Programmer to Programmer™

Professional

C++

Nicholas A. Solter, Scott]. Kleper

Updates, source code, and Wrox technical support at www.wrox.com

Professional C++

Nicholas A. Solter
Scott J. Kleper

Wiley Publishing, Inc.

Professional C++

Nicholas A. Solter
Scott J. Kleper

Wiley Publishing, Inc.

Professional C++
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc. All rights reserved.
Published simultaneously in Canada

Printed in the United States of America

10987654321

1B/QV/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should

be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
(317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Solter, Nicholas, 1977-
Professional C++ / Nicholas Solter, Scott Kleper.
p.-cm.
Includes index.
ISBN 0-7645-7484-1 (paper/website)
1. C++ (Computer program language) 1. Kleper, Scott, 1977- 1. Title.
QA76.73.C1535665 2005
005.13'3--dc22
2004027959

Dedications

To Sonja, for her unconditional love and support, and to my son Kai, whose frequent interruptions
reminded me what’s important in life.

—Nicholas A. Solter
To Marni, whose unpredictable cuteness brightens every day.

—Scott J. Kleper

Acknowledgments

We owe a debt of gratitude to the many people who have made this book possible. We’d like to thank
David Fugate of Waterside Productions for all of his advice and guidance, and Robert Elliot at Wiley for
giving two unknown authors the opportunity to tell the C++ story in a new way. This book would not
have turned out nearly as well as it did without the assistance of our development editor, Adaobi Obi
Tulton. Thanks also to Kathryn Malm Bourgoine for her editorial assistance. The photo on the cover,
which artfully minimized our nerdiness, was taken by Adam Tow.

We also want to thank all of the coworkers and teachers who have encouraged us to code the right way
over the years. In particular, thanks to Mike Hanson, Maggie Johnson, Adam Nash, Nick Parlante, Bob
Plummer, Eric Roberts, Mehran Sahami, Bill Walker, Dan Walkowski, Patrick Young, and Julie Zelenski.
Our eternal thanks to Jerry Cain, who not only taught us C++ originally, but also served as technical edi-
tor, religiously analyzing the code in this book as though it were one of our final exams.

Thanks also to the following people, who reviewed one or more chapters: Rob Baesman, Aaron Bradley,
Elaine Cheung, Marni Kleper, Toli Kuznets, Akshay Rangnekar, Eltefaat Shokri, Aletha Solter, Ken Solter,
and Sonja Solter. Any remaining errors are, of course, our own. We’d like to thank our families for their
patience and support.

Finally, we’d like to thank you, our readers, for trying out our approach to professional C++
development.

Author Bios

Nicholas A. Solter studied computer science at Stanford University, where he earned bachelor of science
and master of science degrees, with a concentration in systems. While a student, he worked as a teaching
assistant for several classes ranging from introductory computer science for nonmajors to an upper-
division course on group projects and software engineering.

Now a software engineer at Sun Microsystems, Nick programs primarily in C and C++ in his work on
high-availability software. His previous work experience includes several stints in the computer game
industry. At Digital Media International, he was the lead programmer on the multimedia educational
game, The Land Before Time Math Adventure. During an internship at Electronic Arts, he helped develop
the Course Architect 2000 golf course—editing tool for the Tiger Woods PGA Tour 2000 game.

In addition to his industry experience, Nick taught C++ for one year as an adjunct professor of computer
science at Fullerton College. When not working, Nick enjoys reading, playing basketball, taking care of
his son Kai, and spending time with his family.

Scott J. Kleper began his programming career in elementary school, writing adventure games in BASIC
for the Tandy TRS-80. As the resident Mac geek at his high school, Scott moved to higher-level languages
and released several award-winning shareware applications.

Scott attended Stanford University, where he obtained bachelor of science and master of science degrees
in computer science, with a concentration in human-computer interaction. While in college, Scott served
as a teaching assistant for classes involving introductory programming, object-oriented design, data
structures, GUI frameworks, group projects, and Internet programming.

Since graduating, Scott has served as a lead engineer on the founding teams of several companies and is

currently a senior software engineer at Reactivity, Inc. Outside of work, Scott is a compulsive online
shopper, an avid reader, and an awful guitarist.

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editor
Robert Elliott

Editorial Manager
Kathryn Malm Bourgoine

Senior Production Editor
Geraldine Fahey

Senior Development Editor
Adaobi Obi Tulton

Production Editor
Felicia Robinson

Media Development Specialist
Richard Graves

Technical Editor
Jerry Cain

Text Design & Composition
Wiley Composition Services

Cover Photographer
Adam Tow

Contents

Introduction XXi
Who This Book Is For XXi
What This Book Covers XXi
How This Book Is Structured XXii
What You Need to Use This Book XXiii
Conventions XXiii
Source Code XXiv
Errata XXiv
p2p.wrox.com XXiv

Part I: Introduction to Professional C++

Chapter 1: A Crash Course in C++ 1
The Basics of C++ 1
The Obligatory Hello, World 2
Namespaces 4
Variables 6
Operators 8
Types 10
Conditionals 12
Loops 14
Arrays 15
Functions 16
Those Are the Basics 17
Diving Deeper into C++ 18
Pointers and Dynamic Memory 18
Strings in C++ 21
References 23
Exceptions 23
The Many Uses of const 25
C++ as an Object-Oriented Language 26
Declaring a Class 26
Your First Useful C++ Program 29
An Employee Records System 29

The Employee Class 29

Contents

The Database Class

The User Interface

Evaluating the Program
Summary

Chapter 2: Designing Professional C++ Programs

34
38
41
41

43

What Is Programming Design?
The Importance of Programming Design
What'’s Different about C++ Design?
Two Rules for C++ Design
Abstraction
Reuse
Designing a Chess Program
Requirements
Design Steps
Summary

Chapter 3: Designing with Objects

44
44
46
a7
47
49
50
51
51
56

57

An Object-Oriented View of the World
Am | Thinking Procedurally?
The Object-Oriented Philosophy
Living in a World of Objects
Object Relationships
Abstraction
Summary

Chapter 4: Designing with Libraries and Patterns

57
57
58
61
63
73
76

77

Reusing Code
A Note on Terminology
Deciding Whether or Not to Reuse Code
Strategies for Reusing Code
Bundling Third-Party Applications
Open-Source Libraries
The C++ Standard Library

Designing with Patterns and Techniques
Design Techniques
Design Patterns

Summary

Vi

77
78
78
81
85
86
87
101
101
102
103

Contents

Chapter 5: Designing for Reuse

105

The Reuse Philosophy
How to Design Reusable Code
Use Abstraction
Structure Your Code for Optimal Reuse
Design Usable Interfaces
Reconciling Generality and Ease of Use
Summary

Chapter 6: Maximizing Software-Engineering Methods

106
106
107
108
112
117
118

119

The Need for Process
Software Life-Cycle Models
The Stagewise and Waterfall Models
The Spiral Method
The Rational Unified Process
Software-Engineering Methodologies
Extreme Programming (XP)
Software Triage
Building Your Own Process and Methodology
Be Open to New ldeas
Bring New Ideas to the Table
Recognize What Works and What Doesn’t Work
Don’t Be a Renegade
Summary

Part II: C++ Coding the Professional Way

Chapter 7: Coding with Style

119
120
121
123
126
127
128
132
132
132
132
133
133
133

135

The Importance of Looking Good
Thinking Ahead
Keeping It Clear
Elements of Good Style
Documenting Your Code
Reasons to Write Comments
Commenting Styles
Comments in This Book

135
135
136
136
136
136
140
145

Vii

Contents

Decomposition
Decomposition through Refactoring
Decomposition by Design
Decomposition in This Book

Naming
Choosing a Good Name
Naming Conventions

Using Language Features with Style
Use Constants
Take Advantage of const Variables
Use References Instead of Pointers
Use Custom Exceptions

Formatting
The Curly Brace Alignment Debate
Coming to Blows over Spaces and Parentheses
Spaces and Tabs

Stylistic Challenges

Summary

Chapter 8: Gaining Proficiency with Classes and Objects

Introducing the Spreadsheet Example
Writing Classes

Class Definitions

Defining Methods

Using Objects
Object Life Cycles

Object Creation

Object Destruction

Assigning to Objects

Distinguishing Copying from Assignment
Summary

Chapter 9: Mastering Classes and Objects

145
147
147
148

148
148
148

151
151
151
151
152

152
153
154
154

155

155

157

157
158
158
161
164
165
165
176
177
180
182

183

Dynamic Memory Allocation in Objects
The Spreadsheet Class
Freeing Memory with Destructors
Handling Copying and Assignment
Different Kinds of Data Members
Static Data Members
Const Data Members
Reference Data Members
Const Reference Data Members

viii

183
184
186
186

194
195
196
198
199

Contents

More about Methods 199
Static Methods 199
Const Methods 200
Method Overloading 202
Default Parameters 203
Inline Methods 204

Nested Classes 206

Friends 208

Operator Overloading 209
Implementing Addition 209
Overloading Arithmetic Operators 212
Overloading Comparison Operators 215
Building Types with Operator Overloading 216

Pointers to Methods and Members 217

Building Abstract Classes 218
Using Interface and Implementation Classes 218

Summary 221

Chapter 10: Discovering Inheritance Techniques 223

Building Classes with Inheritance 224
Extending Classes 224
Overriding Methods 227

Inheritance for Reuse 230
The WeatherPrediction Class 230
Adding Functionality in a Subclass 231
Replacing Functionality in a Subclass 233

Respect Your Parents 234
Parent Constructors 234
Parent Destructors 235
Referring to Parent Data 237
Casting Up and Down 239

Inheritance for Polymorphism 240
Return of the Spreadsheet 240
Designing the Polymorphic Spreadsheet Cell 241
The Spreadsheet Cell Base Class 242
The Individual Subclasses 243
Leveraging Polymorphism 245
Future Considerations 246

Multiple Inheritance 248
Inheriting from Multiple Classes 248
Naming Collisions and Ambiguous Base Classes 249

Contents

Interesting and Obscure Inheritance Issues
Changing the Overridden Method’s Characteristics
Special Cases in Overriding Methods
Copy Constructors and the Equals Operator
The Truth about Virtual
Runtime Type Facilities
Non-Public Inheritance
Virtual Base Classes

Summary

Chapter 11: Writing Generic Code with Templates

253
253
256
263
264
267
269
269
270

271

Overview of Templates
Class Templates
Writing a Class Template
How the Compiler Processes Templates
Distributing Template Code between Files
Template Parameters
Method Templates
Template Class Specialization
Subclassing Template Classes
Inheritance versus Specialization
Function Templates
Function Template Specialization
Function Template Overloading
Friend Function Templates of Class Templates
Advanced Templates
More about Template Parameters
Template Class Partial Specialization
Emulating Function Partial Specialization with Overloading
Template Recursion
Summary

Chapter 12: Understanding C++ Quirks and Oddities

272
273
273
280
281
282
285
290
293
295
295
296
297
298
299
299
307
313
314
322

323

References
Reference Variables
Reference Data Members
Reference Parameters
Reference Return Values
Deciding between References and Pointers

323
324
326
326
327
327

Contents

Keyword Confusion 330
The const Keyword 330
The static Keyword 333
Order of Initialization of Nonlocal Variables 336

Types and Casts 337
typedefs 337
Casts 338

Scope Resolution 343

Header Files 343

C Utilities 345
Variable-Length Argument Lists 345
Preprocessor Macros 347

Summary 348

Part Ill: Mastering Advanced Features of C++

Chapter 13: Effective Memory Management 349
Working with Dynamic Memory 349
How to Picture Memory 350
Allocation and Deallocation 351
Arrays 353
Working with Pointers 360
Array-Pointer Duality 362
Arrays Are Pointers! 363
Not All Pointers Are Arrays! 364
Dynamic Strings 365
C-Style Strings 365
String Literals 366
The C++ string Class 367
Low-Level Memory Operations 369
Pointer Arithmetic 369
Custom Memory Management 370
Garbage Collection 370
Object Pools 371
Function Pointers 372
Common Memory Pitfalls 374
Underallocating Strings 374
Memory Leaks 374
Double-Deleting and Invalid Pointers 377
Accessing Out-of-Bounds Memory 378
Summary 378

Xi

Contents

Chapter 14: Demystifying C++ 1/0 379
Using Streams 379
What Is a Stream, Anyway? 380
Stream Sources and Destinations 380
Output with Streams 380
Input with Streams 384
Input and Output with Objects 389
String Streams 390
File Streams 392
Jumping around with seek() and tell() 392
Linking Streams Together 395
Bidirectional 1/0 396
Internationalization 397
Wide Characters 397
Non-Western Character Sets 398
Locales and Facets 398
Summary 400
Chapter 15: Handling Errors 401
Errors and Exceptions 402
What Are Exceptions, Anyway? 402
Why Exceptions in C++ Are a Good Thing 403
Why Exceptions in C++ Are a Bad Thing 404
Our Recommendation 404
Exception Mechanics 404
Throwing and Catching Exceptions 405
Exception Types 406
Throwing and Catching Multiple Exceptions 408
Uncaught Exceptions 411
Throw Lists 412
Exceptions and Polymorphism 416
The Standard Exception Hierarchy 416
Catching Exceptions in a Class Hierarchy 417
Writing Your Own Exception Classes 419
Stack Unwinding and Cleanup 422
Catch, Cleanup, and Rethrow 423
Use Smart Pointers 424

Xii

Contents

Common Error-Handling Issues
Memory Allocation Errors
Errors in Constructors
Errors in Destructors
Putting It All Together
Summary

Part IV: Ensuring Bug-Free Code

Chapter 16: Overloading C++ Operators

424
424
427
428
428
430

431

Overview of Operator Overloading
Why Overload Operators?
Limitations to Operator Overloading
Choices in Operator Overloading
Operators You Shouldn’t Overload
Summary of Overloadable Operators
Overloading the Arithmetic Operators
Overloading Unary Minus and Unary Plus
Overloading Increment and Decrement
Overloading the Bitwise and Binary Logical Operators
Overloading the Insertion and Extraction Operators
Overloading the Subscripting Operator
Providing Read-Only Access with operator(]
Non-Integral Array Indices
Overloading the Function Call Operator
Overloading the Dereferencing Operators
Implementing operator*
Implementing operator->
What in the World Is operator->* ?
Writing Conversion Operators
Ambiguity Problems with Conversion Operators
Conversions for Boolean Expressions
Overloading the Memory Allocation and Deallocation Operators
How new and delete Really Work
Overloading operator new and operator delete
Overloading operator new and operator delete with Extra Parameters
Summary

432
432
432
433
435
435
438
438
439
441
441
443
446
447
448
449
451
452
452
453
454
455
457
457
459
461
463

Xiii

Contents

Chapter 17: Writing Efficient C++ 465
Overview of Performance and Efficiency 465
Two Approaches to Efficiency 466
Two Kinds of Programs 466

Is C++ an Inefficient Language? 466
Language-Level Efficiency 467
Handle Objects Efficiently 467
Don’t Overuse Costly Language Features 471
Use Inline Methods and Functions 472
Design-Level Efficiency 472
Cache as Much as Possible 472
Use Object Pools 473
Use Thread Pools 479
Profiling 479
Profiling Example with gprof 479
Summary 488

Chapter 18: Developing Cross-Platform and Cross-Language Applications 489

Cross-Platform Development 489
Architecture Issues 490
Implementation Issues 492
Platform-Specific Features 493

Cross-Language Development 494
Mixing C and C++ 494
Shifting Paradigms 495
Linking with C Code 498
Mixing Java and C++ with JNI 499
Mixing C++ with Perl and Shell Scripts 501
Mixing C++ with Assembly Code 504

Summary 505

Chapter 19: Becoming Adept at Testing 507

Quality Control 507
Whose Responsibility Is Testing? 508
The Life Cycle of a Bug 508
Bug-Tracking Tools 509

Unit Testing 510
Approaches to Unit Testing 511
The Unit Testing Process 512
Unit Testing in Action 515

Xiv

Contents

Higher-Level Testing 523
Integration Tests 523
System Tests 525
Regression Tests 525

Tips for Successful Testing 526

Summary 526

Chapter 20: Conquering Debugging 527

The Fundamental Law of Debugging 527

Bug Taxonomies 528

Avoiding Bugs 528

Planning for Bugs 528
Error Logging 528
Debug Traces 530
Asserts 540

Debugging Techniques 541
Reproducing Bugs 541
Debugging Reproducible Bugs 542
Debugging Nonreproducible Bugs 543
Debugging Memory Problems 544
Debugging Multithreaded Programs 547
Debugging Example: Article Citations 548
Lessons from the ArticleCitations Example 559

Summary 559

Chapter 21: Delving into the STL: Containers and lterators 561

Containers Overview 562
Requirements on Elements 562
Exceptions and Error Checking 563
Iterators 564

Sequential Containers 565
Vector 566
The vector<bool> Specialization 583
deque 584
list 584

Container Adapters 588
queue 588
priority_queue 591
stack 594

XV

Contents

Associative Containers 595
The pair Utility Class 595
map 596
multimap 604
set 608
multiset 610

Other Containers 611
Arrays as STL Containers 611
Strings as STL Containers 612
Streams as STL Containers 613
bitset 613

Summary 618

Part V: Using Libraries and Patterns
Chapter 22: Mastering STL Algorithms and Function Objects 619

Overview of Algorithms 620
The find() and find_if() Algorithms 620
The accumulate() Algorithms 623

Function Objects 624
Arithmetic Function Objects 624
Comparison Function Objects 625
Logical Function Objects 627
Function Object Adapters 627
Writing Your Own Function Objects 630

Algorithm Details 631
Utility Algorithms 632
Nonmodifying Algorithms 633
Modifying Algorithms 639
Sorting Algorithms 643
Set Algorithms 646

Algorithms and Function Objects Example: Auditing Voter Registrations 648
The Voter Registration Audit Problem Statement 648
The auditVoterRolls() Function 648
The getDuplicates() Function 649
The RemoveNames Functor 650
The NamelnList Functor 651
Testing the auditVoterRolls() Function 652

Summary 653

XVi

Contents

Chapter 23: Customizing and Extending the STL

Allocators
Iterator Adapters
Reverse lterators
Stream Iterators
Insert Iterators
Extending the STL
Why Extend the STL?
Writing an STL Algorithm
Writing an STL Container
Summary

Chapter 24: Exploring Distributed Objects

The Appeal of Distributed Computing
Distribution for Scalability
Distribution for Reliability
Distribution for Centrality
Distributed Content
Distributed versus Networked
Distributed Objects
Serialization and Marshalling
Remote Procedure Calls
CORBA
Interface Definition Language
Implementing the Class
Using the Objects
XML
A Crash Course in XML
XML as a Distributed Object Technology
Generating and Parsing XML in C++
XML Validation
Building a Distributed Object with XML
SOAP (Simple Object Access Protocol)
Summary

Chapter 25: Incorporating Techniques and Frameworks

“l Can Never Remember How to . . .
. .. Write a Class
... Subclass an Existing Class

655

656
656
656
657
658
660
660
660
662
691

693

693
693
694
694
695
695
696
696
700
702
702
704
706
709
709
712
712
721
723
726
728

729

730
730
731

XVii

Contents

. Throw and Catch Exceptions
.. Read from a File
. Write to a File
. . . Write a Template Class
There Must Be a Better Way
Smart Pointers with Reference Counting
Double Dispatch
Mix-In Classes
Object-Oriented Frameworks
Working with Frameworks
The Model-View-Controller Paradigm
Summary

732
733
734
734
736
736
741
747
750
750
750
752

753

Chapter 26: Applying Design Patterns

The Singleton Pattern
Example: A Logging Mechanism
Implementation of a Singleton
Using a Singleton

The Factory Pattern
Example: A Car Factory Simulation
Implementation of a Factory
Using a Factory
Other Uses of Factories

The Proxy Pattern
Example: Hiding Network Connectivity Issues
Implementation of a Proxy
Using a Proxy

The Adapter Pattern
Example: Adapting an XML Library
Implementation of an Adapter
Using an Adapter

The Decorator Pattern
Example: Defining Styles in Web Pages
Implementation of a Decorator
Using a Decorator

The Chain of Responsibility Pattern
Example: Event Handling
Implementation of a Chain of Responsibility
Using a Chain of Responsibility

xviii

754
754
754
759
760
760
762
764
766
766
766
767
767
768
768
768
772
773
773
774
775
776
776
77T
778

Contents

The Observer Pattern 778
Example: Event Handling 778
Implementation of an Observer 778
Using an Observer 780

Summary 781

Appendix A: C++ Interviews 783

Chapter 1: A Crash Course in C++ 783

Chapter 2: Designing Professional C++ Programs 784

Chapter 3: Designhing with Objects 785

Chapter 4: Designing with Libraries and Patterns 786

Chapter 5: Designing for Reuse 787

Chapter 6: Maximizing Software Engineering Methods 787

Chapter 7: Coding with Style 788

Chapters 8 and 9: Classes and Objects 789

Chapter 10: Discovering Inheritance Techniques 792

Chapter 11: Writing Generic Code with Templates 793

Chapter 12: Understanding C++ Quirks and Oddities 793

Chapter 13: Effective Memory Management 794

Chapter 14: Demystifying C++ 1/0 795

Chapter 15: Handling Errors 796

Chapter 16: Overloading C++ Operators 796

Chapter 17: Writing Efficient C++ 797

Chapter 18: Developing Cross-Platform and Cross-Language Applications 798

Chapter 19: Becoming Adept at Testing 798

Chapter 20: Conquering Debugging 799

Chapters 21, 22, and 23: The Standard Template Library 799

Chapter 24: Exploring Distributed Objects 800

Chapter 25: Incorporating Techniques and Frameworks 801

Chapter 26: Applying Design Patterns 801

Appendix B: Annotated Bibliography 803

C++ 803
Beginning C++ 803
General C++ 804
/0 Streams 805
The C++ Standard Library 805
C++ Templates 806

Xix

Contents

Cc
Integrating C++ and Other Languages
Algorithms and Data Structures
Open-Source Software
Software-Engineering Methodology
Programming Style
Computer Architecture
Efficiency
Testing
Debugging
Distributed Objects

CORBA

XML and SOAP
Design Patterns

Index

806
806
807
807
807
808
809
809
809
809
810
810
810
811

813

XX

Introduction

For many years, C++ has served as the de facto language for writing fast, powerful, and enterprise-class
object-oriented programs. As popular as C++ has become, the language is surprisingly difficult to grasp
in full. There are simple, but powerful, techniques that professional C++ programmers use that don’t
show up in traditional texts, and there are useful parts of C++ that remain a mystery even to experienced
C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and pro-
viding an example. Professional C++ does not follow this pattern. Instead of giving you just the nuts and
bolts of the language with little real-world context, this book will teach you how to use C++ in the real
world. It will show you the little-known features that will make your life easier and the reusable coding
patterns that separate novice programmers from professional programmers.

Who This Book Is For

Even if you have used the language for years, you might still be unfamiliar with the more advanced fea-
tures of C++ or might not be using the full capabilities of the language. Perhaps you write competent
C++ code, but would like to learn more about design in C++ and good programming style. Or maybe
you're relatively new to C++, but want to learn the “right” way to program from the start. This book will
bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming a
professional C++ programmer, it assumes some knowledge of the language. Chapter 1 covers the basics
of C++ as a refresher, but it is not a substitute for actual training and use of the language. If you are just
starting with C++, but you have significant experience in C, you should be able to pick up most of what
you need from Chapter 1. In any case, you should have a solid foundation in programming fundamen-
tals. You should know about loops, functions, and variables. You should know how to structure a pro-
gram, and you should be familiar with fundamental techniques like recursion. You should have some
knowledge of common data structures like hash tables and queues, and useful algorithms such as sort-
ing and searching. You don’t need to know about object-oriented programming just yet—that is covered
in Chapter 3.

You will also need to be familiar with the compiler you will be using to develop your code. This book
does not provide directions for using individual compilers. Refer to the documentation that came with
your compiler for a refresher.

What This Book Covers

Professional C++ is an approach to C++ programming that will both increase the quality of your code and
improve your programming efficiency. Professional C++ teaches more than just the syntax and language
features of C++. It also emphasizes programming methodologies, reusable design patterns, and good

XXi

Introduction

programming style. The Professional C++ methodology incorporates the entire software development
process—from designing and writing code to testing, debugging, and working in groups. This approach
will enable you to master the C++ language and its idiosyncrasies, as well as take advantage of its pow-
erful capabilities for large-scale software development.

Imagine someone who has learned all of the syntax of C++ without seeing a single example of its use.
He knows just enough to be dangerous! Without examples, he might assume that all code should go in
themain () function of the program or that all variables should be global—practices that are generally
not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the syn-
tax. They recognize the importance of good design, the theories of object-oriented programming, and the
best ways to use existing libraries. They have also developed an arsenal of useful code and reusable
ideas.

By reading this book, you will become a professional C++ programmer. You will expand your knowl-
edge of C++ to cover lesser-known and often misunderstood language features. You will gain an appre-
ciation for object-oriented design and acquire top-notch debugging skills. Perhaps most importantly, you
will finish this book armed with a wealth of reusable ideas that can be applied to your actual daily work.

There are many good reasons to make the effort to be a professional C++ programmer, as opposed to a
programmer who knows C++. Understanding the true workings of the language will improve the qual-
ity of your code. Learning about different programming methodologies and processes will help you to
work better with your team. Discovering reusable libraries and common design patterns will improve
your daily efficiency and help you stop reinventing the wheel. All of these lessons will make you a better
programmer and a more valuable employee. While this book can’t guarantee you a promotion, it cer-
tainly won’t hurt!

How This Book Is Structured

This book is made up of six parts.

Part I, “Introduction to Professional C++ Design,” begins with a crash course in C++ basics to ensure a
foundation of C++ knowledge. Following the crash course, Part I explores C++ design methodologies.
You will read about the importance of design, the object-oriented methodology, the use of libraries and
patterns, the importance of code reuse, and the engineering practices being used by programming orga-
nizations today.

Part II, “Coding C++ the Professional Way,” provides a technical tour of C++ from the Professional
point-of-view. You will read about how to write readable C++ code, how to create reusable classes, and
how to leverage important language features like inheritance and templates.

Part III, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of C++.
This part of the book exposes the mysteries of C++ and describes how to use some of its more advanced
features. You will read about the unusual and quirky parts of the language, the best ways to manage
memory in C++, techniques for input and output, professional-grade error handling, advanced operator
overloading, how to write efficient C++ code, and how to write cross-language and cross-platform code.

xxii

Introduction

Part IV, “Ensuring Bug-Free Code,” focuses on writing enterprise-quality software. You'll read about
software testing concepts, such as unit testing and regression testing. You'll also read about techniques
used to debug C++ programs.

Part V, “Using Libraries and Patterns,” covers the use of libraries and patterns, which enable you to
write better code with less work. You'll read about the standard library included with C++, including
advanced topics such as extending the Standard Library. You'll also read about distributed objects,
reusable C++ design techniques, and conceptual object-oriented design patterns.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical interview.
You will also a find a practical reference guide to the C++ Standard Library on the supplemental Web
site for this book at www.wrox.com.

What You Need to Use This Book

All you need to use this book is any computer with a C++ compiler. While compilers often differ in their
interpretations of the language, this book focuses on the parts of C++ that have been standardized. The
programs in this book have been tested on Windows, Solaris, and Linux platforms.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight important words when we introduce them

0O We show keyboard strokes like this: Ctrl+A

Q We show filenames, URLs, and code within the text like so: monkey . cpp.
QO We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context or that has been shown before.

XXiii

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www . wrox. com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists), and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7484-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www . wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each’s book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as

you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

XXiv

Introduction

1. Gotop2p.wrox.comand click the Register link.

A

Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXV

A Crash Course
in C++

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a base
of knowledge before embarking on the rest of the book. This chapter is not a comprehensive lesson
in the C++ programming language. The very basic points (like what a program is and the differ-
ence between = and ==) are not covered. The very esoteric points (remember what a union is? how
about the volatile keyword?) are also omitted. Certain parts of the C language that are less rele-
vant in C++ are also left out, as are parts of C++ that get in-depth coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter on a daily basis. If you've
been away from C++ for a while and you’ve forgotten the syntax for a for loop, you'll find that in
this chapter. If you're fairly new to C++ and you don’t understand what a reference variable is,
you'll learn that here as well.

If you already have significant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you're new to
C+4+, take the time to read this chapter carefully and make sure that you understand the examples.
If you need additional introductory information, consult the titles listed in Appendix B.

The Basics of C++

The C++ language is often viewed as a “better C” or a “superset of C.” Many of the annoyances
or rough edges of the C language were addressed when C++ was designed. Because C++ is based
on C, much of the syntax you'll see in this section will look familiar to you if are an experienced

C programmer. The two languages certainly have their differences, though. As evidence, The C++
Programming Language by C++ creator Bjarne Stroustrup weighs in at 911 pages, while Kernighan
and Ritchie’s The C Programming Language is a scant 274 pages. So if you're a C programmer, be on
the lookout for new or unfamiliar syntax!

Chapter 1

The Obligatory Hello, World

In all its glory, the following code is the simplest C++ program you're likely to encounter.
// helloworld.cpp
#include <iostream>

int main(int argc, char** argv)
{
std::cout << "Hello, World!" << std::endl;

return 0;

}

This code, as you might expect, prints the message Hello, World! on the screen. It is a simple program
and unlikely to win any awards, but it does exhibit several important concepts about the format of a
C++ program.

Comments

The first line of the program is a comment, a message that exists for the programmer only and is ignored
by the compiler. In C++, there are two ways to delineate a comment. In the preceding example, two
slashes indicate that whatever follows on that line is a comment.

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a C-style comment, which is also
valid in C++. C-style comments start with /* and end with */. In this fashion, C-style comments are
capable of spanning multiple lines. The code below shows a C-style comment in action (or, more appro-
priately, inaction).

/* this is a multiline
* C-style comment. The
* compiler will ignore
% i@,

Comments are covered in detail in Chapter 7.

Preprocessor Directives

Building a C++ program is a three-step process. First, the code is run through a preprocessor, which recog-
nizes metainformation about the code. Next, the code is compiled, or translated into machine-readable
object files. Finally, the individual object files are linked together into a single application. Directives that
are aimed at the preprocessor start with the # character, as in the line #include <iostream> in the
previous example. In this case, an include directive tells the preprocessor to take everything from the
iostream header file and make it available to the current file. The most common use of header files is to
declare functions that will be defined elsewhere. Remember, a declaration tells the compiler how a func-
tion is called. A definition contains the actual code for the function. The iostream header declares the
input and output mechanisms provided by C++. If the program did not include it, it would be unable to
perform its only task of outputting text.

A Crash Course in C++

In C, included files usually end in .h, such as <stdio.h>. In C++, the suffix is omit-
ted for standard library headers, such as <iostream>. Your favorite standard head-
ers from C still exist in C++, but with new names. For example, you can access the
functionality from <stdio.h> by including <cstdio>.

The table below shows some of the most common preprocessor directives.

Preprocessor Directive

Functionality

Common Uses

#include [file]

#define [key] [value]

#ifdef [key]
#ifndef [key]
#endif

#pragma

The specified file is inserted into
the code at the location of the
directive.

Every occurrence of the specified
key is replaced with the specified
value.

Code within the ifdef

(“if defined”) or i fndef
(“if not defined”) blocks are
conditionally included or
omitted based on whether
the specified value has been
defined with #define.

Varies from compiler to compiler.
Often allows the programmer to
display a warning or error if the
directive is reached during
preprocessing.

Almost always used to include
header files so that code can
make use of functionality that
is defined elsewhere.

Often used in C to define a
constant value or a macro. C++
provides a better mechanism
for constants. Macros are often
dangerous so #define is rarely
used in C++. See Chapter 12
for details.

Used most frequently to protect
against circular includes. Each
included file defines a value
initially and surrounds the rest
of its code with a #ifndef and
#endif so that it won’t be
included multiple times.

Because usage of #pragma is not
standard across compilers, we
advocate not using it.

The main function

main () is, of course, where the program starts. An int is returned from main (), indicating the result
status of the program. main () takes two parameters: argc gives the number of arguments passed to the
program, and argv contains those arguments. Note that the first argument is always the name of the

program itself.

I/0 Streams

If you're new to C++ and coming from a C background, you're probably wondering what std: : cout is
and what has been done with trusty old printf£ (). While printf () can still be used in C++, a much
better input/output facility is provided by the streams library.

Chapter 1

I/0 streams are covered in depth in Chapter 14, but the basics of output are very simple. Think of an
output stream as a laundry chute for data. Anything you toss into it will be output appropriately.

std: : cout is the chute corresponding to the user console, or standard out. There are other chutes,
including std: : cerr, which outputs to the error console. The << operator tosses data down the chute.
In the preceding example, a quoted string of text is sent to standard out. Output streams allow multiple
data of varying types to be sent down the stream sequentially on a single line of code. The following
code outputs text, followed by a number, followed by more text.

std::cout << "There are " << 219 << " ways I love you." << std::endl;

std: :endl represents an end of line character. When the output stream encounters std: : end1, it will
output everything that has been sent down the chute so far and move to the next line. An alternate way
of representing the end of a line is by using the ‘\n’ character. The \n character is an escape character,
which refers to a new-line character. Escape characters can be used within any quoted string of text. The
list below shows the most common escape characters.

Q \n newline
O \r carriage return

O \t tab

O \\ thebackslash character

QO \" quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the

>> operator with an input stream. The std: : cin input stream accepts keyboard input from the user.

User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 14 for a full explanation of how to use input streams.

Namespaces

Namespaces address the problem of naming conflicts between different pieces of code. For example, you
might be writing some code that has a function called foo (). One day, you decide to start using a third-
party library, which also has a foo () function. The compiler has no way of knowing which version of
foo () you are referring to within your code. You can’t change the library’s function name, and it would
be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names are
defined. To place code in a namespace, simply enclose it within a namespace block:

// namespaces.h
namespace mycode {

void foo();

}

A Crash Course in C++

The implementation of a method or function can also be handled in a namespace:

// namespaces.cpp

#include <iostream>
#include "namespaces.h"

namespace mycode {

void foo() {
std::cout << "foo() called in the mycode namespace" << std::endl;
}
}

By placing your version of foo () in the namespace “mycode,” it is isolated from the foo () function
provided by the third-party library. To call the namespace-enabled version of foo (), prepend the
namespace onto the function name as follows.

mycode: :foo () ; // Calls the "foo" function in the "mycode" namespace

Any code that falls within a “mycode” namespace block can call other code within the same namespace
without explicitly prepending the namespace. This implicit namespace is useful in making the code
more precise and readable. You can also avoid prepending of namespaces with the using directive. This
directive tells the compiler that the subsequent code is making use of names in the specified namespace.
The namespace is thus implied for the code that follows:

// usingnamespaces.cpp
#include "namespaces.h"
using namespace mycode;

int main(int argc, char** argv)
{
foo(); // Implies mycode::foo();

}

A single source file can contain multiple using directives, but beware of overusing this shortcut. In the
extreme case, if you declare that you're using every namespace known to humanity, you're effectively
eliminating namespaces entirely! Name conflicts will again result if you are using two namespaces that
contain the same names. It is also important to know in which namespace your code is operating so that
you don’t end up accidentally calling the wrong version of a function.

You've seen the namespace syntax before — we used it in the Hello, World program. cout and endl are
actually names defined in the std namespace. We could have rewritten Hello, World with the using
directive as shown here:

Chapter 1

// helloworld.cpp

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

cout << "Hello, World!" << endl;

return 0;

The using directive can also be used to refer to a particular item within a namespace. For example, if the
only part of the std namespace that you intend to use is cout, you can refer to it as follows:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace will still need to be explicit:

using std::cout;

cout << "Hello, World!" << std::endl;

Variables

In C++, variables can be declared just about anywhere in your code and can be used anywhere in the cur-
rent block below the line where they are declared. In practice, your engineering group should decide
whether variables will be declared at the start of each function or on an as-needed basis. Variables can be
declared without being given a value. These undeclared variables generally end up with a semirandom
value based on whatever is in memory at the time and are the source of countless bugs. Variables in C++
can alternatively be assigned an initial value when they are declared. The code that follows shows both
flavors of variable declaration, both using ints, which represent integer values.

// hellovariables.cpp
#include <iostream>
using namespace std;
int main(int argc, char** argv)
{
int uninitializedInt;

int initializedInt = 7;

cout << uninitializedInt << " is a random value" << endl;
cout << initializedInt << " was assigned an initial value" << endl;

return (0);

A Crash Course in C++

When run, this code will output a random value from memory for the first line and the number 7 for the
second. This code also shows how variables can be used with output streams.

The table that follows shows the most common variable types used in C++.

Type Description Usage

int Positive and negative integers (range int 1 = 7;
depends on compiler settings)

short Short integer (usually 2 bytes) short s = 13;

long Long integer (usually 4 bytes) long 1 = -7;

unsigned int Limits the preceding types to unsigned int i =2;
unsigned short values >=0 unsigned short s = 23;
unsigned long unsigned long 1 = 5400;
float Floating-point and double precision float £ = 7.2;

double numbers double d = 7.2

char A single character char ch = 'm';

bool true or false (same as non-0 or 0) bool b = true;

C++ does not provide a basic string type. However, a standard implementation of a
string is provided as part of the standard library as described later in this chapter
and in Chapter 13.

Variables can be converted to other types by casting them. For example, an int can be cast to a bool.
C++ provides three ways of explicitly changing the type of a variable. The first method is a holdover
from C, but is still the most commonly used. The second method seems more natural at first but is rarely
seen. The third method is the most verbose, but often considered the cleanest.

bool someBool = (bool)somelnt; // method 1
bool someBool = bool (somelnt); // method 2
bool someBool = static_cast<bool>(somelnt) ; // method 3

The result will be false if the integer was 0 and true otherwise. In some contexts, variables can be
automatically cast, or coerced. For example, a short can be automatically converted into a 1ong because
a long represents the same type of data with additional precision.

long someLong = someShort; // no explicit cast needed

When automatically casting variables, you need to be aware of the potential loss of data. For example,
casting a float to an int throws away information (the fractional part of the number). Many compilers

Chapter 1

will issue a warning if you assign a f1loat to an int without an explicit cast. If you are certain that the
left-hand-side type is fully compatible with the right-hand side type, it’s okay to cast implicitly.

Operators

What good is a variable if you don’t have a way to change it? The table below shows the most common
operators used in C++ and sample code that makes use of them. Note that operators in C++ can be binary
(operate on two variables), unary (operate on a single variable), or even ternary (operate on three vari-
ables). There is only one ternary operator in C++ and it is covered in the next section, “Conditionals.”

Operator Description Usage
= Binary operator to assign the value on the right to int ;
the variable on the left. i=3;
int j;
j=1i;
! Unary operator to negate the true/false (non-0/0) bool b = !true;
status of a variable. bool b2 = !b;
+ Binary operator for addition. int 1 = 3 + 2;
int j =i + 5;
int k = 1 + Jj;
- Binary operators for subtraction, multiplication, int i = 5-1;
* and division. int j = 5%2;
/ int k = j / 1i;
% Binary operator for remainder of a division int remainder = 5 % 2;
operation. Also referred to as the mod operator.
++ Unary operator to increment a variable by 1. If the i++;
operator occurs before the variable, the result of ++1;
the expression is the unincremented value. If the
operator occurs after the variable, the result of the
expression is the new value.
-- Unary operator to decrement a variable by 1. i--;
——i;
+= Shorthand syntax fori = i + j i += 3;
-= Shorthand syntax for i-=3;
= i=1i - 3; i o= q;
/= i=1*3; i /= 3;
%= i=17/ 3; i %= 3;
i=1i%3;
& Takes the raw bits of one variable and performs a i=3 & k;
&= bitwise “and” with the other variable. j &= k;
Takes the raw bits of one variable and performs a i=3 | k;
bitwise “or” with the other variable. i |= k;

A Crash Course in C++

Operator Description Usage

<< Takes the raw bits of a variable and “shifts” each i =1 << 1;
>> bit left (<<) or right (>>) the specified number of i=1i > 4;
<<= places. i <<= 1;
>>= i >>= 4;

~ Performs a bitwise “exclusive or” operation on i=1i " 3;
~= the two arguments. i ~= 3;

The following program shows the most common variable types and operators in action. If you're unsure
about how variables and operators work, try to figure out what the output of this program will be, and
then run it to confirm your answer.

// typetest.cpp
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{
int someInteger = 256;
short someShort;
long someLlong;
float someFloat;
double someDouble;

someInteger++;
someInteger *= 2;
someShort = (short)somelnteger;

someLong = someShort * 10000;
someFloat = someLong + 0.785;
someDouble = (double)someFloat / 100000;

cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a compli-
cated line of code with many operators, the order of execution may not be obvious. For that reason, it’s
probably better to break up a complicated statement into several smaller statements or explicitly group
expressions using parentheses. For example, the following line of code is confusing unless you happen
to know the C++ operator precedence table by heart:

int i =34 +8 * 2+ 21/ 7% 2;
Adding parentheses makes it clear which operations are happening first:

int 1 =34 + (8 *2) + ((21 / 7) %2);

Chapter 1

Breaking up the statement into separate lines makes it even clearer:

int i = 8 * 2;
int § = 21 / 7;
J
i

I oe

2;
34 + 1+ 3;

For those of you playing along at home, all three approaches are equivalent and end up with i equal to
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been 1.
In fact, C++ evaluates /, *, and % first (in left to right order), followed by addition and subtraction, then
bitwise operators. Parenthesis let you explicitly tell the compiler that a certain operation should be eval-
uated separately.

Types

En

10

In C++, you can use the basic types (int, bool, etc.) to build more complex types of your own design.
Once you are an experienced C++ programmer, you will rarely use the following techniques, which are
features brought in from C, because classes are far more powerful. Still, it is important to know about
the two most common ways of building types so that you will recognize the syntax.

umerated Types

An integer really represents a value within a sequence — the sequence of numbers. Enumerated types

let you define your own sequences so that you can declare variables with values in that sequence. For
example, in a chess program, you could represent each piece as an int, with constants for the piece
types, as shown in the following code. The integers representing the types are marked const to indicate
that they can never change.

const int kPieceTypeKing = 0;
const int kPieceTypeQueen = 1;
const int kPieceTypeRook = 2;
const int kPieceTypePawn = 3;
//etc.

int myPiece = kPieceTypeKing;

This representation is fine, but it can become dangerous. Since the piece is just an int, what would
happen if another programmer added code to increment the value of the piece? By adding one, a king
becomes a queen, which really makes no sense. Worse still, someone could come in and give a piece a
value of -1, which has no corresponding constant.

Enumerated types resolve these problems by tightly defining the range of values for a variable. The fol-
lowing code declares a new type, PieceT, that has four possible values, representing four of the chess
pieces.

typedef enum { kPieceTypeKing, kPieceTypeQueen, kPieceTypeRook,
kPieceTypePawn
} PieceT;

A Crash Course in C++

Behind the scenes, an enumerated type is just an integer value. The real value of kPieceTypeKing is

zero. However, by defining the possible values for variables of type PieceT, your compiler can give you

a warning or error if you attempt to perform arithmetic on PieceT variables or treat them as integers.

The following code, which declares a PieceT variable then attempts to use it as an integer, results in a
warning on most compilers.

PieceT myPiece;

myPiece = 0;

Structs

Structs let you encapsulate one or more existing types into a new type. The classic example of a struct is

a database record. If you are building a personnel system to keep track of employee information, you
will need to store the first initial, last initial, middle initial, employee number, and salary for each
employee. A struct that contains all of this information is shown in the header file that follows.

// employeestruct.h

typedef struct

{

char firstInitial;
char middleInitial;
char lastInitial;
int employeeNumber ;
int salary;

} EmployeeT;

A variable declared with type EmployeeT will have all of these fields built-in. The individual fields of a

u

struct can be accessed by using the “.” character. The example that follows creates and then outputs the
record for an employee.

// structtest.cpp

#include <iostream>
#include "employeestruct.h"

using namespace std;

int main(int argc, char** argv)

{

// Create and populate an employee.
EmployeeT anEmployee;

anEmployee.
anEmployee.

anEmployee

anEmployee.
.salary = 80000;

anEmployee

// Output the values of an employee.

firstInitial = 'M';
middleInitial = 'R';
.lastInitial = 'G';

employeeNumber = 42;

11

Chapter 1

cout << "Employee: " << anEmployee.firstInitial <<
anEmployee.middleInitial <<
anEmployee.lastInitial << endl;
cout << "Number: " << anEmployee.employeeNumber << endl;
cout << "Salary: $" << anEmployee.salary << endl;

return 0;

Conditionals

Conditionals let you execute code based on whether or not something is true. There are three main types
of conditionals in C++.

If/Else Statements

The most common conditional is the if statement, which can be accompanied by else. If the condition
given inside the if statement is true, the line or block of code is executed. If not, execution continues to
the else case if present, or to the code following the conditional. The following pseudocode shows a cas-
cading if statement, a fancy way of saying that the if statement has an else statement that in turn has
another if statement, and so on.

if (i > 4) {

// Do something.
} else if (1 > 2) {

// Do something else.
} else {

// Do something else.

}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to a
Boolean value. Conditional operators, described below, provide ways of evaluating expressions to result
in a true or false Boolean value.

Switch Statements

The switch statement is an alternate syntax for performing actions based on the value of a variable. In
switch statements, the variable must be compared to a constant, so the greater-than if statements
above could not be converted to switch statements. Each constant value represents a “case”. If the vari-
able matches the case, the subsequent lines of code are executed until the break statement is reached.
You can also provide a default case, which is matched if none of the other cases match.

switch statements are generally used when you want to do something based on the specific value of a
variable, as opposed to some test on the variable. The following pseudocode shows a common use of the
switch statement.

switch (menultem) {
case kOpenMenultem:
// Code to open a file
break;

12

A Crash Course in C++

case kSaveMenultem:
// Code to save a file
break;
default:
// Code to give an error message
break;
}

If you omit the break statement, the code for the subsequent case will be executed whether or not it
matches. This is sometimes useful, but more frequently a source of bugs.

The Ternary Operator

C++ has one operator that takes three arguments, known as the ternary operator. It is used as a shorthand
conditional expression of the form “if [something] then [perform action], otherwise [perform some other
action]”. The ternary operator is represented by a ? and a :. The following code will output “yes” if the
variable i is greater than 2, and “no” otherwise.

std::cout << ((i > 2) ? "yes" : "no");

The advantage of the ternary operator is that it can occur within almost any context. In the preceding
example, the ternary operator is used within code that performs output. A convenient way to remember
how the syntax is used is to treat the question mark as though the statement that comes before it really is
a question. For example, “Is i greater than 2? If so, the result is “yes’: if not, the result is ‘no.””

Unlike an if statement or a switch statement, the ternary operator doesn’t execute code based on the
result. Instead, it is used within code, as shown in the preceding example. In this way; it really is an oper-
ator (like + and -) as opposed to a true conditional, such as i f and switch.

Conditional Operators

You have already seen a conditional operator without a formal definition. The > operator compares two
values. The result is “true” if the value on the left is greater than the value on the right. All conditional
operators follow this pattern — they all result in a true or false.

The table below shows other common conditional operators.

Operator Description Usage
< Determines if the left-hand side if (1 <= 0) {
<= is less than, less than or equal to, std::cout << "i is negative";
> greater than,or greater than or }
>= equal to the right-hand side.
== Determines if the left-hand side if (1 == 3) {
equals the right-hand side. std::cout << "i is 3";
Don’t confuse this with the }
= (assignment) operator!

Table continued on following page

13

Chapter 1

Operator Description Usage
= Not equals. The result of if (i 1= 3) {
the statement is true if the std::cout << "i is not 3";
left-hand side does not }
equal the right-hand side.
! Logical not. Negates the if (!someBoolean) {
true/false status of a std::cout << "someBoolean is false";
Boolean expression. }

This is a unary operator.

&& Logical and. The result if (someBoolean && someOtherBoolean) {
is true if both parts of the std::cout << "both are true";
expression are true. }

|| Logical or. The result is if (someBoolean || someOtherBoolean) {
true if either part of the std::cout << "at least one is true";
expression is true. }

C++ uses short-circuit logic when evaluating an expression. That means that once the final result is cer-
tain, the rest of the expression won’t be evaluated. For example, if you are doing a logical or of several
Boolean expressions as shown below, the result is known to be true as soon as one of them is found to be
true. The rest won't even be checked.

bool result = booll || bool2 || (i > 7) || (27 / 13 1 + 1) < 2;

In the example above, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can, how-
ever, be a source of hard-to-find bugs if the later expressions in some way influence the state of the pro-
gram (for example, by calling a separate function). The following code shows a statement using && that
will short-circuit after the second term because 1 always evaluates to true.

bool result = booll && 1 && (i > 7) && !done;

Loops

Computers are great for doing the same thing over and over. C++ provides three types of looping
structures.

The While Loop

while loops let you perform a block of code repeatedly as long as an expression evaluates to true. For
example, the following completely silly code will output “This is silly.” five times.

int 1 = 0;

while (1 < 5) {
std::cout << "This is silly." << std::endl;
1++;

14

A Crash Course in C++

The keyword break can be used within a loop to immediately get out of the loop and continue execu-
tion of the program. The keyword continue can be used to return to the top of the loop and reevaluate
the while expression. Both are often considered poor style because they cause the execution of a pro-
gram to jump around somewhat haphazardly.

The Do/While Loop

C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes first, and the conditional check for whether or not to continue
happens at the end. In this way, you can use a loop when you want a block of code to always be exe-
cuted at least once and possibly additional times based on some condition. The example that follows
will output “This is silly.” once even though the condition will end up being false.

int i = 100;

do {
std::cout << "This is silly." << std::endl;
i++;

} while (i < 5);

The For Loop

The for loop provides another syntax for looping. Any for loop can be converted to a while loop and
vice versa. However, the for loop syntax is often more convenient because it looks at a loop in terms of
a starting expression, an ending condition, and a statement to execute at the end of every iteration. In the
following code, i is initialized to 0, the loop will continue as long as 1 is less than 5, and at the end of
every iteration, i is incremented by 1. This code does the same thing as the while loop example, but to
some programmers, it is easier to read because the starting value, ending condition, and per-iteration
statement are all visible on one line.

for (int 1 = 0; 1 < 5; i++) {
std::cout << "This is silly." << std::endl;

Arrays

Arrays hold a series of values, all of the same type, each of which can be accessed by its position in the
array. In C++, you must provide the size of the array when the array is declared. You cannot give a vari-
able as the size — it must be a constant value. The code that follows shows the declaration of an array of
10 integers followed by a for loop that initializes each integer to zero.

int myArray[10];
for (int 1 = 0; i < 10; 1i++) {
i]

myArray [= ¢
}

15

Chapter 1

The preceding example shows a one-dimensional array, which you can think of as a line of integers, each
with its own numbered compartment. C++ allows multidimensional arrays. You might think of a two-
dimensional array as a checkerboard, where each location has a position along the x-axis and a position
along the y-axis. Three-dimensional and higher arrays are harder to picture and are rarely used. The
code below shows the syntax for allocating a two-dimensional array of characters for a Tic-Tac-Toe board
and then putting an “0” in the center square.

char ticTacToeBoard[3][3];
ticTacToeBoard[1l] [1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

ticTacToeBoard[0][0O] ticTacToeBoard[O][:L]| |ticTacToeBoard[0][2]

ticTacToeBoard[1][0] ticTacToeBoard[l][1]| |ticTacToeBoard[:L][2]

ticTacToeBoard[2][0] ticTacToeBoard[2][1]| |ticTacToeBoard[2][2]

Figure 1-1

In C+4, the first element of an array is always at position 0, not position 1! The last
position of the array is always the size of the array minus 1!

Functions

16

For programs of any significant size, placing all the code inside of main () is unmanageable. To make
programs easy to understand, you need to break up, or decompose, code into concise functions.

In C++, you first declare a function to make it available for other code to use. If the function is used
inside a particular file of code, you generally declare and define the function in the source file. If the
function is for use by other modules or files, you generally put the declaration in a header file and the
definition in a source file.

A Crash Course in C++

Function declarations are often called “function prototypes” or “signatures” to
emphasize that they represent how the function can be accessed, but not the code
behind it.

A function declaration is shown below. This example has a return type of void, indicating that the func-
tion does not provide a result to the caller. The caller must provide two arguments for the function to
work with — an integer and a character.

void myFunction(int i, char c);

Without an actual definition to match this function declaration, the link stage of the compilation process
will fail because code that makes use of the function myFunction () will be calling nonexistent code.
The following definition simply prints the values of the two parameters.

void myFunction(int i, char c¢)

{
std::cout << "the value of i1 is " << 1 << std::endl;
std::cout << "the value of ¢ is " << ¢ << std::endl;

Elsewhere in the program, you can make calls to myFunction () and pass in constants or variables for
the two parameters. Some sample function calls are shown here:

myFunction(8, 'a');
myFunction (someInt, 'b');
myFunction (5, someChar) ;

In C++, unlike C, a function that takes no parameters just has an empty parameter
list. It is not necessary to use “void” to indicate that no parameters are taken.
However, you should still use “void” to indicate when no value is returned.

C++ functions can also return a value to the caller. The following function declaration and definition is
for a function that adds two numbers and returns the result.

int addNumbers (int numberl, int number2);
int addNumbers (int numberl, int number2)
{

int result = numberl + number2;
return (result);

Those Are the Basics

At this point, you have reviewed the basic essentials of C++ programming. If this section was a breeze,
skim the next section to make sure that you're up to speed on the more advanced material. If you

17

Chapter 1

struggled with this section, you may want to obtain one of the fine introductory C++ books mentioned
in Appendix D before continuing.

Diving Deeper into C++

Loops, variables, and conditionals are terrific building blocks, but there is much more to learn. The top-
ics covered next include many features that are designed to help C++ programmers with their code as
well as a few features that are often more confusing than helpful. If you are a C programmer with little
C++ experience, you should read this section carefully.

Pointers and Dynamic Memory

Dynamic memory allows you to build programs with data that is not of fixed size at compile time. Most
nontrivial programs make use of dynamic memory in some form.

The Stack and the Heap

Memory in your C++ application is divided into two parts — the stack and the heap. One way to visual-
ize the stack is as a deck of cards. The current top card represents the current scope of the program, usu-
ally the function that is currently being executed. All variables declared inside the current function will
take up memory in the top stack frame, the top card of the deck. If the current function, which we’ll call
foo () calls another function bar (), a new card is put on the deck so that bar () has its own stack frame
to work with. Any parameters passed from foo () to bar () are copied from the foo () stack frame into
the bar () stack frame. The mechanics of parameter passing and stack frames are covered in Chapter 13.
Figure 1-2 shows what the stack might look like during the execution of a hypothetical function foo ()
that has declared two integer values.

inti 7
intj 11
foo()
main()
Figure 1-2

Stack frames are nice because they provide an isolated memory workspace for each function. If a vari-
able is declared inside the foo () stack frame, calling the bar () function won’t change it unless you
specifically tell it to. Also, when the foo () function is done running, the stack frame goes away, and all
of the variables declared within the function no longer take up memory.

The heap is an area of memory that is completely independent of the current function or stack frame.
You can put variables on the heap if you want them to exist even when the function in which they were
declared has completed. The heap is less structured than the stack. You can think of it as just a pile of
bits. Your program can add new bits to the pile at any time or modify bits that are already in the pile.

18

A Crash Course in C++

Dynamically Allocated Arrays

Due to the way that the stack works, the compiler must be able to determine at compile time how big
each stack frame will be. Since the stack frame size is predetermined, you cannot declare an array with a
variable size. The following code will not compile because the arraySize is a variable, not a constant.

int arraySize = 8;
int myVariableSizedArray[arraySize]; // This won't compile!

Because the entire array must go on the stack, the compiler needs to know exactly what size it will be so
variables aren’t allowed. However, it is possible to specify the size of an array at run time by using
dynamic memory and placing the array in the heap instead of the stack.

Some C++ compilers actually do support the preceding declaration, but is not cur-
rently a part of the C++ specification. Most compilers offer a “strict” mode that will
turn off these nonstandard extensions to the language.

To allocate an array dynamically, you first need to declare a pointer:

int* myVariableSizedArray;
The * after the int type indicates that the variable you are declaring refers to some integer memory in
the heap. Think of the pointer as an arrow that points at the dynamically allocated heap memory. It does
not yet point to anything specific because you haven’t assigned it to anything; it is an uninitialized
variable.
To initialize the pointer to new heap memory, you use the new command:

myVariableSizedArray = new intl[arraySizel;
This allocates memory for enough integers to satisfy the arraySize variable. Figure 1-3 shows what the

stack and the heap both look like after this code is executed. As you can see, the pointer variable still
resides on the stack, but the array that was dynamically created lives on the heap.

Stack | | Heap

myVariableSizedArray[0]
/ myVariableSizedArray[1]
myVariableSizedArray[2]

myVariableSizedArray| /r myVariableSizedArray[3]
myVariableSizedArray[4]
myVariableSizedArray[5]
myVariableSizedArray[6]
| myVariableSizedArray[7]

Figure 1-3

19

Chapter 1

Now that the memory has been allocated, you can work with myvariableSizedArray as though it
were a regular stack-based array:

myVariableSizedArray[3] = 2;

When your code is done with the array, it should remove it from the heap so that other variables can use
the memory. In C++, you use the delete command to do this.

delete[] myVariableSizedArray;

The brackets after delete indicate that you are deleting an array.

The C++ commands new and delete are similar to malloc () and free() from C.
The syntax of new and delete is simpler because you don’t need to know how many
bytes of memory are required.

Working with Pointers

20

There are other reasons to use heap memory besides dynamically allocating arrays. You can put any
variable in the heap by using a similar syntax:

int* myIntegerPointer = new int;

In this case, the pointer points to just a single integer value. To access this value, you need to dereference
the pointer. Think of dereferencing as following the pointer’s arrow to the actual value in the heap. To
set the value of the newly allocated heap integer, you would use code like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing the
pointer, you are changing the memory that it points to. If you were to reassign the pointer value, it
would point to the memory address 8, which is probably random garbage that will eventually make
your program crash.

Pointers don’t always point to heap memory. You can declare a pointer that points to a variable on the
stack, even another pointer. To get a pointer to a variable, you use the & “address of” operator:

int i = 8;
int* myIntegerPointer = &i; // Points to the variable with the value 8

C++ has a special syntax for dealing with pointers to structures. Technically, if you have a pointer to a
structure, you can access its fields by first dereferencing it with *, then using the normal . syntax, as in
the code that follows, which assumes the existence of a function called getEmployee ().

EmployeeT* anEmployee = getEmployee() ;

cout << (*anEmployee).salary << endl;

A Crash Course in C++

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the field
access in one step. The following code is equivalent to the preceding code, but is easier to read.

EmployeeT* anEmployee = getEmployee() ;
cout << anEmployee->salary << endl;

Normally, when you pass a variable into a function, you are passing by value. If a function takes an inte-
ger parameter, it is really a copy of the integer that you pass in. Pointers to stack variables are often used
in C to allow functions to modify variables in other stack frames, essentially passing by reference. By
dereferencing the pointer, the function can change the memory that represents the variable even though
that variable isn’t in the current stack frame. This is less common in C++ because C++ has a better mech-
anism, called references, which is covered below.

Strings in C++

There are three ways to work with strings of text in C++. There is the C-style, which represents strings as
arrays of characters; the C++ style, which wraps that representation in an easier-to-use string type; and
the general class of nonstandard approaches.

C-Style Strings

A string of text like “Hello, World” is internally represented as an array of characters with the character
'\0' representing the end of the string. As you've seen, arrays and pointers are sometimes related. You
could use either one to represent a string, as shown here:

char arrayString[20] = "Hello, World";
char* pointerString = "Hello, World";

For the arrayString, the compiler allocates space for 20 characters on the stack. The first 13 characters
in the array are filled in with 'H', 'e", etc., ending with the character ' \0'. The characters in positions
13 to 19 contain whatever random values happen to be in memory. The '\0' character tells code that
uses the string where the content of the string ends. Even though the array has a length of 20, functions
that process or output the string should ignore everything after the ' \0' character.

For the pointerstring, the compiler allocates enough memory on the stack just to hold the pointer.
The pointer points to an area of memory that the compiler has set aside to hold the constant string
“Hello, World.” In this string, there is also a ' \0' character after the 'd' character.

The C language provides a number of standard functions for working with strings, which are described
in the <cstring> header file. The details of the standard library are not covered here because C++ pro-
vides a much cleaner and simpler way of working with strings.

C++ Strings

C-style strings are important to understand because they are still frequently used by C++ programmers.
However, C++ includes a much more flexible string type. The string type, described by the <string>
header file, acts just like a basic type. Just like I/O streams, the string type lives in the “std” package.
The example that follows shows how strings can be used just like character arrays.

21

Chapter 1

// stringtest.cpp

#include <string>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
string myString = "Hello, World";

cout << "The value of myString is " << myString << endl;

return 0;

The magic of C++ strings is that you can use standard operators to work with them. Instead of using a
function, like strcat () in C to concatenate two strings, you can simply use +. If you've ever tried to use
the == operator to compare two C-style strings, you've discovered that it doesn’t work. == when used on
C-style strings is actually comparing the address of the character arrays, not their contents. With C++
strings, == actually compares two strings. The example that follows shows some of the standard opera-
tors in use with C++ strings.

// stringtest2.cpp

#include <string>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
string strl = "Hello";
string str2 = "World";
string str3 = strl + " " + str2;

cout << "strl is " << strl << endl;
cout << "str2 is " << str2 << endl;
cout << "str3 is " << str3 << endl;

if (str3 == "Hello World") {
cout << "str3 is what it should be." << endl;
} else {
cout << "Hmmm . . . str3 isn't what it should be." << endl;

return (0);

The preceding examples show just a few of the many features of C++ strings. Chapter 13 goes into fur-
ther detail.

22

A Crash Course in C++

Nonstandard Strings

There are several reasons why many C++ programmers don’t use C++-style strings. Some programmers
simply aren’t aware of the string type because it was not always part of the C++ specification. Others
have discovered over the years that the C++ string doesn’t provide the behavior they need and have
developed their own string type. Perhaps the most common reason is that development frameworks and
operating systems tend to have their own way of representing strings, such as the cString class in
Microsoft’s MFC. Often, this is for backward compatibility or legacy issues. When starting a project in
C++, it is very important to decide ahead of time how your group will represent strings.

References

The pattern for most functions is that they take in zero or more parameters, do some calculations, and
return a single result. Sometimes, however, that pattern is broken. You may be tempted to return two
values or you may want the function to be able to change the value of one of the variables that were
passed in.

In C, the primary way to accomplish such behavior is to pass in a pointer to the variable instead of the
variable itself. The only problem with this approach is that it brings the messiness of pointer syntax into
what is really a simple task. In C++, there is an explicit mechanism for “pass-by-reference.” Attaching &
to a type indicates that the variable is a reference. It is still used as though it was a normal variable, but
behind the scenes, it is really a pointer to the original variable. Below are two implementations of an
addone () function. The first will have no effect on the variable that is passed in because it is passed by
value. The second uses a reference and thus changes the original variable.

void addOne (int i)
{
i++; // Has no real effect because this is a copy of the original

}

void addOne (int& i)
{
i++; // Actually changes the original variable

}

The syntax for the call to the addone () function with an integer reference is no different than if the func-
tion just took an integer.

int myInt = 7;
addOne (myInt) ;

Exceptions

C++ is a very flexible language, but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well with
infinity). One of the language features that attempts to add a degree of safety back to the language is
exceptions.

23

Chapter 1

24

An exception is an unexpected situation. For example, if you are writing a function that retrieves a Web
page, several things could go wrong. The Internet host that contains the page might be down, the page
might come back blank, or the connection could be lost. In many programming languages, you would
handle this situation by returning a special value from the function, such as the NULL pointer. Exceptions
provide a much better mechanism for dealing with problems.

Exceptions come with some new terminology. When a piece of code detects an exceptional situation, it
throws an exception. Another piece of code catches the exception and takes appropriate action. The fol-
lowing example shows a function, divideNumbers (), that throws an exception if the caller passes in a
denominator of zero.

#include <stdexcept>

double divideNumbers (double inNumerator, double inDenominator)
{
if (inDenominator == 0) {
throw std::exception() ;

return (inNumerator / inDenominator) ;

When the throw line is executed, the function will immediately end without returning a value. If the
caller surrounds the function call with a try-catch block, as shown in the following code, it will receive
the exception and be able to handle it.

#include <iostream>
#include <stdexcept>

int main(int argc, char** argv)
{
try {
std::cout << divideNumbers (2.5, 0.5) << std::endl;
std::cout << divideNumbers (2.3, 0) << std::endl;
} catch (std::exception exception) ({
std::cout << "An exception was caught!" << std::endl;

}

The first call to divideNumbers () executes successfully, and the result is output to the user. The second
call throws an exception. No value is returned, and the only output is the error message that is printed
when the exception is caught. The output for the preceding block of code is:

5
An exception was caught!

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens to
the stack variables when an exception is thrown, and you have to be careful to properly catch and han-
dle the necessary exceptions. The preceding example used the built-in std: : exception exception type,
but it is preferable to write your own exception types that are more specific to the error being thrown.
Unlike the Java language, the C++ compiler doesn’t force you to catch every exception that might occur.

A Crash Course in C++

If your code never catches any exceptions but an exception is thrown, it will be caught by the program
itself, which will be terminated. These trickier aspects of exceptions are covered in much more detail in
Chapter 15

The Many Uses of const

The keyword const can be used in several different ways in C++. All of its uses are related, but there are
subtle differences. One of the authors has discovered that the subtleties of const make for excellent
interview questions! In Chapter 12, you will learn all of the ways that const can be used. The following
sections outline the most frequent uses.

Const Constants

If you assumed that the keyword const has something to do with constants, you have correctly uncov-
ered one of its uses. In the C language, programmers often use the preprocessor #define mechanism to
declare symbolic names for values that won’t change during the execution of the program, such as the
version number. In C++, programmers are encouraged to avoid #define in favor of using const to
define constants. Defining a constant with const is just like defining a variable, except that the compiler
guarantees that code cannot change the value.

const float kVersionNumber = "2.0";
const string kProductName = "Super Hyper Net Modulator";

Const to Protect Variables

In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a function that
a coworker of yours is writing, and you want to ensure that the function doesn’t change the value of a
parameter you pass in, you can tell your coworker to have the function take a const parameter. If the
function attempts to change the value of the parameter, it will not compile.

In the following code, a char* is automatically cast to a const char* in the call to
mysteryFunction () . If the author of mysteryFunction () attempts to change the values within the
character array, the code will not compile. There are actually ways around this restriction, but using
them requires conscious effort. C++ only protects against accidentally changing const variables.

// consttest.cpp
void mysteryFunction (const char* myString) ;

int main(int argc, char** argv)

{
char* myString = new char[2];
myString[0] = 'a';
myString[1] = '\0';

mysteryFunction (myString) ;

return (0);

25

Chapter 1

Const References

C

You will often find code that uses const reference parameters. At first, that seems like a contradiction.
Reference parameters allow you to change the value of a variable from within another context. const
seems to prevent such changes.

The main value in const reference parameters is efficiency. When you pass a variable into a function,
an entire copy is made. When you pass a reference, you are really just passing a pointer to the original
so the computer doesn’t need to make the copy. By passing a const reference, you get the best of both
worlds — no copy is made but the original variable cannot be changed.

const references become more important when you are dealing with objects because they can be large
and making copies of them can have unwanted side effects. Subtle issues like this are covered in
Chapter 12.

++ as an Object-Oriented Language

If you are a C programmer, you may have viewed the features covered so far in this chapter as convenient
additions to the C language. As the name C++ implies, in many ways the language is just a “better C.”
There is one major point that this view overlooks. Unlike C, C++ is an object-oriented language.

Object-oriented programming (OOP) is a very different, arguably more natural, way to write code.

If you are used to procedural languages such as C or Pascal, don’t worry. Chapter 3 covers all the back-
ground information you need to know to shift your mindset to the object-oriented paradigm. If you
already know the theory of OOP, the rest of this section will get you up to speed (or refresh your mem-
ory) on basic C++ object syntax.

Declaring a Class

26

A class defines the characteristics of an object. It is somewhat analogous to a struct except a class defines
behaviors in addition to properties. In C++, classes are usually declared in a header file and fully
defined in a corresponding source file.

A basic class definition for an airline ticket class is shown below. The class can calculate the price of the
ticket based on the number of miles in the flight and whether or not the customer is a member of the
“Elite Super Rewards Program.” The definition begins by declaring the class name. Inside a set of curly
braces, the data members (properties) of the class and its methods (behaviors) are declared. Each data
member and method is associated with a particular access level: public, protected, or private. These
labels can occur in any order and can be repeated.

// AirlineTicket.h
#include <string>
class AirlineTicket
{

public:
AirlineTicket () ;

A Crash Course in C++

~AirlineTicket () ;
int calculatePriceInDollars () ;

std::string getPassengerName

) g

(

void setPassengerName (std: :string inName) ;

int getNumberOfMiles () ;

void setNumberOfMiles (int inMiles) ;

bool getHasEliteSuperRewardsStatus () ;

void setHasEliteSuperRewardsStatus (bool inStatus) ;
private:

std::string mPassengerName;

int mNumberOfMiles;

bool fHasEliteSuperRewardsStatus;

¥

The method that has the same name of the class with no return type is a constructor. It is automatically
called when an object of the class is created. The method with a tilde (~) character followed by the class
name is a destructor. It is automatically called when the object is destroyed.

The sample program that follows makes use of the class declared in the previous example. This example
shows the creation of a stack-based AirlineTicket object as well as a heap-based object.

// AirlineTicketTest.cpp

#include <iostream>
#include "AirlineTicket.h"

using namespace std;

int main(int argc, char** argv)
{
AirlineTicket myTicket; // Stack-based AirlineTicket

myTicket.setPassengerName ("Sherman T. Socketwrench");
myTicket.setNumberOfMiles (700) ;

int cost = myTicket.calculatePriceInDollars();

cout << "This ticket will cost $" << cost << endl;

AirlineTicket* myTicket2; // Heap-based AirlineTicket

myTicket2 = new AirlineTicket(); // Allocate a new object
myTicket2->setPassengerName ("Laudimore M. Hallidue");
myTicket2->setNumberOfMiles (2000) ;
myTicket2->setHasEliteSuperRewardsStatus (true) ;

int cost2 = myTicket2->calculatePriceInDollars();

cout << "This other ticket will cost $" << cost2 << endl;
delete myTicket2;

return 0;

27

Chapter 1

The definitions of the AirlineTicket class methods are shown below.

// AirlineTicket.cpp

#include <iostream>
#include "AirlineTicket.h"

using namespace std;

AirlineTicket::AirlineTicket ()

{
// Initialize data members
fHasEliteSuperRewardsStatus = false;
mPassengerName = "Unknown Passenger";
mNumberOfMiles = 0;
}
AirlineTicket::~AirlineTicket ()
{
// Nothing much to do in terms of cleanup
}
int AirlineTicket::calculatePriceInDollars ()
{
if (getHasEliteSuperRewardsStatus()) {
// Elite Super Rewards customers fly for free!
return 0;
}
// The cost of the ticket is the number of miles times
// 0.1. Real airlines probably have a more complicated formula!
return static_cast<int>((getNumberOfMiles() * 0.1));
}
string AirlineTicket::getPassengerName ()
{
return mPassengerName;
}
void AirlineTicket::setPassengerName (string inName)
{
mPassengerName = inName;
}
int AirlineTicket::getNumberOfMiles ()
{
return mNumberOfMiles;
}
void AirlineTicket::setNumberOfMiles (int inMiles)
{
mNumberOfMiles = inMiles;
}

28

A Crash Course in C++

bool AirlineTicket::getHasEliteSuperRewardsStatus ()

{

}

return (fHasEliteSuperRewardsStatus) ;

void AirlineTicket::setHasEliteSuperRewardsStatus (bool inStatus)

{

}

fHasEliteSuperRewardsStatus = inStatus;

The preceding example exposes you to the general syntax for creating and using classes. Of course, there
is much more to learn. Chapters 8 and 9 go into more depth about the specific C++ mechanisms for
defining classes.

Your First Useful C++ Program

The following program builds on the employee database example used earlier when discussing structs.
This time, you will end up with a fully functional C++ program that uses many of the features discussed
in this chapter. This real-world example includes the use of classes, exceptions, streams, arrays, names-
paces, references, and other language features.

An Employee Records System

A program to manage a company’s employee records needs to be flexible and have useful features. The
feature set for this program includes the following.

Q

U 00 oo

The ability to add an employee

The ability to fire an employee

The ability to promote an employee

The ability to view all employees, past and present
The ability to view all current employees

The ability to view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the com-
pany. A separate UserInterface file provides the interactivity of the program.

The Employee Class

The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Methods also exist to adjust the employee’s salary and employment status.

29

Chapter 1

Employee.h

The Employee.h file declares the behavior of the Employee class. The sections of this file are described
individually in the material that follows.

30

// Employee.h
#include <iostream>

namespace Records {

The first few lines of the file include a comment indicating the name of the file and the inclusion of the

stream functionality.

This code also declares that the subsequent code, contained within the curly braces, will live in the
Records namespace. Records is the namespace that is used throughout this program for application-

specific code.

const int kDefaultStartingSalary = 30000;

This constant, representing the default starting salary for new employees, lives in the Records names-
pace. Other code that lives in Records can access this constant simply as kDefaultStartingSalary.
Elsewhere, it must be referenced as Records: : kDefaultStartingSalary.

class Employee
{

public:
Employee () ;
void promote (int inRaiseAmount = 1000) ;
void demote (int inDemeritAmount = 1000);
void hire(); // Hires or rehires the employee
void fire(); // Dismisses the employee
void display(); // Outputs employee info to the console

// Accessors and setters

void

std: :string
void

std: :string
void

int

void

int

bool

setFirstName (std: :string inFirstName) ;
getFirstName () ;

setLastName (std: :string inLastName) ;
getLastName () ;

setEmployeeNumber (int inEmployeeNumber) ;
getEmployeeNumber () ;

setSalary (int inNewSalary) ;

getSalary () ;

getIsHired () ;

The Employee class is declared, along with its public methods. The promote () and demote () methods
both have integer parameters that are specified with a default value. In this way, other code can omit the
integer parameters and the default will automatically be used.

A Crash Course in C++

A number of accessors provide mechanisms to change the information about an employee or query the
current information about an employee:

private:
std: :string
std: :string
int
int
bool
3i

mFirstName;
mLastName;
mEmployeeNumber ;
mSalary;

fHired;

Finally, the data members are declared as private so that other parts of the code cannot modify them
directly. The accessors provide the only public way of modifying or querying these values.

Employee.cpp

The implementations for the Employee class methods are shown here:

// Employee.cpp
#include <iostream>
#include "Employee.h"
using namespace std;
namespace Records {

Employee: :Employee ()
{

mFirstName = "";
mLastName = "";
mEmployeeNumber =

_1;

mSalary = kDefaultStartingSalary;

fHired = false;

The Employee constructor sets the initial values for the Employee’s data members. By default, new
employees have no name, an employee number of -1, the default starting salary, and a status of not

hired.

void Employee: :promote (int inRaiseAmount)

{

setSalary(getSalary() + inRaiseAmount) ;

}

void Employee::demote (int inDemeritAmount)

{

setSalary(getSalary() - inDemeritAmount) ;

31

Chapter 1

32

The promote () and demote () methods simply call the setsalary () method with a new value. Note
that the default values for the integer parameters do not appear in the source file. They only need to
exist in the header.

void Employee: :hire()
{

fHired = true;
}

void Employee::fire()
{
fHired = false;

The hire () and fire () methods just set the fHired data member appropriately.

void Employee: :display ()

{
cout << "Employee: " << getLastName() << ", " << getFirstName() << endl;
CoUl € Vssssssosscsssssssssososos " << endl;
cout << (fHired ? "Current Employee" : "Former Employee") << endl;
cout << "Employee Number: " << getEmployeeNumber () << endl;

cout << "Salary: $" << getSalary() << endl;
cout << endl;

The display () method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such as
mSalary, directly instead of using the getsalary () accessor. However, it is considered good style to
make use of accessors when they exist, even within the class.

// Accessors and setters

void Employee::setFirstName (string inFirstName)
{
mFirstName = inFirstName;

}

string Employee: :getFirstName ()
{
return mFirstName;

}

void Employee::setLastName (string inLastName)
{
mLastName = inLastName;

}

string Employee: :getLastName ()
{

return mLastName;

A Crash Course in C++

void Employee: :setEmployeeNumber (int inEmployeeNumber)
{

mEmployeeNumber = inEmployeeNumber;

}

int Employee: :getEmployeeNumber ()
{

return mEmployeeNumber;

void Employee::setSalary(int inSalary)
{
mSalary = inSalary;

}

int Employee::getSalary ()
{

return mSalary;

}

bool Employee::getIsHired()
{

return fHired;

A number of accessors and setters perform the simple task of getting and setting values. Even though
these methods seem trivial, it’s better to have trivial accessors and setters than to make your data mem-
bers public. In the future, you may want to perform bounds checking in the setSalary () method, for
example.

EmployeeTest.cpp

As you write individual classes, it is often useful to test them in isolation. The following code includes a
main () function that performs some simple operations using the Employee class. Once you are confi-
dent that the Employee class works, you should remove or comment-out this file so that you don’t
attempt to compile your code with multiple main () functions.

// EmployeeTest.cpp
#include <iostream>
#include "Employee.h"

using namespace std;
using namespace Records;

int main (int argc, char** argv)

{

cout << "Testing the Employee class." << endl;

33

Chapter 1

Employee emp;

emp.setFirstName ("Marni") ;
emp.setLastName ("Kleper") ;
emp . setEmployeeNumber (71) ;
emp.setSalary (50000) ;

emp .promote () ;

emp .promote (50) ;
emp.hire();

emp.display () ;

return 0;

The Database Class

The Database class uses an array to store Employee objects. An integer called mNextSlot is used as a
marker to keep track of the next unused array slot. This method for storing objects is probably not ideal
because the array is of a fixed size. In Chapters 4 and 21, you will learn about data structures in the C++
standard library that you can use instead

Database.h

// Database.h

#include <iostream>
#include "Employee.h"

namespace Records {

const int kMaxEmployees = 100;
const int kFirstEmployeeNumber = 1000;

Two constants are associated with the database. The maximum number of employees is a constant
because the records are kept in a fixed-size array. Because the database will also take care of automati-
cally assigning an employee number to a new employee, a constant defines where the numbering begins.

class Database
{
public:
Database() ;
~Database () ;

Employee& addEmployee (std::string inFirstName, std::string inLastName) ;

Employee& getEmployee (int inEmployeeNumber) ;
Employee& getEmployee(std::string inFirstName, std::string inLastName) ;

The database provides an easy way to add a new employee by providing a first and last name. For con-
venience, this method will return a reference to the new employee. External code can also get an

34

A Crash Course in C++

employee reference by calling the getEmployee () method. Two versions of this method are declared.
One allows retrieval by employee number. The other requires a first and last name.

void displayAll();
void displayCurrent () ;
void displayFormer () ;

Because the database is the central repository for all employee records, it has methods that will output
all employees, the employees who are currently hired, and the employees who are no longer hired.

protected:
Employee mEmployees [kMaxEmployees] ;
int mNextSlot;
int mNextEmployeeNumber ;

b5
}

The mEmployees array is a fixed-size array that contains the Employee objects. When the database is
created, this array will be filled with nameless employees, all with an employee number of -1. When
the addEmployee () method is called, one of these blank employees will be populated with real data.
The mNextSlot data member keeps track of which blank employee is next in line to be populated. The
mNextEmployeeNumber data member keeps track of what employee number will be assigned to the
new employee.

Database.cpp

// Database.cpp

#include <iostream>
#include <stdexcept>

#include "Database.h"

using namespace std;

namespace Records {
Database: :Database ()
{

mNextSlot = 0;
mNextEmployeeNumber = kFirstEmployeeNumber;

Database: : ~Database ()
{
}

The Database constructor takes care of initializing the next slot and next employee number members to

their starting values. mNextS1lot is initialized to zero so that when the first employee is added, it will go
into slot 0 of the mEmployees array.

35

Chapter 1

Employee& Database::addEmployee (string inFirstName, string inLastName)

{
if (mNextSlot >= kMaxEmployees) {
cerr << "There is no more room to add the new employee!" << endl;
throw exception();

Employee& theEmployee = mEmployees [mNextSlot++];
theEmployee.setFirstName (inFirstName) ;
theEmployee.setLastName (inLastName) ;

theEmployee. setEmployeeNumber (mNextEmployeeNumber++) ;
theEmployee.hire() ;

return theEmployee;

The addEmployee () method fills in the next “blank” employee with actual information. An initial check
makes sure that the mEmployees array is not full and throws an exception if it is. Note that after their
use, the mNextSlot and mNextEmployeeNumber data members are incremented so that the next
employee will get a new slot and number.

Employee& Database::getEmployee (int inEmployeeNumber)

{
for (int i = 0; i < mNextSlot; i++) {
if (mEmployees[i].getEmployeeNumber () == inEmployeeNumber) {
return mEmployees|[i];

cerr << "No employee with employee number " << inEmployeeNumber << endl;
throw exception();

Employee& Database::getEmployee (string inFirstName, string inLastName)

{
for (int i = 0; 1 < mNextSlot; i++) {
if (mEmployees[i].getFirstName() == inFirstName &&
mEmployees[i] .getLastName () == inLastName) {

return mEmployees[i];

cerr << "No match with name " << inFirstName << " " << inLastName << endl;
throw exception();

Both versions of getEmployee () work in similar ways. The methods loop over all nonblank employees
in the mEmployees array and check to see if each Employee is a match for the information passed to the
method. If no match is found, an error is output and an exception is thrown.

36

A Crash Course in C++

void Database::displayAll ()
{
for (int i = 0; i < mNextSlot; i++) {
mEmployees[i] .display () ;

}

void Database::displayCurrent ()
{
for (int i = 0; i < mNextSlot; i++)
if (mEmployees[i].getIsHired())
mEmployees([i] .display () ;

{
{

}
void Database::displayFormer ()
{
for (int i = 0; i < mNextSlot; i++) {

if (!mEmployees[i].getIsHired()) {
mEmployees[i] .display() ;

The display methods all use a similar algorithm. They loop through all nonblank employees and tell
each employee to display itself to the console if the criterion for display matches.

DatabaseTest.cpp
A simple test for the basic functionality of the database follows:
// DatabaseTest.cpp
#include <iOstream>
#include "Database.h"

using namespace std;
using namespace Records;

int main(int argc, char** argv)
{
Database myDB;

Employee& empl = myDB.addEmployee ("Greg", "Wallis");
empl.fire();

Employee& emp?2 = myDB.addEmployee("Scott", "Kleper");
emp2.setSalary (100000) ;

37

Chapter 1

Employee& emp3 = myDB.addEmployee ("Nick", "Solter");
emp3.setSalary(10000) ;
emp3.promote() ;

cout << "all employees: " << endl;
cout << endl;
myDB.displayAll () ;

cout << endl;

cout << "current employees: " << endl;
cout << endl;

myDB.displayCurrent () ;

cout << endl;

cout << "former employees: " << endl;
cout << endl;

myDB.displayFormer () ;

The User Interface

The final part of the program is a menu-based user interface that makes it easy for users to work with
the employee database.

Userinterface.cpp
// UserInterface.cpp

#include <iOstream>
#include <stdexcept>

#include "Database.h"

using namespace std;
using namespace Records;

int displayMenu() ;

void doHire (Database& inDB) ;
void doFire (Database& inDB) ;
void doPromote (Database& inDB) ;
void doDemote (Database& inDB) ;

int main(int argc, char** argv)
{

Database employeeDB;

bool done = false;

while (!done) {
int selection = displayMenu() ;

switch (selection) {

38

A Crash Course in C++

case 1:
doHire (employeeDB) ;
break;

case 2:
doFire (employeeDB) ;
break;

case 3:
doPromote (employeeDB) ;
break;

case 4:
employeeDB.displayAll () ;
break;

case 5:
employeeDB.displayCurrent () ;
break;

case 6:
employeeDB.displayFormer () ;
break;

case 0:
done = true;
break;

default:

cerr << "Unknown command." << endl;

return 0;

Themain () function is a loop that displays the menu, performs the selected action, then does it all
again. For most actions, separate functions are defined. For simpler actions, like displaying employees,

the actual code is put in the appropriate case.

int displayMenu ()

{

int selection;

cout << endl;

cout << "Employee Database" << endl;

COUE <R Nosssooscoossoo=== " << endl;

Hire a new employee" << endl;

Fire an employee" << endl;

Promote an employee" << endl;

List all employees" << endl;

List all current employees" << endl;
List all previous employees" << endl;

cout << "1
cout << "2
cout << "3
cout << "4
cout << "5
cout << "6
cout << "0) Quit" << endl;
cout << endl;

cout << "---> ";

cin >> selection;

return selection;

39

Chapter 1

The displayMenu () function simply outputs the menu and gets input from the user. One important
note is that this code assumes that the user will “play nice” and type a number when a number is
requested. When you read about I/O in Chapter 14, you will learn how to protect against bad input

40

void doHire (Database& inDB)

{

string firstName;
string lastName;

cout << "First name? ";
cin >> firstName;
cout << "Last name? ";
cin >> lastName;

try {
inDB.addEmployee (firstName, lastName) ;
} catch (std::exception ex) {
cerr << "Unable to add new employee!" << endl;

The doHire () function simply gets the new employee’s name from the user and tells the database to
add the employee. It handles errors somewhat gracefully by outputting a message and continuing.

void doFire (Database& inDB)

{

int employeeNumber ;

cout << "Employee number? ";
cin >> employeeNumber;

try {

Employee& emp = inDB.getEmployee (employeeNumber) ;

emp.fire();

cout << "Employee " << employeeNumber << " has been terminated." << endl;
} catch (std::exception ex)

cerr << "Unable to terminate employee!" << endl;

void doPromote (Database& inDB)

{

int employeeNumber;

int raiseAmount;

cout << "Employee number? ";

cin >> employeeNumber;

cout << "How much of a raise? ";
cin >> raiseAmount;

A Crash Course in C++

try {
Employee& emp = inDB.getEmployee (employeeNumber) ;
emp .promote (raiseAmount) ;
} catch (std::exception ex) {
cerr << "Unable to promote employee!" << endl;
}
}

doFire () and doPromote () both ask the database for an employee by their employee number and then
use the public methods of the Employee object to make changes.

Evaluating the Program

The preceding program covers a number of topics from the very simple to the more obscure. There are a
number of ways that you could extend this program. For example, the user interface does not expose all
of the functionality of the Database or Employee classes. You could modify the UI to include those fea-
tures. You could also change the Database class to remove fired employees from the mEmployees array,
potentially saving space.

If there are parts of this program that don’t make sense, consult the preceding sections to review those
topics. If something is still unclear, the best way to learn is to play with the code and try things out.

For example, if you're not sure how to use the ternary operator, write a short main () function that tries
it out.

Summary

Now that you know the fundamentals of C++, you are ready to become a professional C++ programmer.
The next five chapters will introduce you to several important design concepts. By covering design at a
high-level without getting into too much actual code, you will gain an appreciation for good program
design without getting bogged down in the syntax.

When you start getting deeper into the C++ language later in the book, refer back to this chapter to brush

up on parts of the language that you may need to review. Going back to some of the sample code in this
chapter may be all you need to see to bring a forgotten concept back to the forefront of your mind.

41

|

Designing Professional
C++ Programs

Before writing a single line of code in your application, you should design your program. What
data structures will you use? What classes will you write? This plan is especially important when
you program in groups. Imagine sitting down to write a program with no idea what your
coworker, who is working on the same program, is planning! In this chapter, we’ll teach you how
to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect of
the software-engineering process. Too often programmers jump into applications without a clear
plan: they design as they code. This approach inevitably leads to convoluted and overly compli-
cated designs. It also makes the development, debugging, and maintenance tasks more difficult.
Although counterintuitive, investing extra time at the beginning of a project to design it properly
actually saves time over the life of the project.

Chapter 1 gave you a refresher course in the C++ syntax and feature set. Chapter 7 returns to the
details of C++ syntax, but the remainder of Part I focuses on programming design.

After finishing this chapter, you will understand:

0 The definition of programming design

The importance of programming design

Q

QO The aspects of design that are unique to C++

QO The two fundamental themes for effective C++ design: abstraction and reuse
Q

The specific components that make up a program design in C++

Chapter 2

What Is Programming Design?

Your program design, or software design, is the specification of the architecture that you will implement to
fulfill the functional and performance requirements of the program. Informally, the design is simply how
you plan to write the program. You should generally write your design in the form of a design docu-
ment. Although every company or project has its own variation of a desired design document format,
most design documents share the same general layout, including two main parts:

1. The gross subdivision of the program into subsystems, including interfaces and dependencies
between the subsystems, data flow between the subsystems, input and output to and from each
subsystem, and general threading model.

2. The details of each subsystem, including subdivision into classes, class hierarchies, data struc-
tures, algorithms, specific threading model, and error-handling specifics.

The design documents usually include diagrams and tables showing subsystem interactions and class
hierarchies. The exact format of the design document is less important than the process of thinking
about your design.

The point of designing is to think about your program before you write it.

You should generally complete your design before you begin coding. The design should provide a map
of the program that any reasonable programmer could follow in order to implement the application. Of
course, it is inevitable that the design will need to be modified once you begin coding and you encounter
issues that you didn’t think of earlier. Your software-engineering process should provide you the flexibility
to make these changes. Chapter 6 describes various software-engineering process models in more detail.

The Importance of Programming Design

44

It’s tempting to skip the design step, or to perform it only cursorily, in order to begin programming as
soon as possible. There’s nothing like seeing code compiling and running to give you the impression
that you have made progress. It seems like a waste of time to formalize a design when you already
know, more or less, how you want to structure your program. Besides, writing a design document just
isn’t as much fun as coding. If you wanted to write papers all day, you wouldn’t be a computer pro-
grammer! As programmers ourselves, we understand this temptation to begin coding immediately, and
have certainly succumbed to it on occasion. However, it invariably leads to problems on all but the sim-
plest projects.

To understand the importance of programming design it helps to examine a real-world analogy. Imagine
that you own a plot of land on which you want to build a house. When the builder shows up to begin
construction you ask to see the blueprints. “What blueprints?” he responds, “I know what I'm doing.

I don’t need to plan every little detail ahead of time. Two-story house? No problem — I did a one-story
house a few months ago — I'll just start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed with the project. A few
months later you notice that the plumbing appears to run outside the house instead of inside the walls.

Designing Professional C++ Programs

When you query the builder about this anomaly he says, “Oh. Well, I forgot to leave space in the walls
for the plumbing. I was so excited about this new drywall technology it just slipped my mind. But it
works just as well outside, and functionality is the most important thing.” You're starting to have your
doubts about his approach, but, against your better judgment, you allow him to continue his work.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink. The
builder excuses himself by saying, “We were already 2/3 done with the kitchen by the time we realized
there wasn’t space for the sink. Instead of starting over we just added on a separate sink room next door.
It works, right?”

Writing a program without a design is like building a house without blueprints.

Do any of the builder’s excuses sound familiar if you translate them to the software domain? Have you
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside the
house? For example, maybe you forgot to include locking in your queue data structure that is shared
between multiple threads. By the time you realized the problem, it seemed easier to require all the
threads to remember to do their own locking. Sure, it’s ugly, but it works, you said. That is, until some-
one new joins the project who assumes that the locking is built into the data structure, fails to ensure
mutual exclusion in her access to the shared data, and causes a race condition bug that takes three weeks
to track down.

Formalizing a design before you code helps you determine how everything fits together. Just as
blueprints for a house show how the rooms relate to each other and work together to fulfill the require-
ments of the house, the design for a program shows how the subsystems of the program relate to each
other and work together to fulfill the software requirements. Without a design plan, you are likely to
miss connections between subsystems, possibilities for reuse or shared information, and the simplest
ways to accomplish tasks. Without the “big picture” that the design gives, you might become so bogged
down in individual implementation details that you lose track of the overarching architecture and goals.
Furthermore, the design provides written documentation to which all members of the project can refer.

If the above analogy still hasn’t convinced you to design before you code, here is an example where
jumping directly into coding fails to lead to an optimal design. Suppose that you want to write a chess
program. Instead of designing the entire program before you begin programming, you decide to jump in
with the easiest parts and move slowly to the more difficult parts. Following the object-oriented perspec-
tive introduced in Chapter 1 and covered in more detail in Chapter 3, you decide to model your chess
pieces with classes. The pawn is the simplest chess piece, so you opt to start there. After considering the
features and behaviors of a pawn, you write a class with the properties and behaviors shown in the
following table:

Class Properties Behaviors
Pawn Location on Board Move
Color (Black or White) Check Move Legality
Captured Draw
Promote (Upon Reaching Opposing
Side of the Board)

45

Chapter 2

Of course, you didn’t actually write the table. You went straight to the implementation. Happy with that
class you move on to the next easiest piece: the bishop. After considering its attributes and functionality,
you write a class with the properties and behaviors shown in the next table:

Class Properties Behaviors

Bishop Location on Board Move
Color (Black or White) Check Move Legality
Captured Draw

Again, you didn’t generate a table, because you jumped straight to the coding phase. However, at this
point you begin to suspect that you might be doing something wrong. The bishop and the pawn look
similar. In fact, their properties are identical and they share many behaviors. Although the implementa-
tions of the move behavior might differ between the pawn and the bishop, both pieces need the ability to
move. If you had designed your program before jumping into coding, you would have realized that the
various pieces are actually quite similar, and that you should find some way to write the common func-
tionality only once. Chapter 3 explains the object-oriented design techniques for doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program. For
example, you cannot accurately represent the location on the board in a chess piece class without know-
ing how you will model the board. On the other hand, perhaps you will design your program so that the
board manages pieces in a way that doesn’t require them to know their own locations. In either case,
encoding the location in the piece classes before designing the board leads to problems. To take another
example, how can you write a draw method for a piece without first deciding your program’s user inter-
face? Will it be graphical or text-based? What will the board look like? The problem is that subsystems of
a program do not exist in isolation — they interrelate with other subsystems. Most of the design work
determines and defines these relationships.

What's Different about C++ Design?

46

There are several aspects of the C++ language that make designing for C++ different, and more compli-
cated, than designing for other languages.

Q First, C++ has an immense feature set. It is almost a complete superset of the C language, plus
classes and objects, operator overloading, exceptions, templates, and many other features. The
sheer size of the language makes design a daunting task.

Q Second, C++ is an object-oriented language. This means that your designs should include class
hierarchies, class interfaces, and object interactions. This type of design is quite different from
“traditional” design in C or other procedural languages. Chapter 3 focuses on object-oriented
design in C++.

Q Another unique aspect of C++ is its numerous facilities for designing generic and reusable code.
In addition to basic classes and inheritance, you can use other language facilities such as tem-
plates and operator overloading for effective design. Chapter 5 covers design techniques for
reusable code.

Designing Professional C++ Programs

Q Additionally, C++ provides a useful standard library, including a string class, I/O facilities, and
many common data structures and algorithms. Also, many design patterns, or common ways to
solve problems, are applicable to C++. Chapter 4 covers design with the standard library and
introduces design patterns.

Because of all of these issues, tackling a design for a C++ program can be overwhelming. One of the
authors has spent entire days scribbling design ideas on paper, crossing them out, writing more ideas,
crossing those out, and repeating the process. Sometimes this process is helpful, and, at the end of those
days (or weeks), leads to a clean, efficient design. Other times it can be frustrating, and leads nowhere.
It’s important to remain cognizant of whether or not you are making real progress. If you find that you
are stuck, you can take one of the following actions:

Q Ask for help. Consult a coworker, mentor, book, newsgroup, or Web page.
QO Work on something else for a while. Come back to this design choice later.

QO Make a decision and move on. Even if it’s not an ideal solution, decide on something and try to
work with it. An incorrect choice will soon become apparent. However, it may turn out to be an
acceptable method. Perhaps there is no clean way to accomplish what you want to accomplish
with this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic strat-
egy to fulfill your requirements.

Keep in mind that good design is hard, and getting it right takes practice. Don’t
expect to become an expert overnight, and don’t be surprised if you find it more dif-
ficult to master C++ design than C++ coding.

Two Rules for C++ Design

There are two fundamental design rules in C++: abstraction and reuse. These guidelines are so important
that they can be considered themes of this book. They come up repeatedly throughout the text, and
throughout effective C++ program designs in all domains.

Abstraction

The principle of abstraction is easiest to understand through a real-world analogy. A television is a simple
piece of technology that can be found in most homes. You are probably familiar with its features: you
can turn it on and off, change the channel, adjust the volume, and add external components such as
speakers, VCRs, and DVD players. However, can you explain how it works inside the black box? That is,
do you know how it receives signals over the air or through a cable, translates them, and displays them
on the screen? We certainly can’t explain how a television works, yet we are quite capable of using it.
That is because the television clearly separates its internal implementation from its external interface. We
interact with the television through its interface: the power button, channel changer, and volume control.
We don’t know, nor do we care, how the television works; we don’t care whether it uses a cathode ray
tube or some sort of alien technology to generate the image on our screen. It doesn’t matter because it
doesn’t affect the interface.

47

Chapter 2

Benefiting from Abstraction

The abstraction principle is similar in software. You can use code without knowing the underlying
implementation. As a trivial example, your program can make a call to the sqrt () function declared in
the header file <cmath> without knowing what algorithm the function actually uses to calculate the
square root. In fact, the underlying implementation of the square root calculation could change between
releases of the library, and as long as the interface stays the same, your function call will still work. The
principle of abstraction extends to classes as well. As introduced in Chapter 1, you can use the cout
object of class ostream to stream data to standard output like this:

cout << "This call will display this line of text\n";

In this line, you use the documented interface of the cout insertion operator with a character array.
However, you don’t need to understand how cout manages to display that text on the user’s screen.
You need only know the public interface. The underlying implementation of cout is free to change as
long as the exposed behavior and interface remain the same. Chapter 14 covers 1/0O streams in more
detail.

Incorporating Abstraction in Your Design

48

You should design functions and classes so that you and other programmers can use them without
knowing, or relying on, the underlying implementations. To see the difference between a design that
exposes the implementation and one that hides it behind an interface, consider the chess program again.
You might want to implement the chess board with a two-dimensional array of pointers to ChessPiece
objects. You could declare and use the board like this:

ChessPiece* chessBoard[10][10];

ChessBoard[0] [0] = new Rook() ;

However, that approach fails to use the concept of abstraction. Every programmer who uses the chess
board knows that it is implemented as a two-dimensional array. Changing that implementation to some-
thing else, such as an array of vectors, would be difficult, because you would need to change every use
of the board in the entire program. There is no separation of interface from implementation.

A better approach is to model the chess board as a class. You could then expose an interface that hides
the underlying implementation details. Here is an example of the ChessBoard class:

Class ChessBoard {
public:
// This example omits constructors, destructors, and the assignment operator.
void setPieceAt (ChessPiece* piece, int x, int y);
ChessPiece& getPieceAt (int x, int y);
bool isEmpty(int x, int y);
protected:
// This example omits data members.
}i

Note that this interface makes no commitment to any underlying implementation. The ChessBoard
could easily be a two-dimensional array, but the interface does not require it. Changing the implementa-
tion does not require changing the interface. Furthermore, the implementation can provide additional
functionality, such as bounds checking, that you were unable to do with the first approach.

Designing Professional C++ Programs

Hopefully this example convinced you that abstraction is an important technique in C++ programming.
Chapters 3 and 5 cover abstraction and object-oriented design in more detail, and Chapters 8 and 9 pro-
vide all the details about writing your own classes.

Reuse

The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world anal-
ogy to understand this concept. Suppose that you give up your programming career in favor of work as
a baker. On your first day of work, the head baker tells you to bake cookies. In order to fulfill his orders
you find the recipe for chocolate-chip cookies in the cookbook, mix the ingredients, form cookies on the
cookie sheet, and place the cookie sheet in the oven to bake. The head baker is pleased with the result.

Now, we are going to point out something so obvious that it will surprise you: you didn’t build your
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour, or
form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if you're a
real cook, but what if you're a programmer writing a baking simulation game? In that case, you would
think nothing of writing every component of the program, from the chocolate chips to the oven.
However, you could save yourself time by looking around for code to reuse. Perhaps your office-mate
wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t do every-
thing you need, but you might be able to modify it and add the necessary functionality.

To point out something else that you took for granted, you followed a recipe for the cookies instead of
making up your own. Again, that goes without saying. However, in C++ programming, it does not go
without saying. Although there are standard ways of approaching problems that arise over and over in
C++, many programmers persist in reinventing these strategies in each design.

Reusing Code

The idea of using existing code is not new to you. You've been reusing code from the first day you
printed something with cout. You didn’t write the code to actually print your data to the screen. You
used the existing ostream implementation to do the work.

Unfortunately, programmers generally do not take advantage of all the available code. Your designs
should take into account existing code and reuse it when appropriate.

For example, suppose that you want to write an operating system scheduler. The scheduler is the com-
ponent of the operating system that is responsible for deciding which processes run, and for how long.
Since you want to implement priority-based scheduling, you realize that you need a priority queue on
which to store the processes waiting to run. A naive approach to this design is to write your own priority
queue. However, you should know that the C++ standard template library (STL) provides a
priority_queue container that you can use to store objects of any type. Thus, you should incorporate
this priority_queue from the STL into your design for the scheduler instead of rewriting your own
priority queue. Chapter 4 covers code reuse in more detail, and introduces the standard template library.

Writing Reusable Code

The design theme of reuse applies to code you write as well as to code that you use. You should design
your programs so that you can reuse your classes, algorithms, and data structures. You and your
coworkers should be able to utilize these components in both the current project and in future projects.
In general, you should avoid designing overly specific code that is applicable only to the case at hand.

49

Chapter 2

One language technique for writing general-purpose code in C++ is the template. The following exam-
ple shows a templatized data structure. If you've never seen this syntax before, don’t worry! Chapter 11
explains the syntax in depth.

Instead of writing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider writ-
ing a generic GameBoard template that can be used for any type of two-dimensional board game such as
chess or checkers. You would need only to change the class declaration so that it takes the piece to store
as a template parameter instead of hard-coding it in the interface. The template could look something
like this:

template <typename PieceType>
Class GameBoard ({
public:
// This example omits constructors, destructors, and the assignment operator.
void setPieceAt (PieceType* piece, int x, int y);
PieceType& getPieceAt (int x, int y);
bool isEmpty(int x, int y);
protected:
// This example omits data members.
}i

With this simple change in the interface, you now have a generic game board class that you can use for
any two-dimensional board game. Although the code change is simple, it is important to make these
decisions in the design phase, so that you are able to implement the code effectively and efficiently.

Reusing Ideas

As the baker example illustrates, it would be ludicrous to reinvent recipes for every dish that you
make. However, programmers often make an equivalent mistake in their designs. Instead of utilizing
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time they
design a program. However, many design patterns appear in myriad different C++ applications. As a
C++ programmer, you should familiarize yourself with these patterns so that you can incorporate them
effectively into your program designs.

For example, you might want to design your chess program so that you have a single ErrorLogger
object that serializes all errors from different components to a log file. When you try to design your
ErrorLogger class, you realize that it would be disastrous to have more than one object instantiated
from the ErrorLogger class in a single program. You also want to be able to access this ErrorLogger
object from anywhere in your program. These requirements of a single, globally accessible, instance of
a class arise frequently in C++ programs, and there is a standard strategy to implement them, called

the singleton. Thus, a good design at this point would specify that you want to use the singleton pattern.
Chapters 5, 25, and 26 cover design patterns and techniques in much more detail.

Designing a Chess Program

50

This section introduces a systematic approach to designing a C++ program in the context of a simple
chess game application. In order to provide a complete example, some of the steps refer to concepts cov-
ered in later chapters. You should read this example now, in order to obtain an overview of the design
process, but you might also consider rereading it after you have finished reading Part I.

Designing Professional C++ Programs

Requirements

Before embarking on the design, it is important to possess clear requirements for the program’s function-
ality and efficiency. Ideally, these requirements would be documented in the form of a requirements
specification. The requirements for the chess program would contain the following types of specifica-
tions, although in more detail and number:

Q The program will support the standard rules of chess.

Q The program will support two human players. The program will not provide an artificially
intelligent computer player.

Q The program will provide a text-based interface:
Q The program will render the game board and pieces in ASCII text.

Q Players will express their moves by entering numbers representing locations on the
chessboard.

The requirements ensure that you design your program so that it performs as its users expect. You
would not want to waste time designing and coding a graphical user interface for the chess game if the
users desire only a text-based interface. Conversely, it would be important to be aware of a user prefer-
ence for a graphical user interface, so that you don’t design the program in a way that precludes that
possibility.

Design Steps

You should take a systematic approach to designing your program, working from the general to the spe-
cific. The following steps do not always apply to all programs, but they provide a general guideline.
Your design should include diagrams and tables as appropriate. This example includes sample diagrams
and tables. Feel free to follow the format used here or to invent your own.

There is no “right” way to draw software design diagrams as long as they are clear and meaningful to
yourself and your colleagues.

Divide the Program into Subsystems

Your first step is to divide your program into its general functional subsystems and to specify the inter-
faces and interactions between the subsystems. At this point, you should not worry about specifics of
data structures and algorithms, or even classes. You are trying only to obtain a general feel for the vari-
ous parts of the program and their interactions. You can list the subsystems in a table that expresses the
high-level behaviors or functionality of the subsystem, the interfaces exported from the subsystem to
other subsystems, and the interfaces consumed, or used, by this subsystem on other subsystems. A table
for the chess game subsystems could look like this:

51

Chapter 2

Subsystem Name Number Functionality Interfaces Exported Interfaces Consumed
GamePlay 1 Starts game Game Over Take Turn (on Player)
Controls game Draw (on Chess
flow Board)
Controls drawing
Declares winner
Ends game
Chess Board 1 Stores chess pieces Get Piece At Game Over (on
Checks for draws Set Piece At Game-Play)
and checkmates Draw Draw (on Chess
Draws itself Piece)
Chess Piece 32 Draws itself Draw Get Piece At (on
Moves itself Move Game Board)
Checks for legal Check Move Set Piece At (on
moves Game Board)
Player 2 Interacts with Take Turn Get Piece At (on
user: prompts Game Board)
user for move, Move (on Chess
obtains user’s Piece)
move Check Move (on
Moves pieces Chess Piece)
ErrorLogger 1 Writes error mes- Log Error None
sages to log file

52

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem, a
ChessBoard, 32 ChessPieces, two Players, and one ErrorLogger. However, that is not the only reasonable
approach to a Chess Game. In software design, as in programming itself, there are often many different
ways to accomplish the same goal. Not all ways are equal: some are certainly better than others.
However, there are often several equally valid methods.

A good division into subsystems separates the program into its basic functional parts. For example, in
the Chess Game, a Player is a subsystem distinct from the Board, Chess Pieces, or GamePlay. It wouldn’t
make sense to lump the players into the GameP1lay object because they are logically separate subsystems.
Other choices are not as obvious. Would it be reasonable to add a separate User Interface subsystem?

If you intend to provide different kinds of user interfaces, or want to easily modify your interfaces later,
you might want to separate out this aspect into a separate subsystem. To make these kinds of choices,
you need to consider not only the current goals of the program, but future goals as well.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to show
the subsystems of a program in a diagram, such as Figure 2-1. In this figure, arrows represent calls from
one subsystem to another (for simplicity, the Error Logger subsystem is omitted).

Designing Professional C++ Programs

TakeTi
GamePlay | akelum Player

Move
Draw
vameer CheckMove
A A
ChessBoard | Chess
GetPieceAt Piece

SetPieceAt
Figure 2-1

Choose Threading Models

In this step, you choose the number of threads in your program and specify their interactions. You
should also specify any locking for shared data. If you are unfamiliar with multithreaded programs, or
your platform does not support multithreading, then you should make your programs single-threaded.
However, if your program has several distinct tasks, each of which should work in parallel, it might be a
good candidate for multiple threads. For example, graphical user interface applications often have one
thread performing the main application work and another thread waiting for the user to press buttons or
select menu items.

Because threading is platform specific, this book does not cover multithreaded programming. See
Chapter 18 for a discussion of platform considerations with C++.

The chess program needs only one thread to control the game flow.

Specify Class Hierarchies for Each Subsystem

In this step, you determine the class hierarchies that you intend to write in your program. The chess pro-
gram needs only one class hierarchy, to represent the chess pieces. The hierarchy could work as shown
in Figure 2-2.

ChessPiece

| Rook || Bishop || knight || king || Pawn

Figure 2-2

53

Chapter 2

In this hierarchy, a generic ChessPiece class serves as the superclass. The hierarchy uses multiple inher-
itance to show that the queen piece is a combination of a rook and a bishop.

Chapter 3 explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms,
and Patterns for Each Subsystem

In this step, you consider a greater level of detail, and specify the particulars of each subsystem, includ-
ing the specific classes that you write for each subsystem. It may well turn out that you model each sub-
system itself as a class. This information can again be summarized in a table:

Subsystem Classes Data Structures Algorithms Patterns
GamePlay GamePlay class GamePlay object Simple loop giving None
includes one each player a turn
ChessBoard object to play
and two Player
objects
ChessBoard ~ ChessBoard class ChessBoard object Checks for win or None
is a two-dimensional =~ draw after each
array of ChessPieces move
ChessBoard stores
32 ChessPieces
ChessPiece ChessPiece Each piece stores its ~ Piece checks for None
abstract superclass location in the chess legal move by
Rook, Bishop, board querying chess
Knight, King, board for pieces
Pawn, and Queen at various
classes locations
Player One Player class Two player objects Take Turn algorithm: None
(black and white) loop to prompt user
for move, check if
move is legal, and
move piece
ErrorLogger One ErrorLogger A queue of messages Buffers messages and Singleton
class to log writes them toalog pattern
file periodically to ensure
only one
ErrorLogger
object

This section of the design document would normally present the actual interfaces for each class, but this

example will forgo that level of detail.

54

Designing Professional C++ Programs

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstraction,
the key is to consider the interface and the implementation separately. First, specify the interface from
the perspective of the user. Decide what you want the component to do. Then decide how the component
will do it by choosing data structures and algorithms. For reuse, familiarize yourself with standard data
structures, algorithms, and patterns. Also, make sure you are aware of the standard library code in C++,
as well as any proprietary code available in your workplace.

Chapters 3, 4, and 5 discuss these issues in more detail.

Specify Error Handling for Each Subsystem

In this design step, you delineate the error handling in each subsystem. The error handling should
include both system errors, such as memory allocation failures, and user errors, such as invalid entries.
You should specify whether each subsystem uses exceptions. You can again summarize this information
in a table:

Subsystem Handling System Errors Handling User Errors

GamePlay Logs an error with the ErrorLogger and Not applicable (no direct user
terminates program if unable to allocate interface)
memory for ChessBoard or Players

ChessBoard Logs an error with the ErrorLogger and Not applicable (no direct user
throws an exception if unable to allocate interface)

memory for itself or for its ChessPieces

ChessPiece Logs an error with the ErrorLogger and Not applicable (no direct user
throws an exception if unable to allocate interface)
memory

Player Logs an error with the ErrorLogger and Sanity-checks user move entry to
throws an exception if unable to allocate ensure that it is not off the board;
memory. prompts user for another entry

Checks each move legality before
moving the piece; if illegal,
prompts user for another move

ErrorLogger Attempts to log an error and terminates Not applicable (no direct user
the program if unable to allocate memory interface)

The general rule for error handling is to handle everything. Think hard about all possible error condi-
tions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything as an
“unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries, disk fail-
ures, and network failures, to name a few. However, as the table for the chess game shows, you should
handle user errors differently from internal errors. For example, a user entering an invalid move should
not cause your chess program to terminate.

Chapter 15 discusses error handling in more depth.

55

Chapter 2

Summary

56

In this chapter, you learned about the professional C++ approach to design. Hopefully, it convinced you
that software design is an important first step in any programming project. You also learned about some
of the aspects of C++ that make design difficult, including its object-oriented focus, its large feature set
and standard library, and its facilities for writing generic code. With this information, you are better pre-
pared to tackle C++ design.

This chapter introduced two design themes. The concept of abstraction, or separating interface from
implementation, permeates this book and should be a guideline for all your design work. The notion of
reuse, both of code and ideas, also arises frequently in real-world projects, and in this text. You should
reuse existing code and ideas, and write your code to be as reusable as possible.

Now that you understand the importance of design and the basic design themes, you are ready for the
rest of Part I. Chapter 3 describes strategies for utilizing the object-oriented aspects of C++ in your
design. Chapters 4 and 5 present guidelines both for reusing preexisting code and ideas and for writing
reusable code. Chapter 6 closes Part I with a discussion of software-engineering models and processes.

ﬁ

Designing with
Objects

Now that you have developed an appreciation for good software design from Chapter 2, it’s time
to pair the notion of objects with the concept of good design. The difference between programmers
who use objects in their code and those who truly grasp object-oriented programming comes
down to the way their objects relate to each other and to the overall design of the program.

This chapter begins with the transition from procedural programming to object-oriented program-
ming. Even if you've been using objects for years, you will want to read this chapter for some new
ideas regarding how to think about objects. A discussion of the different kinds of relationships
between objects includes pitfalls programmers often succumb to when building an object-oriented
program. You will also learn how the principal of abstraction relates to objects.

An Object-Oriented View of the World

When making the transition from procedural (C-style) coding to object-oriented coding, the most
important point to remember is that object-oriented programming (OOP) is just a different way to
think about what’s going on in your program. Too often, programmers get bogged down in the
new syntax and jargon of OOP before they adequately understand what an object is. This chapter
is light on code and heavy on concepts and ideas. For specifics on C++ object syntax, see
Chapters 8, 9, and 10.

Am I Thinking Procedurally?

A procedural language, such as C, divides code into small pieces that each (ideally) accomplish a
single task. Without procedures in C, all your code would be lumped together inside main (). Your
code would be difficult to read, and your coworkers would be annoyed, to say the least.

Chapter 3

The computer doesn’t care if all your code is inmain () or if it’s split into bite-sized pieces with descrip-
tive names and comments. Procedures are an abstraction that exists to help you, the programmer, as well
as those who read and maintain your code. The concept is built around a fundamental question about
your program — What does this program do? By answering that question in English, you are thinking pro-
cedurally. For example, you might begin designing a stock selection program by answering as follows:
First, the program obtains stock quotes from the Internet. Then, it sorts this data by specific metrics.
Next, it performs analysis on the sorted data. Finally, it outputs a list of buy and sell recommendations.
When you start coding, you might directly turn this mental model into C functions: retrieveQuotes(),
sortQuotes (), analyzeQuotes(), and outputRecommendations ().

Even though C refers to procedures as “functions,” C is not a functional language.
The term functional is very different from procedural and refers to languages like
Lisp, which use an entirely different abstraction.

The procedural approach tends to work well when your program follows a specific list of steps. In large
modern applications, however, there is rarely a linear sequence of events. Often a user is able to perform
any command at any time. Procedural thinking also says nothing about data representation. In the pre-
vious example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once
you realize that OOP is simply an alternative, more flexible, way of thinking about software, it'll come
naturally.

The Object-Oriented Philosophy

Unlike the procedural approach, which is based on the question What does this program do?, the object-
oriented approach asks another question: What real-world objects am I modeling? OOP is based on the
notion that you should divide your program not into tasks, but into models of physical objects. While
this seems abstract at first, it becomes clearer when you consider physical objects in terms of their classes,
components, properties, and behaviors.

Classes

58

A class helps distinguish an object from its definition. Consider the orange (the Florida Department of
Citrus certainly hopes you will). There’s a difference between talking about oranges in general as tasty
fruit that grows on trees and talking about a specific orange, such as the one that’s currently dripping
juice on my keyboard.

When answering the question What are oranges? you are talking about the class of things known as
oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange. All
oranges have some particular flavor. A class is simply the encapsulation of what defines a classification
of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particular
class. Because the object on my desk is an orange, I know that it belongs to the orange class. Thus,
I'know that it is a fruit that grows on trees. I can further say that it is a medium shade of orange and
ranks “mighty tasty” in flavor. An object is an instance of a class — a particular item with characteristics
that distinguish it from other instances of the same class.

Designing with Objects

As a more concrete example, reconsider the stock selection application from above. In OOP, “stock
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote, such
as “current Microsoft stock quote,” would be an object because it is a particular instance of the class.

From a C background, think of classes and objects as analogous to types and variables. In fact, in
Chapter 8, you'll see the syntax for classes is similar to the syntax for C structs. Objects are syntactically
very similar to C-style variables.

Components

If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that it is
made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines, and
numerous other parts. The ability to think of objects in terms of their smaller components is essential to
OOP, just as the breaking up of complicated tasks into smaller procedures is fundamental to procedural
programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each of
these components might have further subcomponents. For example, the landing gear is a component of
an airplane, and the wheel is a component of the landing gear.

Properties

Properties are what distinguish one object from another. Going back to the orange class, recall that all
oranges are defined as having some shade of orange and a particular flavor. These two characteristics
are properties. All oranges have the same properties, just with different values. My orange has a “mighty
tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized above, all oranges are fruit and
grow on trees. These are properties of the fruit class whereas the specific shade of orange is determined
by the particular fruit object. Class properties are shared by all members of a class, while object proper-
ties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question What makes this object
different?

Behaviors

Behaviors answer either of two questions: What does this object do? or What can I do to this object? In the
case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior is that it can be
eaten. Like properties, you can think of behaviors on the class level or the object level. All oranges can
pretty much be eaten in the same way. However, they might differ in some other behavior, such as being
rolled down an incline, where the behavior of a perfectly round orange would differ from that of a more
oblate one.

The stock selection example provides some more practical behaviors. As you recall, when thinking pro-
cedurally, we determined that our program needs to analyze stock quotes as one of its functions.

59

Chapter 3

Thinking in OOP, we might decide that a stock quote object can analyze itself! Analysis becomes a
behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into
objects. By building objects that have certain behaviors and defining how they interact, OOP offers a
much richer mechanism for attaching code to the data on which it operates.

Bringing It All Together

With these concepts, you could take another look at the stock selection program and redesign it in an
object-oriented manner.

As discussed above, “stock quote” would be a fine class to start with. To obtain the list of quotes, the
program needs the notion of a group of stock quotes, which is often called a collection. So a better design
might be to have a class that represents a “collection of stock quotes,” which is made up of smaller com-
ponents that represent a single “stock quote.”

Moving on to properties, the collection class would have at least one property — the actual list of quotes
received. It might also have additional properties, such as the exact date and time of the most recent
retrieval and the number of quotes obtained. As for behaviors, the “collection of stock quotes” would be
able to talk to a server to get the quotes and provide a sorted list of quotes. This is the “retrieve quotes”
behavior.

The stock quote class would have the properties discussed earlier — name, symbol, current price, and
so on. Also as indicated above, it would have an analyze behavior. You might consider other behaviors,
such as buying and selling the stock.

It is often useful to jot down diagrams showing the relationship between components. Figure 3-1 uses
multiple lines to indicate that one “collection of stock quotes” contains many “stock quote” objects.

Collection Stock
of Quote
Stock Quotes

Figure 3-1

Another useful way of visualizing classes is to list properties and behaviors (as shown in the following
two tables) when brainstorming the object representation of a program.

Class Associated Components Properties Behaviors
Orange None Color Eat
Flavor Roll
Toss

60

Designing with Objects

Class Associated Components Properties Behaviors
Collection of Stock Made up of individual Individual Quotes Retrieve quotes
Quotes Stock Quote objects Timestamp Sort quotes by
Number of Quotes various criteria
Stock Quote None (yet) Company Name Analyze
Ticker Symbol Buy shares
Current Price and Sell shares
S0 on

Living in a World of Objects

When programmers make the transition from thinking procedurally to the object-oriented paradigm,
they often experience an epiphany about the combination of properties and behaviors into objects. Some
programmers find themselves revisiting the design of programs they’re working on and rewriting cer-
tain pieces as objects. Others might be tempted to throw all the code away and restart the project as a
fully object-oriented application.

There are two major approaches to developing software with objects. To some people, objects simply
represent a nice encapsulation of data and functionality. These programmers sprinkle objects throughout
their programs to make the code more readable and easier to maintain. Programmers taking this
approach slice out isolated pieces of code and replace them with objects like a surgeon implanting a
pacemaker. There is nothing inherently wrong with this approach. These people see objects as a tool that
is beneficial in many situations. Certain parts of a program just “feel like an object,” like the stock quote.
These are the parts that can be isolated and described in real-world terms.

Other programmers adopt the OOP paradigm fully and turn everything into an object. In their minds,
some objects correspond to real-world things, such as an orange or a stock quote, while others encapsu-
late more abstract concepts, such as a sorter or an undo object. The ideal approach is probably some-
where in between these extremes. Your first object-oriented program may really have been a traditional
procedural program with a few objects sprinkled in. Or perhaps you went whole hog and made every-
thing an object, from a class representing an int to a class representing the main application. Over time,
you will find a happy medium.

Overobjectification

There is often a fine line between designing a creative object-oriented system and annoying everybody
else on your team by turning every little thing into an object. As Freud used to say, sometimes a variable
is just a variable. Okay, that’s a paraphrase of what he said.

Perhaps you're designing the next bestselling Tic-Tac-Toe game. You're going all-out OOP on this one, so
you sit down with a cup of coffee and a notepad to sketch out your classes and objects. In games like
this, there’s often an object that oversees game play and is able to detect the winner. To represent the
game board, you might envision a Grid object that will keep track of the markers and their locations. In
fact, a component of the grid could be the Piece object that represents an X or an O.

61

Chapter 3

Wait, back up! This design proposes to have a class that represents an X or an O. That is perhaps object
overkill. After all, can’t a char represent an X or an O just as well? Better yet, why can’t the Grid just use
a two-dimensional array of an enumerated type? Does a Piece object just complicate the code? Take a
look at the table below representing the proposed piece class:

Class Associated Components Properties Behaviors

Piece None XorO None

The table is a bit sparse, strongly hinting that what we have here may be too granular to be a full-
fledged object.

On the other hand, a forward-thinking programmer might argue that while Piece is a pretty meager
class as it currently stands, making it into an object allows future expansion without any real penalty.
Perhaps down the road, this will be a graphical application and it might be useful to have the Piece
class support drawing behavior. Additional properties could be the color of the Piece or whether the
Piece was the most recently moved.

Obviously, there is no right answer. The important point is that these are issues that you should consider
when designing your application. Remember that objects exist to help programmers manage their code.
If objects are being used for no reason other than to make the code “more object-oriented,” something is
wrong.

Overly General Objects

62

Perhaps a worse annoyance than objects that shouldn’t be objects is objects that are too general. All OOP
students start with examples like “orange” — things that are objects, no question about it. In real life
coding, objects can get pretty abstract. Many OOP programs have an “application object,” despite the
fact that an application isn’t really something you can envision in the real world. Yet it may be useful to
represent the application as an object because the application itself has certain properties and behaviors.

An overly general object is an object that doesn’t represent a particular thing at all. The programmer
may be attempting to make an object that is flexible or reusable, but ends up with one that is confusing.
For example, imagine a program that organizes and displays media. It can catalog your photos, organize
your digital music collection, and serve as a personal journal. The overly general approach is to think of
all these things as “media” objects and build a single class that can accommodate all of the formats. It
might have a property called “data” that contains the raw bits of the image, song, or journal entry,
depending on the type of media. It might have a behavior called “perform” that appropriately draws the
image, plays the song, or brings up the journal entry for editing.

The clues that this class is too general are in the names of the properties and behaviors. The word “data”
has little meaning by itself — we had to use a general term because this class has been overextended to
three very different uses. Similarly, “perform” will do very different things in the three different cases.
Finally, this design is too general because “media” isn’t a particular object. Not in the user interface, not
in real life, and not even in the programmer’s mind. A major clue that a class is too general is when
many ideas in the programmers mind all unite as a single object, as shown in Figure 3-2.

Designing with Objects

Media

Figure 3-2

Object Relationships

As a programmer, you will certainly encounter cases where different classes have characteristics in com-
mon, or at least seem somehow related to each other. For example, although creating a “media” object to
represent images, music, and text in a digital catalog program is too general, these objects do share char-
acteristics. You may want all of them to keep track of the date and time that they were last modified, or
you might want them all to support a delete behavior.

Object-oriented languages provide a number of mechanisms for dealing with such relationships between
objects. The tricky part is to understand what the relationship actually is. There are two main types of
object relationships — a has-a relationship and an is-a relationship.

The Has-A Relationship

Objects engaged in a has-a, or aggregation, relationship follow the pattern A has a B, or A contains a B. In
this type of relationship, you can envision one object as part of another. Components, as defined earlier,
generally represent a has-a relationship because they describe objects that are made up of other objects.

A real-world example of this might be the relationship between a zoo and a monkey. You could say that
a zoo has a monkey or a zoo contains a monkey. A simulation of a zoo in code would have a zoo object,
which has a monkey component.

Often, thinking about user interface scenarios is helpful in understanding object relationships. This is so
because even though not all Uls are implemented in OOP (though these days, most are), the visual ele-
ments on the screen translate well into objects. One Ul analogy for a has-a relationship is a window that
contains a button. The button and the window are clearly two separate objects but they are obviously
related in some way. Since the button is inside the window, we say that the window has a button.

Figure 3-3 shows various real-world and user interface has-a relationships.

63

Chapter 3

Microsoft Office Word

! '_~ Do yiou want bo save the changes to Document4?

l ______ Yes ‘ l B ‘ l Cancel —]——' A window has a button.

| An Airplane has a wing (hopefully two!).

Figure 3-3

The Is-A Relationship (Inheritance)

64

The is-a relationship is such a fundamental concept of object-oriented programming that it has many
names, including subclassing, extending, and inheriting. Classes model the fact that the real world contains
objects with properties and behaviors. Inheritance models the fact that these objects tend to be organized
in hierarchies. These hierarchies indicate is-a relationships.

Fundamentally, inheritance follows the pattern A is a B or A is really quite a bit like B — it can get tricky.
To stick with the simple case, revisit the zoo, but assume that there are other animals besides monkeys.
That statement alone has already constructed the relationship — a monkey is an animal. Similarly, a
giraffe is an animal, a kangaroo is an animal, and a penguin is an animal. So what? Well, the magic of
inheritance comes when you realize that monkeys, giraffes, kangaroos, and penguins have certain things
in common. These commonalities are characteristics of animals in general.

What this means for the programmer is that you can define an Animal class that encapsulates all of the
properties (size, location, diet, etc.) and behaviors (move, eat, sleep) that pertain to every animal. The
specific animals, such as monkeys, become subclasses of Animal because a monkey contains all the char-
acteristics of an animal (remember, a monkey is an animal plus some additional characteristics that make
it distinct. Figure 3-4 shows an inheritance diagram for animals. The arrows indicate the direction of the
is-a relationship.

Monkey | | Giraffe | | Kangaroo| | Penguin

Figure 3-4

Designing with Objects

Just as monkeys and giraffes are different types of animals, a user interface often has different types of
buttons. A checkbox, for example, is a button. Assuming that a button is simply a Ul element that can be
clicked and performs an action, a Checkbox extends the Button class by adding state — whether the
box is checked or unchecked.

When relating classes in an is-a relationship, one goal is to factor common functionality into the super-
class, the class that other classes extend. If you find that all of your subclasses have code that is similar or
exactly the same consider how you could move some or all of the code into the superclass. That way, any
changes that need to be made only happen in one place and future subclasses get the shared functional-
ity “for free.”

Inheritance Techniques

The preceding examples cover a few of the techniques used in inheritance without formalizing them.
When subclassing, there are several ways tthat he programmer can distinguish an object from its parent
object or superclass. A subclass may use one or more of these techniques and they are recognized by com-
pleting the sentence A isa B that

Adding Functionality

A subclass can augment its parent by adding additional functionality. For example, a monkey is an ani-
mal that can swing from trees. In addition to having all of the behaviors of Animal, the Monkey class
also has a swing from trees behavior.

Replacing Functionality

A subclass can replace or override a behavior of its parent entirely. For example, most animals move by
walking, so you might give the Animal class a move behavior that simulates walking. If that’s the case, a
kangaroo is an animal that moves by hopping instead of walking. All the other properties and behaviors
of the Animal superclass still apply, but the Kangaroo subclass simply changes the way that the move
behavior works. Of course, if you find yourself replacing all of the functionality of your superclass, it
may be an indication that subclassing was not the correct thing to do after all.

Adding Properties

A subclass can also add new properties to the ones that were inherited from the superclass. A penguin
has all the properties of an animal but also has a beak size property.

Replacing Properties

C++ provides a way of overriding properties similar to the way you can override behaviors. However,
doing so is rarely appropriate. It's important not to get the notion of replacing a property confused with
the notion of subclasses having different values for properties. For example, all animals have a diet
property that indicates what they eat. Monkeys eat bananas and penguins eat £ish, but neither of these
is replacing the diet property — they simply differ in the value assigned to the property.

65

Chapter 3

Polymorphism versus Code Reuse

Polymorphism is the notion that objects that adhere to a standard set of properties and behaviors can be
used interchangeably. A class definition is like a contract between objects and the code that interacts with
them. By definition, any monkey object must support the properties and behaviors of the monkey class.

This notion extends to superclasses as well. Since all monkeys are animals, all Monkey objects support
the properties and behaviors of the Animal class as well.

Polymorphism is a beautiful part of object-oriented programming because it truly takes advantage of
what inheritance offers. In a zoo simulation, we could programmatically loop through all of the animals
in the zoo and have each animal move once. Since all animals are members of the Animal class, they all
know how to move. Some of the animals have overridden the move behavior, but that’s the best part —
our code simply tells each animal to move without knowing or caring what type of animal it is. Each one
moves whichever way it knows how.

There is another reason to subclass besides polymorphism. Often, it’s just a matter of leveraging existing
code. For example, if you need a class that plays music with an echo effect, and your coworker has
already written one that plays music without any effects, you might be able to extend the existing class
and add in the new functionality. The is-a relationship still applies (an echo music player is a music
player that adds an echo effect), but you didn’t intend for these classes to be used interchangeably. What
you end up with are two separate classes, used in completely different parts of the programs (or maybe
even in different programs entirely) that happen to be related only to avoid reinventing the wheel.

The Fine Line between Has-A and Is-A

In the real world, it’s pretty easy to classify has-a and is-a relationships between objects. Nobody would
claim that an orange has a fruit — an orange is a fruit. In code, things sometimes aren’t so clear.

Consider a hypothetical class that represents a hash table. A hash table is a data structure that efficiently
maps a key to a value. For example, an insurance company could use a Hashtable class to map member
IDs to names so that given an ID, it’s easy to find the corresponding member name. The member ID is
the key and the member name is the value.

In a standard hash table implementation, every key has a single value. If the ID 14534 maps to the mem-
ber name “Kleper, Scott”, it cannot also map to the member name “Kleper, Marni”. In most implementa-
tions, if you tried to add a second value for a key that already has a value, the first value would go away.
In other words, if the ID 14534 mapped to “Kleper, Scott” and you then assigned the ID 14534 to “Kleper,
Marni”, then Scott would effectively be uninsured, as shown in the following sequence, which shows
two calls to a hypothetical hash table enter () behavior and the resulting contents of the hash table. The
notation hash.enter jumps ahead a bit to C++ object syntax. Just think of it as saying “use the enter
behavior of the hash object.”.

hash.enter (14534, "Kleper, Scott");

Keys Values

14534 “Kleper, Scott” [string]

66

Designing with Objects

hash.enter (14534, "Kleper, Marni");

Keys Values

14534 “Kleper, Marni” [string]

It’s not difficult to imagine uses for a data structure that’s like a hash table, but allows multiple values for
a given key. In the insurance example, a family might have several names that correspond to the same
ID. Because such a data structure is very similar to a hash table, it would be nice to leverage that func-
tionality somehow. A hash table can only have a single value as a key, but that value can be anything.
Instead of a string, the value could be a collection (such as an array or a list) containing the multiple val-
ues for the key. Every time you add a new member for an existing ID, simply add the name to the collec-
tion. This would work as shown in the following sequence.

Collection collection; // Make a new collection.
collection.insert ("Kleper, Scott"); // Add a new element to the collection.
hash.enter (14534, collection); // Enter the collection into the table.
Keys Values
14534 {“Kleper, Scott”} [collection]

Collection collection = hash.get(14534);// Retrieve the existing collection.

collection.insert ("Kleper, Marni"); // Add a new element to the collection.
hash.enter (14534, collection); // Replace the collection with the updated one.
Keys Values
14534 {“Kleper, Scott”, “Kleper, Marni”} [collection]

Messing around with a collection instead of a string is tedious and requires a lot of repetitive code. It
would be preferable to wrap up this multiple value functionality in a separate class, perhaps called a
MultiHash. The MultiHash class would work just like Hashtable except that behind the scenes, it
would store each value as a collection of strings instead of a single string. Clearly, MultiHash is some-
how related to Hashtable because it is still using a hash table to store the data. What is unclear is
whether that constitutes an is-a or a has-a relationship.

To start with the is-a relationship, imagine that MultiHash is a subclass of Hashtable. It would have to
override the behavior that adds an entry into the table so that it would either create a collection and add
the new element or retrieve the existing collection and add the new element. It would also override the
behavior that retrieves a value. It could, for example, append all the values for a given key together into
one string. This seems like a perfectly reasonable design. Even though it overrides all the behaviors of
the superclass, it will still make use of the superclass’s behaviors by using the original behaviors within
the subclass. This approach is shown in Figure 3-5.

67

Chapter 3

68

Hashtable
enter(key, value)
get(key)

MultiHash
modifies enter()
modifies get()

Figure 3-5

Now consider it as a has-a relationship. MultiHash is its own class, but it contains a Hashtable object. It
probably has an interface very similar to Hashtable, but it need not be the same. Behind the scenes,
when a user adds something to the MultiHash, it is really wrapped in a collection and put in a
Hashtable object. This also seems perfectly reasonable and is shown in Figure 3-6.

MultiHash Hashtable

enter(key, value)
getAll(key)

Figure 3-6

So, which solution is right? There’s no clear answer, though one of the authors, who has written a
MultiHash class for production use, viewed it as a has-a relationship. The main reason was to allow
modifications to the exposed interface without worrying about maintaining hash table functionality. For
example, in Figure 3-6, the get behavior was changed to getal1, making it clear that this would get all
the values for a particular key in a MultiHash. Additionally, with a has-a relationship, you don’t have to
worry about any hash table functionality bleeding through. For example, if the hash table class sup-
ported a behavior that would get the total number of values, it would report the number of collections
unless MultiHash knew to override it.

That said, one could make a convincing argument that a MultiHash actually is a Hashtable with some
new functionality, and it should have been an is-a relationship. The point is that there is sometimes a
fine line between the two relationships, and you will need to consider how the class is going to be used
and whether what you are building just leverages some functionality from another class or really is that
class with modified or new functionality.

The following table represents the arguments for and against taking either approach for the MultiHash
class.

Designing with Objects

Is-A

Has-A

Reasons For

Fundamentally, it’s the same
abstraction with different
characteristics.

¢ MultiHash can have whatever
behaviors are useful without
needing to worry about what

behaviors hash table has.

The implementation could change
to something other than a
Hashtable without changing the
exposed behaviors.

It provides (almost) the same
behaviors as Hashtable.

Reasons Against * Ahash table by definition ¢ In a sense, MultiHash reinvents
hasone value per key. To the wheel by coming up with new
say MultiHash is a hash behaviors.

table is blasphemy!

MultiHash overrides both
behaviors of Hashtable, a
strong sign that something
about the design is wrong.

¢ Some additional properties and
behaviors of Hashtable might
have been useful.

¢ Unknown or inappropriate
properties or behaviors of
Hashtable could “bleed
through” to MultiHash.

The Not-A Relationship

As you consider what type of relationship classes have, consider whether or not they actually have a
relationship at all. Don’t let your zeal for object-oriented design turn into a lot of needless class/subclass
relationships.

One pitfall occurs when things are obviously related in the real world but have no actual relationship in
code. Just because a Mustang is a Ford in real life doesn’t mean that when you write a car simulator,
Mustang should necessarily be a subclass of Ford. OO hierarchies need to model functional relation-
ships, not artificial ones. Figure 3-7 shows relationships that are meaningful as ontologies or hierarchies,
but are unlikely to represent a meaningful relationship in code.

The best way to avoid needless subclassing is to sketch out your design first. For every class and sub-
class, write down what properties and behaviors you're planning on putting there. If you find that a
class has no particular properties or behaviors of its own, or if all of those properties and behaviors are
completely overridden by its subclasses, you should rethink your design.

69

Chapter 3

Blues Rock | | Pop | | FolkRock | Smooth Jazz

| CEO |

| VP of Sales | | VP of Engineering |

|Sa|es Associate| | PreSales | Project Lead
Engineer

Figure 3-7

Hierarchies

Just as a class A can be a superclass of B, B can also be a superclass of C. Object-oriented hierarchies can
model multilevel relationships like this. A zoo simulation with more animals might be designed with
every animal as a subclass of a common Animal class as shown in Figure 3-8:

Monkey | | Giraffe | | Kangaroo| | Penguin

Figure 3-8

As you code each of these subclasses, you might find that a lot of them are similar. When this occurs,
you should consider putting in a common parent. Realizing that Lion and Panther both move the same
way and have the same diet might indicate a possible BigCat class. You could further subdivide the

70

Designing with Objects

Animal class to include WateraAnimals, and Marsupials. A more hierarchical design that leverages
this commonality is shown in Figure 3-9.

Animal

Monkey		Big Cat		Giraffe		Marsupia			Water Animal
Lion		Panther		Dolphin		Penguin			
Koala		Kangaroo							
Figure 39

A biologist looking at this hierarchy may be disappointed — a penguin isn’t really in the same family as
a dolphin. However, it underlines a good point — in code, you need to balance real-world relationships
with shared functionality relationships. Even though two things might be very closely related in the real
world, they might have a not-a relationship in code because they really don’t share functionality. You
could just as easily divide animals into mammals and fish, but that wouldn’t factor any commonality to
the superclass.

Another important point is that there could be other ways of organizing the hierarchy. The preceding
design is organized mostly by how the animals move. If it were instead organized by the animals’ diet or
height, the hierarchy could be very different. In the end, what matters is how the classes will be used.
The needs will dictate the design of the object hierarchy.

A good object-oriented hierarchy accomplishes the following:

Q Organizes classes into meaningful functional relationships
Q Supports code reuse by factoring common functionality to superclasses

Q Avoids having subclasses that override much of the parent’s functionality

Multiple Inheritance

Every example so far has had a single inheritance chain. In other words, a given class has, at most, one
immediate parent class. This does not have to be the case. Through multiple inheritance, a class can have
more than one superclass.

If you decide that there is no good animal object hierarchy because animals differ
on too many axes, multiple inheritance may be just what you're looking for. With
multiple inheritance, you could create three separate hierarchies — a size hierarchy,
a diet hierarchy, and a movement hierarchy. Each animal would then choose one

of each.

71

Chapter 3

Figure 3-10 shows a multiple inheritance design. There is still a superclass called Animal, which is fur-
ther divided by size. A separate hierarchy categorizes by diet, and a third takes care of movement. Each
type of animal is then a subclass of all three of these classes, as shown by different-colored lines.

Mover Eater Animal

Jumper | | Walker | | Swimmer | | Carnivore | | Herbivore | |Fish Eater| Big Small
Animal Animal

Lion | | Kangaroo | | Koala

Figure 3-10

In a user interface context, imagine an image that the user can click on. This object seems to be both a
button and an image so the implementation might involve subclassing both the Image class and the
Button class, as shown in Figure 3-11:

PictureButton

Figure 3-11

What's Bad about Multiple Inheritance?

Many programmers dislike multiple inheritance. C++ has explicit support for such relationships, though
the Java language does away with them altogether. There are several reasons to which multiple inheri-
tance critics point.

First, visualizing multiple inheritance is complicated. As Figure 3-10 shows, even a simple class diagram
can become very complicated when there are multiple hierarchies and crossing lines. Class hierarchies
are supposed to make it easier for the programmer to understand the relationships between code. With
multiple inheritance, a class could have several parents that are in no way related to each other. With so
many classes contributing code to your object, can you really keep track of what’s going on? In the real
world, we tend not to think of objects as having multiple is-a relationships.

Second, multiple inheritance can destroy otherwise clean hierarchies. In the animal example, switching
to a multiple inheritance approach means that the Animal superclass is less meaningful because the
code that describes animals is now separated into three separate hierarchies. While the design illustrated
in Figure 3-10 shows three clean hierarchies, it’s not difficult to imagine how they could get messy. For
example, what if you realize that not only do all Jumpers move in the same way, they also eat the same

72

Designing with Objects

things? Because there are separate hierarchies, there is no way to join the concepts of movement and diet
without adding yet another subclass.

Third, implementation of multiple inheritance is complicated. What if two of your superclasses imple-
ment the same behavior in different ways? Can you have two superclasses that are themselves a subclass
of a common superclass? These possibilities complicate the implementation because structuring such
intricate relationships in code is difficult both for the author and a reader.

The reason that other languages can leave out multiple inheritance is that it is usually avoidable. By
rethinking your hierarchy or using some of the design patterns covered in Chapter 26, you can avoid
introducing multiple inheritance when you have control over the design of a project.

Mix-in Classes

Mix-in classes represent another type of relationship between classes. In C++, a mix-in class is imple-
mented syntactically just like multiple inheritance, but the semantics are refreshingly different! A mix-in
class answers the question “What else is this class able to do?” and the answer often ends with “-able.”
Mix-in classes are a way that you can add functionality to a class without committing to a full is-a
relationship.

Going back to the zoo example, you might want to introduce the notion that some animals are “pet-
table.” That is, there are some animals that visitors to the zoo can pet, presumably without being bitten
or mauled. You might want all pettable animals to support the behavior “be pet.” Since pettable animals
don’t have anything else in common and you don’t want to break the existing hierarchy you've
designed, Pettable makes a great mix-in class.

Mix-in classes are used frequently in user interfaces. Instead of saying that a PictureButton class is
both an Image and a Button, you might say that it’s an Image that is C1ickable. A folder icon on your
desktop could be an Image that is Draggable. In software development, we make up lots of fun
adjectives.

The difference between a mix-in class and a superclass has more to do with how you think about the
class than any code difference. In general, mix-in classes are easier to digest than multiple inheritance
because they are very limited in scope. The Pettable mix-in class just adds one behavior to any existing
class. The clickable mix-in class might just add “mouse down” and “mouse up” behaviors. Also, mix-
in classes rarely have a large hierarchy so there’s no cross-contamination of functionality.

Abstraction

In Chapter 2, you learned about the concept of abstraction — the notion of separating implementation
from the means used to access it. Abstraction is a good idea for many reasons explored earlier. It’s also a
fundamental part of object-oriented design.

Interface versus Implementation

The key to abstraction is effectively separating the interface from the implementation. Implementation is
the code you're writing to accomplish the task you set out to accomplish. Interface is the way that other
people use your code. In C, the header file that describes the functions in a library you've written is an
interface. In object-oriented programming, the interface to a class is the collection of publicly accessible
properties and behaviors.

73

Chapter 3

Deciding on an Exposed Interface

The question of how other programmers will interact with your objects comes into play when designing
a class. In C++, a class’s properties and behaviors can each be public, protected, or private. public
means that other code can access the property or behavior. protected means that other code cannot.
private is a stricter control, which means that not only are the properties or behaviors locked for other
code, but even subclasses can’t access them.

Designing the exposed interface is all about choosing what to make public. When working on a large
project with other programmers, you should view the exposed interface design as a process.

Consider the Audience

The first step in designing an exposed interface is to consider for whom you are designing it. Is your
audience another member of your team? Is this an interface that you will personally be using? Is it some-
thing that a programmer external to your company will use? Perhaps a customer or an off-shore contrac-
tor? In addition to determining who will be coming to you for help with the interface, this should shed
some light on some of your design goals.

If the interface is for your own use, you probably have more freedom to iterate on the design. As you're
making use of the interface, you can change it to suit your own needs. However, you should keep in
mind that roles on an engineering team change and it is quite likely that, some day, others will be using
this interface as well.

Designing an interface for other internal programmers to use is slightly different. In a way, your inter-
face becomes a contract with them. For example, if you are implementing the data store component of a
program, others are depending on that interface to support certain operations. You will need to find out
all of the things that the rest of the team will be using your class to do. Do they need versioning? What
types of data can they store? As a contract, you should view the interface as slightly less flexible. If the
interface is agreed upon before coding begins, you'll receive some groans from other programmers if
you decide to change it after code has been written.

If the client is an external customer, you will be designing with a very different set of requirements.
Ideally, the target customer will be involved in specifying what functionality your interface exposes.
You'll need to consider both the specific features they want as well as what customers might want in the
future. The terminology used in the interface will have to correspond to the terms that the customer is
familiar with, and the documentation will have to be written with that audience in mind. Inside jokes,
codenames, and programmer slang should probably be left out of your design.

Consider the Purpose

There are many reasons for writing an interface. Before putting any code on paper or even deciding on
what functionality you're going to expose, you need to understand the purpose of the interface.

Application Programming Interface (API)

74

An API is an externally visible mechanism to extend a product or use its functionality within another
context. If an internal interface is a contract, an API is closer to a set-in-stone law. Once people who don’t
even work for your company are using your API, they don’t want it to change unless you're adding new
features that will help them. So, care should be given to planning the API and discussing it with cus-
tomers before making it available to them.

Designing with Objects

The main tradeoff in designing an API is usually ease of use versus flexibility. Because the target audi-
ence for the interface is not familiar with the internal working of your product, the learning curve to use
the API should be gradual. After all, your company is exposing this API to customers because the com-
pany wants it to be used. If it’s too difficult to use, the APl is a failure. Flexibility often works against
this. Your product may have a lot of different uses, and you want the customer to be able to leverage all
the functionality you have to offer. However, an API that lets the customer do anything that your prod-
uct can do may be too complicated.

As a common programming adage goes, “A good API makes the easy case easy and the hard case
possible.” That is, APIs should have a simple learning curve. The things that most programmers will
want to do should be accessible. However, the API should allow for more advanced usage, and it’s
acceptable to trade off complexity of the rare case for simplicity of the common case.

Utility Class or Library

Often, your task is to develop some particular functionality for general use elsewhere in the application.
It could be a random number library or a logging class. In these cases, the interface is somewhat easier to
decide on because you tend to expose most or all of the functionality, ideally without giving too much
away about its implementation. Generality is an important issue to consider. Since the class or library is
general purpose, you'll need to take the possible set of use cases into account in your design.

Subsystem Interface

You may be designing the interface between two major subsystems of the application, such as the mech-
anism for accessing a database. In these cases, separating the interface from the implementation is
paramount because other programmers are likely to start implementing against your interface before
your implementation is complete. When working on a subsystem, first think about what its one main
purpose is. Once you have identified the main task your subsystem is charged with, think about specific
uses and how it should be presented to other parts of the code. Try to put yourself in their shoes and not
get bogged down in implementation details.

Component Interface

Most of the interfaces you define will probably be smaller than a subsystem interface or an API. These
will be objects that you use within other code that you’ve written. In these cases, the main pitfall is when
your interface evolves gradually and becomes unruly. Even though these interfaces are for your own
use, think of them as though they weren’t. As with a subsystem interface, consider the one main purpose
of each class and be cautious of exposing functionality that doesn’t contribute to that purpose.

Consider the Future

As you are designing your interface, keep in mind what the future holds. Is this a design you will be
locked into for years? If so, you might need to leave room for expansion by coming up with a plug-in
architecture. Do you have evidence that people will try to use your interface for purposes other than
what it was designed for? Talk to them and get a better understanding of their use case. The alternative
is rewriting it later, or worse, attaching new functionality haphazardly and ending up with a messy
interface. Be careful though! Speculative generality is yet another pitfall. Don’t design the be-all end-all
logging class if the future uses are unclear.

75

Chapter 3

Designing a Successful Abstraction

Experience and iteration are essential to good abstractions. Truly well-designed interfaces come from
years of writing and using other abstractions. As you encounter other abstractions, try to remember
what worked and didn’t work. What did you find lacking in the Windows file system API you used last
week? What would you have done differently if you had written the network wrapper, instead of your
coworker? The best interface is rarely the first one you put on paper, so keep iterating. Bring your design
to your peers and ask for feedback. Don’t be afraid to change the abstraction once coding has begun,
even it means forcing other programmers to adapt. Hopefully, they’ll realize that a good abstraction is
beneficial to everyone in the long term.

Sometimes you need to evangelize a bit when communicating your design to other programmers.
Perhaps the rest of the team didn’t see a problem with the previous design or feels that your approach
requires too much work on their part. In those situations, be prepared both to defend your work and to
incorporate their ideas when appropriate. If you're still getting pushback, good documentation and sam-
ple code should help win them over.

Beware of single-class abstractions. If there is significant depth to the code you're writing, consider what
other companion classes might accompany the main interface. For example, if you're exposing an inter-
face to do some data processing, consider also writing a result object that provides an easy way to view
and interpret the results.

When possible, turn properties into behaviors. In other words, don’t allow external code to manipulate
the data behind your class directly. You don’t want some careless or nefarious programmer to set the
height of a bunny object to a negative number. Instead, have a “set height” behavior that does the neces-
sary bounds checking.

Iteration is worth mentioning again because it is the most important point. Seek and respond to feed-
back on your design, change it when necessary, and learn from mistakes.

Chapter 5 covers more guidelines for designing interfaces and reusable code.

Summary

76

In this chapter, you've gained an appreciation for the design of object-oriented programs without a lot of
code getting in the way. The concepts you've learned are applicable in almost any object-oriented lan-
guage. Some of it may have been a review to you, or it may be a new way of formalizing a familiar con-
cept. Perhaps you picked up some new approaches to old problems or new arguments in favor of the
concepts you've been preaching to your team all along. Even if you've never used objects in your code,
or have only used them sparingly, you now know more about how to design object-oriented programs
than many experienced C++ programmers.

The relationships between objects are important to study, not just because well-linked objects contribute
to code reuse and reduce clutter, but because you will be working in a team. Objects that relate in mean-
ingful ways are easier to read and maintain. You may decide to use the “Object Relationships” section as
a reference when you design you programs.

Finally, you learned about creating successful abstractions and the two most important design
considerations — audience and purpose. Chapter 4 will expand on the development of abstractions,
including topics such as code reuse, idea reuse, and some of the libraries that are available to you.

Designing with Libraries
and Patterns

Experienced C++ programmers never start a project from scratch. They incorporate code from a
wide variety of sources, such as the standard template library, open-source libraries, proprietary
code bases in their workplace, and their own code from previous projects. In addition, good C++
programmers reuse approaches or strategies to address various common design issues. These
strategies can range from a technique that worked for a past project to a formal design pattern. This
chapter explains how to take into account existing code and strategies when designing your
programs.

Chapter 2 introduced the theme of reuse, explaining that it can apply both to code reuse and to
idea reuse. This chapter expands on that theme by giving specific details and strategies that you
can use in your program designs. After finishing this chapter, you will understand:

Q

0 00 0 D

The different types of code available for reuse

The advantages and disadvantages of code reuse
General strategies and guidelines for reusing code
Open-source libraries

The C++ standard library

Design techniques and patterns

Reusing Code

You should reuse code liberally in your designs. In order to make the most of this rule, you need to
understand the types of code that you can reuse and the tradeoffs involved in code reuse.

Chapter 4

A Note on Terminology

Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the terminol-
ogy involved and to categorize the types of reused code. There are three categories of code available
for reuse:

Q Code you wrote yourself in the past
Q Code written by a coworker

Q Code written by a third party outside your current organization or company
There are also several ways that the code you use can be structured:

Q Stand-alone functions or classes. When you reuse your own code or coworkers’ code, you will
generally encounter this variety.

Q Libraries. A library is a collection of code used to accomplish a specific task, such as parsing
XML, or to handle a specific domain, such as cryptography. When you use third-party code, it
will generally come in the form of a library. You should already be familiar with libraries from
using simple ones like the math library in C or C++. Other examples of functionality usually
found in libraries include threads and synchronization support, networking, and graphics.

Q Frameworks. A framework is a collection of code around which you design a program. For exam-
ple, the Microsoft Foundation Classes (MFC) provide a framework for creating graphical user
interface applications for Microsoft Windows. Frameworks usually dictate the structure of your
program. Chapter 25 provides more information on frameworks.

A program uses a library but fits into a framework. Libraries provide specific func-
tionality, while frameworks are fundamental to your program design and structure.

Another term that arises frequently is application programming interface, or API. An APl is an interface to a
library or body of code for a specific purpose. For example, programmers often refer to the sockets API,
meaning the exposed interface to the sockets networking library, instead of the library itself.

Although people use the terms API and library interchangeably, they are not equivalent. The library
refers to the implementation, while the API refers to the published interface to the library.

For the sake of brevity, the rest of this chapter uses the term library to refer to any reused code, whether
it is really a library, framework, or random collection of functions from your office-mate.

Deciding Whether or Not to Reuse Code

The rule to reuse code is easy to understand in the abstract. However, it's somewhat vague when it
comes to the details. How do you know when it’s appropriate to reuse code, and which code to reuse?
There is always a tradeoff, and the decision depends on the specific situation. However, there are some
general advantages and disadvantages to reusing code.

78

Designing with Libraries and Patterns

Advantages to Reusing Code

Reusing code can provide tremendous advantages to you and to your project.

Qa

First of all, you might not be capable of, or willing to, write the code that you reuse. Would you
really want to write code to handle formatted input and output? Of course not: that’s why you
use the standard C++ I/0O streams.

Reusing code saves time. Any code that you reuse is code you don’t need to write yourself.
Also, your designs will be simpler because you will not need to design those components of the
application that you reuse.

The code that you reuse will theoretically require less debugging than code you write yourself.
You should expect bugs in any code you write yourself, but can often assume that the library
code is bug-free because it has already been tested and used extensively. There are exceptions, of
course; the library you choose to use could be poorly written and buggy.

Libraries probably also handle more error conditions than would your first attempt at the code.
You might forget obscure errors or edge cases at the beginning of the project, and would waste
time fixing these problems later. Or worse, they would show up as bugs to your users. Library
code that you reuse has generally been tested extensively and used by many programmers
before you, so you can assume that it handles most errors properly.

Reusing code written by domain experts is safer than writing your own code for that area. For
example, you should not attempt to write your own security code unless you are a security
expert. If you need security or cryptography in your programs, use a library. Many seemingly
minor details in code of that nature could compromise the security of the entire program if you
got them wrong.

Finally, library code is constantly improving. If you reuse the code, you receive the benefits of
these improvements without doing the work yourself! In fact, if the library writers properly sep-
arated the interface from the implementation, you can obtain these benefits by upgrading your
library version without changing your interaction with the library. A good upgrade modifies the
underlying implementation without changing the interface.

Disadvantages to Reusing Code

Unfortunately, there are also some disadvantages to reusing code.

Q

When you use only code that you wrote yourself, you understand exactly how it works. When
you use libraries that you didn’t write yourself, you must spend time understanding the inter-
face and correct usage before you can jump in and use it. This extra time at the beginning of
your project will slow your initial design and coding.

When you write your own code, it does exactly what you want. Library code might not provide
the exact functionality that you require. For example, one of the authors once made the mistake
of failing to notice a glaring deficiency in an eXtensible Markup Language (XML) parsing
library before he started using it. The library appeared great at first glance: it supported both
Document Object Model (DOM) and Simple API for XML (SAX) parsing models, ran efficiently,
and didn’t have a licensing fee. It wasn’t until he was well into his coding that he realized that
the library didn’t support validation against a Document Type Definition.

79

Chapter 4

Q Even if the library code provides the exact functionality you need, it might not give you the per-
formance that you desire. The performance might be bad in general, poor for your specific use
case, or completely undocumented. Additionally, the person who wrote the library or documen-
tation might not have the same standards as you do of good and bad performance.

Q Using library code introduces a Pandora’s box of support issues. If you discover a bug in the
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix it
even if you wanted to. If you have already invested significant time learning the library inter-
face and using the library, you probably don’t want to give it up, but you might find it difficult
to convince the library developers to fix the bug on your time schedule. Also, if you are using a
third-party library, what do you do if the library authors drop support for the library before you
stop supporting the product that depends on it?

Q Inaddition to support problems, libraries present licensing issues. Using an open-source library
often requires you to make your own code open source. Libraries also sometimes require license
fees, in which case it might be cheaper to redo the work and develop your own code.

O Another consideration with reusing code is cross-platform portability. Most libraries and frame-
works are platform specific. For example, the MFC framework is, unsurprisingly, available pri-
marily on Microsoft Windows. Even code that claims to be cross-platform will probably exhibit
subtle differences between platforms. If you want to write a cross-platform application, you
may need to use different libraries on different platforms.

0 Open-source software presents its own issue: security. Some programmers are wary of using
open-source code for security reasons. By reading the source code for a program, crackers (mali-
cious hackers) can spot and exploit bugs that might otherwise go undetected.

Q Finally, reusing code requires a trust factor. You must trust whoever wrote the code by assuming
that he or she did a good job. Some people like to have control over all aspects of their project,
including every line of source code. One of the authors certainly finds it difficult at times to
trust library code that he didn’t write himself. However, that is generally not a helpful or realis-
tic attitude in software development.

Putting It Together to Make a Decision

80

Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you are
better prepared to make the decision about whether or not to reuse code. Often, the decision is obvious.
For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft Windows, you
should use a framework such as MFC. You probably don’t know how to write the underlying code to
create a GUI in Windows, and more importantly, you don’t want to waste the time to learn it. You can
probably save person-years of effort by using a framework in this case.

However, other times the choice is less obvious. For example, if you are unfamiliar with a library or
framework, and need only a simple data structure, it might not be worth the time to learn the entire
framework to reuse only one component that you could write in a few days.

Ultimately, the decision is a subjective choice that you need to make for your own particular needs. It
often comes down to a tradeoff between the time it would take to write it yourself and the time required
to find and learn how to use a library to solve the problem. Carefully consider how the advantages and
disadvantages listed previously apply to your specific case, and decide which factors are most important
to you. Finally, remember that you can always change your mind!

Designing with Libraries and Patterns

Strategies for Reusing Code

When you use libraries, frameworks, coworkers’ code, or your own code, there are several guidelines
you should keep in mind.

Understand the Capabilities and Limitations

Take the time to familiarize yourself with the code. It is important to understand both its capabilities and
its limitations. Start with the documentation and the published interfaces or APIs. Ideally, that will be
sufficient to understand how to use the code. However, if the library doesn’t provide a clear separation
between interface and implementation, you may need to explore the source code itself. Also, talk to
other programmers who have used the code and who might be able to explain its intricacies. You should
begin by learning the basic functionality. If it’s a library, what behaviors does it provide? If it’s a frame-
work, how does your code fit in? What classes should you subclass? What code do you need to write
yourself? You should also consider specific issues depending on the type of code.

Here are some points to keep in mind for any library or framework:

a Is the code safe for multithreaded programs?
0 What initialization calls does the library or framework need? What cleanup does it need?
Q On what other libraries does the library or framework depend?
Here are some points to keep in mind for any library call you use:
Q If a call returns memory pointers, who is responsible for freeing the memory: the caller or the
library? If the library is responsible, when is the memory freed?

Q What error conditions does the library call check for, and what does it assume? How does it
handle errors?

Q What are all the return values (by value or reference) from a call? What are all the possible
exceptions thrown?
Here are some points to keep in mind for a framework:
Q If you inherit from a class, which constructor should you call on it? Which virtual methods
should you override?

0O What memory are you responsible for freeing, and what memory is the framework responsible
for freeing?

Understand the Performance

It is important to know the performance guarantees that the library or other code provides. Even if your
particular program is not performance sensitive, you should make sure that the code you use doesn’t
have awful performance for your particular use. For example, a library for XML parsing might claim to
be fast even though it actually stores temporary information in a file, incurring disk I/O that decreases
performance considerably.

81

Chapter 4

Big-O Notation

82

Programmers generally discuss and document algorithm and library performance using big-O notation.
This section explains the general concepts of algorithm complexity analysis and big-O notation without a
lot of unnecessary mathematics. If you are already familiar with these concepts, you may skip this section.

Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying that an
algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation specifies how an
algorithm performs as its input size increases. Examples of input sizes include the number of items to be
sorted by a sorting algorithm, the number of elements in a hash table during a key lookup, and the size
of a file to be copied between disks.

Note that big-O notation applies only to algorithms whose speed depends on their inputs. It does not apply
to algorithms that take no input or whose running time is random. In practice, you will find that the
running times of most algorithms of interest depend on their input, so this limitation is not significant.

To be more formal: big-O notation specifies algorithm run time as a function of its input size, also known
as the complexity of the algorithm. However, that’s not as complicated as it sounds. For example, suppose
that a sorting algorithm takes 50 milliseconds to sort 500 elements and 100 milliseconds to sort 1,000 ele-
ments. Because it takes twice as long to sort twice as many elements, its performance is linear as a func-
tion of its input. That is, you could graph the performance versus input size as a straight line. Big-O
notation summarizes the sorting algorithm performance like this: O(n). The O just means that you're
using big-O notation, while the # represents the input size. O(n) specifies that the sorting algorithm
speed is a direct linear function of the input size.

Unfortunately, not all algorithms have performance that is linear with respect to the input size.
Computer programs would run a lot faster if that were true! The following table summarizes the com-
mon categories of functions, in order of their performance from best to worst:

Algorithm Complexity = Big-O Notation Explanation Example Algorithms
Constant o) Running time is inde- Accessing a single
pendent of input size. element in an array
Logarithmic O(log n) The running time is a Finding an element
function of the logarithm in a sorted list using
base 2 of the input size. binary search
Linear O(n) The running time is Finding an element
directly proportional in an unsorted list
to the input size.
Linear Logarithmic O(nlogn) The running time is a Merge sort
function of the linear
times the logarithmic
functions of the input
size.
Quadratic Om?) The running time is a A slower sorting
function of the square algorithm like
of the input size. selection sort

Designing with Libraries and Patterns

There are two advantages to specifying performance as a function of the input size instead of in absolute
numbers:

1. Itis platform independent. Specifying that a piece of code runs in 200 milliseconds on one com-
puter says nothing about its speed on a second computer. It is also difficult to compare two dif-
ferent algorithms without running them on the same computer with the exact same load. On the
other hand, performance specified as a function of the input size is applicable to any platform.

2. Performance as a function of input size covers all possible inputs to the algorithm with one
specification. The specific time in seconds that an algorithm takes to run covers only one specific
input, and says nothing about any other input.

Tips for Understanding Performance

Now that you are familiar with big-O notation, you are prepared to understand most performance docu-
mentation. The C++ standard template library in particular describes its algorithm and data structure
performance using big-O notation. However, big-O notation is sometimes insufficient or misleading.
Consider the following issues whenever you think about big-O performance specifications:

Q If an algorithm takes twice as long to work on twice as much data, that says nothing about how
long it took in the first place! If the algorithm is written badly but scales well, it’s still not some-
thing you want to use. For example, suppose the algorithm makes unnecessary disk accesses.
That probably wouldn't affect the big-O time but would be very bad for performance.

Q Along those lines, it’s difficult to compare two algorithms with the same big-O running time.
For example, if two different sorting algorithms both claim to be O(n log n), it’s hard to tell
which is really faster without running your own tests.

Q For small inputs, big-O time can be very misleading. An O(n2) algorithm might actually per-
form better than an O(log n) algorithm on small input sizes. Consider your likely input sizes
before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm perfor-
mance. Here are some guidelines to keep in mind:

Q Youshould consider how often you intend to use a particular piece of library code. Some people
find the “90/10” rule helpful: 90 percent of the running time of most programs is spent in only
10 percent of the code (Hennessy and Patterson, 2002) If the library code you intend to use falls
in the oft-exercised 10 percent category of your code, you should make sure to analyze its per-
formance characteristics carefully. On the other hand, if it falls into the oft-ignored 90 percent of
the code, you should not spend much time analyzing its performance because it will not benefit
your overall program performance very much.

Q Don't trust the documentation. Always run performance tests to determine if library code pro-
vides acceptable performance characteristics.

Understand Platform Limitations

Before you start using library code, make sure that you understand on which platforms it runs. That
might sound obvious. Of course, you wouldn’t try to use the MFC in an application that should also run
on Linux. However, even libraries that claim to be cross-platform might contain subtle differences on the
different platforms.

83

Chapter 4

Also, platforms include not only different operating systems but different versions of the same operating
system. If you write an application that should run on Solaris 8, Solaris 9, and Solaris 10, ensure that any
libraries you use also support all those releases. You cannot assume either forward or backward compat-
ibility across operating system versions. That is, just because a library runs on Solaris 9 doesn’t mean
that it will run on Solaris 10 and vice versa. The library on Solaris 10 might use operating system fea-
tures or other libraries that are new to that release. On the other hand, the library on Solaris 9 might use
features that have been removed in Solaris 10, or might use an old binary format.

Understand Licensing and Support

Using third-party libraries often introduces complicated licensing issues. You must sometimes pay
license fees to third-party vendors for the use of their libraries. There may also be other licensing restric-
tions, including export restrictions. Additionally, open-source libraries are often distributed under
licenses that require any code that links with them to be open source as well.

Make sure that you understand the license restrictions of any third-party libraries
you use if you plan to distribute or sell the code you develop. When in doubt, con-
sult a legal expert.

Using third-party libraries also introduces support issues. Before you use a library, make sure that you
understand the process for submitting bugs, and that you realize how long it will take for bugs to be
fixed. If possible, determine how long the library will continue to be supported so that you can plan
accordingly.

Interestingly, even using libraries from within your own organization can introduce support issues. You
may find it just as difficult to convince a coworker in another part of your company to fix a bug in his or
her library as you would to convince a stranger in another company to do the equivalent. In fact, you
may even find it harder, because you're not a paying customer. Make sure that you understand the poli-
tics and organizational issues within your own organization before using internal libraries.

Know Where to Find Help

Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are many avenues
of support available. First of all, consult the documentation that accompanies the library. If the library is
widely used, such as the standard template library (STL), or the MFC, you should be able to find a good
book on the topic. In fact, for help with the STL, consult Chapters 21 to 23 of this book! If you have spe-
cific questions that are not addressed by the books and product documentation, try searching the Web.
Type your question into a search engine like Google (at www.google.com) to find Web pages that dis-
cuss the library. For example, when I google for the phrase “introduction to C++ STL” I find several hun-
dred Web sites about C++ and the STL.

A note of caution: don’t believe everything you read on the Web! Web pages do not
necessarily undergo the same review process as printed books and documentation,
and may contain inaccuracies.

84

Designing with Libraries and Patterns

Also consider browsing newsgroups and signing up for mailing lists. You can search the Usenet news-
groups at http: //groups.google. com for information about your library or framework. For example,
suppose that you didn’t know that the C++ standard omits a hash table from the STL. Searching for the
phrase “hashtable in C++ STL” in the google groups reveals several postings explaining that there is no
hash table in the standard, but that many vendors supply implementations anyway.

Newsgroups are often unmoderated. The postings can be rude and offensive.
Browse and post at your own discretion.

Finally, many Web sites contain their own private newsgroups on specific topics for which you can
register.

Prototype

When you first sit down with a new library or framework, it is often a good idea to write a quick proto-
type. Trying out the code is the best way to familiarize yourself with the library’s capabilities. You

should consider experimenting with the library even before you tackle your program design so that you
are intimately familiar with the library’s capabilities and limitations before inserting it into your design.
This empirical testing will allow you to determine the performance characteristics of the library as well.

Even if your prototype application looks nothing like your final application, time spent prototyping is
not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy pro-
gram that just tests the library capabilities you want to use. The point is only to familiarize yourself with
the library.

Due to time constraints, programmers sometimes find their prototypes morphing
into the final product. If you have hacked together a prototype that is insufficient as
the basis for the final product, make sure that it doesn’t get used that way.

Bundling Third-Party Applications

Your project might include multiple applications. Perhaps you need a Web server front end to support
your new e-commerce infrastructure. It is possible to bundle third-party applications, such as a Web
server, with your software. This approach takes code reuse to the extreme in that you reuse entire appli-
cations! However, most of the caveats and guidelines for using libraries apply to bundling third-party
applications as well. Specifically, make sure that you understand the legality and licensing ramifications
of your decision.

Consult a legal expert before bundling third-party applications with your software distributions.
Also, the support issue becomes more complex. If customers encounter a problem with your bundled

Web server, should they contact you or the Web server vendor? Make sure that you resolve this issue
before you release the software.

85

Chapter 4

Open-Source Libraries

Open-source libraries are an increasingly popular class of reusable code. The general meaning of open-
source is that the source code is available for anyone to look at. There are formal definitions and legal
rules about including source with all your distributions, but the important thing to remember about
open-source software is that anyone (including you) can look at the source code. Note that open-source
applies to more than just libraries. In fact, the most famous open-source product is probably the Linux
operating system.

The Open-Source Movements

Unfortunately, there is some confusion in terminology in the open-source community. First of all, there
are two competing names for the movement (some would say two separate, but similar, movements).
Richard Stallman and the GNU project use the term free software. Note that the term free does not imply
that the finished product must be available without cost. Developers are welcome to charge as much or
as little as they want for a free software product. Instead, the term free refers to the freedom for people to
examine the source code, modify the source code, and redistribute the software. Think of the free in free
speech rather than the free in free beer. You can read more about Richard Stallman and the GNU project
at www.gnu.org.

Don’t confuse free software with freeware. Freeware or shareware applications are
available at no cost, but the source code can be private, or proprietary. Free software,
on the other hand, can require payment to use, but the source code must be available.

The Open Source Initiative uses the term open-source software to describe software in which the source
must be available. As with free software, open-source software does not require the product or library to
be available for free. You can read more about the Open Source Initiative at www. opensource.org.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-source”
to refer to products and libraries with which the source code is available. The choice of name is not
intended to imply endorsement of the open-source philosophy over the free software philosophy: it is
only for ease of comprehension.

Finding and Using Open-Source Libraries

86

Regardless of the terminology, you can gain amazing benefits from using open-source software. The
main benefit is functionality. There are a plethora of open-source C++ libraries available for varied tasks:
from XML parsing to cross-platform error logging.

Although open-source libraries are not required to provide free distribution and licensing, many open-
source libraries are available without monetary cost. You will generally be able to save money in licens-
ing fees by using open-source libraries.

Finally, you are often free to modify open-source libraries to suit your exact needs.
Most open-source libraries are available on the Web. Try googling for what you need. For example, the

first link in Google from the search string “open-source C++ library XML parsing” is a list of links to
XML libraries in C and C++, including libxml and Xerces C++ Parser.

Designing with Libraries and Patterns

There are also a few open-source portals where you can start your search, including;:

U www.opensource.org
d www.gnu.org

] www . sourceforge.net

Your own searches should quickly uncover many more resources on the Web.

Guidelines for Using Open-Source Code

Open-source libraries present several unique issues and require new strategies. First of all, open-source
libraries are usually written by people in their “free” time. The source base is generally available for any
programmer who wants to pitch in and contribute to development or bug fixing. As a good program-
ming citizen, you should try to contribute to open-source projects if you find yourself reaping the bene-
fits of open-source libraries. If you work for a company, you may find resistance to this idea from your
management because it does not lead directly to revenue for your company. However, you might be able
to convince management that indirect benefits, such as exposure of your company name, and perceived
support from your company for the open-source movement, should allow you to pursue this activity.

Second, because of the distributed nature of their development, and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is often
more efficient to make the fix yourself than to wait for someone else to do it. If you do fix bugs, you
should make sure to put the fixes into the public source base for the library. Even if you don't fix any
bugs, make sure to report problems that you find so that other programmers don’t waste time encoun-
tering the same issues.

When using open-source libraries, respect the movement’s philosophy of “freedom.”
Try not to abuse this freedom or to profit unnecessarily from work to which you do
not contribute.

The C++ Standard Library

The most important library that you will use as a C++ programmer is the C++ standard library. As its
name implies, this library is part of the C++ standard, so any standards-conforming compiler should
include it. The standard library is not monolithic: it includes several disparate components, some of
which you have probably been using already. You may even have assumed they were part of the core
language. This section introduces the various components of the standard library from a design perspec-
tive. You will learn what facilities are available for you to use, but you will not learn the coding details.
Those details are covered in other chapters throughout the book.

Note that the following overview is not comprehensive. Some details are introduced later in the book
where they are more appropriate, and some details are omitted entirely. The standard library is too
extensive to cover in its entirety in a general C++ book; there are 800-page books that cover only the
standard library!

87

Chapter 4

C Standard Library

Because C++ is a superset of C, the entire C library is still available. Its functionality includes mathemati-
cal functions such as abs (), sart (), and pow (), random numbers with srand () and rand (), and
error-handling helpers such as assert () and errno. Additionally, the C library facilities for manipulat-
ing character arrays as strings, such as strlen() and strcpy (), and the C-style I/O functions, such as
printf () and scanf (), are all available in C++.

C++ provides better strings and I/O support than does C. Even though the C-style strings and 1/O rou-
tines are available in C++, you should avoid them in favor of C++ strings and 1/O streams.

This book assumes that you are familiar with the C libraries. If not, consult one of the C reference books
listed in Appendix B. Note also that the C header files have different names in C++ than in C. For details,
see the Standard Library Reference resource on the Web site.

Strings

C++ provides a built-in string class. Although you may still use C-style strings of character arrays, the
C++ string class is superior in almost every way. It handles the memory management; provides some
bounds checking, assignment semantics, and comparisons; and supports manipulations such as concate-
nation, substring extraction, and substring or character replacement.

Technically, the C++ string is actually a typedef name for a char instantiation of
the basic_string template. However, you need not worry about these details; you
can use string as if it were a bona fide nontemplate class.

In case you missed it, Chapter 1 reviewed the string class functionality. The Standard Library Reference
resource on the Web site provides further details.

I/0 Streams

C++ introduces a new model for input and output using streams. The C++ library provides routines for
reading and writing built-in types from and to files, console/keyboard, and strings. C++ also provides
the facilities for coding your own routines for reading and writing your own objects.

Chapter 1 reviewed the basics of I/O streams. Chapter 14 provides the details of streams.

Internationalization

C++ also provides support for internationalization. These features allow you to write programs that work
with different languages, character formats, and number formats.

Chapter 14 discusses internationalization.

Smart Pointers

C++ provides a limited smart pointer template, called the auto_ptr. This templatized class allows you
to wrap a pointer of any type such that delete is called on it automatically when it goes out of scope.

88

Designing with Libraries and Patterns

However, this class does not support reference counting, so the pointer can have only one owner at
a time.

Chapters 13, 15, 16, and 25 discuss smart pointers in more detail.

Exceptions

The C++ language supports exceptions, which allow functions or methods to pass errors of various
types up to calling functions or methods. The C++ standard library provides a class hierarchy of excep-
tions that you can use in your program as is, or that you can subclass to create your own exception
types. Chapter 15 covers the details of exceptions and the standard exception classes.

Mathematical Utilities

The C++ library provides some mathematical utility classes. Although they are templatized, so that you
can use them with any type, they are not generally considered part of the standard template library.
Unless you are using C++ for numeric computation, you will probably not need to use these utilities.

The standard library provides a complex number class, called complex, which provides an abstraction
for working with numbers that contain both real and imaginary components.

The standard library also contains a class called valarray, which is essentially a vector in the mathe-
matical sense. The library provides several related classes to represent the concept of vector slices. From
these building blocks, it is possible to build classes to perform matrix mathematics. However, there is no
built-in matrix class.

C++ also provides a new way to obtain information about numeric limits, such as the maximum possible
value for an integer on the current platform. In C, you could access #defines such as INT_MAX. While
those are still available in C++, you can also use the new numeric_limits template class family.

The Standard Template Library

The heart of the C++ standard library is its generic containers and algorithms. This aspect of the library
is often called the standard template library, or STL for short, because of its abundant use of templates. The
beauty of the STL is that it provides generic containers and generic algorithms in such a way that most
of the algorithms work on most of the containers, no matter what type of data the containers store. This
section introduces the various containers and algorithms in the STL. Chapters 21 to 23 provide the code
details for using them in your programs.

STL Containers

The STL provides implementations of most of the standard data structures. When you use C++, you
should not need to write data structures such as a linked list or queue ever again. Data structures, or con-
tainers, store pieces of information, or elements, in a way that allows appropriate access. Different data
structures have different insertion, deletion, and access behavior and performance characteristics. It is
important to be familiar with the data structures available so that you can choose the most appropriate
one for any given task.

All the containers in the STL are templates, so you can use them to store any type, from built-in types
such as int and double to your own classes. Note that you must store elements of the same type in any

89

Chapter 4

given container. That is, you cannot store elements of both int and double in the same queue.
However, you could create two separate queues: one for ints and one for doubles.

The C++ STL containers are homogenous: they allow elements of only one type in
each container.

Note that the C++ standard specifies the interface, but not the implementation, of each container and
algorithm. Thus, different vendors are free to provide different implementations. However, the standard
also specifies performance requirements as part of the interface, which the implementations must meet.

This section provides an overview of the various containers available in the STL.

Vector

A vector stores a sequence of elements and provides random access to these elements. You can think of a
vector as an array of elements that grows dynamically as you insert elements and provides some bounds
checking. Like an array, the elements of a vector are stored in contiguous memory.

A wvector in C++ is a synonym for a dynamic array: an array that grows and shrinks automatically in
response to the number of elements it stores. The C++ vector does not refer to the mathematical con-
cept of a vector. C++ models mathematical vectors by the valarray container.

Vectors provide fast (constant time) element insertion and deletion at the end of the vector, but slow
(linear time) insertion and deletion anywhere else. Insertion and deletion are slow because the operation
must move all the elements “down” or “up” by one to make room for the new element or to fill the
space left by the deleted element. Like arrays, vectors provide fast (constant time) access to any of their
elements.

You should use a vector in your programs when you need fast access to the elements, but do not plan to
add or remove elements often. A good rule of thumb is to use a vector whenever you would have used
an array. For example, a system-monitoring tool might keep a list of computer systems that it monitors
in a vector. Only rarely would new computers be added to the list, or current computers removed from
the list. However, users would often want to look up information about a particular computer, so lookup
times should be fast.

Use a vector instead of an array whenever possible.

List

20

An STL list is a standard linked list structure. Like an array or vector, it stores a sequence of elements.
However, unlike in an array or vector, the elements of a linked list are not necessarily in contiguous
memory. Instead, each element in the list specifies where to find the next and previous elements in the
list (usually via pointers). Note that a list in which elements point both to the next and to the previous
elements is called a doubly linked list.

Designing with Libraries and Patterns

The performance characteristics of a list are the exact opposite of a vector. Lists provide slow (linear
time) element lookup and access, but quick (constant time) insertion and deletion of elements once the
relevant position has been found. Thus, you should use a list when you plan to insert and remove many
elements, but do not require quick lookup. For example, in a chat room implementation you might keep
track of all the current participants in the chat in a list. Participants in chat rooms tend to come and go
frequently, so you need quick insertion and deletion. On the other hand, you rarely need to look up par-
ticipants in the list, so you don’t care about slow lookup times.

Deque

The name deque is an abbreviation for a double-ended queue. A deque is partway between a vector and a
list, but closer to a vector. Like a vector, it provides quick (constant time) element access. Like a list, it
provides fast (amortized constant time) insertion and deletion at both ends of the sequence. However,
unlike a list, it provides slow (linear time) insertion and deletion in the middle of the sequence.

You should use a deque instead of a vector when you need to insert or remove elements from either end
of the sequence but still need fast access time to all elements. However, this requirement does not apply
to many programming problems; in most cases a vector or queue should suffice.

The vector, list, and deque containers are called sequential containers because they
store a sequence of elements.

Queue

The name queue comes directly from the definition of the English word queue, which means a line of
people or objects. The queue container provides standard first in, first out (or FIFO) semantics. A queue is
a container in which you insert elements at one end and take them out at the other end. Both insertion
and removal of elements is quick (constant time).

You should use a queue structure when you want to model real-life “first come, first served” semantics.
For example, consider a bank. As customers arrive at the bank, they get in line. As tellers become avail-
able, they serve the next customer in line, thus providing “first come, first served” behavior. You could
implement a bank simulation by storing Customer objects in a queue. As each customer arrives at the
bank, you add him or her to the end of the queue. As each teller is ready to serve a customer, he or she
serves the customer at the front of the queue. That way, customers are served in the order in which they
arrived.

Priority Queue

A priority queue provides queue functionality in which each element has a priority. Elements are
removed from the queue in priority order. In the case of priority ties, the FIFO semantics hold so that the
first element inserted is the first removed. Priority queue insertion and deletion are generally slower
than simple queue insertion and deletion, because the elements must be reordered to support the prior-
ity ordering.

You can use priority queues to model “queues with exceptions.” For example, in the bank simulation
above, suppose that customers with business accounts take priority over regular customers. Many

91

Chapter 4

real-life banks implement this behavior with two separate lines: one for business customers and one for
everyone else. Any customers in the business queue are taken before customers in the other line.
However, banks could also provide this behavior with a single line in which business customers simply
move to the front of the line ahead of any nonbusiness customers. In your program, you could use a pri-
ority queue in which customers have one of two priorities: business or regular. All business customers
would be serviced before all regular customers, but each group would be serviced in first-come, first-
served order.

Stack

The STL stack provides standard first-in, last-out (or FILO) semantics. Like a queue, elements are inserted
and removed from the container. However, in a stack the most recent element inserted is the first one
removed. The name stack derives from a visualization of this structure as a stack of objects in which only
the top object is visible. When you add an object to the stack, you hide all the objects underneath it.

Stacks model the real-life “first-come, last served” behavior. As an example, think of a parking lot in a
big city in which the first cars to arrive are boxed in by cars that arrive later. In this case, the last cars to
arrive are the first cars that are able to leave.

The STL stack container provides fast (constant time) insertion and removal of elements. You should use
the stack structure when you want FILO semantics. For example, an error-processing tool might want

to store errors on a stack so that the most recent error is the first one available for a human administrator
to read. It is often useful to process errors in a FILO order because newer errors sometimes obviate

older ones.

Technically, the queue, priority queue, and stack containers are container adapters.
They are interfaces built on top of one of the three standard sequential containers
(vector, deque, and list).

Set and Multiset

92

A setin STL is a collection of elements. Although the mathematical definition of a set implies an
unordered collection, the STL set stores the elements in an ordered fashion so that it can provide reason-
ably fast lookup, insertion, and deletion. In fact, the set provides logarithmic insertion, deletion, and
lookup, which are faster insertion and deletion than a vector provides, and faster lookup than a list pro-
vides. However, insertion and deletion are slower than a list, and lookup is slower than a vector. The
underlying implementation is usually a balanced binary tree, so you should use a set when you would
normally use a balanced binary tree structure. Specifically, you should use a set when you have equal
amounts of insertion/deletion and lookups, and want to optimize both as much as possible. For exam-
ple, an inventory-tracking program in a busy bookstore might want to use a set to store the books. The
list of books in stock must be updated whenever books arrive or are sold, so insertion and deletion
should be quick. Customers also need the ability to look for a specific book, so the program should pro-
vide fast lookup as well.

Use a set instead of a vector or list if you want equal performance for insertion, dele-
tion, and lookup.

Designing with Libraries and Patterns

Note that a set does not allow duplication of elements. That is, each element in the set must be unique. If
you want to store duplicate elements, you must use a multiset.

A multiset is simply a set that allows duplication of elements.

Map and Multimap

A map stores key/value pairs. The elements are sorted according to the keys. In all other respects, it is
identical to a set. You should use a map when you want to associate keys and values. For example, in an
online multiplayer game you might want to store some information about each player, such as his or her
login name, real name, IP address, and other characteristics. You could store this information in a map,
using the players’ login names as keys.

A multimap has the same relation to a map as a multiset does to a set. Specifically, a multimap is a map
that allows duplicate keys.

Note that you can use a map as an associative array. That is, you can use it as an array in which the index
can be any type, such as a string.

The set and map containers are called associative containers because they associate
keys and values. This term is confusing when applied to sets, because in sets the
keys are themselves the values. Because these containers sort their elements, they
are called sorted associative containers.

Bitset

C and C++ programmers commonly store a set of flags in a single int or long, using one bit for each

flag. They set and access these bits with the bitwise operators: &, |, *, ~, <<, and >>. The C++ standard
library provides a bitset class that abstracts this bitfield manipulation, so you shouldn’t need to use

the bit manipulation operators anymore.

The bitset container is not a container in the normal sense, in that it does not implement a specific data
structure in which you insert and remove elements. However, you can think of it as a sequence of
Boolean values that you can read and write.

Summary of STL Containers

The following table summarizes the containers provided by the STL. It uses big-O notation to present
the performance characteristics on a container of N elements. An N/A entry in the table means that the
operation is not part of the container semantics.

93

Chapter 4

Container

Class Name

Container
Type

Insertion
Performance

Deletion
Performance

Lookup

Performance When to Use

vector

list

deque

queue

queue

stack

set /
multiset

map /
multimap

bitset

priority__

Sequential

Sequential

Sequential

Container
Adapter

Container
Adapter

Container
Adapter

Sorted
Associative

Sorted
Associative

Special

O(1) atend

O(N) anywhere
else

o)

O(1) at beginning

or end
O(N) anywhere
else

0Q1)

O(log(N))

o(1)

O(log(N))

O(log(N))

N/A

O(1) atend

O(N) anywhere
else

o)

O(1) at beginning

or end
O(N) anywhere
else

0@1)

O(log(N))

o(1)

O(log(N))

O(log(N))

N/A

o)

O(N)

o)

N/A

N/A

N/A

O(log(N))

O(log(N))

0(1)

Need quick
lookup

Don’t mind
slow insertion/
deletion
Whenever you
would use an
array

Need quick
insertion/
deletion
Don’t mind
slow lookup

Not usually
needed; use
a vector or
list instead

When you
want a FIFO
structure

When you
want a FIFO
structure with
priority

When you
want a FILO
structure

When you want
a collection of
elements with
equal lookup,
insertion, and
deletion times

When you want
to associate
keys and values

When you want
a collection of
flags

94

Designing with Libraries and Patterns

Note that strings are technically containers as well. They can be thought of as vectors of characters.
Thus, some of the algorithms described in the material that follows work on strings also.

STL Algorithms

In addition to containers, the STL provides implementations of many generic algorithms. An algorithm is
a strategy for performing a particular task, such as sorting or searching. These algorithms are also imple-
mented as templates, so they work on most of the different container types. Note that the algorithms are
not generally part of the containers. The STL takes the surprising approach of separating the data (con-
tainers) from the functionality (algorithms). Although this approach seems counter to the spirit of object-
oriented programming, it is necessary in order to support generic programming in the STL. The guiding
principle of orthogonality maintains that algorithms and containers are independent, with (almost) any
algorithm working with (almost) any container.

Although the algorithms and containers are theoretically independent, some containers provide certain
algorithms in the form of class methods because the generic algorithms do not perform well on those
particular containers. For example, sets provide their own £ind () algorithm that is faster than the
generic £ind () algorithm. You should use the method form of the algorithm, if provided, because it is
generally more efficient or appropriate to the container at hand.

Note that the generic algorithms do not work directly on the containers. They use an intermediary
called an iterator. Each container in the STL provides an iterator that supports traversing the elements
in the container in a sequence. Iterators temporarily convert elements in even sets and maps to a
sequence. The different iterators for the various containers adhere to standard interfaces, so algorithms
can perform their work using iterators without worrying about the underlying container implementa-
tion. Chapters 21 to 23 and the Web site material provide all the details about iterators, algorithms, and
containers.

Iterators mediate between algorithms and containers. They provide a standard interface to traverse the
elements of a container in sequence, so that any algorithm can work on any container. The iterator
design pattern is discussed further below.

There are approximately 60 algorithms in the STL (depending on how you count them), generally
divided into several different categories. The categories tend to vary slightly from book to book. This
book uses the following five categories: utility, nonmodifying, modifying, sorting, and set. Some of the
categories can be subdivided further. Note that whenever the following algorithms are specified as
working on a “sequence” of elements, that sequence is given to the algorithm as an iterator.

When examining the list of algorithms, keep in mind that the STL was designed by
a committee. To quote an old joke, “a zebra is a horse designed by a committee.” In
other words, committees often arrive at designs that contain extra or unneeded func-
tionality, such as a zebra’s stripes. You may find that some of the algorithms in the
STL are equally strange or unnecessary. That’s fine. You are not obligated to use
every algorithm available. It is important only to be aware of what’s available in
case you ever find it useful.

95

Chapter 4

Utility Algorithms

Unlike the other algorithms, the utility algorithms do not work on sequences of data. We consider them
part of the STL only because they are templatized.

Algorithm Name Algorithm Synopsis
min(), max() Return the minimum or maximum of two values.
swap () Swap two values.

Nonmodifying Algorithms

The nonmodifying algorithms are those that look at a sequence of elements and return some information
about the elements, or execute some function on each element. As “nonmodifying” algorithms, they can-
not change the values of elements or the order of elements within the sequence. This category contains
four types of algorithms. The following tables list and provide brief summaries of the various nonmodi-
fying algorithms. With these algorithms, you should rarely need to write a for loop to iterate over a
sequence of values.

Search Algorithms

Requires Sorted
Algorithm Name Algorithm Synopsis Sequence?

find (), find_if() Finds the first element that matches a value No
Or causes a predicate to return true

find_first_of () Like find, except searches for one of several No
elements at the same time

adjacent_find () Finds the first instance of two consecutive No
elements that are equal to each other

search(), find_end() Finds the first (search()) or last (find_end()) No
subsequence in a sequence that matches another
sequence

search_n() Finds the first instance of n consecutive No

elements that are equal to a given value

lower_bound (), Finds the beginning, (Lower_bound ()) Yes
upper_bound (), end (upper_bound ()), or both sides
equal_range () (equal_range ()) of the range including

a specified element

binary_search() Finds a value in a sorted sequence Yes
min_element (), Finds the minimum or maximum element No
max_element () in a sequence

96

Designing with Libraries and Patterns

Numerical Processing Algorithms

partial_sum/()

adjacent_difference()

Algorithm Name Algorithm Synopsis

count (), count_if() Counts the number of elements matching a value or that
cause a predicate to return true.

accumulate () “Accumulates” the values of all the elements in a sequence.
The default behavior is to sum the elements, but the caller can
supply a different binary function instead.

inner_product () Similar to accumulate, but works on two sequences. Calls

a binary function on parallel elements in the sequences,
accumulating the result. The default binary function is multi-
plication. If the sequences represent mathematical vectors,
the algorithm calculates the dot product of the vectors.

Generates a new sequence in which each element is the sum
(or other binary operation) of the parallel element, and all
preceding elements, in the source sequence.

Generates a new sequence in which each element is the
difference (or other binary operation) of the parallel element,
and its predecessor, in the source sequence.

Comparison Algorithms

lexicographical_compare ()

Algorithm Name Algorithm Synopsis

equal () Determines if two sequences are equal by checking if they have
the same order of elements.

mismatch () Returns the first element in each sequence that does not match

the element in the same location in the other sequence.

Compares two sequences to determine their “lexicographical”
ordering. Compares each element of the first sequence with its
equivalent element in the second. If one element is less than the
other, that sequence is lexicographically first. If the elements
are equal, compares the next elements in order.

97

Chapter 4

Operational Algorithms

Algorithm Name Algorithm Synopsis
for_each () Executes a function on each element in the sequence. This algo-
rithm is useful for printing out each element in a container.
Modifying Algorithms

The modifying algorithms modify some or all of the elements in a sequence. Some of them modify ele-
ments in place, so that the original sequence changes. Others copy the results to a different sequence so
that the original sequence is unchanged. The following table summarizes the modifying algorithms:

replace_copy (),
replace_copy_if ()

remove_copy (),
remove_copy_if ()

next_permutation(),
prev_permutation ()

£111(), £ill_n()
generate(), generate_n()
remove (), remove_if (),

unique (), unique_copy ()

reverse (), reverse_copy ()

rotate(), rotate_copy ()

Algorithm Name Algorithm Synopsis

transform() Calls a function on each element or each pair of elements.
copy (), copy_backward() Copies elements from one sequence to another.
iter_swap(), swap_ranges() Swap two elements or sequences of elements.

replace(), replace_if(), Replaces with a new element all elements matching a value

or that cause a predicate to return true, either in place or by
copying results to a new sequence.

Sets all elements in the sequence to a new value.

Like £111 () and £111_n (), except calls a specified function
to generate values to place in the sequence.

Removes from the sequence elements that match a given value
or that cause a predicate to return true, either in place or by
copying results to a different sequence.

Removes consecutive duplicates from the sequence, either in
place or by copying results to a different sequence.

Reverses the order of the elements in the sequence, either in
place or by copying the results to a different sequence.

Swaps the first and second “halves”of the sequence, either in
place or by copying the results to a different sequence. The two
subsequences to be swapped need not be equal in size.

Modifies the sequence by transforming it into its “next” or
“previous” permutation. Successive calls to one or the other
will permute the sequence into all possible permutations of
elements.

98

Designing with Libraries and Patterns

Sorting Algorithms

Sorting algorithms are a special category of modifying algorithms that sort the elements of a sequence.
The STL provides several different sorting algorithms with varying performance guarantees.

Algorithm Name

Algorithm Synopsis

sort (), stable_sort()

partial_sort(),
partial_sort_copy ()

nth_element ()

merge (), inplace_merge ()

make_heap (), push_heap(),

pop_heap (), sort_heap/()
partition(),
stable_partition()

random_shuffle()

Sorts elements in place, either preserving the order of duplicate
elements or not. The performance of sort () is similar to
quicksort, and the performance of stable_sort () is similar to
merge-sort (although the exact algorithms may differ).

Partially sorts the sequence: the first n elements of a fully
sorted sequence are sorted, the rest are not. Either in place or
by copying them to a new sequence.

Relocates the nth element of the sequence as if the entire
sequence were sorted.

Merges two sorted sequences, either in place or by copying
them to a new sequence.

Aheap is a standard data structure in which the elements of
an array or sequence are ordered in a semi-sorted fashion so
that finding the “top” element is quick. These four algorithms
allow you to use heap-sort on sequences.

Sorts the sequence such that all elements for which a predicate
returns true are before all elements for which it returns false,
either preserving the original order of the elements within each
partition or not.

“Unsorts” the sequence by randomly reordering the elements.

Set Algorithms

Set algorithms are special modifying algorithms that perform set operations on sequences. They
are most appropriate on sequences from set containers, but work on sorted sequences from most

containers.
Algorithm Name Algorithm Synopsis
includes () Determines if one sequence is a subset of another.

set_union(),
set_intersection(),
set_difference(),
set_symmetric_difference()

Perform the specified set operations on two sorted sequences,
copying results to a third sorted sequence. See Chapter 22 for
an explanation of the set operations.

99

Chapter 4

Choosing an Algorithm

The number and capabilities of the algorithms might overwhelm you at first. It can also be difficult to
see how to apply them at first glance. However, now that you are familiar with the options available,
you are better able to tackle your program designs. Chapters 21 to 23 cover the details of how to use
these algorithms in your code.

What’s Missing from the STL

The STL is powerful, but it’s not perfect. Here is a list of omissions and unsupported functionality:

Q

The STL does not provide synchronization for multithread safety. The STL standard does not
provide for any multithreading synchronization support because threading is platform specific.
Thus, if you have a multithreaded program, you must implement your own synchronization for
the containers.

The STL does not provide a hash table. More generally, it does not provide any hashed associative
containers: associative containers in which the elements are not sorted, but are stored according
to hashing. Note that many implementations of the STL provide a hash table or hashmap, but
since it is not part of the standard, using it is not portable. Chapter 23 provides an example
hashmap implementation.

The STL does not provide any generic tree or graph structures. Although maps and sets are gen-
erally implemented as balanced binary trees, the STL does not expose this implementation in
the interface. If you need a tree or graph structure for something like writing a parser, you will
need to implement your own or find an implementation in another library.

The STL does not provide any table abstractions. If you want to implement something like a
chessboard, you will probably need to use a two-dimensional array.

However, it is important to keep in mind that the STL is extensible. You can write your own containers or
algorithms that will work with existing algorithms or containers. So, if the STL doesn’t provide exactly
what you need, consider writing your desired code such that it works with the STL.

Deciding Whether or Not to Use the STL

The STL was designed with functionality, performance, and orthogonality as its priorities. It was not
designed to be easy to use, so naturally it did not turn out to be easy to use. In fact, the introduction in
this chapter barely scratched the surface of its complexity. Thus, there is a steep learning curve for using
the STL. However, the benefits are substantial. Think about the number of times you've tracked down
pointer errors in linked list or balanced binary tree implementations, or debugged a sorting algorithm
that wasn’t sorting properly. If you use the STL correctly, you will rarely, if ever, need to perform that
kind of coding again.

If you decide to pursue the STL in your programs, consult Chapters 21 to 23. They provide an in-depth
tutorial for using the containers and algorithms that the STL provides.

100

Designing with Libraries and Patterns

Desighing with Patterns and Techniques

Learning the C++ language and becoming a good C++ programmer are two very different things. If you
sat down and read the C++ standard, memorizing every fact, you would know C++ as well as anybody
else. However, until you gain some experience by looking at code and writing your own programs, you
wouldn’t necessarily be a good programmer. The reason is that the C++ syntax defines what the lan-
guage can do in its raw form, but doesn’t say anything about how each feature should be used.

As they become more experienced in using the C++ language, C++ programmers develop their own
individual ways of using the features of the language. The C++ community at large has also built some
standard ways of leveraging the language, some formal and some informal. Throughout this book, the
authors point out these reusable applications of the language, known as design techniques and design pat-
terns. Additionally, Chapters 25 and 26 focus almost exclusively on design techniques and patterns.
Some patterns and techniques will seem obvious to you because they are simply a formalization of the
obvious solution. Others describe novel solutions to problems you've encountered in the past. Some pre-
sent entirely new ways of thinking about your program organization.

It is important for you to familiarize yourself with these patterns and techniques so that you can recog-
nize when a particular design problem calls for one of these solutions. There are obviously many more

techniques and patterns applicable to C++ than those described in this book. Although the authors feel
that the most useful ones are covered, you may want to consult a book on design patterns for more and
different patterns and techniques. See Appendix B for suggestions.

Design Techniques

A design technique is simply a standard approach for solving a particular problem in C++. Often, a design
technique aims to overcome an annoying feature or language deficiency of C++. Other times, a design
technique is simply a piece of code that you use in many different programs to solve a common problem.

A Design Technique Example: Smart Pointers

Memory management in C++ is a perennial source of errors and bugs. Many of these bugs arise from the
use of dynamic memory allocation and pointers. When you use extensive dynamic memory allocation in
your program and pass many pointers between objects, it’s difficult to remember to call delete on each
pointer exactly once. The consequences of getting it wrong are severe: when you free dynamically allo-
cated memory more than once you can cause memory corruption, and when you forget to free dynami-
cally allocated memory you cause memory leaks.

Smart pointers help you manage your dynamically allocated memory. Conceptually, a smart pointer is a
pointer to dynamically allocated memory that remembers to free the memory when it goes out of scope.
In your programs, a smart pointer is generally an object that contains a regular, or dumb, pointer. This
object is allocated on the stack. When it goes out of scope its destructor calls delete on the contained
pointer.

Note that some language implementations provide garbage collection so that programmers are not
responsible for freeing any memory. In these languages, all pointers can be thought of as smart pointers
because you don’t need to remember to free any of the memory to which they point. Although some lan-
guages, such as Java, provide garbage collection as a matter of course, it is very difficult to write a

101

Chapter 4

garbage collector for C++. Thus, smart pointers are simply a technique to make up for the fact that C++
exposes memory management without garbage collection.

Managing pointers presents more problems than just remembering to delete them when they go out of
scope. Sometimes several objects or pieces of code contain copies of the same pointer. This problem is
called aliasing. In order to free all memory properly, the last piece of code to use the memory should call
delete on the pointer. However, it is often difficult to know which piece of code uses the memory last.
It may even be impossible to determine the order when you code because it might depend on run-time
inputs. Thus, a more sophisticated type of smart pointer implements reference counting to keep track of its
owners. When all owners are finished using the pointer, the number of references drops to 0 and the
smart pointer calls delete on its underlying dumb pointer. Many C++ frameworks, such as Microsoft’s
Object Linking and Embedding (OLE) and Component Object Model (COM) use reference counting
extensively. Even if you don’t intend to implement reference counting yourself, it is important to be
familiar with the concept.

C++ provides several language features that make smart pointers attractive. First, you can write a type-
safe smart pointer class for any pointer type using templates. Second, you can provide an interface to the
smart pointer objects using operator overloading that allows code to use the smart pointer objects as if
they were dumb pointers. Specifically, you can overload the * and -> operators such that the client code
can dereference a smart pointer object the same way it dereferences a normal pointer. Chapter 25 pro-
vides an implementation of a reference counted smart pointer that you can plug directly into your pro-
gram. The C++ standard library also provides a simple smart pointer called the auto_ptr, as described
in the overview of the standard library.

Design Patterns

A design pattern is a standard approach to program organization that solves a general problem. C++ is an
object-oriented language, so the design patterns of interest to C++ programmers are generally object-
oriented patterns, which describe strategies for organizing objects and object relationships in your pro-
grams. These patterns are usually applicable to any object-oriented language, such as C++, Java, or
Smalltalk. In fact, if you are familiar with Java programming, you will recognize many of these patterns.

Design patterns are less language specific than are techniques. The difference between a pattern and a
technique is admittedly fuzzy, and different books employ different definitions. This book defines a tech-
nique as a strategy particular to the C++ language that overcomes a deficiency in the language itself,
while a pattern is a more general strategy for object-oriented design applicable to any object-oriented
language.

Note that many patterns have several different names. The distinctions between the patterns themselves
can be somewhat vague, with different sources describing and categorizing them slightly differently. In
fact, depending on the books or other sources you use, you may find the same name applied to different
patterns. There is even disagreement as to which design approaches qualify as patterns. With a few
exceptions, this book follows the terminology used in the seminal book Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma et al. However, other pattern names and variations
are noted when appropriate.

Chapter 26 provides a catalog of several different design patterns, including sample implementations
in C++.

102

Designing with Libraries and Patterns

A Design Pattern Example: Iterator

The iterator pattern provides a mechanism for separating algorithms or operations from the data on
which they operate. At first glance, this pattern seems to contradict the fundamental principle in object-
oriented programming of grouping together in objects data and the behaviors that operate on that data.
While that argument is true on a certain level, this pattern does not advocate removing fundamental
behaviors from objects. Instead, it solves two problems that commonly arise with tight coupling of data
and behaviors.

The first problem with tightly coupling data and behaviors is that it precludes generic algorithms that
work on a variety of objects, not all of which are in the same class hierarchy. In order to write generic
algorithms, you need some standard mechanism to access the contents of the objects.

The second problem with tightly coupled data and behaviors is that it's sometimes difficult to add new
behaviors. At the very least, you need access to the source code for the data objects. However, what if the
object hierarchy of interest is part of a third-party framework or library that you cannot change? It
would be nice to be able to add an algorithm or operation that works on the data without modifying the
original object hierarchy of data.

You've already seen an example of the iterator pattern in the STL. Conceptually, iterators provide a mech-
anism for an operation or algorithm to access a container of elements in a sequence. The name comes
from the English word iterate, which means “repeat.” It applies to iterators because they repeat the
action of moving forward in the sequence to reach each new element. In the STL, the generic algorithms
use iterators to access the elements of the containers on which they operate. By defining a standard itera-
tor interface, the STL allows you to write algorithms that can work on any container that supplies an
iterator with the appropriate interface. Thus, iterators allow you to write generic algorithms without
modifying the data. Figure 4-1 shows an iterator as an assembly line that sends the elements of a data
object to an “operation.”

Data Object Iterator Operation

.(:). ,

Figure 4-1

Summary

This chapter focused on the design theme of reuse. You learned that your C++ design should include
both reuse of code, in the form of libraries and frameworks, and reuse of ideas, in the form of techniques
and patterns.

Although code reuse is a general goal, there are both advantages and disadvantages associated with it.
You learned about these tradeoffs and about specific guidelines for reusing code, including understand-
ing the capabilities and limitations, the performance, licensing and support models, the platform limita-
tions, prototyping, and where to find help. You also learned about performance analysis and big-O
notation, as well as special issues and considerations involved in using open-source libraries.

103

Chapter 4

This chapter also provided an overview of the C++ standard library, which is the most important library
that you will use in your code. It subsumes the C library and includes additional facilities for strings,
I/0, error handling, and other tasks. It also includes generic containers and algorithms, which are
together referred to as the standard template library. Chapters 21 to 23 describe the standard template
library in detail.

When you design your programs, reusing patterns and techniques is just as important as reusing code.
You should avoid reinventing the wheel as well as rebuilding it! To that end, this chapter introduced the
notion of design techniques and patterns. Chapters 25 to 26 provide additional examples, including code
and sample applications of techniques and patterns.

However, using libraries and patterns is only half of the reuse strategy. You also need to design your own

code so that you and others can reuse it as much as possible. Chapter 5 presents strategies for designing
reusable code.

104

H

Designing for
Reuse

Reusing libraries and other code in your programs is an important design strategy. However, it is
only half of the reuse strategy. The other half is designing and writing the code that you can reuse
in your programs. As you’ve probably discovered, there is a significant difference between well-
designed and poorly designed libraries. Well-designed libraries are a pleasure to use, while poorly
designed libraries can prod you to give up in disgust and write the code yourself. Whether you're
writing a library explicitly designed for use by other programmers or merely deciding on a class
hierarchy, you should design your code with reuse in mind. You never know when you'll need a
similar piece of functionality in a subsequent project.

Chapter 2 introduced the design theme of reuse. Chapter 4 explained how to apply this theme by
incorporating libraries and other code in your designs. This chapter discusses the other side of
reuse: designing reusable code. It builds on the object-oriented design principles described in
Chapter 3 and introduces some new strategies and guidelines.

After finishing this chapter, you will understand:

Q The reuse philosophy: why you should design code for reuse
QO How to design reusable code

0 How to use abstraction

Q Three strategies for structuring your code for reuse

Q Six strategies for designing usable interfaces

0 How to reconcile generality with ease of use

Chapter 5

The Reuse Philosophy

You should design code that both you and other programmers can reuse. This rule applies not only to
libraries and frameworks that you specifically intend for other programmers to use, but also to any class,
subsystem, or component that you design for a program. You should always keep in mind the motto,
“write once, use often.” There are several reasons for this design approach:

a

Code is rarely used in only one program. You may not intend your code to be reused when you
write it, but you may find yourself or your colleagues incorporating components of the program
in similar projects a few months or years later. You know that your code will probably be used
again somehow, so design it correctly to begin with.

Designing for reuse saves time and money. If you design your code in a way that precludes
future use, you ensure that you or your partners will spend time reinventing the wheel later
when you encounter a need for a similar piece of functionality. Even if you don’t explicitly pre-
vent reuse, if you provide a poor interface or omit functionality, it will require extra time and
effort to use the code in the future.

Other programmers in your group must be able to use the code that you write. Even in cases
where your code is useful only for the specific program at hand, you are probably not working
alone on a project. Your coworkers will appreciate your efforts to offer them well-designed,
functionality-packed libraries and pieces of code to use. You know what it’s like to use a bad
interface or poorly thought-out class that someone else wrote. Designing for reuse can also be
called cooperative coding. You should write code to benefit programmers in projects other than
the current one.

You will be the primary beneficiary of your own work. Experienced programmers never
throw away code. Over time, they build a personal library of evolving tools. You never know
when you will need a similar piece of functionality in the future. For example, when one of the
authors took his first network programming course as an undergraduate, he wrote some generic
networking routines for creating connections, sending messages, and receiving messages. He
has consulted that code during every project that involves networking since then, and has
reused pieces of it in several different programs.

When you design or write code as an employee of a company, the company, not you,
generally owns the intellectual property rights. It is often illegal to retain copies of
your designs or code when you terminate your employment with the company.

How to Design Reusable Code

Reusable code fulfills two main goals. First, it is general enough to use for slightly different purposes or
in different application domains. Program components with details of a specific application are difficult
to reuse in other programs.

Reusable code is also easy to use. It doesn’t require significant time to understand its interface or func-
tionality. Programmers must be able to incorporate it readily into their applications.

106

Designing for Reuse

Reusable code is general purpose and easy to use.

A collection of reusable code that you provide does not need to be a formal library. It could be a class, a
collection of functions, or a program subsystem. However, as in Chapter 4, this chapter uses the term
“library” to refer generally to any collection of code that you write.

Note that this chapter uses the term “client” to refer to a programmer who uses your interfaces. Don't
confuse clients with “users” who run your programs. The chapter also uses the phrase “client code” to
refer to code that is written to use your interfaces.

The most important strategy for designing reusable code is abstraction. Chapter 2 presented the real-
world analogy of a television, which you can use through its interfaces without understanding how it
works inside. Similarly, when you design code, you should clearly separate the interface from the imple-
mentation. This separation makes the code easier to use, primarily because clients do not need to under-
stand the internal implementation details in order to use the functionality.

Abstraction separates code into interface and implementation, so designing reusable code focuses on
these two main areas. First, you must structure the code appropriately. What class hierarchies will you
use? Should you use templates? How should you divide the code into subsystems?

Second, you must design the interfaces, which are the “entries” into your library or code that program-
mers use to access the functionality you provide. Note that an interface does not need to be a formal API.
The concept includes any border between the code you provide and the code that uses it. The public
methods of a class or a header file of function prototypes are both perfectly valid interfaces.

The term “interface” can refer to a single access point, such as an individual function or method call, or
to an entire collection such as an API, class declaration, or header file.

Use Abstraction

You learned about the principle of abstraction in Chapter 2 and read more about its application to object-
oriented design in Chapter 3. To follow the principle of abstraction, you should provide interfaces to
your code that hide the underlying implementation details. There should be a clear distinction between
the interface and the implementation.

Using abstraction benefits both you and the clients who use your code. Clients benefit because they
don’t need to worry about the implementation details; they can take advantage of the functionality you
offer without understanding how the code really works. You benefit because you can modify the under-
lying code without changing the interface to the code. Thus, you can provide upgrades and fixes with-
out requiring clients to change their use. With dynamically linked libraries, clients don’t even need to
rebuild their executables! Finally, you both benefit because you, as the library writer, can specify in the
interface exactly what interactions you expect and functionality you support. A clear separation of inter-
faces and implementations will prevent clients from using the library in ways that you didn’t intend,
which can otherwise cause unexpected behaviors and bugs.

Suppose that you are designing a random number library and want to provide some way for the user
to specify the range of the random numbers. A bad design would expose the global variables or class

107

Chapter 5

members that the random number generator implementation uses internally to affect the range. This
badly designed library would require client code to set these variables directly. A good design would hide
the variables used by the internal implementation and instead provide an implementation-independent
function or method call to set the range. That way the client isn’t required to understand the internal
algorithm. In addition, because the implementation details are not exposed, you could change the algo-
rithm without affecting the client code’s interaction with the library.

Sometimes libraries require client code to keep information returned from one interface in order to pass
it to another. This information is sometimes called a handle and is often used to keep track of specific
instances that require state to be remembered between calls. If your library design requires a handle,
don’t expose its internals. Make that handle into an opagque class, in which the programmer can’t access
the internal data members. Don’t require the client code to tweak variables inside this handle. As an
example of a bad design, one of the authors actually used a library that required him to set a specific
member of a structure in a supposedly opaque handle in order to turn on error logging.

C++ fails to provide mechanisms for good abstraction when writing classes. You
must place the private data member and method declarations in the same header file
as the public method declarations. Chapter 9 describes some techniques for working
around this limitation in order to present clean interfaces.

Abstraction is so important that it should guide your entire design. As part of every decision you make,
ask yourself whether your choice fulfills the principle of abstraction. Put yourself in your clients’ shoes
and determine whether or not you're requiring knowledge of the internal implementation in the inter-
face. You should rarely, if ever, make exceptions to this rule.

Structure Your Code for Optimal Reuse

You must consider reuse from the beginning of your design. The following strategies will help you orga-
nize your code properly. Note that all of these strategies focus on making your code general purpose.
The second aspect of designing reusable code, providing ease of use, is more relevant to your interface
design and is discussed later in this chapter.

Avoid Combining Unrelated or Logically Separate Concepts

When you design a library or framework, keep it focused on a single task or group of tasks. Don’t com-
bine unrelated concepts such as a random number generator and an XML parser.

Even when you are not designing code specifically for reuse, keep this strategy in mind. Entire programs
are rarely reused on their own. Instead, pieces or subsystems of the programs are incorporated directly
into other applications, or are adapted for slightly different uses. Thus, you should design your pro-
grams so that you divide logically separate functionality into distinct components that can be reused in
different programs.

This program strategy models the real-world design principle of discrete, interchangeable parts. For
example, you could take the tires off an old car and use them on a new car of a different model. Tires are
separable components that are not tied to other aspects of the car. You don’t need to bring the engine
along with the tires!

108

Designing for Reuse

You can employ the strategy of logical division in your program design on both the macro subsystem
level and the micro class hierarchy level.

Divide Your Programs into Logical Subsystems

Design your subsystems as discrete components that can be reused independently. For example, if you
are designing a networked game, keep the networking and graphical user interface aspects in separate
subsystems. That way you can reuse either component without dragging in the other. For example, you
might want to write a non-networked game, in which case you could reuse the graphical interface sub-
system, but wouldn’t need the networking aspect. Similarly, you could design a peer-to-peer file-sharing
program, in which case you could reuse the networking subsystem but not the graphical user interface
functionality.

Make sure to follow the principle of abstraction for each subsystem, clearly separating the interface in
the subsystem from its underlying implementation. Think of each subsystem as a miniature library for
which you must provide a coherent and easy-to-use interface. Even if you're the only programmer who
ever uses these miniature libraries, you will benefit from well-designed interfaces and implementations
that separate logically distinct functionality.

Use Class Hierarchies to Separate Logical Concepts

In addition to dividing your program into logical subsystems, you should avoid combining unrelated
concepts at the class level. For example, suppose you want to write a balanced binary tree structure for a
multithreaded program. You decide that the tree data structure should allow only one thread at a time to
access or modify the structure, so you incorporate locking into the data structure itself. However, what if
you want to use this binary tree in another program that happens to be single-threaded? In that case, the
locking is a waste of time, and would require your program to link with libraries that it could otherwise
avoid. Even worse, your tree structure might not compile on a different platform because the locking
code is probably not cross-platform. The solution is to create a class hierarchy (introduced in Chapter 3)
in which a thread-safe binary tree is a subclass of a generic binary tree. That way you can use the binary
tree superclass in single-threaded programs without incurring the cost of locking unnecessarily, or on a
different platform without rewriting the locking code. Figure 5-1 shows this hierarchy:

BinaryTree

A

| Thread-SafeBinaryTree ‘

Figure 5-1

This strategy works well when there are two logical concepts, such as thread safety and binary trees. It
becomes more complicated when there are three or more concepts. For example, suppose you want to
provide both an n-ary tree and a binary tree, each of which could be thread-safe or not. Logically, the
binary tree is a special-case of an n-ary tree, and so should be a subclass of an n-ary tree. Similarly,
thread-safe structures should be subclasses of non-thread-safe structures. You can’t provide these sepa-
rations with a linear hierarchy. One possibility is to make the thread-safe aspect a mix-in class as shown
in Figure 5-2:

109

Chapter 5

Thread-Safety

| Thread-SafeN-aryTree

Thread-SafeBinaryTree |

Figure 5-2

That hierarchy requires you to write five different classes, but the clear separation of functionality is
worth the effort.

You can also use class hierarchies to separate generic functionality from more specific functionality. For
example, suppose you are designing an operating system that supports user-level multithreading. You
might be tempted to write a process class that includes multithreading support. However, what about
those user processes that don’t want to be multithreaded? A better design creates a generic process class,
and makes a multithreaded process a subclass of it.

Use Aggregation to Separate Logical Concepts

Aggregation, discussed in Chapter 3, models the has-a relationship: objects contain other objects to per-
form some aspects of their functionality. You can use aggregation to separate unrelated or related but
separate functionality when inheritance is not appropriate.

Continuing with the operating system example, you might want to store ready processes in a priority
queue. Instead of integrating the priority queue structure with your ReadyQueue class, write a separate
priority queue class. Then your ReadyQueue class can contain and use a priority queue. To use the
object-oriented terminology, the ReadyQueue has-a priority queue. With this technique, the priority
queue could be reused more easily in another program.

Use Templates for Generic Data Structures and Algorithms

Whenever possible, you should use a generic design for data structures and algorithms instead of encod-
ing specifics of a particular program. Don’t write a balanced binary tree structure that stores only book
objects. Make it generic, so that it can store objects of any type. That way you could use it in a bookstore,
a music store, an operating system, or anywhere that you need a balanced binary tree. This strategy
underlies the standard template library (STL) discussed in Chapter 4. The STL provides generic data
structures and algorithms that work on any types.

As the STL demonstrates, C++ provides an excellent language feature for this type of generic program-
ming: templates. As described in Chapters 2 and 4, templates allow you to write both data structures
and algorithms that work on any types. Chapter 11 provides the coding details of templates, but this
section discusses some of their important design aspects.

110

Designing for Reuse

Why Templates Are Better Than Other Generic Programming Techniques

Templates are not the only mechanism for writing generic data structures. You can write generic struc-
tures in C and C++ by storing void* pointers instead of a specific type. Clients can use this structure to
store anything they want by casting it to a void*. However, the main problem with this approach is that
it is not type-safe: the containers are unable to check or enforce the types of the stored elements. You can
cast any type to a void* to store in the structure, and when you remove the pointers from the data struc-
ture, you must cast them back to what you think they are. Because there are no checks involved, the
results can be disastrous. Imagine a scenario where one programmer stores pointers to int in a data
structure by first casting them to void*, but another programmer thinks they are pointers to Process
objects. The second programmer will blithely cast the void* pointers to Process* pointers and try to
use them as Process*s. Needless to say, the program will not work as expected.

A second approach is to write the data structure for a specific class. Through polymorphism, any sub-
class of that class can be stored in the structure. Java takes this approach to an extreme: it specifies

that every class derives directly or indirectly from the Object class. The Java containers store Objects,
so they can store objects of any type. However, this approach is also not truly type-safe. When you
remove an object from the container, you must remember what it really is and down-cast it to the

appropriate type.

Templates, on the other hand, are type-safe when used correctly. Each instantiation of a template stores
only one type. Your program will not compile if you try to store different types in the same template
instantiation.

Problems with Templates

Templates are not perfect. First of all, their syntax is confusing, especially for someone who has not used
them before. Second, the parsing is difficult, and not all compilers fully support the C++ standard.

Furthermore, templates require homogeneous data structures, in which you can store only objects of the
same type in a single structure. That is, if you write a templatized balanced binary tree, you can create
one tree object to store Process objects and another tree object to store ints. You can’t store both ints
and Processes in the same tree. This restriction is a direct result of the type-safe nature of templates.
Although type-safety is important, some programmers consider the homogeneity requirement a signifi-
cant restriction.

Another problem with templates is that they lead to code bloat. When you create a tree object to store
ints, the compiler actually “expands” the template to generate code as if you had written a tree struc-
ture just for ints. Similarly, if you create a tree object to store Processes, the compiler generates code
as if you had written a tree structure just for Processes. If you instantiate templates for many different
types, you end up with huge executable files because of all the different code that is generated.

Templates versus Inheritance

Programmers sometimes find it tricky to decide whether to use templates or inheritance. Here are some
tips to help you make the decision.

Use templates when you want to provide identical functionality for different types. For example, if you
want to write a generic sorting algorithm that works on any type, use templates. If you want to create a
container that can store any type, use templates. The key concept is that the templatized structure or
algorithm treats all types the same.

111

Chapter 5

When you want to provide different behaviors for related types, use inheritance. For example, use inher-
itance if you want to provide two different, but similar, containers such as a queue and a priority queue.

Note that you can combine inheritance and templates. You could write a templatized queue that stores
any type, with a subclass that is a templatized priority queue. Chapter 11 covers the details of the tem-
plate syntax.

Provide Appropriate Checks and Safeguards

You should always design your programs to be as safe as possible for use by other programmers. The
most important aspect of this guideline is to perform error checking in your code. For example, if your
random number generator requires a non-negative integer for a seed, don’t just trust the user to cor-
rectly pass a non-negative integer. Check the value that is passed in, and reject the call if it is invalid.

As an analogy, consider an accountant who prepares income tax returns. When you hire an accountant,
you provide him or her with all your financial information for the year. The accountant uses this infor-
mation to fill out forms from the Internal Revenue Service. However, the accountant does not blindly fill
out your information on the form, but instead makes sure the information makes sense. For example, if
you own a house, but forget to specify the property tax you paid, the accountant will remind you to sup-
ply that information. Similarly, if you say that you paid $12,000 in mortgage interest, but made only
$15,000 gross income, the accountant might gently ask you if you provided the correct numbers (or at
least recommend more affordable housing).

You can think of the accountant as a “program” where the input is your financial information and the
output is an income tax return. However, the value added by an accountant is not just that he or she fills
out the forms. You choose to employ an accountant also because of the checks and safeguards that he or
she provides. Similarly in programming, you should provide as many checks and safeguards as possible
in your implementations.

There are several techniques and language features that help you incorporate checks and safeguards in
your programs. First, use exceptions to notify the client code of errors. Chapter 15 covers exceptions in
detail. Second, use smart pointers (discussed in Chapter 4) and other safe memory techniques discussed
in Chapter 13.

Design Usable Interfaces

In addition to abstracting and structuring your code appropriately, designing for reuse requires you to
focus on the interface with which programmers interact. If you hide an ugly implementation behind a
pretty interface, no one needs to know. However, if you provide a beautiful implementation behind a
wretched interface, your library won’t be much good.

Note that every subsystem and class in your program should have good interfaces, even if you don’t
intend them to be used in multiple programs. First of all, you never know when something will be
reused. Second, a good interface is important even for the first use, especially if you are programming in
a group and other programmers must use the code you design and write.

The main purpose of interfaces is to make the code easy to use, but some interface techniques can help
you follow the principle of generality as well.

112

Designing for Reuse

Design Interfaces That Are Easy to Use

Your interfaces should be easy to use. That doesn’t mean that they must be trivial, but they should be as
simple and intuitive as the functionality allows. You shouldn’t require consumers of your library to
wade through pages of source code in order to use a simple data structure, or go through contortions in
their code to obtain the functionality they need. This section provides four specific strategies for design-
ing interfaces that are easy to use.

Develop Intuitive Interfaces

Computer programmers use the term intuitive to describe interfaces that people can figure out easily and
without much instruction. The use of the word intuitive is similar to its meaning in the phrase “intu-
itively obvious,” which means apparent without much reasoning or examination. Intuitive interfaces
are, almost by definition, easy to use.

The best strategy for developing intuitive interfaces is to follow standard and familiar ways of doing
things. When people encounter an interface similar to something they have used in the past, they will
understand it better, adopt it more readily, and be less likely to use it improperly.

For example, suppose that you are designing the steering mechanism of a car. There are a number of
possibilities: a joystick, two buttons for moving left or right, a sliding horizontal lever, or a good-old
steering wheel. Which interface do you think would be easiest to use? Which interface do you think
would sell the most cars? Consumers are familiar with steering wheels, so the answer to both questions
is, of course, the steering wheel. Even if you developed another mechanism that provided superior per-
formance and safety, you would have a tough time selling your product, let alone teaching people how
to use it. When you have a choice between following standard interface models and branching out in a
new direction, it’s usually better to stick to the interface to which people are accustomed.

Innovation is important, of course, but you should focus on innovation in the underlying implementa-
tion, not in the interface. For example, consumers are excited about the innovative hybrid gasoline-
electric engine in some car models. These cars are selling well in part because the interface to use them
is identical to cars with standard engines.

Applied to C++, this strategy implies that you should develop interfaces that follow standards to which
C++ programmers are accustomed. For example, C++ programmers expect the constructor and destruc-
tor of a class to initialize and clean up an object, respectively. When you design your classes, you should
follow this standard. If you require programmers to call initialize () and cleanup () methods for
initialization and cleanup instead of placing that functionality in the constructor and destructor, you will
confuse everyone who tries to use your class. Because your class behaves differently from other C++
classes, programmers will take longer to learn how to use it and will be more likely to use it incorrectly
by forgetting to call initialize () or cleanup ().

Always think about your interfaces from the perspective of someone using them. Do they make sense?
Are they what you would expect?

C++ provides a language feature called operator overloading that can help you develop intuitive interfaces
for your objects. Operator overloading allows you to write classes such that the standard operators work
on them just as they work on built-in types like int and double. For example, you can write a
Fraction class that allows you to add, subtract, and stream fractions like this:

113

Chapter 5

Fraction f1(3,4), f2(1,2), sum, diff;
sum = f1 + £2;

diff = f1 - £2;

cout << fl << " " << f2 << endl;

Contrast that with the same behavior using method calls:

Fraction £1(3,4), £2(1,2), sum, diff;
sum = fl.add(f2);

diff = fl.subtract(f2);

fl.print (cout) ;

cout << " ";

f2.print (cout) ;

cout << endl;

As you can see, operator overloading allows you to provide intuitive interfaces for your classes.
However, be careful not to abuse operator overloading. It’s possible to overload the + operator so that it
implements subtraction and the - operator so that it implements multiplication. Those implementations
would be counterintuitive. Always follow the expected meaning of the operators. See Chapters 9 and 16
for details on operator overloading.

Don’'t Omit Required Functionality

This strategy is twofold. First, include interfaces for all behaviors that clients could need. That might
sound obvious at first. Returning to the car analogy, you would never build a car without a speedometer
for the driver to view his or her speed! Similarly, you would never design a Fraction class without a
mechanism for the client code to access the actual value of the fraction.

However, other possible behaviors might be more obscure. This strategy requires you to anticipate all
the uses to which clients might put your code. If you are thinking about the interface in one particular
way, you might miss functionality that could be needed when clients use it differently. For example,
suppose that you want to design a game board class. You might consider only the typical games, such
as chess and checkers, and decide to support a maximum of one game piece per spot on the board.
However, what if you later decide to write a backgammon game, which allows multiple pieces in one
spot on the board? By precluding that possibility, you have ruled out the use of your game board as a
backgammon board.

Obviously, anticipating every possible use for your library is difficult, if not impossible. Don’t feel com-
pelled to agonize over potential future uses in order to design the perfect interface. Just give it some
thought and do the best you can.

The second part of this strategy is to include as much functionality in the implementation as possible.
Don’t require client code to specify information that you already know in the implementation, or could
know if you designed it differently. For example, if your XML parser library requires a temporary file in
which to store results, don’t make the clients of your library specify that path. They don’t care what file
you use; find some other way to determine an appropriate file path.

Furthermore, don’t require library users to perform unnecessary work to amalgamate results. If your

random number library uses a random number algorithm that calculates the low-order and high-order
bits of a random number separately, combine the numbers before giving them to the user.

114

Designing for Reuse

Don’t require library users to perform tasks that you could do for them.

Present Uncluttered Interfaces

In order to avoid omitting functionality in their interfaces, some programmers go to the opposite
extreme: they include every possible piece of functionality imaginable. Programmers who use the inter-
faces are never left without the means to accomplish a task. Unfortunately, the interface might be so clut-
tered that they never figure out how to do it!

Don’t provide unnecessary functionality in your interfaces; keep them clean and simple. It might appear
at first that this guideline directly contradicts the previous strategy of avoiding omitting necessary func-
tionality. Although one strategy to avoid omitting functionality would be to include every imaginable
interface, that is not a sound strategy. You should include necessary functionality and omit useless or
counterproductive interfaces.

Consider cars again. You drive a car by interacting with only a few components: the steering wheel,

the brake and accelerator pedals, the gearshift, the mirrors, the speedometer, and a few other dials on your
dashboard. Now, imagine a car dashboard that looked like an airplane cockpit, with hundreds of dials,
levers, monitors, and buttons. It would be unusable! Driving a car is so much easier than flying an airplane
that the interface can be much simpler: you don’t need to view your altitude, communicate with control
towers, or control the myriad components in an airplane such as the wings, engines, and landing gear.

Additionally, from the library development perspective, smaller libraries are easier to maintain. If you
try to make everyone happy, then you have more room to make mistakes, and if your implementation is
complicated enough so that everything is intertwined, even one mistake can render the library useless.

Unfortunately, the idea of designing uncluttered interfaces looks good on paper, but is remarkably hard
to put into practice. The rule is ultimately subjective: you decide what’s necessary and what’s not. Of
course, your clients will be sure to tell you when you get it wrong! Here are a few tips to keep in mind:

Q Eliminate duplicate interfaces. If you have one method to return a result in feet and another to
return a result in meters, combine them into a method that returns an object than can provide a
result in either feet or meters.

QO Determine the simplest way to provide the functionality you need. Eliminate unnecessary
parameters and methods and combine multiple methods into single methods when appropriate.
For example, combine a library initialization routine with a method that sets initial user-
specified parameters.

Q Limit the library’s uses when appropriate. It's impossible to cater to everyone’s whims and
desires. Inevitably, someone will try to use the library in ways that you didn’t intend. For exam-
ple, if you provide a library for XML parsing, someone might try to use it to parse SGML. That
wasn’t your intention, so you shouldn’t feel compelled to include the functionality to support it.

Provide Documentation and Comments

Regardless of how easy to use and intuitive you make your interfaces, you should supply documenta-
tion for their use. You can’t expect programmers to use your library properly unless you tell them how
to do it. Think of your library or code as a product for other programmers to consume. Any tangible

115

Chapter 5

product that you purchase, such as a DVD player, comes with a set of instructions explaining its inter-
face, functionality, limitations, and troubleshooting. Even simple products such as chairs usually provide
instructions for proper use, even if it’s only something like, “Sit here. If you use this product in any other
manner, death or serious injury could result.” Similarly, your product should have documentation
explaining its proper use.

There are two ways to provide documentation for your interfaces: comments in the interfaces them-
selves and external documentation. You should strive to provide both. Most public APIs provide only
external documentation: comments are a scarce commodity in many of the standard Unix and Windows
header files. In Unix, the documentation usually comes in the form of online manuals called man pages.
In Windows, the documentation usually accompanies the integrated development environment.

Despite the fact that most APIs and libraries omit comments in the interfaces themselves, we actually
consider this form of documentation the most important. You should never give out a “naked” header
file that contains only code. Even if your comments repeat exactly what’s in the external documentation,
it is less intimidating to look at a header file with friendly comments than one with only code. Even the
best programmers still like to see written language every so often!

Some programmers use tools to create documentation automatically from comments. These tools parse
comments with specific keywords and formatting to generate documentation, often in Hypertext Markup
Language (HTML) form. The Java programming language popularized this technique with the JavaDoc
tool, but there are many similar tools available for C++. Chapter 7 discusses this technique in more detail.

Whether you provide comments, external documentation, or both, the documentation should describe the
behavior of the library, not the implementation. The behavior includes the inputs, outputs, error conditions
and handling, intended uses, and performance guarantees. For example, documentation describing a call
to generate a single random number should specify that it takes no parameters, returns an integer in a pre-
viously specified range, and throws an “out of memory” exception if it can’t allocate memory. This docu-
mentation should not explain the details of the linear congruence algorithm for actually generating the
number. The client of the interface doesn’t care about the algorithm as long as the numbers appear random!
Providing too much implementation detail in interface comments is probably the single most common
mistake in interface development. We’ve seen many perfectly good separations of interface and implemen-
tation ruined by comments in the interface that are more appropriate for library maintainers than clients.

Public documentation should specify behaviors, not underlying implementations.

Of course you should still document your internal implementation, just don’t make it publicly available
as part of your interface. Chapter 7 provides details on the appropriate use of comments in your code.

Design General-Purpose Interfaces

The interfaces should be general purpose enough that they can be adapted to a variety of tasks. If you
encode specifics of one application in a supposedly general interface, it will be unusable for any other
purpose. Here are some guidelines to keep in mind.

Provide Multiple Ways to Perform the Same Functionality

In order to satisfy all your “customers,” it is sometimes helpful to provide multiple ways to perform the
same functionality. Use this technique judiciously, however, because overapplication can easily lead to
cluttered interfaces.

116

Designing for Reuse

Consider cars again. Most new cars these days provide remote keyless entry systems, with which you
can unlock your car by pressing a button on a key fob. However, these cars always provide a standard
key that you can use to physically unlock the car. Although these two methods are redundant, most cus-
tomers appreciate having both options.

Sometimes there are similar situations in program interface design. For example, suppose that one of
your methods takes a string. You might want to provide two interfaces: one that takes a C++ string
object and one that takes a C-style character pointer. Although it’s possible to convert between the two,
different programmers prefer different types of strings, so it’s helpful to cater to both approaches.

Note that this strategy should be considered an exception to the “uncluttered” rule in interface design.
There are a few situations where the exception is appropriate, but you should most often follow the
“uncluttered” rule.

Provide Customizability

In order to increase the flexibility of your interfaces, provide customizability. People generally appreciate
customizability the most when it’s absent. For example, one of the authors recently purchased a new

car with an antitheft device. This alarm automatically deactivates when the doors are unlocked using
the remote keyless entry. Unfortunately, if the doors are not opened within 30 seconds after they are
unlocked, the alarm reactivates. This feature becomes quite annoying when trying to use the trunk of
the car. It’s inconvenient to open a car door just to access something in the trunk. However, if the alarm
is not deactivated, slamming the trunk lid triggers it. The most annoying aspect of this problem is that
there is no way to permanently deactivate the antitheft device! The car designers must have assumed
that everyone would want the same functionality in their antitheft devices, and didn’t provide a mecha-
nism to customize it.

Customizability can be as simple as allowing a client to turn on or off error logging. The basic premise of
customizability is that it allows you to provide the same basic functionality to every client, but gives
clients the ability to tweak it slightly.

You can allow greater customizability through function pointers and template parameters. For example,
you could allow clients to set their own error-handling routines. This technique is an application of the
decorator pattern described in Chapter 26.

The STL takes this customizability strategy to the extreme and actually allows clients to specify their
own memory allocators for containers. If you want to use this feature, you must write a memory alloca-
tor object that follows the STL guidelines and adheres to the required interfaces. Each container in the
STL takes an allocator as one of its template parameters. Chapter 23 provides the details.

Reconciling Generality and Ease of Use

The two goals of ease of use and generality sometimes appear to conflict. Often, introducing generality
increases the complexity of the interfaces. For example, suppose that you need a graph structure in a
map program to store cities. In the interest of generality, you might use templates to write a generic map
structure for any type, not just cities. That way, if you need to write a network simulator in your next
program, you could employ the same graph structure to store routers in the network. Unfortunately, by
using templates, you made the interface a little clumsier and harder to use, especially if the potential
client is not familiar with templates.

117

Chapter 5

However, generality and ease of use are not mutually exclusive. Although in some cases increased gen-
erality may decrease ease of use, it is possible to design interfaces that are both general purpose and
straightforward to use. Here are two guidelines you can follow.

Supply Multiple Interfaces

In order to reduce complexity in your interfaces while still providing enough functionality, you can pro-
vide two separate interfaces. For example, you could write a generic networking library with two sepa-
rate facets: one presents the networking interfaces useful for games, and one presents the networking
interfaces useful for the Hypertext Transport Protocol (HTTP) Web browsing protocol.

The STL takes this approach with its string class. As noted in Chapter 4, the string class is actually a
char instantiation of the basic_stream template. You can think of the string class as an interface that
hides the full complexity of the basic_stream template.

Optimize the Common Functionality

When you provide a general-purpose interface, some functionality will be used more often than other
functionality. You should make the commonly used functionality easy to use, while still providing the
option for the more advanced functionality. Returning to the map program, you might want to provide an
option for clients of the map to specify names of cities in different languages. English is so predominant
that you could make that the default but provide an extra option to change languages. That way most
clients will not need to worry about setting the language, but those who want to will be able to do so.

This strategy is similar to the performance principle discussed in Chapter 4 of optimizing the parts of the
code that are executed most often. Focus on optimizing those aspects of your design that provide the
most benefit for the most people.

Summary

By reading this chapter, you learned why you should design reusable code and how you should do it. You
read about the philosophy of reuse, summarized as “write once, use often,” and learned that reusable
code should be both general purpose and easy to use. You also discovered that designing reusable code
requires you to use abstraction, to structure your code appropriately, and to design good interfaces.

This chapter presented three specific tips for structuring your code: avoid combining unrelated or logi-
cally separate concepts, use templates for generic data structures and algorithms, and provide appropri-
ate checks and safeguards.

The chapter also presented six strategies for designing interfaces: develop intuitive interfaces, don’t omit
required functionality, present uncluttered interfaces, provide documentation and comments, provide
multiple ways to perform the same functionality, and provide customizability. It concluded with two
tips for reconciling the often-conflicting demands of generality and ease of use: supply multiple inter-
faces and optimize common functionality.

This chapter concludes the discussion of design themes that began in Chapter 2. Chapter 6 finishes the

design section of this book with a discussion of software-engineering methodologies. Chapters 7 through
11 delve into the implementation phase of the software engineering process with details of C++ coding.

118

Maximizing Software-
Engineering Methods

When you first learned how to program, you were probably on your own schedule. You were free
to do everything at the last minute if you wanted to, and you could radically change your design
during implementation. When coding in the professional world, however, programmers rarely
have such flexibility. Even the most liberal engineering managers admit that some amount of pro-
cess is necessary. Knowing the software-engineering process is as important these days as know-
ing how to code.

This chapter surveys various approaches to software engineering. It does not go into great depth
on any one approach — there are plenty of excellent books on software-engineering processes.
The idea is to cover the different types of processes in broad strokes so you can compare and con-
trast them. We try not to advocate or discourage any particular methodology. Rather, we hope that
by learning about the tradeoffs of several different approaches, you’ll be able to construct a pro-
cess that works for you and the rest of your team.

Whether you're a contractor working alone on projects or your team consists of hundreds of engi-
neers on several continents, understanding the different approaches to software development will
help your job on a daily basis.

The Need for Process

The history of software development is filled with tales of failed projects. From over-budget and
poorly marketed consumer applications to grandiose mega-hyped operating systems, it seems that
no area of software development is free from this trend.

Even when software successfully reaches users, bugs have become so commonplace that end users
are forced to endure constant updates and patches. Sometimes the software does not accomplish

Chapter 6

the tasks it is supposed to or doesn’t work the way the user would expect. These issues all point to a
common truism of software — writing software is hard.

One wonders why software engineering seems to differ from other forms of engineering in its frequency
of failures. While cars do have their share of bugs, you rarely see them stop suddenly and demand a
reboot due to a buffer overflow (though as more auto components become software-driven, you just may')
Your TV may not be perfect, but you don’t have to upgrade to version 2.3 to get Channel 6 to work.

Is it the case that other engineering disciplines are just more advanced than software? Is a civil engineer
able to construct a working bridge by drawing upon the long history of bridge building? Are chemical
engineers able to build a compound successfully because most of the bugs were worked out in earlier
generations?

Is software simply too new, or is it really a different type of discipline with inherent
qualities contributing to the occurrence of bugs, unusable results, and doomed
projects?

It certainly seems as if there’s something different about software. For one thing, technology changes
rapidly in software, creating uncertainty in the software development process. Even if an earth-shattering
breakthrough does not occur during your project, the pace of the industry leads to paranoia. Software
often needs to be developed quickly because competition is fierce.

Software development can also be unpredictable. Accurate scheduling is nearly impossible when a sin-
gle gnarly bug can take days or even weeks to fix. Even when things seem to be going according to
schedule, the widespread tendency of product definition changes (feature creep) can throw a wrench in
the process.

Software is complex. There is no easy and accurate way to prove that a program is bug-free. Buggy or
messy code can have an impact on software for years if it is maintained through several versions.
Software systems are often so complex that when staff turnover occurs, nobody wants to get anywhere
near the messy code that forgotten engineers have left behind. This leads to a cycle of endless patching,
hacks, and workarounds.

Of course, standard business risks apply to software as well. Marketing pressures and miscommunica-
tion get in the way. Many programmers try to steer clear of corporate politics, but it’s not uncommon to
have adversity between the development and product marketing groups.

All of these factors working against software-engineering products indicate the need for some sort of

process. Software projects are big, complicated, and fast-paced. To avoid failure, engineering groups
need to adopt a system to control this unwieldy process.

Software Life-Cycle Models

Complexity in software isn’t new. The need for formalized process was recognized decades ago.
Several approaches to modeling the software life cycle have attempted to bring some order to the chaos

120

Maximizing Software-Engineering Methods

of software development by defining the software process in terms of steps from the initial idea to the
final product. These models, refined over the years, guide much of software development today.

The Stagewise and Waterfall Models

The classic life cycle model for software is often referred to as the Stagewise Model. This model is based
on the idea that software can be built almost like following a recipe. There is a set of steps that, if fol-
lowed correctly, will yield a mighty fine chocolate cake, or program as the case may be. Each stage must
be completed before the next stage can begin, as shown in Figure 6-1.

Planning

Design

A

Implementation

A

Unit Testing

A

Subsystem
Testing

A,
Integration
Testing

A

Evaluation

Figure 6-1

The process starts with formal planning, including gathering an exhaustive list of requirements. This list
defines feature completeness for the product. The more specific the requirements are, the more likely
that the project will succeed. Next, the software is designed and fully specified. The design step, like the
requirements step, needs to be as specific as possible to maximize the chance of success. All design deci-
sions are made at this time, often including pseudocode and the definition of specific subsystems that
will need to be written. Subsystem owners work out how their code will interact, and the team agrees on
the specifics of the architecture. Implementation of the design occurs next. Because the design has been
fully specified, the code needs to adhere strongly to the design or else the pieces won't fit together. The
final four stages are reserved for unit testing, subsystem testing, integration testing, and evaluation.

121

Chapter 6

The main problem with the Stagewise Model is that, in practice, it is nearly impossible to complete one
stage without at least exploring the next stage. A design cannot be set in stone without at least writing
some code. Furthermore, what is the point of testing if the model doesn’t provide a way to go back to the
coding phase?

A number of refinements to the Stagewise Model were formalized as the Waterfall Model in the early
1970s. This model continues to be highly influential, if not downright dominant, in modern software-
engineering organizations. The main advancement that the Waterfall Model brought was a notion of
feedback between stages. While it still stresses a rigorous process of planning, designing, coding, and
testing, successive stages can overlap in part. Figure 6-2 shows an example of the Waterfall Model, illus-
trating the feedback and overlap refinements. Feedback allows lessons learned in one phase to result in
changes to the previous phase. Overlap permits activity in two phases to occur simultaneously.

Planning ﬁ
L]
Design
-

T— Implementation
F]

Unit Testing
_l

Subsystem

Testing
Integration

Testing _l
L]

Evaluation

Figure 6-2

Various incarnations of the waterfall method have refined the process in different ways. For example,
some plans include a “feasibility” step where experiments are performed before formal requirements are
even gathered.

Benefits of the Waterfall Model

The value of the Waterfall Model lies in its simplicity. You, or your manager, may have followed this
approach in past projects without formalizing it or recognizing it by name. The underlying assumption
behind the Stepwise and Waterfall Models is that as long as each step is accomplished as completely and
accurately as possible, subsequent steps will go smoothly. As long as all of the requirements are carefully
specified in the first step, and all the design decisions and problems are hashed out in the second step,
implementation in the third step should be a simple matter of translating the designs into code.

122

Maximizing Software-Engineering Methods

The simplicity of the Waterfall Model makes project plans based on this system organized and easy to
manage. Every project is started the same way: by exhaustively listing all the features that are necessary.
Managers using this approach can require that by the end of the design phase, for example, all engineers
in charge of a subsystem submit their design as a formal design document or a functional subsystem
specification. The benefit for the manager is that by having engineers specify and design upfront, risks
are, hopefully, minimized.

From the engineer’s point of view, the Waterfall Method forces resolution of major issues upfront. All
engineers will need to understand their project and design their subsystem before writing a significant
amount of code. Ideally, this means that code can be written once instead of hacked together or rewritten
when the pieces don't fit.

For small projects with very specific requirements, the Waterfall Method can work quite well.
Particularly for consulting arrangements, it has the advantage of specifying specific metrics for success
at the start of the project. Formalizing requirements helps the consultant to produce exactly what the
client wants and forces the client to be specific about the goals for the project.

Drawbacks of the Waterfall Model

In many organizations, and almost all modern software-engineering texts, the Waterfall Method has
fallen out of favor. Critics disparage its fundamental premise that software development tasks happen in
discrete linear steps. While the Waterfall Method allows for the overlapping of phases, it does not allow
backward movement to a large degree. In many projects today, requirements come in throughout the
development of the product. Often, a potential customer will request a feature that is necessary for the
sale or a competitor’s product will have a new feature that requires parity.

The upfront specification of all requirements makes the Waterfall Method unusable
for many organizations because it simply is not dynamic enough.

Another drawback is that in an effort to minimize risk by making decisions as formally and early as
possible, the Waterfall Model may actually be hiding risk. For example, a major design issue might be
undiscovered, glossed over, forgotten, or purposely avoided in the design phase. By the time integration
testing reveals the mismatch, it may be too late to save the project. A major design flaw has arisen

but, according to the Waterfall Model, the product is one step away from shipping! A mistake anywhere
in the waterfall process will likely lead to failure at the end of the process. Early detection is difficult
and rare.

While the Waterfall Model is still quite common and can be an effective way of visualizing the process,
it is often necessary to make it more flexible by taking cues from other approaches.

The Spiral Method

The Spiral Method was proposed by Barry W. Boehm in 1988 in recognition of the occurrence of unex-
pected problems and changing requirements in the software development process. This method is part

123

Chapter 6

of a family of techniques known as iterative processes. The fundamental idea is that it’s okay if something
goes wrong because you'll fix it the next time around. A single spin through the spiral method is shown
in Figure 6-3.

Discovery Evaluation
Analysis Development
Figure 6-3

The phases of the Spiral Method are similar to the steps of the Waterfall Method. The discovery phase
involves building requirements and determining objectives. During the evaluation phase, implementa-
tion alternatives are considered and prototypes may be built. In the Spiral Method, particular attention
is paid to evaluating and resolving risks in the evaluation phase. The tasks deemed most risky are the
ones that are implemented in the current cycle of the spiral. The tasks in the development phase are
determined by the risks identified in the evaluation phase. For example, if evaluation reveals a risky
algorithm that may be impossible to implement, the main task for development in the current cycle will
be modeling, building, and testing that algorithm. The fourth phase is reserved for analysis and plan-
ning. Based on the results of the current cycle, the plan for the subsequent cycle is formed. Each iteration
is expected to be fairly short in duration, taking only a few key features and risks into consideration.

Figure 6-4 shows an example of three cycles through the spiral in the development of an operating sys-
tem. The first cycle yields a plan containing the major requirements for the product. The second cycle
results in a prototype showing the user experience. The third cycle builds a component that is deter-
mined to be a high risk.

124

Maximizing Software-Engineering Methods

Discovery —\ Evaluation
Feature A Feature A Risk
Requwements ‘\ Analysis

Prototype Prototype
Requirements Options
2

Plan /__\Plar\m

Requlrements Alternatives

1)

Prototype Plan

\ Build Plan

__/

Feature A Plan Feature A Risk
\

Build-Prototype Elimination

New Feature-A-Rlan _/

Analysis Development

Figure 6-4

Benefits of the Spiral Method

The Spiral Method can be viewed as the application of an iterative approach to the best that the
Waterfall Method has to offer. Figure 6-5 shows the Spiral Method as a waterfall process that has been
modified to allow iteration. Hidden risks and a linear development path, the main drawbacks of the
Waterfall Method, are resolved through short iterative cycles.

Planning

Planning

[
Integration
Testmg

Evaluation

[
Integration
Testmg

Evaluation

Evaluation

Figure 6-5

125

Chapter 6

Performing the riskiest tasks first is another benefit. By bringing risk to the forefront and acknowledging
that new conditions can arise at any time, the Spiral Method avoids the hidden time bombs that can
occur in the Waterfall Model. When unexpected problems arise, they can be dealt with using the same
four-stage approach that works for the rest of the process.

Finally, by repeatedly analyzing after each cycle and building new designs, the practical difficulties with
the design-then-implement approach are virtually eliminated. With each cycle, there is more knowledge
of the system that can influence the design.

Drawbacks of the Spiral Method

The main drawback of the Spiral Method is that it can be difficult to scope each iteration small enough to
gain real benefit. In a worst-case scenario, the Spiral Method can degenerate into the Waterfall Model
because the iterations are too long. Unfortunately, the Spiral Model only models the software life cycle. It
cannot prescribe a specific way to break down a project into single-cycle iterations because that division
varies from project to project.

Other possible drawbacks are the overhead of repeating all four phases for each cycle and the difficulty
of coordinating cycles. Logistically, it may be difficult to assemble all the group members for design dis-
cussions at the right time. If different teams are working on different parts of the product simultane-
ously, they are probably operating in parallel cycles, which can get out of synch. For example, the user
interface group could be ready to start the discovery phase of the Window Manager cycle, but the core
OS group is still in the development phase of the memory subsystem.

The Rational Unified Process

The Rational Unified Process (RUP) is a disciplined and formal approach to managing the software devel-
opment process. The most important characteristic of the RUP is that, unlike the Spiral Method or the
Waterfall Model, RUP is more than just a theoretical process model. RUP is actually a software product,
marketed and sold by Rational Software, a division of IBM. Treating the process as software is com-
pelling for a number of reasons:

Q The process itself can be updated and refined, just as software products periodically have
updates.

Q Rather than simply suggesting a development framework, RUP includes a set of software tools
for working with that framework.

Q Asa product, RUP can be rolled out to the entire engineering team so that all members are
using the exact same processes and tools.

Q Like many software products, RUP can be customized to the needs of the users.

RUP as a Product

As a product, the RUP takes the form of a suite of software applications that guides developers through
the software development process. The product also offers specific guidance for other Rational products,
such as the Rational Rose visual modeling tool and the Rational ClearCase configuration management
tool. Extensive groupware communication tools are included as part of the “marketplace of ideas” that
allow developers to share knowledge.

126

Maximizing Software-Engineering Methods

One of the basic principles behind RUP is that each iteration on a development cycle should have a tan-
gible result. During the Rational Unified Process, users will create numerous designs, requirement docu-
ments, reports, and plans. The RUP software provides visualization and development tools for the
creation of these artifacts.

RUP as a Process

Defining an accurate model is the central principle of RUP. Models, according to RUP, help explain the
complicated structures and relationships in the software development process. In RUP, models are often
expressed in Unified Modeling Language (UML) format.

RUP defines each part of the process as an individual workflow. Workflows represent each step of a pro-
cess in terms of who is responsible for it, what tasks are being performed, the artifacts or results of these
tasks, and the sequence of events that drives the tasks. Almost everything about RUP is customizable,
but several core process workflows are defined “out of the box” by RUP.

The core process workflows bear some resemblance to the stages of the Waterfall Model, but each one is
iterative and more specific in definition. The business modeling workflow models business processes, usu-
ally with the goal of driving software requirements forward. The requirements workflow creates the
requirements definition by analyzing the problems in the system and iterating on its assumptions. The
analysis and design workflow deals with system architecture and subsystem design. The implementation
workflow covers the modeling, coding, and integration of software subsystems. The test workflow» models
the planning, implementation and evaluation of software quality tests. The deployment workflow is a high-
level view on overall planning, releasing, supporting, and testing workflows. The configuration manage-
ment workflow goes from new project conception to iteration and end-of-product scenarios. Finally, the
environment workflow supports the engineering organization through the creation and maintenance of
development tools.

RUP in Practice

RUP is aimed mainly at larger organizations and offers several advantages over the adoption of tradi-
tional life-cycle models. Once the team has gotten over the learning curve to use the software, all mem-
bers will be using a common platform for designing, communicating, and implementing their ideas. The
process can be customized to the needs of the team and each stage reveals a wealth of valuable artifacts
that document each phase of development.

A product like RUP can be too heavyweight for some organizations. Teams with diverse development
environments or tight engineering budgets might not want or be able to standardize on a software-based
development system. The learning curve can also be a factor — new engineers that aren’t familiar with
the process software will have to learn how to use it while getting up to speed on the product and the
existing code base.

Software-Engineering Methodologies

Software life-cycle models provide a formal way of answering the question “What do we do next?” but
they are rarely (with the exception of formalized systems like RUP) able to contribute an answer to the
logical follow-up question, “How do we do it?” To provide some answers to the “how” question, a num-
ber of methodologies have developed that provide practical rules of thumb for professional software

127

Chapter 6

development. Books and articles on software methodologies abound, but two recent innovations,
Extreme Programming and Software Triage, deserve particular attention.

Extreme Programming (XP)

When one of the authors arrived home from work a few years ago and told his wife that his company
had adopted some of the principles of Extreme Programming, she joked, “I hope you wear a safety har-
ness for that.” Despite the somewhat hokey name, Extreme Programming effectively bundles up the best
of existing software development guidelines and new material into a novel and increasingly popular
methodology.

XP, popularized by Kent Beck in eXtreme Programming eXplained (Addison-Wesley, 1999), claims to take
the best practices of good software development and turn them up a notch. For example, most program-
mers would agree that testing is a good thing. In XP, testing is deemed so good that you're supposed to
write the tests before you write the code!

XP in Theory

The Extreme Programming methodology is made up of 12 main guiding principles. These principles are
manifested throughout all phases of the software development process and have a direct impact on the
daily tasks of engineers.

Plan as You Go

In the Waterfall Model, planning happened once, at the beginning of the process. Under the Spiral
Method, planning was the first phase of each iteration. In RUP, planning is an integral step in most of the
workflows. Under XP, planning is more than just a step — it’s a never-ending task. XP teams start with a
rough plan that captures the major points of the product being developed. Throughout the development
process, the plan is refined and modified as necessary. The theory is that conditions are constantly
changing and new information is obtained all the time.

Under XP, estimates for a given feature are always made by the person who will be implementing that
particular feature. This helps to avoid situations where the implementer is forced to adhere to an unreal-
istic and artificial schedule. Initially, estimates are very rough, perhaps on the order of weeks for a fea-
ture. As the time horizon shortens, the estimates get more granular. Features are broken out into tasks
taking no more than five days.

Build Small Releases

One of the theories of XP is that software projects grow risky and unwieldy when they try to accomplish
too much at one time. Instead of massive software releases that involve core changes and several pages
of release notes, XP advocates smaller releases with a timeframe closer to two months than eighteen
months. With such a short release cycle, only the most important features can make it into the product.
This forces engineering and marketing to agree on what features are truly important.

Share a Common Metaphor

XP uses the term metaphor as other methodologies might use architecture. The idea is that all members of
the team should share a common high-level view of the system. This isn’t necessarily the specifics of

128

Maximizing Software-Engineering Methods

how objects will communicate or the exact APIs that will be written. Rather, the metaphor is the mental
model for the components of the system. Team members should use the metaphor to drive shared termi-
nology when discussing the project.

Simplify Your Designs

A mantra frequently sung by XP-savvy engineers is “avoid speculative generality.” This goes against the
natural inclinations of many programmers. If you are given the task of designing a file-based object
store, you may start down the path of creating the be-all, end-all solution to all file-based storage prob-
lems. Your design might quickly evolve to cover multiple languages and any type of object. XP says you
should lean towards the other end of the generality continuum. Instead of making the ideal object store
that will win awards and be celebrated by your peers, design the simplest possible object store that gets
the job done. You should understand the current requirements and write your code to those specifica-
tions to avoid overly complex code.

It may be hard to get used to simplicity in design. Depending on the type of work you do, your code
may need to exist for years and be used by other parts of the code that you haven’t even dreamed of. As
discussed in Chapter 5, the problem with building in functionality that may be useful in the future is that
you don’t know what those hypothetical use cases are and there is no way to craft a good design that is
purely speculative. Instead, XP says you should build something that is useful today and leave open the
opportunity to modify it later.

Test Constantly

According to eXtreme Programming eXplained, “ Any program feature without an automated test simply
doesn’t exist.” Extreme Programming is zealous about testing. Part of your responsibility as an XP engi-
neer is to write the unit tests that accompany your code. A unit test is generally a small piece of code that
makes sure that an individual piece of functionality works. For example, individual unit tests for a file-
based object store may include testSaveObject, testLoadObject, and testDeleteObject.

XP takes unit testing one step further by suggesting that unit tests should be written before the actual
code is written! Of course, the tests won't pass because the code hasn’t been written yet. In theory, if
your tests are thorough, you should know when your code is done because all the tests will complete
successfully. We told you it was “extreme.”

Refactor When Necessary

Most programmers refactor their code from time to time. Refactoring is the process of redesigning exist-
ing working code to take into account new knowledge or alternate uses that have been discovered since
the code was written. Refactoring is difficult to build into a traditional software-engineering schedule
because its results are not as tangible as implementing a new feature. Good managers, however, recog-
nize its importance for long-term code maintainability.

The extreme way of refactoring is to recognize situations during development when refactoring is useful
and to do the refactoring at that time. Instead of deciding at the start of a release which existing parts of
the product need design work, XP programmers learn to recognize the signs of code that is ready to be
refactored. While this practice will almost certainly result in unexpected and unscheduled tasks, restruc-
turing the code when appropriate should make feature development easier.

129

Chapter 6

Code in Pairs

The notion of pair programming contributes to the stigma of Extreme Programming as some sort of
touchy-feely software process for hippies. In fact, the motivation for pair programming is much more
practical than you might think. XP suggests that all production code should be written by two people
working side by side simultaneously. Obviously, only one person can actually be in control of the key-
board. The other person takes a high-level approach, thinking about issues such as testing, necessary
refactoring, and the overall model of the project.

As an example, if you are in charge of writing the user interface for a particular feature of your applica-
tion, you might want to ask the original author of the feature to sit down with you. She can advise you
about the correct use of the feature, warn you about any “gotchas” you should watch out for, and help
oversee your efforts at a high level. Even if you can’t acquire the help of the original author, just grab-
bing another member of the team can help. The theory is that working in pairs builds shared knowledge,
ensures proper design, and puts an informal system of checks and balances in place.

Share the Code

In many traditional development environments, code ownership is strongly defined and often enforced.
One of the authors worked previously in an environment where the manager explicitly forbid checking
in changes to code written by any other member of the team! XP takes the extreme opposite approach by
declaring that the code is collectively owned by everybody. This is another XP facet that initially evokes
images of programmers holding hands and swaying gently to a Grateful Dead album. In fact, it’s not so
touchy-feely.

Collective ownership is practical for a number of reasons. From a management point of view, it is less
detrimental when a single engineer leaves suddenly because there are others who understand that part
of the code. From an engineer’s point of view, collective ownership builds a common view of how the
system works. This helps design tasks and frees the individual programmer to make any change that
will add value to the overall project.

One important note about collective ownership is that it is not necessary for every programmer to be
familiar with every single line of code. It is more of a mindset that the project is a team effort, and there
is no reason for any one person to hoard knowledge.

Integrate Continuously

All programmers are familiar with the dreaded chore of integrating code. This is the task when you dis-
cover that your view of the object store is a complete mismatch with the way it was actually written.
When subsystems come together, problems are exposed. XP recognizes this phenomenon and advocates
integrating code into the project frequently as it is being developed.

XP suggests a specific method for integration. Two programmers (the pair that developed the code) sit
down at a designated “integration station” and merge the code in together. The code is not checked in
until it passes 100 percent of the tests. By having a single station, conflicts are avoided and integration is
clearly defined as a step that must occur before a check-in.

The authors have found that a similar approach can still work on an individual level. Engineers run tests
individually or in pairs before checking code into the repository. A designated machine continually runs
automated tests. When the automated tests fail, the team receives an email indicating the problem and
listing the most recent check-ins.

130

Maximizing Software-Engineering Methods

Work Sane Hours

XP has a thing or two to say about the hours you've been putting in. The claim is that a well-rested pro-
grammer is a happy and productive programmer. XP advocates a work week of approximately 40 hours
and warns against putting in overtime for more than two consecutive weeks.

Of course, different people need different amounts of rest. The main idea, though, is that if you sit
down to write code without a clear head, you're going to write poor code and abandon many of the
XP principles.

Have a Customer on Site

Since an XP-savvy engineering group constantly refines its product plan and builds only what is cur-
rently necessary, having a customer contribute to the process is very valuable. Although it is not always
possible to convince a customer to be physically present during development, the idea that there should
be communication between engineering and the end user is clearly a valuable notion. In addition to
assisting with the design of individual features, a customer can help prioritize tasks by conveying his or
her individual needs.

Share Common Coding Standards

Due to the collective ownership guideline and the practice of pair programming, coding in an extreme
environment can be difficult if each engineer has her own naming and indenting conventions. XP doesn’t
advocate any particular style, but supplies the guideline that if you can look at a piece of code and imme-
diately identify the author, your group probably needs better definition of its coding standards.

For additional information on various approaches to coding style, see Chapter 7.

XP in Practice

XP purists claim that the 12 tenets of Extreme Programming are so intertwined that adopting some of
them without others would largely ruin the methodology. For example, pair programming is vital to
testing because if you can’t determine how to test a particular piece of code, your partner can help. Also,
if you're tired one day and decide to skip the testing, your partner will be there to evoke feelings of guilt.

Some of the XP guidelines, however, can prove difficult to implement. To some engineers, the idea of
writing tests before code is too abstract. For those engineers, it may be sufficient to design the tests with-
out actually writing them until there is code to test. Many of the XP principles are rigidly definedm, but
if you understand the theory behind it, you may be able to find ways to adapt the guidelines to the
needs of your project.

The collaborative aspects of XP can be challenging as well. Pair programming has measurable benefits,
but it may be difficult for a manager to rationalize having half as many people actually writing code
each day. Some members of the team may even feel uncomfortable with such close collaboration, per-
haps finding it difficult to type while others are watching. Pair programming also has obvious chal-
lenges if the team is physically spread out or if members tend to telecommute regularly.

For some organizations, Extreme Programming may be too radical. Large established companies with
formal policies in place for engineering may be slow to adopt new approaches like XP. However, even if
your company is resistant to the implementation of XP, you can still improve your own productivity by
understanding the theory behind it.

131

Chapter 6

Software Triage

In the fatalistically-named book Death March (Prentice Hall, 2003) Edward Yourdon describes the fre-
quent and scary condition of software that is behind schedule, short on staff, over budget, or poorly
designed. Yourdon’s theory is that when software projects get into this state, even the best modern
software development methodologies will no longer apply. As you have learned in this chapter,
many approaches to software development are built around formalized documents or taking a user-
centered approach to design. In a project that’s already in “death march” mode, there simply isn’t
time for these approaches.

The idea behind software triage is that when a project is already in a bad state, resources are scarce. Time
is scarce, engineers are scarce, and money may be scarce. The main mental obstacle that managers and
developers need to overcome when a project is way behind schedule is that it will be impossible to sat-
isfy the original requirements in the allotted time. The task then becomes organizing remaining function-
ality into “must-have,” “should-have,” and “nice-to-have” lists.

Software triage is a daunting and delicate process. It often requires the leadership of a seasoned veteran
of “death march” projects to make the tough decisions. For the engineer, the most important point is that
in certain conditions, it may be necessary to throw familiar processes out the window (along with some
existing code, unfortunately) to finish a project on time.

Building Your Own Process
and Methodology

There is one software development methodology that we wholeheartedly endorse, and it’s not necessar-
ily any of the above. It’s unlikely that any book or engineering theory will perfectly match the needs of
your project or organization. We recommend that you learn from as many approaches as you can and
design your own process. Combining concepts from different approaches may be easier than you think.
For example, RUP optionally supports an XP-like approach. Here are some tips for building the
software-engineering process of your dreams.

Be Open to New Ideas

Some engineering techniques seem crazy at first or unlikely to work. Look at new innovations in
software-engineering methodologies as a way to refine your existing process. Try things out when you
can. If XP sounds intriguing, but you’re not sure if it will work in your organization, see if you can work
it in slowly, taking a few of the principles at a time or trying it out with a smaller pilot project.

Bring New Ideas to the Table

Most likely, your engineering team is made up of people from varying backgrounds. You may have peo-
ple who are veterans of startups, long-time consultants, recent graduates, and PhDs on your team. You
all have a different set of experiences and your own ideas of how a software project should be run.
Sometimes the best processes turn out to be a combination of the way things are typically done in these
very different environments.

132

Maximizing Software-Engineering Methods

Recognize What Works and What Doesn’t Work

At the end of a project (or better yet, during), get the team together to evaluate the process. Sometimes
there’s a major problem that nobody notices until the whole team stops to think about it. Perhaps there’s
a problem that everybody knows about but nobody has discussed! Consider what isn’t working and see
how those parts can be fixed. Some organizations require formal code reviews prior to any source code
check-in. If code reviews are so long and boring that nobody does a good job, discuss code-reviewing
techniques as a group. Also consider what is going well and see how those parts can be extended. For
example, if maintaining the feature tasks as a group-editable Web site is working, maybe devote some
time to making the Web site better.

Don’t Be a Renegade

Whether a process is mandated by your manager or custom-built by the team, it’s there for a reason.

If your process involves writing formal design documents, make sure you write them. If you think that
the process is broken or too complex, see if you can talk to your manager about it. Don’t just avoid the
process — it will come back to haunt you.

Summary

This chapter has introduced you to several models and methodologies for the software process. There
are certainly many other ways of building software, both formalized and informal. There probably isn’t
a single correct method for developing software except the method that works for your team. The best
way to find this method is to do your own research, learn what you can from various methods, talk to
your peers about their experiences, and iterate on your process. Remember, the only metric that matters
when examining a process methodology is how much it helps your team write code.

This chapter concludes the first part of the book, which has surveyed the landscape of software design.
You have learned how to design a program, how to organize object relationships, how to make use of
existing patterns and libraries, how to code effectively with others, and how to manage the process of
developing software. Throughout the rest of the book, the design principles you have learned will be
tied directly to C++. The next part of the book gets into the nitty-gritty details of writing professional-
quality code in C++. Try not to forget the design lessons from the last few chapters as you get deep into
the coding portion of the book — we put the design chapters first because we wanted to highlight their
importance.

133

Coding with
Style

If you're going to spend several hours each day in front of a keyboard writing code, you should
take some pride in all that work. Writing code that gets the job done is only part of a program-
mer’s work. After all, anybody can learn the fundamentals of coding. It takes a true master to code
with style.

This chapter explores the question of what makes good code. Along the way, you'll see several
approaches to C++ style. As you will discover, simply changing the style of code can make it
appear very different. For example, C++ code written by Windows programmers often has its own
style, using Windows conventions. It almost looks like a completely different language than C++
code written by Mac OS programmers. Exposure to several different styles will help you avoid
that sinking feeling you get opening up a C++ source file that barely resembles the C++ you
thought you knew.

The Importance of Looking Good

Writing code that is stylistically “good” takes time. You could probably whip together a program
to parse an XML file into a plain text file in a couple of hours. Writing the same program with
functional decomposition, adequate comments, and a clean structure would probably take days.
Is it really worth it?

Thinking Ahead

How confident would you be in your code if a new programmer had to work with it a year from
now? One of the authors, faced with a growing mess of Web application code, encouraged his team
to think about a hypothetical intern who would be starting in a year. How would this poor intern
ever get up to speed on the code base when there was no documentation and scary multiple-page

Chapter 7

functions? When you’re writing code, imagine that somebody new will have to maintain it in the future.
Will you even remember how it works? What if you're not available to help? Well-written code avoids
these problems because it is easy to read and understand.

Keeping It Clear

Present concerns are another reason to write good code. Unless you're working alone on a project and
always will be, other programmers are going to look at, and possibly modify, your code. By writing
code that your team can actually read and understand, you free yourself from constant questions and
complaints.

Elements of Good Style

It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time, you'll
find styles that you like and notice useful techniques in code that others wrote. Perhaps more impor-
tantly, you'll encounter horrible code that teaches you what to avoid. However, good code shares several
universal tenets that will be explored in this chapter.

0 Documentation
O Decomposition

d Naming

Q Use of the Language
Q

Formatting

Documenting Your Code

In the programming context, documentation usually refers to comments that are contained in the source
files. Comments are your opportunity to tell the world what was going through your head when you
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at the
code itself.

Reasons to Write Comments

It may seem obvious that writing comments is a good idea, but have you ever stopped to think about
why you need to comment your code? Sometimes programmers recognize the importance of comment-
ing without fully understanding why comments are important. There are several reasons, explored next.

Commenting to Explain Usage

One reason to use comments is to explain how clients should interact with the code. As you read in
Chapter 5, each publicly accessible function or method in a header file should have a comment explain-
ing what it does. Some organizations prefer to formalize these comments by explicitly listing the pur-
pose of each method, what each of its arguments are, what values it returns, and possible exceptions it
can throw.

136

Coding with Style

Providing a comment with public methods accomplishes two things. First, you are given the opportu-
nity to state, in English, anything that you can’t state in code. For example, there’s really no way in C++
code to indicate that the adjustvolume () method of a media player object can only be called after the
initialize () method is called. A comment, however, can be the perfect place to note this restriction,

as follows.
/*
* adjustVolume ()
*
* Sets the player volume based on the user's
* preferences
*
* This method will throw an "UninitializedPlayerException"
* if the initialize() method has not yet been called.
*

/

The second effect of a comment on a public method can be to state usage information. The C++ language
forces you to specify the return type of a method, but it does not provide a way for you to say what the
returned value actually represents. For example, the declaration of the adjustVolume () method may
indicate that it returns an int, but the client reading that declaration wouldn’t know what the int
means. Other ancillary data can be included in a comment as well, as shown here:

/
adjustVolume ()

Sets the player volume based on the user's
preferences

Parameters:
none
Returns:
an int, which represents the new volume setting.

Throws:
UninitializedPlayerException if the initialize() method has not
vet been called.

L T I R I I .

Commenting to Explain Complicated Code

Good comments are also important inside the actual source code. In a simple program that processes
input from the user and writes a result to the console, it is probably easy to read through and under-
stand all of the code. In the professional world, however, you will often need to write code that is algo-
rithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well written, but it may not be immediately apparent what it is

doing. You might recognize the algorithm if you have seen it before, but a newcomer probably wouldn’t
understand the way the code works.

137

Chapter 7

void sort(int inArray[], int inSize)

{

for (int 1 = 1; 1 < inSize; i++) {
int element = inArray[il];

int j =1 - 1;
while (j >= 0 && inArray[j] > element) {

inArray([j+1] = inArrayl[j];
J==i

}

inArray[j+1] = element;

A better approach would be to include comments that describe the algorithm that is being used. In the
modified function that follows, a thorough comment at the top explains the algorithm at a high level,
and inline comments explain specific lines that may be confusing.

*
*
*
*
*
*
*
*

Implements the "insertion sort" algorithm. The algorithm separates the array
into two parts--the sorted part and the unsorted part. Each element, starting
at position 1, is examined. Everything earlier in the array is in the sorted
part, so the algorithm shifts each element over until the correct position is
found for the current element. When the algorithm finishes with the last
element, the entire array is sorted.

/

void sort(int inArrayl[], int inSize)

{

// Start at position 1 and examine each element.
for (int 1 = 1; 1 < inSize; 1i++) {
int element = inArrayl[il];

// j marks the position in the sorted part of the array.
int j =1 - 1;
// As long as the current slot in the sorted array is higher than
// the element, shift the slot over and move backwards.
while (j >= 0 && inArray[j] > element) {
inArray([j+1] = inArrayl[j];
j--;
}
// At this point the current position in the sorted array
// 1is *not* greater than the element, so this is its new position.
inArray[j+1] = element;

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be much
more likely to understand it with the comments included. In some organizations, inline comments are
frowned upon. In such cases, writing clean code and having good comments at the top of the function
becomes vital.

138

Coding with Style

Commenting to Convey Metainformation

Another reason to use comments is to provide information at a higher level than the code itself. This
metainformation provides details about the creation of the code without addressing the specifics of its
behavior. For example, your organization may want to keep track of the original author of each method.
You can also use metainformation to cite external documents or refer to other code.

The example below shows several instances of metainformation, including the author of the file, the date
it was created, and the specific feature it addresses. It also includes inline comments expressing meta-
data, such as the bug number that corresponds to a line of code and a reminder to revisit a possible
problem in the code later.

/*

* Author: klep

* Date: 040324

* Feature: PRD version 3, Feature 5.10
*/

int adjustVolume ()
{
if (fUninitialized) {
throw UninitializedPlayerException();

}

int newVol = getPlayer ()->getOwner ()->getPreferredvVolume () ;

if (newVol == -1) return -1; // Added to address bug #142 - jsmith 040330
setVolume (newVol) ;

// TODO: What if setVolume() throws an exception? - akshayr 040401

return newVol;

It’s easy to go overboard with comments. A good approach is to discuss which types of comments are
most useful with your group and form a policy. For example, if one member of the group uses a
“TODO” comment to indicate code that still needs work, but nobody else knows about this convention,
the code in need could be overlooked.

If your group decides to use metainformation comments, make sure that you all
include the same information or your files will be inconsistent!

139

Chapter 7

Commenting Styles

Every organization has a different approach to commenting code. In some environments, a particular
style is mandated to give the code a common standard for documentation. Other times, the quantity and
style of commenting is left up to the programmer. The following examples depict several approaches to
commenting code.

Commenting Every Line

One way to avoid lack of documentation is to force yourself to overdocument by including a comment
for every line. Commenting every line of code should ensure that there’s a specific reason for everything
you write. In reality, such heavy commenting on a large-scale basis is unscalable, messy, and tedious. For
example, consider the following useless comments.

int result; // Declare an integer to hold the result.
result = doodad.getResult(); // Get the doodad's result.
if (result % 2 == 0) { // If the result mod 2 is 0
logError () ; // then log an error,
} else { // otherwise .
logSuccess () ; // log success.
} // End if/else
return (result); // Return the result

The comments in this code express each line as part of an easily readable English story. This is entirely
useless if you assume that the reader has at least basic C++ skills. These comments don’t add any addi-
tional information to code. Specifically, look at this line:

if (result % 2 == 0) { // If the result mod 2 is 0

The comment is just an English translation of the code. It doesn’t say why the programmer has used the
mod operator on the result with the value 2. A better comment would be:

Q

if (result % 2 == 0) { // If the result is even .

The modified comment, while still fairly obvious to most programmers, gives additional information
about the code. The result is “modded” by 2 because the code needs to check if the result is even.

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where the

code would otherwise be difficult to comprehend. The following code also comments every line, but
these comments are actually helpful.

140

Coding with Style

// Call the calculate method with the default values.
result = doodad.calculate(getDefaultStart(), getDefaultEnd(), getDefaultOffset());

// To determine success or failure, we need to bitwise AND the result with the
// processor-specific mask (see docs, page 201).
result = result & getProcessorMask();

// Set the user field value based on the "Marigold Formula."
setUserField((result + kMarigoldOffset) / MarigoldConstant) + MarigoldConstant);

This code above is taken out of context, but the comments give you a good idea of what each line does.
Without them, the calculations involving & and the mysterious “Marigold Formula” would be difficult
to decipher.

Commenting every line of code is usually untenable, but if the code is complicated
enough to require it, don’t just translate the code to English: explain what's really
going on.

Prefix Comments

Your group may decide to begin all of your source files with a standard comment. This is an excellent
opportunity to document important information about the program and specific file. Examples of infor-
mation that you might want to document at the top of every file include:

Q The file/class name

The last-modified date

The original author

The feature ID addressed by the file
Copyright information

A brief description of the file/class

Incomplete features

U 00U o0 U

Known bugs

Your development environment may allow you to create a template that automatically starts new files
with your prefix comment. Some source control systems such as Concurrent Versions System (CVS) can
even assist by filling in metadata. For example, if your comment contains the string $1d$, CVS will auto-
matically expand the comment to include the author, filename, revision, and date.

141

Chapter 7

An example of a prefix comment is shown here:

/*

* Watermelon.cpp

*

* $Id: Watermelon.cpp,v 1.6 2004/03/10 12:52:33 klep Exp $

*

* Implements the basic functionality of a watermelon. All units are expressed
* in terms of seeds per cubic centimeter. Watermelon theory is based on the

* white paper "Algorithms for Watermelon Processing."

*

*

The following code is (c)opyright 2004, FruitSoft, Inc. ALL RIGHTS RESERVED

Fixed-Format Comments

Writing comments in a standard format that can be parsed by external document builders is an increas-
ingly popular programming practice. In the Java language, programmers can write comments in a stan-
dard format that allows a tool called JavaDoc to create hyperlinked documentation for the project
automatically. For C++, a free tool called Doxygen (available at www . doxygen. org) parses comments to
automatically build HTML documentation, class diagrams, UNIX man pages, and other useful docu-
ments. Doxygen even recognizes and parses JavaDoc-style comments in C++ programs. The code that
follows shows JavaDoc-style comments that are recognized by Doxygen.

/‘k‘k

* Implements the basic functionality of a watermelon
*

* TODO: Implement updated algorithms!
x/
class Watermelon
{
public:
/**
* @param initialSeeds The starting number of seeds
*/
Watermelon (int initialSeeds);

/*‘k
* Computes the seed ratio, using the Marigold
* algorithm.
*
* @param slowCalc Whether or not to use long (slow) calculations
* @return The marigold ratio
*/

double calcSeedRatio(bool slowCalc) ;

B

Doxygen recognizes the C++ syntax and special comment directives such as @param and @return to

generate customizable output. An example of a Doxygen-generated HTML class reference is shown in
Figure 7-1.

142

Coding with Style

@ The Watermelon Project: Watermelon class Reference - Mozilla Firefox (=J@/E3
File Edit View Go Bookmarks Tools Help ‘.‘-
Main Page | Class List | File List | Class Members (]

Watermelon Class Reference

Implements the basic functionatity of a watermelon. More...
finclude <Watermelon. hi>

List of all thembers.

Public Member Functions

wster melon (int initialSeeds)
double calcSeedRatio (bool slowCale)
Computes the seed o, vsing the Wadpold algofthe.

Detailed Description

TODO: Implement updated algotithms!

Deefinition at line 6 of file Watermelonh.

Constructor & Destructor Documentation

Watermelon::Watermelon (int initiaiSeeds)

Parameters:
imifialSeeds The starting munber of seeds

Member Function Documentation

douhle Watermelon::cale SeedRatio (hool slow Cale)

Parameters:

slow Cale Whether o not to use long (slow) caleulations ™

Figure 7-1

Automatically generated documentation like the file shown in Figure 7-1 can be helpful during develop-
ment because it allows developers to browse through a high-level description of classes and their rela-
tionships. Your group can easily customize a tool like Doxygen to work with the style of comments that
you have adopted. Ideally, your group would set up a machine that builds documentation on a daily
basis.

143

Chapter 7

Ad Hoc Comments

Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments that
appear within the body of your code.

Q Do your best to avoid offensive or derogatory language. You never know who might look at
your code some day.

Q Liberal use of inside jokes is generally considered okay. Check with your manager.

Q Reference bug numbers or feature IDs when possible.

Q Include your initials and the date if you think somebody might want to follow up on the com-
ment with you in the future.

0 Resist the temptation to include somebody else’s initials and the date to avoid having to take
responsibility for the code.

Q Remember to update your comments when you update the code. Nothing is more confusing
than code that is fully documented with incorrect information!

Q If you use comments to separate a function into sections, consider whether the function might
be broken into multiple, smaller functions.

Self-Documenting Code

Well-written code doesn’t always need abundant commenting. The best code is written to be readable. If
you find yourself adding a comment for every line, consider whether the code could be rewritten to bet-
ter match what you are saying in the comments. Remember that C++ is a language. Its main purpose is
to tell the computer what to do, but the semantics of the language can also be used to explain its mean-
ing to a reader.

A classic example is the implementation of a function to copy a C-style string. The code that follows has
no comments, but doesn’t need any.

void copyString(const char* inSource, char *outDest)
int position = 0;

while (inSource[position] != '\0') {
outDest [position] = inSource[position];
position++;

}

outDest [position] = '"\0';

}
The following implementation works the same way, but it is too concise to make sense immediately to

the reader. There’s nothing wrong with the implementation, but it would require some comments to pro-
vide an explanation.

144

Coding with Style

void copyString(const char* inSource, char* outDest)

{

int 1 = 0;
while (outDest[i] = inSource[i++]);
outDest[1] = '\0';

}

Another way of writing self-documenting code is to break up, or decompose, your code into smaller
pieces. Decomposition is covered in detail in the matierial that follows.

Good code is naturally readable and only requires comments to provide useful addi-
tional information.

Comments in This Book

The code examples you will see in this book often use comments to explain complicated code or to point
things out to you that may not be evident. We usually omit any prefix comments and fixed-format com-
ments to save space, but we wholeheartedly advocate their inclusion in professional C++ projects.

Decomposition

Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunting in
the world of coding than opening up a file of source code to find 300-line functions and massive nested
blocks of code. Ideally, each function or method should accomplish a single task. Any subtasks of signifi-
cant complexity should be decomposed into separate functions or methods. For example, if somebody
asks you what a method does and you answer “First it does A, then it does B; then, if C, it does D; other-
wise, it does E,” you should probably have separate helper methods for A, B, C, D, and E.

Decomposition is not an exact science. Some programmers will say that no function should be longer
than a page of printed code. That may be a good rule of thumb, but you could certainly find a quarter-
page of code that is desperately in need of decomposition. Another rule of thumb is, whether the code
is long or short, if you squint your eyes and look at the format of the code without reading the actual
content, it shouldn’t appear too dense in any one area. For example, Figures 7-2 and 7-3 show code that
has been purposely blurred so that you can’t read the content. It should be obvious that the code in
Figure 7-3 has better decomposition than the code in Figure 7-2.

145

Chapter 7

Figure 7-2

Figure 7-3

146

Coding with Style

Decomposition through Refactoring

Sometimes when you’ve had a few sodas and you're really in the programming zone, you start coding
so fast that you end up with code that does exactly what it’s supposed to do, but is far from pretty. All
programmers do this from time to time. Short periods of vigorous coding are sometimes the most pro-
ductive times in the course of a project.

Dense code also arises over the course of time as code is modified. As new requirements and bug fixes
emerge, existing code is amended with small modifications. The computing term cruft refers to the grad-
ual accumulation of small amounts of code that eventually turns a once-elegant piece of code into a mess
of patches and special cases.

Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way, refactor-
ing is necessary to periodically purge the code of accumulated hacks. Through refactoring, you revisit
existing code and rewrite it to make it more readable and maintainable. Refactoring is an opportunity to
revisit the decomposition of code. If the purpose of the code has changed or if it was never decomposed
in the first place, when you refactor the code, squint at it and determine if it needs to be broken down
into smaller parts.

Decomposition by Design

Decomposition is a boon for procrastinators. If you write your code using decomposition from the
beginning, you can put off the hard parts until later. This style of coding, often called top-down design,
takes a high-level view of the program and subsequently moves into more specific pieces.

For example, using top-down design, you could immediately get the main body of code down for a pro-
gram that simulates a hurricane. The following code shows a possible implementation of main () for
such a program.

int main(int argc, char** argv)
{

cout << "Welcome to the Hurricane Simulator" << endl;

getUserInputs () ;
performCalculations() ;
outputResults () ;

}

By taking a top-down approach, you accomplish two things. First, you can start coding immediately. Even
if the program doesn’t turn out the way you initially viewed it at a high level, writing some code might
help you organize your thoughts. Second, the program will evolve naturally in a well-decomposed way.

If you approach every method or function by considering what pieces of it you can put off until later, your
programs will generally be less dense and more organized than if you implemented every feature in its
entirety as you coded.

Of course, we still advocate that you do some design of your program before jumping into the code.

However, a top-down approach can be helpful when deciding on the specific implementation of a part
of your program or when working on small projects.

147

Chapter 7

Decomposition in This Book

You will see decomposition in many of the examples in this book. In many cases, we have referred to
methods for which we don’t show the implementations because they are not relevant to the example and
would take up too much space.

Naming

Your computer doesn’t care what you name your variables and functions as long as the name doesn’t
result in a conflict with another variable or function. Names exist only to help you and your fellow pro-
grammers work with the individual elements of your program. Given this purpose, it is surprising how
often programmers use unspecific or inappropriate names in their programs.

Choosing a Good Name

The best name for a variable, method, function, or class accurately describes the purpose of the item.
Names can also imply additional information, such as the type or specific usage. Of course, the real test
is whether other programmers understand what you are trying to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization.
However, there are some names that are rarely appropriate. The table below shows some names at the
two extreme ends of the naming continuum.

Good Names

Bad Names

srcName, dstName
Distinguishes two objects

gSettings
Conveys global status

mNameCounter
Conveys data member status

performCalculations ()
Simple, accurate

mTypeString
Easy on the eyes

mWelshRarebit
Good use of inside joke

thingl, thing2
Too general

globalUserSpecificSettingsAndPreferences
Too long

mNC
Too obscure, concise

doAction()
Too general, imprecise

_typeSTR256
Aname only a computer could love

mIHateLarry
Inappropriate inside joke

Naming Conventions

Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you'll want to use
standard techniques for naming. Following are some of the types of data for which you can make use of
standard names.

148

Coding with Style

Counters

Early in your programming career, you probably saw code that used the variable “1” as a counter. It is
customary to use i and j as counters and inner-loop counters, respectively. Be careful with nested loops,
however. It’s a common mistake to refer to the “ith” element when you really mean the “jth” element.
Some programmers prefer using counters like outerLoopIndex and innerLoopIndex instead.

Getters and Setters

If your class contains a data member, such as mStatus, it is customary to provide access to the member
via a getter called getStatus () and a setter called setStatus (). The C++ language has no prescribed
naming for these methods, but your organization will probably want to adopt this or a similar naming
scheme.

Prefixes

Many programmers begin their variable names with a letter that provides some information about the
variable’s type or usage. The table below shows some common prefixes.

Prefix Example Name Literal Prefix Meaning Usage
m mData “member” Data member within a class. Some
_ _data programmers use _ as a prefix to

indicate a data member. Others con-
sider m to be more readable.

s sLookupTable “static” Static variable or data member. Used
for variables that exist on a per-class
basis.

k kMaximumLength “konstant” (German for Indicates a constant value. Some

“constant” or a horrible programmers use all uppercase names

misspelling? You decide.) to indicate constants as well.

£ fCompleted “flag” Designates a Boolean value. Used
especially to indicate a yes/no prop-
erty of a class that modifies the object’s
behavior based on its value.

n nLines “number” A data member that is also a counter.

mNum mNumLines Since an “n” looks similar to an “m,”
some programmers instead use mNum
as a prefix, as in mNumLines.

tmp tmpName “temporary” Indicates that a variable is only used to
hold a value temporarily. Implies that
subsequent code should not rely on its
value.

149

Chapter 7

Capitalization

There are many different ways of capitalizing names in your code. As with most elements of coding
style, the most important thing is that your group standardizes on an approach and that all members
adopt that approach. One way to get messy code is to have some programmers naming classes in all
lowercase with underscores representing spaces (priority_gueue) and others using capitals with each
subsequent word capitalized (PriorityQueue). Variables and data members almost always start with a
lowercase letter and either use underscores (my_queue) or capitals (myQueue) to indicate word breaks.
Functions and methods are traditionally capitalized in C++, but, as you've seen, in this book we have
adopted the style of lowercase functions and methods to distinguish them from class names. We adopt a
similar style of capitalizing letters to indicate word boundaries for class and data member names.

Smart Constants

Imagine that you are writing a program with a graphical user interface. The program has several menus,
including File, Edit, and Help. To represent the ID of each menu, you may decide to use a constant. A
perfectly reasonable name for a constant referring to the Help menu ID is kHelp.

The name kHelp will work fine until one day you add a Help button to the main window. You also need
a constant to refer to the ID of the button, but kHelp is already taken.

There are a few ways to resolve this problem. One way is to put the two constants in different names-
paces, which were discussed in Chapter 1. However, namespaces may seem like too large a hammer for
the small problem of a single name conflict between constants. You could easily resolve the name con-
flict by renaming the constants to kHelpMenu and kHelpButton. However, a smarter way of naming the
constants may be to reverse that into kMenuHelp and kButtonHelp.

The reversed names initially seem not to roll off the tongue very well. However, they provide several
benefits. First, an alphabetized list of all of your constants will show all of the menu constants together.
If your development environment has an autocomplete or a pop-up menu that shows up as you type
your code, this can work to your advantage. Second, it provides a weak, but easy naming hierarchy.
Instead of using namespaces, which can become cumbersome, the namespace is effectively part of the
name. You can even extend the hierarchy when referring to individual menu items within the help
menu, such as kMenuFileSave.

Hungarian Notation

Hungarian Notation is a variable and data member naming convention that is popular with Microsoft
Windows programmers. The basic idea is that instead of using single-letter prefixes such m, you should
use more verbose prefixes to indicate additional information. The following line of code displays the use
of Hungarian Notation:

char* pszName; // psz means "pointer to a null-terminated string"

The term Hungarian Notion arose from the fact that its inventor, Charles Simonyi, is Hungarian. Some
also say that it accurately reflects the fact that programs using Hungarian notation end up looking as if
they were written in a foreign language. For this latter reason, some programmers tend to dislike
Hungarian Notation. In this book, we use prefixes, but not Hungarian Notation. We feel that adequately
named variables don’t need much additional context information besides the prefix. We think that a data
member named mName says it all.

150

Coding with Style

Good names convey information about their purpose without making the code
unreadable.

Using Language Features with Style

The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:
14+ + ++1;

With all the power that the C++ language offers, it is important to consider how the language features
can be used towards stylistic good instead of evil.

Use Constants

Bad code is often littered with “magic numbers.” In some function, the code is dividing by 24. Why 24?
Is it because there are 24 hours in a day? Or because the average price of cheese in New Brunswick is
$24? The language offers constants to give a symbolic name to a value that doesn’t change, such as 24.

const int kAveragePriceOfCheeseInNewBrunswick = 24;

Take Advantage of const Variables

The const keyword in C++ is basically syntactic sugar (a techie term for syntax that helps the program-
mer more than the program) for “don’t change this variable.” Proper use of const is more about style
than about programming correctness. There are certainly experienced C++ programmers who have
never found a reason to use const and feel that it has not had a negative impact on their careers. Like
many parts of C++, const exists to help the programmer more than the program. It is your responsibil-
ity to use const and to use it correctly. The ins and outs of const are covered in Chapter 12. Below is the
prototype for a function that tells the caller that it will not change the content of the C-style string that is
passed in.

void wontChangeString (const char* inString);

Use References Instead of Pointers

Traditionally, C++ programmers learn C first. If you have taken this path, you probably recognize that
references don’t really add any new functionality to the language. They merely introduce a new syntax
for functionality that pointers could already provide. In C, pointers were the only pass-by-reference
mechanism, and they certainly worked just fine for many years. Pointers are still required in some cases,
but in many situations you can switch to references.

There are several advantages to using references rather than pointers. First, references are safer than

pointers because they don’t deal directly with memory addresses and cannot be NULL. Second, refer-
ences are more stylistically pleasing than pointers because they use the same syntax as stack variables,

151

Chapter 7

avoiding symbols such as * and &. They’re also easy to use, so you should have no problem adopting
references into your style palette.

Another benefit of references is that they clarify ownership of memory. If you are writing a method and
another programmer passes you a reference to an object, it is clear that you can read and modify the
object, but you have no easy way of freeing its memory. If you are passed a pointer, this is less clear. Do
you need to delete the object to clean up memory? Or will the caller do that? Your group should deter-
mine how variable passing techniques imply memory ownership. One simple way is to agree that, if
your code is given a pointer, it owns the memory and should do any necessary cleanup. All other vari-
ables are passed as references or copies.

The function prototype that follows makes it clear that the parameter will be changed, but, because it is a
reference, the memory will not be freed.

void changeMe (ChessBoard& outBoard) ;

Use Custom Exceptions

C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with
exceptions, and you could easily write error-tolerant programs with traditional mechanisms such as
returning NULL or setting an error flag.

Exceptions provide a much richer mechanism for error handling, and custom exceptions allow you to
tailor this mechanism to your needs. For example, a custom exception type for a Web browser could
include fields that specify the Web page that contained the error, the network state when the error
occurred, and additional context information.

Chapter 15 contains a wealth of information about exceptions in C++.

Language features exist to help the programmer. Understand and make use of fea-
tures that contribute to good programming style.

Formatting

Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, one of the authors got into such a heated debate with a peer over the use of spaces in
an if statement that people were stopping by to make sure that everything was okay.

If your organization has standards in place for code formatting, consider yourself lucky. You may not
like the standards they have in place, but at least you won’t have to argue about it. If everybody on your
team is writing code their own way, try to be as tolerant as you can. As you'll see, some practices are just
a matter of taste, while others actually make it difficult to work in teams.

152

Coding with Style

The Curly Brace Alignment Debate

Perhaps the most frequently argued-about point is where to put the curly braces that demark a block of
code. There are several styles of curly brace use. In this book, we put the curly brace on the same line as
the leading statement, except in the case of a function, class, or method name. This style is shown in the
code that follows (and throughout the book).

void someFunction ()

{

if (condition()) {
cout << "condition was true" << endl;
} else {

cout << "condition was false" << endl;
}
}

This style conserves vertical space while still showing blocks of code by their indentation. Some pro-
grammers would argue that preservation of vertical space isn’t relevant in real-world coding (especially
if you're getting paid by the line of code!) A more verbose style is shown below.

void someFunction ()
{
if (condition())
{

cout << "condition was true" << endl;

}

else

{

cout << "condition was false" << endl;
}
}

Some programmers are even liberal with use of horizontal space, yielding code like that in the following
example.
void someFunction ()
{
if (condition())
{

cout << "condition was true" << endl;

cout << "condition was false" << endl;

Of course, we won’t recommend any particular style because we don’t want hate mail.

153

Chapter 7

When selecting a style for denoting blocks of code, the important consideration is
how well you can see which block falls under which condition simply by looking at
the code.

Coming to Blows over Spaces and Parentheses

The formatting of individual lines of code can also be a source of disagreement. Again, we won’t advo-
cate a particular approach, but we will show you a few styles that you are likely to encounter.

In this book, we use a space after any keyword and use parentheses to clarify the order of operations, as
follows:

The alternative, shown next, treats if stylistically like a function, with no space between the keyword
and the left parenthesis. Also, the parentheses used above to clarify the order of operations inside of the
if statement are omitted because they have no semantic relevance.

The difference is subtle, and the determination of which is better is left to the reader, yet we can’t move
on from the issue without pointing out that i £ is not a function!

Spaces and Tabs

The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a conven-
tion for spaces and tabs, there are going to be major problems when programmers work jointly. The most
obvious problem occurs when Alice uses four spaces to indent code and Bob uses five space tabs; neither
will be able to display code properly when working on the same file. An even worse problem arises
when Bob reformats the code to use tabs at the same time that Alice edits the same code; many source
code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even adapt
to the formatting of the code as it is read in, or always save using spaces even if the tab key is used for
authoring. If you have a flexible environment, you have a better chance of being able to work with other
people’s code. Just remember that tabs and spaces are different because tabs can be any length and a
space is always a space. For this reason, we recommend that you use an editor that always translates
tabs into four spaces.

154

Coding with Style

Stylistic Challenges

Many programmers begin a new project by pledging that, this time, they will do everything right. Any
time a variable or parameter shouldn’t be changed, it'll be marked const. All variables will have clear,
concise, readable names. Every developer will put the left curly brace on the subsequent line and will
adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of const,
sometimes programmers just aren’t educated about how to use it. You will eventually come across old
code or a library function that isn’t const-savvy. A good programmer will use const_cast to tem-
porarily suspend the const property of a variable but an inexperienced programmer will start to
unwind the const property back from the calling function, once again ending up with a program that
never uses const.

Other times, standardization of style comes up against programmers’ own individual tastes and biases.
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style).
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic problems
along with code errors.

Summary

The C++ language provides a number of stylistic tools without any formal guidelines for how to use
them. Ultimately, any style convention is measured by how widely it is adopted and how much it bene-
fits the readability of the code. When coding as part of a team, you should raise issues of style early in
the process as part of the discussion of what language and tools to use.

The most important point about style is to appreciate that it is an important aspect of programming.
Teach yourself to check over the style of your code before you make it available to others. Recognize
good style in the code you interact with and adopt the conventions that you and your organization
find useful.

155

Gaining Proficiency with
Classes and Objects

As an object-oriented language, C++ provides facilities for using objects and for writing object
definitions, called classes. You can certainly write programs in C++ without classes and objects,
but by doing so, you do not take advantage of the most fundamental and useful aspect of the lan-
guage; writing a C++ program without classes is like traveling to Paris and eating at McDonald’s!
In order to use classes and objects effectively, you must understand their syntax and capabilities.

Chapter 1 reviewed the basic syntax of class definitions. Chapter 3 introduced the object-oriented
approach to programming in C++ and presented specific design strategies for classes and objects.
This chapter describes the fundamental concepts involved in using classes and objects, including
writing class definitions, defining methods, using objects on the stack and the heap, writing con-
structors, default constructors, compiler-generated constructors, initializer lists in constructors,
copy constructors, destructors, and assignment operators. Even if you are already comfortable
with classes and objects, you should skim this chapter because it contains various tidbits of infor-
mation with which you might not yet be familiar.

Introducing the Spreadsheet Example

This chapter and the next present a running example of a simple spreadsheet application.

A spreadsheet is a two-dimensional grid of “cells,” and each cell contains a number or string.
Professional spreadsheets such as Microsoft Excel provide the ability to perform mathematical
operations such as calculating the sum of the values of a set of cells. The spreadsheet example
in these chapters does not attempt to challenge Microsoft in the marketplace, but is useful for
illustrating the issues of classes and objects.

The spreadsheet application uses two basic classes: Spreadsheet and SpreadsheetCell. Each
Spreadsheet object contains SpreadsheetCell objects. In addition, a SpreadsheetApplication
class manages the various Spreadsheets. This chapter focuses on the SpreadsheetCell.
Chapter 9 develops the Spreadsheet and SpreadsheetApplication classes.

Chapter 8

This chapter shows several different versions of the SpreadsheetcCell class in order to introduce
concepts gradually. Thus, the various attempts at the class throughout the chapter do not always illus-
trate the “best” way to do every aspect of class writing. In particular, the early examples omit important
features that would normally be included, but have not yet been introduced. You can download the final
version of the class as described in the Introduction.

Writing Classes

When you write a class you specify the behaviors, or methods, that will apply to objects of that class and
the properties, or data members, that each object will contain.

There are two elements to writing classes: defining the classes themselves and defining their methods.

Class Definitions

Here is a first attempt at a simple SpreadsheetcCell class, in which each cell can store only a single
number:

// SpreadsheetCell.h
class SpreadsheetCell

{
public:
void setValue (double inValue) ;
double getValue();

protected:
double mValue;

B

As described in Chapter 1, every class definition begins with the keyword class and the name of the
class. A class definition is a statement in C++, so it must end with a semicolon. If you fail to terminate
your class definition with a semicolon, your compiler will probably give you several errors, most of
which will appear to be completely unrelated.

Class definitions usually go in a file with the name ClassName.h.

Methods and Members

The two lines that look like function prototypes declare the methods that this class supports:

void setValue(double invalue) ;
double getValue() ;

The line that looks like a variable declaration declares the data member for this class:
double mvValue;
Each object will contain its own mvalue variable. However, the implementation of the methods is shared

across all objects. Classes can contain any number of methods and members. You cannot give a member
the same name as a method.

158

Gaining Proficiency with Classes and Objects

Access Control

Every method and member in a class is subject to one of three access specifiers: public, protected, or
private. An access specifier applies to all method and member declarations that follow it, until the next
access specifier. In the SpreadsheetcCell class, the setvalue () and getValue () methods have
public access, while the mvalue member has protected access:

public:
void setValue (double inValue) ;
double getValue();

protected:
double mvValue;

The default access specifier for classes is private: all method and member declarations before the first
access specifier have the private access specification. For example, moving the public access specifier
below the setvalue () method declaration gives setvValue () private access instead of public:

class SpreadsheetCell
{
void setValue(double inValue); // now has private access
public:
double getValue();

protected:
double mvValue;

In C+4+, structs can have methods just like classes. In fact, the only difference
between a struct and a class is that the default access specifier for a struct is public
and the default for a class is private.

The following table summarizes the meanings of the three access specifiers:

Access Specification Meaning When to Use
public Any code can call a public method or Behaviors (methods)
access a public member of an object. that you want clients to use.

Access methods for private
and protected data members.

protected Any method of the class can call a “Helper” methods that you do
protected method and access a not want clients to use.
protected member. Most data members.

Methods of a subclass (see Chapter 10)
can call a protected method or access
a protected member of an object.

Table continued on following page

159

Chapter 8

Access Specification Meaning When to Use
private Only methods of the class can call Only if you want to restrict
a private method and access a access from subclasses.

private member.

Methods in subclasses cannot access
private methods or members.

Access specifiers are at the class level, not the object level, so methods of a class can
access protected or private methods and members on any object of that class.

Order of Declarations

You can declare your methods, members, and access control specifiers in any order: C++ does not
impose any restrictions such as methods before members or public before private. Additionally, you
can repeat access specifiers. For example, the SpreadsheetCell definition could look like this:

class SpreadsheetCell

{
public:
void setValue(double inValue);

protected:
double mValue;

public:
double getValue();
Y

However, for clarity it is a good idea to group public, protected, and private declarations, and to
group methods and members within those declarations. In this book, we order the definitions and access
specifiers in our classes as follows:

class ClassName
{
public:
// Method declarations
// Member declarations

protected:
// Method declarations
// Member declarations

private:

// Method declarations
// Member declarations

160

Gaining Proficiency with Classes and Objects

Defining Methods

The preceding definition for the SpreadsheetcCell class is enough for you to create objects of the class.
However, if you try to call the setvalue () or getValue () methods, your linker will complain that
those methods are not defined. That’s because the class definition specifies the prototypes for the meth-
ods, but does not define their implementations. Just as you write both a prototype and a definition for a
stand-alone function, you must write a prototype and a definition for a method. Note that the class defi-
nition must precede the method definitions. Usually the class definition goes in a header file, and the
method definitions go in a source file that includes that header. Here are the definitions for the two
methods of the SpreadsheetCell class:

// SpreadsheetCell.cpp
#include "SpreadsheetCell.h"

void SpreadsheetCell::setValue (double inValue)
{
mValue = inValue;

}

double SpreadsheetCell::getValue()
{
return (mvalue) ;

}
Note that the name of the class followed by two colons precedes each method name:
void SpreadsheetCell::setValue (double value)

The : : is called the scope resolution operator. In this context, the syntax tells the compiler that the coming
definition of the setvalue () method is part of the Spreadsheetcell class. Note also that you do not
repeat the access specification when you define the method.

Accessing Data Members

Most methods of a class, such as setvalue () and getvalue (), are always executed on behalf of a spe-
cific object of that class (the exceptions are static methods, which are discussed below). Inside the
method body, you have access to all the data members of the class for that object. In the previous defini-
tion for setvalue (), the following line changes the mvalue variable inside whatever object calls the
method:

mValue = inValue;

If setvalue () is called for two different objects, the same line of code (executed once for each object)
changes the variable in two different objects.

Calling Other Methods

You can call methods of a class from inside another method. For example, consider an extension to the
SpreadsheetCell class. Real spreadsheet applications allow text data as well as numbers in the cells.
When you try to interpret a text cell as a number, the spreadsheet tries to convert the text to a number. If
the text does not represent a valid number, the cell value is ignored. In this program, strings that are not

161

Chapter 8

numbers will generate a cell value of 0. Here is a first stab at a class definition for a SpreadsheetCell
that supports text data:

#include <string>
using std::string;

class SpreadsheetCell
{
public:
void setValue(double invalue) ;
double getValue();
void setString(string inString) ;
string getString();

protected:
string doubleToString(double inValue) ;
double stringToDouble (string inString) ;

double mValue;
string mString;
}i

This version of the class stores both text and numerical representations of the data. If the client sets the
data as a string, it is converted to a double, and a double is converted to a string. If the text is not a
valid number, the double value is 0. This class definition shows two new methods to set and retrieve the
text representation of the cell and two new protected helper methods to convert a double to a string and
vice versa. These helper methods use string streams, which are covered in detail in Chapter 14. Here are
the implementations of all the methods:

#include "SpreadsheetCell.h"

#include <iostream>
#include <sstream>
using namespace std;

void SpreadsheetCell: :setValue(double inValue)
{

mValue = inValue;
mString = doubleToString (mValue) ;

double SpreadsheetCell::getValue()
{

return (mValue) ;

}

void SpreadsheetCell::setString(string inString)
{

mString = inString;

mValue = stringToDouble (mString) ;

}

string SpreadsheetCell::getString()
{

162

Gaining Proficiency with Classes and Objects

return (mString) ;

}

string SpreadsheetCell::doubleToString(double invValue)
{

ostringstream ostr;

ostr << inValue;
return (ostr.str());

}

double SpreadsheetCell::stringToDouble (string inString)
{
double temp;

istringstream istr (inString) ;

istr >> temp;

if (istr.fail() || !istr.eof()) {
return (0);

}

return (temp) ;

Note that each of the set methods calls a helper method to perform a conversion. With this technique,
both mvalue and mString are always valid.

The this Pointer

Every normal method call passes a pointer to the object for which it is called as a “hidden” first parame-
ter with the name this. You can use this pointer to access data members or call methods, and can pass it
to other methods or functions. It is also sometimes useful for disambiguating names. For example, you
could have defined the spreadsheetcCell class such that the setvalue () method took a parameter
named mvalue instead of invalue. In that case, setvalue () would look like this:

void SpreadsheetCell::setValue(double mValue)
{

mValue = mValue; // Ambiguous!

mString = doubleToString (mvValue) ;

That line is confusing. Which mvalue do you mean: the mvalue that was passed as a parameter, or the
mValue that is a member of the object? In order to disambiguate the names you can use the this
pointer:

void SpreadsheetCell::setValue(double mValue)
{

this->mvValue = mValue;

mString = doubleToString (this->mvalue) ;

However, if you use the naming conventions described in Chapter 7, you will never encounter this type
of name collision.

163

Chapter 8

You can also use the this pointer to call a function or method that takes a pointer to an object from
within a method of that object. For example, suppose you write a printCell () stand-alone function
(not method) like this:

void printCell (SpreadsheetCell* inCellp)

{
cout << inCellp->getString() << endl;

}

If you want to call printCell () from the setvValue () method, you must pass this as the argument to
give printCell () a pointer to the SpreadsheetCell on which setValue () operates:

void SpreadsheetCell::setValue (double mValue)

{
this->mvValue = mvalue;
mString = doubleToString(this->mvValue);
printCell (this) ;

Using Objects

The previous class definition says that a SpreadsheetCell consists of two member variables, four pub-
lic methods, and two protected methods. However, the class definition does not actually create any
SpreadsheetCells; it just specifies their format. In that sense, a class is similar to architectural
blueprints. The blueprints specify what a house should look like, but drawing the blueprints doesn’t
build any houses. Houses must be constructed later based on the blueprints.

Similarly, in C++ you can construct a SpreadsheetCell “object” from the SpreadsheetCell class defi-
nition by declaring a variable of type SpreadsheetCell. Just as a builder can build more than one house
based on a given blueprints, a programmer can create more than one SpreadsheetCell object from a
SpreadsheetCell class. There are two ways to create and use objects: on the stack and on the heap.

Objects on the Stack
Here is some code that creates and uses SpreadsheetCell objects on the stack:
SpreadsheetCell myCell, anotherCell;

myCell.setValue(6);
anotherCell.setValue (myCell.getValue());

cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

You create objects just as you declare simple variables, except that the variable type is the class name.
The . in lines like myCell.setValue (6) ; is called the “dot” operator; it allows you to call methods on
the object. If there were any public data members in the object, you could access them with the dot oper-
ator as well.

The output of the program is:

cell 1: 6
cell 2: 6

164

Gaining Proficiency with Classes and Objects

Objects on the Heap

You can also dynamically allocate objects using new:
SpreadsheetCell* myCellp = new SpreadsheetCell();

myCellp->setValue(3.7);

cout << "cell 1: " << myCellp->getValue() <<
" " << myCellp->getString() << endl;

delete myCellp;

When you create an object on the heap, you call its methods and access its members through the
“arrow” operator: ->. The arrow combines dereferencing (*) and method or member access (.). You
could use those two operators instead, but doing so would be stylistically awkward:

SpreadsheetCell* myCellp = new SpreadsheetCell();

(*myCellp) .setValue(3.7);

cout << "cell 1: " << (*myCellp).getValue() <<
" " << (*myCellp) .getString() << endl;

delete myCellp;

Just as you must free other memory that you allocate on the heap, you must free the memory for objects
that you allocate on the heap by calling delete on the objects.

If you allocate an object with new, free it with delete when you are finished with it.

Object Life Cycles

The object life cycle involves three activities: creation, destruction, and assignment. Every object is cre-
ated, but not every object encounters the other two “life events.” It is important to understand how and
when objects are created, destroyed, and assigned, and how you can customize these behaviors.

Object Creation

Objects are created at the point you declare them (if they’re on the stack) or when you explicitly allocate
space for them with new or new[].

It is often helpful to give variables initial values as you declare them. For example, you should usually
initialize integer variables to 0 like this:

int x = 0, y = 0;
Similarly, you should give initial values to objects. You can provide this functionality by declaring and

writing a special method called a constructor, in which you can perform initialization work for the object.
Whenever an object is created, one of its constructers is executed.

165

Chapter 8

C++ programmers often call a constructor a “ctor.”

Writing Constructors

Here is a first attempt at adding a constructor to the SpreadsheetcCell class:

class SpreadsheetCell
{
public:

SpreadsheetCell (double initialValue) ;
void setValue (double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString (double inValue) ;
double stringToDouble(string inString) ;

double mValue;
string mString;

Y

Note that the constructor has the same name as the name of the class and does not have a return type.
These facts are always true about constructors. Just as you must provide implementations for normal
methods, you must provide an implementation for the constructor:

SpreadsheetCell: : SpreadsheetCell (double initialValue)
{

setValue(initialValue) ;

The SpreadsheetCell constructor is a method of the Spreadsheetcell class, so C++ requires the nor-
mal SpreadsheetCell: : scope resolution phrase before the method name. The method name itself is also
SpreadsheetCell, so the code ends up with the funny looking SpreadsheetCell: : SpreadsheetCell.
The implementation simply makes a call to setvalue () in order to set both the numeric and text
representations.

Using Constructors

Using the constructor creates an object and initializes its values. You can use constructors with both
stack-based and heap-based allocation.

Constructors on the Stack

When you allocate a SpreadsheetCell object on the stack, you use the constructor like this:

SpreadsheetCell myCell (5), anotherCell(4);

cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

166

Gaining Proficiency with Classes and Objects

Note that you do NOT call the SpreadsheetCell constructor explicitly. For example, do not use some-
thing like the following:

SpreadsheetCell myCell.SpreadsheetCell (5); // WILL NOT COMPILE!
Similarly, you cannot call the constructor later. The following is also incorrect:

SpreadsheetCell myCell;
myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Again, the only correct way to use the constructor on the stack is like this:

SpreadsheetCell myCell (5);

Constructors on the Heap

When you dynamically allocate a SpreadsheetCell object, you use the constructor like this:

SpreadsheetCell *myCellp = new SpreadsheetCell (5);
SpreadsheetCell *anotherCellp;

anotherCellp = new SpreadsheetCell (4);

delete anotherCellp;

Note that you can declare a pointer to a SpreadsheetCell object without calling the constructor immedi-
ately, which is different from objects on the stack, where the constructor is called at the point of declaration.

As usual, remember to call delete on the objects that you dynamically allocate with new!

Providing Multiple Constructors

You can provide more than one constructor in a class. All constructors have the same name (the name of
the class), but different constructors must take a different number of arguments or different argument

types.

In the SpreadsheetcCell class, it is helpful to have two constructors: one to take an initial double value
and one to take an initial string value. Here is the class definition with the second constructor:

class SpreadsheetCell
{
public:

SpreadsheetCell (double initialValue) ;
SpreadsheetCell (string initialvalue) ;
void setValue(double inValue) ;
double getValue();
void setString(string inString) ;
string getString();

protected:
string doubleToString (double inValue) ;
double stringToDouble(string inString) ;

double mValue;
string mString;

167

Chapter 8

Here is the implementation of the second constructor:

SpreadsheetCell: : SpreadsheetCell (string initialValue)
{
setString(initialValue) ;

}
And here is some code that uses the two different constructors:

SpreadsheetCell aThirdCell("test"); // Uses string-arg ctor

SpreadsheetCell aFourthCell (4.4); // Uses double-arg ctor

SpreadsheetCell* aThirdCellp = new SpreadsheetCell("4.4"); // string-arg ctor
cout << "aThirdCell: " << aThirdCell.getValue() << endl;

cout << "aFourthCell: " << aFourthCell.getValue() << endl;

cout << "aThirdCellp: " << aThirdCellp->getValue() << endl;

delete aThirdCellp;

When you have multiple constructors, it is tempting to attempt to implement one constructor in terms
of another. For example, you might want to call the double constructor from the string constructor as
follows:

SpreadsheetCell: : SpreadsheetCell (string initialvValue)
{

SpreadsheetCell (stringToDouble (initialValue)) ;
}

That seems to make sense. After all, you can call normal class methods from within other methods. The
code will compile, link, and run, but will not do what you expect. The explicit call to the
SpreadsheetCell constructor actually creates a new temporary unnamed object of type
SpreadsheetCell. It does not call the constructor for the object that you are supposed to be initializing.

Don’t attempt to call one constructor of a class from another.

Default Constructors

A default constructor is a constructor that takes no arguments. It is also called a 0-argument constructor.
With a default constructor, you can give reasonable initial values to data members even though the client
did not specify them.

Here is part of the SpreadsheetcCell class definition with a default constructor:

class SpreadsheetCell
{
public:
SpreadsheetCell () ;
SpreadsheetCell (double initialValue);
SpreadsheetCell (string initialValue) ;
// Remainder of the class definition omitted for brevity

168

Gaining Proficiency with Classes and Objects

Here is a first crack at an implementation of the default constructor:

SpreadsheetCell: : SpreadsheetCell ()
{

mValue = 0;
mString = "";

You use the default constructor on the stack like this:

SpreadsheetCell myCell;
myCell.setValue(6) ;

cout << "cell 1: " << myCell.getValue() << endl;

The preceding code creates a new SpreadsheetCell called myCell, sets its value, and prints out its
value. Unlike other constructors for stack-based objects, you do not call the default constructor with
function-call syntax. Based on the syntax for other constructors, you might be tempted to call the default
constructor like this:

SpreadsheetCell myCell(); // WRONG, but will compile.
myCell.setValue (6) ; // However, this line will not compile.
cout << "cell 1: " << myCell.getValue() << endl;

Unfortunately, the line attempting to call the default constructor will compile. The line following it will
not compile. The problem is that your compiler thinks the first line is actually a function declaration for
a function with the name myCel1 that takes zero arguments and returns a SpreadsheetCell object.
When it gets to the second line, it thinks that you're trying to use a function name as an object!

When creating an object on the stack, omit parenthesis for the default constructor.

However, when you use the default constructor with a heap-based object allocation, you are required to
use function-call syntax:

SpreadsheetCell* myCellp = new SpreadsheetCell(); // Note the function-call syntax
Don’t waste a lot of time pondering why C++ requires different syntax for heap-based versus stack-

based object allocation with a default constructor. It’s just one of those things that makes C++ such an
exciting language to learn.

Compiler-Generated Default Constructor

If your class doesn’t provide a default constructor, you cannot create objects of that class without speci-
fying arguments. For example, suppose that you have the following SpreadsheetCell class definition:

class SpreadsheetCell

{
public:

169

Chapter 8

SpreadsheetCell (double initialValue); // No default constructor
SpreadsheetCell (string initialValue) ;

void setValue (double inValue) ;

double getValue();

void setString(string inString) ;

string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString) ;

double mValue;
string mString;

i
With the preceding definition, the following code will not compile:

SpreadsheetCell myCell;
myCell.setValue(6) ;

But that code used to work! What’s wrong here? Nothing is wrong. Since you didn’t declare a default
constructor, you can’t construct an object without specifying arguments.

The real question is why the code used to work. The reason is that if you don’t specify any constructors,
the compiler will write one for you that doesn’t take any arguments. This compiler-generated default
constructor calls the default constructor on all object members of the class, but does not initialize the lan-
guage primitives such as int and double. Nonetheless, it allows you to create objects of that class.
However, if you declare a default constructor, or any other constructor, the compiler no longer generates
a default constructor for you.

A default constructor is the same thing as a 0-argument constructor. The term
“default constructor” does not refer only to the constructor that is automatically gen-
erated if you fail to declare any constructors.

When You Need a Default Constructor

Consider arrays of objects. The act of creating an array of objects accomplishes two tasks: it allocates con-
tiguous memory space for all the objects and it calls the default constructor on each object. C++ fails to pro-
vide any syntax to tell the array creation code directly to call a different constructor. For example, if you do
not define a default constructor for the SpreadsheetcCell class, the following code does not compile:

SpreadsheetCell cells[3]; // FAILS compilation without a default constructor
SpreadsheetCell* myCellp = new SpreadsheetCell([10]; // Also FAILS

You can circumvent this restriction for stack-based arrays by using initializers like this:

SpreadsheetCell cells[3] = {SpreadsheetCell(0), SpreadsheetCell (23),
SpreadsheetCell (41) };

170

Gaining Proficiency with Classes and Objects

However, it is usually easier to ensure that your class has a default constructor if you intend to create
arrays of objects of that class.

Default constructors are also useful when you want to create objects of that class inside other classes,
which is shown in the following section, Initializer Lists.

Finally, default constructors are convenient when the class serves as a base class of an inheritance hierar-
chy. In that case, it's convenient for subclasses to initialize superclasses via their default constructors.
Chapter 10 covers this issue in more detail.

Initializer Lists

C++ provides an alternative method for initializing data members in the constructor, called the initializer
list. Here is the 0-argument SpreadsheetCell constructor rewritten to use the initializer list syntax:

SpreadsheetCell: : SpreadsheetCell () : mvalue(0), mString("")
{
}

As you can see, the initializer list lies between the constructor argument list and the opening brace for
the body of the constructor. The list starts with a colon and is separated by commas. Each element in the
list is an initialization of a data member using function notation or a call to a superclass constructor (see
Chapter 10).

Initializing data members with an initializer list provides different behavior than does initializing data
members inside the constructor body itself. When C++ creates an object, it must create all the data mem-
bers of the object before calling the constructor. As part of creating these data members, it must call a
constructor on any of them that are themselves objects. By the time you assign a value to an object inside
your constructor body, you are not actually constructing that object. You are only modifying its value.
An initializer list allows you to provide initial values for data members as they are created, which is
more efficient than assigning values to them later. Interestingly, the default initialization for strings
gives them the empty string; so explicitly initializing mString to the empty string as shown in the pre-
ceding example is superfluous.

Initializer lists allow initialization of data members at the time of their creation.

Even if you don’t care about efficiency, you might want to use initializer lists if you find that they look
“cleaner.” Some programmers prefer the more common syntax of assigning initial values in the body of
the constructor. However, several data types must be initialized in an initializer list. The following table
summarizes them:

Data Type Explanation

const data members You cannot legally assign a value to a const variable
after it is created. Any value must be supplied at the time
of creation.

Reference data members References cannot exist without referring to something.

Table continued on following page

171

Chapter 8

Data Type Explanation
Object data members for which C++ attempts to initialize member objects using a
there is no default constructor default constructor. If no default constructor exists, it

cannot initialize the object.

Superclasses without default [Covered in Chapter 10]
constructors

There is one important caveat with initializer lists: they initialize data members in the order that they
appear in the class definition, not their order in the initializer list. For example, suppose you rewrite
your SpreadsheetCell string constructor to use initializer lists like this:

SpreadsheetCell: : SpreadsheetCell (string initialValue)

mString (initialValue), mValue (stringToDouble (mString)) // INCORRECT ORDER!
{
}

The code will compile (although some compilers issue a warning), but the program does not work cor-
rectly. You might assume that mString will be initialized before mvalue because mString is listed first
in the initialier list. But C++ doesn’t work that way. The SpreadsheetCell class declares mvalue before
mString:

class SpreadsheetCell
{
public:
// Code omitted for brevity
protected:
// Code omitted for brevity
double mvValue;
string mString;
Y

Thus, the initializer list tried to initialize mvalue before mString. However, the code to initialize mvalue
tries to use the value of mString, which is not yet initialized! The solution in this case is to use the
initialvalue argument instead of mString when initializing mvalue. You should also swap their
order in the initializer list to avoid confusion:

SpreadsheetCell: : SpreadsheetCell (string initialValue)

mValue (stringToDouble (initialValue)), mString(initialvValue)
{
}

Initializer lists initialize data members in their declared order in the class definition,
not their order in the list.

Copy Constructors

There is a special constructor in C++ called a copy constructor that allows you to create an object that is an
exact copy of another object. If you don’t write a copy constructor yourself, C++ generates one for you

172

Gaining Proficiency with Classes and Objects

that initializes each data member in the new object from its equivalent data member in the source object.
For object data members, this initialization means that their copy constructors are called.

Here is the declaration for a copy constructor in the SpreadsheetcCell class:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialvalue) ;
SpreadsheetCell (string initialValue) ;
SpreadsheetCell (const SpreadsheetCell& src);
void setValue (double inValue) ;
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double invalue) ;
double stringToDouble(string inString) ;

double mvValue;
string mString;
Y

The copy constructor takes a const reference to the source object. Like other constructors, it does not
return a value. Inside the constructor, you should copy all the data fields from the source object.
Technically, of course, you can do whatever you want in the constructor, but it’s generally a good idea
to follow expected behavior and initialize the new object to be a copy of the old one. Here is a sample
implementation of the SpreadsheetCell copy constructor:

SpreadsheetCell: :SpreadsheetCell (const SpreadsheetCell& src)
mValue (src.mValue), mString(src.mString)

{

}

Note the use of the initializer list. The difference between setting values in the initializer list and in the
copy constructor body is examined below in the section on assignment.

The compiler-generated SpreadsheetCell copy constructor is identical to the one
shown above. Thus, for simplicity, you could omit the explicit copy constructor and
rely on the compiler-generated one. Chapter 10 describes some types of classes for
which a compiler-generated copy constructor is insufficient.

When the Copy Constructor Is Called

The default semantics for passing arguments to functions in C++ is pass-by-value. That means that the
function or method receives a copy of the variable, not the variable itself. Thus, whenever you pass an
object to a function or method the compiler calls the copy constructor of the new object to initialize it.

173

Chapter 8

For example, recall that the definition of the setString () method in the Spreadsheetcell class looks
like this:

void SpreadsheetCell::setString(string inString)
{

mString = inString;

mValue = stringToDouble (mString) ;

Recall, also, that the C++ string is actually a class, not a built-in type. When your code makes a call to
setString () passing a string argument, the string parameter inString is initialized with a call to its
copy constructor. The argument to the copy construction is the string you passed to setString (). In
the following example, the string copy constructor is executed for the inString object in setString ()
with name as its parameter.

SpreadsheetCell myCell;
string name = "heading one";

myCell.setString(name); // Copies name

When the setString () method finishes, inString is destroyed. Because it was only a copy of name,
name remains intact.

The copy constructor is also called whenever you return an object from a function or method. In this
case, the compiler creates a temporary, unnamed, object through its copy constructor. Chaper 17 explores
the impact of temporary objects in more detail.

Calling the Copy Constructor Explicitly

You can use the copy constructor explicitly as well. It is often useful to be able to construct one object as
an exact copy of another. For example, you might want to create a copy of a SpreadsheetCell object
like this:

SpreadsheetCell myCell2(4);
SpreadsheetCell anotherCell (myCell2); // anotherCell now has the values of myCell2

Passing Objects by Reference

In order to avoid copying objects when you pass them to functions and methods you can declare that the
function or method takes a reference to the object. Passing objects by reference is usually more efficient
than passing them by value, because only the address of the object is copied, not the entire contents of
the object. Additionally, pass-by-reference avoids problems with dynamic memory allocation in objects,
which we will discuss in Chapter 9.

Pass objects by const reference instead of by value.

When you pass an object by reference, the function or method using the object reference could change
the original object. When you're only using pass-by-reference for efficiency, you should preclude this
possibility by declaring the object const as well. Here is the SpreadsheetCell class definition in which
string objects are passed const reference:

174

Gaining Proficiency with Classes and Objects

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialValue) ;
SpreadsheetCell (const string& initialValue) ;
SpreadsheetCell (const SpreadsheetCell& src);
void setValue(double inValue) ;
double getValue() ;
void setString(const string& inString);
string getString();

protected:
string doubleToString(double invalue) ;
double stringToDouble (const string& inString) ;

double mValue;
string mString;

Y

Here is the implementation for setString (). Note that the method body remains the same; only the
parameter type is different.

void SpreadsheetCell::setString(const string& inString)

mString = inString;
mValue = stringToDouble (mString) ;

The spreadsheetCell methods that return a string still return it by value. Returning a reference to a
data member is risky because the reference is valid only as long as the object is “alive.” Once the object is
destroyed, the reference is invalid. However, there are sometimes legitimate reasons to return references
to data members, as you will see later in this chapter and in subsequent chapters.

Summary of Compiler-Generated Constructors

The compiler will automatically generate a 0-argument constructor and a copy constructor for every
class. However, the constructors you define yourself replace these constructors according to the follow-

ing rules:
... then the compiler ...and you can
If you define. .. generates . . . create an object. .. Example
[no constructors] A O-argument With no arguments. SpreadsheetCell
constructor As a copy of another cell;
A copy constructor object. SpreadsheetCell
myCell (cell) ;
A O-argument A copy constructor With no arguments. SpreadsheetCell
constructor only As a copy of another cell;
object. SpreadsheetCell
myCell (cell) ;

Table continued on following page

175

Chapter 8

If you define. ..

... then the compiler
generates . ..

...and you can
create an object. ..

Example

A copy constructor
only

A single-argument
(noncopy constructor)
or multiargument
constructor only

A O-argument
constructor as well

as a single-argument
(noncopy constructor)
or multiargument
constructor

No constructors

A copy constructor

A copy constructor

Theoretically, as a copy
of another object.
Practically, you can’t
create any objects.

With arguments.
As a copy of another
object.

With no arguments.
With arguments.

As a copy of another
object.

No example.

SpreadsheetCell
cell(6);
SpreadsheetCell
myCell (cell) ;

SpreadsheetCell
cell;
SpreadsheetCell
myCell (5);
SpreadsheetCell
anotherCell (cell) ;

Note the lack of symmetry between the default constructor and the copy constructor. As long as you
don’t define a copy constructor explicitly, the compiler creates one for you. On the other hand, as soon as
you define any constructor, the compiler stops generating a default constructor.

Object Destruction

When an object is destroyed, two events occur: the object’s destructor method is called, and the memory
it was taking up is freed. The destructor is your chance to perform any cleanup work for the object, such
as freeing dynamically allocated memory or closing file handles. If you don’t declare a destructor, the
compiler will write one for you that does recursive memberwise destruction and allows the object to be
deleted. The section on dynamic memory allocation in Chapter 9 shows you how to write a destructor.

Objects on the stack are destroyed when they go out of scope, which means whenever the current func-
tion, method, or other execution block ends. In other words, whenever the code encounters an ending
curly brace, any objects created on the stack within those curly braces are destroyed. The following pro-

gram shows this behavior:

int main(int argc,

{

char** argv)

SpreadsheetCell myCell (5);

if (myCell.getValue()

== 5) {

SpreadsheetCell anotherCell (6);
} // anotherCell is destroyed as this block ends.

cout << "myCell:

return (0);

" << myCell.getValue()

<< endl;

} // myCell is destroyed as this block ends.

176

Gaining Proficiency with Classes and Objects

Objects on the stack are destroyed in the reverse order of their declaration (and construction). For exam-
ple, in the following code fragment, myCe112 is allocated before anotherCell2, so anotherCell2 is
destroyed before myCel12 (note that you can start a new code block at any point in your program with
an opening curly brace):

{

SpreadsheetCell myCell2(4);

SpreadsheetCell anotherCell2(5); // myCell2 constructed before anotherCell2
} // anotherCell2 destroyed before myCell2

This ordering applies to objects that are data members of other objects. Recall that data members are ini-
tialized in the order of their declaration in the class. Thus, following the rule that objects are destroyed in
the reverse order of their construction, data member objects are destroyed in the reverse order of their
declaration in the class.

Objects allocated on the heap are not destroyed automatically. You must call delete on the object pointer
to call its destructor and free the memory. The following program shows this behavior:

int main(int argc, char** argv)

{
SpreadsheetCell* cellPtrl = new SpreadsheetCell (5);
SpreadsheetCell* cellPtr2 = new SpreadsheetCell (6) ;

cout << "cellPtrl: " << cellPtrl->getValue() << endl;
delete cellPtrl; // Destroys cellPtrl

return (0);
} // cellPtr2 is NOT destroyed because delete was not called on it.

Assigning to Objects

Just as you can assign the value of one int to another in C++, you can assign the value of one object to
another. For example, the following code assigns the value of myCell to anotherCell:

SpreadsheetCell myCell (5), anotherCell;

anotherCell = myCell;

You might be tempted to say that myCell is “copied” to anotherCell. However, in the world of C++,
“copying” only occurs when an object is being initialized. If an object already has a value that is being
overwritten, the more accurate term is “assigned” to. Note that the facility that C++ provides for copy-
ing is the copy constructor. Since it is a constructor, it can only be used for object creation, not for later
assignments to the object.

Therefore, C++ provides another method in every class to perform assignment. This method is called the
assignment operator. Its name is operator= because it is actually an overloading of the = operator for that
class. In the above example, the assignment operator for anothercCell is called, with myCel1 as the
argument.

177

Chapter 8

As usual, if you don’t write your own assignment operator, C++ writes one for you to allow objects to be
assigned to one another. The default C++ assignment behavior is almost identical to its default copying
behavior: it recursively assigns each data member from the source to the destination object. The syntax is
slightly tricky, though.

Declaring an Assignment Operator

Here is another attempt at the SpreadsheetCell class definition, this time including an assignment
operator:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialvValue);
SpreadsheetCell (const string& initialvValue);
SpreadsheetCell (const SpreadsheetCell &src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue(double invalue) ;
double getValue() ;
void setString(const string& inString);
string getString();

protected:
string doubleToString(double inValue) ;
double stringToDouble (const string& inString);

double mValue;
string mString;

Y

The assignment operator, like the copy constructor, takes a const reference to the source object. In this
case, we call the source object rhs, which stands for “right-hand side” of the equals sign. The object on
which the assignment operator is called is the left-hand side of the equals sign.

Unlike a copy constructor, the assignment operator returns a reference to a SpreadsheetCell object.
The reason is that assignments can be chained, as in the following example:

myCell = anotherCell = aThirdCell;

When that line is executed, the first thing that happens is that the assignment operator for anothercell
is called with aThirdCell as its “right-hand side” parameter. Next, the assignment operator for myCell
is called. However, its parameter is not anotherCell. Its right-hand side is the result of the assignment
of aThirdCell to anotherCell. If that assignment fails to return a result, there is nothing to pass to
myCell!

You might be wondering why the assignment operator for myCell can’t just take anotherCell. The rea-
son is that using the equals sign is actually just shorthand for what is really a method call. When you

look at the line in its full functional syntax, you can see the problem:

myCell.operator=(anotherCell.operator=(aThirdCell)) ;

178

Gaining Proficiency with Classes and Objects

Now, you can see that the operator= call from anotherCell must return a value, which is passed to
the operator= call for myCell. The correct value to return is anotherCell itself, so it can serve as the
source for the assignment to myCell. However, returning anothercell directly would be inefficient, so
you can return a reference to anothercCell.

You could actually declare the assignment operator to return whatever type you
wanted, including void. However, you should always return a reference to the
object on which it is called because that’s what clients expect.

Defining an Assignment Operator

The implementation of the assignment operator is similar to that of a copy constructor, with several
important differences. First, a copy constructor is called only for initialization, so the destination object
does not yet have valid values. An assignment operator can overwrite the current values in an object.
This consideration doesn’t really come into play until you have dynamically allocated memory in your
objects. See Chapter 10 for details.

Second, it’s legal in C++ to assign an object to itself. For example, the following code compiles and runs:

SpreadsheetCell cell (4);
cell = cell; // Self-assignment

Your assignment operator shouldn’t prohibit self-assignment, but also shouldn’t perform a full assign-
ment if it happens. Thus, assignment operators should check for self-assignment at the beginning of the
method and return immediately.

Here is the definition of the assignment operator for the SpreadsheetcCell class:

SpreadsheetCell& SpreadsheetCell::operator=(const SpreadsheetCell& rhs)
{
if (this == &rhs) {

The previous line checks for self-assignment, but is a bit cryptic. Self-assignment occurs when the left-
hand side and the right-hand side of the equals sign are the same. One way to tell if two objects are the
same is if they occupy the same memory location — more explicitly, if pointers to them are equal. Recall
that this is a pointer to an object accessible from any method called on the object. Thus, thisis a
pointer to the left-hand side object. Similarly, srhs is a pointer to the right-hand-side object. If these
pointers are equal, the assignment must be self-assignment.

return (*this);
this is a pointer to the object on which the method executes, so *this is the object itself. The compiler
will return a reference to the object to match the declared return value.

mValue = rhs.mValue;
mString = rhs.mString;

179

Chapter 8

Here the method copies the values:

return (*this);

}
Finally it returns *this, as explained previously.
The syntax for overriding operator= may seem a strange at first. You probably felt the same way when
you first learned about some other C or C++ syntax, such as switch statements — the syntax just doesn’t
feel right. With operator=, you're getting into some deep language features. You are actually changing

the meaning of the = operator. This powerful capability unfortunately requires some unusual syntax.
Don’t worry, you'll get used to it!

Distinguishing Copying from Assighment

It is sometimes difficult to tell when objects are initialized with a copy constructor rather than assigned
to with the assignment operator. Consider the following code:

SpreadsheetCell myCell (5);
SpreadsheetCell anotherCell (myCell) ;

AnotherCell is constructed with the copy constructer.
SpreadsheetCell aThirdCell = myCell;

aThirdCell is also constructed with the copy constructer. This line does not call operator=! This syn-
tax is just another way to write: SpreadsheetCell aThirdCell (myCell);

anotherCell = myCell; // Calls operator= for anotherCell.

Here anothercCell has already been constructed, so the compiler calls operator=:

= does not always mean assignment! It can also be shorthand for copy construction
when used on the same line as the variable declaration.

Objects as Return Values

When you return objects from functions or methods, it is sometimes difficult to see exactly what copying
and assignment is happening. Recall that the code for getString () looks like this:

string SpreadsheetCell::getString()
{

return (mString);

}

180

Gaining Proficiency with Classes and Objects

Now consider the following code:

SpreadsheetCell myCell2(5);
string sl;
sl = myCell2.getString();

When getString () returns mString, the compiler actually creates an unnamed temporary string
object by calling a string copy constructor. When you assign this result to s1, the assignment operator
is called for s1 with the temporary string as a parameter. Then, the temporary string object is
destroyed. Thus, the single line of code invokes the copy constructor and the assignment operator (for
two different objects).

In case you're not confused enough, consider this code:

SpreadsheetCell myCell3 (5);
string s2 = myCell3.getString();

In this case, getString () still creates a temporary unnamed string object when it returns mString.
But now s1 gets its copy constructor called, not its assignment operator.

If you ever forget the order in which these things happen or which constructor or operator is called, you
can easily figure it out by temporarily including helpful output in your code or by stepping through it
with a debugger.

Copy Constructors and Object Members

You should also note the difference between assignment and copy constructor calls in constructors. If an
object contains other objects, the compiler-generated copy constructor calls the copy constructors of each
of the contained objects recursively. When you write your own copy constructor, you can provide the
same semantics by using an initializer list, as shown previously. If you omit a data member from the ini-
tializer list, the compiler performs default initialization on it (a call to the 0-argument constructor for
objects) before executing your code in the body of the constructor. Thus, by the time the body of the con-
structor executes, all object data members have already been initialized.

You could write your copy constructor without using an initialization list, like this:

SpreadsheetCell: : SpreadsheetCell (const SpreadsheetCell& src)
{

mValue = src.mValue;

mString = src.mString;

However, when you assign values to data members in the body of the copy constructor, you are using
the assignment operator on them, not the copy constructor, because they have already been initialized,
as described previously.

181

Chapter 8

Summary

This chapter covered the fundamental aspects of C++’s facilities for object-oriented programming:
classes and objects. It first reviewed the basic syntax for writing classes and using objects, including
access control. Then, it covered object life cycles: when objects are constructed, destructed, and assigned,
and what methods those actions invoke. The chapter included details of the constructor syntax, includ-
ing initializer lists. It also specified exactly which constructors the compiler writes for you, and under
what circumstances, and explained that default constructors take no arguments.

For some of you, this chapter was mostly review. For others, it hopefully opened your eyes to the world

of object-oriented programming in C++. In any case, now that you are proficient with objects and classes
you can learn, read Chapter 9 to learn more about their tricks and subtleties.

182

Mastering Classes
and Objects

Chapter 8 helped you gain proficiency with classes and objects. Now it’s time to master their
subtleties so you can use them to their full potential. By reading this chapter, you will learn how
to manipulate and exploit some of the most complicated aspects of the C++ language in order
to write safe, effective, and useful classes.

This chapter provides a detailed tutorial of advanced topics, including dynamic memory alloca-
tion in objects, static methods and members, const methods and members, reference and
const reference members, method overloading and default parameters, inline methods, nested
classes, friends, operator overloading, pointers to methods and members, and separate interface
and implementation classes.

Many of the concepts in this chapter arise in advanced C++ programming, especially in the stan-
dard template library.

Dynamic Memory Allocation in Objects

Sometimes you don’t know how much memory you will need before your program actually runs.
As you know, the solution is to dynamically allocate as much space as you need during program
execution. Classes are no exception. Sometimes you don’t know how much memory an object will
need when you write the class. In that case, the object should dynamically allocate memory.

Dynamically allocated memory in objects provides several challenges, including freeing the mem-
ory, handling object copying, and handling object assignment.

Chapter 9

The Spreadsheet Class

Chapter 8 introduced the SpreadsheetCell class. This chapter moves on to write the Spreadsheet
class. As with the SpreadsheetCell class, the Spreadsheet class will evolve throughout this chapter. Thus,
the various attempts do not always illustrate the best way to do every aspect of class writing. To start,

a Spreadsheet is simply a two-dimensional array of SpreadsheetCells, with methods to set and
retrieve cells at specific locations in the Spreadsheet. Although most spreadsheet applications use let-
ters in one direction and numbers in the other to refer to cells, this Spreadsheet uses numbers in both
directions. Here is a first attempt at a class definition for a simple Spreadsheet class:

// Spreadsheet.h
#include "SpreadsheetCell.h"

class Spreadsheet

{
public:
Spreadsheet (int inWidth, int inHeight) ;

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper) ;

int mWidth, mHeight;
SpreadsheetCell** mCells;
b g

Note that the Spreadsheet class does not contain a standard two-dimensional array of
SpreadsheetCells. Instead, it contains a SpreadsheetCell**. The reason is that each Spreadsheet
object might have different dimensions, so the constructor of the class must dynamically allocate the
two-dimensional array based on the client-specified height and width. In order to allocate dynamically
a two-dimensional array you need to write the following code:

#include "Spreadsheet.h"

Spreadsheet: : Spreadsheet (int inWidth, int inHeight)
mwWidth (inWidth) , mHeight (inHeight)
{
mCells = new SpreadsheetCell* [mWidth];
for (int 1 = 0; 1 < mWidth; 1i++) {
mCells[i] = new SpreadsheetCell [mHeight];

The resultant memory for a Spreadsheet called s1 on the stack with width four and height three is
shown in Figure 9-1.

184

Mastering Classes and Objects

stack heap

Each element is an
4 3 / unnamed SpreadsheetCell*

int mWidth int mHeight . \’ \

SpreadsheetCell**mCells

Each element is an unnamed
Spreadsheet s1 SpreadsheetCell.

Figure 9-1

If this code confuses you, consult Chapter 13 for details on memory management.
The implementations of the set and retrieval methods are straightforward:

void Spreadsheet::setCellAt(int x, int y, const SpreadsheetCell& cell)
{
if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return;

}

mCells([x][y] = cell;
}

SpreadsheetCell Spreadsheet::getCellAt (int x, int y)
{
SpreadsheetCell empty;

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return (empty) ;

}

return (mCells[x]I[v]);
}

Note that these two methods use a helper method inRange () to check that x and y represent valid coor-
dinates in the spreadsheet. Attempting to access an invalid field in the array will cause the program to
malfunction. A production application would probably use exceptions to report error conditions, as
described in Chapter 15.

185

Chapter 9

Freeing Memory with Destructors

Whenever you are finished with dynamically allocated memory, you should free it. If you dynamically
allocate memory in an object, the place to free that memory is in the destructor. The compiler guarantees
that the destructor will be called when the object is destroyed. Here is the Spreadsheet class definition
from earlier with a destructor:

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight);
~Spreadsheet () ;

void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper) ;

int mWidth, mHeight;
SpreadsheetCell** mCells;
Y

The destructor has the same name as the name of the class (and of the constructors), preceded by a tilde
(~). The destructor takes no arguments, and there can only be one of them.

Here is the implementation of the Spreadsheet class destructor:

Spreadsheet: : ~Spreadsheet ()
{
for (int i = 0; i < mWidth; i++) {
delete[] mCells[i];
}

delete[] mCells;
}

This destructor frees the memory that was allocated in the constructor. However, no dictate requires you
only to free memory in the destructor. You can write whatever code you want in the destructor, but it is a
good idea to use it only for freeing memory or disposing of other resources.

Handling Copying and Assignment

Recall from Chapter 8 that, if you don’t write a copy constructor and an assignment operator yourself,
C++ writes them for you. These compiler-generated methods recursively call the copy constructor or
assignment operator, respectively, on object data members. However, for primitives, such as int,
double, and pointers, they provide shallow or bitwise copying or assignment: they just copy or assign the
data members from the source object directly to the destination object. That presents problems when you
dynamically allocate memory in your object. For example, the following code copies the spreadsheet s1
to initialize s when s1 is passed to the printSpreadsheet () function.

186

Mastering Classes and Objects

#include "Spreadsheet.h"

void printSpreadsheet (Spreadsheet s)
{

// Code omitted for brevity.
}

int main(int argc, char** argv)
{
Spreadsheet sl(4, 3);
printSpreadsheet (sl) ;

return (0);

}

The spreadsheet contains one pointer variable: mCells. A shallow copy of a spreadsheet gives the des-
tination object a copy of the mCells pointer, but not a copy of the underlying data. Thus, you end up
with a situation where both s and s1 have a pointer to the same data, as shown in Figure 9-2.

stack heap

Each element is an
unnamed SpreadsheetCell*

int mWidth int mHeight \’ \

SpreadsheetCell**mCells

Each element is an unnamed

Spreadsheet s1 SpreadsheetCell.
4 3
int mWidth int mHeight

SpreadsheetCell**mCells

Spreadsheet s
Figure 9-2

187

Chapter 9

If s were to change something to which mCel1ls points, that change would show up in s1 too. Even
worse, when the printSpreadsheet () function exits, s’s destructor is called, which frees the memory
pointed to by mcells. That leaves the situation shown in Figure 9-3.

stack heap

4 3 / Freed memory

int mWidth int mHeight

SpreadsheetCell**mCells

Spreadsheet s1

Figure 9-3

Now s1 has a dangling pointer!
Unbelievably, the problem is even worse with assignment. Suppose that you had the following code:

Spreadsheet s1(2, 2), s2(4, 3);
sl = s2;

After both objects are constructed, you would have the memory layout shown in Figure 9-4.

188

Mastering Classes and Objects

stack heap

4 3 / \ \

int mWidth int mHeight '

SpreadsheetCell**mCells

Spreadsheet s2

int mWidth int mHeight (X

SpreadsheetCell**mCells

Spreadsheet s1
Figure 9-4

After the assignment statement, you would have the layout shown in Figure 9-5.

189

Chapter 9

stack heap

int mWidth int mHeight \’ \

SpreadsheetCell**mCells

Spreadsheet s2

Orphaned
2 2 memory!

int mWidth int mHeight \4

SpreadsheetCell**mCells

Spreadsheet s1
Figure 9-5

Now, not only do the mCells pointers in s1 and s2 point to the same memory, but you have orphaned
the memory to which mCells in s1 previously pointed. That is why in assignment operators you must
first free the old memory, and then do a deep copy.

As you can see, relying on C++’s default copy constructor or assignment operator is not always a good
idea. Whenever you have dynamically allocated memory in a class, you should write your own copy
constructor to provide a deep copy of the memory.

The Spreadsheet Copy Constructor

Here is a declaration for a copy constructor in the Spreadsheet class:

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight);
Spreadsheet (const Spreadsheet& src);

190

Mastering Classes and Objects

~Spreadsheet () ;

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper) ;

int mWidth, mHeight;
SpreadsheetCell** mCells;
Y

Here is the definition of the copy constructor:

Spreadsheet: : Spreadsheet (const Spreadsheet& src)
{

int i, j;

mWidth = src.mwWidth;
mHeight = src.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (1 = 0; 1 < mwWidth; 1i++) {
mCells[i] = new SpreadsheetCell [mHeight];

for (i = 0; 1 < mwidth; i++) ¢
for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][j];

Note that the copy constructor copies all data members, including mwidth and mHeight, not just the
pointer data members. The rest of the code in the copy constructor provides a deep copy of the mCells
dynamically allocated two-dimensional array.

Copy all data members in a copy constructor, not just pointer members.

The Spreadsheet Assighment Operator

Here is the definition for the Spreadsheet class with an assignment operator:

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight);
Spreadsheet (const Spreadsheet& src);
~Spreadsheet () ;

Spreadsheet& operator=(const Spreadsheet& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

191

Chapter 9

protected:
bool inRange(int val, int upper) ;

int mWidth, mHeight;
SpreadsheetCell** mCells;
Y

Here is the implementation of the assignment operator for the Spreadsheet class, with explanations
interspersed. Note that when an object is assigned to, it already has been initialized. Thus, you must free
any dynamically allocated memory before allocating new memory. You can think of an assignment oper-
ator as a combination of a destructor and a copy constructor. You are essentially “reincarnating” the
object with new life (or data) when you assign to it.

Spreadsheet& Spreadsheet: :operator=(const Spreadsheet& rhs)
{

int i, 3j;

// Check for self-assignment.
if (this == &rhs) {
return (*this);

The above code checks for self-assignment.

// Free the old memory.

for (i = 0; i < mwidth; i++) {
delete[] mCells[i];

}

delete[] mCells;

This chunk of code is identical to the destructor. You must free all the memory before reallocating it, or
you will create a memory leak.

// Copy the new memory.
mWidth = rhs.mwidth;
mHeight = rhs.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (i = 0; i < mWidth; i++) {
mCells[i] = new SpreadsheetCell [mHeight];
}
for (1 = 0; i < mwidth; i++) {

for (3 = 0; j < mHeight; j++) {
mCells[i][j] = rhs.mCells[i][j];

This chunk of code is identical to the copy constructor.

return (*this);

192

Mastering Classes and Objects

The assignment operator completes the “big 3” routines for managing dynamically allocated memory in
an object: the destructor, the copy constructor, and the assignment operator. Whenever you find yourself

writing one of those methods you should write all of them.

Whenever a class dynamically allocates memory, write a destructor, copy constructor,
and assignment operator.

Common Helper Routines for Copy Constructor
and Assignment Operator

The copy constructor and the assignment operator are quite similar. Thus, it’s usually convenient to fac-
tor the common tasks into a helper method. For example, you could add a copyFrom () method to the

Spreadsheet class, and rewrite the copy constructor and assignment operator to use it like this:

void Spreadsheet: :copyFrom(const Spreadsheet& src)
{

int i, j;

mWidth = src.mwidth;
mHeight = src.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (1 = 0; 1 < mWidth; 1i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

for (1 = 0; 1 < mWidht; 1i++) {
for (j = 0; j < mHeight; Jj++) {
mCells[i][j] = src.mCells[i][j];

}

Spreadsheet: : Spreadsheet (const Spreadsheet &src)
{
copyFrom(src) ;

}

Spreadsheet& Spreadsheet: :operator=(const Spreadsheet& rhs)
{

int 1;

// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
for (i = 0; 1 < mwWidth; i++) {
delete[] mCells[i];

193

Chapter 9

delete[] mCells;

// Copy the new memory.
copyFrom(rhs) ;

return (*this);

Disallowing Assignment and Pass-By-Value

Sometimes when you dynamically allocate memory in your class, it’s easiest just to prevent anyone from
copying or assigning to your objects. You can do this by marking your copy constructor and operator=
private. That way, if anyone tries to pass the object by value, return it from a function or method, or
assign to it, the compiler will complain. Here is a Spreadsheet class definition that prevents assign-
ment and pass-by-value:

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight);
~Spreadsheet () ;

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int wval, int upper) ;

int mWidth, mHeight;
SpreadsheetCell** mCells;

private:
Spreadsheet (const Spreadsheet& src);
Spreadsheet& operator=(const Spreadsheet& rhs);

Y

When you write code to copy or assign to a Spreadsheet object, the compiler will complain with a mes-
sagehke':‘ : cannot access private member declared in class 'Spreadsheet'

You don’t need to provide implementations for private copy constructors and assign-
ment operators. The linker will never look for them because the compiler won’t
allow code to call them.

Different Kinds of Data Members

C++ gives you many choices for data members. In addition to declaring simple data members in your
classes, you can create data members that all objects of the class share, const members, reference mem-
bers, const reference members, and more. This section explains the intricacies of these different kinds of
data members.

194

Mastering Classes and Objects

Static Data Members

Sometimes giving each object of a class a copy of a variable is overkill or won’t work. The data member
might be specific to the class, but not appropriate for each object to have its own copy. For example, you
might want to give each spreadsheet a unique numerical identifier. You would need a counter that starts
at 0 from which each new object could obtain its ID. This spreadsheet counter really belongs to the
Spreadsheet class, but it doesn’t make sense for each Spreadsheet object to have a copy of it because
you would have to keep all the counters synchronized somehow. C++ provides a solution with static data
members. A static data member is a data member associated with a class instead of an object. You can
think of static data members as global variables specific to a class. Here is the Spreadsheet class defini-
tion, including the new static counter data member:

class Spreadsheet
{
public:
// Omitted for brevity
protected:
bool inRange(int val, int upper) ;
void copyFrom(const Spreadsheet& src);

int mWidth, mHeight;
SpreadsheetCell** mCells;

static int sCounter;

Y

In addition to listing static class members in the class definition, you must allocate them space in a
source file, usually the source file in which you place your class method definitions. You can initialize
them at the same time, but note that unlike normal variables and data members, they are initialized to 0
by default. Here is the code to allocate space for and initialize the sCounter member:

int Spreadsheet::sCounter = 0;

This code appears outside of any function or method bodies. It's almost like declaring a global variable,
except that the Spreadsheet: : scope resolution specifies that it’s part of the Spreadsheet class.

Accessing Static Data Members within Class Methods

You can use static data members as if they were regular data members from within class methods. For
example, you might want to create an mId member of the Spreadsheet class and initialize it from the

sCounter member in the Spreadsheet constructor. Here is the Spreadsheet class definition with an
mId member:

class Spreadsheet
{
public:
Spreadsheet (int inwidth, int inHeight);
Spreadsheet (const Spreadsheet& src);
~Spreadsheet () ;
Spreadsheet& operator=(const Spreadsheet& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

195

Chapter 9

int getId();

protected:
bool inRange(int val, int upper) ;
void copyFrom(const Spreadsheet& src);

int mWidth, mHeight;
int mId;
SpreadsheetCell** mCells;

static int sCounter;

Y
Here is an implementation of the Spreadsheet constructor that assigns the initial ID:

Spreadsheet: : Spreadsheet (int inWidth, int inHeight)
mWidth (inWidth), mHeight (inHeight)
{
mId = sCounter++;
mCells = new SpreadsheetCell* [mWidth];
for (int 1 = 0; 1 < mWidth; i++) {
mCells[i] = new SpreadsheetCell [mHeight];

As you can see, the constructor can access sCounter as if it were a normal member. Remember to assign
an ID in the copy constructor as well:

Spreadsheet: : Spreadsheet (const Spreadsheet& src)
{

mId = sCounter++;

copyFrom(src) ;

You should not copy the ID in the assignment operator. Once an ID is assigned to an object it should
never change.

Accessing Static Data Members Outside Methods

Access control specifiers apply to static data members: sCounter is protected, so it cannot be
accessed from outside class methods.

However, even though it is protected, you are allowed to assign it a value when you declare space for
it in the source file, despite the fact that the code is not inside any Spreadsheet class method. Here is

that line of code again:

int Spreadsheet::sCounter = 0;

Const Data Members

Data members in your class can be declared const, meaning they can’t be changed after they are created
and initialized. Constants almost never make sense at the object level, so const data members are usually

196

Mastering Classes and Objects

static as well. You should use static const data members in place of global constants when the con-
stants apply only to the class. For example, you might want to specify a maximum height and width for
spreadsheets. If the user tries to construct a spreadsheet with a greater height or width than the maxi-
mum, the maximum is used instead. You can make the max height and width static const members
of the Spreadsheet class:

class Spreadsheet

{
public:
// Omitted for brevity

static const int kMaxHeight;
static const int kMaxWidth;

protected:
// Omitted for brevity

Y

Because these members are static, you must declare space for them in the source file. Because they are
const, this is your last chance to give them a value:

const int Spreadsheet::kMaxHeight = 100;
const int Spreadsheet::kMaxWidth = 100;

The C++ standard actually permits you to assign static const member variables a value as you
declare them in the class file if they are of integral type (such as int or char).

class Spreadsheet

{
public:
// Omitted for brevity

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
// Omitted for brevity

Y

This capability is useful if you want to use the constant later in your class definition. Although some
older compilers fail to support this syntax, most now accept it. In fact, many compilers allow you to omit
the extra definition of the static const member in a source file if you initialize it in the class definition,
and if you don’t perform any operations on it that require actual storage, such as taking its address.

You can use these new constants in your constructor as shown in the following section of code (note the
use of the ternary operator):
Spreadsheet: :Spreadsheet (int inWidth, int inHeight)
mWidth (inWidth < kMaxWidth ? inWidth : kMaxWidth),
mHeight (inHeight < kMaxHeight ? inHeight : kMaxHeight)

mId = sCounter++;

197

Chapter 9

mCells = new SpreadsheetCell* [mWidth];
for (int 1 = 0; 1 < mWidth; i++) {
mCells[i] = new SpreadsheetCell [mHeight];

kMaxHeight and kMaxWidth are public, so you can access them from anywhere in your program as if
they were global variables, but with slightly different syntax: you must specify that the variable is part
of the Spreadsheet class with the scope resolution operator, : :.

cout << "Maximum height is: " << Spreadsheet::kMaxHeight << endl;

Reference Data Members

Spreadsheets and SpreadsheetCells are great, but they don’t make a very useful application by
themselves. You need code to control the whole spreadsheet program, which you could package into a
SpreadsheetApplication class.

The implementation of this class is unimportant at the moment. For now, consider this architecture prob-
lem: how can spreadsheets communicate with the application? The application stores a list of spread-
sheets, so it can communicate with the spreadsheets. Similarly, each spreadsheet should store a reference
to the application object. The Spreadsheet class must know about the SpreadsheetApplication
class, but instead of using a full #include, you can just use a forward reference to the class name (see
Chapter 12 for details). Here is the new Spreadsheet class definition:

class SpreadsheetApplication; // forward declaration

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight,
SpreadsheetApplication& theApp) ;
// Code omitted for brevity.

protected:
// Code omitted for brevity.
SpreadsheetApplication& mTheApp;

static int sCounter;

Y

Note that the application reference is given to each Spreadsheet in its constructor. A reference cannot
exist without referring to something, so mTheApp must be given a value in the initializer list of the
constructor:
Spreadsheet: : Spreadsheet (int inWidth, int inHeight,
SpreadsheetApplication& theApp)
: mWidth (inWidth < kMaxWidth ? inWidth : kMaxWidth),
mHeight (inHeight < kMaxHeight ? inHeight : kMaxHeight), mTheApp (theApp)

// Code omitted for brevity.

198

Mastering Classes and Objects

You must also initialize the reference member in the copy constructor:

Spreadsheet: : Spreadsheet (const Spreadsheet& src)
mTheApp (src.mThelApp)

{
mId = sCounter++;
copyFrom(src) ;

Remember that after you have initialized a reference you cannot change the object to which it refers.
Thus, you do not need to attempt to assign to references in the assignment operator.

Const Reference Data Members

Your reference members can refer to const objects just as normal references can refer to const objects.
For example, you might decide that Spreadsheets should only have a const reference to the applica-
tion object. You can simply change the class definition to declare mTheApp as a const reference:

class Spreadsheet
{
public:
Spreadsheet (int inWidth, int inHeight,
const SpreadsheetApplication& theApp) ;
// Code omitted for brevity.

protected:
// Code omitted for brevity.
const SpreadsheetApplication& mTheApp;

static int sCounter;

Y

It’s also possible to have a static reference member or a static const reference member, but you will
rarely find the need for something like that.

More about Methods

C++ also provides myriad choices for methods. This section explains all the tricky details.

Static Methods

Methods, like members, sometimes apply to the class as a whole, not to each object. You can write
static methods as well as members. As an example, consider the SpreadsheetCell class from
Chapter 8. It has two helper methods: stringToDouble () and doubleToString (). These methods
don’t access information about specific objects, so they could be static. Here is the class definition with
these methods static:

class SpreadsheetCell

{
public:

199

Chapter 9

// Omitted for brevity

protected:
static string doubleToString (double val);
static double stringToDouble(const string& str);

// Omitted for brevity
Y

The implementations of these two methods are identical to the previous implementations! You don’t
even need to repeat the static keyword in front of the method definitions. However, note that static
methods are not called on a specific object, so they have no this pointer, and are not executing for a spe-
cific object with access to its non-static members. In fact, a static method is just like a regular func-
tion. The only difference is that it can access private and protected static data members of the class
and private and protected non-static data members on other objects of the same type.

You cannot access non-static data members inside a static method.

You call a static method just like a regular function from within any method of the class. Thus, the
implementation of all methods in SpreadsheetCell can stay the same. Outside of the class, you need
to qualify the method name with the class name using the scope resolution operator (as for static
members). Access control applies as usual.

You might want to make stringToDouble () and doubleToString () public so that other code out-
side the class could make use of them. If so, you could call them from anywhere like this:

string str = SpreadsheetCell::doubleToString(5);

Const Methods

A const object is an object whose value cannot be changed. If you have a const or reference to const
object, the compiler will not let you call any methods on that object unless those methods guarantee that
they won’t change any data members. The way you guarantee that a method won’t change data mem-
bers is to mark the method itself with the const keyword. Here is a modified SpreadsheetCell class
with the methods that don’t change any data member marked const:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialvValue) ;
SpreadsheetCell (const string& initialvalue);
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue (double inValue) ;
double getValue() const;
void setString(const string& inString);
string getString() const;

200

Mastering Classes and Objects

static string doubleToString(double inValue) ;
static double stringToDouble(const string& inString) ;

protected:

double mvValue;
string mString;

i
The const specification is part of the method prototype and must accompany its definition as well:

double SpreadsheetCell::getValue() const
{

return (mvValue);

}
string SpreadsheetCell::getString() const

{
return (mString);

}

Marking a method as const signs a contract with client code guaranteeing that you will not try to
change the internal values of the object within the method. If you try to declare a method const that
actually modifies a data member, the compiler will complain. You also cannot declare a static method
const because it is redundant. Static methods do not have an instance of the class so it would be
impossible for them to change internal values. const works by making it appear inside the method that
you have a const reference to each data member. Thus, if you try to change the data member the com-
piler will flag an error.

A non-const object can call const and non-const methods. However, a const object can only call
const methods. Here are some examples:

SpreadsheetCell myCell(5);

cout << myCell.getValue() << endl; // OK
myCell.setString("6"); // OK

const SpreadsheetCell& anotherCell = myCell;

cout << anotherCell.getValue() << endl; // OK
anotherCell.setString("6"); // Compilation Error!

You should get into the habit of declaring const all methods that don’t modify the object so that you can
use references to const objects in your program.

Note that const objects can still be destroyed, and their destructor can be called. You shouldn’t try to
mark the destructor const.

Mutable Data Members

Sometimes you write a method that is “logically” const but happens to change a data member of the
object. This modification has no effect on any user-visible data, but is technically a change, so the com-
piler won't let you declare the method const. For example, suppose that you want to profile your

201

Chapter 9

spreadsheet application to obtain info about how often data is being read. A crude way to do this would
be to add a counter to the SpreadsheetCell class that counts each call to getvalue () or

getString (). Unfortunately, that makes those methods non-const in the compiler’s eyes, which is not
what you intended. The solution is to make your new counter variable mutable, which tells the com-
piler that it’s okay to change it in a const method. Here is the new SpreadsheetCell class definition:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialValue);
SpreadsheetCell (const string& initialvValue);
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue (double inValue);
double getValue() const;
void setString(const string& inString);
string getString() const;

static string doubleToString(double inValue) ;
static double stringToDouble(const string& inString);

protected:
double mvalue;
string mString;

mutable int mNumAccesses;

Y
Here are the definitions for getvalue () and getString():

double SpreadsheetCell::getValue() const
{

mNumAccesses++;
return (mValue);

}

string SpreadsheetCell::getString() const
{

mNumAccesses++;
return (mString);

Remember to initialize mNumAccesses in all your constructors!

Method Overloading

You've already noticed that you can write multiple constructors in a class, all of which have the same
name. These constructors differ only in the number of types of their parameters. You can do the same
thing for any method or function in C++. Specifically, you can overload the function or method name by
using it for multiple functions, as long as the number or types of the parameters differ. For example, in
the spreadsheetCell class you could rename both setString () and setvalue() toset (). The
class definition now looks like this:

202

Mastering Classes and Objects

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialValue) ;
SpreadsheetCell (const string& initialvalue);
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs) ;
void set (double invValue) ;
void set(const string& inString) ;
double getValue() const;
string getString() const;

// Remainder of the class omitted for brevity

Y

The implementations of the set () methods stay the same. Note that the double constructor that previ-
ously called setvalue () must now call set (). When you write code to call set (), the compiler deter-
mines which version to call based on the parameter you pass: if you pass a string the compiler calls the
string version, if you pass a double the compiler calls the double version.

You might be tempted to do the same thing for getvalue () and getString(): rename each of them to
get (). However, that does not compile. C++ does not allow you to overload a method name based only
on the return type of the method because in many cases it would be impossible for the compiler to deter-
mine which version of the method to call. For example, if the return value of the method is not captured
anywhere, the compiler has no way to tell which version of the method you wanted.

Note also that you can overload a method based on const. That is, you can write two methods with the
same name and same parameters, one of which is declared const and one of which is not. The compiler
will call the const method if you have a const object and the non-const method if you have a non-
const object.

Default Parameters

A feature similar to method overloading in C++ is default parameters. You can specify defaults for func-
tion and method parameters in the prototype. If the user specifies those arguments, the defaults are
ignored. If the user omits those arguments, the default values are used. There is a limitation, though: you
can only provide defaults for a continuous list of parameters starting from the rightmost parameter.
Otherwise, the compiler would not be able to match missing arguments to default parameters. Default
parameters are most useful in constructors. For example, you can assign default values to the width and
height in your Spreadsheet constructor:

class Spreadsheet

{
public:

Spreadsheet (const SpreadsheetApplication& theApp, int inWidth = kMaxWidth,
int inHeight = kMaxHeight) ;

Spreadsheet (const Spreadsheet& src);

~Spreadsheet () ;

Spreadsheet& operator=(const Spreadsheet& rhs);

203

Chapter 9

void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

int getId();

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
// Omitted for brevity
Y

The implementation of the Spreadsheet constructor stays the same. Note that you specify the default
parameters only in the method declaration, but not in the definition.

Now you can call the Spreadsheet constructor with one, two, or three arguments even though there is
only one noncopy constructor:

SpreadsheetApplication theApp;
Spreadsheet sl (theApp) ;
Spreadsheet s2(theApp, 5);
Spreadsheet s3(thelpp, 5, 6);

A constructor with defaults for all its parameters can function as a default constructor. That is, you can
construct an object of that class without specifying any arguments. If you try to declare both a default
constructor and a multiargument constructor with defaults for all its parameters, the compiler will com-
plain because it won’t know which constructor to call if you don’t specify any arguments.

Note that anything you can do with default parameters you can do with method overloading. You could
write three different constructors, each of which takes a different number of parameters. However,
default parameters allow you to write only one constructor to take three different numbers of argu-
ments. You should use the mechanism with which you are most comfortable.

Inline Methods

C++ gives you the ability to recommend that a call to a method or function should not actually be a
method or function call. Instead, the compiler should insert the method or function body directly into
the code where the method or function call is made. This process is called inlining, and methods or func-
tions that want this behavior are called inline methods or functions. The process is just a safer version
of #define macros.

You can specify an inline method or function by placing the inline keyword in front of its name in
the function or method definition. For example, you might want to make the setter and accessor meth-
ods of the SpreadsheetCell class inline, in which case you would define them like this:

inline double SpreadsheetCell::getValue() const
{

mNumAccesses++;
return (mValue) ;

204

Mastering Classes and Objects

inline string SpreadsheetCell::getString() const

{
mNumAccesses++;
return (mString);

Now, the compiler has to option to replace calls to getvalue () and getString () with the actual
method body instead of generating code to make a function call.

There is one major caveat: definitions of inline methods and functions must be available in every
source file in which they are called. That makes sense if you think about it: how can the compiler substi-
tute the function body if it can’t see the function definition? Thus, if you write inline functions or
methods you should place the definitions in a header file along with their prototypes. For methods, this
means placing the definitions in the . h file that includes the class definition. This placement is perfectly
safe: the linker doesn’t complain about multiple definitions of the same method. It’s just like a #define
macro in this sense.

C++ provides an alternate syntax for declaring inline methods that doesn’t use the inline keyword at
all. Instead, you place the method definition directly in the class definition. Here is a SpreadsheetCell
class definition with this syntax:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialValue) ;
SpreadsheetCell (const string& initialVvalue);
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void set (double invalue) ;
void set(const string& inString);

double getValue() const {mNumAccesses++; return (mValue); 1}
string getString() const {mNumAccesses++; return (mString); }

static string doubleToString(double inValue);
static double stringToDouble(const string& inString) ;

protected:
double mvValue;
string mString;

mutable int mNumAccesses;

}i

Many C++ programmers discover the inline method syntax and employ it without understanding the
ramifications of making a method inline. First, there are many restrictions on which methods can be
inline. Compilers will only inline the simplest methods and functions. If you define an inline
method that the compiler doesn’t want to inline, it may silently ignore the directive. Second, inline
methods can lead to code bloat. The body of the methods are reproduced everywhere they are called,
increasing the size of your program executable. Thus, you should use inline methods and functions

sparingly.

205

Chapter 9

Nested Classes

Class definitions can contain more than just methods and members. You can also write nested classes
and structs, declare typedefs, or create enumerated types. Anything declared inside a class is in the
scope of that class. If it is public, you can access it outside the class by scoping it with the ClassName: :
scope resolution syntax.

You can provide a class definition inside another class definition. For example, you might decide that the
SpreadsheetCell class is really part of the Spreadsheet class. You could define both of them like this:

class Spreadsheet

{
public:

class SpreadsheetCell
{
public:

SpreadsheetCell () ;
SpreadsheetCell (double initialValue);
SpreadsheetCell (const string& initialValue);
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void set(double invValue) ;
void set(const string& inString);

double getValue() const {mNumAccesses++; return (mValue); }
string getString() const {mNumAccesses++; return (mString); }

static string doubleToString(double invValue) ;
static double stringToDouble(const string& inString);

protected:
double mvValue;
string mString;

mutable int mNumAccesses;
Iy

Spreadsheet (const SpreadsheetApplication& theApp, int inWdith = kMaxWidth,
int inHeight = kMaxHeight) ;

Spreadsheet (const Spreadsheet& src);

~Spreadsheet () ;

Spreadsheet& operator=(const Spreadsheet& rhs);

// Remainder of Spreadsheet declarations omitted for brevity

Y

Now, the SpreadsheetCell class is defined inside the Spreadsheet class, so anywhere you
refer to a SpreadsheetCell outside of the Spreadsheet class you must qualify the name with
the Spreadsheet: : scope. This applies even to the method definitions. For example, the default
constructor now looks like this:

206

Mastering Classes and Objects

Spreadsheet: : SpreadsheetCell: : SpreadsheetCell () : mValue(0), mNumAccesses (0)
{
}

This syntax can quickly become clumsy. For example, the definition of the SpreadsheetCell assign-
ment operator now looks like this:

Spreadsheet: : SpreadsheetCell& Spreadsheet: :SpreadsheetCell: :operator=(
const SpreadsheetCell& rhs)
{
if (this == &rhs) {
return (*this);
}
mValue = rhs.mValue;
mString = rhs.mString;
mNumAccesses = rhs.mNumAccesses;
return (*this);

In fact, you must even use the syntax for return types (but not parameters) of methods in the
Spreadsheet class itself:

Spreadsheet: : SpreadsheetCell Spreadsheet::getCellAt (int x, int y)

{
SpreadsheetCell empty;

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return (empty);

}

return (mCells[x]I[vy]);

You can avoid the clumsy syntax by using a typedef to rename Spreadsheet : : SpreadsheetCell to
something more manageable like SCel1:

typedef Spreadsheet: :SpreadsheetCell SCell;
This typedef should go outside the Spreadsheet class definition, or else you will have to qualify the
typedef name itself with Spreadsheet: : to get Spreadsheet: : SCell. That wouldn’t do you much
good!
Now you can write your constructor like this:

SCell: :SpreadsheetCell() : mValue(0), mNumAccesses(0)

{

}

Normal access control applies to nested class definitions. If you declare a private or protected nested
class, you can only use it inside the outer class.

You should generally use nested class definitions only for trivial classes. It is really too clumsy for some-
thing like the Spreadsheetcell class.

207

Chapter 9

Friends

C++ allows classes to declare that other classes or nonmember functions are friends, and can access
protected and private data members and methods. For example, the SpreadsheetcCell class could
specify that the Spreadsheet class is its “friend” like this:

class SpreadsheetCell
{
public:
friend class Spreadsheet;

// Remainder of the class omitted for brevity

Y

Now all the methods of the Spreadsheet class can access the private and protected data and mem-
bers of the SpreadsheetcCell class.

Similarly, you can specify that one or more functions or members of another class are friends. For
example, you might want to write a function to verify that the value and the string of a
SpreadsheetCell object are really in synch. You might want this verification routine to be outside the
SpreadsheetCell class to model an external audit, but the function should be able to access the inter-
nal data members of the object in order to check it properly. Here is the SpreadsheetCell class defini-
tion with a friend checkSpreadsheetCell () function:

class SpreadsheetCell
{
public:
// Omitted for brevity

friend bool checkSpreadsheetCell (const SpreadsheetCell &cell);

// Omitted for brevity
}i

The friend declaration in the class serves as the function’s prototype. There’s no need to write the
prototype elsewhere (although it’s harmless to do so).

Here is the function definition:

bool checkSpreadsheetCell (const SpreadsheetCell &cell)
{

return (SpreadsheetCell::stringToDouble(cell.mString) == cell.mvalue) ;
}

You write this function just like any other function, except that you can directly access private and
protected data members of the SpreadsheetCell class. You don't repeat the friend keyword on the
function definition.

friend classes and methods are easy to abuse; they allow you to violate the principle of abstraction by

exposing internals of your class to other classes or functions. Thus, you should use them only in limited
circumstances such as operator overloading.

208

Mastering Classes and Objects

Operator Overloading

You often want to perform operations on objects such as adding them, comparing them, or streaming
them to or from files. For example, spreadsheets are really only useful when you can perform arithmetic
actions on them such as summing an entire row of cells.

Implementing Addition

In true object-oriented fashion, SpreadsheetCell objects should be able to add themselves to other
SpreadsheetCell objects. Adding a cell to another cell produces a third cell with the result. It doesn’t
change either of the original cells. The meaning of addition for SpreadsheetCells is the addition of the
values of the cells. The string representations are ignored.

First Attempt: The add Method

You can declare and define an add method for your SpreadsheetCell class like this:

class SpreadsheetCell
{
public:
// Omitted for brevity

const SpreadsheetCell add(const SpreadsheetCell& cell) const;

// Omitted for brevity
Y

This method adds two cells together, returning a new third cell whose value is the sum of the first two. It
is declared const and takes a reference to a const SpreadsheetCell because add () does not change
either of the source cells. It returns a const SpreadsheetCell because you don’t want users to change
the return value. They should just assign it to another object. add () is a method, so it is called on one
object and passed another. Here is the implementation:

const SpreadsheetCell SpreadsheetCell::add(const SpreadsheetCell& cell) const

{
SpreadsheetCell newCell;
newCell.set (mValue + cell.mValue); // call set to update mValue and mString
return (newCell);

}
Note that the implementation creates a new SpreadsheetcCell called newCell and returns a copy of
that cell. That only works because you wrote a copy constructor for this class. You might be tempted to
return a reference to the cell instead. However, that will not work because as soon as the add () method
ends and newCell goes out of scope it will be destroyed. The reference that you returned will then be a
dangling reference.

You can use the add method like this:

SpreadsheetCell myCell (4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell.add(anotherCell) ;

That works, but it’s a bit clumsy. You can do better.

209

Chapter 9

Second Attempt: Overloaded operator+ as a Method

It would be convenient to be able to add two cells with the plus sign the way that you add two ints or
two doubles. Something like this:

SpreadsheetCell myCell (4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell + anotherCell;

Luckily, C++ allows you to write your own version of the plus sign, called the addition operator, to work
correctly with your classes. To do that you write a method with the name operator+ that looks like this:

class SpreadsheetCell

{
public:
// Omitted for brevity

const SpreadsheetCell operator+(const SpreadsheetCell& cell) const;

// Omitted for brevity
Y
The definition of the method is identical to the implementation of the add () method:

const SpreadsheetCell SpreadsheetCell::operator+(const SpreadsheetCell& cell)
const
{
SpreadsheetCell newCell;
newCell.set (mvValue + cell.mvalue); // Call set to update mValue and mString.
return (newCell);

Now you can add two cells together using the plus sign as shown previously!

This syntax takes a bit of getting used to. Try not to worry too much about the strange method name
operator+ — it’s just a name like foo or add. In order to understand the rest of the syntax, it helps to
understand what'’s really going on. When your C++ compiler parses a program and encounters an oper-
ator, such as +, -, =, or <<, it tries to find a function or method with the name operator+, operator-,
operators=, or operator<s, respectively, that takes the appropriate parameters. For example, when the
compiler sees the following line, it tries to find either a method in the SpreadsheetCell class named
operator+ that takes another SpreadsheetCell object or a global function named operator+ that
takes two SpreadsheetCell objects:

SpreadsheetCell aThirdCell = myCell + anotherCell;
Note that there’s no requirement that operator+ take as a parameter an object of the same type as the
class for which it’s written. You could write an operator+ for SpreadsheetCells that takes a
Spreadsheet to add to the SpreadsheetCell. That wouldn’t make sense to the programmer, but the

compiler would allow it.

Note also that you can give operator+ any return value you want. Operator overloading is a form of
function overloading, and recall that function overloading does not look at the return type of the function.

210

Mastering Classes and Objects

Implicit Conversions
Surprisingly, once you've written the operator+ shown earlier, not only can you add two cells together,
you can also add a cell to a string, a double, or an int!

SpreadsheetCell myCell (4), aThirdCell;
string str = "hello";

aThirdCell = myCell + str;
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

The reason this code works is that the compiler does more to try to find an appropriate operator+ than
just look for one with the exact types specified. The compiler also tries to find an appropriate conversion
for the types so that an operator+ can be found. Constructors that take the type in question are appro-
priate converters. In the preceding example, when the compiler sees a SpreadsheetCell trying to add
itself to double, it finds the SpreadsheetCell constructor that takes a double and constructs a tempo-
rary SpreadsheetCell object to pass to operator+. Similarly, when the compiler sees the line trying
to add a SpreadsheetCell to a string, it calls the string SpreadsheetCell constructor to create a
temporary SpreadsheetCell to pass to operator+.

This implicit conversion behavior is usually convenient. However, in the preceding example, it doesn’t
really make sense to add a SpreadsheetCell to a string. You can prevent the implicit construction of
a SpreadsheetCell from a string by marking that constructor with the explicit keyword:

class SpreadsheetCell
{
public:
SpreadsheetCell () ;
SpreadsheetCell (double initialValue) ;
explicit SpreadsheetCell (const string& initialvalue) ;
SpreadsheetCell (const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
// Remainder omitted for brevity
Y

The explicit keyword goes only in the class definition, and only makes sense when applied to con-
structors with exactly one argument.

Third Attempt: Global Operator+

Implicit conversions allow you to use an operator+ method to add your SpreadsheetCell objects to
ints and doubles. However, the operator is not commutative, as shown in the following code:

aThirdCell = myCell + 4; // Works fine.
aThirdCell = myCell + 5.6; // Works fine.

aThirdCell = 4 + myCell; // FAILS TO COMPILE!
aThirdCell = 5.6 + myCell; // FAILS TO COMPILE!

The implicit conversion works fine when the SpreadsheetCell object is on the left of the operator, but
doesn’t work when it’s on the right. Addition is supposed to be commutative, so something is wrong
here. The problem is that the operator+ method must be called on a SpreadsheetCell object, and that

211

Chapter 9

object must be on the left-hand side of the operator+. That’s just the way the C++ language is defined.
So, there’s no way you can get the above code to work with an operator+ method.

However, you can get it to work if you replace the in-class operator+ with a global operator+ func-
tion that is not tied to any particular object. The function looks like this:

const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)
{
SpreadsheetCell newCell;
newCell.set (lhs.mValue + rhs.mValue); // Call set to update mValue and mString.
return (newCell);

Now all four of the addition lines work as you expect:

aThirdCell
aThirdCell

myCell + 4; // Works fine.
myCell + 5.6; // Works fine.

aThirdCell = 4 + myCell; // Works fine.
aThirdCell = 5.6 + myCell; // Works fine.

Note that the implementation of the global operator+ accesses protected data members of
SpreadsheetCell objects. Therefore, it must be a friend function of the SpreadsheetcCell class:

class SpreadsheetCell
{
public:
// Omitted for brevity

friend const SpreadsheetCell operator+ (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

//Omitted for brevity
Y

You might be wondering what happens if you write the following code:

aThirdCell = 4.5 + 5.5;
It compiles and runs, but it’s not calling the operator+ you wrote. It does normal double addition of
4.5 and 5.5, and then constructs a temporary SpreadsheetCell object with the double constructor,

which it assigns to aThirdcell.

Third time’s the charm. A global operator+ is the best you can do in C++.

Overloading Arithmetic Operators

Now that you understand how to write operator+, the rest of the basic arithmetic operators are
straightforward. Here are declarations of -, *, and / (you can also overload %, but it doesn’t make sense
for the double values stored in SpreadsheetCells):

212

Mastering Classes and Objects

class SpreadsheetCell
{
public:

// Omitted for brevity

friend const SpreadsheetCell operator+(const SpreadsheetCell& 1lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator- (const SpreadsheetCell& 1lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator* (const SpreadsheetCell& 1lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator/(const SpreadsheetCell& 1lhs,
const SpreadsheetCell& rhs);

// Omitted for brevity
Y

Here are the implementations. The only tricky aspect is remembering to check for division by 0. Although
not mathematically correct, this implementation sets the result to 0 if division by zero is detected:

const SpreadsheetCell operator-(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)
{
SpreadsheetCell newCell;
newCell.set (lhs.mValue - rhs.mValue); // Call set to update mValue and mString.
return (newCell);

const SpreadsheetCell operator* (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)
{
SpreadsheetCell newCell;
newCell.set (lhs.mValue * rhs.mValue); // Call set to update mValue and mString.
return (newCell) ;

const SpreadsheetCell operator/ (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)
{
SpreadsheetCell newCell;
if (rhs.mvValue == 0) {
newCell.set(0); // Call set to update mValue and mString.
} else {
newCell.set (lhs.mValue / rhs.mValue); // Call set to update mValue
// and mString.
}

return (newCell);

C++ does not require you to actually implement multiplication in operator*, division in operator/,
and so on. You could implement multiplication in operator/, division in operator+, and so forth.
However, that would be extremely confusing, and there is no good reason to do so except as a practical
joke. Whenever possible, stick to the commonly used operator meanings in your implementations.

213

Chapter 9

Overloading the Arithmetic Shorthand Operators

In addition to the basic arithmetic operators, C++ provides shorthand operators such as += and -=. You
might assume that writing operator+ for your class provides operator+= also. No such luck. You have
to overload the shorthand arithmetic operators explicitly. These operators differ from the basic arith-
metic operators in that they change the object on the left-hand side of the operator instead of creating a
new object. A second, subtler, difference is that, like the assignment operator, they generate a result that
is a reference to the modified object.

The arithmetic operators always require an object on the left-hand side, so you should write them as
methods, not as global functions. Here are the declarations for the SpreadsheetCell class:

class SpreadsheetCell
{
public:
// Omitted for brevity
friend const SpreadsheetCell operator+ (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator- (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator* (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator/ (const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);
SpreadsheetCell& operator+=(const SpreadsheetCell& rhs)
SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator*=(const SpreadsheetCell& rhs)
SpreadsheetCell& operator/=(const SpreadsheetCell& rhs)

// Omitted for brevity
Y

Here are the implementations:

SpreadsheetCell& SpreadsheetCell::operator+=(const SpreadsheetCell& rhs)

{
set (mValue + rhs.mValue); // Call set to update mValue and mString.
return (*this);

SpreadsheetCell& SpreadsheetCell::operator-=(const SpreadsheetCell& rhs)

{
set (mValue - rhs.mValue); // Call set to update mValue and mString.
return (*this);

SpreadsheetCell& SpreadsheetCell::operator*=(const SpreadsheetCell& rhs)

{
set (mValue * rhs.mValue); // Call set to update mValue and mString.
return (*this);

SpreadsheetCell& SpreadsheetCell::operator/=(const SpreadsheetCell& rhs)
{

214

Mastering Classes and Objects

set (mValue / rhs.mValue); // Call set to update mValue and mString.

return (*this);

The shorthand arithmetic operators are combinations of the basic arithmetic and the assignment opera-

tors. With the above definitions, you can now write code 1

SpreadsheetCell myCell (4), aThirdCell(2);
aThirdCell -= myCell;
aThirdCell += 5.4;

ike this:

You cannot, however, write code like this (which is a good thing!):

5.4 += aThirdCell;

Overloading Comparison Operators

The comparison operators, such as >, <, and ==, are another useful set of operators to define for your
classes. Like the basic arithmetic operators, they should be global friend functions so that you can use
implicit conversion on both the left-hand side and right-hand side of the operator. The comparison oper-
ators all return a bool. Of course, you can change the return type, but we don’t recommend it. Here are

the declarations and definitions:

class SpreadsheetCell
{
public:
// Omitted for brevity

friend const SpreadsheetCell operator+(const SpreadsheetCellé&

const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator- (const SpreadsheetCellé&

const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator* (const SpreadsheetCellé&

const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator/ (const SpreadsheetCellé&

const SpreadsheetCell& rhs);
SpreadsheetCell& operator+=(const Spr
SpreadsheetCell& operator-=(const Spr
SpreadsheetCell& operator*=(const Spr
SpreadsheetCell& operator/=(const Spr
friend bool operator==(const Spreadsh
const SpreadsheetCell& rhs);
friend bool operator<(const Spreadshe
const SpreadsheetCell& rhs);
friend bool operator>(const Spreadshe
const SpreadsheetCell& rhs);

eadsheetCell& rhs
eadsheetCell& rhs
eadsheetCell& rhs
eadsheetCell& rhs
eetCell& 1lhs,

etCell& 1lhs,

etCell& 1lhs,

friend bool operator!=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);

friend bool operator<=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);

friend bool operator>=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);

lhs,

lhs,

lhs,

lhs,

215

Chapter 9

// Omitted for brevity
Y

bool operator==(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue == rhs.mvValue) ;

bool operator<(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue < rhs.mValue) ;

bool operator>(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
return (lhs.mValue > rhs.mValue) ;

bool operator!=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue != rhs.mvValue);

bool operator<=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
return (lhs.mValue <= rhs.mValue) ;

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue >= rhs.mValue) ;

In classes with more data members, it might be painful to compare each data member. However, once
you’ve implemented == and <, you can write the rest of the comparison operators in terms of those two.
For example, here is a definition of operator>= that uses operator<:

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (! (lhs < rhs));

You can use these operators to compare SpreadsheetCells to other SpreadsheetCells, and to
doubles and ints:

if (myCell > aThirdCell || myCell < 10) {

cout << myCell.getValue() << endl;
}

Building Types with Operator Overloading

Many people find the syntax of operator overloading tricky and confusing, at least at first. The irony
is that it’s supposed to make things simpler. As you've discovered, that doesn’t mean simpler for the

216

Mastering Classes and Objects

person writing the class, but simpler for the person using the class. The point is to make your new
classes as similar as possible to built-in types such as int and double: it’s easier to add objects using +
than to remember whether the method name you should call is add () or sum().

Provide operator overloading as a service to clients of your class.

At this point, you might be wondering exactly which operators you can overload. The answer is “almost
all of them — even some you’ve never heard of.” You have actually just scratched the surface: you've
seen the assignment operator in the section on object life cycles, the basic arithmetic operators, the short-
hand arithmetic operators, and the comparison operators. Overloading the stream insertion and extrac-
tion operators is also useful. In addition, there are some tricky, but interesting, things you can do with
operator overloading that you might not anticipate at first. The STL uses operator overloading exten-
sively. Chapter 16 explains how and when to overload the rest of the operators. Chapters 21 to 23 cover
the STL.

Pointers to Methods and Members

Recall that you can create and use pointers to both variables and functions (if you need a refresher on
pointers or function pointers, consult Chapter 13). Now, consider pointers to class members and meth-
ods. It’s perfectly legitimate in C++ to take the addresses of class members and methods in order to
obtain pointers to them. However, remember that you can’t access a non-static member or call a non-
static method without an object. The whole point of class members and methods is that they exist on a
per-object basis. Thus, when you want to call the method or access the member via the pointer, you must
dereference the pointer in the context of an object. Here is an example:

SpreadsheetCell myCell;
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;
cout << (myCell.*methodPtr) () << endl;

Don’t panic at the syntax. The second line declares a variable called methodPtr of type pointer to a
const method that takes no arguments and returns a double. At the same time, it initializes this vari-
able to point to the getvalue () method of the SpreadsheetcCell class. This syntax is quite similar to
declaring a simple function pointer, except for the addition of SpreadsheetCell: : before the
*methodPtr. That just means that this method pointer points to a method of the Spreadsheetcell
class.

The second line calls the getvalue () method (via the methodPtr pointer) on the myCell object. Note
the use of parentheses surrounding cell. *methodpPtr. They are needed because () has higher prece-
dence than *.

Most of the time C++ programmers simplify the first line by using a typedef:

SpreadsheetCell myCell;

typedef double (SpreadsheetCell::*PtrToGet) () const;
PtrToGet methodPtr = &SpreadsheetCell::getValue;
cout << (myCell.*methodPtr) () << endl;

217

Chapter 9

Pointers to methods and members usually won’t come up in your programs. However, it’s important to
keep in mind that you can’t dereference a pointer to a non-static method or member without an object.
Every so often, you'll find yourself wanting to try something like passing a pointer to a non-static
method to a function such as gsort () that requires a function pointer, which simply won’t work.

Note that C++ permits you to dereference a pointer to a static member or method without an object.

Chapter 22 discusses pointers to methods further in the context of the STL.

Building Abstract Classes

Now that you understand all the gory syntax of writing classes in C++, it helps to revisit the design prin-
ciples from Chapters 3 and 5. Classes are the main unit of abstraction in C++. You should apply the prin-
ciples of abstraction to your classes to separate the interface from the implementation as much as
possible. Specifically, you should make all data members protected or private and provide getter and
setter methods for them. This is how the SpreadsheetCell class is implemented. mvalue and mString
are protected, and set (), getvValue (), and getString () retrieve those values. That way you can keep
mValue and mString in synch internally without worrying about clients delving in and changing those
values.

Using Interface and Implementation Classes

Even with the preceding measures and the best design principles, the C++ language is fundamentally
unfriendly to the principle of abstraction. The syntax requires you to combine your public interfaces
and private (or protected) data members and methods together in one class definition, thereby
exposing some of the internal implementation details of the class to its clients.

The good news is that you can make your interfaces a lot cleaner and hide your implementation details.
The bad news is that it takes a bit of hacking. The basic principle is to define two classes for every class
you want to write: the interface class and the implementation class. The implementation class is identical
to the class you would have written if you were not taking this approach. The interface class presents
public methods identical to those of the implementation class, but it only has one data member: a
pointer to an implementation class object. The interface class method implementations simply call the
equivalent methods on the implementation class object. To use this approach with the Spreadsheet
class, simply rename the old Spreadsheet class to SpreadsheetImpl. Here is the new
SpreadsheetImpl class (which is identical to the old Spreadsheet class, but with a different name):

// SpreadsheetImpl.h
#include "SpreadsheetCell.h"

class SpreadsheetApplication; // Forward reference
class SpreadsheetImpl
{
public:
SpreadsheetImpl (const SpreadsheetApplication& theApp,

int inWidth = kMaxWidth, int inHeight = kMaxHeight) ;
SpreadsheetImpl (const SpreadsheetImpl& src);

218

Mastering Classes and Objects

~SpreadsheetImpl () ;
SpreadsheetImpl &operator=(const SpreadsheetImpl& rhs);

void setCellAt (int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

int getId();

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
bool inRange(int val, int upper) ;
void copyFrom(const SpreadsheetImpl& src);

int mWidth, mHeight;

int mId;

SpreadsheetCell** mCells;

const SpreadsheetApplication& mTheApp;

static int sCounter;

¥
Then define a new Spreadsheet class that looks like this:

#include "SpreadsheetCell.h"

// Forward declarations
class SpreadsheetImpl;
class SpreadsheetApplication;

class Spreadsheet
{
public:

Spreadsheet (const SpreadsheetApplication& theApp, int inWidth,
int inHeight);

Spreadsheet (const SpreadsheetApplication& theApp) ;

Spreadsheet (const Spreadsheet& src);

~Spreadsheet () ;

Spreadsheet& operator=(const Spreadsheet& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& inCell);

SpreadsheetCell getCellAt(int x, int y);

int getId();

protected:
SpreadsheetImpl* mImpl;
¥

This class now contains only one data member: a pointer to a SpreadsheetImpl. The public methods
are identical to the old Spreadsheet with one exception: the Spreadsheet constructor with default
arguments has been split into two constructors because the values for the default arguments were const
members that are no longer in the Spreadsheet class. Instead, the SpreadsheetImpl class will provide
the defaults.

219

Chapter 9

The implementations of the Spreadsheet methods such as setCellat () and getCellAt () just pass
the request on to the underlying SpreadsheetImpl object:

void Spreadsheet::setCellAt (int x, int y, const SpreadsheetCell& inCell)

{
mImpl->setCellAt (x, y, inCell);

}

SpreadsheetCell Spreadsheet::getCellAt(int x, int y)

{
return (mImpl->getCellAt(x, vy));

}

int Spreadsheet::getId()

{
return (mImpl->getId());

The constructors for the Spreadsheet must construct a new SpreadsheetImpl to do its work, and the
destructor must free the dynamically allocated memory. Note that the SpreadshetImpl class has only
one constructor with default arguments. Both normal constructors in the Spreadsheet class call that
constructor on the SpreadsheetImpl class:

Spreadsheet: : Spreadsheet (const SpreadsheetApplication &theApp, int inWidth,
int inHeight)

{
mImpl = new SpreadsheetImpl (theApp, inWidth, inHeight);

}

Spreadsheet: : Spreadsheet (const SpreadsheetApplication& theApp)

{
mImpl = new SpreadsheetImpl (theApp) ;

Spreadsheet: : Spreadsheet (const Spreadsheet& src)

{
mImpl = new SpreadsheetImpl (* (src.mImpl));

Spreadsheet: : ~Spreadsheet ()
{

delete (mImpl);

mImpl = NULL;

The copy constructor looks a bit strange because it needs to copy the underlying SpreadshetImpl from
the source spreadsheet. Because the copy constructor takes a reference to a SpreadsheetImpl, nota
pointer, you must dereference the mImpl pointer to get to the object itself to the constructor call can take
its reference.

The spreadsheet assignment operator must similarly pass on the assignment to the underlying
SpreadsheetImpl:

220

Mastering Classes and Objects

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{

*mImpl = *(rhs.mImpl);

return (*this);

The first line in the assignment operator looks a little strange. You might be tempted to write this line
instead:

mImpl = rhs.mImpl; // Incorrect assignment!

That code will compile and run, but it doesn’t do what you want. It just copies pointers so that the left-
hand side and right-hand side Spreadsheets now both possess pointers to the same Spreadsheet Impl.
If one of them changes it, the change will show up in the other. If one of them destroys it, the other

will be left with a dangling pointer. Therefore, you can’t just assign the pointers. You must force the
SpreadsheetImpl assignment operator to run, which only happens when you copy direct objects.

By dereferencing the mImpl pointers, you force direct object assignment, which causes the assignment
operator to be called. Note that you can only do this because you already allocated memory for

mImpl in the constructor.

This technique to truly separate interface from implementation is powerful. Although a bit clumsy at
first, once you get used to it you will find it natural to work with. However, it’s not common practice in
most workplace environments, so you might find some resistance to trying it from your coworkers.

Summary

This chapter, along with Chapter 8, provided all the tools you need to write solid, well-designed classes,
and to use objects effectively.

You discovered that dynamic memory allocation in objects presents new challenges: you must free the
memory in the destructor, copy the memory in the copy constructor, and both free and copy memory in
the assignment operator. You learned how to prevent assignment and pass-by-value by declaring a
private copy constructor and assignment operator.

You learned more about different kinds of data members, including static, const, const reference,
and mutable members. You also learned about static, inline, and const methods, and method over-
loading and default parameters. The chapter also described nested class definitions and friend classes
and functions.

You encountered operator overloading, and learned how to overload the arithmetic and comparison
operators, both as global friend functions and as class methods.

Finally, you learned how to take abstraction to an extreme by providing separate interface and imple-
mentation classes.

Now that you're fluent in the language of object-oriented programming, it’s time to tackle inheritance
and templates, which are covered in Chapters 10 and 11, respectively.

221

10

Discovering Inheritance
Techniques

Without inheritance, classes would simply be data structures with associated behaviors. That
alone would be a powerful improvement over procedural languages, but inheritance adds an
entirely new dimension. Through inheritance, you can build new classes based on existing ones. In
this way, your classes become reusable and extensible components. This chapter will teach you the
different ways to leverage the power of inheritance. You will learn about the specific syntax of
inheritance as well as sophisticated techniques for making the most of inheritance.

After finishing this chapter, you will understand:

Q

0 00 0 O

How to extend a class through inheritance

How to employ inheritance to reuse code

How to build interactions between superclasses and subclasses
How to use inheritance to achieve polymorphism

How to work with multiple inheritance

How to deal with unusual problems in inheritance

The portion of this chapter relating to polymorphism draws heavily on the spreadsheet example
discussed in Chapters 8 and 9. If you have not read Chapters 8 and 9, you may wish to skim the
sample code in those chapters to get a background on this example. This chapter also refers to the
object-oriented methodologies described in Chapter 3. If you have not read that chapter and are
unfamiliar with the theories behind inheritance, you should review Chapter 3 before continuing.

Chapter 10

Building Classes with Inheritance

In Chapter 3, you learned that an “is-a” relationship recognizes the pattern that real-world objects tend
to exist in hierarchies. In programming, that pattern becomes relevant when you need to write a class
that builds on, or slightly changes, another class. One way to accomplish this aim is to copy code from
one class and paste it into the other. By changing the relevant parts or amending the code, you can
achieve the goal of creating a new class that is slightly different from the original. This approach, how-
ever, leaves an OOP programmer feeling sullen and slightly annoyed for the following reasons:

QO Abug fix to the original class will not be reflected in the new class because the two classes con-
tain completely separate code.

QO The compiler does not know about any relationship between the two classes, so they are not
polymorphic — they are not just different variations on the same thing.

Q This approach does not build a true is-a relationship. The new class is very similar to the origi-
nal because it shares code, not because it really is the same type of object.

Q The original code might not be obtainable. It may exist only in a precompiled binary format, so
copying and pasting the code might be impossible.

Not surprisingly, C++ provides built-in support for defining a true is-a relationship. The characteristics
of C++ is-a relationships are described in the following section.

Extending Classes

When you write a class definition in C++, you can tell the compiler that your class is inheriting from, or
extending, an existing class. By doing so, your class will automatically contain the data members and
methods of the original class, which is called the parent class or superclass. Extending an existing class
gives your class (which is now called a derived class or a subclass) the ability to describe only the ways in
which it is different from the parent class.

To extend a class in C++, you specify the class you are extending when you write the class definition. To
show the syntax for inheritance, we use two classes called Super and sub. Don’t worry — more interest-
ing examples are coming later. To begin, consider the following definition for the Super class.

class Super
{
public:
Super () ;

void someMethod () ;

protected:
int mProtectedInt;

private:
int mPrivatelInt;

¥

If you wanted to build a new class, called Sub, which inherits from Super, you would tell the compiler
that Sub derives from Super with the following syntax:

224

Discovering Inheritance Techniques

class Sub : public Super

{
public:
Sub () ;

void someOtherMethod() ;
¥

Sub itself is a full-fledged class that just happens to share the characteristics of the Super class. Don’t
worry about the word public for now — its meaning is explained later in this chapter. Figure10-1
shows the simple relationship between sub and Super. You can declare objects of type Sub just like any
other object. You could even define a third class that subclasses Sub, forming a chain of classes, as shown
in Figure 10-2.

Super

d

Sub
Figure 10-1

Super

i

SubSub
Figure 10-2

Sub doesn’t have to be the only subclass of Super. Additional classes can also subclass Super, effec-
tively becoming siblings to Sub, as shown in Figure 10-3.

Super

| su ||
Figure 10-3

n

00‘

Clients’ View of Inheritance

To a client, or another part of your code, an object of type Sub is also an object of type Super because
Sub inherits from Super. This means that all the public methods and data members of Super and all
the public methods and data members of Sub are available.

225

Chapter 10

Code that uses the subclass does not need to know which class in your inheritance chain has defined a
method in order to call it. For example, the following code calls two methods of a Sub object even
though one of the methods was defined by the Super class.

Sub mySub;

mySub.someMethod () ;
mySub.someOtherMethod () ;

It is important to understand that inheritance only works in one direction. The Sub class has a very
clearly defined relationship to the Super class, but the Super class, as written, doesn’t know anything
about the Sub class. That means that objects of type Super do not support public methods and data
members of Sub because Super is 1ot a Sub.

The following code will not compile because the Super class does not contain a public method called
someOtherMethod ().

Super mySuper;

mySuper .someOtherMethod(); // BUG! Super doesn't have a someOtherMethod() .

From the perspective of other code, an object belongs to its defined class as well as
to any superclasses.

A pointer or reference to an object can refer to an object of the declared class or any of its subclasses. This
tricky subject is explained in detail later in this chapter. The concept to understand at this point is that a
pointer to a Super can actually be pointing a Sub object. The same is true for a reference. The client can
still access only the methods and data members that exist in Super, but through this mechanism, any
code that operates on a Super can also operate on a Sub.

For example, the following code compiles and works just fine even though it initially appears that there
is a type mismatch:

Super* superPointer = new Sub(); // Create a sub, and store it in a super pointer.

Subclass’s View of Inheritance

To the subclass itself, nothing much has changed in terms of how it is written or how it behaves. You can
still define methods and data members on a subclass just as you would on a regular class. The previous
definition of sub declares a method called someOtherMethod (). Thus, the Sub class augments the
Super class by adding an additional method.

A subclass can access public and protected methods and data members declared in its superclass as
though they were its own, because technically, they are. For example, the implementation of
someOtherMethod () on Sub could make use of the data member mProtectedInt, which was declared
as part of super. The following code shows this implementation. Accessing a superclass data member or
method is no different than if the data member of method were declared as part of the subclass.

void Sub: :someOtherMethod ()
{

226

Discovering Inheritance Techniques

cout << "I can access the superclass data member mProtectedInt." << endl;
cout << "Its value is " << mProtectedInt << endl;

}

When we introduced access specifiers (public, private, and protected) in Chapter 8, the difference
between private and protected may have been confusing. Now that you understand subclasses, the
difference should be clearer. If a class declares methods or data members as protected, subclasses have
access to them. If they are declared as private, subclasses do not have access.

The following implementation of someOtherMethod () will not compile because the subclass attempts
to access a private data member from the superclass.

void Sub::someOtherMethod ()

{
cout << "I can access the superclass data member mProtectedInt." << endl;
cout << "Its value is " << mProtectedInt << endl;

cout << "The value of mPrivateInt is " << mPrivateInt << endl; // BUG!

The private access specifier gives you control over how a potential subclass could interact with your
class. In practice, most data members are declared as protected, and most methods are either public
or protected. The reason is that most of the time, you or someone you work with will be extending the
class so you don’t want to shut out any potential uses by making methods or members private.
Occasionally, the private specifier is useful to block subclasses from accessing potentially dangerous
methods. It is also useful when writing classes that external or unknown parties will extend because you
can block access to prevent misuse.

From the perspective of a subclass, all public and protected data members and
methods from the superclass are available for use.

Overriding Methods

As you read in Chapter 3, the main reasons to inherit from a class are to add or replace functionality. The
definition of sub adds functionality to its parent class by providing an additional method,
someOtherMethod (). The other method, someMethod (), is inherited from Super and behaves in the
subclass exactly as it does in the superclass. In many cases, you will want to modify the behavior of a
class by replacing, or overriding, a method.

How I Learned to Stop Worrying and Make Everything virtual

There is one small twist to overriding methods in C++ and it has to do with the keyword virtual. Only
methods that are declared as virtual in the superclass can be overridden properly by subclasses. The
keyword goes at the beginning of a method declaration as shown in the modified version of Super that
follows.

class Super
{
public:
Super () ;

227

Chapter 10

virtual void someMethod() ;

protected:
int mProtectedInt;

private:
int mPrivatelInt;

Y

The virtual keyword has a few subtleties and is often cited as a poorly designed part of the language.
A good rule of thumb is to just make all of your methods virtual. That way, you won’t have to worry
about whether or not overriding the method will work. The only drawback is a small performance hit.
The subtleties of the virtual keyword are covered toward the end of this chapter, and performance is
discussed further in Chapter 17.

Even though it is unlikely that the sub class will be extended, it is a good idea to make its methods
virtual as well, just in case.

class Sub : public Super

{
public:
Sub () ;

virtual void someOtherMethod() ;

As a rule of thumb, make all your methods virtual (including the destructor, but not
constructors) to avoid problems associated with omission of the virtual keyword.

Syntax for Overriding a Method

To override a method, you simply redeclare it in the subclass class definition exactly as it was declared
in the superclass. In the subclass’s implementation file, you provide the new definition.

For example, the Super class contains a method called someMethod (). The definition of someMethod ()
is provided in Super.cpp and shown here:

void Super::someMethod ()

{

cout << "This is Super's version of someMethod()." << endl;

}
Note that you do not repeat the virtual keyword in front of the method definition.

If you wish to provide a new definition for someMethod () in the Sub class, you must first add it to the
class definition for sub, as follows:

class Sub : public Super
{
public:
Sub () ;

228

Discovering Inheritance Techniques

virtual void someMethod(); // Overrides Super's someMethod ()
virtual void someOtherMethod() ;
Y
The new definition of someMethod () is specified along with the rest of Sub’s methods.
void Sub: :someMethod ()

{

cout << "This is Sub's version of someMethod()." << endl;

}

Clients’ View of Overridden Methods

With the preceding changes, other code would still call someMethod () the same way it did before. Just
as before, the method could be called on an object of class Super or an object of class Sub. Now, how-
ever, the behavior of someMethod () will vary based on the class of the object.
For example, the following code works just as it did before, calling Super’s version of someMethod ():
Super mySuper;
mySuper .someMethod(); // Calls Super's version of someMethod() .
The output of this code is:
This is Super's version of someMethod() .
If the code declares an object of class Sub, the other version will automatically be called.
Sub mySub;
mySub. someMethod () ; // Calls Sub's version of someMethod ()
The output this time is:
This is Sub's version of someMethod() .
Everything else about objects of class Sub remains the same. Other methods that might have been inher-
ited from super will still have the definition provided by Super unless they are explicitly overridden
in Sub.
As you learned earlier, a pointer or reference can refer to an object of a class or any of its subclasses. The
object itself “knows” the class of which it is actually a member, so the appropriate method is called as
long as it was declared virtual. For example, if you have a Super reference that refers to an object that
is really a Sub, calling someMethod () will actually call the subclass’s version, as shown next. This aspect

of overriding will not work properly if you omit the virtual keyword in the superclass.

Sub mySub;
Super& ref = mySub;

ref.someMethod () ; // Calls Sub's version of someMethod ()

229

Chapter 10

Remember that even though a superclass reference or pointer knows that it is actually a subclass, you
cannot access subclass methods or members that are not defined in the superclass. The following code
will not compile because a Super reference does not have a method called someOtherMethod ().

Sub mySub;
Super& ref = mySub;

mySub.someOtherMethod(); // This is fine.
ref.someOtherMethod () ; // BUG

The subclass knowledge characteristic is not true of nonpointer nonreference objects. You can cast or
assign a Sub to a Super because a Sub is a Super. However, the object will lose any knowledge of the
subclass at this point:

Sub mySub;
Super assignedObject = mySub; // Assign Sub to a Super.

assignedObject.someMethod () ; // Calls Super's version of someMethod ()

One way to remember this seemingly strange behavior is to imagine what the objects look like in mem-
ory. Picture a Super object as a box taking up a certain amount of memory. A Sub object is a box that

is a little bit bigger because it has everything a Super has plus a bit more. When you have a reference
or pointer to a Sub, the box doesn’t change — you just have a new way of accessing it. However, when
you cast a Sub into a Super, you are throwing out all the “uniqueness” of the Sub class to fit it into a
smaller box.

Subclasses retain their overridden methods when referred to by superclass pointers
or references. They lose their uniqueness when cast to a superclass object. The loss
of overridden methods and subclass data is called slicing.

Inheritance for Reuse

Now that you are familiar with the basic syntax for inheritance, it’s time to explore one of the main rea-
sons that inheritance is an important feature of the C++ language. As you read in Chapter 3, inheritance
is a vehicle that allows you to leverage existing code. This section presents a real-world application of
inheritance for the purposes of code reuse.

The WeatherPrediction Class

Imagine that you are given the task of writing a program to issue simple weather predictions. Weather
predictions may be a little out of your area of expertise as a programmer, so you obtain a third-party
class library that was written to make weather predictions based on the current temperature and the pre-
sent distance between Jupiter and Mars (hey, it’s plausible). This third-party package is distributed as a
compiled library to protect the intellectual property of the prediction algorithms, but you do get to see
the class definition. The class definition for WeatherPrediction is shown here:

230

Discovering Inheritance Techniques

// WeatherPrediction.h

Predicts the weather using proven new-age
techniques given the current temperature

and the distance from Jupiter to Mars. If
these values are not provided, a guess is
* still given but it's only 99% accurate.
*/

class WeatherPrediction

{

X% ok ok ok

public:
virtual void setCurrentTempFahrenheit (int inTemp) ;
virtual void setPositionOfJupiter (int inDistanceFromMars) ;

/**
* Gets the prediction for tomorrow's temperature
*/

virtual int getTomorrowTempFahrenheit () ;

/**
* Gets the probability of rain tomorrow. 1 means
* definite rain. 0 means no chance of rain.
*/

virtual double getChanceOfRain() ;

/**
* Displays the result to the user in this format:
* Result: x.xx chance. Temp. XX
*/

virtual void showResult();

protected:
int mCurrentTempFahrenheit;
int mDistanceFromMars;

¥

This class solves most of the problems for your program. However, as is usually the case, it’s not exactly
right for your needs. First, all the temperatures are given in Fahrenheit. Your program needs to operate
in Celsius as well. Also, the showResult () method doesn’t produce a very user-friendly result. It would
be nice to give the user some friendlier information.

Adding Functionality in a Subclass

When you learned about inheritance in Chapter 3, adding functionality was the first technique
described. Fundamentally, your program needs something just like the WeatherpPrediction class but
with a few extra bells and whistles. Sounds like a good case for inheritance to reuse code. To begin,
define a new class, MyWeatherPrediction, that inherits from WeatherPrediction.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction
{

b5

231

Chapter 10

The class definition above will compile just fine. The MyWeatherPrediction class can already be used
in place of WweatherPrediction. It will provide the same functionality, but nothing new yet.

For the first modification, you might want to add knowledge of the Celsius scale to the class. There is a
bit of a quandary here because you don’t know what the class is doing internally. If all of the internal cal-
culations are made using Fahrenheit, how do you add support for Celsius? One way is to use the sub-
class to act as a go-between, interfacing between the user, who can use either scale, and the superclass,
which only understands Fahrenheit.

The first step in supporting Celsius is to add new methods that allow clients to set the current tempera-
ture in Celsius instead of Fahrenheit and to get tomorrow’s prediction in Celsius instead of Fahrenheit.
You will also need protected helper methods that convert between Celsius and Fahrenheit. These meth-
ods can be static because they are the same for all instances of the class.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction

{
public:
virtual void setCurrentTempCelsius (int inTemp) ;

virtual int getTomorrowTempCelsius () ;

protected:
static int convertCelsiusToFahrenheit (int inCelsius);
static int convertFahrenheitToCelsius (int inFahrenheit);

Y

The new method follows the same naming convention as the parent class. Remember that from the point
of view of other code, a MyWeatherPrediction object will have all of the functionality defined in both
MyWeatherPrediction and WeatherPrediction. Adopting the parent class’s naming convention pre-
sents a consistent interface.

We will leave the implementation of the Celsius/Fahrenheit conversion methods as an exercise for the
reader — and a fun one at that! The other two methods are more interesting. To set the current tempera-
ture in Celsius, you need to convert the temperature first and then present it to the parent class in units
that it understands.

void MyWeatherPrediction::setCurrentTempCelsius (int inTemp)

{
int fahrenheitTemp = convertCelsiusToFahrenheit (inTemp) ;
setCurrentTempFahrenheit (fahrenheitTemp) ;

As you can see, once the temperature is converted, the method simply calls the existing functionality
from the superclass. Similarly, the implementation of getTomorrowTempCelsius () uses the parent’s
existing functionality to get the temperature in Fahrenheit, but converts the result before returning it.

int MyWeatherPrediction: :getTomorrowTempCelsius ()

{
int fahrenheitTemp = getTomorrowTempFahrenheit () ;
return convertFahrenheitToCelsius (fahrenheitTemp) ;

232

Discovering Inheritance Techniques

The two new methods effectively reuse the parent class because they simply “wrap” the existing func-
tionality in a way that provides a new interface for using it.

Of course, you can also add new functionality that is completely unrelated to existing functionality of
the parent class. For example, you could add a method that will retrieve alternative forecasts from the
Internet or a method that will suggest an activity based on the predicted weather.

Replacing Functionality in a Subclass

The other major technique for subclassing is replacing existing functionality. The showResult () method
in the WeatherPrediction class is in dire need of a facelift. MyWeatherPrediction can override this
method to replace the behavior with its own implementation.

The new class definition for MyWeatherPrediction is shown below.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction

{
public:
virtual void setCurrentTempCelsius (int inTemp) ;

virtual int getTomorrowTempCelsius() ;
virtual void showResult();

protected:
static int convertCelsiusToFahrenheit (int inCelsius);
static int convertFahrenheitToCelsius(int inFahrenheit) ;

i
A possible new user-friendly implementation follows.

void MyWeatherPrediction: :showResult ()
{
cout << "Tomorrow's temperature will be " <<
getTomorrowTempCelsius () << " degrees Celsius (" <<
getTomorrowTempFahrenheit () << " degrees Fahrenheit)" << endl;

cout << "The chance of rain is " << (getChanceOfRain() * 100) << " percent"
<< endl;

if (getChanceOfRain() > 0.5) {
cout << "Bring an umbrella!" << endl;

To clients making use of this class, it’s like the old version of showResult () never existed. As long as
the object is a MyWeatherPrediction object, the new version will be called.

As a result of these changes, MyWeatherPrediction has emerged as a new class with new functionality
tailored to a more specific purpose. Yet, it did not require much code because it leveraged its superclass’s
existing functionality.

233

Chapter 10

Respect Your Parents

When you write a subclass, you need to be aware of the interaction between parent classes and child
classes. Issues such as order of creation, constructor chaining, and casting are all potential sources of
bugs.

Parent Constructors

Objects don’t spring to life all at once; they must be constructed along with their parents and any objects
that are contained within them. C++ defines the creation order as follows:

1. Thebase class, if any, is constructed.
2. Non-static data members are constructed in the order in which they were declared.

3. The body of the constructor is executed.

These rules can apply recursively. If the class has a grandparent, the grandparent is initialized before the
parent, and so on. The following code shows this creation order. As a reminder, we generally advise
against inlining methods, as we’ve done in the code that follows. In the interest of readable and concise
examples, we have broken our own rule. The proper execution will output the result 123.

#include <iostream>
using namespace std;

class Something
{
public:
Something () { cout << "2"; }
1%

class Parent
{
public:
Parent () { cout << "1"; }

I g

class Child : public Parent
{
public:
Child() { cout << "3"; }

protected:
Something mDataMember ;

I

int main(int argc, char** argv)
{

Child myChild;
}

When the myChild object is created, the constructor for Parent is called first, outputting the string "1".
Next, mDataMember is initialized, calling the Something constructor which outputs the string "2".
Finally, the Child constructor is called, which outputs 3.

234

Discovering Inheritance Techniques

Note that the Parent constructor was called automatically. C++ will automatically call the default con-
structor for the parent class if one exists. If no default constructor exists in the parent class, or if one does
exist but you wish to use an alternate constructor, you can chain the constructor just as when initializing
data members in the initializer list.

The following code shows a version of Super that lacks a default constructor. The associated version of
Sub must explicitly tell the compiler how to call the Super constructor or the code will not compile.

// Super.h
class Super
{
public:
Super (int i) ;

b5

// Sub.h
class Sub : public Super
{

public:
Sub () ;
b3
// Sub.cpp
Sub::Sub() : Super(7)

{
// Do Sub's other initialization here.

}

In the preceding code, the Sub constructor passes a fixed value (7) to the Super constructor. Sub could
also pass a variable if its constructor required an argument:

Sub::Sub(int i) : Super(i) {}

Passing constructor arguments from the subclass to the superclass is perfectly fine and quite normal.
Passing data members, however, will not work. The code will compile, but remember that data members
are not initialized until after the superclass is constructed. If you pass a data member as an argument to
the parent constructor, it will be uninitialized.

Parent Destructors

Because destructors cannot take arguments, the language can automatically call the destructor for parent
classes. The order of destruction is conveniently the reverse of the order of construction:

1. Thebody of the destructor is called.
2. Any data members are destroyed in the reverse order of their construction.

3. The parent class, if any, is destructed.

Again, these rules apply recursively. The lowest member of the chain is always destructed first. The fol-
lowing code adds destructors to the previous example. If executed, this code will output "123321".

235

Chapter 10

#include <iostream>
using namespace std;

class Something

{
public:
Something () { cout << "2"; }
virtual ~Something() { cout << "2"; }

Y

class Parent
{
public:
Parent () { cout << "1"; }
virtual ~Parent() { cout << "1"; }

Y

class Child : public Parent
{
public:
Child() { cout << "3"; }
virtual ~Child() { cout << "3"; }

protected:
Something mDataMember ;

bi

int main(int argc, char** argv)
{
Child myChild;

Notice that the destructors are all virtual. As a rule of thumb, all destructors should be declared
virtual. If the preceding destructors were not declared virtual, the code would continue to work
fine. However, if code ever called delete on a superclass pointer that was really pointing to a subclass,
the destruction chain would begin in the wrong place. For example, the following code is similar to the
previous example but the destructors are not virtual. This becomes a problem when a Child object is
accessed as a pointer to a Parent and deleted.

class Something
{
public:
Something () { cout << "2"; }
~Something () { cout << "2"; } // Should be virtual, but will work
Y

class Parent
{
public:
Parent () { cout << "1"; }
~Parent () { cout << "1"; } // BUG! Make this virtual!
Y

class Child : public Parent
{

236

Discovering Inheritance Techniques

public:
Child() { cout << "3"; }
~Child() { cout << "3"; } // Should be virtual, but will work

protected:
Something mDataMember;
}i

int main(int argc, char** argv)
{
Parent* ptr = new Child();
delete ptr;

The output of this code is a shockingly terse "1231". When the ptr variable is deleted, only the Parent
destructor is called because the child destructor was not declared virtual. As a result, the child
destructor is not called and the destructors for its data members are not called.

Technically, you could fix the above problem by simply making the Parent destructor virtual. The
“virtualness” would automatically be used by any children. However, we advocate making all destruc-
tors virtual so that you never have to worry about it.

Always make your destructors virtual!

Referring to Parent Data

Names can become ambiguous within a subclass, especially when multiple inheritance (see below)
comes into play. C++ provides a mechanism to disambiguate names between classes: the scope resolu-
tion operator. The syntax (two colons) is the same as referencing static data in a class.

When you override a method in a subclass, you are effectively replacing the original as far as other code
is concerned. However, that parent version of the method still exists and you may want to make use of
it. If you simply called the method by name, however, the compiler would assume that you meant the
subclass version. This could easily lead to an infinite loop, as in the example that follows;

Sub: :doSomething ()
{

cout << "In Sub's version of doSomething()" << endl;

doSomething () ; // BUG! This will recursively call this method!
}

To call the parent’s version of the method explicitly, simply prepend the parent’s name and two colons:

Sub: :doSomething ()

{
cout << "In Sub's version of doSomething()" << endl;
Super: :doSomething(); // call the parent version.

}

Calling the parent version of the current method is a commonly used pattern in C++. If you have a chain
of subclasses, each might want to perform the operation already defined by the superclass but add their
own additional functionality as well. 237

Chapter 10

For example, imagine a class hierarchy of types of books. A diagram showing such a hierarchy is shown
in Figure 10-4.

|Paperback| | Technical ‘

Romance

Figure 10-4

Since each lower class in the hierarchy further specifies the type of book, a method that gets the descrip-
tion of a book really needs to take all levels of the hierarchy into consideration. This can be accomplished
by chaining to the parent method as above. The following code illustrates this pattern:

#include <iostream>
#include <string>

using namespace std;

class Book

{
public:
virtual string getDescription() { return "Book"; }
B
class Paperback : public Book
{
public:
virtual string getDescription() {
return "Paperback " + Book::getDescription() ;
}
}i
class Romance : public Paperback
{
public:
virtual string getDescription() {
return "Romance " + Paperback::getDescription();
}
17
class Technical : public Book
{
public:
virtual string getDescription() {
return "Technical " + Book::getDescription() ;
}
Iy
int main()

238

Discovering Inheritance Techniques

Romance novel;

Book book;

cout << novel.getDescription() << endl; // Outputs "Romance Paperback Book"
cout << book.getDescription() << endl; // Outputs "Book"

Casting Up and Down

As you have already seen, an object can be cast or assigned to its parent class. If the cast or assignment is
performed on a plain old object, this results in slicing:

Super mySuper = mySub; // SLICE!

Slicing occurs in situations like this because the end result is a Super object, and Super objects lack the
additional functionality defined in the sub class. However, slicing does not occur if a subclass is assigned
to a pointer or reference to its superclass:

Super& mySuper = mySub; // No slice!

This is generally the correct way to refer to a subclass in terms of its superclass, also called upcasting.
This is always why it’s a good idea to make your methods and functions take references to classes
instead of directly using objects of those classes. By using references, subclasses can be passed in without
slicing.

When upcasting, use a pointer or reference to the superclass to avoid slicing.

Casting from a superclass to one of its subclasses, also called downcasting, is often frowned upon by pro-
fessional C++ programmers. The reason is that there is no guarantee that the object really belongs to that
subclass. For example, consider the following code.

void presumptuous (Super* inSuper)

{
Sub* mySub = static_cast<Sub*>(inSuper) ;
// Proceed to access Sub methods on mySub.

}

If the author of presumptuous () also wrote code that called presumptuous (), everything would prob-
ably be okay because the author knows that the function expects the argument to be of type Sub*.
However, if another programmer were to call presumptuous (), they might pass in a Super*. There are
no compile-time checks that can be done to enforce the type of the argument, and the function blindly
assumes that inSuper is actually a pointer to a Sub.

Downcasting is sometimes necessary, and you can use it effectively in controlled circumstances. If you're
going to downcast, however, you should use a dynamic_cast, which uses the object’s built-in knowl-

edge of its type to refuse a cast that doesn’t make sense.

The previous example should have been written as follows.

239

Chapter 10

void lessPresumptuous (Super* inSuper)
{
Sub* mySub = dynamic_cast<Sub*>(inSuper) ;
if (mySub != NULL) {
// Proceed to access Sub methods on mySub.

If a dynamic cast fails on a pointer, as above, the pointer’s value will be NULL instead of pointing to non-
sensical data. If a dynamic_cast fails on an object reference, a std: :bad_cast exception will be
thrown. For more on casts, see Chapter 12. For more on exceptions, see Chapter 15.

Use downcasting only when necessary and be sure to use a dynamic cast.

Inheritance for Polymorphism

Now that you understand the relationship between a subclass and its parent, you can use inheritance in
its most powerful scenario — polymorphism. As you learned in Chapter 3, polymorphism allows you to
use objects with a common parent class interchangeably, and to use objects in place of their parents.

Return of the Spreadsheet

Chapters 8 and 9 used a spreadsheet program as an example of an application that lends itself to an
object-oriented design. As you may recall, a SpreadsheetCell represented a single element of data.
That element could be either a double or a string. A simplified class definition for SpreadsheetCell
follows. Note that a cell can be set either as a double or a string. The current value of the cell, how-
ever, is always returned as a string for this example.

class SpreadsheetCell

{
public:
SpreadsheetCell () ;

virtual void set(double inDouble) ;
virtual void set(const std::string& inString);
virtual std::string getString();

protected:
static std::string doubleToString(double invValue) ;
static double stringToDouble (const std::string& inString) ;

double mValue;
std::string mString;
by

The preceding SpreadsheetCell class seems to be having an identity crisis — sometimes a cell repre-

sents a double, sometimes a string. Sometimes it has to convert between these formats. To achieve this
duality, the class needs to store both values even though a given cell should only be able to contain a

240

Discovering Inheritance Techniques

single value. Worse still, what if additional types of cells are needed, such as a formula cell or a date cell?
The spreadsheetCell class would grow dramatically to support all of these data types and the conver-
sions between them.

Designing the Polymorphic Spreadsheet Cell

The spreadsheetCell class is screaming out for a hierarchical makeover. A reasonable approach would
be to narrow the scope of the SpreadsheetCell to cover only strings, perhaps renaming it
StringSpreadsheetCell in the process. To handle doubles, a second class, DoubleSpreadsheetCell,
would inherit from the StringSpreadsheetCell and provide functionality specific to its own format.
Figure 10-5 illustrates such a design. This approach models inheritance for reuse since the
DoubleSpreadsheetCell would only be subclassing StringSpreadsheetCell to make use of some
of its built-in functionality.

| StringSpreadsheetCell ‘
A

| DoubleSpreadsheetCell ‘
Figure 10-5

If you were to implement the design shown in Figure 10-5, you might discover that the subclass would
override most, if not all, of the functionality of the base class. Since doubles are treated differently from
strings in almost all cases, the relationship may not be quite as it was originally understood. Yet, there
clearly is a relationship between a cell containing strings and a cell containing doubles. Rather than
use the model in Figure 10-5, which implies that somehow a DoubleSpreadsheetCell “is-a”
StringSpreadsheetCell, a better design would make these classes peers with a common parent,
SpreadsheetCell. Such a design is shown in Figure 10-6.

| SpreadsheetCell |

/’\

StringSpreadsheetCell | |DoubIeSpreadsheetCeII
Figure 10-6

The design in Figure 10-6 shows a polymorphic approach to the SpreadsheetcCell hierarchy. Since
DoubleSpreadsheetCell and StringSpreadsheetCell both inherit from a common parent,
SpreadsheetCell, they are interchangeable in the view of other code. In practical terms, that means:

0 Both subclasses support the same interface (set of methods) defined by the base class

Q Code that makes use of SpreadsheetCell objects can call any method in the interface without
even knowing whether the cell is a DoubleSpreadsheetCell or a StringSpreadsheetCell

Q Through the magic of virtual methods, the appropriate version of every method in the inter-
face will be called depending on the class of the object

Q Other data structures, such as the Spreadsheet class described in Chapter 9, can contain a col-
lection of multityped cells by referring to the parent type

241

Chapter 10

The Spreadsheet Cell Base Class

Since all spreadsheet cells are subclasses of the SpreadsheetCell base class, it is probably a good idea
to write that class first. When designing a base class, you need to consider how the subclasses relate to
each other. From this information, you can derive the commonality that will go inside the parent class.
For example, string cells and double cells are similar in that they both contain a single piece of data.
Since the data is coming from the user and will be displayed back to the user, the value is set as a
string and retrieved as a string. These behaviors are the shared functionality that will make up the
base class.

A First Attempt

The spreadsheetCell base class is responsible for defining the behaviors that all SpreadsheetCell
subclasses will support. In our simple example, all cells need to be able to set their value as a string.
All cells also need to be able to return their current value as a string. The base class definition, there-
fore, declares these methods.

class SpreadsheetCell
{
public:
SpreadsheetCell () ;
virtual ~SpreadsheetCell();

virtual void set(const std::string& inString) ;

virtual std::string getString() const;

B

When you start writing the . cpp file for this class, you very quickly run into a problem. Since the base
class of spreadsheet cell contains neither a double nor a string, how can you implement it? More gen-

erally, how do you write a parent class that declares the behaviors that are supported by subclasses with-

out actually defining the implementation of those behaviors?

One possible approach is to implement “do nothing” functionality for those behaviors. For example,
calling the set () method on the SpreadsheetCell base class will have no effect because the base class
has nothing to set. This approach still doesn’t feel right, however. Ideally, there should never be an object

that is an instance of the base class. Calling set () should always have an effect because it should always

be called on either a DoubleSpreadsheetCell or a StringSpreadsheetCell. A good solution will
enforce this constraint.

Pure Virtual Methods and Abstract Base Classes

Pure virtual methods are methods that are explicitly undefined in the class definition. By making a
method pure virtual, you are telling the compiler that no definition for the method exists in the current
class. Thus, the class is said to be abstract because no other code will be able to instantiate it. The com-
piler enforces the fact that if a class contains one or more pure virtual methods, it can never be used by
itself to construct an object.

The syntax for a pure virtual method is shown below. Simply set the method equal to zero in the class
definition. No code needs to be written in the . cpp file.

242

Discovering Inheritance Techniques

class SpreadsheetCell
{
public:
SpreadsheetCell () ;
virtual ~SpreadsheetCell();

virtual void set(const std::string& inString) = 0;

virtual std::string getString() const = 0;

Y

Now that the base class is an abstract class, it is impossible to create a SpreadsheetcCell object. The fol-
lowing code will not compile, and will give an error such as Cannot declare object of type
'SpreadsheetCell' because one or more virtual functions are abstract.

int main(int argc, char** argv)

{

SpreadsheetCell cell; // BUG! Attempts to create instance of an abstract class
}

An abstract class provides a way to prevent other code from instantiating an object
directly, as opposed to one of its subclasses.

Base Class Source Code

There is not much code required for SpreadsheetCell.cpp. As the class was defined, most of the
methods are pure virtual — there is no definition to give. All that is left is the type conversion method
and the constructor and destructor. For this example, the constructor and destructor are implemented
just as a placeholder in case initialization and destruction tasks need to happen in the future.

SpreadsheetCell: : SpreadsheetCell ()
{
}

SpreadsheetCell: :~SpreadsheetCell ()
{
}

The Individual Subclasses

Writing the StringSpreadsheetCell and DoubleSpreadsheetCell classes is just a matter of imple-
menting the functionality that is defined in the parent. Because we want clients to be able to instantiate

and work with string cells and double cells, they can’t be abstract — they must implement all of the
pure virtual methods inherited from their parent.

String Spreadsheet Cell Class Definition

The first step in writing the class definition of StringSpreadsheetCell is to subclass
SpreadsheetCell.

243

Chapter 10

class StringSpreadsheetCell : public SpreadsheetCell
{

StringSpreadsheetCell declares its own constructor, giving it a chance to initialize its own data.

public:
StringSpreadsheetCell () ;

Next, the inherited pure virtual methods are overridden, this time without being set to zero.
virtual void set(const std::string& inString) ;

virtual std::string getString() const;
Finally, the string cell adds a protected data member, mvalue, which stores the actual cell data.

protected:
std::string mValue;

B

String Spreadsheet Cell Implementation

The . cpp file for StringSpreadsheetCell is a bit more interesting than the base class. In the construc-
tor, the value string is initialized to a string that indicates that no value has been set.

StringSpreadsheetCell: :StringSpreadsheetCell () : mValue ("#NOVALUE")
{
}

The set method is straightforward since the internal representation is already a string. Similarly, the
getString () method simply returns the stored value.

void StringSpreadsheetCell: :set(const string& inString)
{
mValue = inString;

}

string StringSpreadsheetCell::getString() const
{

return mvalue;

}

Double Spreadsheet Cell Class Definition and Implementation

The double version follows a similar pattern, but with different logic. In addition to the set () method
that takes a string, it also provides a new set () method that allows a client to set the value with a
double. Two new protected methods are used to convert between a string and a double. Like
StringSpreadsheetCell, it has a data member called mvalue, this time a double. Because
DoubleSpreadsheetCell and StringSpreadsheetCell are siblings, no hiding or naming conflicts
occur as a result.

244

Discovering Inheritance Techniques

class DoubleSpreadsheetCell : public SpreadsheetCell
{
public:

DoubleSpreadsheetCell ();
virtual void set (double inDouble) ;
virtual void set(const std::string& inString) ;

virtual std::string getString() const;

protected:
static std::string doubleToString(double inValue) ;
static double stringToDouble (const std::string& invValue) ;
double mValue;
}i

The implementation of the DoubleSpreadsheetCell is shown here:

DoubleSpreadsheetCell: :DoubleSpreadsheetCell () : mValue(-1)
}
}

The set () method that takes a double is straightforward. The string version makes use of the
protected static method stringToDouble (). The getString () method converts the stored
double value into a string:

void DoubleSpreadsheetCell: :set (double inDouble)
{
mValue = inDouble;

}

void DoubleSpreadsheetCell::set (const string& inString)
{
mValue = stringToDouble (inString) ;

}

string DoubleSpreadsheetCell::getString() const
{
return doubleToString (mvValue) ;

}
You may already see one major advantage of implementing spreadsheet cells in a hierarchy — the code
is much simpler. You don’t need to worry about using two fields to represent the two types of data. Each

object can be self-centered and only deal with its own functionality.

Note that the implementations of doubleToString () and stringToDouble () were omitted because
they are the same as in Chapter 8.

Leveraging Polymorphism

Now that the SpreadsheetCell hierarchy is polymorphic, client code can take advantage of the many
benefits that polymorphism has to offer. The following test program explores many of these features.

245

Chapter 10

int main(int argc, char** argv)

{

First, an array of three SpreadsheetcCell pointers is declared. Remember that since SpreadsheetCell
is an abstract class, you can’t create objects of that type. However, you can still have a pointer or refer-
ence to a SpreadsheetCell because it would actually be pointing to one of the subclasses. This array
takes advantage of the common type between the two subclasses. Each of the elements of the array
could be either a StringSpreadsheetCell or a DoubleSpreadsheetCell. Because they have a com-
mon parent, they can be stored together.

SpreadsheetCell* cellArrayl[3];

The Oth element of the array is set to point to a new StringSpreadsheetCell; the first is also set to a
new StringSpreadsheetCell, and the second is a new DoubleSpreadsheetCell.

cellArray[0] = new StringSpreadsheetCell();
cellArray[l] = new StringSpreadsheetCell();
cellArray([2] = new DoubleSpreadsheetCell () ;

Now that the array contains multityped data, any of the methods declared by the base class can be
applied to the objects in the array. The code just uses SpreadsheetCell pointers — the compiler has no
idea at compile time what types the objects actually are. However, because they are subclasses of
SpreadsheetCell, they must support the methods of Spreadsheetcell.

cellArray([0]->set("hello");
cellArray([l]->set("10");
cellArray[2]->set ("18");

When the getString () method is called, each object properly returns a string representation of their
value. The important, and somewhat amazing, thing to realize is that the different objects do this in dif-
ferent ways. A stringSpreadsheetCell will simply return its stored value. A DoubleSpreadsheetCell
will first perform a conversion. As the programmer, you don’t need to know how the object does it —
you just need to know that because the object is a SpreadsheetcCell, it can perform this behavior.

cout << "Array values are [" << cellArray[0]->getString() << "," <<
cellArray[l]->getString() << "," <<
cellArray[2]->getString() << "]" << endl;

Future Considerations

The new implementation of the SpreadsheetcCell hierarchy is certainly an improvement from an
object-oriented design point of view. Yet, it would probably not suffice as an actual class hierarchy for a
real-world spreadsheet program for several reasons.

First, despite the improved design, one feature of the original is still missing: the ability to convert from
one cell type to another. By dividing them into two classes, the cell objects become more loosely integrated.
To provide the ability to convert from a DoubleSpreadsheetCell to a StringSpreadsheetCell, you
could add a typed constructor. It would have a similar appearance to a copy constructor but instead of a
reference to an object of the same class, it would take a reference to an object of a sibling class.

246

Discovering Inheritance Techniques

class StringSpreadsheetCell
{
public:
StringSpreadsheetCell () ;
StringSpreadsheetCell (const DoubleSpreadsheetCell& inDoubleCell) ;

With a typed constructor, you can easily create a StringSpreadsheetCell given a
DoubleSpreadsheetCell. Don’t confuse this with casting, however. Casting from one sibling to
another will not work, unless you overload the cast operator as described in Chapter 16.

You can always cast up the hierarchy, and you can sometimes cast down the hierar-
chy, but you can never cast across the hierarchy unless you have changed the behav-
ior of the cast operator.

The question of how to implement overloaded operators for cells is an interesting one, and there are sev-
eral possible solutions. One approach is to implement a version of each operator for every combination
of cells. With only two subclasses, this is manageable. There would be an operator+ function to add two
double cells, to add two string cells, and to add a double cell to a string cell. Another approach is to
decide on a common representation. The preceding implementation already standardizes on a string
as a common representation of sorts. A single operator+ function could cover all the cases by taking
advantage of this common representation. One possible implementation, which assumes that the result
of adding two cells is always a string cell, is shown here:

const StringSpreadsheetCell operator+ (const StringSpreadsheetCell &lhs,
const StringSpreadsheetCell &rhs)
{
StringSpreadsheetCell newCell;
newCell.set (lhs.getString() + rhs.getString());
return (newCell) ;

As long as the compiler has a way to turn a particular cell into a StringSpreadsheetCell, the operator
will work. Given the previous example of having a StringSpreadsheetCell constructor that takes a
DoubleSpreadsheetCell as an argument, the compiler will automatically perform the conversion if it
is the only way to get the operator+ to work. That means that the following code will work, even
though operator+ was explicitly written to work on StringSpreadsheetCells.

DoubleSpreadsheetCell myDbl;
myDbl.set (8.4);
StringSpreadsheetCell result = myDbl + myDbl;
Of course, the result of this addition won’t really add the numbers together. It will convert the double

cell into a string cell and add the strings, resulting in a StringSpreadsheetCell with a value of
8.48.4.

247

Chapter 10

If you are still feeling a little unsure about polymorphism, start with the code for this example and try
things out. The main function in the preceding example is a great starting point for experimental code
that simply exercises various aspects of the class.

Multiple Inheritance

As you read in Chapter 3, multiple inheritance is often perceived as a complicated and unnecessary part
of object-oriented programming. We’ll leave the decision of whether or not it is useful up to you and
your coworkers. This section explains the mechanics of multiple inheritance in C++.

Inheriting from Multiple Classes

Defining a class to have multiple parent classes is very simple from a syntactic point of view. All you
need to do is list the superclasses individually when declaring the class name.

class Baz : public Foo, public Bar
{

// Etc.
}i

By listing multiple parents, the Baz object will have the following characteristics:

QO A Baz object will support the public methods and contain the data members of both Foo
and Bar.

Q The methods of the Baz class will have access to protected data and methods in both Foo
and Bar.

Q A Baz object can be upcast to either a Foo or a Bar.

Q Creating a new Baz object will automatically call the Foo and Bar default constructors, in the
order that the classes were listed in the class definition.

Q Deleting a Baz object will automatically call the destructors for the Foo and Bar classes, in the
reverse order that the classes were listed in the class definition.

The following simple example shows a class, DogBird, that has two parent classes — a Dog class and a
Bird class. The fact that a dog-bird is a ridiculous example should not be viewed as a statement that
multiple inheritance itself is ridiculous. Honestly, we leave that judgment up to you.

class Dog
{
public:
virtual void bark() { cout << "Woof!" << endl; }

b g

class Bird

{

248

Discovering Inheritance Techniques

public:
virtual void chirp() { cout << "Chirp!" << endl; }
¥
class DogBird : public Dog, public Bird
{
¥

The class hierarchy for DogBird is shown in Figure 10-7.

| Dog || Bird |

Figure 10-7

Using objects of classes with multiple parents is no different from using objects without multiple par-
ents. In fact, the client code doesn’t even have to know that the class has two parents. All that really mat-
ters are the properties and behaviors supported by the class. In this case, a DogBird object supports all
of the public methods of Dog and Bird.

int main(int argc, char** argv)
{
DogBird myConfusedAnimal;

myConfusedAnimal .bark() ;
myConfusedAnimal.chirp() ;

}
The output of this program is:

Woof!
Chirp!

Naming Collisions and Ambiguous Base Classes

It’s not difficult to construct a scenario where multiple inheritance would seem to break down. The fol-
lowing examples show some of the edge cases that must be considered.

Name Ambiguity

What if the Dog class and the Bird class both had a method called eat () ? Since Dog and Bird are not
related in any way, one version of the method does not override the other — they both continue to exist
in the DogBird subclass.

As long as client code never attempts to call the eat () method, that is not a problem. The DogBird class
will compile correctly despite having two versions of eat (). However, if client code attempts to call the
eat () method, the compiler will give an error indicating that the call to eat () is ambiguous. The com-
piler will not know which version to call. The following code provokes this ambiguity error.

249

Chapter 10

class Dog
{
public:
virtual void bark() { cout << "Woof!" << endl; }
virtual void eat() { cout << "The dog has eaten." << endl; }

Y

class Bird
{
public:
virtual void chirp() { cout << "Chirp!" << endl; }
virtual void eat() { cout << "The bird has eaten." << endl; }

Y

class DogBird : public Dog, public Bird
{
Y

int main(int argc, char** argv)
{
DogBird myConfusedAnimal;

myConfusedAnimal.eat () ; // BUG! Ambiguous call to method eat()

The solution to the ambiguity is to either explicitly upcast the object, essentially hiding the undesired
version of the method from the compiler, or to use a disambiguation syntax. For example, the following
code shows two ways to invoke the Dog version of eat () .

static_cast<Dog> (myConfusedAnimal) .eat(); // Slices, calling Dog::eat ()
myConfusedAnimal .Dog: :eat () ; // Calls Dog::eat ()

Methods of the subclass itself can also explicitly disambiguate between different methods of the same
name by using the same syntax used to access parent methods, the : : operator. For example, the
DogBird class could prevent ambiguity errors in other code by defining its own eat () method. Inside
this method, it would determine which parent version to call.

void DogBird: :eat ()
{
Dog::eat(); // Explicitly call Dog's version of eat()

}

Another way to provoke ambiguity is to inherit from the same class twice. For example, if the Bird class
inherited from Dog for some reason, the code for DogBird would not compile because Dog becomes an
ambiguous base class.

class Dog {};
class Bird : public Dog {};

class DogBird : public Bird, public Dog {}; // BUG! Dog is an ambiguous base
class.

250

Discovering Inheritance Techniques

Most occurrences of ambiguous base classes are either contrived “what-if” examples, like the one above,
or arise from untidy class hierarchies. Figure 10-8 shows a class diagram for the preceding example,
indicating the ambiguity.

DogBird
Figure 10-8

Ambiguity can also occur with data members. If Dog and Bird both had a data member with the same
name, an ambiguity error would occur when client code attempted to access that member.

Ambiguous Base Classes

A more likely scenario is that multiple parents themselves have common parents. For example, perhaps
both Bird and Dog are subclasses of an Animal class, as shown in Figure 10-9.

| Dog || Bird |

Figure 10-9

This type of class hierarchy is permitted in C++, though name ambiguity can still occur. For example, if
the Animal class has a public method called sleep (), that method could not be called on a DogBird
object because the compiler would not know whether to call the version inherited by Dog or by Bird.

The best way to use these “diamond-shaped” class hierarchies is to make the topmost class an abstract
base class with all methods declared as pure virtual. Since the class only declares methods without pro-
viding definitions, there are no methods in the base class to call and thus there are no ambiguities at that
level.

The following example implements a diamond-shaped class hierarchy with a pure virtual eat ()
method that must be defined by each subclass. The DogBird class still needs to be explicit about which
parent’s eat () method it uses, but any ambiguity would be caused by Dog and Bird having the same
method, not because they inherit from the same class.

251

Chapter 10

class Animal
{
public:
virtual void eat() = 0;
};

class Dog : public Animal
{
public:
virtual void bark() { cout << "Woof!" << endl; }
virtual void eat() { cout << "The dog has eaten." << endl; }
Y

class Bird : public Animal
{
public:
virtual void chirp() { cout << "Chirp!" << endl; }
virtual void eat() { cout << "The bird has eaten." << endl; }
Y

class DogBird : public Dog, public Bird
{
public:
virtual void eat() { Dog::eat(); }

Y

A more refined mechanism for dealing with the top class in a diamond-shaped hierarchy, virtual base
classes, is explained at the end of this chapter.

Uses for Multiple Inheritance

At this point, you're probably wondering why anyone would want to tackle multiple inheritance in her
program. The most straightforward use case for multiple inheritance is to define a class of object that is-a
something and also is-a something else. As we said in Chapter 3, any real-world objects you find that
follow this pattern are unlikely to translate well into code.

One of the most compelling and simple uses of multiple inheritance is for the implementation of mix-in
classes. Mix-in classes were explained in Chapter 3. An example implementation using multiple inheri-
tance is shown in Chapter 25.

Another reason that people sometimes use multiple inheritance is to model a component-based class.
Chapter 3 gave the example of an airplane simulator. The Airplane class had an engine, a fuselage, con-
trols, and other components. While the typical implementation of an Airplane class would make each
of these components a separate data member, you could use multiple inheritance. The airplane class
would inherit from engine, fuselage, and controls, in effect getting the behaviors and properties of all of
its components. We recommend you stay away from this type of code because it confuses a clear has-a
relationship with inheritance, which should be used for is-a relationships.

252

Discovering Inheritance Techniques

Interesting and Obscure Inheritance Issues

Extending a class opens up a variety of issues. What characteristics of the class can and cannot be
changed? What does the mysterious virtual keyword really do? These questions, and many more, are
answered in the following sections.

Changing the Overridden Method’s Characteristics

For the most part, the reason you override a method is to change its implementation. Sometimes, how-
ever, you may want to change other characteristics of the method.

Changing the Method Return Type

A good rule of thumb is to override a method with the exact method declaration, or method signature,
that the superclass uses. The implementation can change, but the signature stays the same.

That does not have to be the case, however. In C++, an overriding method can change the return type as
long as the original return type is a pointer or reference to a class, and the new return type is a pointer or
reference to a descendent class. Such types are called covariant returns types. This feature sometimes
comes in handy when the superclass and subclass work with objects in a parallel hierarchy. That is,
another group of classes that is tangential, but related, to the first class hierarchy.

For example, consider a hypothetical cherry orchard simulator. You might have two hierarchies of
classes that model different real-world objects but are obviously related. The first is the Cherry chain.
The base class, Cherry, has a subclass called BingCherry. Similarly, there is another chain of classes
with a base class called cherryTree and a subclass called BingCherryTree. Figure 10-10 shows the
two class chains.

| Cherry | | CherryTree ‘

I i

| BingCherry | | BingCherryTree ‘
Figure 10-10

Now assume that the CherryTree class has a method called pick () that will retrieve a single cherry
from the tree:

Cherry* CherryTree: :pick()
{

return new Cherry();

}

In the BingCherryTree subclass, you may want to override this method. Perhaps Bing Cherries need to
be polished when they are picked (bear with us on this one). Because a BingCherry is a Cherry, you
could leave the method signature as is and override the method as in the following example. The
BingCherry pointer is automatically cast to a Cherry pointer.

253

Chapter 10

Cherry* BingCherryTree: :pick/()
{
BingCherry* theCherry = new BingCherry() ;

theCherry->polish() ;

return theCherry;

The implementation above is perfectly fine and is probably the way that the authors would write it.
However, because you know that the BingCherryTree will always return BingCherry objects, you
could indicate this fact to potential users of this class by changing the return type, as shown here:

BingCherry* BingCherryTree: :pick()
{
BingCherry* theCherry = new BingCherry();

theCherry->polish();

return theCherry;

A good way to figure out whether you can change the return type of an overridden method is to con-
sider whether existing code would still work. In the preceding example, changing the return type was
fine because any code that assumed that the pick () method would always return a Cherry* would
still compile and work correctly. Because a BingCherry is a Cherry, any methods that were called on
the result of CherryTree’s version of pick () could still be called on the result of BingCherryTree’s
version of pick ().

You could not, for example, change the return type to something completely unrelated, such as void*.
The following code will not compile because the compiler thinks that you are trying to overload pick (),
but cannot distinguish BingCherryTree’s pick () method from CherryTree’s pick () method because
return types are not used in method disambiguation.

void* BingCherryTree: :pick() // BUG!
{
BingCherry* theCherry = new BingCherry();

theCherry->polish();

return theCherry;

Changing the Method Parameters

In general, if you try to change the parameters to an overridden method, you are no longer overriding
it — you are creating a new method. Returning to the Super and Sub example from earlier in this
chapter, you could attempt to override someMethod () in Sub with a new argument list, as shown here:

class Super
{
public:
Super () ;
virtual void someMethod() ;

254

Discovering Inheritance Techniques

Y

class Sub : public Super
{
public:
Sub();

virtual void someMethod(int i); // Compiles, but doesn't override
virtual void someOtherMethod() ;

Y
The implementation of this method is shown here:

void Sub::someMethod(int i)
{
cout << "This is Sub's version of someMethod with argument " << i
<< "." << endl;

The preceding class definition will compile, but you have not overridden someMethod () . Because the
arguments are different, you have created a new method that exists only on sub. If you want a method
called someMethod () that takes an int, and you want it to only work on objects of class Sub, the pre-
ceding code is correct. However, it is stylistically questionable to have a method that has the same name
as a method in the superclass but no real relationship to that method.

In fact, the original method is now hidden as far as Sub is concerned. The following sample code will not
compile because there is no longer a no-argument version of someMethod ().

Sub mySub;

mySub.someMethod () ; // BUG! Won't compile because the original method is hidden.

There is a case where you actually can change the argument list for an overridden method. The trick is
that the new argument list must be compatible with the old one. If we modified the above example to
give the i parameter a default value, then Sub’s version of someMethod () would actually be overriding
Super’s version of someMethod ():

class Sub : public Super
{
public:
Sub () ;

virtual void someMethod(int i = 2); // actually overrides
virtual void someOtherMethod() ;

Why is this any different? The answer is that in order to override a method, other code needs to be able
to call the method in the same way on either the superclass or the subclass. Just as in the earlier return
type case, the acid test for changing method arguments is whether existing code would have to be modi-
fied. With a default argument, any code that called Super’s someMethod () could call Sub’s
someMethod () without modification.

The following sample code shows that this time Sub has actually overridden Super’s version of
someMethod (). Even a Super reference will correctly call sub’s version.

255

Chapter 10

Sub mySub;
Super& ref = mySub;

mySub.someMethod () ; // Calls Sub's someMethod with default argument
mySub.someMethod (1) ; // Calls Sub's someMethod

ref.someMethod () ; // Calls Sub's someMethod with default argument
The output of this code is:

This is Sub's version of someMethod with argument 2.
This is Sub's version of someMethod with argument 1.
This is Sub's version of someMethod with argument 2.

There is also a somewhat obscure technique you can use to have your cake and eat it too. That is, you
can use this technique to effectively override a method in the subclass with a new signature but continue
to inherit the superclass version. This technique uses the using keyword to explicitly include the super-
class definition of the method within the subclass, as shown here:

class Super
{
public:
Super () ;
virtual void someMethod() ;

Y

class Sub : public Super

{

public:
Sub () ;
using Super::someMethod; // Explicitly "inherits" the Super version
virtual void someMethod(int i); // Adds a new version of someMethod

virtual void someOtherMethod() ;

It is rare to find an overridden method that changes the parameter list.

Special Cases in Overriding Methods

Several edge cases require special attention when overriding a method. In this section, we have outlined
the cases that are likely to encounter.

If the Superclass Method Is Static

In C++, you cannot override a static method. For the most part, that’s all you need to know. There are,
however, a few corollaries that you need to understand.

First of all, a method cannot be both static and virtual. This is the first clue that attempting to override

a static method will not do what you intend for it to do. If you have a static method in your subclass
with the same name as a static method in your superclass, you actually have two separate methods.

256

Discovering Inheritance Techniques

The following code shows two classes that both happen to have static methods called bestatic ().
These two methods are in no way related.

class SuperStatic
{
public:
static void beStatic() { cout << "SuperStatic being static, yo." << endl;
¥

class SubStatic
{
public:
static void beStatic() { cout << "SubStatic keepin' it static." << endl;
¥

Because a static method belongs to its class, calling the identically named methods on the two differ-
ent classes will call their respective methods:

SuperStatic::beStatic();
SubStatic: :beStatic();

Will output:

SuperStatic being static, yo.
SubStatic keepin' it static.

Everything makes perfect sense as long as the methods are accessed by class. The behavior is less clear
when objects are involved. In C++, you can call a static method on an object syntactically, but in real-
ity, the method only exists on the class. Consider the following code:

SubStatic mySubStatic;
SuperStatic& ref = mySubStatic;

mySubStatic.beStatic() ;
ref.beStatic() ;

The first call to beStatic () will obviously call the Substatic version because it is explicitly called on
an object declared as a Substatic. The second call is less clear. The object is a SuperStatic reference,
but it refers to a SubStatic object. In this case, SuperStatic’s version of beStatic () will be called.
The reason is that C++ doesn’t care what the object actually is when calling a static method. It only
cares about the compile-time type. In this case, the type is a reference to a SupersStatic.

The output of the previous example is:

SubStatic keepin' it static.
SuperStatic being static, yo.

static methods are bound to the class in which they are defined, not to any object.
A method in a class that calls a static method calls the version defined in that class,
independent of the run-time type of the object on which the original method is called.

257

Chapter 10

If the Superclass Method Is Overloaded

When you override a method, you are implicitly hiding any other versions of the method. It makes sense
if you think about it — why would you want to change some versions of a method and not others?
Consider the following subclass, which overrides a method without overriding its associated overloaded
siblings:

class Foo
{
public:
virtual void overload() { cout << "Foo's overload()" << endl; }
virtual void overload(int i) { cout << "Foo's overload(int i)" << endl; }

B

class Bar : public Foo
{
public:
virtual void overload() { cout << "Bar's overload()" << endl; }

B g

If you attempt to call the version of overload () that takes an int parameter on a Bar object, your code
will not compile because it was not explicitly overridden.

myBar.overload(2); // BUG! No matching method for overload(int).

It is possible, however, to access this version of the method from a Bar object. All you need is a pointer
or a reference to a Foo object.

Bar myBar;
Foo* ptr = &myBar;

ptr->overload(7) ;

The hiding of unimplemented overloaded methods is only skin deep in C++. Objects that are explicitly
declared as instances of the subtype will not make the method available, but a simple cast to the super-
class will bring it right back.

The using keyword can be employed to save you the trouble of overloading all the versions when
you really only want to change one. In the following code, the Bar class definition uses one version
of overload() from Foo and explicitly overloads the other.

class Foo
{
public:
virtual void overload() { cout << "Foo's overload()" << endl; }
virtual void overload(int i) { cout << "Foo's overload(int i)" << endl; }

b3

class Bar : public Foo
{

public:
using Foo::overload;
virtual void overload() { cout << "Bar's overload()" << endl; }

258

Discovering Inheritance Techniques

To avoid obscure bugs, you should override all versions of an overloaded method,
either explicitly or with the using keyword.

If the Superclass Method Is Private or Protected

There’s absolutely nothing wrong with overriding a private or protected method. Remember that
the access specifier for a method determines who is able to call the method. Just because a subclass can’t
call its parent’s private methods doesn’t mean it can’t override them. In fact, overriding a private or
protected method is a common pattern in object-oriented languages. It allows subclasses to define
their own “uniqueness” that is referenced in the superclass.

For example, the following class is part of a car simulator that estimates the number of miles the car can
travel based on its gas mileage and amount of fuel left.

class MilesEstimator
{
public:
virtual int getMilesLeft () {
return (getMilesPerGallon() * getGallonsLeft()):;
}

virtual void setGallonsLeft (int inValue) { mGallonsLeft = inValue; }
virtual int getGallonsLeft() { return mGallonsLeft; }
private:
int mGallonsLeft;
virtual int getMilesPerGallon() { return 20; }

The getMilesLeft () method performs a calculation based on the results of two of its own methods.
The following code uses the MilesEstimator to calculate how many miles can be traveled with 2 gal-
lons of gas.

MilesEstimator myMilesEstimator;

myMilesEstimator.setGallonsLeft (2) ;
cout << "I can go " << myMilesEstimator.getMilesLeft() << " more miles." << endl;

The output of this code is:
I can go 40 more miles.

To make the simulator more interesting, you may want to introduce different types of vehicles, perhaps
a more efficient car. The existing MilesEstimator assumes that cars all get 20 miles per gallon, but this
value is returned from a separate method specifically so that a subclass could override it. Such a subclass
is shown here:

class EfficientCarMilesEstimator : public MilesEstimator
{
private:
virtual int getMilesPerGallon() { return 35; }

b5

259

Chapter 10

By overriding this one private method, the new class completely changes the behavior of existing,
unmodified, public methods. The getMilesLeft () method in the superclass will automatically call
the overridden version of the private getMilesPerGallon () method. An example using the new
class is shown here:

EfficientCarMilesEstimator myEstimator;

myEstimator.setGallonsLeft (2) ;
cout << "I can go " << myEstimator.getMilesLeft() << " more miles." << endl;

This time, the output reflects the overridden functionality:

I can go 70 more miles.

Overriding private and protected methods is a good way to change certain fea-
tures of a class without a major overhaul.

If the Superclass Method Has Default Arguments

Subclasses and superclasses can each have different default arguments, but the argument that is used
depends on the declared type of the variable, not the underlying object. Following is a simple example
of a subclass that provides a different default argument in an overridden method:

class Foo
{
public:
virtual void go(int i = 2) { cout << "Foo's go with param " << i << endl; }

B g

class Bar : public Foo
{
public:
virtual void go(int i = 7) { cout << "Bar's go with param " << i << endl; }

Iy

If go () is called on a Bar object, Bar’s version of go () will executed with the default argument of 7. If
go () is called on a Foo object, Foo’s version of go () will be executed with the default argument of 2.
However (this is the weird part), if go () is called on a Foo pointer or Foo reference that really points to a
Bar object, Bar’s version of go () will be called it will use the default Foo argument of 2. This behavior is
shown here:

Foo myFoo;
Bar myBar;
Foo& myFooReferenceToBar;

myFoo.go () ;

myBar.go () ;
myFooReferenceToBar.go () ;

260

Discovering Inheritance Techniques

The output of this code is:

Foo's go with param 2
Bar's go with param 7
Bar's go with param 2

Tricky, eh? The reason for this behavior is that C++ binds default arguments to the type of the variable
denoting the object, not the object itself. For this same reason, default arguments are not “inherited” in
C++. If the Bar class above failed to provide a default argument as its parent did, it would be overload-
ing the go () method with a new zero-argument version.

When overriding a method that has a default argument, you should provide a
default argument as well, and it should probably be the same value.

If the Superclass Method Has a Different Access Level

There are two ways you may wish to change the access level of a method — you could try to make it
more restrictive or less restrictive. Neither case makes much sense in C++, but there are a few legitimate
reasons for attempting to do so.

To enforce tighter restriction on a method (or on a data member for that matter), there are two
approaches you can take. One way is to change the access specifier for the entire base class. This
approach is described at the end of this chapter. The other approach is simply to redefine the access in
the subclass, as illustrated in the shy class that follows:

class Gregarious

{
public:
virtual void talk() { cout << "Gregarious says hi!" << endl; }
¥
class Shy : public Gregarious
{
protected:
virtual void talk() { cout << "Shy reluctantly says hello." << endl; }
¥

The protected version of talk() in the shy class properly overrides the method. Any client code that
attempts to call talk () on a Shy object will get a compile error:

myShy.talk(); // BUG! Attempt to access protected method.

However, the method is not fully protected. One only has to obtain a Gregarious reference or pointer to
access the method that you thought was protected:

Shy myShy;
Gregarious& ref = myShy;

ref.talk();

261

Chapter 10

The output of the preceding code is:
Shy reluctantly says hello.
This proves that making the method protected in the subclass did actually override the method

(because the subclass version was correctly called), but it also proves that the protected access can’t be
fully enforced if the superclass makes it public.

There is no reasonable way (or good reason why) to restrict access to a public par-
ent method.

It’s much easier (and makes a lot more sense) to lessen access restrictions in subclasses. The simplest
way is simply to provide a public method that calls a protected method from the superclass, as
shown here:

class Secret
{
protected:
virtual void dontTell() { cout << "I'll never tell." << endl; }
b3

class Blabber : public Secret
{
public:
virtual void tell() { dontTell(); }
b3

A client calling the public tell () method of a Blabber object would effectively access the protected
method of the Secret class. Of course, this doesn’t really change the access level of dontTell (), it just
provides a public way of accessing it.

You could also override dontTell () explicitly in the Blabber subclass and give it new behavior with
public access. This makes a lot more sense than reducing the level of access because it is entirely clear
what happens with a reference or pointer to the base class. For example, suppose that Blabber actually
made the dontTell () method public:

class Secret
{
protected:
virtual void dontTell() { cout << "I'll never tell." << endl; }

b g

class Blabber : public Secret
{
public:
virtual void dontTell() { cout << "I'll tell all!" << endl; }
b g

262

Discovering Inheritance Techniques

If the dontTell () method is called on a Blabber object, it will output 1'11 tell all!
myBlabber.dontTell(); // Outputs "I'll tell all!"

In this case, however, the protected method in the superclass stays protected because any attempts
to call Secret’s dontTell () method through a pointer or reference will not compile.

Blabber myBlabber;
Secret& ref = myBlabber;
Secret* ptr = &myBlabber;

ref.dontTell(); // BUG! Attempt to access protected method.
ptr->dontTell(); // BUG! Attempt to access protected method.

The only truly useful way to change a method’s access level is by providing a less
restrictive accessor to a protected method.

Copy Constructors and the Equals Operator

In Chapter 9, we said that providing a copy constructor and assignment operator is considered a good
programming practice when you have dynamically allocated memory in the class. When defining a sub-
class, you need to be careful about copy constructors and operator=.

If your subclass does not have any special data (pointers, usually) that require a nondefault copy con-
structor or operator=, you don’t need to have one, regardless of whether or not the superclass has one.
If your subclass omits the copy constructor, the parent copy constructor will still be called when the
object is copied. Similarly, if you don’t provide an explicit operator=, the default one will be used, and
operator= will still be called on the parent class.

On the other hand, if you do specify a copy constructor in the subclass, you need to explicitly chain to
the parent copy constructor, as shown in the following code. If you do not do this, the default construc-
tor (not the copy constructor!) will be used for the parent portion of the object.

class Super
{
public:
Super () ;
Super (const Super& inSuper) ;

¥

class Sub : public Super
{
public:
Sub () ;
Sub (const Sub& inSub) ;
}i

Sub: :Sub(const Sub& inSub) : Super (inSub)

{
}

263

Chapter 10

Similarly, if the subclass overrides operator=, it is almost always necessary to call the parent’s version
of operator= as well. The only case where you wouldn’t do this is if there is some bizarre reason why
you only want part of the object assigned when an assignment takes place. The following code shows
how to call the parent’s assignment operator from the subclass:

Sub& Sub::operator=(const Sub& inSub)
{
if (&inSub == this) {
return *this;
}

Super: :operator=(inSub) // Call parent's operator=.

// Do necessary assignments for subclass.

return (*this);

If your subclass does not specify its own copy constructor or operator=, the parent
functionality continues to work. If the subclass does provide its own copy construc-
tor or operators=, it needs to explicitly reference the parent versions.

The Truth about Virtual

When you first encountered method overriding above, we told you that only virtual methods can be
properly overridden. The reason we had to add the qualifier properly is that if a method is not virtual,
you can still attempt to override it but it will be wrong in subtle ways.

Hiding Instead of Overriding

The following code shows a superclass and a subclass, each with a single method. The subclass is
attempting to override the method in the superclass, but it is not declared to be virtual in the
superclass.

class Super

{
public:
void go() { cout << "go() called on Super" << endl; }

b g

class Sub : public Super

{
public:
void go() { cout << "go() called on Sub" << endl; }

b g

264

Discovering Inheritance Techniques

Attempting to call the go () method on a Sub object will initially appear to work.
Sub mySub;

mySub.go () ;

The output of this call is, as expected, go () called on Sub. However, since the method was not
virtual, it was not actually overridden. Rather, the Sub class created a new method, also called go ()
that is completely unrelated to the Super class’s method called go (). To prove this, simply call the
method in the context of a Super pointer or reference.

Sub mySub;
Super& ref = mySub;
ref.go();

You would expect the output to be, go () called on Sub, butin fact, the output will be, go () called
on Super. This is because the ref variable is a Super reference and because the virtual keyword was
omitted. When the go () method is called, it simply executes Super’s go () method. Because it is not
virtual, there is no need to consider whether a subclass has overridden it.

Attempting to override a non-virtual method will “hide” the superclass definition
and will only be used in the context of the subclass.

How virtual Is Implemented

To understand why method hiding occurs, you need to know a bit more about what the virtual key-
word actually does. When a class is compiled in C++, a binary object is created that contains all of the
data members and methods for the class. In the non-virtual case, the code to jump to the appropriate
method is hard-coded directly where the method is called based on the compile-time type.

If the method is declared virtual, the implementation is looked up in a special area of memory called
the vtable, for “virtual table.” Each class that has one or more virtual methods has a vtable that con-
tains pointers to the implementations of the virtual methods. In this way, when a method is called on
an object, the pointer is followed into the vtable and the appropriate version of the method is executed
based on the type of the object, not the type of the variable used to access it.

Figure 10-11 shows a high-level view of how the vtable makes the overriding of methods possible. The
diagram shows two classes, Super and Sub. Super declares two virtual methods, foo () and bar (). As
you can see by looking at Super’s vtable, each method has its own implementation defined by the
Super class. The sub class does not override Super 's version of foo (), so the Sub vtable points to the
same implementation of foo (). Sub does, however, override bar (), so the vtable points to the new
version.

265

Chapter 10

Super
.| Super::foo()
vtable foo A implementation
bar ~ Super::bar()
implementation
Sub
vtable foo /
bar ~ Sub::
.| Sub::bar()
implementation
Figure 10-11

The Justification for virtual

Given the fact that you are advised to make all methods virtual, you might be wondering why the
virtual keyword even exists. Can’t the compiler automatically make all methods virtual? The
answer is yes, it could. Many people think that the language should just make everything virtual. The
Java language effectively does this.

The argument against making everything virtual, and the reason that the keyword was created in the
first place, has to do with the overhead of the vtable. To call a virtual method, the program needs to
perform an extra operation by dereferencing the pointer to the appropriate code to execute. This is a
miniscule performance hit for most cases, but the designers of C++ thought that it was better, at least at
the time, to let the programmer decide if the performance hit was necessary. If the method was never
going to be overridden, there was no need to make it virtual and take the performance hit. There is
also a small hit to code size. In addition to the implementation of the method, each object would also
need a pointer, which takes up a small, but measurable, amount of space.

The Horror of Non-virtual Destructors

Even programmers who don’t adopt the guideline of making all methods virtual still adhere to the
rule when it comes to destructors. The reason is that making your destructors non-virtual can easily
cause memory leaks.

For example, if a subclass uses memory that is dynamically allocated in the constructor and deleted in

the destructor, it will never be freed if the destructor is never called. As the following code shows, it is
easy to “trick” the compiler into skipping the call to the destructor if it is non-virtual.

266

Discovering Inheritance Techniques

class Super
{
public:
Super () ;
~Super () ;
Vg

class Sub : public Super
{
public:
Sub() { mString = new char[30]; }
~Sub() { delete[] mString; }

protected:
char* mString;

b 3

int main(int argc, char** argv)
{
Super* ptr = new Sub() ; // mString is allocated here.

delete ptr; // ~Super is called, but not ~Sub because the destructor
// 1s not virtual!

Unless you have a specific reason not to, we highly recommend making all methods
(except constructors) virtual. Constructors cannot and need not be virtual because
you always specify the exact class being constructed when creating an object.

Runtime Type Facilities

Relative to other object-oriented languages, C++ is very compile-time oriented. Overriding methods, as
you learned above, works because of a level of indirection between a method and its implementation,
not because the object has built-in knowledge of its own class.

There are, however, features in C++ that provide a run-time view of an object. These features are com-
monly grouped together under a feature set called Runtime Type Identification, or RTTI. RTTI provides a
number of useful features for working with information about an object’s class membership.

dynamic_cast

Way back in Chapter 1, you read about static_cast, one of C++’s mechanisms for converting between
types. The static_cast operator is so-named because the conversion is built into the compiled code. A
static downcast will always succeed, regardless of the runtime type of the object.

267

Chapter 10

As you read in the earlier section on downcasting, dynamic_cast provides a safer mechanism for con-
verting between types within an OO hierarchy. To review, the syntax for dynamically casting an object is
similar to a static cast. However, with a dynamic cast, an invalid cast will return NULL for a pointer or
will throw an exception for a reference. The following example shows how to properly perform a
dynamic cast to a reference.

SomeObject myObject = getSomeObject () ;

try {
SomeOtherObject& myRef = dynamic_cast<SomeOtherObject&> (myObject) ;
} catch (std::bad_cast) {
cerr << "Could not convert the object into the desired type." << endl;

}

typeid

The typeid operator lets you query an object at run time to find out its type. For the most part, you
shouldn’t ever need to use typeid because any code that is conditionally run based on the type of the
object would be better handled with virtual methods.

The following code uses typeid to print a message based on the type of the object.

#include <typeinfo>

void speak(const Animal& inAnimal)

{

if (typeid(inAnimal) == typeid(Dog&)) ({
cout << "Woof!" << endl;
} else if (typeid(inAnimal) == typeid(Bird&) {

cout << "Chirp!" << endl;
}

Anytime you see code like that shown above, you should immediately consider reimplementing the
functionality as a virtual method. In this case, a better implementation would be to declare a virtual
method called speak () in the Animal class. Dog would override the method to print "Woof! " and Bird
would override the method to print "Chirp! ". This approach better fits object-oriented programming,
where functionality related to objects is given to those objects.

The typeid functionality is sometimes handy in debugging, however. It is useful to print out the type of
an object for logging and debugging purposes. The following code makes use of typeid for logging.
The logObject function takes a “loggable” object as a parameter. The design is such that any object that
can be logged subclasses the Loggable class and supports a method called getLogMessage (). In this
way, Loggable is a mix-in class.

#include <typeinfo>
void logObject (Loggable& inLoggableObject)
{

logfile << typeid(inLoggableObject).name() << " ";
logfile << inLoggableObject.getLogMessage () << endl;

268

Discovering Inheritance Techniques

The 1logObject () function first writes the name of the object’s class to the file, followed by its log mes-
sage. This way, when you read the log later, you can see which object was responsible for every line of
the file.

Non-Public Inheritance

In all of the examples above, parent classes were always listed using the public keyword. You may be
wondering if a parent can be private or protected. In fact it can, though neither is as common as
public.

Declaring the relationship with the parent to be protected means that all public and protected
methods and data members from the superclass become protected in the context of the subclass.
Similarly, specifying private access means that all public, protected, and private methods and
data members of the superclass become private in the subclass.

There are a handful of reasons why you might want to uniformly degrade the access level of the parent
in this way, but most reasons imply flaws in the design of the hierarchy. Some programmers abuse this
language feature, often in combination with multiple inheritance, to implement “components” of a class.
Instead of making an Airplane class that contains an engine data member and a fuselage data member,
they make an Airplane class that is a protected engine and a protected fuselage. In this way, the
Airplane doesn’t look like an engine or a fuselage to client code (because everything is protected),
but it is able to use all of that functionality internally.

Non-public inheritance is rare and we recommend using it cautiously, if for no
other reason than because of most programmers” unfamiliarity with it.

Virtual Base Classes

Earlier in this chapter, you learned about ambiguous base classes, a situation that arises when multiple
parents each have a parent in common, as shown in Figure 10-9. The solution that we recommended was
to make sure that the shared parent doesn’t have any functionality of its own. That way, its methods can
never be called and there is no ambiguity problem.

C++ has another mechanism for addressing this problem in the event that you do want the shared par-
ent to have its own functionality. If the shared parent is a virtual base class, there will not be any ambigu-
ity. The following code adds a sleep () method to the Animal base class and modifies the Dog and Bird
classes to inherit from Animal as a virtual base class. Without the virtual keyword, a call to sleep ()
on a DogBird object would be ambiguous because both Dog and Bird would have inherited versions of
sleep () from Animal. However, when Animal is inherited virtually, only one copy of each method or
member exists in its descendents.

class Animal
{
public:
virtual void eat() = 0;
{

virtual void sleep() cout << "zzzzz...." << endl; }

269

Chapter 10

class Dog : public virtual Animal
{
public:
virtual void bark() { cout << "Woof!" << endl; }
virtual void eat() { cout << "The dog has eaten." << endl; }

Y

class Bird : public virtual Animal
{
public:
virtual void chirp() { cout << "Chirp!" << endl; }
virtual void eat() { cout << "The bird has eaten." << endl; }

Y

class DogBird : public Dog, public Bird
{

public:

virtual void eat() { Dog::eat(); }

}i
int main(int argc, char** argv)
{

DogBird myConfusedAnimal;

myConfusedAnimal.sleep(); // Not ambiguous because Animal is virtual

Virtual base classes are a great way to avoid ambiguity in class hierarchies. The only
drawback is that many C++ programmers are unfamiliar with the concept.

Summary

This chapter has taken you through the myriad points of inheritance. You have learned about its many
applications, including code reuse and polymorphism. You have also learned about its many abuses,
including poorly designed multiple inheritance schemes. Along the way, you've uncovered some of the
less common edge cases that are unlikely to come up on a daily basis but make for some gnarly bugs
(and interview questions!).

Inheritance is a powerful language feature that takes some time to get used to. After you have worked

with the examples of this chapter and experimented on your own, we hope that inheritance will become
your tool of choice for object-oriented design.

270

11

Writing Generic Code
with Templates

C++ provides language support not only for object-oriented programming, but also for generic pro-
gramming. As discussed in Chapter 5, the goal of generic programming is to write reusable code.
The fundamental tools for generic programming in C++ are templates. Although not strictly an
object-oriented feature, templates can be combined with object-oriented programming for power-
ful results. Unfortunately, many programmers consider templates to be the most difficult part of
C++ and, for that reason, tend to avoid them. However, even if you never write your own tem-
plates, you need to understand their syntax and capabilities in order to use the C++ standard
library.

This chapter provides the code details for fulfilling the design principle of generality discussed in
Chapter 5 and prepares you to understand the standard template library, which is discussed fur-
ther in Chapters 21 to 23. The chapter is divided into two halves. The first half presents the most
commonly used template features, including:

O

How to write template classes

How the compiler processes templates

How to organize template source code

How to use nontype template parameters

How to write templates of individual class methods

How to write customizations of your class templates for specific types
How to combine templates and inheritance

How to write function templates

0000 0o oo

How to make template functions friends of template classes

Chapter 11

The second half of the chapter delves into some of the more obscure template features, including;:

Q The three kinds of template parameters and their subtleties
Q Partial specialization

Q Function template deduction

Q

How to exploit template recursion

Overview of Templates

The main programming unit in the procedural paradigm is the procedure or function. Functions are useful
primarily because they allow you to write algorithms that are independent of specific values and can
thus be reused for many different values. For example, the sgrt () function in C and C++ calculates the
square root of a value supplied by the caller. A square root function that calculated only the square root
of one number, like four, would not be particularly useful! The sqrt () function is written in terms of a
parameter, which is a stand-in for whatever value the caller passes. Computer scientists say that func-
tions parameterize values.

The object-oriented programming paradigm adds the concept of objects, which group related data and
behaviors, but does not change the way functions and methods parameterize values.

Templates take the concept of parameterization a step further to allow you to parameterize on types as
well as values. Recall that types in C++ include primatives such as int and double, as well as user-
defined classes such as SpreadsheetCells and CherryTrees. With templates you can write code that
is independent not only of the values it will be given, but of the types of those values as well! For exam-
ple, instead of writing separate stack classes to store ints, Cars, and SpreadsheetCells, you can write
one stack class definition that can be used for any of those types.

Although templates are an amazing language feature, templates in C++ are both conceptually and syn-
tactically confusing, and many programmers overlook or avoid them. A committee designed template
support in C++, and it sometimes seems as if the committee took an “everything but the kitchen sink”
approach: the purpose of many template features might not be readily apparent. Even worse, compiler
support for templates has historically been, and continues to be, spotty. Very few commercial compilers
provide complete support for templates according to the C++ standard.

For these reasons, most C++ books only scratch the surface of templates. However, it is extremely impor-
tant for you to understand C++ templates for one major reason: the C++ standard template library is, as
its name suggests, built with templates. In order to take advantage of this library you must understand
template fundamentals.

Thus, this chapter will teach you about template support in C++ with an emphasis on the aspects that

arise in the standard template library. Along the way, you will learn about some nifty features that you
can employ in your programs aside from using the standard library.

272

Writing Generic Code with Templates

Class Templates

Class templates are useful primarily for containers, or data structures, that store objects. This section uses
a running example of a Grid container. In order to keep the examples reasonable in length and simple
enough to illustrate specific points, different sections of the chapter will add features to the Grid con-
tainer that are not used in subsequent sections.

Writing a Class Template

Suppose that you want a generic game board class that you can use as a chessboard, checkers board, Tic-
Tac-Toe board, or any other two-dimensional game board. In order to make it general-purpose, you
should be able to store chess pieces, checkers pieces, Tic-Tac-Toe pieces, or any type of game piece.

Coding without Templates

Without templates, the best approach to build a generic game board is to employ polymorphism to store
generic GamePiece objects. Then, you could subclass the pieces for each game from the GamePiece
class. For example, in the chess game, the ChessPiece would be a subclass of GamePiece. Through
polymorphism, the GameBoard, written to store GamePieces, can also store ChessPieces. Your class
definition might look like similar to the Spreadsheet class from Chapter 9, which used a dynamically
allocated two-dimensional array as the underlying grid structure:

// GameBoard.h

class GameBoard
{
public:

// The general-purpose GameBoard allows the user to specify its dimensions
GameBoard (int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
GameBoard (const GameBoard& src); // Copy constructor
~GameBoard () ;
GameBoard &operator=(const GameBoard& rhs); // Assignment operator

void setPieceAt (int x, int y, const GamePiece& inPiece);
GamePiece& getPieceAt (int x, int y);
const GamePiece& getPieceAt (int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mwidth; }
static const int kDefaultWwidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const GameBoard& src) ;
// Objects dynamically allocate space for the game pieces.
GamePiece** mCells;
int mWidth, mHeight;
b

getPieceAt () returns a reference to the piece at a specified spot instead of a copy of the piece. The

GameBoard serves as an abstraction of a two-dimensional array, so it should provide array access seman-
tics by giving the actual object at an index, not a copy of the object.

273

Chapter 11

Here are the method and static member definitions. The implementation is almost identical to the
Spreadsheet class from Chapter 9. Production code would, of course, perform bounds checking in
setPieceAt () and getPieceat (). That code is omitted because it is not the point of this chapter.

274

This implementation of the class provides two versions of getPieceAt (), one of which returns a refer-
ence and one of which returns a const reference. Chapter 16 explains how this overload works.

// GameBoard.cpp
#include "GameBoard.h"

const int GameBoard::kDefaultWidth;
const int GameBoard::kDefaultHeight;

GameBoard: :GameBoard (int inWidth, int inHeight)

mwWidth (inWidth) , mHeight (inHeight)

{
mCells = new GamePiece* [mWidth];
for (int 1 = 0; 1 < mWidth; i++) {
mCells[i] = new GamePiece[mHeight];
}
}

GameBoard: : GameBoard (const GameBoard& src)
{

copyFrom(src) ;

}
GameBoard: : ~GameBoard ()
{
// Free the old memory
for (int 1 = 0; 1 < mWidth; 1i++) {
delete[] mCells[i];
}
delete[] mCells;
}
void GameBoard: :copyFrom(const GameBoard& src)
{
int 1, 3;
mWidth = src.mwidth;
mHeight = src.mHeight;
mCells = new GamePiece* [mWidth];
for (i = 0; i < mWidth; i++) {
mCells[i] = new GamePiece[mHeight];
}
for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][3];
}
}
}

Writing Generic Code with Templates

GameBoard& GameBoard: :operator=(const GameBoard& rhs)

{

// Check for self-assignment

if (this == &rhs) {
return (*this);

}

// Free the old memory

for (int 1 = 0; 1 < mwidth; i++) {
delete[] mCells[i];

}
delete[] mCells;

// Copy the new memory
copyFrom (rhs) ;

return (*this);
}

void GameBoard::setPieceAt (int x, int y, const GamePiece& inElem)

{
mCells[x] [y] = inElem;

}

GamePiece& GameBoard::getPieceAt (int x, int y)

{
return (mCells(x]I[y]);

}

const GamePiece& GameBoard::getPieceAt (int x, int y) const

{
return (mCells[x]I[v]):
}

This GameBoard class works pretty well. Assuming that you wrote a ChessPiece class, you can create
GameBoard objects and use them like this:

GameBoard chessBoard (10, 10);
ChessPiece pawn;

chessBoard.setPieceAt (0, 0, pawn);

A Template Grid Class

The GameBoard class in the previous section is nice, but insufficient. For example, it’s quite similar to the
Spreadsheet class from chapter 9, but the only way you could use it as a spreadsheet would be to make
the spreadsheetCell class a subclass of GamePiece. That doesn’t make sense because it doesn’t fulfill
the is-a principle of inheritance: a SpreadsheetCell is not a GamePiece. It would be nice if you could
write a generic grid class that you could use for purposes as diverse as a Spreadsheet or a
ChessBoard. In C++, you can do this by writing a class template, which allows you to write a class with-
out specifying one or more types. Clients then instantiate the template by specifying the types they want
to use.

275

Chapter 11

The Grid Class Definition

In order to understand class templates, it is helpful to examine the syntax. The following example shows
how you can tweak your GameBoard class slightly to make a templatized Grid class. Don’t let the syntax
scare you — it’s all explained following the code. Note that the class name has changed from
GameBoard to Grid, and setPieceAt () and getPieceAt () have changed to setElementat () and
getElementAt () to reflect the class’ more generic nature.

// Grid.h

template <typename T>

class Grid

{

public:

Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<T>& src);
~Grid() ;
Grid<T>& operator=(const Grid<T>& rhs) ;

void setElementAt (int x, int y, const T& inElem);
T& getElementAt (int x, int y);

const T& getElementAt (int x, int y) const;

int getHeight() const { return mHeight; }

int getWidth() const { return mwidth; }

static const int kDefaultWidth = 10;

static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T>& src);
T** mCells;
int mWidth, mHeight;
Y

Now that you've seen the full class definition, take another look at it, one line at a time:

template <typename T>

This first line says that the following class definition is a template on one type. Both template and
typename are keywords in C++. As discussed earlier, templates “parameterize” types the same way that
functions “parameterize” values. Just as you use parameter names in functions to represent the argu-
ments that the caller will pass, you use type names (such as T) in templates to represent the types that
the caller will specify. There’s nothing special about the name T — you can use whatever name you
want.

For historical reasons, you can use the keyword class instead of typename to spec-
ify template type parameters. Thus, many books and existing programs use syntax
like this: template <class T>. However, the use of the word “class” in this context
is confusing because it implies that the type must be a class, which is not true. Thus,
this book uses typename exclusively.

276

Writing Generic Code with Templates

The template specifier holds for the entire statement, which in this case is the class definition.
Several lines further, the copy constructor looks like this:
Grid(const Grid<T>& src);

As you can see, the type of the src parameter is no longer a const Gridg, buta const Grid<T>&.
When you write a class template, what you used to think of as the class name (Grid) is actually the tem-
plate name. When you want to talk about actual Grid classes or types, you discuss them as instantia-
tions of the Grid class template for a certain type, such as int, SpreadsheetCell, or ChessPiece. You
haven’t specified the real type yet, so you must use a stand-in template parameter, T, for whatever type
might be used later. Thus, when you need to refer to a type for a Grid object as a parameter to, or return
value from, a method you must use Grid<T>. You can see this change with the parameter to, and return
value from, the assignment operator, and the parameter to the copyFrom () method.

Within a class definition, the compiler will interpret Grid as Grid<T> where needed. However, it’s best
to get in the habit of specifying Grid<T> explicitly because that’s the syntax you use outside the class to
refer to types generated from the template.

The final change to the class is that methods such as setElementAt () and getElementAt () now take
and return parameters and values of type T instead of type GamePiece:

void setElementAt (int x, int y, const T& inElem);
T& getElementAt (int x, int y);
const T& getElementAt (int x, int y) const;

This type T is a placeholder for whatever type the user specifies. mCells is now a T** instead of a
GameBoard** because it will point to a dynamically allocated two-dimensional array of Ts, for whatever
type T the user specifies.

Template classes can contain inline methods such as getHeight () and getwWidth().

The Grid Class Method Definitions

The template <typename T> specifier must precede each method definition for the Grid template.
The constructor looks like this:

template <typename T>
Grid<T>::Grid(int inWidth, int inHeight) : mWidth(inWidth), mHeight (inHeight)
{
mCells = new T* [mWidth];
for (int 1 = 0; i < mwidth; 1i++) {
mCells[i] = new T[mHeight];

}
Note that the class name before the : : is Grid<T>, not Grid. You must specify Grid<T> as the class

name in all your methods and static data member definitions. The body of the constructor is identical to
the GameBoard constructor except that the placeholder type T replaces the GamePiece type.

277

Chapter 11

The rest of the method and static member definitions are also similar to their equivalents in the
GameBoard class with the exception of the appropriate template and Grid<T> syntax changes:

template <typename T>
const int Grid<T>::kDefaultWidth;

template <typename T>
const int Grid<T>::kDefaultHeight;

template <typename T>
Grid<T>::Grid(const Grid<T>& src)
{

copyFrom(src) ;

template <typename T>
Grid<T>::~Grid()
{
// Free the old memory.
for (int 1 = 0; 1 < mWidth; i++) {
delete [] mCells[i];
}
delete [] mCells;

template <typename T>
void Grid<T>::copyFrom(const Grid<T>& src)
{

int 1, 3j;

mWidth = src.mwWidth;

mHeight = src.mHeight;

mCells = new T* [mWidth];
for (i = 0; i < mwidth; i++) {
mCells[i] = new T[mHeight];

for (i = 0; 1 < mWidth; i++) {
for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][3];

template <typename T>
Grid<T>& Grid<T>::operator=(const Grid<T>& rhs)
{
// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
for (int 1 = 0; 1 < mWidth; 1i++) {
delete [] mCells[i];
}
delete [] mCells;

278

Writing Generic Code with Templates

// Copy the new memory.
copyFrom (rhs) ;

return (*this);

}

template <typename T>
void Grid<T>::setElementAt (int x, int y, const T& inElem)
{
mCells[x][y] = inElem;
}

template <typename T>
T& Grid<T>::getElementAt (int x, int y)
{
return (mCells(x][y]);
}

template <typename T>
const T& Grid<T>::getElementAt (int x, int y) const
{

return (mCells[x][vy]);

}

Using the Grid Template

When you want to create grid objects, you cannot use Grid alone as a type; you must specify the type
that will be stored in that Grid. Creating an object of a template class for a specific type is called instanti-
ating the template. Here is an example:

#include "Grid.h"

int main(int argc, char** argv)

{
Grid<int> myIntGrid; // Declares a grid that stores ints
myIntGrid.setElementAt (0, 0, 10);
int x = myIntGrid.getElementAt (0, 0);

Grid<int> grid2 (myIntGrid) ;
Grid<int> anotherIntGrid = grid2;

return (0);

Note that the type of mIntGrid, grid2, and anotherIntGrid is Grid<int>. You cannot store
SpreadsheetCells or ChessPieces in these grids; the compiler will generate an error if you try to
do so.

The type specification is important: neither of the following two lines compiles:

Grid test; // WILL NOT COMPILE
Grid<> test; // WILL NOT COMPILE

The first causes your compiler to complain with something like, “use of class template requires template
argument list.” The second causes it to say something like, “wrong number of template arguments.”

279

Chapter 11

If you want to declare a function or method that takes a Grid object, you must specify the type stored in
that grid as part of the Grid type:

void processIntGrid(Grid<int>& inGrid)
{

// Body omitted for brevity
}

The Grid template can store more than just ints. For example, you can instantiate a Grid that stores
SpreadsheetCells:

Grid<SpreadsheetCell> mySpreadsheet;
SpreadsheetCell myCell;
mySpreadsheet.setElementAt (3, 4, myCell);

You can store pointer types as well:

Grid<char*> myStringGrid;
myStringGrid.setElementAt (2, 2, "hello");

The type specified can even be another template type. The following example uses the vector template
from the standard template library (introduced in Chapter 4):

Grid<vector<int> > gridOfVectors; // Note the extra space!
vector<int> myVector;
gridOfVectors.setElementAt (5, 6, myVector);

You must leave a space between the two closing angle brackets when you have nested templates. C++
requires this syntax because compilers would interpret >> in the following example as the I/O streams
extraction operator:

Grid<vector<int>> gridOfVectors; // INCORRECT SYNTAX

You can also dynamically allocate Grid template instantiations on the heap:
Grid<int>* myGridp = new Grid<int>();
myGridp->setElementAt (0, 0, 10);

int x = myGridp->getElementAt (0, 0);

delete myGridp;

How the Compiler Processes Templates

In order to understand the intricacies of templates, you need to learn how the compiler processes tem-
plate code. When the compiler encounters template method definitions, it performs syntax checking, but
doesn’t actually compile the templates. It can’t compile template definitions because it doesn’t know for
which types they will be used. It’s impossible for a compiler to generate code for something like x = y
without knowing the types of x and y.

When the compiler encounters an instantiation of the template, such as Grid<int> myIntGrid, it
writes code for an int version of the Grid template by replacing each T in the template class definition

280

Writing Generic Code with Templates

with int. When the compiler encounters a different instantiation of the template, such as
Grid<SpreadsheetCell> mySpreadsheet, it writes another version of the Grid class for
SpreadsheetCells. The compiler just writes the code that you would write if you didn’t have template
support in the language and had to write separate classes for each element type. There’s no magic here;
templates just automate an annoying process. If you don’t instantiate a class template for any types in
your program, then the class method definitions are never compiled.

This instantiation process explains why you need to use the Grid<T> syntax in various places in your
definition. When the compiler instantiates the template for a particular type, such as int, it replaces
T with int, so that Grid<int> is the type.

Selective Instantiation

Instantiating a template for many different types can lead to code bloat because the compiler generates
copies of the template code for each type. You can end up with large executable files when you use
templates.

However, the problem is ameliorated because the compiler only generates code for the class methods
that you actually call for a particular type. For example, given the Grid template class above, suppose
that you write this code (and only this code) in main ():

Grid<int> myIntGrid;
myIntGrid.setElementAt (0, 0, 10);

The compiler generates only the 0-argument constructor, the destructor, and the setElementAt ()
method for an int version of the Grid. It does not generate other methods like the copy constructor, the
assignment operator, or getHeight ().

Template Requirements on Types

When you write code that is independent of types, you must assume certain things about those types.
For example, in the Grid template, you assume that the element type (represented by T) will have an
assignment operator because of this line: mCells[x] [y] = inElem. Similarly, you assume it will have a
default constructor to allow you to create an array of elements.

If you attempt to instantiate a template with a type that does not support all the operations used by the
template in your particular program, the code will not compile. However, even if the type you want to
use doesn’t support the operations required by all the template code, you can exploit selective instantia-
tion to use some methods but not others. For example, if you try to create a grid for an object that has no
assignment operator, but you never call setElementAt () on that grid, your code will work fine. As
soon as you try to call setElementAt (), however, you will receive a compilation error.

Distributing Template Code between Files

Normally you put class definitions in a header file and method definitions in a source file. Code that cre-
ates or uses objects of the class #includes the header file and obtains access to the method code via the
linker. Templates don’t work that way. Because they are “templates” for the compiler to generate the
actual methods for the instantiated types, both template class definitions and method definitions must
be available to the compiler in any source file that uses them. In this sense, methods of a template class
are similar to inline methods. There are several mechanisms to obtain this inclusion.

281

Chapter 11

Template Definitions in Header Files

You can place the method definitions directly in the same header file where you define the class itself.
When you #include this file in a source file where you use the template, the compiler will have access
to all the code it needs.

Alternatively, you can place the template method definitions in a separate header file that you #include
in the header file with the class definitions. Make sure the #include for the method definitions follows
the class definition; otherwise the code won’t compile!

// Grid.h
template <typename T>
class Grid
{
// Class definition omitted for brevity

by

#include "GridDefinitions.h"

This division helps keep the distinction between class definitions and method definitions.

Template Definitions in Source Files

Method implementations look strange in header files. If that syntax annoys you, there is a way that you
can place the method definitions in a source file. However, you still need to make the definitions avail-
able to the code that uses the templates, which you can do by #includeing the method implementation
source file in the template class definition header file. That sounds odd if you've never seen it before, but
it’s legal in C++. The header file looks like this:

// Grid.h

template <typename T>
class Grid
{
// Class definition omitted for brevity

B

#include "Grid.cpp"

The C++ standard actually defines a way for template method definitions to exist in a source file, which
does not need to be #included in a header file. You use the export keyword to specify that the tem-
plate definitions should be available in all translation units (source files). Unfortunately, as of this writing,
few commercial compilers support this feature, and many vendors seem disinclined to support it any-
time soon.

Template Parameters

In the Grid example, the Grid template has one template parameter: the type that is stored in the grid.
When you write the class template, you specify the parameter list inside the angle brackets, like this:

template <typename T>

282

Writing Generic Code with Templates

This parameter list is similar to the parameter list in a function or method. As in functions and methods,
you can write a class with as many template parameters as you want. Additionally, these parameters
don’t have to be types, and they can have default values.

Nontype Template Parameters

Nontype parameters are “normal” parameters such as ints and pointers: the kind of parameters with
which you're familiar from functions and methods. However, templates allow nontype parameters to be
values of only “simple” types: ints, enums, pointers, and references.

In the Grid template class, you could use nontype template parameters to specify the height and width
of the grid instead of specifying them in the constructor. The principle advantage to specifying nontype
parameters in the template list instead of in the constructor is that the values are known before the code
is compiled. Recall that the compiler generates code for templatized methods by substituting in the tem-
plate parameters before compiling. Thus, you can use a normal two-dimensional array in your imple-
mentation instead of dynamically allocating it. Here is the new class definition:

template <typename T, int WIDTH, int HEIGHT>

class Grid

{

public:

void setElementAt (int x, int y, const T& inElem) ;
T& getElementAt (int x, int vy);
const T& getElementAt (int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:
T mCells[WIDTH] [HEIGHT] ;
Y

This class is significantly simpler than the old version. Note that the template parameter list requires
three parameters: the type of object stored in the grid and the width and height of the grid. The width
and height are used to create a two-dimensional array to store the objects. There is no dynamically allo-
cated memory in the class, so it no longer needs a user-defined copy constructor, destructor, or assign-
ment operator. In fact, you don’t even need to write a default constructor; the compiler generated one is
just fine. Here are the class method definitions:

template <typename T, int WIDTH, int HEIGHT>
void Grid<T, WIDTH, HEIGHT>::setElementAt (int x, int y, const T& inElem)
{
mCells[x][y] = inElem;
}

template <typename T, int WIDTH, int HEIGHT>
T& Grid<T, WIDTH, HEIGHT>::getElementAt (int x, int y)
{
return (mCells(x][y]);
}

template <typename T, int WIDTH, int HEIGHT>
const T& Grid<T, WIDTH, HEIGHT>::getElementAt (int x, int y) const
{
return (mCells[x]I[y]);
}

283

Chapter 11

Note that wherever you previously specified Grid<T> you must now specify Grid<T, WIDTH,
HEIGHT> to represent the three template parameters.

You can instantiate this template and use it like this:

Grid<int, 10, 10> myGrid;
Grid<int, 10, 10> anotherGrid;

myGrid.setElementAt (2, 3, 45);
anotherGrid = myGrid;

cout << anotherGrid.getElementAt (2, 3);

This code seems great! Despite the slightly messy syntax for declaring a Grid, the actual Grid code is a
lot simpler. Unfortunately, there are more restrictions than you might think at first. First, you can’t use a
nonconstant integer to specify the height or width. The following code doesn’t compile:

int height = 10;
Grid<int, 10, height> testGrid; // DOES NOT COMPILE

However, if you make height const, it compiles:

const int height = 10;
Grid<int, 10, height> testGrid; // compiles and works

The second problem is much more significant. Now that the width and height are template parameters,
they are part of the type of each grid. That means that Grid<int, 10, 10>and Grid<int, 10, 11>
are two different types. You can’t assign an object of one type to an object of the other, and variables of
one type can’t be passed to functions or methods that expect variables of another type.

Nontype template parameters become part of the type specification of instantiated
objects.

Default Values for Integer Nontype Parameters

If you continue the approach of making height and width template parameters, you might want to be
able to provide defaults for the height and width just as you did previously in the constructor of the
Grid<T> class. C++ allows you to provide defaults for template parameters with a similar syntax. Here
is the class definition:

template <typename T, int WIDTH = 10, int HEIGHT = 10>
class Grid

{

// Remainder of the implementation is identical to the previous version

Y

284

Writing Generic Code with Templates

You do not need to specify the default values for WIDTH and HEIGHT in the template specification for the
method definitions. For example, here is the implementation of setElementAt ():

template <typename T, int WIDTH, int HEIGHT>
void Grid<T, WIDTH, HEIGHT>::setElementAt (int x, int y, const T& inElem)
{
mCells[x][y] = inElem;
}

Now, you can instantiate a Grid with only the element type, the element type and the width, or the ele-
ment type, width, and height:

Grid<int> myGrid;
Grid<int, 10> anotherGrid;
Grid<int, 10, 10> aThirdGrid;

The rules for default parameters in template parameter lists are the same as for functions or methods:
you can provide defaults for parameters in order starting from the right.

Method Templates

C++ allows you to templatize individual methods of a class. These methods can be inside a class tem-
plate or in a nontemplatized class. When you write a templatized class method, you are actually writing
many different versions of that method for many different types. Method templates come in useful for
assignment operators and copy constructors in class templates.

Virtual methods and destructors cannot be templatized.

Consider the original Grid template with only one parameter: the element type. You can instantiate
grids of many different types, such as ints and doubles:

Grid<int> myIntGrid;
Grid<double> myDoubleGrid;

However, Grid<int> and Grid<double> are two different types. If you write a function that takes an
object of type Grid<double>, you cannot pass a Grid<int>. Even though you know that an int grid
could be copied to a double grid, because the ints could be coerced into doubles, you cannot assign an
object of type Grid<int> to one of type Grid<double> or construct a Grid<double> from a
Grid<int>. Neither of the following two lines compiles:

myDoubleGrid = myIntGrid; // DOES NOT COMPILE
Grid<double> newDoubleGrid (myIntGrid); // DOES NOT COMPILE

The problem is that the Grid template copy constructor and operator= signatures look like this:

Grid(const Grid<T>& src);
Grid<T>& operator=(const Grid<T>& rhs);

285

Chapter 11

The Grid copy constructor and operator= both take a reference to a const Grid<T>. When you
instantiate a Grid<double> and try to call the copy constructor and operator=, the compiler generates
methods with these signatures:

Grid(const Grid<double>& src);
Grid<double>& operator=(const Grid<double>& rhs);

Note that there are no constructors or operator= that take a Grid<int> within the generated
Grid<double> class. However, you can rectify this oversight by adding templatized versions of the
copy constructor and operator= to the Grid class to generate routines that will convert from one grid
type to another. Here is the new Grid class definition:

template <typename T>

class Grid

{

public:

Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<T>& src);
template <typename E>
Grid(const Grid<E>& src);
~Grid() ;

Grid<T>& operator=(const Grid<T>& rhs);
template <typename E>
Grid<T>& operator=(const Grid<E>& rhs) ;

void setElementAt (int x, int y, const T& inElem);
T& getElementAt (int x, int vy);
const T& getElementAt (int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mwidth; }

static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T>& src);
template <typename E>
void copyFrom(const Grid<E>& src);

T** mCells;
int mWidth, mHeight;

Member templates do not replace nontemplate members with the same name. This
rule leads to problems with the copy constructor and operator= because of the
compiler-generated versions. If you write templatized versions of the copy con-
structor and operator= and omit nontemplatized versions, the compiler will not
call these new templatized versions for assignments of grids with the same type.
Instead, it will generate a copy constructor and operator= for creating and assign-
ing two grids of the same type, which will not do what you want! Thus, you must
keep the old nontemplatized copy constructor and operator= as well.

286

Writing Generic Code with Templates

Examine the new templatized copy constructor signature first:

template <typename E>
Grid(const Grid<E>& src);

You can see that there is another template declaration with a different typename, E (short for “element”).
The class is templatized on one type, T, and the new copy constructor is also templatized on a different
type, E. This twofold templatization allows you to copy grids of one type to another.

Here is the definition of the new copy constructor:

template <typename T>
template <typename E>
Grid<T>: :Grid(const Grid<E>& src)

{
copyFrom(src) ;

}

As you can see, you must declare the class template line (with the T parameter) before the member tem-
plate line (with the E parameter). You can’t combine them like this:

template <typename T, typename E> // INCORRECT TEMPLATE PARAMETER LIST!
Grid<T>::Grid(const Grid<E>& src)

Some compilers require that you provide method template definitions inline in the
class definition, but the C++ standard permits method template definitions outside
the class definition.

The copy constructor uses the protected copyFrom () method, so the class needs a templatized version
of copyFrom () as well:

template <typename T>
template <typename E>
void Grid<T>::copyFrom(const Grid<E>& src)
{
int 1, J;
mWidth = src.getWidth() ;
mHeight = src.getHeight();

mCells = new T* [mWidth];
for (1 = 0; 1 < mwidth; 1i++) {
mCells[i] = new T[mHeight];
}
for (i = 0; 1 < mWidth; i++) {
for (j = 0; j < mHeight; j++) {
mCells[i] [j] = src.getElementAt (i, j);

In addition to the extra template parameter line before the copyFrom () method definition, note that you
must use public accessor methods getwidth (), getHeight (), and getElementAt () to access the

287

Chapter 11

elements of src. That’s because the object you're copying to is of type Grid<T>, and the object you're
copying from is of type Grid<E>. They will not be the same type, so you must resort to public methods.

The final templatized method is the assignment operator. Note that it takes a const Grid<E>& but
returns a Grid<T>&.

template <typename T>
template <typename E>
Grid<T>& Grid<T>::operator=(const Grid<E>& rhs)
{

// Free the old memory.

for (int 1 = 0; 1 < mWidth; 1i++) {

delete [] mCells[i];
}
delete [] mCells;

// Copy the new memory.
copyFrom(rhs) ;

return (*this);

}

You do not need to check for self-assignment in the templatized assignment operator, because assign-
ment of the same types still happens in the old, nontemplatized, version of operator=, so there’s no
way you can get self-assignment here.

In addition to the confusing syntax for method templates, there is another problem: some compilers
don’t implement full (or any) support for them. Try this example out on your compiler of choice to see if
you can use these features.

Method Templates with Nontype Parameters

In the earlier example with integer template parameters for HEIGHT and WIDTH, we noted that a major
problem is that the height and width become part of the types. This restriction prevents you from assign-
ing a grid with one height and width to a grid with a different height and width. In some cases, how-
ever, it’s desirable to assign or copy a grid of one size to a grid of a different size. Instead of making the
destination object a perfect clone of the source object, you would copy only those elements from the
source array that fit in the destination array, padding the destination array with default values if the
source array is smaller in either dimention. With method templates for the assignment operator and
copy constructor, you can do exactly that, thus allow assignment and copying of different sized grids.
Here is the class definition:

template <typename T, int WIDTH = 10, int HEIGHT = 10>
class Grid
{
public:
Grid() {}

template <typename E, int WIDTH2, int HEIGHT2>
Grid(const Grid<E, WIDTH2, HEIGHT2>& src);

template <typename E, int WIDTH2, int HEIGHT2>
Grid<T, WIDTH, HEIGHT>& operator=(const Grid<E, WIDTH2, HEIGHT2>& rhs);

288

Writing Generic Code with Templates

void setElementAt (int x, int y, const T& inElem);
T& getElementAt (int x, int vy);

const T& getElementAt (int x, int y) const;

int getHeight() const { return HEIGHT; }

int getWidth() const { return WIDTH; }

protected:
template <typename E, int WIDTH2, int HEIGHT2>
void copyFrom(const Grid<E, WIDTH2, HEIGHT2>& src);

T mCells[WIDTH] [HEIGHT] ;
Y

We have added method templates for the copy constructor and assignment operator, plus a helper
method copyFrom (). Recall from Chapter 8 that when you write a copy constructor, the compiler stops
generating a default constructor for you, so we had to add a default constructor as well. Note, however,
that we do not need to write nontemplatized copy constructor and assignment operator methods
because the compiler-generated ones continue to be generated. They simply copy or assign mCells from
the source to the destination, which is exactly the semantics we want for two grids of the same size.

When you templatize the copy constructor, assignment operator, and copyFrom (), you must specify all
three template parameters. Here is the templatized copy constructor:

template <typename T, int WIDTH, int HEIGHT>

template <typename E, int WIDTH2, int HEIGHT2>

Grid<T, WIDTH, HEIGHT>::Grid(const Grid<E, WIDTH2, HEIGHT2>& src)
{

copyFrom(src) ;

Here are the implementations of copyFrom () and operator=. Note that copyFrom () copies only
WIDTH and HEIGHT elements in the x and y dimensions, respectively, from src, even if src is bigger than
that. If src is smaller in either dimension, copyFrom () pads the extra spots with zero-initialized values.
T () calls the default constructor for the object if T is a class type, or generates 0 if T is a simple type. This
syntax is called the zero-initialization syntax. It’s a good way to provide a reasonable default value for a
variable whose type you don’t yet know.

template <typename T, int WIDTH, int HEIGHT>
template <typename E, int WIDTH2, int HEIGHT2>
void Grid<T, WIDTH, HEIGHT>::copyFrom(const Grid<E, WIDTH2, HEIGHT2>& src)
{
int i, 3J;
for (1 = 0; 1 < WIDTH; i++) {
for (j = 0; j < HEIGHT; j++) {
if (i < WIDTH2 && j < HEIGHT2) ({
mCells[i][j] = src.getElementAt (i, Jj);
} else {
mCells[i] [J] = T();

289

Chapter 11

template <typename T, int WIDTH, int HEIGHT>

template <typename E, int WIDTH2, int HEIGHT2>

Grid<T, WIDTH, HEIGHT>& Grid<T, WIDTH, HEIGHT>::operator=(
const Grid<E, WIDTH2, HEIGHT2>& rhs)

{
// No need to check for self-assignment because this version of
// assignment is never called when T and E are the same
// No need to free any memory first
// Copy the new memory.
copyFrom(rhs) ;
return (*this);
}

Template Class Specialization

You can provide alternate implementations of class templates for specific types. For example, you might
decide that the Grid behavior for char*s (C-style strings) doesn’t make sense. The grid currently stores
shallow copies of pointer types. For char*’s, it might make sense to do a deep copy of the string.

Alternate implementations of templates are called template specializations. Again, the syntax is a little
weird. When you write a template class specialization, you must specify that it’s a template, and that
you are writing the version of the template for that particular type. Here is the syntax for specializing
the original version of the Grid for char *s.

290

// #includes for working with the C-style strings.
#include <cstdlib>

#include <cstring>

using namespace std;

// When the template specialization is used, the original template must be visible
// too. #including it here ensures that it will always be visible when this

// specialization is visible.

#include "Grid.h"

template <>

class Grid<char*>

{

public:

Grid(int inwWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<char*>& src);
~Grid();
Grid<char*>& operator=(const Grid<char*>& rhs) ;

void setElementAt (int x, int y, const char* inElem);
char* getElementAt (int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mwidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

Writing Generic Code with Templates

protected:
void copyFrom(const Grid<char*>& src);

char*** mCells;
int mWidth, mHeight;
Y

Note that you don’t refer to any type variable, such as T, in the specialization: you work directly with
char*s. One obvious question at this point is why this class is still a template. That is, what good is this
syntax?

template <>
class Grid<char *>

This syntax tells the compiler that this class is a char * specialization of the Grid class. Suppose that
you didn’t use that syntax and just tried to write this:

class Grid

The compiler wouldn't let you do that because there is already a class named Grid (the original tem-
plate class). Only by specializing it can you reuse the name. The main benefit of specializations is that
they can be invisible to the user. When a user creates a Grid of ints or SpreadsheetCells, the com-
piler generates code from the original Grid template. When the user creates a Grid of char*’s, the com-
piler uses the char* specialization. This can all be “behind the scenes.”

Grid<int> myIntGrid; // Uses original Grid template
Grid<char*> stringGridl (2, 2); // Uses char* specialization

char* dummy = new char[10];

strcpy (dummy, "dummy") ;

stringGridl.setElementAt (0, 0, "hello");
stringGridl.setElementAt (0, 1, dummy);
stringGridl.setElementAt (1, 0, dummy) ;
stringGridl.setElementAt (1, 1, "there");

delete[] dummy;

Grid<char*> stringGrid2 (stringGridl) ;

When you specialize a template, you don’t “inherit” any code: specializations are not like subclasses.
You must rewrite the entire implementation of the class. There is no requirement that you provide meth-
ods with the same names or behavior. In fact, you could write a completely different class with no rela-
tion to the original! Of course, that would abuse the template specialization ability, and you shouldn’t do
it without good reason. Here are the implementations for the methods of the char* specialization.
Unlike in the original template definitions, you do not repeat the template<> syntax before each
method or static member definition!

const int Grid<char*>::kDefaultWidth;
const int Grid<char*>::kDefaultHeight;

Grid<char*>::Grid(int inWidth, int inHeight)

291

Chapter 11

mWidth (inWidth), mHeight (inHeight)

mCells = new char** [mWidth];
for (int 1 = 0; 1 < mWidth; 1i++) {
mCells[i] = new char* [mHeight];
for (int j = 0; j < mHeight; j++) {
mCells[i][j] = NULL;

}

Grid<char*>::Grid(const Grid<char*>& src)

{
copyFrom(src) ;

}

Grid<char*>::~Grid ()

{
// Free the old memory.
for (int 1 = 0; 1 < mWidth; 1i++) {
for (int j = 0; j < mHeight; j++) {
delete[] mCells([i][j];
}
delete[] mCells[i];
}
delete[] mCells;
}

void Grid<char*>::copyFrom(const Grid<char*>& src)
{

int i, j;

mWidth = src.mWidth;

mHeight = src.mHeight;

mCells = new char** [mWidth];
for (i = 0; i < mwidth; i++) {
mCells[i] = new char* [mHeight];

for (i = 0; i < mwidth; i++) {
for (j = 0; j < mHeight; j++) {

if (src.mCells[i][j] == NULL) {
mCells[i][j] = NULL;
} else {
mCells[i][j] = new char[strlen(src.mCells[i][j]) + 11;

strcpy (mCells[i][j], src.mCells[i]([3J]);

Grid<char*>& Grid<char*>::operator=(const Grid<char*>& rhs)
{

int 1, 3J;

292

Writing Generic Code with Templates

// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
for (1 = 0; 1 < mwidth; 1++) {
for (j = 0; j < mHeight; j++) {
delete[] mCells[i]([]J];
}
delete[] mCells[i];

}
delete[] mCells;

// Copy the new memory.
copyFrom (rhs) ;

return (*this);

}

void Grid<char*>::setElementAt (int x, int y, const char* inElem)
{
delete[] mCells[x]I[y];
if (inElem == NULL) {
mCells[x][y] = NULL;
} else {
mCells[x] [y] = new char[strlen(inElem) + 1];
strcpy (mCells[x] [y], inElem) ;

}

char* Grid<char*>::getElementAt (int x, int y) const
{
if (mCells[x][y] == NULL) {
return (NULL) ;

}
char* ret = new char[strlen(mCells[x][y]) + 11;
strcpy (ret, mCells[x][y]);

return (ret);

}

getElementAt () returns a deep copy of the string, so you don’t need an overload that returns a const
char*.

Subclassing Template Classes

You can write subclasses of template classes. If the subclass inherits from the template itself, it must be a
template as well. Alternatively, you can write a subclass to inherit from a specific instantiation of the
template class, in which case your subclass does not need to be a template. As an example of the former,
suppose you decide that the generic Grid class doesn’t provide enough functionality to use as a game
board. Specifically, you would like to add a move () method to the game board that moves a piece from
one location on the board to another. Here is the class definition for the GameBoard template:

293

Chapter 11

#include "Grid.h"

template <typename T>
class GameBoard : public Grid<T>
{
public:
GameBoard (int inWidth = Grid<T>::kDefaultWidth,
int inHeight = Grid<T>::kDefaultHeight) ;
void move (int xSrc, int ySrc, int xDest, int yDest);

b g

This GameBoard template subclasses the Grid template, and thereby inherits all its functionality. You
don’t need to rewrite setElementAt (), getElementAt (), or any of the other methods. You also don’t
need to add a copy constructor, operator=, or destructor, because you don’t have any dynamically allo-
cated memory in the GameBoard. The dynamically allocated memory in the Grid superclass will be
taken care of by the Grid copy constructor, operator=, and destructor.

The inheritance syntax looks normal, except that the superclass is Grid<T>, not Grid. The reason for this
syntax is that the GameBoard template doesn’t really subclass the generic Grid template. Rather, each
instantiation of the GameBoard template for a specific type subclasses the Grid instantiation for that
type. For example, if you instantiate a GameBoard with a ChessPiece type, then the compiler generates
code for a Grid<ChessPiece> as well. The “: public Grid<T>" syntax says that this class subclasses
from whatever Grid instantiation makes sense for the T type parameter. Note that the C++ name lookup
rules for template inheritance require you to specify that kDefaultwidth and kDefaultHeight are
declared in, and thus dependent on, the Grid<T> superclass.

Here are the implementations of the constructor and the move method. Again, note the use of Grid<T> in
the call to the superclass constructor. Additionally, although many compilers don’t enforce it, the name
lookup rules require you to use the this pointer to refer to data members and methods in the superclass.

template <typename T>

GameBoard<T>: :GameBoard (int inWidth, int inHeight)
Grid<T> (inWidth, inHeight)

{

}

template <typename T>

void GameBoard<T>::move (int xSrc, int ySrc, int xDest, int yDest)

{
this->mCells[xDest] [yDest] = this->mCells[xSrc] [ySrc];
this->mCells[xSrc] [ySrc] = T(); // zero-initialize the src cell

As you can see, move () uses the zero-initializtion syntax T () described in the section on “Method
Templates with Nontype Parameters.”

You can use the GameBoard template like this:
GameBoard<ChessPiece> chessBoard;
ChessPiece pawn;

chessBoard.setElementAt (0, 0, pawn);
chessBoard.move (0, 0, 0, 1);

294

Writing Generic Code with Templates

Inheritance versus Specialization

Some programmers find the distinction between template inheritance and template specialization con-
fusing. The following table summarizes the differences.

Inheritance Specialization

Reuses code? Yes: subclasses contain all No: you must rewrite all code in
superclass members and the specialization.
methods.

Reuses name? No: the subclass name Yes: the specialization must have
must be different from the the same name as the original.

superclass name.

Supports polymorphism? Yes: objects of the subclass No: each instantiation of a
can stand in for objects of template for a type is a different
the superclass. type.

Use inheritance for extending implementations and for polymorphism. Use special-
ization for customizing implementations for particular types.

Function Templates

You can also write templates for stand-alone functions. For example, you could write a generic function
to find a value in an array and return its index:

template <typename T>
int Find(T& value, T* arr, int size)
{
for (int 1 = 0; i < size; 1i++) {
if (arr[i] == value) {
// Found it; return the index
return (i);
}
}
// Failed to find it; return -1
return (-1);

}

The Find () function template can work on arrays of any type. For example, you could use it to find the
index of an int in an array of ints or a SpreadsheetCell in an array of SpreadsheetCells.

295

Chapter 11

You can call the function in two ways: explicitly specifying the type with angle brackets or omitting the
type and letting the compiler deduce it from the arguments. Here are some examples:

int x = 3, intArr[4] = {1,

2y, 3, 43
double dl = 5.6, dArr(4] = {1.2,

3.4, 5.7, 7.5};
int res;

res = Find(x, intArr, 4); // Calls Find<int> by deduction
res = Find<int>(x, intArr, 4); // call Find<int> explicitly.

res = Find(dl, dArr, 4); // Call Find<double> by deduction.
res = Find<double>(dl, dArr, 4); // Calls Find<double> explicitly.

res = Find(x, dArr, 4); // DOES NOT COMPILE! Arguments are different types.
SpreadsheetCell c1(10), c2[2] = {SpreadsheetCell(4), SpreadsheetCell(10)};
res = Find(cl, c2, 2); // calls Find<SpreadsheetCell> by deduction

res = Find<SpreadsheetCell>(cl, c2, 2); // Calls Find<SpreadsheetCell>

// explicitly.

Like class templates, function templates can take nontype parameters. For brevity, we only show an
example of a type parameter for function templates.

The C++ standard library provides a templatized find() function that is much more
powerful than the one above. See Chapter 22 for details.

Function Template Specialization

Just as you can specialize class templates, you can specialize function templates. For example, you might
want to write a Find () function for char* C-style strings that compares them with strcmp () instead of
operator==. Here is a specialization of the Find () function to do this:

template<>
int Find<char*> (char*& value, char** arr, int size)
{
for (int 1 = 0; 1 < size; 1++) {
if (strcmp(arr[i], value) == 0) {
// Found it; return the index
return (1);
}
}
// Failed to find it; return -1
return (-1);

You can omit the <char*> in the function name when the parameter type can be deduced from the argu-
ments, making your prototype look like this:

template<>
int Find(char*& value, char** arr, int size)

296

Writing Generic Code with Templates

However, the deduction rules are tricky when you involve overloading as well (see next section), so, in
order to avoid mistakes, it’s better to note the type explicitly.

Although the specialized find function could take just char* instead of char*& as its first parameter, it’s
best to keep the arguments parallel to the nonspecialized version of the function for the deduction rules

to function properly.

You can use the specialization like this:

char* word = "two";
char* arr[4] = {"one", "two", "three", "four"};
int res;

res = Find<char*>(word, arr, 4); // Calls the char* specialization
res = Find(word, arr, 4); // Calls the char* specialization

Function Template Overloading

You can also overload template functions with nontemplate functions. For example, instead of writing a
Find () template specialization for char*, you could write a nontemplate Find () function that works
on char*s:

int Find(char*& value, char** arr, int size)
{
for (int 1 = 0; 1 < size; 1i++) {
if (strcmp(arr[i], value) == 0) {
// Found it; return the index
return (i);
}
}
// Failed to find it; return -1
return (-1);

}

This function is identical in behavior to the specialized version in the previous section. However, the
rules for when it is called are different:

char* word = "two";
char* arr[4] = {"one", "two", "three", "four"};
int res;

res = Find<char*>(word, arr, 4); // Calls the Find template with T=char*
res = Find(word, arr, 4); // Calls the Find nontemplate function!

Thus, if you want your function to work both when char* is explicitly specified and via deduction
when it is not, you should write a specialized template version instead of a nontemplate, overloaded
version.

Like template class method definitions, function template definitions (not just the prototypes) must be

available to all source files that use them. Thus, you should put the definitions in header files if more
than one source file uses them.

297

Chapter 11

Function Template Overloading and Specialization Together

It’s possible to write both a specialized Find () template for char*s and a stand-alone Find () function
for char*s. The compiler always prefers the nontemplate function to a templatized version. However, if
you specify the template instantiation explicitly, the compiler will be forced to use the template version:

char* word = "two";
char* arr[4] = {"one", "two", "three", "four"};
int res;

res = Find<char *>(word, arr, 4); // Calls the char* specialization of the
// template
res = Find(word, arr, 4); // Calls the Find nontemplate function.

Friend Function Templates of Class Templates

Function templates are useful when you want to overload operators in a class template. For example,
you might want to overload the insertion operator for the Grid class template to stream a grid.

If you are unfamiliar with the mechanics for overloading operator<<, consult Chapter 16 for details.

As discussed in Chapter 16, you can’t make operator<< a member of the Grid class: it must be a stand-
alone function template. The definition, which should go directly in Grid.h, looks like this:

template <typename T>
ostream& operator<<(ostream& ostr, const Grid<T>& grid)

{
for (int i = 0; i < grid.mHeight; i++) {
for (int j = 0; j < grid.mwWidth; j++) {
// Add a tab between each element of a row.
ostr << grid.mCells[j][i] << "\t";
}

ostr << std::endl; // Add a newline between each row.

}

return (ostr);

This function template will work on any Grid, as long as there is an insertion operator for the elements
of the grid. The only problem is that operator<< accesses protected members of the Grid class.
Therefore, it must be a friend of the Grid class. However, both the Grid class and the operator<< are
templates. What you really want is for each instantiation of operator<< for a particular type T to be a
friend of the Grid template instantiation for that type. The syntax looks like this:

//Grid.h
#include <iostream>
using std::ostream;

// Forward declare Grid template.
template <typename T> class Grid;

// Prototype for templatized operator<<.

template<typename T>
ostream& operator<<(ostream& ostr, const Grid<T>& grid) ;

298

Writing Generic Code with Templates

template <typename T>

class Grid

{

public:

// Omitted for brevity
friend ostream& operator<< <T>(ostream& ostr, const Grid<T>& grid) ;
// Omitted for brevity

Y

This friend declaration is tricky: you're saying that, for an instance of the template with type T, the

T instantiation of operator<<isa friend. In other words, there is a one-to-one mapping of friends
between the class instantiations and the function instantiations. Note particularly the explicit template
specification <T> on operator<< (the space after operator<< is optional). This syntax tells the com-
piler that operator<«< is itself a template. Some compilers fail to support this syntax, but it’s legal C++,
and works on most new compilers.

Advanced Templates

The first half of this chapter covered the most widely used features of class and function templates. If
you are interested in only a basic knowledge of templates so that you can use the STL or perhaps write
your own simple classes, you can stop here. However, if templates interest you and you want to uncover
their full power, read the second half of this chapter to learn about some of the more obscure, but fasci-
nating, details.

More about Template Parameters

There are actually three kinds of template parameters: type, nontype and template template (no, you're
not seeing double: that really is the name!) You've seen examples of type and nontype parameters above,
but not template template parameters yet. There are also some tricky aspects to both template and non-
type parameters that were not covered above.

More about Template Type Parameters

Type parameters to templates are the main purpose of templates. You can declare as many type parame-
ters as you want. For example, you could add to the grid template a second type parameter specifying
another templatized class container on which to build the grid. Recall from Chapter 4 that the standard
template library defines several templatized container classes, including vector and deque. In your
original grid class you might want to have an array of vectors or an array of deques instead of just an
array of arrays. With another template type parameter, you can allow the user to specify whether she
wants the underlying container to be a vector or a deque. Here is the class definition with the addi-
tional template parameter:

template <typename T, typename Container>
class Grid
{
public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<T, Container>& src);
~Grid() ;

299

Chapter 11

Grid<T, Container>& operator=(const Grid<T, Container>& rhs);
void setElementAt (int x, int y, const T& inElem) ;
T& getElementAt (int x, int vy);
const T& getElementAt (int x, int y) const;
int getHeight () const { return mHeight; }
int getWidth() const { return mwidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;
protected:

void copyFrom(const Grid<T, Container>& src);
Container* mCells;
int mWidth, mHeight;

Y

This template now has two parameters: T and Container. Thus, wherever you previously referred to
Grid<T> you must refer to Grid<T, Container> to specify both template parameters. The only other
change is that mCells is now a pointer to a dynamically allocated array of Containers instead of a
pointer to a dynamically allocated two-dimensional array of T elements.

Here is the constructor definition. It assumes that the Container type has a resize () method. If you
try to instantiate this template by specifying a type that has no resize () method, the compiler will gen-
erate an error, as described below.

template <typename T, typename Container>
Grid<T, Container>::Grid(int inWidth, int inHeight)
mWidth (inWidth) , mHeight (inHeight)

{
// Dynamically allocate the array of mWidth containers
mCells = new Container [mWidth];
for (int 1 = 0; 1 < mWidth; i++) {
// Resize each container so that it can hold mHeight elements.
mCells[i].resize (mHeight) ;
}
}

Here is the destructor definition. There’s only one call to new in the constructor, so only one call to
delete in the destructor.

template <typename T, typename Container>
Grid<T, Container>::~Grid()
{

delete [] mCells;

The code in copyFrom () assumes that you can access elements in the container using array [] notation.
Chapter 16 explains how to overload the [] operator to implement this feature in your own container
classes, but for now, it’s enough to know that the vector and deque from the STL both support this syntax.

template <typename T, typename Container>
void Grid<T, Container>::copyFrom(const Grid<T, Container>& src)
{

int 1, J;

mWidth = src.mwidth;

mHeight = src.mHeight;

300

Writing Generic Code with Templates

mCells = new Container [mWidth];
for (1 = 0; 1 < mwidth; 1i++) {
// Resize each element, as in the constructor.
mCells[i] .resize (mHeight) ;
}
for (i = 0; 1 < mwWidth; i++) ¢
for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][3];

Here are the implementations of the remaining methods.

template <typename T, typename Container>
Grid<T, Container>::Grid(const Grid<T, Container>& src)
{

copyFrom(src) ;

template <typename T, typename Container>
Grid<T, Container>& Grid<T, Container>::operator=(const Grid<T, Container>& rhs)
{

// Check for self-assignment.

if (this == &rhs) {

return (*this);

}

// Free the old memory.

delete [] mCells;

// Copy the new memory.
copyFrom (rhs) ;

return (*this);

template <typename T, typename Container>
void Grid<T, Container>::setElementAt (int x, int y, const T& inElem)
{

mCells[x] [y] = inElem;

template <typename T, typename Container>
T& Grid<T, Container>::getElementAt (int x, int vy)
{

return (mCells[x]I[v]);

template <typename T, typename Container>
const T& Grid<T, Container>::getElementAt(int x, int y) const
{

return (mCells[x]I[v]);

301

Chapter 11

Now you can instantiate and use grid objects like this:

Grid<int, vector<int> > myIntGrid;
Grid<int, deque<int> > myIntGrid2;

myIntGrid.setElementAt (3, 4, 5);
cout << myIntGrid.getElementAt (3, 4);

Grid<int, vector<int> > grid2 (myIntGrid) ;
grid2 = myIntGrid;

The use of the word Container for the parameter name doesn’t mean that the type really must be a con-
tainer. You could try to instantiate the Grid class with an int instead:

Grid<int, int> test; // WILL NOT COMPILE

This line will not compile, but it might not give you the error you expect. It won’t complain that the sec-
ond type argument is an int instead of a container. Instead it will tell you that 1left of '.resize'
must have class/struct/union type. That’s because the compiler attempts to generate a Grid
class with int as the Container. Everything works fine until it tries to compile this line:

mCells[i].resize (mHeight) ;

At that point, the compiler realizes that mCells[1i] is an int, so you can’t call the resize () method
on it!

This approach may seem convoluted and useless to you. However, it arises in the standard template
library. The stack, queue, and priority_gueue class templates all take a template type parameter
specifying the underlying container, which can be a vector, deque, or list.

Default Values for Template Type Parameters

You can give template parameters default values. For example, you might want to say that the default
container for your Gridis a vector. The template class definition would look like this:

#include <vector>
using std::vector;

template <typename T, typename Container = vector<T> >
class Grid
{
public:
// Everything else is the same as before.

i
You can use the type T from the first template parameter as the argument to the vector template in the
default value for the second template parameter. Note also that you must leave a space between the two

closing angle brackets to avoid the parsing problem discussed earlier in the chapter.

C++ syntax requires that you do not repeat the default value in the template header line for method
definitions.

302

Writing Generic Code with Templates

With this default parameter, clients can now instantiate a grid with or without specifying an underlying
container:

Grid<int, vector<int> > myIntGrid;
Grid<int> myIntGrid2;

Introducing Template Template Parameters

There is one problem with the Container parameter in the previous section. When you instantiate the
class template, you write something like this:

Grid<int, vector<int> > myIntGrid;

Note the repetition of the int type. You must specify that it’s the element type both of the Grid and of
the vector. What if you wrote this instead?

Grid<int, vector<SpreadsheetCell> > myIntGrid;

That wouldn’t work very well! It would be nice to be able to write the following, so that you couldn’t
make that mistake:

Grid<int, vector> myIntGrid;

The Grid class should be able to figure out that it wants a vector of ints. The compiler won't allow
you to pass that argument to a normal type parameter, though, because vector by itself is not a type,
but a template.

If you want to take a template as a template parameter, you must use a special kind of parameter called
a template template parameter. The syntax is crazy, and some compilers don’t yet support it. However, if
you're still interested, read on.

Specifying a template template parameter is sort of like specifying a function pointer parameter in a nor-
mal function. Function pointer types include the return type and parameter types of a function.
Similarly, when you specify a template template parameter, the full specification of the template tem-
plate parameter includes the parameters to that template.

Containers in the STL have a template parameter list that looks something like this:

template <typename E, typename Allocator = allocator<E> >
class vector
{

// Vector definition

¥

The E parameter is simply the element type. Don’t worry about the Allocator for now — it’s covered
in Chapter 21.

303

Chapter 11

Given the above template specification, here is the template class definition for the Grid class that takes
a container template as its second template parameter:

template <typename T, template <typename E, typename Allocator = allocator<E> >
class Container = vector >
class Grid
{
public:
// Omitted code that is the same as before
Container<T>* mCells;
// Omitted code that is the same as before
Y

What is going on here? The first template parameter is the same as before: the element type T. The sec-
ond template parameter is now a template itself for a container such as vector or deque. As you saw
earlier, this “template type” must take two parameters: an element type E and an allocator Allocator.
Note the repetition of the word class after the nested template parameter list. The name of this parame-
ter in the Grid template is Container (as before). The default value is now vector, instead of vector<T>,
because the Container is a template instead of an actual type.

The syntax rule for a template template parameter more generically is this:

template <other params, ..., template <TemplateTypeParams> class ParameterName,
other params, ...>

Now that you've suffered through the above syntax to declare the template, the rest is easy. Instead of
using Container by itself in the code, you must specify Container<T> as the container type you use.
For example, the constructor now looks like this (you don’t repeat the default template template param-
eter argument in the template specification for the method definition):

template <typename T, template <typename E, typename Allocator = allocator<E> >
class Container>

Grid<T, Container>::Grid(int inWidth, int inHeight)
mWidth (inWidth), mHeight (inHeight)

mCells = new Container<T>[mWidth];

for (int 1 = 0; 1 < mWidth; i++) {
mCells[i].resize(mHeight) ;

After implementing all the methods, you can use the template like this:
Grid<int, vector> myGrid;
myGrid.setElementAt (1, 2, 3);

myGrid.getElementAt (1,2);
Grid<int, vector> myGrid2 (myGrid) ;

If you haven't skipped this section entirely, you're surely thinking at this point that C++ deserves every

criticism that’s ever been thrown at it. Try not to bog down in the syntax here, and keep the main con-
cept in mind: you can pass templates as parameters to other templates.

304

Writing Generic Code with Templates

More about Nontype Template Parameters

You might want to allow the user to specify an empty(not in the literal sense) element that is used to ini-
tialize each cell in the grid. Here is a perfectly reasonable approach to implement this goal:

template <typename T, const T EMPTY>

class Grid

{

public:

Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<T, EMPTY>& src);
~Grid() ;
Grid<T, EMPTY>& operator=(const Grid<T, EMPTY>& rhs);

// Omitted for brevity

protected:
void copyFrom(const Grid<T, EMPTY>& src);
T** mCells;
int mWidth, mHeight;
Y

This definition is legal. You can use the type T from the first parameter as the type for the second param-
eter and nontype parameters can be const just like function parameters. You can use this initial value
for T to initialize each cell in the grid:

template <typename T, const T EMPTY>

Grid<T, EMPTY>::Grid(int inWidth, int inHeight)
mWidth (inwWwidth) , mHeight (inHeight)

{
mCells = new T* [mWidth];
for (int 1 = 0; i < mwidth; 1i++) {

mCells[i] = new T[mHeight];
for (int j = 0; j < mHeight; j++) {
mCells[i] [j] = EMPTY;

The other method definitions stay the same, except that you must add the second type parameter to the
template lines, and all the instances of Grid<T> become Grid<T, EMPTY>. After making those changes,
you can then instantiate an int Grid with an initial value for all the elements:

Grid<int, 0> myIntGrid;
Grid<int, 10> myIntGrid2;

The initial value can be any integer you want. However, suppose that you try to create a
SpreasheetCell Grid:

SpreadsheetCell emptyCell;
Grid<SpreadsheetCell, emptyCell> mySpreadsheet; // WILL NOT COMPILE

That line leads to a compiler error because you cannot pass objects as arguments to nontype parameters.

305

Chapter 11

Nontype parameters cannot be objects, or even doubles or floats. They are restricted
only to ints, enums, pointers, and references.

This example illustrates one of the vagaries of template classes: they can work correctly on one type but
fail to compile for another type.

Reference and Pointer Nontype Template Parameters

A more comprehensive way of allowing the user to specify an initial empty element for the grid uses a
reference to a T as the nontype template parameter. Here is the new class definition:

template <typename T, const T& EMPTY>

class Grid

{
// Everything else is the same as the previous example, except the
// template lines in the method definitions specify const T& EMPTY
// instead of const T EMPTY.

Y

Now you can instantiate this template class for any type. However, the reference you pass as the second
template argument must refer to a global variable with external linkage. External linkage can be thought
of as the opposite of static linkage, and just means that the variable is available in source files outside the
one in which it is defined. See Chapter 12 for more details. For now, it suffices to know that you can
declare that a variable has external linkage with the extern keyword:

extern const int x = 0;

Note that this line occurs outside of any function or method body. Here is a full program that declares
int and SpreadsheetCell grids with initialization parameters:

#include "GridRefNonType.h"
#include "SpreadsheetCell.h"

extern const int emptyInt = 0;
extern const SpreadsheetCell emptyCell(0);

int main(int argc, char** argv)

{
Grid<int, emptyInt> myIntGrid;
Grid<SpreadsheetCell, emptyCell> mySpreadsheet;
Grid<int, emptyInt> myIntGrid2 (myIntGrid) ;

return (0);

Reference and pointer template arguments must refer to global variables that are
available from all translation units. The technical term for these types of variables is
data with external linkage.

306

Writing Generic Code with Templates

Using Zero-Initialization of Template Types

Neither of the options presented so far for providing an initial empty value for the cells is very attrac-
tive. Instead, you may simply want to initialize each cell to a reasonable default value that you choose
(instead of allowing the user to specify). Of course, the immediate question is: what’s a reasonable value
for any possible type? For objects, a reasonable value is an object created with the default constructor. In
fact, that’s exactly what you're already getting when you create an array of objects. However, for simple
data types like int and double, and for pointers, a reasonable initial value is 0. Therefore, what you really
want to be able to do is assign 0 to nonobjects and use the default constructor on objects. You actually
saw the syntax for this behavior in the section on “Method Templates with Nontype Parameters.” Here
is the implementation of the Grid template constructor using the zero-initialization syntax:

template <typename T>
Grid<T>::Grid(int inWidth, int inHeight) : mWidth(inWidth), mHeight (inHeight)
{

mCells = new T* [mwidth];

for (int 1 = 0; 1 < mwidth; i++) {

mCells[i] = new T[mHeight];
for (int j = 0; j < mHeight; j++) {
mCells[i][j] = T();

Given this ability, you can revert to the original Grid class (without an EMPTY nontype parameter) and
just initialize each cell element to its zero-initialized “reasonable value.”

Template Class Partial Specialization

The char* class specialization shown in the first part of this chapter is called full class template specializa-
tion because it specializes the Grid template for every template parameter. There are no template param-
eters left in the specialization. That’s not the only way you can specialize a class; you can also write a
partial class specialization, in which you specialize some template parameters but not others. For example,
recall the basic version of the Grid template with width and height nontype parameters:

template <typename T, int WIDTH, int HEIGHT>

class Grid

{

public:

void setElementAt (int x, int y, const T& inElem);
T& getElementAt (int x, int vy);
const T& getElementAt (int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:

T mCells[WIDTH] [HEIGHT] ;
Y

307

Chapter 11

You could specialize this template class for char* C-style strings like this:

#include "Grid.h" // The file containing the Grid template definition shown above
#include <cstdlib>

#include <cstring>

using namespace std;

template <int WIDTH, int HEIGHT>
class Grid<char*, WIDTH, HEIGHT>
{
public:
Grid() ;
Grid(const Grid<char*, WIDTH, HEIGHT>& src);
~Grid() ;

Grid<char*, WIDTH, HEIGHT>& Grid<char*, WIDTH, HEIGHT>::operator=(
const Grid<char*, WIDTH, HEIGHT>& rhs);
void setElementAt (int x, int y, const char* inElem);
char* getElementAt (int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }
protected:
void copyFrom(const Grid<char*, WIDTH, HEIGHT>& src);
char* mCells [WIDTH] [HEIGHT] ;
Y

In this case, you are not specializing all the template parameters. Therefore, your template line looks like
this:

template <int WIDTH, int HEIGHT>
class Grid<char*, WIDTH, HEIGHT>

Note that the template has only two parameters: WIDTH and HEIGHT. However, you're writing a Grid
class for three arguments: T, WIDTH, and HEIGHT. Thus, your template parameter list contains two
parameters, and the explicit Grid<char *, WIDTH, HEIGHT> contains three arguments. When you
instantiate the template, you must still specify three parameters. You can’t instantiate the template with
only height and width:

Grid<int, 2, 2> myIntGrid; // Uses the original Grid
Grid<char*, 2, 2> myStringGrid; // Uses the partial specialization for char *s
Grid<2, 3> test; // DOES NOT COMPILE! No type specified.

Yes, the syntax is confusing. And it gets worse. In partial specializations, unlike in full specializations,
you include the template line in front of every method definition:

template <int WIDTH, int HEIGHT>
Grid<char*, WIDTH, HEIGHT>::Grid()
{
for (int 1 = 0; i < WIDTH; i++) {
for (int j = 0; j < HEIGHT; j++) {
// Initialize each element to NULL.
mCells[i][j] = NULL;

308

Writing Generic Code with Templates

You need this template line with two parameters to show that this method is parameterized on those

two parameters. Note that wherever you refer to the full class name, you must use Grid<char*,

WIDTH, HEIGHT>.

The rest of the method definitions follow:

template <int WIDTH, int HEIGHT>

Grid<char*, WIDTH, HEIGHT>::Grid(const Grid<char*,

{
copyFrom(src) ;

}

template <int WIDTH, int HEIGHT>

Grid<char*, WIDTH, HEIGHT>::~Grid()

{

for (int 1 = 0; 1 < WIDTH; i++)
for (int j = 0; j < HEIGHT;
delete [] mCells[i][j];

}

template <int WIDTH, int HEIGHT>

{

J++)

{

void Grid<char*, WIDTH, HEIGHT>: :copyFrom (
const Grid<char*, WIDTH, HEIGHT>& src)

{

int i, Jj;

for (1 = 0; i1 < WIDTH; i++) {

for (j = 0; j < HEIGHT; j++)

if (src.mCells[i][7] NULL)
mCells[i] [j] = NULL;
} else {

mCells[i] [j] = new char[strlen(src.mCells[i][]])
strcpy (mCells[i][J],

}

template <int WIDTH, int HEIGHT>

{

src.mCells[i][j]);

Grid<char*, WIDTH, HEIGHT>& Grid<char*,
const Grid<char*, WIDTH, HEIGHT>& rhs)

int i, Jj;

// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
for (i = 0; 1 < WIDTH; i++) {

for (j = 0; j < HEIGHT; j++)
delete [] mCells[il[j];

{

WIDTH, HEIGHT>::operator=(

WIDTH, HEIGHT>& src)

309

Chapter 11

// Copy the new memory.
copyFrom(rhs) ;
return (*this);

}

template <int WIDTH, int HEIGHT>
void Grid<char*, WIDTH, HEIGHT>::setElementAt (
int x, int y, const char* inElem)

delete[] mCells[x] [y];

if (inElem == NULL) {
mCells([x] [y] = NULL;

} else {
mCells[x] [y] = new char[strlen(inElem) + 1];
strcpy (mCells[x] [y], inElem);

}

template <int WIDTH, int HEIGHT>
char* Grid<char*, WIDTH, HEIGHT>::getElementAt (int x, int y) const

{
if (mCells[x][y] == NULL) {
return (NULL) ;

}
char* ret = new char[strlen(mCells[x]I[y]) + 11;
strcpy (ret, mCells([x][y]);

return (ret);

Another Form of Partial Specialization

The previous example does not show the true power of partial specialization. You can write specialized
implementations for a subset of possible types without specializing individual types. For example, you
can write a specialization of the Grid class for all pointer types. This specialization might perform deep
copies of objects to which pointers point instead of storing shallow copies of the pointers in the grid.

Here is the class definition, assuming that you're specializing the initial version of the Grid with only
one parameter:

#include "Grid.h"

template <typename T>

class Grid<T*>

{

public:

Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight) ;
Grid(const Grid<T*>& src);
~Grid() ;
Grid<T*>& operator=(const Grid<T*>& rhs);

void setElementAt (int x, int y, const T* inElem);
T* getElementAt (int x, int y) const;

310

Writing Generic Code with Templates

int getHeight() const { return mHeight;
int getWidth() const { return mwidth; }
static const int kDefaultWwidth = 10;
static const int kDefaultHeight = 10;
protected:

void copyFrom(const Grid<T*>& src);
T** mCells;
int mWidth, mHeight;

Y

As usual, these two lines are the crux of the matter:

template <typename T>
class Grid<T*>

}

The syntax says that this class is a specialization of the Grid template for all pointer types. At least that’s
what it’s telling the compiler. What it’s telling you and me is that the C++ standards committee should
have come up with a better syntax! Unless you’ve been working with it for a long time, it’s quite jarring.

You are providing the implementation only in cases where T is a pointer type. Note that if you instanti-
ate a grid like this: Grid<int*> myIntGrid, then T will actually be int, not int *. That’s a bit unintu-

itive, but unfortunately, the way it works. Here is a code example:

Grid<int*> psGrid(2, 2); // Uses the partial specialization for pointer types

int x = 3, y = 4;

psGrid.setElementAt (0, 0, &x);
psGrid.setElementAt (0, 1, &y);
psGrid.setElementAt (1, 0, &y);
psGrid.setElementAt (1, 1, &x);

Grid<int> myIntGrid; // Uses the nonspecialized grid

At this point, you're probably wondering whether this really works. We sympathize with your skepti-

cism. One of the authors was so surprised by this syntax when he first read about it that he didn’t

believe it actually worked until he was able to try it out. If you don’t believe us, try it out yourself! Here
are the method implementations. Pay close attention to the template line syntax before each method.

template <typename T>
const int Grid<T*>::kDefaultWidth;

template <typename T>
const int Grid<T*>::kDefaultHeight;

template <typename T>

Grid<T*>::Grid(int inWidth, int inHeight) : mWidth (inWidth), mHeight (inHeight)

{
mCells = new T* [mWidth];
for (int 1 = 0; 1 < mwidth; i++) {
mCells[i] = new T[mHeight];

311

Chapter 11

template <typename T>
Grid<T*>::Grid(const Grid<T*>& src)
{

copyFrom(src) ;

template <typename T>
Grid<T*>: :~Grid()

{
// Free the old memory.
for (int 1 = 0; 1 < mWidth; 1i++) {
delete [] mCells[i];
}
delete [] mCells;
}

template <typename T>
void Grid<T*>::copyFrom(const Grid<T*>& src)

{
int 1, 3;
mWidth = src.mwWidth;
mHeight = src.mHeight;
mCells = new T* [mWidth];
for (1 = 0; 1 < mwidth; i++) {
mCells[i] = new T[mHeight];
}
for (i = 0; i < mwidth; i++) {
for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][J];
}
}
}

template <typename T>
Grid<T*>& Grid<T*>::operator=(const Grid<T*>& rhs)

{
// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
for (int 1 = 0; 1 < mWidth; 1i++) {
delete [] mCells[i];
}
delete [] mCells;
// Copy the new memory.
copyFrom(rhs) ;
return (*this);
}

312

Writing Generic Code with Templates

template <typename T>
void Grid<T*>::setElementAt (int x, int y, const T* inElem)
{
mCells[x][y] = *inElem;
}

template <typename T>
T* Grid<T*>::getElementAt (int x, int y) const
{

T* newElem = new T(mCells[x]I[y]);

return (newElem) ;

Emulating Function Partial Specialization with
Overloading

The C++ standard does not permit partial template specialization of functions. Instead, you can over-
load the function with another template. The difference is subtle. Suppose that you want to write a spe-
cialization of the Find () function, presented earlier in this chapter, that dereferences the pointers to use

operator== directly on the objects pointed to. Following the syntax for class template partical special-
ization, you might be tempted to write this:

template <typename T>
int Find<T*>(T*& value, T** arr, int size)
{
for (int 1 = 0; 1 < size; 1i++) {
if (*arr[i] == *value) {
// Found it; return the index
return (i);
}
}
// Failed to Find it; return -1
return (-1);

However, that syntax declares a partial specialization of the function template, which the C++ standard

does not allow (although some compilers support it). The standard way to implement the behavior you
want is to write a new template for Find():

template <typename T>
int Find(T*& value, T** arr, int size)
{
for (int 1 = 0; 1 < size; 1++) {
if (*arr[i] == *value) {
// Found it; return the index
return (1);
}
}
// Failed to Find it; return -1
return (-1);

}

The difference might seem trivial and academic, but it makes the difference between portable, standard,
code and code that probably won’t compile.

313

Chapter 11

More on Deduction

You can define in one program the original Find () template, the overloaded Find () for partial special-
ization on pointer types, the complete specialization for char*s, and the overloaded Find () just for
char*s. The compiler will choose the appropriate version to call based on its deduction rules.

The compiler always chooses the “most specific” version of the function, with non-
template versions being preferred over template versions.

The following code calls the specified versions of Find ():

char* word = "two";
char* arr[4] = {"one", "two", "three", "four"};
int res;

int x = 3, intArr[4] = {1, 2, 3, 4};
double dl1 = 5.6, dArr([4] = {1.2, 3.4, 5.7, 7.5};

res = Find(x, intArr, 4); // Calls Find<int> by deduction
res = Find<int>(x, intArr, 4); // Call Find<int> explicitly
res = Find(dl, dArr, 4); // Call Find<double> by deduction

res = Find<double>(dl, dArr, 4); // Calls Find<double> explicitly

res = Find<char *>(word, arr, 4); // Calls template specialization for char*s
res = Find(word, arr, 4); // Calls the overloaded Find for char *s

int *px = &x, *pArr[2] = {&x, &X};
res = Find(px, pArr, 2); // Calls the overloaded Find for pointers

SpreadsheetCell c1(10), c2[2] = {SpreadsheetCell(4), SpreadsheetCell(10)};

res = Find(cl, c2, 2); // Calls Find<SpreadsheetCell> by deduction

res = Find<SpreadsheetCell>(cl, c2, 2); // Calls Find<SpreadsheetCell>
// explicitly

SpreadsheetCell *pcl = &cl;

SpreadsheetCell *psal2] = {&cl, &cl};

res = Find(pcl, psa, 2); // Calls the overloaded Find for pointers

Template Recursion

Templates in C++ provide capabilities that go far beyond the simple classes and functions you have seen
so far in this chapter. One of these capabilities is template recursion. This section first provides a motiva-
tion for template recursion, and then shows how to implement it.

This section employs some operator overloading features discussed in Chapter 16. If you are unfamiliar
with the syntax for overloading operator[], consult that chapter before continuing.

314

Writing Generic Code with Templates

An N-Dimensional Grid: First Attempt

The Grid template example earlier in this chapter supports only two dimensions, which limits its useful-
ness. What if you wanted to write a 3-D Tic-Tac-Toe game or write a math program with four-dimensional
matrices? You could, of course, write a template or nontemplate class for each of those dimensions.
However, that would repeat a lot of code. Another approach is to write only a single-dimensional grid.
Then, you could create a Grid of any dimension by instantiating the Grid with another Grid as its ele-
ment type. This Grid element type could itself be instantiated with a Grid as its element type, and so

on. Here is the implementation of the OneDGrid class template. It's simply a one-dimensional version of
the Grid template from the earlier examples, with the addition of a resize () method, and the substitu-
tion of operator[] for setElementAt () and getElementAt (). Production code, of course, would do
bounds-checking on the array access, and would throw an exception if something were amiss.

template <typename T>
class OneDGrid
{
public:
OneDGrid(int inSize = kDefaultSize);
OneDGrid(const OneDGrid<T>& src);
~OneDGrid() ;

OneDGrid<T> &operator=(const OneDGrid<T>& rhs) ;
void resize(int newSize) ;

T& operator[] (int x);

const T& operator[] (int x) const;

int getSize() const { return mSize; }

static const int kDefaultSize = 10;
protected:

void copyFrom(const OneDGrid<T>& src);

T* mElems;

int mSize;

¥

template <typename T>
const int OneDGrid<T>::kDefaultSize;

template <typename T>
OneDGrid<T>: :0neDGrid (int inSize) : mSize(inSize)
{

mElems = new T[mSize];

}

template <typename T>
OneDGrid<T>: :0neDGrid (const OneDGrid<T>& src)
{
copyFrom(src) ;
}

315

Chapter 11

template <typename T>
OneDGrid<T>: : ~OneDGrid ()
{

delete [] mElems;

template <typename T>
void OneDGrid<T>: :copyFrom(const OneDGrid<T>& src)

{
mSize = src.mSize;
mElems = new T[mSize];
for (int 1 = 0; i1 < mSize; i++) {
mElems[i] = src.mElems[i];
}
}

template <typename T>
OneDGrid<T>& OneDGrid<T>: :operator=(const OneDGrid<T>& rhs)
{
// Check for self-assignment.
if (this == &rhs) {
return (*this);

// Free the old memory.
delete [] mElems;

// Copy the new memory.
copyFrom(rhs) ;
return (*this);

template <typename T>
void OneDGrid<T>::resize(int newSize)
{

T* newElems = new T[newSize]; // Allocate the new array of the new size

// Handle the new size being smaller or bigger than the old size.

for (int 1 = 0; 1 < newSize && 1 < mSize; i++) {
// Copy the elements from the old array to the new one.
newElems[i] = mElems[i];

}

mSize = newSize; // Store the new size.

delete [] mElems; // Free the memory for the old array.

mElems = newElems; // Store the pointer to the new array.

template <typename T>
T& OneDGrid<T>::operator[] (int x)
{

return (mElems[x]);

316

Writing Generic Code with Templates

template <typename T>
const T& OneDGrid<T>::operator[] (int x) const
{

return (mElems[x]);

}
With this implementation of the OneDGrid, you can create multidimensional grids like this:

OneDGrid<int> singleDGrid;
OneDGrid<OneDGrid<int> > twoDGrid;
OneDGrid<OneDGrid<OneDGrid<int> > > threeDGrid;

3] =
3] =
10311

singleDGrid[
twoDGrid[3] [
threeDGrid[3

5
5p
3] = 5;

This code works fine, but the declarations are messy. We can do better.

A Real N-Dimensional Grid

You can use template recursion to write a “real” N-dimensional grid because dimensionality of grids is
essentially recursive. You can see that in this declaration:

OneDGrid<OneDGrid<OneDGrid<int> > > threeDGrid;

You can think of each nesting oneDGrid as a recursive step, with the OneDGrid of int as the base case.
In other words, a three-dimensional grid is a single-dimensional grid of single-dimensional grids of
single-dimensional grids of ints. Instead of requiring the user to do this recursion, you can write a tem-
plate class that does it for you. Then, you can create N-dimensional grids like this:

NDGrid<int, 1> singleDGrid;
NDGrid<int, 2> twoDGrid;
NDGrid<int, 3> threeDGrid;

The NDGrid template class takes a type for its element and an integer specifying its “dimensionality.”
The key insight here is that the element type of the NDGrid is not the element type specified in the tem-
plate parameter list, but is in fact another NDGrid of dimensionality one less than the current. In other
words, a three-dimensional grid is an array of two-dimensional grids; the two-dimensional grids are
each arrays of one-dimensional grids.

With recursion, you need a base case. You can write a partial specialization of the NDGrid for dimension-
ality of 1, in which the element type is not another NDGrid, but is in fact the element type specified by
the template parameter.

Here is the general NDGrid template definition, with highlights showing where it differs from the
OneDGrid shown above:

template <typename T, int N>
class NDGrid
{

public:

317

Chapter 11

) 5
int inSize);

const NDGrid<T, N>& src);
();

NDGrid (
NDGrid (
NDGrid (
~NDGrid

NDGrid<T, N>& operator=(const NDGrid<T, N>& rhs);
void resize(int newSize);
NDGrid<T, N-1>& operator[] (int x);
const NDGrid<T, N-1>& operator[] (int x) const;
int getSize() const { return mSize; }
static const int kDefaultSize = 10;
protected:
void copyFrom(const NDGrid<T, N>& src);
NDGrid<T, N-1>* mElems;
int mSize;

bi

Note that mElems is a pointer to an NDGrid<T, N-1>: this is the recursive step. Also, operator[]
returns a reference to the element type, which is again NDGrid<T, N-1>,notT.

Here is the template definition for the base case:

template <typename T>
class NDGrid<T, 1>
{
public:
NDGrid(int inSize = kDefaultSize);
NDGrid (const NDGrid<T, 1>& src);
~NDGrid() ;
NDGrid<T, 1>& operator=(const NDGrid<T, 1>& rhs);
void resize(int newSize);
T& operator[] (int x);
const T& operator[] (int x) const;
int getSize() const { return mSize; }
static const int kDefaultSize = 10;
protected:
void copyFrom(const NDGrid<T, 1>& src);
T* mElems;
int mSize;

Y
Here the recursion ends: the element type is T, not another template instantiation.

The trickiest aspect of the implementations, other than the template recursion itself, is appropriately siz-
ing each dimension of the array. This implementation creates the N-dimensional array with every
dimension of equal size. It’s significantly more difficult to specify a separate size for each dimension.
However, even with this simplification, there is still a problem: the user should have the ability to create
the array with a specified size, such as 20 or 50. Thus, one constructor takes an integer size parameter.
However, when you dynamically allocate the nested array of grids, you cannot pass this size value on to
the grids because arrays create objects using their default constructor. Thus, you must explicitly call
resize () on each grid element of the array. That code follows, with the default and one-argument con-
structors separated for clarity.

318

Writing Generic Code with Templates

The base case doesn’t need to resize its elements because the elements are Ts, not grids.

Here are the implementations of the main NDGrid template, with highlights showing the differences
from the OneDGrid:

template <typename T, int N>
const int NDGrid<T, N>::kDefaultSize;

template <typename T, int N>
NDGrid<T, N>::NDGrid(int inSize) : mSize(inSize)
{
mElems = new NDGrid<T, N-1>[mSize];
// Allocating the array above calls the 0-argument
// constructor for the NDGrid<T, N-1>, which constructs
// it with the default size. Thus, we must explicitly call
// resize() on each of the elements.
for (int 1 = 0; 1 < mSize; 1i++) {
mElems[i] .resize(inSize) ;

template <typename T, int N>
NDGrid<T, N>::NDGrid() : mSize (kDefaultSize)
{

mElems = new NDGrid<T, N-1>[mSize];

template <typename T, int N>
NDGrid<T, N>::NDGrid(const NDGrid<T, N>& src)
{

copyFrom(src) ;

template <typename T, int N>
NDGrid<T, N>::~NDGrid()
{

delete [] mElems;

template <typename T, int N>
void NDGrid<T, N>::copyFrom(const NDGrid<T, N>& src)
{
mSize = src.mSize;
mElems = new NDGrid<T, N-1>[mSize];
for (int 1 = 0; 1 < mSize; 1i++) {
mElems[i] = src.mElems[i];

template <typename T, int N>
NDGrid<T, N>& NDGrid<T, N>::operator=(const NDGrid<T, N>& rhs)

319

Chapter 11

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
delete [] mElems;
// Copy the new memory.
copyFrom(rhs) ;
return (*this);

template <typename T, int N>
void NDGrid<T, N>::resize(int newSize)
{
// Allocate the new array with the new size.
NDGrid<T, N - 1>* newElems = new NDGrid<T, N - 1>[newSize];
// Copy all the elements, handling the cases where newSize is
// larger than mSize and smaller than mSize.
for (int 1 = 0; 1 < newSize && 1 < mSize; i++) {
newElems[i] = mElems[i];
// Resize the nested Grid elements recursively.
newElems[1i] .resize (newSize) ;
}
// Store the new size and pointer to the new array.
// Free the memory for the old array first.
mSize = newSize;
delete [] mElems;
mElems = newElems;

template <typename T, int N>
NDGrid<T, N-1>& NDGrid<T, N>::operator[] (int x)
{

return (mElems[x]);

template <typename T, int N>
const NDGrid<T, N-1>& NDGrid<T, N>::operator[] (int x) const
{

return (mElems[x]);

Here are the implementations of the partial specialization (base case). Note that you must rewrite a lot
of the code because you don’t inherit any implementations with specializations. Highlights show the
differences from the nonspecialized NDGrid.

template <typename T>
const int NDGrid<T, 1>::kDefaultSize;

template <typename T>
NDGrid<T, 1>::NDGrid(int inSize) : mSize(inSize)
{

mElems = new T[mSize];

320

Writing Generic Code with Templates

template <typename T>
NDGrid<T, 1>::NDGrid(const NDGrid<T,
{

1>& src)

copyFrom(src) ;

template <typename T>
NDGrid<T, 1>::~NDGrid()
{

delete [] mElems;

template <typename T>
void NDGrid<T, 1>::copyFrom(const NDGrid<T, 1>& src)
{
mSize = src.mSize;
mElems = new T[mSize];
for (int 1 = 0; i < mSize; i++) {
mElems[i] = src.mElems([i];

template <typename T>
NDGrid<T, 1>& NDGrid<T, 1>::operator=(const NDGrid<T,
{
// Check for self-assignment.
if (this == &rhs) {
return (*this);
}
// Free the old memory.
delete [] mElems;
// Copy the new memory.
copyFrom(rhs) ;
return (*this);

template <typename T>
void NDGrid<T, 1>::resize(int newSize)
{

T*

newElems = new T[newSize];

1 < newSize && 1 < mSize; 1i++) {

mElems [1];

for (int 1 = 0;

newElems[i] =

1>& rhs)

// Don't need to resize recursively, because this is the base case.

}

mSize = newSize;
delete [] mElems;
mElems = newElems;

template <typename T>
T& NDGrid<T, 1>::operator[] (int x)
{

return (mElems([x]);

321

Chapter 11

template <typename T>
const T& NDGrid<T, 1>::operator[] (int x) const
{

return (mElems[x]);

}
Now, you can write code like this:

NDGrid<int, 3> my3DGrid;
my3DGrid([2] [1][2] = 5;
my3DGrid[1][1] [1] = 5;

cout << my3DGrid[2][1][2] << endl;

Summary

This chapter taught you how to use templates for generic programming. We hope that you gained an
appreciation for the power and capabilities of these features, and an idea of how you could apply these
concepts to your own code. Don’t worry if you didn’t understand all the syntax, or follow all the exam-
ples, on your first reading. The concepts can be difficult to grasp when you are first exposed to them,
and the syntax is so tricky that the authors of this book consult a reference whenever they want to write
templates. When you actually sit down to write a template class or function, you can consult this chapter
for a reference on the proper syntax.

This chapter is the main preparation for Chapters 21, 22, and 23 on the standard template library. You

can skip straight to Chapters 21 to 23 if you want to read about the STL immediately, but we recommend
reading the rest of the chapters in Parts II and III first.

322

|

Understanding C++ Quirks
and Oddities

Many parts of the C++ language have tricky syntax or quirky semantics. As a C++ programmer,
you grow accustomed to most of this idiosyncratic behavior; it starts to feel natural. However,
some aspects of C++ are a source of perennial confusion. Either books never explain them thor-
oughly enough, or you forget how they work and continually look them up, or both. This chapter
addresses this gap by providing clear explanations for some of C++’s most niggling quirks and
oddities.

Many language idiosyncrasies are covered in various chapters throughout this book. This chapter
tries not to repeat those topics, by limiting itself to subjects that are not covered in detail elsewhere
in the book. There is a bit of redundancy with other chapters, but the material is “sliced” in a dif-
ferent way in order to provide you with a new perspective.

The topics of this chapter include references, const, static, extern, typedefs, casts, scope reso-
lution, header files, variable-length argument lists, and preprocessor macros. Although this list
might appear to be a hodgepodge of topics, it is a carefully selected collection of some of the most
confusing, but commonly used, aspects of the language.

References

Professional C++ code, including much of the code in this book, uses references extensively. It is
helpful to step back and think about what exactly references are, and how they behave.

A reference in C++ is an alias for another variable. All modifications to the reference change the
value of the variable to which it refers. You can think of references as implicit pointers that save
you the trouble of taking the address of variables and dereferencing the pointer. Alternatively, you

Chapter 12

can think of references as just another name for the original variable. You can create stand-alone refer-
ence variables, use reference data members in classes, accept references as parameters to functions and
methods and return references from functions and methods.

Reference Variables

Reference variables must be initialized as soon as they are created, like this:

int x = 3;
int& xRef = x;

Subsequent to this assignment, xRef is another name for x. Any use of xRef uses the current value of x.
Any assignment to xRef changes the value of x. For example, the following code sets x to 10 through
xRef:

xRef = 10;

You cannot declare a reference variable outside of a class without initializing it:

int& emptyRef; // DOES NOT COMPILE!

You must always initialize a reference when it is allocated. Usually, references are
allocated when they are declared, but reference data members can be initialized in
the initializer list for the containing class.

You cannot create a reference to an unnamed value such as an integer literal, unless the reference is to a
const value:

int& unnamedRef = 5; // DOES NOT COMPILE
const int& unnamedRef = 5; // Works as expected

Modifying References

A reference always refers to the same variable to which it is initialized; references cannot be changed
once they are created. This rule leads to some confusing syntax. If you “assign” a variable to a reference
when the reference is declared, the reference refers to that variable. However, if you assign a variable to
a reference after that, the variable to which the reference refers is changed to the value of the variable
being assigned. The reference is not updated to refer to that variable. Here is a code example:

int x = 3, y = 4;
int& xRef = x;
xRef = y; // Changes value of x to 4. Doesn't make xRef refer to y.
You might try to circumvent this restriction by taking the address of y when you assign it:
int x = 3, y = 4;

int& xRef = x;
xRef = &y; // DOES NOT COMPILE!

324

Understanding C++ Quirks and Oddities

This code does not compile. The address of vy is a pointer, but xRef is declared as a reference to an int,
not a reference to a pointer.

Some programmers go even further in attempts to circumvent the intended semantics of references.
What if you assign a reference to a reference? Won't that make the first reference refer to the variable to
which the second reference refers? You might be tempted to try this code:

int x = 3, z = 5;

int& xRef = x;

int& zRef = z;

zRef = xRef; // Assigns values, not references

The final line does not change zRef. Instead, it sets the value of z to 3, because xRef refers to x, which is 3.

You cannot change the variable to which a reference refers after it is initialized; you
can only change the value of that variable.

References to Pointers and Pointers to References

You can create references to any type, including pointer types. Here is an example of a reference to a
pointer to int:

int* intP;

int*& ptrRef = intP;
ptrRef = new int;
*ptrRef = 5;

The syntax is a little strange: you might not be accustomed to seeing * and & right next to each other.
However, the semantics are straightforward: ptrRef is a reference to intP, which is a pointer to int.
Modifying ptrRef changes intP. References to pointers are rare, but can occasionally be useful, as dis-
cussed in the “Reference Parameters” section later in this chapter.

Note that taking the address of a reference gives the same result as taking the address of the variable to
which the reference refers. For example:

int x = 3;

int& xRef = x;

int* xPtr = &xRef; // Address of a reference is pointer to value
*xPtr = 100;

This code sets xPtr to point to x by taking the address of a reference to x. Assigning 100 to *xpPtr
changes the value of x to 100.

Finally, note that you cannot declare a reference to a reference or a pointer to a reference:

int x = 3;

int& xRef = x;

int&& xDoubleRef = xRef; // DOES NOT COMPILE!
int&* refPtr = &xRef; // DOES NOT COMPILE!

325

Chapter 12

Reference Data Members

As you learned in Chapter 9, data members of classes can be references. A reference cannot exist without
referring to some other variable. Thus, you must initialize reference data members in the constructor ini-
tialization list, not in the body of the constructor. Consult Chapter 9 for details.

Reference Parameters

C++ programmers do not often use stand-alone reference variables or reference data members. The most
common use of references is for parameters to functions and methods. Recall that the default parameter-
passing semantics are pass-by-value: functions receive copies of their arguments. When those parame-
ters are modified, the original arguments remain unchanged. References allow you to specify alternative
pass-by-reference semantics for arguments passed to the function. When you use reference parameters,
the function receives references to the function arguments. If those references are modified, the changes
are reflected in the original argument variables. For example, here is a simple swap function to swap the
values of two ints:

void swap (int& first, int& second)
{

int temp = first;

first = second;

second = temp;

You can call it like this:

int x =5, y = 6;
swap (x, Y);

When the function swap () is called with the arguments x and y, the £irst parameter is initialized to
refer to x, and the second parameter is initialized to refer to y. When swap () modifies first and
second, x and y are actually changed.

Just as you can’t initialize normal reference variables with constants, you can’t pass constants as argu-
ments to functions that employ pass-by-reference:

swap (3, 4); // DOES NOT COMPILE

References from Pointers

A common quandary arises when you have a pointer to something that you need to pass to a function or
method that takes a reference. You can “convert” a pointer to a reference in this case simply by derefer-
encing the pointer. This action gives you the value to which the pointer points, which the compiler then
uses to initialize the reference parameter. For example, you can call swap () like this:

int x =5, y = 6;

int *xp &X, *yp = &Y
swap (*xp, *yp);

326

Understanding C++ Quirks and Oddities

Pass-by-Reference versus Pass-by-Value

Pass-by-reference is required when you want to modify the parameter and see those changes reflected
in the variable argument to the function or method However, you should not limit your use of pass-by-
reference to only those cases. Pass-by-reference avoids copying the argument to the function, providing
two additional benefits in some cases:

1. Efficiency: large objects and structs could take a long time to copy. Pass-by-reference passes
only a pointer to the object or struct into the function.

2. Correctness: not all objects allow pass-by-value. Even those that do allow it might not support
deep copying correctly. As you learned in Chapter 9, objects with dynamically allocated mem-
ory must provide a custom copy constructor in order to support deep copying.

If you want to leverage these benefits, but do not want to allow the original objects to be modified, you
can mark the parameters const. This topic is covered in detail later in this chapter.

These benefits to pass-by-reference imply that you should use pass-by-value only for simple built-in
types like int and double for which you don’t need to modify the arguments. Use pass-by-reference in
all other cases.

Reference Return Values

You can also return a reference from a function or method. The main reason to do so is efficiency. Instead
of returning a whole object, return a reference to the object to avoid copying it unnecessarily. Of course,
you can only use this technique if the object in question will continue to exist following the function
termination.

Never return a reference to a variable, such as an automatically allocated variable on
the stack, that will be destroyed when the function ends.

A second reason to return a reference is if you want to be able to assign to the return value directly as an
lvalue (the left-hand side of an assignment statement).

Several overloaded operators commonly return references. You saw some examples in Chapter 9, and
can read about more applications of this technique in Chapter 16.

Deciding between References and Pointers

References in C++ are mostly superfluous: almost everything you can do with references, you can
accomplish with pointers. For example, you could write the previously shown swap () function like this:

void swap (int* first, int* second)
{

int temp = *first;

*first = *second;

*second = temp;

327

Chapter 12

However, this code is more cluttered than the version with references: references make your programs
cleaner and easier to understand. References are also safer than pointers: it’s impossible to have an
invalid reference, and you don’t explicitly dereference references, so you can’t encounter any of the
dereferencing errors associated with pointers. Most of the time, you can use references instead of point-
ers. References to objects even support polymorphism in the same way as pointers to objects. The only
case in which you need to use a pointer is when you need to change the location to which it points.
Recall that you cannot change the variable to which references refer. For example, when you dynami-
cally allocate memory, you need to store a pointer to the result in a pointer rather than a reference.

Another way to distinguish between appropriate use of pointers and references in parameters and
return types is to consider who owns the memory. If the code receiving the variable is responsible for
releasing the memory associated with an object, it must receive a pointer to the object. If the code receiv-
ing the variable should not free the memory, it should receive a reference.

Use references instead of pointers unless you need to dynamically allocate memory
or otherwise change, or free, the value to which the pointer points.

This rule applies to stand-alone variables, function or method parameters, and function or method
return values.

Strict application of this rule can lead to some unfamiliar syntax. Consider a function that splits an array
of ints into two arrays: one of even numbers and one of odd numbers. The function doesn’t know how
many numbers in the source array will be even or odd, so it should dynamically allocate the memory for
the destination arrays after examining the source array. It should also return the sizes of the two new
arrays. Altogether, there are four items to return: pointers to the two new arrays and the sizes of the two
new arrays. Obviously, you must use pass-by-reference. The canonical C way to write the function looks
like this:

void separateOddsAndEvens (const int arr[], int size, int** odds, int* numOdds,
int** evens, int* numEvens)
{
int i;
// First pass to determine array sizes
*numOdds = *numEvens = 0;
for (i = 0; 1 < size; i++) {

if (arr[i] % 2 == 1) {
(*numOdds) ++;
} else {

(*numEvens) ++;
}
}

// Allocate two new arrays of the appropriate size.
*odds = new int[*numOdds];
*evens = new int[*numEvens];

328

Understanding C++ Quirks and Oddities

// Copy the odds and evens to the new arrays
int oddsPos = 0, evensPos = 0;

for (1 = 0; 1 < size; 1i++) {
if (arr[i] % 2 == 1) {
(*odds) [oddsPos++] = arr[i];
} else {
(*evens) [evensPos++] = arr[i];
}
}

The final four parameters to the function are the “reference” parameters. In order to change the values to
which they refer, separateoddsAndEvens () must dereference them, leading to some ugly syntax in the
function body.

Additionally, when you want to call separate0ddsAndEvens (), you must pass the address of two
pointers so that the the function can change the actual pointers, and the address of two ints so that the
function can change the actual ints:

int unSplit[10] = {1, 2, 3, 4, 5, 6, 6, 8, 9, 10};
int *oddNums, *evenNums;
int numOdds, numEvens;

separateOddsAndEvens (unSplit, 10, &oddNums, &numOdds, &evenNums, &numEvens) ;

If such syntax annoys you (which it should), you can write the same function using references to obtain
true pass-by-reference semantics:

void separateOddsAndEvens (const int arr[], int size, int*& odds, int& numOdds,
int*& evens, int& numEvens)
{
int 1i;
numOdds = numEvens = 0;
for (1 = 0; 1 < size; 1i++) {
if (arrf[i] % 2 == 1) {
numOdds++;
} else {
numEvens++;
}
}

odds = new int[numOdds];
evens = new int[numEvens];

int oddsPos = 0, evensPos = 0;
for (1 = 0; 1 < size; i++) {

if (arr[i] % 2 == 1) {

odds [oddsPos++] = arr[i];
} else {

evens [evensPos++] = arr[i];
}

329

Chapter 12

In this case, the odds and evens parameters are references to int*s. separate0ddsAndEvents () can
modify the int*s that are used as arguments to the function (through the reference), without any
explicit dereferencing. The same logic applies to numodds and numEvens, which are references to ints.

With this version of the function, you no longer need to pass the addresses of the pointers or ints. The
reference parameters handle it for you automatically:

int unSplit[10] = {1, 2, 3, 4, 5, 6, 6, 8, 9, 10};
int *oddNums, *evenNums;
int numOdds, numEvens;

separateOddsAndEvens (unSplit, 10, oddNums, numOdds, evenNums, numEvens) ;

Keyword Confusion

Two keywords in C++ appear to cause more confusion than any others: const and static. Both of
these keywords have several different meanings, and each of their uses presents subtleties that are
important to understand.

The const Keyword

The keyword const is short for “constant” and specifies, or requires, that something remain unchanged.
As you've seen in various places in this book, and probably in real-world code, there are two different,
but related, uses of the const keyword: for marking variables and for marking methods. This section
provides a definitive discussion of these two meanings.

const Variables

You can use const to “protect” variables by specifying that they cannot be modified. As you learned in
Chapters 1 and 7, one important use of this keyword is as a replacement for #define to declare con-
stants. This use of const is its most straightforward application. For example, you could declare the con-
stant PI like this:

const double PI = 3.14159;
You can mark any variable const, including global variables and class data members.

You can also use const to specify that parameters to functions or methods should remain unchanged.
You've seen examples of this application in Chapters 1 and 9, and other places throughout the book.

const Pointers
When a variable contains one or more levels of indirection via a pointer, applying const becomes trick-

ier. Consider the following lines of code:

int* ip;
ip = new int[10];
ip[4] = 5;

330

Understanding C++ Quirks and Oddities

Suppose that you decide to apply const to ip. Set aside your doubts about the usefulness of doing so
for a moment, and consider what it means. Do you want to prevent the ip variable itself from being
changed, or do you want to prevent the values to which it points from being changed? That is, do you
want to prevent the second line or the third line in the previous example?

In order to prevent the pointed-to value from being modified (as in the third line), you can add the key-
word const to the declaration of ip like this:

const int* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!
Now you cannot change the values to which ip points.
Alternatively, you can write this:
int const* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!
Putting the const before or after the int makes no difference in its functionality.
If you want instead to mark ip itself const (not the values to which it points), you need to write this:
int* const ip = NULL;
ip = new int[10]; // DOES NOT COMPILE!
ip[4] = 5;
Now that ip itself cannot be changed, the compiler requires you to initialize it when you declare it.
You can also mark both the pointer and the values to which it points const like this:
int const* const ip = NULL;
An alternative syntax is the following:

const int* const ip = NULL;

Although this syntax might seem confusing, there is actually a very simple rule: the const keyword
applies to whatever is directly to its left. Consider this line again:

int const* const ip = NULL;
From left to right, the first const is directly to the right of the word int. Thus, it applies to the int to
which ip points. Therefore, it specifies that you cannot change the values to which ip points. The sec-

ond const is directly to the right of the *. Thus, it applies to the pointer to the int, which is the ip vari-
able. Therefore, it specifies that you cannot change ip (the pointer) itself.

331

Chapter 12

const applies to the level of indirection directly to its left.

The reason this rule becomes confusing is an exception: the first const can go before the variable like
this:

const int* const ip = NULL;
This “exceptional” syntax is used much more commonly than the other syntax.
You can extend this rule to any number of levels of indirection. For example:

const int * const * const * const ip = NULL;

const References

const applied to references is usually simpler than const applied to pointers for two reasons. First, ref-
erences are const by default, in that you can’t change to what they refer. So, C++ does not allow you to
mark a reference variable explicitly const. Second, there is usually only one level of indirection with ref-
erences. As explained earlier, you can’t create a reference to a reference. The only way to get multiple
levels of indirection is to create a reference to a pointer.

Thus, when C++ programmers refer to a “const reference,” they mean something like this:

int z;
const int& zRef = z;
zRef = 4; // DOES NOT COMPILE

By applying const to the int, you prevent assignment to zRef, as shown. Remember that const ints&
zRef is equivalent to int const& zRef. Note, however, that marking zRef const has no effect on z.
You can still modify the value of z by changing it directly instead of through the reference

const references are used most commonly as parameters, where they are quite useful. If you want to
pass something by reference for efficiency, but don’t want it to be modifiable, make it a const reference.
For example:

void doSomething(const BigClass& arg)
{

// Implementation here

}

Your default choice for passing objects as parameters should be const reference.
Only if you explicitly need to change the object should you omit the const.

332

Understanding C++ Quirks and Oddities

const Methods

As you read in Chapter 9, you can mark a class method const. That specification prevents the method
from modifying any non-mutable data members of the class. Consult Chapter 9 for an example.

The static Keyword

Although there are several uses of the keyword const in C++, all the uses are related and make sense if
you think of const as meaning “unchanged.” static is a different story: there are three uses of the key-
word in C++, all seemingly unrelated.

Static Data Members and Methods

As you read in Chapter 9, you can declare static data members and methods of classes. static data mem-
bers, unlike non-static data members, are not part of each object. Instead, there is only one copy of the
data member, which exists outside any objects of that class.

static methods are similarly at the class level instead of the object level. A static method does not exe-
cute in the context of a specific object.

Chapter 9 provides examples of both static members and methods.

Static Linkage

Before covering the use of the static keyword for linkage, you need to understand the concept of link-
age in C++. As you learned in Chapter 1, C++ source files are each compiled independently, and the
resulting object files are linked together. Each name in a C++ source file, including functions and global
variables, has a linkage that is either internal or external. External linkage means that the name is avail-
able from other source files. Internal linkage (also called static linkage) means that it is not. By default,
functions and global variables have external linkage. However, you can specify internal (or static) link-
age by prefixing the declaration with the keyword static. For example, suppose you have two source
files: FirstFile.cpp and AnotherFile.cpp. Hereis FirstFile.cpp:

// FirstFile.cpp
void f();
int main(int argc, char** argv)
{
£();

return (0);

}

Note that this file provides a prototype for £ (), but doesn’t show the definition.

333

Chapter 12

Here is AnotherFile. cpp:
// AnotherFile.cpp

#include <iostream>
using namespace std;

void f();

void f()
{
cout << "f\n";

}

This file provides both a prototype and a definition for £ (). Note that it is legal to write prototypes for
the same function in two different files. That’s precisely what the preprocessor does for you if you put
the prototype in a header file that you #include in each of the source files. The reason to use header
files is that it’s easier to maintain (and keep synchronized) one copy of the prototype. However, for this
example we don’t use a header file.

Each of these source files compiles without error, and the program links fine: because £ () has external
linkage, main () can call it from a different file.

However, suppose you apply static to £() inAnotherFile.cpp:

// AnotherFile.cpp
#include <iostream>
using namespace std;

static void f();

void f()
{
cout << "f\n";

}

Now each of the source files compiles without error, but the linker step fails because £ () has internal
(static) linkage, making it unavailable from FirstFile. cpp. Some compilers issue a warning when
static methods are defined but not used in that source file (implying that they shouldn’t be static,
because they’re probably used elsewhere).

Note that you don’t need to repeat the static keyword in front of the definition of £ (). As long as it
precedes the first instance of the function name, there is no need to repeat it.

Now that you've learned all about this use of static, you will be happy to know that the C++ commit-
tee finally realized that static was too overloaded, and deprecated this particular use of the keyword.

That means that it continues to be part of the standard for now, but is not guaranteed to be in the future.
However, much legacy C++ code still uses static in this way.

334

Understanding C++ Quirks and Oddities

The supported alternative is to employ anonymous namespaces to achieve the same affect. Instead of
marking a variable or function static, wrap it in an unnamed namespace like this:

// AnotherFile.cpp
#include <iostream>
using namespace std;

namespace {
void f();

void f()
{
cout << "f\n";

}

Entities in an anonymous namespace can be accessed anywhere following their declaration in the same
source file, but cannot be accessed from other source files. These semantics are the same as those
obtained with the static keyword.

The extern Keyword

A related keyword, extern, seems like it should be the opposite of static, specifying external linkage
for the names it precedes. It can be used that way in certain cases. For example, consts and typedefs
have internal linkage by default. You can use extern to give them external linkage.

However, extern has some complications. When you specify a name as extern, the compiler treats it as
a declaration, not a definition. For variables, this means the compiler doesn’t allocate space for the vari-
able. You must provide a separate definition line for the variable without the extern keyword. For
example:

// AnotherFile.cpp
extern int x;
int x = 3;

Alternatively, you can initialize x in the extern line, which then serves as the declaration and definition:

// AnotherFile.cpp
extern int x = 3;

The extern in this file is not very useful, because x has external linkage by default anyway. The real use
of extern is when you want to use x from another source file:

// FirstFile.cpp
#include <iostream>
using namespace std;

extern int x;
int main(int argc, char** argv)

{

cout << X << endl;

}

335

Chapter 12

Here FirstFile.cpp uses an extern declaration so that it can use x. The compiler needs a declaration
of x in order to use it inmain () . However, if you declared x without the extern keyword, the compiler
would think it’s a definition and would allocate space for %, causing the linkage step to fail (because
there are now two x variables in the global scope). With extern, you can make variables globally acces-
sible from multiple source files.

However, we do not recommend using global variables at all. They are confusing and error-prone, espe-
cially in large programs. For similar functionality, you should use static class members and methods.

static Variables in Functions

The final use of the static keyword in C++ is to create local variables that retain their values between
exits and entrances to their scope. A static variable inside a function is like a global variable that is only
accessible from that function. One common use of static variables is to “remember” whether a particular
initialization has been performed for a certain function. For example, code that employs this technique
might look something like this:

void performTask ()
{

static bool inited = false;

if (!'inited) {
cout << "initing\n";
// Perform initialization.
inited = true;

}

// Perform the desired task.

However, static variables are confusing, and there are usually better ways to structure your code so
that you can avoid them. In this case, you might want to write a class in which the constructor performs
the required initialization.

Avoid using stand-alone static variables. Maintain state within an object instead.

Order of Initialization of Nonlocal Variables

Before leaving the topic of static data members and global variables, consider the order of initializa-

tion of these variables. All global variables and static class data members in a program are initialized
before main () begins. The variables in a given source file are initialized in the order they appear in the
source file. For example, in the following file Demo: : x is guaranteed to be initialized before y.

// sourcel.cpp

class Demo
{
public:
static int x;

iy

336

Understanding C++ Quirks and Oddities

int Demo::x = 3;
int y = 4;

However, C++ provides no specifications or guarantees about the initialization ordering of nonlocal
variables in different source files. If you have a global variable x in one source file and a global variable y
in another, you have no way of knowing which will be initialized first. Normally, this lack of specifica-
tion isn’t cause for concern. However, it can be problematic if one global or static variable depends on
another. Recall that initialization of objects implies running their constructors. The constructor of one
global object might access another global object, assuming that it is already constructed. If these two
global objects are declared in two different source files, you cannot count on one being constructed
before the other.

Initialization order of nonlocal variables in different source files is undefined.

Types and Casts

Chapter 1 reviewed the basic types in C++. Chapter 8 showed you how to write your own types with
classes. This section explores two of the trickier aspects of types: typedefs and casts.

typedefs

A typedef provides a new name for an existing type. You can think of a typedef simply as syntax for
introducing a synonym for an existing type name. typedefs do not create new types — they only pro-
vide a new way to refer to an old type. You can use the new type name and the old type name inter-
changeably. Variables created with the new type name are completely compatible with those created
with the original type name.

You might be surprised at the simplicity of the previous paragraph’s definition for typedefs. You've prob-
ably used typedefs in your code, or at least seen code that uses them, and they didn’t seem that easy.
However, if you examine all the uses, you will see that they are simply providing alternate typenames.

The most common use of typenames is to provide manageable names when the real typenames become
too unwieldy. This situation commonly arises with templates. For example, suppose you want to use the
Grid template from Chapter 11 to create a spreadsheet, which is a Grid of SpreadsheetcCells. Without
typedefs, anytime you want to refer to the type of this Grid, for declaring variables, specifying func-
tion parameters, and so on, you would have to write Grid<SpreadsheetCell>:

int main(int argc, char** argv)

{
Grid<SpreadsheetCell> mySpreadsheet;
// Rest of the program .

}

void processSpreadsheet (const Grid<SpreadsheetCell>& spreadsheet)

{
// Body omitted
}

337

Chapter 12

With a typedef, you can create a shorter, more meaningful, name:
typedef Grid<SpreadsheetCell> Spreadsheet;

int main(int argc, char** argv)
{
Spreadsheet mySpreadsheet;
// Rest of the program .
}

void processSpreadsheet (const Spreadsheet& spreadsheet)

{
// Body omitted
}

One tricky aspect of typedefs is that the typenames can include the scope qualifiers. For example, in
Chapter 9, you saw this typedef:

typedef Spreadsheet::SpreadsheetCell SCell;

This typedef creates a short name Scell to refer to the SpreadsheetCell type inside the
Spreadsheet scope.

The STL uses typedefs extensively to provide shorter names for types. For example, string is actually
a typdef that looks like this:

typedef basic_string<char> string;

Casts

As explained in Chapter 1, the old-style C casts with () still work in C++. However, C++ also provides
four new casts: static_cast, dynamic_cast, const_cast, and reinterpret_cast. You should use
the C++ style casts instead of the old C-style casts because they perform more type checking and stand
out better syntactically in your code.

This section describes the purposes for each cast and specifies when you would use each of them.

const_cast

The const_cast is the most straightforward. You can use it to cast away const-ness of a variable. It is
the only cast of the four that is allowed to cast away const-ness. Theoretically, of course, there should be
no need for a const cast. If a variable is const, it should stay const. In practice, however, you some-
times find yourself in a situation where a function is specified to take a const variable, which it must
then pass to a function that takes a non-const variable. The “correct” solution would be to make const
consistent in the program, but that is not always an option, especially if you are using third-party
libraries. Thus, you sometimes need to cast away the const-ness of a variable. Here is an example:

void g(char* str)
{

// Function body omitted for brevity
}

338

Understanding C++ Quirks and Oddities

void f (const char* str)

{
// Function body omitted for brevity
g(const_cast<char*>(str));
// Function body omitted for brevity

static_cast

You can use the static_cast to perform explicitly conversions that are supported directly by the lan-
guage. For example, if you write an arithmetic expression in which you need to convert an int to a
double in order to avoid integer division, use a static_cast:

int 1 = 3;
double result = static_cast<double> (i) / 10;

You can also use static_cast to perform explicitly conversions that are allowed because of user-
defined constructors or conversion routines. For example, if class A has a constructor that takes an object
of class B, you can convert a B object to an A object with a static_cast. In most situations where you
want this behavior, however, the compiler will perform the conversion automatically.

Another use for the static_cast is to perform downcasts in an inheritance hierarchy. For example:

class Base
{
public:
Base() {};
virtual ~Base() {}

¥

class Derived : public Base
{
public:
Derived() {}
virtual ~Derived() {}

¥

int main(int argc, char** argv)
{

Base* b;

Derived* d = new Derived();

b
d

d; // Don't need a cast to go up the inheritance hierarchy
static_cast<Derived*>(b); // Need a cast to go down the hierarchy

Base base;
Derived derived;

Base& br = base;
Derived& dr = static_cast<Derived&> (br) ;

return (0);

These casts work with both pointers and references. They do not work with objects themselves.

339

Chapter 12

Note that these casts with static_cast do not perform runtime type checking. They allow you to con-
vert any Base pointer to a Derived pointer or Base reference to a Derived reference, even if the Base
really isn’t a Derived at run time. To perform the cast safely, with runtime type checking, use the
dynamic_cast.

static_casts are not all-powerful. You can’t static_cast pointers of one type to pointers of another

unrelated type. You can’t static_cast pointers to ints. You can’t static_cast directly objects of one
type to objects of another type. You can’t static_cast a const type to a non-const type. Basically, you
can’t do anything that doesn’t make sense according to the type rules of C++.

reinterpret_cast

The reinterpret_cast is a bit more powerful, and concomitantly less safe, than the static_cast.
You can use it to perform some casts that are not technically allowed by C++ type rules, but which might
make sense to the programmer in some circumstances. For example, you can cast a pointer type to any
other pointer type, even if they are unrelated by an inheritance hierarchy. Similarly, you can cast a refer-
ence to one type to a reference to another type, even if the types are unrelated. You can also cast pointers
to ints and ints to pointers. Here are some examples:

class X {};
class Y {};

int main(int argc, char** argv)
{

int i = 3;

X x;
Y y;

X* xp;
Y* yp;

// Need reinterpret cast to perform pointer conversion from unrelated classes
// static_cast doesn't work.
Xp = reinterpret_cast<X*>(yp);

// Need reinterpret_cast to go from pointer to int and from int to pointer
1 = reinterpret_cast<int> (xp);
Xp = reinterpret_cast<X*> (i) ;

// Need reinterpret cast to perform reference conversion from unrelated classes
// static_cast doesn't work.
X& Xr = X;

Y& yr = reinterpret_cast<Y¥&>(X);

return (0);

You should be very careful with the reinterpret_cast because it “reinterprets” raw bits as a different
type without performing any type checking.

340

Understanding C++ Quirks and Oddities

dynamic_cast

As mentioned in the discussion of static_cast, the dynamic_cast provides a run-time check on casts
within an inheritance hierarchy. You can use it to cast pointers or references. dynamic_cast checks the
runtime type information of the underlying object at run time. If the cast doesn’t make sense,
dynamic_cast returns NULL (for the pointer version) or throws a bad_cast exception (for the reference
version).

Note that the runtime-type information is stored in the vtable of the object. Therefore, in order to use
dynamic_cast, your classes must have at least one virtual function.

Here are some examples:

#include <typeinfo>
#include <iostream>
using namespace std;

class Base
{
public:
Base() {};
virtual ~Base() {}

Y

class Derived : public Base
{
public:
Derived() {}
virtual ~Derived() {}
Y

int main(int argc, char** argv)
{

Base* b;

Derived* d = new Derived() ;

b = d;
d dynamic_cast<Derived*> (b) ;

Base base;
Derived derived;

Base& br = base;
try {

Derived& dr = dynamic_cast<Derived&> (br) ;
} catch (bad_casté&) {

cout << "Bad cast!\n";

}

return (0);

341

Chapter 12

In the preceding example, the first cast should succeed, while the second should throw an exception.
Chapter 15 covers the details of exception handling.

Note that you can perform the same casts down the inheritance hierarchy with a static_cast or
reinterpret_cast. The difference with dynamic_cast is that it performs runtime (dynamic) type
checking.

Summary of Casts

The following table summarizes the casts you should use for difference situations.

Situation

Cast

Remove const-ness

Explicit cast supported by language
(e.g., int to double, int to bool)

Explicit cast supported by user-defined
constructors or conversions

Object of one class to object of another
(unrelated) class

Pointer-to-object of one class to pointer-to-object of
another class in the same inheritance hierarchy

Reference-to-object of one class to reference-to-object
of another class in the same inheritance hierarchy

Pointer-to-type to unrelated pointer-to-type

Reference-to-type to unrelated reference-to-type

Pointer to int/ int to pointer

Pointer-to-function to pointer-to-function

const_cast

static_cast

static_cast

Can’t be done

static_cast
or dynamic_cast

static_cast or
dynamic_cast

reinterpret_cast

reinterpret_cast

reinterpret_cast

reinterpret_cast

342

Understanding C++ Quirks and Oddities

Scope Resolution

As a C++ programmer, you need to familiarize yourself with the concept of scope. Every name in your
program, including variable, function, and class names, is in a certain scope. You create scopes with
namespaces, function definitions, and class definitions. When you try to access a variable, function, or
class, the name is first looked up in the nearest enclosing scope, then the next scope, and so forth, up to
the global scope. Any name not in a namespace, function, or class is in the global scope.

Sometimes names in scopes hide identical names in other scopes. Other times, the scope you want is not
part of the default scope resolution from that particular line in the program. If you don’t want the
default scope resolution for a name, you can qualify the name with a specific scope using the scope reso-
lution operator : :. For example, to access a static method of a class, you prefix the method name with
the name of the class (its scope) and the scope resolution operator:

class Demo
{
public:
static void method () {}
b

int main(int argc, char** argv)
{
Demo: :method () ;

return (0);

}

There are other examples of scope resolution throughout this book. One point, however, deserves fur-
ther attention: accessing the global scope. The global scope is unnamed, so there’s no way to access it
specifically. Instead, you can use the scope resolution operator by itself (with no name prefix): this
always refers to the global scope. Here is an example:

int name = 3;
int main(int argc, char** argv)
{

int name = 4;

cout << name << endl; // Accesses local name
cout << ::name << endl; // Accesses global name

return (0);

Header Files

Header files are a mechanism for providing an abstract interface to a subsystem or piece of code. One of
the trickier parts of using headers is avoiding circular references and multiple includes of the same
header file. For example, perhaps you are responsible for writing the Logger class that performs all

343

Chapter 12

error message logging tasks. You may end up using another class, Preferences, that keeps track of user
settings. The Preferences class may in turn use the Logger class indirectly, through yet another
header.

As the following code shows, the #1ifndef mechanism can be used to avoid circular and multiple
includes. At the beginning of each header file, the #1ifndef directive checks to see if a certain key has not
been defined. If the key has been defined, the compiler will skip to the matching #endif, which is usually
placed at the end of the file If the key has not been defined, the file will proceed to define the key so that
a subsequent include of the same file will be skipped.

// Logger.h

#ifndef _ LOGGER__
#define _ LOGGER_

#include "Preferences.h"

class Logger
{
public:
static void setPreferences(const Preferences& inPrefs);
static void logError (const char* inError) ;

Y
#endif // __LOGGER__

Another tool for avoiding problems with headers is forward references. If you need to refer to a class but
you cannot include its header file (for example, because it relies heavily on the class you are writing),
you can tell the compiler that such a class exists without providing a formal definition through the
#include mechanism. Of course, you cannot actually use the class in the code because the compiler
knows nothing about it, except that the named class will exist after everything is linked togther
However, you can still make use of pointers or references to the class in your class definition. In the fol-
lowing code, the Logger class refers to the Preferences class without including its header file.

// Logger.h

#ifndef _ LOGGER_
#define _ LOGGER_

class Preferences;

class Logger
{
public:
static void setPreferences (const Preferences& inPrefs);
static void logError (const char* inError) ;

Y

#endif // __LOGGER___

344

Understanding C++ Quirks and Oddities

C Utilities

Recall that C++ is a superset of C, and thus contains all of its functionality. There are a few obscure C
features that have no replacement in C++, and which can occasionally be useful. This section examines
two of these features: variable-length argument lists and preprocessor macros.

Variable-Length Argument Lists

Consider the C function printf () from <cstdio>. You can call it with any number of arguments:
#include <cstdio>

int main(int argc, char** argv)
{

printf ("int %d\n", 5);

printf ("String %s and int %d\n", "hello", 5);

printf ("Many ints: %d, %d, %d, %d, %d\n", 1, 2, 3, 4, 5);
}

C++ provides the syntax and some utility macros for writing your own functions with a variable num-
ber of arguments. These functions usually look a lot like print £ (). Although you shouldn’t need this
feature very often, occasionally you run into situations in which it’s quite useful. For example, suppose
you want to write a quick-and-dirty debug function that prints strings to stderr if a debug flag is set,
but does nothing if the debug flag is not set. This function should be able to print strings with arbitrary
numbers and types of arguments. A simple implementation looks like this:

#include <cstdio>
#include <cstdarg>

bool debug = false;

void debugOut (char* str, ...)
{
va_list ap;
if (debug) {
va_start (ap, str);
viprintf (stderr, str, ap);
va_end(ap) ;

First, note that the prototype for debugoOut () contains one typed and named parameter str, followed
by ... (ellipses). They stand for any number and types of arguments. In order to access these argu-
ments, you must use macros defined in <cstdarg>. You declare a variable of type va_1list, and initial-
ize it with a call to va_start. The second parameter to va_start () must be the rightmost named
variable in the parameter list. All functions require at least one named parameter. The debugout () func-
tion simply passes this list to vfprintf () (a standard function in <cstdio>). After this function com-
pletes, it calls va_end () to terminate the access of the variable argument list. You must always call
va_end () after calling va_start () to ensure that the function ends with the stack in a consistent state.

345

Chapter 12

You can use the function in the following way:

int main(int argc, char** argv)
{
debug = true;
debugOut ("int %d\n", 5);
debugOut ("String %s and int %d\n", "hello", 5);
debugOut ("Many ints: %d, %d, %d, %4, %d\n", 1, 2, 3, 4, 5);

return (0);

Accessing the Arguments

If you want to access the actual arguments yourself, you can use va_arg () to do so. For example, here’s
a function that takes any number of ints and prints them out:

#include <iostream>
using namespace std;

void printInts(int num, ...)
{
int temp;
va_list ap;
va_start (ap, num);
for (int 1 = 0; 1 < num; i++) {
temp = va_arg(ap, int);
cout << temp << " ";

}
va_end(ap) ;
cout << endl;

You can call printInts () like this:

printInts(5, 5, 4, 3, 2, 1);

Why You Shouldn’t Use Variable-Length Argument Lists

Accessing variable-length argument lists is not very safe. As you can see from the printInts () func-
tion, there are several risks:

QO You don’t know the number of parameters. In the case of printInts (), you must trust the
caller to pass the right number of arguments in the first argument. In the case of debugout (),
you must trust the caller to pass the same number of arguments after the character array as
there are formatting codes in the character array.

QO You don’t know the types of the arguments. va_arg () takes a type, which it uses to interpret
the value it its current spot. However, you can tell va_arg () to interpret the value as any type.
There is no way for it to verify the correct type.

346

Understanding C++ Quirks and Oddities

Avoid using variable-length argument lists. It is preferable to pass in an array or
vector of variables.

Preprocessor Macros

You can use the C++ preprocessor to write macros, which are like little functions. Here is an example:

#define SQUARE (x) ((x) * (x)) // No semicolon after the macro definition!

int main(int argc, char** argv)
{
cout << SQUARE(4) << endl;

return (0);

}

Macros are a remnant from C that are quite similar to inline functions, except that they are not type
checked, and the preprocessor dumbly replaces any calls to them with their expansions. The preproces-
sor does not apply true function-call semantics. This behavior can cause unexpected results. For exam-
ple, consider what would happen if you called the SQUARE macro with 2 + 2 instead of 4, like this:

cout << SQUARE(2 + 2) << endl;

You expect SQUARE to calculate 16, which it does. However, what if you left off some parentheses on the
macro definition, so that it looks like this?

#define SQUARE (x) (x * x)

Now, the call to SQUARE (2 + 2) generates 8, not 16! Remember that the macro is dumbly expanded
without regard to function-call semantics. This means that any x in the macro body is replaced by
2 + 2,leading to this expansion:

cout << 2 + 2 * 2 + 2 << endl;

Following proper order of operations, this line performs the multiplication first, followed by the addi-
tions, generating 8 instead of 16!

Macros also cause problems for debugging because the code you write is not the code that the compiler
sees, or that shows up in your debugger (because of the search and replace behavior of the preproces-
sor). For these reasons, you should avoid macros entirely in favor of inline functions. We show the
details here only because quite a bit of C++ code out there employs macros. You need to understand
them in order to read and maintain that code.

347

Chapter 12

Summary

This chapter explained some of the aspects of C++ that generate the most confusion. By reading this
chapter, you learned a plethora of syntax details about C++. Some of the information, such as the details
of references, const, scope resolution, the specifics of the C++-style casts, and the techniques for header
files, you should use often in your programs. Other information, such as the uses of static and
extern, how to write variable-length argument lists, and how to write preprocessor macros, is impor-
tant to understand, but not information that you should put into use in your programs on a day-to-day
basis. In any case, now that you understand these details, you are poised to tackle the advanced C++ in
the rest of the book.

348

13

Effective Memory
Management

In many ways, programming in C++ is like driving without a road. Sure, you can go anywhere
you want, but there are no lines or traffic lights to keep you from injuring yourself. C++, like the C
language, has a hands-off approach towards its programmers. The language assumes that you
know what you're doing. It allows you to do things that are likely to cause problems because C++
is incredibly flexible and sacrifices safety in favor of performance.

Memory allocation and management is a particularly error-prone area of C++ programming. To
write high-quality C++ programs, professional C++ programmers need to understand how mem-
ory works behind the scenes. This chapter explores the ins and outs of memory management. You
will learn about the pitfalls of dynamic memory and some techniques for avoiding and eliminat-

ing them.

The chapter begins with an overview on the different ways to use and manage memory. Next, you
will read about the often perplexing relationship between arrays and pointers. You will then learn
about the creation and management of C-style strings. A low-level look at working with memory
comes next. Finally, the last section of this chapter covers some specific problems that you may
encounter with memory management and proposes a number of solutions.

Working with Dynamic Memory

When learning to program, dynamic memory is often the first major stumbling block that novice
programmers face. Memory is a low-level component of the computer that unfortunately rears its
head even in a high-level programming language like C++. Many programmers only understand
enough about dynamic memory to get by. They shy away from data structures that use dynamic
memory, or get their programs to work by trial and error.

Chapter 13

There are two main advantages to using dynamic memory in your programs:

0O Dynamic memory can be shared between different objects and functions.

Q The size of dynamically-allocated memory can be determined at run time.

A solid understanding of how dynamic memory really works in C++ is essential to becoming a profes-
sional C++ programmer.

How to Picture Memory

Understanding dynamic memory is much easier if you have a mental model for what objects look like in
memory. In this book, a unit of memory is shown as a box with a label. The label indicates the variable
name that corresponds to the memory. The data inside the box displays the current value of the memory.

For example, Figure 13-1 shows the state of memory after the following line is executed:
int 1 = 7;

As you may recall from Chapter 1, the variable i is allocated on the stack because it is declared as a sim-
ple type, not dynamically using the new keyword.

Stack Heap

i 7

Figure 13-1

When you use the new keyword, memory is allocated in the heap. The following code creates a variable
ptr on the stack, and then allocates memory on the heap to which ptr points.

int* ptr;
ptr = new int;

Figure 13-2 shows the state of memory after this code is executed. Notice that the variable ptr is still on
the stack even though it points to memory on the heap. A pointer is just a variable and can live either on

the stack or the heap, although this fact is easy to forget. Dynamic memory, however, is always allocated
on the heap.

Stack Heap
ptr ? *ptr
Figure 13-2

350

Effective Memory Management

The next example shows that pointers can exist both on the stack and on the heap.
int** handle;

handle = new int*;
*handle = new int;

The preceding code first declares a pointer to a pointer to an integer as the variable handle. It then
dynamically allocates enough memory to hold a pointer to an integer, storing the pointer to that new
memory in handle. Next, that memory (*handle) is assigned a pointer to another section of dynamic
memory that is big enough to hold the integer. Figure 13-3 shows the two levels of pointers with one
pointer residing on the stack (handle) and the other residing on the heap (*handle).

Stack Heap
handle > *handle
? **handle
Figure 13-3

The term “handle” is sometimes used to describe a pointer to a pointer to some memory. In some appli-
cations, handles are used because they allow the underlying software to move memory around as neces-
sary. This use of the term is more specific than the use in Chapter 5, but follows the same principle of
accessing something via a level of indirection.

Allocation and Deallocation

You should already be familiar with the basics of dynamic memory from earlier chapters in this book. To
create space for a variable, you use the new keyword. To release that space for use by other parts of the
program, you use the delete keyword. Of course, it wouldn’t be C++ if simple concepts such as new
and delete didn’t have several variations and intricacies.

Using new and delete

You have already seen the most common way of using new above and elsewhere in this book. When you
want to allocate a block of memory, you call new with the type of the variable for which you need space.
new returns a pointer to that memory, although it is up to you to store that pointer in a variable. If you
ignore the return value of new, or if the pointer variable goes out of scope, the memory becomes orphaned
because you no longer have a way to access it.

For example, the following code orphans enough memory to hold an int. Figure 13-4 shows the state of

memory after the code is executed. When there are blocks of data in the heap with no access, direct or
indirect, from the stack, the memory is orphaned.

351

Chapter 13

void leaky ()
{

new int; // BUG! Orphans memory!

cout << "I just leaked an int!" << endl;

Stack Heap

? [leaked integer]

Figure 13-4

Until they find a way to make computers with an infinite supply of fast memory, you will need to tell
the compiler when the memory associated with an object can be released and used for another purpose.
To free memory on the heap, simply use the delete keyword with a pointer to the memory, as shown
here:

int* ptr;
ptr = new int;

delete ptr;

As a rule of thumb, every line of code that allocates memory with new should corre-
spond to another line of code that releases the same memory with delete.

What about My Good Friend malloc?

If you are a C programmer, you may be wondering what was wrong with the malloc () function.In C,
malloc () is used to allocate a given number of bytes of memory. For the most part, using malloc () is
simple and straightforward. The malloc () function still exists in C++, but we recommend avoiding it.
The main advantage of new over malloc () is that new doesn’t just allocate memory, it constructs objects.

For example, consider the following two lines of code, which use a hypothetical class called Foo:

Foo* myFoo = (Foo*)malloc(sizeof (Foo)) ;

Foo* myOtherFoo = new Foo();
After executing these lines, both myFoo and myOtherFoo will point to areas of memory in the heap that
are big enough for a Foo object. Data members and methods of Foo can be accessed using both pointers.

The difference is that the Foo object pointed to by myFoo isn’t a proper object because it was never con-
structed. The malloc () function only sets aside a piece of memory of a certain size. It doesn’t know

352

Effective Memory Management

about or care about objects. In contrast, the call to new will allocate the appropriate size of memory and
will also properly construct the object. Chapter 16 describes these two duties of new in more detail.

A similar difference exists between the free () function and the delete function. With free (), the
object”s destructor will not be called. With delete, the destructor will be called and the object will be
properly cleaned up.

Do not mix and matchmalloc () and £ree () with new and delete. We recommend
using only new and delete.

When Memory Allocation Fails

Many, if not most, programmers write code with the assumption that new will always be successful. The
rationale is that if new fails, it means that memory is very low and life is very, very bad. It is often an
unfathomable state to be in because it’s unclear what your program could possibly do in this situation.

By default, your program will terminate if new fails. In many programs, this behavior is acceptable. The
program exits when new fails because new throws an exception if there is not enough memory available
for the request. Chapter 15 explains approaches to recover gracefully from an out-of-memory situation.

There is also an alternative version of new which will not throw an exception. Instead, it will return
NULL, similar to the behavior of malloc () in C. The syntax for using this version is shown here:

int* ptr = new(nothrow) int;

Of course, you still have the same problem as the version that throws an exception — what do you do
when the result is NULL? The compiler doesn’t require you to check the result, so the nothrow version of
new is more likely to lead to other bugs than is the version that throws an exception. For this reason, we
suggest that you use the standard version of new. If out-of-memory recovery is important to your pro-
gram, the techniques covered in Chapter 15 will give you all of the tools that you need.

Arrays

Arrays package multiple variables of the same type into a single variable with indices. Working with
arrays quickly becomes natural to a novice programmer because it is easy to think about values in num-
bered slots. The in-memory representation of an array is not far off from this mental model.

Arrays of Basic Types

When your program allocates memory for an array, it is allocating contiguous pieces of memory, where
each piece is large enough to hold a single element of the array. For example, an array of five ints
would be declared on the stack as follows:

int myArrayl[5];

353

Chapter 13

Stack Heap

myArray[O]

myArray[1]

myArray[2]

myArray[3]

myArray[4]

Figure 13-5

Figure 13-5 shows the state of memory after the array is declared. Declaring arrays on the heap is no dif-
ferent, except that you use a pointer to refer to the location of the array. The following code allocates
memory for an array of five ints and stores a pointer to the memory in a variable called myArrayPtr.

int* myArrayPtr = new int[5];

Stack Heap
myArrayPtr > myArrayPtr[0]
myArrayPtr[1]
myArrayPtr[2]
myArrayPtr[3]
myArrayPtr[4]
Figure 13-6

As Figure 13-6 illustrates, the heap-based array is similar to the stack-based array, but in a different loca-
tion. The myArrayPtr variable points to the Oth element of the array. The advantage of putting an array
on the heap is that you can use dynamic memory to define its size at run time. For example, the follow-
ing function receives a desired number of documents from a hypothetical function named
askUserForNumberOfDocuments () and uses that result to create an array of Document objects.

Document* createDocArray ()
{
int numDocs = askUserForNumberOfDocuments () ;

Document* docArray = new Document [numDocs] ;

return docArray;

354

Effective Memory Management

Some compilers, through mysterious voodoo, allow variable-sized arrays on the stack. This is not a stan-
dard feature of C++, so we recommend cautiously backing away when you see it.

In the preceding function, docArray is a dynamically allocated array. Do not get this confused with a
dynamic array. The array itself is not dynamic because its size does not change once it is allocated.
Dynamic memory lets you specify the size of an allocated block at run time, but it does not automati-
cally adjust its size to accommodate the data. There are data structures that do dynamically adjust in size
to their data, such as the STL built-in vector class.

There is a function in C++ called realloc (), which is a holdover from the C language. Don’t use it! In
C, realloc () is used to effectively change the size of an array by allocating a new block of memory of
the new size and moving all of the old data to the new location. This approach is extremely dangerous in
C++ because user-defined objects will not respond well to bitwise copying.

Do not use realloc () in C++. It is not your friend.

Arrays of Objects

Arrays of objects are no different from arrays of simple types. When you use new to allocate an array of
N objects, enough space is allocated for N contiguous blocks where each block is large enough for a sin-
gle object. Using new, the zero-argument constructor for each of the objects will automatically be called.
In this way, allocating an array of objects using new will return a pointer to an array of fully formed and
initialized objects.

For example, consider the following class:

class Simple
{
public:
Simple() { cout << "Simple constructor called!" << endl; }

¥

If you were to allocate an array of four Simple objects, the Simple constructor would be called four
times.

int main(int argc, char** argv)
{

Simple* mySimpleArray = new Simple[4];
}

The output of this code is:

Simple constructor called!
Simple constructor called!
Simple constructor called!
Simple constructor called!

The memory diagram for this array is shown in Figure 13-7. As you can see, it is no different from an
array of basic types.

355

Chapter 13

Stack Heap
mySimpleArray mySimpleArray[0]
mySimpleArray[1]
mySimpleArray[2]
mySimpleArray[3]
Figure 13-7

Deleting Arrays

When you allocate memory with the array version of new (new[1), you must release it with the array ver-
sion of delete (delete[]). This version will automatically destruct the objects in the array in addition to
releasing the memory associated with them. If you do not use the array version of delete, your program
may behave in odd ways. In some compilers, only the destructor for the Oth element of the array will be
called because the compiler only knows that you are deleting a pointer to an object. In others, memory
corruption may occur because new and new [] can use completely different memory allocation schemes.

int main(int argc, char** argv)
{
Simple* mySimpleArray = new Simple[4];

// Use mySimpleArray.

delete[] mySimpleArray;
}

Of course, the destructors are only called if the elements of the array are plain objects. If you have an
array of pointers, you will still need to delete each element individually just as you allocated each ele-
ment individually, as shown in the following code:

int main(int argc, char** argv)
{
Simple** mySimplePtrArray = new Simple*[4];

// Allocate an object for each pointer.
for (int 1 = 0; 1 < 4; 1i++) {

mySimplePtrArray[i] = new Simple();
}

// Use mySimplePtrArray.

// Delete each allocated object.

for (int 1 = 0; 1 < 4; i++) {
delete mySimplePtrArray[il];

}

// Delete the array itself.

delete[] mySimplePtrArray;

356

Effective Memory Management

Do not mix and match new and delete with new[] and deletel]

Multidimensional Arrays

Multidimensional arrays extend the notion of indexed values to use multiple indices. For example, a Tic-
Tac-Toe game might use a two-dimensional array to represent a three-by-three grid. The following exam-
ple shows such an array declared on the stack and accessed with some test code.

int main(int argc, char** argv)
{
char board[3][31];

// Test code
board[0] [0]
board[2][1]

'X'; // X puts marker in position (0,0).
'0'; // O puts marker in position (2,1).

}

You may be wondering whether the first subscript in a two-dimensional array is the x-coordinate or the
y-coordinate. The truth is that it doesn’t really matter, as long as you are consistent. A four-by-seven grid
could be declared as char board[4][7] or char board[7] [4]. For most applications, it is easiest to
think of the first subscript as the x-axis and the second as the y-axis.

Multidimensional Stack Arrays

In memory, a stack-based two-dimensional array looks like Figure 13-8. Since memory doesn’t have two
axes (addresses are merely sequential), the computer represents a two dimensional array just like a one-
dimensional array. The difference is the size of the array and the method used to access it.

Stack Heap

board[0][0]

board[0][1] board[0]

board[0][2]

board[1][0]

board[1][1] board[1]

board[1][2]

board[2][0]

board[2][1] board[2]

board[2][2]

Figure 13-8

357

Chapter 13

The size of a multidimensional array is all of its dimensions multiplied together, then multiplied by the
size of a single element in the array. In Figure 13-8, the three-by-three board is 3*3*1 = 9 bytes, assuming
that a character is 1 byte. For a four-by-seven board of characters, the array would be 4*7*1 = 28 bytes.

To access a value in a multidimensional array, the computer treats each subscript as accessing another
subarray within the multidimensional array. For example, in the three-by-three grid, the expression
board[0] actually refers to the subarray highlighted in Figure 13-9. When you add a second subscript,
such as board[0] [2], the computer is able to access the correct element by looking up the second sub-

script within the subarray, as shown in Figure 13-10.

Stack

board[0][0]

board[O][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Figure 13-9

Stack

board[0][0]

board[0][1]

board[0][2]

board[1][0O]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Figure 13-10
358

board[0]

board[1]

board[2]

board[0]

board[1]

board[2]

Heap

Heap

Effective Memory Management

These techniques are extended to N-dimensional arrays, though dimensions higher than three tend to be
difficult to conceptualize and are rarely useful in everyday applications.

Multidimensional Heap Arrays

If you need to determine the dimensions of a multidimensional array at run time, you can use a heap-
based array. Just as a single-dimensional dynamically allocated array is accessed through a pointer, a
multidimensional dynamically allocated array is also accessed through a pointer. The only difference is
that in a two-dimensional array, you need to start with a pointer-to-a-pointer and in an N-dimensional
array, you need N levels of pointers. At first, it might seem like the correct way to declare and allocate a
dynamically allocated multidimensional array is as follows:

char** board = new char[i][j]; // BUG! Doesn't compile

This code doesn’t compile because heap-based arrays don’t work like stack-based arrays. Their memory
layout isn’t contiguous, so allocating enough memory for a stack-based multidimensional array is incor-
rect. Instead, you must start by allocating a single contiguous array for the first subscript dimension of a
heap-based array. Each element of that array is actually a pointer to another array that stores the ele-
ments for the second subscript dimension. This layout for a two-by-two dynamically allocated board is
shown in Figure 13-11.

Stack Heap
v
board board[0]
— board[1]
board[0][O]
board[0][1]
< board[1][0]
board[1][1]
Figure 13-11

Unfortunately, the compiler doesn’t allocate memory for the subarrays on your behalf. You can allocate
the first dimension array just like a single-dimensional heap-based array, but the individual subarrays
must be explicitly allocated. The following function properly allocates memory for a two-dimensional
array.

359

Chapter 13

char** allocateCharacterBoard(int xDimension, int yDimension)

{

char** myArray = new char*[xDimension]; // Allocate first dimension

for (int 1 = 0; 1 < xDimension; i++) {
myArray[i] = new char[yDimension]; // Allocate ith subarray

}

return myArray;

When you wish to release the memory associated with a multidimensional heap-based array, the array
delete[] syntax will not clean up the subarrays on your behalf. Your code to release an array should
mirror the code to allocate it, as in the following function.

void releaseCharacterBoard(char** myArray, int xDimension)

{

for (int i = 0; i < xDimension; i++) {
delete[] myArray([i]; // Delete ith subarray
}
delete[] myArray; // Delete first dimension

Working with Pointers

Pointers get their bad reputation from the relative ease with which you can abuse them. Because a
pointer is just a memory address, you could theoretically change that address manually, even doing
something as scary as the following line of code:

char* scaryPointer = 7;

The previous line builds a pointer to the memory address 7, which is likely to be random garbage or
memory that is used elsewhere in the application. If you start to use areas of memory that weren’t set
aside on your behalf with new, eventually you will corrupt the memory associated with an object and
your program will crash.

A Mental Model for Pointers

As you read in Chapter 1, there are two ways to think about pointers. More mathematically minded
readers might view pointers simply as addresses. This view makes pointer arithmetic, covered later in
this chapter, a bit easier to understand. Pointers aren’t mysterious pathways through memory; they are
simply numbers that happen to correspond to a location in memory. Figure 13-12 illustrates a two-by-
two grid in the address-based view of the world.

360

Effective Memory Management

Stack Heap
board 1000 2000 1000
5000 1001
2000
2001
5000
5001
Figure 13-12

Readers who are more comfortable with spatial representations might derive more benefit from the
“arrow” view of pointers. A pointer is simply a level of indirection that says to the program “Hey! Look
over there.” With this view, multiple levels of pointers simply become individual steps on the path to
data. Figure 13-11 showed a graphical view of pointers in memory.

When you dereference a pointer, by using the * operator, you are telling the program to look one level
deeper in memory. In the address-based view, think of a dereference as a jump in memory to the address
indicated by the pointer. With the graphical view, every dereference corresponds to following an arrow
from its base to its point.

When you take the address of a variable, using the & operator, you are adding a level of indirection in
memory. In the address-based view, the program is simply noting the numerical address of the variable,
which can be stored in a pointer variable. In the graphical view, the & operator creates a new arrow
whose point ends at the variable. The base of the arrow can be attached to a pointer variable.

Casting with Pointers

Since pointers are just memory addresses (or arrows to somewhere), they are somewhat weakly typed. A
pointer to an XML Document is the same size as a pointer to an integer. The compiler will let you easily
cast any pointer type to any other pointer type using a C-style cast.

Document* documentPtr = getDocument () ;
char* myCharPtr = (char*)documentPtr;

A static cast offers a bit more safety. The compiler will refuse to perform a static cast on pointers to
different data types.

Document* documentPtr = getDocument () ;
static_cast<char*> (documentPtr) ; // BUG! Won't compile

361

Chapter 13

If the two pointers you are casting are actually pointing to objects that are related through inheritance,
the compiler will permit a static cast. However, as you read in Chapter 10, a dynamic cast is a safer
way to accomplish a cast within an inheritance hierarchy.

const with Pointers

The interaction between the const keyword and pointers is a bit confusing, because it is unclear to what
you are applying const. If you dynamically allocate an array of integers and apply const to it, is the
array address protected with const, or are the individual values protected? The answer depends on the

syntax.

If const occurs before the type, it means that the pointed-to value is protected. In the case of an array,
the individual elements of the array are const. The following function receives a pointer to a const
integer. The first line will not compile because the actual value is protected by const. The second line
would compile, because the array itself is unprotected.

void test(const int* inProtectedInt, int* anotherPtr)

{
*inProtectedInt = 7; // BUG! Attempts to write to read-only value
inProtectedInt = anotherPtr; // Works fine

}

To protect the pointer itself, the const keyword immediately precedes the variable name, as shown in
the following code. This time, both the pointer and the pointed-to value are protected, so neither line
would compile.

void test(const int* const inProtectedInt, int* anotherPtr)
{
*inProtectedInt = 7; // BUG! Attempts to write to read-only value
inProtectedInt = anotherPtr; // BUG! Attempts to write to read-only value
}

In practice, protecting the pointer is rarely necessary. If a function is able to change the value of a pointer
that you pass it, it makes little difference. The effect will only be local to the function, and the pointer
will still point to its original address as far as the caller is concerned. Marking a pointer as const is more
useful in documenting its purpose than for any actual protection. Protecting the pointed-to value(s),
however, is quite common to protect against overwriting shared data.

Array-Pointer Duality

You have already seen some of the overlap between pointers and arrays. Heap-allocated arrays are
referred to by a pointer to their first element. Stack-based arrays are referred to by using the array syntax
(11) with an otherwise normal variable declaration. As you are about to learn, however, the overlap
doesn’t end there. Pointers and arrays have a complicated relationship.

362

Effective Memory Management

Arrays Are Pointers!

A heap-based array is not the only place where you can use a pointer to refer to an array. You can also
use the pointer syntax to access elements of a stack-based array. The address of an array is really the
address of the Oth element. The compiler knows that when you refer to an array in its entirety by its vari-
able name, you are really referring to the address of the Oth element. In this way, the pointer works just

like a heap-based array. The following code creates an array on the stack, but uses a pointer to access the
array.

int main(int argc, char** argv)
{
int myIntArray[10];

int* myIntPtr = myIntArray;

// Access the array through the pointer.
myIntPtr([4] = 5;
}

The ability to refer to a stack-based array through a pointer is useful when passing arrays into functions.
The following function accepts an array of integers as a pointer. Note that the caller will need to explic-

itly pass in the size of the array because the pointer implies nothing about size. In fact, C++ arrays of any
form, pointer or not, have no built-in notion of size.

void doubleInts (int* theArray, int inSize)
{
i < inSize; i++) {

for (int 1 = 0;
i] *= 2;

theArray [
}
}

The caller of this function can pass a stack-based or heap-based array. In the case of a heap-based array,
the pointer already exists and is simply passed by value into the function. In the case of a stack-based

array, the caller can pass the array variable and the compiler will automatically treat the array variable
as a pointer to the array. Both uses are shown here:

int main(int argc, char** argv)
{
int* heapArray =
heapArray[0] = 1;
heapArray[l] = 5;
heapArray[2] = 3
heapArray[3] 4

new int[4];

7

’

doublelInts (heapArray, 4);
int stackArray[4] = {5, 7, 9, 11};

doublelInts(stackArray, 4);

363

Chapter 13

Even if the function doesn’t explicitly have a parameter that is a pointer, the parameter-passing seman-
tics of arrays are uncannily similar to pointers’, because the compiler treats an array as a pointer when it
is passed to a function. A function that takes an array as an argument and changes values inside the
array is actually changing the original array, not a copy. Just like a pointer, passing an array effectively
mimics pass-by-reference functionality because what you really pass to the function is the address of the
original array, not a copy. The following implementation of doubleInts () changes the original array
even though the parameter is an array, not a pointer.

void doubleInts(int theArray[], int inSize)

{
i < inSize; i++) {

for (int 1 = 0;
i] *= 2;

theArray|[
}

You may be wondering why things work this way. Why doesn’t the compiler just copy the array when
array syntax is used in the function definition? One possible explanation is efficiency — it takes time to
copy the elements of an array, and they potentially take up a lot of memory. By always passing a pointer,
the compiler doesn’t need to include the code to copy the array.

To summarize, arrays declared using array syntax can be accessed through a pointer. When an array is
passed to a function, it is always passed as a pointer.

Not All Pointers Are Arrays!

Since the compiler lets you pass in an array where a pointer is expected, as in the doubleInts () func-
tion shown earlier, you may be lead to believe that pointers and arrays are the same. In fact there are
subtle, but important, differences. Pointers and arrays share many properties and can sometimes be used
interchangeably (as shown earlier), but they are not the same.

A pointer by itself is meaningless. It may point to random memory, a single object, or an array. You can
always use array syntax with a pointer, but doing so is not always appropriate because pointers aren’t
always arrays. For example, consider the following code:

int* ptr = new int;
The pointer ptr is a valid pointer, but it is not an array. You can access the pointed-to value using array

syntax (ptr [0]), but doing so is stylistically questionable and provides no real benefit. In fact, using
array syntax with nonarray pointers is an invitation for bugs. The memory at ptr[1] could be anything!

Arrays are automatically referenced as pointers, but not all pointers are arrays.

364

Effective Memory Management

Dynamic Strings

Strings present something of a quandary for programming language designers because they seem like a
standard data type, but are not expressed in fixed sizes. Strings are so commonly used, however, that
most programming languages need to have a built-in model of a string. In the C language, strings are
somewhat of a hack, never given the first-class language feature attention that they deserve. C++ pro-
vides a far more flexible and useful representation of a string.

C-Style Strings

In the C language, strings are represented as an array of characters. The last character of a string is a null
character (' \0') so that code operating on the string can determine where it ends. Even though C++
provides a better string abstraction, it is important to understand the C technique for strings because
they still arise in C++ programming.

By far, the most common mistake that programmers make with C strings is that they forget to allocate
space for the '\0' character. For example, the string "hello" appears to be five characters long, but six
characters worth of space are needed in memory to store the value, as shown in Figure 13-13.

Stack Heap
myString 'h'
lel
T
Tt
o'
l\ol
Figure 13-13

C++ contains several functions from the C language that operate on strings. As a general rule of thumb,
these functions do not handle memory allocation. For example, the strcpy () function takes two strings
as parameters. It copies the second string onto the first, whether it fits or not. The following code
attempts to build a wrapper around strcpy () that allocates the correct amount of memory and returns
the result, instead of taking in an already allocated string. It uses the strlen () function to obtain the
length of the string.

char* copyString(const char* inString)
{
char* result = new char[strlen(inString)]; // BUG! Off by one!

strcpy (result, inString);

return result;

365

Chapter 13

The copyString () function as written is incorrect. The strlen () function returns the length of the
string, not the amount of memory needed to hold it. For the string "hello", strlen() will return 5,
not 6! The proper way to allocate memory for a string is to add one to the amount of space needed for
the actual characters. It seems a little weird at first to have +1 all over, but it quickly becomes natural,
and you (hopefully) miss it when it’s not there.

char* copyString(const char* inString)
{

char* result = new char[strlen(inString) + 1];
strcpy (result, inString);

return result;

}

One way to remember that strlen () only returns the number of actual characters in the string is to con-
sider what would happen if you were allocating space for a string made up of several others. For exam-
ple, if your function took in three strings and returned a string that was the concatenation of all three,
how big would it be? To hold exactly enough space, it would be the length of all three strings, added
together, plus one for the trailing ' \0' character. If strlen() included the '\ 0" in the length of the
string, the allocated memory would be too big. The following code uses the strcpy () and strcat ()
functions to perform this operation.

char* appendStrings (const char* inStrl, const char* inStr2, const char* inStr3)

{
char* result = new char[strlen(inStrl) + strlen(inStr2) + strlen(inStr3) + 1];
strcpy (result, inStrl);
strcat (result, inStr2);

strcat (result, inStr3);

return result;

}

A complete list of C functions to operate on strings is found in the <cstring> header file.

String Literals

You've probably seen strings written in a C++ program with quotes around them. For example, the fol-
lowing code outputs the string hello by including the string itself, not a variable that contains it.

cout << "hello" << endl;
In the preceding line, "hello" is a string literal because it is written as a value, not a variable. Even
though string literals don’t have associated variables, they are treated as const char*’s (arrays of con-

stant characters).

String literals can be assigned to variables, but doing so can be risky. The actual memory associated with
a string literal is in a read-only part of memory, which is why it is an array of constant characters. This

366

Effective Memory Management

allows the compiler to optimize memory usage by reusing references to equivalent string literals (that is,
even if your program uses the string literal "hello" 500 times, the compiler can create just one instance

of hello in memory). The compiler does not, however, force your program to assign a string literal only
to a variable of type const char* or const char[]. You can assign a string to a char* without const,
and the program will work fine unless you attempt to change the string. Generally, attempting to change
the string will immediately crash your program, as demonstrated in the following code:

char* ptr = "hello"; // Assign the string literal to a variable.

ptr[l] = 'a'; // CRASH! Attempts to write to read-only memory

A much safer way to code is to use a pointer to const characters when referring to string literals. The
code below contains the same bug, but because it assigned the literal to a const character array, the
compiler will catch the attempt to write to read-only memory.

const char* ptr = "hello"; // Assign the string literal to a variable.

ptr[l] = 'a'; // BUG! Attempts to write to read-only memory

You can also use a string literal as an initial value for a stack-based character array. Because the stack-
based variable cannot in any way refer to memory somewhere else, the compiler will take care of copy-
ing the string literal into the stack-based array memory.

char stackArray[] = "hello"; // Compiler takes care of copying the array and
// creating appropriate size for stack array

stackArray[l] = 'a'; // The copy can be modified.

The C++ string Class

As we promised earlier, C++ provides a much-improved implementation of a string as part of the
Standard Library. In C++, string is a class (actually an instantiation of the basic_string template
class) that supports many of the same operations as the <cstring> functions but, best of all, takes care
of memory allocation for you if you use it properly.

What Was Wrong with C-Style Strings?

Before jumping into the new world of the C++ string class, consider the advantages and disadvantages
of C-style strings.

Advantages:

Q They are simple, making use of the underlying basic character type and array structure.
Q They are lightweight, taking up only the memory that they need if used properly.

Q They are low level, so you can easily manipulate and copy them as raw memory.
a

They are well understood by C programmers — why learn something new?

367

Chapter 13

Disadvantages:

Q

a
a
a

The preceding lists were carefully constructed to make you think that perhaps there is a better way. As
you'll learn below, C++ strings solve all of these disadvantages of C strings and make the advantages
moot.

They are unforgiving and susceptible to difficult memory bugs.
They don’t leverage the object-oriented nature of C++.
They come with a set of poorly named and sometimes confusing helper functions.

They require knowledge of their underlying representation on the part of the programmer.

Using the string Class

Even though string is a class, you can almost always treat it as though it were a built-in type, like int.
In fact, the more you think of it as a simple type, the better off you are. Programmers generally
encounter the least trouble with string when they forget that strings are objects.

Through the magic of operator overloading, C++ strings support concatenation with the + operator,
assignment with the = operator, comparison with the == operator, and individual character access with
the [] operator. These operators are what allow the programmer to treat string like a basic type. As the
following code shows, you can perform these operations on a string without worrying about memory

allocation.

int main(int argc, char** argv)

{

string myString = "hello";

myString += ", there";

string myOtherString = myString;

if (myString == myOtherString) {
myOtherString[0] = 'H';

}

cout << myString << endl;
cout << myOtherString << endl;

The output of this code is:

hello, there
Hello, there

There are several things to note in this example. First, there are no memory leaks even though strings are
allocated and resized left and right. All of these string objects were created as stack variables. While
the string class certainly had a bunch of allocating and resizing to do, the objects themselves cleaned

up this memory when they went out of scope.

368

Effective Memory Management

Another point to note is that the operators work the way you would want them to You might be con-
cerned that using = will somehow result in two variables that point to the same memory, but that is not
the case. The = operator copies the strings, which is most likely what you wanted. Similarly, the == oper-
ator really compares the actual contents of two strings, not the memory locations of the strings. If you
are used to working with array-based strings, this will either be refreshingly liberating for you or some-
what confusing. Don’t worry — once you learn to trust the string class to do the right thing, life gets so
much easier.

For compatibility, you can convert a C++ string into a C-style string by using the
c_str () method. You should call the method just before using the result so that it
accurately reflects the current contents of the string.

The on-line reference lists all the operations you can perform on string objects.

Low-Level Memory Operations

One of the great advantages of C++ over C is that you don’t need to worry quite as much about memory.
If you code using objects, you just need to make sure that each individual class properly manages its
own memory. Through construction and destruction, the compiler helps you manage memory by telling
you when to do it. As you saw in the string class, hiding the management of memory within classes
makes a huge difference in usability.

With some applications, however, you may encounter the need to work with memory at a lower level.

Whether for efficiency, debugging, or a sick curiosity, knowing some techniques for working with raw
bytes can be helpful.

Pointer Arithmetic

The C++ compiler uses the declared types of pointers to allow you to perform pointer arithmetic. If you

declare a pointer to an int and increase it by 1, the pointer moves ahead in memory by the size of an

int, not by a single byte. This type of operation is most useful with arrays, since they contain homoge-

neous data that is sequential in memory. For example, assume you declare an array of ints on the heap:
int* myArray = new int[8];

You are already familiar with the following syntax for setting the value in position 2:

myArray[2] = 33;

With pointer arithmetic, you can equivalently use the following syntax, which obtains a pointer to the
memory that is “2 ints ahead” of myArray, then dereferences it to set the value.

* (myArray + 2) = 33;

369

Chapter 13

As an alternative syntax for accessing individual elements, pointer arithmetic doesn’t seem too appeal-
ing. Its real power lies in the fact that an expression like myArray + 2 isstill a pointer to an int, and
thus can represent a smaller int array. Suppose you had a C-style string, as shown below:

const char* myString = "Hello, World!";

Suppose you also had a function that took in a string and returned a new string that contains a capital-
ized version of the input:

char* toCaps (const char* inString) ;

You could capitalize myString by passing it into this function. However, if you only wanted to capital-
ize part of myString, you could use pointer arithmetic to refer to only a latter part of the string. The fol-
lowing code calls toCaps () on the World part of the string:

toCaps (myString + 7);

Another useful application of pointer arithmetic involves subtraction. Subtracting one pointer from
another of the same type gives you the number of elements of the pointed-to type between the two
pointers, not the absolute number of bytes between them.

Custom Memory Management

For 99 percent of the cases you will encounter (some might say 100 percent of the cases), the built-in
memory allocation facilities in C++ are adequate. Behind the scenes, new and delete do all the work of
handing out memory in properly sized chunks, maintaining a list of available areas of memory, and
releasing chunks of memory back to that list upon deletion.

When resource constraints are extremely tight, managing memory on your own may be a viable option.
Don’t worry — it’s not as scary as it sounds. Basically, managing memory yourself generally means that
classes allocate a large chunk of memory and dole out that memory in pieces as it is needed.

How is this approach any better? Managing your own memory can potentially reduce overhead. When
you use new to allocate memory, the program also needs to set aside a small amount of space to record
how much memory was allocated. That way, when you call delete, the proper amount of memory can
be released. For most objects, the overhead is so much smaller than the memory allocated that it makes
little difference. However, for small objects or programs with enormous numbers of objects, the over-
head can have an impact.

When you manage memory yourself, you know the size of each object a priori, so you can avoid the
overhead for each object. The difference can be enormous for large numbers of small objects. The syntax
for performing custom memory management is described in Chapter 16.

Garbage Collection

At the other end of the memory hygiene spectrum lies garbage collection. With environments that sup-
port garbage collection, the programmer rarely, if ever, explicitly frees memory associated with an object.
Instead, a low-priority background task keeps an eye on the state of memory and cleans up portions that
it decides are no longer needed.

370

Effective Memory Management

Garbage collection is not built into the C++ language as it is in Java. Most C++ programs manage mem-
ory at the object level through new and delete. It is possible to implement garbage collection in C++,
but freeing yourself from the task of releasing memory would probably introduce new headaches.

One approach to garbage collection is called mark and sweep. With this approach, the garbage collector
periodically examines every single pointer in your program and annotates the fact that the referenced
memory is still in use. At the end of the cycle, any memory that hasn’t been marked is deemed to be not
in use and is freed.

A mark and sweep algorithm could be implemented in C++ if you were willing to do the following:

1. Register all pointers with the garbage collector so that it can easily walk through the list of all
pointers

2. Subclass all objects from a mix-in class, perhaps GarbageCollectible, that allows the garbage
collector to mark an object as in-use

3. Protect concurrent access to objects by making sure that no changes to pointers can occur while
the garbage collector is running

As you can see, this simple approach to garbage collection requires quite a bit of diligence on the part of
the programmer. It may even be more error-prone than using delete! Attempts at a safe and easy mech-
anism for garbage collection have been made in C++, but even if a perfect implementation of garbage
collection in C++ came along, it wouldn’t necessarily be appropriate to use for all applications. Among
the downsides of garbage collection:

0 When the garbage collector is actively running, it will likely slow the program down.

Q If the program is aggressively allocating memory, the garbage collector may be unable to keep
up.

Q If the garbage collector is buggy or thinks an abandoned object is still in use, it can create unre-
coverable memory leaks.

Object Pools

Custom memory management, as described above, is the coding equivalent to shopping for a picnic at a
warehouse superstore. You fill your SUV with more paper plates than you need right now so that you
can avoid the overhead of going back to the store for subsequent picnics. Garbage collection is like leav-
ing any used plates out in the yard where the wind will conveniently blow them into the neighbor’s
yard. Surely, there must be a more ecological approach to memory management.

Object pools are the analog of recycling. You buy a reasonable number of plates, but you hang onto them
after use so that later on you can clean and reuse them. Object pools are ideal for situations where you

need to use many objects of the same type over time, and creating each one incurs overhead.

Chapter 17 contains further details about using object pools for performance efficiency.

371

Chapter 13

Function Pointers

You don’t normally think about the location of functions in memory, but each function actually lives at a
particular address. In C++, you can use functions as data. In other words, you can take the address of a
function and use it like you use a variable.

Function pointers are typed according to the parameter types and return type of compatible functions.
The easiest way to work with function pointers is to use the typedef mechanism to assign a type name
to the family of functions that have the given characteristics. For example, the following line declares a
type called YesNoFcn that represents a pointer to any function that has two int parameters and returns
abool.

typedef bool (*YesNoFcn) (int, int);

Now that this new type exists, you could write a function that takes a YesNoFcn as a parameter. For
example, the following function accepts two int arrays and their size, as well as a YesNoFcn. It iterates
through the arrays in parallel and calls the YesNoFcn on corresponding elements of both arrays, printing
a message if the YesNoFcn function returns true. Notice that even though the YesNoFcn is passed in as
a variable, it can be called just like a regular function.

void findMatches (int valuesl[], int values2[], int numValues, YesNoFcn inFunction)

{

for (int i = 0; 1 < numValues; i++) {

if (inFunction(valuesl[i], values2[i])) {
cout << "Match found at position " << i <<
" (" << valuesl[i] << ", " << values2[i] << ")" << endl;

To call the findMatches () function, all you need is any function that adheres to the defined YesNoFcn
type — that is, any type that takes in two ints and returns a bool. For example, consider the following
function, which returns true if the two parameters are equal:

bool intEqual (int inIteml, int inItem2)
{

return (inIteml == inItem2);

}

Because the intEqual () function matches the YesNoFcn type, it can be passed as the final argument to
findMatches (), as in the following program:

int main(int argc, char** argv)

{

int arrl[7] = {2, 5, 6, 9, 10, 1, 1};
int arr2[7] = {4, 4, 2, 9, 0, 3, 4};
cout << "Calling findMatches () using intEqual():" << endl;

findMatches (arrl, arr2, 7, &intEqual);

return 0;

372