For example, we
know there is something called sys. ver si on, because the name ver si on came back in the di r result.
If that's not enough, we can always consult the _ _doc_ _ string of built-in modules:

>>> gys. _doc_ _
"This nodul e provi des access to sone objects used or naintained by the\ninterpreter
and to functions that interact strongly with the interpreter.\n\nDynam c
objects:\n\nargv -- command |ine argunents; argv[0] is the script pathnane if
known\ npat h -- nodul e

search path; path[0] is the script directory, else

\ nnodul es

...lots of text deleted here...

3.2.3. Paging Documentation Strings

The _ _doc_ _ built-in attribute usually contains a string of documentation, but it may look a bit weird
when displayed this wayit's one long string with embedded end-line characters that print as \ n, not
as a nice list of lines. To format these strings for a more humane display, you can simply use a pri nt
statement:

>>> print sys._ _doc_ _

Thi s nodul e provi des access to sone objects used or naintained by the
interpreter and to functions that interact strongly with the interpreter.
Dynani ¢ obj ect s:

argv -- command |ine argunments; argv[0] is the script pathnane if known

...lots of lines deleted here...

The print statement, unlike interactive displays, interprets end-line characters correctly.
Unfortunately, print doesn't, by itself, do anything about scrolling or paging and so can still be
unwieldy on some platforms. Tools such as the built-in hel p function can do better:

>>> hel p(sys)
Hel p on built-in nodul e sys:

NAVE
sys
FI LE
(built-in)
MODULE DOCS

http://ww. pyt hon. org/ doc/ current/Ili b/ nodul e-sys. htm

DESCRI PTI ON
Thi s nodul e provi des access to sone objects used or nmintained by the

interpreter and to functions that interact strongly with the interpreter.
Dynami ¢ obj ects:
argv -- command |ine argunents; argv[0] is the script pathnane if known

.lots of lines deleted here. ..

The hel p function is one interface provided by the PyDoc systemcode that ships with Python and
renders documentation (documentation strings, as well as structural details) related to an object in a
formatted way. The format is either like a Unix manpage, which we get for hel p, or an HTML page,
which is more grandiose. It's a handy way to get basic information when working interactively, and
it's a last resort before falling back on manuals and books. It is also fairly fixed in the way it displays
information; although it attempts to page the display in some contexts, its page size isn't quite right
on some of the machines | use. When | want more control over the way help text is printed, | usually
use a utility script of my own, like the one in Example 3-1.

Example 3-1. PP3E\System\more.py

b L S L L e S L L L L L L D L L L B B L
split and interactively page a string or file of text;
b L S L L e S L L L S D L L e L B L

def nore(text, numines=15):
lines = text.split('\n")
whil e |ines:

chunk = lines[:numnlines]
lines = lines[numines:]
for line in chunk: print line
if lines and raw_input (' More?') not in ['y', "Y']: break
if _ _name_ _ =="'_ min_ _':
i mport sys # when run, not inported
nor e(open(sys.argv[1l]).read(), 10) # page contents of file on cndline

The meat of this file is its nor e function, and if you know any Python at all, it should be fairly
straightforward. It simply splits up a string around end-line characters, and then slices off and
displays a few lines at a time (15 by default) to avoid scrolling off the screen. A slice expression,
lines[:15], gets the first 15 items in a list, and | i nes[15:] gets the rest; to show a different number
of lines each time, pass a number to the numl i nes argument (e.g., the last line in Example 3-1 passes
10 to the nuni i nes argument of the nor e function).

The split string object method call that this script employs returns a list of substrings (e.g.,

["line", "line",...]). In recent Python releases, a new splitlines method does similar work:

>>> | ine = 'aaa\nbbb\nccc\n'
>>> |ine.split('\n")

["aaa', "bbb', 'ccc', '']
>>> |ine.splitlines()
['aaa', '"bbb', 'ccc']

As we'll see in the next chapter, the end-of-line character is always \ n (which stands for a byte
having a binary value of 10) within a Python script, no matter what platform it is run upon. (If you
don't already know why this matters, DOS \r characters are dropped when read.)

3.2.4. Introducing String Methods

Now, this is a simple Python program, but it already brings up three important topics that merit quick
detours here: it uses string methods, reads from a file, and is set up to be run or imported. Python
string methods are not a system-related tool per se, but they see action in most Python programs. In
fact, they are going to show up throughout this chapter as well as those that follow, so here is a
quick review of some of the more useful tools in this set. String methods include calls for searching
and replacing:

>>> str = ' XXXSPAMkxX'

>>> str. find(' SPAM) # return first offset
3

>>> str = 'xxaaxxaa'

>>> str.replace('aa', ' SPAM) # gl obal repl acenent
" XX SPAMKx SPAM

>>> str ="\t N\n'
>>> str.ostrip() # renove whitespace
INiI

The find call returns the offset of the first occurrence of a substring, and r epl ace does global search
and replacement. Like all string operations, r epl ace returns a new string instead of changing its
subject in-place (recall that strings are immutable). With these methods, substrings are just strings;
in Chapter 21, we'll also meet a module called r e that allows regular expression patterns to show up
in searches and replacements.

String methods also provide functions that are useful for things such as case conversions, and a
standard library module named stri ng defines some useful preset variables, among other things:

>>> str = ' SHRUBBERY'

>>> str.lower() # case converters
' shrubbery’

>>> str.isal pha() # content tests
True

>>> str.isdigit()

Fal se

>>> jnport string # case constants

>>> string.| owercase

"abcdef ghi j kl mopgr st uvwxyz'

There are also methods for splitting up strings around a substring delimiter and putting them back
together with a substring in between. We'll explore these tools later in this book, but as an
introduction, here they are at work:

>>> str = 'aaa, bbb, ccc'

>>> str.osplit(',") # split into substrings |ist
['aaa', '"bbb', 'ccc']

>>> str = 'a b\nc\nd

>>> str.osplit() # default delimiter: whitespace

[*a", "b", "c', "d]

>>> delim="N"
>>> delimjoin(['aaa', 'bbb', 'ccc']) # join substrings list
"aaaNl bbbNI ccc'

>>> "' ' join(['A, '"dead', 'parrot']) # add a space between
"A dead parrot’

>>> chars = list('Lorreta') # covert to characters |ist
>>> chars

["L, "o, 'r‘, 'rt, ‘e, "t', "a']

>>> chars. append('!")

>>> '"' _join(chars) # to string: enpty delimter
"Lorretal"’

These calls turn out to be surprisingly powerful. For example, a line of data columns separated by
tabs can be parsed into its columns with a single split call; the more.py script uses it to split a string
into a list of line strings. In fact, we can emulate the repl ace call we saw earlier in this section with a
split/join combination:

>>> str = ' xxaaxxaa'
>>> ' SPAM .join(str.split('aa')) # replace, the hard way
' Xxx SPAMK X SPAM

For future reference, also keep in mind that Python doesn't automatically convert strings to numbers,
or vice versa; if you want to use one as you would use the other, you must say so with manual
conversions:

>>> int("42"), eval ("42") # string to int conversions
(42, 42)
>>> str(42), repr(42), ("%" %42) #int to string conversions

("42', "42', '42")

>>> "42" + str(l), int("42") + 1 # concatenation, addition
(' 421', 43)

In the last command here, the first expression triggers string concatenation (since both sides are
strings), and the second invokes integer addition (because both objects are numbers). Python
doesn't assume you meant one or the other and convert automatically; as a rule of thumb, Python
tries to avoid magic whenever possible. String tools will be covered in more detail later in this book
(in fact, they get a full chapter in Part V), but be sure to also see the library manual for additional
string method tools.

"_—" A section on the original st ri ng module was removed in this edition. In the
o past, string method calls were also available by importing the stri ng module
N . . - . .
. 4+ and passing the string object as an argument to functions corresponding to the

current methods. For instance, given a name str assigned to a string object,
the older call form:

i mport string
string.replace(str, old, new) # requires an inport

is the same as the more modern version:

str.replace(ol d, new)

But the latter form does not require a module import, and it will run quicker
(the older module call form incurs an extra call along the way). You should use
string object methods today, not stri ng module functions, but you may still see
the older function-based call pattern in some Python code. Although most of its
functions are now deprecated, the original st ri ng module today still contains
predefined constants (such as string. | ower case) and a new template interface
in2.4.

3.2.5. File Operation Basics

The more.py script also opens the external file whose name is listed on the command line using the
built-in open function, and reads that file's text into memory all at once with the file object r ead
method. Since file objects returned by open are part of the core Python language itself, | assume that
you have at least a passing familiarity with them at this point in the text. But just in case you've
flipped to this chapter early on in your Pythonhood, the calls:

open('file').read() # read entire file into string
open('file').read(N) # read next N bytes into string
open('file').readlines() # read entire file into line strings |ist

open('file').readline() # read next line, through '"\n'

load a file's contents into a string, load a fixed-size set of bytes into a string, load a file's contents
into a list of line strings, and load the next line in the file into a string, respectively. As we'll see in a
moment, these calls can also be applied to shell commands in Python to read their output. File
objects also have writ e methods for sending strings to the associated file. File-related topics are
covered in depth in the next chapter, but making an output file and reading it back is easy in Python:

>>> file = open('spamtxt', 'wW) # create file spamtxt
>>> file.wite(('spam * 5) + '\n")
>>> file.close()

>>> file = open('spamtxt') # or open('spamtxt').read()
>>> text = file.read()
>>> t ext

' spanmspanspanspanspam n'

3.2.6. Using Programs in Two Ways

The last few lines in the more.py file also introduce one of the first big concepts in shell tool
programming. They instrument the file to be used in either of two ways: as a script or as a library.
Every Python module has a built-in _ _nane_ _ variable that Python sets to the _ _mai n_ _ string only
when the file is run as a program, not when it's imported as a library. Because of that, the nore
function in this file is executed automatically by the last line in the file when this script is run as a
top-level program, not when it is imported elsewhere. This simple trick turns out to be one key to
writing reusable script code: by coding program logic as functions rather than as top-level code, you
can also import and reuse it in other scripts.

The upshot is that we can run more.py by itself or import and call its nor e function elsewhere. When
running the file as a top-level program, we list on the command line the name of a file to be read and
paged: as I'll describe in depth later in this chapter, words typed in the command that is used to
start a program show up in the built-in sys. ar gv list in Python. For example, here is the script file in
action, paging itself (be sure to type this command line in your PP3E\System directory, or it won't
find the input file; more on command lines later):

C:\...\PP3E\ Syst en»pyt hon nore. py nore. py

A L L L S L L L R L D L L i
split and interactively page a string or file of text;
A L L S L L e L L D L B D L L R

def nore(text, numines=15):
lines = text.split('\n")
while lines:
chunk = lines[:nunines]
lines = lines[nunines:]
for line in chunk: print line
Mor e?y
if lines and raw_i nput (' More?') not in ['y', "Y']: break

i mport sys # when run, not inported
nor e(open(sys.argv[1l]).read(), 10) # page contents of file on cndline

When the more.py file is imported, we pass an explicit string to its nor e function, and this is exactly
the sort of utility we need for documentation text. Running this utility on the sys module's
documentation string gives us a bit more information in human-readable form about what's available
to scripts:

C:\...\PP3E\ Syst en> pyt hon

>>> fromnore inport nore

>>> jnmport sys

>>> nore(sys._ _doc_)

Thi s nodul e provi des access to sone objects used or naintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynani ¢ obj ect s:

argv -- command |ine argunments; argv[0] is the script pathnane if known
path -- nodul e search path; path[0] is the script directory, else "'
nmodul es -- dictionary of |oaded nodul es

di spl ayhook -- called to showresults in an interactive session

except hook -- called to handl e any uncaught exception other than SystenkExit
To custonize printing in an interactive session or to install a custom
top-1evel exception handler, assign other functions to replace these.

exitfunc -- if sys.exitfunc exists, this routine is called when Python exits
Mor e?

Pressing "y" or "Y" here makes the function display the next few lines of documentation, and then
prompt again, unless you've run past the end of the lines list. Try this on your own machine to see
what the rest of the module's documentation string looks like.

3.2.7. Python Library Manuals

If that still isn't enough detail, your next step is to read the Python library manual's entry for sys to
get the full story. All of Python's standard manuals ship as HTML pages, so you should be able to
read them in any web browser you have on your computer. They are installed with Python on
Windows, but here are a few simple pointers:

¢ On Windows, click the Start button, pick Programs, select the Python entry there, and then
choose the manuals item. The manuals should magically appear on your display within a
browser like Internet Explorer. As of Python 2.4, the manuals are provided as a Windows help
file and so support searching and navigation.

e On Linux, you may be able to click on the manuals' entries in a file explorer, or start your
browser from a shell command line and navigate to the library manual's HTML files on your
machine.

¢ If you can't find the manuals on your computer, you can always read them online. Go to
Python's web site at http://www.python.org and follow the documentation links.

However you get started, be sure to pick the Library manual for things such as sys; Python's
standard manual set also includes a short tutorial, language reference, extending references, and
more.

3.2.8. Commercially Published References

At the risk of sounding like a marketing droid, | should mention that you can also purchase the
Python manual set, printed and bound; see the book information page at http://www.python.org for
details and links. Commercially published Python reference books are also available today, including
Python Essential Reference (Sams) and Python Pocket Reference (O'Reilly). The former is more
complete and comes with examples, but the latter serves as a convenient memory jogger once
you've taken a library tour or two.[Z1 Also useful are O'Reilly's Python in a Nutshell and Python
Standard Library.

[11 also wrote the latter as a replacement for the reference appendix that appeared in the first edition of this book; it's meant to be a
supplement to the text you're reading. Insert self-serving plug here.

=2 wExT

http://www.python.org
http://www.python.org

=a

3.3. Introducing the sys Module

On to module details; as mentioned earlier, the sys and os modules form the core of much of
Python's system-related tool set. Let's now take a quick, interactive tour through some of the tools in
these two modules before applying them in bigger examples. We'll start with sys, the smaller of the
two; remember that to see a full list of all the attributes in sys, you need to pass it to the dir
function (or see where we did so earlier in this chapter).

3.3.1. Platforms and Versions

Like most modules, sys includes both informational names and functions that take action. For
instance, its attributes give us the name of the underlying operating system on which the platform
code is running, the largest possible integer on this machine, and the version number of the Python
interpreter running our code:

C.\...\PP3E\ Syst enppyt hon

>>> jmport sys

>>> sys.platform sys.maxint, sys.version

("win32', 2147483647, '2.4 (#60, Nov 30 2004, 11:49:19) [MsC v. 1310 32 bhit (Intel)]")
>>>

>>> i f sys.platforn{:3] == 'win': print 'hello w ndows'

hel | o wi ndows

If you have code that must act differently on different machines, simply test the sys. pl at f or mstring
as done here; although most of Python is cross-platform, nonportable tools are usually wrapped in i f
tests like the one here. For instance, we'll see later that today's program launch and low-level console
interaction tools vary per platformsimply test sys. pl at f or mto pick the right tool for the machine on
which your script is running.

3.3.2. The Module Search Path

The sys module also lets us inspect the module search path both interactively and within a Python
program. sys. pat h is a list of strings representing the true search path in a running Python
interpreter. When a module is imported, Python scans this list from left to right, searching for the
module's file on each directory named in the list. Because of that, this is the place to look to verify
that your search path is really set as intended.*1

[11t's not impossible that Python sees PYTHONPATH differently than you do. A syntax error in your system shell configuration files may
botch the setting of PYTHONPATH, even if it looks fine to you. On Windows, for example, if a space appears around the = of a DOS
set command in your autoexec.bat file (e.g., set NAME = VALUE), you will actually set NAME to an empty string, not to VALUE!

The sys. pat h list is simply initialized from your PYTHONPATH settingthe content of any .pth path files
located in Python's directories on your machine plus system defaultswhen the interpreter is first

started up. In fact, if you inspect sys. pat h interactively, you'll notice quite a few directories that are
not on your PYTHONPATHsys. pat h also includes an indicator for the script's home directory (an empty
stringsomething I'll explain in more detail after we meet os. get cwd) and a set of standard library
directories that may vary per installation:

>>> sys. path
["", "C\\PP3rdEd\\ Exanpl es', ...plus standard paths deleted...]

Surprisingly, sys. pat h can actually be changed by a program, too. A script can use list operations
such as append, del , and the like to configure the search path at runtime to include all the source
directories to which it needs access. Python always uses the current sys. pat h setting to import, no
matter what you've changed it to:

>>> sys. pat h. append(r' C:\nydir")
>>> sys. path
["", "C\\PP3rdEd\\ Exanples', ...nore deleted..., 'C\\nydir']

Changing sys. pat h directly like this is an alternative to setting your PYTHONPATH shell variable, but not
a very good one. Changes to sys. pat h are retained only until the Python process ends, and they
must be remade every time you start a new Python program or session. However, some types of
programs (e.g., scripts that run on a web server) may not be able to depend on PYTHONPATH settings;
such scripts can instead configure sys. pat h on startup to include all the directories from which they
will need to import modules.

Windows Directory Paths

Because backslashes normally introduce escape code sequences in Python strings,
Windows users should be sure to either double up on backslashes when using them in
DOS directory path strings (e.g., in"C:\\dir",\\ is an escape sequence that really
means \), or use raw string constants to retain backslashes literally (e.g., r"C \dir").

If you inspect directory paths on Windows (as in the sys. pat h interaction listing), Python
prints double \\ to mean a single \. Technically, you can get away with a single \ in a
string if it is followed by a character Python does not recognize as the rest of an escape
sequence, but doubles and raw strings are usually easier than memorizing escape code
tables.

Also note that most Python library calls accept either forward (/) or backward (\) slashes
as directory path separators, regardless of the underlying platform. That is, / usually
works on Windows too and aids in making scripts portable to Unix. Tools in the os and
os. pat h modules, described later in this chapter, further aid in script path portability.

3.3.3. The Loaded Modules Table

The sys module also contains hooks into the interpreter; sys. nodul es, for example, is a dictionary
containing one nane: nodul e entry for every module imported in your Python session or program

(really, in the calling Python process):

>>> sys. nodul es
{'os.path': <nodule 'ntpath' from'C: \ProgramFil es\Python\Lib\ntpath.pyc'>,...

>>> sys. nodul es. keys()

['os.path', 'os', 'exceptions', ' __main_ ', 'ntpath', 'strop', 'nt', 'sys',
" builtin_ ', "site', "signal', "UserDict', 'string', 'stat']
>>> sys

<nmodul e 'sys' (built-in)>
>>> sys. nodul es[' sys']
<nmodul e 'sys' (built-in)>

We might use such a hook to write programs that display or otherwise process all the modules loaded
by a program (just iterate over the keys list of sys. nodul es). sys also exports tools for getting an
object's reference count used by Python's garbage collector (get r ef count), checking which modules
are built into this Python (bui | ti n_npdul e_nanes), and more.

3.3.4. Exception Details

Some of the sys module's attributes allow us to fetch all the information related to the most recently
raised Python exception. This is handy if we want to process exceptions in a more generic fashion.
For instance, the sys. exc_i nf o function returns the latest exception's type, value, and traceback
object:

>>> try:
rai se | ndexError
except:
print sys.exc_info()

(<cl ass exceptions. | ndexError at 7698d0>, <exceptions.|ndexError instance at
797140>, <traceback object at 7971a0>)

We might use such information to format our own error message to display in a GUI pop-up window
or HTML web page (recall that by default, uncaught exceptions terminate programs with a Python
error display). The first two items returned by this call have reasonable string displays when printed
directly, and the third is a traceback object that can be processed with the standard t r aceback
module:

>>> jnport traceback, sys
>>> def grail (x):
rai se TypeError, 'already got one'

>>> try:
grail ("arthur")
except:
exc_info = sys.exc_info()
print exc_info[O0]
print exc_info[1]
traceback. print_tb(exc_info[2])

exceptions. TypeError

al ready got one
File "<stdin>", line 2, in?
File "<stdin>", line 2, in grail

The TRaceback module can also format messages as strings and route them to specific file objects;
see the Python library manual for more details.

o I should make two portability notes. First, the most recent exception type,
,.'..._ value, and traceback objects are also available via other names:
* 4a
>>> try:
rai se TypeError, "Bad Thi ng"
except:

print sys.exc_type, sys.exc_value

exceptions. TypeError Bad Thing

But these names represent a single, global exception, and they are not specific
to a particular thread (threads are covered in Chapter 5). If you mean to raise
and catch exceptions in multiple threads, exc_i nf o provides thread-specific
exception details. In fact, you are better off using exc_i nf o in all cases today,
as the older tools are now documented as deprecated and may be removed in a
future version of Python.

It has also been suggested (in the 2.4 library reference manual and the Python
3.0 PEP document) that string-based exceptions may be removed in a future
Python release. This seems more radical and less certain. But if you want to
avoid potential future work, use class-based exceptions instead. Because they
allow you to define categories of exceptions, they are better than strings in
terms of code maintenance anyhow; by listing categories, your exception
handlers are immune to future changes. Built-in exceptions have been classes
since Python 1.5.

3.3.5. Other sys Module Exports

The sys module exports additional tools that we will meet in the context of larger topics and
examples introduced later in this chapter and book. For instance:

¢ Command-line arguments show up as a list of strings called sys. argv.
e Standard streams are available as sys. stdi n, sys. stdout, and sys. stderr.
e Program exit can be forced with sys. exit calls.

Since all of these lead us to bigger topics, though, we will cover them in sections of their own.

=2

=a

3.4. Introducing the os Module

As mentioned, os is the larger of the two core system modules. It contains all of the usual operating-
system calls you may have used in your C programs and shell scripts. Its calls deal with directories,
processes, shell variables, and the like. Technically, this module provides POSIX toolsa portable
standard for operating-system callsalong with platform-independent directory processing tools as the
nested module os. pat h. Operationally, os serves as a largely portable interface to your computer's
system calls: scripts written with os and os. pat h can usually be run unchanged on any platform.

In fact, if you read the os module's source code, you'll notice that it really just imports whatever
platform-specific system module you have on your computer (e.g., nt, mac, posi x). See the os.py file
in the Python source library directoryit simply runs a f ron¥ statement to copy all names out of a
platform-specific module. By always importing os rather than platform-specific modules, though, your
scripts are mostly immune to platform implementation differences. On some platforms, os includes
extra tools available just for that platform (e.g., low-level process calls on Unix); by and large,
though, it is as cross-platform as it is technically feasible.

3.4.1. The Big os Lists

Let's take a quick look at the basic interfaces in os. As a preview, Table 3-1 summarizes some of the
most commonly used tools in the os module organized by functional area.

Table 3-1. Commonly used os module tools

Tasks Tools
Shell variables 0s.environ
Running programs 0s. system, 0s. popen, os. popen2/3/4, os.startfile

Spawning processes os. fork, os. pi pe, 0s. exec, 0os. wai t pi d, os. kil

Descriptor files, locks os. open, os.read, os.wite

File processing 0s.renove, os. renane, os. nkfifo, os. nkdir, os.rndir
Administrative tools os. getcwd, os. chdir, os. chnod, os. getpid, os.listdir
Portability tools 0s. sep, 0s. pat hsep, os.curdir, os.path.split, os.path.join

Pathname tools 0s. path.exists('path'), os.path.isdir('path'), os. path. getsize(' path')

If you inspect this module's attributes interactively, you get a huge list of names that will vary per
Python release, will likely vary per platform, and isn't incredibly useful until you've learned what each
name means (I've removed most of this list to save spacerun the command on your own):

>>> jnport o0s
>>> dir(0s)

['F_OK, '"OAPPEND , 'O BINARY', 'O CREAT', 'O EXCL', 'O NO NHERI T',
'O RANDOM , 'O RDONLY', 'O RDWR , ' O SEQUENTIAL', ' O SHORT LI VED ,
'O TEMPORARY', 'O TEXT', 'O TRUNC , 'O WRONLY', 'P_DETACH , 'P_NOMIT',

...10 lines renmoved here. ..

'popend', 'putenv', 'read', 'renove', 'renovedirs', 'renane', 'renanes', 'rndir’',
'sep', 'spawnl', 'spawnle', 'spawnv', 'spawnve', 'startfile', 'stat',

"stat _float tines', 'stat _ result', 'statvfs result', 'strerror', 'sys', 'systeni,
"tempnamt, 'tinmes', 'tnpfile', "tnpnam, 'umask', 'unlink', 'unsetenv', 'urandon,
"utine', "waitpid, "walk', "wite']

Besides all of these, the nested os. pat h module exports even more tools, most of which are related
to processing file and directory names portably:

>>> dir(o0s. path)

[all_ ', " _builtins_ ', ' doc_ ', " file_ ', ' _ _name_ ', 'abspath',
"altsep', 'basenane', 'comonprefix', 'curdir', 'defpath', 'devnull', 'dirnane',
"exists', 'expanduser', 'expandvars', 'extsep', 'getatine', 'getctinme', 'getntine',
'getsize', 'isabs', "isdir', "isfile, '"islink', "ismount', 'join', 'lexists',
'norntase', 'nornpath', 'os', 'pardir', 'pathsep', 'realpath', 'sep', 'split',
"splitdrive', "splitext', "splitunc', 'stat', 'supports_unicode filenanes', 'sys'
"wal k']

3.4.2. Administrative Tools

Just in case those massive listings aren't quite enough to go on, let's experiment interactively with
some of the simpler os tools. Like sys, the os module comes with a collection of informational and
administrative tools:

>>> 0s.getpid()

-510737

>>> 0s. getcwd()

" C:\\ PP3r dEd\ \ Exanpl es\\ PP3E\ \ Syst eni

>>> os.chdir(r'c:\tenp')
>>> 0s. getcwd()
"c:\\tenp'

As shown here, the os. get pi d function gives the calling process's process ID (a unique system-
defined identifier for a running program), and os. get cwd returns the current working directory. The
current working directory is where files opened by your script are assumed to live, unless their
names include explicit directory paths. That's why earlier | told you to run the following command in
the directory where more.py lives:

C.\...\PP3E\ Syst enrpyt hon nore. py nore. py

The input filename argument here is given without an explicit directory path (though you could add
one to page files in another directory). If you need to run in a different working directory, call the

os. chdi r function to change to a new directory; your code will run relative to the new directory for
the rest of the program (or until the next os. chdi r call). This chapter will have more to say about the
notion of a current working directory, and its relation to module imports when it explores script
execution context.

3.4.3. Portability Constants

The os module also exports a set of names designed to make cross-platform programming simpler.
The set includes platform-specific settings for path and directory separator characters, parent and
current directory indicators, and the characters used to terminate lines on the underlying
computer:[*1

[10s. i nesep comes back as\ r\ n herethe symbolic escape code equivalent of \ 015\ 012, which reflect the carriage-return + line-
feed line terminator convention on Windows. In older versions of Python, you may still see these displayed in their octal or
hexadecimal escape forms. See the discussion of end-of-line translations in the next chapter.

>>> (0s. pat hsep, o0s.sep, os.pardir, os.curdir, os.linesep
[N N R N AN

os. sep is whatever character is used to separate directory components on the platform on which
Python is running; it is automatically preset to \ on Windows, / for POSIX machines, and : on the
Mac. Similarly, os. pat hsep provides the character that separates directories on directory lists: for
POSIX and ; for DOS and Windows.

By using such attributes when composing and decomposing system-related strings in our scripts, the
scripts become fully portable. For instance, a call of the form os. sep. split (dirpath) will correctly
split platform-specific directory names into components, even though di r pat h may look like dir\dir
on Windows, di r/dir on Linux, and dir: di r on Macintosh. As previously mentioned, on Windows you
can usually use forward slashes rather than backward slashes when giving filenames to be opened;
but these portability constants allow scripts to be platform neutral in directory processing code.

3.4.4. Basic os.path Tools

The nested module os. pat h provides a large set of directory-related tools of its own. For example, it
includes portable functions for tasks such as checking a file's type (i sdir, i sfil e, and others),
testing file existence (exi sts), and fetching the size of a file by name (get si ze):

>>> os.path.isdir(r'C\tenp'), os.path.isfile(r'C\tenp')
(True, False)

>>> os.path.isdir(r' C\config.sys'), os.path.isfile(r'C\config.sys')
(Fal se, Tuue)

>>> 0s. pat h.isdir(' nonesuch'), os. path.isfile('nonesuch')

(Fal se, Fal se)

>>> o0s.path.exists(r'c:\tenp\data.txt")
0

>>> 0s. pat h. getsi ze(r' C \ aut oexec. bat"')
260

The os. path.isdir and os. path.isfile calls tell us whether a filename is a directory or a simple file;
both return Fal se if the named file does not exist. We also get calls for splitting and joining directory
path strings, which automatically use the directory name conventions on the platform on which
Python is running:

>>> os.path.split(r'C\tenp\data.txt")
("C\\tenp', 'data.txt")

>>> os.path.join(r'C\tenp', 'output.txt')
"C:\\temp\\out put.txt'

>>> name = r' C \tenp\data.txt' # W ndows paths
>>> 0s. pat h. basenane(nanme), os. path. di rnanme(nane)
("data.txt', "C\\tenp')

>>> pame = '/hone/lutz/tenp/data.txt' # Uni x-styl e paths
>>> (0s. pat h. basenane(nane), os. path. di rnanme(nane)
("data.txt', '/hone/lutz/tenp')

>>> o0s. path. splitext(r' C \PP3rdEd\ Exanpl es\ PP3E\ PyDenos. pyw)
(" C\\ PP3rdEd\\ Exanpl es\\ PP3E\\ PyDenos', '.pyw)

os. path. split separates a filename from its directory path, and os. pat h. j oi n puts them back
togetherall in entirely portable fashion using the path conventions of the machine on which they are
called. The basenane and di r nane calls here return the second and first items returned by a split
simply as a convenience, and splitext strips the file extension (after the last .). The nornpat h call
comes in handy if your paths become a jumble of Unix and Windows separators:

>>> i xed

"C\\temp\\public/files/index.htnm"

>>> 0s. pat h. nor npat h(m xed)
"C\\temp\\public\\files\\index.htm"

>>> print os.path.nornmpath(r'C\tenp\\sub\.\file.ext")
C\tenp\sub\file.ext

This module also has an abspat h call that portably returns the full directory pathname of a file; it
accounts for adding the current directory, .. parents, and more:

>>> 0s. getcwd()
" C:\\ PP3r dEd\ \ cdrom \ W ndows Ext '
>>> 0s. pat h. abspath(' tenp') # expand to full pathnanme

" C:\\ PP3rdEd\ \ cdr om \ W ndowsExt\\t enp’

>>> (0s. pat h. abspath(r'..\exanpl es') # rel ative paths expanded

" C:\\ PP3r dEd\ \ exanpl es'

>>> 0s. pat h. abspat h(r' C.\ PP3r dEd\ chapters') # absol ute pat hs unchanged
" C:\\ PP3rdEd\\ chapt ers'

>>> 0s. pat h. abspath(r' C\tenp\spamtxt') # ditto for filenanes
"C\\tenmp\\spamtxt'
>>> 0s. pat h. abspath('") # enpty string neans the cwd

"C:\\ PP3rdEd\\ cdrom \ W ndowsExt "'

Because filenames are relative to the current working directory when they aren't fully specified paths,
the os. pat h. abspat h function helps if you want to show users what directory is truly being used to
store a file. On Windows, for example, when GUI-based programs are launched by clicking on file
explorer icons and desktop shortcuts, the execution directory of the program is the clicked file's
home directory, but that is not always obvious to the person doing the clicking; printing a file's
abspat h can help.

3.4.5. Running Shell Commands from Scripts

The os module is also the place where we run shell commands from within Python scripts. This
concept is intertwined with others we won't cover until later in this chapter, but since this is a key
concept employed throughout this part of the book, let's take a quick first look at the basics here.
Two os functions allow scripts to run any command line that you can type in a console window:

0S. system

Runs a shell command from a Python script

0s. popen

Runs a shell command and connect to its input or output streams

3.4.5.1. What's a shell command?

To understand the scope of these calls, we first need to define a few terms. In this text, the term
shell means the system that reads and runs command-line strings on your computer, and shell
command means a command-line string that you would normally enter at your computer's shell
prompt.

For example, on Windows, you can start an MS-DOS console window and type DOS commands
therecommands such as di r to get a directory listing, and t ype to view a file, names of programs you
wish to start, and so on. DOS is the system shell, and commands such as dir and t ype are shell
commands. On Linux, you can start a new shell session by opening an xterm window and typing shell
commands there tool s to list directories, cat to view files, and so on. A variety of shells are available
on Unix (e.g., csh, ksh), but they all read and run command lines. Here are two shell commands
typed and run in an MS-DOS console box on Windows:

C\tenp>dir /B ...type a shell command I|ine

about - pp. ht m ...its output shows up here
pythonl.5.tar.gz ...DCS is the shell on W ndows
about - pp2e. ht

about - ppr2e. ht m

newdi r

C. \tenmp>type hel | oshel | . py
a Python program
print 'The Meaning of Life'

3.4.5.2. Running shell commands

None of this is directly related to Python, of course (despite the fact that Python command-line
scripts are sometimes confusingly called "shell tools™). But because the os module's syst emand popen
calls let Python scripts run any sort of command that the underlying system shell understands, our
scripts can make use of every command-line tool available on the computer, whether it's coded in
Python or not. For example, here is some Python code that runs the two DOS shell commands typed
at the shell prompt shown previously:

C:\t enp>pyt hon

>>> jnport os

>>> o0s.systen('dir /B")
about - pp. ht m
pythonl.5.tar. gz

about - pp2e. ht n

about - ppr2e. ht m

newdi r

0

>>> 0s.systen('type helloshell.py')
a Python program

print ' The Meaning of Life'

0

The Os at the end here are just the return values of the system call itself. The system call can be
used to run any command line that we could type at the shell's prompt (here, C.\tenp>). The
command's output normally shows up in the Python session’'s or program’'s standard output stream.

3.4.5.3. Communicating with shell commands

But what if we want to grab a command's output within a script? The os. syst emcall simply runs a
shell command line, but os. popen also connects to the standard input or output streams of the
command; we get back a file-like object connected to the command's output by default (if we pass a
w mode flag to popen, we connect to the command's input stream instead). By using this object to
read the output of a command spawned with popen, we can intercept the text that would normally
appear in the console window where a command line is typed:

>>> open(' helloshell.py').read()
"# a Python programinprint ' The Meaning of Life'\n"

>>> text = os.popen('type helloshell.py').read()
>>> text
"# a Python program nprint ' The Meaning of Life'\n"

>>> [isting = os.popen('dir /B).readlines()

>>> |isting

["about-pp. htm\n', 'pythonl.5.tar.gz\n', 'helloshell.py\n',
"about - pp2e. ht M\ n', '"about-ppr2e.htm\n', 'newdir\n']

Here, we first fetch a file's content the usual way (using Python files), then as the output of a shell
type command. Reading the output of a dir command lets us get a listing of files in a directory that
we can then process in a loop (we'll learn other ways to obtain such a list in the next chapterZ]). So
far, we've run basic DOS commands; because these calls can run any command line that we can type
at a shell prompt, they can also be used to launch other Python scripts:

[1 In the next chapter, after we've learned about file iterators, we'll also learn that the popen objects have an iterator that reads one
line at a time, often making the r eadl i nes method call superfluous.

>>> 0s. systen(' python helloshell.py") # run a Python program
The Meaning of Life

0

>>> out put = os.popen(' python helloshell.py').read()

>>> out put

' The Meaning of Life\n'

In all of these examples, the command-line strings sent to syst emand popen are hardcoded, but
there's no reason Python programs could not construct such strings at runtime using normal string
operations (+, %, etc.). Given that commands can be dynamically built and run this way, syst emand
popen turn Python scripts into flexible and portable tools for launching and orchestrating other
programs. For example, a Python test "driver" script can be used to run programs coded in any
language (e.g., C++, Java, Python) and analyze their output. We'll explore such a script in Chapter
6.

3.4.5.4. Shell command limitations

You should keep in mind two limitations of syst emand popen. First, although these two functions
themselves are fairly portable, their use is really only as portable as the commands that they run.
The preceding examples that run DOS di r and type shell commands, for instance, work only on
Windows, and would have to be changed in order to run | s and cat commands on Unix-like
platforms.

Second, it is important to remember that running Python files as programs this way is very different
and generally much slower than importing program files and calling functions they define. When

os. syst emand os. popen are called, they must start a brand-new, independent program running on
your operating system (they generally run the command in a newly forked process). When importing
a program file as a module, the Python interpreter simply loads and runs the file's code in the same
process in order to generate a module object. No other program is spawned along the way.l 1

[1The Python execf i | e built-in function also runs a program file's code, but within the same process that called it. It's similar to an
import in that regard, but it works more as if the file's text had been pasted into the calling program at the place where the

execfi | e call appears (unless explicit global or local namespace dictionaries are passed). Unlike imports, execfi | e
unconditionally reads and executes a file's code (it may be run more than once per process), no module object is generated by the
file's execution, and unless optional namespace dictionaries are passed in, assignments in the file's code may overwrite variables in
the scope where the execf i | e appears; see the Python library manual for more details.

There are good reasons to build systems as separate programs too, and we'll later explore things
such as command-line arguments and streams that allow programs to pass information back and
forth. But for most purposes, imported modules are a faster and more direct way to compose
systems.

If you plan to use these calls in earnest, you should also know that the os. syst emcall normally
blocksthat is, pausesits caller until the spawned command line exits. On Linux and Unix-like

platforms, the spawned command can generally be made to run independently and in parallel with
the caller by adding an & shell background operator at the end of the command line:

0s. system("pyt hon programpy arg arg &")

On Windows, spawning with a DOS start command will usually launch the command in parallel too:

0s.systen("start programpy arg arg")

In fact, this is so useful that an os. startfil e call was added in recent Python releases. This call
opens a file with whatever program is listed in the Windows registry for the file's typeas though its
icon has been clicked with the mouse cursor:

os.startfile("webpage. htm ") # open file in your web browser
os.startfile("docunent.doc") # open file in Mcrosoft Wrd
os.startfile("myscript.py") # run file with Python

The os. popen call does not generally block its caller (by definition, the caller must be able to read or
write the file object returned) but callers may still occasionally become blocked under both Windows
and Linux if the pipe object is closede.g., when garbage is collectedbefore the spawned program exits
or the pipe is read exhaustively (e.g., with its read() method). As we will see in the next chapter,
the Unix os. f or k/ exec and Windows os. spawnv calls can also be used to run parallel programs without
blocking.

Because the os module's syst emand popen calls also fall under the category of program launchers,
stream redirectors, and cross-process communication devices, they will show up again in later parts
of this chapter and in the following chapters, so we'll defer further details for the time being. If you're
looking for more details right away, see the stream redirection section in this chapter and the
directory listings section in the next.

3.4.6. Other os Module Exports

Since most other os module tools are even more difficult to appreciate outside the context of larger
application topics, we'll postpone a deeper look at them until later sections. But to let you sample the
flavor of this module, here is a quick preview for reference. Among the os module's other weapons
are these:

0S. envi ron

Fetches and sets shell environment variables

os.fork

Spawns a new child process on Unix

0S. pi pe

Communicates between programs

os. execl p

Starts new programs

0s. spawnv

Starts new programs with lower-level control

0s. open

Opens a low-level descriptor-based file

os. nkdi r

Creates a new directory

os. nkfifo

Creates a new named pipe

0s. st at

Fetches low-level file information

0s.renove

Deletes a file by its pathname

os. pat h. wal k, os. wal k

Applies a function or loop body to all parts of an entire directory tree

And so on. One caution up front: the os module provides a set of file open, read, and wite calls, but
all of these deal with low-level file access and are entirely distinct from Python's built-in st di o file
objects that we create with the built-in open function. You should normally use the built-in open
function (not the os module) for all but very special file-processing needs (e.g., opening with
exclusive access file locking).

Throughout this chapter, we will apply sys and os tools such as these to implement common system-
level tasks, but this book doesn't have space to provide an exhaustive list of the contents of modules
we will meet along the way. If you have not already done so, you should become acquainted with the
contents of modules such as os and sys by consulting the Python library manual. For now, let's move
on to explore additional system tools in the context of broader system programming concepts.

==a

=a

3.5. Script Execution Context

Python scripts don't run in a vacuum. Depending on platforms and startup procedures, Python
programs may have all sorts of enclosing context; information automatically passed in to the
program by the operating system when the program starts up. For instance, scripts have access to
the following sorts of system-level inputs and interfaces:

Current working directory
os. get cwd gives access to the directory from which a script is started, and many file tools use
its value implicitly.

Command-line arguments
sys. ar gv gives access to words typed on the command line that are used to start the program
and that serve as script inputs.

Shell variables
os. envi ron provides an interface to names assigned in the enclosing shell (or a parent
program) and passed in to the script.

Standard streams

sys. stdin, stdout, and stderr export the three input/output streams that are at the heart of
command-line shell tools.

Such tools can serve as inputs to scripts, configuration parameters, and so on. In the next few
sections, we will explore these context toolsboth their Python interfaces and their typical roles.

=2 wExT

=a

3.6. Current Working Directory

The notion of the current working directory (CWD) turns out to be a key concept in some scripts'
execution: it's always the implicit place where files processed by the script are assumed to reside
unless their names have absolute directory paths. As we saw earlier, os. get cwd lets a script fetch the
CWD name explicitly, and os. chdi r allows a script to move to a new CWD.

Keep in mind, though, that filenames without full pathnames map to the CWD and have nothing to do
with your PYTHONPATH setting. Technically, a script is always launched from the CWD, not the directory
containing the script file. Conversely, imports always first search the directory containing the script,
not the CWD (unless the script happens to also be located in the CWD). Since this distinction is subtle
and tends to trip up beginners, let's explore it in more detail.

3.6.1. CWD, Files, and Import Paths

When you run a Python script by typing a shell command line such as python diri\dir2\file. py, the
CWD is the directory you were in when you typed this command, not dirl\dir2. On the other hand,
Python automatically adds the identity of the script's home directory to the front of the module
search path such that file.py can always import other files in dirl\dir2 no matter where it is run from.
To illustrate, let's write a simple script to echo both its CWD and its module search path:

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst en>t ype wher eani . py
i mport o0s, sys

print 'my os.getcwd =>', os.getcwd() # show ny cwd execution dir
print "my sys.path =>'", sys.path[:6] # show first 6 inport paths
raw_i nput () # wait for keypress if clicked

Now, running this script in the directory in which it resides sets the CWD as expected and adds an
empty string (' ') to the front of the module search path in order to designate the CWD (we met the
sys. pat h module search path earlier):

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst enpset PYTHONPATH=C: \ PP3r dEd\ Exanpl es

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst en>pyt hon wher eani . py

nmy os.getcwd => C \ PP3rdEd\ Exanpl es\ PP3E\ Syst em

my sys.path =>7["'", 'C\\PP3rdEd\\ Exanpl es', 'C \\Program Fil es\\ Pyt hon
\WLib\\plat-win'", '"C\\ProgramFiles\\Python\\Lib', "C\\ProgramFiles\\
Pyt hon\\ DLLs', ' C:\\ProgramgFil es\\ Python\\Li b\\Iib-tk']

But if we run this script from other places, the CWD moves with us (it's the directory where we type
commands), and Python adds a directory to the front of the module search path that allows the script
to still see files in its own home directory. For instance, when running from one level up (. .), the

Syst emname added to the front of sys. pat h will be the first directory that Python searches for

imports within whereami.py; it points imports back to the directory containing the script that was
run. Filenames without complete paths, though, will be mapped to the CWD
(C:\PP3rdEd\Examples\PP3E), not the System subdirectory nested there:

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst en>cd ..

C: \ PP3r dEd\ Exanpl es\ PP3E>pyt hon Syst em wher eami . py

my os.getcwd => C:\ PP3rdEd\ Exanpl es\ PP3E

my sys.path =>['System, 'C\\PP3rdEd\\Exanples', ...rest sane...]

C: \ PP3r dEd\ Exanpl es\ PP3E>cd ..

C:\ PP3r dEd\ Exanpl es>pyt hon PP3E\ Syst eml wher eami . py

my os.getcwd => C:\ PP3rdEd\ Exanpl es

my sys.path =>['PP3E\\Systen, 'C \\PP3rdEd\\Exanples', ...rest same...]

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst enm>cd PP3E\ Syst em App

C: \ PP3r dEd\ Exanpl es\ PP3E\ Syst em App>pyt hon ..\ wher eani . py

my os.getcwd => C \ PP3rdEd\ Exanpl es\ PP3E\ Syst eml App

my sys.path =>7["'..", "C\\PP3rdEd\\ Exanples', ...rest same...]

The net effect is that filenames without directory paths in a script will be mapped to the place where
the command was typed (os. get cwd), but imports still have access to the directory of the script being
run (via the front of sys. pat h). Finally, when a file is launched by clicking its icon, the CWD is just the
directory that contains the clicked file. The following output, for example, appears in a new DOS
console box when whereami.py is double-clicked in Windows Explorer:

my os.getcwd => C: \ PP3rdEd\ Exanpl es\ PP3E\ Syst em

my sys.path =>['C \\PP3RDED\ \ EXAMPLES\\ PP3E\\ SYSTEM , ' C:\\ PP3r dEd\ \ Exanpl es',
"C:\\ProgramFil es\\Python\\Lib\\plat-win', 'C\\ProgramFil es\\Python\\Lib'",
"C:\\ProgramFil es\\ Pyt hon\\ DLLs"]

In this case, both the CWD used for filenames and the first import search directory are the directory
containing the script file. This all usually works out just as you expect, but there are two pitfalls to
avoid:

e Filenames might need to include complete directory paths if scripts cannot be sure from where
they will be run.

¢ Command-line scripts cannot use the CWD to gain import visibility to files that are not in their
own directories; instead, use PYTHONPATH settings and package import paths to access modules
in other directories.

For example, files in this book, regardless of how they are run (i nport fil ehere), can always import
other files in their own home directories without package path imports but must go through the PP3E
package root to find files anywhere else in the examples tree (from PP3E. dir1.dir2 inport

fil ethere), even if they are run from the directory containing the desired external module. As usual
for modules, the PP3E\dir1\dir2 directory name could also be added to PYTHONPATH to make files there
visible everywhere without package path imports (though adding more directories to PYTHONPATH
increases the likelihood of name clashes). In either case, though, imports are always resolved to the
script's home directory or other Python search path settings, not to the CWD.

3.6.2. CWD and Command Lines

This distinction between the CWD and import search paths explains why many scripts in this book
designed to operate in the current working directory (instead of one whose name is passed in) are
run with command lines such as this one:

C. \t enp>pyt hon %% PyTool s\ cl eanpyc- py. py process cwd

In this example, the Python script file itself lives in the directory C:\PP3rdEd\Examples\PP3E\PyTools,
but because it is run from C:\temp, it processes the files located in C:\temp (i.e., in the CWD, not in
the script's home directory). To process files elsewhere with such a script, simply cd to the directory
to be processed to change the CWD:

C: \tenp>cd C: \ PP2nEd\ exanpl es
C: \ PP3r dEd\ exanpl es>pyt hon %% PyTool s\ cl eanpyc- py. py process cwd

Because the CWD is always implied, a cd command tells the script which directory to process in no
less certain terms than passing a directory name to the script explicitly, like this:

C\...\PP3E\ PyTool s>python find.py *.py C\tenp process naned dir

In this command line, the CWD is the directory containing the script to be run (notice that the script
filename has no directory path prefix); but since this script processes a directory hamed explicitly on
the command line (C:\temp), the CWD is irrelevant. Finally, if we want to run such a script located in
some other directory in order to process files located in yet another directory, we can simply give
directory paths to both:

C:\tenp>pyt hon %X% PyTool s\ find. py *. cxx C: \PP3rdEd\ Exanpl es\ PP3E

Here, the script has import visibility to files in its PP3E\PyTools home directory and processes files in
the PP3E root, but the CWD is something else entirely (C:\temp). This last form is more to type, of
course, but watch for a variety of CWD and explicit script-path command lines like these in this book.

e

Whenever you see a %% in command lines such as those in the preceding
examples, it refers to the value of the shell environment variable named X. It's
just shorthand for the full directory pathname of the PP3E book examples
package root directory, which | use to point to scripts' files. On my machines, it
is preset in my PP3E\Config setup-pp™* files like this:

set X=C:\ PP3r dEd\ Exanpl es\ PP3E - - DCs
setenv X / home/ mar k/ PP3r dEd/ Exanpl es/ PP3E - - Uni x/ csh

That is, it is assigned and expanded to the directory where PP3E lives on the
system. See the next section in this chapter for more on shell variables. You
can instead type full example root paths everywhere you see %%in this book,
but both your fingers and your keyboard are probably better off if you don't.

=a

3.7. Command-Line Arguments

The sys module is also where Python makes available the words typed on the command that is used
to start a Python script. These words are usually referred to as command-line arguments and show
up in sys. argv, a built-in list of strings. C programmers may notice its similarity to the C ar gv array
(an array of C strings). It's not much to look at interactively, because no command-line arguments
are passed to start up Python in this mode:

>>> sys. argv

("]

To really see what arguments are about, we need to run a script from the shell command line.
Example 3-2 shows an unreasonably simple one that just prints the ar gv list for inspection.

Example 3-2. PP3E\System\testargv.py

i mport sys
print sys.argv

Running this script prints the command-line arguments list; note that the first item is always the
name of the executed Python script file itself, no matter how the script was started (see the sidebar
titled "Executable Scripts on Unix," later in this chapter).

C:\...\PP3E\ Syst enrpyt hon testargv. py
["testargv.py']

C:\...\PP3E\ Syst enppyt hon testargv. py spam eggs cheese
['testargv.py', 'spam, 'eggs', 'cheese']

C.\...\PP3E\ Systenppyt hon testargv.py -i data.txt -o results.txt
["testargv.py', '-i', 'data.txt', '-0', 'results.txt']

The last command here illustrates a common convention. Much like function arguments, command-
line options are sometimes passed by position and sometimes by name using a "-name value" word
pair. For instance, the pair -i data.txt means the -i option's value is data. txt (e.g., an input
filename). Any words can be listed, but programs usually impose some sort of structure on them.

Command-line arguments play the same role in programs that function arguments do in functions:
they are simply a way to pass information to a program that can vary per program run. Because they

don't have to be hardcoded, they allow scripts to be more generally useful. For example, a file-
processing script can use a command-line argument as the name of the file it should process; see the
more.py script we met in Example 3-1 for a prime example. Other scripts might accept processing
mode flags, Internet addresses, and so on.

Once you start using command-line arguments regularly, though, you'll probably find it inconvenient
to keep writing code that fishes through the list looking for words. More typically, programs translate
the arguments list on startup into structures that are more conveniently processed. Here's one way

to do it: the script in Example 3-3 scans the ar gv list looking for - opti onnane opti onval ue word pairs
and stuffs them into a dictionary by option name for easy retrieval.

Example 3-3. PP3E\System\testargv2.py

coll ect command-line options in a dictionary

def getopts(argv):

opts = {}
whil e argv:
if argv[0][0] == "-": # find "-nanme val ue" pairs
opts[argv[0]] = argv[1] # dict key is "-nane" arg
argv = argv[2:]
el se:
argv = argv[1:]
return opts
if name_ _=='_ min_ '
fromsys inport argv # exanpl e client code

nyargs = getopts(argv)

i f nyargs.has_key('-i'"):
print nyargs['-i"]

print nyargs

You might import and use such a function in all your command-line tools. When run by itself, this file
just prints the formatted argument dictionary:

C.\...\PP3E\ Syst enppyt hon testargv2. py

{}

C.\...\PP3E\ Syst enppyt hon testargv2.py -i data.txt -o results.txt
dat a. t xt

{"-0": 'results.txt', "-i': '"data.txt'}

Naturally, we could get much more sophisticated here in terms of argument patterns, error checking,
and the like. We could also use standard and more advanced command-line processing tools in the
Python library to parse arguments; see the standard get opt library module and the newer opt par se in
the library manual for other options. In general, the more configurable your scripts, the more you
must invest in command-line processing logic complexity.

Executable Scripts on Unix

Unix and Linux users: you can also make text files of Python source code directly
executable by adding a special line at the top with the path to the Python interpreter and
giving the file executable permission. For instance, type this code into a text file called
myscript:

#! /[usr/ bi n/ pyt hon
print "And nice red uniforns'

The first line is normally taken as a comment by Python (it starts with a #); but when this
file is run, the operating system sends lines in this file to the interpreter listed after #! on
line 1. If this file is made directly executable with a shell command of the form chnod +x
nyscri pt, it can be run directly without typing pyt hon in the command, as though it were
a binary executable program:

Y% nyscript abc
And nice red unifornmns

When run this way, sys. ar gv will still have the script's name as the first word in the list:
["nyscript", "a", "b", "c"], exactly as if the script had been run with the more explicit
and portable command form pyt hon nyscript a b c. Making scripts directly executable is
actually a Unix trick, not a Python feature, but it's worth pointing out that it can be made
a bit less machine dependent by listing the Unix env command at the top instead of a
hardcoded path to the Python executable:

#!/usr/ bi n/ env pyt hon
print "Vt for it...'

When coded this way, the operating system will employ your environment variable
settings to locate your Python interpreter (your PATH variable, on most platforms). If you
run the same script on many machines, you need only change your environment settings
on each machine (you don't need to edit Python script code). Of course, you can always
run Python files with a more explicit command line:

% pyt hon nyscript a b c

This assumes that the pyt hon interpreter program is on your system's search path setting
(otherwise, you need to type its full path), but it works on any Python platform with a
command line. Since this is more portable, | generally use this convention in the book's

examples, but consult your Unix manpages for more details on any of the topics
mentioned here. Even so, these special #! lines will show up in many examples in this
book just in case readers want to run them as executables on Unix or Linux; on other
platforms, they are simply ignored as Python comments.

Note that on recent flavors of Windows, you can usually also type a script's filename
directly (without the word python) to make it go, and you don't have to add a #! line at
the top. Python uses the Windows registry on this platform to declare itself as the
program that opens files with Python extensions (.py and others). This is also why you
can launch files on Windows by clicking on them.

e prcy |

=a

3.8. Shell Environment Variables

Shell variables, sometimes known as environment variables, are made available to Python scripts as
os. envi ron, a Python dictionary-like object with one entry per variable setting in the shell. Shell
variables live outside the Python system; they are often set at your system prompt or within startup
files and typically serve as system-wide configuration inputs to programs.

In fact, by now you should be familiar with a prime example: the PYTHONPATH module search path
setting is a shell variable used by Python to import modules. By setting it once in your system
startup files, its value is available every time a Python program is run. Shell variables can also be set
by programs to serve as inputs to other programs in an application; because their values are
normally inherited by spawned programs, they can be used as a simple form of interprocess
communication.

3.8.1. Fetching Shell Variables

In Python, the surrounding shell environment becomes a simple preset object, not special syntax.
Indexing os. envi ron by the desired shell variable's name string (e.g., os. environ[' USER]) is the
moral equivalent of adding a dollar sign before a variable name in most Unix shells (e.g., $USER),
using surrounding percent signs on DOS (%JSERY), and calling get env("USER') in a C program. Let's
start up an interactive session to experiment:

>>> jnport o0s

>>> 0s. environ. keys()

["WNBOOTDI R, 'PATH , 'USER , 'PP2HOVE , 'CVDLINE' , ' PYTHONPATH , 'BL*ER,
"X, "TEMP', 'COMSPEC , 'PROWPT', "WNDIR, 'TM']

>>> 0s. environ[' TEM]

" C:\\'wi ndows\ \ TEMP

Here, the keys method returns a list of set variables, and indexing fetches the value of the shell
variable TEMP on Windows. This works the same way on Linux, but other variables are generally
preset when Python starts up. Since we know about PYTHONPATH, let's peek at its setting within Python
to verify its content (as | wrote this, mine was set to the roots of the book examples trees for the
third and second editions):

>>> 0S. envi ron[' PYTHONPATH]

" C:\\ Mar k\\ PP3E- cd\ \ Exanpl es; C:\\ Mar k\ \ PP2E- cd\ \ Exanpl es'

>>>

>>> for dir in os.environ[' PYTHONPATH].split (os. pathsep):
print dir

C: \ Mar k\ PP3E- cd\ Exanpl es
C: \ Mar k\ PP2E- cd\ Exanpl es

PYTHONPATH is a string of directory paths separated by whatever character is used to separate items in
such paths on your platform (e.g., ; on DOS/Window, : on Unix and Linux). To split it into its
components, we pass to the split string method an os. pat hsep delimitera portable setting that gives
the proper separator for the underlying machine.

3.8.2. Changing Shell Variables

Like normal dictionaries, the os. envi ron object supports both key indexing and assignment. As usual,
assignments change the value of the key:

>>> os.environ[' TEMP'] =r'c:\tenp'
>>> 0s.environ[' TEMP']
"c:\\tenp'

But something extra happens here. In recent Python releases, values assigned to os. envi ron keys in
this fashion are automatically exported to other parts of the application. That is, key assignments
change both the os. envi ron object in the Python program as well as the associated variable in the
enclosing shell environment of the running program's process. Its new value becomes visible to the
Python program, all linked-in C modules, and any programs spawned by the Python process.

Internally, key assignments to os. envi ron call os. put enva function that changes the shell variable
outside the boundaries of the Python interpreter. To demonstrate how this works, we need a couple
of scripts that set and fetch shell variables; the first is shown in Example 3-4.

Example 3-4. PP3E\System\Environment\setenv.py

i mport os

print 'setenv...',

print os.environ[' USER] # show current shell variable val ue
os.environ['USER'] = 'Brian' # runs os. putenv behind the scenes

0s. system(' pyt hon echoenv. py')

os.environ['USER'] = "Arthur' # changes passed to spawned prograns
0s. system(' pyt hon echoenv. py') # and linked-in Clibrary nodul es
os.environ['USER'] = raw_i nput (' ?")

print os.popen('python echoenv.py').read()

This setenv.py script simply changes a shell variable, USER, and spawns another script that echoes
this variable's value, as shown in Example 3-5.

Example 3-5. PP3E\System\Environment\echoenv.py

i mport os
print 'echoenv...',
print "Hello,', os.environ['USER]

No matter how we run echoenv.py, it displays the value of USER in the enclosing shell; when run from
the command line, this value comes from whatever we've set the variable to in the shell itself:

C.\...\PP3E\ Syst eml Envi ronnent >set USER=Bob

C.\...\PP3E\ Syst em Envi r onnent >pyt hon echoenv. py
echoenv... Hello, Bob

When spawned by another script such as setenv.py, though, echoenv.py gets whatever USER settings
its parent program has made:

C.\...\PP3E\ Syst eml Envi r onnent >pyt hon set env. py

setenv... Bob

echoenv... Hello, Brian
echoenv... Hello, Arthur
?Qunby

echoenv... Hello, Gunby

C\...\PP3E\ Syst eml Envi r onnment >echo %JSER%
Bob

This works the same way on Linux. In general terms, a spawned program always inherits
environment settings from its parents. Spawned programs are programs started with Python tools
such as os. spawnv on Windows, the os. f or k/ exec combination on Unix and Linux, and os. popen and
os. systemon a variety of platforms. All programs thus launched get the environment variable
settings that exist in the parent at launch time.[*1

[1 This is by default. Some program-launching tools also let scripts pass environment settings that are different from their own to
child programs. For instance, the os. spawnve call is like os. spawnv, but it accepts a dictionary argument representing the shell
environment to be passed to the started program. Some os. exec* variants (ones with an "e" at the end of their names) similarly
accept explicit environments; see the os. exec call formats in Chapter 5 for more details.

From a larger perspective, setting shell variables like this before starting a new program is one way
to pass information into the new program. For instance, a Python configuration script might tailor the
PYTHONPATH variable to include custom directories just before launching another Python script; the
launched script will have the custom search path because shell variables are passed down to children
(in fact, watch for such a launcher script to appear at the end of Chapter 6).

3.8.3. Shell Variable Details

Notice the last command in the preceding examplethe USER variable is back to its original value after
the top-level Python program exits. Assignments to os. envi ron keys are passed outside the
interpreter and down the spawned programs chain, but never back up to parent program processes
(including the system shell). This is also true in C programs that use the put env library call, and it
isn't a Python limitation per se.

It's also likely to be a nonissue if a Python script is at the top of your application. But keep in mind
that shell settings made within a program usually endure only for that program's run and for the run
of its spawned children. If you need to export a shell variable setting so that it lives on after Python
exits, you may be able to find platform-specific extensions that do this; search
http://www.python.org or the Web at large.

Another subtlety: currently, changes to os. envi r on automatically call os. put env, which runs the
put env call in the C library if the later is available on your platform; this exports the setting outside
Python to any linked-in C code too. However, direct calls to os. put env do not update os. envi ron to
reflect the change, so os. envi ron changes are preferred.

Also note that environment settings are loaded into os. envi ron on startup and not on each fetch;
hence, changes made by linked-in C code after startup may not be reflected in os. envi ron. Python
does have an os. get env call today, but it is translated into an os. envi ron fetch on most platforms,
not into a call to get env in the C library. Most applications won't need to care, especially if they are
pure Python code. On platforms without a put env call, os. envi ron can be passed as a parameter to
program startup tools to set the spawned program's environment.

=2

http://www.python.org

=a

3.9. Standard Streams

The sys module is also the place where the standard input, output, and error streams of your Python
programs live:

>>> for f in (sys.stdin, sys.stdout, sys.stderr): print f
<open file '<stdin>, node 'r' at 762210>

<open file '<stdout>', node 'wW at 762270>
<open file '<stderr>', node 'wW at 7622d0>

The standard streams are simply preopened Python file objects that are automatically connected to
your program's standard streams when Python starts up. By default, all of them are tied to the
console window where Python (or a Python program) was started. Because the pri nt statement and
raw_i nput functions are really nothing more than user-friendly interfaces to the standard output and
input streams, they are similar to using st dout and stdin in sys directly:

>>> print 'hello stdout world'
hell o stdout world

>>> gys.stdout.wite(' hello stdout world + "\n')
hell o stdout world

>>> raw_i nput (" hell o stdin world>")
hell o stdin worl d>spam
" span

>>> print "hello stdin world>,; sys.stdin.readline()[:-1]
hell o stdin worl d>eggs

' eggs’

Standard Streams on Windows

Windows users: if you click a .py Python program'’s filename in a Windows file explorer to
start it (or launch it with os. syst em), a DOS console box automatically pops up to serve
as the program's standard stream. If your program makes windows of its own, you can
avoid this console pop-up window by naming your program's source-code file with a .pyw
extension, not with a .py extension. The .pyw extension simply means a .py source file
without a DOS pop up on Windows (it uses Windows registry settings to run a custom
version of Python).

One historical note: in the Python 1.5.2 release and earlier, .pyw files could only be run,
not importedthe .pyw was not recognized as a module name. If you wanted a program to
be run without a DOS console pop up and be importable elsewhere, you needed both .py
and .pyw files; the .pyw simply served as top-level script logic that imported and called
the core logic in the .py file. This is no longer required today: .pyw files may be imported
as usual.

Also note that because printed output goes to this DOS pop up when a program is
clicked, scripts that simply print text and exit will generate an odd "flash"the DOS
console box pops up, output is printed into it, and the pop up goes away immediately
(not the most user-friendly of features!). To keep the DOS pop-up box around so that
you can read printed output, simply add araw_i nput () call at the bottom of your script
to pause for an Enter key press before exiting.

3.9.1. Redirecting Streams to Files and Programs

Technically, standard output (and pri nt) text appears in the console window where a program was
started, standard input (and raw_i nput) text comes from the keyboard, and standard error text is
used to print Python error messages to the console window. At least that's the default. It's also
possible to redirect these streams both to files and to other programs at the system shell, as well as
to arbitrary objects within a Python script. On most systems, such redirections make it easy to reuse
and combine general-purpose command-line utilities.

3.9.1.1. Redirecting streams to files

Redirection is useful for things like canned (precoded) test inputs: we can apply a single test script to
any set of inputs by simply redirecting the standard input stream to a different file each time the
script is run. Similarly, redirecting the standard output stream lets us save and later analyze a
program’'s output; for example, testing systems might compare the saved standard output of a script
with a file of expected output to detect failures.

Although it's a powerful paradigm, redirection turns out to be straightforward to use. For instance,
consider the simple read-evaluate-print loop program in Example 3-6.

Example 3-6. PP3E\System\Streams\teststreams.py

read nunbers till eof and show squares

def interact():

print 'Hello streamworl d' # print sends to sys.stdout
while 1:
try:
reply = raw_input('Enter a nunber>") # raw_i nput reads sys.stdin
except EOFError:
br eak # rai ses an except on eof
el se: # input given as a string

num = int(reply)
print "%l squared is %" % (num num** 2)
print 'Bye'
if _ _nanme_ _ ==" mai n
interact() # when run, not inported

As usual, the i nteract function here is automatically executed when this file is run, not when it is
imported. By default, running this file from a system command line makes that standard stream
appear where you typed the Python command. The script simply reads numbers until it reaches end-
of-file in the standard input stream (on Windows, end-of-file is usually the two-key combination Ctrl-
Z; on Unix, type Ctrl-D instead*1):

[Notice that r aw_i nput raises an exception to signal end-of-file, but file read methods simply return an empty string for this
condition. Because r aw_i nput also strips the end-of-line character at the end of lines, an empty string result means an empty line,
S0 an exception is necessary to specify the end-of-file condition. File read methods retain the end-of-line character and denote an
empty line as \ n instead of "". This is one way in which reading sys. st di n directly differs from r aw_i nput . The latter also accepts
a prompt string that is automatically printed before input is accepted.

C.\...\PP3E\ System St reans>pyt hon t est streans. py
Hell o streamworld

Enter a nunber>12

12 squared is 144

Ent er a nunber>10

10 squared is 100

Enter a nunber>

Bye

But on both Windows and Unix-like platforms, we can redirect the standard input stream to come
from a file with the < fil enane shell syntax. Here is a command session in a DOS console box on
Windows that forces the script to read its input from a text file, input.txt. It's the same on Linux, but
replace the DOS t ype command with a Unix cat command:

C\...\PP3E\ System Streans>t ype i nput.txt
8
6

C.\...\PP3E\ System St reans>pyt hon teststreans. py < i nput.txt
Hell o streamworld

Enter a nunber>8 squared is 64
Enter a nunber>6 squared is 36
Enter a nunber >Bye

Here, the input.txt file automates the input we would normally type interactivelythe script reads from
this file rather than from the keyboard. Standard output can be similarly redirected to go to a file with
the > fil ename shell syntax. In fact, we can combine input and output redirection in a single
command:

C:\...\PP3E\ System St reans>pyt hon teststreans. py < input.txt > output.txt

C:\...\PP3E\ Systenm St reans>t ype out put . t xt
Hell o streamworld

Enter a nunber>8 squared is 64

Enter a nunber>6 squared is 36

Enter a nunber >Bye

This time, the Python script's input and output are both mapped to text files, not to the interactive
console session.

3.9.1.2. Chaining programs with pipes

On Windows and Unix-like platforms, it's also possible to send the standard output of one program to
the standard input of another using the | shell character between two commands. This is usually
called a "pipe" operation because the shell creates a pipeline that connects the output and input of
two commands. Let's send the output of the Python script to the standard nor e command-line
program’s input to see how this works:

C:\...\PP3E\ System St reans>pyt hon teststreans.py < input.txt | nore

Hello streamworld
Enter a nunber>8 squared is 64
Enter a nunber>6 squared is 36
Enter a nunber >Bye

Here, t est st reans's standard input comes from a file again, but its output (written by pri nt
statements) is sent to another program, not to a file or window. The receiving program is nore, a
standard command-line paging program available on Windows and Unix-like platforms. Because
Python ties scripts into the standard stream model, though, Python scripts can be used on both ends.
One Python script's output can always be piped into another Python script's input:

C\...\PP3E\ System Streans>type witer.py
print "Help! Help! I'mbeing repressed!"
print 42

C:\...\PP3E\ System St reans>t ype reader. py

print 'Got this" "9%""' %raw_input()

i mport sys

data = sys.stdin.readline()[:-1]

print 'The neaning of life is', data, int(data) * 2

C.\...\PP3E\ System Streans>pyt hon witer.py | python reader.py
Got this" "Help! Help! I'mbeing repressed!"
The nmeaning of life is 42 84

This time, two Python programs are connected. Script r eader gets input from script writer; both
scripts simply read and write, oblivious to stream mechanics. In practice, such chaining of programs
is a simple form of cross-program communications. It makes it easy to reuse utilities written to
communicate via st di n and st dout in ways we never anticipated. For instance, a Python program that
sorts st di n text could be applied to any data source we like, including the output of other scripts.
Consider the Python command-line utility scripts in Examples 3-7 and 3-8 that sort and sum lines in
the standard input stream.

Example 3-7. PP3E\System\Streams\sorter.py

i mport sys # or sorted(sys.stdin)
lines = sys.stdin.readlines() # sort stdin input lines,
lines.sort() # send result to stdout
for line in lines: print |ine, # for further processing

Example 3-8. PP3E\System\Streams\adder.py

i mport sys
sum= 0
whi l e True:
try:
line = raw_i nput () # or call sys.stdin.readlines()
except EOFError: # or for line in sys.stdin:
br eak # raw_input strips \n at end
el se:
sum += int(line) # was sting.atoi() in 2nd ed
print sum

We can apply such general-purpose tools in a variety of ways at the shell command line to sort
and sum arbitrary files and program outputs (Windows note: on my XP machine, | have to type
"python file.py" here, not just "file.py"; otherwise, the input redirection fails):

C\...\PP3E\ System Streans>t ype dat a. t xt
123

000
999
042

C.\...\PP3E\ Systenm Streans>pyt hon sorter.py < data.txt sort a file
000
042
123
999

C\...\PP3E\ System Streans>pyt hon sorter.py < data.txt sumfile
1164

C\...\PP3E\ Systen Streans>type data.txt | python adder.py sum t ype out put
1164

C\...\PP3E\ Systenm Streans>type witer2.py
for data in (123, 0, 999, 42):
print '%93d" % data

C\...\PP3E\ System Streans>pyt hon witer2.py | python sorter.py sort py out put
000
042
123
999

C\...\PP3E\ System Streans>python witer2.py | python sorter.py | python adder. py
1164

The last command here connects three Python scripts by standard streamsthe output of each prior
script is fed to the input of the next via pipeline shell syntax.

3.9.1.3. Coding alternatives

A few coding pointers here: if you look closely, you'll notice that sorter reads all of stdi n at once
with the readl i nes method, but adder reads one line at a time. If the input source is another
program, some platforms run programs connected by pipes in parallel. On such systems, reading line
by line works better if the data streams being passed about are large because readers don't have to
wait until writers are completely finished to get busy processing data. Because raw_i nput just reads
st di n, the line-by-line scheme used by adder can always be coded with sys. stdi n too:

C.\...\PP3E\ System St reans>t ype adder 2. py
i nport sys
sum= 0
whi | e True:
line = sys.stdin.readline()
if not line: break
sum += int(line)
print sum

This version utilizes the fact that the i nt allows the digits to be surrounded by whitespace (readl i ne
returns a line including its \ n, but we don't have to use [:-1] or rstrip() to remove it forint). In
fact, we can use Python's more recent file iterators to achieve the same effectthe f or loop, for
example, automatically grabs one line each time through when we iterate over a file object directly
(more on file iterators in the next chapter):

C:\...\PP3E\ System St reans>t ype adder 3. py
i mport sys

sum= 0

for line in sys.stdin: sum+=int(line)
print sum

Changing sorter to read line by line this way may not be a big performance boost, though, because
the list sort method requires that the list already be complete. As we'll see in Chapter 20, manually
coded sort algorithms are likely to be much slower than the Python list sorting method.

Interestingly, these two scripts can also be coded in a much more compact fashion in Python 2.4 by
using the new sort ed function, list comprehensions, and file iterators. The following work the same
way as the originals:

C\...\PP3E\ System St reans>t ype sorter24. py

i nport sys
for line in sorted(sys.stdin): print Iine,

C.\...\PP3E\ System Streans>t ype adder 24. py

i nport sys
print sum(int(line) for line in sys.stdin)

The latter of these employs a generator expression, which is much like a list comprehension, but
results are returned one at a time, not in a physical list. The net effect is space optimization.

3.9.1.4. Redirected streams and user interaction

At the start of the last section, we piped teststreams.py output into the standard nore command-line
program with a command similar to this one:

C:\...\PP3E\ System St reans>pyt hon teststreans.py < input.txt | nore

But since we already wrote our own "more" paging utility in Python near the start of this chapter,
why not set it up to accept input from st di n too? For example, if we change the last three lines of the
more.py file listed earlier in this chapter to this...

if _ _name_ _ =="'"_ _min_ _": # when run, not when inported
if len(sys.argv) == 1: # page stdin if no cnd args
nmore(sys.stdin.read())
el se:
nmor e(open(sys.argv[1]).read())

...it almost seems as if we should be able to redirect the standard output of teststreams.py into the
standard input of more.py:

C\...\PP3E\ System Streans>pyt hon teststreans.py < input.txt | python ..\nore.py
Hell o streamworl d

Enter a nunber>8 squared is 64

Enter a nunber>6 squared is 36

Enter a nunber >Bye

This technique generally works for Python scripts. Here, teststreams.py takes input from a file again.
And, as in the last section, one Python program's output is piped to another's inputthe more.py script
in the parent (..) directory.

3.9.1.5. Reading keyboard input

But there's a subtle problem lurking in the preceding nore. py command. Really, chaining worked
there only by sheer luck: if the first script's output is long enough that nor e has to ask the user if it
should continue, the script will utterly fail. The problem is that the augmented more.py uses st di n for
two disjointed purposes. It reads a reply from an interactive user on st di n by calling raw_i nput , but
now it also accepts the main input text on st di n. When the st di n stream is really redirected to an
input file or pipe, we can't use it to input a reply from an interactive user; it contains only the text of
the input source. Moreover, because st di n is redirected before the program even starts up, there is
no way to know what it meant prior to being redirected in the command line.

If we intend to accept input on stdi n and use the console for user interaction, we have to do a bit
more. Example 3-9 shows a modified version of the more script that pages the standard input stream
if called with no arguments but also makes use of lower-level and platform-specific tools to converse
with a user at a keyboard if needed.

Example 3-9. PP3E\System\moreplus.py

B B R R R AR A S
split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose nane is passed on cndline; if input is stdin, can't
use it for user reply--use platformspecific tools or GU
P A A R

i nport sys

def getreply()
read a reply key froman interactive user
even if stdin redirected to a file or pipe

if sys.stdin.isatty(): # if stdin is console
return raw_i nput (" ?") # read reply line fromstdin
el se:
if sys.platforn{:3] == "win': # 1f stdin was redirected
i nport nsvcrt # can't use to ask a user
msvcert. putch(' ?')
key = nsvcrt.getche() # use wi ndows consol e tools
nmsvcrt. putch('\n") # getch() does not echo key
return key
elif sys.platforn{:5] == "linux": # use linux consol e device
print "?", # strip eoln at line end

consol e = open('/dev/tty")
line = console.readline()[:-1]
return line

el se:
print '[pause]’ # el se just pause--inprove ne
i nport tinme # see al so nodul es curses, tty
tine. sl eep(5) # or copy to tenp file, rerun
return 'y’ # or GJ pop up, tk key bind

def nore(text, numines=10):

split multiline string to stdout
l[ines = text.split('\n")
whil e |ines:
chunk = lines[:nunines]
[ines = lines[numines:]
for line in chunk: print line
if lines and getreply() not in['y', "Y']: break

if _ nanme_ ="' min_ _"': # when run, not when inported
if len(sys.argv) == 1: # if no command-line argunents
nore(sys. stdin.read()) # page stdin, no raw_inputs
el se:
nor e(open(sys.argv[1l]).read()) # el se page fil enanme argunent

Most of the new code in this version shows up in its getreply function. The file's i satty method tells

us whether st di n is connected to the console; if it is, we simply read replies on st di n as before.
Unfortunately, there is no portable way to input a string from a console user independent of stdin, so
we must wrap the non-st di n input logic of this script in a sys. pl at f or mtest:

e On Windows, the built-in nsvcrt module supplies low-level console input and output calls (e.g.,
nsvcrt. getch() reads a single key press).

¢ On Linux, the system device file named /dev/tty gives access to keyboard input (we can read it
as though it were a simple file).

e On other platforms, we simply run a built-in ti me. sl eep call to pause for five seconds between
displays (this is not at all ideal, but it is better than not stopping at all and it serves until a
better nonportable solution can be found).

Of course, we have to add such extra logic only to scripts that intend to interact with console users
and take input on st di n. In a GUI application, for example, we could instead pop up dialogs, bind
keyboard-press events to run callbacks, and so on (we'll meet GUIs in Chapter 8).

Armed with the reusable get repl y function, though, we can safely run our nor epl us utility in a variety
of ways. As before, we can import and call this module's function directly, passing in whatever string
we wish to page:

>>> from noreplus inport nore
>>> nore(open(' Systemtxt').read())
This directory contains operating systeminterface exanpl es.

Many of the exanples in this unit appear el sewhere in the exanpl es
distribution tree, because they are actually used to manage ot her
programs. See the README. txt files in the subdirectories here

for pointers.

Also as before, when run with a command-line argument, this script interactively pages through the
named file's text:

C.\...\PP3E\ Syst enppyt hon nor epl us. py System t xt
This directory contains operating systeminterface exanpl es.

Many of the exanples in this unit appear el sewhere in the exanples
distribution tree, because they are actually used to manage ot her
prograns. See the README.txt files in the subdirectories here

for pointers.

C.\...\PP3E\ Syst enppyt hon nor epl us. py norepl us. py

HEHH AR R R R R R R
split and interactively page a string, file, or stream of

text to stdout; when run as a script, page stdin or file

whose nane is passed on cndline; if input is stdin, can't

use it for user reply--use platformspecific tools or GUJ;
HEHH AR R R R R R R R

i nport sys, string

def getreply():
?n

But now the script also correctly pages text redirected into st di n from either a file or a command
pipe, even if that text is too long to fit in a single display chunk. On most shells, we send such input
via redirection or pipe operators like these:

C:\...\PP3E\ Syst enpyt hon norepl us. py < norepl us. py

A L S L L S L L L L s D S D L D
split and interactively page a string, file, or stream of

text to stdout; when run as a script, page stdin or file

whose name is passed on crmdline; if input is stdin, can't

use it for user reply--use platformspecific tools or GU ;
B R T

i mport sys, string

def getreply():
?n

C.\...\PP3E\ Syst et ype norepl us. py | python noreplus. py

A L L L S L L L L S D L L L L L L I
split and interactively page a string, file, or stream of

text to stdout; when run as a script, page stdin or file

whose nanme is passed on crmdline; if input is stdin, can't

use it for user reply--use platformspecific tools or GU ;
A L L L A L L L L R L L D L L L

i mport sys, string

def getreply():
?n

This works the same way on Linux, but, again, use the cat command rather than type. Finally, piping
one Python script's output into this script’'s input now works as expected, without botching user
interaction (and not just because we got lucky):

...... \ System St reans>pyt hon teststreans. py < input.txt | python ..\noreplus. py
Hell o streamworld

Enter a nunber>8 squared is 64

Enter a nunber>6 squared is 36

Enter a nunber >Bye

Here, the standard output of one Python script is fed to the standard input of another Python script
located in the parent directory: moreplus.py reads the output of teststreams.py.

All of the redirections in such command lines work only because scripts don't care what standard
input and output really areinteractive users, files, or pipes between programs. For example, when run

as a script, moreplus.py simply reads stream sys. st di n; the command-line shell (e.g., DOS on
Windows, csh on Linux) attaches such streams to the source implied by the command line before the
script is started. Scripts use the preopened st di n and st dout file objects to access those sources,
regardless of their true nature.

And for readers keeping count, we have run this single nor e pager script in four different ways: by
importing and calling its function, by passing a filename command-line argument, by redirecting
stdi n to a file, and by piping a command's output to st di n. By supporting importable functions,
command-line arguments, and standard streams, Python system tools code can be reused in a wide
variety of modes.

3.9.2. Redirecting Streams to Python Objects

All of the previous standard stream redirections work for programs written in any language that
hooks into the standard streams and rely more on the shell's command-line processor than on
Python itself. Command-line redirection syntax like < fil ename and | programis evaluated by the
shell, not by Python. A more Pythonesque form of redirection can be done within scripts themselves
by resetting sys. stdi n and sys. st dout to file-like objects.

The main trick behind this mode is that anything that looks like a file in terms of methods will work as
a standard stream in Python. The object's interface (sometimes called its protocol), and not the
object's specific datatype, is all that matters. That is:

e Any object that provides file-like read methods can be assigned to sys. st di n to make input
come from that object's read methods.

¢ Any object that defines file-like write methods can be assigned to sys. st dout ; all standard
output will be sent to that object's methods.

Because print and raw_i nput simply call the wite and readl i ne methods of whatever objects
sys. stdout and sys. stdi n happen to reference, we can use this technique to both provide and
intercept standard stream text with objects implemented as classes.

Such plug-and-play compatibility is usually called polymorphismi.e., it doesn't matter what an object
is, and it doesn't matter what its interface does, as long as it provides the expected interface. This
liberal approach to datatypes accounts for much of the conciseness and flexibility of Python code.
Here, it provides a way for scripts to reset their own streams. Example 3-10 shows a utility module
that demonstrates this concept.

Example 3-10. PP3E\System\Streams\redirect.py

BT G G R B B B R R
file-like objects that save standard output text in a string and provi de

standard input text froma string; redirect runs a passed-in function

with its output and i nput streans reset to these file-like class objects;
P A R

i nport sys # get built-in nodul es
class Qut put: # sinmul ated output file
def _ init_ (self):
self.text ="' # enpty string when created
def wite(self, string): # add a string of bytes
self.text = self.text + string
def witelines(self, lines): # add each line in a list

for line in lines: self.wite(line)

class I nput: # sinmulated input file
def _ init_ (self, input="): # default argument
sel f.text = input # save string when created
def read(self, *size): # optional argunent
if not size: # read N bytes, or all
res, self.text = self.text, '
el se:

res, self.text = self.text[:size[0]], self.text[size[0]:]
return res
def readline(self):

eoln = self.text.find('\n") # find offset of next eoln

if eoln == -1: # slice off through eoln
res, self.text = self.text, '

el se:

res, self.text = self.text[:eol n+tl], self.text[eol n+tl:]
return res

def redirect(function, args, input): # redirect stdin/out
savestreans = sys.stdin, sys.stdout # run a function object
sys.stdin = | nput (i nput) # return stdout text
sys.stdout = Qutput()
try:
function(*args) # was appl y(function, args)
except:

sys.stderr.wite('error in function! ")
sys.stderr.wite("%, %\n" %tuple(sys.exc_info()[:2]))
result = sys.stdout.text
sys.stdin, sys.stdout = savestreans
return result

This module defines two classes that masquerade as real files:

Qut put

Provides the write method interface (a.k.a. protocol) expected of output files but saves all
output in an in-memory string as it is written.

I nput

Provides the interface expected of input files, but provides input on demand from an in-
memory string passed in at object construction time.

The redirect function at the bottom of this file combines these two objects to run a single function
with input and output redirected entirely to Python class objects. The passed-in function to run need
not know or care that its pri nt statements, raw_i nput calls and st di n and st dout method calls, are
talking to a class rather than to a real file, pipe, or user.

To demonstrate, import and run the i nt eract function at the heart of the t est streans script of
Example 3-6 that we've been running from the shell (to use the redirection utility function, we need
to deal in terms of functions, not files). When run directly, the function reads from the keyboard and
writes to the screen, just as if it were run as a program without redirection:

C.\...\PP3E\ Syst em St r eans>pyt hon
>>> fromteststreans i nport interact
>>> interact()

Hell o streamworld

Enter a nunber>2

2 squared is 4

Enter a nunber>3

3 squared is 9

Enter a nunber

>>>

Now, let's run this function under the control of the redirection function in redirect.py and pass in
some canned input text. In this mode, the i nteract function takes its input from the string we pass
in (" 4\ n5\ n6\ n' tHRee lines with explicit end-of-line characters), and the result of running the function
is a string containing all the text written to the standard output stream:

>>> fromredirect inport redirect

>>> output = redirect(interact, (), '"4\n5\n6\n")

>>> out put

"Hell o streamworl d\nEnter a nunber>4 squared is 16\ nEnter a nunber>
5 squared is 25\ nEnter a nunber>6 squared is 36\nEnter a nunber>Bye\n'

The result is a single, long string containing the concatenation of all text written to standard output.
To make this look better, we can split it up with the string object's split method:

>>> for line in output.split('\n"): print line

Hel lo streamworld

Enter a nunber>4 squared is 16
Enter a nunber>5 squared is 25
Enter a nunber>6 squared is 36

Enter a nunber >Bye

Better still, we can reuse the nor e. py module we saw earlier in this chapter; it's less to type and
remember, and it's already known to work well:

>>> from PP3E. System nore inport nore
>>> nore(out put)
streamworl d

Hel | o

Ent er
Ent er
Ent er
Ent er

a

a
a
a

nunber >4 squared is 16
nunber >5 squared i s 25
nunber >6 squared i s 36
nunber >Bye

This is an artificial example, of course, but the techniques illustrated are widely applicable. For
example, it's straightforward to add a GUI interface to a program written to interact with a

command-line user. Simply intercept standard output with an object such as the Qut put class shown
earlier and throw the text string up in a window. Similarly, standard input can be reset to an object
that fetches text from a graphical interface (e.g., a popped-up dialog box). Because classes are plug-
and-play compatible with real files, we can use them in any tool that expects a file. Watch for a GUI

stream-redirection module named gui Streans in Chapter 11.

e

Notice the function(*args) syntax in the redi rect function of Example 3-10. In
the prior edition of this book, this was a built-in function call, appl y(f uncti on,
args), but the appl y built-in has been marked as deprecated since that edition
(in fact, it's not even listed in the functions section of the library manual). It's
unclear whether appl y will ever be removed completely, but the new call syntax
is more general and concise, and it should be preferred today. The following
equivalent calls, for instance, are more complex with appl y; the new syntax
allows normal arguments to be mixed with argument collection objects, but
appl y must merge manually:

>>> def m(self, a, b, ¢): print self, a, b, ¢

>>> m(1l, *(2, 3, 4))
1234

>>> apply(m (1,) + (2, 3, 4))
12314

This becomes more useful as call signatures grow more complex:
>>> a=1; b=2; c¢=3; d=4; e=5
>>> def func(a, *ps, **ks): print a, ps, ks

>>> func(a, b, c=1, *(d, e), **{'f':2})
1(2 4 5) {'c: 1, "f': 2}

>>> kargs = {'f':2}
>>> kargs. update({'c':1})

1(2, 4, 5) {"c: 1, 'f

>>> apply(func, (a, b) + (d, e), kargs)
2}

3.9.3. The StringlO Module

The prior section's technique of redirecting streams to objects proved so handy that now a standard
library automates the task. It provides an object that maps a file object interface to and from in-
memory strings. For example:

>>>
>>>
>>>
>>>
>>>

fromStringlOinport StringlO
buff = Stringl Q)

buf f.wite(' spamn')

buf f.wite(' eggs\n')

buf f. getval ue()

' spam neggs\ n'

>>> puff = Stringl ' ham nspam n')
>>> puff.readline()
"ham n'
>>> puff.readline()
"spamn’
buff.readline()

>>>

save written text to a string

provide input froma string

As in the prior section, instances of Stri ngl O objects can be assigned to sys. stdi n and sys. st dout to
redirect streams for raw_i nput and print and can be passed to any code that was written to expect a
real file object. Again, in Python, the object interface, not the concrete datatype, is the name of the

game:

>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
' 42

fromStringlOinport StringlO
i mport sys
buff = Stringl Q)

tenp = sys. st dout
sys. stdout = buff
print 42, 'spam, 3.141

sys. stdout = tenp
buf f. getval ue()
spam 3. 141\ n'

3.9.4. Capturing the stderr Stream

or print >> buff,

restore original stream

We've been focusing on stdi n and st dout redirection, but stderr can be similarly reset to files, pipes,
and objects. This is straightforward within a Python script. For instance, assigning sys. st derr to
another instance of a class such as Qut put or a Stri ngl O object in the preceding section’'s example
allows your script to intercept text written to standard error too.

Python itself uses standard error for error message text (and the IDLE GUI interface intercepts it and
colors it red by default). However, no higher-level tools for standard error do what print and

raw_i nput () do for the output and input streams. If you wish to print to the error stream, you'll
want to call sys. stderr.wite() explicitly or read the next section for a pri nt statement trick that
makes this a bit simpler.

Redirecting standard errors from a shell command line is a bit more complex and less portable. On
most Unix-like systems, we can usually capture st derr output by using shell-redirection syntax of the
form command > out put 2>&1. This may not work on some flavors of Windows platforms, though, and
can even vary per Unix shell; see your shell's manpages for more details.

3.9.5. Redirection Syntax in Print Statements

Because resetting the stream attributes to new objects was so popular, as of Python 2.0 the pri nt
statement is also extended to include an explicit file to which output is to be sent. A statement of the
form:

print >> file, stuff # file is an object, not a string nane

prints stuff to fil e instead of to st dout. The net effect is similar to simply assigning sys. st dout to an
object, but there is no need to save and restore in order to return to the original output stream (as
shown in the section on redirecting streams to objects). For example:

i mport sys
print >> sys.stderr, 'spam * 2

will send text the standard error stream object rather than sys. st dout for the duration of this single
print statement only. The next normal print statement (without >>) prints to standard output as
usual.

3.9.6. Other Redirection Options

Earlier in this chapter, we studied the built-in os. popen function, which provides a way to redirect
another command's streams from within a Python program. As we saw, this function runs a shell
command line (e.g., a string we would normally type at a DOS or csh prompt) but returns a Python
file-like object connected to the command's input or output stream.

Because of that, the os. popen tool is another way to redirect streams of spawned programs, and it is
a cousin to the techniques we just met: its effect is much like the shell | command-line pipe syntax

for redirecting streams to programs (in fact, its name means "pipe open"), but it is run within a script
and provides a file-like interface to piped streams. It's similar in spirit to the redi rect function, but
it's based on running programs (not calling functions), and the command's streams are processed in
the spawning script as files (not tied to class objects). That is, os. popen redirects the streams of a
program that a script starts instead of redirecting the streams of the script itself.

By passing in the desired mode flag, we redirect a spawned program's input or output streams to a
file in the calling scripts:

C\...\PP3E\ System Streans>t ype hel | o- out. py
print 'Hello shell world’

C\...\PP3E\ System Streans>type hel |l o-in. py
input = raw_i nput()
open('hello-in.txt", "wW).wite('Hello"' + input + '\n")

C\...\PP3E\ Syst em St reans>pyt hon

>>> jnport oOs

>>> pi pe = 0s. popen(' python hello-out. py") #'r' is default--read stdout
>>> pipe.read()

"Hello shell world\n'

>>> pi pe = o0s. popen(' python hello-in.py', "wW)

>>> pipe.wite(' Gunby\n') #'W--wite to programstdin
>>> pi pe. cl ose() #\n at end is optional

>>> open(' hello-in.txt').read()

"Hel l o Gunby\n'

The popen call is also smart enough to run the command string as an independent process on
platforms that support such a notion. It accepts an optional third argument that can be used to
control buffering of written text.

Additional popen-like tools in the Python library allow scripts to connect to more than one of the
commands' streams. For instance, the os. open2 call includes functions for hooking into both a
command's input and output streams:

childstdln, childStdout = os.popen2(' python hello-in-out.py')
childstdin.wite(input)
out put = childStdout.read()

os. popen3 is similar, but it returns a third pipe for connecting to standard error as well. A related call,
os. popen4, returns two pipe file objects; it's like os. popen3, but the output and error streams are tied
together into a single pipe:

chil dStdin, childStdout, childStderr = os.popen3(' python hello-in-out.py')
chil dStdin, childStdout_and_err = 0s. popen4(' python hello-in-out. py')

The os. popen2/ 3/ 4 variants work much like os. popen, but they connect additional streams and accept
an optional second argument that specifies text or binary-mode data (t or bmore on the distinction in
the next chapter).

The os. popen calls are also Python's portable equivalent of Unix-like shell syntax for redirecting the
streams of spawned programs. The Python versions also work on Windows, though, and are the most
platform-neutral way to launch another program from a Python script. The command-line strings you
pass to them may vary per platform (e.g., a directory listing requires an | s on Unix but a dir on
Windows), but the call itself works on all major Python platforms.

On Unix-like platforms, the combination of the calls os. f ork, os. pi pe, os. dup, and some os. exec
variants can be used to start a new independent program with streams connected to the parent
program’s streams. As such, it's another way to redirect streams and a low-level equivalent to tools
such as os. popen.

As of this writing, the os. f ork call does not work on the standard version of Python for Windows,
however, because it is too much at odds with that system's process model. See Chapter 5 for more
on all of these calls, especially its section on pipes, as well its sidebar on Cygwin, a third-party
package that includes a library for use on Windows that adds Unix calls such as fork and a version of
Python that contains such tools.[*1

[1 More historical anecdotes for users of older releases: as of Python 2.0, the popen2 and popen3 calls are made available in the
os module, and this subsumes the older popen2 module. For example, os. popen2 is the same as the older popen2. popen2
except that the order of st di n and st dout in the call's result tuple is swapped.

In the next chapter, we'll continue our survey of Python system interfaces by exploring the tools
available for processing files and directories. Although we'll be shifting focus somewhat, we'll find that
some of what we've learned here will already begin to come in handy as general system-related
tools. Spawning shell commands, for instance, provides ways to inspect directories, and the file
interface we will expand on in the next chapter is at the heart of the stream processing techniques we
have studied here.

=a

=a

Chapter 4. File and Directory Tools

Section 4.1. "Erase Your Hard Drive in Five Easy Steps!"

Section 4.2. File Tools

Section 4.3. Directory Tools

=a

e Py |

4.1."Erase Your Hard Drive in Five Easy Steps!"

This chapter continues our look at system interfaces in Python by focusing on file and directory-
related tools. As you'll see, it's easy to process files and directory trees with Python's built-in and
standard library support.

=2 NEXT b

=a

4.2. File Tools

External files are at the heart of much of what we do with shell utilities. For instance, a testing
system may read its inputs from one file, store program results in another file, and check expected
results by loading yet another file. Even user interface and Internet-oriented programs may load
binary images and audio clips from files on the underlying computer. It's a core programming
concept.

In Python, the built-in open function is the primary tool scripts use to access the files on the
underlying computer system. Since this function is an inherent part of the Python language, you may
already be familiar with its basic workings. Technically, open gives direct access to the stdio
filesystem calls in the system's C libraryit returns a new file object that is connected to the external
file and has methods that map more or less directly to file calls on your machine. The open function
also provides a portable interface to the underlying filesystemit works the same way on every
platform on which Python runs.

Other file-related interfaces in Python allow us to do things such as manipulate lower-level descriptor-
based files (os module), store objects away in files by key (anydbmand shel ve modules), and access
SQL databases. Most of these are larger topics addressed in Chapter 19.

In this chapter, we'll take a brief tutorial look at the built-in file object and explore a handful of more
advanced file-related topics. As usual, you should consult the library manual's file object entry for
further details and methods we don't have space to cover here. Remember, for quick interactive help,
you can also run dir (file) for an attributes list with methods, hel p(file) for general help, and

hel p(file.read) for help on a specific method such as read. The built-in name fi | e identifies the file
datatype in recent Python releases.[*1

[Technically, you can use the name f i | e anywhere you use open, though open is still the generally preferred call unless you are
subclassing to customize files. We'll use open in most of our examples. As for all built-in names, it's OK to use the name fi | e for
your own variables as long as you don't need direct access to the built-in file datatype (your fi I e name will hide the built-in scope's
file).Infact, this is such a common practice that we'll frequently follow it here. This is not a sin, but you should generally be
careful about reusing built-in names in this way.

4.2.1. Built-In File Objects

For most purposes, the open function is all you need to remember to process files in your scripts. The
file object returned by open has methods for reading data (r ead, readl i ne, readl i nes), writing data
(wite,witelines), freeing system resources (cl ose), moving about in the file (seek), forcing data
to be transferred out of buffers (f1 ush), fetching the underlying file handle (fi | eno), and more. Since
the built-in file object is so easy to use, though, let's jump right into a few interactive examples.

4.2.1.1. Output files

To make a new file, call open with two arguments: the external name of the file to be created and a
mode string w (short for write). To store data on the file, call the file object's wri t e method with a
string containing the data to store, and then call the cl ose method to close the file if you wish to
open it again within the same program or session:

C:\t enp>pyt hon

>>> file = open('data.txt', 'w) # open output file object: creates
>>> file.wite('Hello file world!\n") # wites strings verbatim

>>> file.wite('Bye file world.\n")

>>> file.close() # closed on gc and exit too

And that's ityou've just generated a brand-new text file on your computer, regardless of the
computer on which you type this code:

C\temp>dir data.txt /B
dat a. t xt

C \tenp>type data.txt
Hello file world!
Bye file world.

There is nothing unusual about the new file; here, | use the DOS di r and t ype commands to list and
display the new file, but it shows up in a file explorer GUI too.

4.2.1.1.1. Opening

In the open function call shown in the preceding example, the first argument can optionally specify a
complete directory path as part of the filename string. If we pass just a simple filename without a
path, the file will appear in Python's current working directory. That is, it shows up in the place where
the code is run. Here, the directory C:\temp on my machine is implied by the bare filename data.txt,
so this actually creates a file at C:\temp\data.txt. More accurately, the filename is relative to the
current working directory if it does not include a complete absolute directory path. See the section
"Current Working Directory,"” in Chapter 3, for a refresher on this topic.

Also note that when opening in w mode, Python either creates the external file if it does not yet exist
or erases the file's current contents if it is already present on your machine (so be careful out
thereyou'll delete whatever was in the file before).

4.2.1.1.2. Writing

Notice that we added an explicit \ n end-of-line character to lines written to the file; unlike the pri nt
statement, file wri t e methods write exactly what they are passed without adding any extra
formatting. The string passed to wri t e shows up byte for byte on the external file.

Output files also sport awritel i nes method, which simply writes all of the strings in a list one at a
time without adding any extra formatting. For example, here is a wri t el i nes equivalent to the two
wri te calls shown earlier:

file.witelines(['Hello file world!\n', "Bye file world.\n"])

This call isn't as commonly used (and can be emulated with a simple f or loop), but it is convenient in
scripts that save output in a list to be written later.

4.2.1.1.3. Closing

The file cl ose method used earlier finalizes file contents and frees up system resources. For instance,
closing forces buffered output data to be flushed out to disk. Normally, files are automatically closed

when the file object is garbage collected by the interpreter (i.e., when it is no longer referenced) and
when the Python session or program exits. Because of that, cl ose calls are often optional. In fact, it's
common to see file-processing code in Python like this:

open('sonmefile.txt', "w).wite("G day Bruce\n")

Since this expression makes a temporary file object, writes to it immediately, and does not save a
reference to it, the file object is reclaimed and closed right away without ever having called the cl ose
method explicitly.

- But note that this auto-close on reclaim file feature may change in future
-, Python releases. Moreover, the Jython Java-based Python implementation
& . - - - -
. 4- discussed later does not reclaim files as immediately as the standard Python

system (it uses Java's garbage collector). If your script makes many files and
your platform limits the number of open files per program, explicit cl ose calls
are a robust habit to form.

Also note that some IDEs, such as Python's standard IDLE GUI, may hold on to
your file objects longer than you expect, and thus prevent them from being
garbage collected. If you write to an output file in IDLE, be sure to explicitly
close (or flush) your file if you need to read it back in the same IDLE session.
Otherwise, output buffers won't be flushed to disk and your file may be
incomplete when read.

4.2.1.2. Input files

Reading data from external files is just as easy as writing, but there are more methods that let us
load data in a variety of modes. Input text files are opened with either a mode flag of r (for "read") or
no mode flag at allit defaults to r if omitted, and it commonly is. Once opened, we can read the lines
of a text file with the readl i nes method:

>>> file = open('data.txt', 'r'") # open i nput

file

obj ect

>>> for linein file.readlines(): # read into line string list
print line, # lines have '\n'" at end

Hello file world!
Bye file world.

The readl i nes method loads the entire contents of the file into memory and gives it to our scripts as
a list of line strings that we can step through in a loop. In fact, there are many ways to read an input
file:

file.read()

Returns a string containing all the bytes stored in the file

file.read(N)

Returns a string containing the next N bytes from the file

file.readline()

Reads through the next \ n and returns a line string

file.readlines()
Reads the entire file and returns a list of line strings

Let's run these method calls to read files, lines, and bytes (more on the seek call, used here to
rewind the file, in a moment):

>>> file.seek(0) # go back to the front of file
>>> file.read() # read entire file into string
"Hello file world!'\nBye file world.\n'

>>> file.seek(0)
>>> file.readlines()
["Hello file world!\n', "Bye file world.\n"]

>>> file.seek(0)

>>> file.readline() # read one line at a tine
"Hello file worldl\n'

>>> file.readline()

"Bye file world.\n'

>>> file.readline() # enpty string at end-of-file

>>> file.seek(0)
>>> file.read(1l), file.read(8)
("H, "ello fil")

All of these input methods let us be specific about how much to fetch. Here are a few rules of thumb
about which to choose:

e read() andreadlines() load the entire file into memory all at once. That makes them handy
for grabbing a file's contents with as little code as possible. It also makes them very fast, but
costly for huge filesloading a multigigabyte file into memory is not generally a good thing to do.

¢ On the other hand, because the readl i ne() and read(N) calls fetch just part of the file (the
next line, or N-byte block), they are safer for potentially big files but a bit less convenient and
usually much slower. Both return an empty string when they reach end-of-file. If speed matters
and your files aren't huge, read or readl i nes may be a better choice.

e See also the discussion of the newer file iterators in the next section. Iterators provide the
convenience of readl i nes() with the space efficiency of readl i ne().

By the way, the seek(0) call used repeatedly here means "go back to the start of the file." In our
example, it is an alternative to reopening the file each time. In files, all read and write operations
take place at the current position; files normally start at offset O when opened and advance as data is
transferred. The seek call simply lets us move to a new position for the next transfer operation.

Python's seek method also accepts an optional second argument that has one of three valuesO for
absolute file positioning (the default), 1 to seek relative to the current position, and 2 to seek relative

to the file's end. When seek is passed only an offset argument of O, as shown earlier, it's roughly a
file rewind operation.

4.2.1.3. Reading lines with file iterators

The traditional way to read a file line by line that you saw in the prior section:

>>> file = open('data.txt") # open input file object
>>> for linein file.readlines(): # read into line string |ist
print line,

is actually more work than is needed today. In recent Pythons, the file object includes an iterator
which is smart enough to grab just one more line per request in iteration contexts such as f or loops
and list comprehensions. Iterators are simply objects with next methods. The practical benefit of this
extension is that you no longer need to call . readl i nes in a for loop to scan line by line; the iterator
reads lines on request:

>>> file = open('data.txt")
>>> for line in file: # no need to call readlines
print line, # iterator reads next line each tine

Hello file world!
Bye file world.

>>> for line in open('data.txt"): # even shorter: tenporary file object
print line,

Hello file world!
Bye file world.

Moreover, the iterator form does not load the entire file into a line's list all at once, so it will be more
space efficient for large text files. Because of that, this is the prescribed way to read line by line
today; when in doubt, let Python do your work automatically. If you want to see what really happens
inside the for loop, you can use the iterator manually; it's similar to calling the readl i ne method
each time through, but read methods return an empty string at end-of-file (ECF), whereas the iterator
raises an exception to end the iteration:

>>> file = open('data.txt") # read nethods: enpty at ECF
>>> file.readline()
"Hello file world!l\n'
>>> file.readline()
"Bye file world.\n'
>>> file.readline()

>>> file = open('data.txt") # iterators: exception at ECF
>>> file.next()
"Hello file world!\n'
>>> file.next()
"Bye file world.\n'
>>> file.next()
Traceback (nobst recent call last):
File "<stdin>, line 1, in ?
Stoplteration

Interestingly, iterators are automatically used in all iteration contexts, including the | i st constructor
call, list comprehension expressions, nap calls, and i n membership checks:

>>> open('data.txt').readlines()
["Hello file world!\n', "Bye file world.\n"]

>>> | ist(open('data.txt'))
["Hello file world!\n', "Bye file world.\n"]

>>> |ines = [line.rstrip() for line in open('data.txt')] # or [:-1]
>>> | i nes
["Hello file world!", '"Bye file world."]

>>> |ines = [line.upper() for line in open('data.txt')]
>>> | ines
[" HELLO FI LE WORLDI\n', "BYE FILE WORLD.\n"]

>>> map(str.split, open('data.txt'))
[['Hello, "file, "world!"], ['Bye', 'file', "world."]]

>>> |ine = "Hello file world!'\n'
>>> |line in open('data.txt")
True

Iterators may seem somewhat implicit at first glance, but they represent the ways that Python makes

developers' lives easier over time.[*1

[1 This is so useful that | was able to remove an entire section from this chapter in this edition, which wrapped a file object in a class
to allow iteration over lines in a f or loop. In fact, that example became completely superfluous and no longer worked as described
after the second edition of this book. Technically, its _ _getitem_ _ indexing overload method was never called anymore because
f or loops now look for a file object's _ _iter_ _ iteration method first. You don't have to know what that means, because iteration
is a core feature of file objects today.

4.2.1.4. Other file object modes

Besides wand r, most platforms support an a open mode string, meaning "append.” In this output
mode, wite methods add data to the end of the file, and the open call will not erase the current
contents of the file:

>>> file = open('data.txt', "a') # open in append node: doesn't erase
>>> file.write(' The Life of Brian') # added at end of existing data

>>> file.close()

>>>

>>> open('data.txt').read() # open and read entire file

"Hello file world!'\nBye file world.\nThe Life of Brian'

Most files are opened using the sorts of calls we just ran, but open actually allows up to three
arguments for more specific processing needsthe filename, the open mode, and a buffer size. All but
the first of these are optional: if omitted, the open mode argument defaults to r (input), and the
buffer size policy is to enable buffering on most platforms. Here are a few things you should know
about all three open arguments:

Filename

As mentioned earlier, filenames can include an explicit directory path to refer to files in
arbitrary places on your computer; if they do not, they are taken to be names relative to the
current working directory (described in the prior chapter). In general, any filename form you
can type in your system shell will work in an open call. For instance, a filename argument
r'..\tenp\spamtxt' on Windows means spam.txt in the temp subdirectory of the current
working directory’s parentup one, and down to directory temp.

Open mode

The open function accepts other modes too, some of which are not demonstrated in this book
(e.g., r+, w+, and a+ to open for updating, and any mode string with a b to designate binary
mode). For instance, mode r + means both reads and writes are allowed on an existing file; w+
allows reads and writes but creates the file anew, erasing any prior content; and wb writes data
in binary mode (more on this in the next section). Generally, whatever you could use as a
mode string in the C language's f open call on your platform will work in the Python open
function, since it really just calls f open internally. (If you don't know C, don't sweat this point.)
Notice that the contents of files are always strings in Python programs, regardless of mode:
read methods return a string, and we pass a string to write methods.

Buffer size

The open call also takes an optional third buffer size argument, which lets you control st di o
buffering for the filethe way that data is queued up before being transferred to boost
performance. If passed, O means file operations are unbuffered (data is transferred
immediately), 1 means they are line buffered, any other positive value means to use a buffer of
approximately that size, and a negative value means to use the system default (which you get
if no third argument is passed and which generally means buffering is enabled). The buffer size
argument works on most platforms, but it is currently ignored on platforms that don't provide
the sevbuf system call.

4.2.1.5. Binary datafiles

All of the preceding examples process simple text files. Python scripts can also open and process files
containing binary dataJPEG images, audio clips, packed binary data produced by FORTRAN and C
programs, and anything else that can be stored in files. The primary difference in terms of your code
is the mode argument passed to the built-in open function:

>>> file = open('data.txt', 'wb'
>>> file = open('data.txt', 'rb'

open binary output file
open binary input file

)
)

Once you've opened binary files in this way, you may read and write their contents using the same
methods just illustrated: read, write, and so on. (readl i ne and readl i nes don't make sense here,
though: binary data isn't line oriented.)

In all cases, data transferred between files and your programs is represented as Python strings within
scripts, even if it is binary data. This works because Python string objects can always contain
character bytes of any value (though some may look odd if printed). Interestingly, even a byte of
value zero can be embedded in a Python string; it's called \ 0 in escape-code notation and does not
terminate strings in Python as it typically does in C. For instance:

>>> data = 'a\O0b\Oc’
>>> dat a

"a\ x00b\ x00c'

>>> | en(dat a)

5

Instead of relying on a terminator character, Python keeps track of a string's length explicitly. Here,
dat a references a string of length 5 that happens to contain two zero-value bytes; they print in
hexadecimal escape sequence form as \ x00 (Python uses escapes to display all nonprintable
characters). Because no character codes are reserved, it's OK to read binary data with zero bytes
(and other values) into a string in Python.

4.2.1.6. End-of-line translations on Windows

Strictly speaking, on some platforms you may not need the b at the end of the open mode argument
to process binary files; the b is simply ignored, so modes r and wwork just as well. In fact, the b in

mode flag strings is usually required only for binary files on Windows. To understand why, though,
you need to know how lines are terminated in text files.

For historical reasons, the end of a line of text in a file is represented by different characters on
different platforms: it's a single \ n character on Unix and Linux, but the two-character sequence \r\n
on Windows.[Z1 That's why files moved between Linux and Windows may look odd in your text editor
after transferthey may still be stored using the original platform's end-of-line convention. For
example, most Windows editors handle text in Unix format, but Notepad is a notable exceptiontext
files copied from Unix or Linux usually look like one long line when viewed in Notepad, with strange
characters inside (\ n). Similarly, transferring a file from Windows to Unix in binary mode retains the
\r characters (which usually appear as "Min text editors).

[1 Actually, it gets worse: on the classic Mac, lines in text files are terminated with a single \ r (not\ n or \ r\ n). The more modern
Mac is a Unix-based machine and normally follows that platform's conventions instead. Whoever said proprietary software was
good for the consumer probably wasn't speaking about users of multiple platforms, and certainly wasn't talking about programmers.

Python scripts don't normally have to care, because the Windows port (actually, the underlying C
compiler on Windows) automatically maps the DOS \r\ n sequence to a single \ n. It works like
thiswhen scripts are run on Windows:

For files opened in text mode, \r\n is translated to \ n when input.

For files opened in text mode, \ n is translated to \r\ n when output.

For files opened in binary mode, no translation occurs on input or output.
¢ On Unix-like platforms, no translations occur, regardless of open modes.

You should keep in mind two important consequences of all of these rules. First, the end-of-line
character is almost always represented as a single \ n in all Python scripts, regardless of how it is
stored in external files on the underlying platform. By mapping to and from \ n on input and output,
the Windows port hides the platform-specific difference.

The second consequence of the mapping is subtler: if you mean to process binary data files on
Windows, you generally must be careful to open those files in binary mode (r b, wb), not in text mode
(r, w). Otherwise, the translations listed previously could very well corrupt data as it is input or
output. It's not impossible that binary data would by chance contain bytes with values the same as
the DOS end-of-line characters, \r and \ n. If you process such binary files in text mode on Windows,
\r bytes may be incorrectly discarded when read and \ n bytes may be erroneously expanded to \r\n
when written. The net effect is that your binary data will be trashed when read and writtenprobably
not quite what you want! For example, on Windows:

>>> [en('a\0Ob\rc\r\nd") # 4 escape code bytes
8
>>> ogpen('tenp.bin', "wh').wite('a\lOb\rc\r\nd") # wite binary data to file

>>> open('tenp.bin', 'rb").read() # intact if read as binary
"a\ x00b\rc\r\nd

>>> open('tenp.bin', 'r').read() # loses a \r in text node!
"a\ x00b\ r c\ nd'

>>> ogpen('tenp.bin', "W). wite('a\Ob\rc\r\nd") # adds a \r in text node!
>>> open('tenp.bin', 'rb").read()
"a\ x00b\rc\r\r\nd

This is an issue only when running on Windows, but using binary open modes rb and wb for binary
files everywhere won't hurt on other platforms and will help make your scripts more portable (you
never know when a Unix utility may wind up seeing action on your Windows machine).

You may want to use binary file open modes at other times as well. For instance, in Chapter 7, we'll
meet a script called fi xeol n_one that translates between DOS and Unix end-of-line character
conventions in text files. Such a script also has to open text files in binary mode to see what end-of-
line characters are truly present on the file; in text mode, they would already be translated to \ n by
the time they reached the script.

4.2.1.7. Parsing packed binary data with the struct module

By using the letter b in the open call, you can open binary datafiles in a platform-neutral way and
read and write their content with normal file object methods. But how do you process binary data
once it has been read? It will be returned to your script as a simple string of bytes, most of which are
not printable characters (that's why Python displays them with \ xNN hexadecimal escape sequences).

If you just need to pass binary data along to another file or program, your work is done. And if you
just need to extract a number of bytes from a specific position, string slicing will do the job. To get at
the deeper contents of binary data, though, as well as to construct its contents, the standard library
struct module is more powerful.

The struct module provides calls to pack and unpack binary data, as though the data was laid out in
a C-language struct declaration. It is also capable of composing and decomposing using any endian-
ness you desire (endian-ness determines whether the most significant bits are on the left or on the
right). Building a binary datafile, for instance, is straightforward: pack Python values into a string and
write them to a file. The format string here in the pack call means big-endian (>), with an integer,
four-character string, half integer, and float:

>>> jnport struct

>>> data = struct.pack(' >i 4shf', 2, 'spam, 3, 1.234)
>>> dat a

"\ x00\ x00\ x00\ x02spam x00\ x03?\ x9d\ xf 3\ xb6'

>>> file = open('data.bin', "wh')

>>> file.wite(data)

>>> file.close()

As usual, Python displays here most of the packed binary data's bytes with \ xNN hexadecimal escape
sequences, because the bytes are not printable characters. To parse data like that which we just
produced, read it off the file and pass it to the st ruct module with the same format string; you get
back a tuple containing the values parsed out of the string and converted to Python objects:

>>> jnport struct

>>> file = open('data.bin', 'rb")

>>> pytes file.read()

>>> val ues = struct.unpack('>i 4shf', data)
>>> val ues

(2, 'spam, 3, 1.2339999675750732)

For more details, see the struct module's entry in the Python library manual. Also note that slicing
comes in handy in this domain; to grab just the four-character string in the middle of the packed
binary data we just read, we can simply slice it out. Numeric values could similarly be sliced out and
then passed to st ruct. unpack for conversion:

>>> bytes

"\ x00\ x00\ x00\ x02spam x00\ x03?\ x9d\ xf 3\ xb6'
>>> string = bytes[4: 8]

>>> string

" spam

>>> nunber = bytes[8: 10]

>>> nunber

"\ x00\ x03'

>>> struct.unpack('>h', nunber)

(3.)

4.2.2. File Tools in the os Module

The os module contains an additional set of file-processing functions that are distinct from the built-in
file object tools demonstrated in previous examples. For instance, here is a very partial list of os file-
related calls:

0s. open(path, flags, node)

Opens a file and returns its descriptor

os. read(descriptor, N)

Reads at most N bytes and returns a string

0os.write(descriptor, string)

Writes bytes in string to the file

0s. | seek(descriptor, position)
Moves to posi tion in the file

Technically, os calls process files by their descriptors, which are integer codes or "handles" that
identify files in the operating system. Because the descriptor-based file tools in os are lower level and
more complex than the built-in file objects created with the built-in open function, you should
generally use the latter for all but very special file-processing needs.[*1

I1 For instance, to process pipes, described in Chapter 5. The Python pipe call returns two file descriptors, which can be processed

with os module tools or wrapped in a file object with os. f dopen.

To give you the general flavor of this tool set, though, let's run a few interactive experiments.
Although built-in file objects and os module descriptor files are processed with distinct tool sets, they
are in fact relatedthe st di o filesystem used by file objects simply adds a layer of logic on top of
descriptor-based files.

In fact, the fil eno file object method returns the integer descriptor associated with a built-in file
object. For instance, the standard stream file objects have descriptors O, 1, and 2; calling the
os.wite function to send data to st dout by descriptor has the same effect as calling the

sys. stdout . wite method:

>>> jnport sys
>>> for streamin (sys.stdin, sys.stdout, sys.stderr):
print streamfileno(),
012
>>> sys.stdout.wite('Hello stdio world\n') # wite via file nethod

Hell o stdio world

>>> jnport os

>>> os.wite(l, 'Hello descriptor world\n') # wite via os nodul e
Hel | o descriptor world
23

Because file objects we open explicitly behave the same way, it's also possible to process a given real
external file on the underlying computer through the built-in open function, tools in the os module, or
both:

>>> file = open(r' C\tenp\spamtxt', 'w) # create external file
>>> file.wite('Hello stdio file\n') # wite via file method
>>>

>>> fd = file.fileno()
>>> print fd

3

>>> os.wite(fd, 'Hello descriptor file\n') # wite via os nodul e
22

>>> file.close()

>>>

C:\ W NDONS>t ype c: \tenp\ spam t xt # both writes show up

Hel | o descriptor file
Hello stdio file

4.2.2.1. Open mode flags

So why the extra file tools in os? In short, they give more low-level control over file processing. The
built-in open function is easy to use but is limited by the underlying st di o filesystem that it wraps;
buffering, open modes, and so on, are all per-st di o defaults.[*1 The os module lets scripts be more

specificfor example, the following opens a descriptor-based file in read-write and binary modes by
performing a binary "or" on two mode flags exported by os:

[1 To be fair to the built-in file object, the open function accepts an r b+ mode, which is equivalent to the combined mode flags used
here and can also be made nonbuffered with a buffer size argument. Whenever possible, use open, not os. open.

>>> fdfile = os.open(r' C\tenp\spamtxt', (os.O RDWR | o0s.O Bl NARY))
>>> os.read(fdfile, 20)
"Hell o descriptor fil'

>>> 0s.| seek(fdfile, 0, 0) # go back to start of file
0
>>> os.read(fdfile, 100) # binary node retains "\r\n"

"Hell o descriptor file\r\nHello stdio file\r\n'

>>> 0s.| seek(fdfile, 0, 0)

0

>>> os.wite(fdfile, 'HELLO) # overwite first 5 bytes
5

On some systems, such open flags let us specify more advanced things like exclusive access (O EXCL)
and nonblocking modes (O NONBLOCK) when a file is opened. Some of these flags are not portable
across platforms (another reason to use built-in file objects most of the time); see the library manual
or run a dir (os) call on your machine for an exhaustive list of other open flags available.

We saw earlier how to go from file object to field descriptor with the fil eno file method; we can also
go the other waythe os. f dopen call wraps a file descriptor in a file object. Because conversions work
both ways, we can generally use either tool setfile object or os module:

>>> objfile = os.fdopen(fdfile)

>>> objfile.seek(0)

>>> objfile.read()

"HELLO descriptor file\r\nHello stdio file\r\n'

"_-"~ Using os. open with the O _EXCL flag is the most portable way to lock files for
e concurrent updates or other process synchronization in Python today. Another
. 4~ module, fcnt !, also provides file-locking tools but is not as widely available

across platforms. As of this writing, locking with os. open is supported in
Windows, Unix, and Macintosh; fcntl works only on Unix.

4.2.2.2. Other os file tools

The os module also includes an assortment of file tools that accept a file pathname string and
accomplish file-related tasks such as renaming (os. r enane), deleting (os. renmove), and changing the
file's owner and permission settings (os. chown, os. chnod). Let's step through a few examples of these
tools in action:

>>> 0s. chnod(' spamtxt', 0777) # enabl ed all accesses

This os. chnod file permissions call passes a 9-bit string composed of three sets of three bits each.
From left to right, the three sets represent the file's owning user, the file's group, and all others.
Within each set, the three bits reflect read, write, and execute access permissions. When a bit is "1"
in this string, it means that the corresponding operation is allowed for the assessor. For instance,
octal 0777 is a string of nine "1" bits in binary, so it enables all three kinds of accesses for all three
user groups; octal 0600 means that the file can be read and written only by the user that owns it
(when written in binary, 0600 octal is really bits 110 000 000).

This scheme stems from Unix file permission settings, but it works on Windows as well. If it's
puzzling, either check a Unix manpage for chmod or see the fi xreadonl y example in Chapter 7 for a
practical application (it makes read-only files that are copied off a CD-ROM writable).

>>> os.renane(r' C\tenp\spamtxt', r' C.\tenp\eggs.txt') # (from to)
>>>
>>> os.renove(r' C\tenp\spamtxt') # delete file
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
OSError: [Errno 2] No such file or directory: 'C\\tenp\\spamtxt'
>>>

>>> os.renove(r' C \tenp\eggs.txt')

The os. renane call used here changes a file's name; the os. renove file deletion call deletes a file from
your system and is synonymous with os. unl i nk (the latter reflects the call's name on Unix but was
obscure to users of other platforms). The os module also exports the st at system call:

>>> jnport os

>>> info = os.stat(r' C.\tenp\spamtxt')

>>> jnfo

(33206, 0, 2, 1, 0, 0, 41, 968133600, 968176258, 968176193)

>>> jnport stat
>>> info[stat.ST_MODE], info[stat.ST_SIZE]
(33206, 41)

>>> nmode = i nfo[stat. ST_MODE]
>>> stat.S | SDI R(node), stat.S | SREG node)
(0, 1)

The os. st at call returns a tuple of values giving low-level information about the named file, and the
st at module exports constants and functions for querying this information in a portable way. For
instance, indexing an os. st at result on offset st at. ST_SI ZE returns the file's size, and calling

stat. S | SDI Rwith the mode item from an os. st at result checks whether the file is a directory. As
shown earlier, though, both of these operations are available in the os. pat h module too, so it's rarely
necessary to use os. st at except for low-level file queries:

>>> path = r' C \tenp\spamtxt'
>>> os.path.isdir(path), os.path.isfile(path), os.path.getsize(path)

(0, 1, 41)

4.2.3. File Scanners

Unlike some shell-tool languages, Python doesn't have an implicit file-scanning loop procedure, but
it's simple to write a general one that we can reuse for all time. The module in Example 4-1 defines a
general file-scanning routine, which simply applies a passed-in Python function to each line in an
external file.

Example 4-1. PP3E\System\Filetools\scanfile.py

def scanner(nane, function):
file = open(nanme, 'r'") # create a file object
while 1:
line = file.readline()
if not line: break
function(line)
file.close()

call file nethods
until end-of-file
call a function object

* H

The scanner function doesn't care what line-processing function is passed in, and that accounts for
most of its generalityit is happy to apply any single-argument function that exists now or in the
future to all of the lines in a text file. If we code this module and put it in a directory on PYTHONPATH,
we can use it any time we need to step through a file line by line. Example 4-2 is a client script that
does simple line translations.

Example 4-2. PP3E\System\Filetools\commands.py

#!/usr/ | ocal / bi n/ pyt hon

fromsys inport argv

fromscanfile inport scanner

cl ass UnknownCommand(Excepti on): pass

def processLine(line): # define a function
if line[0] == "*": # applied to each line
print "Ms.", line[l:-1]
elif line[0] =="+":
print "M.", line[1l:-1] # strip first and last char: \n
el se:
rai se UnknownCommand, |ine # rai se an exception
filenane = 'data.txt'
if len(argv) == 2: filenanme = argv[1] # allow filename cnd arg

scanner (fil enanme, processLi ne) # start the scanner

The text file hillbillies.txt contains the following lines:

*@& anny

+Jet hro
*Elly May
+"Uncl e Jed"

and our commands script could be run as follows:

\...\PP3E\ System Fi | et ool s>pyt hon conmands. py hillbillies.txt
. Granny
. Jethro
. El'ly May

C.
Vs
M
Vs
M. "Uncle Jed"

Notice that we could also code the command processor in the following way; especially if the number
of command options starts to become large, such a data-driven approach may be more concise and
easier to maintain than a large i f statement with essentially redundant actions (if you ever have to
change the way output lines print, you'll have to change it in only one place with this form):

commands = {"*': "Ms.', '+ : "M.'} # data is easier to expand than code?

def processLine(line):

try:

print comands[line[0]], line[1:-1]
except KeyError:

rai se UnknownConmand, |ine

As a rule of thumb, we can also usually speed things up by shifting processing from Python code to
built-in tools. For instance, if we're concerned with speed (and memory space isn't tight), we can
make our file scanner faster by using the readl i nes method to load the file into a list all at once
instead of using the manual r eadl i ne loop in Example 4-1:

def scanner(nane, function):

file = open(nane, 'r') # create a file object
for line in file.readlines(): # get all lines at once
function(line) # call a function object

file.close()

A file iterator will do the same work but will not load the entire file into memory all at once:

def scanner(nane, function):
for line in open(name, 'r'): # scan line by line
function(line) # call a function object
file.close()

And if we have a list of lines, we can work more magic with the map built-in function or list
comprehension expression. Here are two minimalist's versions; the for loop is replaced by map or a
comprehension, and we let Python close the file for us w