

Professional C++

Nicholas A. Solter
Scott J. Kleper

01_574841 ffirs.qxd 12/15/04 3:38 PM Page i

01_574841 ffirs.qxd 12/15/04 3:38 PM Page i

Professional C++

Nicholas A. Solter
Scott J. Kleper

01_574841 ffirs.qxd 12/15/04 3:38 PM Page i

Professional C++
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc. All rights reserved.

Published simultaneously in Canada

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QV/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
(317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Solter, Nicholas, 1977-
Professional C++ / Nicholas Solter, Scott Kleper.

p. cm.
Includes index.
ISBN 0-7645-7484-1 (paper/website)
1. C++ (Computer program language) I. Kleper, Scott, 1977- II. Title.
QA76.73.C153S665 2005
005.13'3--dc22

2004027959

01_574841 ffirs.qxd 12/15/04 3:38 PM Page ii

Dedications
To Sonja, for her unconditional love and support, and to my son Kai, whose frequent interruptions
reminded me what’s important in life.

—Nicholas A. Solter

To Marni, whose unpredictable cuteness brightens every day.

—Scott J. Kleper

Acknowledgments
We owe a debt of gratitude to the many people who have made this book possible. We’d like to thank
David Fugate of Waterside Productions for all of his advice and guidance, and Robert Elliot at Wiley for
giving two unknown authors the opportunity to tell the C++ story in a new way. This book would not
have turned out nearly as well as it did without the assistance of our development editor, Adaobi Obi
Tulton. Thanks also to Kathryn Malm Bourgoine for her editorial assistance. The photo on the cover,
which artfully minimized our nerdiness, was taken by Adam Tow.

We also want to thank all of the coworkers and teachers who have encouraged us to code the right way
over the years. In particular, thanks to Mike Hanson, Maggie Johnson, Adam Nash, Nick Parlante, Bob
Plummer, Eric Roberts, Mehran Sahami, Bill Walker, Dan Walkowski, Patrick Young, and Julie Zelenski.
Our eternal thanks to Jerry Cain, who not only taught us C++ originally, but also served as technical edi-
tor, religiously analyzing the code in this book as though it were one of our final exams.

Thanks also to the following people, who reviewed one or more chapters: Rob Baesman, Aaron Bradley,
Elaine Cheung, Marni Kleper, Toli Kuznets, Akshay Rangnekar, Eltefaat Shokri, Aletha Solter, Ken Solter,
and Sonja Solter. Any remaining errors are, of course, our own. We’d like to thank our families for their
patience and support.

Finally, we’d like to thank you, our readers, for trying out our approach to professional C++
development.

01_574841 ffirs.qxd 12/15/04 3:38 PM Page iii

Credits
Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editor
Robert Elliott

Editorial Manager
Kathryn Malm Bourgoine

Senior Production Editor
Geraldine Fahey

Senior Development Editor
Adaobi Obi Tulton

Production Editor
Felicia Robinson

Media Development Specialist
Richard Graves

Technical Editor
Jerry Cain

Text Design & Composition
Wiley Composition Services

Cover Photographer
Adam Tow

Author Bios
Nicholas A. Solter studied computer science at Stanford University, where he earned bachelor of science
and master of science degrees, with a concentration in systems. While a student, he worked as a teaching
assistant for several classes ranging from introductory computer science for nonmajors to an upper-
division course on group projects and software engineering.

Now a software engineer at Sun Microsystems, Nick programs primarily in C and C++ in his work on
high-availability software. His previous work experience includes several stints in the computer game
industry. At Digital Media International, he was the lead programmer on the multimedia educational
game, The Land Before Time Math Adventure. During an internship at Electronic Arts, he helped develop
the Course Architect 2000 golf course–editing tool for the Tiger Woods PGA Tour 2000 game.

In addition to his industry experience, Nick taught C++ for one year as an adjunct professor of computer
science at Fullerton College. When not working, Nick enjoys reading, playing basketball, taking care of
his son Kai, and spending time with his family.

Scott J. Kleper began his programming career in elementary school, writing adventure games in BASIC
for the Tandy TRS-80. As the resident Mac geek at his high school, Scott moved to higher-level languages
and released several award-winning shareware applications.

Scott attended Stanford University, where he obtained bachelor of science and master of science degrees
in computer science, with a concentration in human-computer interaction. While in college, Scott served
as a teaching assistant for classes involving introductory programming, object-oriented design, data
structures, GUI frameworks, group projects, and Internet programming.

Since graduating, Scott has served as a lead engineer on the founding teams of several companies and is
currently a senior software engineer at Reactivity, Inc. Outside of work, Scott is a compulsive online
shopper, an avid reader, and an awful guitarist.

01_574841 ffirs.qxd 12/15/04 3:38 PM Page iv

Contents

Introduction xxi

Who This Book Is For xxi
What This Book Covers xxi
How This Book Is Structured xxii
What You Need to Use This Book xxiii
Conventions xxiii
Source Code xxiv
Errata xxiv
p2p.wrox.com xxiv

Part I: Introduction to Professional C++

Chapter 1: A Crash Course in C++ 1

The Basics of C++ 1
The Obligatory Hello, World 2
Namespaces 4
Variables 6
Operators 8
Types 10
Conditionals 12
Loops 14
Arrays 15
Functions 16
Those Are the Basics 17

Diving Deeper into C++ 18
Pointers and Dynamic Memory 18
Strings in C++ 21
References 23
Exceptions 23
The Many Uses of const 25

C++ as an Object-Oriented Language 26
Declaring a Class 26

Your First Useful C++ Program 29
An Employee Records System 29
The Employee Class 29

02_574841 ftoc.qxd 12/15/04 3:39 PM Page v

vi

Contents

The Database Class 34
The User Interface 38
Evaluating the Program 41

Summary 41

Chapter 2: Designing Professional C++ Programs 43

What Is Programming Design? 44
The Importance of Programming Design 44
What’s Different about C++ Design? 46
Two Rules for C++ Design 47

Abstraction 47
Reuse 49

Designing a Chess Program 50
Requirements 51
Design Steps 51

Summary 56

Chapter 3: Designing with Objects 57

An Object-Oriented View of the World 57
Am I Thinking Procedurally? 57
The Object-Oriented Philosophy 58
Living in a World of Objects 61
Object Relationships 63
Abstraction 73

Summary 76

Chapter 4: Designing with Libraries and Patterns 77

Reusing Code 77
A Note on Terminology 78
Deciding Whether or Not to Reuse Code 78
Strategies for Reusing Code 81
Bundling Third-Party Applications 85
Open-Source Libraries 86
The C++ Standard Library 87

Designing with Patterns and Techniques 101
Design Techniques 101
Design Patterns 102

Summary 103

02_574841 ftoc.qxd 12/15/04 3:39 PM Page vi

vii

Contents

Chapter 5: Designing for Reuse 105

The Reuse Philosophy 106
How to Design Reusable Code 106

Use Abstraction 107
Structure Your Code for Optimal Reuse 108
Design Usable Interfaces 112
Reconciling Generality and Ease of Use 117

Summary 118

Chapter 6: Maximizing Software-Engineering Methods 119

The Need for Process 119
Software Life-Cycle Models 120

The Stagewise and Waterfall Models 121
The Spiral Method 123
The Rational Unified Process 126

Software-Engineering Methodologies 127
Extreme Programming (XP) 128
Software Triage 132

Building Your Own Process and Methodology 132
Be Open to New Ideas 132
Bring New Ideas to the Table 132
Recognize What Works and What Doesn’t Work 133
Don’t Be a Renegade 133

Summary 133

Part II: C++ Coding the Professional Way

Chapter 7: Coding with Style 135

The Importance of Looking Good 135
Thinking Ahead 135
Keeping It Clear 136
Elements of Good Style 136

Documenting Your Code 136
Reasons to Write Comments 136
Commenting Styles 140
Comments in This Book 145

02_574841 ftoc.qxd 12/15/04 3:39 PM Page vii

viii

Contents

Decomposition 145
Decomposition through Refactoring 147
Decomposition by Design 147
Decomposition in This Book 148

Naming 148
Choosing a Good Name 148
Naming Conventions 148

Using Language Features with Style 151
Use Constants 151
Take Advantage of const Variables 151
Use References Instead of Pointers 151
Use Custom Exceptions 152

Formatting 152
The Curly Brace Alignment Debate 153
Coming to Blows over Spaces and Parentheses 154
Spaces and Tabs 154

Stylistic Challenges 155
Summary 155

Chapter 8: Gaining Proficiency with Classes and Objects 157

Introducing the Spreadsheet Example 157
Writing Classes 158

Class Definitions 158
Defining Methods 161
Using Objects 164

Object Life Cycles 165
Object Creation 165
Object Destruction 176
Assigning to Objects 177
Distinguishing Copying from Assignment 180

Summary 182

Chapter 9: Mastering Classes and Objects 183

Dynamic Memory Allocation in Objects 183
The Spreadsheet Class 184
Freeing Memory with Destructors 186
Handling Copying and Assignment 186

Different Kinds of Data Members 194
Static Data Members 195
Const Data Members 196
Reference Data Members 198
Const Reference Data Members 199

02_574841 ftoc.qxd 12/15/04 3:39 PM Page viii

ix

Contents

More about Methods 199
Static Methods 199
Const Methods 200
Method Overloading 202
Default Parameters 203
Inline Methods 204

Nested Classes 206
Friends 208
Operator Overloading 209

Implementing Addition 209
Overloading Arithmetic Operators 212
Overloading Comparison Operators 215
Building Types with Operator Overloading 216

Pointers to Methods and Members 217
Building Abstract Classes 218

Using Interface and Implementation Classes 218
Summary 221

Chapter 10: Discovering Inheritance Techniques 223

Building Classes with Inheritance 224
Extending Classes 224
Overriding Methods 227

Inheritance for Reuse 230
The WeatherPrediction Class 230
Adding Functionality in a Subclass 231
Replacing Functionality in a Subclass 233

Respect Your Parents 234
Parent Constructors 234
Parent Destructors 235
Referring to Parent Data 237
Casting Up and Down 239

Inheritance for Polymorphism 240
Return of the Spreadsheet 240
Designing the Polymorphic Spreadsheet Cell 241
The Spreadsheet Cell Base Class 242
The Individual Subclasses 243
Leveraging Polymorphism 245
Future Considerations 246

Multiple Inheritance 248
Inheriting from Multiple Classes 248
Naming Collisions and Ambiguous Base Classes 249

02_574841 ftoc.qxd 12/15/04 3:39 PM Page ix

x

Contents

Interesting and Obscure Inheritance Issues 253
Changing the Overridden Method’s Characteristics 253
Special Cases in Overriding Methods 256
Copy Constructors and the Equals Operator 263
The Truth about Virtual 264
Runtime Type Facilities 267
Non-Public Inheritance 269
Virtual Base Classes 269

Summary 270

Chapter 11: Writing Generic Code with Templates 271

Overview of Templates 272
Class Templates 273

Writing a Class Template 273
How the Compiler Processes Templates 280
Distributing Template Code between Files 281
Template Parameters 282
Method Templates 285
Template Class Specialization 290
Subclassing Template Classes 293
Inheritance versus Specialization 295

Function Templates 295
Function Template Specialization 296
Function Template Overloading 297
Friend Function Templates of Class Templates 298

Advanced Templates 299
More about Template Parameters 299
Template Class Partial Specialization 307
Emulating Function Partial Specialization with Overloading 313
Template Recursion 314

Summary 322

Chapter 12: Understanding C++ Quirks and Oddities 323

References 323
Reference Variables 324
Reference Data Members 326
Reference Parameters 326
Reference Return Values 327
Deciding between References and Pointers 327

02_574841 ftoc.qxd 12/15/04 3:39 PM Page x

xi

Contents

Keyword Confusion 330
The const Keyword 330
The static Keyword 333
Order of Initialization of Nonlocal Variables 336

Types and Casts 337
typedefs 337
Casts 338

Scope Resolution 343
Header Files 343
C Utilities 345

Variable-Length Argument Lists 345
Preprocessor Macros 347

Summary 348

Part III: Mastering Advanced Features of C++

Chapter 13: Effective Memory Management 349

Working with Dynamic Memory 349
How to Picture Memory 350
Allocation and Deallocation 351
Arrays 353
Working with Pointers 360

Array-Pointer Duality 362
Arrays Are Pointers! 363
Not All Pointers Are Arrays! 364

Dynamic Strings 365
C-Style Strings 365
String Literals 366
The C++ string Class 367

Low-Level Memory Operations 369
Pointer Arithmetic 369
Custom Memory Management 370
Garbage Collection 370
Object Pools 371
Function Pointers 372

Common Memory Pitfalls 374
Underallocating Strings 374
Memory Leaks 374
Double-Deleting and Invalid Pointers 377
Accessing Out-of-Bounds Memory 378

Summary 378

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xi

xii

Contents

Chapter 14: Demystifying C++ I/O 379

Using Streams 379
What Is a Stream, Anyway? 380
Stream Sources and Destinations 380
Output with Streams 380
Input with Streams 384
Input and Output with Objects 389

String Streams 390
File Streams 392

Jumping around with seek() and tell() 392
Linking Streams Together 395

Bidirectional I/O 396
Internationalization 397

Wide Characters 397
Non-Western Character Sets 398
Locales and Facets 398

Summary 400

Chapter 15: Handling Errors 401

Errors and Exceptions 402
What Are Exceptions, Anyway? 402
Why Exceptions in C++ Are a Good Thing 403
Why Exceptions in C++ Are a Bad Thing 404
Our Recommendation 404

Exception Mechanics 404
Throwing and Catching Exceptions 405
Exception Types 406
Throwing and Catching Multiple Exceptions 408
Uncaught Exceptions 411
Throw Lists 412

Exceptions and Polymorphism 416
The Standard Exception Hierarchy 416
Catching Exceptions in a Class Hierarchy 417
Writing Your Own Exception Classes 419

Stack Unwinding and Cleanup 422
Catch, Cleanup, and Rethrow 423
Use Smart Pointers 424

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xii

xiii

Contents

Common Error-Handling Issues 424
Memory Allocation Errors 424
Errors in Constructors 427
Errors in Destructors 428

Putting It All Together 428
Summary 430

Part IV: Ensuring Bug-Free Code

Chapter 16: Overloading C++ Operators 431

Overview of Operator Overloading 432
Why Overload Operators? 432
Limitations to Operator Overloading 432
Choices in Operator Overloading 433
Operators You Shouldn’t Overload 435
Summary of Overloadable Operators 435

Overloading the Arithmetic Operators 438
Overloading Unary Minus and Unary Plus 438
Overloading Increment and Decrement 439

Overloading the Bitwise and Binary Logical Operators 441
Overloading the Insertion and Extraction Operators 441
Overloading the Subscripting Operator 443

Providing Read-Only Access with operator[] 446
Non-Integral Array Indices 447

Overloading the Function Call Operator 448
Overloading the Dereferencing Operators 449

Implementing operator* 451
Implementing operator-> 452
What in the World Is operator->* ? 452

Writing Conversion Operators 453
Ambiguity Problems with Conversion Operators 454
Conversions for Boolean Expressions 455

Overloading the Memory Allocation and Deallocation Operators 457
How new and delete Really Work 457
Overloading operator new and operator delete 459
Overloading operator new and operator delete with Extra Parameters 461

Summary 463

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xiii

xiv

Contents

Chapter 17: Writing Efficient C++ 465

Overview of Performance and Efficiency 465
Two Approaches to Efficiency 466
Two Kinds of Programs 466
Is C++ an Inefficient Language? 466

Language-Level Efficiency 467
Handle Objects Efficiently 467
Don’t Overuse Costly Language Features 471
Use Inline Methods and Functions 472

Design-Level Efficiency 472
Cache as Much as Possible 472
Use Object Pools 473
Use Thread Pools 479

Profiling 479
Profiling Example with gprof 479

Summary 488

Chapter 18: Developing Cross-Platform and Cross-Language Applications 489

Cross-Platform Development 489
Architecture Issues 490
Implementation Issues 492
Platform-Specific Features 493

Cross-Language Development 494
Mixing C and C++ 494
Shifting Paradigms 495
Linking with C Code 498
Mixing Java and C++ with JNI 499
Mixing C++ with Perl and Shell Scripts 501
Mixing C++ with Assembly Code 504

Summary 505

Chapter 19: Becoming Adept at Testing 507

Quality Control 507
Whose Responsibility Is Testing? 508
The Life Cycle of a Bug 508
Bug-Tracking Tools 509

Unit Testing 510
Approaches to Unit Testing 511
The Unit Testing Process 512
Unit Testing in Action 515

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xiv

xv

Contents

Higher-Level Testing 523
Integration Tests 523
System Tests 525
Regression Tests 525

Tips for Successful Testing 526
Summary 526

Chapter 20: Conquering Debugging 527

The Fundamental Law of Debugging 527
Bug Taxonomies 528
Avoiding Bugs 528
Planning for Bugs 528

Error Logging 528
Debug Traces 530
Asserts 540

Debugging Techniques 541
Reproducing Bugs 541
Debugging Reproducible Bugs 542
Debugging Nonreproducible Bugs 543
Debugging Memory Problems 544
Debugging Multithreaded Programs 547
Debugging Example: Article Citations 548
Lessons from the ArticleCitations Example 559

Summary 559

Chapter 21: Delving into the STL: Containers and Iterators 561

Containers Overview 562
Requirements on Elements 562
Exceptions and Error Checking 563
Iterators 564

Sequential Containers 565
Vector 566
The vector<bool> Specialization 583
deque 584
list 584

Container Adapters 588
queue 588
priority_queue 591
stack 594

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xv

xvi

Contents

Associative Containers 595
The pair Utility Class 595
map 596
multimap 604
set 608
multiset 610

Other Containers 611
Arrays as STL Containers 611
Strings as STL Containers 612
Streams as STL Containers 613
bitset 613

Summary 618

Part V: Using Libraries and Patterns

Chapter 22: Mastering STL Algorithms and Function Objects 619

Overview of Algorithms 620
The find() and find_if() Algorithms 620
The accumulate() Algorithms 623

Function Objects 624
Arithmetic Function Objects 624
Comparison Function Objects 625
Logical Function Objects 627
Function Object Adapters 627
Writing Your Own Function Objects 630

Algorithm Details 631
Utility Algorithms 632
Nonmodifying Algorithms 633
Modifying Algorithms 639
Sorting Algorithms 643
Set Algorithms 646

Algorithms and Function Objects Example: Auditing Voter Registrations 648
The Voter Registration Audit Problem Statement 648
The auditVoterRolls() Function 648
The getDuplicates() Function 649
The RemoveNames Functor 650
The NameInList Functor 651
Testing the auditVoterRolls() Function 652

Summary 653

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xvi

xvii

Contents

Chapter 23: Customizing and Extending the STL 655

Allocators 656
Iterator Adapters 656

Reverse Iterators 656
Stream Iterators 657
Insert Iterators 658

Extending the STL 660
Why Extend the STL? 660
Writing an STL Algorithm 660
Writing an STL Container 662

Summary 691

Chapter 24: Exploring Distributed Objects 693

The Appeal of Distributed Computing 693
Distribution for Scalability 693
Distribution for Reliability 694
Distribution for Centrality 694
Distributed Content 695
Distributed versus Networked 695

Distributed Objects 696
Serialization and Marshalling 696
Remote Procedure Calls 700

CORBA 702
Interface Definition Language 702
Implementing the Class 704
Using the Objects 706

XML 709
A Crash Course in XML 709
XML as a Distributed Object Technology 712
Generating and Parsing XML in C++ 712
XML Validation 721
Building a Distributed Object with XML 723
SOAP (Simple Object Access Protocol) 726

Summary 728

Chapter 25: Incorporating Techniques and Frameworks 729

“I Can Never Remember How to . . .” 730
. . . Write a Class 730
. . . Subclass an Existing Class 731

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xvii

xviii

Contents

. . . Throw and Catch Exceptions 732

. . . Read from a File 733

. . . Write to a File 734

. . . Write a Template Class 734
There Must Be a Better Way 736

Smart Pointers with Reference Counting 736
Double Dispatch 741
Mix-In Classes 747

Object-Oriented Frameworks 750
Working with Frameworks 750
The Model-View-Controller Paradigm 750

Summary 752

Chapter 26: Applying Design Patterns 753

The Singleton Pattern 754
Example: A Logging Mechanism 754
Implementation of a Singleton 754
Using a Singleton 759

The Factory Pattern 760
Example: A Car Factory Simulation 760
Implementation of a Factory 762
Using a Factory 764
Other Uses of Factories 766

The Proxy Pattern 766
Example: Hiding Network Connectivity Issues 766
Implementation of a Proxy 767
Using a Proxy 767

The Adapter Pattern 768
Example: Adapting an XML Library 768
Implementation of an Adapter 768
Using an Adapter 772

The Decorator Pattern 773
Example: Defining Styles in Web Pages 773
Implementation of a Decorator 774
Using a Decorator 775

The Chain of Responsibility Pattern 776
Example: Event Handling 776
Implementation of a Chain of Responsibility 777
Using a Chain of Responsibility 778

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xviii

xix

Contents

The Observer Pattern 778
Example: Event Handling 778
Implementation of an Observer 778
Using an Observer 780

Summary 781

Appendix A: C++ Interviews 783

Chapter 1: A Crash Course in C++ 783
Chapter 2: Designing Professional C++ Programs 784
Chapter 3: Designing with Objects 785
Chapter 4: Designing with Libraries and Patterns 786
Chapter 5: Designing for Reuse 787
Chapter 6: Maximizing Software Engineering Methods 787
Chapter 7: Coding with Style 788
Chapters 8 and 9: Classes and Objects 789
Chapter 10: Discovering Inheritance Techniques 792
Chapter 11: Writing Generic Code with Templates 793
Chapter 12: Understanding C++ Quirks and Oddities 793
Chapter 13: Effective Memory Management 794
Chapter 14: Demystifying C++ I/O 795
Chapter 15: Handling Errors 796
Chapter 16: Overloading C++ Operators 796
Chapter 17: Writing Efficient C++ 797
Chapter 18: Developing Cross-Platform and Cross-Language Applications 798
Chapter 19: Becoming Adept at Testing 798
Chapter 20: Conquering Debugging 799
Chapters 21, 22, and 23: The Standard Template Library 799
Chapter 24: Exploring Distributed Objects 800
Chapter 25: Incorporating Techniques and Frameworks 801
Chapter 26: Applying Design Patterns 801

Appendix B: Annotated Bibliography 803

C++ 803
Beginning C++ 803
General C++ 804
I/O Streams 805
The C++ Standard Library 805
C++ Templates 806

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xix

xx

Contents

C 806
Integrating C++ and Other Languages 806
Algorithms and Data Structures 807
Open-Source Software 807
Software-Engineering Methodology 807
Programming Style 808
Computer Architecture 809
Efficiency 809
Testing 809
Debugging 809
Distributed Objects 810

CORBA 810
XML and SOAP 810

Design Patterns 811

Index 813

02_574841 ftoc.qxd 12/15/04 3:39 PM Page xx

xxi

Introduction

For many years, C++ has served as the de facto language for writing fast, powerful, and enterprise-class
object-oriented programs. As popular as C++ has become, the language is surprisingly difficult to grasp
in full. There are simple, but powerful, techniques that professional C++ programmers use that don’t
show up in traditional texts, and there are useful parts of C++ that remain a mystery even to experienced
C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and pro-
viding an example. Professional C++ does not follow this pattern. Instead of giving you just the nuts and
bolts of the language with little real-world context, this book will teach you how to use C++ in the real
world. It will show you the little-known features that will make your life easier and the reusable coding
patterns that separate novice programmers from professional programmers.

Who This Book Is For
Even if you have used the language for years, you might still be unfamiliar with the more advanced fea-
tures of C++ or might not be using the full capabilities of the language. Perhaps you write competent
C++ code, but would like to learn more about design in C++ and good programming style. Or maybe
you’re relatively new to C++, but want to learn the “right” way to program from the start. This book will
bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming a
professional C++ programmer, it assumes some knowledge of the language. Chapter 1 covers the basics
of C++ as a refresher, but it is not a substitute for actual training and use of the language. If you are just
starting with C++, but you have significant experience in C, you should be able to pick up most of what
you need from Chapter 1. In any case, you should have a solid foundation in programming fundamen-
tals. You should know about loops, functions, and variables. You should know how to structure a pro-
gram, and you should be familiar with fundamental techniques like recursion. You should have some
knowledge of common data structures like hash tables and queues, and useful algorithms such as sort-
ing and searching. You don’t need to know about object-oriented programming just yet—that is covered
in Chapter 3.

You will also need to be familiar with the compiler you will be using to develop your code. This book
does not provide directions for using individual compilers. Refer to the documentation that came with
your compiler for a refresher.

What This Book Covers
Professional C++ is an approach to C++ programming that will both increase the quality of your code and
improve your programming efficiency. Professional C++ teaches more than just the syntax and language
features of C++. It also emphasizes programming methodologies, reusable design patterns, and good

03_574841 flast.qxd 12/15/04 3:39 PM Page xxi

xxii

Introduction

programming style. The Professional C++ methodology incorporates the entire software development
process—from designing and writing code to testing, debugging, and working in groups. This approach
will enable you to master the C++ language and its idiosyncrasies, as well as take advantage of its pow-
erful capabilities for large-scale software development.

Imagine someone who has learned all of the syntax of C++ without seeing a single example of its use.
He knows just enough to be dangerous! Without examples, he might assume that all code should go in
the main() function of the program or that all variables should be global—practices that are generally
not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the syn-
tax. They recognize the importance of good design, the theories of object-oriented programming, and the
best ways to use existing libraries. They have also developed an arsenal of useful code and reusable
ideas.

By reading this book, you will become a professional C++ programmer. You will expand your knowl-
edge of C++ to cover lesser-known and often misunderstood language features. You will gain an appre-
ciation for object-oriented design and acquire top-notch debugging skills. Perhaps most importantly, you
will finish this book armed with a wealth of reusable ideas that can be applied to your actual daily work.

There are many good reasons to make the effort to be a professional C++ programmer, as opposed to a
programmer who knows C++. Understanding the true workings of the language will improve the qual-
ity of your code. Learning about different programming methodologies and processes will help you to
work better with your team. Discovering reusable libraries and common design patterns will improve
your daily efficiency and help you stop reinventing the wheel. All of these lessons will make you a better
programmer and a more valuable employee. While this book can’t guarantee you a promotion, it cer-
tainly won’t hurt!

How This Book Is Structured
This book is made up of six parts.

Part I, “Introduction to Professional C++ Design,” begins with a crash course in C++ basics to ensure a
foundation of C++ knowledge. Following the crash course, Part I explores C++ design methodologies.
You will read about the importance of design, the object-oriented methodology, the use of libraries and
patterns, the importance of code reuse, and the engineering practices being used by programming orga-
nizations today.

Part II, “Coding C++ the Professional Way,” provides a technical tour of C++ from the Professional
point-of-view. You will read about how to write readable C++ code, how to create reusable classes, and
how to leverage important language features like inheritance and templates.

Part III, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of C++.
This part of the book exposes the mysteries of C++ and describes how to use some of its more advanced
features. You will read about the unusual and quirky parts of the language, the best ways to manage
memory in C++, techniques for input and output, professional-grade error handling, advanced operator
overloading, how to write efficient C++ code, and how to write cross-language and cross-platform code.

03_574841 flast.qxd 12/15/04 3:39 PM Page xxii

xxiii

Introduction

Part IV, “Ensuring Bug-Free Code,” focuses on writing enterprise-quality software. You’ll read about
software testing concepts, such as unit testing and regression testing. You’ll also read about techniques
used to debug C++ programs.

Part V, “Using Libraries and Patterns,” covers the use of libraries and patterns, which enable you to
write better code with less work. You’ll read about the standard library included with C++, including
advanced topics such as extending the Standard Library. You’ll also read about distributed objects,
reusable C++ design techniques, and conceptual object-oriented design patterns.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical interview.
You will also a find a practical reference guide to the C++ Standard Library on the supplemental Web
site for this book at www.wrox.com.

What You Need to Use This Book
All you need to use this book is any computer with a C++ compiler. While compilers often differ in their
interpretations of the language, this book focuses on the parts of C++ that have been standardized. The
programs in this book have been tested on Windows, Solaris, and Linux platforms.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them

❑ We show keyboard strokes like this: Ctrl+A

❑ We show filenames, URLs, and code within the text like so: monkey.cpp.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context or that has been shown before.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_574841 flast.qxd 12/15/04 3:39 PM Page xxiii

xxiv

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists), and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7484-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each’s book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

03_574841 flast.qxd 12/15/04 3:39 PM Page xxiv

xxv

Introduction

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_574841 flast.qxd 12/15/04 3:39 PM Page xxv

03_574841 flast.qxd 12/15/04 3:39 PM Page xxvi

A Crash Course
in C++

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a base
of knowledge before embarking on the rest of the book. This chapter is not a comprehensive lesson
in the C++ programming language. The very basic points (like what a program is and the differ-
ence between = and ==) are not covered. The very esoteric points (remember what a union is? how
about the volatile keyword?) are also omitted. Certain parts of the C language that are less rele-
vant in C++ are also left out, as are parts of C++ that get in-depth coverage in later chapters.

This chapter aims to cover the parts of C++ that programmers encounter on a daily basis. If you’ve
been away from C++ for a while and you’ve forgotten the syntax for a for loop, you’ll find that in
this chapter. If you’re fairly new to C++ and you don’t understand what a reference variable is,
you’ll learn that here as well.

If you already have significant experience with C++, skim this chapter to make sure that there
aren’t any fundamental parts of the language on which you need to brush up. If you’re new to
C++, take the time to read this chapter carefully and make sure that you understand the examples.
If you need additional introductory information, consult the titles listed in Appendix B.

The Basics of C++
The C++ language is often viewed as a “better C” or a “superset of C.” Many of the annoyances
or rough edges of the C language were addressed when C++ was designed. Because C++ is based
on C, much of the syntax you’ll see in this section will look familiar to you if are an experienced
C programmer. The two languages certainly have their differences, though. As evidence, The C++
Programming Language by C++ creator Bjarne Stroustrup weighs in at 911 pages, while Kernighan
and Ritchie’s The C Programming Language is a scant 274 pages. So if you’re a C programmer, be on
the lookout for new or unfamiliar syntax!

04_574841 ch01.qxd 12/15/04 3:39 PM Page 1

The Obligatory Hello, World
In all its glory, the following code is the simplest C++ program you’re likely to encounter.

// helloworld.cpp

#include <iostream>

int main(int argc, char** argv)
{

std::cout << “Hello, World!” << std::endl;

return 0;
}

This code, as you might expect, prints the message Hello, World! on the screen. It is a simple program
and unlikely to win any awards, but it does exhibit several important concepts about the format of a
C++ program.

Comments
The first line of the program is a comment, a message that exists for the programmer only and is ignored
by the compiler. In C++, there are two ways to delineate a comment. In the preceding example, two
slashes indicate that whatever follows on that line is a comment.

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a C-style comment, which is also
valid in C++. C-style comments start with /* and end with */. In this fashion, C-style comments are
capable of spanning multiple lines. The code below shows a C-style comment in action (or, more appro-
priately, inaction).

/* this is a multiline
* C-style comment. The
* compiler will ignore
* it.
*/

Comments are covered in detail in Chapter 7.

Preprocessor Directives
Building a C++ program is a three-step process. First, the code is run through a preprocessor, which recog-
nizes metainformation about the code. Next, the code is compiled, or translated into machine-readable
object files. Finally, the individual object files are linked together into a single application. Directives that
are aimed at the preprocessor start with the # character, as in the line #include <iostream> in the
previous example. In this case, an include directive tells the preprocessor to take everything from the
iostream header file and make it available to the current file. The most common use of header files is to
declare functions that will be defined elsewhere. Remember, a declaration tells the compiler how a func-
tion is called. A definition contains the actual code for the function. The iostream header declares the
input and output mechanisms provided by C++. If the program did not include it, it would be unable to
perform its only task of outputting text.

2

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 2

The table below shows some of the most common preprocessor directives.

Preprocessor Directive Functionality Common Uses

#include [file] The specified file is inserted into Almost always used to include
the code at the location of the header files so that code can
directive. make use of functionality that

is defined elsewhere.

#define [key] [value] Every occurrence of the specified Often used in C to define a
key is replaced with the specified constant value or a macro. C++
value. provides a better mechanism

for constants. Macros are often
dangerous so #define is rarely
used in C++. See Chapter 12
for details.

#ifdef [key] Code within the ifdef Used most frequently to protect
#ifndef [key] (“if defined”) or ifndef against circular includes. Each
#endif (“if not defined”) blocks are included file defines a value

conditionally included or initially and surrounds the rest
omitted based on whether of its code with a #ifndef and
the specified value has been #endif so that it won’t be
defined with #define. included multiple times.

#pragma Varies from compiler to compiler. Because usage of #pragma is not
Often allows the programmer to standard across compilers, we
display a warning or error if the advocate not using it.
directive is reached during
preprocessing.

The main function
main() is, of course, where the program starts. An int is returned from main(), indicating the result
status of the program. main() takes two parameters: argc gives the number of arguments passed to the
program, and argv contains those arguments. Note that the first argument is always the name of the
program itself.

I/O Streams
If you’re new to C++ and coming from a C background, you’re probably wondering what std::cout is
and what has been done with trusty old printf(). While printf() can still be used in C++, a much
better input/output facility is provided by the streams library.

In C, included files usually end in .h, such as <stdio.h>. In C++, the suffix is omit-
ted for standard library headers, such as <iostream>. Your favorite standard head-
ers from C still exist in C++, but with new names. For example, you can access the
functionality from <stdio.h> by including <cstdio>.

3

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 3

I/O streams are covered in depth in Chapter 14, but the basics of output are very simple. Think of an
output stream as a laundry chute for data. Anything you toss into it will be output appropriately.
std::cout is the chute corresponding to the user console, or standard out. There are other chutes,
including std::cerr, which outputs to the error console. The << operator tosses data down the chute.
In the preceding example, a quoted string of text is sent to standard out. Output streams allow multiple
data of varying types to be sent down the stream sequentially on a single line of code. The following
code outputs text, followed by a number, followed by more text.

std::cout << “There are “ << 219 << “ ways I love you.” << std::endl;

std::endl represents an end of line character. When the output stream encounters std::endl, it will
output everything that has been sent down the chute so far and move to the next line. An alternate way
of representing the end of a line is by using the ‘\n’ character. The \n character is an escape character,
which refers to a new-line character. Escape characters can be used within any quoted string of text. The
list below shows the most common escape characters.

❑ \n new line

❑ \r carriage return

❑ \t tab

❑ \\ the backslash character

❑ \” quotation mark

Streams can also be used to accept input from the user. The simplest way to do this is to use the
>> operator with an input stream. The std::cin input stream accepts keyboard input from the user.
User input can be tricky because you can never know what kind of data the user will enter. See
Chapter 14 for a full explanation of how to use input streams.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example, you
might be writing some code that has a function called foo(). One day, you decide to start using a third-
party library, which also has a foo() function. The compiler has no way of knowing which version of
foo() you are referring to within your code. You can’t change the library’s function name, and it would
be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names are
defined. To place code in a namespace, simply enclose it within a namespace block:

// namespaces.h

namespace mycode {
void foo();

}

4

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 4

The implementation of a method or function can also be handled in a namespace:

// namespaces.cpp

#include <iostream>
#include “namespaces.h”

namespace mycode {

void foo() {
std::cout << “foo() called in the mycode namespace” << std::endl;

}
}

By placing your version of foo() in the namespace “mycode,” it is isolated from the foo() function
provided by the third-party library. To call the namespace-enabled version of foo(), prepend the
namespace onto the function name as follows.

mycode::foo(); // Calls the “foo” function in the “mycode” namespace

Any code that falls within a “mycode” namespace block can call other code within the same namespace
without explicitly prepending the namespace. This implicit namespace is useful in making the code
more precise and readable. You can also avoid prepending of namespaces with the using directive. This
directive tells the compiler that the subsequent code is making use of names in the specified namespace.
The namespace is thus implied for the code that follows:

// usingnamespaces.cpp

#include “namespaces.h”

using namespace mycode;

int main(int argc, char** argv)
{

foo(); // Implies mycode::foo();
}

A single source file can contain multiple using directives, but beware of overusing this shortcut. In the
extreme case, if you declare that you’re using every namespace known to humanity, you’re effectively
eliminating namespaces entirely! Name conflicts will again result if you are using two namespaces that
contain the same names. It is also important to know in which namespace your code is operating so that
you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before — we used it in the Hello, World program. cout and endl are
actually names defined in the std namespace. We could have rewritten Hello, World with the using
directive as shown here:

5

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 5

// helloworld.cpp

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

cout << “Hello, World!” << endl;

return 0;
}

The using directive can also be used to refer to a particular item within a namespace. For example, if the
only part of the std namespace that you intend to use is cout, you can refer to it as follows:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace will still need to be explicit:

using std::cout;

cout << “Hello, World!” << std::endl;

Variables
In C++, variables can be declared just about anywhere in your code and can be used anywhere in the cur-
rent block below the line where they are declared. In practice, your engineering group should decide
whether variables will be declared at the start of each function or on an as-needed basis. Variables can be
declared without being given a value. These undeclared variables generally end up with a semirandom
value based on whatever is in memory at the time and are the source of countless bugs. Variables in C++
can alternatively be assigned an initial value when they are declared. The code that follows shows both
flavors of variable declaration, both using ints, which represent integer values.

// hellovariables.cpp

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

int uninitializedInt;
int initializedInt = 7;

cout << uninitializedInt << “ is a random value” << endl;
cout << initializedInt << “ was assigned an initial value” << endl;

return (0);
}

6

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 6

When run, this code will output a random value from memory for the first line and the number 7 for the
second. This code also shows how variables can be used with output streams.

The table that follows shows the most common variable types used in C++.

Type Description Usage

int Positive and negative integers (range int i = 7;
depends on compiler settings)

short Short integer (usually 2 bytes) short s = 13;

long Long integer (usually 4 bytes) long l = -7;

unsigned int Limits the preceding types to unsigned int i =2;
unsigned short values >= 0 unsigned short s = 23;
unsigned long unsigned long l = 5400;

float Floating-point and double precision float f = 7.2;
double numbers double d = 7.2

char A single character char ch = ‘m’;

bool true or false (same as non-0 or 0) bool b = true;

Variables can be converted to other types by casting them. For example, an int can be cast to a bool.
C++ provides three ways of explicitly changing the type of a variable. The first method is a holdover
from C, but is still the most commonly used. The second method seems more natural at first but is rarely
seen. The third method is the most verbose, but often considered the cleanest.

bool someBool = (bool)someInt; // method 1

bool someBool = bool(someInt); // method 2

bool someBool = static_cast<bool>(someInt); // method 3

The result will be false if the integer was 0 and true otherwise. In some contexts, variables can be
automatically cast, or coerced. For example, a short can be automatically converted into a long because
a long represents the same type of data with additional precision.

long someLong = someShort; // no explicit cast needed

When automatically casting variables, you need to be aware of the potential loss of data. For example,
casting a float to an int throws away information (the fractional part of the number). Many compilers

C++ does not provide a basic string type. However, a standard implementation of a
string is provided as part of the standard library as described later in this chapter
and in Chapter 13.

7

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 7

will issue a warning if you assign a float to an int without an explicit cast. If you are certain that the
left-hand-side type is fully compatible with the right-hand side type, it’s okay to cast implicitly.

Operators
What good is a variable if you don’t have a way to change it? The table below shows the most common
operators used in C++ and sample code that makes use of them. Note that operators in C++ can be binary
(operate on two variables), unary (operate on a single variable), or even ternary (operate on three vari-
ables). There is only one ternary operator in C++ and it is covered in the next section, “Conditionals.”

Operator Description Usage

= Binary operator to assign the value on the right to int ;
the variable on the left. i = 3;

int j;
j = i;

! Unary operator to negate the true/false (non-0/0) bool b = !true;
status of a variable. bool b2 = !b;

+ Binary operator for addition. int i = 3 + 2;
int j = i + 5;
int k = i + j;

- Binary operators for subtraction, multiplication, int i = 5-1;
* and division. int j = 5*2;
/ int k = j / i;

% Binary operator for remainder of a division int remainder = 5 % 2;
operation. Also referred to as the mod operator.

++ Unary operator to increment a variable by 1. If the i++;
operator occurs before the variable, the result of ++i;
the expression is the unincremented value. If the
operator occurs after the variable, the result of the
expression is the new value.

-- Unary operator to decrement a variable by 1. i--;
--i;

+= Shorthand syntax for i = i + j i += j;

-= Shorthand syntax for i -= j;
*= i = i – j; i *= j;
/= i = i * j; i /= j;
%= i = i / j; i %= j;

i = i % j;

& Takes the raw bits of one variable and performs a i = j & k;
&= bitwise “and” with the other variable. j &= k;

| Takes the raw bits of one variable and performs a i = j | k;
bitwise “or” with the other variable. j |= k;

8

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 8

Operator Description Usage

<< Takes the raw bits of a variable and “shifts” each i = i << 1;
>> bit left (<<) or right (>>) the specified number of i = i >> 4;
<<= places. i <<= 1;
>>= i >>= 4;

^ Performs a bitwise “exclusive or” operation on i = i ^ j;
^= the two arguments. i ^= j;

The following program shows the most common variable types and operators in action. If you’re unsure
about how variables and operators work, try to figure out what the output of this program will be, and
then run it to confirm your answer.

// typetest.cpp

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

int someInteger = 256;
short someShort;
long someLong;
float someFloat;
double someDouble;

someInteger++;
someInteger *= 2;
someShort = (short)someInteger;
someLong = someShort * 10000;
someFloat = someLong + 0.785;
someDouble = (double)someFloat / 100000;

cout << someDouble << endl;
}

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a compli-
cated line of code with many operators, the order of execution may not be obvious. For that reason, it’s
probably better to break up a complicated statement into several smaller statements or explicitly group
expressions using parentheses. For example, the following line of code is confusing unless you happen
to know the C++ operator precedence table by heart:

int i = 34 + 8 * 2 + 21 / 7 % 2;

Adding parentheses makes it clear which operations are happening first:

int i = 34 + (8 * 2) + ((21 / 7) % 2);

9

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 9

Breaking up the statement into separate lines makes it even clearer:

int i = 8 * 2;
int j = 21 / 7;
j %= 2;
i = 34 + i + j;

For those of you playing along at home, all three approaches are equivalent and end up with i equal to
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been 1.
In fact, C++ evaluates /, *, and % first (in left to right order), followed by addition and subtraction, then
bitwise operators. Parenthesis let you explicitly tell the compiler that a certain operation should be eval-
uated separately.

Types
In C++, you can use the basic types (int, bool, etc.) to build more complex types of your own design.
Once you are an experienced C++ programmer, you will rarely use the following techniques, which are
features brought in from C, because classes are far more powerful. Still, it is important to know about
the two most common ways of building types so that you will recognize the syntax.

Enumerated Types
An integer really represents a value within a sequence — the sequence of numbers. Enumerated types
let you define your own sequences so that you can declare variables with values in that sequence. For
example, in a chess program, you could represent each piece as an int, with constants for the piece
types, as shown in the following code. The integers representing the types are marked const to indicate
that they can never change.

const int kPieceTypeKing = 0;
const int kPieceTypeQueen = 1;
const int kPieceTypeRook = 2;
const int kPieceTypePawn = 3;
//etc.

int myPiece = kPieceTypeKing;

This representation is fine, but it can become dangerous. Since the piece is just an int, what would
happen if another programmer added code to increment the value of the piece? By adding one, a king
becomes a queen, which really makes no sense. Worse still, someone could come in and give a piece a
value of -1, which has no corresponding constant.

Enumerated types resolve these problems by tightly defining the range of values for a variable. The fol-
lowing code declares a new type, PieceT, that has four possible values, representing four of the chess
pieces.

typedef enum { kPieceTypeKing, kPieceTypeQueen, kPieceTypeRook,
kPieceTypePawn

} PieceT;

10

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 10

Behind the scenes, an enumerated type is just an integer value. The real value of kPieceTypeKing is
zero. However, by defining the possible values for variables of type PieceT, your compiler can give you
a warning or error if you attempt to perform arithmetic on PieceT variables or treat them as integers.
The following code, which declares a PieceT variable then attempts to use it as an integer, results in a
warning on most compilers.

PieceT myPiece;

myPiece = 0;

Structs
Structs let you encapsulate one or more existing types into a new type. The classic example of a struct is
a database record. If you are building a personnel system to keep track of employee information, you
will need to store the first initial, last initial, middle initial, employee number, and salary for each
employee. A struct that contains all of this information is shown in the header file that follows.

// employeestruct.h

typedef struct {
char firstInitial;
char middleInitial;
char lastInitial;
int employeeNumber;
int salary;

} EmployeeT;

A variable declared with type EmployeeT will have all of these fields built-in. The individual fields of a
struct can be accessed by using the “.” character. The example that follows creates and then outputs the
record for an employee.

// structtest.cpp

#include <iostream>
#include “employeestruct.h”

using namespace std;

int main(int argc, char** argv)
{

// Create and populate an employee.
EmployeeT anEmployee;

anEmployee.firstInitial = ‘M’;
anEmployee.middleInitial = ‘R’;
anEmployee.lastInitial = ‘G’;
anEmployee.employeeNumber = 42;
anEmployee.salary = 80000;

// Output the values of an employee.

11

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 11

cout << “Employee: “ << anEmployee.firstInitial <<
anEmployee.middleInitial <<
anEmployee.lastInitial << endl;

cout << “Number: “ << anEmployee.employeeNumber << endl;
cout << “Salary: $” << anEmployee.salary << endl;

return 0;
}

Conditionals
Conditionals let you execute code based on whether or not something is true. There are three main types
of conditionals in C++.

If/Else Statements
The most common conditional is the if statement, which can be accompanied by else. If the condition
given inside the if statement is true, the line or block of code is executed. If not, execution continues to
the else case if present, or to the code following the conditional. The following pseudocode shows a cas-
cading if statement, a fancy way of saying that the if statement has an else statement that in turn has
another if statement, and so on.

if (i > 4) {
// Do something.

} else if (i > 2) {
// Do something else.

} else {
// Do something else.

}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to a
Boolean value. Conditional operators, described below, provide ways of evaluating expressions to result
in a true or false Boolean value.

Switch Statements
The switch statement is an alternate syntax for performing actions based on the value of a variable. In
switch statements, the variable must be compared to a constant, so the greater-than if statements
above could not be converted to switch statements. Each constant value represents a “case”. If the vari-
able matches the case, the subsequent lines of code are executed until the break statement is reached.
You can also provide a default case, which is matched if none of the other cases match.

switch statements are generally used when you want to do something based on the specific value of a
variable, as opposed to some test on the variable. The following pseudocode shows a common use of the
switch statement.

switch (menuItem) {
case kOpenMenuItem:

// Code to open a file
break;

12

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 12

case kSaveMenuItem:
// Code to save a file
break;

default:
// Code to give an error message
break;

}

If you omit the break statement, the code for the subsequent case will be executed whether or not it
matches. This is sometimes useful, but more frequently a source of bugs.

The Ternary Operator
C++ has one operator that takes three arguments, known as the ternary operator. It is used as a shorthand
conditional expression of the form “if [something] then [perform action], otherwise [perform some other
action]”. The ternary operator is represented by a ? and a :. The following code will output “yes” if the
variable i is greater than 2, and “no” otherwise.

std::cout << ((i > 2) ? “yes” : “no”);

The advantage of the ternary operator is that it can occur within almost any context. In the preceding
example, the ternary operator is used within code that performs output. A convenient way to remember
how the syntax is used is to treat the question mark as though the statement that comes before it really is
a question. For example, “Is i greater than 2? If so, the result is ‘yes’: if not, the result is ‘no.’”

Unlike an if statement or a switch statement, the ternary operator doesn’t execute code based on the
result. Instead, it is used within code, as shown in the preceding example. In this way, it really is an oper-
ator (like + and -) as opposed to a true conditional, such as if and switch.

Conditional Operators
You have already seen a conditional operator without a formal definition. The > operator compares two
values. The result is “true” if the value on the left is greater than the value on the right. All conditional
operators follow this pattern — they all result in a true or false.

The table below shows other common conditional operators.

Operator Description Usage

< Determines if the left-hand side if (i <= 0) {
<= is less than, less than or equal to, std::cout << “i is negative”;
> greater than,or greater than or }
>= equal to the right-hand side.

== Determines if the left-hand side if (i == 3) {
equals the right-hand side. std::cout << “i is 3”;
Don’t confuse this with the }
= (assignment) operator!

Table continued on following page

13

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 13

Operator Description Usage

!= Not equals. The result of if (i != 3) {
the statement is true if the std::cout << “i is not 3”;
left-hand side does not }
equal the right-hand side.

! Logical not. Negates the if (!someBoolean) {
true/false status of a std::cout << “someBoolean is false”;
Boolean expression. }
This is a unary operator.

&& Logical and. The result if (someBoolean && someOtherBoolean) {
is true if both parts of the std::cout << “both are true”;
expression are true. }

|| Logical or. The result is if (someBoolean || someOtherBoolean) {
true if either part of the std::cout << “at least one is true”;
expression is true. }

C++ uses short-circuit logic when evaluating an expression. That means that once the final result is cer-
tain, the rest of the expression won’t be evaluated. For example, if you are doing a logical or of several
Boolean expressions as shown below, the result is known to be true as soon as one of them is found to be
true. The rest won’t even be checked.

bool result = bool1 || bool2 || (i > 7) || (27 / 13 % i + 1) < 2;

In the example above, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can, how-
ever, be a source of hard-to-find bugs if the later expressions in some way influence the state of the pro-
gram (for example, by calling a separate function). The following code shows a statement using && that
will short-circuit after the second term because 1 always evaluates to true.

bool result = bool1 && 1 && (i > 7) && !done;

Loops
Computers are great for doing the same thing over and over. C++ provides three types of looping
structures.

The While Loop
while loops let you perform a block of code repeatedly as long as an expression evaluates to true. For
example, the following completely silly code will output “This is silly.” five times.

int i = 0;
while (i < 5) {

std::cout << “This is silly.” << std::endl;
i++;

}

14

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 14

The keyword break can be used within a loop to immediately get out of the loop and continue execu-
tion of the program. The keyword continue can be used to return to the top of the loop and reevaluate
the while expression. Both are often considered poor style because they cause the execution of a pro-
gram to jump around somewhat haphazardly.

The Do/While Loop
C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes first, and the conditional check for whether or not to continue
happens at the end. In this way, you can use a loop when you want a block of code to always be exe-
cuted at least once and possibly additional times based on some condition. The example that follows
will output “This is silly.” once even though the condition will end up being false.

int i = 100;
do {

std::cout << “This is silly.” << std::endl;
i++;

} while (i < 5);

The For Loop
The for loop provides another syntax for looping. Any for loop can be converted to a while loop and
vice versa. However, the for loop syntax is often more convenient because it looks at a loop in terms of
a starting expression, an ending condition, and a statement to execute at the end of every iteration. In the
following code, i is initialized to 0, the loop will continue as long as i is less than 5, and at the end of
every iteration, i is incremented by 1. This code does the same thing as the while loop example, but to
some programmers, it is easier to read because the starting value, ending condition, and per-iteration
statement are all visible on one line.

for (int i = 0; i < 5; i++) {
std::cout << “This is silly.” << std::endl;

}

Arrays
Arrays hold a series of values, all of the same type, each of which can be accessed by its position in the
array. In C++, you must provide the size of the array when the array is declared. You cannot give a vari-
able as the size — it must be a constant value. The code that follows shows the declaration of an array of
10 integers followed by a for loop that initializes each integer to zero.

int myArray[10];

for (int i = 0; i < 10; i++) {
myArray[i] = 0;

}

15

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 15

The preceding example shows a one-dimensional array, which you can think of as a line of integers, each
with its own numbered compartment. C++ allows multidimensional arrays. You might think of a two-
dimensional array as a checkerboard, where each location has a position along the x-axis and a position
along the y-axis. Three-dimensional and higher arrays are harder to picture and are rarely used. The
code below shows the syntax for allocating a two-dimensional array of characters for a Tic-Tac-Toe board
and then putting an “o” in the center square.

char ticTacToeBoard[3][3];

ticTacToeBoard[1][1] = ‘o’;

Figure 1-1 shows a visual representation of this board with the position of each square.

Figure 1-1

Functions
For programs of any significant size, placing all the code inside of main() is unmanageable. To make
programs easy to understand, you need to break up, or decompose, code into concise functions.

In C++, you first declare a function to make it available for other code to use. If the function is used
inside a particular file of code, you generally declare and define the function in the source file. If the
function is for use by other modules or files, you generally put the declaration in a header file and the
definition in a source file.

In C++, the first element of an array is always at position 0, not position 1! The last
position of the array is always the size of the array minus 1!

ticTacToeBoard[0][0] ticTacToeBoard[0][1] ticTacToeBoard[0][2]

ticTacToeBoard[1][0] ticTacToeBoard[1][1] ticTacToeBoard[1][2]

ticTacToeBoard[2][0] ticTacToeBoard[2][1] ticTacToeBoard[2][2]

16

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 16

A function declaration is shown below. This example has a return type of void, indicating that the func-
tion does not provide a result to the caller. The caller must provide two arguments for the function to
work with — an integer and a character.

void myFunction(int i, char c);

Without an actual definition to match this function declaration, the link stage of the compilation process
will fail because code that makes use of the function myFunction() will be calling nonexistent code.
The following definition simply prints the values of the two parameters.

void myFunction(int i, char c)
{

std::cout << “the value of i is “ << i << std::endl;
std::cout << “the value of c is “ << c << std::endl;

}

Elsewhere in the program, you can make calls to myFunction() and pass in constants or variables for
the two parameters. Some sample function calls are shown here:

myFunction(8, ‘a’);
myFunction(someInt, ‘b’);
myFunction(5, someChar);

C++ functions can also return a value to the caller. The following function declaration and definition is
for a function that adds two numbers and returns the result.

int addNumbers(int number1, int number2);

int addNumbers(int number1, int number2)
{

int result = number1 + number2;
return (result);

}

Those Are the Basics
At this point, you have reviewed the basic essentials of C++ programming. If this section was a breeze,
skim the next section to make sure that you’re up to speed on the more advanced material. If you

In C++, unlike C, a function that takes no parameters just has an empty parameter
list. It is not necessary to use “void” to indicate that no parameters are taken.
However, you should still use “void” to indicate when no value is returned.

Function declarations are often called “function prototypes” or “signatures” to
emphasize that they represent how the function can be accessed, but not the code
behind it.

17

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 17

struggled with this section, you may want to obtain one of the fine introductory C++ books mentioned
in Appendix D before continuing.

Diving Deeper into C++
Loops, variables, and conditionals are terrific building blocks, but there is much more to learn. The top-
ics covered next include many features that are designed to help C++ programmers with their code as
well as a few features that are often more confusing than helpful. If you are a C programmer with little
C++ experience, you should read this section carefully.

Pointers and Dynamic Memory
Dynamic memory allows you to build programs with data that is not of fixed size at compile time. Most
nontrivial programs make use of dynamic memory in some form.

The Stack and the Heap
Memory in your C++ application is divided into two parts — the stack and the heap. One way to visual-
ize the stack is as a deck of cards. The current top card represents the current scope of the program, usu-
ally the function that is currently being executed. All variables declared inside the current function will
take up memory in the top stack frame, the top card of the deck. If the current function, which we’ll call
foo() calls another function bar(), a new card is put on the deck so that bar() has its own stack frame
to work with. Any parameters passed from foo() to bar() are copied from the foo() stack frame into
the bar() stack frame. The mechanics of parameter passing and stack frames are covered in Chapter 13.
Figure 1-2 shows what the stack might look like during the execution of a hypothetical function foo()
that has declared two integer values.

Figure 1-2

Stack frames are nice because they provide an isolated memory workspace for each function. If a vari-
able is declared inside the foo() stack frame, calling the bar() function won’t change it unless you
specifically tell it to. Also, when the foo() function is done running, the stack frame goes away, and all
of the variables declared within the function no longer take up memory.

The heap is an area of memory that is completely independent of the current function or stack frame.
You can put variables on the heap if you want them to exist even when the function in which they were
declared has completed. The heap is less structured than the stack. You can think of it as just a pile of
bits. Your program can add new bits to the pile at any time or modify bits that are already in the pile.

int i

int j

7

11

foo()

main()

18

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 18

Dynamically Allocated Arrays
Due to the way that the stack works, the compiler must be able to determine at compile time how big
each stack frame will be. Since the stack frame size is predetermined, you cannot declare an array with a
variable size. The following code will not compile because the arraySize is a variable, not a constant.

int arraySize = 8;
int myVariableSizedArray[arraySize]; // This won’t compile!

Because the entire array must go on the stack, the compiler needs to know exactly what size it will be so
variables aren’t allowed. However, it is possible to specify the size of an array at run time by using
dynamic memory and placing the array in the heap instead of the stack.

To allocate an array dynamically, you first need to declare a pointer:

int* myVariableSizedArray;

The * after the int type indicates that the variable you are declaring refers to some integer memory in
the heap. Think of the pointer as an arrow that points at the dynamically allocated heap memory. It does
not yet point to anything specific because you haven’t assigned it to anything; it is an uninitialized
variable.

To initialize the pointer to new heap memory, you use the new command:

myVariableSizedArray = new int[arraySize];

This allocates memory for enough integers to satisfy the arraySize variable. Figure 1-3 shows what the
stack and the heap both look like after this code is executed. As you can see, the pointer variable still
resides on the stack, but the array that was dynamically created lives on the heap.

Figure 1-3

Stack

myVariableSizedArray

Heap

myVariableSizedArray[0]
myVariableSizedArray[1]
myVariableSizedArray[2]
myVariableSizedArray[3]
myVariableSizedArray[4]
myVariableSizedArray[5]
myVariableSizedArray[6]
myVariableSizedArray[7]

Some C++ compilers actually do support the preceding declaration, but is not cur-
rently a part of the C++ specification. Most compilers offer a “strict” mode that will
turn off these nonstandard extensions to the language.

19

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 19

Now that the memory has been allocated, you can work with myVariableSizedArray as though it
were a regular stack-based array:

myVariableSizedArray[3] = 2;

When your code is done with the array, it should remove it from the heap so that other variables can use
the memory. In C++, you use the delete command to do this.

delete[] myVariableSizedArray;

The brackets after delete indicate that you are deleting an array.

Working with Pointers
There are other reasons to use heap memory besides dynamically allocating arrays. You can put any
variable in the heap by using a similar syntax:

int* myIntegerPointer = new int;

In this case, the pointer points to just a single integer value. To access this value, you need to dereference
the pointer. Think of dereferencing as following the pointer’s arrow to the actual value in the heap. To
set the value of the newly allocated heap integer, you would use code like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing the
pointer, you are changing the memory that it points to. If you were to reassign the pointer value, it
would point to the memory address 8, which is probably random garbage that will eventually make
your program crash.

Pointers don’t always point to heap memory. You can declare a pointer that points to a variable on the
stack, even another pointer. To get a pointer to a variable, you use the & “address of” operator:

int i = 8;
int* myIntegerPointer = &i; // Points to the variable with the value 8

C++ has a special syntax for dealing with pointers to structures. Technically, if you have a pointer to a
structure, you can access its fields by first dereferencing it with *, then using the normal . syntax, as in
the code that follows, which assumes the existence of a function called getEmployee().

EmployeeT* anEmployee = getEmployee();

cout << (*anEmployee).salary << endl;

The C++ commands new and delete are similar to malloc() and free() from C.
The syntax of new and delete is simpler because you don’t need to know how many
bytes of memory are required.

20

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 20

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the field
access in one step. The following code is equivalent to the preceding code, but is easier to read.

EmployeeT* anEmployee = getEmployee();

cout << anEmployee->salary << endl;

Normally, when you pass a variable into a function, you are passing by value. If a function takes an inte-
ger parameter, it is really a copy of the integer that you pass in. Pointers to stack variables are often used
in C to allow functions to modify variables in other stack frames, essentially passing by reference. By
dereferencing the pointer, the function can change the memory that represents the variable even though
that variable isn’t in the current stack frame. This is less common in C++ because C++ has a better mech-
anism, called references, which is covered below.

Strings in C++
There are three ways to work with strings of text in C++. There is the C-style, which represents strings as
arrays of characters; the C++ style, which wraps that representation in an easier-to-use string type; and
the general class of nonstandard approaches.

C-Style Strings
A string of text like “Hello, World” is internally represented as an array of characters with the character
‘\0’ representing the end of the string. As you’ve seen, arrays and pointers are sometimes related. You
could use either one to represent a string, as shown here:

char arrayString[20] = “Hello, World”;
char* pointerString = “Hello, World”;

For the arrayString, the compiler allocates space for 20 characters on the stack. The first 13 characters
in the array are filled in with ‘H’, ‘e’, etc., ending with the character ‘\0’. The characters in positions
13 to 19 contain whatever random values happen to be in memory. The ‘\0’ character tells code that
uses the string where the content of the string ends. Even though the array has a length of 20, functions
that process or output the string should ignore everything after the ‘\0’ character.

For the pointerString, the compiler allocates enough memory on the stack just to hold the pointer.
The pointer points to an area of memory that the compiler has set aside to hold the constant string
“Hello, World.” In this string, there is also a ‘\0’ character after the ‘d’ character.

The C language provides a number of standard functions for working with strings, which are described
in the <cstring> header file. The details of the standard library are not covered here because C++ pro-
vides a much cleaner and simpler way of working with strings.

C++ Strings
C-style strings are important to understand because they are still frequently used by C++ programmers.
However, C++ includes a much more flexible string type. The string type, described by the <string>
header file, acts just like a basic type. Just like I/O streams, the string type lives in the “std” package.
The example that follows shows how strings can be used just like character arrays.

21

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 21

// stringtest.cpp

#include <string>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

string myString = “Hello, World”;

cout << “The value of myString is “ << myString << endl;

return 0;
}

The magic of C++ strings is that you can use standard operators to work with them. Instead of using a
function, like strcat() in C to concatenate two strings, you can simply use +. If you’ve ever tried to use
the == operator to compare two C-style strings, you’ve discovered that it doesn’t work. == when used on
C-style strings is actually comparing the address of the character arrays, not their contents. With C++
strings, == actually compares two strings. The example that follows shows some of the standard opera-
tors in use with C++ strings.

// stringtest2.cpp

#include <string>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

string str1 = “Hello”;
string str2 = “World”;
string str3 = str1 + “ “ + str2;

cout << “str1 is “ << str1 << endl;
cout << “str2 is “ << str2 << endl;
cout << “str3 is “ << str3 << endl;

if (str3 == “Hello World”) {
cout << “str3 is what it should be.” << endl;

} else {
cout << “Hmmm . . . str3 isn’t what it should be.” << endl;

}

return (0);
}

The preceding examples show just a few of the many features of C++ strings. Chapter 13 goes into fur-
ther detail.

22

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 22

Nonstandard Strings
There are several reasons why many C++ programmers don’t use C++-style strings. Some programmers
simply aren’t aware of the string type because it was not always part of the C++ specification. Others
have discovered over the years that the C++ string doesn’t provide the behavior they need and have
developed their own string type. Perhaps the most common reason is that development frameworks and
operating systems tend to have their own way of representing strings, such as the CString class in
Microsoft’s MFC. Often, this is for backward compatibility or legacy issues. When starting a project in
C++, it is very important to decide ahead of time how your group will represent strings.

References
The pattern for most functions is that they take in zero or more parameters, do some calculations, and
return a single result. Sometimes, however, that pattern is broken. You may be tempted to return two
values or you may want the function to be able to change the value of one of the variables that were
passed in.

In C, the primary way to accomplish such behavior is to pass in a pointer to the variable instead of the
variable itself. The only problem with this approach is that it brings the messiness of pointer syntax into
what is really a simple task. In C++, there is an explicit mechanism for “pass-by-reference.” Attaching &
to a type indicates that the variable is a reference. It is still used as though it was a normal variable, but
behind the scenes, it is really a pointer to the original variable. Below are two implementations of an
addOne() function. The first will have no effect on the variable that is passed in because it is passed by
value. The second uses a reference and thus changes the original variable.

void addOne(int i)
{

i++; // Has no real effect because this is a copy of the original
}

void addOne(int& i)
{

i++; // Actually changes the original variable
}

The syntax for the call to the addOne() function with an integer reference is no different than if the func-
tion just took an integer.

int myInt = 7;
addOne(myInt);

Exceptions
C++ is a very flexible language, but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well with
infinity). One of the language features that attempts to add a degree of safety back to the language is
exceptions.

23

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 23

An exception is an unexpected situation. For example, if you are writing a function that retrieves a Web
page, several things could go wrong. The Internet host that contains the page might be down, the page
might come back blank, or the connection could be lost. In many programming languages, you would
handle this situation by returning a special value from the function, such as the NULL pointer. Exceptions
provide a much better mechanism for dealing with problems.

Exceptions come with some new terminology. When a piece of code detects an exceptional situation, it
throws an exception. Another piece of code catches the exception and takes appropriate action. The fol-
lowing example shows a function, divideNumbers(), that throws an exception if the caller passes in a
denominator of zero.

#include <stdexcept>

double divideNumbers(double inNumerator, double inDenominator)
{

if (inDenominator == 0) {
throw std::exception();

}

return (inNumerator / inDenominator);
}

When the throw line is executed, the function will immediately end without returning a value. If the
caller surrounds the function call with a try-catch block, as shown in the following code, it will receive
the exception and be able to handle it.

#include <iostream>
#include <stdexcept>

int main(int argc, char** argv)
{

try {
std::cout << divideNumbers(2.5, 0.5) << std::endl;
std::cout << divideNumbers(2.3, 0) << std::endl;

} catch (std::exception exception) {
std::cout << “An exception was caught!” << std::endl;

}
}

The first call to divideNumbers() executes successfully, and the result is output to the user. The second
call throws an exception. No value is returned, and the only output is the error message that is printed
when the exception is caught. The output for the preceding block of code is:

5
An exception was caught!

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens to
the stack variables when an exception is thrown, and you have to be careful to properly catch and han-
dle the necessary exceptions. The preceding example used the built-in std::exception exception type,
but it is preferable to write your own exception types that are more specific to the error being thrown.
Unlike the Java language, the C++ compiler doesn’t force you to catch every exception that might occur.

24

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 24

If your code never catches any exceptions but an exception is thrown, it will be caught by the program
itself, which will be terminated. These trickier aspects of exceptions are covered in much more detail in
Chapter 15

The Many Uses of const
The keyword const can be used in several different ways in C++. All of its uses are related, but there are
subtle differences. One of the authors has discovered that the subtleties of const make for excellent
interview questions! In Chapter 12, you will learn all of the ways that const can be used. The following
sections outline the most frequent uses.

Const Constants
If you assumed that the keyword const has something to do with constants, you have correctly uncov-
ered one of its uses. In the C language, programmers often use the preprocessor #define mechanism to
declare symbolic names for values that won’t change during the execution of the program, such as the
version number. In C++, programmers are encouraged to avoid #define in favor of using const to
define constants. Defining a constant with const is just like defining a variable, except that the compiler
guarantees that code cannot change the value.

const float kVersionNumber = “2.0”;
const string kProductName = “Super Hyper Net Modulator”;

Const to Protect Variables
In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a function that
a coworker of yours is writing, and you want to ensure that the function doesn’t change the value of a
parameter you pass in, you can tell your coworker to have the function take a const parameter. If the
function attempts to change the value of the parameter, it will not compile.

In the following code, a char* is automatically cast to a const char* in the call to
mysteryFunction(). If the author of mysteryFunction() attempts to change the values within the
character array, the code will not compile. There are actually ways around this restriction, but using
them requires conscious effort. C++ only protects against accidentally changing const variables.

// consttest.cpp
void mysteryFunction(const char* myString);

int main(int argc, char** argv)
{

char* myString = new char[2];
myString[0] = ‘a’;
myString[1] = ‘\0’;

mysteryFunction(myString);

return (0);
}

25

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 25

Const References
You will often find code that uses const reference parameters. At first, that seems like a contradiction.
Reference parameters allow you to change the value of a variable from within another context. const
seems to prevent such changes.

The main value in const reference parameters is efficiency. When you pass a variable into a function,
an entire copy is made. When you pass a reference, you are really just passing a pointer to the original
so the computer doesn’t need to make the copy. By passing a const reference, you get the best of both
worlds — no copy is made but the original variable cannot be changed.

const references become more important when you are dealing with objects because they can be large
and making copies of them can have unwanted side effects. Subtle issues like this are covered in
Chapter 12.

C++ as an Object-Oriented Language
If you are a C programmer, you may have viewed the features covered so far in this chapter as convenient
additions to the C language. As the name C++ implies, in many ways the language is just a “better C.”
There is one major point that this view overlooks. Unlike C, C++ is an object-oriented language.

Object-oriented programming (OOP) is a very different, arguably more natural, way to write code.
If you are used to procedural languages such as C or Pascal, don’t worry. Chapter 3 covers all the back-
ground information you need to know to shift your mindset to the object-oriented paradigm. If you
already know the theory of OOP, the rest of this section will get you up to speed (or refresh your mem-
ory) on basic C++ object syntax.

Declaring a Class
A class defines the characteristics of an object. It is somewhat analogous to a struct except a class defines
behaviors in addition to properties. In C++, classes are usually declared in a header file and fully
defined in a corresponding source file.

A basic class definition for an airline ticket class is shown below. The class can calculate the price of the
ticket based on the number of miles in the flight and whether or not the customer is a member of the
“Elite Super Rewards Program.” The definition begins by declaring the class name. Inside a set of curly
braces, the data members (properties) of the class and its methods (behaviors) are declared. Each data
member and method is associated with a particular access level: public, protected, or private. These
labels can occur in any order and can be repeated.

// AirlineTicket.h

#include <string>

class AirlineTicket
{

public:
AirlineTicket();

26

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 26

~AirlineTicket();

int calculatePriceInDollars();

std::string getPassengerName();
void setPassengerName(std::string inName);
int getNumberOfMiles();
void setNumberOfMiles(int inMiles);
bool getHasEliteSuperRewardsStatus();
void setHasEliteSuperRewardsStatus(bool inStatus);

private:
std::string mPassengerName;
int mNumberOfMiles;
bool fHasEliteSuperRewardsStatus;

};

The method that has the same name of the class with no return type is a constructor. It is automatically
called when an object of the class is created. The method with a tilde (~) character followed by the class
name is a destructor. It is automatically called when the object is destroyed.

The sample program that follows makes use of the class declared in the previous example. This example
shows the creation of a stack-based AirlineTicket object as well as a heap-based object.

// AirlineTicketTest.cpp

#include <iostream>
#include “AirlineTicket.h”

using namespace std;

int main(int argc, char** argv)
{

AirlineTicket myTicket; // Stack-based AirlineTicket

myTicket.setPassengerName(“Sherman T. Socketwrench”);
myTicket.setNumberOfMiles(700);
int cost = myTicket.calculatePriceInDollars();
cout << “This ticket will cost $” << cost << endl;

AirlineTicket* myTicket2; // Heap-based AirlineTicket

myTicket2 = new AirlineTicket(); // Allocate a new object
myTicket2->setPassengerName(“Laudimore M. Hallidue”);
myTicket2->setNumberOfMiles(2000);
myTicket2->setHasEliteSuperRewardsStatus(true);
int cost2 = myTicket2->calculatePriceInDollars();
cout << “This other ticket will cost $” << cost2 << endl;
delete myTicket2;

return 0;
}

27

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 27

The definitions of the AirlineTicket class methods are shown below.

// AirlineTicket.cpp

#include <iostream>
#include “AirlineTicket.h”

using namespace std;

AirlineTicket::AirlineTicket()
{

// Initialize data members
fHasEliteSuperRewardsStatus = false;
mPassengerName = “Unknown Passenger”;
mNumberOfMiles = 0;

}

AirlineTicket::~AirlineTicket()
{

// Nothing much to do in terms of cleanup
}

int AirlineTicket::calculatePriceInDollars()
{

if (getHasEliteSuperRewardsStatus()) {
// Elite Super Rewards customers fly for free!
return 0;

}

// The cost of the ticket is the number of miles times
// 0.1. Real airlines probably have a more complicated formula!
return static_cast<int>((getNumberOfMiles() * 0.1));

}

string AirlineTicket::getPassengerName()
{

return mPassengerName;
}

void AirlineTicket::setPassengerName(string inName)
{

mPassengerName = inName;
}

int AirlineTicket::getNumberOfMiles()
{

return mNumberOfMiles;
}

void AirlineTicket::setNumberOfMiles(int inMiles)
{

mNumberOfMiles = inMiles;
}

28

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 28

bool AirlineTicket::getHasEliteSuperRewardsStatus()
{

return (fHasEliteSuperRewardsStatus);
}

void AirlineTicket::setHasEliteSuperRewardsStatus(bool inStatus)
{

fHasEliteSuperRewardsStatus = inStatus;
}

The preceding example exposes you to the general syntax for creating and using classes. Of course, there
is much more to learn. Chapters 8 and 9 go into more depth about the specific C++ mechanisms for
defining classes.

Your First Useful C++ Program
The following program builds on the employee database example used earlier when discussing structs.
This time, you will end up with a fully functional C++ program that uses many of the features discussed
in this chapter. This real-world example includes the use of classes, exceptions, streams, arrays, names-
paces, references, and other language features.

An Employee Records System
A program to manage a company’s employee records needs to be flexible and have useful features. The
feature set for this program includes the following.

❑ The ability to add an employee

❑ The ability to fire an employee

❑ The ability to promote an employee

❑ The ability to view all employees, past and present

❑ The ability to view all current employees

❑ The ability to view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the com-
pany. A separate UserInterface file provides the interactivity of the program.

The Employee Class
The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Methods also exist to adjust the employee’s salary and employment status.

29

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 29

Employee.h
The Employee.h file declares the behavior of the Employee class. The sections of this file are described
individually in the material that follows.

// Employee.h

#include <iostream>

namespace Records {

The first few lines of the file include a comment indicating the name of the file and the inclusion of the
stream functionality.

This code also declares that the subsequent code, contained within the curly braces, will live in the
Records namespace. Records is the namespace that is used throughout this program for application-
specific code.

const int kDefaultStartingSalary = 30000;

This constant, representing the default starting salary for new employees, lives in the Records names-
pace. Other code that lives in Records can access this constant simply as kDefaultStartingSalary.
Elsewhere, it must be referenced as Records::kDefaultStartingSalary.

class Employee
{

public:

Employee();

void promote(int inRaiseAmount = 1000);
void demote(int inDemeritAmount = 1000);
void hire(); // Hires or rehires the employee
void fire(); // Dismisses the employee
void display(); // Outputs employee info to the console

// Accessors and setters
void setFirstName(std::string inFirstName);
std::string getFirstName();
void setLastName(std::string inLastName);
std::string getLastName();
void setEmployeeNumber(int inEmployeeNumber);
int getEmployeeNumber();
void setSalary(int inNewSalary);
int getSalary();
bool getIsHired();

The Employee class is declared, along with its public methods. The promote() and demote() methods
both have integer parameters that are specified with a default value. In this way, other code can omit the
integer parameters and the default will automatically be used.

30

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 30

A number of accessors provide mechanisms to change the information about an employee or query the
current information about an employee:

private:
std::string mFirstName;
std::string mLastName;
int mEmployeeNumber;
int mSalary;
bool fHired;

};
}

Finally, the data members are declared as private so that other parts of the code cannot modify them
directly. The accessors provide the only public way of modifying or querying these values.

Employee.cpp
The implementations for the Employee class methods are shown here:

// Employee.cpp

#include <iostream>

#include “Employee.h”

using namespace std;

namespace Records {

Employee::Employee()
{

mFirstName = “”;
mLastName = “”;
mEmployeeNumber = -1;
mSalary = kDefaultStartingSalary;
fHired = false;

}

The Employee constructor sets the initial values for the Employee’s data members. By default, new
employees have no name, an employee number of -1, the default starting salary, and a status of not
hired.

void Employee::promote(int inRaiseAmount)
{

setSalary(getSalary() + inRaiseAmount);
}

void Employee::demote(int inDemeritAmount)
{

setSalary(getSalary() - inDemeritAmount);
}

31

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 31

The promote() and demote() methods simply call the setSalary() method with a new value. Note
that the default values for the integer parameters do not appear in the source file. They only need to
exist in the header.

void Employee::hire()
{

fHired = true;
}

void Employee::fire()
{

fHired = false;
}

The hire() and fire() methods just set the fHired data member appropriately.

void Employee::display()
{

cout << “Employee: “ << getLastName() << “, “ << getFirstName() << endl;
cout << “-------------------------” << endl;
cout << (fHired ? “Current Employee” : “Former Employee”) << endl;
cout << “Employee Number: “ << getEmployeeNumber() << endl;
cout << “Salary: $” << getSalary() << endl;
cout << endl;

}

The display() method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such as
mSalary, directly instead of using the getSalary() accessor. However, it is considered good style to
make use of accessors when they exist, even within the class.

// Accessors and setters

void Employee::setFirstName(string inFirstName)
{

mFirstName = inFirstName;
}

string Employee::getFirstName()
{

return mFirstName;
}

void Employee::setLastName(string inLastName)
{

mLastName = inLastName;
}

string Employee::getLastName()
{

return mLastName;
}

32

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 32

void Employee::setEmployeeNumber(int inEmployeeNumber)
{

mEmployeeNumber = inEmployeeNumber;
}

int Employee::getEmployeeNumber()
{

return mEmployeeNumber;
}

void Employee::setSalary(int inSalary)
{

mSalary = inSalary;
}

int Employee::getSalary()
{

return mSalary;
}

bool Employee::getIsHired()
{

return fHired;
}

}

A number of accessors and setters perform the simple task of getting and setting values. Even though
these methods seem trivial, it’s better to have trivial accessors and setters than to make your data mem-
bers public. In the future, you may want to perform bounds checking in the setSalary() method, for
example.

EmployeeTest.cpp
As you write individual classes, it is often useful to test them in isolation. The following code includes a
main() function that performs some simple operations using the Employee class. Once you are confi-
dent that the Employee class works, you should remove or comment-out this file so that you don’t
attempt to compile your code with multiple main() functions.

// EmployeeTest.cpp

#include <iostream>

#include “Employee.h”

using namespace std;
using namespace Records;

int main (int argc, char** argv)
{

cout << “Testing the Employee class.” << endl;

33

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 33

Employee emp;

emp.setFirstName(“Marni”);
emp.setLastName(“Kleper”);
emp.setEmployeeNumber(71);
emp.setSalary(50000);
emp.promote();
emp.promote(50);
emp.hire();
emp.display();

return 0;
}

The Database Class
The Database class uses an array to store Employee objects. An integer called mNextSlot is used as a
marker to keep track of the next unused array slot. This method for storing objects is probably not ideal
because the array is of a fixed size. In Chapters 4 and 21, you will learn about data structures in the C++
standard library that you can use instead

Database.h
// Database.h

#include <iostream>
#include “Employee.h”

namespace Records {

const int kMaxEmployees = 100;
const int kFirstEmployeeNumber = 1000;

Two constants are associated with the database. The maximum number of employees is a constant
because the records are kept in a fixed-size array. Because the database will also take care of automati-
cally assigning an employee number to a new employee, a constant defines where the numbering begins.

class Database
{

public:
Database();
~Database();

Employee& addEmployee(std::string inFirstName, std::string inLastName);
Employee& getEmployee(int inEmployeeNumber);
Employee& getEmployee(std::string inFirstName, std::string inLastName);

The database provides an easy way to add a new employee by providing a first and last name. For con-
venience, this method will return a reference to the new employee. External code can also get an

34

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 34

employee reference by calling the getEmployee() method. Two versions of this method are declared.
One allows retrieval by employee number. The other requires a first and last name.

void displayAll();
void displayCurrent();
void displayFormer();

Because the database is the central repository for all employee records, it has methods that will output
all employees, the employees who are currently hired, and the employees who are no longer hired.

protected:
Employee mEmployees[kMaxEmployees];
int mNextSlot;
int mNextEmployeeNumber;

};
}

The mEmployees array is a fixed-size array that contains the Employee objects. When the database is
created, this array will be filled with nameless employees, all with an employee number of -1. When
the addEmployee() method is called, one of these blank employees will be populated with real data.
The mNextSlot data member keeps track of which blank employee is next in line to be populated. The
mNextEmployeeNumber data member keeps track of what employee number will be assigned to the
new employee.

Database.cpp
// Database.cpp

#include <iostream>
#include <stdexcept>

#include “Database.h”

using namespace std;

namespace Records {

Database::Database()
{

mNextSlot = 0;
mNextEmployeeNumber = kFirstEmployeeNumber;

}

Database::~Database()
{
}

The Database constructor takes care of initializing the next slot and next employee number members to
their starting values. mNextSlot is initialized to zero so that when the first employee is added, it will go
into slot 0 of the mEmployees array.

35

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 35

Employee& Database::addEmployee(string inFirstName, string inLastName)
{

if (mNextSlot >= kMaxEmployees) {
cerr << “There is no more room to add the new employee!” << endl;
throw exception();

}

Employee& theEmployee = mEmployees[mNextSlot++];
theEmployee.setFirstName(inFirstName);
theEmployee.setLastName(inLastName);
theEmployee.setEmployeeNumber(mNextEmployeeNumber++);
theEmployee.hire();

return theEmployee;
}

The addEmployee() method fills in the next “blank” employee with actual information. An initial check
makes sure that the mEmployees array is not full and throws an exception if it is. Note that after their
use, the mNextSlot and mNextEmployeeNumber data members are incremented so that the next
employee will get a new slot and number.

Employee& Database::getEmployee(int inEmployeeNumber)
{

for (int i = 0; i < mNextSlot; i++) {
if (mEmployees[i].getEmployeeNumber() == inEmployeeNumber) {

return mEmployees[i];
}

}

cerr << “No employee with employee number “ << inEmployeeNumber << endl;
throw exception();

}

Employee& Database::getEmployee(string inFirstName, string inLastName)
{

for (int i = 0; i < mNextSlot; i++) {
if (mEmployees[i].getFirstName() == inFirstName &&

mEmployees[i].getLastName() == inLastName) {
return mEmployees[i];

}
}

cerr << “No match with name “ << inFirstName << “ “ << inLastName << endl;
throw exception();

}

Both versions of getEmployee() work in similar ways. The methods loop over all nonblank employees
in the mEmployees array and check to see if each Employee is a match for the information passed to the
method. If no match is found, an error is output and an exception is thrown.

36

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 36

void Database::displayAll()
{

for (int i = 0; i < mNextSlot; i++) {
mEmployees[i].display();

}
}

void Database::displayCurrent()
{

for (int i = 0; i < mNextSlot; i++) {
if (mEmployees[i].getIsHired()) {

mEmployees[i].display();
}

}
}

void Database::displayFormer()
{

for (int i = 0; i < mNextSlot; i++) {
if (!mEmployees[i].getIsHired()) {

mEmployees[i].display();
}

}
}

}

The display methods all use a similar algorithm. They loop through all nonblank employees and tell
each employee to display itself to the console if the criterion for display matches.

DatabaseTest.cpp
A simple test for the basic functionality of the database follows:

// DatabaseTest.cpp

#include <i0stream>

#include “Database.h”

using namespace std;
using namespace Records;

int main(int argc, char** argv)
{

Database myDB;

Employee& emp1 = myDB.addEmployee(“Greg”, “Wallis”);
emp1.fire();

Employee& emp2 = myDB.addEmployee(“Scott”, “Kleper”);
emp2.setSalary(100000);

37

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 37

Employee& emp3 = myDB.addEmployee(“Nick”, “Solter”);
emp3.setSalary(10000);
emp3.promote();

cout << “all employees: “ << endl;
cout << endl;
myDB.displayAll();

cout << endl;
cout << “current employees: “ << endl;
cout << endl;
myDB.displayCurrent();

cout << endl;
cout << “former employees: “ << endl;
cout << endl;
myDB.displayFormer();

}

The User Interface
The final part of the program is a menu-based user interface that makes it easy for users to work with
the employee database.

UserInterface.cpp
// UserInterface.cpp

#include <i0stream>
#include <stdexcept>

#include “Database.h”

using namespace std;
using namespace Records;

int displayMenu();
void doHire(Database& inDB);
void doFire(Database& inDB);
void doPromote(Database& inDB);
void doDemote(Database& inDB);

int main(int argc, char** argv)
{

Database employeeDB;
bool done = false;

while (!done) {
int selection = displayMenu();

switch (selection) {

38

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 38

case 1:
doHire(employeeDB);
break;

case 2:
doFire(employeeDB);
break;

case 3:
doPromote(employeeDB);
break;

case 4:
employeeDB.displayAll();
break;

case 5:
employeeDB.displayCurrent();
break;

case 6:
employeeDB.displayFormer();
break;

case 0:
done = true;
break;

default:
cerr << “Unknown command.” << endl;

}
}

return 0;
}

The main() function is a loop that displays the menu, performs the selected action, then does it all
again. For most actions, separate functions are defined. For simpler actions, like displaying employees,
the actual code is put in the appropriate case.

int displayMenu()
{

int selection;

cout << endl;
cout << “Employee Database” << endl;
cout << “-----------------” << endl;
cout << “1) Hire a new employee” << endl;
cout << “2) Fire an employee” << endl;
cout << “3) Promote an employee” << endl;
cout << “4) List all employees” << endl;
cout << “5) List all current employees” << endl;
cout << “6) List all previous employees” << endl;
cout << “0) Quit” << endl;
cout << endl;
cout << “---> “;

cin >> selection;

return selection;
}

39

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 39

The displayMenu() function simply outputs the menu and gets input from the user. One important
note is that this code assumes that the user will “play nice” and type a number when a number is
requested. When you read about I/O in Chapter 14, you will learn how to protect against bad input

void doHire(Database& inDB)
{

string firstName;
string lastName;

cout << “First name? “;
cin >> firstName;
cout << “Last name? “;
cin >> lastName;

try {
inDB.addEmployee(firstName, lastName);

} catch (std::exception ex) {
cerr << “Unable to add new employee!” << endl;

}
}

The doHire() function simply gets the new employee’s name from the user and tells the database to
add the employee. It handles errors somewhat gracefully by outputting a message and continuing.

void doFire(Database& inDB)
{

int employeeNumber;

cout << “Employee number? “;
cin >> employeeNumber;

try {
Employee& emp = inDB.getEmployee(employeeNumber);
emp.fire();
cout << “Employee “ << employeeNumber << “ has been terminated.” << endl;

} catch (std::exception ex)
cerr << “Unable to terminate employee!” << endl;

}
}

void doPromote(Database& inDB)
{

int employeeNumber;
int raiseAmount;

cout << “Employee number? “;
cin >> employeeNumber;

cout << “How much of a raise? “;
cin >> raiseAmount;

40

Chapter 1

04_574841 ch01.qxd 12/15/04 3:39 PM Page 40

try {
Employee& emp = inDB.getEmployee(employeeNumber);
emp.promote(raiseAmount);

} catch (std::exception ex) {
cerr << “Unable to promote employee!” << endl;

}
}

doFire() and doPromote() both ask the database for an employee by their employee number and then
use the public methods of the Employee object to make changes.

Evaluating the Program
The preceding program covers a number of topics from the very simple to the more obscure. There are a
number of ways that you could extend this program. For example, the user interface does not expose all
of the functionality of the Database or Employee classes. You could modify the UI to include those fea-
tures. You could also change the Database class to remove fired employees from the mEmployees array,
potentially saving space.

If there are parts of this program that don’t make sense, consult the preceding sections to review those
topics. If something is still unclear, the best way to learn is to play with the code and try things out.
For example, if you’re not sure how to use the ternary operator, write a short main() function that tries
it out.

Summary
Now that you know the fundamentals of C++, you are ready to become a professional C++ programmer.
The next five chapters will introduce you to several important design concepts. By covering design at a
high-level without getting into too much actual code, you will gain an appreciation for good program
design without getting bogged down in the syntax.

When you start getting deeper into the C++ language later in the book, refer back to this chapter to brush
up on parts of the language that you may need to review. Going back to some of the sample code in this
chapter may be all you need to see to bring a forgotten concept back to the forefront of your mind.

41

A Crash Course in C++

04_574841 ch01.qxd 12/15/04 3:39 PM Page 41

04_574841 ch01.qxd 12/15/04 3:39 PM Page 42

Designing Professional
C++ Programs

Before writing a single line of code in your application, you should design your program. What
data structures will you use? What classes will you write? This plan is especially important when
you program in groups. Imagine sitting down to write a program with no idea what your
coworker, who is working on the same program, is planning! In this chapter, we’ll teach you how
to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect of
the software-engineering process. Too often programmers jump into applications without a clear
plan: they design as they code. This approach inevitably leads to convoluted and overly compli-
cated designs. It also makes the development, debugging, and maintenance tasks more difficult.
Although counterintuitive, investing extra time at the beginning of a project to design it properly
actually saves time over the life of the project.

Chapter 1 gave you a refresher course in the C++ syntax and feature set. Chapter 7 returns to the
details of C++ syntax, but the remainder of Part I focuses on programming design.

After finishing this chapter, you will understand:

❑ The definition of programming design

❑ The importance of programming design

❑ The aspects of design that are unique to C++

❑ The two fundamental themes for effective C++ design: abstraction and reuse

❑ The specific components that make up a program design in C++

05_574841 ch02.qxd 12/15/04 3:39 PM Page 43

What Is Programming Design?
Your program design, or software design, is the specification of the architecture that you will implement to
fulfill the functional and performance requirements of the program. Informally, the design is simply how
you plan to write the program. You should generally write your design in the form of a design docu-
ment. Although every company or project has its own variation of a desired design document format,
most design documents share the same general layout, including two main parts:

1. The gross subdivision of the program into subsystems, including interfaces and dependencies
between the subsystems, data flow between the subsystems, input and output to and from each
subsystem, and general threading model.

2. The details of each subsystem, including subdivision into classes, class hierarchies, data struc-
tures, algorithms, specific threading model, and error-handling specifics.

The design documents usually include diagrams and tables showing subsystem interactions and class
hierarchies. The exact format of the design document is less important than the process of thinking
about your design.

You should generally complete your design before you begin coding. The design should provide a map
of the program that any reasonable programmer could follow in order to implement the application. Of
course, it is inevitable that the design will need to be modified once you begin coding and you encounter
issues that you didn’t think of earlier. Your software-engineering process should provide you the flexibility
to make these changes. Chapter 6 describes various software-engineering process models in more detail.

The Importance of Programming Design
It’s tempting to skip the design step, or to perform it only cursorily, in order to begin programming as
soon as possible. There’s nothing like seeing code compiling and running to give you the impression
that you have made progress. It seems like a waste of time to formalize a design when you already
know, more or less, how you want to structure your program. Besides, writing a design document just
isn’t as much fun as coding. If you wanted to write papers all day, you wouldn’t be a computer pro-
grammer! As programmers ourselves, we understand this temptation to begin coding immediately, and
have certainly succumbed to it on occasion. However, it invariably leads to problems on all but the sim-
plest projects.

To understand the importance of programming design it helps to examine a real-world analogy. Imagine
that you own a plot of land on which you want to build a house. When the builder shows up to begin
construction you ask to see the blueprints. “What blueprints?” he responds, “I know what I’m doing.
I don’t need to plan every little detail ahead of time. Two-story house? No problem — I did a one-story
house a few months ago — I’ll just start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed with the project. A few
months later you notice that the plumbing appears to run outside the house instead of inside the walls.

The point of designing is to think about your program before you write it.

44

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 44

When you query the builder about this anomaly he says, “Oh. Well, I forgot to leave space in the walls
for the plumbing. I was so excited about this new drywall technology it just slipped my mind. But it
works just as well outside, and functionality is the most important thing.” You’re starting to have your
doubts about his approach, but, against your better judgment, you allow him to continue his work.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink. The
builder excuses himself by saying, “We were already 2/3 done with the kitchen by the time we realized
there wasn’t space for the sink. Instead of starting over we just added on a separate sink room next door.
It works, right?”

Do any of the builder’s excuses sound familiar if you translate them to the software domain? Have you
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside the
house? For example, maybe you forgot to include locking in your queue data structure that is shared
between multiple threads. By the time you realized the problem, it seemed easier to require all the
threads to remember to do their own locking. Sure, it’s ugly, but it works, you said. That is, until some-
one new joins the project who assumes that the locking is built into the data structure, fails to ensure
mutual exclusion in her access to the shared data, and causes a race condition bug that takes three weeks
to track down.

Formalizing a design before you code helps you determine how everything fits together. Just as
blueprints for a house show how the rooms relate to each other and work together to fulfill the require-
ments of the house, the design for a program shows how the subsystems of the program relate to each
other and work together to fulfill the software requirements. Without a design plan, you are likely to
miss connections between subsystems, possibilities for reuse or shared information, and the simplest
ways to accomplish tasks. Without the “big picture” that the design gives, you might become so bogged
down in individual implementation details that you lose track of the overarching architecture and goals.
Furthermore, the design provides written documentation to which all members of the project can refer.

If the above analogy still hasn’t convinced you to design before you code, here is an example where
jumping directly into coding fails to lead to an optimal design. Suppose that you want to write a chess
program. Instead of designing the entire program before you begin programming, you decide to jump in
with the easiest parts and move slowly to the more difficult parts. Following the object-oriented perspec-
tive introduced in Chapter 1 and covered in more detail in Chapter 3, you decide to model your chess
pieces with classes. The pawn is the simplest chess piece, so you opt to start there.After considering the
features and behaviors of a pawn, you write a class with the properties and behaviors shown in the
following table:

Class Properties Behaviors

Pawn Location on Board Move
Color (Black or White) Check Move Legality
Captured Draw

Promote (Upon Reaching Opposing
Side of the Board)

Writing a program without a design is like building a house without blueprints.

45

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 45

Of course, you didn’t actually write the table. You went straight to the implementation. Happy with that
class you move on to the next easiest piece: the bishop. After considering its attributes and functionality,
you write a class with the properties and behaviors shown in the next table:

Class Properties Behaviors

Bishop Location on Board Move
Color (Black or White) Check Move Legality
Captured Draw

Again, you didn’t generate a table, because you jumped straight to the coding phase. However, at this
point you begin to suspect that you might be doing something wrong. The bishop and the pawn look
similar. In fact, their properties are identical and they share many behaviors. Although the implementa-
tions of the move behavior might differ between the pawn and the bishop, both pieces need the ability to
move. If you had designed your program before jumping into coding, you would have realized that the
various pieces are actually quite similar, and that you should find some way to write the common func-
tionality only once. Chapter 3 explains the object-oriented design techniques for doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program. For
example, you cannot accurately represent the location on the board in a chess piece class without know-
ing how you will model the board. On the other hand, perhaps you will design your program so that the
board manages pieces in a way that doesn’t require them to know their own locations. In either case,
encoding the location in the piece classes before designing the board leads to problems. To take another
example, how can you write a draw method for a piece without first deciding your program’s user inter-
face? Will it be graphical or text-based? What will the board look like? The problem is that subsystems of
a program do not exist in isolation — they interrelate with other subsystems. Most of the design work
determines and defines these relationships.

What’s Different about C++ Design?
There are several aspects of the C++ language that make designing for C++ different, and more compli-
cated, than designing for other languages.

❑ First, C++ has an immense feature set. It is almost a complete superset of the C language, plus
classes and objects, operator overloading, exceptions, templates, and many other features. The
sheer size of the language makes design a daunting task.

❑ Second, C++ is an object-oriented language. This means that your designs should include class
hierarchies, class interfaces, and object interactions. This type of design is quite different from
“traditional” design in C or other procedural languages. Chapter 3 focuses on object-oriented
design in C++.

❑ Another unique aspect of C++ is its numerous facilities for designing generic and reusable code.
In addition to basic classes and inheritance, you can use other language facilities such as tem-
plates and operator overloading for effective design. Chapter 5 covers design techniques for
reusable code.

46

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 46

❑ Additionally, C++ provides a useful standard library, including a string class, I/O facilities, and
many common data structures and algorithms. Also, many design patterns, or common ways to
solve problems, are applicable to C++. Chapter 4 covers design with the standard library and
introduces design patterns.

Because of all of these issues, tackling a design for a C++ program can be overwhelming. One of the
authors has spent entire days scribbling design ideas on paper, crossing them out, writing more ideas,
crossing those out, and repeating the process. Sometimes this process is helpful, and, at the end of those
days (or weeks), leads to a clean, efficient design. Other times it can be frustrating, and leads nowhere.
It’s important to remain cognizant of whether or not you are making real progress. If you find that you
are stuck, you can take one of the following actions:

❑ Ask for help. Consult a coworker, mentor, book, newsgroup, or Web page.

❑ Work on something else for a while. Come back to this design choice later.

❑ Make a decision and move on. Even if it’s not an ideal solution, decide on something and try to
work with it. An incorrect choice will soon become apparent. However, it may turn out to be an
acceptable method. Perhaps there is no clean way to accomplish what you want to accomplish
with this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic strat-
egy to fulfill your requirements.

Two Rules for C++ Design
There are two fundamental design rules in C++: abstraction and reuse. These guidelines are so important
that they can be considered themes of this book. They come up repeatedly throughout the text, and
throughout effective C++ program designs in all domains.

Abstraction
The principle of abstraction is easiest to understand through a real-world analogy. A television is a simple
piece of technology that can be found in most homes. You are probably familiar with its features: you
can turn it on and off, change the channel, adjust the volume, and add external components such as
speakers, VCRs, and DVD players. However, can you explain how it works inside the black box? That is,
do you know how it receives signals over the air or through a cable, translates them, and displays them
on the screen? We certainly can’t explain how a television works, yet we are quite capable of using it.
That is because the television clearly separates its internal implementation from its external interface. We
interact with the television through its interface: the power button, channel changer, and volume control.
We don’t know, nor do we care, how the television works; we don’t care whether it uses a cathode ray
tube or some sort of alien technology to generate the image on our screen. It doesn’t matter because it
doesn’t affect the interface.

Keep in mind that good design is hard, and getting it right takes practice. Don’t
expect to become an expert overnight, and don’t be surprised if you find it more dif-
ficult to master C++ design than C++ coding.

47

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 47

Benefiting from Abstraction
The abstraction principle is similar in software. You can use code without knowing the underlying
implementation. As a trivial example, your program can make a call to the sqrt() function declared in
the header file <cmath> without knowing what algorithm the function actually uses to calculate the
square root. In fact, the underlying implementation of the square root calculation could change between
releases of the library, and as long as the interface stays the same, your function call will still work. The
principle of abstraction extends to classes as well. As introduced in Chapter 1, you can use the cout
object of class ostream to stream data to standard output like this:

cout << “This call will display this line of text\n”;

In this line, you use the documented interface of the cout insertion operator with a character array.
However, you don’t need to understand how cout manages to display that text on the user’s screen.
You need only know the public interface. The underlying implementation of cout is free to change as
long as the exposed behavior and interface remain the same. Chapter 14 covers I/O streams in more
detail.

Incorporating Abstraction in Your Design
You should design functions and classes so that you and other programmers can use them without
knowing, or relying on, the underlying implementations. To see the difference between a design that
exposes the implementation and one that hides it behind an interface, consider the chess program again.
You might want to implement the chess board with a two-dimensional array of pointers to ChessPiece
objects. You could declare and use the board like this:

ChessPiece* chessBoard[10][10];
...
ChessBoard[0][0] = new Rook();

However, that approach fails to use the concept of abstraction. Every programmer who uses the chess
board knows that it is implemented as a two-dimensional array. Changing that implementation to some-
thing else, such as an array of vectors, would be difficult, because you would need to change every use
of the board in the entire program. There is no separation of interface from implementation.

A better approach is to model the chess board as a class. You could then expose an interface that hides
the underlying implementation details. Here is an example of the ChessBoard class:

Class ChessBoard {
public:

// This example omits constructors, destructors, and the assignment operator.
void setPieceAt(ChessPiece* piece, int x, int y);
ChessPiece& getPieceAt(int x, int y);
bool isEmpty(int x, int y);

protected:
// This example omits data members.

};

Note that this interface makes no commitment to any underlying implementation. The ChessBoard
could easily be a two-dimensional array, but the interface does not require it. Changing the implementa-
tion does not require changing the interface. Furthermore, the implementation can provide additional
functionality, such as bounds checking, that you were unable to do with the first approach.

48

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 48

Hopefully this example convinced you that abstraction is an important technique in C++ programming.
Chapters 3 and 5 cover abstraction and object-oriented design in more detail, and Chapters 8 and 9 pro-
vide all the details about writing your own classes.

Reuse
The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world anal-
ogy to understand this concept. Suppose that you give up your programming career in favor of work as
a baker. On your first day of work, the head baker tells you to bake cookies. In order to fulfill his orders
you find the recipe for chocolate-chip cookies in the cookbook, mix the ingredients, form cookies on the
cookie sheet, and place the cookie sheet in the oven to bake. The head baker is pleased with the result.

Now, we are going to point out something so obvious that it will surprise you: you didn’t build your
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour, or
form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if you’re a
real cook, but what if you’re a programmer writing a baking simulation game? In that case, you would
think nothing of writing every component of the program, from the chocolate chips to the oven.
However, you could save yourself time by looking around for code to reuse. Perhaps your office-mate
wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t do every-
thing you need, but you might be able to modify it and add the necessary functionality.

To point out something else that you took for granted, you followed a recipe for the cookies instead of
making up your own. Again, that goes without saying. However, in C++ programming, it does not go
without saying. Although there are standard ways of approaching problems that arise over and over in
C++, many programmers persist in reinventing these strategies in each design.

Reusing Code
The idea of using existing code is not new to you. You’ve been reusing code from the first day you
printed something with cout. You didn’t write the code to actually print your data to the screen. You
used the existing ostream implementation to do the work.

Unfortunately, programmers generally do not take advantage of all the available code. Your designs
should take into account existing code and reuse it when appropriate.

For example, suppose that you want to write an operating system scheduler. The scheduler is the com-
ponent of the operating system that is responsible for deciding which processes run, and for how long.
Since you want to implement priority-based scheduling, you realize that you need a priority queue on
which to store the processes waiting to run. A naïve approach to this design is to write your own priority
queue. However, you should know that the C++ standard template library (STL) provides a
priority_queue container that you can use to store objects of any type. Thus, you should incorporate
this priority_queue from the STL into your design for the scheduler instead of rewriting your own
priority queue. Chapter 4 covers code reuse in more detail, and introduces the standard template library.

Writing Reusable Code
The design theme of reuse applies to code you write as well as to code that you use. You should design
your programs so that you can reuse your classes, algorithms, and data structures. You and your
coworkers should be able to utilize these components in both the current project and in future projects.
In general, you should avoid designing overly specific code that is applicable only to the case at hand.

49

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 49

One language technique for writing general-purpose code in C++ is the template. The following exam-
ple shows a templatized data structure. If you’ve never seen this syntax before, don’t worry! Chapter 11
explains the syntax in depth.

Instead of writing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider writ-
ing a generic GameBoard template that can be used for any type of two-dimensional board game such as
chess or checkers. You would need only to change the class declaration so that it takes the piece to store
as a template parameter instead of hard-coding it in the interface. The template could look something
like this:

template <typename PieceType>
Class GameBoard {
public:

// This example omits constructors, destructors, and the assignment operator.
void setPieceAt(PieceType* piece, int x, int y);
PieceType& getPieceAt(int x, int y);
bool isEmpty(int x, int y);

protected:
// This example omits data members.

};

With this simple change in the interface, you now have a generic game board class that you can use for
any two-dimensional board game. Although the code change is simple, it is important to make these
decisions in the design phase, so that you are able to implement the code effectively and efficiently.

Reusing Ideas
As the baker example illustrates, it would be ludicrous to reinvent recipes for every dish that you
make. However, programmers often make an equivalent mistake in their designs. Instead of utilizing
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time they
design a program. However, many design patterns appear in myriad different C++ applications. As a
C++ programmer, you should familiarize yourself with these patterns so that you can incorporate them
effectively into your program designs.

For example, you might want to design your chess program so that you have a single ErrorLogger
object that serializes all errors from different components to a log file. When you try to design your
ErrorLogger class, you realize that it would be disastrous to have more than one object instantiated
from the ErrorLogger class in a single program. You also want to be able to access this ErrorLogger
object from anywhere in your program. These requirements of a single, globally accessible, instance of
a class arise frequently in C++ programs, and there is a standard strategy to implement them, called
the singleton. Thus, a good design at this point would specify that you want to use the singleton pattern.
Chapters 5, 25, and 26 cover design patterns and techniques in much more detail.

Designing a Chess Program
This section introduces a systematic approach to designing a C++ program in the context of a simple
chess game application. In order to provide a complete example, some of the steps refer to concepts cov-
ered in later chapters. You should read this example now, in order to obtain an overview of the design
process, but you might also consider rereading it after you have finished reading Part I.

50

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 50

Requirements
Before embarking on the design, it is important to possess clear requirements for the program’s function-
ality and efficiency. Ideally, these requirements would be documented in the form of a requirements
specification. The requirements for the chess program would contain the following types of specifica-
tions, although in more detail and number:

❑ The program will support the standard rules of chess.

❑ The program will support two human players. The program will not provide an artificially
intelligent computer player.

❑ The program will provide a text-based interface:

❑ The program will render the game board and pieces in ASCII text.

❑ Players will express their moves by entering numbers representing locations on the
chessboard.

The requirements ensure that you design your program so that it performs as its users expect. You
would not want to waste time designing and coding a graphical user interface for the chess game if the
users desire only a text-based interface. Conversely, it would be important to be aware of a user prefer-
ence for a graphical user interface, so that you don’t design the program in a way that precludes that
possibility.

Design Steps
You should take a systematic approach to designing your program, working from the general to the spe-
cific. The following steps do not always apply to all programs, but they provide a general guideline.
Your design should include diagrams and tables as appropriate. This example includes sample diagrams
and tables. Feel free to follow the format used here or to invent your own.

There is no “right” way to draw software design diagrams as long as they are clear and meaningful to
yourself and your colleagues.

Divide the Program into Subsystems
Your first step is to divide your program into its general functional subsystems and to specify the inter-
faces and interactions between the subsystems. At this point, you should not worry about specifics of
data structures and algorithms, or even classes. You are trying only to obtain a general feel for the vari-
ous parts of the program and their interactions. You can list the subsystems in a table that expresses the
high-level behaviors or functionality of the subsystem, the interfaces exported from the subsystem to
other subsystems, and the interfaces consumed, or used, by this subsystem on other subsystems. A table
for the chess game subsystems could look like this:

51

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 51

Subsystem Name Number Functionality Interfaces Exported Interfaces Consumed

GamePlay 1 Starts game Game Over Take Turn (on Player)
Controls game Draw (on Chess
flow Board)
Controls drawing
Declares winner
Ends game

Chess Board 1 Stores chess pieces Get Piece At Game Over (on
Checks for draws Set Piece At Game-Play)
and checkmates Draw Draw (on Chess
Draws itself Piece)

Chess Piece 32 Draws itself Draw Get Piece At (on
Moves itself Move Game Board)
Checks for legal Check Move Set Piece At (on
moves Game Board)

Player 2 Interacts with Take Turn Get Piece At (on
user: prompts Game Board)
user for move, Move (on Chess
obtains user’s Piece)
move Check Move (on
Moves pieces Chess Piece)

ErrorLogger 1 Writes error mes- Log Error None
sages to log file

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem, a
ChessBoard, 32 ChessPieces, two Players, and one ErrorLogger. However, that is not the only reasonable
approach to a Chess Game. In software design, as in programming itself, there are often many different
ways to accomplish the same goal. Not all ways are equal: some are certainly better than others.
However, there are often several equally valid methods.

A good division into subsystems separates the program into its basic functional parts. For example, in
the Chess Game, a Player is a subsystem distinct from the Board, Chess Pieces, or GamePlay. It wouldn’t
make sense to lump the players into the GamePlay object because they are logically separate subsystems.
Other choices are not as obvious. Would it be reasonable to add a separate User Interface subsystem?
If you intend to provide different kinds of user interfaces, or want to easily modify your interfaces later,
you might want to separate out this aspect into a separate subsystem. To make these kinds of choices,
you need to consider not only the current goals of the program, but future goals as well.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to show
the subsystems of a program in a diagram, such as Figure 2-1. In this figure, arrows represent calls from
one subsystem to another (for simplicity, the Error Logger subsystem is omitted).

52

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 52

Figure 2-1

Choose Threading Models
In this step, you choose the number of threads in your program and specify their interactions. You
should also specify any locking for shared data. If you are unfamiliar with multithreaded programs, or
your platform does not support multithreading, then you should make your programs single-threaded.
However, if your program has several distinct tasks, each of which should work in parallel, it might be a
good candidate for multiple threads. For example, graphical user interface applications often have one
thread performing the main application work and another thread waiting for the user to press buttons or
select menu items.

Because threading is platform specific, this book does not cover multithreaded programming. See
Chapter 18 for a discussion of platform considerations with C++.

The chess program needs only one thread to control the game flow.

Specify Class Hierarchies for Each Subsystem
In this step, you determine the class hierarchies that you intend to write in your program. The chess pro-
gram needs only one class hierarchy, to represent the chess pieces. The hierarchy could work as shown
in Figure 2-2.

Figure 2-2

ChessPiece

Rook Bishop

Queen

Knight King Pawn

ChessBoard

GamePlay

Chess
Piece

Player
TakeTurn

GetPieceAt

Draw

GetPieceAt
SetPieceAt

Move
CheckMove

DrawGame
Over

53

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 53

In this hierarchy, a generic ChessPiece class serves as the superclass. The hierarchy uses multiple inher-
itance to show that the queen piece is a combination of a rook and a bishop.

Chapter 3 explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms,
and Patterns for Each Subsystem

In this step, you consider a greater level of detail, and specify the particulars of each subsystem, includ-
ing the specific classes that you write for each subsystem. It may well turn out that you model each sub-
system itself as a class. This information can again be summarized in a table:

Subsystem Classes Data Structures Algorithms Patterns

GamePlay GamePlay class GamePlay object Simple loop giving None
includes one each player a turn
ChessBoard object to play
and two Player
objects

ChessBoard ChessBoard class ChessBoard object Checks for win or None
is a two-dimensional draw after each
array of ChessPieces move
ChessBoard stores
32 ChessPieces

ChessPiece ChessPiece Each piece stores its Piece checks for None
abstract superclass location in the chess legal move by
Rook, Bishop, board querying chess
Knight, King, board for pieces
Pawn, and Queen at various
classes locations

Player One Player class Two player objects Take Turn algorithm: None
(black and white) loop to prompt user

for move, check if
move is legal, and
move piece

ErrorLogger One ErrorLogger A queue of messages Buffers messages and Singleton
class to log writes them to a log pattern

file periodically to ensure
only one
ErrorLogger
object

This section of the design document would normally present the actual interfaces for each class, but this
example will forgo that level of detail.

54

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 54

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstraction,
the key is to consider the interface and the implementation separately. First, specify the interface from
the perspective of the user. Decide what you want the component to do. Then decide how the component
will do it by choosing data structures and algorithms. For reuse, familiarize yourself with standard data
structures, algorithms, and patterns. Also, make sure you are aware of the standard library code in C++,
as well as any proprietary code available in your workplace.

Chapters 3, 4, and 5 discuss these issues in more detail.

Specify Error Handling for Each Subsystem
In this design step, you delineate the error handling in each subsystem. The error handling should
include both system errors, such as memory allocation failures, and user errors, such as invalid entries.
You should specify whether each subsystem uses exceptions. You can again summarize this information
in a table:

Subsystem Handling System Errors Handling User Errors

GamePlay Logs an error with the ErrorLogger and Not applicable (no direct user
terminates program if unable to allocate interface)
memory for ChessBoard or Players

ChessBoard Logs an error with the ErrorLogger and Not applicable (no direct user
throws an exception if unable to allocate interface)
memory for itself or for its ChessPieces

ChessPiece Logs an error with the ErrorLogger and Not applicable (no direct user
throws an exception if unable to allocate interface)
memory

Player Logs an error with the ErrorLogger and Sanity-checks user move entry to
throws an exception if unable to allocate ensure that it is not off the board;
memory. prompts user for another entry

Checks each move legality before
moving the piece; if illegal,
prompts user for another move

ErrorLogger Attempts to log an error and terminates Not applicable (no direct user
the program if unable to allocate memory interface)

The general rule for error handling is to handle everything. Think hard about all possible error condi-
tions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything as an
“unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries, disk fail-
ures, and network failures, to name a few. However, as the table for the chess game shows, you should
handle user errors differently from internal errors. For example, a user entering an invalid move should
not cause your chess program to terminate.

Chapter 15 discusses error handling in more depth.

55

Designing Professional C++ Programs

05_574841 ch02.qxd 12/15/04 3:39 PM Page 55

Summary
In this chapter, you learned about the professional C++ approach to design. Hopefully, it convinced you
that software design is an important first step in any programming project. You also learned about some
of the aspects of C++ that make design difficult, including its object-oriented focus, its large feature set
and standard library, and its facilities for writing generic code. With this information, you are better pre-
pared to tackle C++ design.

This chapter introduced two design themes. The concept of abstraction, or separating interface from
implementation, permeates this book and should be a guideline for all your design work. The notion of
reuse, both of code and ideas, also arises frequently in real-world projects, and in this text. You should
reuse existing code and ideas, and write your code to be as reusable as possible.

Now that you understand the importance of design and the basic design themes, you are ready for the
rest of Part I. Chapter 3 describes strategies for utilizing the object-oriented aspects of C++ in your
design. Chapters 4 and 5 present guidelines both for reusing preexisting code and ideas and for writing
reusable code. Chapter 6 closes Part I with a discussion of software-engineering models and processes.

56

Chapter 2

05_574841 ch02.qxd 12/15/04 3:39 PM Page 56

Designing with
Objects

Now that you have developed an appreciation for good software design from Chapter 2, it’s time
to pair the notion of objects with the concept of good design. The difference between programmers
who use objects in their code and those who truly grasp object-oriented programming comes
down to the way their objects relate to each other and to the overall design of the program.

This chapter begins with the transition from procedural programming to object-oriented program-
ming. Even if you’ve been using objects for years, you will want to read this chapter for some new
ideas regarding how to think about objects. A discussion of the different kinds of relationships
between objects includes pitfalls programmers often succumb to when building an object-oriented
program. You will also learn how the principal of abstraction relates to objects.

An Object-Oriented View of the World
When making the transition from procedural (C-style) coding to object-oriented coding, the most
important point to remember is that object-oriented programming (OOP) is just a different way to
think about what’s going on in your program. Too often, programmers get bogged down in the
new syntax and jargon of OOP before they adequately understand what an object is. This chapter
is light on code and heavy on concepts and ideas. For specifics on C++ object syntax, see
Chapters 8, 9, and 10.

Am I Thinking Procedurally?
A procedural language, such as C, divides code into small pieces that each (ideally) accomplish a
single task. Without procedures in C, all your code would be lumped together inside main(). Your
code would be difficult to read, and your coworkers would be annoyed, to say the least.

06_574841 ch03.qxd 12/15/04 3:40 PM Page 57

The computer doesn’t care if all your code is in main() or if it’s split into bite-sized pieces with descrip-
tive names and comments. Procedures are an abstraction that exists to help you, the programmer, as well
as those who read and maintain your code. The concept is built around a fundamental question about
your program — What does this program do? By answering that question in English, you are thinking pro-
cedurally. For example, you might begin designing a stock selection program by answering as follows:
First, the program obtains stock quotes from the Internet. Then, it sorts this data by specific metrics.
Next, it performs analysis on the sorted data. Finally, it outputs a list of buy and sell recommendations.
When you start coding, you might directly turn this mental model into C functions: retrieveQuotes(),
sortQuotes(), analyzeQuotes(), and outputRecommendations().

The procedural approach tends to work well when your program follows a specific list of steps. In large
modern applications, however, there is rarely a linear sequence of events. Often a user is able to perform
any command at any time. Procedural thinking also says nothing about data representation. In the pre-
vious example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once
you realize that OOP is simply an alternative, more flexible, way of thinking about software, it’ll come
naturally.

The Object-Oriented Philosophy
Unlike the procedural approach, which is based on the question What does this program do?, the object-
oriented approach asks another question: What real-world objects am I modeling? OOP is based on the
notion that you should divide your program not into tasks, but into models of physical objects. While
this seems abstract at first, it becomes clearer when you consider physical objects in terms of their classes,
components, properties, and behaviors.

Classes
A class helps distinguish an object from its definition. Consider the orange (the Florida Department of
Citrus certainly hopes you will). There’s a difference between talking about oranges in general as tasty
fruit that grows on trees and talking about a specific orange, such as the one that’s currently dripping
juice on my keyboard.

When answering the question What are oranges? you are talking about the class of things known as
oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange. All
oranges have some particular flavor. A class is simply the encapsulation of what defines a classification
of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particular
class. Because the object on my desk is an orange, I know that it belongs to the orange class. Thus,
I know that it is a fruit that grows on trees. I can further say that it is a medium shade of orange and
ranks “mighty tasty” in flavor. An object is an instance of a class — a particular item with characteristics
that distinguish it from other instances of the same class.

Even though C refers to procedures as “functions,” C is not a functional language.
The term functional is very different from procedural and refers to languages like
Lisp, which use an entirely different abstraction.

58

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 58

As a more concrete example, reconsider the stock selection application from above. In OOP, “stock
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote, such
as “current Microsoft stock quote,” would be an object because it is a particular instance of the class.

From a C background, think of classes and objects as analogous to types and variables. In fact, in
Chapter 8, you’ll see the syntax for classes is similar to the syntax for C structs. Objects are syntactically
very similar to C-style variables.

Components
If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that it is
made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines, and
numerous other parts. The ability to think of objects in terms of their smaller components is essential to
OOP, just as the breaking up of complicated tasks into smaller procedures is fundamental to procedural
programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each of
these components might have further subcomponents. For example, the landing gear is a component of
an airplane, and the wheel is a component of the landing gear.

Properties
Properties are what distinguish one object from another. Going back to the Orange class, recall that all
oranges are defined as having some shade of orange and a particular flavor. These two characteristics
are properties. All oranges have the same properties, just with different values. My orange has a “mighty
tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized above, all oranges are fruit and
grow on trees. These are properties of the fruit class whereas the specific shade of orange is determined
by the particular fruit object. Class properties are shared by all members of a class, while object proper-
ties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question What makes this object
different?

Behaviors
Behaviors answer either of two questions: What does this object do? or What can I do to this object? In the
case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior is that it can be
eaten. Like properties, you can think of behaviors on the class level or the object level. All oranges can
pretty much be eaten in the same way. However, they might differ in some other behavior, such as being
rolled down an incline, where the behavior of a perfectly round orange would differ from that of a more
oblate one.

The stock selection example provides some more practical behaviors. As you recall, when thinking pro-
cedurally, we determined that our program needs to analyze stock quotes as one of its functions.

59

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 59

Thinking in OOP, we might decide that a stock quote object can analyze itself! Analysis becomes a
behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into
objects. By building objects that have certain behaviors and defining how they interact, OOP offers a
much richer mechanism for attaching code to the data on which it operates.

Bringing It All Together
With these concepts, you could take another look at the stock selection program and redesign it in an
object-oriented manner.

As discussed above, “stock quote” would be a fine class to start with. To obtain the list of quotes, the
program needs the notion of a group of stock quotes, which is often called a collection. So a better design
might be to have a class that represents a “collection of stock quotes,” which is made up of smaller com-
ponents that represent a single “stock quote.”

Moving on to properties, the collection class would have at least one property — the actual list of quotes
received. It might also have additional properties, such as the exact date and time of the most recent
retrieval and the number of quotes obtained. As for behaviors, the “collection of stock quotes” would be
able to talk to a server to get the quotes and provide a sorted list of quotes. This is the “retrieve quotes”
behavior.

The stock quote class would have the properties discussed earlier — name, symbol, current price, and
so on. Also as indicated above, it would have an analyze behavior. You might consider other behaviors,
such as buying and selling the stock.

It is often useful to jot down diagrams showing the relationship between components. Figure 3-1 uses
multiple lines to indicate that one “collection of stock quotes” contains many “stock quote” objects.

Figure 3-1

Another useful way of visualizing classes is to list properties and behaviors (as shown in the following
two tables) when brainstorming the object representation of a program.

Class Associated Components Properties Behaviors

Orange None Color Eat
Flavor Roll

Toss

Collection
of

Stock Quotes

Stock
Quote

60

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 60

Class Associated Components Properties Behaviors

Collection of Stock Made up of individual Individual Quotes Retrieve quotes
Quotes Stock Quote objects Timestamp Sort quotes by

Number of Quotes various criteria

Stock Quote None (yet) Company Name Analyze
Ticker Symbol Buy shares
Current Price and Sell shares
so on

Living in a World of Objects
When programmers make the transition from thinking procedurally to the object-oriented paradigm,
they often experience an epiphany about the combination of properties and behaviors into objects. Some
programmers find themselves revisiting the design of programs they’re working on and rewriting cer-
tain pieces as objects. Others might be tempted to throw all the code away and restart the project as a
fully object-oriented application.

There are two major approaches to developing software with objects. To some people, objects simply
represent a nice encapsulation of data and functionality. These programmers sprinkle objects throughout
their programs to make the code more readable and easier to maintain. Programmers taking this
approach slice out isolated pieces of code and replace them with objects like a surgeon implanting a
pacemaker. There is nothing inherently wrong with this approach. These people see objects as a tool that
is beneficial in many situations. Certain parts of a program just “feel like an object,” like the stock quote.
These are the parts that can be isolated and described in real-world terms.

Other programmers adopt the OOP paradigm fully and turn everything into an object. In their minds,
some objects correspond to real-world things, such as an orange or a stock quote, while others encapsu-
late more abstract concepts, such as a sorter or an undo object. The ideal approach is probably some-
where in between these extremes. Your first object-oriented program may really have been a traditional
procedural program with a few objects sprinkled in. Or perhaps you went whole hog and made every-
thing an object, from a class representing an int to a class representing the main application. Over time,
you will find a happy medium.

Overobjectification
There is often a fine line between designing a creative object-oriented system and annoying everybody
else on your team by turning every little thing into an object. As Freud used to say, sometimes a variable
is just a variable. Okay, that’s a paraphrase of what he said.

Perhaps you’re designing the next bestselling Tic-Tac-Toe game. You’re going all-out OOP on this one, so
you sit down with a cup of coffee and a notepad to sketch out your classes and objects. In games like
this, there’s often an object that oversees game play and is able to detect the winner. To represent the
game board, you might envision a Grid object that will keep track of the markers and their locations. In
fact, a component of the grid could be the Piece object that represents an X or an O.

61

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 61

Wait, back up! This design proposes to have a class that represents an X or an O. That is perhaps object
overkill. After all, can’t a char represent an X or an O just as well? Better yet, why can’t the Grid just use
a two-dimensional array of an enumerated type? Does a Piece object just complicate the code? Take a
look at the table below representing the proposed piece class:

Class Associated Components Properties Behaviors

Piece None X or O None

The table is a bit sparse, strongly hinting that what we have here may be too granular to be a full-
fledged object.

On the other hand, a forward-thinking programmer might argue that while Piece is a pretty meager
class as it currently stands, making it into an object allows future expansion without any real penalty.
Perhaps down the road, this will be a graphical application and it might be useful to have the Piece
class support drawing behavior. Additional properties could be the color of the Piece or whether the
Piece was the most recently moved.

Obviously, there is no right answer. The important point is that these are issues that you should consider
when designing your application. Remember that objects exist to help programmers manage their code.
If objects are being used for no reason other than to make the code “more object-oriented,” something is
wrong.

Overly General Objects
Perhaps a worse annoyance than objects that shouldn’t be objects is objects that are too general. All OOP
students start with examples like “orange” — things that are objects, no question about it. In real life
coding, objects can get pretty abstract. Many OOP programs have an “application object,” despite the
fact that an application isn’t really something you can envision in the real world. Yet it may be useful to
represent the application as an object because the application itself has certain properties and behaviors.

An overly general object is an object that doesn’t represent a particular thing at all. The programmer
may be attempting to make an object that is flexible or reusable, but ends up with one that is confusing.
For example, imagine a program that organizes and displays media. It can catalog your photos, organize
your digital music collection, and serve as a personal journal. The overly general approach is to think of
all these things as “media” objects and build a single class that can accommodate all of the formats. It
might have a property called “data” that contains the raw bits of the image, song, or journal entry,
depending on the type of media. It might have a behavior called “perform” that appropriately draws the
image, plays the song, or brings up the journal entry for editing.

The clues that this class is too general are in the names of the properties and behaviors. The word “data”
has little meaning by itself — we had to use a general term because this class has been overextended to
three very different uses. Similarly, “perform” will do very different things in the three different cases.
Finally, this design is too general because “media” isn’t a particular object. Not in the user interface, not
in real life, and not even in the programmer’s mind. A major clue that a class is too general is when
many ideas in the programmers mind all unite as a single object, as shown in Figure 3-2.

62

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 62

Figure 3-2

Object Relationships
As a programmer, you will certainly encounter cases where different classes have characteristics in com-
mon, or at least seem somehow related to each other. For example, although creating a “media” object to
represent images, music, and text in a digital catalog program is too general, these objects do share char-
acteristics. You may want all of them to keep track of the date and time that they were last modified, or
you might want them all to support a delete behavior.

Object-oriented languages provide a number of mechanisms for dealing with such relationships between
objects. The tricky part is to understand what the relationship actually is. There are two main types of
object relationships — a has-a relationship and an is-a relationship.

The Has-A Relationship
Objects engaged in a has-a, or aggregation, relationship follow the pattern A has a B, or A contains a B. In
this type of relationship, you can envision one object as part of another. Components, as defined earlier,
generally represent a has-a relationship because they describe objects that are made up of other objects.

A real-world example of this might be the relationship between a zoo and a monkey. You could say that
a zoo has a monkey or a zoo contains a monkey. A simulation of a zoo in code would have a zoo object,
which has a monkey component.

Often, thinking about user interface scenarios is helpful in understanding object relationships. This is so
because even though not all UIs are implemented in OOP (though these days, most are), the visual ele-
ments on the screen translate well into objects. One UI analogy for a has-a relationship is a window that
contains a button. The button and the window are clearly two separate objects but they are obviously
related in some way. Since the button is inside the window, we say that the window has a button.

Figure 3-3 shows various real-world and user interface has-a relationships.

Media

Music
Text

Images

63

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 63

Figure 3-3

The Is-A Relationship (Inheritance)
The is-a relationship is such a fundamental concept of object-oriented programming that it has many
names, including subclassing, extending, and inheriting. Classes model the fact that the real world contains
objects with properties and behaviors. Inheritance models the fact that these objects tend to be organized
in hierarchies. These hierarchies indicate is-a relationships.

Fundamentally, inheritance follows the pattern A is a B or A is really quite a bit like B — it can get tricky.
To stick with the simple case, revisit the zoo, but assume that there are other animals besides monkeys.
That statement alone has already constructed the relationship — a monkey is an animal. Similarly, a
giraffe is an animal, a kangaroo is an animal, and a penguin is an animal. So what? Well, the magic of
inheritance comes when you realize that monkeys, giraffes, kangaroos, and penguins have certain things
in common. These commonalities are characteristics of animals in general.

What this means for the programmer is that you can define an Animal class that encapsulates all of the
properties (size, location, diet, etc.) and behaviors (move, eat, sleep) that pertain to every animal. The
specific animals, such as monkeys, become subclasses of Animal because a monkey contains all the char-
acteristics of an animal (remember, a monkey is an animal plus some additional characteristics that make
it distinct. Figure 3-4 shows an inheritance diagram for animals. The arrows indicate the direction of the
is-a relationship.

Figure 3-4

Monkey Giraffe Kangaroo

Animal

Penguin

A window has a button.

An Airplane has a wing (hopefully two!).

64

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 64

Just as monkeys and giraffes are different types of animals, a user interface often has different types of
buttons. A checkbox, for example, is a button. Assuming that a button is simply a UI element that can be
clicked and performs an action, a Checkbox extends the Button class by adding state — whether the
box is checked or unchecked.

When relating classes in an is-a relationship, one goal is to factor common functionality into the super-
class, the class that other classes extend. If you find that all of your subclasses have code that is similar or
exactly the same consider how you could move some or all of the code into the superclass. That way, any
changes that need to be made only happen in one place and future subclasses get the shared functional-
ity “for free.”

Inheritance Techniques
The preceding examples cover a few of the techniques used in inheritance without formalizing them.
When subclassing, there are several ways tthat he programmer can distinguish an object from its parent
object or superclass. A subclass may use one or more of these techniques and they are recognized by com-
pleting the sentence A is a B that

Adding Functionality

A subclass can augment its parent by adding additional functionality. For example, a monkey is an ani-
mal that can swing from trees. In addition to having all of the behaviors of Animal, the Monkey class
also has a swing from trees behavior.

Replacing Functionality

A subclass can replace or override a behavior of its parent entirely. For example, most animals move by
walking, so you might give the Animal class a move behavior that simulates walking. If that’s the case, a
kangaroo is an animal that moves by hopping instead of walking. All the other properties and behaviors
of the Animal superclass still apply, but the Kangaroo subclass simply changes the way that the move
behavior works. Of course, if you find yourself replacing all of the functionality of your superclass, it
may be an indication that subclassing was not the correct thing to do after all.

Adding Properties

A subclass can also add new properties to the ones that were inherited from the superclass. A penguin
has all the properties of an animal but also has a beak size property.

Replacing Properties

C++ provides a way of overriding properties similar to the way you can override behaviors. However,
doing so is rarely appropriate. It’s important not to get the notion of replacing a property confused with
the notion of subclasses having different values for properties. For example, all animals have a diet
property that indicates what they eat. Monkeys eat bananas and penguins eat fish, but neither of these
is replacing the diet property — they simply differ in the value assigned to the property.

65

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 65

Polymorphism versus Code Reuse
Polymorphism is the notion that objects that adhere to a standard set of properties and behaviors can be
used interchangeably. A class definition is like a contract between objects and the code that interacts with
them. By definition, any monkey object must support the properties and behaviors of the monkey class.

This notion extends to superclasses as well. Since all monkeys are animals, all Monkey objects support
the properties and behaviors of the Animal class as well.

Polymorphism is a beautiful part of object-oriented programming because it truly takes advantage of
what inheritance offers. In a zoo simulation, we could programmatically loop through all of the animals
in the zoo and have each animal move once. Since all animals are members of the Animal class, they all
know how to move. Some of the animals have overridden the move behavior, but that’s the best part —
our code simply tells each animal to move without knowing or caring what type of animal it is. Each one
moves whichever way it knows how.

There is another reason to subclass besides polymorphism. Often, it’s just a matter of leveraging existing
code. For example, if you need a class that plays music with an echo effect, and your coworker has
already written one that plays music without any effects, you might be able to extend the existing class
and add in the new functionality. The is-a relationship still applies (an echo music player is a music
player that adds an echo effect), but you didn’t intend for these classes to be used interchangeably. What
you end up with are two separate classes, used in completely different parts of the programs (or maybe
even in different programs entirely) that happen to be related only to avoid reinventing the wheel.

The Fine Line between Has-A and Is-A
In the real world, it’s pretty easy to classify has-a and is-a relationships between objects. Nobody would
claim that an orange has a fruit — an orange is a fruit. In code, things sometimes aren’t so clear.

Consider a hypothetical class that represents a hash table. A hash table is a data structure that efficiently
maps a key to a value. For example, an insurance company could use a Hashtable class to map member
IDs to names so that given an ID, it’s easy to find the corresponding member name. The member ID is
the key and the member name is the value.

In a standard hash table implementation, every key has a single value. If the ID 14534 maps to the mem-
ber name “Kleper, Scott”, it cannot also map to the member name “Kleper, Marni”. In most implementa-
tions, if you tried to add a second value for a key that already has a value, the first value would go away.
In other words, if the ID 14534 mapped to “Kleper, Scott” and you then assigned the ID 14534 to “Kleper,
Marni”, then Scott would effectively be uninsured, as shown in the following sequence, which shows
two calls to a hypothetical hash table enter() behavior and the resulting contents of the hash table. The
notation hash.enter jumps ahead a bit to C++ object syntax. Just think of it as saying “use the enter
behavior of the hash object.”.

hash.enter(14534, “Kleper, Scott”);

Keys Values

14534 “Kleper, Scott” [string]

66

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 66

hash.enter(14534, “Kleper, Marni”);

Keys Values

14534 “Kleper, Marni” [string]

It’s not difficult to imagine uses for a data structure that’s like a hash table, but allows multiple values for
a given key. In the insurance example, a family might have several names that correspond to the same
ID. Because such a data structure is very similar to a hash table, it would be nice to leverage that func-
tionality somehow. A hash table can only have a single value as a key, but that value can be anything.
Instead of a string, the value could be a collection (such as an array or a list) containing the multiple val-
ues for the key. Every time you add a new member for an existing ID, simply add the name to the collec-
tion. This would work as shown in the following sequence.

Collection collection; // Make a new collection.
collection.insert(“Kleper, Scott”); // Add a new element to the collection.
hash.enter(14534, collection); // Enter the collection into the table.

Keys Values

14534 {“Kleper, Scott”} [collection]

Collection collection = hash.get(14534);// Retrieve the existing collection.
collection.insert(“Kleper, Marni”); // Add a new element to the collection.
hash.enter(14534, collection); // Replace the collection with the updated one.

Keys Values

14534 {“Kleper, Scott”, “Kleper, Marni”} [collection]

Messing around with a collection instead of a string is tedious and requires a lot of repetitive code. It
would be preferable to wrap up this multiple value functionality in a separate class, perhaps called a
MultiHash. The MultiHash class would work just like Hashtable except that behind the scenes, it
would store each value as a collection of strings instead of a single string. Clearly, MultiHash is some-
how related to Hashtable because it is still using a hash table to store the data. What is unclear is
whether that constitutes an is-a or a has-a relationship.

To start with the is-a relationship, imagine that MultiHash is a subclass of Hashtable. It would have to
override the behavior that adds an entry into the table so that it would either create a collection and add
the new element or retrieve the existing collection and add the new element. It would also override the
behavior that retrieves a value. It could, for example, append all the values for a given key together into
one string. This seems like a perfectly reasonable design. Even though it overrides all the behaviors of
the superclass, it will still make use of the superclass’s behaviors by using the original behaviors within
the subclass. This approach is shown in Figure 3-5.

67

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 67

Figure 3-5

Now consider it as a has-a relationship. MultiHash is its own class, but it contains a Hashtable object. It
probably has an interface very similar to Hashtable, but it need not be the same. Behind the scenes,
when a user adds something to the MultiHash, it is really wrapped in a collection and put in a
Hashtable object. This also seems perfectly reasonable and is shown in Figure 3-6.

Figure 3-6

So, which solution is right? There’s no clear answer, though one of the authors, who has written a
MultiHash class for production use, viewed it as a has-a relationship. The main reason was to allow
modifications to the exposed interface without worrying about maintaining hash table functionality. For
example, in Figure 3-6, the get behavior was changed to getAll, making it clear that this would get all
the values for a particular key in a MultiHash. Additionally, with a has-a relationship, you don’t have to
worry about any hash table functionality bleeding through. For example, if the hash table class sup-
ported a behavior that would get the total number of values, it would report the number of collections
unless MultiHash knew to override it.

That said, one could make a convincing argument that a MultiHash actually is a Hashtable with some
new functionality, and it should have been an is-a relationship. The point is that there is sometimes a
fine line between the two relationships, and you will need to consider how the class is going to be used
and whether what you are building just leverages some functionality from another class or really is that
class with modified or new functionality.

The following table represents the arguments for and against taking either approach for the MultiHash
class.

MultiHash

enter(key, value)
getAll(key)

Hashtable
has-a

Hashtable
enter(key, value)
get(key)

MultiHash
modifies enter()
modifies get()

68

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 68

Is-A Has-A

Reasons For • Fundamentally, it’s the same • MultiHash can have whatever
abstraction with different behaviors are useful without
characteristics. needing to worry about what

• It provides (almost) the same
behaviors hash table has.

behaviors as Hashtable.
The implementation could change
to something other than a
Hashtable without changing the
exposed behaviors.

Reasons Against • A hash table by definition • In a sense, MultiHash reinvents
hasone value per key. To the wheel by coming up with new
say MultiHash is a hash behaviors.
table is blasphemy!

• Some additional properties and
MultiHash overrides both

behaviors of Hashtable mightbehaviors of Hashtable, a
have been useful. strong sign that something

about the design is wrong.

• Unknown or inappropriate
properties or behaviors of
Hashtable could “bleed
through” to MultiHash.

The Not-A Relationship
As you consider what type of relationship classes have, consider whether or not they actually have a
relationship at all. Don’t let your zeal for object-oriented design turn into a lot of needless class/subclass
relationships.

One pitfall occurs when things are obviously related in the real world but have no actual relationship in
code. Just because a Mustang is a Ford in real life doesn’t mean that when you write a car simulator,
Mustang should necessarily be a subclass of Ford. OO hierarchies need to model functional relation-
ships, not artificial ones. Figure 3-7 shows relationships that are meaningful as ontologies or hierarchies,
but are unlikely to represent a meaningful relationship in code.

The best way to avoid needless subclassing is to sketch out your design first. For every class and sub-
class, write down what properties and behaviors you’re planning on putting there. If you find that a
class has no particular properties or behaviors of its own, or if all of those properties and behaviors are
completely overridden by its subclasses, you should rethink your design.

69

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 69

Figure 3-7

Hierarchies
Just as a class A can be a superclass of B, B can also be a superclass of C. Object-oriented hierarchies can
model multilevel relationships like this. A zoo simulation with more animals might be designed with
every animal as a subclass of a common Animal class as shown in Figure 3-8:

Figure 3-8

As you code each of these subclasses, you might find that a lot of them are similar. When this occurs,
you should consider putting in a common parent. Realizing that Lion and Panther both move the same
way and have the same diet might indicate a possible BigCat class. You could further subdivide the

Monkey Giraffe Kangaroo

Animal

Penguin

Music

Rock

Blues Rock Pop Folk Rock

Jazz

Smooth Jazz

CEO

VP of Sales

Sales Associate PreSales

VP of Engineering

Project Lead

Engineer

70

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 70

Animal class to include WaterAnimals, and Marsupials. A more hierarchical design that leverages
this commonality is shown in Figure 3-9.

Figure 3-9

A biologist looking at this hierarchy may be disappointed — a penguin isn’t really in the same family as
a dolphin. However, it underlines a good point — in code, you need to balance real-world relationships
with shared functionality relationships. Even though two things might be very closely related in the real
world, they might have a not-a relationship in code because they really don’t share functionality. You
could just as easily divide animals into mammals and fish, but that wouldn’t factor any commonality to
the superclass.

Another important point is that there could be other ways of organizing the hierarchy. The preceding
design is organized mostly by how the animals move. If it were instead organized by the animals’ diet or
height, the hierarchy could be very different. In the end, what matters is how the classes will be used.
The needs will dictate the design of the object hierarchy.

A good object-oriented hierarchy accomplishes the following:

❑ Organizes classes into meaningful functional relationships

❑ Supports code reuse by factoring common functionality to superclasses

❑ Avoids having subclasses that override much of the parent’s functionality

Multiple Inheritance
Every example so far has had a single inheritance chain. In other words, a given class has, at most, one
immediate parent class. This does not have to be the case. Through multiple inheritance, a class can have
more than one superclass.

If you decide that there is no good animal object hierarchy because animals differ
on too many axes, multiple inheritance may be just what you’re looking for. With
multiple inheritance, you could create three separate hierarchies — a size hierarchy,
a diet hierarchy, and a movement hierarchy. Each animal would then choose one
of each.

Monkey Big Cat Giraffe

Animal

Marsupial

Lion Panther Dolphin Penguin

Koala Kangaroo

Water Animal

71

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 71

Figure 3-10 shows a multiple inheritance design. There is still a superclass called Animal, which is fur-
ther divided by size. A separate hierarchy categorizes by diet, and a third takes care of movement. Each
type of animal is then a subclass of all three of these classes, as shown by different-colored lines.

Figure 3-10

In a user interface context, imagine an image that the user can click on. This object seems to be both a
button and an image so the implementation might involve subclassing both the Image class and the
Button class, as shown in Figure 3-11:

Figure 3-11

What’s Bad about Multiple Inheritance?
Many programmers dislike multiple inheritance. C++ has explicit support for such relationships, though
the Java language does away with them altogether. There are several reasons to which multiple inheri-
tance critics point.

First, visualizing multiple inheritance is complicated. As Figure 3-10 shows, even a simple class diagram
can become very complicated when there are multiple hierarchies and crossing lines. Class hierarchies
are supposed to make it easier for the programmer to understand the relationships between code. With
multiple inheritance, a class could have several parents that are in no way related to each other. With so
many classes contributing code to your object, can you really keep track of what’s going on? In the real
world, we tend not to think of objects as having multiple is-a relationships.

Second, multiple inheritance can destroy otherwise clean hierarchies. In the animal example, switching
to a multiple inheritance approach means that the Animal superclass is less meaningful because the
code that describes animals is now separated into three separate hierarchies. While the design illustrated
in Figure 3-10 shows three clean hierarchies, it’s not difficult to imagine how they could get messy. For
example, what if you realize that not only do all Jumpers move in the same way, they also eat the same

PictureButton

ImageButton

Jumper Walker Swimmer Carnivore Herbivore

Mover Eater Animal

Fish Eater

Lion Kangaroo Koala

Big
Animal

Small
Animal

72

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 72

things? Because there are separate hierarchies, there is no way to join the concepts of movement and diet
without adding yet another subclass.

Third, implementation of multiple inheritance is complicated. What if two of your superclasses imple-
ment the same behavior in different ways? Can you have two superclasses that are themselves a subclass
of a common superclass? These possibilities complicate the implementation because structuring such
intricate relationships in code is difficult both for the author and a reader.

The reason that other languages can leave out multiple inheritance is that it is usually avoidable. By
rethinking your hierarchy or using some of the design patterns covered in Chapter 26, you can avoid
introducing multiple inheritance when you have control over the design of a project.

Mix-in Classes
Mix-in classes represent another type of relationship between classes. In C++, a mix-in class is imple-
mented syntactically just like multiple inheritance, but the semantics are refreshingly different! A mix-in
class answers the question “What else is this class able to do?” and the answer often ends with “-able.”
Mix-in classes are a way that you can add functionality to a class without committing to a full is-a
relationship.

Going back to the zoo example, you might want to introduce the notion that some animals are “pet-
table.” That is, there are some animals that visitors to the zoo can pet, presumably without being bitten
or mauled. You might want all pettable animals to support the behavior “be pet.” Since pettable animals
don’t have anything else in common and you don’t want to break the existing hierarchy you’ve
designed, Pettable makes a great mix-in class.

Mix-in classes are used frequently in user interfaces. Instead of saying that a PictureButton class is
both an Image and a Button, you might say that it’s an Image that is Clickable. A folder icon on your
desktop could be an Image that is Draggable. In software development, we make up lots of fun
adjectives.

The difference between a mix-in class and a superclass has more to do with how you think about the
class than any code difference. In general, mix-in classes are easier to digest than multiple inheritance
because they are very limited in scope. The Pettable mix-in class just adds one behavior to any existing
class. The Clickable mix-in class might just add “mouse down” and “mouse up” behaviors. Also, mix-
in classes rarely have a large hierarchy so there’s no cross-contamination of functionality.

Abstraction
In Chapter 2, you learned about the concept of abstraction — the notion of separating implementation
from the means used to access it. Abstraction is a good idea for many reasons explored earlier. It’s also a
fundamental part of object-oriented design.

Interface versus Implementation
The key to abstraction is effectively separating the interface from the implementation. Implementation is
the code you’re writing to accomplish the task you set out to accomplish. Interface is the way that other
people use your code. In C, the header file that describes the functions in a library you’ve written is an
interface. In object-oriented programming, the interface to a class is the collection of publicly accessible
properties and behaviors.

73

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 73

Deciding on an Exposed Interface
The question of how other programmers will interact with your objects comes into play when designing
a class. In C++, a class’s properties and behaviors can each be public, protected, or private. public
means that other code can access the property or behavior. protected means that other code cannot.
private is a stricter control, which means that not only are the properties or behaviors locked for other
code, but even subclasses can’t access them.

Designing the exposed interface is all about choosing what to make public. When working on a large
project with other programmers, you should view the exposed interface design as a process.

Consider the Audience
The first step in designing an exposed interface is to consider for whom you are designing it. Is your
audience another member of your team? Is this an interface that you will personally be using? Is it some-
thing that a programmer external to your company will use? Perhaps a customer or an off-shore contrac-
tor? In addition to determining who will be coming to you for help with the interface, this should shed
some light on some of your design goals.

If the interface is for your own use, you probably have more freedom to iterate on the design. As you’re
making use of the interface, you can change it to suit your own needs. However, you should keep in
mind that roles on an engineering team change and it is quite likely that, some day, others will be using
this interface as well.

Designing an interface for other internal programmers to use is slightly different. In a way, your inter-
face becomes a contract with them. For example, if you are implementing the data store component of a
program, others are depending on that interface to support certain operations. You will need to find out
all of the things that the rest of the team will be using your class to do. Do they need versioning? What
types of data can they store? As a contract, you should view the interface as slightly less flexible. If the
interface is agreed upon before coding begins, you’ll receive some groans from other programmers if
you decide to change it after code has been written.

If the client is an external customer, you will be designing with a very different set of requirements.
Ideally, the target customer will be involved in specifying what functionality your interface exposes.
You’ll need to consider both the specific features they want as well as what customers might want in the
future. The terminology used in the interface will have to correspond to the terms that the customer is
familiar with, and the documentation will have to be written with that audience in mind. Inside jokes,
codenames, and programmer slang should probably be left out of your design.

Consider the Purpose
There are many reasons for writing an interface. Before putting any code on paper or even deciding on
what functionality you’re going to expose, you need to understand the purpose of the interface.

Application Programming Interface (API)

An API is an externally visible mechanism to extend a product or use its functionality within another
context. If an internal interface is a contract, an API is closer to a set-in-stone law. Once people who don’t
even work for your company are using your API, they don’t want it to change unless you’re adding new
features that will help them. So, care should be given to planning the API and discussing it with cus-
tomers before making it available to them.

74

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 74

The main tradeoff in designing an API is usually ease of use versus flexibility. Because the target audi-
ence for the interface is not familiar with the internal working of your product, the learning curve to use
the API should be gradual. After all, your company is exposing this API to customers because the com-
pany wants it to be used. If it’s too difficult to use, the API is a failure. Flexibility often works against
this. Your product may have a lot of different uses, and you want the customer to be able to leverage all
the functionality you have to offer. However, an API that lets the customer do anything that your prod-
uct can do may be too complicated.

As a common programming adage goes, “A good API makes the easy case easy and the hard case
possible.” That is, APIs should have a simple learning curve. The things that most programmers will
want to do should be accessible. However, the API should allow for more advanced usage, and it’s
acceptable to trade off complexity of the rare case for simplicity of the common case.

Utility Class or Library

Often, your task is to develop some particular functionality for general use elsewhere in the application.
It could be a random number library or a logging class. In these cases, the interface is somewhat easier to
decide on because you tend to expose most or all of the functionality, ideally without giving too much
away about its implementation. Generality is an important issue to consider. Since the class or library is
general purpose, you’ll need to take the possible set of use cases into account in your design.

Subsystem Interface

You may be designing the interface between two major subsystems of the application, such as the mech-
anism for accessing a database. In these cases, separating the interface from the implementation is
paramount because other programmers are likely to start implementing against your interface before
your implementation is complete. When working on a subsystem, first think about what its one main
purpose is. Once you have identified the main task your subsystem is charged with, think about specific
uses and how it should be presented to other parts of the code. Try to put yourself in their shoes and not
get bogged down in implementation details.

Component Interface

Most of the interfaces you define will probably be smaller than a subsystem interface or an API. These
will be objects that you use within other code that you’ve written. In these cases, the main pitfall is when
your interface evolves gradually and becomes unruly. Even though these interfaces are for your own
use, think of them as though they weren’t. As with a subsystem interface, consider the one main purpose
of each class and be cautious of exposing functionality that doesn’t contribute to that purpose.

Consider the Future
As you are designing your interface, keep in mind what the future holds. Is this a design you will be
locked into for years? If so, you might need to leave room for expansion by coming up with a plug-in
architecture. Do you have evidence that people will try to use your interface for purposes other than
what it was designed for? Talk to them and get a better understanding of their use case. The alternative
is rewriting it later, or worse, attaching new functionality haphazardly and ending up with a messy
interface. Be careful though! Speculative generality is yet another pitfall. Don’t design the be-all end-all
logging class if the future uses are unclear.

75

Designing with Objects

06_574841 ch03.qxd 12/15/04 3:40 PM Page 75

Designing a Successful Abstraction
Experience and iteration are essential to good abstractions. Truly well-designed interfaces come from
years of writing and using other abstractions. As you encounter other abstractions, try to remember
what worked and didn’t work. What did you find lacking in the Windows file system API you used last
week? What would you have done differently if you had written the network wrapper, instead of your
coworker? The best interface is rarely the first one you put on paper, so keep iterating. Bring your design
to your peers and ask for feedback. Don’t be afraid to change the abstraction once coding has begun,
even it means forcing other programmers to adapt. Hopefully, they’ll realize that a good abstraction is
beneficial to everyone in the long term.

Sometimes you need to evangelize a bit when communicating your design to other programmers.
Perhaps the rest of the team didn’t see a problem with the previous design or feels that your approach
requires too much work on their part. In those situations, be prepared both to defend your work and to
incorporate their ideas when appropriate. If you’re still getting pushback, good documentation and sam-
ple code should help win them over.

Beware of single-class abstractions. If there is significant depth to the code you’re writing, consider what
other companion classes might accompany the main interface. For example, if you’re exposing an inter-
face to do some data processing, consider also writing a result object that provides an easy way to view
and interpret the results.

When possible, turn properties into behaviors. In other words, don’t allow external code to manipulate
the data behind your class directly. You don’t want some careless or nefarious programmer to set the
height of a bunny object to a negative number. Instead, have a “set height” behavior that does the neces-
sary bounds checking.

Iteration is worth mentioning again because it is the most important point. Seek and respond to feed-
back on your design, change it when necessary, and learn from mistakes.

Chapter 5 covers more guidelines for designing interfaces and reusable code.

Summary
In this chapter, you’ve gained an appreciation for the design of object-oriented programs without a lot of
code getting in the way. The concepts you’ve learned are applicable in almost any object-oriented lan-
guage. Some of it may have been a review to you, or it may be a new way of formalizing a familiar con-
cept. Perhaps you picked up some new approaches to old problems or new arguments in favor of the
concepts you’ve been preaching to your team all along. Even if you’ve never used objects in your code,
or have only used them sparingly, you now know more about how to design object-oriented programs
than many experienced C++ programmers.

The relationships between objects are important to study, not just because well-linked objects contribute
to code reuse and reduce clutter, but because you will be working in a team. Objects that relate in mean-
ingful ways are easier to read and maintain. You may decide to use the “Object Relationships” section as
a reference when you design you programs.

Finally, you learned about creating successful abstractions and the two most important design
considerations — audience and purpose. Chapter 4 will expand on the development of abstractions,
including topics such as code reuse, idea reuse, and some of the libraries that are available to you.

76

Chapter 3

06_574841 ch03.qxd 12/15/04 3:40 PM Page 76

Designing with Libraries
and Patterns

Experienced C++ programmers never start a project from scratch. They incorporate code from a
wide variety of sources, such as the standard template library, open-source libraries, proprietary
code bases in their workplace, and their own code from previous projects. In addition, good C++
programmers reuse approaches or strategies to address various common design issues. These
strategies can range from a technique that worked for a past project to a formal design pattern. This
chapter explains how to take into account existing code and strategies when designing your
programs.

Chapter 2 introduced the theme of reuse, explaining that it can apply both to code reuse and to
idea reuse. This chapter expands on that theme by giving specific details and strategies that you
can use in your program designs. After finishing this chapter, you will understand:

❑ The different types of code available for reuse

❑ The advantages and disadvantages of code reuse

❑ General strategies and guidelines for reusing code

❑ Open-source libraries

❑ The C++ standard library

❑ Design techniques and patterns

Reusing Code
You should reuse code liberally in your designs. In order to make the most of this rule, you need to
understand the types of code that you can reuse and the tradeoffs involved in code reuse.

07_574841 ch04.qxd 12/15/04 3:40 PM Page 77

A Note on Terminology
Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the terminol-
ogy involved and to categorize the types of reused code. There are three categories of code available
for reuse:

❑ Code you wrote yourself in the past

❑ Code written by a coworker

❑ Code written by a third party outside your current organization or company

There are also several ways that the code you use can be structured:

❑ Stand-alone functions or classes. When you reuse your own code or coworkers’ code, you will
generally encounter this variety.

❑ Libraries. A library is a collection of code used to accomplish a specific task, such as parsing
XML, or to handle a specific domain, such as cryptography. When you use third-party code, it
will generally come in the form of a library. You should already be familiar with libraries from
using simple ones like the math library in C or C++. Other examples of functionality usually
found in libraries include threads and synchronization support, networking, and graphics.

❑ Frameworks. A framework is a collection of code around which you design a program. For exam-
ple, the Microsoft Foundation Classes (MFC) provide a framework for creating graphical user
interface applications for Microsoft Windows. Frameworks usually dictate the structure of your
program. Chapter 25 provides more information on frameworks.

Another term that arises frequently is application programming interface, or API. An API is an interface to a
library or body of code for a specific purpose. For example, programmers often refer to the sockets API,
meaning the exposed interface to the sockets networking library, instead of the library itself.

Although people use the terms API and library interchangeably, they are not equivalent. The library
refers to the implementation, while the API refers to the published interface to the library.

For the sake of brevity, the rest of this chapter uses the term library to refer to any reused code, whether
it is really a library, framework, or random collection of functions from your office-mate.

Deciding Whether or Not to Reuse Code
The rule to reuse code is easy to understand in the abstract. However, it’s somewhat vague when it
comes to the details. How do you know when it’s appropriate to reuse code, and which code to reuse?
There is always a tradeoff, and the decision depends on the specific situation. However, there are some
general advantages and disadvantages to reusing code.

A program uses a library but fits into a framework. Libraries provide specific func-
tionality, while frameworks are fundamental to your program design and structure.

78

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 78

Advantages to Reusing Code
Reusing code can provide tremendous advantages to you and to your project.

❑ First of all, you might not be capable of, or willing to, write the code that you reuse. Would you
really want to write code to handle formatted input and output? Of course not: that’s why you
use the standard C++ I/O streams.

❑ Reusing code saves time. Any code that you reuse is code you don’t need to write yourself.
Also, your designs will be simpler because you will not need to design those components of the
application that you reuse.

❑ The code that you reuse will theoretically require less debugging than code you write yourself.
You should expect bugs in any code you write yourself, but can often assume that the library
code is bug-free because it has already been tested and used extensively. There are exceptions, of
course; the library you choose to use could be poorly written and buggy.

❑ Libraries probably also handle more error conditions than would your first attempt at the code.
You might forget obscure errors or edge cases at the beginning of the project, and would waste
time fixing these problems later. Or worse, they would show up as bugs to your users. Library
code that you reuse has generally been tested extensively and used by many programmers
before you, so you can assume that it handles most errors properly.

❑ Reusing code written by domain experts is safer than writing your own code for that area. For
example, you should not attempt to write your own security code unless you are a security
expert. If you need security or cryptography in your programs, use a library. Many seemingly
minor details in code of that nature could compromise the security of the entire program if you
got them wrong.

❑ Finally, library code is constantly improving. If you reuse the code, you receive the benefits of
these improvements without doing the work yourself! In fact, if the library writers properly sep-
arated the interface from the implementation, you can obtain these benefits by upgrading your
library version without changing your interaction with the library. A good upgrade modifies the
underlying implementation without changing the interface.

Disadvantages to Reusing Code
Unfortunately, there are also some disadvantages to reusing code.

❑ When you use only code that you wrote yourself, you understand exactly how it works. When
you use libraries that you didn’t write yourself, you must spend time understanding the inter-
face and correct usage before you can jump in and use it. This extra time at the beginning of
your project will slow your initial design and coding.

❑ When you write your own code, it does exactly what you want. Library code might not provide
the exact functionality that you require. For example, one of the authors once made the mistake
of failing to notice a glaring deficiency in an eXtensible Markup Language (XML) parsing
library before he started using it. The library appeared great at first glance: it supported both
Document Object Model (DOM) and Simple API for XML (SAX) parsing models, ran efficiently,
and didn’t have a licensing fee. It wasn’t until he was well into his coding that he realized that
the library didn’t support validation against a Document Type Definition.

79

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 79

❑ Even if the library code provides the exact functionality you need, it might not give you the per-
formance that you desire. The performance might be bad in general, poor for your specific use
case, or completely undocumented. Additionally, the person who wrote the library or documen-
tation might not have the same standards as you do of good and bad performance.

❑ Using library code introduces a Pandora’s box of support issues. If you discover a bug in the
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix it
even if you wanted to. If you have already invested significant time learning the library inter-
face and using the library, you probably don’t want to give it up, but you might find it difficult
to convince the library developers to fix the bug on your time schedule. Also, if you are using a
third-party library, what do you do if the library authors drop support for the library before you
stop supporting the product that depends on it?

❑ In addition to support problems, libraries present licensing issues. Using an open-source library
often requires you to make your own code open source. Libraries also sometimes require license
fees, in which case it might be cheaper to redo the work and develop your own code.

❑ Another consideration with reusing code is cross-platform portability. Most libraries and frame-
works are platform specific. For example, the MFC framework is, unsurprisingly, available pri-
marily on Microsoft Windows. Even code that claims to be cross-platform will probably exhibit
subtle differences between platforms. If you want to write a cross-platform application, you
may need to use different libraries on different platforms.

❑ Open-source software presents its own issue: security. Some programmers are wary of using
open-source code for security reasons. By reading the source code for a program, crackers (mali-
cious hackers) can spot and exploit bugs that might otherwise go undetected.

❑ Finally, reusing code requires a trust factor. You must trust whoever wrote the code by assuming
that he or she did a good job. Some people like to have control over all aspects of their project,
including every line of source code. One of the authors certainly finds it difficult at times to
trust library code that he didn’t write himself. However, that is generally not a helpful or realis-
tic attitude in software development.

Putting It Together to Make a Decision
Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you are
better prepared to make the decision about whether or not to reuse code. Often, the decision is obvious.
For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft Windows, you
should use a framework such as MFC. You probably don’t know how to write the underlying code to
create a GUI in Windows, and more importantly, you don’t want to waste the time to learn it. You can
probably save person-years of effort by using a framework in this case.

However, other times the choice is less obvious. For example, if you are unfamiliar with a library or
framework, and need only a simple data structure, it might not be worth the time to learn the entire
framework to reuse only one component that you could write in a few days.

Ultimately, the decision is a subjective choice that you need to make for your own particular needs. It
often comes down to a tradeoff between the time it would take to write it yourself and the time required
to find and learn how to use a library to solve the problem. Carefully consider how the advantages and
disadvantages listed previously apply to your specific case, and decide which factors are most important
to you. Finally, remember that you can always change your mind!

80

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 80

Strategies for Reusing Code
When you use libraries, frameworks, coworkers’ code, or your own code, there are several guidelines
you should keep in mind.

Understand the Capabilities and Limitations
Take the time to familiarize yourself with the code. It is important to understand both its capabilities and
its limitations. Start with the documentation and the published interfaces or APIs. Ideally, that will be
sufficient to understand how to use the code. However, if the library doesn’t provide a clear separation
between interface and implementation, you may need to explore the source code itself. Also, talk to
other programmers who have used the code and who might be able to explain its intricacies. You should
begin by learning the basic functionality. If it’s a library, what behaviors does it provide? If it’s a frame-
work, how does your code fit in? What classes should you subclass? What code do you need to write
yourself? You should also consider specific issues depending on the type of code.

Here are some points to keep in mind for any library or framework:

❑ Is the code safe for multithreaded programs?

❑ What initialization calls does the library or framework need? What cleanup does it need?

❑ On what other libraries does the library or framework depend?

Here are some points to keep in mind for any library call you use:

❑ If a call returns memory pointers, who is responsible for freeing the memory: the caller or the
library? If the library is responsible, when is the memory freed?

❑ What error conditions does the library call check for, and what does it assume? How does it
handle errors?

❑ What are all the return values (by value or reference) from a call? What are all the possible
exceptions thrown?

Here are some points to keep in mind for a framework:

❑ If you inherit from a class, which constructor should you call on it? Which virtual methods
should you override?

❑ What memory are you responsible for freeing, and what memory is the framework responsible
for freeing?

Understand the Performance
It is important to know the performance guarantees that the library or other code provides. Even if your
particular program is not performance sensitive, you should make sure that the code you use doesn’t
have awful performance for your particular use. For example, a library for XML parsing might claim to
be fast even though it actually stores temporary information in a file, incurring disk I/O that decreases
performance considerably.

81

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 81

Big-O Notation
Programmers generally discuss and document algorithm and library performance using big-O notation.
This section explains the general concepts of algorithm complexity analysis and big-O notation without a
lot of unnecessary mathematics. If you are already familiar with these concepts, you may skip this section.

Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying that an
algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation specifies how an
algorithm performs as its input size increases. Examples of input sizes include the number of items to be
sorted by a sorting algorithm, the number of elements in a hash table during a key lookup, and the size
of a file to be copied between disks.

Note that big-O notation applies only to algorithms whose speed depends on their inputs. It does not apply
to algorithms that take no input or whose running time is random. In practice, you will find that the
running times of most algorithms of interest depend on their input, so this limitation is not significant.

To be more formal: big-O notation specifies algorithm run time as a function of its input size, also known
as the complexity of the algorithm. However, that’s not as complicated as it sounds. For example, suppose
that a sorting algorithm takes 50 milliseconds to sort 500 elements and 100 milliseconds to sort 1,000 ele-
ments. Because it takes twice as long to sort twice as many elements, its performance is linear as a func-
tion of its input. That is, you could graph the performance versus input size as a straight line. Big-O
notation summarizes the sorting algorithm performance like this: O(n). The O just means that you’re
using big-O notation, while the n represents the input size. O(n) specifies that the sorting algorithm
speed is a direct linear function of the input size.

Unfortunately, not all algorithms have performance that is linear with respect to the input size.
Computer programs would run a lot faster if that were true! The following table summarizes the com-
mon categories of functions, in order of their performance from best to worst:

Algorithm Complexity Big-O Notation Explanation Example Algorithms

Constant O(1) Running time is inde- Accessing a single
pendent of input size. element in an array

Logarithmic O(log n) The running time is a Finding an element
function of the logarithm in a sorted list using
base 2 of the input size. binary search

Linear O(n) The running time is Finding an element
directly proportional in an unsorted list
to the input size.

Linear Logarithmic O(n log n) The running time is a Merge sort
function of the linear
times the logarithmic
functions of the input
size.

Quadratic O(n2) The running time is a A slower sorting
function of the square algorithm like
of the input size. selection sort

82

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 82

There are two advantages to specifying performance as a function of the input size instead of in absolute
numbers:

1. It is platform independent. Specifying that a piece of code runs in 200 milliseconds on one com-
puter says nothing about its speed on a second computer. It is also difficult to compare two dif-
ferent algorithms without running them on the same computer with the exact same load. On the
other hand, performance specified as a function of the input size is applicable to any platform.

2. Performance as a function of input size covers all possible inputs to the algorithm with one
specification. The specific time in seconds that an algorithm takes to run covers only one specific
input, and says nothing about any other input.

Tips for Understanding Performance
Now that you are familiar with big-O notation, you are prepared to understand most performance docu-
mentation. The C++ standard template library in particular describes its algorithm and data structure
performance using big-O notation. However, big-O notation is sometimes insufficient or misleading.
Consider the following issues whenever you think about big-O performance specifications:

❑ If an algorithm takes twice as long to work on twice as much data, that says nothing about how
long it took in the first place! If the algorithm is written badly but scales well, it’s still not some-
thing you want to use. For example, suppose the algorithm makes unnecessary disk accesses.
That probably wouldn’t affect the big-O time but would be very bad for performance.

❑ Along those lines, it’s difficult to compare two algorithms with the same big-O running time.
For example, if two different sorting algorithms both claim to be O(n log n), it’s hard to tell
which is really faster without running your own tests.

❑ For small inputs, big-O time can be very misleading. An O(n2) algorithm might actually per-
form better than an O(log n) algorithm on small input sizes. Consider your likely input sizes
before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm perfor-
mance. Here are some guidelines to keep in mind:

❑ You should consider how often you intend to use a particular piece of library code. Some people
find the “90/10” rule helpful: 90 percent of the running time of most programs is spent in only
10 percent of the code (Hennessy and Patterson, 2002) If the library code you intend to use falls
in the oft-exercised 10 percent category of your code, you should make sure to analyze its per-
formance characteristics carefully. On the other hand, if it falls into the oft-ignored 90 percent of
the code, you should not spend much time analyzing its performance because it will not benefit
your overall program performance very much.

❑ Don’t trust the documentation. Always run performance tests to determine if library code pro-
vides acceptable performance characteristics.

Understand Platform Limitations
Before you start using library code, make sure that you understand on which platforms it runs. That
might sound obvious. Of course, you wouldn’t try to use the MFC in an application that should also run
on Linux. However, even libraries that claim to be cross-platform might contain subtle differences on the
different platforms.

83

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 83

Also, platforms include not only different operating systems but different versions of the same operating
system. If you write an application that should run on Solaris 8, Solaris 9, and Solaris 10, ensure that any
libraries you use also support all those releases. You cannot assume either forward or backward compat-
ibility across operating system versions. That is, just because a library runs on Solaris 9 doesn’t mean
that it will run on Solaris 10 and vice versa. The library on Solaris 10 might use operating system fea-
tures or other libraries that are new to that release. On the other hand, the library on Solaris 9 might use
features that have been removed in Solaris 10, or might use an old binary format.

Understand Licensing and Support
Using third-party libraries often introduces complicated licensing issues. You must sometimes pay
license fees to third-party vendors for the use of their libraries. There may also be other licensing restric-
tions, including export restrictions. Additionally, open-source libraries are often distributed under
licenses that require any code that links with them to be open source as well.

Using third-party libraries also introduces support issues. Before you use a library, make sure that you
understand the process for submitting bugs, and that you realize how long it will take for bugs to be
fixed. If possible, determine how long the library will continue to be supported so that you can plan
accordingly.

Interestingly, even using libraries from within your own organization can introduce support issues. You
may find it just as difficult to convince a coworker in another part of your company to fix a bug in his or
her library as you would to convince a stranger in another company to do the equivalent. In fact, you
may even find it harder, because you’re not a paying customer. Make sure that you understand the poli-
tics and organizational issues within your own organization before using internal libraries.

Know Where to Find Help
Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are many avenues
of support available. First of all, consult the documentation that accompanies the library. If the library is
widely used, such as the standard template library (STL), or the MFC, you should be able to find a good
book on the topic. In fact, for help with the STL, consult Chapters 21 to 23 of this book! If you have spe-
cific questions that are not addressed by the books and product documentation, try searching the Web.
Type your question into a search engine like Google (at www.google.com) to find Web pages that dis-
cuss the library. For example, when I google for the phrase “introduction to C++ STL” I find several hun-
dred Web sites about C++ and the STL.

A note of caution: don’t believe everything you read on the Web! Web pages do not
necessarily undergo the same review process as printed books and documentation,
and may contain inaccuracies.

Make sure that you understand the license restrictions of any third-party libraries
you use if you plan to distribute or sell the code you develop. When in doubt, con-
sult a legal expert.

84

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 84

Also consider browsing newsgroups and signing up for mailing lists. You can search the Usenet news-
groups at http://groups.google.com for information about your library or framework. For example,
suppose that you didn’t know that the C++ standard omits a hash table from the STL. Searching for the
phrase “hashtable in C++ STL” in the google groups reveals several postings explaining that there is no
hash table in the standard, but that many vendors supply implementations anyway.

Finally, many Web sites contain their own private newsgroups on specific topics for which you can
register.

Prototype
When you first sit down with a new library or framework, it is often a good idea to write a quick proto-
type. Trying out the code is the best way to familiarize yourself with the library’s capabilities. You
should consider experimenting with the library even before you tackle your program design so that you
are intimately familiar with the library’s capabilities and limitations before inserting it into your design.
This empirical testing will allow you to determine the performance characteristics of the library as well.

Even if your prototype application looks nothing like your final application, time spent prototyping is
not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy pro-
gram that just tests the library capabilities you want to use. The point is only to familiarize yourself with
the library.

Bundling Third-Party Applications
Your project might include multiple applications. Perhaps you need a Web server front end to support
your new e-commerce infrastructure. It is possible to bundle third-party applications, such as a Web
server, with your software. This approach takes code reuse to the extreme in that you reuse entire appli-
cations! However, most of the caveats and guidelines for using libraries apply to bundling third-party
applications as well. Specifically, make sure that you understand the legality and licensing ramifications
of your decision.

Consult a legal expert before bundling third-party applications with your software distributions.

Also, the support issue becomes more complex. If customers encounter a problem with your bundled
Web server, should they contact you or the Web server vendor? Make sure that you resolve this issue
before you release the software.

Due to time constraints, programmers sometimes find their prototypes morphing
into the final product. If you have hacked together a prototype that is insufficient as
the basis for the final product, make sure that it doesn’t get used that way.

Newsgroups are often unmoderated. The postings can be rude and offensive.
Browse and post at your own discretion.

85

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 85

Open-Source Libraries
Open-source libraries are an increasingly popular class of reusable code. The general meaning of open-
source is that the source code is available for anyone to look at. There are formal definitions and legal
rules about including source with all your distributions, but the important thing to remember about
open-source software is that anyone (including you) can look at the source code. Note that open-source
applies to more than just libraries. In fact, the most famous open-source product is probably the Linux
operating system.

The Open-Source Movements
Unfortunately, there is some confusion in terminology in the open-source community. First of all, there
are two competing names for the movement (some would say two separate, but similar, movements).
Richard Stallman and the GNU project use the term free software. Note that the term free does not imply
that the finished product must be available without cost. Developers are welcome to charge as much or
as little as they want for a free software product. Instead, the term free refers to the freedom for people to
examine the source code, modify the source code, and redistribute the software. Think of the free in free
speech rather than the free in free beer. You can read more about Richard Stallman and the GNU project
at www.gnu.org.

The Open Source Initiative uses the term open-source software to describe software in which the source
must be available. As with free software, open-source software does not require the product or library to
be available for free. You can read more about the Open Source Initiative at www.opensource.org.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-source”
to refer to products and libraries with which the source code is available. The choice of name is not
intended to imply endorsement of the open-source philosophy over the free software philosophy: it is
only for ease of comprehension.

Finding and Using Open-Source Libraries
Regardless of the terminology, you can gain amazing benefits from using open-source software. The
main benefit is functionality. There are a plethora of open-source C++ libraries available for varied tasks:
from XML parsing to cross-platform error logging.

Although open-source libraries are not required to provide free distribution and licensing, many open-
source libraries are available without monetary cost. You will generally be able to save money in licens-
ing fees by using open-source libraries.

Finally, you are often free to modify open-source libraries to suit your exact needs.

Most open-source libraries are available on the Web. Try googling for what you need. For example, the
first link in Google from the search string “open-source C++ library XML parsing” is a list of links to
XML libraries in C and C++, including libxml and Xerces C++ Parser.

Don’t confuse free software with freeware. Freeware or shareware applications are
available at no cost, but the source code can be private, or proprietary. Free software,
on the other hand, can require payment to use, but the source code must be available.

86

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 86

There are also a few open-source portals where you can start your search, including:

❑ www.opensource.org

❑ www.gnu.org

❑ www.sourceforge.net

Your own searches should quickly uncover many more resources on the Web.

Guidelines for Using Open-Source Code
Open-source libraries present several unique issues and require new strategies. First of all, open-source
libraries are usually written by people in their “free” time. The source base is generally available for any
programmer who wants to pitch in and contribute to development or bug fixing. As a good program-
ming citizen, you should try to contribute to open-source projects if you find yourself reaping the bene-
fits of open-source libraries. If you work for a company, you may find resistance to this idea from your
management because it does not lead directly to revenue for your company. However, you might be able
to convince management that indirect benefits, such as exposure of your company name, and perceived
support from your company for the open-source movement, should allow you to pursue this activity.

Second, because of the distributed nature of their development, and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is often
more efficient to make the fix yourself than to wait for someone else to do it. If you do fix bugs, you
should make sure to put the fixes into the public source base for the library. Even if you don’t fix any
bugs, make sure to report problems that you find so that other programmers don’t waste time encoun-
tering the same issues.

The C++ Standard Library
The most important library that you will use as a C++ programmer is the C++ standard library. As its
name implies, this library is part of the C++ standard, so any standards-conforming compiler should
include it. The standard library is not monolithic: it includes several disparate components, some of
which you have probably been using already. You may even have assumed they were part of the core
language. This section introduces the various components of the standard library from a design perspec-
tive. You will learn what facilities are available for you to use, but you will not learn the coding details.
Those details are covered in other chapters throughout the book.

Note that the following overview is not comprehensive. Some details are introduced later in the book
where they are more appropriate, and some details are omitted entirely. The standard library is too
extensive to cover in its entirety in a general C++ book; there are 800-page books that cover only the
standard library!

When using open-source libraries, respect the movement’s philosophy of “freedom.”
Try not to abuse this freedom or to profit unnecessarily from work to which you do
not contribute.

87

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 87

C Standard Library
Because C++ is a superset of C, the entire C library is still available. Its functionality includes mathemati-
cal functions such as abs(), sqrt(), and pow(), random numbers with srand() and rand(), and
error-handling helpers such as assert() and errno. Additionally, the C library facilities for manipulat-
ing character arrays as strings, such as strlen() and strcpy(), and the C-style I/O functions, such as
printf() and scanf(), are all available in C++.

C++ provides better strings and I/O support than does C. Even though the C-style strings and I/O rou-
tines are available in C++, you should avoid them in favor of C++ strings and I/O streams.

This book assumes that you are familiar with the C libraries. If not, consult one of the C reference books
listed in Appendix B. Note also that the C header files have different names in C++ than in C. For details,
see the Standard Library Reference resource on the Web site.

Strings
C++ provides a built-in string class. Although you may still use C-style strings of character arrays, the
C++ string class is superior in almost every way. It handles the memory management; provides some
bounds checking, assignment semantics, and comparisons; and supports manipulations such as concate-
nation, substring extraction, and substring or character replacement.

In case you missed it, Chapter 1 reviewed the string class functionality. The Standard Library Reference
resource on the Web site provides further details.

I/O Streams
C++ introduces a new model for input and output using streams. The C++ library provides routines for
reading and writing built-in types from and to files, console/keyboard, and strings. C++ also provides
the facilities for coding your own routines for reading and writing your own objects.

Chapter 1 reviewed the basics of I/O streams. Chapter 14 provides the details of streams.

Internationalization
C++ also provides support for internationalization. These features allow you to write programs that work
with different languages, character formats, and number formats.

Chapter 14 discusses internationalization.

Smart Pointers
C++ provides a limited smart pointer template, called the auto_ptr. This templatized class allows you
to wrap a pointer of any type such that delete is called on it automatically when it goes out of scope.

Technically, the C++ string is actually a typedef name for a char instantiation of
the basic_string template. However, you need not worry about these details; you
can use string as if it were a bona fide nontemplate class.

88

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 88

However, this class does not support reference counting, so the pointer can have only one owner at
a time.

Chapters 13, 15, 16, and 25 discuss smart pointers in more detail.

Exceptions
The C++ language supports exceptions, which allow functions or methods to pass errors of various
types up to calling functions or methods. The C++ standard library provides a class hierarchy of excep-
tions that you can use in your program as is, or that you can subclass to create your own exception
types. Chapter 15 covers the details of exceptions and the standard exception classes.

Mathematical Utilities
The C++ library provides some mathematical utility classes. Although they are templatized, so that you
can use them with any type, they are not generally considered part of the standard template library.
Unless you are using C++ for numeric computation, you will probably not need to use these utilities.

The standard library provides a complex number class, called complex, which provides an abstraction
for working with numbers that contain both real and imaginary components.

The standard library also contains a class called valarray, which is essentially a vector in the mathe-
matical sense. The library provides several related classes to represent the concept of vector slices. From
these building blocks, it is possible to build classes to perform matrix mathematics. However, there is no
built-in matrix class.

C++ also provides a new way to obtain information about numeric limits, such as the maximum possible
value for an integer on the current platform. In C, you could access #defines such as INT_MAX. While
those are still available in C++, you can also use the new numeric_limits template class family.

The Standard Template Library
The heart of the C++ standard library is its generic containers and algorithms. This aspect of the library
is often called the standard template library, or STL for short, because of its abundant use of templates. The
beauty of the STL is that it provides generic containers and generic algorithms in such a way that most
of the algorithms work on most of the containers, no matter what type of data the containers store. This
section introduces the various containers and algorithms in the STL. Chapters 21 to 23 provide the code
details for using them in your programs.

STL Containers
The STL provides implementations of most of the standard data structures. When you use C++, you
should not need to write data structures such as a linked list or queue ever again. Data structures, or con-
tainers, store pieces of information, or elements, in a way that allows appropriate access. Different data
structures have different insertion, deletion, and access behavior and performance characteristics. It is
important to be familiar with the data structures available so that you can choose the most appropriate
one for any given task.

All the containers in the STL are templates, so you can use them to store any type, from built-in types
such as int and double to your own classes. Note that you must store elements of the same type in any

89

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 89

given container. That is, you cannot store elements of both int and double in the same queue.
However, you could create two separate queues: one for ints and one for doubles.

Note that the C++ standard specifies the interface, but not the implementation, of each container and
algorithm. Thus, different vendors are free to provide different implementations. However, the standard
also specifies performance requirements as part of the interface, which the implementations must meet.

This section provides an overview of the various containers available in the STL.

Vector

A vector stores a sequence of elements and provides random access to these elements. You can think of a
vector as an array of elements that grows dynamically as you insert elements and provides some bounds
checking. Like an array, the elements of a vector are stored in contiguous memory.

A vector in C++ is a synonym for a dynamic array: an array that grows and shrinks automatically in
response to the number of elements it stores. The C++ vector does not refer to the mathematical con-
cept of a vector. C++ models mathematical vectors by the valarray container.

Vectors provide fast (constant time) element insertion and deletion at the end of the vector, but slow
(linear time) insertion and deletion anywhere else. Insertion and deletion are slow because the operation
must move all the elements “down” or “up” by one to make room for the new element or to fill the
space left by the deleted element. Like arrays, vectors provide fast (constant time) access to any of their
elements.

You should use a vector in your programs when you need fast access to the elements, but do not plan to
add or remove elements often. A good rule of thumb is to use a vector whenever you would have used
an array. For example, a system-monitoring tool might keep a list of computer systems that it monitors
in a vector. Only rarely would new computers be added to the list, or current computers removed from
the list. However, users would often want to look up information about a particular computer, so lookup
times should be fast.

List

An STL list is a standard linked list structure. Like an array or vector, it stores a sequence of elements.
However, unlike in an array or vector, the elements of a linked list are not necessarily in contiguous
memory. Instead, each element in the list specifies where to find the next and previous elements in the
list (usually via pointers). Note that a list in which elements point both to the next and to the previous
elements is called a doubly linked list.

Use a vector instead of an array whenever possible.

The C++ STL containers are homogenous: they allow elements of only one type in
each container.

90

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 90

The performance characteristics of a list are the exact opposite of a vector. Lists provide slow (linear
time) element lookup and access, but quick (constant time) insertion and deletion of elements once the
relevant position has been found. Thus, you should use a list when you plan to insert and remove many
elements, but do not require quick lookup. For example, in a chat room implementation you might keep
track of all the current participants in the chat in a list. Participants in chat rooms tend to come and go
frequently, so you need quick insertion and deletion. On the other hand, you rarely need to look up par-
ticipants in the list, so you don’t care about slow lookup times.

Deque

The name deque is an abbreviation for a double-ended queue. A deque is partway between a vector and a
list, but closer to a vector. Like a vector, it provides quick (constant time) element access. Like a list, it
provides fast (amortized constant time) insertion and deletion at both ends of the sequence. However,
unlike a list, it provides slow (linear time) insertion and deletion in the middle of the sequence.

You should use a deque instead of a vector when you need to insert or remove elements from either end
of the sequence but still need fast access time to all elements. However, this requirement does not apply
to many programming problems; in most cases a vector or queue should suffice.

Queue

The name queue comes directly from the definition of the English word queue, which means a line of
people or objects. The queue container provides standard first in, first out (or FIFO) semantics. A queue is
a container in which you insert elements at one end and take them out at the other end. Both insertion
and removal of elements is quick (constant time).

You should use a queue structure when you want to model real-life “first come, first served” semantics.
For example, consider a bank. As customers arrive at the bank, they get in line. As tellers become avail-
able, they serve the next customer in line, thus providing “first come, first served” behavior. You could
implement a bank simulation by storing Customer objects in a queue. As each customer arrives at the
bank, you add him or her to the end of the queue. As each teller is ready to serve a customer, he or she
serves the customer at the front of the queue. That way, customers are served in the order in which they
arrived.

Priority Queue

A priority queue provides queue functionality in which each element has a priority. Elements are
removed from the queue in priority order. In the case of priority ties, the FIFO semantics hold so that the
first element inserted is the first removed. Priority queue insertion and deletion are generally slower
than simple queue insertion and deletion, because the elements must be reordered to support the prior-
ity ordering.

You can use priority queues to model “queues with exceptions.” For example, in the bank simulation
above, suppose that customers with business accounts take priority over regular customers. Many

The vector, list, and deque containers are called sequential containers because they
store a sequence of elements.

91

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 91

real-life banks implement this behavior with two separate lines: one for business customers and one for
everyone else. Any customers in the business queue are taken before customers in the other line.
However, banks could also provide this behavior with a single line in which business customers simply
move to the front of the line ahead of any nonbusiness customers. In your program, you could use a pri-
ority queue in which customers have one of two priorities: business or regular. All business customers
would be serviced before all regular customers, but each group would be serviced in first-come, first-
served order.

Stack

The STL stack provides standard first-in, last-out (or FILO) semantics. Like a queue, elements are inserted
and removed from the container. However, in a stack the most recent element inserted is the first one
removed. The name stack derives from a visualization of this structure as a stack of objects in which only
the top object is visible. When you add an object to the stack, you hide all the objects underneath it.

Stacks model the real-life “first-come, last served” behavior. As an example, think of a parking lot in a
big city in which the first cars to arrive are boxed in by cars that arrive later. In this case, the last cars to
arrive are the first cars that are able to leave.

The STL stack container provides fast (constant time) insertion and removal of elements. You should use
the stack structure when you want FILO semantics. For example, an error-processing tool might want
to store errors on a stack so that the most recent error is the first one available for a human administrator
to read. It is often useful to process errors in a FILO order because newer errors sometimes obviate
older ones.

Set and Multiset

A set in STL is a collection of elements. Although the mathematical definition of a set implies an
unordered collection, the STL set stores the elements in an ordered fashion so that it can provide reason-
ably fast lookup, insertion, and deletion. In fact, the set provides logarithmic insertion, deletion, and
lookup, which are faster insertion and deletion than a vector provides, and faster lookup than a list pro-
vides. However, insertion and deletion are slower than a list, and lookup is slower than a vector. The
underlying implementation is usually a balanced binary tree, so you should use a set when you would
normally use a balanced binary tree structure. Specifically, you should use a set when you have equal
amounts of insertion/deletion and lookups, and want to optimize both as much as possible. For exam-
ple, an inventory-tracking program in a busy bookstore might want to use a set to store the books. The
list of books in stock must be updated whenever books arrive or are sold, so insertion and deletion
should be quick. Customers also need the ability to look for a specific book, so the program should pro-
vide fast lookup as well.

Use a set instead of a vector or list if you want equal performance for insertion, dele-
tion, and lookup.

Technically, the queue, priority queue, and stack containers are container adapters.
They are interfaces built on top of one of the three standard sequential containers
(vector, deque, and list).

92

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 92

Note that a set does not allow duplication of elements. That is, each element in the set must be unique. If
you want to store duplicate elements, you must use a multiset.

Map and Multimap

A map stores key/value pairs. The elements are sorted according to the keys. In all other respects, it is
identical to a set. You should use a map when you want to associate keys and values. For example, in an
online multiplayer game you might want to store some information about each player, such as his or her
login name, real name, IP address, and other characteristics. You could store this information in a map,
using the players’ login names as keys.

A multimap has the same relation to a map as a multiset does to a set. Specifically, a multimap is a map
that allows duplicate keys.

Note that you can use a map as an associative array. That is, you can use it as an array in which the index
can be any type, such as a string.

Bitset

C and C++ programmers commonly store a set of flags in a single int or long, using one bit for each
flag. They set and access these bits with the bitwise operators: &, |, ^, ~, <<, and >>. The C++ standard
library provides a bitset class that abstracts this bitfield manipulation, so you shouldn’t need to use
the bit manipulation operators anymore.

The bitset container is not a container in the normal sense, in that it does not implement a specific data
structure in which you insert and remove elements. However, you can think of it as a sequence of
Boolean values that you can read and write.

Summary of STL Containers

The following table summarizes the containers provided by the STL. It uses big-O notation to present
the performance characteristics on a container of N elements. An N/A entry in the table means that the
operation is not part of the container semantics.

The set and map containers are called associative containers because they associate
keys and values. This term is confusing when applied to sets, because in sets the
keys are themselves the values. Because these containers sort their elements, they
are called sorted associative containers.

A multiset is simply a set that allows duplication of elements.

93

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 93

Container Container Insertion Deletion Lookup
Class Name Type Performance Performance Performance When to Use

vector Sequential O(1) at end O(1) at end O(1) Need quick
O(N) anywhere O(N) anywhere lookup
else else Don’t mind

slow insertion/
deletion
Whenever you
would use an
array

list Sequential O(1) O(1) O(N) Need quick
insertion/
deletion
Don’t mind
slow lookup

deque Sequential O(1) at beginning O(1) at beginning O(1) Not usually
or end or end needed; use
O(N) anywhere O(N) anywhere a vector or
else else list instead

queue Container O(1) O(1) N/A When you
Adapter want a FIFO

structure

priority_ Container O(log(N)) O(log(N)) N/A When you
queue Adapter want a FIFO

structure with
priority

stack Container O(1) O(1) N/A When you
Adapter want a FILO

structure

set / Sorted O(log(N)) O(log(N)) O(log(N)) When you want
multiset Associative a collection of

elements with
equal lookup,
insertion, and
deletion times

map / Sorted O(log(N)) O(log(N)) O(log(N)) When you want
multimap Associative to associate

keys and values

bitset Special N/A N/A O(1) When you want
a collection of
flags

94

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 94

Note that strings are technically containers as well. They can be thought of as vectors of characters.
Thus, some of the algorithms described in the material that follows work on strings also.

STL Algorithms
In addition to containers, the STL provides implementations of many generic algorithms. An algorithm is
a strategy for performing a particular task, such as sorting or searching. These algorithms are also imple-
mented as templates, so they work on most of the different container types. Note that the algorithms are
not generally part of the containers. The STL takes the surprising approach of separating the data (con-
tainers) from the functionality (algorithms). Although this approach seems counter to the spirit of object-
oriented programming, it is necessary in order to support generic programming in the STL. The guiding
principle of orthogonality maintains that algorithms and containers are independent, with (almost) any
algorithm working with (almost) any container.

Although the algorithms and containers are theoretically independent, some containers provide certain
algorithms in the form of class methods because the generic algorithms do not perform well on those
particular containers. For example, sets provide their own find() algorithm that is faster than the
generic find() algorithm. You should use the method form of the algorithm, if provided, because it is
generally more efficient or appropriate to the container at hand.

Note that the generic algorithms do not work directly on the containers. They use an intermediary
called an iterator. Each container in the STL provides an iterator that supports traversing the elements
in the container in a sequence. Iterators temporarily convert elements in even sets and maps to a
sequence. The different iterators for the various containers adhere to standard interfaces, so algorithms
can perform their work using iterators without worrying about the underlying container implementa-
tion. Chapters 21 to 23 and the Web site material provide all the details about iterators, algorithms, and
containers.

Iterators mediate between algorithms and containers. They provide a standard interface to traverse the
elements of a container in sequence, so that any algorithm can work on any container. The iterator
design pattern is discussed further below.

There are approximately 60 algorithms in the STL (depending on how you count them), generally
divided into several different categories. The categories tend to vary slightly from book to book. This
book uses the following five categories: utility, nonmodifying, modifying, sorting, and set. Some of the
categories can be subdivided further. Note that whenever the following algorithms are specified as
working on a “sequence” of elements, that sequence is given to the algorithm as an iterator.

When examining the list of algorithms, keep in mind that the STL was designed by
a committee. To quote an old joke, “a zebra is a horse designed by a committee.” In
other words, committees often arrive at designs that contain extra or unneeded func-
tionality, such as a zebra’s stripes. You may find that some of the algorithms in the
STL are equally strange or unnecessary. That’s fine. You are not obligated to use
every algorithm available. It is important only to be aware of what’s available in
case you ever find it useful.

95

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 95

Utility Algorithms
Unlike the other algorithms, the utility algorithms do not work on sequences of data. We consider them
part of the STL only because they are templatized.

Algorithm Name Algorithm Synopsis

min(), max() Return the minimum or maximum of two values.

swap() Swap two values.

Nonmodifying Algorithms
The nonmodifying algorithms are those that look at a sequence of elements and return some information
about the elements, or execute some function on each element. As “nonmodifying” algorithms, they can-
not change the values of elements or the order of elements within the sequence. This category contains
four types of algorithms. The following tables list and provide brief summaries of the various nonmodi-
fying algorithms. With these algorithms, you should rarely need to write a for loop to iterate over a
sequence of values.

Search Algorithms

Requires Sorted
Algorithm Name Algorithm Synopsis Sequence?

find(), find_if() Finds the first element that matches a value No
or causes a predicate to return true

find_first_of() Like find, except searches for one of several No
elements at the same time

adjacent_find() Finds the first instance of two consecutive No
elements that are equal to each other

search(), find_end() Finds the first (search()) or last (find_end()) No
subsequence in a sequence that matches another
sequence

search_n() Finds the first instance of n consecutive No
elements that are equal to a given value

lower_bound(), Finds the beginning, (lower_bound()) Yes
upper_bound(), end (upper_bound()), or both sides
equal_range() (equal_range()) of the range including

a specified element

binary_search() Finds a value in a sorted sequence Yes

min_element(), Finds the minimum or maximum element No
max_element() in a sequence

96

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 96

97

Designing with Libraries and Patterns

Numerical Processing Algorithms

Algorithm Name Algorithm Synopsis

count(), count_if() Counts the number of elements matching a value or that
cause a predicate to return true.

accumulate() “Accumulates” the values of all the elements in a sequence.
The default behavior is to sum the elements, but the caller can
supply a different binary function instead.

inner_product() Similar to accumulate, but works on two sequences. Calls
a binary function on parallel elements in the sequences,
accumulating the result. The default binary function is multi-
plication. If the sequences represent mathematical vectors,
the algorithm calculates the dot product of the vectors.

partial_sum() Generates a new sequence in which each element is the sum
(or other binary operation) of the parallel element, and all
preceding elements, in the source sequence.

adjacent_difference() Generates a new sequence in which each element is the
difference (or other binary operation) of the parallel element,
and its predecessor, in the source sequence.

Comparison Algorithms

Algorithm Name Algorithm Synopsis

equal() Determines if two sequences are equal by checking if they have
the same order of elements.

mismatch() Returns the first element in each sequence that does not match
the element in the same location in the other sequence.

lexicographical_compare() Compares two sequences to determine their “lexicographical”
ordering. Compares each element of the first sequence with its
equivalent element in the second. If one element is less than the
other, that sequence is lexicographically first. If the elements
are equal, compares the next elements in order.

07_574841 ch04.qxd 12/15/04 3:40 PM Page 97

Operational Algorithms

Algorithm Name Algorithm Synopsis

for_each() Executes a function on each element in the sequence. This algo-
rithm is useful for printing out each element in a container.

Modifying Algorithms
The modifying algorithms modify some or all of the elements in a sequence. Some of them modify ele-
ments in place, so that the original sequence changes. Others copy the results to a different sequence so
that the original sequence is unchanged. The following table summarizes the modifying algorithms:

Algorithm Name Algorithm Synopsis

transform() Calls a function on each element or each pair of elements.

copy(), copy_backward() Copies elements from one sequence to another.

iter_swap(), swap_ranges() Swap two elements or sequences of elements.

replace(), replace_if(), Replaces with a new element all elements matching a value
replace_copy(), or that cause a predicate to return true, either in place or by
replace_copy_if() copying results to a new sequence.

fill(), fill_n() Sets all elements in the sequence to a new value.

generate(), generate_n() Like fill() and fill_n(), except calls a specified function
to generate values to place in the sequence.

remove(), remove_if(), Removes from the sequence elements that match a given value
remove_copy(), or that cause a predicate to return true, either in place or by
remove_copy_if() copying results to a different sequence.

unique(), unique_copy() Removes consecutive duplicates from the sequence, either in
place or by copying results to a different sequence.

reverse(), reverse_copy() Reverses the order of the elements in the sequence, either in
place or by copying the results to a different sequence.

rotate(), rotate_copy() Swaps the first and second “halves”of the sequence, either in
place or by copying the results to a different sequence. The two
subsequences to be swapped need not be equal in size.

next_permutation(), Modifies the sequence by transforming it into its “next” or
prev_permutation() “previous” permutation. Successive calls to one or the other

will permute the sequence into all possible permutations of
elements.

98

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 98

Sorting Algorithms
Sorting algorithms are a special category of modifying algorithms that sort the elements of a sequence.
The STL provides several different sorting algorithms with varying performance guarantees.

Algorithm Name Algorithm Synopsis

sort(), stable_sort() Sorts elements in place, either preserving the order of duplicate
elements or not. The performance of sort() is similar to
quicksort, and the performance of stable_sort() is similar to
merge-sort (although the exact algorithms may differ).

partial_sort(), Partially sorts the sequence: the first n elements of a fully
partial_sort_copy() sorted sequence are sorted, the rest are not. Either in place or

by copying them to a new sequence.

nth_element() Relocates the nth element of the sequence as if the entire
sequence were sorted.

merge(), inplace_merge() Merges two sorted sequences, either in place or by copying
them to a new sequence.

make_heap(), push_heap(), A heap is a standard data structure in which the elements of
pop_heap(), sort_heap() an array or sequence are ordered in a semi-sorted fashion so

that finding the “top” element is quick. These four algorithms
allow you to use heap-sort on sequences.

partition(), Sorts the sequence such that all elements for which a predicate
stable_partition() returns true are before all elements for which it returns false,

either preserving the original order of the elements within each
partition or not.

random_shuffle() “Unsorts” the sequence by randomly reordering the elements.

Set Algorithms
Set algorithms are special modifying algorithms that perform set operations on sequences. They
are most appropriate on sequences from set containers, but work on sorted sequences from most
containers.

Algorithm Name Algorithm Synopsis

includes() Determines if one sequence is a subset of another.

set_union(), Perform the specified set operations on two sorted sequences,
set_intersection(), copying results to a third sorted sequence. See Chapter 22 for
set_difference(), an explanation of the set operations.
set_symmetric_difference()

99

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 99

Choosing an Algorithm
The number and capabilities of the algorithms might overwhelm you at first. It can also be difficult to
see how to apply them at first glance. However, now that you are familiar with the options available,
you are better able to tackle your program designs. Chapters 21 to 23 cover the details of how to use
these algorithms in your code.

What’s Missing from the STL
The STL is powerful, but it’s not perfect. Here is a list of omissions and unsupported functionality:

❑ The STL does not provide synchronization for multithread safety. The STL standard does not
provide for any multithreading synchronization support because threading is platform specific.
Thus, if you have a multithreaded program, you must implement your own synchronization for
the containers.

❑ The STL does not provide a hash table. More generally, it does not provide any hashed associative
containers: associative containers in which the elements are not sorted, but are stored according
to hashing. Note that many implementations of the STL provide a hash table or hashmap, but
since it is not part of the standard, using it is not portable. Chapter 23 provides an example
hashmap implementation.

❑ The STL does not provide any generic tree or graph structures. Although maps and sets are gen-
erally implemented as balanced binary trees, the STL does not expose this implementation in
the interface. If you need a tree or graph structure for something like writing a parser, you will
need to implement your own or find an implementation in another library.

❑ The STL does not provide any table abstractions. If you want to implement something like a
chessboard, you will probably need to use a two-dimensional array.

However, it is important to keep in mind that the STL is extensible. You can write your own containers or
algorithms that will work with existing algorithms or containers. So, if the STL doesn’t provide exactly
what you need, consider writing your desired code such that it works with the STL.

Deciding Whether or Not to Use the STL
The STL was designed with functionality, performance, and orthogonality as its priorities. It was not
designed to be easy to use, so naturally it did not turn out to be easy to use. In fact, the introduction in
this chapter barely scratched the surface of its complexity. Thus, there is a steep learning curve for using
the STL. However, the benefits are substantial. Think about the number of times you’ve tracked down
pointer errors in linked list or balanced binary tree implementations, or debugged a sorting algorithm
that wasn’t sorting properly. If you use the STL correctly, you will rarely, if ever, need to perform that
kind of coding again.

If you decide to pursue the STL in your programs, consult Chapters 21 to 23. They provide an in-depth
tutorial for using the containers and algorithms that the STL provides.

100

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 100

Designing with Patterns and Techniques
Learning the C++ language and becoming a good C++ programmer are two very different things. If you
sat down and read the C++ standard, memorizing every fact, you would know C++ as well as anybody
else. However, until you gain some experience by looking at code and writing your own programs, you
wouldn’t necessarily be a good programmer. The reason is that the C++ syntax defines what the lan-
guage can do in its raw form, but doesn’t say anything about how each feature should be used.

As they become more experienced in using the C++ language, C++ programmers develop their own
individual ways of using the features of the language. The C++ community at large has also built some
standard ways of leveraging the language, some formal and some informal. Throughout this book, the
authors point out these reusable applications of the language, known as design techniques and design pat-
terns. Additionally, Chapters 25 and 26 focus almost exclusively on design techniques and patterns.
Some patterns and techniques will seem obvious to you because they are simply a formalization of the
obvious solution. Others describe novel solutions to problems you’ve encountered in the past. Some pre-
sent entirely new ways of thinking about your program organization.

It is important for you to familiarize yourself with these patterns and techniques so that you can recog-
nize when a particular design problem calls for one of these solutions. There are obviously many more
techniques and patterns applicable to C++ than those described in this book. Although the authors feel
that the most useful ones are covered, you may want to consult a book on design patterns for more and
different patterns and techniques. See Appendix B for suggestions.

Design Techniques
A design technique is simply a standard approach for solving a particular problem in C++. Often, a design
technique aims to overcome an annoying feature or language deficiency of C++. Other times, a design
technique is simply a piece of code that you use in many different programs to solve a common problem.

A Design Technique Example: Smart Pointers
Memory management in C++ is a perennial source of errors and bugs. Many of these bugs arise from the
use of dynamic memory allocation and pointers. When you use extensive dynamic memory allocation in
your program and pass many pointers between objects, it’s difficult to remember to call delete on each
pointer exactly once. The consequences of getting it wrong are severe: when you free dynamically allo-
cated memory more than once you can cause memory corruption, and when you forget to free dynami-
cally allocated memory you cause memory leaks.

Smart pointers help you manage your dynamically allocated memory. Conceptually, a smart pointer is a
pointer to dynamically allocated memory that remembers to free the memory when it goes out of scope.
In your programs, a smart pointer is generally an object that contains a regular, or dumb, pointer. This
object is allocated on the stack. When it goes out of scope its destructor calls delete on the contained
pointer.

Note that some language implementations provide garbage collection so that programmers are not
responsible for freeing any memory. In these languages, all pointers can be thought of as smart pointers
because you don’t need to remember to free any of the memory to which they point. Although some lan-
guages, such as Java, provide garbage collection as a matter of course, it is very difficult to write a

101

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 101

garbage collector for C++. Thus, smart pointers are simply a technique to make up for the fact that C++
exposes memory management without garbage collection.

Managing pointers presents more problems than just remembering to delete them when they go out of
scope. Sometimes several objects or pieces of code contain copies of the same pointer. This problem is
called aliasing. In order to free all memory properly, the last piece of code to use the memory should call
delete on the pointer. However, it is often difficult to know which piece of code uses the memory last.
It may even be impossible to determine the order when you code because it might depend on run-time
inputs. Thus, a more sophisticated type of smart pointer implements reference counting to keep track of its
owners. When all owners are finished using the pointer, the number of references drops to 0 and the
smart pointer calls delete on its underlying dumb pointer. Many C++ frameworks, such as Microsoft’s
Object Linking and Embedding (OLE) and Component Object Model (COM) use reference counting
extensively. Even if you don’t intend to implement reference counting yourself, it is important to be
familiar with the concept.

C++ provides several language features that make smart pointers attractive. First, you can write a type-
safe smart pointer class for any pointer type using templates. Second, you can provide an interface to the
smart pointer objects using operator overloading that allows code to use the smart pointer objects as if
they were dumb pointers. Specifically, you can overload the * and -> operators such that the client code
can dereference a smart pointer object the same way it dereferences a normal pointer. Chapter 25 pro-
vides an implementation of a reference counted smart pointer that you can plug directly into your pro-
gram. The C++ standard library also provides a simple smart pointer called the auto_ptr, as described
in the overview of the standard library.

Design Patterns
A design pattern is a standard approach to program organization that solves a general problem. C++ is an
object-oriented language, so the design patterns of interest to C++ programmers are generally object-
oriented patterns, which describe strategies for organizing objects and object relationships in your pro-
grams. These patterns are usually applicable to any object-oriented language, such as C++, Java, or
Smalltalk. In fact, if you are familiar with Java programming, you will recognize many of these patterns.

Design patterns are less language specific than are techniques. The difference between a pattern and a
technique is admittedly fuzzy, and different books employ different definitions. This book defines a tech-
nique as a strategy particular to the C++ language that overcomes a deficiency in the language itself,
while a pattern is a more general strategy for object-oriented design applicable to any object-oriented
language.

Note that many patterns have several different names. The distinctions between the patterns themselves
can be somewhat vague, with different sources describing and categorizing them slightly differently. In
fact, depending on the books or other sources you use, you may find the same name applied to different
patterns. There is even disagreement as to which design approaches qualify as patterns. With a few
exceptions, this book follows the terminology used in the seminal book Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma et al. However, other pattern names and variations
are noted when appropriate.

Chapter 26 provides a catalog of several different design patterns, including sample implementations
in C++.

102

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 102

A Design Pattern Example: Iterator
The iterator pattern provides a mechanism for separating algorithms or operations from the data on
which they operate. At first glance, this pattern seems to contradict the fundamental principle in object-
oriented programming of grouping together in objects data and the behaviors that operate on that data.
While that argument is true on a certain level, this pattern does not advocate removing fundamental
behaviors from objects. Instead, it solves two problems that commonly arise with tight coupling of data
and behaviors.

The first problem with tightly coupling data and behaviors is that it precludes generic algorithms that
work on a variety of objects, not all of which are in the same class hierarchy. In order to write generic
algorithms, you need some standard mechanism to access the contents of the objects.

The second problem with tightly coupled data and behaviors is that it’s sometimes difficult to add new
behaviors. At the very least, you need access to the source code for the data objects. However, what if the
object hierarchy of interest is part of a third-party framework or library that you cannot change? It
would be nice to be able to add an algorithm or operation that works on the data without modifying the
original object hierarchy of data.

You’ve already seen an example of the iterator pattern in the STL. Conceptually, iterators provide a mech-
anism for an operation or algorithm to access a container of elements in a sequence. The name comes
from the English word iterate, which means “repeat.” It applies to iterators because they repeat the
action of moving forward in the sequence to reach each new element. In the STL, the generic algorithms
use iterators to access the elements of the containers on which they operate. By defining a standard itera-
tor interface, the STL allows you to write algorithms that can work on any container that supplies an
iterator with the appropriate interface. Thus, iterators allow you to write generic algorithms without
modifying the data. Figure 4-1 shows an iterator as an assembly line that sends the elements of a data
object to an “operation.”

Figure 4-1

Summary
This chapter focused on the design theme of reuse. You learned that your C++ design should include
both reuse of code, in the form of libraries and frameworks, and reuse of ideas, in the form of techniques
and patterns.

Although code reuse is a general goal, there are both advantages and disadvantages associated with it.
You learned about these tradeoffs and about specific guidelines for reusing code, including understand-
ing the capabilities and limitations, the performance, licensing and support models, the platform limita-
tions, prototyping, and where to find help. You also learned about performance analysis and big-O
notation, as well as special issues and considerations involved in using open-source libraries.

Data Object Iterator Operation

103

Designing with Libraries and Patterns

07_574841 ch04.qxd 12/15/04 3:40 PM Page 103

This chapter also provided an overview of the C++ standard library, which is the most important library
that you will use in your code. It subsumes the C library and includes additional facilities for strings,
I/O, error handling, and other tasks. It also includes generic containers and algorithms, which are
together referred to as the standard template library. Chapters 21 to 23 describe the standard template
library in detail.

When you design your programs, reusing patterns and techniques is just as important as reusing code.
You should avoid reinventing the wheel as well as rebuilding it! To that end, this chapter introduced the
notion of design techniques and patterns. Chapters 25 to 26 provide additional examples, including code
and sample applications of techniques and patterns.

However, using libraries and patterns is only half of the reuse strategy. You also need to design your own
code so that you and others can reuse it as much as possible. Chapter 5 presents strategies for designing
reusable code.

104

Chapter 4

07_574841 ch04.qxd 12/15/04 3:40 PM Page 104

Designing for
Reuse

Reusing libraries and other code in your programs is an important design strategy. However, it is
only half of the reuse strategy. The other half is designing and writing the code that you can reuse
in your programs. As you’ve probably discovered, there is a significant difference between well-
designed and poorly designed libraries. Well-designed libraries are a pleasure to use, while poorly
designed libraries can prod you to give up in disgust and write the code yourself. Whether you’re
writing a library explicitly designed for use by other programmers or merely deciding on a class
hierarchy, you should design your code with reuse in mind. You never know when you’ll need a
similar piece of functionality in a subsequent project.

Chapter 2 introduced the design theme of reuse. Chapter 4 explained how to apply this theme by
incorporating libraries and other code in your designs. This chapter discusses the other side of
reuse: designing reusable code. It builds on the object-oriented design principles described in
Chapter 3 and introduces some new strategies and guidelines.

After finishing this chapter, you will understand:

❑ The reuse philosophy: why you should design code for reuse

❑ How to design reusable code

❑ How to use abstraction

❑ Three strategies for structuring your code for reuse

❑ Six strategies for designing usable interfaces

❑ How to reconcile generality with ease of use

08_574841 ch05.qxd 12/15/04 3:41 PM Page 105

The Reuse Philosophy
You should design code that both you and other programmers can reuse. This rule applies not only to
libraries and frameworks that you specifically intend for other programmers to use, but also to any class,
subsystem, or component that you design for a program. You should always keep in mind the motto,
“write once, use often.” There are several reasons for this design approach:

❑ Code is rarely used in only one program. You may not intend your code to be reused when you
write it, but you may find yourself or your colleagues incorporating components of the program
in similar projects a few months or years later. You know that your code will probably be used
again somehow, so design it correctly to begin with.

❑ Designing for reuse saves time and money. If you design your code in a way that precludes
future use, you ensure that you or your partners will spend time reinventing the wheel later
when you encounter a need for a similar piece of functionality. Even if you don’t explicitly pre-
vent reuse, if you provide a poor interface or omit functionality, it will require extra time and
effort to use the code in the future.

❑ Other programmers in your group must be able to use the code that you write. Even in cases
where your code is useful only for the specific program at hand, you are probably not working
alone on a project. Your coworkers will appreciate your efforts to offer them well-designed,
functionality-packed libraries and pieces of code to use. You know what it’s like to use a bad
interface or poorly thought-out class that someone else wrote. Designing for reuse can also be
called cooperative coding. You should write code to benefit programmers in projects other than
the current one.

❑ You will be the primary beneficiary of your own work. Experienced programmers never
throw away code. Over time, they build a personal library of evolving tools. You never know
when you will need a similar piece of functionality in the future. For example, when one of the
authors took his first network programming course as an undergraduate, he wrote some generic
networking routines for creating connections, sending messages, and receiving messages. He
has consulted that code during every project that involves networking since then, and has
reused pieces of it in several different programs.

How to Design Reusable Code
Reusable code fulfills two main goals. First, it is general enough to use for slightly different purposes or
in different application domains. Program components with details of a specific application are difficult
to reuse in other programs.

Reusable code is also easy to use. It doesn’t require significant time to understand its interface or func-
tionality. Programmers must be able to incorporate it readily into their applications.

When you design or write code as an employee of a company, the company, not you,
generally owns the intellectual property rights. It is often illegal to retain copies of
your designs or code when you terminate your employment with the company.

106

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 106

A collection of reusable code that you provide does not need to be a formal library. It could be a class, a
collection of functions, or a program subsystem. However, as in Chapter 4, this chapter uses the term
“library” to refer generally to any collection of code that you write.

Note that this chapter uses the term “client” to refer to a programmer who uses your interfaces. Don’t
confuse clients with “users” who run your programs. The chapter also uses the phrase “client code” to
refer to code that is written to use your interfaces.

The most important strategy for designing reusable code is abstraction. Chapter 2 presented the real-
world analogy of a television, which you can use through its interfaces without understanding how it
works inside. Similarly, when you design code, you should clearly separate the interface from the imple-
mentation. This separation makes the code easier to use, primarily because clients do not need to under-
stand the internal implementation details in order to use the functionality.

Abstraction separates code into interface and implementation, so designing reusable code focuses on
these two main areas. First, you must structure the code appropriately. What class hierarchies will you
use? Should you use templates? How should you divide the code into subsystems?

Second, you must design the interfaces, which are the “entries” into your library or code that program-
mers use to access the functionality you provide. Note that an interface does not need to be a formal API.
The concept includes any border between the code you provide and the code that uses it. The public
methods of a class or a header file of function prototypes are both perfectly valid interfaces.

The term “interface” can refer to a single access point, such as an individual function or method call, or
to an entire collection such as an API, class declaration, or header file.

Use Abstraction
You learned about the principle of abstraction in Chapter 2 and read more about its application to object-
oriented design in Chapter 3. To follow the principle of abstraction, you should provide interfaces to
your code that hide the underlying implementation details. There should be a clear distinction between
the interface and the implementation.

Using abstraction benefits both you and the clients who use your code. Clients benefit because they
don’t need to worry about the implementation details; they can take advantage of the functionality you
offer without understanding how the code really works. You benefit because you can modify the under-
lying code without changing the interface to the code. Thus, you can provide upgrades and fixes with-
out requiring clients to change their use. With dynamically linked libraries, clients don’t even need to
rebuild their executables! Finally, you both benefit because you, as the library writer, can specify in the
interface exactly what interactions you expect and functionality you support. A clear separation of inter-
faces and implementations will prevent clients from using the library in ways that you didn’t intend,
which can otherwise cause unexpected behaviors and bugs.

Suppose that you are designing a random number library and want to provide some way for the user
to specify the range of the random numbers. A bad design would expose the global variables or class

Reusable code is general purpose and easy to use.

107

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 107

members that the random number generator implementation uses internally to affect the range. This
badly designed library would require client code to set these variables directly. A good design would hide
the variables used by the internal implementation and instead provide an implementation-independent
function or method call to set the range. That way the client isn’t required to understand the internal
algorithm. In addition, because the implementation details are not exposed, you could change the algo-
rithm without affecting the client code’s interaction with the library.

Sometimes libraries require client code to keep information returned from one interface in order to pass
it to another. This information is sometimes called a handle and is often used to keep track of specific
instances that require state to be remembered between calls. If your library design requires a handle,
don’t expose its internals. Make that handle into an opaque class, in which the programmer can’t access
the internal data members. Don’t require the client code to tweak variables inside this handle. As an
example of a bad design, one of the authors actually used a library that required him to set a specific
member of a structure in a supposedly opaque handle in order to turn on error logging.

Abstraction is so important that it should guide your entire design. As part of every decision you make,
ask yourself whether your choice fulfills the principle of abstraction. Put yourself in your clients’ shoes
and determine whether or not you’re requiring knowledge of the internal implementation in the inter-
face. You should rarely, if ever, make exceptions to this rule.

Structure Your Code for Optimal Reuse
You must consider reuse from the beginning of your design. The following strategies will help you orga-
nize your code properly. Note that all of these strategies focus on making your code general purpose.
The second aspect of designing reusable code, providing ease of use, is more relevant to your interface
design and is discussed later in this chapter.

Avoid Combining Unrelated or Logically Separate Concepts
When you design a library or framework, keep it focused on a single task or group of tasks. Don’t com-
bine unrelated concepts such as a random number generator and an XML parser.

Even when you are not designing code specifically for reuse, keep this strategy in mind. Entire programs
are rarely reused on their own. Instead, pieces or subsystems of the programs are incorporated directly
into other applications, or are adapted for slightly different uses. Thus, you should design your pro-
grams so that you divide logically separate functionality into distinct components that can be reused in
different programs.

This program strategy models the real-world design principle of discrete, interchangeable parts. For
example, you could take the tires off an old car and use them on a new car of a different model. Tires are
separable components that are not tied to other aspects of the car. You don’t need to bring the engine
along with the tires!

C++ fails to provide mechanisms for good abstraction when writing classes. You
must place the private data member and method declarations in the same header file
as the public method declarations. Chapter 9 describes some techniques for working
around this limitation in order to present clean interfaces.

108

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 108

You can employ the strategy of logical division in your program design on both the macro subsystem
level and the micro class hierarchy level.

Divide Your Programs into Logical Subsystems
Design your subsystems as discrete components that can be reused independently. For example, if you
are designing a networked game, keep the networking and graphical user interface aspects in separate
subsystems. That way you can reuse either component without dragging in the other. For example, you
might want to write a non-networked game, in which case you could reuse the graphical interface sub-
system, but wouldn’t need the networking aspect. Similarly, you could design a peer-to-peer file-sharing
program, in which case you could reuse the networking subsystem but not the graphical user interface
functionality.

Make sure to follow the principle of abstraction for each subsystem, clearly separating the interface in
the subsystem from its underlying implementation. Think of each subsystem as a miniature library for
which you must provide a coherent and easy-to-use interface. Even if you’re the only programmer who
ever uses these miniature libraries, you will benefit from well-designed interfaces and implementations
that separate logically distinct functionality.

Use Class Hierarchies to Separate Logical Concepts
In addition to dividing your program into logical subsystems, you should avoid combining unrelated
concepts at the class level. For example, suppose you want to write a balanced binary tree structure for a
multithreaded program. You decide that the tree data structure should allow only one thread at a time to
access or modify the structure, so you incorporate locking into the data structure itself. However, what if
you want to use this binary tree in another program that happens to be single-threaded? In that case, the
locking is a waste of time, and would require your program to link with libraries that it could otherwise
avoid. Even worse, your tree structure might not compile on a different platform because the locking
code is probably not cross-platform. The solution is to create a class hierarchy (introduced in Chapter 3)
in which a thread-safe binary tree is a subclass of a generic binary tree. That way you can use the binary
tree superclass in single-threaded programs without incurring the cost of locking unnecessarily, or on a
different platform without rewriting the locking code. Figure 5-1 shows this hierarchy:

Figure 5-1

This strategy works well when there are two logical concepts, such as thread safety and binary trees. It
becomes more complicated when there are three or more concepts. For example, suppose you want to
provide both an n-ary tree and a binary tree, each of which could be thread-safe or not. Logically, the
binary tree is a special-case of an n-ary tree, and so should be a subclass of an n-ary tree. Similarly,
thread-safe structures should be subclasses of non-thread-safe structures. You can’t provide these sepa-
rations with a linear hierarchy. One possibility is to make the thread-safe aspect a mix-in class as shown
in Figure 5-2:

Thread-SafeBinaryTree

BinaryTree

109

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 109

Figure 5-2

That hierarchy requires you to write five different classes, but the clear separation of functionality is
worth the effort.

You can also use class hierarchies to separate generic functionality from more specific functionality. For
example, suppose you are designing an operating system that supports user-level multithreading. You
might be tempted to write a process class that includes multithreading support. However, what about
those user processes that don’t want to be multithreaded? A better design creates a generic process class,
and makes a multithreaded process a subclass of it.

Use Aggregation to Separate Logical Concepts
Aggregation, discussed in Chapter 3, models the has-a relationship: objects contain other objects to per-
form some aspects of their functionality. You can use aggregation to separate unrelated or related but
separate functionality when inheritance is not appropriate.

Continuing with the operating system example, you might want to store ready processes in a priority
queue. Instead of integrating the priority queue structure with your ReadyQueue class, write a separate
priority queue class. Then your ReadyQueue class can contain and use a priority queue. To use the
object-oriented terminology, the ReadyQueue has-a priority queue. With this technique, the priority
queue could be reused more easily in another program.

Use Templates for Generic Data Structures and Algorithms
Whenever possible, you should use a generic design for data structures and algorithms instead of encod-
ing specifics of a particular program. Don’t write a balanced binary tree structure that stores only book
objects. Make it generic, so that it can store objects of any type. That way you could use it in a bookstore,
a music store, an operating system, or anywhere that you need a balanced binary tree. This strategy
underlies the standard template library (STL) discussed in Chapter 4. The STL provides generic data
structures and algorithms that work on any types.

As the STL demonstrates, C++ provides an excellent language feature for this type of generic program-
ming: templates. As described in Chapters 2 and 4, templates allow you to write both data structures
and algorithms that work on any types. Chapter 11 provides the coding details of templates, but this
section discusses some of their important design aspects.

Thread-SafeBinaryTree

Thread-SafeN-aryTree

N-aryTree

Thread-Safety

BinaryTree

110

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 110

Why Templates Are Better Than Other Generic Programming Techniques
Templates are not the only mechanism for writing generic data structures. You can write generic struc-
tures in C and C++ by storing void* pointers instead of a specific type. Clients can use this structure to
store anything they want by casting it to a void*. However, the main problem with this approach is that
it is not type-safe: the containers are unable to check or enforce the types of the stored elements. You can
cast any type to a void* to store in the structure, and when you remove the pointers from the data struc-
ture, you must cast them back to what you think they are. Because there are no checks involved, the
results can be disastrous. Imagine a scenario where one programmer stores pointers to int in a data
structure by first casting them to void*, but another programmer thinks they are pointers to Process
objects. The second programmer will blithely cast the void* pointers to Process* pointers and try to
use them as Process*s. Needless to say, the program will not work as expected.

A second approach is to write the data structure for a specific class. Through polymorphism, any sub-
class of that class can be stored in the structure. Java takes this approach to an extreme: it specifies
that every class derives directly or indirectly from the Object class. The Java containers store Objects,
so they can store objects of any type. However, this approach is also not truly type-safe. When you
remove an object from the container, you must remember what it really is and down-cast it to the
appropriate type.

Templates, on the other hand, are type-safe when used correctly. Each instantiation of a template stores
only one type. Your program will not compile if you try to store different types in the same template
instantiation.

Problems with Templates
Templates are not perfect. First of all, their syntax is confusing, especially for someone who has not used
them before. Second, the parsing is difficult, and not all compilers fully support the C++ standard.

Furthermore, templates require homogeneous data structures, in which you can store only objects of the
same type in a single structure. That is, if you write a templatized balanced binary tree, you can create
one tree object to store Process objects and another tree object to store ints. You can’t store both ints
and Processes in the same tree. This restriction is a direct result of the type-safe nature of templates.
Although type-safety is important, some programmers consider the homogeneity requirement a signifi-
cant restriction.

Another problem with templates is that they lead to code bloat. When you create a tree object to store
ints, the compiler actually “expands” the template to generate code as if you had written a tree struc-
ture just for ints. Similarly, if you create a tree object to store Processes, the compiler generates code
as if you had written a tree structure just for Processes. If you instantiate templates for many different
types, you end up with huge executable files because of all the different code that is generated.

Templates versus Inheritance
Programmers sometimes find it tricky to decide whether to use templates or inheritance. Here are some
tips to help you make the decision.

Use templates when you want to provide identical functionality for different types. For example, if you
want to write a generic sorting algorithm that works on any type, use templates. If you want to create a
container that can store any type, use templates. The key concept is that the templatized structure or
algorithm treats all types the same.

111

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 111

When you want to provide different behaviors for related types, use inheritance. For example, use inher-
itance if you want to provide two different, but similar, containers such as a queue and a priority queue.

Note that you can combine inheritance and templates. You could write a templatized queue that stores
any type, with a subclass that is a templatized priority queue. Chapter 11 covers the details of the tem-
plate syntax.

Provide Appropriate Checks and Safeguards
You should always design your programs to be as safe as possible for use by other programmers. The
most important aspect of this guideline is to perform error checking in your code. For example, if your
random number generator requires a non-negative integer for a seed, don’t just trust the user to cor-
rectly pass a non-negative integer. Check the value that is passed in, and reject the call if it is invalid.

As an analogy, consider an accountant who prepares income tax returns. When you hire an accountant,
you provide him or her with all your financial information for the year. The accountant uses this infor-
mation to fill out forms from the Internal Revenue Service. However, the accountant does not blindly fill
out your information on the form, but instead makes sure the information makes sense. For example, if
you own a house, but forget to specify the property tax you paid, the accountant will remind you to sup-
ply that information. Similarly, if you say that you paid $12,000 in mortgage interest, but made only
$15,000 gross income, the accountant might gently ask you if you provided the correct numbers (or at
least recommend more affordable housing).

You can think of the accountant as a “program” where the input is your financial information and the
output is an income tax return. However, the value added by an accountant is not just that he or she fills
out the forms. You choose to employ an accountant also because of the checks and safeguards that he or
she provides. Similarly in programming, you should provide as many checks and safeguards as possible
in your implementations.

There are several techniques and language features that help you incorporate checks and safeguards in
your programs. First, use exceptions to notify the client code of errors. Chapter 15 covers exceptions in
detail. Second, use smart pointers (discussed in Chapter 4) and other safe memory techniques discussed
in Chapter 13.

Design Usable Interfaces
In addition to abstracting and structuring your code appropriately, designing for reuse requires you to
focus on the interface with which programmers interact. If you hide an ugly implementation behind a
pretty interface, no one needs to know. However, if you provide a beautiful implementation behind a
wretched interface, your library won’t be much good.

Note that every subsystem and class in your program should have good interfaces, even if you don’t
intend them to be used in multiple programs. First of all, you never know when something will be
reused. Second, a good interface is important even for the first use, especially if you are programming in
a group and other programmers must use the code you design and write.

The main purpose of interfaces is to make the code easy to use, but some interface techniques can help
you follow the principle of generality as well.

112

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 112

Design Interfaces That Are Easy to Use
Your interfaces should be easy to use. That doesn’t mean that they must be trivial, but they should be as
simple and intuitive as the functionality allows. You shouldn’t require consumers of your library to
wade through pages of source code in order to use a simple data structure, or go through contortions in
their code to obtain the functionality they need. This section provides four specific strategies for design-
ing interfaces that are easy to use.

Develop Intuitive Interfaces
Computer programmers use the term intuitive to describe interfaces that people can figure out easily and
without much instruction. The use of the word intuitive is similar to its meaning in the phrase “intu-
itively obvious,” which means apparent without much reasoning or examination. Intuitive interfaces
are, almost by definition, easy to use.

The best strategy for developing intuitive interfaces is to follow standard and familiar ways of doing
things. When people encounter an interface similar to something they have used in the past, they will
understand it better, adopt it more readily, and be less likely to use it improperly.

For example, suppose that you are designing the steering mechanism of a car. There are a number of
possibilities: a joystick, two buttons for moving left or right, a sliding horizontal lever, or a good-old
steering wheel. Which interface do you think would be easiest to use? Which interface do you think
would sell the most cars? Consumers are familiar with steering wheels, so the answer to both questions
is, of course, the steering wheel. Even if you developed another mechanism that provided superior per-
formance and safety, you would have a tough time selling your product, let alone teaching people how
to use it. When you have a choice between following standard interface models and branching out in a
new direction, it’s usually better to stick to the interface to which people are accustomed.

Innovation is important, of course, but you should focus on innovation in the underlying implementa-
tion, not in the interface. For example, consumers are excited about the innovative hybrid gasoline-
electric engine in some car models. These cars are selling well in part because the interface to use them
is identical to cars with standard engines.

Applied to C++, this strategy implies that you should develop interfaces that follow standards to which
C++ programmers are accustomed. For example, C++ programmers expect the constructor and destruc-
tor of a class to initialize and clean up an object, respectively. When you design your classes, you should
follow this standard. If you require programmers to call initialize() and cleanup() methods for
initialization and cleanup instead of placing that functionality in the constructor and destructor, you will
confuse everyone who tries to use your class. Because your class behaves differently from other C++
classes, programmers will take longer to learn how to use it and will be more likely to use it incorrectly
by forgetting to call initialize() or cleanup().

Always think about your interfaces from the perspective of someone using them. Do they make sense?
Are they what you would expect?

C++ provides a language feature called operator overloading that can help you develop intuitive interfaces
for your objects. Operator overloading allows you to write classes such that the standard operators work
on them just as they work on built-in types like int and double. For example, you can write a
Fraction class that allows you to add, subtract, and stream fractions like this:

113

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 113

Fraction f1(3,4), f2(1,2), sum, diff;
sum = f1 + f2;
diff = f1 – f2;
cout << f1 << “ “ << f2 << endl;

Contrast that with the same behavior using method calls:

Fraction f1(3,4), f2(1,2), sum, diff;
sum = f1.add(f2);
diff = f1.subtract(f2);
f1.print(cout);
cout << “ “;
f2.print(cout);
cout << endl;

As you can see, operator overloading allows you to provide intuitive interfaces for your classes.
However, be careful not to abuse operator overloading. It’s possible to overload the + operator so that it
implements subtraction and the – operator so that it implements multiplication. Those implementations
would be counterintuitive. Always follow the expected meaning of the operators. See Chapters 9 and 16
for details on operator overloading.

Don’t Omit Required Functionality
This strategy is twofold. First, include interfaces for all behaviors that clients could need. That might
sound obvious at first. Returning to the car analogy, you would never build a car without a speedometer
for the driver to view his or her speed! Similarly, you would never design a Fraction class without a
mechanism for the client code to access the actual value of the fraction.

However, other possible behaviors might be more obscure. This strategy requires you to anticipate all
the uses to which clients might put your code. If you are thinking about the interface in one particular
way, you might miss functionality that could be needed when clients use it differently. For example,
suppose that you want to design a game board class. You might consider only the typical games, such
as chess and checkers, and decide to support a maximum of one game piece per spot on the board.
However, what if you later decide to write a backgammon game, which allows multiple pieces in one
spot on the board? By precluding that possibility, you have ruled out the use of your game board as a
backgammon board.

Obviously, anticipating every possible use for your library is difficult, if not impossible. Don’t feel com-
pelled to agonize over potential future uses in order to design the perfect interface. Just give it some
thought and do the best you can.

The second part of this strategy is to include as much functionality in the implementation as possible.
Don’t require client code to specify information that you already know in the implementation, or could
know if you designed it differently. For example, if your XML parser library requires a temporary file in
which to store results, don’t make the clients of your library specify that path. They don’t care what file
you use; find some other way to determine an appropriate file path.

Furthermore, don’t require library users to perform unnecessary work to amalgamate results. If your
random number library uses a random number algorithm that calculates the low-order and high-order
bits of a random number separately, combine the numbers before giving them to the user.

114

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 114

Present Uncluttered Interfaces
In order to avoid omitting functionality in their interfaces, some programmers go to the opposite
extreme: they include every possible piece of functionality imaginable. Programmers who use the inter-
faces are never left without the means to accomplish a task. Unfortunately, the interface might be so clut-
tered that they never figure out how to do it!

Don’t provide unnecessary functionality in your interfaces; keep them clean and simple. It might appear
at first that this guideline directly contradicts the previous strategy of avoiding omitting necessary func-
tionality. Although one strategy to avoid omitting functionality would be to include every imaginable
interface, that is not a sound strategy. You should include necessary functionality and omit useless or
counterproductive interfaces.

Consider cars again. You drive a car by interacting with only a few components: the steering wheel,
the brake and accelerator pedals, the gearshift, the mirrors, the speedometer, and a few other dials on your
dashboard. Now, imagine a car dashboard that looked like an airplane cockpit, with hundreds of dials,
levers, monitors, and buttons. It would be unusable! Driving a car is so much easier than flying an airplane
that the interface can be much simpler: you don’t need to view your altitude, communicate with control
towers, or control the myriad components in an airplane such as the wings, engines, and landing gear.

Additionally, from the library development perspective, smaller libraries are easier to maintain. If you
try to make everyone happy, then you have more room to make mistakes, and if your implementation is
complicated enough so that everything is intertwined, even one mistake can render the library useless.

Unfortunately, the idea of designing uncluttered interfaces looks good on paper, but is remarkably hard
to put into practice. The rule is ultimately subjective: you decide what’s necessary and what’s not. Of
course, your clients will be sure to tell you when you get it wrong! Here are a few tips to keep in mind:

❑ Eliminate duplicate interfaces. If you have one method to return a result in feet and another to
return a result in meters, combine them into a method that returns an object than can provide a
result in either feet or meters.

❑ Determine the simplest way to provide the functionality you need. Eliminate unnecessary
parameters and methods and combine multiple methods into single methods when appropriate.
For example, combine a library initialization routine with a method that sets initial user-
specified parameters.

❑ Limit the library’s uses when appropriate. It’s impossible to cater to everyone’s whims and
desires. Inevitably, someone will try to use the library in ways that you didn’t intend. For exam-
ple, if you provide a library for XML parsing, someone might try to use it to parse SGML. That
wasn’t your intention, so you shouldn’t feel compelled to include the functionality to support it.

Provide Documentation and Comments
Regardless of how easy to use and intuitive you make your interfaces, you should supply documenta-
tion for their use. You can’t expect programmers to use your library properly unless you tell them how
to do it. Think of your library or code as a product for other programmers to consume. Any tangible

Don’t require library users to perform tasks that you could do for them.

115

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 115

product that you purchase, such as a DVD player, comes with a set of instructions explaining its inter-
face, functionality, limitations, and troubleshooting. Even simple products such as chairs usually provide
instructions for proper use, even if it’s only something like, “Sit here. If you use this product in any other
manner, death or serious injury could result.” Similarly, your product should have documentation
explaining its proper use.

There are two ways to provide documentation for your interfaces: comments in the interfaces them-
selves and external documentation. You should strive to provide both. Most public APIs provide only
external documentation: comments are a scarce commodity in many of the standard Unix and Windows
header files. In Unix, the documentation usually comes in the form of online manuals called man pages.
In Windows, the documentation usually accompanies the integrated development environment.

Despite the fact that most APIs and libraries omit comments in the interfaces themselves, we actually
consider this form of documentation the most important. You should never give out a “naked” header
file that contains only code. Even if your comments repeat exactly what’s in the external documentation,
it is less intimidating to look at a header file with friendly comments than one with only code. Even the
best programmers still like to see written language every so often!

Some programmers use tools to create documentation automatically from comments. These tools parse
comments with specific keywords and formatting to generate documentation, often in Hypertext Markup
Language (HTML) form. The Java programming language popularized this technique with the JavaDoc
tool, but there are many similar tools available for C++. Chapter 7 discusses this technique in more detail.

Whether you provide comments, external documentation, or both, the documentation should describe the
behavior of the library, not the implementation. The behavior includes the inputs, outputs, error conditions
and handling, intended uses, and performance guarantees. For example, documentation describing a call
to generate a single random number should specify that it takes no parameters, returns an integer in a pre-
viously specified range, and throws an “out of memory” exception if it can’t allocate memory. This docu-
mentation should not explain the details of the linear congruence algorithm for actually generating the
number. The client of the interface doesn’t care about the algorithm as long as the numbers appear random!
Providing too much implementation detail in interface comments is probably the single most common
mistake in interface development. We’ve seen many perfectly good separations of interface and implemen-
tation ruined by comments in the interface that are more appropriate for library maintainers than clients.

Of course you should still document your internal implementation, just don’t make it publicly available
as part of your interface. Chapter 7 provides details on the appropriate use of comments in your code.

Design General-Purpose Interfaces
The interfaces should be general purpose enough that they can be adapted to a variety of tasks. If you
encode specifics of one application in a supposedly general interface, it will be unusable for any other
purpose. Here are some guidelines to keep in mind.

Provide Multiple Ways to Perform the Same Functionality
In order to satisfy all your “customers,” it is sometimes helpful to provide multiple ways to perform the
same functionality. Use this technique judiciously, however, because overapplication can easily lead to
cluttered interfaces.

Public documentation should specify behaviors, not underlying implementations.

116

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 116

Consider cars again. Most new cars these days provide remote keyless entry systems, with which you
can unlock your car by pressing a button on a key fob. However, these cars always provide a standard
key that you can use to physically unlock the car. Although these two methods are redundant, most cus-
tomers appreciate having both options.

Sometimes there are similar situations in program interface design. For example, suppose that one of
your methods takes a string. You might want to provide two interfaces: one that takes a C++ string
object and one that takes a C-style character pointer. Although it’s possible to convert between the two,
different programmers prefer different types of strings, so it’s helpful to cater to both approaches.

Note that this strategy should be considered an exception to the “uncluttered” rule in interface design.
There are a few situations where the exception is appropriate, but you should most often follow the
“uncluttered” rule.

Provide Customizability
In order to increase the flexibility of your interfaces, provide customizability. People generally appreciate
customizability the most when it’s absent. For example, one of the authors recently purchased a new
car with an antitheft device. This alarm automatically deactivates when the doors are unlocked using
the remote keyless entry. Unfortunately, if the doors are not opened within 30 seconds after they are
unlocked, the alarm reactivates. This feature becomes quite annoying when trying to use the trunk of
the car. It’s inconvenient to open a car door just to access something in the trunk. However, if the alarm
is not deactivated, slamming the trunk lid triggers it. The most annoying aspect of this problem is that
there is no way to permanently deactivate the antitheft device! The car designers must have assumed
that everyone would want the same functionality in their antitheft devices, and didn’t provide a mecha-
nism to customize it.

Customizability can be as simple as allowing a client to turn on or off error logging. The basic premise of
customizability is that it allows you to provide the same basic functionality to every client, but gives
clients the ability to tweak it slightly.

You can allow greater customizability through function pointers and template parameters. For example,
you could allow clients to set their own error-handling routines. This technique is an application of the
decorator pattern described in Chapter 26.

The STL takes this customizability strategy to the extreme and actually allows clients to specify their
own memory allocators for containers. If you want to use this feature, you must write a memory alloca-
tor object that follows the STL guidelines and adheres to the required interfaces. Each container in the
STL takes an allocator as one of its template parameters. Chapter 23 provides the details.

Reconciling Generality and Ease of Use
The two goals of ease of use and generality sometimes appear to conflict. Often, introducing generality
increases the complexity of the interfaces. For example, suppose that you need a graph structure in a
map program to store cities. In the interest of generality, you might use templates to write a generic map
structure for any type, not just cities. That way, if you need to write a network simulator in your next
program, you could employ the same graph structure to store routers in the network. Unfortunately, by
using templates, you made the interface a little clumsier and harder to use, especially if the potential
client is not familiar with templates.

117

Designing for Reuse

08_574841 ch05.qxd 12/15/04 3:41 PM Page 117

However, generality and ease of use are not mutually exclusive. Although in some cases increased gen-
erality may decrease ease of use, it is possible to design interfaces that are both general purpose and
straightforward to use. Here are two guidelines you can follow.

Supply Multiple Interfaces
In order to reduce complexity in your interfaces while still providing enough functionality, you can pro-
vide two separate interfaces. For example, you could write a generic networking library with two sepa-
rate facets: one presents the networking interfaces useful for games, and one presents the networking
interfaces useful for the Hypertext Transport Protocol (HTTP) Web browsing protocol.

The STL takes this approach with its string class. As noted in Chapter 4, the string class is actually a
char instantiation of the basic_stream template. You can think of the string class as an interface that
hides the full complexity of the basic_stream template.

Optimize the Common Functionality
When you provide a general-purpose interface, some functionality will be used more often than other
functionality. You should make the commonly used functionality easy to use, while still providing the
option for the more advanced functionality. Returning to the map program, you might want to provide an
option for clients of the map to specify names of cities in different languages. English is so predominant
that you could make that the default but provide an extra option to change languages. That way most
clients will not need to worry about setting the language, but those who want to will be able to do so.

This strategy is similar to the performance principle discussed in Chapter 4 of optimizing the parts of the
code that are executed most often. Focus on optimizing those aspects of your design that provide the
most benefit for the most people.

Summary
By reading this chapter, you learned why you should design reusable code and how you should do it. You
read about the philosophy of reuse, summarized as “write once, use often,” and learned that reusable
code should be both general purpose and easy to use. You also discovered that designing reusable code
requires you to use abstraction, to structure your code appropriately, and to design good interfaces.

This chapter presented three specific tips for structuring your code: avoid combining unrelated or logi-
cally separate concepts, use templates for generic data structures and algorithms, and provide appropri-
ate checks and safeguards.

The chapter also presented six strategies for designing interfaces: develop intuitive interfaces, don’t omit
required functionality, present uncluttered interfaces, provide documentation and comments, provide
multiple ways to perform the same functionality, and provide customizability. It concluded with two
tips for reconciling the often-conflicting demands of generality and ease of use: supply multiple inter-
faces and optimize common functionality.

This chapter concludes the discussion of design themes that began in Chapter 2. Chapter 6 finishes the
design section of this book with a discussion of software-engineering methodologies. Chapters 7 through
11 delve into the implementation phase of the software engineering process with details of C++ coding.

118

Chapter 5

08_574841 ch05.qxd 12/15/04 3:41 PM Page 118

Maximizing Software-
Engineering Methods

When you first learned how to program, you were probably on your own schedule. You were free
to do everything at the last minute if you wanted to, and you could radically change your design
during implementation. When coding in the professional world, however, programmers rarely
have such flexibility. Even the most liberal engineering managers admit that some amount of pro-
cess is necessary. Knowing the software-engineering process is as important these days as know-
ing how to code.

This chapter surveys various approaches to software engineering. It does not go into great depth
on any one approach — there are plenty of excellent books on software-engineering processes.
The idea is to cover the different types of processes in broad strokes so you can compare and con-
trast them. We try not to advocate or discourage any particular methodology. Rather, we hope that
by learning about the tradeoffs of several different approaches, you’ll be able to construct a pro-
cess that works for you and the rest of your team.

Whether you’re a contractor working alone on projects or your team consists of hundreds of engi-
neers on several continents, understanding the different approaches to software development will
help your job on a daily basis.

The Need for Process
The history of software development is filled with tales of failed projects. From over-budget and
poorly marketed consumer applications to grandiose mega-hyped operating systems, it seems that
no area of software development is free from this trend.

Even when software successfully reaches users, bugs have become so commonplace that end users
are forced to endure constant updates and patches. Sometimes the software does not accomplish

09_574841 ch06.qxd 12/15/04 3:41 PM Page 119

the tasks it is supposed to or doesn’t work the way the user would expect. These issues all point to a
common truism of software — writing software is hard.

One wonders why software engineering seems to differ from other forms of engineering in its frequency
of failures. While cars do have their share of bugs, you rarely see them stop suddenly and demand a
reboot due to a buffer overflow (though as more auto components become software-driven, you just may!)
Your TV may not be perfect, but you don’t have to upgrade to version 2.3 to get Channel 6 to work.

Is it the case that other engineering disciplines are just more advanced than software? Is a civil engineer
able to construct a working bridge by drawing upon the long history of bridge building? Are chemical
engineers able to build a compound successfully because most of the bugs were worked out in earlier
generations?

It certainly seems as if there’s something different about software. For one thing, technology changes
rapidly in software, creating uncertainty in the software development process. Even if an earth-shattering
breakthrough does not occur during your project, the pace of the industry leads to paranoia. Software
often needs to be developed quickly because competition is fierce.

Software development can also be unpredictable. Accurate scheduling is nearly impossible when a sin-
gle gnarly bug can take days or even weeks to fix. Even when things seem to be going according to
schedule, the widespread tendency of product definition changes (feature creep) can throw a wrench in
the process.

Software is complex. There is no easy and accurate way to prove that a program is bug-free. Buggy or
messy code can have an impact on software for years if it is maintained through several versions.
Software systems are often so complex that when staff turnover occurs, nobody wants to get anywhere
near the messy code that forgotten engineers have left behind. This leads to a cycle of endless patching,
hacks, and workarounds.

Of course, standard business risks apply to software as well. Marketing pressures and miscommunica-
tion get in the way. Many programmers try to steer clear of corporate politics, but it’s not uncommon to
have adversity between the development and product marketing groups.

All of these factors working against software-engineering products indicate the need for some sort of
process. Software projects are big, complicated, and fast-paced. To avoid failure, engineering groups
need to adopt a system to control this unwieldy process.

Software Life-Cycle Models
Complexity in software isn’t new. The need for formalized process was recognized decades ago.
Several approaches to modeling the software life cycle have attempted to bring some order to the chaos

Is software simply too new, or is it really a different type of discipline with inherent
qualities contributing to the occurrence of bugs, unusable results, and doomed
projects?

120

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 120

of software development by defining the software process in terms of steps from the initial idea to the
final product. These models, refined over the years, guide much of software development today.

The Stagewise and Waterfall Models
The classic life cycle model for software is often referred to as the Stagewise Model. This model is based
on the idea that software can be built almost like following a recipe. There is a set of steps that, if fol-
lowed correctly, will yield a mighty fine chocolate cake, or program as the case may be. Each stage must
be completed before the next stage can begin, as shown in Figure 6-1.

Figure 6-1

The process starts with formal planning, including gathering an exhaustive list of requirements. This list
defines feature completeness for the product. The more specific the requirements are, the more likely
that the project will succeed. Next, the software is designed and fully specified. The design step, like the
requirements step, needs to be as specific as possible to maximize the chance of success. All design deci-
sions are made at this time, often including pseudocode and the definition of specific subsystems that
will need to be written. Subsystem owners work out how their code will interact, and the team agrees on
the specifics of the architecture. Implementation of the design occurs next. Because the design has been
fully specified, the code needs to adhere strongly to the design or else the pieces won’t fit together. The
final four stages are reserved for unit testing, subsystem testing, integration testing, and evaluation.

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

121

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 121

The main problem with the Stagewise Model is that, in practice, it is nearly impossible to complete one
stage without at least exploring the next stage. A design cannot be set in stone without at least writing
some code. Furthermore, what is the point of testing if the model doesn’t provide a way to go back to the
coding phase?

A number of refinements to the Stagewise Model were formalized as the Waterfall Model in the early
1970s. This model continues to be highly influential, if not downright dominant, in modern software-
engineering organizations. The main advancement that the Waterfall Model brought was a notion of
feedback between stages. While it still stresses a rigorous process of planning, designing, coding, and
testing, successive stages can overlap in part. Figure 6-2 shows an example of the Waterfall Model, illus-
trating the feedback and overlap refinements. Feedback allows lessons learned in one phase to result in
changes to the previous phase. Overlap permits activity in two phases to occur simultaneously.

Figure 6-2

Various incarnations of the waterfall method have refined the process in different ways. For example,
some plans include a “feasibility” step where experiments are performed before formal requirements are
even gathered.

Benefits of the Waterfall Model
The value of the Waterfall Model lies in its simplicity. You, or your manager, may have followed this
approach in past projects without formalizing it or recognizing it by name. The underlying assumption
behind the Stepwise and Waterfall Models is that as long as each step is accomplished as completely and
accurately as possible, subsequent steps will go smoothly. As long as all of the requirements are carefully
specified in the first step, and all the design decisions and problems are hashed out in the second step,
implementation in the third step should be a simple matter of translating the designs into code.

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

122

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 122

The simplicity of the Waterfall Model makes project plans based on this system organized and easy to
manage. Every project is started the same way: by exhaustively listing all the features that are necessary.
Managers using this approach can require that by the end of the design phase, for example, all engineers
in charge of a subsystem submit their design as a formal design document or a functional subsystem
specification. The benefit for the manager is that by having engineers specify and design upfront, risks
are, hopefully, minimized.

From the engineer’s point of view, the Waterfall Method forces resolution of major issues upfront. All
engineers will need to understand their project and design their subsystem before writing a significant
amount of code. Ideally, this means that code can be written once instead of hacked together or rewritten
when the pieces don’t fit.

For small projects with very specific requirements, the Waterfall Method can work quite well.
Particularly for consulting arrangements, it has the advantage of specifying specific metrics for success
at the start of the project. Formalizing requirements helps the consultant to produce exactly what the
client wants and forces the client to be specific about the goals for the project.

Drawbacks of the Waterfall Model
In many organizations, and almost all modern software-engineering texts, the Waterfall Method has
fallen out of favor. Critics disparage its fundamental premise that software development tasks happen in
discrete linear steps. While the Waterfall Method allows for the overlapping of phases, it does not allow
backward movement to a large degree. In many projects today, requirements come in throughout the
development of the product. Often, a potential customer will request a feature that is necessary for the
sale or a competitor’s product will have a new feature that requires parity.

Another drawback is that in an effort to minimize risk by making decisions as formally and early as
possible, the Waterfall Model may actually be hiding risk. For example, a major design issue might be
undiscovered, glossed over, forgotten, or purposely avoided in the design phase. By the time integration
testing reveals the mismatch, it may be too late to save the project. A major design flaw has arisen
but, according to the Waterfall Model, the product is one step away from shipping! A mistake anywhere
in the waterfall process will likely lead to failure at the end of the process. Early detection is difficult
and rare.

While the Waterfall Model is still quite common and can be an effective way of visualizing the process,
it is often necessary to make it more flexible by taking cues from other approaches.

The Spiral Method
The Spiral Method was proposed by Barry W. Boehm in 1988 in recognition of the occurrence of unex-
pected problems and changing requirements in the software development process. This method is part

The upfront specification of all requirements makes the Waterfall Method unusable
for many organizations because it simply is not dynamic enough.

123

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 123

of a family of techniques known as iterative processes. The fundamental idea is that it’s okay if something
goes wrong because you’ll fix it the next time around. A single spin through the spiral method is shown
in Figure 6-3.

Figure 6-3

The phases of the Spiral Method are similar to the steps of the Waterfall Method. The discovery phase
involves building requirements and determining objectives. During the evaluation phase, implementa-
tion alternatives are considered and prototypes may be built. In the Spiral Method, particular attention
is paid to evaluating and resolving risks in the evaluation phase. The tasks deemed most risky are the
ones that are implemented in the current cycle of the spiral. The tasks in the development phase are
determined by the risks identified in the evaluation phase. For example, if evaluation reveals a risky
algorithm that may be impossible to implement, the main task for development in the current cycle will
be modeling, building, and testing that algorithm. The fourth phase is reserved for analysis and plan-
ning. Based on the results of the current cycle, the plan for the subsequent cycle is formed. Each iteration
is expected to be fairly short in duration, taking only a few key features and risks into consideration.

Figure 6-4 shows an example of three cycles through the spiral in the development of an operating sys-
tem. The first cycle yields a plan containing the major requirements for the product. The second cycle
results in a prototype showing the user experience. The third cycle builds a component that is deter-
mined to be a high risk.

Discovery Evaluation

Analysis Development

124

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 124

Figure 6-4

Benefits of the Spiral Method
The Spiral Method can be viewed as the application of an iterative approach to the best that the
Waterfall Method has to offer. Figure 6-5 shows the Spiral Method as a waterfall process that has been
modified to allow iteration. Hidden risks and a linear development path, the main drawbacks of the
Waterfall Method, are resolved through short iterative cycles.

Figure 6-5

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

Planning

Design

Implementation

Unit Testing

Subsystem
Testing

Integration
Testing

Evaluation

Feature A
Requirements
3

Feature A Risk
Analysis

Prototype
Requirements
2

Prototype
Options

Plan
Requirements
1

Prototype Plan

Feature A Plan

New Feature A Plan

Build Plan

Build Prototype
Feature A Risk
Elimination

Plan
Alternatives

Discovery Evaluation

Analysis Development

Feature A
Requirements
3

Feature A Risk
Analysis

Prototype
Requirements
2

Prototype
Options

Plan
Requirements
1

Prototype Plan

Feature A Plan

New Feature A Plan

Build Plan

Build Prototype
Feature A Risk
Elimination

Plan
Alternatives

125

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 125

Performing the riskiest tasks first is another benefit. By bringing risk to the forefront and acknowledging
that new conditions can arise at any time, the Spiral Method avoids the hidden time bombs that can
occur in the Waterfall Model. When unexpected problems arise, they can be dealt with using the same
four-stage approach that works for the rest of the process.

Finally, by repeatedly analyzing after each cycle and building new designs, the practical difficulties with
the design-then-implement approach are virtually eliminated. With each cycle, there is more knowledge
of the system that can influence the design.

Drawbacks of the Spiral Method
The main drawback of the Spiral Method is that it can be difficult to scope each iteration small enough to
gain real benefit. In a worst-case scenario, the Spiral Method can degenerate into the Waterfall Model
because the iterations are too long. Unfortunately, the Spiral Model only models the software life cycle. It
cannot prescribe a specific way to break down a project into single-cycle iterations because that division
varies from project to project.

Other possible drawbacks are the overhead of repeating all four phases for each cycle and the difficulty
of coordinating cycles. Logistically, it may be difficult to assemble all the group members for design dis-
cussions at the right time. If different teams are working on different parts of the product simultane-
ously, they are probably operating in parallel cycles, which can get out of synch. For example, the user
interface group could be ready to start the discovery phase of the Window Manager cycle, but the core
OS group is still in the development phase of the memory subsystem.

The Rational Unified Process
The Rational Unified Process (RUP) is a disciplined and formal approach to managing the software devel-
opment process. The most important characteristic of the RUP is that, unlike the Spiral Method or the
Waterfall Model, RUP is more than just a theoretical process model. RUP is actually a software product,
marketed and sold by Rational Software, a division of IBM. Treating the process as software is com-
pelling for a number of reasons:

❑ The process itself can be updated and refined, just as software products periodically have
updates.

❑ Rather than simply suggesting a development framework, RUP includes a set of software tools
for working with that framework.

❑ As a product, RUP can be rolled out to the entire engineering team so that all members are
using the exact same processes and tools.

❑ Like many software products, RUP can be customized to the needs of the users.

RUP as a Product
As a product, the RUP takes the form of a suite of software applications that guides developers through
the software development process. The product also offers specific guidance for other Rational products,
such as the Rational Rose visual modeling tool and the Rational ClearCase configuration management
tool. Extensive groupware communication tools are included as part of the “marketplace of ideas” that
allow developers to share knowledge.

126

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 126

One of the basic principles behind RUP is that each iteration on a development cycle should have a tan-
gible result. During the Rational Unified Process, users will create numerous designs, requirement docu-
ments, reports, and plans. The RUP software provides visualization and development tools for the
creation of these artifacts.

RUP as a Process
Defining an accurate model is the central principle of RUP. Models, according to RUP, help explain the
complicated structures and relationships in the software development process. In RUP, models are often
expressed in Unified Modeling Language (UML) format.

RUP defines each part of the process as an individual workflow. Workflows represent each step of a pro-
cess in terms of who is responsible for it, what tasks are being performed, the artifacts or results of these
tasks, and the sequence of events that drives the tasks. Almost everything about RUP is customizable,
but several core process workflows are defined “out of the box” by RUP.

The core process workflows bear some resemblance to the stages of the Waterfall Model, but each one is
iterative and more specific in definition. The business modeling workflow models business processes, usu-
ally with the goal of driving software requirements forward. The requirements workflow creates the
requirements definition by analyzing the problems in the system and iterating on its assumptions. The
analysis and design workflow deals with system architecture and subsystem design. The implementation
workflow covers the modeling, coding, and integration of software subsystems. The test workflow models
the planning, implementation and evaluation of software quality tests. The deployment workflow is a high-
level view on overall planning, releasing, supporting, and testing workflows. The configuration manage-
ment workflow goes from new project conception to iteration and end-of-product scenarios. Finally, the
environment workflow supports the engineering organization through the creation and maintenance of
development tools.

RUP in Practice
RUP is aimed mainly at larger organizations and offers several advantages over the adoption of tradi-
tional life-cycle models. Once the team has gotten over the learning curve to use the software, all mem-
bers will be using a common platform for designing, communicating, and implementing their ideas. The
process can be customized to the needs of the team and each stage reveals a wealth of valuable artifacts
that document each phase of development.

A product like RUP can be too heavyweight for some organizations. Teams with diverse development
environments or tight engineering budgets might not want or be able to standardize on a software-based
development system. The learning curve can also be a factor — new engineers that aren’t familiar with
the process software will have to learn how to use it while getting up to speed on the product and the
existing code base.

Software-Engineering Methodologies
Software life-cycle models provide a formal way of answering the question “What do we do next?” but
they are rarely (with the exception of formalized systems like RUP) able to contribute an answer to the
logical follow-up question, “How do we do it?” To provide some answers to the “how” question, a num-
ber of methodologies have developed that provide practical rules of thumb for professional software

127

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 127

development. Books and articles on software methodologies abound, but two recent innovations,
Extreme Programming and Software Triage, deserve particular attention.

Extreme Programming (XP)
When one of the authors arrived home from work a few years ago and told his wife that his company
had adopted some of the principles of Extreme Programming, she joked, “I hope you wear a safety har-
ness for that.” Despite the somewhat hokey name, Extreme Programming effectively bundles up the best
of existing software development guidelines and new material into a novel and increasingly popular
methodology.

XP, popularized by Kent Beck in eXtreme Programming eXplained (Addison-Wesley, 1999), claims to take
the best practices of good software development and turn them up a notch. For example, most program-
mers would agree that testing is a good thing. In XP, testing is deemed so good that you’re supposed to
write the tests before you write the code!

XP in Theory
The Extreme Programming methodology is made up of 12 main guiding principles. These principles are
manifested throughout all phases of the software development process and have a direct impact on the
daily tasks of engineers.

Plan as You Go
In the Waterfall Model, planning happened once, at the beginning of the process. Under the Spiral
Method, planning was the first phase of each iteration. In RUP, planning is an integral step in most of the
workflows. Under XP, planning is more than just a step — it’s a never-ending task. XP teams start with a
rough plan that captures the major points of the product being developed. Throughout the development
process, the plan is refined and modified as necessary. The theory is that conditions are constantly
changing and new information is obtained all the time.

Under XP, estimates for a given feature are always made by the person who will be implementing that
particular feature. This helps to avoid situations where the implementer is forced to adhere to an unreal-
istic and artificial schedule. Initially, estimates are very rough, perhaps on the order of weeks for a fea-
ture. As the time horizon shortens, the estimates get more granular. Features are broken out into tasks
taking no more than five days.

Build Small Releases
One of the theories of XP is that software projects grow risky and unwieldy when they try to accomplish
too much at one time. Instead of massive software releases that involve core changes and several pages
of release notes, XP advocates smaller releases with a timeframe closer to two months than eighteen
months. With such a short release cycle, only the most important features can make it into the product.
This forces engineering and marketing to agree on what features are truly important.

Share a Common Metaphor
XP uses the term metaphor as other methodologies might use architecture. The idea is that all members of
the team should share a common high-level view of the system. This isn’t necessarily the specifics of

128

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 128

how objects will communicate or the exact APIs that will be written. Rather, the metaphor is the mental
model for the components of the system. Team members should use the metaphor to drive shared termi-
nology when discussing the project.

Simplify Your Designs
A mantra frequently sung by XP-savvy engineers is “avoid speculative generality.” This goes against the
natural inclinations of many programmers. If you are given the task of designing a file-based object
store, you may start down the path of creating the be-all, end-all solution to all file-based storage prob-
lems. Your design might quickly evolve to cover multiple languages and any type of object. XP says you
should lean towards the other end of the generality continuum. Instead of making the ideal object store
that will win awards and be celebrated by your peers, design the simplest possible object store that gets
the job done. You should understand the current requirements and write your code to those specifica-
tions to avoid overly complex code.

It may be hard to get used to simplicity in design. Depending on the type of work you do, your code
may need to exist for years and be used by other parts of the code that you haven’t even dreamed of. As
discussed in Chapter 5, the problem with building in functionality that may be useful in the future is that
you don’t know what those hypothetical use cases are and there is no way to craft a good design that is
purely speculative. Instead, XP says you should build something that is useful today and leave open the
opportunity to modify it later.

Test Constantly
According to eXtreme Programming eXplained, “Any program feature without an automated test simply
doesn’t exist.” Extreme Programming is zealous about testing. Part of your responsibility as an XP engi-
neer is to write the unit tests that accompany your code. A unit test is generally a small piece of code that
makes sure that an individual piece of functionality works. For example, individual unit tests for a file-
based object store may include testSaveObject, testLoadObject, and testDeleteObject.

XP takes unit testing one step further by suggesting that unit tests should be written before the actual
code is written! Of course, the tests won’t pass because the code hasn’t been written yet. In theory, if
your tests are thorough, you should know when your code is done because all the tests will complete
successfully. We told you it was “extreme.”

Refactor When Necessary
Most programmers refactor their code from time to time. Refactoring is the process of redesigning exist-
ing working code to take into account new knowledge or alternate uses that have been discovered since
the code was written. Refactoring is difficult to build into a traditional software-engineering schedule
because its results are not as tangible as implementing a new feature. Good managers, however, recog-
nize its importance for long-term code maintainability.

The extreme way of refactoring is to recognize situations during development when refactoring is useful
and to do the refactoring at that time. Instead of deciding at the start of a release which existing parts of
the product need design work, XP programmers learn to recognize the signs of code that is ready to be
refactored. While this practice will almost certainly result in unexpected and unscheduled tasks, restruc-
turing the code when appropriate should make feature development easier.

129

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 129

Code in Pairs
The notion of pair programming contributes to the stigma of Extreme Programming as some sort of
touchy-feely software process for hippies. In fact, the motivation for pair programming is much more
practical than you might think. XP suggests that all production code should be written by two people
working side by side simultaneously. Obviously, only one person can actually be in control of the key-
board. The other person takes a high-level approach, thinking about issues such as testing, necessary
refactoring, and the overall model of the project.

As an example, if you are in charge of writing the user interface for a particular feature of your applica-
tion, you might want to ask the original author of the feature to sit down with you. She can advise you
about the correct use of the feature, warn you about any “gotchas” you should watch out for, and help
oversee your efforts at a high level. Even if you can’t acquire the help of the original author, just grab-
bing another member of the team can help. The theory is that working in pairs builds shared knowledge,
ensures proper design, and puts an informal system of checks and balances in place.

Share the Code
In many traditional development environments, code ownership is strongly defined and often enforced.
One of the authors worked previously in an environment where the manager explicitly forbid checking
in changes to code written by any other member of the team! XP takes the extreme opposite approach by
declaring that the code is collectively owned by everybody. This is another XP facet that initially evokes
images of programmers holding hands and swaying gently to a Grateful Dead album. In fact, it’s not so
touchy-feely.

Collective ownership is practical for a number of reasons. From a management point of view, it is less
detrimental when a single engineer leaves suddenly because there are others who understand that part
of the code. From an engineer’s point of view, collective ownership builds a common view of how the
system works. This helps design tasks and frees the individual programmer to make any change that
will add value to the overall project.

One important note about collective ownership is that it is not necessary for every programmer to be
familiar with every single line of code. It is more of a mindset that the project is a team effort, and there
is no reason for any one person to hoard knowledge.

Integrate Continuously
All programmers are familiar with the dreaded chore of integrating code. This is the task when you dis-
cover that your view of the object store is a complete mismatch with the way it was actually written.
When subsystems come together, problems are exposed. XP recognizes this phenomenon and advocates
integrating code into the project frequently as it is being developed.

XP suggests a specific method for integration. Two programmers (the pair that developed the code) sit
down at a designated “integration station” and merge the code in together. The code is not checked in
until it passes 100 percent of the tests. By having a single station, conflicts are avoided and integration is
clearly defined as a step that must occur before a check-in.

The authors have found that a similar approach can still work on an individual level. Engineers run tests
individually or in pairs before checking code into the repository. A designated machine continually runs
automated tests. When the automated tests fail, the team receives an email indicating the problem and
listing the most recent check-ins.

130

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 130

Work Sane Hours
XP has a thing or two to say about the hours you’ve been putting in. The claim is that a well-rested pro-
grammer is a happy and productive programmer. XP advocates a work week of approximately 40 hours
and warns against putting in overtime for more than two consecutive weeks.

Of course, different people need different amounts of rest. The main idea, though, is that if you sit
down to write code without a clear head, you’re going to write poor code and abandon many of the
XP principles.

Have a Customer on Site
Since an XP-savvy engineering group constantly refines its product plan and builds only what is cur-
rently necessary, having a customer contribute to the process is very valuable. Although it is not always
possible to convince a customer to be physically present during development, the idea that there should
be communication between engineering and the end user is clearly a valuable notion. In addition to
assisting with the design of individual features, a customer can help prioritize tasks by conveying his or
her individual needs.

Share Common Coding Standards
Due to the collective ownership guideline and the practice of pair programming, coding in an extreme
environment can be difficult if each engineer has her own naming and indenting conventions. XP doesn’t
advocate any particular style, but supplies the guideline that if you can look at a piece of code and imme-
diately identify the author, your group probably needs better definition of its coding standards.

For additional information on various approaches to coding style, see Chapter 7.

XP in Practice
XP purists claim that the 12 tenets of Extreme Programming are so intertwined that adopting some of
them without others would largely ruin the methodology. For example, pair programming is vital to
testing because if you can’t determine how to test a particular piece of code, your partner can help. Also,
if you’re tired one day and decide to skip the testing, your partner will be there to evoke feelings of guilt.

Some of the XP guidelines, however, can prove difficult to implement. To some engineers, the idea of
writing tests before code is too abstract. For those engineers, it may be sufficient to design the tests with-
out actually writing them until there is code to test. Many of the XP principles are rigidly definedm, but
if you understand the theory behind it, you may be able to find ways to adapt the guidelines to the
needs of your project.

The collaborative aspects of XP can be challenging as well. Pair programming has measurable benefits,
but it may be difficult for a manager to rationalize having half as many people actually writing code
each day. Some members of the team may even feel uncomfortable with such close collaboration, per-
haps finding it difficult to type while others are watching. Pair programming also has obvious chal-
lenges if the team is physically spread out or if members tend to telecommute regularly.

For some organizations, Extreme Programming may be too radical. Large established companies with
formal policies in place for engineering may be slow to adopt new approaches like XP. However, even if
your company is resistant to the implementation of XP, you can still improve your own productivity by
understanding the theory behind it.

131

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 131

Software Triage
In the fatalistically-named book Death March (Prentice Hall, 2003) Edward Yourdon describes the fre-
quent and scary condition of software that is behind schedule, short on staff, over budget, or poorly
designed. Yourdon’s theory is that when software projects get into this state, even the best modern
software development methodologies will no longer apply. As you have learned in this chapter,
many approaches to software development are built around formalized documents or taking a user-
centered approach to design. In a project that’s already in “death march” mode, there simply isn’t
time for these approaches.

The idea behind software triage is that when a project is already in a bad state, resources are scarce. Time
is scarce, engineers are scarce, and money may be scarce. The main mental obstacle that managers and
developers need to overcome when a project is way behind schedule is that it will be impossible to sat-
isfy the original requirements in the allotted time. The task then becomes organizing remaining function-
ality into “must-have,” “should-have,” and “nice-to-have” lists.

Software triage is a daunting and delicate process. It often requires the leadership of a seasoned veteran
of “death march” projects to make the tough decisions. For the engineer, the most important point is that
in certain conditions, it may be necessary to throw familiar processes out the window (along with some
existing code, unfortunately) to finish a project on time.

Building Your Own Process
and Methodology

There is one software development methodology that we wholeheartedly endorse, and it’s not necessar-
ily any of the above. It’s unlikely that any book or engineering theory will perfectly match the needs of
your project or organization. We recommend that you learn from as many approaches as you can and
design your own process. Combining concepts from different approaches may be easier than you think.
For example, RUP optionally supports an XP-like approach. Here are some tips for building the
software-engineering process of your dreams.

Be Open to New Ideas
Some engineering techniques seem crazy at first or unlikely to work. Look at new innovations in
software-engineering methodologies as a way to refine your existing process. Try things out when you
can. If XP sounds intriguing, but you’re not sure if it will work in your organization, see if you can work
it in slowly, taking a few of the principles at a time or trying it out with a smaller pilot project.

Bring New Ideas to the Table
Most likely, your engineering team is made up of people from varying backgrounds. You may have peo-
ple who are veterans of startups, long-time consultants, recent graduates, and PhDs on your team. You
all have a different set of experiences and your own ideas of how a software project should be run.
Sometimes the best processes turn out to be a combination of the way things are typically done in these
very different environments.

132

Chapter 6

09_574841 ch06.qxd 12/15/04 3:41 PM Page 132

Recognize What Works and What Doesn’t Work
At the end of a project (or better yet, during), get the team together to evaluate the process. Sometimes
there’s a major problem that nobody notices until the whole team stops to think about it. Perhaps there’s
a problem that everybody knows about but nobody has discussed! Consider what isn’t working and see
how those parts can be fixed. Some organizations require formal code reviews prior to any source code
check-in. If code reviews are so long and boring that nobody does a good job, discuss code-reviewing
techniques as a group. Also consider what is going well and see how those parts can be extended. For
example, if maintaining the feature tasks as a group-editable Web site is working, maybe devote some
time to making the Web site better.

Don’t Be a Renegade
Whether a process is mandated by your manager or custom-built by the team, it’s there for a reason.
If your process involves writing formal design documents, make sure you write them. If you think that
the process is broken or too complex, see if you can talk to your manager about it. Don’t just avoid the
process — it will come back to haunt you.

Summary
This chapter has introduced you to several models and methodologies for the software process. There
are certainly many other ways of building software, both formalized and informal. There probably isn’t
a single correct method for developing software except the method that works for your team. The best
way to find this method is to do your own research, learn what you can from various methods, talk to
your peers about their experiences, and iterate on your process. Remember, the only metric that matters
when examining a process methodology is how much it helps your team write code.

This chapter concludes the first part of the book, which has surveyed the landscape of software design.
You have learned how to design a program, how to organize object relationships, how to make use of
existing patterns and libraries, how to code effectively with others, and how to manage the process of
developing software. Throughout the rest of the book, the design principles you have learned will be
tied directly to C++. The next part of the book gets into the nitty-gritty details of writing professional-
quality code in C++. Try not to forget the design lessons from the last few chapters as you get deep into
the coding portion of the book — we put the design chapters first because we wanted to highlight their
importance.

133

Maximizing Software-Engineering Methods

09_574841 ch06.qxd 12/15/04 3:41 PM Page 133

09_574841 ch06.qxd 12/15/04 3:41 PM Page 134

Coding with
Style

If you’re going to spend several hours each day in front of a keyboard writing code, you should
take some pride in all that work. Writing code that gets the job done is only part of a program-
mer’s work. After all, anybody can learn the fundamentals of coding. It takes a true master to code
with style.

This chapter explores the question of what makes good code. Along the way, you’ll see several
approaches to C++ style. As you will discover, simply changing the style of code can make it
appear very different. For example, C++ code written by Windows programmers often has its own
style, using Windows conventions. It almost looks like a completely different language than C++
code written by Mac OS programmers. Exposure to several different styles will help you avoid
that sinking feeling you get opening up a C++ source file that barely resembles the C++ you
thought you knew.

The Importance of Looking Good
Writing code that is stylistically “good” takes time. You could probably whip together a program
to parse an XML file into a plain text file in a couple of hours. Writing the same program with
functional decomposition, adequate comments, and a clean structure would probably take days.
Is it really worth it?

Thinking Ahead
How confident would you be in your code if a new programmer had to work with it a year from
now? One of the authors, faced with a growing mess of Web application code, encouraged his team
to think about a hypothetical intern who would be starting in a year. How would this poor intern
ever get up to speed on the code base when there was no documentation and scary multiple-page

10_574841 ch07.qxd 12/15/04 3:41 PM Page 135

functions? When you’re writing code, imagine that somebody new will have to maintain it in the future.
Will you even remember how it works? What if you’re not available to help? Well-written code avoids
these problems because it is easy to read and understand.

Keeping It Clear
Present concerns are another reason to write good code. Unless you’re working alone on a project and
always will be, other programmers are going to look at, and possibly modify, your code. By writing
code that your team can actually read and understand, you free yourself from constant questions and
complaints.

Elements of Good Style
It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time, you’ll
find styles that you like and notice useful techniques in code that others wrote. Perhaps more impor-
tantly, you’ll encounter horrible code that teaches you what to avoid. However, good code shares several
universal tenets that will be explored in this chapter.

❑ Documentation

❑ Decomposition

❑ Naming

❑ Use of the Language

❑ Formatting

Documenting Your Code
In the programming context, documentation usually refers to comments that are contained in the source
files. Comments are your opportunity to tell the world what was going through your head when you
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at the
code itself.

Reasons to Write Comments
It may seem obvious that writing comments is a good idea, but have you ever stopped to think about
why you need to comment your code? Sometimes programmers recognize the importance of comment-
ing without fully understanding why comments are important. There are several reasons, explored next.

Commenting to Explain Usage
One reason to use comments is to explain how clients should interact with the code. As you read in
Chapter 5, each publicly accessible function or method in a header file should have a comment explain-
ing what it does. Some organizations prefer to formalize these comments by explicitly listing the pur-
pose of each method, what each of its arguments are, what values it returns, and possible exceptions it
can throw.

136

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 136

Providing a comment with public methods accomplishes two things. First, you are given the opportu-
nity to state, in English, anything that you can’t state in code. For example, there’s really no way in C++
code to indicate that the adjustVolume() method of a media player object can only be called after the
initialize() method is called. A comment, however, can be the perfect place to note this restriction,
as follows.

/*
* adjustVolume()
*
* Sets the player volume based on the user’s
* preferences
*
* This method will throw an “UninitializedPlayerException”
* if the initialize() method has not yet been called.
*/

The second effect of a comment on a public method can be to state usage information. The C++ language
forces you to specify the return type of a method, but it does not provide a way for you to say what the
returned value actually represents. For example, the declaration of the adjustVolume() method may
indicate that it returns an int, but the client reading that declaration wouldn’t know what the int
means. Other ancillary data can be included in a comment as well, as shown here:

/*
* adjustVolume()
*
* Sets the player volume based on the user’s
* preferences
*
* Parameters:
* none
* Returns:
* an int, which represents the new volume setting.
*
* Throws:
* UninitializedPlayerException if the initialize() method has not
* yet been called.
*

Commenting to Explain Complicated Code
Good comments are also important inside the actual source code. In a simple program that processes
input from the user and writes a result to the console, it is probably easy to read through and under-
stand all of the code. In the professional world, however, you will often need to write code that is algo-
rithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well written, but it may not be immediately apparent what it is
doing. You might recognize the algorithm if you have seen it before, but a newcomer probably wouldn’t
understand the way the code works.

137

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 137

void sort(int inArray[], int inSize)
{

for (int i = 1; i < inSize; i++) {
int element = inArray[i];

int j = i – 1;
while (j >= 0 && inArray[j] > element) {

inArray[j+1] = inArray[j];
j--;

}
inArray[j+1] = element;

}
}

A better approach would be to include comments that describe the algorithm that is being used. In the
modified function that follows, a thorough comment at the top explains the algorithm at a high level,
and inline comments explain specific lines that may be confusing.

/*
* Implements the “insertion sort” algorithm. The algorithm separates the array
* into two parts--the sorted part and the unsorted part. Each element, starting
* at position 1, is examined. Everything earlier in the array is in the sorted
* part, so the algorithm shifts each element over until the correct position is
* found for the current element. When the algorithm finishes with the last
* element, the entire array is sorted.
*/

void sort(int inArray[], int inSize)
{

// Start at position 1 and examine each element.
for (int i = 1; i < inSize; i++) {

int element = inArray[i];

// j marks the position in the sorted part of the array.
int j = i – 1;
// As long as the current slot in the sorted array is higher than
// the element, shift the slot over and move backwards.
while (j >= 0 && inArray[j] > element) {

inArray[j+1] = inArray[j];
j--;

}
// At this point the current position in the sorted array
// is *not* greater than the element, so this is its new position.
inArray[j+1] = element;

}

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be much
more likely to understand it with the comments included. In some organizations, inline comments are
frowned upon. In such cases, writing clean code and having good comments at the top of the function
becomes vital.

138

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 138

Commenting to Convey Metainformation
Another reason to use comments is to provide information at a higher level than the code itself. This
metainformation provides details about the creation of the code without addressing the specifics of its
behavior. For example, your organization may want to keep track of the original author of each method.
You can also use metainformation to cite external documents or refer to other code.

The example below shows several instances of metainformation, including the author of the file, the date
it was created, and the specific feature it addresses. It also includes inline comments expressing meta-
data, such as the bug number that corresponds to a line of code and a reminder to revisit a possible
problem in the code later.

/*
* Author: klep
* Date: 040324
* Feature: PRD version 3, Feature 5.10
*/

int adjustVolume()
{

if (fUninitialized) {
throw UninitializedPlayerException();

}

int newVol = getPlayer()->getOwner()->getPreferredVolume();

if (newVol == -1) return -1; // Added to address bug #142 – jsmith 040330

setVolume(newVol);

// TODO: What if setVolume() throws an exception? – akshayr 040401

return newVol;
}

It’s easy to go overboard with comments. A good approach is to discuss which types of comments are
most useful with your group and form a policy. For example, if one member of the group uses a
“TODO” comment to indicate code that still needs work, but nobody else knows about this convention,
the code in need could be overlooked.

If your group decides to use metainformation comments, make sure that you all
include the same information or your files will be inconsistent!

139

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 139

Commenting Styles
Every organization has a different approach to commenting code. In some environments, a particular
style is mandated to give the code a common standard for documentation. Other times, the quantity and
style of commenting is left up to the programmer. The following examples depict several approaches to
commenting code.

Commenting Every Line
One way to avoid lack of documentation is to force yourself to overdocument by including a comment
for every line. Commenting every line of code should ensure that there’s a specific reason for everything
you write. In reality, such heavy commenting on a large-scale basis is unscalable, messy, and tedious. For
example, consider the following useless comments.

int result; // Declare an integer to hold the result.

result = doodad.getResult(); // Get the doodad’s result.

if (result % 2 == 0) { // If the result mod 2 is 0 . . .
logError(); // then log an error,

} else { // otherwise . . .
logSuccess(); // log success.

} // End if/else

return (result); // Return the result

The comments in this code express each line as part of an easily readable English story. This is entirely
useless if you assume that the reader has at least basic C++ skills. These comments don’t add any addi-
tional information to code. Specifically, look at this line:

if (result % 2 == 0) { // If the result mod 2 is 0 . . .

The comment is just an English translation of the code. It doesn’t say why the programmer has used the
mod operator on the result with the value 2. A better comment would be:

if (result % 2 == 0) { // If the result is even . . .

The modified comment, while still fairly obvious to most programmers, gives additional information
about the code. The result is “modded” by 2 because the code needs to check if the result is even.

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where the
code would otherwise be difficult to comprehend. The following code also comments every line, but
these comments are actually helpful.

140

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 140

// Call the calculate method with the default values.
result = doodad.calculate(getDefaultStart(), getDefaultEnd(), getDefaultOffset());

// To determine success or failure, we need to bitwise AND the result with the
// processor-specific mask (see docs, page 201).
result = result & getProcessorMask();

// Set the user field value based on the “Marigold Formula.”
setUserField((result + kMarigoldOffset) / MarigoldConstant) + MarigoldConstant);

This code above is taken out of context, but the comments give you a good idea of what each line does.
Without them, the calculations involving & and the mysterious “Marigold Formula” would be difficult
to decipher.

Prefix Comments
Your group may decide to begin all of your source files with a standard comment. This is an excellent
opportunity to document important information about the program and specific file. Examples of infor-
mation that you might want to document at the top of every file include:

❑ The file/class name

❑ The last-modified date

❑ The original author

❑ The feature ID addressed by the file

❑ Copyright information

❑ A brief description of the file/class

❑ Incomplete features

❑ Known bugs

Your development environment may allow you to create a template that automatically starts new files
with your prefix comment. Some source control systems such as Concurrent Versions System (CVS) can
even assist by filling in metadata. For example, if your comment contains the string Id, CVS will auto-
matically expand the comment to include the author, filename, revision, and date.

Commenting every line of code is usually untenable, but if the code is complicated
enough to require it, don’t just translate the code to English: explain what’s really
going on.

141

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 141

An example of a prefix comment is shown here:

/*
* Watermelon.cpp
*
* $Id: Watermelon.cpp,v 1.6 2004/03/10 12:52:33 klep Exp $
*
* Implements the basic functionality of a watermelon. All units are expressed
* in terms of seeds per cubic centimeter. Watermelon theory is based on the
* white paper “Algorithms for Watermelon Processing.”
*
* The following code is (c)opyright 2004, FruitSoft, Inc. ALL RIGHTS RESERVED

Fixed-Format Comments
Writing comments in a standard format that can be parsed by external document builders is an increas-
ingly popular programming practice. In the Java language, programmers can write comments in a stan-
dard format that allows a tool called JavaDoc to create hyperlinked documentation for the project
automatically. For C++, a free tool called Doxygen (available at www.doxygen.org) parses comments to
automatically build HTML documentation, class diagrams, UNIX man pages, and other useful docu-
ments. Doxygen even recognizes and parses JavaDoc-style comments in C++ programs. The code that
follows shows JavaDoc-style comments that are recognized by Doxygen.

/**
* Implements the basic functionality of a watermelon
*
* TODO: Implement updated algorithms!
*/

class Watermelon
{

public:
/**
* @param initialSeeds The starting number of seeds
*/

Watermelon(int initialSeeds);

/**
* Computes the seed ratio, using the Marigold
* algorithm.
*
* @param slowCalc Whether or not to use long (slow) calculations
* @return The marigold ratio
*/

double calcSeedRatio(bool slowCalc);
};

Doxygen recognizes the C++ syntax and special comment directives such as @param and @return to
generate customizable output. An example of a Doxygen-generated HTML class reference is shown in
Figure 7-1.

142

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 142

Figure 7-1

Automatically generated documentation like the file shown in Figure 7-1 can be helpful during develop-
ment because it allows developers to browse through a high-level description of classes and their rela-
tionships. Your group can easily customize a tool like Doxygen to work with the style of comments that
you have adopted. Ideally, your group would set up a machine that builds documentation on a daily
basis.

143

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 143

Ad Hoc Comments
Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments that
appear within the body of your code.

❑ Do your best to avoid offensive or derogatory language. You never know who might look at
your code some day.

❑ Liberal use of inside jokes is generally considered okay. Check with your manager.

❑ Reference bug numbers or feature IDs when possible.

❑ Include your initials and the date if you think somebody might want to follow up on the com-
ment with you in the future.

❑ Resist the temptation to include somebody else’s initials and the date to avoid having to take
responsibility for the code.

❑ Remember to update your comments when you update the code. Nothing is more confusing
than code that is fully documented with incorrect information!

❑ If you use comments to separate a function into sections, consider whether the function might
be broken into multiple, smaller functions.

Self-Documenting Code
Well-written code doesn’t always need abundant commenting. The best code is written to be readable. If
you find yourself adding a comment for every line, consider whether the code could be rewritten to bet-
ter match what you are saying in the comments. Remember that C++ is a language. Its main purpose is
to tell the computer what to do, but the semantics of the language can also be used to explain its mean-
ing to a reader.

A classic example is the implementation of a function to copy a C-style string. The code that follows has
no comments, but doesn’t need any.

void copyString(const char* inSource, char *outDest)
int position = 0;

while (inSource[position] != ‘\0’) {
outDest[position] = inSource[position];
position++;

}

outDest[position] = ‘\0’;
}

The following implementation works the same way, but it is too concise to make sense immediately to
the reader. There’s nothing wrong with the implementation, but it would require some comments to pro-
vide an explanation.

144

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 144

void copyString(const char* inSource, char* outDest)
{

int i = 0;
while (outDest[i] = inSource[i++]);
outDest[i] = ‘\0’;

}

Another way of writing self-documenting code is to break up, or decompose, your code into smaller
pieces. Decomposition is covered in detail in the matierial that follows.

Comments in This Book
The code examples you will see in this book often use comments to explain complicated code or to point
things out to you that may not be evident. We usually omit any prefix comments and fixed-format com-
ments to save space, but we wholeheartedly advocate their inclusion in professional C++ projects.

Decomposition
Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunting in
the world of coding than opening up a file of source code to find 300-line functions and massive nested
blocks of code. Ideally, each function or method should accomplish a single task. Any subtasks of signifi-
cant complexity should be decomposed into separate functions or methods. For example, if somebody
asks you what a method does and you answer “First it does A, then it does B; then, if C, it does D; other-
wise, it does E,” you should probably have separate helper methods for A, B, C, D, and E.

Decomposition is not an exact science. Some programmers will say that no function should be longer
than a page of printed code. That may be a good rule of thumb, but you could certainly find a quarter-
page of code that is desperately in need of decomposition. Another rule of thumb is, whether the code
is long or short, if you squint your eyes and look at the format of the code without reading the actual
content, it shouldn’t appear too dense in any one area. For example, Figures 7-2 and 7-3 show code that
has been purposely blurred so that you can’t read the content. It should be obvious that the code in
Figure 7-3 has better decomposition than the code in Figure 7-2.

Good code is naturally readable and only requires comments to provide useful addi-
tional information.

145

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 145

Figure 7-2

Figure 7-3

146

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 146

Decomposition through Refactoring
Sometimes when you’ve had a few sodas and you’re really in the programming zone, you start coding
so fast that you end up with code that does exactly what it’s supposed to do, but is far from pretty. All
programmers do this from time to time. Short periods of vigorous coding are sometimes the most pro-
ductive times in the course of a project.

Dense code also arises over the course of time as code is modified. As new requirements and bug fixes
emerge, existing code is amended with small modifications. The computing term cruft refers to the grad-
ual accumulation of small amounts of code that eventually turns a once-elegant piece of code into a mess
of patches and special cases.

Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way, refactor-
ing is necessary to periodically purge the code of accumulated hacks. Through refactoring, you revisit
existing code and rewrite it to make it more readable and maintainable. Refactoring is an opportunity to
revisit the decomposition of code. If the purpose of the code has changed or if it was never decomposed
in the first place, when you refactor the code, squint at it and determine if it needs to be broken down
into smaller parts.

Decomposition by Design
Decomposition is a boon for procrastinators. If you write your code using decomposition from the
beginning, you can put off the hard parts until later. This style of coding, often called top-down design,
takes a high-level view of the program and subsequently moves into more specific pieces.

For example, using top-down design, you could immediately get the main body of code down for a pro-
gram that simulates a hurricane. The following code shows a possible implementation of main() for
such a program.

int main(int argc, char** argv)
{

cout << “Welcome to the Hurricane Simulator” << endl;

getUserInputs();
performCalculations();
outputResults();

}

By taking a top-down approach, you accomplish two things. First, you can start coding immediately. Even
if the program doesn’t turn out the way you initially viewed it at a high level, writing some code might
help you organize your thoughts. Second, the program will evolve naturally in a well-decomposed way.
If you approach every method or function by considering what pieces of it you can put off until later, your
programs will generally be less dense and more organized than if you implemented every feature in its
entirety as you coded.

Of course, we still advocate that you do some design of your program before jumping into the code.
However, a top-down approach can be helpful when deciding on the specific implementation of a part
of your program or when working on small projects.

147

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 147

Decomposition in This Book
You will see decomposition in many of the examples in this book. In many cases, we have referred to
methods for which we don’t show the implementations because they are not relevant to the example and
would take up too much space.

Naming
Your computer doesn’t care what you name your variables and functions as long as the name doesn’t
result in a conflict with another variable or function. Names exist only to help you and your fellow pro-
grammers work with the individual elements of your program. Given this purpose, it is surprising how
often programmers use unspecific or inappropriate names in their programs.

Choosing a Good Name
The best name for a variable, method, function, or class accurately describes the purpose of the item.
Names can also imply additional information, such as the type or specific usage. Of course, the real test
is whether other programmers understand what you are trying to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization.
However, there are some names that are rarely appropriate. The table below shows some names at the
two extreme ends of the naming continuum.

Good Names Bad Names

srcName, dstName thing1, thing2
Distinguishes two objects Too general

gSettings globalUserSpecificSettingsAndPreferences
Conveys global status Too long

mNameCounter mNC
Conveys data member status Too obscure, concise

performCalculations() doAction()
Simple, accurate Too general, imprecise

mTypeString _typeSTR256
Easy on the eyes A name only a computer could love

mWelshRarebit mIHateLarry
Good use of inside joke Inappropriate inside joke

Naming Conventions
Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you’ll want to use
standard techniques for naming. Following are some of the types of data for which you can make use of
standard names.

148

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 148

Counters
Early in your programming career, you probably saw code that used the variable “i” as a counter. It is
customary to use i and j as counters and inner-loop counters, respectively. Be careful with nested loops,
however. It’s a common mistake to refer to the “ith” element when you really mean the “jth” element.
Some programmers prefer using counters like outerLoopIndex and innerLoopIndex instead.

Getters and Setters
If your class contains a data member, such as mStatus, it is customary to provide access to the member
via a getter called getStatus() and a setter called setStatus(). The C++ language has no prescribed
naming for these methods, but your organization will probably want to adopt this or a similar naming
scheme.

Prefixes
Many programmers begin their variable names with a letter that provides some information about the
variable’s type or usage. The table below shows some common prefixes.

Prefix Example Name Literal Prefix Meaning Usage

m mData “member” Data member within a class. Some
_ _data programmers use _ as a prefix to

indicate a data member. Others con-
sider m to be more readable.

s sLookupTable “static” Static variable or data member. Used
for variables that exist on a per-class
basis.

k kMaximumLength “konstant” (German for Indicates a constant value. Some
“constant” or a horrible programmers use all uppercase names
misspelling? You decide.) to indicate constants as well.

f fCompleted “flag” Designates a Boolean value. Used
especially to indicate a yes/no prop-
erty of a class that modifies the object’s
behavior based on its value.

n nLines “number” A data member that is also a counter.
mNum mNumLines Since an “n” looks similar to an “m,”

some programmers instead use mNum
as a prefix, as in mNumLines.

tmp tmpName “temporary” Indicates that a variable is only used to
hold a value temporarily. Implies that
subsequent code should not rely on its
value.

149

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 149

Capitalization
There are many different ways of capitalizing names in your code. As with most elements of coding
style, the most important thing is that your group standardizes on an approach and that all members
adopt that approach. One way to get messy code is to have some programmers naming classes in all
lowercase with underscores representing spaces (priority_queue) and others using capitals with each
subsequent word capitalized (PriorityQueue). Variables and data members almost always start with a
lowercase letter and either use underscores (my_queue) or capitals (myQueue) to indicate word breaks.
Functions and methods are traditionally capitalized in C++, but, as you’ve seen, in this book we have
adopted the style of lowercase functions and methods to distinguish them from class names. We adopt a
similar style of capitalizing letters to indicate word boundaries for class and data member names.

Smart Constants
Imagine that you are writing a program with a graphical user interface. The program has several menus,
including File, Edit, and Help. To represent the ID of each menu, you may decide to use a constant. A
perfectly reasonable name for a constant referring to the Help menu ID is kHelp.

The name kHelp will work fine until one day you add a Help button to the main window. You also need
a constant to refer to the ID of the button, but kHelp is already taken.

There are a few ways to resolve this problem. One way is to put the two constants in different names-
paces, which were discussed in Chapter 1. However, namespaces may seem like too large a hammer for
the small problem of a single name conflict between constants. You could easily resolve the name con-
flict by renaming the constants to kHelpMenu and kHelpButton. However, a smarter way of naming the
constants may be to reverse that into kMenuHelp and kButtonHelp.

The reversed names initially seem not to roll off the tongue very well. However, they provide several
benefits. First, an alphabetized list of all of your constants will show all of the menu constants together.
If your development environment has an autocomplete or a pop-up menu that shows up as you type
your code, this can work to your advantage. Second, it provides a weak, but easy naming hierarchy.
Instead of using namespaces, which can become cumbersome, the namespace is effectively part of the
name. You can even extend the hierarchy when referring to individual menu items within the help
menu, such as kMenuFileSave.

Hungarian Notation
Hungarian Notation is a variable and data member naming convention that is popular with Microsoft
Windows programmers. The basic idea is that instead of using single-letter prefixes such m, you should
use more verbose prefixes to indicate additional information. The following line of code displays the use
of Hungarian Notation:

char* pszName; // psz means “pointer to a null-terminated string”

The term Hungarian Notion arose from the fact that its inventor, Charles Simonyi, is Hungarian. Some
also say that it accurately reflects the fact that programs using Hungarian notation end up looking as if
they were written in a foreign language. For this latter reason, some programmers tend to dislike
Hungarian Notation. In this book, we use prefixes, but not Hungarian Notation. We feel that adequately
named variables don’t need much additional context information besides the prefix. We think that a data
member named mName says it all.

150

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 150

Using Language Features with Style
The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:

i++ + ++i;

With all the power that the C++ language offers, it is important to consider how the language features
can be used towards stylistic good instead of evil.

Use Constants
Bad code is often littered with “magic numbers.” In some function, the code is dividing by 24. Why 24?
Is it because there are 24 hours in a day? Or because the average price of cheese in New Brunswick is
$24? The language offers constants to give a symbolic name to a value that doesn’t change, such as 24.

const int kAveragePriceOfCheeseInNewBrunswick = 24;

Take Advantage of const Variables
The const keyword in C++ is basically syntactic sugar (a techie term for syntax that helps the program-
mer more than the program) for “don’t change this variable.” Proper use of const is more about style
than about programming correctness. There are certainly experienced C++ programmers who have
never found a reason to use const and feel that it has not had a negative impact on their careers. Like
many parts of C++, const exists to help the programmer more than the program. It is your responsibil-
ity to use const and to use it correctly. The ins and outs of const are covered in Chapter 12. Below is the
prototype for a function that tells the caller that it will not change the content of the C-style string that is
passed in.

void wontChangeString(const char* inString);

Use References Instead of Pointers
Traditionally, C++ programmers learn C first. If you have taken this path, you probably recognize that
references don’t really add any new functionality to the language. They merely introduce a new syntax
for functionality that pointers could already provide. In C, pointers were the only pass-by-reference
mechanism, and they certainly worked just fine for many years. Pointers are still required in some cases,
but in many situations you can switch to references.

There are several advantages to using references rather than pointers. First, references are safer than
pointers because they don’t deal directly with memory addresses and cannot be NULL. Second, refer-
ences are more stylistically pleasing than pointers because they use the same syntax as stack variables,

Good names convey information about their purpose without making the code
unreadable.

151

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 151

avoiding symbols such as * and &. They’re also easy to use, so you should have no problem adopting
references into your style palette.

Another benefit of references is that they clarify ownership of memory. If you are writing a method and
another programmer passes you a reference to an object, it is clear that you can read and modify the
object, but you have no easy way of freeing its memory. If you are passed a pointer, this is less clear. Do
you need to delete the object to clean up memory? Or will the caller do that? Your group should deter-
mine how variable passing techniques imply memory ownership. One simple way is to agree that, if
your code is given a pointer, it owns the memory and should do any necessary cleanup. All other vari-
ables are passed as references or copies.

The function prototype that follows makes it clear that the parameter will be changed, but, because it is a
reference, the memory will not be freed.

void changeMe(ChessBoard& outBoard);

Use Custom Exceptions
C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with
exceptions, and you could easily write error-tolerant programs with traditional mechanisms such as
returning NULL or setting an error flag.

Exceptions provide a much richer mechanism for error handling, and custom exceptions allow you to
tailor this mechanism to your needs. For example, a custom exception type for a Web browser could
include fields that specify the Web page that contained the error, the network state when the error
occurred, and additional context information.

Chapter 15 contains a wealth of information about exceptions in C++.

Formatting
Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, one of the authors got into such a heated debate with a peer over the use of spaces in
an if statement that people were stopping by to make sure that everything was okay.

If your organization has standards in place for code formatting, consider yourself lucky. You may not
like the standards they have in place, but at least you won’t have to argue about it. If everybody on your
team is writing code their own way, try to be as tolerant as you can. As you’ll see, some practices are just
a matter of taste, while others actually make it difficult to work in teams.

Language features exist to help the programmer. Understand and make use of fea-
tures that contribute to good programming style.

152

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 152

The Curly Brace Alignment Debate
Perhaps the most frequently argued-about point is where to put the curly braces that demark a block of
code. There are several styles of curly brace use. In this book, we put the curly brace on the same line as
the leading statement, except in the case of a function, class, or method name. This style is shown in the
code that follows (and throughout the book).

void someFunction()
{

if (condition()) {
cout << “condition was true” << endl;

} else {
cout << “condition was false” << endl;

}
}

This style conserves vertical space while still showing blocks of code by their indentation. Some pro-
grammers would argue that preservation of vertical space isn’t relevant in real-world coding (especially
if you’re getting paid by the line of code!) A more verbose style is shown below.

void someFunction()
{

if (condition())
{

cout << “condition was true” << endl;
}
else
{

cout << “condition was false” << endl;
}

}

Some programmers are even liberal with use of horizontal space, yielding code like that in the following
example.

void someFunction()
{

if (condition())
{

cout << “condition was true” << endl;
}

else
{

cout << “condition was false” << endl;
}

}

Of course, we won’t recommend any particular style because we don’t want hate mail.

153

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 153

Coming to Blows over Spaces and Parentheses
The formatting of individual lines of code can also be a source of disagreement. Again, we won’t advo-
cate a particular approach, but we will show you a few styles that you are likely to encounter.

In this book, we use a space after any keyword and use parentheses to clarify the order of operations, as
follows:

if (i == 2) {
j = i + (k / m);

}

The alternative, shown next, treats if stylistically like a function, with no space between the keyword
and the left parenthesis. Also, the parentheses used above to clarify the order of operations inside of the
if statement are omitted because they have no semantic relevance.

if(i == 2) {
j = i + k / m;

}

The difference is subtle, and the determination of which is better is left to the reader, yet we can’t move
on from the issue without pointing out that if is not a function!

Spaces and Tabs
The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a conven-
tion for spaces and tabs, there are going to be major problems when programmers work jointly. The most
obvious problem occurs when Alice uses four spaces to indent code and Bob uses five space tabs; neither
will be able to display code properly when working on the same file. An even worse problem arises
when Bob reformats the code to use tabs at the same time that Alice edits the same code; many source
code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even adapt
to the formatting of the code as it is read in, or always save using spaces even if the tab key is used for
authoring. If you have a flexible environment, you have a better chance of being able to work with other
people’s code. Just remember that tabs and spaces are different because tabs can be any length and a
space is always a space. For this reason, we recommend that you use an editor that always translates
tabs into four spaces.

When selecting a style for denoting blocks of code, the important consideration is
how well you can see which block falls under which condition simply by looking at
the code.

154

Chapter 7

10_574841 ch07.qxd 12/15/04 3:41 PM Page 154

Stylistic Challenges
Many programmers begin a new project by pledging that, this time, they will do everything right. Any
time a variable or parameter shouldn’t be changed, it’ll be marked const. All variables will have clear,
concise, readable names. Every developer will put the left curly brace on the subsequent line and will
adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of const,
sometimes programmers just aren’t educated about how to use it. You will eventually come across old
code or a library function that isn’t const-savvy. A good programmer will use const_cast to tem-
porarily suspend the const property of a variable but an inexperienced programmer will start to
unwind the const property back from the calling function, once again ending up with a program that
never uses const.

Other times, standardization of style comes up against programmers’ own individual tastes and biases.
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style).
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic problems
along with code errors.

Summary
The C++ language provides a number of stylistic tools without any formal guidelines for how to use
them. Ultimately, any style convention is measured by how widely it is adopted and how much it bene-
fits the readability of the code. When coding as part of a team, you should raise issues of style early in
the process as part of the discussion of what language and tools to use.

The most important point about style is to appreciate that it is an important aspect of programming.
Teach yourself to check over the style of your code before you make it available to others. Recognize
good style in the code you interact with and adopt the conventions that you and your organization
find useful.

155

Coding with Style

10_574841 ch07.qxd 12/15/04 3:41 PM Page 155

10_574841 ch07.qxd 12/15/04 3:41 PM Page 156

Gaining Proficiency with
Classes and Objects

As an object-oriented language, C++ provides facilities for using objects and for writing object
definitions, called classes. You can certainly write programs in C++ without classes and objects,
but by doing so, you do not take advantage of the most fundamental and useful aspect of the lan-
guage; writing a C++ program without classes is like traveling to Paris and eating at McDonald’s!
In order to use classes and objects effectively, you must understand their syntax and capabilities.

Chapter 1 reviewed the basic syntax of class definitions. Chapter 3 introduced the object-oriented
approach to programming in C++ and presented specific design strategies for classes and objects.
This chapter describes the fundamental concepts involved in using classes and objects, including
writing class definitions, defining methods, using objects on the stack and the heap, writing con-
structors, default constructors, compiler-generated constructors, initializer lists in constructors,
copy constructors, destructors, and assignment operators. Even if you are already comfortable
with classes and objects, you should skim this chapter because it contains various tidbits of infor-
mation with which you might not yet be familiar.

Introducing the Spreadsheet Example
This chapter and the next present a running example of a simple spreadsheet application.
A spreadsheet is a two-dimensional grid of “cells,” and each cell contains a number or string.
Professional spreadsheets such as Microsoft Excel provide the ability to perform mathematical
operations such as calculating the sum of the values of a set of cells. The spreadsheet example
in these chapters does not attempt to challenge Microsoft in the marketplace, but is useful for
illustrating the issues of classes and objects.

The spreadsheet application uses two basic classes: Spreadsheet and SpreadsheetCell. Each
Spreadsheet object contains SpreadsheetCell objects. In addition, a SpreadsheetApplication
class manages the various Spreadsheets. This chapter focuses on the SpreadsheetCell.
Chapter 9 develops the Spreadsheet and SpreadsheetApplication classes.

11_574841 ch08.qxd 12/15/04 3:42 PM Page 157

This chapter shows several different versions of the SpreadsheetCell class in order to introduce
concepts gradually. Thus, the various attempts at the class throughout the chapter do not always illus-
trate the “best” way to do every aspect of class writing. In particular, the early examples omit important
features that would normally be included, but have not yet been introduced. You can download the final
version of the class as described in the Introduction.

Writing Classes
When you write a class you specify the behaviors, or methods, that will apply to objects of that class and
the properties, or data members, that each object will contain.

There are two elements to writing classes: defining the classes themselves and defining their methods.

Class Definitions
Here is a first attempt at a simple SpreadsheetCell class, in which each cell can store only a single
number:

// SpreadsheetCell.h
class SpreadsheetCell
{

public:
void setValue(double inValue);
double getValue();

protected:
double mValue;

};

As described in Chapter 1, every class definition begins with the keyword class and the name of the
class. A class definition is a statement in C++, so it must end with a semicolon. If you fail to terminate
your class definition with a semicolon, your compiler will probably give you several errors, most of
which will appear to be completely unrelated.

Class definitions usually go in a file with the name ClassName.h.

Methods and Members
The two lines that look like function prototypes declare the methods that this class supports:

void setValue(double inValue);
double getValue();

The line that looks like a variable declaration declares the data member for this class:

double mValue;

Each object will contain its own mValue variable. However, the implementation of the methods is shared
across all objects. Classes can contain any number of methods and members. You cannot give a member
the same name as a method.

158

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 158

Access Control
Every method and member in a class is subject to one of three access specifiers: public, protected, or
private. An access specifier applies to all method and member declarations that follow it, until the next
access specifier. In the SpreadsheetCell class, the setValue() and getValue() methods have
public access, while the mValue member has protected access:

public:
void setValue(double inValue);
double getValue();

protected:
double mValue;

The default access specifier for classes is private: all method and member declarations before the first
access specifier have the private access specification. For example, moving the public access specifier
below the setValue() method declaration gives setValue() private access instead of public:

class SpreadsheetCell
{

void setValue(double inValue); // now has private access
public:

double getValue();

protected:
double mValue;

};

The following table summarizes the meanings of the three access specifiers:

Access Specification Meaning When to Use

public Any code can call a public method or Behaviors (methods)
access a public member of an object. that you want clients to use.

Access methods for private
and protected data members.

protected Any method of the class can call a “Helper” methods that you do
protected method and access a not want clients to use.
protected member. Most data members.
Methods of a subclass (see Chapter 10)
can call a protected method or access
a protected member of an object.

Table continued on following page

In C++, structs can have methods just like classes. In fact, the only difference
between a struct and a class is that the default access specifier for a struct is public
and the default for a class is private.

159

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 159

Access Specification Meaning When to Use

private Only methods of the class can call Only if you want to restrict
a private method and access a access from subclasses.
private member.
Methods in subclasses cannot access
private methods or members.

Order of Declarations
You can declare your methods, members, and access control specifiers in any order: C++ does not
impose any restrictions such as methods before members or public before private. Additionally, you
can repeat access specifiers. For example, the SpreadsheetCell definition could look like this:

class SpreadsheetCell
{

public:
void setValue(double inValue);

protected:
double mValue;

public:
double getValue();

};

However, for clarity it is a good idea to group public, protected, and private declarations, and to
group methods and members within those declarations. In this book, we order the definitions and access
specifiers in our classes as follows:

class ClassName
{

public:
// Method declarations
// Member declarations

protected:
// Method declarations
// Member declarations

private:
// Method declarations
// Member declarations

};

Access specifiers are at the class level, not the object level, so methods of a class can
access protected or private methods and members on any object of that class.

160

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 160

Defining Methods
The preceding definition for the SpreadsheetCell class is enough for you to create objects of the class.
However, if you try to call the setValue() or getValue() methods, your linker will complain that
those methods are not defined. That’s because the class definition specifies the prototypes for the meth-
ods, but does not define their implementations. Just as you write both a prototype and a definition for a
stand-alone function, you must write a prototype and a definition for a method. Note that the class defi-
nition must precede the method definitions. Usually the class definition goes in a header file, and the
method definitions go in a source file that includes that header. Here are the definitions for the two
methods of the SpreadsheetCell class:

// SpreadsheetCell.cpp
#include “SpreadsheetCell.h”

void SpreadsheetCell::setValue(double inValue)
{

mValue = inValue;
}

double SpreadsheetCell::getValue()
{

return (mValue);
}

Note that the name of the class followed by two colons precedes each method name:

void SpreadsheetCell::setValue(double value)

The :: is called the scope resolution operator. In this context, the syntax tells the compiler that the coming
definition of the setValue() method is part of the SpreadsheetCell class. Note also that you do not
repeat the access specification when you define the method.

Accessing Data Members
Most methods of a class, such as setValue() and getValue(), are always executed on behalf of a spe-
cific object of that class (the exceptions are static methods, which are discussed below). Inside the
method body, you have access to all the data members of the class for that object. In the previous defini-
tion for setValue(), the following line changes the mValue variable inside whatever object calls the
method:

mValue = inValue;

If setValue() is called for two different objects, the same line of code (executed once for each object)
changes the variable in two different objects.

Calling Other Methods
You can call methods of a class from inside another method. For example, consider an extension to the
SpreadsheetCell class. Real spreadsheet applications allow text data as well as numbers in the cells.
When you try to interpret a text cell as a number, the spreadsheet tries to convert the text to a number. If
the text does not represent a valid number, the cell value is ignored. In this program, strings that are not

161

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 161

numbers will generate a cell value of 0. Here is a first stab at a class definition for a SpreadsheetCell
that supports text data:

#include <string>
using std::string;

class SpreadsheetCell
{

public:
void setValue(double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString);

double mValue;
string mString;

};

This version of the class stores both text and numerical representations of the data. If the client sets the
data as a string, it is converted to a double, and a double is converted to a string. If the text is not a
valid number, the double value is 0. This class definition shows two new methods to set and retrieve the
text representation of the cell and two new protected helper methods to convert a double to a string and
vice versa. These helper methods use string streams, which are covered in detail in Chapter 14. Here are
the implementations of all the methods:

#include “SpreadsheetCell.h”

#include <iostream>
#include <sstream>
using namespace std;

void SpreadsheetCell::setValue(double inValue)
{

mValue = inValue;
mString = doubleToString(mValue);

}

double SpreadsheetCell::getValue()
{

return (mValue);
}

void SpreadsheetCell::setString(string inString)
{

mString = inString;
mValue = stringToDouble(mString);

}

string SpreadsheetCell::getString()
{

162

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 162

return (mString);
}

string SpreadsheetCell::doubleToString(double inValue)
{

ostringstream ostr;

ostr << inValue;
return (ostr.str());

}

double SpreadsheetCell::stringToDouble(string inString)
{

double temp;

istringstream istr(inString);

istr >> temp;
if (istr.fail() || !istr.eof()) {

return (0);
}
return (temp);

}

Note that each of the set methods calls a helper method to perform a conversion. With this technique,
both mValue and mString are always valid.

The this Pointer
Every normal method call passes a pointer to the object for which it is called as a “hidden” first parame-
ter with the name this. You can use this pointer to access data members or call methods, and can pass it
to other methods or functions. It is also sometimes useful for disambiguating names. For example, you
could have defined the SpreadsheetCell class such that the setValue() method took a parameter
named mValue instead of inValue. In that case, setValue() would look like this:

void SpreadsheetCell::setValue(double mValue)
{

mValue = mValue; // Ambiguous!
mString = doubleToString(mValue);

}

That line is confusing. Which mValue do you mean: the mValue that was passed as a parameter, or the
mValue that is a member of the object? In order to disambiguate the names you can use the this
pointer:

void SpreadsheetCell::setValue(double mValue)
{

this->mValue = mValue;
mString = doubleToString(this->mValue);

}

However, if you use the naming conventions described in Chapter 7, you will never encounter this type
of name collision.

163

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 163

You can also use the this pointer to call a function or method that takes a pointer to an object from
within a method of that object. For example, suppose you write a printCell() stand-alone function
(not method) like this:

void printCell(SpreadsheetCell* inCellp)
{

cout << inCellp->getString() << endl;
}

If you want to call printCell() from the setValue() method, you must pass this as the argument to
give printCell() a pointer to the SpreadsheetCell on which setValue() operates:

void SpreadsheetCell::setValue(double mValue)
{

this->mValue = mValue;
mString = doubleToString(this->mValue);
printCell(this);

}

Using Objects
The previous class definition says that a SpreadsheetCell consists of two member variables, four pub-
lic methods, and two protected methods. However, the class definition does not actually create any
SpreadsheetCells; it just specifies their format. In that sense, a class is similar to architectural
blueprints. The blueprints specify what a house should look like, but drawing the blueprints doesn’t
build any houses. Houses must be constructed later based on the blueprints.

Similarly, in C++ you can construct a SpreadsheetCell “object” from the SpreadsheetCell class defi-
nition by declaring a variable of type SpreadsheetCell. Just as a builder can build more than one house
based on a given blueprints, a programmer can create more than one SpreadsheetCell object from a
SpreadsheetCell class. There are two ways to create and use objects: on the stack and on the heap.

Objects on the Stack
Here is some code that creates and uses SpreadsheetCell objects on the stack:

SpreadsheetCell myCell, anotherCell;
myCell.setValue(6);
anotherCell.setValue(myCell.getValue());

cout << “cell 1: “ << myCell.getValue() << endl;
cout << “cell 2: “ << anotherCell.getValue() << endl;

You create objects just as you declare simple variables, except that the variable type is the class name.
The . in lines like myCell.setValue(6); is called the “dot” operator; it allows you to call methods on
the object. If there were any public data members in the object, you could access them with the dot oper-
ator as well.

The output of the program is:

cell 1: 6
cell 2: 6

164

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 164

Objects on the Heap
You can also dynamically allocate objects using new:

SpreadsheetCell* myCellp = new SpreadsheetCell();

myCellp->setValue(3.7);
cout << “cell 1: “ << myCellp->getValue() <<

“ “ << myCellp->getString() << endl;
delete myCellp;

When you create an object on the heap, you call its methods and access its members through the
“arrow” operator: ->. The arrow combines dereferencing (*) and method or member access (.). You
could use those two operators instead, but doing so would be stylistically awkward:

SpreadsheetCell* myCellp = new SpreadsheetCell();

(*myCellp).setValue(3.7);
cout << “cell 1: “ << (*myCellp).getValue() <<

“ “ << (*myCellp).getString() << endl;
delete myCellp;

Just as you must free other memory that you allocate on the heap, you must free the memory for objects
that you allocate on the heap by calling delete on the objects.

Object Life Cycles
The object life cycle involves three activities: creation, destruction, and assignment. Every object is cre-
ated, but not every object encounters the other two “life events.” It is important to understand how and
when objects are created, destroyed, and assigned, and how you can customize these behaviors.

Object Creation
Objects are created at the point you declare them (if they’re on the stack) or when you explicitly allocate
space for them with new or new[].

It is often helpful to give variables initial values as you declare them. For example, you should usually
initialize integer variables to 0 like this:

int x = 0, y = 0;

Similarly, you should give initial values to objects. You can provide this functionality by declaring and
writing a special method called a constructor, in which you can perform initialization work for the object.
Whenever an object is created, one of its constructers is executed.

If you allocate an object with new, free it with delete when you are finished with it.

165

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 165

Writing Constructors
Here is a first attempt at adding a constructor to the SpreadsheetCell class:

class SpreadsheetCell
{

public:
SpreadsheetCell(double initialValue);
void setValue(double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString);

double mValue;
string mString;

};

Note that the constructor has the same name as the name of the class and does not have a return type.
These facts are always true about constructors. Just as you must provide implementations for normal
methods, you must provide an implementation for the constructor:

SpreadsheetCell::SpreadsheetCell(double initialValue)
{

setValue(initialValue);
}

The SpreadsheetCell constructor is a method of the SpreadsheetCell class, so C++ requires the nor-
mal SpreadsheetCell:: scope resolution phrase before the method name. The method name itself is also
SpreadsheetCell, so the code ends up with the funny looking SpreadsheetCell::SpreadsheetCell.
The implementation simply makes a call to setValue() in order to set both the numeric and text
representations.

Using Constructors
Using the constructor creates an object and initializes its values. You can use constructors with both
stack-based and heap-based allocation.

Constructors on the Stack
When you allocate a SpreadsheetCell object on the stack, you use the constructor like this:

SpreadsheetCell myCell(5), anotherCell(4);

cout << “cell 1: “ << myCell.getValue() << endl;
cout << “cell 2: “ << anotherCell.getValue() << endl;

C++ programmers often call a constructor a “ctor.”

166

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 166

Note that you do NOT call the SpreadsheetCell constructor explicitly. For example, do not use some-
thing like the following:

SpreadsheetCell myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Similarly, you cannot call the constructor later. The following is also incorrect:

SpreadsheetCell myCell;
myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Again, the only correct way to use the constructor on the stack is like this:

SpreadsheetCell myCell(5);

Constructors on the Heap
When you dynamically allocate a SpreadsheetCell object, you use the constructor like this:

SpreadsheetCell *myCellp = new SpreadsheetCell(5);
SpreadsheetCell *anotherCellp;
anotherCellp = new SpreadsheetCell(4);
delete anotherCellp;

Note that you can declare a pointer to a SpreadsheetCell object without calling the constructor immedi-
ately, which is different from objects on the stack, where the constructor is called at the point of declaration.

As usual, remember to call delete on the objects that you dynamically allocate with new!

Providing Multiple Constructors
You can provide more than one constructor in a class. All constructors have the same name (the name of
the class), but different constructors must take a different number of arguments or different argument
types.

In the SpreadsheetCell class, it is helpful to have two constructors: one to take an initial double value
and one to take an initial string value. Here is the class definition with the second constructor:

class SpreadsheetCell
{

public:
SpreadsheetCell(double initialValue);
SpreadsheetCell(string initialValue);
void setValue(double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString);

double mValue;
string mString;

};

167

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 167

Here is the implementation of the second constructor:

SpreadsheetCell::SpreadsheetCell(string initialValue)
{

setString(initialValue);
}

And here is some code that uses the two different constructors:

SpreadsheetCell aThirdCell(“test”); // Uses string-arg ctor
SpreadsheetCell aFourthCell(4.4); // Uses double-arg ctor
SpreadsheetCell* aThirdCellp = new SpreadsheetCell(“4.4”); // string-arg ctor
cout << “aThirdCell: “ << aThirdCell.getValue() << endl;
cout << “aFourthCell: “ << aFourthCell.getValue() << endl;
cout << “aThirdCellp: “ << aThirdCellp->getValue() << endl;
delete aThirdCellp;

When you have multiple constructors, it is tempting to attempt to implement one constructor in terms
of another. For example, you might want to call the double constructor from the string constructor as
follows:

SpreadsheetCell::SpreadsheetCell(string initialValue)
{

SpreadsheetCell(stringToDouble(initialValue));
}

That seems to make sense. After all, you can call normal class methods from within other methods. The
code will compile, link, and run, but will not do what you expect. The explicit call to the
SpreadsheetCell constructor actually creates a new temporary unnamed object of type
SpreadsheetCell. It does not call the constructor for the object that you are supposed to be initializing.

Default Constructors
A default constructor is a constructor that takes no arguments. It is also called a 0-argument constructor.
With a default constructor, you can give reasonable initial values to data members even though the client
did not specify them.

Here is part of the SpreadsheetCell class definition with a default constructor:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(string initialValue);
// Remainder of the class definition omitted for brevity

};

Don’t attempt to call one constructor of a class from another.

168

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 168

Here is a first crack at an implementation of the default constructor:

SpreadsheetCell::SpreadsheetCell()
{

mValue = 0;
mString = “”;

}

You use the default constructor on the stack like this:

SpreadsheetCell myCell;
myCell.setValue(6);

cout << “cell 1: “ << myCell.getValue() << endl;

The preceding code creates a new SpreadsheetCell called myCell, sets its value, and prints out its
value. Unlike other constructors for stack-based objects, you do not call the default constructor with
function-call syntax. Based on the syntax for other constructors, you might be tempted to call the default
constructor like this:

SpreadsheetCell myCell(); // WRONG, but will compile.
myCell.setValue(6); // However, this line will not compile.

cout << “cell 1: “ << myCell.getValue() << endl;

Unfortunately, the line attempting to call the default constructor will compile. The line following it will
not compile. The problem is that your compiler thinks the first line is actually a function declaration for
a function with the name myCell that takes zero arguments and returns a SpreadsheetCell object.
When it gets to the second line, it thinks that you’re trying to use a function name as an object!

However, when you use the default constructor with a heap-based object allocation, you are required to
use function-call syntax:

SpreadsheetCell* myCellp = new SpreadsheetCell(); // Note the function-call syntax

Don’t waste a lot of time pondering why C++ requires different syntax for heap-based versus stack-
based object allocation with a default constructor. It’s just one of those things that makes C++ such an
exciting language to learn.

Compiler-Generated Default Constructor
If your class doesn’t provide a default constructor, you cannot create objects of that class without speci-
fying arguments. For example, suppose that you have the following SpreadsheetCell class definition:

class SpreadsheetCell
{

public:

When creating an object on the stack, omit parenthesis for the default constructor.

169

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 169

SpreadsheetCell(double initialValue); // No default constructor
SpreadsheetCell(string initialValue);
void setValue(double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString);

double mValue;
string mString;

};

With the preceding definition, the following code will not compile:

SpreadsheetCell myCell;
myCell.setValue(6);

But that code used to work! What’s wrong here? Nothing is wrong. Since you didn’t declare a default
constructor, you can’t construct an object without specifying arguments.

The real question is why the code used to work. The reason is that if you don’t specify any constructors,
the compiler will write one for you that doesn’t take any arguments. This compiler-generated default
constructor calls the default constructor on all object members of the class, but does not initialize the lan-
guage primitives such as int and double. Nonetheless, it allows you to create objects of that class.
However, if you declare a default constructor, or any other constructor, the compiler no longer generates
a default constructor for you.

When You Need a Default Constructor
Consider arrays of objects. The act of creating an array of objects accomplishes two tasks: it allocates con-
tiguous memory space for all the objects and it calls the default constructor on each object. C++ fails to pro-
vide any syntax to tell the array creation code directly to call a different constructor. For example, if you do
not define a default constructor for the SpreadsheetCell class, the following code does not compile:

SpreadsheetCell cells[3]; // FAILS compilation without a default constructor
SpreadsheetCell* myCellp = new SpreadsheetCell[10]; // Also FAILS

You can circumvent this restriction for stack-based arrays by using initializers like this:

SpreadsheetCell cells[3] = {SpreadsheetCell(0), SpreadsheetCell(23),
SpreadsheetCell(41)};

A default constructor is the same thing as a 0-argument constructor. The term
“default constructor” does not refer only to the constructor that is automatically gen-
erated if you fail to declare any constructors.

170

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 170

However, it is usually easier to ensure that your class has a default constructor if you intend to create
arrays of objects of that class.

Default constructors are also useful when you want to create objects of that class inside other classes,
which is shown in the following section, Initializer Lists.

Finally, default constructors are convenient when the class serves as a base class of an inheritance hierar-
chy. In that case, it’s convenient for subclasses to initialize superclasses via their default constructors.
Chapter 10 covers this issue in more detail.

Initializer Lists
C++ provides an alternative method for initializing data members in the constructor, called the initializer
list. Here is the 0-argument SpreadsheetCell constructor rewritten to use the initializer list syntax:

SpreadsheetCell::SpreadsheetCell() : mValue(0), mString(“”)
{
}

As you can see, the initializer list lies between the constructor argument list and the opening brace for
the body of the constructor. The list starts with a colon and is separated by commas. Each element in the
list is an initialization of a data member using function notation or a call to a superclass constructor (see
Chapter 10).

Initializing data members with an initializer list provides different behavior than does initializing data
members inside the constructor body itself. When C++ creates an object, it must create all the data mem-
bers of the object before calling the constructor. As part of creating these data members, it must call a
constructor on any of them that are themselves objects. By the time you assign a value to an object inside
your constructor body, you are not actually constructing that object. You are only modifying its value.
An initializer list allows you to provide initial values for data members as they are created, which is
more efficient than assigning values to them later. Interestingly, the default initialization for strings
gives them the empty string; so explicitly initializing mString to the empty string as shown in the pre-
ceding example is superfluous.

Even if you don’t care about efficiency, you might want to use initializer lists if you find that they look
“cleaner.” Some programmers prefer the more common syntax of assigning initial values in the body of
the constructor. However, several data types must be initialized in an initializer list. The following table
summarizes them:

Data Type Explanation

const data members You cannot legally assign a value to a const variable
after it is created. Any value must be supplied at the time
of creation.

Reference data members References cannot exist without referring to something.

Table continued on following page

Initializer lists allow initialization of data members at the time of their creation.

171

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 171

Data Type Explanation

Object data members for which C++ attempts to initialize member objects using a
there is no default constructor default constructor. If no default constructor exists, it

cannot initialize the object.

Superclasses without default [Covered in Chapter 10]
constructors

There is one important caveat with initializer lists: they initialize data members in the order that they
appear in the class definition, not their order in the initializer list. For example, suppose you rewrite
your SpreadsheetCell string constructor to use initializer lists like this:

SpreadsheetCell::SpreadsheetCell(string initialValue) :
mString(initialValue), mValue(stringToDouble(mString)) // INCORRECT ORDER!

{
}

The code will compile (although some compilers issue a warning), but the program does not work cor-
rectly. You might assume that mString will be initialized before mValue because mString is listed first
in the initialier list. But C++ doesn’t work that way. The SpreadsheetCell class declares mValue before
mString:

class SpreadsheetCell
{

public:
// Code omitted for brevity

protected:
// Code omitted for brevity
double mValue;
string mString;

};

Thus, the initializer list tried to initialize mValue before mString. However, the code to initialize mValue
tries to use the value of mString, which is not yet initialized! The solution in this case is to use the
initialValue argument instead of mString when initializing mValue. You should also swap their
order in the initializer list to avoid confusion:

SpreadsheetCell::SpreadsheetCell(string initialValue) :
mValue(stringToDouble(initialValue)), mString(initialValue)

{
}

Copy Constructors
There is a special constructor in C++ called a copy constructor that allows you to create an object that is an
exact copy of another object. If you don’t write a copy constructor yourself, C++ generates one for you

Initializer lists initialize data members in their declared order in the class definition,
not their order in the list.

172

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 172

that initializes each data member in the new object from its equivalent data member in the source object.
For object data members, this initialization means that their copy constructors are called.

Here is the declaration for a copy constructor in the SpreadsheetCell class:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(string initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
void setValue(double inValue);
double getValue();
void setString(string inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(string inString);

double mValue;
string mString;

};

The copy constructor takes a const reference to the source object. Like other constructors, it does not
return a value. Inside the constructor, you should copy all the data fields from the source object.
Technically, of course, you can do whatever you want in the constructor, but it’s generally a good idea
to follow expected behavior and initialize the new object to be a copy of the old one. Here is a sample
implementation of the SpreadsheetCell copy constructor:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src) :
mValue(src.mValue), mString(src.mString)

{
}

Note the use of the initializer list. The difference between setting values in the initializer list and in the
copy constructor body is examined below in the section on assignment.

When the Copy Constructor Is Called
The default semantics for passing arguments to functions in C++ is pass-by-value. That means that the
function or method receives a copy of the variable, not the variable itself. Thus, whenever you pass an
object to a function or method the compiler calls the copy constructor of the new object to initialize it.

The compiler-generated SpreadsheetCell copy constructor is identical to the one
shown above. Thus, for simplicity, you could omit the explicit copy constructor and
rely on the compiler-generated one. Chapter 10 describes some types of classes for
which a compiler-generated copy constructor is insufficient.

173

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 173

For example, recall that the definition of the setString() method in the SpreadsheetCell class looks
like this:

void SpreadsheetCell::setString(string inString)
{

mString = inString;
mValue = stringToDouble(mString);

}

Recall, also, that the C++ string is actually a class, not a built-in type. When your code makes a call to
setString() passing a string argument, the string parameter inString is initialized with a call to its
copy constructor. The argument to the copy construction is the string you passed to setString(). In
the following example, the string copy constructor is executed for the inString object in setString()
with name as its parameter.

SpreadsheetCell myCell;
string name = “heading one”;

myCell.setString(name); // Copies name

When the setString() method finishes, inString is destroyed. Because it was only a copy of name,
name remains intact.

The copy constructor is also called whenever you return an object from a function or method. In this
case, the compiler creates a temporary, unnamed, object through its copy constructor. Chaper 17 explores
the impact of temporary objects in more detail.

Calling the Copy Constructor Explicitly
You can use the copy constructor explicitly as well. It is often useful to be able to construct one object as
an exact copy of another. For example, you might want to create a copy of a SpreadsheetCell object
like this:

SpreadsheetCell myCell2(4);
SpreadsheetCell anotherCell(myCell2); // anotherCell now has the values of myCell2

Passing Objects by Reference
In order to avoid copying objects when you pass them to functions and methods you can declare that the
function or method takes a reference to the object. Passing objects by reference is usually more efficient
than passing them by value, because only the address of the object is copied, not the entire contents of
the object. Additionally, pass-by-reference avoids problems with dynamic memory allocation in objects,
which we will discuss in Chapter 9.

When you pass an object by reference, the function or method using the object reference could change
the original object. When you’re only using pass-by-reference for efficiency, you should preclude this
possibility by declaring the object const as well. Here is the SpreadsheetCell class definition in which
string objects are passed const reference:

Pass objects by const reference instead of by value.

174

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 174

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
void setValue(double inValue);
double getValue();
void setString(const string& inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(const string& inString);

double mValue;
string mString;

};

Here is the implementation for setString(). Note that the method body remains the same; only the
parameter type is different.

void SpreadsheetCell::setString(const string& inString)
{

mString = inString;
mValue = stringToDouble(mString);

}

The SpreadsheetCell methods that return a string still return it by value. Returning a reference to a
data member is risky because the reference is valid only as long as the object is “alive.” Once the object is
destroyed, the reference is invalid. However, there are sometimes legitimate reasons to return references
to data members, as you will see later in this chapter and in subsequent chapters.

Summary of Compiler-Generated Constructors
The compiler will automatically generate a 0-argument constructor and a copy constructor for every
class. However, the constructors you define yourself replace these constructors according to the follow-
ing rules:

. . . then the compiler . . . and you can
If you define . . . generates . . . create an object . . . Example

[no constructors] A 0-argument With no arguments. SpreadsheetCell
constructor As a copy of another cell;
A copy constructor object. SpreadsheetCell

myCell(cell);

A 0-argument A copy constructor With no arguments. SpreadsheetCell
constructor only As a copy of another cell;

object. SpreadsheetCell
myCell(cell);

Table continued on following page

175

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 175

. . . then the compiler . . . and you can
If you define . . . generates . . . create an object . . . Example

A copy constructor No constructors Theoretically, as a copy No example.
only of another object.

Practically, you can’t
create any objects.

A single-argument A copy constructor With arguments. SpreadsheetCell
(noncopy constructor) As a copy of another cell(6);
or multiargument object. SpreadsheetCell
constructor only myCell(cell);

A 0-argument A copy constructor With no arguments. SpreadsheetCell
constructor as well With arguments. cell;
as a single-argument As a copy of another SpreadsheetCell
(noncopy constructor) object. myCell(5);
or multiargument SpreadsheetCell
constructor anotherCell(cell);

Note the lack of symmetry between the default constructor and the copy constructor. As long as you
don’t define a copy constructor explicitly, the compiler creates one for you. On the other hand, as soon as
you define any constructor, the compiler stops generating a default constructor.

Object Destruction
When an object is destroyed, two events occur: the object’s destructor method is called, and the memory
it was taking up is freed. The destructor is your chance to perform any cleanup work for the object, such
as freeing dynamically allocated memory or closing file handles. If you don’t declare a destructor, the
compiler will write one for you that does recursive memberwise destruction and allows the object to be
deleted. The section on dynamic memory allocation in Chapter 9 shows you how to write a destructor.

Objects on the stack are destroyed when they go out of scope, which means whenever the current func-
tion, method, or other execution block ends. In other words, whenever the code encounters an ending
curly brace, any objects created on the stack within those curly braces are destroyed. The following pro-
gram shows this behavior:

int main(int argc, char** argv)
{

SpreadsheetCell myCell(5);

if (myCell.getValue() == 5) {
SpreadsheetCell anotherCell(6);

} // anotherCell is destroyed as this block ends.

cout << “myCell: “ << myCell.getValue() << endl;

return (0);
} // myCell is destroyed as this block ends.

176

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 176

Objects on the stack are destroyed in the reverse order of their declaration (and construction). For exam-
ple, in the following code fragment, myCell2 is allocated before anotherCell2, so anotherCell2 is
destroyed before myCell2 (note that you can start a new code block at any point in your program with
an opening curly brace):

{
SpreadsheetCell myCell2(4);
SpreadsheetCell anotherCell2(5); // myCell2 constructed before anotherCell2

} // anotherCell2 destroyed before myCell2

This ordering applies to objects that are data members of other objects. Recall that data members are ini-
tialized in the order of their declaration in the class. Thus, following the rule that objects are destroyed in
the reverse order of their construction, data member objects are destroyed in the reverse order of their
declaration in the class.

Objects allocated on the heap are not destroyed automatically. You must call delete on the object pointer
to call its destructor and free the memory. The following program shows this behavior:

int main(int argc, char** argv)
{

SpreadsheetCell* cellPtr1 = new SpreadsheetCell(5);
SpreadsheetCell* cellPtr2 = new SpreadsheetCell(6);

cout << “cellPtr1: “ << cellPtr1->getValue() << endl;

delete cellPtr1; // Destroys cellPtr1

return (0);
} // cellPtr2 is NOT destroyed because delete was not called on it.

Assigning to Objects
Just as you can assign the value of one int to another in C++, you can assign the value of one object to
another. For example, the following code assigns the value of myCell to anotherCell:

SpreadsheetCell myCell(5), anotherCell;

anotherCell = myCell;

You might be tempted to say that myCell is “copied” to anotherCell. However, in the world of C++,
“copying” only occurs when an object is being initialized. If an object already has a value that is being
overwritten, the more accurate term is “assigned” to. Note that the facility that C++ provides for copy-
ing is the copy constructor. Since it is a constructor, it can only be used for object creation, not for later
assignments to the object.

Therefore, C++ provides another method in every class to perform assignment. This method is called the
assignment operator. Its name is operator= because it is actually an overloading of the = operator for that
class. In the above example, the assignment operator for anotherCell is called, with myCell as the
argument.

177

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 177

As usual, if you don’t write your own assignment operator, C++ writes one for you to allow objects to be
assigned to one another. The default C++ assignment behavior is almost identical to its default copying
behavior: it recursively assigns each data member from the source to the destination object. The syntax is
slightly tricky, though.

Declaring an Assignment Operator
Here is another attempt at the SpreadsheetCell class definition, this time including an assignment
operator:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell &src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue(double inValue);
double getValue();
void setString(const string& inString);
string getString();

protected:
string doubleToString(double inValue);
double stringToDouble(const string& inString);

double mValue;
string mString;

};

The assignment operator, like the copy constructor, takes a const reference to the source object. In this
case, we call the source object rhs, which stands for “right-hand side” of the equals sign. The object on
which the assignment operator is called is the left-hand side of the equals sign.

Unlike a copy constructor, the assignment operator returns a reference to a SpreadsheetCell object.
The reason is that assignments can be chained, as in the following example:

myCell = anotherCell = aThirdCell;

When that line is executed, the first thing that happens is that the assignment operator for anotherCell
is called with aThirdCell as its “right-hand side” parameter. Next, the assignment operator for myCell
is called. However, its parameter is not anotherCell. Its right-hand side is the result of the assignment
of aThirdCell to anotherCell. If that assignment fails to return a result, there is nothing to pass to
myCell!

You might be wondering why the assignment operator for myCell can’t just take anotherCell. The rea-
son is that using the equals sign is actually just shorthand for what is really a method call. When you
look at the line in its full functional syntax, you can see the problem:

myCell.operator=(anotherCell.operator=(aThirdCell));

178

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 178

Now, you can see that the operator= call from anotherCell must return a value, which is passed to
the operator= call for myCell. The correct value to return is anotherCell itself, so it can serve as the
source for the assignment to myCell. However, returning anotherCell directly would be inefficient, so
you can return a reference to anotherCell.

Defining an Assignment Operator
The implementation of the assignment operator is similar to that of a copy constructor, with several
important differences. First, a copy constructor is called only for initialization, so the destination object
does not yet have valid values. An assignment operator can overwrite the current values in an object.
This consideration doesn’t really come into play until you have dynamically allocated memory in your
objects. See Chapter 10 for details.

Second, it’s legal in C++ to assign an object to itself. For example, the following code compiles and runs:

SpreadsheetCell cell(4);
cell = cell; // Self-assignment

Your assignment operator shouldn’t prohibit self-assignment, but also shouldn’t perform a full assign-
ment if it happens. Thus, assignment operators should check for self-assignment at the beginning of the
method and return immediately.

Here is the definition of the assignment operator for the SpreadsheetCell class:

SpreadsheetCell& SpreadsheetCell::operator=(const SpreadsheetCell& rhs)
{

if (this == &rhs) {

The previous line checks for self-assignment, but is a bit cryptic. Self-assignment occurs when the left-
hand side and the right-hand side of the equals sign are the same. One way to tell if two objects are the
same is if they occupy the same memory location — more explicitly, if pointers to them are equal. Recall
that this is a pointer to an object accessible from any method called on the object. Thus, this is a
pointer to the left-hand side object. Similarly, &rhs is a pointer to the right-hand-side object. If these
pointers are equal, the assignment must be self-assignment.

return (*this);
}

this is a pointer to the object on which the method executes, so *this is the object itself. The compiler
will return a reference to the object to match the declared return value.

mValue = rhs.mValue;
mString = rhs.mString;

You could actually declare the assignment operator to return whatever type you
wanted, including void. However, you should always return a reference to the
object on which it is called because that’s what clients expect.

179

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 179

Here the method copies the values:

return (*this);
}

Finally it returns *this, as explained previously.

The syntax for overriding operator= may seem a strange at first. You probably felt the same way when
you first learned about some other C or C++ syntax, such as switch statements — the syntax just doesn’t
feel right. With operator=, you’re getting into some deep language features. You are actually changing
the meaning of the = operator. This powerful capability unfortunately requires some unusual syntax.
Don’t worry, you’ll get used to it!

Distinguishing Copying from Assignment
It is sometimes difficult to tell when objects are initialized with a copy constructor rather than assigned
to with the assignment operator. Consider the following code:

SpreadsheetCell myCell(5);
SpreadsheetCell anotherCell(myCell);

AnotherCell is constructed with the copy constructer.

SpreadsheetCell aThirdCell = myCell;

aThirdCell is also constructed with the copy constructer. This line does not call operator=! This syn-
tax is just another way to write: SpreadsheetCell aThirdCell(myCell);

anotherCell = myCell; // Calls operator= for anotherCell.

Here anotherCell has already been constructed, so the compiler calls operator=:

Objects as Return Values
When you return objects from functions or methods, it is sometimes difficult to see exactly what copying
and assignment is happening. Recall that the code for getString() looks like this:

string SpreadsheetCell::getString()
{

return (mString);
}

= does not always mean assignment! It can also be shorthand for copy construction
when used on the same line as the variable declaration.

180

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 180

Now consider the following code:

SpreadsheetCell myCell2(5);
string s1;
s1 = myCell2.getString();

When getString() returns mString, the compiler actually creates an unnamed temporary string
object by calling a string copy constructor. When you assign this result to s1, the assignment operator
is called for s1 with the temporary string as a parameter. Then, the temporary string object is
destroyed. Thus, the single line of code invokes the copy constructor and the assignment operator (for
two different objects).

In case you’re not confused enough, consider this code:

SpreadsheetCell myCell3(5);
string s2 = myCell3.getString();

In this case, getString() still creates a temporary unnamed string object when it returns mString.
But now s1 gets its copy constructor called, not its assignment operator.

If you ever forget the order in which these things happen or which constructor or operator is called, you
can easily figure it out by temporarily including helpful output in your code or by stepping through it
with a debugger.

Copy Constructors and Object Members
You should also note the difference between assignment and copy constructor calls in constructors. If an
object contains other objects, the compiler-generated copy constructor calls the copy constructors of each
of the contained objects recursively. When you write your own copy constructor, you can provide the
same semantics by using an initializer list, as shown previously. If you omit a data member from the ini-
tializer list, the compiler performs default initialization on it (a call to the 0-argument constructor for
objects) before executing your code in the body of the constructor. Thus, by the time the body of the con-
structor executes, all object data members have already been initialized.

You could write your copy constructor without using an initialization list, like this:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
{

mValue = src.mValue;
mString = src.mString;

}

However, when you assign values to data members in the body of the copy constructor, you are using
the assignment operator on them, not the copy constructor, because they have already been initialized,
as described previously.

181

Gaining Proficiency with Classes and Objects

11_574841 ch08.qxd 12/15/04 3:42 PM Page 181

Summary
This chapter covered the fundamental aspects of C++’s facilities for object-oriented programming:
classes and objects. It first reviewed the basic syntax for writing classes and using objects, including
access control. Then, it covered object life cycles: when objects are constructed, destructed, and assigned,
and what methods those actions invoke. The chapter included details of the constructor syntax, includ-
ing initializer lists. It also specified exactly which constructors the compiler writes for you, and under
what circumstances, and explained that default constructors take no arguments.

For some of you, this chapter was mostly review. For others, it hopefully opened your eyes to the world
of object-oriented programming in C++. In any case, now that you are proficient with objects and classes
you can learn, read Chapter 9 to learn more about their tricks and subtleties.

182

Chapter 8

11_574841 ch08.qxd 12/15/04 3:42 PM Page 182

Mastering Classes
and Objects

Chapter 8 helped you gain proficiency with classes and objects. Now it’s time to master their
subtleties so you can use them to their full potential. By reading this chapter, you will learn how
to manipulate and exploit some of the most complicated aspects of the C++ language in order
to write safe, effective, and useful classes.

This chapter provides a detailed tutorial of advanced topics, including dynamic memory alloca-
tion in objects, static methods and members, const methods and members, reference and
const reference members, method overloading and default parameters, inline methods, nested
classes, friends, operator overloading, pointers to methods and members, and separate interface
and implementation classes.

Many of the concepts in this chapter arise in advanced C++ programming, especially in the stan-
dard template library.

Dynamic Memory Allocation in Objects
Sometimes you don’t know how much memory you will need before your program actually runs.
As you know, the solution is to dynamically allocate as much space as you need during program
execution. Classes are no exception. Sometimes you don’t know how much memory an object will
need when you write the class. In that case, the object should dynamically allocate memory.

Dynamically allocated memory in objects provides several challenges, including freeing the mem-
ory, handling object copying, and handling object assignment.

12_574841 ch09.qxd 12/15/04 3:42 PM Page 183

The Spreadsheet Class
Chapter 8 introduced the SpreadsheetCell class. This chapter moves on to write the Spreadsheet
class. As with the SpreadsheetCell class, the Spreadsheet class will evolve throughout this chapter. Thus,
the various attempts do not always illustrate the best way to do every aspect of class writing. To start,
a Spreadsheet is simply a two-dimensional array of SpreadsheetCells, with methods to set and
retrieve cells at specific locations in the Spreadsheet. Although most spreadsheet applications use let-
ters in one direction and numbers in the other to refer to cells, this Spreadsheet uses numbers in both
directions. Here is a first attempt at a class definition for a simple Spreadsheet class:

// Spreadsheet.h
#include “SpreadsheetCell.h”

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper);

int mWidth, mHeight;
SpreadsheetCell** mCells;

};

Note that the Spreadsheet class does not contain a standard two-dimensional array of
SpreadsheetCells. Instead, it contains a SpreadsheetCell**. The reason is that each Spreadsheet
object might have different dimensions, so the constructor of the class must dynamically allocate the
two-dimensional array based on the client-specified height and width. In order to allocate dynamically
a two-dimensional array you need to write the following code:

#include “Spreadsheet.h”

Spreadsheet::Spreadsheet(int inWidth, int inHeight) :
mWidth(inWidth), mHeight(inHeight)

{
mCells = new SpreadsheetCell* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

}

The resultant memory for a Spreadsheet called s1 on the stack with width four and height three is
shown in Figure 9-1.

184

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 184

Figure 9-1

If this code confuses you, consult Chapter 13 for details on memory management.

The implementations of the set and retrieval methods are straightforward:

void Spreadsheet::setCellAt(int x, int y, const SpreadsheetCell& cell)
{

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return;

}

mCells[x][y] = cell;
}

SpreadsheetCell Spreadsheet::getCellAt(int x, int y)
{

SpreadsheetCell empty;

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return (empty);

}

return (mCells[x][y]);
}

Note that these two methods use a helper method inRange() to check that x and y represent valid coor-
dinates in the spreadsheet. Attempting to access an invalid field in the array will cause the program to
malfunction. A production application would probably use exceptions to report error conditions, as
described in Chapter 15.

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s1
Each element is an unnamed

SpreadsheetCell.

Each element is an
unnamed SpreadsheetCell*

stack heap

185

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 185

Freeing Memory with Destructors
Whenever you are finished with dynamically allocated memory, you should free it. If you dynamically
allocate memory in an object, the place to free that memory is in the destructor. The compiler guarantees
that the destructor will be called when the object is destroyed. Here is the Spreadsheet class definition
from earlier with a destructor:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);
~Spreadsheet();

void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper);

int mWidth, mHeight;
SpreadsheetCell** mCells;

};

The destructor has the same name as the name of the class (and of the constructors), preceded by a tilde
(~). The destructor takes no arguments, and there can only be one of them.

Here is the implementation of the Spreadsheet class destructor:

Spreadsheet::~Spreadsheet()
{

for (int i = 0; i < mWidth; i++) {
delete[] mCells[i];

}

delete[] mCells;
}

This destructor frees the memory that was allocated in the constructor. However, no dictate requires you
only to free memory in the destructor. You can write whatever code you want in the destructor, but it is a
good idea to use it only for freeing memory or disposing of other resources.

Handling Copying and Assignment
Recall from Chapter 8 that, if you don’t write a copy constructor and an assignment operator yourself,
C++ writes them for you. These compiler-generated methods recursively call the copy constructor or
assignment operator, respectively, on object data members. However, for primitives, such as int,
double, and pointers, they provide shallow or bitwise copying or assignment: they just copy or assign the
data members from the source object directly to the destination object. That presents problems when you
dynamically allocate memory in your object. For example, the following code copies the spreadsheet s1
to initialize s when s1 is passed to the printSpreadsheet() function.

186

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 186

#include “Spreadsheet.h”

void printSpreadsheet(Spreadsheet s)
{

// Code omitted for brevity.
}

int main(int argc, char** argv)
{

Spreadsheet s1(4, 3);
printSpreadsheet(s1);

return (0);
}

The Spreadsheet contains one pointer variable: mCells. A shallow copy of a spreadsheet gives the des-
tination object a copy of the mCells pointer, but not a copy of the underlying data. Thus, you end up
with a situation where both s and s1 have a pointer to the same data, as shown in Figure 9-2.

Figure 9-2

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s1
Each element is an unnamed

SpreadsheetCell.

Each element is an
unnamed SpreadsheetCell*

stack heap

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s

187

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 187

If s were to change something to which mCells points, that change would show up in s1 too. Even
worse, when the printSpreadsheet() function exits, s’s destructor is called, which frees the memory
pointed to by mCells. That leaves the situation shown in Figure 9-3.

Figure 9-3

Now s1 has a dangling pointer!

Unbelievably, the problem is even worse with assignment. Suppose that you had the following code:

Spreadsheet s1(2, 2), s2(4, 3);
s1 = s2;

After both objects are constructed, you would have the memory layout shown in Figure 9-4.

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s1

Freed memory

stack heap

188

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 188

Figure 9-4

After the assignment statement, you would have the layout shown in Figure 9-5.

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s2

stack heap

int mWidth

2

int mHeight

2

SpreadsheetCell**mCells

Spreadsheet s1

189

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 189

Figure 9-5

Now, not only do the mCells pointers in s1 and s2 point to the same memory, but you have orphaned
the memory to which mCells in s1 previously pointed. That is why in assignment operators you must
first free the old memory, and then do a deep copy.

As you can see, relying on C++’s default copy constructor or assignment operator is not always a good
idea. Whenever you have dynamically allocated memory in a class, you should write your own copy
constructor to provide a deep copy of the memory.

The Spreadsheet Copy Constructor
Here is a declaration for a copy constructor in the Spreadsheet class:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);
Spreadsheet(const Spreadsheet& src);

int mWidth

4

int mHeight

3

SpreadsheetCell**mCells

Spreadsheet s2

stack heap

Orphaned
memory!

int mWidth

2

int mHeight

2

SpreadsheetCell**mCells

Spreadsheet s1

190

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 190

~Spreadsheet();

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper);

int mWidth, mHeight;
SpreadsheetCell** mCells;

};

Here is the definition of the copy constructor:

Spreadsheet::Spreadsheet(const Spreadsheet& src)
{

int i, j;

mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = src.mCells[i][j];
}

}
}

Note that the copy constructor copies all data members, including mWidth and mHeight, not just the
pointer data members. The rest of the code in the copy constructor provides a deep copy of the mCells
dynamically allocated two-dimensional array.

The Spreadsheet Assignment Operator
Here is the definition for the Spreadsheet class with an assignment operator:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);
Spreadsheet(const Spreadsheet& src);
~Spreadsheet();

Spreadsheet& operator=(const Spreadsheet& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

Copy all data members in a copy constructor, not just pointer members.

191

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 191

protected:
bool inRange(int val, int upper);

int mWidth, mHeight;
SpreadsheetCell** mCells;

};

Here is the implementation of the assignment operator for the Spreadsheet class, with explanations
interspersed. Note that when an object is assigned to, it already has been initialized. Thus, you must free
any dynamically allocated memory before allocating new memory. You can think of an assignment oper-
ator as a combination of a destructor and a copy constructor. You are essentially “reincarnating” the
object with new life (or data) when you assign to it.

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{

int i, j;

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}

The above code checks for self-assignment.

// Free the old memory.
for (i = 0; i < mWidth; i++) {

delete[] mCells[i];
}

delete[] mCells;

This chunk of code is identical to the destructor. You must free all the memory before reallocating it, or
you will create a memory leak.

// Copy the new memory.
mWidth = rhs.mWidth;
mHeight = rhs.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = rhs.mCells[i][j];
}

}

This chunk of code is identical to the copy constructor.

return (*this);
}

192

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 192

The assignment operator completes the “big 3” routines for managing dynamically allocated memory in
an object: the destructor, the copy constructor, and the assignment operator. Whenever you find yourself
writing one of those methods you should write all of them.

Common Helper Routines for Copy Constructor
and Assignment Operator

The copy constructor and the assignment operator are quite similar. Thus, it’s usually convenient to fac-
tor the common tasks into a helper method. For example, you could add a copyFrom() method to the
Spreadsheet class, and rewrite the copy constructor and assignment operator to use it like this:

void Spreadsheet::copyFrom(const Spreadsheet& src)
{

int i, j;

mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new SpreadsheetCell* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

for (i = 0; i < mWidht; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = src.mCells[i][j];
}

}
}

Spreadsheet::Spreadsheet(const Spreadsheet &src)
{

copyFrom(src);
}

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{

int i;

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
for (i = 0; i < mWidth; i++) {

delete[] mCells[i];
}

Whenever a class dynamically allocates memory, write a destructor, copy constructor,
and assignment operator.

193

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 193

delete[] mCells;

// Copy the new memory.
copyFrom(rhs);

return (*this);
}

Disallowing Assignment and Pass-By-Value
Sometimes when you dynamically allocate memory in your class, it’s easiest just to prevent anyone from
copying or assigning to your objects. You can do this by marking your copy constructor and operator=
private. That way, if anyone tries to pass the object by value, return it from a function or method, or
assign to it, the compiler will complain. Here is a Spreadsheet class definition that prevents assign-
ment and pass-by-value:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);
~Spreadsheet();

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

protected:
bool inRange(int val, int upper);

int mWidth, mHeight;
SpreadsheetCell** mCells;

private:
Spreadsheet(const Spreadsheet& src);
Spreadsheet& operator=(const Spreadsheet& rhs);

};

When you write code to copy or assign to a Spreadsheet object, the compiler will complain with a mes-
sage like ‘=’ : cannot access private member declared in class ‘Spreadsheet’.

Different Kinds of Data Members
C++ gives you many choices for data members. In addition to declaring simple data members in your
classes, you can create data members that all objects of the class share, const members, reference mem-
bers, const reference members, and more. This section explains the intricacies of these different kinds of
data members.

You don’t need to provide implementations for private copy constructors and assign-
ment operators. The linker will never look for them because the compiler won’t
allow code to call them.

194

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 194

Static Data Members
Sometimes giving each object of a class a copy of a variable is overkill or won’t work. The data member
might be specific to the class, but not appropriate for each object to have its own copy. For example, you
might want to give each spreadsheet a unique numerical identifier. You would need a counter that starts
at 0 from which each new object could obtain its ID. This spreadsheet counter really belongs to the
Spreadsheet class, but it doesn’t make sense for each Spreadsheet object to have a copy of it because
you would have to keep all the counters synchronized somehow. C++ provides a solution with static data
members. A static data member is a data member associated with a class instead of an object. You can
think of static data members as global variables specific to a class. Here is the Spreadsheet class defini-
tion, including the new static counter data member:

class Spreadsheet
{

public:
// Omitted for brevity

protected:
bool inRange(int val, int upper);
void copyFrom(const Spreadsheet& src);

int mWidth, mHeight;
SpreadsheetCell** mCells;

static int sCounter;
};

In addition to listing static class members in the class definition, you must allocate them space in a
source file, usually the source file in which you place your class method definitions. You can initialize
them at the same time, but note that unlike normal variables and data members, they are initialized to 0
by default. Here is the code to allocate space for and initialize the sCounter member:

int Spreadsheet::sCounter = 0;

This code appears outside of any function or method bodies. It’s almost like declaring a global variable,
except that the Spreadsheet:: scope resolution specifies that it’s part of the Spreadsheet class.

Accessing Static Data Members within Class Methods
You can use static data members as if they were regular data members from within class methods. For
example, you might want to create an mId member of the Spreadsheet class and initialize it from the
sCounter member in the Spreadsheet constructor. Here is the Spreadsheet class definition with an
mId member:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight);
Spreadsheet(const Spreadsheet& src);
~Spreadsheet();
Spreadsheet& operator=(const Spreadsheet& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& cell);
SpreadsheetCell getCellAt(int x, int y);

195

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 195

int getId();

protected:
bool inRange(int val, int upper);
void copyFrom(const Spreadsheet& src);

int mWidth, mHeight;
int mId;
SpreadsheetCell** mCells;

static int sCounter;
};

Here is an implementation of the Spreadsheet constructor that assigns the initial ID:

Spreadsheet::Spreadsheet(int inWidth, int inHeight) :
mWidth(inWidth), mHeight(inHeight)

{
mId = sCounter++;
mCells = new SpreadsheetCell* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

}

As you can see, the constructor can access sCounter as if it were a normal member. Remember to assign
an ID in the copy constructor as well:

Spreadsheet::Spreadsheet(const Spreadsheet& src)
{

mId = sCounter++;
copyFrom(src);

}

You should not copy the ID in the assignment operator. Once an ID is assigned to an object it should
never change.

Accessing Static Data Members Outside Methods
Access control specifiers apply to static data members: sCounter is protected, so it cannot be
accessed from outside class methods.

However, even though it is protected, you are allowed to assign it a value when you declare space for
it in the source file, despite the fact that the code is not inside any Spreadsheet class method. Here is
that line of code again:

int Spreadsheet::sCounter = 0;

Const Data Members
Data members in your class can be declared const, meaning they can’t be changed after they are created
and initialized. Constants almost never make sense at the object level, so const data members are usually

196

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 196

static as well. You should use static const data members in place of global constants when the con-
stants apply only to the class. For example, you might want to specify a maximum height and width for
spreadsheets. If the user tries to construct a spreadsheet with a greater height or width than the maxi-
mum, the maximum is used instead. You can make the max height and width static const members
of the Spreadsheet class:

class Spreadsheet
{

public:
// Omitted for brevity

static const int kMaxHeight;
static const int kMaxWidth;

protected:
// Omitted for brevity

};

Because these members are static, you must declare space for them in the source file. Because they are
const, this is your last chance to give them a value:

const int Spreadsheet::kMaxHeight = 100;
const int Spreadsheet::kMaxWidth = 100;

The C++ standard actually permits you to assign static const member variables a value as you
declare them in the class file if they are of integral type (such as int or char).

class Spreadsheet
{

public:
// Omitted for brevity

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
// Omitted for brevity

};

This capability is useful if you want to use the constant later in your class definition. Although some
older compilers fail to support this syntax, most now accept it. In fact, many compilers allow you to omit
the extra definition of the static const member in a source file if you initialize it in the class definition,
and if you don’t perform any operations on it that require actual storage, such as taking its address.

You can use these new constants in your constructor as shown in the following section of code (note the
use of the ternary operator):

Spreadsheet::Spreadsheet(int inWidth, int inHeight) :
mWidth(inWidth < kMaxWidth ? inWidth : kMaxWidth),
mHeight(inHeight < kMaxHeight ? inHeight : kMaxHeight)

{
mId = sCounter++;

197

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 197

mCells = new SpreadsheetCell* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new SpreadsheetCell[mHeight];
}

}

kMaxHeight and kMaxWidth are public, so you can access them from anywhere in your program as if
they were global variables, but with slightly different syntax: you must specify that the variable is part
of the Spreadsheet class with the scope resolution operator, ::.

cout << “Maximum height is: “ << Spreadsheet::kMaxHeight << endl;

Reference Data Members
Spreadsheets and SpreadsheetCells are great, but they don’t make a very useful application by
themselves. You need code to control the whole spreadsheet program, which you could package into a
SpreadsheetApplication class.

The implementation of this class is unimportant at the moment. For now, consider this architecture prob-
lem: how can spreadsheets communicate with the application? The application stores a list of spread-
sheets, so it can communicate with the spreadsheets. Similarly, each spreadsheet should store a reference
to the application object. The Spreadsheet class must know about the SpreadsheetApplication
class, but instead of using a full #include, you can just use a forward reference to the class name (see
Chapter 12 for details). Here is the new Spreadsheet class definition:

class SpreadsheetApplication; // forward declaration

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight,

SpreadsheetApplication& theApp);
// Code omitted for brevity.

protected:
// Code omitted for brevity.
SpreadsheetApplication& mTheApp;

static int sCounter;
};

Note that the application reference is given to each Spreadsheet in its constructor. A reference cannot
exist without referring to something, so mTheApp must be given a value in the initializer list of the
constructor:

Spreadsheet::Spreadsheet(int inWidth, int inHeight,
SpreadsheetApplication& theApp)
: mWidth(inWidth < kMaxWidth ? inWidth : kMaxWidth),
mHeight(inHeight < kMaxHeight ? inHeight : kMaxHeight), mTheApp(theApp)

{
// Code omitted for brevity.

}

198

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 198

You must also initialize the reference member in the copy constructor:

Spreadsheet::Spreadsheet(const Spreadsheet& src) :
mTheApp(src.mTheApp)

{
mId = sCounter++;
copyFrom(src);

}

Remember that after you have initialized a reference you cannot change the object to which it refers.
Thus, you do not need to attempt to assign to references in the assignment operator.

Const Reference Data Members
Your reference members can refer to const objects just as normal references can refer to const objects.
For example, you might decide that Spreadsheets should only have a const reference to the applica-
tion object. You can simply change the class definition to declare mTheApp as a const reference:

class Spreadsheet
{

public:
Spreadsheet(int inWidth, int inHeight,

const SpreadsheetApplication& theApp);
// Code omitted for brevity.

protected:
// Code omitted for brevity.
const SpreadsheetApplication& mTheApp;

static int sCounter;
};

It’s also possible to have a static reference member or a static const reference member, but you will
rarely find the need for something like that.

More about Methods
C++ also provides myriad choices for methods. This section explains all the tricky details.

Static Methods
Methods, like members, sometimes apply to the class as a whole, not to each object. You can write
static methods as well as members. As an example, consider the SpreadsheetCell class from
Chapter 8. It has two helper methods: stringToDouble() and doubleToString(). These methods
don’t access information about specific objects, so they could be static. Here is the class definition with
these methods static:

class SpreadsheetCell
{

public:

199

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 199

// Omitted for brevity

protected:
static string doubleToString(double val);
static double stringToDouble(const string& str);

// Omitted for brevity
};

The implementations of these two methods are identical to the previous implementations! You don’t
even need to repeat the static keyword in front of the method definitions. However, note that static
methods are not called on a specific object, so they have no this pointer, and are not executing for a spe-
cific object with access to its non-static members. In fact, a static method is just like a regular func-
tion. The only difference is that it can access private and protected static data members of the class
and private and protected non-static data members on other objects of the same type.

You call a static method just like a regular function from within any method of the class. Thus, the
implementation of all methods in SpreadsheetCell can stay the same. Outside of the class, you need
to qualify the method name with the class name using the scope resolution operator (as for static
members). Access control applies as usual.

You might want to make stringToDouble() and doubleToString() public so that other code out-
side the class could make use of them. If so, you could call them from anywhere like this:

string str = SpreadsheetCell::doubleToString(5);

Const Methods
A const object is an object whose value cannot be changed. If you have a const or reference to const
object, the compiler will not let you call any methods on that object unless those methods guarantee that
they won’t change any data members. The way you guarantee that a method won’t change data mem-
bers is to mark the method itself with the const keyword. Here is a modified SpreadsheetCell class
with the methods that don’t change any data member marked const:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue(double inValue);
double getValue() const;
void setString(const string& inString);
string getString() const;

You cannot access non-static data members inside a static method.

200

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 200

static string doubleToString(double inValue);
static double stringToDouble(const string& inString);

protected:

double mValue;
string mString;

};

The const specification is part of the method prototype and must accompany its definition as well:

double SpreadsheetCell::getValue() const
{

return (mValue);
}
string SpreadsheetCell::getString() const
{

return (mString);
}

Marking a method as const signs a contract with client code guaranteeing that you will not try to
change the internal values of the object within the method. If you try to declare a method const that
actually modifies a data member, the compiler will complain. You also cannot declare a static method
const because it is redundant. Static methods do not have an instance of the class so it would be
impossible for them to change internal values. const works by making it appear inside the method that
you have a const reference to each data member. Thus, if you try to change the data member the com-
piler will flag an error.

A non-const object can call const and non-const methods. However, a const object can only call
const methods. Here are some examples:

SpreadsheetCell myCell(5);

cout << myCell.getValue() << endl; // OK
myCell.setString(“6”); // OK

const SpreadsheetCell& anotherCell = myCell;

cout << anotherCell.getValue() << endl; // OK
anotherCell.setString(“6”); // Compilation Error!

You should get into the habit of declaring const all methods that don’t modify the object so that you can
use references to const objects in your program.

Note that const objects can still be destroyed, and their destructor can be called. You shouldn’t try to
mark the destructor const.

Mutable Data Members
Sometimes you write a method that is “logically” const but happens to change a data member of the
object. This modification has no effect on any user-visible data, but is technically a change, so the com-
piler won’t let you declare the method const. For example, suppose that you want to profile your

201

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 201

spreadsheet application to obtain info about how often data is being read. A crude way to do this would
be to add a counter to the SpreadsheetCell class that counts each call to getValue() or
getString(). Unfortunately, that makes those methods non-const in the compiler’s eyes, which is not
what you intended. The solution is to make your new counter variable mutable, which tells the com-
piler that it’s okay to change it in a const method. Here is the new SpreadsheetCell class definition:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void setValue(double inValue);
double getValue() const;
void setString(const string& inString);
string getString() const;

static string doubleToString(double inValue);
static double stringToDouble(const string& inString);

protected:
double mValue;
string mString;

mutable int mNumAccesses;
};

Here are the definitions for getValue() and getString():

double SpreadsheetCell::getValue() const
{

mNumAccesses++;
return (mValue);

}

string SpreadsheetCell::getString() const
{

mNumAccesses++;
return (mString);

}

Remember to initialize mNumAccesses in all your constructors!

Method Overloading
You’ve already noticed that you can write multiple constructors in a class, all of which have the same
name. These constructors differ only in the number of types of their parameters. You can do the same
thing for any method or function in C++. Specifically, you can overload the function or method name by
using it for multiple functions, as long as the number or types of the parameters differ. For example, in
the SpreadsheetCell class you could rename both setString() and setValue() to set(). The
class definition now looks like this:

202

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 202

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void set(double inValue);
void set(const string& inString);
double getValue() const;
string getString() const;

// Remainder of the class omitted for brevity
};

The implementations of the set() methods stay the same. Note that the double constructor that previ-
ously called setValue() must now call set(). When you write code to call set(), the compiler deter-
mines which version to call based on the parameter you pass: if you pass a string the compiler calls the
string version, if you pass a double the compiler calls the double version.

You might be tempted to do the same thing for getValue() and getString(): rename each of them to
get(). However, that does not compile. C++ does not allow you to overload a method name based only
on the return type of the method because in many cases it would be impossible for the compiler to deter-
mine which version of the method to call. For example, if the return value of the method is not captured
anywhere, the compiler has no way to tell which version of the method you wanted.

Note also that you can overload a method based on const. That is, you can write two methods with the
same name and same parameters, one of which is declared const and one of which is not. The compiler
will call the const method if you have a const object and the non-const method if you have a non-
const object.

Default Parameters
A feature similar to method overloading in C++ is default parameters. You can specify defaults for func-
tion and method parameters in the prototype. If the user specifies those arguments, the defaults are
ignored. If the user omits those arguments, the default values are used. There is a limitation, though: you
can only provide defaults for a continuous list of parameters starting from the rightmost parameter.
Otherwise, the compiler would not be able to match missing arguments to default parameters. Default
parameters are most useful in constructors. For example, you can assign default values to the width and
height in your Spreadsheet constructor:

class Spreadsheet
{

public:

Spreadsheet(const SpreadsheetApplication& theApp, int inWidth = kMaxWidth,
int inHeight = kMaxHeight);

Spreadsheet(const Spreadsheet& src);
~Spreadsheet();
Spreadsheet& operator=(const Spreadsheet& rhs);

203

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 203

void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

int getId();

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
// Omitted for brevity

};

The implementation of the Spreadsheet constructor stays the same. Note that you specify the default
parameters only in the method declaration, but not in the definition.

Now you can call the Spreadsheet constructor with one, two, or three arguments even though there is
only one noncopy constructor:

SpreadsheetApplication theApp;
Spreadsheet s1(theApp);
Spreadsheet s2(theApp, 5);
Spreadsheet s3(theApp, 5, 6);

A constructor with defaults for all its parameters can function as a default constructor. That is, you can
construct an object of that class without specifying any arguments. If you try to declare both a default
constructor and a multiargument constructor with defaults for all its parameters, the compiler will com-
plain because it won’t know which constructor to call if you don’t specify any arguments.

Note that anything you can do with default parameters you can do with method overloading. You could
write three different constructors, each of which takes a different number of parameters. However,
default parameters allow you to write only one constructor to take three different numbers of argu-
ments. You should use the mechanism with which you are most comfortable.

Inline Methods
C++ gives you the ability to recommend that a call to a method or function should not actually be a
method or function call. Instead, the compiler should insert the method or function body directly into
the code where the method or function call is made. This process is called inlining, and methods or func-
tions that want this behavior are called inline methods or functions. The process is just a safer version
of #define macros.

You can specify an inline method or function by placing the inline keyword in front of its name in
the function or method definition. For example, you might want to make the setter and accessor meth-
ods of the SpreadsheetCell class inline, in which case you would define them like this:

inline double SpreadsheetCell::getValue() const
{

mNumAccesses++;
return (mValue);

}

204

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 204

inline string SpreadsheetCell::getString() const
{

mNumAccesses++;
return (mString);

}

Now, the compiler has to option to replace calls to getValue() and getString() with the actual
method body instead of generating code to make a function call.

There is one major caveat: definitions of inline methods and functions must be available in every
source file in which they are called. That makes sense if you think about it: how can the compiler substi-
tute the function body if it can’t see the function definition? Thus, if you write inline functions or
methods you should place the definitions in a header file along with their prototypes. For methods, this
means placing the definitions in the .h file that includes the class definition. This placement is perfectly
safe: the linker doesn’t complain about multiple definitions of the same method. It’s just like a #define
macro in this sense.

C++ provides an alternate syntax for declaring inline methods that doesn’t use the inline keyword at
all. Instead, you place the method definition directly in the class definition. Here is a SpreadsheetCell
class definition with this syntax:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void set(double inValue);
void set(const string& inString);

double getValue() const {mNumAccesses++; return (mValue); }
string getString() const {mNumAccesses++; return (mString); }

static string doubleToString(double inValue);
static double stringToDouble(const string& inString);

protected:
double mValue;
string mString;

mutable int mNumAccesses;
};

Many C++ programmers discover the inline method syntax and employ it without understanding the
ramifications of making a method inline. First, there are many restrictions on which methods can be
inline. Compilers will only inline the simplest methods and functions. If you define an inline
method that the compiler doesn’t want to inline, it may silently ignore the directive. Second, inline
methods can lead to code bloat. The body of the methods are reproduced everywhere they are called,
increasing the size of your program executable. Thus, you should use inline methods and functions
sparingly.

205

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 205

Nested Classes
Class definitions can contain more than just methods and members. You can also write nested classes
and structs, declare typedefs, or create enumerated types. Anything declared inside a class is in the
scope of that class. If it is public, you can access it outside the class by scoping it with the ClassName::
scope resolution syntax.

You can provide a class definition inside another class definition. For example, you might decide that the
SpreadsheetCell class is really part of the Spreadsheet class. You could define both of them like this:

class Spreadsheet
{

public:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
void set(double inValue);
void set(const string& inString);

double getValue() const {mNumAccesses++; return (mValue); }
string getString() const {mNumAccesses++; return (mString); }

static string doubleToString(double inValue);
static double stringToDouble(const string& inString);

protected:
double mValue;
string mString;

mutable int mNumAccesses;
};

Spreadsheet(const SpreadsheetApplication& theApp, int inWdith = kMaxWidth,
int inHeight = kMaxHeight);

Spreadsheet(const Spreadsheet& src);
~Spreadsheet();
Spreadsheet& operator=(const Spreadsheet& rhs);

// Remainder of Spreadsheet declarations omitted for brevity
};

Now, the SpreadsheetCell class is defined inside the Spreadsheet class, so anywhere you
refer to a SpreadsheetCell outside of the Spreadsheet class you must qualify the name with
the Spreadsheet:: scope. This applies even to the method definitions. For example, the default
constructor now looks like this:

206

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 206

Spreadsheet::SpreadsheetCell::SpreadsheetCell() : mValue(0), mNumAccesses(0)
{
}

This syntax can quickly become clumsy. For example, the definition of the SpreadsheetCell assign-
ment operator now looks like this:

Spreadsheet::SpreadsheetCell& Spreadsheet::SpreadsheetCell::operator=(
const SpreadsheetCell& rhs)

{
if (this == &rhs) {

return (*this);
}
mValue = rhs.mValue;
mString = rhs.mString;
mNumAccesses = rhs.mNumAccesses;
return (*this);

}

In fact, you must even use the syntax for return types (but not parameters) of methods in the
Spreadsheet class itself:

Spreadsheet::SpreadsheetCell Spreadsheet::getCellAt(int x, int y)
{

SpreadsheetCell empty;

if (!inRange(x, mWidth) || !inRange(y, mHeight)) {
return (empty);

}
return (mCells[x][y]);

}

You can avoid the clumsy syntax by using a typedef to rename Spreadsheet::SpreadsheetCell to
something more manageable like SCell:

typedef Spreadsheet::SpreadsheetCell SCell;

This typedef should go outside the Spreadsheet class definition, or else you will have to qualify the
typedef name itself with Spreadsheet:: to get Spreadsheet::SCell. That wouldn’t do you much
good!

Now you can write your constructor like this:

SCell::SpreadsheetCell() : mValue(0), mNumAccesses(0)
{
}

Normal access control applies to nested class definitions. If you declare a private or protected nested
class, you can only use it inside the outer class.

You should generally use nested class definitions only for trivial classes. It is really too clumsy for some-
thing like the SpreadsheetCell class.

207

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 207

Friends
C++ allows classes to declare that other classes or nonmember functions are friends, and can access
protected and private data members and methods. For example, the SpreadsheetCell class could
specify that the Spreadsheet class is its “friend” like this:

class SpreadsheetCell
{

public:
friend class Spreadsheet;

// Remainder of the class omitted for brevity
};

Now all the methods of the Spreadsheet class can access the private and protected data and mem-
bers of the SpreadsheetCell class.

Similarly, you can specify that one or more functions or members of another class are friends. For
example, you might want to write a function to verify that the value and the string of a
SpreadsheetCell object are really in synch. You might want this verification routine to be outside the
SpreadsheetCell class to model an external audit, but the function should be able to access the inter-
nal data members of the object in order to check it properly. Here is the SpreadsheetCell class defini-
tion with a friend checkSpreadsheetCell() function:

class SpreadsheetCell
{

public:
// Omitted for brevity

friend bool checkSpreadsheetCell(const SpreadsheetCell &cell);

// Omitted for brevity
};

The friend declaration in the class serves as the function’s prototype. There’s no need to write the
prototype elsewhere (although it’s harmless to do so).

Here is the function definition:

bool checkSpreadsheetCell(const SpreadsheetCell &cell)
{

return (SpreadsheetCell::stringToDouble(cell.mString) == cell.mValue);
}

You write this function just like any other function, except that you can directly access private and
protected data members of the SpreadsheetCell class. You don’t repeat the friend keyword on the
function definition.

friend classes and methods are easy to abuse; they allow you to violate the principle of abstraction by
exposing internals of your class to other classes or functions. Thus, you should use them only in limited
circumstances such as operator overloading.

208

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 208

Operator Overloading
You often want to perform operations on objects such as adding them, comparing them, or streaming
them to or from files. For example, spreadsheets are really only useful when you can perform arithmetic
actions on them such as summing an entire row of cells.

Implementing Addition
In true object-oriented fashion, SpreadsheetCell objects should be able to add themselves to other
SpreadsheetCell objects. Adding a cell to another cell produces a third cell with the result. It doesn’t
change either of the original cells. The meaning of addition for SpreadsheetCells is the addition of the
values of the cells. The string representations are ignored.

First Attempt: The add Method
You can declare and define an add method for your SpreadsheetCell class like this:

class SpreadsheetCell
{

public:
// Omitted for brevity

const SpreadsheetCell add(const SpreadsheetCell& cell) const;

// Omitted for brevity
};

This method adds two cells together, returning a new third cell whose value is the sum of the first two. It
is declared const and takes a reference to a const SpreadsheetCell because add() does not change
either of the source cells. It returns a const SpreadsheetCell because you don’t want users to change
the return value. They should just assign it to another object. add() is a method, so it is called on one
object and passed another. Here is the implementation:

const SpreadsheetCell SpreadsheetCell::add(const SpreadsheetCell& cell) const
{

SpreadsheetCell newCell;
newCell.set(mValue + cell.mValue); // call set to update mValue and mString
return (newCell);

}

Note that the implementation creates a new SpreadsheetCell called newCell and returns a copy of
that cell. That only works because you wrote a copy constructor for this class. You might be tempted to
return a reference to the cell instead. However, that will not work because as soon as the add() method
ends and newCell goes out of scope it will be destroyed. The reference that you returned will then be a
dangling reference.

You can use the add method like this:

SpreadsheetCell myCell(4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell.add(anotherCell);

That works, but it’s a bit clumsy. You can do better.

209

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 209

Second Attempt: Overloaded operator+ as a Method
It would be convenient to be able to add two cells with the plus sign the way that you add two ints or
two doubles. Something like this:

SpreadsheetCell myCell(4), anotherCell(5);
SpreadsheetCell aThirdCell = myCell + anotherCell;

Luckily, C++ allows you to write your own version of the plus sign, called the addition operator, to work
correctly with your classes. To do that you write a method with the name operator+ that looks like this:

class SpreadsheetCell
{

public:
// Omitted for brevity

const SpreadsheetCell operator+(const SpreadsheetCell& cell) const;

// Omitted for brevity

};

The definition of the method is identical to the implementation of the add() method:

const SpreadsheetCell SpreadsheetCell::operator+(const SpreadsheetCell& cell)
const
{

SpreadsheetCell newCell;
newCell.set(mValue + cell.mValue); // Call set to update mValue and mString.
return (newCell);

}

Now you can add two cells together using the plus sign as shown previously!

This syntax takes a bit of getting used to. Try not to worry too much about the strange method name
operator+ — it’s just a name like foo or add. In order to understand the rest of the syntax, it helps to
understand what’s really going on. When your C++ compiler parses a program and encounters an oper-
ator, such as +, -, =, or <<, it tries to find a function or method with the name operator+, operator-,
operator=, or operator<<, respectively, that takes the appropriate parameters. For example, when the
compiler sees the following line, it tries to find either a method in the SpreadsheetCell class named
operator+ that takes another SpreadsheetCell object or a global function named operator+ that
takes two SpreadsheetCell objects:

SpreadsheetCell aThirdCell = myCell + anotherCell;

Note that there’s no requirement that operator+ take as a parameter an object of the same type as the
class for which it’s written. You could write an operator+ for SpreadsheetCells that takes a
Spreadsheet to add to the SpreadsheetCell. That wouldn’t make sense to the programmer, but the
compiler would allow it.

Note also that you can give operator+ any return value you want. Operator overloading is a form of
function overloading, and recall that function overloading does not look at the return type of the function.

210

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 210

Implicit Conversions
Surprisingly, once you’ve written the operator+ shown earlier, not only can you add two cells together,
you can also add a cell to a string, a double, or an int!

SpreadsheetCell myCell(4), aThirdCell;
string str = “hello”;

aThirdCell = myCell + str;
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

The reason this code works is that the compiler does more to try to find an appropriate operator+ than
just look for one with the exact types specified. The compiler also tries to find an appropriate conversion
for the types so that an operator+ can be found. Constructors that take the type in question are appro-
priate converters. In the preceding example, when the compiler sees a SpreadsheetCell trying to add
itself to double, it finds the SpreadsheetCell constructor that takes a double and constructs a tempo-
rary SpreadsheetCell object to pass to operator+. Similarly, when the compiler sees the line trying
to add a SpreadsheetCell to a string, it calls the string SpreadsheetCell constructor to create a
temporary SpreadsheetCell to pass to operator+.

This implicit conversion behavior is usually convenient. However, in the preceding example, it doesn’t
really make sense to add a SpreadsheetCell to a string. You can prevent the implicit construction of
a SpreadsheetCell from a string by marking that constructor with the explicit keyword:

class SpreadsheetCell
{

public:
SpreadsheetCell();
SpreadsheetCell(double initialValue);
explicit SpreadsheetCell(const string& initialValue);
SpreadsheetCell(const SpreadsheetCell& src);
SpreadsheetCell& operator=(const SpreadsheetCell& rhs);

// Remainder omitted for brevity
};

The explicit keyword goes only in the class definition, and only makes sense when applied to con-
structors with exactly one argument.

Third Attempt: Global Operator+
Implicit conversions allow you to use an operator+ method to add your SpreadsheetCell objects to
ints and doubles. However, the operator is not commutative, as shown in the following code:

aThirdCell = myCell + 4; // Works fine.
aThirdCell = myCell + 5.6; // Works fine.

aThirdCell = 4 + myCell; // FAILS TO COMPILE!
aThirdCell = 5.6 + myCell; // FAILS TO COMPILE!

The implicit conversion works fine when the SpreadsheetCell object is on the left of the operator, but
doesn’t work when it’s on the right. Addition is supposed to be commutative, so something is wrong
here. The problem is that the operator+ method must be called on a SpreadsheetCell object, and that

211

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 211

object must be on the left-hand side of the operator+. That’s just the way the C++ language is defined.
So, there’s no way you can get the above code to work with an operator+ method.

However, you can get it to work if you replace the in-class operator+ with a global operator+ func-
tion that is not tied to any particular object. The function looks like this:

const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)

{
SpreadsheetCell newCell;
newCell.set(lhs.mValue + rhs.mValue); // Call set to update mValue and mString.
return (newCell);

}

Now all four of the addition lines work as you expect:

aThirdCell = myCell + 4; // Works fine.
aThirdCell = myCell + 5.6; // Works fine.

aThirdCell = 4 + myCell; // Works fine.
aThirdCell = 5.6 + myCell; // Works fine.

Note that the implementation of the global operator+ accesses protected data members of
SpreadsheetCell objects. Therefore, it must be a friend function of the SpreadsheetCell class:

class SpreadsheetCell
{

public:
// Omitted for brevity

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

//Omitted for brevity
};

You might be wondering what happens if you write the following code:

aThirdCell = 4.5 + 5.5;

It compiles and runs, but it’s not calling the operator+ you wrote. It does normal double addition of
4.5 and 5.5, and then constructs a temporary SpreadsheetCell object with the double constructor,
which it assigns to aThirdCell.

Third time’s the charm. A global operator+ is the best you can do in C++.

Overloading Arithmetic Operators
Now that you understand how to write operator+, the rest of the basic arithmetic operators are
straightforward. Here are declarations of -, *, and / (you can also overload %, but it doesn’t make sense
for the double values stored in SpreadsheetCells):

212

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 212

class SpreadsheetCell
{

public:

// Omitted for brevity

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator-(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator*(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator/(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

// Omitted for brevity
};

Here are the implementations. The only tricky aspect is remembering to check for division by 0. Although
not mathematically correct, this implementation sets the result to 0 if division by zero is detected:

const SpreadsheetCell operator-(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)

{
SpreadsheetCell newCell;
newCell.set(lhs.mValue - rhs.mValue); // Call set to update mValue and mString.
return (newCell);

}

const SpreadsheetCell operator*(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)

{
SpreadsheetCell newCell;
newCell.set(lhs.mValue * rhs.mValue); // Call set to update mValue and mString.
return (newCell);

}

const SpreadsheetCell operator/(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs)

{
SpreadsheetCell newCell;
if (rhs.mValue == 0) {

newCell.set(0); // Call set to update mValue and mString.
} else {

newCell.set(lhs.mValue / rhs.mValue); // Call set to update mValue
// and mString.

}
return (newCell);

}

C++ does not require you to actually implement multiplication in operator*, division in operator/,
and so on. You could implement multiplication in operator/, division in operator+, and so forth.
However, that would be extremely confusing, and there is no good reason to do so except as a practical
joke. Whenever possible, stick to the commonly used operator meanings in your implementations.

213

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 213

Overloading the Arithmetic Shorthand Operators
In addition to the basic arithmetic operators, C++ provides shorthand operators such as += and -=. You
might assume that writing operator+ for your class provides operator+= also. No such luck. You have
to overload the shorthand arithmetic operators explicitly. These operators differ from the basic arith-
metic operators in that they change the object on the left-hand side of the operator instead of creating a
new object. A second, subtler, difference is that, like the assignment operator, they generate a result that
is a reference to the modified object.

The arithmetic operators always require an object on the left-hand side, so you should write them as
methods, not as global functions. Here are the declarations for the SpreadsheetCell class:

class SpreadsheetCell
{

public:
// Omitted for brevity
friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator-(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator*(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend const SpreadsheetCell operator/(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
SpreadsheetCell& operator+=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator*=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator/=(const SpreadsheetCell& rhs);

// Omitted for brevity
};

Here are the implementations:

SpreadsheetCell& SpreadsheetCell::operator+=(const SpreadsheetCell& rhs)
{

set(mValue + rhs.mValue); // Call set to update mValue and mString.
return (*this);

}

SpreadsheetCell& SpreadsheetCell::operator-=(const SpreadsheetCell& rhs)
{

set(mValue - rhs.mValue); // Call set to update mValue and mString.
return (*this);

}

SpreadsheetCell& SpreadsheetCell::operator*=(const SpreadsheetCell& rhs)
{

set(mValue * rhs.mValue); // Call set to update mValue and mString.
return (*this);

}

SpreadsheetCell& SpreadsheetCell::operator/=(const SpreadsheetCell& rhs)
{

214

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 214

set(mValue / rhs.mValue); // Call set to update mValue and mString.
return (*this);

}

The shorthand arithmetic operators are combinations of the basic arithmetic and the assignment opera-
tors. With the above definitions, you can now write code like this:

SpreadsheetCell myCell(4), aThirdCell(2);
aThirdCell -= myCell;
aThirdCell += 5.4;

You cannot, however, write code like this (which is a good thing!):

5.4 += aThirdCell;

Overloading Comparison Operators
The comparison operators, such as >, <, and ==, are another useful set of operators to define for your
classes. Like the basic arithmetic operators, they should be global friend functions so that you can use
implicit conversion on both the left-hand side and right-hand side of the operator. The comparison oper-
ators all return a bool. Of course, you can change the return type, but we don’t recommend it. Here are
the declarations and definitions:

class SpreadsheetCell
{

public:
// Omitted for brevity

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator-(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator*(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator/(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

SpreadsheetCell& operator+=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator*=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator/=(const SpreadsheetCell& rhs);
friend bool operator==(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend bool operator<(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend bool operator>(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend bool operator!=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend bool operator<=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);
friend bool operator>=(const SpreadsheetCell& lhs,

const SpreadsheetCell& rhs);

215

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 215

// Omitted for brevity
};

bool operator==(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue == rhs.mValue);
}

bool operator<(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue < rhs.mValue);
}

bool operator>(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue > rhs.mValue);
}

bool operator!=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue != rhs.mValue);
}

bool operator<=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue <= rhs.mValue);
}

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (lhs.mValue >= rhs.mValue);
}

In classes with more data members, it might be painful to compare each data member. However, once
you’ve implemented == and <, you can write the rest of the comparison operators in terms of those two.
For example, here is a definition of operator>= that uses operator<:

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{

return (!(lhs < rhs));
}

You can use these operators to compare SpreadsheetCells to other SpreadsheetCells, and to
doubles and ints:

if (myCell > aThirdCell || myCell < 10) {
cout << myCell.getValue() << endl;

}

Building Types with Operator Overloading
Many people find the syntax of operator overloading tricky and confusing, at least at first. The irony
is that it’s supposed to make things simpler. As you’ve discovered, that doesn’t mean simpler for the

216

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 216

person writing the class, but simpler for the person using the class. The point is to make your new
classes as similar as possible to built-in types such as int and double: it’s easier to add objects using +
than to remember whether the method name you should call is add() or sum().

At this point, you might be wondering exactly which operators you can overload. The answer is “almost
all of them — even some you’ve never heard of.” You have actually just scratched the surface: you’ve
seen the assignment operator in the section on object life cycles, the basic arithmetic operators, the short-
hand arithmetic operators, and the comparison operators. Overloading the stream insertion and extrac-
tion operators is also useful. In addition, there are some tricky, but interesting, things you can do with
operator overloading that you might not anticipate at first. The STL uses operator overloading exten-
sively. Chapter 16 explains how and when to overload the rest of the operators. Chapters 21 to 23 cover
the STL.

Pointers to Methods and Members
Recall that you can create and use pointers to both variables and functions (if you need a refresher on
pointers or function pointers, consult Chapter 13). Now, consider pointers to class members and meth-
ods. It’s perfectly legitimate in C++ to take the addresses of class members and methods in order to
obtain pointers to them. However, remember that you can’t access a non-static member or call a non-
static method without an object. The whole point of class members and methods is that they exist on a
per-object basis. Thus, when you want to call the method or access the member via the pointer, you must
dereference the pointer in the context of an object. Here is an example:

SpreadsheetCell myCell;
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;

cout << (myCell.*methodPtr)() << endl;

Don’t panic at the syntax. The second line declares a variable called methodPtr of type pointer to a
const method that takes no arguments and returns a double. At the same time, it initializes this vari-
able to point to the getValue() method of the SpreadsheetCell class. This syntax is quite similar to
declaring a simple function pointer, except for the addition of SpreadsheetCell:: before the
*methodPtr. That just means that this method pointer points to a method of the SpreadsheetCell
class.

The second line calls the getValue() method (via the methodPtr pointer) on the myCell object. Note
the use of parentheses surrounding cell.*methodPtr. They are needed because () has higher prece-
dence than *.

Most of the time C++ programmers simplify the first line by using a typedef:

SpreadsheetCell myCell;
typedef double (SpreadsheetCell::*PtrToGet) () const;
PtrToGet methodPtr = &SpreadsheetCell::getValue;

cout << (myCell.*methodPtr)() << endl;

Provide operator overloading as a service to clients of your class.

217

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 217

Pointers to methods and members usually won’t come up in your programs. However, it’s important to
keep in mind that you can’t dereference a pointer to a non-static method or member without an object.
Every so often, you’ll find yourself wanting to try something like passing a pointer to a non-static
method to a function such as qsort() that requires a function pointer, which simply won’t work.

Note that C++ permits you to dereference a pointer to a static member or method without an object.

Chapter 22 discusses pointers to methods further in the context of the STL.

Building Abstract Classes
Now that you understand all the gory syntax of writing classes in C++, it helps to revisit the design prin-
ciples from Chapters 3 and 5. Classes are the main unit of abstraction in C++. You should apply the prin-
ciples of abstraction to your classes to separate the interface from the implementation as much as
possible. Specifically, you should make all data members protected or private and provide getter and
setter methods for them. This is how the SpreadsheetCell class is implemented. mValue and mString
are protected, and set(), getValue(), and getString() retrieve those values. That way you can keep
mValue and mString in synch internally without worrying about clients delving in and changing those
values.

Using Interface and Implementation Classes
Even with the preceding measures and the best design principles, the C++ language is fundamentally
unfriendly to the principle of abstraction. The syntax requires you to combine your public interfaces
and private (or protected) data members and methods together in one class definition, thereby
exposing some of the internal implementation details of the class to its clients.

The good news is that you can make your interfaces a lot cleaner and hide your implementation details.
The bad news is that it takes a bit of hacking. The basic principle is to define two classes for every class
you want to write: the interface class and the implementation class. The implementation class is identical
to the class you would have written if you were not taking this approach. The interface class presents
public methods identical to those of the implementation class, but it only has one data member: a
pointer to an implementation class object. The interface class method implementations simply call the
equivalent methods on the implementation class object. To use this approach with the Spreadsheet
class, simply rename the old Spreadsheet class to SpreadsheetImpl. Here is the new
SpreadsheetImpl class (which is identical to the old Spreadsheet class, but with a different name):

// SpreadsheetImpl.h
#include “SpreadsheetCell.h”

class SpreadsheetApplication; // Forward reference

class SpreadsheetImpl
{

public:

SpreadsheetImpl(const SpreadsheetApplication& theApp,
int inWidth = kMaxWidth, int inHeight = kMaxHeight);

SpreadsheetImpl(const SpreadsheetImpl& src);

218

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 218

~SpreadsheetImpl();
SpreadsheetImpl &operator=(const SpreadsheetImpl& rhs);

void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);

int getId();

static const int kMaxHeight = 100;
static const int kMaxWidth = 100;

protected:
bool inRange(int val, int upper);
void copyFrom(const SpreadsheetImpl& src);

int mWidth, mHeight;
int mId;
SpreadsheetCell** mCells;
const SpreadsheetApplication& mTheApp;

static int sCounter;
};

Then define a new Spreadsheet class that looks like this:

#include “SpreadsheetCell.h”

// Forward declarations
class SpreadsheetImpl;
class SpreadsheetApplication;

class Spreadsheet
{

public:

Spreadsheet(const SpreadsheetApplication& theApp, int inWidth,
int inHeight);

Spreadsheet(const SpreadsheetApplication& theApp);
Spreadsheet(const Spreadsheet& src);
~Spreadsheet();
Spreadsheet& operator=(const Spreadsheet& rhs);
void setCellAt(int x, int y, const SpreadsheetCell& inCell);
SpreadsheetCell getCellAt(int x, int y);
int getId();

protected:
SpreadsheetImpl* mImpl;

};

This class now contains only one data member: a pointer to a SpreadsheetImpl. The public methods
are identical to the old Spreadsheet with one exception: the Spreadsheet constructor with default
arguments has been split into two constructors because the values for the default arguments were const
members that are no longer in the Spreadsheet class. Instead, the SpreadsheetImpl class will provide
the defaults.

219

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 219

The implementations of the Spreadsheet methods such as setCellAt() and getCellAt() just pass
the request on to the underlying SpreadsheetImpl object:

void Spreadsheet::setCellAt(int x, int y, const SpreadsheetCell& inCell)
{

mImpl->setCellAt(x, y, inCell);
}

SpreadsheetCell Spreadsheet::getCellAt(int x, int y)
{

return (mImpl->getCellAt(x, y));
}

int Spreadsheet::getId()
{

return (mImpl->getId());
}

The constructors for the Spreadsheet must construct a new SpreadsheetImpl to do its work, and the
destructor must free the dynamically allocated memory. Note that the SpreadshetImpl class has only
one constructor with default arguments. Both normal constructors in the Spreadsheet class call that
constructor on the SpreadsheetImpl class:

Spreadsheet::Spreadsheet(const SpreadsheetApplication &theApp, int inWidth,
int inHeight)

{
mImpl = new SpreadsheetImpl(theApp, inWidth, inHeight);

}

Spreadsheet::Spreadsheet(const SpreadsheetApplication& theApp)
{

mImpl = new SpreadsheetImpl(theApp);
}

Spreadsheet::Spreadsheet(const Spreadsheet& src)
{

mImpl = new SpreadsheetImpl(*(src.mImpl));
}

Spreadsheet::~Spreadsheet()
{

delete (mImpl);
mImpl = NULL;

}

The copy constructor looks a bit strange because it needs to copy the underlying SpreadshetImpl from
the source spreadsheet. Because the copy constructor takes a reference to a SpreadsheetImpl, not a
pointer, you must dereference the mImpl pointer to get to the object itself to the constructor call can take
its reference.

The Spreadsheet assignment operator must similarly pass on the assignment to the underlying
SpreadsheetImpl:

220

Chapter 9

12_574841 ch09.qxd 12/15/04 3:42 PM Page 220

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{

*mImpl = *(rhs.mImpl);
return (*this);

}

The first line in the assignment operator looks a little strange. You might be tempted to write this line
instead:

mImpl = rhs.mImpl; // Incorrect assignment!

That code will compile and run, but it doesn’t do what you want. It just copies pointers so that the left-
hand side and right-hand side Spreadsheets now both possess pointers to the same SpreadsheetImpl.
If one of them changes it, the change will show up in the other. If one of them destroys it, the other
will be left with a dangling pointer. Therefore, you can’t just assign the pointers. You must force the
SpreadsheetImpl assignment operator to run, which only happens when you copy direct objects.
By dereferencing the mImpl pointers, you force direct object assignment, which causes the assignment
operator to be called. Note that you can only do this because you already allocated memory for
mImpl in the constructor.

This technique to truly separate interface from implementation is powerful. Although a bit clumsy at
first, once you get used to it you will find it natural to work with. However, it’s not common practice in
most workplace environments, so you might find some resistance to trying it from your coworkers.

Summary
This chapter, along with Chapter 8, provided all the tools you need to write solid, well-designed classes,
and to use objects effectively.

You discovered that dynamic memory allocation in objects presents new challenges: you must free the
memory in the destructor, copy the memory in the copy constructor, and both free and copy memory in
the assignment operator. You learned how to prevent assignment and pass-by-value by declaring a
private copy constructor and assignment operator.

You learned more about different kinds of data members, including static, const, const reference,
and mutable members. You also learned about static, inline, and const methods, and method over-
loading and default parameters. The chapter also described nested class definitions and friend classes
and functions.

You encountered operator overloading, and learned how to overload the arithmetic and comparison
operators, both as global friend functions and as class methods.

Finally, you learned how to take abstraction to an extreme by providing separate interface and imple-
mentation classes.

Now that you’re fluent in the language of object-oriented programming, it’s time to tackle inheritance
and templates, which are covered in Chapters 10 and 11, respectively.

221

Mastering Classes and Objects

12_574841 ch09.qxd 12/15/04 3:42 PM Page 221

12_574841 ch09.qxd 12/15/04 3:42 PM Page 222

Discovering Inheritance
Techniques

Without inheritance, classes would simply be data structures with associated behaviors. That
alone would be a powerful improvement over procedural languages, but inheritance adds an
entirely new dimension. Through inheritance, you can build new classes based on existing ones. In
this way, your classes become reusable and extensible components. This chapter will teach you the
different ways to leverage the power of inheritance. You will learn about the specific syntax of
inheritance as well as sophisticated techniques for making the most of inheritance.

After finishing this chapter, you will understand:

❑ How to extend a class through inheritance

❑ How to employ inheritance to reuse code

❑ How to build interactions between superclasses and subclasses

❑ How to use inheritance to achieve polymorphism

❑ How to work with multiple inheritance

❑ How to deal with unusual problems in inheritance

The portion of this chapter relating to polymorphism draws heavily on the spreadsheet example
discussed in Chapters 8 and 9. If you have not read Chapters 8 and 9, you may wish to skim the
sample code in those chapters to get a background on this example. This chapter also refers to the
object-oriented methodologies described in Chapter 3. If you have not read that chapter and are
unfamiliar with the theories behind inheritance, you should review Chapter 3 before continuing.

13_574841 ch10.qxd 12/15/04 3:42 PM Page 223

Building Classes with Inheritance
In Chapter 3, you learned that an “is-a” relationship recognizes the pattern that real-world objects tend
to exist in hierarchies. In programming, that pattern becomes relevant when you need to write a class
that builds on, or slightly changes, another class. One way to accomplish this aim is to copy code from
one class and paste it into the other. By changing the relevant parts or amending the code, you can
achieve the goal of creating a new class that is slightly different from the original. This approach, how-
ever, leaves an OOP programmer feeling sullen and slightly annoyed for the following reasons:

❑ A bug fix to the original class will not be reflected in the new class because the two classes con-
tain completely separate code.

❑ The compiler does not know about any relationship between the two classes, so they are not
polymorphic — they are not just different variations on the same thing.

❑ This approach does not build a true is-a relationship. The new class is very similar to the origi-
nal because it shares code, not because it really is the same type of object.

❑ The original code might not be obtainable. It may exist only in a precompiled binary format, so
copying and pasting the code might be impossible.

Not surprisingly, C++ provides built-in support for defining a true is-a relationship. The characteristics
of C++ is-a relationships are described in the following section.

Extending Classes
When you write a class definition in C++, you can tell the compiler that your class is inheriting from, or
extending, an existing class. By doing so, your class will automatically contain the data members and
methods of the original class, which is called the parent class or superclass. Extending an existing class
gives your class (which is now called a derived class or a subclass) the ability to describe only the ways in
which it is different from the parent class.

To extend a class in C++, you specify the class you are extending when you write the class definition. To
show the syntax for inheritance, we use two classes called Super and Sub. Don’t worry — more interest-
ing examples are coming later. To begin, consider the following definition for the Super class.

class Super
{

public:
Super();

void someMethod();

protected:
int mProtectedInt;

private:
int mPrivateInt;

};

If you wanted to build a new class, called Sub, which inherits from Super, you would tell the compiler
that Sub derives from Super with the following syntax:

224

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 224

class Sub : public Super
{

public:
Sub();

void someOtherMethod();
};

Sub itself is a full-fledged class that just happens to share the characteristics of the Super class. Don’t
worry about the word public for now — its meaning is explained later in this chapter. Figure10-1
shows the simple relationship between Sub and Super. You can declare objects of type Sub just like any
other object. You could even define a third class that subclasses Sub, forming a chain of classes, as shown
in Figure 10-2.

Figure 10-1

Figure 10-2

Sub doesn’t have to be the only subclass of Super. Additional classes can also subclass Super, effec-
tively becoming siblings to Sub, as shown in Figure 10-3.

Figure 10-3

Clients’ View of Inheritance
To a client, or another part of your code, an object of type Sub is also an object of type Super because
Sub inherits from Super. This means that all the public methods and data members of Super and all
the public methods and data members of Sub are available.

Super

Sub Foo

Super

Sub

SubSub

Super

Sub

225

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 225

Code that uses the subclass does not need to know which class in your inheritance chain has defined a
method in order to call it. For example, the following code calls two methods of a Sub object even
though one of the methods was defined by the Super class.

Sub mySub;

mySub.someMethod();
mySub.someOtherMethod();

It is important to understand that inheritance only works in one direction. The Sub class has a very
clearly defined relationship to the Super class, but the Super class, as written, doesn’t know anything
about the Sub class. That means that objects of type Super do not support public methods and data
members of Sub because Super is not a Sub.

The following code will not compile because the Super class does not contain a public method called
someOtherMethod().

Super mySuper;

mySuper.someOtherMethod(); // BUG! Super doesn’t have a someOtherMethod().

A pointer or reference to an object can refer to an object of the declared class or any of its subclasses. This
tricky subject is explained in detail later in this chapter. The concept to understand at this point is that a
pointer to a Super can actually be pointing a Sub object. The same is true for a reference. The client can
still access only the methods and data members that exist in Super, but through this mechanism, any
code that operates on a Super can also operate on a Sub.

For example, the following code compiles and works just fine even though it initially appears that there
is a type mismatch:

Super* superPointer = new Sub(); // Create a sub, and store it in a super pointer.

Subclass’s View of Inheritance
To the subclass itself, nothing much has changed in terms of how it is written or how it behaves. You can
still define methods and data members on a subclass just as you would on a regular class. The previous
definition of Sub declares a method called someOtherMethod(). Thus, the Sub class augments the
Super class by adding an additional method.

A subclass can access public and protected methods and data members declared in its superclass as
though they were its own, because technically, they are. For example, the implementation of
someOtherMethod() on Sub could make use of the data member mProtectedInt, which was declared
as part of Super. The following code shows this implementation. Accessing a superclass data member or
method is no different than if the data member of method were declared as part of the subclass.

void Sub::someOtherMethod()
{

From the perspective of other code, an object belongs to its defined class as well as
to any superclasses.

226

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 226

cout << “I can access the superclass data member mProtectedInt.” << endl;
cout << “Its value is “ << mProtectedInt << endl;

}

When we introduced access specifiers (public, private, and protected) in Chapter 8, the difference
between private and protected may have been confusing. Now that you understand subclasses, the
difference should be clearer. If a class declares methods or data members as protected, subclasses have
access to them. If they are declared as private, subclasses do not have access.

The following implementation of someOtherMethod() will not compile because the subclass attempts
to access a private data member from the superclass.

void Sub::someOtherMethod()
{

cout << “I can access the superclass data member mProtectedInt.” << endl;
cout << “Its value is “ << mProtectedInt << endl;

cout << “The value of mPrivateInt is “ << mPrivateInt << endl; // BUG!
}

The private access specifier gives you control over how a potential subclass could interact with your
class. In practice, most data members are declared as protected, and most methods are either public
or protected. The reason is that most of the time, you or someone you work with will be extending the
class so you don’t want to shut out any potential uses by making methods or members private.
Occasionally, the private specifier is useful to block subclasses from accessing potentially dangerous
methods. It is also useful when writing classes that external or unknown parties will extend because you
can block access to prevent misuse.

Overriding Methods
As you read in Chapter 3, the main reasons to inherit from a class are to add or replace functionality. The
definition of Sub adds functionality to its parent class by providing an additional method,
someOtherMethod(). The other method, someMethod(), is inherited from Super and behaves in the
subclass exactly as it does in the superclass. In many cases, you will want to modify the behavior of a
class by replacing, or overriding, a method.

How I Learned to Stop Worrying and Make Everything virtual
There is one small twist to overriding methods in C++ and it has to do with the keyword virtual. Only
methods that are declared as virtual in the superclass can be overridden properly by subclasses. The
keyword goes at the beginning of a method declaration as shown in the modified version of Super that
follows.

class Super
{

public:
Super();

From the perspective of a subclass, all public and protected data members and
methods from the superclass are available for use.

227

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 227

virtual void someMethod();

protected:
int mProtectedInt;

private:
int mPrivateInt;

};

The virtual keyword has a few subtleties and is often cited as a poorly designed part of the language.
A good rule of thumb is to just make all of your methods virtual. That way, you won’t have to worry
about whether or not overriding the method will work. The only drawback is a small performance hit.
The subtleties of the virtual keyword are covered toward the end of this chapter, and performance is
discussed further in Chapter 17.

Even though it is unlikely that the Sub class will be extended, it is a good idea to make its methods
virtual as well, just in case.

class Sub : public Super
{

public:
Sub();

virtual void someOtherMethod();
};

Syntax for Overriding a Method
To override a method, you simply redeclare it in the subclass class definition exactly as it was declared
in the superclass. In the subclass’s implementation file, you provide the new definition.

For example, the Super class contains a method called someMethod(). The definition of someMethod()
is provided in Super.cpp and shown here:

void Super::someMethod()
{

cout << “This is Super’s version of someMethod().” << endl;
}

Note that you do not repeat the virtual keyword in front of the method definition.

If you wish to provide a new definition for someMethod() in the Sub class, you must first add it to the
class definition for Sub, as follows:

class Sub : public Super
{

public:
Sub();

As a rule of thumb, make all your methods virtual (including the destructor, but not
constructors) to avoid problems associated with omission of the virtual keyword.

228

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 228

virtual void someMethod(); // Overrides Super’s someMethod()
virtual void someOtherMethod();

};

The new definition of someMethod() is specified along with the rest of Sub’s methods.

void Sub::someMethod()
{

cout << “This is Sub’s version of someMethod().” << endl;
}

Clients’ View of Overridden Methods
With the preceding changes, other code would still call someMethod() the same way it did before. Just
as before, the method could be called on an object of class Super or an object of class Sub. Now, how-
ever, the behavior of someMethod() will vary based on the class of the object.

For example, the following code works just as it did before, calling Super’s version of someMethod():

Super mySuper;

mySuper.someMethod(); // Calls Super’s version of someMethod().

The output of this code is:

This is Super’s version of someMethod().

If the code declares an object of class Sub, the other version will automatically be called.

Sub mySub;

mySub.someMethod(); // Calls Sub’s version of someMethod()

The output this time is:

This is Sub’s version of someMethod().

Everything else about objects of class Sub remains the same. Other methods that might have been inher-
ited from Super will still have the definition provided by Super unless they are explicitly overridden
in Sub.

As you learned earlier, a pointer or reference can refer to an object of a class or any of its subclasses. The
object itself “knows” the class of which it is actually a member, so the appropriate method is called as
long as it was declared virtual. For example, if you have a Super reference that refers to an object that
is really a Sub, calling someMethod() will actually call the subclass’s version, as shown next. This aspect
of overriding will not work properly if you omit the virtual keyword in the superclass.

Sub mySub;
Super& ref = mySub;

ref.someMethod(); // Calls Sub’s version of someMethod()

229

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 229

Remember that even though a superclass reference or pointer knows that it is actually a subclass, you
cannot access subclass methods or members that are not defined in the superclass. The following code
will not compile because a Super reference does not have a method called someOtherMethod().

Sub mySub;
Super& ref = mySub;

mySub.someOtherMethod(); // This is fine.
ref.someOtherMethod(); // BUG

The subclass knowledge characteristic is not true of nonpointer nonreference objects. You can cast or
assign a Sub to a Super because a Sub is a Super. However, the object will lose any knowledge of the
subclass at this point:

Sub mySub;
Super assignedObject = mySub; // Assign Sub to a Super.

assignedObject.someMethod(); // Calls Super’s version of someMethod()

One way to remember this seemingly strange behavior is to imagine what the objects look like in mem-
ory. Picture a Super object as a box taking up a certain amount of memory. A Sub object is a box that
is a little bit bigger because it has everything a Super has plus a bit more. When you have a reference
or pointer to a Sub, the box doesn’t change — you just have a new way of accessing it. However, when
you cast a Sub into a Super, you are throwing out all the “uniqueness” of the Sub class to fit it into a
smaller box.

Inheritance for Reuse
Now that you are familiar with the basic syntax for inheritance, it’s time to explore one of the main rea-
sons that inheritance is an important feature of the C++ language. As you read in Chapter 3, inheritance
is a vehicle that allows you to leverage existing code. This section presents a real-world application of
inheritance for the purposes of code reuse.

The WeatherPrediction Class
Imagine that you are given the task of writing a program to issue simple weather predictions. Weather
predictions may be a little out of your area of expertise as a programmer, so you obtain a third-party
class library that was written to make weather predictions based on the current temperature and the pre-
sent distance between Jupiter and Mars (hey, it’s plausible). This third-party package is distributed as a
compiled library to protect the intellectual property of the prediction algorithms, but you do get to see
the class definition. The class definition for WeatherPrediction is shown here:

Subclasses retain their overridden methods when referred to by superclass pointers
or references. They lose their uniqueness when cast to a superclass object. The loss
of overridden methods and subclass data is called slicing.

230

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 230

// WeatherPrediction.h

/**
* Predicts the weather using proven new-age
* techniques given the current temperature
* and the distance from Jupiter to Mars. If
* these values are not provided, a guess is
* still given but it’s only 99% accurate.
*/

class WeatherPrediction
{

public:
virtual void setCurrentTempFahrenheit(int inTemp);
virtual void setPositionOfJupiter(int inDistanceFromMars);

/**
* Gets the prediction for tomorrow’s temperature
*/

virtual int getTomorrowTempFahrenheit();

/**
* Gets the probability of rain tomorrow. 1 means
* definite rain. 0 means no chance of rain.
*/

virtual double getChanceOfRain();

/**
* Displays the result to the user in this format:
* Result: x.xx chance. Temp. xx
*/

virtual void showResult();

protected:
int mCurrentTempFahrenheit;
int mDistanceFromMars;

};

This class solves most of the problems for your program. However, as is usually the case, it’s not exactly
right for your needs. First, all the temperatures are given in Fahrenheit. Your program needs to operate
in Celsius as well. Also, the showResult() method doesn’t produce a very user-friendly result. It would
be nice to give the user some friendlier information.

Adding Functionality in a Subclass
When you learned about inheritance in Chapter 3, adding functionality was the first technique
described. Fundamentally, your program needs something just like the WeatherPrediction class but
with a few extra bells and whistles. Sounds like a good case for inheritance to reuse code. To begin,
define a new class, MyWeatherPrediction, that inherits from WeatherPrediction.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction
{
};

231

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 231

The class definition above will compile just fine. The MyWeatherPrediction class can already be used
in place of WeatherPrediction. It will provide the same functionality, but nothing new yet.

For the first modification, you might want to add knowledge of the Celsius scale to the class. There is a
bit of a quandary here because you don’t know what the class is doing internally. If all of the internal cal-
culations are made using Fahrenheit, how do you add support for Celsius? One way is to use the sub-
class to act as a go-between, interfacing between the user, who can use either scale, and the superclass,
which only understands Fahrenheit.

The first step in supporting Celsius is to add new methods that allow clients to set the current tempera-
ture in Celsius instead of Fahrenheit and to get tomorrow’s prediction in Celsius instead of Fahrenheit.
You will also need protected helper methods that convert between Celsius and Fahrenheit. These meth-
ods can be static because they are the same for all instances of the class.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction
{

public:
virtual void setCurrentTempCelsius(int inTemp);

virtual int getTomorrowTempCelsius();

protected:
static int convertCelsiusToFahrenheit(int inCelsius);
static int convertFahrenheitToCelsius(int inFahrenheit);

};

The new method follows the same naming convention as the parent class. Remember that from the point
of view of other code, a MyWeatherPrediction object will have all of the functionality defined in both
MyWeatherPrediction and WeatherPrediction. Adopting the parent class’s naming convention pre-
sents a consistent interface.

We will leave the implementation of the Celsius/Fahrenheit conversion methods as an exercise for the
reader — and a fun one at that! The other two methods are more interesting. To set the current tempera-
ture in Celsius, you need to convert the temperature first and then present it to the parent class in units
that it understands.

void MyWeatherPrediction::setCurrentTempCelsius(int inTemp)
{

int fahrenheitTemp = convertCelsiusToFahrenheit(inTemp);
setCurrentTempFahrenheit(fahrenheitTemp);

}

As you can see, once the temperature is converted, the method simply calls the existing functionality
from the superclass. Similarly, the implementation of getTomorrowTempCelsius() uses the parent’s
existing functionality to get the temperature in Fahrenheit, but converts the result before returning it.

int MyWeatherPrediction::getTomorrowTempCelsius()
{

int fahrenheitTemp = getTomorrowTempFahrenheit();
return convertFahrenheitToCelsius(fahrenheitTemp);

}

232

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 232

The two new methods effectively reuse the parent class because they simply “wrap” the existing func-
tionality in a way that provides a new interface for using it.

Of course, you can also add new functionality that is completely unrelated to existing functionality of
the parent class. For example, you could add a method that will retrieve alternative forecasts from the
Internet or a method that will suggest an activity based on the predicted weather.

Replacing Functionality in a Subclass
The other major technique for subclassing is replacing existing functionality. The showResult() method
in the WeatherPrediction class is in dire need of a facelift. MyWeatherPrediction can override this
method to replace the behavior with its own implementation.

The new class definition for MyWeatherPrediction is shown below.

// MyWeatherPrediction.h

class MyWeatherPrediction : public WeatherPrediction
{

public:
virtual void setCurrentTempCelsius(int inTemp);

virtual int getTomorrowTempCelsius();

virtual void showResult();

protected:
static int convertCelsiusToFahrenheit(int inCelsius);
static int convertFahrenheitToCelsius(int inFahrenheit);

};

A possible new user-friendly implementation follows.

void MyWeatherPrediction::showResult()
{

cout << “Tomorrow’s temperature will be “ <<
getTomorrowTempCelsius() << “ degrees Celsius (“ <<
getTomorrowTempFahrenheit() << “ degrees Fahrenheit)” << endl;

cout << “The chance of rain is “ << (getChanceOfRain() * 100) << “ percent”
<< endl;

if (getChanceOfRain() > 0.5) {
cout << “Bring an umbrella!” << endl;

}
}

To clients making use of this class, it’s like the old version of showResult() never existed. As long as
the object is a MyWeatherPrediction object, the new version will be called.

As a result of these changes, MyWeatherPrediction has emerged as a new class with new functionality
tailored to a more specific purpose. Yet, it did not require much code because it leveraged its superclass’s
existing functionality.

233

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 233

Respect Your Parents
When you write a subclass, you need to be aware of the interaction between parent classes and child
classes. Issues such as order of creation, constructor chaining, and casting are all potential sources of
bugs.

Parent Constructors
Objects don’t spring to life all at once; they must be constructed along with their parents and any objects
that are contained within them. C++ defines the creation order as follows:

1. The base class, if any, is constructed.

2. Non-static data members are constructed in the order in which they were declared.

3. The body of the constructor is executed.

These rules can apply recursively. If the class has a grandparent, the grandparent is initialized before the
parent, and so on. The following code shows this creation order. As a reminder, we generally advise
against inlining methods, as we’ve done in the code that follows. In the interest of readable and concise
examples, we have broken our own rule. The proper execution will output the result 123.

#include <iostream>
using namespace std;

class Something
{

public:
Something() { cout << “2”; }

};

class Parent
{

public:
Parent() { cout << “1”; }

};

class Child : public Parent
{

public:
Child() { cout << “3”; }

protected:
Something mDataMember;

};

int main(int argc, char** argv)
{

Child myChild;
}

When the myChild object is created, the constructor for Parent is called first, outputting the string “1”.
Next, mDataMember is initialized, calling the Something constructor which outputs the string “2”.
Finally, the Child constructor is called, which outputs 3.

234

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 234

Note that the Parent constructor was called automatically. C++ will automatically call the default con-
structor for the parent class if one exists. If no default constructor exists in the parent class, or if one does
exist but you wish to use an alternate constructor, you can chain the constructor just as when initializing
data members in the initializer list.

The following code shows a version of Super that lacks a default constructor. The associated version of
Sub must explicitly tell the compiler how to call the Super constructor or the code will not compile.

// Super.h
class Super
{

public:
Super(int i);

};

// Sub.h
class Sub : public Super
{

public:
Sub();

};

// Sub.cpp
Sub::Sub() : Super(7)
{

// Do Sub’s other initialization here.
}

In the preceding code, the Sub constructor passes a fixed value (7) to the Super constructor. Sub could
also pass a variable if its constructor required an argument:

Sub::Sub(int i) : Super(i) {}

Passing constructor arguments from the subclass to the superclass is perfectly fine and quite normal.
Passing data members, however, will not work. The code will compile, but remember that data members
are not initialized until after the superclass is constructed. If you pass a data member as an argument to
the parent constructor, it will be uninitialized.

Parent Destructors
Because destructors cannot take arguments, the language can automatically call the destructor for parent
classes. The order of destruction is conveniently the reverse of the order of construction:

1. The body of the destructor is called.

2. Any data members are destroyed in the reverse order of their construction.

3. The parent class, if any, is destructed.

Again, these rules apply recursively. The lowest member of the chain is always destructed first. The fol-
lowing code adds destructors to the previous example. If executed, this code will output “123321”.

235

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 235

#include <iostream>
using namespace std;

class Something
{

public:
Something() { cout << “2”; }
virtual ~Something() { cout << “2”; }

};

class Parent
{

public:
Parent() { cout << “1”; }
virtual ~Parent() { cout << “1”; }

};

class Child : public Parent
{

public:
Child() { cout << “3”; }
virtual ~Child() { cout << “3”; }

protected:
Something mDataMember;

};

int main(int argc, char** argv)
{

Child myChild;
}

Notice that the destructors are all virtual. As a rule of thumb, all destructors should be declared
virtual. If the preceding destructors were not declared virtual, the code would continue to work
fine. However, if code ever called delete on a superclass pointer that was really pointing to a subclass,
the destruction chain would begin in the wrong place. For example, the following code is similar to the
previous example but the destructors are not virtual. This becomes a problem when a Child object is
accessed as a pointer to a Parent and deleted.

class Something
{

public:
Something() { cout << “2”; }
~Something() { cout << “2”; } // Should be virtual, but will work

};

class Parent
{

public:
Parent() { cout << “1”; }
~Parent() { cout << “1”; } // BUG! Make this virtual!

};

class Child : public Parent
{

236

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 236

public:
Child() { cout << “3”; }
~Child() { cout << “3”; } // Should be virtual, but will work

protected:
Something mDataMember;

};

int main(int argc, char** argv)
{

Parent* ptr = new Child();
delete ptr;

}

The output of this code is a shockingly terse “1231”. When the ptr variable is deleted, only the Parent
destructor is called because the Child destructor was not declared virtual. As a result, the Child
destructor is not called and the destructors for its data members are not called.

Technically, you could fix the above problem by simply making the Parent destructor virtual. The
“virtualness” would automatically be used by any children. However, we advocate making all destruc-
tors virtual so that you never have to worry about it.

Referring to Parent Data
Names can become ambiguous within a subclass, especially when multiple inheritance (see below)
comes into play. C++ provides a mechanism to disambiguate names between classes: the scope resolu-
tion operator. The syntax (two colons) is the same as referencing static data in a class.

When you override a method in a subclass, you are effectively replacing the original as far as other code
is concerned. However, that parent version of the method still exists and you may want to make use of
it. If you simply called the method by name, however, the compiler would assume that you meant the
subclass version. This could easily lead to an infinite loop, as in the example that follows;

Sub::doSomething()
{

cout << “In Sub’s version of doSomething()” << endl;
doSomething(); // BUG! This will recursively call this method!

}

To call the parent’s version of the method explicitly, simply prepend the parent’s name and two colons:

Sub::doSomething()
{

cout << “In Sub’s version of doSomething()” << endl;
Super::doSomething(); // call the parent version.

}

Calling the parent version of the current method is a commonly used pattern in C++. If you have a chain
of subclasses, each might want to perform the operation already defined by the superclass but add their
own additional functionality as well.

Always make your destructors virtual!

237

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 237

For example, imagine a class hierarchy of types of books. A diagram showing such a hierarchy is shown
in Figure 10-4.

Figure 10-4

Since each lower class in the hierarchy further specifies the type of book, a method that gets the descrip-
tion of a book really needs to take all levels of the hierarchy into consideration. This can be accomplished
by chaining to the parent method as above. The following code illustrates this pattern:

#include <iostream>
#include <string>

using namespace std;

class Book
{

public:
virtual string getDescription() { return “Book”; }

};

class Paperback : public Book
{

public:
virtual string getDescription() {

return “Paperback “ + Book::getDescription();
}

};

class Romance : public Paperback
{

public:
virtual string getDescription() {

return “Romance “ + Paperback::getDescription();
}

};

class Technical : public Book
{

public:
virtual string getDescription() {

return “Technical “ + Book::getDescription();
}

};

int main()

Book

Paperback

Romance

Technical

238

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 238

{
Romance novel;
Book book;
cout << novel.getDescription() << endl; // Outputs “Romance Paperback Book”
cout << book.getDescription() << endl; // Outputs “Book”

}

Casting Up and Down
As you have already seen, an object can be cast or assigned to its parent class. If the cast or assignment is
performed on a plain old object, this results in slicing:

Super mySuper = mySub; // SLICE!

Slicing occurs in situations like this because the end result is a Super object, and Super objects lack the
additional functionality defined in the Sub class. However, slicing does not occur if a subclass is assigned
to a pointer or reference to its superclass:

Super& mySuper = mySub; // No slice!

This is generally the correct way to refer to a subclass in terms of its superclass, also called upcasting.
This is always why it’s a good idea to make your methods and functions take references to classes
instead of directly using objects of those classes. By using references, subclasses can be passed in without
slicing.

Casting from a superclass to one of its subclasses, also called downcasting, is often frowned upon by pro-
fessional C++ programmers. The reason is that there is no guarantee that the object really belongs to that
subclass. For example, consider the following code.

void presumptuous(Super* inSuper)
{

Sub* mySub = static_cast<Sub*>(inSuper);
// Proceed to access Sub methods on mySub.

}

If the author of presumptuous() also wrote code that called presumptuous(), everything would prob-
ably be okay because the author knows that the function expects the argument to be of type Sub*.
However, if another programmer were to call presumptuous(), they might pass in a Super*. There are
no compile-time checks that can be done to enforce the type of the argument, and the function blindly
assumes that inSuper is actually a pointer to a Sub.

Downcasting is sometimes necessary, and you can use it effectively in controlled circumstances. If you’re
going to downcast, however, you should use a dynamic_cast, which uses the object’s built-in knowl-
edge of its type to refuse a cast that doesn’t make sense.

The previous example should have been written as follows.

When upcasting, use a pointer or reference to the superclass to avoid slicing.

239

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 239

void lessPresumptuous(Super* inSuper)
{

Sub* mySub = dynamic_cast<Sub*>(inSuper);
if (mySub != NULL) {

// Proceed to access Sub methods on mySub.
}

}

If a dynamic cast fails on a pointer, as above, the pointer’s value will be NULL instead of pointing to non-
sensical data. If a dynamic_cast fails on an object reference, a std::bad_cast exception will be
thrown. For more on casts, see Chapter 12. For more on exceptions, see Chapter 15.

Inheritance for Polymorphism
Now that you understand the relationship between a subclass and its parent, you can use inheritance in
its most powerful scenario — polymorphism. As you learned in Chapter 3, polymorphism allows you to
use objects with a common parent class interchangeably, and to use objects in place of their parents.

Return of the Spreadsheet
Chapters 8 and 9 used a spreadsheet program as an example of an application that lends itself to an
object-oriented design. As you may recall, a SpreadsheetCell represented a single element of data.
That element could be either a double or a string. A simplified class definition for SpreadsheetCell
follows. Note that a cell can be set either as a double or a string. The current value of the cell, how-
ever, is always returned as a string for this example.

class SpreadsheetCell
{

public:
SpreadsheetCell();

virtual void set(double inDouble);
virtual void set(const std::string& inString);
virtual std::string getString();

protected:
static std::string doubleToString(double inValue);
static double stringToDouble(const std::string& inString);

double mValue;
std::string mString;

};

The preceding SpreadsheetCell class seems to be having an identity crisis — sometimes a cell repre-
sents a double, sometimes a string. Sometimes it has to convert between these formats. To achieve this
duality, the class needs to store both values even though a given cell should only be able to contain a

Use downcasting only when necessary and be sure to use a dynamic cast.

240

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 240

single value. Worse still, what if additional types of cells are needed, such as a formula cell or a date cell?
The SpreadsheetCell class would grow dramatically to support all of these data types and the conver-
sions between them.

Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell class is screaming out for a hierarchical makeover. A reasonable approach would
be to narrow the scope of the SpreadsheetCell to cover only strings, perhaps renaming it
StringSpreadsheetCell in the process. To handle doubles, a second class, DoubleSpreadsheetCell,
would inherit from the StringSpreadsheetCell and provide functionality specific to its own format.
Figure 10-5 illustrates such a design. This approach models inheritance for reuse since the
DoubleSpreadsheetCell would only be subclassing StringSpreadsheetCell to make use of some
of its built-in functionality.

Figure 10-5

If you were to implement the design shown in Figure 10-5, you might discover that the subclass would
override most, if not all, of the functionality of the base class. Since doubles are treated differently from
strings in almost all cases, the relationship may not be quite as it was originally understood. Yet, there
clearly is a relationship between a cell containing strings and a cell containing doubles. Rather than
use the model in Figure 10-5, which implies that somehow a DoubleSpreadsheetCell “is-a”
StringSpreadsheetCell, a better design would make these classes peers with a common parent,
SpreadsheetCell. Such a design is shown in Figure 10-6.

Figure 10-6

The design in Figure 10-6 shows a polymorphic approach to the SpreadsheetCell hierarchy. Since
DoubleSpreadsheetCell and StringSpreadsheetCell both inherit from a common parent,
SpreadsheetCell, they are interchangeable in the view of other code. In practical terms, that means:

❑ Both subclasses support the same interface (set of methods) defined by the base class

❑ Code that makes use of SpreadsheetCell objects can call any method in the interface without
even knowing whether the cell is a DoubleSpreadsheetCell or a StringSpreadsheetCell

❑ Through the magic of virtual methods, the appropriate version of every method in the inter-
face will be called depending on the class of the object

❑ Other data structures, such as the Spreadsheet class described in Chapter 9, can contain a col-
lection of multityped cells by referring to the parent type

SpreadsheetCell

DoubleSpreadsheetCellStringSpreadsheetCell

StringSpreadsheetCell

DoubleSpreadsheetCell

241

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 241

The Spreadsheet Cell Base Class
Since all spreadsheet cells are subclasses of the SpreadsheetCell base class, it is probably a good idea
to write that class first. When designing a base class, you need to consider how the subclasses relate to
each other. From this information, you can derive the commonality that will go inside the parent class.
For example, string cells and double cells are similar in that they both contain a single piece of data.
Since the data is coming from the user and will be displayed back to the user, the value is set as a
string and retrieved as a string. These behaviors are the shared functionality that will make up the
base class.

A First Attempt
The SpreadsheetCell base class is responsible for defining the behaviors that all SpreadsheetCell
subclasses will support. In our simple example, all cells need to be able to set their value as a string.
All cells also need to be able to return their current value as a string. The base class definition, there-
fore, declares these methods.

class SpreadsheetCell
{

public:
SpreadsheetCell();
virtual ~SpreadsheetCell();

virtual void set(const std::string& inString);

virtual std::string getString() const;
};

When you start writing the .cpp file for this class, you very quickly run into a problem. Since the base
class of spreadsheet cell contains neither a double nor a string, how can you implement it? More gen-
erally, how do you write a parent class that declares the behaviors that are supported by subclasses with-
out actually defining the implementation of those behaviors?

One possible approach is to implement “do nothing” functionality for those behaviors. For example,
calling the set() method on the SpreadsheetCell base class will have no effect because the base class
has nothing to set. This approach still doesn’t feel right, however. Ideally, there should never be an object
that is an instance of the base class. Calling set() should always have an effect because it should always
be called on either a DoubleSpreadsheetCell or a StringSpreadsheetCell. A good solution will
enforce this constraint.

Pure Virtual Methods and Abstract Base Classes
Pure virtual methods are methods that are explicitly undefined in the class definition. By making a
method pure virtual, you are telling the compiler that no definition for the method exists in the current
class. Thus, the class is said to be abstract because no other code will be able to instantiate it. The com-
piler enforces the fact that if a class contains one or more pure virtual methods, it can never be used by
itself to construct an object.

The syntax for a pure virtual method is shown below. Simply set the method equal to zero in the class
definition. No code needs to be written in the .cpp file.

242

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 242

class SpreadsheetCell
{

public:
SpreadsheetCell();
virtual ~SpreadsheetCell();

virtual void set(const std::string& inString) = 0;

virtual std::string getString() const = 0;
};

Now that the base class is an abstract class, it is impossible to create a SpreadsheetCell object. The fol-
lowing code will not compile, and will give an error such as Cannot declare object of type
‘SpreadsheetCell’ because one or more virtual functions are abstract.

int main(int argc, char** argv)
{

SpreadsheetCell cell; // BUG! Attempts to create instance of an abstract class
}

Base Class Source Code
There is not much code required for SpreadsheetCell.cpp. As the class was defined, most of the
methods are pure virtual — there is no definition to give. All that is left is the type conversion method
and the constructor and destructor. For this example, the constructor and destructor are implemented
just as a placeholder in case initialization and destruction tasks need to happen in the future.

SpreadsheetCell::SpreadsheetCell()
{
}

SpreadsheetCell::~SpreadsheetCell()
{
}

The Individual Subclasses
Writing the StringSpreadsheetCell and DoubleSpreadsheetCell classes is just a matter of imple-
menting the functionality that is defined in the parent. Because we want clients to be able to instantiate
and work with string cells and double cells, they can’t be abstract — they must implement all of the
pure virtual methods inherited from their parent.

String Spreadsheet Cell Class Definition
The first step in writing the class definition of StringSpreadsheetCell is to subclass
SpreadsheetCell.

An abstract class provides a way to prevent other code from instantiating an object
directly, as opposed to one of its subclasses.

243

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 243

class StringSpreadsheetCell : public SpreadsheetCell
{

StringSpreadsheetCell declares its own constructor, giving it a chance to initialize its own data.

public:
StringSpreadsheetCell();

Next, the inherited pure virtual methods are overridden, this time without being set to zero.

virtual void set(const std::string& inString);

virtual std::string getString() const;

Finally, the string cell adds a protected data member, mValue, which stores the actual cell data.

protected:
std::string mValue;

};

String Spreadsheet Cell Implementation
The .cpp file for StringSpreadsheetCell is a bit more interesting than the base class. In the construc-
tor, the value string is initialized to a string that indicates that no value has been set.

StringSpreadsheetCell::StringSpreadsheetCell() : mValue(“#NOVALUE”)
{
}

The set method is straightforward since the internal representation is already a string. Similarly, the
getString() method simply returns the stored value.

void StringSpreadsheetCell::set(const string& inString)
{

mValue = inString;
}

string StringSpreadsheetCell::getString() const
{

return mValue;
}

Double Spreadsheet Cell Class Definition and Implementation
The double version follows a similar pattern, but with different logic. In addition to the set() method
that takes a string, it also provides a new set() method that allows a client to set the value with a
double. Two new protected methods are used to convert between a string and a double. Like
StringSpreadsheetCell, it has a data member called mValue, this time a double. Because
DoubleSpreadsheetCell and StringSpreadsheetCell are siblings, no hiding or naming conflicts
occur as a result.

244

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 244

class DoubleSpreadsheetCell : public SpreadsheetCell
{

public:

DoubleSpreadsheetCell ();
virtual void set(double inDouble);
virtual void set(const std::string& inString);

virtual std::string getString() const;

protected:
static std::string doubleToString(double inValue);
static double stringToDouble(const std::string& inValue);
double mValue;

};

The implementation of the DoubleSpreadsheetCell is shown here:

DoubleSpreadsheetCell::DoubleSpreadsheetCell() : mValue(-1)
}
}

The set() method that takes a double is straightforward. The string version makes use of the
protected static method stringToDouble(). The getString() method converts the stored
double value into a string:

void DoubleSpreadsheetCell::set(double inDouble)
{

mValue = inDouble;
}

void DoubleSpreadsheetCell::set(const string& inString)
{

mValue = stringToDouble(inString);
}

string DoubleSpreadsheetCell::getString() const
{

return doubleToString(mValue);
}

You may already see one major advantage of implementing spreadsheet cells in a hierarchy — the code
is much simpler. You don’t need to worry about using two fields to represent the two types of data. Each
object can be self-centered and only deal with its own functionality.

Note that the implementations of doubleToString() and stringToDouble() were omitted because
they are the same as in Chapter 8.

Leveraging Polymorphism
Now that the SpreadsheetCell hierarchy is polymorphic, client code can take advantage of the many
benefits that polymorphism has to offer. The following test program explores many of these features.

245

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 245

int main(int argc, char** argv)
{

First, an array of three SpreadsheetCell pointers is declared. Remember that since SpreadsheetCell
is an abstract class, you can’t create objects of that type. However, you can still have a pointer or refer-
ence to a SpreadsheetCell because it would actually be pointing to one of the subclasses. This array
takes advantage of the common type between the two subclasses. Each of the elements of the array
could be either a StringSpreadsheetCell or a DoubleSpreadsheetCell. Because they have a com-
mon parent, they can be stored together.

SpreadsheetCell* cellArray[3];

The 0th element of the array is set to point to a new StringSpreadsheetCell; the first is also set to a
new StringSpreadsheetCell, and the second is a new DoubleSpreadsheetCell.

cellArray[0] = new StringSpreadsheetCell();
cellArray[1] = new StringSpreadsheetCell();
cellArray[2] = new DoubleSpreadsheetCell();

Now that the array contains multityped data, any of the methods declared by the base class can be
applied to the objects in the array. The code just uses SpreadsheetCell pointers — the compiler has no
idea at compile time what types the objects actually are. However, because they are subclasses of
SpreadsheetCell, they must support the methods of SpreadsheetCell.

cellArray[0]->set(“hello”);
cellArray[1]->set(“10”);
cellArray[2]->set(“18”);

When the getString() method is called, each object properly returns a string representation of their
value. The important, and somewhat amazing, thing to realize is that the different objects do this in dif-
ferent ways. A StringSpreadsheetCell will simply return its stored value. A DoubleSpreadsheetCell
will first perform a conversion. As the programmer, you don’t need to know how the object does it —
you just need to know that because the object is a SpreadsheetCell, it can perform this behavior.

cout << “Array values are [“ << cellArray[0]->getString() << “,” <<
cellArray[1]->getString() << “,” <<
cellArray[2]->getString() << “]” << endl;

}

Future Considerations
The new implementation of the SpreadsheetCell hierarchy is certainly an improvement from an
object-oriented design point of view. Yet, it would probably not suffice as an actual class hierarchy for a
real-world spreadsheet program for several reasons.

First, despite the improved design, one feature of the original is still missing: the ability to convert from
one cell type to another. By dividing them into two classes, the cell objects become more loosely integrated.
To provide the ability to convert from a DoubleSpreadsheetCell to a StringSpreadsheetCell, you
could add a typed constructor. It would have a similar appearance to a copy constructor but instead of a
reference to an object of the same class, it would take a reference to an object of a sibling class.

246

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 246

class StringSpreadsheetCell
{

public:
StringSpreadsheetCell();
StringSpreadsheetCell(const DoubleSpreadsheetCell& inDoubleCell);

...

With a typed constructor, you can easily create a StringSpreadsheetCell given a
DoubleSpreadsheetCell. Don’t confuse this with casting, however. Casting from one sibling to
another will not work, unless you overload the cast operator as described in Chapter 16.

The question of how to implement overloaded operators for cells is an interesting one, and there are sev-
eral possible solutions. One approach is to implement a version of each operator for every combination
of cells. With only two subclasses, this is manageable. There would be an operator+ function to add two
double cells, to add two string cells, and to add a double cell to a string cell.Another approach is to
decide on a common representation. The preceding implementation already standardizes on a string
as a common representation of sorts. A single operator+ function could cover all the cases by taking
advantage of this common representation. One possible implementation, which assumes that the result
of adding two cells is always a string cell, is shown here:

const StringSpreadsheetCell operator+(const StringSpreadsheetCell &lhs,
const StringSpreadsheetCell &rhs)

{
StringSpreadsheetCell newCell;
newCell.set(lhs.getString() + rhs.getString());
return (newCell);

}

As long as the compiler has a way to turn a particular cell into a StringSpreadsheetCell, the operator
will work. Given the previous example of having a StringSpreadsheetCell constructor that takes a
DoubleSpreadsheetCell as an argument, the compiler will automatically perform the conversion if it
is the only way to get the operator+ to work. That means that the following code will work, even
though operator+ was explicitly written to work on StringSpreadsheetCells.

DoubleSpreadsheetCell myDbl;

myDbl.set(8.4);

StringSpreadsheetCell result = myDbl + myDbl;

Of course, the result of this addition won’t really add the numbers together. It will convert the double
cell into a string cell and add the strings, resulting in a StringSpreadsheetCell with a value of
8.48.4.

You can always cast up the hierarchy, and you can sometimes cast down the hierar-
chy, but you can never cast across the hierarchy unless you have changed the behav-
ior of the cast operator.

247

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 247

If you are still feeling a little unsure about polymorphism, start with the code for this example and try
things out. The main function in the preceding example is a great starting point for experimental code
that simply exercises various aspects of the class.

Multiple Inheritance
As you read in Chapter 3, multiple inheritance is often perceived as a complicated and unnecessary part
of object-oriented programming. We’ll leave the decision of whether or not it is useful up to you and
your coworkers. This section explains the mechanics of multiple inheritance in C++.

Inheriting from Multiple Classes
Defining a class to have multiple parent classes is very simple from a syntactic point of view. All you
need to do is list the superclasses individually when declaring the class name.

class Baz : public Foo, public Bar
{

// Etc.
};

By listing multiple parents, the Baz object will have the following characteristics:

❑ A Baz object will support the public methods and contain the data members of both Foo
and Bar.

❑ The methods of the Baz class will have access to protected data and methods in both Foo
and Bar.

❑ A Baz object can be upcast to either a Foo or a Bar.

❑ Creating a new Baz object will automatically call the Foo and Bar default constructors, in the
order that the classes were listed in the class definition.

❑ Deleting a Baz object will automatically call the destructors for the Foo and Bar classes, in the
reverse order that the classes were listed in the class definition.

The following simple example shows a class, DogBird, that has two parent classes — a Dog class and a
Bird class. The fact that a dog-bird is a ridiculous example should not be viewed as a statement that
multiple inheritance itself is ridiculous. Honestly, we leave that judgment up to you.

class Dog
{

public:
virtual void bark() { cout << “Woof!” << endl; }

};

class Bird
{

248

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 248

public:
virtual void chirp() { cout << “Chirp!” << endl; }

};
class DogBird : public Dog, public Bird
{
};

The class hierarchy for DogBird is shown in Figure 10-7.

Figure 10-7

Using objects of classes with multiple parents is no different from using objects without multiple par-
ents. In fact, the client code doesn’t even have to know that the class has two parents. All that really mat-
ters are the properties and behaviors supported by the class. In this case, a DogBird object supports all
of the public methods of Dog and Bird.

int main(int argc, char** argv)
{

DogBird myConfusedAnimal;

myConfusedAnimal.bark();
myConfusedAnimal.chirp();

}

The output of this program is:

Woof!
Chirp!

Naming Collisions and Ambiguous Base Classes
It’s not difficult to construct a scenario where multiple inheritance would seem to break down. The fol-
lowing examples show some of the edge cases that must be considered.

Name Ambiguity
What if the Dog class and the Bird class both had a method called eat()? Since Dog and Bird are not
related in any way, one version of the method does not override the other — they both continue to exist
in the DogBird subclass.

As long as client code never attempts to call the eat() method, that is not a problem. The DogBird class
will compile correctly despite having two versions of eat(). However, if client code attempts to call the
eat() method, the compiler will give an error indicating that the call to eat() is ambiguous. The com-
piler will not know which version to call. The following code provokes this ambiguity error.

DogBird

BirdDog

249

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 249

class Dog
{

public:
virtual void bark() { cout << “Woof!” << endl; }
virtual void eat() { cout << “The dog has eaten.” << endl; }

};

class Bird
{

public:
virtual void chirp() { cout << “Chirp!” << endl; }
virtual void eat() { cout << “The bird has eaten.” << endl; }

};

class DogBird : public Dog, public Bird
{
};

int main(int argc, char** argv)
{

DogBird myConfusedAnimal;

myConfusedAnimal.eat(); // BUG! Ambiguous call to method eat()
}

The solution to the ambiguity is to either explicitly upcast the object, essentially hiding the undesired
version of the method from the compiler, or to use a disambiguation syntax. For example, the following
code shows two ways to invoke the Dog version of eat().

static_cast<Dog>(myConfusedAnimal).eat(); // Slices, calling Dog::eat()
myConfusedAnimal.Dog::eat(); // Calls Dog::eat()

Methods of the subclass itself can also explicitly disambiguate between different methods of the same
name by using the same syntax used to access parent methods, the :: operator. For example, the
DogBird class could prevent ambiguity errors in other code by defining its own eat() method. Inside
this method, it would determine which parent version to call.

void DogBird::eat()
{

Dog::eat(); // Explicitly call Dog’s version of eat()
}

Another way to provoke ambiguity is to inherit from the same class twice. For example, if the Bird class
inherited from Dog for some reason, the code for DogBird would not compile because Dog becomes an
ambiguous base class.

class Dog {};

class Bird : public Dog {};

class DogBird : public Bird, public Dog {}; // BUG! Dog is an ambiguous base
class.

250

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 250

Most occurrences of ambiguous base classes are either contrived “what-if” examples, like the one above,
or arise from untidy class hierarchies. Figure 10-8 shows a class diagram for the preceding example,
indicating the ambiguity.

Figure 10-8

Ambiguity can also occur with data members. If Dog and Bird both had a data member with the same
name, an ambiguity error would occur when client code attempted to access that member.

Ambiguous Base Classes
A more likely scenario is that multiple parents themselves have common parents. For example, perhaps
both Bird and Dog are subclasses of an Animal class, as shown in Figure 10-9.

Figure 10-9

This type of class hierarchy is permitted in C++, though name ambiguity can still occur. For example, if
the Animal class has a public method called sleep(), that method could not be called on a DogBird
object because the compiler would not know whether to call the version inherited by Dog or by Bird.

The best way to use these “diamond-shaped” class hierarchies is to make the topmost class an abstract
base class with all methods declared as pure virtual. Since the class only declares methods without pro-
viding definitions, there are no methods in the base class to call and thus there are no ambiguities at that
level.

The following example implements a diamond-shaped class hierarchy with a pure virtual eat()
method that must be defined by each subclass. The DogBird class still needs to be explicit about which
parent’s eat() method it uses, but any ambiguity would be caused by Dog and Bird having the same
method, not because they inherit from the same class.

DogBird

Dog Bird

Animal

DogBird

Bird

Dog

251

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 251

class Animal
{

public:
virtual void eat() = 0;

};

class Dog : public Animal
{

public:
virtual void bark() { cout << “Woof!” << endl; }
virtual void eat() { cout << “The dog has eaten.” << endl; }

};

class Bird : public Animal
{

public:
virtual void chirp() { cout << “Chirp!” << endl; }
virtual void eat() { cout << “The bird has eaten.” << endl; }

};

class DogBird : public Dog, public Bird
{

public:
virtual void eat() { Dog::eat(); }

};

A more refined mechanism for dealing with the top class in a diamond-shaped hierarchy, virtual base
classes, is explained at the end of this chapter.

Uses for Multiple Inheritance
At this point, you’re probably wondering why anyone would want to tackle multiple inheritance in her
program. The most straightforward use case for multiple inheritance is to define a class of object that is-a
something and also is-a something else. As we said in Chapter 3, any real-world objects you find that
follow this pattern are unlikely to translate well into code.

One of the most compelling and simple uses of multiple inheritance is for the implementation of mix-in
classes. Mix-in classes were explained in Chapter 3. An example implementation using multiple inheri-
tance is shown in Chapter 25.

Another reason that people sometimes use multiple inheritance is to model a component-based class.
Chapter 3 gave the example of an airplane simulator. The Airplane class had an engine, a fuselage, con-
trols, and other components. While the typical implementation of an Airplane class would make each
of these components a separate data member, you could use multiple inheritance. The airplane class
would inherit from engine, fuselage, and controls, in effect getting the behaviors and properties of all of
its components. We recommend you stay away from this type of code because it confuses a clear has-a
relationship with inheritance, which should be used for is-a relationships.

252

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 252

Interesting and Obscure Inheritance Issues
Extending a class opens up a variety of issues. What characteristics of the class can and cannot be
changed? What does the mysterious virtual keyword really do? These questions, and many more, are
answered in the following sections.

Changing the Overridden Method’s Characteristics
For the most part, the reason you override a method is to change its implementation. Sometimes, how-
ever, you may want to change other characteristics of the method.

Changing the Method Return Type
A good rule of thumb is to override a method with the exact method declaration, or method signature,
that the superclass uses. The implementation can change, but the signature stays the same.

That does not have to be the case, however. In C++, an overriding method can change the return type as
long as the original return type is a pointer or reference to a class, and the new return type is a pointer or
reference to a descendent class. Such types are called covariant returns types. This feature sometimes
comes in handy when the superclass and subclass work with objects in a parallel hierarchy. That is,
another group of classes that is tangential, but related, to the first class hierarchy.

For example, consider a hypothetical cherry orchard simulator. You might have two hierarchies of
classes that model different real-world objects but are obviously related. The first is the Cherry chain.
The base class, Cherry, has a subclass called BingCherry. Similarly, there is another chain of classes
with a base class called CherryTree and a subclass called BingCherryTree. Figure 10-10 shows the
two class chains.

Figure 10-10

Now assume that the CherryTree class has a method called pick() that will retrieve a single cherry
from the tree:

Cherry* CherryTree::pick()
{

return new Cherry();
}

In the BingCherryTree subclass, you may want to override this method. Perhaps Bing Cherries need to
be polished when they are picked (bear with us on this one). Because a BingCherry is a Cherry, you
could leave the method signature as is and override the method as in the following example. The
BingCherry pointer is automatically cast to a Cherry pointer.

BingCherryTree

CherryTree

BingCherry

Cherry

253

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 253

Cherry* BingCherryTree::pick()
{

BingCherry* theCherry = new BingCherry();

theCherry->polish();

return theCherry;
}

The implementation above is perfectly fine and is probably the way that the authors would write it.
However, because you know that the BingCherryTree will always return BingCherry objects, you
could indicate this fact to potential users of this class by changing the return type, as shown here:

BingCherry* BingCherryTree::pick()
{

BingCherry* theCherry = new BingCherry();

theCherry->polish();

return theCherry;
}

A good way to figure out whether you can change the return type of an overridden method is to con-
sider whether existing code would still work. In the preceding example, changing the return type was
fine because any code that assumed that the pick() method would always return a Cherry* would
still compile and work correctly. Because a BingCherry is a Cherry, any methods that were called on
the result of CherryTree’s version of pick() could still be called on the result of BingCherryTree’s
version of pick().

You could not, for example, change the return type to something completely unrelated, such as void*.
The following code will not compile because the compiler thinks that you are trying to overload pick(),
but cannot distinguish BingCherryTree’s pick() method from CherryTree’s pick() method because
return types are not used in method disambiguation.

void* BingCherryTree::pick() // BUG!
{

BingCherry* theCherry = new BingCherry();

theCherry->polish();

return theCherry;
}

Changing the Method Parameters
In general, if you try to change the parameters to an overridden method, you are no longer overriding
it — you are creating a new method. Returning to the Super and Sub example from earlier in this
chapter, you could attempt to override someMethod() in Sub with a new argument list, as shown here:

class Super
{

public:
Super();
virtual void someMethod();

254

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 254

};

class Sub : public Super
{

public:
Sub();

virtual void someMethod(int i); // Compiles, but doesn’t override
virtual void someOtherMethod();

};

The implementation of this method is shown here:

void Sub::someMethod(int i)
{

cout << “This is Sub’s version of someMethod with argument “ << i
<< “.” << endl;

}

The preceding class definition will compile, but you have not overridden someMethod(). Because the
arguments are different, you have created a new method that exists only on Sub. If you want a method
called someMethod() that takes an int, and you want it to only work on objects of class Sub, the pre-
ceding code is correct. However, it is stylistically questionable to have a method that has the same name
as a method in the superclass but no real relationship to that method.

In fact, the original method is now hidden as far as Sub is concerned. The following sample code will not
compile because there is no longer a no-argument version of someMethod().

Sub mySub;

mySub.someMethod(); // BUG! Won’t compile because the original method is hidden.

There is a case where you actually can change the argument list for an overridden method. The trick is
that the new argument list must be compatible with the old one. If we modified the above example to
give the i parameter a default value, then Sub’s version of someMethod() would actually be overriding
Super’s version of someMethod():

class Sub : public Super
{

public:
Sub();

virtual void someMethod(int i = 2); // actually overrides
virtual void someOtherMethod();

Why is this any different? The answer is that in order to override a method, other code needs to be able
to call the method in the same way on either the superclass or the subclass. Just as in the earlier return
type case, the acid test for changing method arguments is whether existing code would have to be modi-
fied. With a default argument, any code that called Super’s someMethod() could call Sub’s
someMethod() without modification.

The following sample code shows that this time Sub has actually overridden Super’s version of
someMethod(). Even a Super reference will correctly call Sub’s version.

255

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 255

Sub mySub;
Super& ref = mySub;

mySub.someMethod(); // Calls Sub’s someMethod with default argument
mySub.someMethod(1); // Calls Sub’s someMethod
ref.someMethod(); // Calls Sub’s someMethod with default argument

The output of this code is:

This is Sub’s version of someMethod with argument 2.
This is Sub’s version of someMethod with argument 1.
This is Sub’s version of someMethod with argument 2.

There is also a somewhat obscure technique you can use to have your cake and eat it too. That is, you
can use this technique to effectively override a method in the subclass with a new signature but continue
to inherit the superclass version. This technique uses the using keyword to explicitly include the super-
class definition of the method within the subclass, as shown here:

class Super
{

public:
Super();
virtual void someMethod();

};

class Sub : public Super
{

public:
Sub();

using Super::someMethod; // Explicitly “inherits” the Super version
virtual void someMethod(int i); // Adds a new version of someMethod
virtual void someOtherMethod();

};

Special Cases in Overriding Methods
Several edge cases require special attention when overriding a method. In this section, we have outlined
the cases that are likely to encounter.

If the Superclass Method Is Static
In C++, you cannot override a static method. For the most part, that’s all you need to know. There are,
however, a few corollaries that you need to understand.

First of all, a method cannot be both static and virtual. This is the first clue that attempting to override
a static method will not do what you intend for it to do. If you have a static method in your subclass
with the same name as a static method in your superclass, you actually have two separate methods.

It is rare to find an overridden method that changes the parameter list.

256

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 256

The following code shows two classes that both happen to have static methods called beStatic().
These two methods are in no way related.

class SuperStatic
{

public:
static void beStatic() { cout << “SuperStatic being static, yo.” << endl;

};

class SubStatic
{

public:
static void beStatic() { cout << “SubStatic keepin’ it static.” << endl;

};

Because a static method belongs to its class, calling the identically named methods on the two differ-
ent classes will call their respective methods:

SuperStatic::beStatic();
SubStatic::beStatic();

Will output:

SuperStatic being static, yo.
SubStatic keepin’ it static.

Everything makes perfect sense as long as the methods are accessed by class. The behavior is less clear
when objects are involved. In C++, you can call a static method on an object syntactically, but in real-
ity, the method only exists on the class. Consider the following code:

SubStatic mySubStatic;
SuperStatic& ref = mySubStatic;

mySubStatic.beStatic();
ref.beStatic();

The first call to beStatic() will obviously call the SubStatic version because it is explicitly called on
an object declared as a SubStatic. The second call is less clear. The object is a SuperStatic reference,
but it refers to a SubStatic object. In this case, SuperStatic’s version of beStatic() will be called.
The reason is that C++ doesn’t care what the object actually is when calling a static method. It only
cares about the compile-time type. In this case, the type is a reference to a SuperStatic.

The output of the previous example is:

SubStatic keepin’ it static.
SuperStatic being static, yo.

static methods are bound to the class in which they are defined, not to any object.
A method in a class that calls a static method calls the version defined in that class,
independent of the run-time type of the object on which the original method is called.

257

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 257

If the Superclass Method Is Overloaded
When you override a method, you are implicitly hiding any other versions of the method. It makes sense
if you think about it — why would you want to change some versions of a method and not others?
Consider the following subclass, which overrides a method without overriding its associated overloaded
siblings:

class Foo
{

public:
virtual void overload() { cout << “Foo’s overload()” << endl; }
virtual void overload(int i) { cout << “Foo’s overload(int i)” << endl; }

};

class Bar : public Foo
{

public:
virtual void overload() { cout << “Bar’s overload()” << endl; }

};

If you attempt to call the version of overload() that takes an int parameter on a Bar object, your code
will not compile because it was not explicitly overridden.

myBar.overload(2); // BUG! No matching method for overload(int).

It is possible, however, to access this version of the method from a Bar object. All you need is a pointer
or a reference to a Foo object.

Bar myBar;
Foo* ptr = &myBar;

ptr->overload(7);

The hiding of unimplemented overloaded methods is only skin deep in C++. Objects that are explicitly
declared as instances of the subtype will not make the method available, but a simple cast to the super-
class will bring it right back.

The using keyword can be employed to save you the trouble of overloading all the versions when
you really only want to change one. In the following code, the Bar class definition uses one version
of overload() from Foo and explicitly overloads the other.

class Foo
{

public:
virtual void overload() { cout << “Foo’s overload()” << endl; }
virtual void overload(int i) { cout << “Foo’s overload(int i)” << endl; }

};

class Bar : public Foo
{

public:
using Foo::overload;
virtual void overload() { cout << “Bar’s overload()” << endl; }

};

258

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 258

If the Superclass Method Is Private or Protected
There’s absolutely nothing wrong with overriding a private or protected method. Remember that
the access specifier for a method determines who is able to call the method. Just because a subclass can’t
call its parent’s private methods doesn’t mean it can’t override them. In fact, overriding a private or
protected method is a common pattern in object-oriented languages. It allows subclasses to define
their own “uniqueness” that is referenced in the superclass.

For example, the following class is part of a car simulator that estimates the number of miles the car can
travel based on its gas mileage and amount of fuel left.

class MilesEstimator
{

public:
virtual int getMilesLeft() {

return (getMilesPerGallon() * getGallonsLeft());
}

virtual void setGallonsLeft(int inValue) { mGallonsLeft = inValue; }
virtual int getGallonsLeft() { return mGallonsLeft; }

private:
int mGallonsLeft;
virtual int getMilesPerGallon() { return 20; }

}

The getMilesLeft() method performs a calculation based on the results of two of its own methods.
The following code uses the MilesEstimator to calculate how many miles can be traveled with 2 gal-
lons of gas.

MilesEstimator myMilesEstimator;

myMilesEstimator.setGallonsLeft(2);
cout << “I can go “ << myMilesEstimator.getMilesLeft() << “ more miles.” << endl;

The output of this code is:

I can go 40 more miles.

To make the simulator more interesting, you may want to introduce different types of vehicles, perhaps
a more efficient car. The existing MilesEstimator assumes that cars all get 20 miles per gallon, but this
value is returned from a separate method specifically so that a subclass could override it. Such a subclass
is shown here:

class EfficientCarMilesEstimator : public MilesEstimator
{

private:
virtual int getMilesPerGallon() { return 35; }

};

To avoid obscure bugs, you should override all versions of an overloaded method,
either explicitly or with the using keyword.

259

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 259

By overriding this one private method, the new class completely changes the behavior of existing,
unmodified, public methods. The getMilesLeft() method in the superclass will automatically call
the overridden version of the private getMilesPerGallon() method. An example using the new
class is shown here:

EfficientCarMilesEstimator myEstimator;

myEstimator.setGallonsLeft(2);
cout << “I can go “ << myEstimator.getMilesLeft() << “ more miles.” << endl;

This time, the output reflects the overridden functionality:

I can go 70 more miles.

If the Superclass Method Has Default Arguments
Subclasses and superclasses can each have different default arguments, but the argument that is used
depends on the declared type of the variable, not the underlying object. Following is a simple example
of a subclass that provides a different default argument in an overridden method:

class Foo
{

public:
virtual void go(int i = 2) { cout << “Foo’s go with param “ << i << endl; }

};

class Bar : public Foo
{

public:
virtual void go(int i = 7) { cout << “Bar’s go with param “ << i << endl; }

};

If go() is called on a Bar object, Bar’s version of go() will executed with the default argument of 7. If
go() is called on a Foo object, Foo’s version of go() will be executed with the default argument of 2.
However (this is the weird part), if go() is called on a Foo pointer or Foo reference that really points to a
Bar object, Bar’s version of go() will be called it will use the default Foo argument of 2. This behavior is
shown here:

Foo myFoo;
Bar myBar;
Foo& myFooReferenceToBar;

myFoo.go();
myBar.go();
myFooReferenceToBar.go();

Overriding private and protected methods is a good way to change certain fea-
tures of a class without a major overhaul.

260

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 260

The output of this code is:

Foo’s go with param 2
Bar’s go with param 7
Bar’s go with param 2

Tricky, eh? The reason for this behavior is that C++ binds default arguments to the type of the variable
denoting the object, not the object itself. For this same reason, default arguments are not “inherited” in
C++. If the Bar class above failed to provide a default argument as its parent did, it would be overload-
ing the go() method with a new zero-argument version.

If the Superclass Method Has a Different Access Level
There are two ways you may wish to change the access level of a method — you could try to make it
more restrictive or less restrictive. Neither case makes much sense in C++, but there are a few legitimate
reasons for attempting to do so.

To enforce tighter restriction on a method (or on a data member for that matter), there are two
approaches you can take. One way is to change the access specifier for the entire base class. This
approach is described at the end of this chapter. The other approach is simply to redefine the access in
the subclass, as illustrated in the Shy class that follows:

class Gregarious
{

public:
virtual void talk() { cout << “Gregarious says hi!” << endl; }

};

class Shy : public Gregarious
{

protected:
virtual void talk() { cout << “Shy reluctantly says hello.” << endl; }

};

The protected version of talk() in the Shy class properly overrides the method. Any client code that
attempts to call talk() on a Shy object will get a compile error:

myShy.talk(); // BUG! Attempt to access protected method.

However, the method is not fully protected. One only has to obtain a Gregarious reference or pointer to
access the method that you thought was protected:

Shy myShy;
Gregarious& ref = myShy;

ref.talk();

When overriding a method that has a default argument, you should provide a
default argument as well, and it should probably be the same value.

261

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 261

The output of the preceding code is:

Shy reluctantly says hello.

This proves that making the method protected in the subclass did actually override the method
(because the subclass version was correctly called), but it also proves that the protected access can’t be
fully enforced if the superclass makes it public.

It’s much easier (and makes a lot more sense) to lessen access restrictions in subclasses. The simplest
way is simply to provide a public method that calls a protected method from the superclass, as
shown here:

class Secret
{

protected:
virtual void dontTell() { cout << “I’ll never tell.” << endl; }

};

class Blabber : public Secret
{

public:
virtual void tell() { dontTell(); }

};

A client calling the public tell() method of a Blabber object would effectively access the protected
method of the Secret class. Of course, this doesn’t really change the access level of dontTell(), it just
provides a public way of accessing it.

You could also override dontTell() explicitly in the Blabber subclass and give it new behavior with
public access. This makes a lot more sense than reducing the level of access because it is entirely clear
what happens with a reference or pointer to the base class. For example, suppose that Blabber actually
made the dontTell() method public:

class Secret
{

protected:
virtual void dontTell() { cout << “I’ll never tell.” << endl; }

};

class Blabber : public Secret
{

public:
virtual void dontTell() { cout << “I’ll tell all!” << endl; }

};

There is no reasonable way (or good reason why) to restrict access to a public par-
ent method.

262

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 262

If the dontTell() method is called on a Blabber object, it will output I’ll tell all!

myBlabber.dontTell(); // Outputs “I’ll tell all!”

In this case, however, the protected method in the superclass stays protected because any attempts
to call Secret’s dontTell() method through a pointer or reference will not compile.

Blabber myBlabber;
Secret& ref = myBlabber;
Secret* ptr = &myBlabber;

ref.dontTell(); // BUG! Attempt to access protected method.
ptr->dontTell(); // BUG! Attempt to access protected method.

Copy Constructors and the Equals Operator
In Chapter 9, we said that providing a copy constructor and assignment operator is considered a good
programming practice when you have dynamically allocated memory in the class. When defining a sub-
class, you need to be careful about copy constructors and operator=.

If your subclass does not have any special data (pointers, usually) that require a nondefault copy con-
structor or operator=, you don’t need to have one, regardless of whether or not the superclass has one.
If your subclass omits the copy constructor, the parent copy constructor will still be called when the
object is copied. Similarly, if you don’t provide an explicit operator=, the default one will be used, and
operator= will still be called on the parent class.

On the other hand, if you do specify a copy constructor in the subclass, you need to explicitly chain to
the parent copy constructor, as shown in the following code. If you do not do this, the default construc-
tor (not the copy constructor!) will be used for the parent portion of the object.

class Super
{

public:
Super();
Super(const Super& inSuper);

};

class Sub : public Super
{

public:
Sub();
Sub(const Sub& inSub);

};

Sub::Sub(const Sub& inSub) : Super(inSub)
{
}

The only truly useful way to change a method’s access level is by providing a less
restrictive accessor to a protected method.

263

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 263

Similarly, if the subclass overrides operator=, it is almost always necessary to call the parent’s version
of operator= as well. The only case where you wouldn’t do this is if there is some bizarre reason why
you only want part of the object assigned when an assignment takes place. The following code shows
how to call the parent’s assignment operator from the subclass:

Sub& Sub::operator=(const Sub& inSub)
{

if (&inSub == this) {
return *this;

}

Super::operator=(inSub) // Call parent’s operator=.

// Do necessary assignments for subclass.

return (*this);
}

The Truth about Virtual
When you first encountered method overriding above, we told you that only virtual methods can be
properly overridden. The reason we had to add the qualifier properly is that if a method is not virtual,
you can still attempt to override it but it will be wrong in subtle ways.

Hiding Instead of Overriding
The following code shows a superclass and a subclass, each with a single method. The subclass is
attempting to override the method in the superclass, but it is not declared to be virtual in the
superclass.

class Super
{

public:
void go() { cout << “go() called on Super” << endl; }

};

class Sub : public Super
{

public:
void go() { cout << “go() called on Sub” << endl; }

};

If your subclass does not specify its own copy constructor or operator=, the parent
functionality continues to work. If the subclass does provide its own copy construc-
tor or operator=, it needs to explicitly reference the parent versions.

264

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 264

Attempting to call the go() method on a Sub object will initially appear to work.

Sub mySub;

mySub.go();

The output of this call is, as expected, go() called on Sub. However, since the method was not
virtual, it was not actually overridden. Rather, the Sub class created a new method, also called go()
that is completely unrelated to the Super class’s method called go(). To prove this, simply call the
method in the context of a Super pointer or reference.

Sub mySub;

Super& ref = mySub;

ref.go();

You would expect the output to be, go() called on Sub, but in fact, the output will be, go() called
on Super. This is because the ref variable is a Super reference and because the virtual keyword was
omitted. When the go() method is called, it simply executes Super’s go() method. Because it is not
virtual, there is no need to consider whether a subclass has overridden it.

How virtual Is Implemented
To understand why method hiding occurs, you need to know a bit more about what the virtual key-
word actually does. When a class is compiled in C++, a binary object is created that contains all of the
data members and methods for the class. In the non-virtual case, the code to jump to the appropriate
method is hard-coded directly where the method is called based on the compile-time type.

If the method is declared virtual, the implementation is looked up in a special area of memory called
the vtable, for “virtual table.” Each class that has one or more virtual methods has a vtable that con-
tains pointers to the implementations of the virtual methods. In this way, when a method is called on
an object, the pointer is followed into the vtable and the appropriate version of the method is executed
based on the type of the object, not the type of the variable used to access it.

Figure 10-11 shows a high-level view of how the vtable makes the overriding of methods possible. The
diagram shows two classes, Super and Sub. Super declares two virtual methods, foo() and bar(). As
you can see by looking at Super’s vtable, each method has its own implementation defined by the
Super class. The Sub class does not override Super’s version of foo(), so the Sub vtable points to the
same implementation of foo(). Sub does, however, override bar(), so the vtable points to the new
version.

Attempting to override a non-virtual method will “hide” the superclass definition
and will only be used in the context of the subclass.

265

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 265

Figure 10-11

The Justification for virtual
Given the fact that you are advised to make all methods virtual, you might be wondering why the
virtual keyword even exists. Can’t the compiler automatically make all methods virtual? The
answer is yes, it could. Many people think that the language should just make everything virtual. The
Java language effectively does this.

The argument against making everything virtual, and the reason that the keyword was created in the
first place, has to do with the overhead of the vtable. To call a virtual method, the program needs to
perform an extra operation by dereferencing the pointer to the appropriate code to execute. This is a
miniscule performance hit for most cases, but the designers of C++ thought that it was better, at least at
the time, to let the programmer decide if the performance hit was necessary. If the method was never
going to be overridden, there was no need to make it virtual and take the performance hit. There is
also a small hit to code size. In addition to the implementation of the method, each object would also
need a pointer, which takes up a small, but measurable, amount of space.

The Horror of Non-virtual Destructors
Even programmers who don’t adopt the guideline of making all methods virtual still adhere to the
rule when it comes to destructors. The reason is that making your destructors non-virtual can easily
cause memory leaks.

For example, if a subclass uses memory that is dynamically allocated in the constructor and deleted in
the destructor, it will never be freed if the destructor is never called. As the following code shows, it is
easy to “trick” the compiler into skipping the call to the destructor if it is non-virtual.

vtable

Super

foo

bar

Super::foo()
implementation

Super::bar()
implementation

vtable

Sub

foo

bar Sub::bar()
implementation

266

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 266

class Super
{

public:
Super();
~Super();

};

class Sub : public Super
{

public:
Sub() { mString = new char[30]; }
~Sub() { delete[] mString; }

protected:
char* mString;

};

int main(int argc, char** argv)
{

Super* ptr = new Sub(); // mString is allocated here.

delete ptr; // ~Super is called, but not ~Sub because the destructor
// is not virtual!

}

Runtime Type Facilities
Relative to other object-oriented languages, C++ is very compile-time oriented. Overriding methods, as
you learned above, works because of a level of indirection between a method and its implementation,
not because the object has built-in knowledge of its own class.

There are, however, features in C++ that provide a run-time view of an object. These features are com-
monly grouped together under a feature set called Runtime Type Identification, or RTTI. RTTI provides a
number of useful features for working with information about an object’s class membership.

dynamic_cast
Way back in Chapter 1, you read about static_cast, one of C++’s mechanisms for converting between
types. The static_cast operator is so-named because the conversion is built into the compiled code. A
static downcast will always succeed, regardless of the runtime type of the object.

Unless you have a specific reason not to, we highly recommend making all methods
(except constructors) virtual. Constructors cannot and need not be virtual because
you always specify the exact class being constructed when creating an object.

267

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 267

As you read in the earlier section on downcasting, dynamic_cast provides a safer mechanism for con-
verting between types within an OO hierarchy. To review, the syntax for dynamically casting an object is
similar to a static cast. However, with a dynamic cast, an invalid cast will return NULL for a pointer or
will throw an exception for a reference. The following example shows how to properly perform a
dynamic cast to a reference.

SomeObject myObject = getSomeObject();

try {
SomeOtherObject& myRef = dynamic_cast<SomeOtherObject&>(myObject);

} catch (std::bad_cast) {
cerr << “Could not convert the object into the desired type.” << endl;

}

typeid
The typeid operator lets you query an object at run time to find out its type. For the most part, you
shouldn’t ever need to use typeid because any code that is conditionally run based on the type of the
object would be better handled with virtual methods.

The following code uses typeid to print a message based on the type of the object.

#include <typeinfo>

void speak(const Animal& inAnimal)
{

if (typeid(inAnimal) == typeid(Dog&)) {
cout << “Woof!” << endl;

} else if (typeid(inAnimal) == typeid(Bird&) {
cout << “Chirp!” << endl;

}
}

Anytime you see code like that shown above, you should immediately consider reimplementing the
functionality as a virtual method. In this case, a better implementation would be to declare a virtual
method called speak() in the Animal class. Dog would override the method to print “Woof!” and Bird
would override the method to print “Chirp!”. This approach better fits object-oriented programming,
where functionality related to objects is given to those objects.

The typeid functionality is sometimes handy in debugging, however. It is useful to print out the type of
an object for logging and debugging purposes. The following code makes use of typeid for logging.
The logObject function takes a “loggable” object as a parameter. The design is such that any object that
can be logged subclasses the Loggable class and supports a method called getLogMessage(). In this
way, Loggable is a mix-in class.

#include <typeinfo>

void logObject(Loggable& inLoggableObject)
{

logfile << typeid(inLoggableObject).name() << “ “;
logfile << inLoggableObject.getLogMessage() << endl;

}

268

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 268

The logObject() function first writes the name of the object’s class to the file, followed by its log mes-
sage. This way, when you read the log later, you can see which object was responsible for every line of
the file.

Non-Public Inheritance
In all of the examples above, parent classes were always listed using the public keyword. You may be
wondering if a parent can be private or protected. In fact it can, though neither is as common as
public.

Declaring the relationship with the parent to be protected means that all public and protected
methods and data members from the superclass become protected in the context of the subclass.
Similarly, specifying private access means that all public, protected, and private methods and
data members of the superclass become private in the subclass.

There are a handful of reasons why you might want to uniformly degrade the access level of the parent
in this way, but most reasons imply flaws in the design of the hierarchy. Some programmers abuse this
language feature, often in combination with multiple inheritance, to implement “components” of a class.
Instead of making an Airplane class that contains an engine data member and a fuselage data member,
they make an Airplane class that is a protected engine and a protected fuselage. In this way, the
Airplane doesn’t look like an engine or a fuselage to client code (because everything is protected),
but it is able to use all of that functionality internally.

Virtual Base Classes
Earlier in this chapter, you learned about ambiguous base classes, a situation that arises when multiple
parents each have a parent in common, as shown in Figure 10-9. The solution that we recommended was
to make sure that the shared parent doesn’t have any functionality of its own. That way, its methods can
never be called and there is no ambiguity problem.

C++ has another mechanism for addressing this problem in the event that you do want the shared par-
ent to have its own functionality. If the shared parent is a virtual base class, there will not be any ambigu-
ity. The following code adds a sleep() method to the Animal base class and modifies the Dog and Bird
classes to inherit from Animal as a virtual base class. Without the virtual keyword, a call to sleep()
on a DogBird object would be ambiguous because both Dog and Bird would have inherited versions of
sleep() from Animal. However, when Animal is inherited virtually, only one copy of each method or
member exists in its descendents.

class Animal
{

public:
virtual void eat() = 0;
virtual void sleep() { cout << “zzzzz....” << endl; }

};

Non-public inheritance is rare and we recommend using it cautiously, if for no
other reason than because of most programmers’ unfamiliarity with it.

269

Discovering Inheritance Techniques

13_574841 ch10.qxd 12/15/04 3:42 PM Page 269

class Dog : public virtual Animal
{

public:
virtual void bark() { cout << “Woof!” << endl; }
virtual void eat() { cout << “The dog has eaten.” << endl; }

};

class Bird : public virtual Animal
{

public:
virtual void chirp() { cout << “Chirp!” << endl; }
virtual void eat() { cout << “The bird has eaten.” << endl; }

};

class DogBird : public Dog, public Bird
{

public:
virtual void eat() { Dog::eat(); }

};

int main(int argc, char** argv)
{

DogBird myConfusedAnimal;

myConfusedAnimal.sleep(); // Not ambiguous because Animal is virtual
}

Summary
This chapter has taken you through the myriad points of inheritance. You have learned about its many
applications, including code reuse and polymorphism. You have also learned about its many abuses,
including poorly designed multiple inheritance schemes. Along the way, you’ve uncovered some of the
less common edge cases that are unlikely to come up on a daily basis but make for some gnarly bugs
(and interview questions!).

Inheritance is a powerful language feature that takes some time to get used to. After you have worked
with the examples of this chapter and experimented on your own, we hope that inheritance will become
your tool of choice for object-oriented design.

Virtual base classes are a great way to avoid ambiguity in class hierarchies. The only
drawback is that many C++ programmers are unfamiliar with the concept.

270

Chapter 10

13_574841 ch10.qxd 12/15/04 3:42 PM Page 270

Writing Generic Code
with Templates

C++ provides language support not only for object-oriented programming, but also for generic pro-
gramming. As discussed in Chapter 5, the goal of generic programming is to write reusable code.
The fundamental tools for generic programming in C++ are templates. Although not strictly an
object-oriented feature, templates can be combined with object-oriented programming for power-
ful results. Unfortunately, many programmers consider templates to be the most difficult part of
C++ and, for that reason, tend to avoid them. However, even if you never write your own tem-
plates, you need to understand their syntax and capabilities in order to use the C++ standard
library.

This chapter provides the code details for fulfilling the design principle of generality discussed in
Chapter 5 and prepares you to understand the standard template library, which is discussed fur-
ther in Chapters 21 to 23. The chapter is divided into two halves. The first half presents the most
commonly used template features, including:

❑ How to write template classes

❑ How the compiler processes templates

❑ How to organize template source code

❑ How to use nontype template parameters

❑ How to write templates of individual class methods

❑ How to write customizations of your class templates for specific types

❑ How to combine templates and inheritance

❑ How to write function templates

❑ How to make template functions friends of template classes

14_574841 ch11.qxd 12/15/04 3:43 PM Page 271

The second half of the chapter delves into some of the more obscure template features, including:

❑ The three kinds of template parameters and their subtleties

❑ Partial specialization

❑ Function template deduction

❑ How to exploit template recursion

Overview of Templates
The main programming unit in the procedural paradigm is the procedure or function. Functions are useful
primarily because they allow you to write algorithms that are independent of specific values and can
thus be reused for many different values. For example, the sqrt() function in C and C++ calculates the
square root of a value supplied by the caller. A square root function that calculated only the square root
of one number, like four, would not be particularly useful! The sqrt() function is written in terms of a
parameter, which is a stand-in for whatever value the caller passes. Computer scientists say that func-
tions parameterize values.

The object-oriented programming paradigm adds the concept of objects, which group related data and
behaviors, but does not change the way functions and methods parameterize values.

Templates take the concept of parameterization a step further to allow you to parameterize on types as
well as values. Recall that types in C++ include primatives such as int and double, as well as user-
defined classes such as SpreadsheetCells and CherryTrees. With templates you can write code that
is independent not only of the values it will be given, but of the types of those values as well! For exam-
ple, instead of writing separate stack classes to store ints, Cars, and SpreadsheetCells, you can write
one stack class definition that can be used for any of those types.

Although templates are an amazing language feature, templates in C++ are both conceptually and syn-
tactically confusing, and many programmers overlook or avoid them. A committee designed template
support in C++, and it sometimes seems as if the committee took an “everything but the kitchen sink”
approach: the purpose of many template features might not be readily apparent. Even worse, compiler
support for templates has historically been, and continues to be, spotty. Very few commercial compilers
provide complete support for templates according to the C++ standard.

For these reasons, most C++ books only scratch the surface of templates. However, it is extremely impor-
tant for you to understand C++ templates for one major reason: the C++ standard template library is, as
its name suggests, built with templates. In order to take advantage of this library you must understand
template fundamentals.

Thus, this chapter will teach you about template support in C++ with an emphasis on the aspects that
arise in the standard template library. Along the way, you will learn about some nifty features that you
can employ in your programs aside from using the standard library.

272

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 272

Class Templates
Class templates are useful primarily for containers, or data structures, that store objects. This section uses
a running example of a Grid container. In order to keep the examples reasonable in length and simple
enough to illustrate specific points, different sections of the chapter will add features to the Grid con-
tainer that are not used in subsequent sections.

Writing a Class Template
Suppose that you want a generic game board class that you can use as a chessboard, checkers board, Tic-
Tac-Toe board, or any other two-dimensional game board. In order to make it general-purpose, you
should be able to store chess pieces, checkers pieces, Tic-Tac-Toe pieces, or any type of game piece.

Coding without Templates
Without templates, the best approach to build a generic game board is to employ polymorphism to store
generic GamePiece objects. Then, you could subclass the pieces for each game from the GamePiece
class. For example, in the chess game, the ChessPiece would be a subclass of GamePiece. Through
polymorphism, the GameBoard, written to store GamePieces, can also store ChessPieces. Your class
definition might look like similar to the Spreadsheet class from Chapter 9, which used a dynamically
allocated two-dimensional array as the underlying grid structure:

// GameBoard.h

class GameBoard
{

public:
// The general-purpose GameBoard allows the user to specify its dimensions
GameBoard(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
GameBoard(const GameBoard& src); // Copy constructor
~GameBoard();
GameBoard &operator=(const GameBoard& rhs); // Assignment operator

void setPieceAt(int x, int y, const GamePiece& inPiece);
GamePiece& getPieceAt(int x, int y);
const GamePiece& getPieceAt(int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const GameBoard& src);
// Objects dynamically allocate space for the game pieces.
GamePiece** mCells;
int mWidth, mHeight;

};

getPieceAt() returns a reference to the piece at a specified spot instead of a copy of the piece. The
GameBoard serves as an abstraction of a two-dimensional array, so it should provide array access seman-
tics by giving the actual object at an index, not a copy of the object.

273

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 273

This implementation of the class provides two versions of getPieceAt(), one of which returns a refer-
ence and one of which returns a const reference. Chapter 16 explains how this overload works.

Here are the method and static member definitions. The implementation is almost identical to the
Spreadsheet class from Chapter 9. Production code would, of course, perform bounds checking in
setPieceAt() and getPieceAt(). That code is omitted because it is not the point of this chapter.

// GameBoard.cpp
#include “GameBoard.h”

const int GameBoard::kDefaultWidth;
const int GameBoard::kDefaultHeight;

GameBoard::GameBoard(int inWidth, int inHeight) :
mWidth(inWidth), mHeight(inHeight)

{
mCells = new GamePiece* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new GamePiece[mHeight];
}

}

GameBoard::GameBoard(const GameBoard& src)
{

copyFrom(src);
}

GameBoard::~GameBoard()
{

// Free the old memory
for (int i = 0; i < mWidth; i++) {

delete[] mCells[i];
}

delete[] mCells;
}

void GameBoard::copyFrom(const GameBoard& src)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new GamePiece* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new GamePiece[mHeight];
}
for (i = 0; i < mWidth; i++) {

for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][j];

}
}

}

274

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 274

GameBoard& GameBoard::operator=(const GameBoard& rhs)
{

// Check for self-assignment
if (this == &rhs) {

return (*this);
}
// Free the old memory
for (int i = 0; i < mWidth; i++) {

delete[] mCells[i];
}
delete[] mCells;

// Copy the new memory
copyFrom(rhs);

return (*this);
}

void GameBoard::setPieceAt(int x, int y, const GamePiece& inElem)
{

mCells[x][y] = inElem;
}

GamePiece& GameBoard::getPieceAt(int x, int y)
{

return (mCells[x][y]);
}

const GamePiece& GameBoard::getPieceAt(int x, int y) const
{

return (mCells[x][y]);
}

This GameBoard class works pretty well. Assuming that you wrote a ChessPiece class, you can create
GameBoard objects and use them like this:

GameBoard chessBoard(10, 10);
ChessPiece pawn;

chessBoard.setPieceAt(0, 0, pawn);

A Template Grid Class
The GameBoard class in the previous section is nice, but insufficient. For example, it’s quite similar to the
Spreadsheet class from chapter 9, but the only way you could use it as a spreadsheet would be to make
the SpreadsheetCell class a subclass of GamePiece. That doesn’t make sense because it doesn’t fulfill
the is-a principle of inheritance: a SpreadsheetCell is not a GamePiece. It would be nice if you could
write a generic grid class that you could use for purposes as diverse as a Spreadsheet or a
ChessBoard. In C++, you can do this by writing a class template, which allows you to write a class with-
out specifying one or more types. Clients then instantiate the template by specifying the types they want
to use.

275

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 275

The Grid Class Definition
In order to understand class templates, it is helpful to examine the syntax. The following example shows
how you can tweak your GameBoard class slightly to make a templatized Grid class. Don’t let the syntax
scare you — it’s all explained following the code. Note that the class name has changed from
GameBoard to Grid, and setPieceAt() and getPieceAt() have changed to setElementAt() and
getElementAt() to reflect the class’ more generic nature.

// Grid.h

template <typename T>
class Grid
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<T>& src);
~Grid();
Grid<T>& operator=(const Grid<T>& rhs);

void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;
int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T>& src);
T** mCells;
int mWidth, mHeight;

};

Now that you’ve seen the full class definition, take another look at it, one line at a time:

template <typename T>

This first line says that the following class definition is a template on one type. Both template and
typename are keywords in C++. As discussed earlier, templates “parameterize” types the same way that
functions “parameterize” values. Just as you use parameter names in functions to represent the argu-
ments that the caller will pass, you use type names (such as T) in templates to represent the types that
the caller will specify. There’s nothing special about the name T — you can use whatever name you
want.

For historical reasons, you can use the keyword class instead of typename to spec-
ify template type parameters. Thus, many books and existing programs use syntax
like this: template <class T>. However, the use of the word “class” in this context
is confusing because it implies that the type must be a class, which is not true. Thus,
this book uses typename exclusively.

276

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 276

The template specifier holds for the entire statement, which in this case is the class definition.

Several lines further, the copy constructor looks like this:

Grid(const Grid<T>& src);

As you can see, the type of the src parameter is no longer a const Grid&, but a const Grid<T>&.
When you write a class template, what you used to think of as the class name (Grid) is actually the tem-
plate name. When you want to talk about actual Grid classes or types, you discuss them as instantia-
tions of the Grid class template for a certain type, such as int, SpreadsheetCell, or ChessPiece. You
haven’t specified the real type yet, so you must use a stand-in template parameter, T, for whatever type
might be used later. Thus, when you need to refer to a type for a Grid object as a parameter to, or return
value from, a method you must use Grid<T>. You can see this change with the parameter to, and return
value from, the assignment operator, and the parameter to the copyFrom() method.

Within a class definition, the compiler will interpret Grid as Grid<T> where needed. However, it’s best
to get in the habit of specifying Grid<T> explicitly because that’s the syntax you use outside the class to
refer to types generated from the template.

The final change to the class is that methods such as setElementAt() and getElementAt() now take
and return parameters and values of type T instead of type GamePiece:

void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;

This type T is a placeholder for whatever type the user specifies. mCells is now a T** instead of a
GameBoard** because it will point to a dynamically allocated two-dimensional array of Ts, for whatever
type T the user specifies.

Template classes can contain inline methods such as getHeight() and getWidth().

The Grid Class Method Definitions
The template <typename T> specifier must precede each method definition for the Grid template.
The constructor looks like this:

template <typename T>
Grid<T>::Grid(int inWidth, int inHeight) : mWidth(inWidth), mHeight(inHeight)
{

mCells = new T* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
}

}

Note that the class name before the :: is Grid<T>, not Grid. You must specify Grid<T> as the class
name in all your methods and static data member definitions. The body of the constructor is identical to
the GameBoard constructor except that the placeholder type T replaces the GamePiece type.

277

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 277

The rest of the method and static member definitions are also similar to their equivalents in the
GameBoard class with the exception of the appropriate template and Grid<T> syntax changes:

template <typename T>
const int Grid<T>::kDefaultWidth;

template <typename T>
const int Grid<T>::kDefaultHeight;

template <typename T>
Grid<T>::Grid(const Grid<T>& src)
{

copyFrom(src);
}

template <typename T>
Grid<T>::~Grid()
{

// Free the old memory.
for (int i = 0; i < mWidth; i++) {

delete [] mCells[i];
}
delete [] mCells;

}

template <typename T>
void Grid<T>::copyFrom(const Grid<T>& src)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new T* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = src.mCells[i][j];
}

}
}

template <typename T>
Grid<T>& Grid<T>::operator=(const Grid<T>& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
for (int i = 0; i < mWidth; i++) {

delete [] mCells[i];
}
delete [] mCells;

278

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 278

// Copy the new memory.
copyFrom(rhs);

return (*this);
}

template <typename T>
void Grid<T>::setElementAt(int x, int y, const T& inElem)
{

mCells[x][y] = inElem;
}

template <typename T>
T& Grid<T>::getElementAt(int x, int y)
{

return (mCells[x][y]);
}

template <typename T>
const T& Grid<T>::getElementAt(int x, int y) const
{

return (mCells[x][y]);
}

Using the Grid Template
When you want to create grid objects, you cannot use Grid alone as a type; you must specify the type
that will be stored in that Grid. Creating an object of a template class for a specific type is called instanti-
ating the template. Here is an example:

#include “Grid.h”

int main(int argc, char** argv)
{

Grid<int> myIntGrid; // Declares a grid that stores ints
myIntGrid.setElementAt(0, 0, 10);
int x = myIntGrid.getElementAt(0, 0);

Grid<int> grid2(myIntGrid);
Grid<int> anotherIntGrid = grid2;

return (0);
}

Note that the type of mIntGrid, grid2, and anotherIntGrid is Grid<int>. You cannot store
SpreadsheetCells or ChessPieces in these grids; the compiler will generate an error if you try to
do so.

The type specification is important: neither of the following two lines compiles:

Grid test; // WILL NOT COMPILE
Grid<> test; // WILL NOT COMPILE

The first causes your compiler to complain with something like, “use of class template requires template
argument list.” The second causes it to say something like, “wrong number of template arguments.”

279

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 279

If you want to declare a function or method that takes a Grid object, you must specify the type stored in
that grid as part of the Grid type:

void processIntGrid(Grid<int>& inGrid)
{

// Body omitted for brevity
}

The Grid template can store more than just ints. For example, you can instantiate a Grid that stores
SpreadsheetCells:

Grid<SpreadsheetCell> mySpreadsheet;
SpreadsheetCell myCell;
mySpreadsheet.setElementAt(3, 4, myCell);

You can store pointer types as well:

Grid<char*> myStringGrid;
myStringGrid.setElementAt(2, 2, “hello”);

The type specified can even be another template type. The following example uses the vector template
from the standard template library (introduced in Chapter 4):

Grid<vector<int> > gridOfVectors; // Note the extra space!
vector<int> myVector;
gridOfVectors.setElementAt(5, 6, myVector);

You must leave a space between the two closing angle brackets when you have nested templates. C++
requires this syntax because compilers would interpret >> in the following example as the I/O streams
extraction operator:

Grid<vector<int>> gridOfVectors; // INCORRECT SYNTAX

You can also dynamically allocate Grid template instantiations on the heap:

Grid<int>* myGridp = new Grid<int>();
myGridp->setElementAt(0, 0, 10);
int x = myGridp->getElementAt(0, 0);

delete myGridp;

How the Compiler Processes Templates
In order to understand the intricacies of templates, you need to learn how the compiler processes tem-
plate code. When the compiler encounters template method definitions, it performs syntax checking, but
doesn’t actually compile the templates. It can’t compile template definitions because it doesn’t know for
which types they will be used. It’s impossible for a compiler to generate code for something like x = y
without knowing the types of x and y.

When the compiler encounters an instantiation of the template, such as Grid<int> myIntGrid, it
writes code for an int version of the Grid template by replacing each T in the template class definition

280

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 280

with int. When the compiler encounters a different instantiation of the template, such as
Grid<SpreadsheetCell> mySpreadsheet, it writes another version of the Grid class for
SpreadsheetCells. The compiler just writes the code that you would write if you didn’t have template
support in the language and had to write separate classes for each element type. There’s no magic here;
templates just automate an annoying process. If you don’t instantiate a class template for any types in
your program, then the class method definitions are never compiled.

This instantiation process explains why you need to use the Grid<T> syntax in various places in your
definition. When the compiler instantiates the template for a particular type, such as int, it replaces
T with int, so that Grid<int> is the type.

Selective Instantiation
Instantiating a template for many different types can lead to code bloat because the compiler generates
copies of the template code for each type. You can end up with large executable files when you use
templates.

However, the problem is ameliorated because the compiler only generates code for the class methods
that you actually call for a particular type. For example, given the Grid template class above, suppose
that you write this code (and only this code) in main():

Grid<int> myIntGrid;
myIntGrid.setElementAt(0, 0, 10);

The compiler generates only the 0-argument constructor, the destructor, and the setElementAt()
method for an int version of the Grid. It does not generate other methods like the copy constructor, the
assignment operator, or getHeight().

Template Requirements on Types
When you write code that is independent of types, you must assume certain things about those types.
For example, in the Grid template, you assume that the element type (represented by T) will have an
assignment operator because of this line: mCells[x][y] = inElem. Similarly, you assume it will have a
default constructor to allow you to create an array of elements.

If you attempt to instantiate a template with a type that does not support all the operations used by the
template in your particular program, the code will not compile. However, even if the type you want to
use doesn’t support the operations required by all the template code, you can exploit selective instantia-
tion to use some methods but not others. For example, if you try to create a grid for an object that has no
assignment operator, but you never call setElementAt() on that grid, your code will work fine. As
soon as you try to call setElementAt(), however, you will receive a compilation error.

Distributing Template Code between Files
Normally you put class definitions in a header file and method definitions in a source file. Code that cre-
ates or uses objects of the class #includes the header file and obtains access to the method code via the
linker. Templates don’t work that way. Because they are “templates” for the compiler to generate the
actual methods for the instantiated types, both template class definitions and method definitions must
be available to the compiler in any source file that uses them. In this sense, methods of a template class
are similar to inline methods. There are several mechanisms to obtain this inclusion.

281

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 281

Template Definitions in Header Files
You can place the method definitions directly in the same header file where you define the class itself.
When you #include this file in a source file where you use the template, the compiler will have access
to all the code it needs.

Alternatively, you can place the template method definitions in a separate header file that you #include
in the header file with the class definitions. Make sure the #include for the method definitions follows
the class definition; otherwise the code won’t compile!

// Grid.h

template <typename T>
class Grid
{

// Class definition omitted for brevity
};

#include “GridDefinitions.h”

This division helps keep the distinction between class definitions and method definitions.

Template Definitions in Source Files
Method implementations look strange in header files. If that syntax annoys you, there is a way that you
can place the method definitions in a source file. However, you still need to make the definitions avail-
able to the code that uses the templates, which you can do by #includeing the method implementation
source file in the template class definition header file. That sounds odd if you’ve never seen it before, but
it’s legal in C++. The header file looks like this:

// Grid.h

template <typename T>
class Grid
{

// Class definition omitted for brevity
};

#include “Grid.cpp”

The C++ standard actually defines a way for template method definitions to exist in a source file, which
does not need to be #included in a header file. You use the export keyword to specify that the tem-
plate definitions should be available in all translation units (source files). Unfortunately, as of this writing,
few commercial compilers support this feature, and many vendors seem disinclined to support it any-
time soon.

Template Parameters
In the Grid example, the Grid template has one template parameter: the type that is stored in the grid.
When you write the class template, you specify the parameter list inside the angle brackets, like this:

template <typename T>

282

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 282

This parameter list is similar to the parameter list in a function or method. As in functions and methods,
you can write a class with as many template parameters as you want. Additionally, these parameters
don’t have to be types, and they can have default values.

Nontype Template Parameters
Nontype parameters are “normal” parameters such as ints and pointers: the kind of parameters with
which you’re familiar from functions and methods. However, templates allow nontype parameters to be
values of only “simple” types: ints, enums, pointers, and references.

In the Grid template class, you could use nontype template parameters to specify the height and width
of the grid instead of specifying them in the constructor. The principle advantage to specifying nontype
parameters in the template list instead of in the constructor is that the values are known before the code
is compiled. Recall that the compiler generates code for templatized methods by substituting in the tem-
plate parameters before compiling. Thus, you can use a normal two-dimensional array in your imple-
mentation instead of dynamically allocating it. Here is the new class definition:

template <typename T, int WIDTH, int HEIGHT>
class Grid
{

public:
void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:
T mCells[WIDTH][HEIGHT];

};

This class is significantly simpler than the old version. Note that the template parameter list requires
three parameters: the type of object stored in the grid and the width and height of the grid. The width
and height are used to create a two-dimensional array to store the objects. There is no dynamically allo-
cated memory in the class, so it no longer needs a user-defined copy constructor, destructor, or assign-
ment operator. In fact, you don’t even need to write a default constructor; the compiler generated one is
just fine. Here are the class method definitions:

template <typename T, int WIDTH, int HEIGHT>
void Grid<T, WIDTH, HEIGHT>::setElementAt(int x, int y, const T& inElem)
{

mCells[x][y] = inElem;
}

template <typename T, int WIDTH, int HEIGHT>
T& Grid<T, WIDTH, HEIGHT>::getElementAt(int x, int y)
{

return (mCells[x][y]);
}

template <typename T, int WIDTH, int HEIGHT>
const T& Grid<T, WIDTH, HEIGHT>::getElementAt(int x, int y) const
{

return (mCells[x][y]);
}

283

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 283

Note that wherever you previously specified Grid<T> you must now specify Grid<T, WIDTH,
HEIGHT> to represent the three template parameters.

You can instantiate this template and use it like this:

Grid<int, 10, 10> myGrid;
Grid<int, 10, 10> anotherGrid;

myGrid.setElementAt(2, 3, 45);
anotherGrid = myGrid;

cout << anotherGrid.getElementAt(2, 3);

This code seems great! Despite the slightly messy syntax for declaring a Grid, the actual Grid code is a
lot simpler. Unfortunately, there are more restrictions than you might think at first. First, you can’t use a
nonconstant integer to specify the height or width. The following code doesn’t compile:

int height = 10;
Grid<int, 10, height> testGrid; // DOES NOT COMPILE

However, if you make height const, it compiles:

const int height = 10;
Grid<int, 10, height> testGrid; // compiles and works

The second problem is much more significant. Now that the width and height are template parameters,
they are part of the type of each grid. That means that Grid<int, 10, 10> and Grid<int, 10, 11>
are two different types. You can’t assign an object of one type to an object of the other, and variables of
one type can’t be passed to functions or methods that expect variables of another type.

Default Values for Integer Nontype Parameters
If you continue the approach of making height and width template parameters, you might want to be
able to provide defaults for the height and width just as you did previously in the constructor of the
Grid<T> class. C++ allows you to provide defaults for template parameters with a similar syntax. Here
is the class definition:

template <typename T, int WIDTH = 10, int HEIGHT = 10>
class Grid
{

// Remainder of the implementation is identical to the previous version
};

Nontype template parameters become part of the type specification of instantiated
objects.

284

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 284

You do not need to specify the default values for WIDTH and HEIGHT in the template specification for the
method definitions. For example, here is the implementation of setElementAt():

template <typename T, int WIDTH, int HEIGHT>
void Grid<T, WIDTH, HEIGHT>::setElementAt(int x, int y, const T& inElem)
{

mCells[x][y] = inElem;
}

Now, you can instantiate a Grid with only the element type, the element type and the width, or the ele-
ment type, width, and height:

Grid<int> myGrid;
Grid<int, 10> anotherGrid;
Grid<int, 10, 10> aThirdGrid;

The rules for default parameters in template parameter lists are the same as for functions or methods:
you can provide defaults for parameters in order starting from the right.

Method Templates
C++ allows you to templatize individual methods of a class. These methods can be inside a class tem-
plate or in a nontemplatized class. When you write a templatized class method, you are actually writing
many different versions of that method for many different types. Method templates come in useful for
assignment operators and copy constructors in class templates.

Consider the original Grid template with only one parameter: the element type. You can instantiate
grids of many different types, such as ints and doubles:

Grid<int> myIntGrid;
Grid<double> myDoubleGrid;

However, Grid<int> and Grid<double> are two different types. If you write a function that takes an
object of type Grid<double>, you cannot pass a Grid<int>. Even though you know that an int grid
could be copied to a double grid, because the ints could be coerced into doubles, you cannot assign an
object of type Grid<int> to one of type Grid<double> or construct a Grid<double> from a
Grid<int>. Neither of the following two lines compiles:

myDoubleGrid = myIntGrid; // DOES NOT COMPILE
Grid<double> newDoubleGrid(myIntGrid); // DOES NOT COMPILE

The problem is that the Grid template copy constructor and operator= signatures look like this:

Grid(const Grid<T>& src);
Grid<T>& operator=(const Grid<T>& rhs);

Virtual methods and destructors cannot be templatized.

285

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 285

The Grid copy constructor and operator= both take a reference to a const Grid<T>. When you
instantiate a Grid<double> and try to call the copy constructor and operator=, the compiler generates
methods with these signatures:

Grid(const Grid<double>& src);
Grid<double>& operator=(const Grid<double>& rhs);

Note that there are no constructors or operator= that take a Grid<int> within the generated
Grid<double> class. However, you can rectify this oversight by adding templatized versions of the
copy constructor and operator= to the Grid class to generate routines that will convert from one grid
type to another. Here is the new Grid class definition:

template <typename T>
class Grid
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<T>& src);
template <typename E>
Grid(const Grid<E>& src);
~Grid();

Grid<T>& operator=(const Grid<T>& rhs);
template <typename E>
Grid<T>& operator=(const Grid<E>& rhs);

void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }

static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T>& src);
template <typename E>
void copyFrom(const Grid<E>& src);

T** mCells;
int mWidth, mHeight;

};

Member templates do not replace nontemplate members with the same name. This
rule leads to problems with the copy constructor and operator= because of the
compiler-generated versions. If you write templatized versions of the copy con-
structor and operator= and omit nontemplatized versions, the compiler will not
call these new templatized versions for assignments of grids with the same type.
Instead, it will generate a copy constructor and operator= for creating and assign-
ing two grids of the same type, which will not do what you want! Thus, you must
keep the old nontemplatized copy constructor and operator= as well.

286

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 286

Examine the new templatized copy constructor signature first:

template <typename E>
Grid(const Grid<E>& src);

You can see that there is another template declaration with a different typename, E (short for “element”).
The class is templatized on one type, T, and the new copy constructor is also templatized on a different
type, E. This twofold templatization allows you to copy grids of one type to another.

Here is the definition of the new copy constructor:

template <typename T>
template <typename E>
Grid<T>::Grid(const Grid<E>& src)
{

copyFrom(src);
}

As you can see, you must declare the class template line (with the T parameter) before the member tem-
plate line (with the E parameter). You can’t combine them like this:

template <typename T, typename E> // INCORRECT TEMPLATE PARAMETER LIST!
Grid<T>::Grid(const Grid<E>& src)

The copy constructor uses the protected copyFrom() method, so the class needs a templatized version
of copyFrom() as well:

template <typename T>
template <typename E>
void Grid<T>::copyFrom(const Grid<E>& src)
{

int i, j;
mWidth = src.getWidth();
mHeight = src.getHeight();

mCells = new T* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
}
for (i = 0; i < mWidth; i++) {

for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.getElementAt(i, j);

}
}

}

In addition to the extra template parameter line before the copyFrom() method definition, note that you
must use public accessor methods getWidth(), getHeight(), and getElementAt() to access the

Some compilers require that you provide method template definitions inline in the
class definition, but the C++ standard permits method template definitions outside
the class definition.

287

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 287

elements of src. That’s because the object you’re copying to is of type Grid<T>, and the object you’re
copying from is of type Grid<E>. They will not be the same type, so you must resort to public methods.

The final templatized method is the assignment operator. Note that it takes a const Grid<E>& but
returns a Grid<T>&.

template <typename T>
template <typename E>
Grid<T>& Grid<T>::operator=(const Grid<E>& rhs)
{

// Free the old memory.
for (int i = 0; i < mWidth; i++) {

delete [] mCells[i];
}
delete [] mCells;

// Copy the new memory.
copyFrom(rhs);

return (*this);
}

You do not need to check for self-assignment in the templatized assignment operator, because assign-
ment of the same types still happens in the old, nontemplatized, version of operator=, so there’s no
way you can get self-assignment here.

In addition to the confusing syntax for method templates, there is another problem: some compilers
don’t implement full (or any) support for them. Try this example out on your compiler of choice to see if
you can use these features.

Method Templates with Nontype Parameters
In the earlier example with integer template parameters for HEIGHT and WIDTH, we noted that a major
problem is that the height and width become part of the types. This restriction prevents you from assign-
ing a grid with one height and width to a grid with a different height and width. In some cases, how-
ever, it’s desirable to assign or copy a grid of one size to a grid of a different size. Instead of making the
destination object a perfect clone of the source object, you would copy only those elements from the
source array that fit in the destination array, padding the destination array with default values if the
source array is smaller in either dimention. With method templates for the assignment operator and
copy constructor, you can do exactly that, thus allow assignment and copying of different sized grids.
Here is the class definition:

template <typename T, int WIDTH = 10, int HEIGHT = 10>
class Grid
{

public:
Grid() {}

template <typename E, int WIDTH2, int HEIGHT2>
Grid(const Grid<E, WIDTH2, HEIGHT2>& src);

template <typename E, int WIDTH2, int HEIGHT2>
Grid<T, WIDTH, HEIGHT>& operator=(const Grid<E, WIDTH2, HEIGHT2>& rhs);

288

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 288

void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:
template <typename E, int WIDTH2, int HEIGHT2>
void copyFrom(const Grid<E, WIDTH2, HEIGHT2>& src);

T mCells[WIDTH][HEIGHT];
};

We have added method templates for the copy constructor and assignment operator, plus a helper
method copyFrom(). Recall from Chapter 8 that when you write a copy constructor, the compiler stops
generating a default constructor for you, so we had to add a default constructor as well. Note, however,
that we do not need to write nontemplatized copy constructor and assignment operator methods
because the compiler-generated ones continue to be generated. They simply copy or assign mCells from
the source to the destination, which is exactly the semantics we want for two grids of the same size.

When you templatize the copy constructor, assignment operator, and copyFrom(), you must specify all
three template parameters. Here is the templatized copy constructor:

template <typename T, int WIDTH, int HEIGHT>
template <typename E, int WIDTH2, int HEIGHT2>
Grid<T, WIDTH, HEIGHT>::Grid(const Grid<E, WIDTH2, HEIGHT2>& src)
{

copyFrom(src);
}

Here are the implementations of copyFrom() and operator=. Note that copyFrom() copies only
WIDTH and HEIGHT elements in the x and y dimensions, respectively, from src, even if src is bigger than
that. If src is smaller in either dimension, copyFrom() pads the extra spots with zero-initialized values.
T() calls the default constructor for the object if T is a class type, or generates 0 if T is a simple type. This
syntax is called the zero-initialization syntax. It’s a good way to provide a reasonable default value for a
variable whose type you don’t yet know.

template <typename T, int WIDTH, int HEIGHT>
template <typename E, int WIDTH2, int HEIGHT2>
void Grid<T, WIDTH, HEIGHT>::copyFrom(const Grid<E, WIDTH2, HEIGHT2>& src)
{

int i, j;
for (i = 0; i < WIDTH; i++) {

for (j = 0; j < HEIGHT; j++) {
if (i < WIDTH2 && j < HEIGHT2) {

mCells[i][j] = src.getElementAt(i, j);
} else {

mCells[i][j] = T();
}

}
}

}

289

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 289

template <typename T, int WIDTH, int HEIGHT>
template <typename E, int WIDTH2, int HEIGHT2>
Grid<T, WIDTH, HEIGHT>& Grid<T, WIDTH, HEIGHT>::operator=(

const Grid<E, WIDTH2, HEIGHT2>& rhs)
{

// No need to check for self-assignment because this version of
// assignment is never called when T and E are the same

// No need to free any memory first

// Copy the new memory.
copyFrom(rhs);
return (*this);

}

Template Class Specialization
You can provide alternate implementations of class templates for specific types. For example, you might
decide that the Grid behavior for char*s (C-style strings) doesn’t make sense. The grid currently stores
shallow copies of pointer types. For char*’s, it might make sense to do a deep copy of the string.

Alternate implementations of templates are called template specializations. Again, the syntax is a little
weird. When you write a template class specialization, you must specify that it’s a template, and that
you are writing the version of the template for that particular type. Here is the syntax for specializing
the original version of the Grid for char *s.

// #includes for working with the C-style strings.
#include <cstdlib>
#include <cstring>
using namespace std;

// When the template specialization is used, the original template must be visible
// too. #including it here ensures that it will always be visible when this
// specialization is visible.
#include “Grid.h”

template <>
class Grid<char*>
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<char*>& src);
~Grid();
Grid<char*>& operator=(const Grid<char*>& rhs);

void setElementAt(int x, int y, const char* inElem);
char* getElementAt(int x, int y) const;

int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

290

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 290

protected:
void copyFrom(const Grid<char*>& src);

char*** mCells;
int mWidth, mHeight;

};

Note that you don’t refer to any type variable, such as T, in the specialization: you work directly with
char*s. One obvious question at this point is why this class is still a template. That is, what good is this
syntax?

template <>
class Grid<char *>

This syntax tells the compiler that this class is a char * specialization of the Grid class. Suppose that
you didn’t use that syntax and just tried to write this:

class Grid

The compiler wouldn’t let you do that because there is already a class named Grid (the original tem-
plate class). Only by specializing it can you reuse the name. The main benefit of specializations is that
they can be invisible to the user. When a user creates a Grid of ints or SpreadsheetCells, the com-
piler generates code from the original Grid template. When the user creates a Grid of char*’s, the com-
piler uses the char* specialization. This can all be “behind the scenes.”

Grid<int> myIntGrid; // Uses original Grid template
Grid<char*> stringGrid1(2, 2); // Uses char* specialization

char* dummy = new char[10];

strcpy(dummy, “dummy”);

stringGrid1.setElementAt(0, 0, “hello”);
stringGrid1.setElementAt(0, 1, dummy);
stringGrid1.setElementAt(1, 0, dummy);
stringGrid1.setElementAt(1, 1, “there”);

delete[] dummy;

Grid<char*> stringGrid2(stringGrid1);

When you specialize a template, you don’t “inherit” any code: specializations are not like subclasses.
You must rewrite the entire implementation of the class. There is no requirement that you provide meth-
ods with the same names or behavior. In fact, you could write a completely different class with no rela-
tion to the original! Of course, that would abuse the template specialization ability, and you shouldn’t do
it without good reason. Here are the implementations for the methods of the char* specialization.
Unlike in the original template definitions, you do not repeat the template<> syntax before each
method or static member definition!

const int Grid<char*>::kDefaultWidth;
const int Grid<char*>::kDefaultHeight;

Grid<char*>::Grid(int inWidth, int inHeight) :

291

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 291

mWidth(inWidth), mHeight(inHeight)
{

mCells = new char** [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new char* [mHeight];
for (int j = 0; j < mHeight; j++) {

mCells[i][j] = NULL;
}

}
}

Grid<char*>::Grid(const Grid<char*>& src)
{

copyFrom(src);
}

Grid<char*>::~Grid()
{

// Free the old memory.
for (int i = 0; i < mWidth; i++) {

for (int j = 0; j < mHeight; j++) {
delete[] mCells[i][j];

}
delete[] mCells[i];

}
delete[] mCells;

}

void Grid<char*>::copyFrom(const Grid<char*>& src)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new char** [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new char* [mHeight];
}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

if (src.mCells[i][j] == NULL) {
mCells[i][j] = NULL;

} else {
mCells[i][j] = new char[strlen(src.mCells[i][j]) + 1];
strcpy(mCells[i][j], src.mCells[i][j]);

}
}

}
}

Grid<char*>& Grid<char*>::operator=(const Grid<char*>& rhs)
{

int i, j;

292

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 292

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
for (i = 0; i < mWidth; i++) {

for (j = 0; j < mHeight; j++) {
delete[] mCells[i][j];

}
delete[] mCells[i];

}
delete[] mCells;

// Copy the new memory.
copyFrom(rhs);

return (*this);
}

void Grid<char*>::setElementAt(int x, int y, const char* inElem)
{

delete[] mCells[x][y];
if (inElem == NULL) {

mCells[x][y] = NULL;
} else {

mCells[x][y] = new char[strlen(inElem) + 1];
strcpy(mCells[x][y], inElem);

}
}

char* Grid<char*>::getElementAt(int x, int y) const
{

if (mCells[x][y] == NULL) {
return (NULL);

}
char* ret = new char[strlen(mCells[x][y]) + 1];
strcpy(ret, mCells[x][y]);

return (ret);
}

getElementAt() returns a deep copy of the string, so you don’t need an overload that returns a const
char*.

Subclassing Template Classes
You can write subclasses of template classes. If the subclass inherits from the template itself, it must be a
template as well. Alternatively, you can write a subclass to inherit from a specific instantiation of the
template class, in which case your subclass does not need to be a template. As an example of the former,
suppose you decide that the generic Grid class doesn’t provide enough functionality to use as a game
board. Specifically, you would like to add a move() method to the game board that moves a piece from
one location on the board to another. Here is the class definition for the GameBoard template:

293

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 293

#include “Grid.h”

template <typename T>
class GameBoard : public Grid<T>
{

public:
GameBoard(int inWidth = Grid<T>::kDefaultWidth,

int inHeight = Grid<T>::kDefaultHeight);
void move(int xSrc, int ySrc, int xDest, int yDest);

};

This GameBoard template subclasses the Grid template, and thereby inherits all its functionality. You
don’t need to rewrite setElementAt(), getElementAt(), or any of the other methods. You also don’t
need to add a copy constructor, operator=, or destructor, because you don’t have any dynamically allo-
cated memory in the GameBoard. The dynamically allocated memory in the Grid superclass will be
taken care of by the Grid copy constructor, operator=, and destructor.

The inheritance syntax looks normal, except that the superclass is Grid<T>, not Grid. The reason for this
syntax is that the GameBoard template doesn’t really subclass the generic Grid template. Rather, each
instantiation of the GameBoard template for a specific type subclasses the Grid instantiation for that
type. For example, if you instantiate a GameBoard with a ChessPiece type, then the compiler generates
code for a Grid<ChessPiece> as well. The “: public Grid<T>” syntax says that this class subclasses
from whatever Grid instantiation makes sense for the T type parameter. Note that the C++ name lookup
rules for template inheritance require you to specify that kDefaultWidth and kDefaultHeight are
declared in, and thus dependent on, the Grid<T> superclass.

Here are the implementations of the constructor and the move method. Again, note the use of Grid<T> in
the call to the superclass constructor. Additionally, although many compilers don’t enforce it, the name
lookup rules require you to use the this pointer to refer to data members and methods in the superclass.

template <typename T>
GameBoard<T>::GameBoard(int inWidth, int inHeight) :

Grid<T>(inWidth, inHeight)
{
}

template <typename T>
void GameBoard<T>::move(int xSrc, int ySrc, int xDest, int yDest)
{

this->mCells[xDest][yDest] = this->mCells[xSrc][ySrc];
this->mCells[xSrc][ySrc] = T(); // zero-initialize the src cell

}

As you can see, move() uses the zero-initializtion syntax T() described in the section on “Method
Templates with Nontype Parameters.”

You can use the GameBoard template like this:

GameBoard<ChessPiece> chessBoard;

ChessPiece pawn;
chessBoard.setElementAt(0, 0, pawn);
chessBoard.move(0, 0, 0, 1);

294

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 294

Inheritance versus Specialization
Some programmers find the distinction between template inheritance and template specialization con-
fusing. The following table summarizes the differences.

Inheritance Specialization

Reuses code? Yes: subclasses contain all No: you must rewrite all code in
superclass members and the specialization.
methods.

Reuses name? No: the subclass name Yes: the specialization must have
must be different from the the same name as the original.
superclass name.

Supports polymorphism? Yes: objects of the subclass No: each instantiation of a
can stand in for objects of template for a type is a different
the superclass. type.

Function Templates
You can also write templates for stand-alone functions. For example, you could write a generic function
to find a value in an array and return its index:

template <typename T>
int Find(T& value, T* arr, int size)
{

for (int i = 0; i < size; i++) {
if (arr[i] == value) {

// Found it; return the index
return (i);

}
}
// Failed to find it; return -1
return (-1);

}

The Find() function template can work on arrays of any type. For example, you could use it to find the
index of an int in an array of ints or a SpreadsheetCell in an array of SpreadsheetCells.

Use inheritance for extending implementations and for polymorphism. Use special-
ization for customizing implementations for particular types.

295

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 295

You can call the function in two ways: explicitly specifying the type with angle brackets or omitting the
type and letting the compiler deduce it from the arguments. Here are some examples:

int x = 3, intArr[4] = {1, 2, 3, 4};
double d1 = 5.6, dArr[4] = {1.2, 3.4, 5.7, 7.5};

int res;
res = Find(x, intArr, 4); // Calls Find<int> by deduction
res = Find<int>(x, intArr, 4); // call Find<int> explicitly.

res = Find(d1, dArr, 4); // Call Find<double> by deduction.
res = Find<double>(d1, dArr, 4); // Calls Find<double> explicitly.

res = Find(x, dArr, 4); // DOES NOT COMPILE! Arguments are different types.

SpreadsheetCell c1(10), c2[2] = {SpreadsheetCell(4), SpreadsheetCell(10)};

res = Find(c1, c2, 2); // calls Find<SpreadsheetCell> by deduction
res = Find<SpreadsheetCell>(c1, c2, 2); // Calls Find<SpreadsheetCell>

// explicitly.

Like class templates, function templates can take nontype parameters. For brevity, we only show an
example of a type parameter for function templates.

Function Template Specialization
Just as you can specialize class templates, you can specialize function templates. For example, you might
want to write a Find() function for char* C-style strings that compares them with strcmp() instead of
operator==. Here is a specialization of the Find() function to do this:

template<>
int Find<char*>(char*& value, char** arr, int size)
{

for (int i = 0; i < size; i++) {
if (strcmp(arr[i], value) == 0) {

// Found it; return the index
return (i);

}
}
// Failed to find it; return –1
return (-1);

}

You can omit the <char*> in the function name when the parameter type can be deduced from the argu-
ments, making your prototype look like this:

template<>
int Find(char*& value, char** arr, int size)

The C++ standard library provides a templatized find() function that is much more
powerful than the one above. See Chapter 22 for details.

296

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 296

However, the deduction rules are tricky when you involve overloading as well (see next section), so, in
order to avoid mistakes, it’s better to note the type explicitly.

Although the specialized find function could take just char* instead of char*& as its first parameter, it’s
best to keep the arguments parallel to the nonspecialized version of the function for the deduction rules
to function properly.

You can use the specialization like this:

char* word = “two”;
char* arr[4] = {“one”, “two”, “three”, “four”};
int res;

res = Find<char*>(word, arr, 4); // Calls the char* specialization
res = Find(word, arr, 4); // Calls the char* specialization

Function Template Overloading
You can also overload template functions with nontemplate functions. For example, instead of writing a
Find() template specialization for char*, you could write a nontemplate Find() function that works
on char*s:

int Find(char*& value, char** arr, int size)
{

for (int i = 0; i < size; i++) {
if (strcmp(arr[i], value) == 0) {

// Found it; return the index
return (i);

}
}
// Failed to find it; return -1
return (-1);

}

This function is identical in behavior to the specialized version in the previous section. However, the
rules for when it is called are different:

char* word = “two”;
char* arr[4] = {“one”, “two”, “three”, “four”};
int res;

res = Find<char*>(word, arr, 4); // Calls the Find template with T=char*
res = Find(word, arr, 4); // Calls the Find nontemplate function!

Thus, if you want your function to work both when char* is explicitly specified and via deduction
when it is not, you should write a specialized template version instead of a nontemplate, overloaded
version.

Like template class method definitions, function template definitions (not just the prototypes) must be
available to all source files that use them. Thus, you should put the definitions in header files if more
than one source file uses them.

297

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 297

Function Template Overloading and Specialization Together
It’s possible to write both a specialized Find() template for char*s and a stand-alone Find() function
for char*s. The compiler always prefers the nontemplate function to a templatized version. However, if
you specify the template instantiation explicitly, the compiler will be forced to use the template version:

char* word = “two”;
char* arr[4] = {“one”, “two”, “three”, “four”};
int res;

res = Find<char *>(word, arr, 4); // Calls the char* specialization of the
// template

res = Find(word, arr, 4); // Calls the Find nontemplate function.

Friend Function Templates of Class Templates
Function templates are useful when you want to overload operators in a class template. For example,
you might want to overload the insertion operator for the Grid class template to stream a grid.

If you are unfamiliar with the mechanics for overloading operator<<, consult Chapter 16 for details.

As discussed in Chapter 16, you can’t make operator<< a member of the Grid class: it must be a stand-
alone function template. The definition, which should go directly in Grid.h, looks like this:

template <typename T>
ostream& operator<<(ostream& ostr, const Grid<T>& grid)
{

for (int i = 0; i < grid.mHeight; i++) {
for (int j = 0; j < grid.mWidth; j++) {

// Add a tab between each element of a row.
ostr << grid.mCells[j][i] << “\t”;

}
ostr << std::endl; // Add a newline between each row.

}
return (ostr);

}

This function template will work on any Grid, as long as there is an insertion operator for the elements
of the grid. The only problem is that operator<< accesses protected members of the Grid class.
Therefore, it must be a friend of the Grid class. However, both the Grid class and the operator<< are
templates. What you really want is for each instantiation of operator<< for a particular type T to be a
friend of the Grid template instantiation for that type. The syntax looks like this:

//Grid.h
#include <iostream>
using std::ostream;

// Forward declare Grid template.
template <typename T> class Grid;

// Prototype for templatized operator<<.
template<typename T>
ostream& operator<<(ostream& ostr, const Grid<T>& grid);

298

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 298

template <typename T>
class Grid
{

public:
// Omitted for brevity
friend ostream& operator<< <T>(ostream& ostr, const Grid<T>& grid);
// Omitted for brevity

};

This friend declaration is tricky: you’re saying that, for an instance of the template with type T, the
T instantiation of operator<< is a friend. In other words, there is a one-to-one mapping of friends
between the class instantiations and the function instantiations. Note particularly the explicit template
specification <T> on operator<< (the space after operator<< is optional). This syntax tells the com-
piler that operator<< is itself a template. Some compilers fail to support this syntax, but it’s legal C++,
and works on most new compilers.

Advanced Templates
The first half of this chapter covered the most widely used features of class and function templates. If
you are interested in only a basic knowledge of templates so that you can use the STL or perhaps write
your own simple classes, you can stop here. However, if templates interest you and you want to uncover
their full power, read the second half of this chapter to learn about some of the more obscure, but fasci-
nating, details.

More about Template Parameters
There are actually three kinds of template parameters: type, nontype and template template (no, you’re
not seeing double: that really is the name!) You’ve seen examples of type and nontype parameters above,
but not template template parameters yet. There are also some tricky aspects to both template and non-
type parameters that were not covered above.

More about Template Type Parameters
Type parameters to templates are the main purpose of templates. You can declare as many type parame-
ters as you want. For example, you could add to the grid template a second type parameter specifying
another templatized class container on which to build the grid. Recall from Chapter 4 that the standard
template library defines several templatized container classes, including vector and deque. In your
original grid class you might want to have an array of vectors or an array of deques instead of just an
array of arrays. With another template type parameter, you can allow the user to specify whether she
wants the underlying container to be a vector or a deque. Here is the class definition with the addi-
tional template parameter:

template <typename T, typename Container>
class Grid
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<T, Container>& src);
~Grid();

299

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 299

Grid<T, Container>& operator=(const Grid<T, Container>& rhs);
void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;
int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T, Container>& src);
Container* mCells;
int mWidth, mHeight;

};

This template now has two parameters: T and Container. Thus, wherever you previously referred to
Grid<T> you must refer to Grid<T, Container> to specify both template parameters. The only other
change is that mCells is now a pointer to a dynamically allocated array of Containers instead of a
pointer to a dynamically allocated two-dimensional array of T elements.

Here is the constructor definition. It assumes that the Container type has a resize() method. If you
try to instantiate this template by specifying a type that has no resize() method, the compiler will gen-
erate an error, as described below.

template <typename T, typename Container>
Grid<T, Container>::Grid(int inWidth, int inHeight) :

mWidth(inWidth), mHeight(inHeight)
{

// Dynamically allocate the array of mWidth containers
mCells = new Container[mWidth];
for (int i = 0; i < mWidth; i++) {

// Resize each container so that it can hold mHeight elements.
mCells[i].resize(mHeight);

}
}

Here is the destructor definition. There’s only one call to new in the constructor, so only one call to
delete in the destructor.

template <typename T, typename Container>
Grid<T, Container>::~Grid()
{

delete [] mCells;
}

The code in copyFrom() assumes that you can access elements in the container using array [] notation.
Chapter 16 explains how to overload the [] operator to implement this feature in your own container
classes, but for now, it’s enough to know that the vector and deque from the STL both support this syntax.

template <typename T, typename Container>
void Grid<T, Container>::copyFrom(const Grid<T, Container>& src)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

300

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 300

mCells = new Container[mWidth];
for (i = 0; i < mWidth; i++) {

// Resize each element, as in the constructor.
mCells[i].resize(mHeight);

}
for (i = 0; i < mWidth; i++) {

for (j = 0; j < mHeight; j++) {
mCells[i][j] = src.mCells[i][j];

}
}

}

Here are the implementations of the remaining methods.

template <typename T, typename Container>
Grid<T, Container>::Grid(const Grid<T, Container>& src)
{

copyFrom(src);
}

template <typename T, typename Container>
Grid<T, Container>& Grid<T, Container>::operator=(const Grid<T, Container>& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
delete [] mCells;

// Copy the new memory.
copyFrom(rhs);

return (*this);
}

template <typename T, typename Container>
void Grid<T, Container>::setElementAt(int x, int y, const T& inElem)
{

mCells[x][y] = inElem;
}

template <typename T, typename Container>
T& Grid<T, Container>::getElementAt(int x, int y)
{

return (mCells[x][y]);
}

template <typename T, typename Container>
const T& Grid<T, Container>::getElementAt(int x, int y) const
{

return (mCells[x][y]);
}

301

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 301

Now you can instantiate and use grid objects like this:

Grid<int, vector<int> > myIntGrid;
Grid<int, deque<int> > myIntGrid2;

myIntGrid.setElementAt(3, 4, 5);
cout << myIntGrid.getElementAt(3, 4);

Grid<int, vector<int> > grid2(myIntGrid);
grid2 = myIntGrid;

The use of the word Container for the parameter name doesn’t mean that the type really must be a con-
tainer. You could try to instantiate the Grid class with an int instead:

Grid<int, int> test; // WILL NOT COMPILE

This line will not compile, but it might not give you the error you expect. It won’t complain that the sec-
ond type argument is an int instead of a container. Instead it will tell you that left of ‘.resize’
must have class/struct/union type. That’s because the compiler attempts to generate a Grid
class with int as the Container. Everything works fine until it tries to compile this line:

mCells[i].resize(mHeight);

At that point, the compiler realizes that mCells[i] is an int, so you can’t call the resize() method
on it!

This approach may seem convoluted and useless to you. However, it arises in the standard template
library. The stack, queue, and priority_queue class templates all take a template type parameter
specifying the underlying container, which can be a vector, deque, or list.

Default Values for Template Type Parameters
You can give template parameters default values. For example, you might want to say that the default
container for your Grid is a vector. The template class definition would look like this:

#include <vector>
using std::vector;

template <typename T, typename Container = vector<T> >
class Grid
{

public:
// Everything else is the same as before.

};

You can use the type T from the first template parameter as the argument to the vector template in the
default value for the second template parameter. Note also that you must leave a space between the two
closing angle brackets to avoid the parsing problem discussed earlier in the chapter.

C++ syntax requires that you do not repeat the default value in the template header line for method
definitions.

302

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 302

With this default parameter, clients can now instantiate a grid with or without specifying an underlying
container:

Grid<int, vector<int> > myIntGrid;
Grid<int> myIntGrid2;

Introducing Template Template Parameters
There is one problem with the Container parameter in the previous section. When you instantiate the
class template, you write something like this:

Grid<int, vector<int> > myIntGrid;

Note the repetition of the int type. You must specify that it’s the element type both of the Grid and of
the vector. What if you wrote this instead?

Grid<int, vector<SpreadsheetCell> > myIntGrid;

That wouldn’t work very well! It would be nice to be able to write the following, so that you couldn’t
make that mistake:

Grid<int, vector> myIntGrid;

The Grid class should be able to figure out that it wants a vector of ints. The compiler won’t allow
you to pass that argument to a normal type parameter, though, because vector by itself is not a type,
but a template.

If you want to take a template as a template parameter, you must use a special kind of parameter called
a template template parameter. The syntax is crazy, and some compilers don’t yet support it. However, if
you’re still interested, read on.

Specifying a template template parameter is sort of like specifying a function pointer parameter in a nor-
mal function. Function pointer types include the return type and parameter types of a function.
Similarly, when you specify a template template parameter, the full specification of the template tem-
plate parameter includes the parameters to that template.

Containers in the STL have a template parameter list that looks something like this:

template <typename E, typename Allocator = allocator<E> >
class vector
{

// Vector definition
};

The E parameter is simply the element type. Don’t worry about the Allocator for now — it’s covered
in Chapter 21.

303

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 303

Given the above template specification, here is the template class definition for the Grid class that takes
a container template as its second template parameter:

template <typename T, template <typename E, typename Allocator = allocator<E> >
class Container = vector >

class Grid
{

public:
// Omitted code that is the same as before
Container<T>* mCells;
// Omitted code that is the same as before

};

What is going on here? The first template parameter is the same as before: the element type T. The sec-
ond template parameter is now a template itself for a container such as vector or deque. As you saw
earlier, this “template type” must take two parameters: an element type E and an allocator Allocator.
Note the repetition of the word class after the nested template parameter list. The name of this parame-
ter in the Grid template is Container (as before). The default value is now vector, instead of vector<T>,
because the Container is a template instead of an actual type.

The syntax rule for a template template parameter more generically is this:

template <other params, ..., template <TemplateTypeParams> class ParameterName,
other params, ...>

Now that you’ve suffered through the above syntax to declare the template, the rest is easy. Instead of
using Container by itself in the code, you must specify Container<T> as the container type you use.
For example, the constructor now looks like this (you don’t repeat the default template template param-
eter argument in the template specification for the method definition):

template <typename T, template <typename E, typename Allocator = allocator<E> >
class Container>

Grid<T, Container>::Grid(int inWidth, int inHeight) :
mWidth(inWidth), mHeight(inHeight)

{
mCells = new Container<T>[mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i].resize(mHeight);
}

}

After implementing all the methods, you can use the template like this:

Grid<int, vector> myGrid;

myGrid.setElementAt(1, 2, 3);
myGrid.getElementAt(1,2);
Grid<int, vector> myGrid2(myGrid);

If you haven’t skipped this section entirely, you’re surely thinking at this point that C++ deserves every
criticism that’s ever been thrown at it. Try not to bog down in the syntax here, and keep the main con-
cept in mind: you can pass templates as parameters to other templates.

304

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 304

More about Nontype Template Parameters
You might want to allow the user to specify an empty(not in the literal sense) element that is used to ini-
tialize each cell in the grid. Here is a perfectly reasonable approach to implement this goal:

template <typename T, const T EMPTY>
class Grid
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<T, EMPTY>& src);
~Grid();
Grid<T, EMPTY>& operator=(const Grid<T, EMPTY>& rhs);

// Omitted for brevity

protected:
void copyFrom(const Grid<T, EMPTY>& src);
T** mCells;
int mWidth, mHeight;

};

This definition is legal. You can use the type T from the first parameter as the type for the second param-
eter and nontype parameters can be const just like function parameters. You can use this initial value
for T to initialize each cell in the grid:

template <typename T, const T EMPTY>
Grid<T, EMPTY>::Grid(int inWidth, int inHeight) :

mWidth(inWidth), mHeight(inHeight)
{

mCells = new T* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
for (int j = 0; j < mHeight; j++) {

mCells[i][j] = EMPTY;
}

}
}

The other method definitions stay the same, except that you must add the second type parameter to the
template lines, and all the instances of Grid<T> become Grid<T, EMPTY>. After making those changes,
you can then instantiate an int Grid with an initial value for all the elements:

Grid<int, 0> myIntGrid;
Grid<int, 10> myIntGrid2;

The initial value can be any integer you want. However, suppose that you try to create a
SpreasheetCell Grid:

SpreadsheetCell emptyCell;
Grid<SpreadsheetCell, emptyCell> mySpreadsheet; // WILL NOT COMPILE

That line leads to a compiler error because you cannot pass objects as arguments to nontype parameters.

305

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 305

This example illustrates one of the vagaries of template classes: they can work correctly on one type but
fail to compile for another type.

Reference and Pointer Nontype Template Parameters
A more comprehensive way of allowing the user to specify an initial empty element for the grid uses a
reference to a T as the nontype template parameter. Here is the new class definition:

template <typename T, const T& EMPTY>
class Grid
{

// Everything else is the same as the previous example, except the
// template lines in the method definitions specify const T& EMPTY
// instead of const T EMPTY.

};

Now you can instantiate this template class for any type. However, the reference you pass as the second
template argument must refer to a global variable with external linkage. External linkage can be thought
of as the opposite of static linkage, and just means that the variable is available in source files outside the
one in which it is defined. See Chapter 12 for more details. For now, it suffices to know that you can
declare that a variable has external linkage with the extern keyword:

extern const int x = 0;

Note that this line occurs outside of any function or method body. Here is a full program that declares
int and SpreadsheetCell grids with initialization parameters:

#include “GridRefNonType.h”
#include “SpreadsheetCell.h”

extern const int emptyInt = 0;
extern const SpreadsheetCell emptyCell(0);

int main(int argc, char** argv)
{

Grid<int, emptyInt> myIntGrid;
Grid<SpreadsheetCell, emptyCell> mySpreadsheet;

Grid<int, emptyInt> myIntGrid2(myIntGrid);

return (0);
}

Reference and pointer template arguments must refer to global variables that are
available from all translation units. The technical term for these types of variables is
data with external linkage.

Nontype parameters cannot be objects, or even doubles or floats. They are restricted
only to ints, enums, pointers, and references.

306

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 306

Using Zero-Initialization of Template Types
Neither of the options presented so far for providing an initial empty value for the cells is very attrac-
tive. Instead, you may simply want to initialize each cell to a reasonable default value that you choose
(instead of allowing the user to specify). Of course, the immediate question is: what’s a reasonable value
for any possible type? For objects, a reasonable value is an object created with the default constructor. In
fact, that’s exactly what you’re already getting when you create an array of objects. However, for simple
data types like int and double, and for pointers, a reasonable initial value is 0. Therefore, what you really
want to be able to do is assign 0 to nonobjects and use the default constructor on objects. You actually
saw the syntax for this behavior in the section on “Method Templates with Nontype Parameters.” Here
is the implementation of the Grid template constructor using the zero-initialization syntax:

template <typename T>
Grid<T>::Grid(int inWidth, int inHeight) : mWidth(inWidth), mHeight(inHeight)
{

mCells = new T* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
for (int j = 0; j < mHeight; j++) {

mCells[i][j] = T();
}

}
}

Given this ability, you can revert to the original Grid class (without an EMPTY nontype parameter) and
just initialize each cell element to its zero-initialized “reasonable value.”

Template Class Partial Specialization
The char* class specialization shown in the first part of this chapter is called full class template specializa-
tion because it specializes the Grid template for every template parameter. There are no template param-
eters left in the specialization. That’s not the only way you can specialize a class; you can also write a
partial class specialization, in which you specialize some template parameters but not others. For example,
recall the basic version of the Grid template with width and height nontype parameters:

template <typename T, int WIDTH, int HEIGHT>
class Grid
{

public:
void setElementAt(int x, int y, const T& inElem);
T& getElementAt(int x, int y);
const T& getElementAt(int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:
T mCells[WIDTH][HEIGHT];

};

307

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 307

You could specialize this template class for char* C-style strings like this:

#include “Grid.h” // The file containing the Grid template definition shown above
#include <cstdlib>
#include <cstring>
using namespace std;

template <int WIDTH, int HEIGHT>
class Grid<char*, WIDTH, HEIGHT>
{

public:
Grid();
Grid(const Grid<char*, WIDTH, HEIGHT>& src);
~Grid();

Grid<char*, WIDTH, HEIGHT>& Grid<char*, WIDTH, HEIGHT>::operator=(
const Grid<char*, WIDTH, HEIGHT>& rhs);

void setElementAt(int x, int y, const char* inElem);
char* getElementAt(int x, int y) const;
int getHeight() const { return HEIGHT; }
int getWidth() const { return WIDTH; }

protected:
void copyFrom(const Grid<char*, WIDTH, HEIGHT>& src);
char* mCells[WIDTH][HEIGHT];

};

In this case, you are not specializing all the template parameters. Therefore, your template line looks like
this:

template <int WIDTH, int HEIGHT>
class Grid<char*, WIDTH, HEIGHT>

Note that the template has only two parameters: WIDTH and HEIGHT. However, you’re writing a Grid
class for three arguments: T, WIDTH, and HEIGHT. Thus, your template parameter list contains two
parameters, and the explicit Grid<char *, WIDTH, HEIGHT> contains three arguments. When you
instantiate the template, you must still specify three parameters. You can’t instantiate the template with
only height and width:

Grid<int, 2, 2> myIntGrid; // Uses the original Grid
Grid<char*, 2, 2> myStringGrid; // Uses the partial specialization for char *s
Grid<2, 3> test; // DOES NOT COMPILE! No type specified.

Yes, the syntax is confusing. And it gets worse. In partial specializations, unlike in full specializations,
you include the template line in front of every method definition:

template <int WIDTH, int HEIGHT>
Grid<char*, WIDTH, HEIGHT>::Grid()
{

for (int i = 0; i < WIDTH; i++) {
for (int j = 0; j < HEIGHT; j++) {

// Initialize each element to NULL.
mCells[i][j] = NULL;

}
}

}

308

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 308

You need this template line with two parameters to show that this method is parameterized on those
two parameters. Note that wherever you refer to the full class name, you must use Grid<char*,
WIDTH, HEIGHT>.

The rest of the method definitions follow:

template <int WIDTH, int HEIGHT>
Grid<char*, WIDTH, HEIGHT>::Grid(const Grid<char*, WIDTH, HEIGHT>& src)
{

copyFrom(src);
}

template <int WIDTH, int HEIGHT>
Grid<char*, WIDTH, HEIGHT>::~Grid()
{

for (int i = 0; i < WIDTH; i++) {
for (int j = 0; j < HEIGHT; j++) {

delete [] mCells[i][j];
}

}
}

template <int WIDTH, int HEIGHT>
void Grid<char*, WIDTH, HEIGHT>::copyFrom(

const Grid<char*, WIDTH, HEIGHT>& src)
{

int i, j;

for (i = 0; i < WIDTH; i++) {
for (j = 0; j < HEIGHT; j++) {

if (src.mCells[i][j] == NULL) {
mCells[i][j] = NULL;

} else {
mCells[i][j] = new char[strlen(src.mCells[i][j]) + 1];
strcpy(mCells[i][j], src.mCells[i][j]);

}
}

}
}

template <int WIDTH, int HEIGHT>
Grid<char*, WIDTH, HEIGHT>& Grid<char*, WIDTH, HEIGHT>::operator=(

const Grid<char*, WIDTH, HEIGHT>& rhs)
{

int i, j;

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
for (i = 0; i < WIDTH; i++) {

for (j = 0; j < HEIGHT; j++) {
delete [] mCells[i][j];

}
}

309

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 309

// Copy the new memory.
copyFrom(rhs);
return (*this);

}

template <int WIDTH, int HEIGHT>
void Grid<char*, WIDTH, HEIGHT>::setElementAt(

int x, int y, const char* inElem)
{

delete[] mCells[x][y];
if (inElem == NULL) {

mCells[x][y] = NULL;
} else {

mCells[x][y] = new char[strlen(inElem) + 1];
strcpy(mCells[x][y], inElem);

}
}

template <int WIDTH, int HEIGHT>
char* Grid<char*, WIDTH, HEIGHT>::getElementAt(int x, int y) const
{

if (mCells[x][y] == NULL) {
return (NULL);

}
char* ret = new char[strlen(mCells[x][y]) + 1];
strcpy(ret, mCells[x][y]);

return (ret);
}

Another Form of Partial Specialization
The previous example does not show the true power of partial specialization. You can write specialized
implementations for a subset of possible types without specializing individual types. For example, you
can write a specialization of the Grid class for all pointer types. This specialization might perform deep
copies of objects to which pointers point instead of storing shallow copies of the pointers in the grid.

Here is the class definition, assuming that you’re specializing the initial version of the Grid with only
one parameter:

#include “Grid.h”

template <typename T>
class Grid<T*>
{

public:
Grid(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight);
Grid(const Grid<T*>& src);
~Grid();
Grid<T*>& operator=(const Grid<T*>& rhs);

void setElementAt(int x, int y, const T* inElem);
T* getElementAt(int x, int y) const;

310

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 310

int getHeight() const { return mHeight; }
int getWidth() const { return mWidth; }
static const int kDefaultWidth = 10;
static const int kDefaultHeight = 10;

protected:
void copyFrom(const Grid<T*>& src);
T** mCells;
int mWidth, mHeight;

};

As usual, these two lines are the crux of the matter:

template <typename T>
class Grid<T*>

The syntax says that this class is a specialization of the Grid template for all pointer types. At least that’s
what it’s telling the compiler. What it’s telling you and me is that the C++ standards committee should
have come up with a better syntax! Unless you’ve been working with it for a long time, it’s quite jarring.

You are providing the implementation only in cases where T is a pointer type. Note that if you instanti-
ate a grid like this: Grid<int*> myIntGrid, then T will actually be int, not int *. That’s a bit unintu-
itive, but unfortunately, the way it works. Here is a code example:

Grid<int*> psGrid(2, 2); // Uses the partial specialization for pointer types

int x = 3, y = 4;
psGrid.setElementAt(0, 0, &x);
psGrid.setElementAt(0, 1, &y);
psGrid.setElementAt(1, 0, &y);
psGrid.setElementAt(1, 1, &x);

Grid<int> myIntGrid; // Uses the nonspecialized grid

At this point, you’re probably wondering whether this really works. We sympathize with your skepti-
cism. One of the authors was so surprised by this syntax when he first read about it that he didn’t
believe it actually worked until he was able to try it out. If you don’t believe us, try it out yourself! Here
are the method implementations. Pay close attention to the template line syntax before each method.

template <typename T>
const int Grid<T*>::kDefaultWidth;

template <typename T>
const int Grid<T*>::kDefaultHeight;

template <typename T>
Grid<T*>::Grid(int inWidth, int inHeight) : mWidth(inWidth), mHeight(inHeight)
{

mCells = new T* [mWidth];
for (int i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
}

}

311

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 311

template <typename T>
Grid<T*>::Grid(const Grid<T*>& src)
{

copyFrom(src);
}

template <typename T>
Grid<T*>::~Grid()
{

// Free the old memory.
for (int i = 0; i < mWidth; i++) {

delete [] mCells[i];
}
delete [] mCells;

}

template <typename T>
void Grid<T*>::copyFrom(const Grid<T*>& src)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new T* [mWidth];
for (i = 0; i < mWidth; i++) {

mCells[i] = new T[mHeight];
}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = src.mCells[i][j];
}

}
}

template <typename T>
Grid<T*>& Grid<T*>::operator=(const Grid<T*>& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
for (int i = 0; i < mWidth; i++) {

delete [] mCells[i];
}
delete [] mCells;

// Copy the new memory.
copyFrom(rhs);
return (*this);

}

312

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 312

template <typename T>
void Grid<T*>::setElementAt(int x, int y, const T* inElem)
{

mCells[x][y] = *inElem;
}

template <typename T>
T* Grid<T*>::getElementAt(int x, int y) const
{

T* newElem = new T(mCells[x][y]);
return (newElem);

}

Emulating Function Partial Specialization with
Overloading

The C++ standard does not permit partial template specialization of functions. Instead, you can over-
load the function with another template. The difference is subtle. Suppose that you want to write a spe-
cialization of the Find() function, presented earlier in this chapter, that dereferences the pointers to use
operator== directly on the objects pointed to. Following the syntax for class template partical special-
ization, you might be tempted to write this:

template <typename T>
int Find<T*>(T*& value, T** arr, int size)
{

for (int i = 0; i < size; i++) {
if (*arr[i] == *value) {

// Found it; return the index
return (i);

}
}
// Failed to Find it; return -1
return (-1);

}

However, that syntax declares a partial specialization of the function template, which the C++ standard
does not allow (although some compilers support it). The standard way to implement the behavior you
want is to write a new template for Find():

template <typename T>
int Find(T*& value, T** arr, int size)
{

for (int i = 0; i < size; i++) {
if (*arr[i] == *value) {

// Found it; return the index
return (i);

}
}
// Failed to Find it; return -1
return (-1);

}

The difference might seem trivial and academic, but it makes the difference between portable, standard,
code and code that probably won’t compile.

313

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 313

More on Deduction
You can define in one program the original Find() template, the overloaded Find() for partial special-
ization on pointer types, the complete specialization for char*s, and the overloaded Find() just for
char*s. The compiler will choose the appropriate version to call based on its deduction rules.

The following code calls the specified versions of Find():

char* word = “two”;
char* arr[4] = {“one”, “two”, “three”, “four”};
int res;

int x = 3, intArr[4] = {1, 2, 3, 4};
double d1 = 5.6, dArr[4] = {1.2, 3.4, 5.7, 7.5};

res = Find(x, intArr, 4); // Calls Find<int> by deduction
res = Find<int>(x, intArr, 4); // Call Find<int> explicitly

res = Find(d1, dArr, 4); // Call Find<double> by deduction
res = Find<double>(d1, dArr, 4); // Calls Find<double> explicitly

res = Find<char *>(word, arr, 4); // Calls template specialization for char*s
res = Find(word, arr, 4); // Calls the overloaded Find for char *s

int *px = &x, *pArr[2] = {&x, &x};
res = Find(px, pArr, 2); // Calls the overloaded Find for pointers

SpreadsheetCell c1(10), c2[2] = {SpreadsheetCell(4), SpreadsheetCell(10)};

res = Find(c1, c2, 2); // Calls Find<SpreadsheetCell> by deduction
res = Find<SpreadsheetCell>(c1, c2, 2); // Calls Find<SpreadsheetCell>

// explicitly
SpreadsheetCell *pc1 = &c1;
SpreadsheetCell *psa[2] = {&c1, &c1};

res = Find(pc1, psa, 2); // Calls the overloaded Find for pointers

Template Recursion
Templates in C++ provide capabilities that go far beyond the simple classes and functions you have seen
so far in this chapter. One of these capabilities is template recursion. This section first provides a motiva-
tion for template recursion, and then shows how to implement it.

This section employs some operator overloading features discussed in Chapter 16. If you are unfamiliar
with the syntax for overloading operator[], consult that chapter before continuing.

The compiler always chooses the “most specific” version of the function, with non-
template versions being preferred over template versions.

314

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 314

An N-Dimensional Grid: First Attempt
The Grid template example earlier in this chapter supports only two dimensions, which limits its useful-
ness. What if you wanted to write a 3-D Tic-Tac-Toe game or write a math program with four-dimensional
matrices? You could, of course, write a template or nontemplate class for each of those dimensions.
However, that would repeat a lot of code. Another approach is to write only a single-dimensional grid.
Then, you could create a Grid of any dimension by instantiating the Grid with another Grid as its ele-
ment type. This Grid element type could itself be instantiated with a Grid as its element type, and so
on. Here is the implementation of the OneDGrid class template. It’s simply a one-dimensional version of
the Grid template from the earlier examples, with the addition of a resize() method, and the substitu-
tion of operator[] for setElementAt() and getElementAt(). Production code, of course, would do
bounds-checking on the array access, and would throw an exception if something were amiss.

template <typename T>
class OneDGrid
{

public:
OneDGrid(int inSize = kDefaultSize);
OneDGrid(const OneDGrid<T>& src);
~OneDGrid();

OneDGrid<T> &operator=(const OneDGrid<T>& rhs);
void resize(int newSize);

T& operator[](int x);
const T& operator[](int x) const;
int getSize() const { return mSize; }
static const int kDefaultSize = 10;

protected:
void copyFrom(const OneDGrid<T>& src);
T* mElems;
int mSize;

};

template <typename T>
const int OneDGrid<T>::kDefaultSize;

template <typename T>
OneDGrid<T>::OneDGrid(int inSize) : mSize(inSize)
{

mElems = new T[mSize];
}

template <typename T>
OneDGrid<T>::OneDGrid(const OneDGrid<T>& src)
{

copyFrom(src);
}

315

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 315

template <typename T>
OneDGrid<T>::~OneDGrid()
{

delete [] mElems;
}

template <typename T>
void OneDGrid<T>::copyFrom(const OneDGrid<T>& src)
{

mSize = src.mSize;
mElems = new T[mSize];

for (int i = 0; i < mSize; i++) {
mElems[i] = src.mElems[i];

}
}

template <typename T>
OneDGrid<T>& OneDGrid<T>::operator=(const OneDGrid<T>& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}

// Free the old memory.
delete [] mElems;

// Copy the new memory.
copyFrom(rhs);
return (*this);

}

template <typename T>
void OneDGrid<T>::resize(int newSize)
{

T* newElems = new T[newSize]; // Allocate the new array of the new size

// Handle the new size being smaller or bigger than the old size.
for (int i = 0; i < newSize && i < mSize; i++) {

// Copy the elements from the old array to the new one.
newElems[i] = mElems[i];

}
mSize = newSize; // Store the new size.
delete [] mElems; // Free the memory for the old array.
mElems = newElems; // Store the pointer to the new array.

}

template <typename T>
T& OneDGrid<T>::operator[](int x)
{

return (mElems[x]);
}

316

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 316

template <typename T>
const T& OneDGrid<T>::operator[](int x) const
{

return (mElems[x]);
}

With this implementation of the OneDGrid, you can create multidimensional grids like this:

OneDGrid<int> singleDGrid;
OneDGrid<OneDGrid<int> > twoDGrid;
OneDGrid<OneDGrid<OneDGrid<int> > > threeDGrid;

singleDGrid[3] = 5;
twoDGrid[3][3] = 5;
threeDGrid[3][3][3] = 5;

This code works fine, but the declarations are messy. We can do better.

A Real N-Dimensional Grid
You can use template recursion to write a “real” N-dimensional grid because dimensionality of grids is
essentially recursive. You can see that in this declaration:

OneDGrid<OneDGrid<OneDGrid<int> > > threeDGrid;

You can think of each nesting OneDGrid as a recursive step, with the OneDGrid of int as the base case.
In other words, a three-dimensional grid is a single-dimensional grid of single-dimensional grids of
single-dimensional grids of ints. Instead of requiring the user to do this recursion, you can write a tem-
plate class that does it for you. Then, you can create N-dimensional grids like this:

NDGrid<int, 1> singleDGrid;
NDGrid<int, 2> twoDGrid;
NDGrid<int, 3> threeDGrid;

The NDGrid template class takes a type for its element and an integer specifying its “dimensionality.”
The key insight here is that the element type of the NDGrid is not the element type specified in the tem-
plate parameter list, but is in fact another NDGrid of dimensionality one less than the current. In other
words, a three-dimensional grid is an array of two-dimensional grids; the two-dimensional grids are
each arrays of one-dimensional grids.

With recursion, you need a base case. You can write a partial specialization of the NDGrid for dimension-
ality of 1, in which the element type is not another NDGrid, but is in fact the element type specified by
the template parameter.

Here is the general NDGrid template definition, with highlights showing where it differs from the
OneDGrid shown above:

template <typename T, int N>
class NDGrid
{

public:

317

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 317

NDGrid();
NDGrid(int inSize);
NDGrid(const NDGrid<T, N>& src);
~NDGrid();

NDGrid<T, N>& operator=(const NDGrid<T, N>& rhs);
void resize(int newSize);
NDGrid<T, N-1>& operator[](int x);
const NDGrid<T, N-1>& operator[](int x) const;
int getSize() const { return mSize; }
static const int kDefaultSize = 10;

protected:
void copyFrom(const NDGrid<T, N>& src);
NDGrid<T, N-1>* mElems;
int mSize;

};

Note that mElems is a pointer to an NDGrid<T, N-1>: this is the recursive step. Also, operator[]
returns a reference to the element type, which is again NDGrid<T, N-1>, not T.

Here is the template definition for the base case:

template <typename T>
class NDGrid<T, 1>
{

public:
NDGrid(int inSize = kDefaultSize);
NDGrid(const NDGrid<T, 1>& src);
~NDGrid();
NDGrid<T, 1>& operator=(const NDGrid<T, 1>& rhs);
void resize(int newSize);
T& operator[](int x);
const T& operator[](int x) const;
int getSize() const { return mSize; }
static const int kDefaultSize = 10;

protected:
void copyFrom(const NDGrid<T, 1>& src);
T* mElems;
int mSize;

};

Here the recursion ends: the element type is T, not another template instantiation.

The trickiest aspect of the implementations, other than the template recursion itself, is appropriately siz-
ing each dimension of the array. This implementation creates the N-dimensional array with every
dimension of equal size. It’s significantly more difficult to specify a separate size for each dimension.
However, even with this simplification, there is still a problem: the user should have the ability to create
the array with a specified size, such as 20 or 50. Thus, one constructor takes an integer size parameter.
However, when you dynamically allocate the nested array of grids, you cannot pass this size value on to
the grids because arrays create objects using their default constructor. Thus, you must explicitly call
resize() on each grid element of the array. That code follows, with the default and one-argument con-
structors separated for clarity.

318

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 318

The base case doesn’t need to resize its elements because the elements are Ts, not grids.

Here are the implementations of the main NDGrid template, with highlights showing the differences
from the OneDGrid:

template <typename T, int N>
const int NDGrid<T, N>::kDefaultSize;

template <typename T, int N>
NDGrid<T, N>::NDGrid(int inSize) : mSize(inSize)
{

mElems = new NDGrid<T, N-1>[mSize];
// Allocating the array above calls the 0-argument
// constructor for the NDGrid<T, N-1>, which constructs
// it with the default size. Thus, we must explicitly call
// resize() on each of the elements.
for (int i = 0; i < mSize; i++) {

mElems[i].resize(inSize);
}

}

template <typename T, int N>
NDGrid<T, N>::NDGrid() : mSize(kDefaultSize)
{

mElems = new NDGrid<T, N-1>[mSize];
}

template <typename T, int N>
NDGrid<T, N>::NDGrid(const NDGrid<T, N>& src)
{

copyFrom(src);
}

template <typename T, int N>
NDGrid<T, N>::~NDGrid()
{

delete [] mElems;
}

template <typename T, int N>
void NDGrid<T, N>::copyFrom(const NDGrid<T, N>& src)
{

mSize = src.mSize;
mElems = new NDGrid<T, N-1>[mSize];
for (int i = 0; i < mSize; i++) {

mElems[i] = src.mElems[i];
}

}

template <typename T, int N>
NDGrid<T, N>& NDGrid<T, N>::operator=(const NDGrid<T, N>& rhs)

319

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 319

{
// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
delete [] mElems;
// Copy the new memory.
copyFrom(rhs);
return (*this);

}

template <typename T, int N>
void NDGrid<T, N>::resize(int newSize)
{

// Allocate the new array with the new size.
NDGrid<T, N - 1>* newElems = new NDGrid<T, N - 1>[newSize];
// Copy all the elements, handling the cases where newSize is
// larger than mSize and smaller than mSize.
for (int i = 0; i < newSize && i < mSize; i++) {

newElems[i] = mElems[i];
// Resize the nested Grid elements recursively.
newElems[i].resize(newSize);

}
// Store the new size and pointer to the new array.
// Free the memory for the old array first.
mSize = newSize;
delete [] mElems;
mElems = newElems;

}

template <typename T, int N>
NDGrid<T, N-1>& NDGrid<T, N>::operator[](int x)
{

return (mElems[x]);
}

template <typename T, int N>
const NDGrid<T, N-1>& NDGrid<T, N>::operator[](int x) const
{

return (mElems[x]);
}

Here are the implementations of the partial specialization (base case). Note that you must rewrite a lot
of the code because you don’t inherit any implementations with specializations. Highlights show the
differences from the nonspecialized NDGrid.

template <typename T>
const int NDGrid<T, 1>::kDefaultSize;

template <typename T>
NDGrid<T, 1>::NDGrid(int inSize) : mSize(inSize)
{

mElems = new T[mSize];
}

320

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 320

template <typename T>
NDGrid<T, 1>::NDGrid(const NDGrid<T, 1>& src)
{

copyFrom(src);
}

template <typename T>
NDGrid<T, 1>::~NDGrid()
{

delete [] mElems;
}

template <typename T>
void NDGrid<T, 1>::copyFrom(const NDGrid<T, 1>& src)
{

mSize = src.mSize;
mElems = new T[mSize];
for (int i = 0; i < mSize; i++) {

mElems[i] = src.mElems[i];
}

}

template <typename T>
NDGrid<T, 1>& NDGrid<T, 1>::operator=(const NDGrid<T, 1>& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
delete [] mElems;
// Copy the new memory.
copyFrom(rhs);
return (*this);

}

template <typename T>
void NDGrid<T, 1>::resize(int newSize)
{

T* newElems = new T[newSize];

for (int i = 0; i < newSize && i < mSize; i++) {
newElems[i] = mElems[i];
// Don’t need to resize recursively, because this is the base case.

}
mSize = newSize;
delete [] mElems;
mElems = newElems;

}

template <typename T>
T& NDGrid<T, 1>::operator[](int x)
{

return (mElems[x]);
}

321

Writing Generic Code with Templates

14_574841 ch11.qxd 12/15/04 3:43 PM Page 321

template <typename T>
const T& NDGrid<T, 1>::operator[](int x) const
{

return (mElems[x]);
}

Now, you can write code like this:

NDGrid<int, 3> my3DGrid;
my3DGrid[2][1][2] = 5;
my3DGrid[1][1][1] = 5;

cout << my3DGrid[2][1][2] << endl;

Summary
This chapter taught you how to use templates for generic programming. We hope that you gained an
appreciation for the power and capabilities of these features, and an idea of how you could apply these
concepts to your own code. Don’t worry if you didn’t understand all the syntax, or follow all the exam-
ples, on your first reading. The concepts can be difficult to grasp when you are first exposed to them,
and the syntax is so tricky that the authors of this book consult a reference whenever they want to write
templates. When you actually sit down to write a template class or function, you can consult this chapter
for a reference on the proper syntax.

This chapter is the main preparation for Chapters 21, 22, and 23 on the standard template library. You
can skip straight to Chapters 21 to 23 if you want to read about the STL immediately, but we recommend
reading the rest of the chapters in Parts II and III first.

322

Chapter 11

14_574841 ch11.qxd 12/15/04 3:43 PM Page 322

Understanding C++ Quirks
and Oddities

Many parts of the C++ language have tricky syntax or quirky semantics. As a C++ programmer,
you grow accustomed to most of this idiosyncratic behavior; it starts to feel natural. However,
some aspects of C++ are a source of perennial confusion. Either books never explain them thor-
oughly enough, or you forget how they work and continually look them up, or both. This chapter
addresses this gap by providing clear explanations for some of C++’s most niggling quirks and
oddities.

Many language idiosyncrasies are covered in various chapters throughout this book. This chapter
tries not to repeat those topics, by limiting itself to subjects that are not covered in detail elsewhere
in the book. There is a bit of redundancy with other chapters, but the material is “sliced” in a dif-
ferent way in order to provide you with a new perspective.

The topics of this chapter include references, const, static, extern, typedefs, casts, scope reso-
lution, header files, variable-length argument lists, and preprocessor macros. Although this list
might appear to be a hodgepodge of topics, it is a carefully selected collection of some of the most
confusing, but commonly used, aspects of the language.

References
Professional C++ code, including much of the code in this book, uses references extensively. It is
helpful to step back and think about what exactly references are, and how they behave.

A reference in C++ is an alias for another variable. All modifications to the reference change the
value of the variable to which it refers. You can think of references as implicit pointers that save
you the trouble of taking the address of variables and dereferencing the pointer. Alternatively, you

15_574841 ch12.qxd 12/15/04 3:43 PM Page 323

can think of references as just another name for the original variable. You can create stand-alone refer-
ence variables, use reference data members in classes, accept references as parameters to functions and
methods and return references from functions and methods.

Reference Variables
Reference variables must be initialized as soon as they are created, like this:

int x = 3;
int& xRef = x;

Subsequent to this assignment, xRef is another name for x. Any use of xRef uses the current value of x.
Any assignment to xRef changes the value of x. For example, the following code sets x to 10 through
xRef:

xRef = 10;

You cannot declare a reference variable outside of a class without initializing it:

int& emptyRef; // DOES NOT COMPILE!

You cannot create a reference to an unnamed value such as an integer literal, unless the reference is to a
const value:

int& unnamedRef = 5; // DOES NOT COMPILE
const int& unnamedRef = 5; // Works as expected

Modifying References
A reference always refers to the same variable to which it is initialized; references cannot be changed
once they are created. This rule leads to some confusing syntax. If you “assign” a variable to a reference
when the reference is declared, the reference refers to that variable. However, if you assign a variable to
a reference after that, the variable to which the reference refers is changed to the value of the variable
being assigned. The reference is not updated to refer to that variable. Here is a code example:

int x = 3, y = 4;
int& xRef = x;
xRef = y; // Changes value of x to 4. Doesn’t make xRef refer to y.

You might try to circumvent this restriction by taking the address of y when you assign it:

int x = 3, y = 4;
int& xRef = x;
xRef = &y; // DOES NOT COMPILE!

You must always initialize a reference when it is allocated. Usually, references are
allocated when they are declared, but reference data members can be initialized in
the initializer list for the containing class.

324

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 324

This code does not compile. The address of y is a pointer, but xRef is declared as a reference to an int,
not a reference to a pointer.

Some programmers go even further in attempts to circumvent the intended semantics of references.
What if you assign a reference to a reference? Won’t that make the first reference refer to the variable to
which the second reference refers? You might be tempted to try this code:

int x = 3, z = 5;
int& xRef = x;
int& zRef = z;
zRef = xRef; // Assigns values, not references

The final line does not change zRef. Instead, it sets the value of z to 3, because xRef refers to x, which is 3.

References to Pointers and Pointers to References
You can create references to any type, including pointer types. Here is an example of a reference to a
pointer to int:

int* intP;
int*& ptrRef = intP;
ptrRef = new int;
*ptrRef = 5;

The syntax is a little strange: you might not be accustomed to seeing * and & right next to each other.
However, the semantics are straightforward: ptrRef is a reference to intP, which is a pointer to int.
Modifying ptrRef changes intP. References to pointers are rare, but can occasionally be useful, as dis-
cussed in the “Reference Parameters” section later in this chapter.

Note that taking the address of a reference gives the same result as taking the address of the variable to
which the reference refers. For example:

int x = 3;
int& xRef = x;
int* xPtr = &xRef; // Address of a reference is pointer to value
*xPtr = 100;

This code sets xPtr to point to x by taking the address of a reference to x. Assigning 100 to *xPtr
changes the value of x to 100.

Finally, note that you cannot declare a reference to a reference or a pointer to a reference:

int x = 3;
int& xRef = x;
int&& xDoubleRef = xRef; // DOES NOT COMPILE!
int&* refPtr = &xRef; // DOES NOT COMPILE!

You cannot change the variable to which a reference refers after it is initialized; you
can only change the value of that variable.

325

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 325

Reference Data Members
As you learned in Chapter 9, data members of classes can be references. A reference cannot exist without
referring to some other variable. Thus, you must initialize reference data members in the constructor ini-
tialization list, not in the body of the constructor. Consult Chapter 9 for details.

Reference Parameters
C++ programmers do not often use stand-alone reference variables or reference data members. The most
common use of references is for parameters to functions and methods. Recall that the default parameter-
passing semantics are pass-by-value: functions receive copies of their arguments. When those parame-
ters are modified, the original arguments remain unchanged. References allow you to specify alternative
pass-by-reference semantics for arguments passed to the function. When you use reference parameters,
the function receives references to the function arguments. If those references are modified, the changes
are reflected in the original argument variables. For example, here is a simple swap function to swap the
values of two ints:

void swap(int& first, int& second)
{

int temp = first;
first = second;
second = temp;

}

You can call it like this:

int x = 5, y = 6;
swap(x, y);

When the function swap() is called with the arguments x and y, the first parameter is initialized to
refer to x, and the second parameter is initialized to refer to y. When swap() modifies first and
second, x and y are actually changed.

Just as you can’t initialize normal reference variables with constants, you can’t pass constants as argu-
ments to functions that employ pass-by-reference:

swap(3, 4); // DOES NOT COMPILE

References from Pointers
A common quandary arises when you have a pointer to something that you need to pass to a function or
method that takes a reference. You can “convert” a pointer to a reference in this case simply by derefer-
encing the pointer. This action gives you the value to which the pointer points, which the compiler then
uses to initialize the reference parameter. For example, you can call swap() like this:

int x = 5, y = 6;
int *xp = &x, *yp = &y;
swap(*xp, *yp);

326

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 326

Pass-by-Reference versus Pass-by-Value
Pass-by-reference is required when you want to modify the parameter and see those changes reflected
in the variable argument to the function or method However, you should not limit your use of pass-by-
reference to only those cases. Pass-by-reference avoids copying the argument to the function, providing
two additional benefits in some cases:

1. Efficiency: large objects and structs could take a long time to copy. Pass-by-reference passes
only a pointer to the object or struct into the function.

2. Correctness: not all objects allow pass-by-value. Even those that do allow it might not support
deep copying correctly. As you learned in Chapter 9, objects with dynamically allocated mem-
ory must provide a custom copy constructor in order to support deep copying.

If you want to leverage these benefits, but do not want to allow the original objects to be modified, you
can mark the parameters const. This topic is covered in detail later in this chapter.

These benefits to pass-by-reference imply that you should use pass-by-value only for simple built-in
types like int and double for which you don’t need to modify the arguments. Use pass-by-reference in
all other cases.

Reference Return Values
You can also return a reference from a function or method. The main reason to do so is efficiency. Instead
of returning a whole object, return a reference to the object to avoid copying it unnecessarily. Of course,
you can only use this technique if the object in question will continue to exist following the function
termination.

A second reason to return a reference is if you want to be able to assign to the return value directly as an
lvalue (the left-hand side of an assignment statement).

Several overloaded operators commonly return references. You saw some examples in Chapter 9, and
can read about more applications of this technique in Chapter 16.

Deciding between References and Pointers
References in C++ are mostly superfluous: almost everything you can do with references, you can
accomplish with pointers. For example, you could write the previously shown swap() function like this:

void swap(int* first, int* second)
{

int temp = *first;
*first = *second;
*second = temp;

}

Never return a reference to a variable, such as an automatically allocated variable on
the stack, that will be destroyed when the function ends.

327

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 327

However, this code is more cluttered than the version with references: references make your programs
cleaner and easier to understand. References are also safer than pointers: it’s impossible to have an
invalid reference, and you don’t explicitly dereference references, so you can’t encounter any of the
dereferencing errors associated with pointers. Most of the time, you can use references instead of point-
ers. References to objects even support polymorphism in the same way as pointers to objects. The only
case in which you need to use a pointer is when you need to change the location to which it points.
Recall that you cannot change the variable to which references refer. For example, when you dynami-
cally allocate memory, you need to store a pointer to the result in a pointer rather than a reference.

Another way to distinguish between appropriate use of pointers and references in parameters and
return types is to consider who owns the memory. If the code receiving the variable is responsible for
releasing the memory associated with an object, it must receive a pointer to the object. If the code receiv-
ing the variable should not free the memory, it should receive a reference.

This rule applies to stand-alone variables, function or method parameters, and function or method
return values.

Strict application of this rule can lead to some unfamiliar syntax. Consider a function that splits an array
of ints into two arrays: one of even numbers and one of odd numbers. The function doesn’t know how
many numbers in the source array will be even or odd, so it should dynamically allocate the memory for
the destination arrays after examining the source array. It should also return the sizes of the two new
arrays. Altogether, there are four items to return: pointers to the two new arrays and the sizes of the two
new arrays. Obviously, you must use pass-by-reference. The canonical C way to write the function looks
like this:

void separateOddsAndEvens(const int arr[], int size, int** odds, int* numOdds,
int** evens, int* numEvens)

{
int i;
// First pass to determine array sizes
*numOdds = *numEvens = 0;
for (i = 0; i < size; i++) {

if (arr[i] % 2 == 1) {
(*numOdds)++;

} else {
(*numEvens)++;

}
}

// Allocate two new arrays of the appropriate size.
*odds = new int[*numOdds];
*evens = new int[*numEvens];

Use references instead of pointers unless you need to dynamically allocate memory
or otherwise change, or free, the value to which the pointer points.

328

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 328

// Copy the odds and evens to the new arrays
int oddsPos = 0, evensPos = 0;
for (i = 0; i < size; i++) {

if (arr[i] % 2 == 1) {
(*odds)[oddsPos++] = arr[i];

} else {
(*evens)[evensPos++] = arr[i];

}
}

}

The final four parameters to the function are the “reference” parameters. In order to change the values to
which they refer, separateOddsAndEvens() must dereference them, leading to some ugly syntax in the
function body.

Additionally, when you want to call separateOddsAndEvens(), you must pass the address of two
pointers so that the the function can change the actual pointers, and the address of two ints so that the
function can change the actual ints:

int unSplit[10] = {1, 2, 3, 4, 5, 6, 6, 8, 9, 10};
int *oddNums, *evenNums;
int numOdds, numEvens;

separateOddsAndEvens(unSplit, 10, &oddNums, &numOdds, &evenNums, &numEvens);

If such syntax annoys you (which it should), you can write the same function using references to obtain
true pass-by-reference semantics:

void separateOddsAndEvens(const int arr[], int size, int*& odds, int& numOdds,
int*& evens, int& numEvens)

{
int i;
numOdds = numEvens = 0;
for (i = 0; i < size; i++) {

if (arr[i] % 2 == 1) {
numOdds++;

} else {
numEvens++;

}
}

odds = new int[numOdds];
evens = new int[numEvens];

int oddsPos = 0, evensPos = 0;
for (i = 0; i < size; i++) {

if (arr[i] % 2 == 1) {
odds[oddsPos++] = arr[i];

} else {
evens[evensPos++] = arr[i];

}
}

}

329

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 329

In this case, the odds and evens parameters are references to int*s. separateOddsAndEvents() can
modify the int*s that are used as arguments to the function (through the reference), without any
explicit dereferencing. The same logic applies to numOdds and numEvens, which are references to ints.

With this version of the function, you no longer need to pass the addresses of the pointers or ints. The
reference parameters handle it for you automatically:

int unSplit[10] = {1, 2, 3, 4, 5, 6, 6, 8, 9, 10};
int *oddNums, *evenNums;
int numOdds, numEvens;

separateOddsAndEvens(unSplit, 10, oddNums, numOdds, evenNums, numEvens);

Keyword Confusion
Two keywords in C++ appear to cause more confusion than any others: const and static. Both of
these keywords have several different meanings, and each of their uses presents subtleties that are
important to understand.

The const Keyword
The keyword const is short for “constant” and specifies, or requires, that something remain unchanged.
As you’ve seen in various places in this book, and probably in real-world code, there are two different,
but related, uses of the const keyword: for marking variables and for marking methods. This section
provides a definitive discussion of these two meanings.

const Variables
You can use const to “protect” variables by specifying that they cannot be modified. As you learned in
Chapters 1 and 7, one important use of this keyword is as a replacement for #define to declare con-
stants. This use of const is its most straightforward application. For example, you could declare the con-
stant PI like this:

const double PI = 3.14159;

You can mark any variable const, including global variables and class data members.

You can also use const to specify that parameters to functions or methods should remain unchanged.
You’ve seen examples of this application in Chapters 1 and 9, and other places throughout the book.

const Pointers
When a variable contains one or more levels of indirection via a pointer, applying const becomes trick-
ier. Consider the following lines of code:

int* ip;
ip = new int[10];
ip[4] = 5;

330

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 330

Suppose that you decide to apply const to ip. Set aside your doubts about the usefulness of doing so
for a moment, and consider what it means. Do you want to prevent the ip variable itself from being
changed, or do you want to prevent the values to which it points from being changed? That is, do you
want to prevent the second line or the third line in the previous example?

In order to prevent the pointed-to value from being modified (as in the third line), you can add the key-
word const to the declaration of ip like this:

const int* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Now you cannot change the values to which ip points.

Alternatively, you can write this:

int const* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Putting the const before or after the int makes no difference in its functionality.

If you want instead to mark ip itself const (not the values to which it points), you need to write this:

int* const ip = NULL;
ip = new int[10]; // DOES NOT COMPILE!
ip[4] = 5;

Now that ip itself cannot be changed, the compiler requires you to initialize it when you declare it.

You can also mark both the pointer and the values to which it points const like this:

int const* const ip = NULL;

An alternative syntax is the following:

const int* const ip = NULL;

Although this syntax might seem confusing, there is actually a very simple rule: the const keyword
applies to whatever is directly to its left. Consider this line again:

int const* const ip = NULL;

From left to right, the first const is directly to the right of the word int. Thus, it applies to the int to
which ip points. Therefore, it specifies that you cannot change the values to which ip points. The sec-
ond const is directly to the right of the *. Thus, it applies to the pointer to the int, which is the ip vari-
able. Therefore, it specifies that you cannot change ip (the pointer) itself.

331

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 331

The reason this rule becomes confusing is an exception: the first const can go before the variable like
this:

const int* const ip = NULL;

This “exceptional” syntax is used much more commonly than the other syntax.

You can extend this rule to any number of levels of indirection. For example:

const int * const * const * const ip = NULL;

const References
const applied to references is usually simpler than const applied to pointers for two reasons. First, ref-
erences are const by default, in that you can’t change to what they refer. So, C++ does not allow you to
mark a reference variable explicitly const. Second, there is usually only one level of indirection with ref-
erences. As explained earlier, you can’t create a reference to a reference. The only way to get multiple
levels of indirection is to create a reference to a pointer.

Thus, when C++ programmers refer to a “const reference,” they mean something like this:

int z;
const int& zRef = z;
zRef = 4; // DOES NOT COMPILE

By applying const to the int, you prevent assignment to zRef, as shown. Remember that const int&
zRef is equivalent to int const& zRef. Note, however, that marking zRef const has no effect on z.
You can still modify the value of z by changing it directly instead of through the reference

const references are used most commonly as parameters, where they are quite useful. If you want to
pass something by reference for efficiency, but don’t want it to be modifiable, make it a const reference.
For example:

void doSomething(const BigClass& arg)
{

// Implementation here
}

Your default choice for passing objects as parameters should be const reference.
Only if you explicitly need to change the object should you omit the const.

const applies to the level of indirection directly to its left.

332

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 332

const Methods
As you read in Chapter 9, you can mark a class method const. That specification prevents the method
from modifying any non-mutable data members of the class. Consult Chapter 9 for an example.

The static Keyword
Although there are several uses of the keyword const in C++, all the uses are related and make sense if
you think of const as meaning “unchanged.” static is a different story: there are three uses of the key-
word in C++, all seemingly unrelated.

Static Data Members and Methods
As you read in Chapter 9, you can declare static data members and methods of classes. static data mem-
bers, unlike non-static data members, are not part of each object. Instead, there is only one copy of the
data member, which exists outside any objects of that class.

static methods are similarly at the class level instead of the object level. A static method does not exe-
cute in the context of a specific object.

Chapter 9 provides examples of both static members and methods.

Static Linkage
Before covering the use of the static keyword for linkage, you need to understand the concept of link-
age in C++. As you learned in Chapter 1, C++ source files are each compiled independently, and the
resulting object files are linked together. Each name in a C++ source file, including functions and global
variables, has a linkage that is either internal or external. External linkage means that the name is avail-
able from other source files. Internal linkage (also called static linkage) means that it is not. By default,
functions and global variables have external linkage. However, you can specify internal (or static) link-
age by prefixing the declaration with the keyword static. For example, suppose you have two source
files: FirstFile.cpp and AnotherFile.cpp. Here is FirstFile.cpp:

// FirstFile.cpp

void f();

int main(int argc, char** argv)
{

f();
return (0);

}

Note that this file provides a prototype for f(), but doesn’t show the definition.

333

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 333

Here is AnotherFile.cpp:

// AnotherFile.cpp

#include <iostream>
using namespace std;

void f();

void f()
{

cout << “f\n”;
}

This file provides both a prototype and a definition for f(). Note that it is legal to write prototypes for
the same function in two different files. That’s precisely what the preprocessor does for you if you put
the prototype in a header file that you #include in each of the source files. The reason to use header
files is that it’s easier to maintain (and keep synchronized) one copy of the prototype. However, for this
example we don’t use a header file.

Each of these source files compiles without error, and the program links fine: because f() has external
linkage, main() can call it from a different file.

However, suppose you apply static to f() in AnotherFile.cpp:

// AnotherFile.cpp
#include <iostream>
using namespace std;

static void f();

void f()
{

cout << “f\n”;
}

Now each of the source files compiles without error, but the linker step fails because f() has internal
(static) linkage, making it unavailable from FirstFile.cpp. Some compilers issue a warning when
static methods are defined but not used in that source file (implying that they shouldn’t be static,
because they’re probably used elsewhere).

Note that you don’t need to repeat the static keyword in front of the definition of f(). As long as it
precedes the first instance of the function name, there is no need to repeat it.

Now that you’ve learned all about this use of static, you will be happy to know that the C++ commit-
tee finally realized that static was too overloaded, and deprecated this particular use of the keyword.
That means that it continues to be part of the standard for now, but is not guaranteed to be in the future.
However, much legacy C++ code still uses static in this way.

334

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 334

The supported alternative is to employ anonymous namespaces to achieve the same affect. Instead of
marking a variable or function static, wrap it in an unnamed namespace like this:

// AnotherFile.cpp
#include <iostream>
using namespace std;

namespace {
void f();

void f()
{

cout << “f\n”;
}

}

Entities in an anonymous namespace can be accessed anywhere following their declaration in the same
source file, but cannot be accessed from other source files. These semantics are the same as those
obtained with the static keyword.

The extern Keyword
A related keyword, extern, seems like it should be the opposite of static, specifying external linkage
for the names it precedes. It can be used that way in certain cases. For example, consts and typedefs
have internal linkage by default. You can use extern to give them external linkage.

However, extern has some complications. When you specify a name as extern, the compiler treats it as
a declaration, not a definition. For variables, this means the compiler doesn’t allocate space for the vari-
able. You must provide a separate definition line for the variable without the extern keyword. For
example:

// AnotherFile.cpp
extern int x;
int x = 3;

Alternatively, you can initialize x in the extern line, which then serves as the declaration and definition:

// AnotherFile.cpp
extern int x = 3;

The extern in this file is not very useful, because x has external linkage by default anyway. The real use
of extern is when you want to use x from another source file:

// FirstFile.cpp
#include <iostream>
using namespace std;

extern int x;

int main(int argc, char** argv)
{

cout << x << endl;
}

335

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 335

Here FirstFile.cpp uses an extern declaration so that it can use x. The compiler needs a declaration
of x in order to use it in main(). However, if you declared x without the extern keyword, the compiler
would think it’s a definition and would allocate space for x, causing the linkage step to fail (because
there are now two x variables in the global scope). With extern, you can make variables globally acces-
sible from multiple source files.

However, we do not recommend using global variables at all. They are confusing and error-prone, espe-
cially in large programs. For similar functionality, you should use static class members and methods.

static Variables in Functions
The final use of the static keyword in C++ is to create local variables that retain their values between
exits and entrances to their scope. A static variable inside a function is like a global variable that is only
accessible from that function. One common use of static variables is to “remember” whether a particular
initialization has been performed for a certain function. For example, code that employs this technique
might look something like this:

void performTask()
{

static bool inited = false;

if (!inited) {
cout << “initing\n”;
// Perform initialization.
inited = true;

}

// Perform the desired task.
}

However, static variables are confusing, and there are usually better ways to structure your code so
that you can avoid them. In this case, you might want to write a class in which the constructor performs
the required initialization.

Order of Initialization of Nonlocal Variables
Before leaving the topic of static data members and global variables, consider the order of initializa-
tion of these variables. All global variables and static class data members in a program are initialized
before main() begins. The variables in a given source file are initialized in the order they appear in the
source file. For example, in the following file Demo::x is guaranteed to be initialized before y.

// source1.cpp

class Demo
{

public:
static int x;

};

Avoid using stand-alone static variables. Maintain state within an object instead.

336

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 336

int Demo::x = 3;
int y = 4;

However, C++ provides no specifications or guarantees about the initialization ordering of nonlocal
variables in different source files. If you have a global variable x in one source file and a global variable y
in another, you have no way of knowing which will be initialized first. Normally, this lack of specifica-
tion isn’t cause for concern. However, it can be problematic if one global or static variable depends on
another. Recall that initialization of objects implies running their constructors. The constructor of one
global object might access another global object, assuming that it is already constructed. If these two
global objects are declared in two different source files, you cannot count on one being constructed
before the other.

Types and Casts
Chapter 1 reviewed the basic types in C++. Chapter 8 showed you how to write your own types with
classes. This section explores two of the trickier aspects of types: typedefs and casts.

typedefs
A typedef provides a new name for an existing type. You can think of a typedef simply as syntax for
introducing a synonym for an existing type name. typedefs do not create new types — they only pro-
vide a new way to refer to an old type. You can use the new type name and the old type name inter-
changeably. Variables created with the new type name are completely compatible with those created
with the original type name.

You might be surprised at the simplicity of the previous paragraph’s definition for typedefs. You’ve prob-
ably used typedefs in your code, or at least seen code that uses them, and they didn’t seem that easy.
However, if you examine all the uses, you will see that they are simply providing alternate typenames.

The most common use of typenames is to provide manageable names when the real typenames become
too unwieldy. This situation commonly arises with templates. For example, suppose you want to use the
Grid template from Chapter 11 to create a spreadsheet, which is a Grid of SpreadsheetCells. Without
typedefs, anytime you want to refer to the type of this Grid, for declaring variables, specifying func-
tion parameters, and so on, you would have to write Grid<SpreadsheetCell>:

int main(int argc, char** argv)
{

Grid<SpreadsheetCell> mySpreadsheet;
// Rest of the program . . .

}

void processSpreadsheet(const Grid<SpreadsheetCell>& spreadsheet)
{

// Body omitted
}

Initialization order of nonlocal variables in different source files is undefined.

337

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 337

With a typedef, you can create a shorter, more meaningful, name:

typedef Grid<SpreadsheetCell> Spreadsheet;

int main(int argc, char** argv)
{

Spreadsheet mySpreadsheet;
// Rest of the program . . .

}

void processSpreadsheet(const Spreadsheet& spreadsheet)
{

// Body omitted
}

One tricky aspect of typedefs is that the typenames can include the scope qualifiers. For example, in
Chapter 9, you saw this typedef:

typedef Spreadsheet::SpreadsheetCell SCell;

This typedef creates a short name SCell to refer to the SpreadsheetCell type inside the
Spreadsheet scope.

The STL uses typedefs extensively to provide shorter names for types. For example, string is actually
a typdef that looks like this:

typedef basic_string<char> string;

Casts
As explained in Chapter 1, the old-style C casts with () still work in C++. However, C++ also provides
four new casts: static_cast, dynamic_cast, const_cast, and reinterpret_cast. You should use
the C++ style casts instead of the old C-style casts because they perform more type checking and stand
out better syntactically in your code.

This section describes the purposes for each cast and specifies when you would use each of them.

const_cast
The const_cast is the most straightforward. You can use it to cast away const-ness of a variable. It is
the only cast of the four that is allowed to cast away const-ness. Theoretically, of course, there should be
no need for a const cast. If a variable is const, it should stay const. In practice, however, you some-
times find yourself in a situation where a function is specified to take a const variable, which it must
then pass to a function that takes a non-const variable. The “correct” solution would be to make const
consistent in the program, but that is not always an option, especially if you are using third-party
libraries. Thus, you sometimes need to cast away the const-ness of a variable. Here is an example:

void g(char* str)
{

// Function body omitted for brevity
}

338

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 338

void f(const char* str)
{

// Function body omitted for brevity
g(const_cast<char*>(str));
// Function body omitted for brevity

}

static_cast
You can use the static_cast to perform explicitly conversions that are supported directly by the lan-
guage. For example, if you write an arithmetic expression in which you need to convert an int to a
double in order to avoid integer division, use a static_cast:

int i = 3;
double result = static_cast<double>(i) / 10;

You can also use static_cast to perform explicitly conversions that are allowed because of user-
defined constructors or conversion routines. For example, if class A has a constructor that takes an object
of class B, you can convert a B object to an A object with a static_cast. In most situations where you
want this behavior, however, the compiler will perform the conversion automatically.

Another use for the static_cast is to perform downcasts in an inheritance hierarchy. For example:

class Base
{

public:
Base() {};
virtual ~Base() {}

};

class Derived : public Base
{

public:
Derived() {}
virtual ~Derived() {}

};

int main(int argc, char** argv)
{

Base* b;
Derived* d = new Derived();

b = d; // Don’t need a cast to go up the inheritance hierarchy
d = static_cast<Derived*>(b); // Need a cast to go down the hierarchy

Base base;
Derived derived;

Base& br = base;
Derived& dr = static_cast<Derived&>(br);

return (0);
}

These casts work with both pointers and references. They do not work with objects themselves.

339

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 339

Note that these casts with static_cast do not perform runtime type checking. They allow you to con-
vert any Base pointer to a Derived pointer or Base reference to a Derived reference, even if the Base
really isn’t a Derived at run time. To perform the cast safely, with runtime type checking, use the
dynamic_cast.

static_casts are not all-powerful. You can’t static_cast pointers of one type to pointers of another
unrelated type. You can’t static_cast pointers to ints. You can’t static_cast directly objects of one
type to objects of another type. You can’t static_cast a const type to a non-const type. Basically, you
can’t do anything that doesn’t make sense according to the type rules of C++.

reinterpret_cast
The reinterpret_cast is a bit more powerful, and concomitantly less safe, than the static_cast.
You can use it to perform some casts that are not technically allowed by C++ type rules, but which might
make sense to the programmer in some circumstances. For example, you can cast a pointer type to any
other pointer type, even if they are unrelated by an inheritance hierarchy. Similarly, you can cast a refer-
ence to one type to a reference to another type, even if the types are unrelated. You can also cast pointers
to ints and ints to pointers. Here are some examples:

class X {};
class Y {};

int main(int argc, char** argv)
{

int i = 3;

X x;
Y y;

X* xp;
Y* yp;

// Need reinterpret cast to perform pointer conversion from unrelated classes
// static_cast doesn’t work.
xp = reinterpret_cast<X*>(yp);

// Need reinterpret_cast to go from pointer to int and from int to pointer
i = reinterpret_cast<int>(xp);
xp = reinterpret_cast<X*>(i);

// Need reinterpret cast to perform reference conversion from unrelated classes
// static_cast doesn’t work.
X& xr = x;
Y& yr = reinterpret_cast<Y&>(x);

return (0);
}

You should be very careful with the reinterpret_cast because it “reinterprets” raw bits as a different
type without performing any type checking.

340

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 340

dynamic_cast
As mentioned in the discussion of static_cast, the dynamic_cast provides a run-time check on casts
within an inheritance hierarchy. You can use it to cast pointers or references. dynamic_cast checks the
runtime type information of the underlying object at run time. If the cast doesn’t make sense,
dynamic_cast returns NULL (for the pointer version) or throws a bad_cast exception (for the reference
version).

Note that the runtime-type information is stored in the vtable of the object. Therefore, in order to use
dynamic_cast, your classes must have at least one virtual function.

Here are some examples:

#include <typeinfo>
#include <iostream>
using namespace std;

class Base
{

public:
Base() {};
virtual ~Base() {}

};

class Derived : public Base
{

public:
Derived() {}
virtual ~Derived() {}

};

int main(int argc, char** argv)
{

Base* b;
Derived* d = new Derived();

b = d;
d = dynamic_cast<Derived*>(b);

Base base;
Derived derived;

Base& br = base;

try {
Derived& dr = dynamic_cast<Derived&>(br);

} catch (bad_cast&) {
cout << “Bad cast!\n”;

}

return (0);
}

341

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 341

In the preceding example, the first cast should succeed, while the second should throw an exception.
Chapter 15 covers the details of exception handling.

Note that you can perform the same casts down the inheritance hierarchy with a static_cast or
reinterpret_cast. The difference with dynamic_cast is that it performs runtime (dynamic) type
checking.

Summary of Casts
The following table summarizes the casts you should use for difference situations.

Situation Cast

Remove const-ness const_cast

Explicit cast supported by language static_cast
(e.g., int to double, int to bool)

Explicit cast supported by user-defined
constructors or conversions static_cast

Object of one class to object of another Can’t be done
(unrelated) class

Pointer-to-object of one class to pointer-to-object of static_cast
another class in the same inheritance hierarchy or dynamic_cast

Reference-to-object of one class to reference-to-object static_cast or
of another class in the same inheritance hierarchy dynamic_cast

Pointer-to-type to unrelated pointer-to-type reinterpret_cast

Reference-to-type to unrelated reference-to-type reinterpret_cast

Pointer to int/ int to pointer reinterpret_cast

Pointer-to-function to pointer-to-function reinterpret_cast

342

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 342

Scope Resolution
As a C++ programmer, you need to familiarize yourself with the concept of scope. Every name in your
program, including variable, function, and class names, is in a certain scope. You create scopes with
namespaces, function definitions, and class definitions. When you try to access a variable, function, or
class, the name is first looked up in the nearest enclosing scope, then the next scope, and so forth, up to
the global scope. Any name not in a namespace, function, or class is in the global scope.

Sometimes names in scopes hide identical names in other scopes. Other times, the scope you want is not
part of the default scope resolution from that particular line in the program. If you don’t want the
default scope resolution for a name, you can qualify the name with a specific scope using the scope reso-
lution operator ::. For example, to access a static method of a class, you prefix the method name with
the name of the class (its scope) and the scope resolution operator:

class Demo
{

public:
static void method() {}

};

int main(int argc, char** argv)
{

Demo::method();

return (0);
}

There are other examples of scope resolution throughout this book. One point, however, deserves fur-
ther attention: accessing the global scope. The global scope is unnamed, so there’s no way to access it
specifically. Instead, you can use the scope resolution operator by itself (with no name prefix): this
always refers to the global scope. Here is an example:

int name = 3;

int main(int argc, char** argv)
{

int name = 4;

cout << name << endl; // Accesses local name
cout << ::name << endl; // Accesses global name

return (0);
}

Header Files
Header files are a mechanism for providing an abstract interface to a subsystem or piece of code. One of
the trickier parts of using headers is avoiding circular references and multiple includes of the same
header file. For example, perhaps you are responsible for writing the Logger class that performs all

343

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 343

error message logging tasks. You may end up using another class, Preferences, that keeps track of user
settings. The Preferences class may in turn use the Logger class indirectly, through yet another
header.

As the following code shows, the #ifndef mechanism can be used to avoid circular and multiple
includes. At the beginning of each header file, the #ifndef directive checks to see if a certain key has not
been defined. If the key has been defined, the compiler will skip to the matching #endif, which is usually
placed at the end of the file If the key has not been defined, the file will proceed to define the key so that
a subsequent include of the same file will be skipped.

// Logger.h

#ifndef __LOGGER__
#define __LOGGER__

#include “Preferences.h”

class Logger
{

public:
static void setPreferences(const Preferences& inPrefs);
static void logError(const char* inError);

};

#endif // __LOGGER__

Another tool for avoiding problems with headers is forward references. If you need to refer to a class but
you cannot include its header file (for example, because it relies heavily on the class you are writing),
you can tell the compiler that such a class exists without providing a formal definition through the
#include mechanism. Of course, you cannot actually use the class in the code because the compiler
knows nothing about it, except that the named class will exist after everything is linked togther
However, you can still make use of pointers or references to the class in your class definition. In the fol-
lowing code, the Logger class refers to the Preferences class without including its header file.

// Logger.h

#ifndef __LOGGER__
#define __LOGGER__

class Preferences;

class Logger
{

public:
static void setPreferences(const Preferences& inPrefs);
static void logError(const char* inError);

};

#endif // __LOGGER__

344

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 344

C Utilities
Recall that C++ is a superset of C, and thus contains all of its functionality. There are a few obscure C
features that have no replacement in C++, and which can occasionally be useful. This section examines
two of these features: variable-length argument lists and preprocessor macros.

Variable-Length Argument Lists
Consider the C function printf() from <cstdio>. You can call it with any number of arguments:

#include <cstdio>

int main(int argc, char** argv)
{

printf(“int %d\n”, 5);
printf(“String %s and int %d\n”, “hello”, 5);
printf(“Many ints: %d, %d, %d, %d, %d\n”, 1, 2, 3, 4, 5);

}

C++ provides the syntax and some utility macros for writing your own functions with a variable num-
ber of arguments. These functions usually look a lot like printf(). Although you shouldn’t need this
feature very often, occasionally you run into situations in which it’s quite useful. For example, suppose
you want to write a quick-and-dirty debug function that prints strings to stderr if a debug flag is set,
but does nothing if the debug flag is not set. This function should be able to print strings with arbitrary
numbers and types of arguments. A simple implementation looks like this:

#include <cstdio>
#include <cstdarg>

bool debug = false;

void debugOut(char* str, ...)
{

va_list ap;
if (debug) {

va_start(ap, str);
vfprintf(stderr, str, ap);
va_end(ap);

}
}

First, note that the prototype for debugOut() contains one typed and named parameter str, followed
by ... (ellipses). They stand for any number and types of arguments. In order to access these argu-
ments, you must use macros defined in <cstdarg>. You declare a variable of type va_list, and initial-
ize it with a call to va_start. The second parameter to va_start() must be the rightmost named
variable in the parameter list. All functions require at least one named parameter. The debugOut() func-
tion simply passes this list to vfprintf() (a standard function in <cstdio>). After this function com-
pletes, it calls va_end() to terminate the access of the variable argument list. You must always call
va_end() after calling va_start() to ensure that the function ends with the stack in a consistent state.

345

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 345

You can use the function in the following way:

int main(int argc, char** argv)
{

debug = true;
debugOut(“int %d\n”, 5);
debugOut(“String %s and int %d\n”, “hello”, 5);
debugOut(“Many ints: %d, %d, %d, %d, %d\n”, 1, 2, 3, 4, 5);

return (0);
}

Accessing the Arguments
If you want to access the actual arguments yourself, you can use va_arg() to do so. For example, here’s
a function that takes any number of ints and prints them out:

#include <iostream>
using namespace std;

void printInts(int num, ...)
{

int temp;
va_list ap;
va_start(ap, num);
for (int i = 0; i < num; i++) {

temp = va_arg(ap, int);
cout << temp << “ “;

}
va_end(ap);
cout << endl;

}

You can call printInts() like this:

printInts(5, 5, 4, 3, 2, 1);

Why You Shouldn’t Use Variable-Length Argument Lists
Accessing variable-length argument lists is not very safe. As you can see from the printInts() func-
tion, there are several risks:

❑ You don’t know the number of parameters. In the case of printInts(), you must trust the
caller to pass the right number of arguments in the first argument. In the case of debugOut(),
you must trust the caller to pass the same number of arguments after the character array as
there are formatting codes in the character array.

❑ You don’t know the types of the arguments. va_arg() takes a type, which it uses to interpret
the value it its current spot. However, you can tell va_arg() to interpret the value as any type.
There is no way for it to verify the correct type.

346

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 346

Preprocessor Macros
You can use the C++ preprocessor to write macros, which are like little functions. Here is an example:

#define SQUARE(x) ((x) * (x)) // No semicolon after the macro definition!

int main(int argc, char** argv)
{

cout << SQUARE(4) << endl;

return (0);
}

Macros are a remnant from C that are quite similar to inline functions, except that they are not type
checked, and the preprocessor dumbly replaces any calls to them with their expansions. The preproces-
sor does not apply true function-call semantics. This behavior can cause unexpected results. For exam-
ple, consider what would happen if you called the SQUARE macro with 2 + 2 instead of 4, like this:

cout << SQUARE(2 + 2) << endl;

You expect SQUARE to calculate 16, which it does. However, what if you left off some parentheses on the
macro definition, so that it looks like this?

#define SQUARE(x) (x * x)

Now, the call to SQUARE(2 + 2) generates 8, not 16! Remember that the macro is dumbly expanded
without regard to function-call semantics. This means that any x in the macro body is replaced by
2 + 2, leading to this expansion:

cout << 2 + 2 * 2 + 2 << endl;

Following proper order of operations, this line performs the multiplication first, followed by the addi-
tions, generating 8 instead of 16!

Macros also cause problems for debugging because the code you write is not the code that the compiler
sees, or that shows up in your debugger (because of the search and replace behavior of the preproces-
sor). For these reasons, you should avoid macros entirely in favor of inline functions. We show the
details here only because quite a bit of C++ code out there employs macros. You need to understand
them in order to read and maintain that code.

Avoid using variable-length argument lists. It is preferable to pass in an array or
vector of variables.

347

Understanding C++ Quirks and Oddities

15_574841 ch12.qxd 12/15/04 3:43 PM Page 347

Summary
This chapter explained some of the aspects of C++ that generate the most confusion. By reading this
chapter, you learned a plethora of syntax details about C++. Some of the information, such as the details
of references, const, scope resolution, the specifics of the C++-style casts, and the techniques for header
files, you should use often in your programs. Other information, such as the uses of static and
extern, how to write variable-length argument lists, and how to write preprocessor macros, is impor-
tant to understand, but not information that you should put into use in your programs on a day-to-day
basis. In any case, now that you understand these details, you are poised to tackle the advanced C++ in
the rest of the book.

348

Chapter 12

15_574841 ch12.qxd 12/15/04 3:43 PM Page 348

Effective Memory
Management

In many ways, programming in C++ is like driving without a road. Sure, you can go anywhere
you want, but there are no lines or traffic lights to keep you from injuring yourself. C++, like the C
language, has a hands-off approach towards its programmers. The language assumes that you
know what you’re doing. It allows you to do things that are likely to cause problems because C++
is incredibly flexible and sacrifices safety in favor of performance.

Memory allocation and management is a particularly error-prone area of C++ programming. To
write high-quality C++ programs, professional C++ programmers need to understand how mem-
ory works behind the scenes. This chapter explores the ins and outs of memory management. You
will learn about the pitfalls of dynamic memory and some techniques for avoiding and eliminat-
ing them.

The chapter begins with an overview on the different ways to use and manage memory. Next, you
will read about the often perplexing relationship between arrays and pointers. You will then learn
about the creation and management of C-style strings. A low-level look at working with memory
comes next. Finally, the last section of this chapter covers some specific problems that you may
encounter with memory management and proposes a number of solutions.

Working with Dynamic Memory
When learning to program, dynamic memory is often the first major stumbling block that novice
programmers face. Memory is a low-level component of the computer that unfortunately rears its
head even in a high-level programming language like C++. Many programmers only understand
enough about dynamic memory to get by. They shy away from data structures that use dynamic
memory, or get their programs to work by trial and error.

16_574841 ch13.qxd 12/15/04 3:44 PM Page 349

There are two main advantages to using dynamic memory in your programs:

❑ Dynamic memory can be shared between different objects and functions.

❑ The size of dynamically-allocated memory can be determined at run time.

A solid understanding of how dynamic memory really works in C++ is essential to becoming a profes-
sional C++ programmer.

How to Picture Memory
Understanding dynamic memory is much easier if you have a mental model for what objects look like in
memory. In this book, a unit of memory is shown as a box with a label. The label indicates the variable
name that corresponds to the memory. The data inside the box displays the current value of the memory.

For example, Figure 13-1 shows the state of memory after the following line is executed:

int i = 7;

As you may recall from Chapter 1, the variable i is allocated on the stack because it is declared as a sim-
ple type, not dynamically using the new keyword.

Figure 13-1

When you use the new keyword, memory is allocated in the heap. The following code creates a variable
ptr on the stack, and then allocates memory on the heap to which ptr points.

int* ptr;
ptr = new int;

Figure 13-2 shows the state of memory after this code is executed. Notice that the variable ptr is still on
the stack even though it points to memory on the heap. A pointer is just a variable and can live either on
the stack or the heap, although this fact is easy to forget. Dynamic memory, however, is always allocated
on the heap.

Figure 13-2

Stack

ptr *ptr?

Heap

Stack

i 7

Heap

350

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 350

The next example shows that pointers can exist both on the stack and on the heap.

int** handle;

handle = new int*;
*handle = new int;

The preceding code first declares a pointer to a pointer to an integer as the variable handle. It then
dynamically allocates enough memory to hold a pointer to an integer, storing the pointer to that new
memory in handle. Next, that memory (*handle) is assigned a pointer to another section of dynamic
memory that is big enough to hold the integer. Figure 13-3 shows the two levels of pointers with one
pointer residing on the stack (handle) and the other residing on the heap (*handle).

Figure 13-3

The term “handle” is sometimes used to describe a pointer to a pointer to some memory. In some appli-
cations, handles are used because they allow the underlying software to move memory around as neces-
sary. This use of the term is more specific than the use in Chapter 5, but follows the same principle of
accessing something via a level of indirection.

Allocation and Deallocation
You should already be familiar with the basics of dynamic memory from earlier chapters in this book. To
create space for a variable, you use the new keyword. To release that space for use by other parts of the
program, you use the delete keyword. Of course, it wouldn’t be C++ if simple concepts such as new
and delete didn’t have several variations and intricacies.

Using new and delete
You have already seen the most common way of using new above and elsewhere in this book. When you
want to allocate a block of memory, you call new with the type of the variable for which you need space.
new returns a pointer to that memory, although it is up to you to store that pointer in a variable. If you
ignore the return value of new, or if the pointer variable goes out of scope, the memory becomes orphaned
because you no longer have a way to access it.

For example, the following code orphans enough memory to hold an int. Figure 13-4 shows the state of
memory after the code is executed. When there are blocks of data in the heap with no access, direct or
indirect, from the stack, the memory is orphaned.

Stack

handle *handle

**handle?

Heap

351

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 351

void leaky()
{

new int; // BUG! Orphans memory!

cout << “I just leaked an int!” << endl;
}

Figure 13-4

Until they find a way to make computers with an infinite supply of fast memory, you will need to tell
the compiler when the memory associated with an object can be released and used for another purpose.
To free memory on the heap, simply use the delete keyword with a pointer to the memory, as shown
here:

int* ptr;
ptr = new int;

delete ptr;

What about My Good Friend malloc?
If you are a C programmer, you may be wondering what was wrong with the malloc() function. In C,
malloc() is used to allocate a given number of bytes of memory. For the most part, using malloc() is
simple and straightforward. The malloc() function still exists in C++, but we recommend avoiding it.
The main advantage of new over malloc() is that new doesn’t just allocate memory, it constructs objects.

For example, consider the following two lines of code, which use a hypothetical class called Foo:

Foo* myFoo = (Foo*)malloc(sizeof(Foo));

Foo* myOtherFoo = new Foo();

After executing these lines, both myFoo and myOtherFoo will point to areas of memory in the heap that
are big enough for a Foo object. Data members and methods of Foo can be accessed using both pointers.
The difference is that the Foo object pointed to by myFoo isn’t a proper object because it was never con-
structed. The malloc() function only sets aside a piece of memory of a certain size. It doesn’t know

As a rule of thumb, every line of code that allocates memory with new should corre-
spond to another line of code that releases the same memory with delete.

Stack

[leaked integer]?

Heap

352

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 352

about or care about objects. In contrast, the call to new will allocate the appropriate size of memory and
will also properly construct the object. Chapter 16 describes these two duties of new in more detail.

A similar difference exists between the free() function and the delete function. With free(), the
object”s destructor will not be called. With delete, the destructor will be called and the object will be
properly cleaned up.

When Memory Allocation Fails
Many, if not most, programmers write code with the assumption that new will always be successful. The
rationale is that if new fails, it means that memory is very low and life is very, very bad. It is often an
unfathomable state to be in because it’s unclear what your program could possibly do in this situation.

By default, your program will terminate if new fails. In many programs, this behavior is acceptable. The
program exits when new fails because new throws an exception if there is not enough memory available
for the request. Chapter 15 explains approaches to recover gracefully from an out-of-memory situation.

There is also an alternative version of new which will not throw an exception. Instead, it will return
NULL, similar to the behavior of malloc() in C. The syntax for using this version is shown here:

int* ptr = new(nothrow) int;

Of course, you still have the same problem as the version that throws an exception — what do you do
when the result is NULL? The compiler doesn’t require you to check the result, so the nothrow version of
new is more likely to lead to other bugs than is the version that throws an exception. For this reason, we
suggest that you use the standard version of new. If out-of-memory recovery is important to your pro-
gram, the techniques covered in Chapter 15 will give you all of the tools that you need.

Arrays
Arrays package multiple variables of the same type into a single variable with indices. Working with
arrays quickly becomes natural to a novice programmer because it is easy to think about values in num-
bered slots. The in-memory representation of an array is not far off from this mental model.

Arrays of Basic Types
When your program allocates memory for an array, it is allocating contiguous pieces of memory, where
each piece is large enough to hold a single element of the array. For example, an array of five ints
would be declared on the stack as follows:

int myArray[5];

Do not mix and match malloc() and free() with new and delete. We recommend
using only new and delete.

353

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 353

Figure 13-5

Figure 13-5 shows the state of memory after the array is declared. Declaring arrays on the heap is no dif-
ferent, except that you use a pointer to refer to the location of the array. The following code allocates
memory for an array of five ints and stores a pointer to the memory in a variable called myArrayPtr.

int* myArrayPtr = new int[5];

Figure 13-6

As Figure 13-6 illustrates, the heap-based array is similar to the stack-based array, but in a different loca-
tion. The myArrayPtr variable points to the 0th element of the array. The advantage of putting an array
on the heap is that you can use dynamic memory to define its size at run time. For example, the follow-
ing function receives a desired number of documents from a hypothetical function named
askUserForNumberOfDocuments() and uses that result to create an array of Document objects.

Document* createDocArray()
{

int numDocs = askUserForNumberOfDocuments();

Document* docArray = new Document[numDocs];

return docArray;
}

Stack

myArrayPtr myArrayPtr[0]

myArrayPtr[1]

myArrayPtr[2]

myArrayPtr[3]

myArrayPtr[4]

Heap

Stack

myArray[0]

myArray[1]

myArray[2]

myArray[3]

myArray[4]

Heap

354

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 354

Some compilers, through mysterious voodoo, allow variable-sized arrays on the stack. This is not a stan-
dard feature of C++, so we recommend cautiously backing away when you see it.

In the preceding function, docArray is a dynamically allocated array. Do not get this confused with a
dynamic array. The array itself is not dynamic because its size does not change once it is allocated.
Dynamic memory lets you specify the size of an allocated block at run time, but it does not automati-
cally adjust its size to accommodate the data. There are data structures that do dynamically adjust in size
to their data, such as the STL built-in vector class.

There is a function in C++ called realloc(), which is a holdover from the C language. Don’t use it! In
C, realloc() is used to effectively change the size of an array by allocating a new block of memory of
the new size and moving all of the old data to the new location. This approach is extremely dangerous in
C++ because user-defined objects will not respond well to bitwise copying.

Arrays of Objects
Arrays of objects are no different from arrays of simple types. When you use new to allocate an array of
N objects, enough space is allocated for N contiguous blocks where each block is large enough for a sin-
gle object. Using new, the zero-argument constructor for each of the objects will automatically be called.
In this way, allocating an array of objects using new will return a pointer to an array of fully formed and
initialized objects.

For example, consider the following class:

class Simple
{

public:
Simple() { cout << “Simple constructor called!” << endl; }

};

If you were to allocate an array of four Simple objects, the Simple constructor would be called four
times.

int main(int argc, char** argv)
{

Simple* mySimpleArray = new Simple[4];
}

The output of this code is:

Simple constructor called!
Simple constructor called!
Simple constructor called!
Simple constructor called!

The memory diagram for this array is shown in Figure 13-7. As you can see, it is no different from an
array of basic types.

Do not use realloc() in C++. It is not your friend.

355

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 355

Figure 13-7

Deleting Arrays
When you allocate memory with the array version of new (new[]), you must release it with the array ver-
sion of delete (delete[]). This version will automatically destruct the objects in the array in addition to
releasing the memory associated with them. If you do not use the array version of delete, your program
may behave in odd ways. In some compilers, only the destructor for the 0th element of the array will be
called because the compiler only knows that you are deleting a pointer to an object. In others, memory
corruption may occur because new and new[] can use completely different memory allocation schemes.

int main(int argc, char** argv)
{

Simple* mySimpleArray = new Simple[4];

// Use mySimpleArray.

delete[] mySimpleArray;
}

Of course, the destructors are only called if the elements of the array are plain objects. If you have an
array of pointers, you will still need to delete each element individually just as you allocated each ele-
ment individually, as shown in the following code:

int main(int argc, char** argv)
{

Simple** mySimplePtrArray = new Simple*[4];

// Allocate an object for each pointer.
for (int i = 0; i < 4; i++) {

mySimplePtrArray[i] = new Simple();
}

// Use mySimplePtrArray.

// Delete each allocated object.
for (int i = 0; i < 4; i++) {

delete mySimplePtrArray[i];
}
// Delete the array itself.
delete[] mySimplePtrArray;

}

Stack

mySimpleArray mySimpleArray[0]

mySimpleArray[1]

mySimpleArray[2]

mySimpleArray[3]

Heap

356

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 356

Multidimensional Arrays
Multidimensional arrays extend the notion of indexed values to use multiple indices. For example, a Tic-
Tac-Toe game might use a two-dimensional array to represent a three-by-three grid. The following exam-
ple shows such an array declared on the stack and accessed with some test code.

int main(int argc, char** argv)
{

char board[3][3];

// Test code
board[0][0] = ‘X’; // X puts marker in position (0,0).
board[2][1] = ‘O’; // O puts marker in position (2,1).

}

You may be wondering whether the first subscript in a two-dimensional array is the x-coordinate or the
y-coordinate. The truth is that it doesn’t really matter, as long as you are consistent. A four-by-seven grid
could be declared as char board[4][7] or char board[7][4]. For most applications, it is easiest to
think of the first subscript as the x-axis and the second as the y-axis.

Multidimensional Stack Arrays
In memory, a stack-based two-dimensional array looks like Figure 13-8. Since memory doesn’t have two
axes (addresses are merely sequential), the computer represents a two dimensional array just like a one-
dimensional array. The difference is the size of the array and the method used to access it.

Figure 13-8

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

Do not mix and match new and delete with new[] and delete[]

357

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 357

The size of a multidimensional array is all of its dimensions multiplied together, then multiplied by the
size of a single element in the array. In Figure 13-8, the three-by-three board is 3*3*1 = 9 bytes, assuming
that a character is 1 byte. For a four-by-seven board of characters, the array would be 4*7*1 = 28 bytes.

To access a value in a multidimensional array, the computer treats each subscript as accessing another
subarray within the multidimensional array. For example, in the three-by-three grid, the expression
board[0] actually refers to the subarray highlighted in Figure 13-9. When you add a second subscript,
such as board[0][2], the computer is able to access the correct element by looking up the second sub-
script within the subarray, as shown in Figure 13-10.

Figure 13-9

Figure 13-10

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

Stack

board[0][0]

board[0]board[0][1]

board[0][2]

board[1][0]

board[1][1]

board[1][2]

board[2][0]

board[2][1]

board[2][2]

Heap

board[1]

board[2]

358

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 358

These techniques are extended to N-dimensional arrays, though dimensions higher than three tend to be
difficult to conceptualize and are rarely useful in everyday applications.

Multidimensional Heap Arrays
If you need to determine the dimensions of a multidimensional array at run time, you can use a heap-
based array. Just as a single-dimensional dynamically allocated array is accessed through a pointer, a
multidimensional dynamically allocated array is also accessed through a pointer. The only difference is
that in a two-dimensional array, you need to start with a pointer-to-a-pointer and in an N-dimensional
array, you need N levels of pointers. At first, it might seem like the correct way to declare and allocate a
dynamically allocated multidimensional array is as follows:

char** board = new char[i][j]; // BUG! Doesn’t compile

This code doesn’t compile because heap-based arrays don’t work like stack-based arrays. Their memory
layout isn’t contiguous, so allocating enough memory for a stack-based multidimensional array is incor-
rect. Instead, you must start by allocating a single contiguous array for the first subscript dimension of a
heap-based array. Each element of that array is actually a pointer to another array that stores the ele-
ments for the second subscript dimension. This layout for a two-by-two dynamically allocated board is
shown in Figure 13-11.

Figure 13-11

Unfortunately, the compiler doesn’t allocate memory for the subarrays on your behalf. You can allocate
the first dimension array just like a single-dimensional heap-based array, but the individual subarrays
must be explicitly allocated. The following function properly allocates memory for a two-dimensional
array.

Stack

board board[0]

board[1]

board[0][0]

board[0][1]

board[1][0]

board[1][1]

Heap

359

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 359

char** allocateCharacterBoard(int xDimension, int yDimension)
{

char** myArray = new char*[xDimension]; // Allocate first dimension

for (int i = 0; i < xDimension; i++) {
myArray[i] = new char[yDimension]; // Allocate ith subarray

}

return myArray;
}

When you wish to release the memory associated with a multidimensional heap-based array, the array
delete[] syntax will not clean up the subarrays on your behalf. Your code to release an array should
mirror the code to allocate it, as in the following function.

void releaseCharacterBoard(char** myArray, int xDimension)
{

for (int i = 0; i < xDimension; i++) {
delete[] myArray[i]; // Delete ith subarray

}

delete[] myArray; // Delete first dimension
}

Working with Pointers
Pointers get their bad reputation from the relative ease with which you can abuse them. Because a
pointer is just a memory address, you could theoretically change that address manually, even doing
something as scary as the following line of code:

char* scaryPointer = 7;

The previous line builds a pointer to the memory address 7, which is likely to be random garbage or
memory that is used elsewhere in the application. If you start to use areas of memory that weren’t set
aside on your behalf with new, eventually you will corrupt the memory associated with an object and
your program will crash.

A Mental Model for Pointers
As you read in Chapter 1, there are two ways to think about pointers. More mathematically minded
readers might view pointers simply as addresses. This view makes pointer arithmetic, covered later in
this chapter, a bit easier to understand. Pointers aren’t mysterious pathways through memory; they are
simply numbers that happen to correspond to a location in memory. Figure 13-12 illustrates a two-by-
two grid in the address-based view of the world.

360

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 360

Figure 13-12

Readers who are more comfortable with spatial representations might derive more benefit from the
“arrow” view of pointers. A pointer is simply a level of indirection that says to the program “Hey! Look
over there.” With this view, multiple levels of pointers simply become individual steps on the path to
data. Figure 13-11 showed a graphical view of pointers in memory.

When you dereference a pointer, by using the * operator, you are telling the program to look one level
deeper in memory. In the address-based view, think of a dereference as a jump in memory to the address
indicated by the pointer. With the graphical view, every dereference corresponds to following an arrow
from its base to its point.

When you take the address of a variable, using the & operator, you are adding a level of indirection in
memory. In the address-based view, the program is simply noting the numerical address of the variable,
which can be stored in a pointer variable. In the graphical view, the & operator creates a new arrow
whose point ends at the variable. The base of the arrow can be attached to a pointer variable.

Casting with Pointers
Since pointers are just memory addresses (or arrows to somewhere), they are somewhat weakly typed. A
pointer to an XML Document is the same size as a pointer to an integer. The compiler will let you easily
cast any pointer type to any other pointer type using a C-style cast.

Document* documentPtr = getDocument();
char* myCharPtr = (char*)documentPtr;

A static cast offers a bit more safety. The compiler will refuse to perform a static cast on pointers to
different data types.

Document* documentPtr = getDocument();
static_cast<char*> (documentPtr); // BUG! Won’t compile

Stack

board 1000 2000

5000

1000

1001

2000

2001

5000

5001

Heap

361

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 361

If the two pointers you are casting are actually pointing to objects that are related through inheritance,
the compiler will permit a static cast. However, as you read in Chapter 10, a dynamic cast is a safer
way to accomplish a cast within an inheritance hierarchy.

const with Pointers
The interaction between the const keyword and pointers is a bit confusing, because it is unclear to what
you are applying const. If you dynamically allocate an array of integers and apply const to it, is the
array address protected with const, or are the individual values protected? The answer depends on the
syntax.

If const occurs before the type, it means that the pointed-to value is protected. In the case of an array,
the individual elements of the array are const. The following function receives a pointer to a const
integer. The first line will not compile because the actual value is protected by const. The second line
would compile, because the array itself is unprotected.

void test(const int* inProtectedInt, int* anotherPtr)
{

*inProtectedInt = 7; // BUG! Attempts to write to read-only value
inProtectedInt = anotherPtr; // Works fine

}

To protect the pointer itself, the const keyword immediately precedes the variable name, as shown in
the following code. This time, both the pointer and the pointed-to value are protected, so neither line
would compile.

void test(const int* const inProtectedInt, int* anotherPtr)
{

*inProtectedInt = 7; // BUG! Attempts to write to read-only value
inProtectedInt = anotherPtr; // BUG! Attempts to write to read-only value

}

In practice, protecting the pointer is rarely necessary. If a function is able to change the value of a pointer
that you pass it, it makes little difference. The effect will only be local to the function, and the pointer
will still point to its original address as far as the caller is concerned. Marking a pointer as const is more
useful in documenting its purpose than for any actual protection. Protecting the pointed-to value(s),
however, is quite common to protect against overwriting shared data.

Array-Pointer Duality
You have already seen some of the overlap between pointers and arrays. Heap-allocated arrays are
referred to by a pointer to their first element. Stack-based arrays are referred to by using the array syntax
([]) with an otherwise normal variable declaration. As you are about to learn, however, the overlap
doesn’t end there. Pointers and arrays have a complicated relationship.

362

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 362

Arrays Are Pointers!
A heap-based array is not the only place where you can use a pointer to refer to an array. You can also
use the pointer syntax to access elements of a stack-based array. The address of an array is really the
address of the 0th element. The compiler knows that when you refer to an array in its entirety by its vari-
able name, you are really referring to the address of the 0th element. In this way, the pointer works just
like a heap-based array. The following code creates an array on the stack, but uses a pointer to access the
array.

int main(int argc, char** argv)
{

int myIntArray[10];

int* myIntPtr = myIntArray;

// Access the array through the pointer.
myIntPtr[4] = 5;

}

The ability to refer to a stack-based array through a pointer is useful when passing arrays into functions.
The following function accepts an array of integers as a pointer. Note that the caller will need to explic-
itly pass in the size of the array because the pointer implies nothing about size. In fact, C++ arrays of any
form, pointer or not, have no built-in notion of size.

void doubleInts(int* theArray, int inSize)
{

for (int i = 0; i < inSize; i++) {
theArray[i] *= 2;

}
}

The caller of this function can pass a stack-based or heap-based array. In the case of a heap-based array,
the pointer already exists and is simply passed by value into the function. In the case of a stack-based
array, the caller can pass the array variable and the compiler will automatically treat the array variable
as a pointer to the array. Both uses are shown here:

int main(int argc, char** argv)
{

int* heapArray = new int[4];
heapArray[0] = 1;
heapArray[1] = 5;
heapArray[2] = 3;
heapArray[3] = 4;

doubleInts(heapArray, 4);

int stackArray[4] = {5, 7, 9, 11};

doubleInts(stackArray, 4);
}

363

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 363

Even if the function doesn’t explicitly have a parameter that is a pointer, the parameter-passing seman-
tics of arrays are uncannily similar to pointers’, because the compiler treats an array as a pointer when it
is passed to a function. A function that takes an array as an argument and changes values inside the
array is actually changing the original array, not a copy. Just like a pointer, passing an array effectively
mimics pass-by-reference functionality because what you really pass to the function is the address of the
original array, not a copy. The following implementation of doubleInts() changes the original array
even though the parameter is an array, not a pointer.

void doubleInts(int theArray[], int inSize)
{

for (int i = 0; i < inSize; i++) {
theArray[i] *= 2;

}
}

You may be wondering why things work this way. Why doesn’t the compiler just copy the array when
array syntax is used in the function definition? One possible explanation is efficiency — it takes time to
copy the elements of an array, and they potentially take up a lot of memory. By always passing a pointer,
the compiler doesn’t need to include the code to copy the array.

To summarize, arrays declared using array syntax can be accessed through a pointer. When an array is
passed to a function, it is always passed as a pointer.

Not All Pointers Are Arrays!
Since the compiler lets you pass in an array where a pointer is expected, as in the doubleInts() func-
tion shown earlier, you may be lead to believe that pointers and arrays are the same. In fact there are
subtle, but important, differences. Pointers and arrays share many properties and can sometimes be used
interchangeably (as shown earlier), but they are not the same.

A pointer by itself is meaningless. It may point to random memory, a single object, or an array. You can
always use array syntax with a pointer, but doing so is not always appropriate because pointers aren’t
always arrays. For example, consider the following code:

int* ptr = new int;

The pointer ptr is a valid pointer, but it is not an array. You can access the pointed-to value using array
syntax (ptr[0]), but doing so is stylistically questionable and provides no real benefit. In fact, using
array syntax with nonarray pointers is an invitation for bugs. The memory at ptr[1] could be anything!

Arrays are automatically referenced as pointers, but not all pointers are arrays.

364

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 364

Dynamic Strings
Strings present something of a quandary for programming language designers because they seem like a
standard data type, but are not expressed in fixed sizes. Strings are so commonly used, however, that
most programming languages need to have a built-in model of a string. In the C language, strings are
somewhat of a hack, never given the first-class language feature attention that they deserve. C++ pro-
vides a far more flexible and useful representation of a string.

C-Style Strings
In the C language, strings are represented as an array of characters. The last character of a string is a null
character (‘\0’) so that code operating on the string can determine where it ends. Even though C++
provides a better string abstraction, it is important to understand the C technique for strings because
they still arise in C++ programming.

By far, the most common mistake that programmers make with C strings is that they forget to allocate
space for the ‘\0’ character. For example, the string “hello” appears to be five characters long, but six
characters worth of space are needed in memory to store the value, as shown in Figure 13-13.

Figure 13-13

C++ contains several functions from the C language that operate on strings. As a general rule of thumb,
these functions do not handle memory allocation. For example, the strcpy() function takes two strings
as parameters. It copies the second string onto the first, whether it fits or not. The following code
attempts to build a wrapper around strcpy() that allocates the correct amount of memory and returns
the result, instead of taking in an already allocated string. It uses the strlen() function to obtain the
length of the string.

char* copyString(const char* inString)
{

char* result = new char[strlen(inString)]; // BUG! Off by one!

strcpy(result, inString);

return result;
}

Stack

myString 'h'

'e'

'l'

'l'

'o'

'\0'

Heap

365

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 365

The copyString() function as written is incorrect. The strlen() function returns the length of the
string, not the amount of memory needed to hold it. For the string “hello”, strlen() will return 5,
not 6! The proper way to allocate memory for a string is to add one to the amount of space needed for
the actual characters. It seems a little weird at first to have +1 all over, but it quickly becomes natural,
and you (hopefully) miss it when it’s not there.

char* copyString(const char* inString)
{

char* result = new char[strlen(inString) + 1];

strcpy(result, inString);

return result;
}

One way to remember that strlen() only returns the number of actual characters in the string is to con-
sider what would happen if you were allocating space for a string made up of several others. For exam-
ple, if your function took in three strings and returned a string that was the concatenation of all three,
how big would it be? To hold exactly enough space, it would be the length of all three strings, added
together, plus one for the trailing ‘\0’ character. If strlen() included the ‘\0’ in the length of the
string, the allocated memory would be too big. The following code uses the strcpy() and strcat()
functions to perform this operation.

char* appendStrings(const char* inStr1, const char* inStr2, const char* inStr3)
{

char* result = new char[strlen(inStr1) + strlen(inStr2) + strlen(inStr3) + 1];

strcpy(result, inStr1);
strcat(result, inStr2);
strcat(result, inStr3);

return result;
}

A complete list of C functions to operate on strings is found in the <cstring> header file.

String Literals
You’ve probably seen strings written in a C++ program with quotes around them. For example, the fol-
lowing code outputs the string hello by including the string itself, not a variable that contains it.

cout << “hello” << endl;

In the preceding line, “hello” is a string literal because it is written as a value, not a variable. Even
though string literals don’t have associated variables, they are treated as const char*’s (arrays of con-
stant characters).

String literals can be assigned to variables, but doing so can be risky. The actual memory associated with
a string literal is in a read-only part of memory, which is why it is an array of constant characters. This

366

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 366

allows the compiler to optimize memory usage by reusing references to equivalent string literals (that is,
even if your program uses the string literal “hello” 500 times, the compiler can create just one instance
of hello in memory). The compiler does not, however, force your program to assign a string literal only
to a variable of type const char* or const char[]. You can assign a string to a char* without const,
and the program will work fine unless you attempt to change the string. Generally, attempting to change
the string will immediately crash your program, as demonstrated in the following code:

char* ptr = “hello”; // Assign the string literal to a variable.

ptr[1] = ‘a’; // CRASH! Attempts to write to read-only memory

A much safer way to code is to use a pointer to const characters when referring to string literals. The
code below contains the same bug, but because it assigned the literal to a const character array, the
compiler will catch the attempt to write to read-only memory.

const char* ptr = “hello”; // Assign the string literal to a variable.

ptr[1] = ‘a’; // BUG! Attempts to write to read-only memory

You can also use a string literal as an initial value for a stack-based character array. Because the stack-
based variable cannot in any way refer to memory somewhere else, the compiler will take care of copy-
ing the string literal into the stack-based array memory.

char stackArray[] = “hello”; // Compiler takes care of copying the array and
// creating appropriate size for stack array

stackArray[1] = ‘a’; // The copy can be modified.

The C++ string Class
As we promised earlier, C++ provides a much-improved implementation of a string as part of the
Standard Library. In C++, string is a class (actually an instantiation of the basic_string template
class) that supports many of the same operations as the <cstring> functions but, best of all, takes care
of memory allocation for you if you use it properly.

What Was Wrong with C-Style Strings?
Before jumping into the new world of the C++ string class, consider the advantages and disadvantages
of C-style strings.

Advantages:

❑ They are simple, making use of the underlying basic character type and array structure.

❑ They are lightweight, taking up only the memory that they need if used properly.

❑ They are low level, so you can easily manipulate and copy them as raw memory.

❑ They are well understood by C programmers — why learn something new?

367

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 367

Disadvantages:

❑ They are unforgiving and susceptible to difficult memory bugs.

❑ They don’t leverage the object-oriented nature of C++.

❑ They come with a set of poorly named and sometimes confusing helper functions.

❑ They require knowledge of their underlying representation on the part of the programmer.

The preceding lists were carefully constructed to make you think that perhaps there is a better way. As
you’ll learn below, C++ strings solve all of these disadvantages of C strings and make the advantages
moot.

Using the string Class
Even though string is a class, you can almost always treat it as though it were a built-in type, like int.
In fact, the more you think of it as a simple type, the better off you are. Programmers generally
encounter the least trouble with string when they forget that strings are objects.

Through the magic of operator overloading, C++ strings support concatenation with the + operator,
assignment with the = operator, comparison with the == operator, and individual character access with
the [] operator. These operators are what allow the programmer to treat string like a basic type. As the
following code shows, you can perform these operations on a string without worrying about memory
allocation.

int main(int argc, char** argv)
{

string myString = “hello”;

myString += “, there”;

string myOtherString = myString;

if (myString == myOtherString) {
myOtherString[0] = ‘H’;

}

cout << myString << endl;
cout << myOtherString << endl;

}

The output of this code is:

hello, there
Hello, there

There are several things to note in this example. First, there are no memory leaks even though strings are
allocated and resized left and right. All of these string objects were created as stack variables. While
the string class certainly had a bunch of allocating and resizing to do, the objects themselves cleaned
up this memory when they went out of scope.

368

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 368

Another point to note is that the operators work the way you would want them to You might be con-
cerned that using = will somehow result in two variables that point to the same memory, but that is not
the case. The = operator copies the strings, which is most likely what you wanted. Similarly, the == oper-
ator really compares the actual contents of two strings, not the memory locations of the strings. If you
are used to working with array-based strings, this will either be refreshingly liberating for you or some-
what confusing. Don’t worry – once you learn to trust the string class to do the right thing, life gets so
much easier.

The on-line reference lists all the operations you can perform on string objects.

Low-Level Memory Operations
One of the great advantages of C++ over C is that you don’t need to worry quite as much about memory.
If you code using objects, you just need to make sure that each individual class properly manages its
own memory. Through construction and destruction, the compiler helps you manage memory by telling
you when to do it. As you saw in the string class, hiding the management of memory within classes
makes a huge difference in usability.

With some applications, however, you may encounter the need to work with memory at a lower level.
Whether for efficiency, debugging, or a sick curiosity, knowing some techniques for working with raw
bytes can be helpful.

Pointer Arithmetic
The C++ compiler uses the declared types of pointers to allow you to perform pointer arithmetic. If you
declare a pointer to an int and increase it by 1, the pointer moves ahead in memory by the size of an
int, not by a single byte. This type of operation is most useful with arrays, since they contain homoge-
neous data that is sequential in memory. For example, assume you declare an array of ints on the heap:

int* myArray = new int[8];

You are already familiar with the following syntax for setting the value in position 2:

myArray[2] = 33;

With pointer arithmetic, you can equivalently use the following syntax, which obtains a pointer to the
memory that is “2 ints ahead” of myArray, then dereferences it to set the value.

*(myArray + 2) = 33;

For compatibility, you can convert a C++ string into a C-style string by using the
c_str() method. You should call the method just before using the result so that it
accurately reflects the current contents of the string.

369

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 369

As an alternative syntax for accessing individual elements, pointer arithmetic doesn’t seem too appeal-
ing. Its real power lies in the fact that an expression like myArray + 2 is still a pointer to an int, and
thus can represent a smaller int array. Suppose you had a C-style string, as shown below:

const char* myString = “Hello, World!”;

Suppose you also had a function that took in a string and returned a new string that contains a capital-
ized version of the input:

char* toCaps(const char* inString);

You could capitalize myString by passing it into this function. However, if you only wanted to capital-
ize part of myString, you could use pointer arithmetic to refer to only a latter part of the string. The fol-
lowing code calls toCaps() on the World part of the string:

toCaps(myString + 7);

Another useful application of pointer arithmetic involves subtraction. Subtracting one pointer from
another of the same type gives you the number of elements of the pointed-to type between the two
pointers, not the absolute number of bytes between them.

Custom Memory Management
For 99 percent of the cases you will encounter (some might say 100 percent of the cases), the built-in
memory allocation facilities in C++ are adequate. Behind the scenes, new and delete do all the work of
handing out memory in properly sized chunks, maintaining a list of available areas of memory, and
releasing chunks of memory back to that list upon deletion.

When resource constraints are extremely tight, managing memory on your own may be a viable option.
Don’t worry — it’s not as scary as it sounds. Basically, managing memory yourself generally means that
classes allocate a large chunk of memory and dole out that memory in pieces as it is needed.

How is this approach any better? Managing your own memory can potentially reduce overhead. When
you use new to allocate memory, the program also needs to set aside a small amount of space to record
how much memory was allocated. That way, when you call delete, the proper amount of memory can
be released. For most objects, the overhead is so much smaller than the memory allocated that it makes
little difference. However, for small objects or programs with enormous numbers of objects, the over-
head can have an impact.

When you manage memory yourself, you know the size of each object a priori, so you can avoid the
overhead for each object. The difference can be enormous for large numbers of small objects. The syntax
for performing custom memory management is described in Chapter 16.

Garbage Collection
At the other end of the memory hygiene spectrum lies garbage collection. With environments that sup-
port garbage collection, the programmer rarely, if ever, explicitly frees memory associated with an object.
Instead, a low-priority background task keeps an eye on the state of memory and cleans up portions that
it decides are no longer needed.

370

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 370

Garbage collection is not built into the C++ language as it is in Java. Most C++ programs manage mem-
ory at the object level through new and delete. It is possible to implement garbage collection in C++,
but freeing yourself from the task of releasing memory would probably introduce new headaches.

One approach to garbage collection is called mark and sweep. With this approach, the garbage collector
periodically examines every single pointer in your program and annotates the fact that the referenced
memory is still in use. At the end of the cycle, any memory that hasn’t been marked is deemed to be not
in use and is freed.

A mark and sweep algorithm could be implemented in C++ if you were willing to do the following:

1. Register all pointers with the garbage collector so that it can easily walk through the list of all
pointers

2. Subclass all objects from a mix-in class, perhaps GarbageCollectible, that allows the garbage
collector to mark an object as in-use

3. Protect concurrent access to objects by making sure that no changes to pointers can occur while
the garbage collector is running

As you can see, this simple approach to garbage collection requires quite a bit of diligence on the part of
the programmer. It may even be more error-prone than using delete! Attempts at a safe and easy mech-
anism for garbage collection have been made in C++, but even if a perfect implementation of garbage
collection in C++ came along, it wouldn’t necessarily be appropriate to use for all applications. Among
the downsides of garbage collection:

❑ When the garbage collector is actively running, it will likely slow the program down.

❑ If the program is aggressively allocating memory, the garbage collector may be unable to keep
up.

❑ If the garbage collector is buggy or thinks an abandoned object is still in use, it can create unre-
coverable memory leaks.

Object Pools
Custom memory management, as described above, is the coding equivalent to shopping for a picnic at a
warehouse superstore. You fill your SUV with more paper plates than you need right now so that you
can avoid the overhead of going back to the store for subsequent picnics. Garbage collection is like leav-
ing any used plates out in the yard where the wind will conveniently blow them into the neighbor’s
yard. Surely, there must be a more ecological approach to memory management.

Object pools are the analog of recycling. You buy a reasonable number of plates, but you hang onto them
after use so that later on you can clean and reuse them. Object pools are ideal for situations where you
need to use many objects of the same type over time, and creating each one incurs overhead.

Chapter 17 contains further details about using object pools for performance efficiency.

371

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 371

Function Pointers
You don’t normally think about the location of functions in memory, but each function actually lives at a
particular address. In C++, you can use functions as data. In other words, you can take the address of a
function and use it like you use a variable.

Function pointers are typed according to the parameter types and return type of compatible functions.
The easiest way to work with function pointers is to use the typedef mechanism to assign a type name
to the family of functions that have the given characteristics. For example, the following line declares a
type called YesNoFcn that represents a pointer to any function that has two int parameters and returns
a bool.

typedef bool(*YesNoFcn)(int, int);

Now that this new type exists, you could write a function that takes a YesNoFcn as a parameter. For
example, the following function accepts two int arrays and their size, as well as a YesNoFcn. It iterates
through the arrays in parallel and calls the YesNoFcn on corresponding elements of both arrays, printing
a message if the YesNoFcn function returns true. Notice that even though the YesNoFcn is passed in as
a variable, it can be called just like a regular function.

void findMatches(int values1[], int values2[], int numValues, YesNoFcn inFunction)
{

for (int i = 0; i < numValues; i++) {
if (inFunction(values1[i], values2[i])) {

cout << “Match found at position “ << i <<
“ (“ << values1[i] << “, “ << values2[i] << “)” << endl;

}
}

}

To call the findMatches() function, all you need is any function that adheres to the defined YesNoFcn
type — that is, any type that takes in two ints and returns a bool. For example, consider the following
function, which returns true if the two parameters are equal:

bool intEqual(int inItem1, int inItem2)
{

return (inItem1 == inItem2);
}

Because the intEqual() function matches the YesNoFcn type, it can be passed as the final argument to
findMatches(), as in the following program:

int main(int argc, char** argv)
{

int arr1[7] = {2, 5, 6, 9, 10, 1, 1};
int arr2[7] = {4, 4, 2, 9, 0, 3, 4};

cout << “Calling findMatches() using intEqual():” << endl;
findMatches(arr1, arr2, 7, &intEqual);

return 0;
}

372

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 372

Notice that the intEqual() function is passed into the findMatches() function by taking its address.
Technically, the & character is optional — if you simply put the function name, the compiler will know
that you mean to take its address. The output of this program will be:

Calling findMatches() using intEqual():
Match found at position 3 (9, 9)

The magic of function pointers lies in the fact that findMatches() is a generic function that compares
parallel values in two arrays. As it is used above, it compares based on equality. However, since it takes a
function pointer, it could compare based on other criteria. For example, the following function also
adheres to the definition of a YesNoFcn:

bool bothOdd(int inItem1, int inItem2)
{

return (inItem1 % 2 == 1 && inItem2 % 2 == 1);
}

The following program calls findMatches() using both YesNoFcns:

int main(int argc, char** argv)
{

int arr1[7] = {2, 5, 6, 9, 10, 1, 1};
int arr2[7] = {4, 4, 2, 9, 0, 3, 4};

cout << “Calling findMatches() using intEqual():” << endl;
findMatches(arr1, arr2, 7, &intEqual);

cout << endl;

cout << “Calling findMatches() using bothOdd():” << endl;
findMatches(arr1, arr2, 7, &bothOdd);

return 0;
}

The output of this program will be:

Calling findMatches() using intEqual():
Match found at position 3 (9, 9)

Calling findMatches() using bothOdd():
Match found at position 3 (9, 9)
Match found at position 5 (1, 3)

By using function pointers, a single function, findMatches(), was customized to different uses based
on a parameter, inFunction.

373

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 373

Common Memory Pitfalls
It is difficult to pinpoint the exact situations that can lead to a memory-related bug. Every memory leak
or bad pointer has its own nuances. There is no magic bullet for resolving memory issues, but there are
several common categories of problems and some tools you can use to detect and resolve them.

Underallocating Strings
As you read above, the most common problem with C-style strings is underallocation. In most cases, this
arises when the programmer fails to allocate an extra character for the trailing ‘\0’ sentinel. Under-
allocation of strings also occurs when programmers assume a certain fixed maximum size. The basic
built-in string functions will not adhere to a fixed size — they will happily write off the end of the string
into uncharted memory.

The following code reads data off a network connection and puts it in a C-style string. This is done in a
loop because the network connection only receives a small amount of data at a time. When NULL is
returned from the getMoreData() function, all of the data has been received.

char buffer[1024]; // Allocate a whole bunch of memory.
bool done = false;

while (!done) {
char* nextChunk = getMoreData();
if (nextChunk == NULL) {

done = true;
} else {

strcat(buffer, nextChunk); // BUG! No guarantees against buffer overrun!
delete[] nextChunk;

}
}

There are three ways to resolve this problem. In increasing order of preference, they are:

1. Find a version of getMoreData() that takes a maximum size as a parameter. Each time you call
getMoreData(), only give it the amount of space that you have left as the maximum size.

2. Keep track of how much space is left in the buffer. When it is no longer big enough for the cur-
rent chunk, allocate a new buffer with twice as much space and copy the original buffer into the
new buffer.

3. Use C++-style strings, which will handle the memory associated with concatenation on your
behalf. That’s right, let it go!

Memory Leaks
Finding and fixing memory leaks is one of the more frustrating parts of programming in C++. Your pro-
gram finally works and appears to give the correct results. Then, you start to notice that your program
gobbles up more and more memory as it runs. Your program has a memory leak.

Memory leaks occur when you allocate memory and neglect to release it. At first, this sounds like the
result of careless programming that could easily be avoided. After all, if every new has a corresponding
delete in every class you write, there should be no memory leaks, right? Actually, that’s not always

374

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 374

true. In the following code, the Simple class is properly written to release any memory that it allocates.
However, when the doSomething() function is called, the pointer is changed to another Simple object
without deleting the old one. Once you lose a pointer to an object, it’s nearly impossible to delete it.

#include <iostream>

using namespace std;

class Simple
{

public:
Simple() { mIntPtr = new int(); }
~Simple() { delete mIntPtr; }

void setIntPtr(int inInt) { *mIntPtr = inInt; }
void go() { cout << “Hello there” << endl; }

protected:
int* mIntPtr;

};

void doSomething(Simple*& outSimplePtr)
{

outSimplePtr = new Simple(); // BUG! Doesn’t delete the original.
}

int main(int argc, char** argv)
{

Simple* simplePtr = new Simple(); // Allocate a Simple object.

doSomething(simplePtr);

delete simplePtr; // Only cleans up the second object
}

In cases like the preceding example, the memory leak probably arose from poor communication between
programmers or poor documentation of code. The caller of doSomething() may not have realized that
the variable was passed by reference and thus had no reason to expect that the pointer would be reas-
signed. If they did notice that the parameter is a non-const reference to a pointer, they may have sus-
pected that something strange was happening, but there is no comment around doSomething() that
explains this behavior.

Finding and Fixing Memory Leaks
Memory leaks are hard to track down because you can’t easily look at memory and see what objects are
not in use and where they were originally allocated. Luckily, there are programs that can do this for you.
Memory leak detection tools range from expensive professional software packages to free downloadable
tools. One such free tool is valgrind, an open-source tool for Linux that, amongst other things, pinpoints
the exact line in your code where a leaked object was allocated.

The following output, generated by running valgrind on the previous program, pinpoints the exact
location where memory was allocated but never released. In this case, there were two leaks — the first
Simple object that was never deleted and the heap-based integer that it created.

375

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 375

==15606== Memcheck, a.k.a. Valgrind, a memory error detector for x86-linux.
==15606== Copyright (C) 2002-2003, and GNU GPL’d, by Julian Seward.
==15606== Using valgrind-2.0.0, a program supervision framework for x86-linux.
==15606== Copyright (C) 2000-2003, and GNU GPL’d, by Julian Seward.
==15606== Estimated CPU clock rate is 1136 MHz
==15606== For more details, rerun with: -v
==15606==
==15606==
==15606== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==15606== malloc/free: in use at exit: 8 bytes in 2 blocks.
==15606== malloc/free: 4 allocs, 2 frees, 16 bytes allocated.
==15606== For counts of detected errors, rerun with: -v
==15606== searching for pointers to 2 not-freed blocks.
==15606== checked 4455600 bytes.
==15606==
==15606== 4 bytes in 1 blocks are still reachable in loss record 1 of 2
==15606== at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606== by 0x804875B: Simple::Simple() (leaky.cpp:8)
==15606== by 0x8048648: main (leaky.cpp:24)
==15606==
==15606==
==15606== 4 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15606== at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606== by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606== by 0x8048633: main (leaky.cpp:24)
==15606== by 0x4031FA46: __libc_start_main (in /lib/libc-2.3.2.so)
==15606==
==15606== LEAK SUMMARY:
==15606== definitely lost: 4 bytes in 1 blocks.
==15606== possibly lost: 0 bytes in 0 blocks.
==15606== still reachable: 4 bytes in 1 blocks.
==15606== suppressed: 0 bytes in 0 blocks.

Of course, programs like valgrind can’t actually fix the leak for you — what fun would that be? These
tools provide information that you can use to find the actual problem. Normally, that involves stepping
through the code to find out where the pointer to an object was overwritten without the original object
being released. Some debuggers provide “watch point” functionality that can stop execution of the pro-
gram when this occurs.

Smart Pointers
An increasingly popular technique for avoiding memory leaks is the use of smart pointers. Smart pointers
are a notion that arose from the fact that most memory-related issues are avoidable by putting every-
thing on the stack. The stack is much safer than the heap because stack variables are automatically
destructed and cleaned up when they go out of scope. Smart pointers combine the safety of stack vari-
ables with the flexibility of heap variables.

The theory behind a smart pointer is quite simple: it is an object with an associated pointer. When the
smart pointer goes out of scope, the associated pointer is deleted. It essentially wraps a heap object
inside of a stack-based object.

376

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 376

The C++ standard template library includes a basic implementation of a smart pointer, called auto_ptr.
Instead of storing dynamically allocated objects in pointers, you can store them in stack-based instances
of auto_ptr. You won’t need to explicitly release memory associated with an auto_ptr — it will get
cleaned up when the auto_ptr goes out of scope.

As an example, consider the following function that blatantly leaks memory by allocating a Simple
object on the heap and neglecting to release it.

void leaky()
{

Simple* mySimplePtr = new Simple(); // BUG! Memory is never released!

mySimplePtr->go();
}

Using the auto_ptr class, the object still is not explicitly deleted. However, when the auto_ptr object
goes out of scope (at the end of the method) it releases the Simple object in its destructor.

void notLeaky()
{

auto_ptr<Simple> mySimpleSmartPtr(new Simple());

mySimpleSmartPtr->go();
}

One of the greatest characteristics of smart pointers is that they provide enormous benefit without
requiring the user to learn a lot of new syntax. As you can see in the preceding code, the smart pointer
can still be dereferenced (using * or ->) just like a standard pointer.

Chapter 16 provides an actual implementation of a smart pointer template class through operator over-
loading. Chapter 25 describes an enhanced implementation of smart pointers that includes reference
counting.

Double-Deleting and Invalid Pointers
Once you release memory associated with a pointer using delete, the memory is available for use by
other parts of your program. Nothing stops you, however, from attempting to continue to use the
pointer. Double deletion is also a problem. If you use delete a second time on a pointer, the program
could be releasing memory that has since been assigned to another object.

Double deletion and use of already released memory are both hard problems to track down because the
symptoms may not show up immediately. If two deletions occur within a relatively short amount of
time, the program might work indefinitely because the associated memory is not reused that quickly.
Similarly, if a deleted object is used immediately after being deleted, most likely it will still be intact.

Of course, there is no guarantee that such behavior will work or continue to work. The memory allocator
is under no obligation to preserve any object once it has been deleted. Even if it does work, it is
extremely poor programming style to use objects that have been deleted.

Many memory leak checking programs, such as valgrind, will also detect double deletion and use of
released objects.

377

Effective Memory Management

16_574841 ch13.qxd 12/15/04 3:44 PM Page 377

Accessing Out-of-Bounds Memory
Earlier in this chapter, you read that since a pointer is just a memory address, it is possible to have a
pointer that points to a random location in memory. Such a condition is quite easy to fall into. For exam-
ple, consider a C-style string that has somehow lost its ‘\0’ termination character. The following func-
tion, which attempts to fill the string with all ‘m’ characters, would instead continue to fill the contents
of memory following the string with ‘m’s.

void fillWithM(char* inStr)
{

int i = 0;

while (inStr[i] != ‘\0’) {
inStr[i] = ‘m’;
i++;

}
}

If an improperly terminated string were handed to this function, it would only be a matter of time before
an essential part of memory was overwritten and the program crashed. Consider what might happen if
the memory associated with the objects in your program is suddenly overwritten with ‘m’s. It’s not
pretty!

Bugs that result in writing to memory past the end of an array are often called buffer overflow errors. Such
bugs have been exploited by several high-profile viruses and worms. A devious hacker can take advan-
tage of the ability to overwrite portions of memory to inject code into a running program.

Luckily, many memory checking tools detect buffer overflows as well. Also, using higher-level con-
structs like C++ strings and vectors will help prevent numerous bugs associated with writing to C-style
strings and arrays.

Summary
In this chapter, you learned the ins and outs of dynamic memory, from the basic syntax to the low-level
underpinnings. Aside from memory checking tools and careful coding, there are two keys to avoiding
dynamic memory-related problems. First, you need to understand how pointers work under the hood.
In reading about two different mental models for pointers, we hope you are confident that you know
how the compiler doles out memory. Second, you can avoid all sorts of dynamic memory issues by
obscuring pointers with stack-based objects, like the C++ string class and smart pointers.

378

Chapter 13

16_574841 ch13.qxd 12/15/04 3:44 PM Page 378

Demystifying C++ I/O

A program’s fundamental job is to accept input and produce output. A program that produces no
output of any sort would not be very useful. All languages provide some mechanism for I/O,
either as a built-in part of the language or through OS-specific hooks. A good I/O system is both
flexible and easy to use. Part of being flexible is polymorphism: flexible I/O systems support input
and output through a variety of devices, such as files and the user console. They also support the
reading and writing of different types of data. I/O is error-prone because data coming from a user
can be incorrect or the underlying file system or other data source can be inaccessible. Thus, a
good I/O system is also capable of handling error conditions.

If you are familiar with the C language, you have undoubtedly used printf() and scanf(). As
I/O mechanisms, printf() and scanf() are certainly flexible. Through escape codes and variable
placeholders, they can be customized to read in specially formatted data or output anything from an
integer to a string. printf() and scanf(), however, falter on other measures of good I/O systems.
They do not handle errors particularly well, they are not flexible enough to handle custom data
types, and, worst of all in an object-oriented language like C++, they are not at all object oriented!

C++ provides a more refined method of input and output through a mechanism known as streams.
Streams are a flexible and object-oriented approach to I/O. In this chapter, you will learn how to
use streams for data output and input. You will also learn how to use the stream mechanism to
read from various sources and write to various destinations, such as the user console, files, and
even strings. This chapter covers the most commonly used I/O features. This chapter also covers
the increasingly important topic of writing programs that can be localized to different regions
around the world.

Using Streams
The stream metaphor takes a bit of getting used to. At first, streams may seem more complex than
traditional C-style I/O, such as printf(). In reality, they seem complicated initially only because
there is a deeper metaphor behind streams than there is behind printf(). Don’t worry though;
after a few examples, you’ll never look back.

17_574841 ch14.qxd 12/15/04 3:44 PM Page 379

What Is a Stream, Anyway?
As you read in Chapter 1, the cout stream is like a laundry chute for data. You throw some variables
down the stream, and they are written to the user’s screen, or console. More generally, all streams can be
viewed as data chutes. Streams vary in their direction and their associated source or destination. For
example, the cout stream that you are already familiar with is an output stream so its direction is “out.”
It writes data to the console so its associated destination is “console.” There is another standard stream
called cin that accepts input from the user. Its direction is in, and its associated source is console. cout
and cin are predefined instances of streams that are defined within the std namespace in C++.

Stream Sources and Destinations
Streams as a concept can be applied to any object that accepts data or emits data. You could write a
stream-based network class or stream-based access to a MIDI-based instrument. In C++, there are three
common sources and destinations for streams.

You have already read many examples of user, or console, streams. Console input streams make pro-
grams interactive by allowing input from the user during run time. Console output streams provide
feedback to the user and output results.

File streams, as the name implies, read data from a file system and write data to a file system. File input
streams are useful for reading in configuration data and saved files or for batch processing file-based
data. File output streams are useful for saving state and providing output.

String streams are an application of the stream metaphor to the string type. With a string stream, you
can treat character data just as you would treat any other stream. For the most part, this is merely a
handy syntax for functionality that could be handled through methods on the string class. However,
using stream syntax provides opportunities for optimization and can be far more convenient than direct
use of the string class.

The rest of this section deals with console streams (cin and cout). Examples of file and string streams
are provided later in this chapter. Other types of streams, such as printer output or network I/O are pro-
vided by the operating system and are not built into the language.

Output with Streams
Output using streams was introduced in Chapter 1 and has been used in almost every chapter in this
book. This section will briefly revisit some of those basics then will introduce material that is more
advanced.

Output Basics
Output streams are defined in the <ostream> header file. Most programmers include <iostream> in
their programs, which in turn includes the headers for both input streams and output streams. The
<iostream> header also declares the standard console output stream, cout.

Every input stream has an associated source. Every output stream has an associated
destination.

380

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 380

The << operator is the simplest way to use output streams. C++ basic types, such as ints, pointers,
doubles, and characters, can be output using <<. In addition, the C++ string class is compatible with
<<, and C-style strings are properly output as well. Following are some examples of using << and their
corresponding output.

int i = 7;
cout << i;

7

char ch = ‘a’;
cout << ch;

a

string myString = “Marni is adorable.”;
cout << myString;

Marni is adorable.

The cout stream is the built-in stream for writing to the console, or standard output. Recall that you can
“chain” uses of << together to output multiple pieces of data. This is because the << operator returns the
stream as its result so you can immediately use << again on the same stream. For example:

int i = 11;
cout << “On a scale of 1 to cute, Marni ranks “ << i << “!”;

On a scale of 1 to cute, Marni ranks 11!

C++ streams will correctly parse C-style escape codes, such as strings that contain \n, but it is much more
hip to use the built-in endl mechanism for this purpose. The following example uses endl, which is
defined in the std namespace to represent an end-of-line character and to flush the output buffer.
Several lines of text are output using one line of code.

cout << “Line 1” << endl << “Line 2” << endl << “Line 3” << endl;

Line 1
Line 2
Line 3

Methods of Output Streams
The << operator is, without a doubt, the most useful part of output streams. However, there is additional
functionality to be explored. If you take a peek at the <ostream> header file, you’ll see many lines of
overloaded definitions of the << operator. You’ll also find some useful public methods.

put() and write()
put() and write() are raw output methods. Instead of taking an object or variable that has some defined
behavior for output, these methods accept a character or character array, respectively. The data passed to
these methods are output as is, without any special formatting or processing. Escape characters, such as
\n are still output in their correct form (i.e., a carriage return), but no polymorphic output will occur. The
following function takes a C-style string and outputs it to the console without using the << operator:

381

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 381

void rawWrite(const char* data, int dataSize)
{

cout.write(data, dataSize);
}

The next function writes the prescribed index of a C-style string to the console using the put method.

void rawPutChar(const char* data, int charIndex)
{

cout.put(data[charIndex]);
}

flush()
When you write to an output stream, the stream does not necessarily write the data to its destination
right away. Most output streams buffer, or accumulate data instead of writing it out as it comes in. The
stream will flush, or write out the accumulated data, when one of the following conditions occurs:

❑ A sentinel, such as the endl marker, is reached.

❑ The stream goes out of scope and is destructed.

❑ Input is requested from a corresponding input stream (i.e., when you make use of cin for input,
cout will flush). In the section on file streams, you will learn how to establish this type of link.

❑ The stream buffer is full.

❑ You explicitly tell the stream to flush its buffer.

One way to explicitly tell a stream to flush is to call its flush() method, as in the code that follows.

cout << “abc”;
cout.flush(); // abc is written to the console.
cout << “def”;
cout << endl; // def is written to the console.

Handling Output Errors
Output errors can arise in a variety of situations. Perhaps you are attempting to write to a file that does
not exist or has been given read-only permissions. Maybe a disk error has prevented a write operation
from succeeding or the console has somehow gotten into a locked-up state. None of the streams code
you have read up until this point has considered these possibilities, mainly for brevity. However, in pro-
fessional C++ programs, it is vital that you address any error conditions that occur.

When a stream is in its normal usable state, it is said to be “good.” The good() method can be called
directly on a stream to determine whether or not the stream is currently good.

Not all output streams are buffered. The cerr stream, for example, does not buffer
its output.

382

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 382

if (cout.good()) {
cout << “All good” << endl;

}

The good() method provides an easy way to obtain basic information about the validity of the steam,
but it does not tell you why the steam is unusable. There is a method called bad() that provides a bit
more information. If bad() returns true, it means that a fatal error has occurred (as opposed to any
nonfatal condition like end-of-file). Another method, fail(), returns true if the most recent operation
has failed, implying that the next operation will also fail. For example, after calling flush() on an out-
put stream, you could call fail() to make sure the stream is still usable.

cout.flush();
if (cout.fail()) {

cerr << “Unable to flush to standard out” << endl;
}

To reset the error state of a stream, use the clear() method:

cout.clear();

Error checking is performed less frequently for console output streams than for file output streams or
input streams. The methods discussed here apply for other types of streams as well and are revisited
below as each type is discussed.

Output Manipulators
One of the unusual features of streams is that you can throw more than just data down the chute. C++
streams also recognize manipulators, objects that make a change to the behavior of the stream instead of,
or in addition to, providing data for the stream to work with.

You have already seen one manipulator: endl. The endl manipulator encapsulates data and behavior. It
tells the stream to output a carriage return and to flush its buffer. Following are some other useful manipu-
lators, many of which are defined in the <ios> and <iomanip> standard header files.

❑ boolalpha and noboolalpha. Tells the stream to output bool values as true and false
(boolalpha) or 1 and 0 (noboolalpha). The default is noboolalpha.

❑ hex, oct, and dec. Outputs numbers in hexadecimal, octal, and base 10, respectively.

❑ setprecision. Sets the number of decimal places that are output for fractional numbers. This
is a parameterized manipulator (meaning that it takes an argument).

❑ setw. Sets the field width for outputting numerical data. This is a parameterized manipulator.

❑ setfill. Specifies the character that is used to pad numbers that are smaller than the specified
width. This is a parameterized manipulator.

❑ showpoint and noshowpoint. Forces the stream to always or never show the decimal point for
floats and doubles with no fractional part.

The following program uses several of these manipulators to customize its output.

383

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 383

#include <iostream>
#include <iomanip>

using namespace std;
int main(int argc, char** argv)
{

bool myBool = true;
cout << “This should be true: “ << boolalpha << myBool << endl;
cout << “This should be 1: “ << noboolalpha << myBool << endl;
double dbl = 1.452;
cout << “This should be @@1.452: “ << setw(7) << setfill(‘@’) << dbl << endl;

}

If you don’t care for the concept of manipulators, you can usually get by without them. Streams provide
much of the same functionality through equivalent methods like setPrecision(). See Appendix B for
details.

Input with Streams
Input streams provide a simple way to read in structured or unstructured data. In this section, the tech-
niques for input are discussed within the context of cin, the console input stream.

Input Basics
There are two easy ways to read data using an input stream. The first is an analog of the << operator that
outputs data to an output stream. The corresponding operator for reading data is >>. When you use >>
to read data from an input stream, the variable you provide is the storage for the received value. For
example, the following program reads a line of input from the user and puts it into a string. Then the
string is output back to the console.

#include <iostream>
#include <string>

using namespace std;

int main(int argc, char** argv)
{

string userInput;
cin >> userInput;
cout << “User input was “ << userInput << endl;

}

By default, the input stream will tokenize values according to white space. For example, if a user runs the
previous program and enters hello there as input, only the characters up to the first white space char-
acter (the space character in this instance) will be captured into the userInput variable. The output
would be:

User input was hello

The >> operator works with different variable types, just like the << operator. For example, to read an
integer, the code differs only in the type of the variable:

384

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 384

#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

int userInput;
cin >> userInput;
cout << “User input was “ << userInput << endl;

}

You can use input streams to read in multiple values, mixing and matching types as necessary. For
example, the following function, an excerpt from a restaurant reservation system, asks the user for a last
name and number of people in their party.

void getReservationData()
{

string guestName;
int partySize;

cout << “Name and number of guests: “;
cin >> guestName >> partySize;
cout << “Thank you, “ << guestName << “.” << endl;
if (partySize > 10) {

cout << “An extra gratuity will apply.” << endl;
}

}

Note that even though the use of cout does not explicitly flush the buffer using endl or flush(), the
text will still be written to the console because the use of cin immediately flushes the cout buffer. cin
and cout are linked together in this way.

If you get confused between << and >>, just think of the angles as pointing towards their destination.
In an input stream, << points toward the stream itself because data are being sent to the stream. In an
output stream, >> points toward the variables because data are being stored.

Input Methods
Just like output streams, input streams have several methods that allow a lower level of access than the
functionality provided by the more common >> operator.

get()
The get() method allows raw input of data from a stream. The simplest version of get() simply
returns the next character in the stream, though other versions exist that read multiple characters at
once. () is most commonly used to avoid the automatic tokenization that occurs with the >> operator.
For example, the following function reads a name, which can be made up of several words, from an
input stream until the end of the stream is reached.

string readName(istream& inStream)
{

string name;
while (inStream.good()) {

int next = inStream.get();
if (next == EOF) break;

385

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 385

name += next;// Implicitly convert to a char and append.
}

return name;
}

There are several interesting observations to make about the previous function. First, its parameter is a
reference to an istream, not a const reference. The methods that read in data from a stream will change
the actual stream (most notably, its position), so they are not const methods. Thus, you can’t call them
on a const reference. Second, the return value of get() is stored in an int, not in a char. Because get()
can return special noncharacter values such as EOF (end of file), ints are used. When next is appended
to the string, it is implicitly converted to a char.

The previous function is a bit strange because there are two ways to get out of the loop. Either the stream
can get into a “not good” state, or the end of the stream is reached. A more common pattern for reading
from a stream uses a different version of get() that takes a reference to a character and returns a refer-
ence to the stream. This pattern takes advantage of the fact that evaluating an input stream within a con-
ditional context will result in true only if the stream is available for additional reading. Encountering an
error or reaching the end-of-file both cause the stream to evaluate to false. The underlying details of the
conversion operations required to implement this feature are explained in Chapter 16. The following
version of the same function is a bit more concise.

string readName(istream& inStream)
{

string name;
char next; while (inStream.get(next)) {

name += next;
}

return name;
}

unget()
For most purposes, the correct way to think of an input stream is as a one-way chute. Data falls down
the chute and into variables. The unget() method breaks this model in a way by allowing you to push
data back up the chute.

A single call to unget() causes the stream to back up by one position, essentially putting the last charac-
ter read back on the stream.

char ch1, ch2, ch3;

in >> ch1 >> ch2 >> ch3;
in.unget();
char testChar;
in >> testChar;

// testChar == ch3 at this point

386

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 386

putback()
putback(), like unget(), lets you move backward by one character in an input stream. The difference
is that the putback() method takes the character being placed back on the stream as a parameter:

char ch1;

in >> ch1;
in.putback(ch1);

// ch1 will be the next character read off the stream.

peek ()
The peek() method allows you to preview the next value that would be returned if you were to call
get(). To take the chute metaphor perhaps a bit too far, you could think of it as looking up the chute
without a value actually falling down it.

peek() is ideal for any situation where you need to look ahead before reading a value. For example,
your program may do something different, depending on whether the next value starts with a number,
as in the following code snippet.

int next = cin.peek();
if (isdigit(next)) {

processNumber();
} else {

processText();
}

getline()
Obtaining a single line of data from an input stream is so common that a method exists to do it for you.
The getline() method fills a character buffer with a line of data up to the specified size, as in the fol-
lowing code.

char buffer[kBufferSize + 1];
cin.getline(buffer, kBufferSize);

Note that getline() removes the newline character from the stream. However, the resulting string
will not include the newline character. There is a form of get() that performs the same operation as
getline(), except that it leaves the newline character in the input stream.

There is also a function called getline() that can be used with C++ strings. It is defined in the std
namespace and takes a stream reference, a string reference, and an optional delimeter as parameters:

string myString;

std::getline(cin, myString);

Handling Input Errors
Input streams have a number of methods to detect unusual circumstances. Most of the error conditions
related to input streams occur when there is no data available to read. For example, the end of stream

387

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 387

(referred to as end of file, even for nonfile streams) may have been reached. The most common way of
querying the state of an input stream is to access it within a conditional, as above. You can also call the
good() method, just like an output stream. There is also an eof() method that returns true if the
stream has reached its end.

You should also get in the habit of checking the stream state after reading data so that you can recover
from bad input.

The following program shows the common pattern for reading data from a stream and handling errors.
The program reads numbers from standard input and displays their sum once end of file is reached.
Note that in most command-line environments, end of file is indicated on the console with control-D.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main()
{

int sum = 0;

if (!cin.good()) {
cout << “Standard input is in a bad state!” << endl;
exit(1);

}

int number;
while (true) {

cin >> number;
if (cin.good()) {

sum += number;
} else if (cin.eof()) {

break; // Reached end of file
} else {

// Error!
cin.clear(); // Clear the error state.
string badToken;
cin >> badToken; // Consume the bad input.
cerr << “WARNING: Bad input encountered: “ << badToken << endl;

}
}

cout << “The sum is “ << sum << endl;

return 0;
}

Input Manipulators
The built-in input manipulators, described in the list that follows, can be sent to an input stream to cus-
tomize the way that data is read.

388

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 388

❑ boolalpha and noboolalpha. If boolalpha is used, the string true will be interpreted as a
Boolean value true and false will be treated as the Boolean value false. If noboolalpha is set,
they will not. The default is noboolalpha.

❑ hex, oct, and dec. Reads numbers in hexadecimal, octal, and base 10, respectively.

❑ skipws and noskipws. Tells the stream to either skip white space when tokenizing or to read in
white space as its own token.

❑ ws. A handy manipulator that simply skips over the current series of white space at the present
position in the stream.

Input and Output with Objects
As you saw earlier, you can use the << operator to output a C++ string even though it is not a basic type.
In C++, objects are able to prescribe how they are output and input. This is accomplished by overloading
the << operator to understand a new type or class.

Why would you want to overload <<? If you are familiar with the printf() function in C, you know
that it is not flexible in this area. printf() knows about several types of data, but there really isn’t a
way to give it additional knowledge. For example, consider the following simple class:

class Muffin
{

public:
string getDescription() const;
void setDescription(const string& inDescription);
int getSize() const;
void setSize(int inSize);
bool getHasChocolateChips() const;
void setHasChocolateChips(bool inChips);

protected:
string mDescription;
int mSize;
bool mHasChocolateChips;

};

string Muffin::getDescription() const { return mDescription; }
void Muffin::setDescription(const string& inDescription)
{

mDescription = inDescription;
}

int Muffin::getSize() const { return mSize; }
void Muffin::setSize(int inSize) { mSize = inSize; }
bool Muffin::getHasChocolateChips() const { return mHasChocolateChips; }
void Muffin::setHasChocolateChips(bool inChips) { mHasChocolateChips = inChips; }

To output an object of class Muffin using printf(), it would be nice if you could simply specify it as an
argument, perhaps using %m as a placeholder:

printf(“Muffin output: %m\n”, myMuffin); // BUG! printf doesn’t understand Muffin.

389

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 389

Unfortunately, the printf() function knows nothing about the Muffin type and is unable to output an
object of type Muffin. Worse still, because of the way the printf() function is declared, this will result
in a run-time error, not a compile-time error (though a good compiler will give you a warning).

The best you can do with printf() is to add a new output() method to the Muffin class.

class Muffin
{

public:
string getDescription() const;
void setDescription(const string& inDescription);
int getSize() const;
void setSize(int inSize);
bool getHasChocolateChips() const;
void setHasChocolateChips(bool inChips);

void output();
protected:

string mDescription;
int mSize;
bool mHasChocolateChips;

};

string Muffin::getDescription() const { return mDescription; }
void Muffin::setDescription(const string& inDescription) { mDescription =
inDescription; }
int Muffin::getSize() const { return mSize; }
void Muffin::setSize(int inSize) { mSize = inSize; }
bool Muffin::getHasChocolateChips() const { return mHasChocolateChips; }
void Muffin::setHasChocolateChips(bool inChips) { mHasChocolateChips = inChips; }

void Muffin::output()
{

printf(“%s, Size is %d, %s\n”, getDescription().c_str(), getSize(),
(getHasChocolateChips() ? “has chips” : “no chips”));

}

Using such a mechanism is cumbersome, however. To output a Muffin in the middle of another line of text,
you’d need to split the line into two calls with a call to Muffin::output() in between, as shown here:

printf(“The muffin is “);
myMuffin.output();
printf(“ -- yummy!\n”);

Overloading the << operator lets you output a Muffin just like you output a string — simply by provid-
ing it as an argument to <<. Chapter 16 covers the details of overloading the << and >> operators.

String Streams
String streams provide a way to use stream semantics with strings. In this way, you can have an in-
memory stream that represents textual data. Such an approach can be useful in applications where multi-
ple threads are contributing data to the same string, or where you want to pass a string around to

390

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 390

different functions, while retaining the current read position. String streams are also useful for parsing
text, because streams have built-in tokenizing functionality.

The ostringstream and istringstream classes are used for writing and reading data to/from a
string, respectively. They are both defined in the <sstream> header file. Because ostringstream and
istringstream inherit the same behavior as ostream and istream, working with them is pleasantly
similar.

The following simple program requests words from the user and outputs them to a single
ostringstream, separated by the tab character. At the end of the program, the whole stream is turned
into a string object using the str() method and is written to the console.

#include <iostream>
#include <sstream>

using namespace std;
int main(int argc, char** argv)
{

ostringstream outStream;
while (cin.good()) {

string nextToken;
cout << “Next token: “;
cin >> nextToken;

if (nextToken == “done”) break;
outStream << nextToken << “\t”;

}

cout << “The end result is: “ << outStream.str() << endl;
}

Reading data from a string stream is similarly familiar. The following function creates and populates a
Muffin object (see earlier example) from a string input stream. The stream data is in a fixed format so
that the function can easily turn its values into calls to the Muffin setters.

Muffin createMuffin(istringstream& inStream)
{

Muffin muffin;
// Assume data is properly formatted:
// Description size chips

string description;
int size;
bool hasChips;
// Read all three values. Note that chips is represented
// by the strings “true” and “false”
inStream >> description >> size >> boolalpha >> hasChips;
muffin.setSize(size);
muffin.setDescription(description);
muffin.setHasChocolateChips(hasChips);

return muffin;
}

391

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 391

Turning an object into a “flattened” type, like a string, is often called marshalling. Marshalling is use-
ful for saving objects to disk or sending them across a network, and is further described in Chapter 24.

The main advantage of a string stream over a standard C++ string is that, in addition to data, the object
knows about its current position. There may also be performance benefits depending on the particular
implementation of string streams.

File Streams
Files lend themselves very well to the stream abstraction because reading and writing files always
involves a position in addition to the data. In C++, the ofstream and ifstream classes provide output
and input functionality for files. They are defined in the header file <fstream>.

When dealing with the file system, it is especially important to detect and handle error cases. The file
you are working with could be on a network file store that just went offline. You may be trying to write
to a file that the current user does not have permissions to edit. These conditions can be detected using
the standard error handling mechanisms described earlier.

The only major difference between output file streams and other output streams is that the file stream
constructor takes the name of the file and the mode in which you would like to open it. The default mode
is write, which starts writing to a file at the beginning, overwriting any existing data. You can also open
an output file stream in append mode using the constant ios_base::app.

The following simple program opens the file test and outputs the arguments to the program.

#include <iostream>
#include <fstream>

using namespace std;
int main(int argc, char** argv)
{

ofstream outFile(“test”);
if (!outFile.good()) {

cerr << “Error while opening output file!” << endl;
return -1;

}
outFile << “There were “ << argc << “ arguments to this program.” << endl;
outFile << “They are: “ << endl;
for (int i = 0; i < argc; i++) {

outFile << argv[i] << endl;
}

}

Jumping around with seek() and tell()
The seek() and tell() methods are present on all input and output streams, but they rarely make
sense outside of the context of file streams.

392

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 392

The seek() methods let you move to an arbitrary position within an input or output stream. Such
movement breaks the streams metaphor, so it is best to use these methods sparingly. There are several
forms of seek(). The methods of seek() within an input stream are actually called seekg() (the g is
for get), and the versions of seek() in an output stream are called seekp() (the p is for put). Each type
of stream has two methods of seeking. You can seek to an absolute position in the stream, such as the
beginning or the 17th position, or you can seek to an offset, such as the 3rd position from the current
marker. Positions are measured in characters.

To seek to an absolute position in an output stream, you can use the one-parameter version of seekp(),
as in the following case, which uses the constant ios_base::beg to move to the beginning of the stream.
There are also constants provided for the end of the stream (ios_base::end) and the current position of
the stream (ios_base::cur).

outStream.seekp(ios_base::beg);

Seeking within an input stream is exactly the same, except that the seekg() method is used:

inStream.seekg(ios_base::beg);

The two-argument versions of seek() move to a relative position in the stream. The first argument pre-
scribes how many positions to move and the second argument provides the starting point. To move rela-
tive to the beginning of the file, the constant ios_base::beg is used. To move relative to the end of the
file, ios_base::end is used. To move relative to the current position, ios_base::cur is used. For
example, the following line moves to the second character from the beginning of the stream:

outStream.seekp(2, ios_base::beg);

The next example moves to the third-to-last position of an input stream.

inStream.seekg(-3, ios_base::end);

You can also query a stream’s current location using the tell() method. tell() returns a
ios_base::pos_type that indicates the current position. You can use this result to remember the cur-
rent marker position before doing a seek() or to query whether you are in a particular location. As with
seek(), there are separate versions of tell() for input streams and output streams. Input streams use
tellg(), and output streams use tellp().

The following line checks the position of an input stream to determine if it is at the beginning.

ios_base::pos_type curPos = inStream.tellg();
if (curPos == ios_base::beg) {

cout << “We’re at the beginning.” << endl;
}

Below is a sample program that brings it all together. This program writes into a file called test.out
and performs the following tests:

1. Outputs the string 12345 to the file

2. Verifies that the marker is at position 5 in the stream

3. Moves to position 2 in the output stream

393

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 393

4. Outputs a 0 in position 2 and flushes the output stream

5. Opens an input stream on the test.out file

6. Reads the first token as an integer

7. Confirms that the value is 12045

#include <iostream>
#include <fstream>

using namespace std;

int main(int argc, char** argv)
{

ofstream fout(“test.out”);
if (!fout) {

cerr << “Error opening test.out for writing\n”;
exit(1);

}

// 1. Output the string “12345”.
fout << “12345”;

// 2. Verify that the marker is at the end.
ios_base::pos_type curPos = fout.tellp(); if (curPos == 5) {

cout << “Test passed: Currently at position 5” << endl;
} else {

cout << “Test failed: Not at position 5” << endl;
}

// 3. Move to position 2 in the stream.
fout.seekp(2, ios_base::beg);

// 4. Output a 0 in position 2 and flush the stream.
fout << 0;
fout.flush();

// 5. Open an input stream on test.out.
ifstream fin(“test.out”);
if (!fin) {

cerr << “Error opening test.out for reading\n”;
exit(1);

}

// 6. Read the first token as an integer.
int testVal;
fin >> testVal;

// 7. Confirm that the value is 12045.
if (testVal == 12045) {

cout << “Test passed: Value is 12045” << endl;
} else {

cout << “Test failed: Value is not 12045”;
}

}

394

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 394

Linking Streams Together
A link can be established between any input and output streams to give them flush-on-access behavior.
In other words, when data is requested from an input stream, its linked output stream will automatically
flush. This behavior is available to all streams, but is particularly useful for file streams that may be
dependent upon each other.

Stream linking is accomplished with the tie() method. To tie an output stream to an input stream, call
tie() on the input stream, and pass the address of the output stream. To break the link, pass NULL.

The following program ties the input stream of one file to the output stream of an entirely different file.
You could also tie it to an output stream on the same file, but bidirectional I/O (covered below) is per-
haps a more elegant way to read and write the same file simultaneously.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main(int argc, char** argv)
{

ifstream inFile(“input.txt”);
ofstream outFile(“output.txt”);

// Set up a link between inFile and outFile.
inFile.tie(&outFile);

// Output some text to outFile. Normally, this would
// not flush because std::endl was not sent.
outFile << “Hello there!”;

// outFile has NOT been flushed.

// Read some text from inFile. This will trigger flush()
// on outFile.
string nextToken;
inFile >> nextToken;

// outFile HAS been flushed.
}

The flush() method is defined on the ostream base class, so you can also link an output stream to
another output stream:

outFile.tie(&anotherOutputFile);

Such a relationship would mean that every time you wrote to one file, the buffered data that had
been sent to the other file would be written. You could use this mechanism to keep two related files
synchronized.

395

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 395

Bidirectional I/O
So far, this chapter has discussed input and output streams as two separate but related classes. In fact,
there is such a thing as a stream that performs both input and output. A bidirectional stream operates as
both an input stream and an output stream.

Bidirectional streams are subclasses of iostream, which in turn subclasses both istream and ostream,
thus serving as an example of useful multiple inheritance. As you would expect, bidirectional streams
support both the >> operator and the << operator, as well as the methods of both input streams and out-
put streams.

The fstream class provides a bidirectional file stream. fstream is ideal for applications that need to
replace data within a file because you can read until you find the correct position, then immediately
switch to writing. For example, imagine a program that stores a list of mappings between ID numbers
and phone numbers. It might use a data file with the following format:

123 408-555-0394
124 415-555-3422
164 585-555-3490
100 650-555-3434

A reasonable approach to such a program would be to read in the entire data file when the program
opens and rewrite the file, with any modifications, when the program closes. If the data set were very
large, however, you might not be able to keep everything in memory. With iostreams, you don’t have
to. You can easily scan through the file to find a record, and you can add new records by opening the file
for output in append mode. To modify an existing record, you could use a bidirectional stream, as in the
following function that changes the phone number for a given ID.

void changeNumberForID(const string& inFileName, int inID,
const string& inNewNumber)

{
fstream ioData(inFileName.c_str());
if (!ioData) {

cerr << “Error while opening file “ << inFileName << endl;
exit(1);

}

// Loop until the end of file
while (ioData.good()) {

int id;
string number;

// Read the next ID.
ioData >> id;

// Check to see if the current record is the one being changed.
if (id == inID) {

// Seek to the current read position
ioData.seekp(ioData.tellg());

// Output a space, then the new number.
ioData << “ “ << inNewNumber;
break;

}

396

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 396

// Read the current number to advance the stream.
ioData >> number;

}
}

Of course, an approach like this will only work properly if the data is of a fixed size. When the preceding
program switched from reading to writing, the output data overwrote other data in the file. To preserve
the format of the file, and to avoid writing over the next record, the data had to be the same size.

String streams can also be accessed in a bidirectional manner through the stringstream class.

Internationalization
When you’re learning how to program in C or C++, it’s useful to think of a character as equivalent to a
byte and to treat all characters as members of the ASCII (U.S.) character set. In reality, Professional C++
programmers recognize that successful software programs are used throughout the world. Even if you
don’t initially write your program with international audiences in mind, you shouldn’t prevent yourself
from localizing, or making the software internationally aware, at a later date.

Wide Characters
The problem with viewing a character as a byte is that not all languages, or character sets, can be fully
represented in 8 bits, or 1 byte. Luckily, C++ has a built-in type called wchar_t that holds a wide character.
Languages with non-ASCII (U.S.) characters such as Japanese and Arabic can be represented in C++
with wchar_t.

If there is any chance that your program will be used in a non-Western character set context (hint: there
is!), you should use wide characters from the beginning. Using wchar_t is simple because it works just
like a char. The only difference is that string and character literals are prefixed with the letter L to indi-
cate that a wide-character encoding should be used. For example, to initialize a wchar_t character to be
the letter m, you would write it like this:

wchar_t myWideCharacter = L’m’;

There are wide-character versions of all your favorite types and classes. The wide string class is
wstring. The “prefix the letter w” pattern applies to streams as well. Wide-character file output streams
are handled with the wofstream, and input is handled with the wifstream. The joy of pronouncing
these class names (woof-stream? whiff-stream?) is reason enough to make your programs internationally
aware!

In addition to cout, cin, and cerr, there are wide versions of the built-in console and error streams
called wcout, wcin, and wcerr. As with the other wide-stream classes and types, using them is no dif-
ferent from using the nonwide versions, as shown by the following simple program:

Bidirectional streams have separate pointers for the read position and the write posi-
tion. When switching between reading and writing, you will need to seek to the
appropriate position.

397

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 397

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

wcout << L”I am internationally aware.” << endl;
}

Non-Western Character Sets
Wide characters are a great step forward because they increase the amount of space available to define a
single character. The next step is to figure out how that space is used. In traditional (i.e., obsolete) ASCII
characters, each letter corresponded to a particular number. Each number could fit in a single byte, so a
letter was the same as a number, which was the same as a byte.

Modern character representation isn’t very different. The map of characters to numbers (now called code
points) is quite a bit larger because it handles many different character sets in addition to the characters
that English-speaking programmers are familiar with. The map of characters to code points in all the
known character sets is defined by the Unicode standard. For example, the Hebrew character ℵ (pro-
nounced aleph) maps to the Unicode code point 05D0. No other character in any other character set
maps to that code point.

To work properly with Unicode text, you also need to know its encoding. Different applications can store
Unicode characters in different ways. In C++, the standard encoding of wide characters is known as
UTF-16 because each character is held in 16 bits.

Locales and Facets
Character sets are only one of the differences in data representation between countries. Even countries
that use similar character sets, such as Great Britain and the United States, still differ in how they repre-
sent data such as dates and money.

The standard C++ library contains a built-in mechanism that groups specific data about a particular
place together into a locale. A locale is a collection of settings about a particular location. An individual
setting is called a facet. An example of a locale is U.S. English. An example of a facet is the format used to
display a date. There are several built-in facets that are common to all locales. The language also pro-
vides a way to customize or add facets.

Using Locales
From a programmer’s perspective, locales are an automatic feature of the language. When using I/O
streams, data is formatted according to a particular locale. Locales are simply objects that can be attached
to a stream. For example, the following line uses the output stream’s imbue() method to attach the U.S.
English locale (usually named “en_U”) to the wide-character console output stream:

wcout.imbue(locale(“en_US”)); // locale is defined in the std namespace

U.S. English is usually not the default locale. The default locale is generally the classic locale, which uses
ANSI C conventions. The classic C locale is similar to U.S. English settings, but there are slight differences.

398

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 398

For example, if you do not set a locale at all, or set the default locale, and you output a number, it will be
presented without any punctuation:

wcout.imbue(locale(“C”))
wcout << 32767 << endl;

The output of this code will be:

32767

If you set the U.S. English locale, however, the number will be formatted with U.S. English punctuation.
The following code to set the locale to U.S. English before outputting the number:

wcout.imbue(locale(“en_US”));
wcout << 32767 << endl;

The output of this code will be:

32,767

As you may be aware, different regions have different approaches to formatting numerical data, includ-
ing the punctuation used to separate thousands and denote a decimal place.

The names of locales can be implementation-specific, although most implementations have standardized
on the practice of separating the language and the area in two-letter sections with an optional encoding.
For example, the locale for the French language, as spoken in France is fr_FR. The locale for Japanese
spoken in Japan with Japanese Industrial Standard encoding is ja_JP.jis.

Most operating systems have a mechanism to determine the locale as defined by the user. In C++, you
can pass an empty string to the locale object constructor to create a locale from the user’s environment.
Once this object is created, you can use it to query the locale, possibly making programmatic decisions
based on it.

For example, the following program creates a default locale. The name() method is used to get a C++
string that describes the locale. One of two messages is output, depending on whether the locale appears
to be U.S. English or not.

#include <iostream>
#include <string>

using namespace std;

int main(int argc, char** argv)
{

locale loc(“”);

if (loc.name().find(“en_US”) == string::npos &&
loc.name().find(“United States”) == string::npos) {
wcout << L”Welcome non-U.S. user!” << endl;

} else {
wcout << L”Welcome U.S. user!” << endl;

}
}

399

Demystifying C++ I/O

17_574841 ch14.qxd 12/15/04 3:44 PM Page 399

Determining a location based on the name of the locale is not necessarily an accurate way to decide
where the user is physically located, but it can provide a clue.

Using Facets
You can use the std::use_facet() function to obtain a particular facet in a particular locale. For exam-
ple, the following expression retrieves the standard monetary punctuation facet of the British English facet.

use_facet<moneypunct<wchar_t> >(locale(“en_GB”));

Note that the innermost template type determines the character type to use. This is usually wchar_t or
char. The use of nested template classes is unfortunate, but once you get past the syntax, the result is an
object that contains all the information you want to know about British money punctuation. The data
available in the standard facets are defined in the <locale> header and its associated files.

The following program brings together locales and facets by printing out the currency symbol in both
U.S. English and British English. Note that, depending on your environment, the British currency sym-
bol may appear as a question mark, a box, or not at all. Also note that locale names can vary by platform.
If your environment is equipped to handle it, you may actually get the British pound symbol.

#include <iostream>
#include <locale>

using namespace std;

int main(int argc, char** argv)
{

locale locUSEng (“en_US”);
locale locBritishEng (“en_GB”);

wstring dollars = use_facet<moneypunct<wchar_t> >(locUSEng).curr_symbol();
wstring pounds = use_facet<moneypunct<wchar_t> >(locBritishEng).curr_symbol();

wcout << L”In the US, the currency symbol is “ << dollars << endl;
wcout << L”In Great Britain, the current symbol is “ << pounds << endl;

}

Summary
As we hope you have discovered, streams provide a flexible and object-oriented way to perform input
and output. The most important message in this chapter, even more important that the use of streams, is
the concept of a stream. Some operating systems may have their own file access and I/O facilities, but
knowledge of how streams and streamlike libraries work is essential to working with any type of mod-
ern I/O system.

We also hope you have gained an appreciation for coding with internationalization in mind. As anyone
who has been through a localization effort will tell you, adding support for a new language or locale is
infinitely easier if you have planned ahead by using Unicode characters and being mindful of locales.

400

Chapter 14

17_574841 ch14.qxd 12/15/04 3:44 PM Page 400

Handling Errors

Inevitably, your C++ programs will encounter errors. The program might be unable to open a file,
the network connection might go down, or the user might enter an incorrect value, to name a few
possibilities. Professional C++ programs recognize these situations as exceptional, but not unexpected,
and handle them appropriately. The C++ language provides a feature called exceptions to support
error handling in your programs.

The code examples in this book so far have virtually ignored error conditions for brevity. This
chapter rectifies that simplification by teaching you how to incorporate error handling into your
programs from their beginnings. It focuses on C++ exceptions, including the details of their syntax,
and describes how to employ them effectively to create well-designed error-handling programs.
This chapter presents:

❑ An overview of C++ error handling, including pros and cons of exceptions in C++

❑ Syntax of exceptions

❑ Throwing and catching exceptions

❑ Uncaught exceptions

❑ Throw lists

❑ Exception class hierarchies and polymorphism

❑ The C++ exception hierarchy

❑ Writing your own exception classes

❑ Stack unwinding and cleanup

❑ Common error handling issues

❑ Memory allocation errors

❑ Errors in constructors and destructors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 401

Errors and Exceptions
Even perfectly written programs encounter errors and exceptional situations. No program exists in isola-
tion; they all depend on external facilities such as networks and file systems, on external code such as
third-party libraries, and on user input. Each of these areas can introduce exceptional situations. Thus,
anyone who writes a computer program must include error-handling capabilities. Some languages, such
as C, do not include many specific language facilities for error handling. Programmers using these lan-
guages generally rely on return values from functions and other ad hoc approaches. Other languages,
such as Java, enforce the use of a language feature called exceptions as an error-handling mechanism.
C++ lies between these extremes. It provides language support for exceptions, but does not require their
use. However, you can’t ignore exceptions entirely in C++ because a few basic facilities, such as memory
allocation routines, use them.

What Are Exceptions, Anyway?
Exceptions are a mechanism for a piece of code to notify another piece of code of an “exceptional” situa-
tion or error condition without progressing through the normal code paths. The code that encounters the
error throws the exception, and the code that handles the exception catches it. Exceptions do not follow
the fundamental rule of step-by-step execution to which you are accustomed. When a piece of code throws
an exception, the program control immediately stops executing code step by step and transitions to the
exception handler, which could be anywhere from the next line in the same function to several function
calls up the stack. If you like sports analogies, you can think of the code that throws an exception as an
outfielder throwing a baseball back to the infield, where the nearest infielder (closest exception handler)
catches it. Figure 15-1 shows a hypothetical stack of three function calls. Function A() has the exception
handler. It calls function B(), which calls function C(), which throws the exception.

Figure 15-1

Figure 15-2 shows the handler catching the exception. The stack frames for C() and B() have been
removed, leaving only A().

Figure 15-2

A() stack
frame

A() stack
frame

B() stack frame

C() stack frame

402

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 402

Some people who have used C++ for years are surprised to learn that C++ supports exceptions.
Programmers tend to associate exceptions with languages like Java, in which they are much more
visible. However, C++ has full-fledged support for exceptions.

Why Exceptions in C++ Are a Good Thing
As mentioned above, run-time errors in C++ programs are inevitable. Despite that fact, error handling in
most C and C++ programs is messy and ad hoc. The de facto C error-handling standard, which was car-
ried over into many C++ programs, uses integer function return codes and the errno macro to signify
errors. errno acts as a global integer variable that functions can use to communicate errors back to call-
ing functions.

Unfortunately, the integer return codes and errno are used inconsistently. Some functions return 0 for
success and –1 for an error. If they return –1, they also set errno to an error code. Other functions return
0 for success and nonzero for an error, with the actual return value specifying the error code. These func-
tions do not use errno. Still others return 0 for failure instead of for success, presumably because 0
always evaluates to false in C and C++.

These inconsistencies can cause problems because programmers encountering a new function often
assume that its return codes are the same as other similar functions. That is not always true. On Solaris 9,
there are two different libraries of synchronization objects: the POSIX version and the Solaris version.
The function to initialize a semaphore in the POSIX version is called sem_init(), and the function to
initialize a semaphore in the Solaris version is called sema_init(). As if that weren’t confusing enough,
the two functions handle error codes differently! sem_init() returns –1 and sets errno on error, while
sema_init() returns the error code directly as a positive integer, and does not set errno.

Another problem is that functions in C++ allow only one return value, so if you need to return both an
error and a value, you must find an alternative mechanism. One choice is to return the value or error
through a reference parameter. Another choice is to make the error code one possible value of the return
type, such as a NULL pointer.

Exceptions provide an easier, more consistent, and safer mechanism for error handling. There are several
specific advantages of exceptions over the ad hoc approaches in C and C++.

❑ Return codes from functions can be ignored. Exceptions cannot be ignored: if your program fails
to catch an exception, it will terminate.

❑ Integer return codes do not contain any semantic information. Different numbers can mean dif-
ferent things to different programmers. Exceptions can contain semantic information in both
their type names and, if they are objects, in their data.

❑ Integer return codes are devoid of surrounding information. You can use exceptions to pass as
much information as you want from the code that finds the error to the code that handles it.
Exceptions can also be used to communicate information other than errors, though many pro-
grammers consider that an abuse of the exception mechanism.

❑ Exception handling can skip levels of the call stack. That is, a function can handle an error that
occurred several function calls down the stack, without error-handling code in the intermediate
functions. Return codes require each level of the call stack to clean up explicitly after the previ-
ous level.

403

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 403

Why Exceptions in C++ Are a Bad Thing
Despite the advantages of exceptions in general, their specific implementation in C++ makes them unde-
sirable to some programmers. The first problem is performance: the language features added to support
exceptions slow down all programs, even those that don’t use exceptions. However, unless you’re writ-
ing high-performance or systems-level software, you should be okay. Chapter 17 discusses this issue in
more detail.

A second problem is that exception support in C++ is not an integral part of the language the same way
it is in other languages, such as Java. For example, in Java a function that does not specify a list of possi-
ble exceptions that it can throw is not allowed to throw any exceptions. That makes sense. In C++, it is
just the opposite: a function that does not specify a list of exceptions can throw any exception it wants!
Additionally, the exception list is not enforced at compile time in C++, meaning that the exception list of
a function can be violated at run time. These, and other, inconsistencies make exceptions in C++ harder
to use correctly than they should be, intimidating some programmers.

Finally, the exception mechanism presents problems for dynamically allocated memory and resource
cleanup. When you program with exceptions, it is difficult to ensure that you perform proper cleanup.
This issue is explored below.

Our Recommendation
Despite the downsides, we recommend exceptions as a useful mechanism for error handling. We feel
that the structure and error-handling formalization that exceptions provide outweigh the less desirable
aspects. Thus, the remainder of this chapter focuses on exceptions. Even if you do not plan to use excep-
tions in your programs, you should skim this chapter to gain a familiarity with some of the common
error-handling issues in C++ programming.

Exception Mechanics
Exceptional situations arise frequently in the area of file input and output. Below is a simple function to
open a file, read a list of integers from the file, and store the integers in the supplied vector data struc-
ture. Recall from Chapter 4 that the vector is a dynamic array. You can add elements to it using the
push_back() method, and access them with array notation.

#include <fstream>
#include <iostream>
#include <vector>
#include <string>
using namespace std;

void readIntegerFile(const string& fileName, vector<int>& dest)
{

ifstream istr;
int temp;

istr.open(fileName.c_str());

// Read the integers one by one and add them to the vector.
while (istr >> temp) {

404

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 404

dest.push_back(temp);
}

}

You might use readIntegerFile() like this:

int main(int argc, char** argv)
{

vector<int> myInts;
const string fileName = “IntegerFile.txt”;

readIntegerFile(fileName, myInts);

for (size_t i = 0; i < myInts.size(); i++) {
cout << myInts[i] << “ “;

}
cout << endl;

return (0);
}

The lack of error handling in these functions should jump out at you. The rest of this section shows you
how to add error handling with exceptions.

Throwing and Catching Exceptions
The most likely problem to occur in the readIntegerFile() function is for the file open to fail. That’s a
perfect situation for throwing an exception. The syntax looks like this:

#include <fstream>
#include <iostream>
#include <vector>
#include <string>
#include <exception>
using namespace std;

void readIntegerFile(const string& fileName, vector<int>& dest)
{

ifstream istr;
int temp;

istr.open(fileName.c_str());
if (istr.fail()) {

// We failed to open the file: throw an exception.
throw exception();

}

// Read the integers one by one and add them to the vector.
while (istr >> temp) {

dest.push_back(temp);
}

}

405

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 405

throw is a keyword in C++, and is the only way to throw an exception. C++ provides a class named
exception, declared in the <exception> header file. The exception() part of the throw line means
that you are constructing a new object of type exception to throw.

If the function fails to open the file and executes the throw exception(); line, the rest of the function
is skipped, and control transitions to the nearest exception handler.

Throwing exceptions in your code is most useful when you also write code that handles them. Here is a
main() function that handles the exception thrown in readIntegerFile():

int main(int argc, char** argv)
{

vector<int> myInts;
const string fileName = “IntegerFile.txt”;

try {
readIntegerFile(fileName, myInts);

} catch (const exception& e) {
cerr << “Unable to open file “ << fileName << endl;
exit (1);

}

for (size_t i = 0; i < myInts.size(); i++) {
cout << myInts[i] << “ “;

}
cout << endl;

return (0);
}

Exception handling is a way to “try” a block of code, with another block of code designated to react to
any problems that might occur. In this particular case, the catch statement reacts to any exception of
type exception that was thrown within the try block by printing an error message and exiting. If the
try block finishes without throwing an exception, the catch block is skipped. You can think of try/
catch blocks as glorified if statements. If an exception is thrown in the try block, execute the catch
block. Otherwise, skip it.

Although by default streams do not throw exceptions, you can tell the streams to throw exceptions for
error conditions by calling their exceptions() method. However, no less a luminary than Bjarne
Stroustrup (who created C++) recommends against this approach. In The C++ Programming
Language, third edition, he says “ . . . I prefer to deal with the stream state directly. What can be han-
dled with local control structures within a function is rarely improved by the use of exceptions.” This
book follows his guidelines in that regard.

Exception Types
You can throw an exception of any type. The preceding example throws an object of type exception,
but exceptions do not need to be objects. You could throw a simple int like this:

void readIntegerFile(const string& fileName, vector<int>& dest)
{

// Code omitted
istr.open(fileName.c_str());

406

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 406

if (istr.fail()) {
// We failed to open the file: throw an exception.
throw 5;

}
// Code omitted

}

You would then need to change the catch statement as well:

int main(int argc, char** argv)
{

// code omitted
try {

readIntegerFile(fileName, myInts);
} catch (int e) {

cerr << “Unable to open file “ << fileName << endl;
exit (1);

}

// Code omitted
}

Alternatively, you could throw a char* C-style string. This technique is sometimes useful because the
string can contain information about the exception.

void readIntegerFile(const string& fileName, vector<int>& dest)
{

// Code omitted
istr.open(fileName.c_str());
if (istr.fail()) {

// We failed to open the file: throw an exception.
throw “Unable to open file”;

}
// Code omitted

}

When you catch the char* exception, you can print the result:

int main(int argc, char** argv)
{

// Code omitted
try {

readIntegerFile(fileName, myInts);
} catch (const char* e) {

cerr << e << endl;
exit (1);

}
// Code omitted

}

However, you should generally throw objects as exceptions for two reasons:

❑ Objects convey information simply by their class name.

❑ Objects can store information, such as strings, that describe the exceptions.

407

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 407

The C++ standard library defines eight exception classes, which are described in more detail below. You
can also write your own exception classes. How to do so is also detailed below.

Catching Exception Objects by Const and Reference
In the example above in which readIntegerFile() throws an object of type exception, the catch
line looks like this:

} catch (const exception& e) {

However, there is no requirement to catch objects by const reference. You could catch the object by
value like this:

} catch (exception e) {

Alternatively, you could catch the object by reference (without the const):

} catch (exception& e) {

Also, as you saw in the char* example, you can catch pointers to exceptions, as long as pointers to
exceptions are thrown.

Throwing and Catching Multiple Exceptions
Failure to open the file is not the only problem readIntegerFile() could encounter. Reading the
data from the file can cause an error if it is formatted incorrectly. Here is an implementation of
readIntegerFile() that throws an exception if it cannot either open the file or read the data correctly.

void readIntegerFile(const string& fileName, vector<int>& dest)
{

ifstream istr;
int temp;

istr.open(fileName.c_str());
if (istr.fail()) {

// We failed to open the file: throw an exception.
throw exception();

}

// Read the integers one by one and add them to the vector.
while (istr >> temp) {

dest.push_back(temp);
}

if (istr.eof()) {
// We reached the end-of-file.
istr.close();

} else {
// Some other error. Throw an exception.

Your programs can catch exceptions by value, reference, const reference, or pointer.

408

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 408

istr.close();
throw exception();

}
}

Your code in main() does not need to change because it already catches an exception of type exception.
However, that exception could now be thrown in two different situations, so you should modify the error
message accordingly:

int main(int argc, char** argv)
{

// Code omitted
try {

readIntegerFile(fileName, myInts);
} catch (const exception& e) {

cerr << “Unable either to open or to read “ << fileName << endl;
exit (1);

}
// Code omitted

}

Alternatively, you could throw two different types of exceptions from readIntegerFile(), so that the
caller can tell which error occurred. Here is an implementation of readIntegerFile() that throws
an exception object of class invalid_argument if the file cannot be opened and an object of class
runtime_exception if the integers cannot be read. Both invalid_argument and runtime_exception
are classes defined in the header file <stdexcept> as part of the C++ Standard Library.

#include <fstream>
#include <iostream>
#include <vector>
#include <string>
#include <stdexcept>

using namespace std;

void readIntegerFile(const string& fileName, vector<int>& dest)
{

ifstream istr;
int temp;

istr.open(fileName.c_str());
if (istr.fail()) {

// We failed to open the file: throw an exception.
throw invalid_argument(“”);

}

// Read the integers one by one and add them to the vector.
while (istr >> temp) {

dest.push_back(temp);
}

if (istr.eof()) {
// We reached the end-of-file.
istr.close();

} else {
// Some other error. Throw an exception.

409

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 409

istr.close();
throw runtime_error(“”);

}
}

There are no public default constructors for invalid_argument and runtime_error, only string
constructors.

Now main() can catch both invalid_argument and runtime_error with two catch statements:

int main(int argc, char** argv)
{

// Code omitted
try {

readIntegerFile(fileName, myInts);
} catch (const invalid_argument& e) {

cerr << “Unable to open file “ << fileName << endl;
exit (1);

} catch (const runtime_error& e) {
cerr << “Error reading file “ << fileName << endl;
exit (1);

}

// Code omitted
}

If an exception is thrown inside the try block, the compiler will match the type of the exception to the
proper catch handler. So, if readIntegerFile() is unable to open the file and throws in invalid_
argument object, it will be caught by the first catch statement. If readIntegerFile() is unable to read
the file properly and throws a runtime_error, then the second catch statement will catch the exception.

Matching and Const
The const-ness specified in the type of the exception you want to catch makes no difference for match-
ing purposes. That is, this line matches any exception of type runtime_error.

} catch (const runtime_error& e) {

This line also matches any exception of type runtime_error:

} catch (runtime_error& e) {

Matching Any Exception
You can write a catch line that matches any possible exception with the special syntax shown here:

int main(int argc, char** argv)
{

// Code omitted
try {

You should generally catch exceptions with const to document that you are not
modifying them.

410

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 410

readIntegerFile(fileName, myInts);
} catch (...) {

cerr << “Error reading or opening file “ << fileName << endl;
exit (1);

}
// Code omitted

}

The three dots are not a typo. They are a wildcard that match any exception type. When you are calling
poorly documented code, this technique can be useful to ensure that you catch all possible exceptions.
However, in situations where you have complete information about the set of thrown exceptions, this
technique is considered suboptimal because it handles every exception type identically. It’s better to
match exception types explicitly and take appropriate, targeted action.

Uncaught Exceptions
If your program throws an exception that is not caught anywhere, the program will terminate. This
behavior is not usually what you want. The point of exceptions is to give your program a chance to han-
dle and correct undesirable or unexpected situations. If your program didn’t catch an exception, there
was little point in throwing it to begin with.

Even if you can’t handle a particular exception, you should still write code to catch it and print an
appropriate error message before exiting.

It is also possible to change the behavior of your program if there is an uncaught exception. When the pro-
gram encounters an uncaught exception, it calls the built-in terminate() function, which simply calls
abort() from <cstdlib> to kill the program. You can set your own terminate_handler by calling
set_terminate() with a pointer to a callback function that takes no arguments and returns no value.
terminate(), set_terminate(), and terminate_handler are all declared in the <exception> header.
Before you get too excited about this feature, you should know that your callback function must still termi-
nate the program, or else abort() will be called anyway. It can’t just ignore the error. However, you can
use it to print a helpful error message before exiting. Here is an example of a main() function that doesn’t
catch the exceptions thrown by readIntegerFile(). Instead, it sets the terminate_handler to a call-
back that prints an error message before exiting:

void myTerminate()
{

cout << “Uncaught exception!\n”;
exit(1);

}

int main(int argc, char** argv)
{

vector<int> myInts;
const string fileName = “IntegerFile.txt”;

set_terminate(myTerminate);

readIntegerFile(fileName, myInts);

Catch and handle all possible exceptions thrown in your programs.

411

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 411

for (size_t i = 0; i < myInts.size(); i++) {
cerr << myInts[i] << “ “;

}
cout << endl;

return (0);
}

Although not shown in this example, set_terminate() returns the old terminate_handler when it sets
the new one. The terminate_handler applies program-wide, so it’s considered good style to reset the old
terminate_handler when you have completed the code that needed the new terminate_handler. In
this case, the entire program needs the new terminate_handler, so there’s no point in resetting it.

Although it’s important to know about set_terminate(), it’s not a very effective exception-handling
approach. We recommend trying to catch and handle each exception individually in order to provide
more precise error handling.

Throw Lists
C++ allows you to specify the exceptions a function or method intends to throw. This specification is
called the throw list or the exception specification. Here is the readIntegerFile() function from the ear-
lier example with the proper throw list:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw (invalid_argument, runtime_error)

{
// Remainder of the function is the same as before

}

The throw list simply lists the types of exceptions that can be thrown from the function. Note that the
throw list must also be provided for the function prototype:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw (invalid_argument, runtime_error);

Unlike const, the exception specification is not part of the function or method signature. You cannot
overload a function based solely on different exceptions in the throw list.

If a function or method specifies no throw list, it can throw any exception. You’ve already seen this behav-
ior in the previous implementation of the readIntegerFile() function. If you want to specify that a func-
tion or method throws no exceptions, you need to write an empty throw list explicitly like this:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw ();

If this behavior seems backward to you, you’re not alone. However, it’s best just to accept it and move on.

A function without a throw list can throw exceptions of any type. A function with an
empty throw list shouldn’t throw any exception.

412

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 412

Unexpected Exceptions
Unfortunately, the throw list is not enforced at compile time in C++. Code that calls readIntegerFile()
does not need to catch the exceptions listed in the throw list. This behavior is different from that in other
languages, such as Java, which requires a function or method to catch exceptions or declare them in their
own function or method throw lists.

Additionally, you could implement readIntegerFile() like this:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw (invalid_argument, runtime_error)

{
throw (5);

}

Even though the throw list states that readIntegerFile() doesn’t throw an int, this code, which
obviously throws an int, compiles and runs. However, it won’t do what you want. Suppose that you
write this main() function, assuming that you can catch the int:

int main(int argc, char** argv)
{

vector<int> myInts;
const string fileName = “IntegerFile.txt”;

try {
readIntegerFile(fileName, myInts);

} catch (int x) {
cerr << “Caught int\n”;

}
}

When this program runs and readIntegerFile() throws the int exception, the program terminates. It
does not allow main() to catch the int. However, you can change this behavior.

When a function throws an exception that is not listed in its throw list, C++ calls a special function
unexpected(). The built-in implementation of unexpected() simply calls terminate(). However,
just as you can set your own terminate_handler, you can set your own unexpected_handler.
Unlike in the terminate_handler, you can actually do something other than just terminate the pro-
gram in the unexpected_handler. Your version of the function must either throw a new exception or
terminate the program — it can’t just exit the function normally. If it throws a new exception, that excep-
tion will be substituted for the unexpected exception as if the new one had been throw originally. If this
substituted exception is also not listed in the throw list, the program will do one of two things. If the
throw list for the function specifies bad_exception, then bad_exception will be thrown. Otherwise,
the program will terminate. Custom implementations of unexpected() are normally used to convert
unexpected exceptions into expected exceptions. For example, you could write a version of unexpected()
like this:

Throw lists don’t prevent functions from throwing unlisted exception types, but
they prevent the exception from leaving the function.

413

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 413

void myUnexpected()
{

cout << “Unexpected exception!\n”;
throw runtime_error(“”);

}

This code converts an unexpected exception to a runtime_error exception, which the function
readIntegerFile() has in its throw list.

You could set this unexpected exception handler in main() with the set_unexpected function. Like
set_terminate(), set_unexpected() returns the current handler. The unexpected() function
applies program-wide, not just to this function, so you should reset the handler when you are done with
the code that needed your special handler:

int main(int argc, char** argv)
{

vector<int> myInts;
const string fileName = “IntegerFile.txt”;

unexpected_handler old_handler = set_unexpected(myUnexpected);
try {

readIntegerFile(fileName, myInts);
} catch (const invalid_argument& e) {

cerr << “Unable to open file “ << fileName << endl;
exit (1);

} catch (const runtime_error& e) {
cerr << “Error reading file “ << fileName << endl;
exit (1);

} catch (int x) {
cout << “Caught int\n”;

}
set_unexpected(old_handler);
// Remainder of function omitted

}

Now main() handles any exception thrown from readIntegerFile() by converting it to a runtime_
error. However, as with set_terminate(), we recommend using this capability judiciously.

unexpected(), set_unexpected(), and bad_exception are all declared in the <exception> header file.

Changing the Throw List in Overridden Methods
When you override a virtual method in a subclass, you can change the throw list as long as you make
it more restrictive than the throw list in the superclass. The following changes qualify as more restrictive:

❑ Removing exceptions from the list

❑ Adding subclasses of exceptions that appear in the superclass throw list

The following changes do not qualify as more restrictive:

❑ Adding exceptions to the list that are not subclasses of exceptions in the superclass throw list

❑ Removing the throw list entirely

414

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 414

For example, suppose that you have the following superclass:

class Base
{

public:
virtual void func() throw(exception) { cout << “Base!\n”; }

};

You could write a subclass that overrides func() and specifies that it doesn’t throw any exceptions:

class Derived : public Base
{

public:
virtual void func() throw() { cout << “Derived!\n”; }

};

You could also override func() such that it throws a runtime_error as well as an exception, because
runtime_error is a subclass of exception.

class Derived : public Base
{

public:
virtual void func() throw(exception, runtime_error)

{ cout << “Derived!\n”; }
};

However, you cannot remove the throw list entirely, because that means func() could throw any
exception.

Suppose Base looked like this:

class Base
{

public:
virtual void func() throw(runtime_error) { cout << “Base!\n”; }

};

You cannot then override func() in Derived with a throw list like this:

class Derived : public Base
{

public:
virtual void func() throw(exception) { cout << “Derived!\n”; } // ERROR!

};

exception is a superclass of runtime_error, so you cannot substitute an exception for a
runtime_error.

If you change throw lists when you override methods, remember that any code that
called the superclass version of the method must be able to call the subclass version.
Thus, you can’t add exceptions.

415

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 415

Are Throw Lists Useful?
Given the opportunity to specify the behavior of a function in its signature, it seems wasteful not to take
advantage of it. The exceptions thrown from a particular function are an important part of its interface,
and should be documented as well as possible.

Unfortunately, most of the C++ code in use today, including the Standard Library, does not follow this
advice. That makes it difficult for you to determine which exceptions can be thrown when you use this
code. Additionally, it is impossible to specify the exception characteristics of templatized functions and
methods. When you don’t even know what types will be used to instantiate the template, you have no
way to determine the exceptions that methods of those types can throw. As a final problem, the throw
list syntax and enforcement is somewhat obscure.

Thus, we leave the decision up to you.

Exceptions and Polymorphism
As described above, you can actually throw any type of exception. However, classes are the most useful
types of exceptions. In fact, exception classes are usually written in a hierarchy, so that you can employ
polymorphism when you catch the exceptions.

The Standard Exception Hierarchy
You’ve already seen several exceptions from the C++ standard exception hierarchy: exception,
runtime_error, and invalid_argument. Figure 15-3 shows the complete hierarchy:

Figure 15-3

All of the exceptions thrown by the C++ Standard Library are objects of classes in this hierarchy. Each
class in the hierarchy supports a what() method that returns a char* string describing the exception.
You can use this string in an error message.

exception

bad_alloc bad_cast bad_exception

logic_error ios_base::failure runtime_error bad_typeid

domain_error invalid_argument length_error range_error overflow_error

out_of_range underflow_error

416

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 416

All the exception classes except for the base exception require you to set in the constructor the string that
will be returned by what(). That’s why you have to specify a string in the constructors for runtime_
error and invalid_argument. Now that you know what the strings are used for, you can make them
more useful. Here is an example where the string is used to pass the full error message back to the caller:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw (invalid_argument, runtime_error)

{
ifstream istr;
int temp;

istr.open(fileName.c_str());
if (istr.fail()) {

// We failed to open the file: throw an exception.
string error = “Unable to open file “ + fileName;
throw invalid_argument(error);

}

// Read the integers one by one and add them to the vector.
while (istr >> temp) {

dest.push_back(temp);
}

if (istr.eof()) {
// We reached the end-of-file.
istr.close();

} else {
// Some other error. Throw an exception.
istr.close();
string error = “Unable to read file “ + fileName;
throw runtime_error(error);

}
}

int main(int argc, char** argv)
{

// Code omitted
try {

readIntegerFile(fileName, myInts);
} catch (const invalid_argument& e) {

cerr << e.what() << endl;
exit (1);

} catch (const runtime_error& e) {
cerr << e.what() << endl;
exit (1);

}
// Code omitted

}

Catching Exceptions in a Class Hierarchy
The most exciting feature of exception hierarchies is that you can catch exceptions polymorphically. For
example, if you look at the two catch statements in main() following the call to readIntegerFile(),
you can see that they are identical except for the exception class that they handle. Conveniently,

417

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 417

invalid_argument and runtime_error are both subclasses of exception, so you can replace the two
catch statements with a single catch statement for class exception:

int main(int argc, char** argv)
{

// Code omitted
try {

readIntegerFile(fileName, myInts);
} catch (const exception& e) {

cerr << e.what() << endl;
exit (1);

}
// Code omitted

}

The catch statement for an exception reference matches any subclasses of exception, including both
invalid_argument and runtime_error. Note that the higher in the exception hierarchy that you catch
exceptions, the less specific is your error handling. You should generally catch exceptions at as specific a
level as possible.

The polymorphic matching rules work on a “first come, first served” basic. C++ attempts to match the
exception against each catch statement in order. The exception matches a catch statement if it is an object
of that class or an object of a subclass of the class, even if a more exact match comes in a later catch state-
ment. For example, suppose that you want to catch invalid_argument from readIntegerFile() explic-
itly, but leave the generic exception match for any other exceptions. The correct way to do so is like this:

try {
readIntegerFile(fileName, myInts);

} catch (const invalid_argument& e) { // List the exception subclass first.
// Take some special action for invalid filenames.

} catch (const exception& e) { // Now list exception
cerr << e.what() << endl;
exit (1);

}

The first catch statement catches invalid_argument exceptions, and the second catches any other
exceptions. However, if you reverse the order of the catch statements, you don’t get the same result:

try {
readIntegerFile(fileName, myInts);

} catch (const exception& e) { // BUG: catching superclass first!
cerr << e.what() << endl;
exit (1);

} catch (const invalid_argument& e) {
// Take some special action for invalid filenames.

}

When you catch exceptions polymorphically, make sure to catch them by reference.
If you catch exceptions by value, you can encounter slicing, in which case you lose
information from the object. See Chapter 10 for details on slicing.

418

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 418

With this order, any exception of a class that subclasses exception is caught by the first catch state-
ment; the second will never be reached. Some compilers issue a warning in this case, but you shouldn’t
count on it.

Writing Your Own Exception Classes
There are two advantages to writing your own exception classes.

1. The number of exceptions in the C++ Standard Library is limited. Instead of using an exception
class with a generic name, such as runtime_exception, you can create classes with names that
are more meaningful for the particular errors in your program.

2. You can add your own information to these exceptions. The exceptions in the standard hierar-
chy allow you to set only an error string. You might want to pass different information in the
exception.

We recommend that all the exception classes that you write inherit directly or indirectly from the stan-
dard exception class. If everyone on your project follows that rule, you know that every exception in
the program will be a subclass of exception (assuming that you aren’t using third-party libraries that
break this rule). This guideline makes exception handling via polymorphism significantly easier.

For example, invalid_argument and runtime_error don’t capture very well the file opening and
reading errors in readIntegerFile(). You can define your own error hierarchy for file errors, starting
with a generic FileError class:

class FileError : public runtime_error
{

public:
FileError(const string& fileIn) : runtime_error(“”), mFile(fileIn) {}
virtual ~FileError() throw() {}

virtual const char* what() const throw() { return mMsg.c_str(); }
string getFileName() { return mFile; }

protected:
string mFile, mMsg;

};

As a good programming citizen, you should make FileError a part of the standard exception hierar-
chy. It seems appropriate to integrate it as a child of runtime_error. When you write a subclass of
runtime_error (or any other exception in the standard hierarchy), you need to override two methods:
what() and the destructor.

what() has the signature shown and is supposed to return a char* string that is valid until the object is
destroyed. In the case of FileError, this string comes from the mMsg data member, which is set to “” in
the constructor. Subclasses of FileError must set this mMsg string to something different if they want a
different message.

You must override the destructor in order to specify the empty throw list. The compiler-generated destruc-
tor has no throw list, which won’t compile, because runtime_error specifies an empty throw list.

The generic FileError class also contains a filename and an accessor for that filename.

419

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 419

The first exceptional situation in readIntegerFile() occurs if the file cannot be opened. Thus, you
might want to write a FileOpenError subclass of FileError:

class FileOpenError : public FileError
{

public:
FileOpenError(const string& fileNameIn);
virtual ~FileOpenError() throw() {}

};

FileOpenError::FileOpenError(const string& fileNameIn) : FileError(fileNameIn)
{

mMsg = “Unable to open “ + fileNameIn;
}

The FileOpenError changes the mMsg string to represent the file-opening error.

The second exceptional situation in readIntegerFile() occurs if the file cannot be read properly. It
might be useful for this exception to contain the line number of the error in the file, as well as the filename
and the error message string returned from what(). Here is a FileReadError subclass of FileError:

class FileReadError : public FileError
{

public:
FileReadError(const string& fileNameIn, int lineNumIn);
virtual ~FileReadError() throw() {}
int getLineNum() { return mLineNum; }

protected:
int mLineNum;

};

FileReadError::FileReadError(const string& fileNameIn, int lineNumIn) :
FileError(fileNameIn), mLineNum(lineNumIn)

{
ostringstream ostr;

ostr << “Error reading “ << fileNameIn << “ at line “ << lineNumIn;
mMsg = ostr.str();

}

Of course, in order to set the line number properly, you need to modify your readIntegerFile() func-
tion to track the number of lines read instead of just reading integers directly. Here is a new
readIntegerFile() function that uses the new exceptions:

void readIntegerFile(const string& fileName, vector<int>& dest)
throw (FileOpenError, FileReadError)

{
ifstream istr;
int temp;
char line[1024]; // Assume that no line is longer than 1024 characters.
int lineNumber = 0;

istr.open(fileName.c_str());
if (istr.fail()) {

420

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 420

// We failed to open the file: throw an exception.
throw FileOpenError(fileName);

}

while (!istr.eof()) {
// Read one line from the file.
istr.getline(line, 1024);
lineNumber++;

// Create a string stream out of the line.
istringstream lineStream(line);

// Read the integers one by one and add them to the vector.
while (lineStream >> temp) {

dest.push_back(temp);
}

if (!lineStream.eof()) {
// Some other error. Close the file and throw an exception.
istr.close();
throw FileReadError(fileName, lineNumber);

}
}
istr.close();

}

Now code that calls readIntegerFile() can use polymorphism to catch exceptions of type FileError
like this:

try {
readIntegerFile(fileName, myInts);

} catch (const FileError& e) {
cerr << e.what() << endl;
exit (1);

}

There is one trick to writing classes whose objects will be used as exceptions. When a piece of code
throws an exception, the object or value thrown is copied. That is, a new object is constructed from the
old object using the copy constructor. It must be copied because the original could go out of scope (and
be destroyed and have its memory reclaimed) before the exception is caught, higher up in the stack. Thus,
if you write a class whose objects will be thrown as exceptions, you must make those objects copyable.
This means that if you have dynamically allocated memory, you must write a destructor, copy construc-
tor, and assignment operator, as described in Chapter 9.

It is possible for exceptions to be copied more than once, but only if you catch the exception by value
instead of by reference.

Catch exception objects by reference to avoid unnecessary copying.

Objects thrown as exceptions are always copied by value at least once.

421

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 421

Stack Unwinding and Cleanup
When a piece of code throws an exception, control jumps immediately to the exception handler that
catches the exception. This exception handler could lie one or more function calls up the stack of execu-
tion. As the control jumps up in the stack in a process called stack unwinding, all code remaining in each
function past the current point of execution is skipped. However, local objects and variables in each
function that is unwound are destroyed as if the code finished the function normally.

However, in stack unwinding, pointer variables are not freed, and other cleanup is not performed. This
behavior can present problems, as the following code demonstrates:

#include <fstream>
#include <iostream>
#include <stdexcept>
using namespace std;

void funcOne() throw(exception);
void funcTwo() throw(exception);

int main(int argc, char** argv)
{

try {
funcOne();

} catch (exception& e) {
cerr << “Exception caught!\n”;
exit(1);

}

return (0);
}

void funcOne() throw(exception)
{

string str1;
string* str2 = new string();
funcTwo();
delete str2;

}

void funcTwo() throw(exception)
{

ifstream istr;
istr.open(“filename”);
throw exception();
istr.close();

}

When funcTwo() throws an exception, the closest exception handler is in main(). Control then jumps
immediately from this line in funcTwo()

throw exception();

to this line in main():

422

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 422

cerr << “Exception caught!\n”;

In funcTwo(), control remains at the line that threw the exception, so this subsequent line never gets a
chance to run:

istr.close();

However, luckily for you, the ifstream destructor is called because istr is a local variable on the stack.
The ifstream destructor closes the file for you, so there is no resource leak here. If you had dynamically
allocated istr, it would not be destroyed, and the file would not be closed.

In funcOne(), control is at the call to funcTwo(), so this subsequent line never gets a chance to run:

delete str2;

In this case, there really is a memory leak. Stack unwinding does not automatically call delete on str2
for you. However, str1 is destroyed properly because it is a local variable on the stack. Stack unwinding
destroys all local variables correctly.

Two techniques for handling this problem follow.

Catch, Cleanup, and Rethrow
The first, and most common, technique for avoiding memory and resource leaks is for each function to
catch any possible exceptions, perform necessary cleanup work, and rethrow the exception for the func-
tion higher up the stack to handle. Here is a revised funcOne() with this technique:

void funcOne() throw(exception)
{

string str1;
string* str2 = new string();
try {

funcTwo();
} catch (...) {

delete str2;
throw; // Rethrow the exception.

}
delete str2;

}

This function wraps the call to funcTwo() with an exception handler that performs the cleanup (calls
delete on str2) and then rethrows the exception. The keyword throw by itself simply rethrows what-
ever exception was caught most recently. Note that the catch statement uses the ... syntax to catch any
exception.

This method works fine, but can be messy. In particular, note that there are now two identical lines that
call delete on str2: one to handle the exception and one if the function exits normally.

Careless exception handling can lead to memory and resource leaks.

423

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 423

Use Smart Pointers
Smart pointers allow you to write code that automatically prevents memory leaks with exception handling.
As you read in Chapter 13, smart pointer objects are allocated on the stack, so whenever the smart pointer
object is destroyed, it calls delete on the underlying dumb pointer. Here is an example of funcTwo()
using the auto_ptr smart pointer template class in the Standard Library:

#include <memory>
using namespace std;

void funcOne() throw(exception)
{

string str1;
auto_ptr<string> str2(new string(“hello”));
funcTwo();

}

With smart pointers, you never have to remember to delete the underlying dumb pointer: the smart
pointer destructor does it for you, whether you leave the function via an exception or leave the function
normally.

Common Error-Handling Issues
Whether or not you use exceptions in your programs is up to you and your colleagues. However, we
strongly encourage you to formalize an error-handling plan for your programs, regardless of your use of
exceptions. If you use exceptions, it is generally easier to come up with a unified error-handling scheme,
but it is not impossible without exceptions. The most important aspect of a good plan is uniformity of
error handling throughout all the modules of the program. Make sure that every programmer on the
project understands and follows the error-handling rules.

This section discusses the most common error-handling issues in the context of exceptions, but the issues
are also relevant to programs that do not use exceptions.

Memory Allocation Errors
Despite the fact that all of our examples so far in this book have ignored the possibility, memory alloca-
tion can, and will, fail. However, production code must account for memory allocation failures. C++ pro-
vides several different ways to handle memory errors.

The default behaviors of new and new[] are to throw an exception of type bad_alloc, defined in the
<new> header file, if they cannot allocate memory. Your code should catch these exceptions and handle
them appropriately. The definition of “appropriate” depends on your particular application. In some
cases, the memory might be crucial for your program to run correctly, in which case printing an error
message and exiting is the best course of action. Other times, the memory might be necessary only for a
particular operation or task, in which case you can print an error message and fail the particular opera-
tion, but keep the program running.

Thus, all your new statements should look something like this:

424

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 424

try {
ptr = new int[numInts];

} catch (bad_alloc& e) {
cerr << “Unable to allocate memory!\n”;
// Handle memory allocation failure.
return;

}
// Proceed with function that assumes memory has been allocated.

You could, of course, bulk handle many possible new failures with a single try/catch block at a higher
point on the program, if it will work for your program.

Another consideration is that logging an error might try to allocate memory. If new fails, there might not
be enough memory left even to log the error message.

Nothrow new
As mentioned in Chapter 13, if you don’t like exceptions, you can revert to the old C model in which mem-
ory allocation routines return the NULL pointer if they cannot allocate memory. C++ provides nothrow ver-
sions of new and new[], which return NULL instead of throwing an exception if they fail to allocate memory.

ptr = new(nothrow) int[numInts];
if (ptr == NULL) {

cerr << “Unable to allocate memory!\n”;
// Handle memory allocation failure.
return;

}
// Proceed with function that assumes memory has been allocated.

The syntax is a little strange: you really do write “nothrow” as if it’s an argument to new (which it is).

Customizing Memory Allocation Failure Behavior
C++ allows you to specify a new handler callback function. By default, there is no new handler, so new
and new[] just throw bad_alloc exceptions. However, if there is a new handler, the memory allocation
routine calls the new handler upon memory allocation failure instead of throwing an exception. If the
new handler returns, the memory allocation routines attempt to allocate memory again, calling the new
handler again if they fail. This cycle could become an infinite loop unless your new handler changes the
situation with one of four alternatives. Practically speaking, some of the four options are better than oth-
ers. Here is the list with commentary:

❑ Make more memory available. One trick to expose space is to allocate a large chunk of memory
at program start-up, and then to free it with delete in the new handler. If the current request for
memory is for a size smaller than the one you free in the new handler, the memory allocation
routine will now be able to allocate it. However, this technique doesn’t buy you much. If you
hadn’t preallocated that chunk of memory, the request for memory would have succeeded in
the first place and wouldn’t have needed to call the new handler. One of the only benefits is that
you can log a warning message about low memory in the new handler.

❑ Throw an exception. new and new[] have throw lists that say they will throw exceptions only of
type bad_alloc. So, unless you want to create a call to unexpected(), if you throw an exception
from the new handler, throw bad_alloc or a subclass. However, you don’t need a new handler
to throw an exception: the default behavior does so for you. Thus, if that’s all your new handler
does, there’s no reason to write a new handler in the first place.

425

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 425

❑ Set a different new handler. Theoretically, you could have a series of new handlers, each of
which tries to create memory and sets a different new handler if it fails. However, such a sce-
nario is usually more complicated than useful.

❑ Terminate the program. This option is the most practical and useful of the four. Your new han-
dler can simply log an error message and terminate the program. The advantage of using a new
handler over catching the bad_alloc exception and terminating in the exception handler is that
you centralize the failure handling to one function, and you don’t need to litter your code with
try/catch blocks. If there are some memory allocations that can fail but still allow your pro-
gram to succeed, you can simply set the new handler back to its default of NULL temporarily
before calling new in those cases.

If you don’t do one of these four things in your new handler, any memory allocation failure will cause
an infinite loop.

You set the new handler with a call to set_new_handler(), declared in the <new> header file.
set_new_handler() completes the trio of C++ functions to set callback functions. The other two are
setterminate() and set_unexpected(), which are discussed earlier in the chapter. Here is an exam-
ple of a new handler that logs an error message and aborts the program:

void myNewHandler()
{

cerr << “Unable to allocate memory. Terminating program!\n”;
abort();

}

The new handler must take no arguments and return no value. This new handler calls the abort()
function declared in <cstdlib> to terminate the program.

You can set the new handler like this:

#include <new>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

// Code omitted

// Set the new new_handler and save the old.
new_handler oldHandler = set_new_handler(myNewHandler);
// Code that calls new

// Reset the old new_handler.
set_new_handler(oldHandler);
// Code omitted
return (0);

}

Note that new_handler is a typedef for the type of function pointer that set_new_handler() takes.

426

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 426

Errors in Constructors
Before C++ programmers discover exceptions, they are often stymied by error handling and construc-
tors. What if a constructor fails to construct the object properly? Constructors don’t have a return value,
so the standard preexception error-handling mechanism doesn’t work. Without exceptions, the best you
can do is to set a flag in the object specifying that it is not constructed properly. You can provide a method,
with a name like checkConstructionStatus(), which returns the value of that flag, and hope that
clients remember to call the function on the object after constructing it.

Exceptions provide a much better solution. You can throw an exception from a constructor, even though
you can’t return a value. With exceptions you can easily tell clients whether or not construction of the
object succeeded. However, there is one major problem: if an exception leaves a constructor, the destruc-
tor for that object will never be called. Thus, you must be careful to clean up any resources and free any
allocated memory in constructors before allowing exceptions to leave the constructor. This problem is
the same as in any other function, but it is subtler in constructors because you’re accustomed to letting
the destructors take care of the memory deallocation and resource freeing.

Here is an example of the constructor from the GameBoard class from Chapter 11 retrofitted with excep-
tion handling:

GameBoard::GameBoard(int inWidth, int inHeight) throw(bad_alloc) :
mWidth(inWidth), mHeight(inHeight)

{
int i, j;
mCells = new GamePiece* [mWidth];

try {
for (i = 0; i < mWidth; i++) {

mCells[i] = new GamePiece[mHeight];
}

} catch (...) {
//
// Clean up any memory we already allocated, because the destructor
// will never be called. The upper bound of the for loop is the index
// of the last element in the mCells array that we tried to allocate
// (the one that failed). All indices before that one store pointers to
// allocated memory that must be freed.
//
for (j = 0; j < i; j++) {

delete [] mCells[j];
}
delete [] mCells;

// Translate any exception to bad_alloc.
throw bad_alloc();

}
}

It doesn’t matter if the first new throws an exception because the constructor hasn’t allocated anything
else yet that needs freeing. If any of the subsequent new calls throw exceptions, though, the constructor
must clean up all of the memory already allocated. It catches any exception via ... because it doesn’t
know what exceptions the GamePiece constructors themselves might throw.

427

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 427

You might be wondering what happens when you add inheritance into the mix. Superclass constructors
run before subclass constructors. If a subclass constructor throws an exception, how are the resources
that the superclass constructor allocated freed? The answer is that C++ guarantees that it will run the
destructor for any fully constructed “subobjects.” Therefore, any constructor that completes without an
exception will cause the corresponding destructor to be run.

Errors in Destructors
You should handle all error conditions that arise in destructors in the destructors themselves. You
should not let any exceptions be thrown from destructors, for three reasons:

1. Destructors can run while there is another pending exception, in the process of stack unwinding.
If you throw an exception from the destructor while another exception is active, the program will
terminate. For the brave and curious, C++ does provide the ability to determine, in a destructor,
whether you are executing as a result of a normal function exit or delete call, or because of stack
unwinding. The function uncaught_exception(), declared in the <exception> header file,
returns true if there is an uncaught exception and you are in the middle of stack unwinding.
Otherwise, it returns false. However, this approach is messy and should be avoided.

2. What action would clients take? Clients don’t call destructors explicitly: they call delete, which
calls the destructor. If you throw an exception from the destructor, what is a client supposed to
do? It can’t call delete on the object again, and it shouldn’t call the destructor explicitly. There
is no reasonable action the client can take, so there is no reason to burden that code with excep-
tion handling.

3. The destructor is your one chance to free memory and resources used in the object. If you waste
your chance by exiting the function early due to an exception, you will never be able to go back
and free the memory or resources.

Therefore, be careful to catch in a destructor any exceptions that can be thrown by calls you make from
the destructor. Normally, destructors call only delete and delete[], which cannot throw exceptions,
so there should be no problem.

Putting It All Together
Now that you’ve learned about error handling and exceptions, here is the entire GameBoard class from
Chapter 11 retrofitted with exceptions.

First, here is the class definition:

#include <stdexcept>
#include <new>
using std::bad_alloc;
using std::out_of_range;

class GameBoard
{

public:
GameBoard(int inWidth = kDefaultWidth, int inHeight = kDefaultHeight)

throw(bad_alloc);
GameBoard(const GameBoard& src) throw(bad_alloc);
~GameBoard() throw();

428

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 428

GameBoard& operator=(const GameBoard& rhs) throw(bad_alloc);

void setPieceAt(int x, int y, const GamePiece& inPiece)
throw(out_of_range);

GamePiece& getPieceAt(int x, int y) throw(out_of_range);
const GamePiece& getPieceAt(int x, int y) const throw(out_of_range);

int getHeight() const throw() { return mHeight; }
int getWidth() const throw() { return mWidth; }

static const int kDefaultWidth = 100;
static const int kDefaultHeight = 100;

protected:
void copyFrom(const GameBoard& src) throw(bad_alloc);

GamePiece** mCells;
int mWidth, mHeight;

};

The constructors and operator= all throw bad_alloc because they perform memory allocation. The
destructor, getHeight(), and getWidth() throw no exceptions. setPeiceAt() and getPieceAt()
throw out_of_range if the caller supplies an invalid width or height.

You’ve already seen the implementation of the constructor in the previous section. Here are the imple-
mentations of the copyFrom(), setPieceAt(), and getPieceAt() methods with exception handling.
The implementations of the copy constructor and operator= did not change except for their throw lists
because all the work is in copyFrom(), so their implementations are not shown. The destructor also did
not change, so its implementation is not shown. Refer to Chapter 11 for details.

void GameBoard::copyFrom(const GameBoard& src) throw(bad_alloc)
{

int i, j;
mWidth = src.mWidth;
mHeight = src.mHeight;

mCells = new GamePiece *[mWidth];

try {
for (i = 0; i < mWidth; i++) {

mCells[i] = new GamePiece[mHeight];
}

} catch (...) {
// Clean up any memory we already allocated.
// If this function is called from the copy constructor,
// the destructor will never be called.
// Use the same upper bound on the loop as described in the constructor.
for (j = 0; j < i; j++) {

delete [] mCells[j];
}
delete [] mCells;

// Set mCells and mWidth to values that will allow the
// destructor to run without harming anything.
// This function is called from operator=, in which case the

429

Handling Errors

18_574841 ch15.qxd 12/15/04 3:44 PM Page 429

// object was already constructed, so the destructor will be
// called.
mCells = NULL;
mWidth = 0;
throw bad_alloc();

}

for (i = 0; i < mWidth; i++) {
for (j = 0; j < mHeight; j++) {

mCells[i][j] = src.mCells[i][j];
}

}
}

void GameBoard::setPieceAt(int x, int y, const GamePiece& inElem)
throw(out_of_range)

{
// Check for out of range arguments.
if (x < 0 || x >= mWidth || y < 0 || y >= mHeight) {

throw out_of_range(“Invalid width or height”);
}
mCells[x][y] = inElem;

}

GamePiece& GameBoard::getPieceAt(int x, int y) throw(out_of_range)
{

// Check for out of range arguments.
if (x < 0 || x >= mWidth || y < 0 || y >= mHeight) {

throw out_of_range(“Invlalid width or height”);
}
return (mCells[x][y]);

}

const GamePiece& GameBoard::getPieceAt(int x, int y) const throw(out_of_range)
{

// Check for out of range arguments.
if (x < 0 || x >= mWidth || y < 0 || y >= mHeight) {

throw out_of_range(“Invlalid width or height”);
}
return (mCells[x][y]);

}

Summary
This chapter described the issues related to error handling in C++ programs, and emphasized that you
must design and code your programs with an error-handling plan. By reading this chapter, you learned
the details of C++ exceptions syntax and behavior. The chapter also covered some of the areas in which
error handling plays a large role, including I/O streams, memory allocation, constructors, and destruc-
tors. Finally, you saw an example of error handling in the GameBoard class.

The next few chapters continue to cover advanced C++ language topics. Chapter 16 describes operator
overloading, Chapter 17 covers performance issues in C++, and Chapter 18 teaches you how to combine
C++ with other languages and run your programs on multiple platforms.

430

Chapter 15

18_574841 ch15.qxd 12/15/04 3:44 PM Page 430

Overloading C++ Operators

C++ allows you to redefine the meanings of operators, such as +, -, and =, for your classes. Many
object-oriented languages do not provide this capability, so you might be tempted to disregard its
usefulness in C++. However, it can be beneficial for making your classes behave similarly to built-
in types such as ints and doubles. It is even possible to write classes that look like arrays, func-
tions, or pointers!

Chapters 3 and 5 introduced object-oriented design and operator overloading, respectively.
Chapters 8 and 9 presented the syntax details for objects and for basic operator overloading. This
chapter picks up operator overloading where Chapter 9 left off. The STL, introduced in Chapter 4,
and described in detail in Chapters 21 to 23, uses operator overloading extensively. You should
read and understand this chapter before tackling Chapters 21 to 23.

This chapter focuses on the syntax and basic semantics of operator overloading. Practical exam-
ples are provided for most of the operators, but for a few of them, practical examples are post-
poned until later chapters.

This chapter does not repeat information contained in Chapter 9.

The contents of this chapter include:

❑ An overview of operator overloading

❑ Rationale for overloading operators

❑ Limitations, caveats, and choices in operator overloading

❑ Summary of operators you can, cannot, and should not overload

❑ How to overload unary plus, unary minus, increment, and decrement

❑ How to overload the I/O streams operators (operator<< and operator>>)

❑ How to overloading the subscripting (array index) operator

19_574841 ch16.qxd 12/15/04 3:45 PM Page 431

❑ How to overload the function call operator

❑ How to overload the dereferencing operators (* and ->)

❑ How to write conversion operators

❑ How to overload the memory allocation and deallocation operators

Overview of Operator Overloading
As Chapter 1 reviewed, operators in C++ are symbols such as +, <, *, and <<. They work on built-in
types such as int and double to allow you to perform arithmetic, logical, and other operations. There
are also operators such as -> and & that allow you to dereference pointers. The concept of operators in
C++ is broad, and even includes [] (array index), () (function call), and the memory allocation and
deallocation routines.

Operator overloading allows you to change the behavior of language operators for your classes. However,
this capability comes with rules, limitations, and choices.

Why Overload Operators?
Before learning how to overload operators, you probably want to know why you would ever want to do
so. The reasons vary for the different operators, but the general guiding principle is to make your classes
behave like built-in types. The closer your classes are to built-in types, the easier they will be for clients
to use. For example, if you want to write a class to represent fractions, it’s quite helpful to have the abil-
ity to define what +, -, *, and / mean when applied to objects of that class.

The second reason to overload operators is to gain greater control over behavior in your program. For
example, you can overload memory allocation and deallocation routines for your classes to specify
exactly how memory should be distributed and reclaimed for each new object.

It’s important to emphasize that operator overloading doesn’t necessarily make things easier for you as
the class developer; its main purpose is to make things easier for clients of the class.

Limitations to Operator Overloading
Here is a list of things you cannot do when you overload operators:

❑ You cannot add new operator symbols. You can only redefine the meanings of operators already
in the language. The table in the “Summary of Overloadable Operators” section lists all of the
operators that you can overload.

❑ There are a few operators that you cannot overload, such as . (member access in an object), ::
(scope resolution operator), sizeof, ?: (the ternary operator), and a few others. The table lists
all the operators that you can overload. The operators that you can’t overload are usually not
those you would care to overload anyway, so we don’t think you’ll find this restriction limiting.

❑ You cannot change the arity of the operator. The arity describes the number of arguments, or
operands, associated with the operator. Unary operators, such as ++, work on only one operand.
Binary operators, such as +, work on two operands. There is only one ternary operator: ?:. The

432

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 432

main place where this limitation might bother you is when overloading [] (array brackets), as
discussed below.

❑ You cannot change the precedence or associativity of the operator. These rules determine in which
order operators are evaluated in a statement. Again, this constraint shouldn’t be cause for con-
cern in most programs because there are rarely benefits to changing the order of evaluation.

❑ You cannot redefine operators for built-in types. The operator must be a method in a class, or at
least one of the arguments to a global overloaded operator function must be a user-defined type
(e.g., a class). This means that you can’t do something ridiculous such as redefine + for ints to
mean subtraction (though you could do so for your classes). The one exception to this rule is the
memory allocation and deallocation routines; you can replace the global routines for all memory
allocation in your program.

Some of the operators already mean two different things. For example, the – operator can be used as a
binary operator, as in x = y - z or as a unary operator, as in x = -y;. The * operator can be used for
multiplication or for dereferencing a pointer. The << operator is the insertion operator or the left-shift
operator, depending on context. You can overload both meanings of operators with dual meanings.

Choices in Operator Overloading
When you overload an operator, you write a function or method with the name operatorX, where X is the
symbol for some operator. For example, in Chapter 9, you saw operator+ declared for SpreadsheetCell
objects like this:

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

There are several choices involved in each overloaded operator function or method you write.

Method or Global Function
First, you must decide whether your operator should be a method of your class or a global function (usu-
ally a friend of the class). How do you choose? First, you need to understand the difference between these
two choices. When the operator is a method of a class, the left-hand-side of the operator expression must
always be an object of that class. If you write a global function, the left-hand-side can be an object of a dif-
ferent type.

There are three different types of operators:

❑ Operators that must be methods. The C++ language requires some operators to be methods
of a class because they don’t make sense outside of a class. For example, operator= is tied so
closely to the class that it can’t exist anywhere else. The table in the “Summary of Overloadable
Operators” section lists those operators that must be methods. For these, the choice of method
or global function is simple! However, most operators do not impose this requirement.

❑ Operators that must be global functions. Whenever you need to allow the left-hand side of the
operator to be a variable of a different type from your class, you must make the operator a global
function. This rule applies specifically to operator<< and operator>>, where the left-hand
side is the iostream object, not an object of your class. Additionally, commutative operators
like binary + and – should allow variables that are not objects of your class on the left-hand side.
This problem was explained previously in Chapter 9.

433

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 433

❑ Operators that can be either methods or global functions. There is some disagreement in the
C++ community on whether it’s better to write methods or global functions to overload opera-
tors. However, we recommend the following rule: make every operator a method unless you
must make it a global function as described previously. One major advantage to this rule is that
methods can be virtual, but friend functions cannot. Therefore, when you plan to write over-
loaded operators in an inheritance tree, you should make them methods if possible.

When you write an overloaded operator as a method, you should mark the entire method const if it
doesn’t change the object. That way, it can be called on const objects.

Choosing Argument Types
You are somewhat limited in your choice of argument types because you can’t usually change the num-
ber of arguments (although there are exceptions, which are explained later in this chapter). For example,
operator+ must always have two arguments if it is a global function; one argument if it’s a method.
The compiler issues an error if it differs from this standard. In this sense, the operator functions are
different from normal functions, which you can overload with any number of parameters. Additionally,
although you can write the operator for whichever types you want, the choice is usually constrained by the
class for which you are writing the operator. For example, if you want to implement addition for class T,
you wouldn’t write an operator+ that takes two strings! The real choice arises when you try to deter-
mine whether to take parameters by value or by reference, and whether or not to make them const.

The choice of value vs. reference is easy: you should take every parameter by reference. As explained in
Chapters 9 and 12, never pass objects by value if you can pass-by-reference instead!

The const decision is also trivial: mark every parameter const unless you actually modify it. The table
in the “Summary of Overloadable Operators” section shows sample prototypes for each operator, with
the arguments marked const and reference as appropriate.

Choosing Return Types
Recall that C++ doesn’t determine overload resolution based on return type. Thus, you can specify any
return type you want when you write overloaded operators. However, just because you can do some-
thing doesn’t mean you should do it. This flexibility implies that you could write confusing code in which
comparison operators return pointers, and arithmetic operators return bools! However, you shouldn’t
do that. Instead, you should write your overloaded operators such that they return the same types as the
operators do for the built-in types. If you write a comparison operator, return a bool. If you write an
arithmetic operator, return an object representing the result of the arithmetic. Sometimes the return type
is not obvious at first. For example, as you learned in Chapter 8, operator= should return a reference to
the object on which it’s called in order to support nested assignment. Other operators have similarly
tricky return types, all of which are summarized in the table in the “Summary of Overloadable Operators”
section.

The same choices of reference and const apply to return types as well. However, for return values, the
choices are more difficult. The general rule for value or reference is to return a reference if you can; other-
wise, return a value. How do you know when you can return a reference? This choice applies only to
operators that return objects: the choice is moot for the comparison operators that return bool, the con-
version operators that have no return type, and the function call operator, which may return any type
you want. If your operator constructs a new object, then you must return that new object by value. If it

434

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 434

does not construct a new object, you can return a reference to the object on which the operator is called,
or one of its arguments. The table in the “Summary of Overloadable Operators” section shows examples.

A return value that can be modified as an lvalue (the left-hand-side of an assignment expression) must be
non-const. Otherwise, it should be const. More operators than you might think at first return lvalues,
including all of the assignment operators (operator=, operator+=, operator-=, etc.).

If you are in doubt about the appropriate return type, simply consult the table in the “Summary of
Overloadable Operators” section.

Choosing Behavior
You can provide whichever implementation you want in an overloaded operator. For example, you could
write an operator+ that launches a game of Scrabble. However, as described in Chapter 5, you should
generally constrain your implementations to provide behaviors that clients expect. Write operator+ so
that it performs addition, or something like addition, such as string concatenation.

This chapter explains how you should implement your overloaded operators. In exceptional circum-
stances, you might want to differ from these recommendations, but, in general, you should follow the
standard patterns.

Operators You Shouldn’t Overload
There are a few operators that it is rarely a good idea to overload, even though it is permitted. Specifically,
the address-of operator (operator&) is not particularly useful to overload, and leads to confusion if you
do because you are changing fundamental language behavior (taking addresses of variables) in poten-
tially unexpected ways.

Additionally, you should avoid overloading the binary Boolean operators operator&& and operator||
because you lose C++’s short-circuit evaluation rules.

Finally, you should not overload the comma operator (operator,). Yes, you read that correctly: there
really is a comma operator in C++. It’s also called the sequencing operator, and is used to separate two
expressions in a single statement, while guaranteeing that they are evaluated left to right. There is rarely
(if ever) a good reason to overload this operator.

Summary of Overloadable Operators
The following table lists all of the operators that you can overload, specifies whether they should be
methods of the class or global friend functions, summarizes when you should (or should not) overload
them, and provides sample prototypes, showing the proper return values.

This table should be a useful reference in the future when you want to sit down and write an overloaded
operator. You’re bound to forget which return type you should use, and whether or not the function
should be a method. We’re looking forward to referring to this table ourselves!

In this table, T is the name of the class for which the overloaded operator is written, and E is a different
type (not the name of the class).

435

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 435

Method or
Name or Global Friend When to

Operator Category Function Overload Sample Prototype

operator+ Binary Global friend Whenever you friend const T
operator- arithmetic function want to operator+(const
operator* recommended provide these T&, const T&);
operator/ operations for
operator% your class

operator- Unary Method Whenever you const T operator-()
operator+ arithmetic recommended want to const;
operator~ and bitwise provide these

operators operations for
your class

operator++ Increment Method Whenever you T& operator++();
operator-- and recommended overload

decrement binary + and - const T
operator++(int);

operator= Assignment Method Whenever T& operator=(const
operator required you have T&);

dynamically
allocated
memory in the
object or want
to prevent
assignment, as
described in
Chapter 9

operator+= Shorthand Method Whenever you T& operator+=(const
operator-= arithmetic recommended overload the T&);
operator*/ operator binary
operator/= assignments arithmetic
operator%= operators

operator<< Binary bitwise Global friend Whenever you friend const T
operator>> operators function want to operator<<(const
operator& recommended provide these T&, const T&);
operator| operations
operator^

operator<<= Shorthand Method Whenever you T& operator<<=
operator>>= bitwise recommended overload the (const T&);
operator&= operator binary bitwise
operator|= assignments operators
operator^=

436

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 436

Method or
Name or Global Friend When to

Operator Category Function Overload Sample Prototype

operator< Binary Global friend Whenever you friend bool
operator> comparison function want to operator<(const T&,
operator<= operators recommended provide these const T&);
operator>= operations
operator==

operator<< I/O stream Global friend Whenever you friend ostream
operator>> operators function want to &operator<<

(insertion and recommended provide these (ostream&,
extraction) operations const T&);

friend istream
&operator>>
(istream&, T&);

operator! Boolean Member Rarely; use bool operator!()
negation function bool or void* const;
operator recommended conversion

instead

operator&& Binary Global friend Rarely friend bool
operator|| Boolean function operator&&(const T&

operators recommended lhs, const T& rhs);

friend bool
operator||(const T&
lhs, const T& rhs);

operator[] Subscripting Method When you E& operator[](int);
(array index) required want to
operator support const E&

subscripting: operator[](int)
in array-like const;
classes

operator() Function call Method When you Return type and
operator required want objects arguments can vary; see

to behave like examples in this chapter
function
pointers

operator new Memory Method When you void* operator
operator new[] allocation recommended want to new(size_t size)

routines control throw(bad_alloc);
memory
allocation for void* operator
your classes new[](size_t size)
(rarely) throw(bad_alloc);

Table continued on following page

437

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 437

Method or
Name or Global Friend When to

Operator Category Function Overload Sample Prototype

operator delete Memory Method Whenever you void operator
operator delete[] deallocation recommended overload the delete(void* ptr)

routines memory throw();
allocation
routines void operator

delete[](void* ptr)
throw();

operator* Dereferencing Method Useful for E& operator*()
operator-> operators required for smart pointers const;

operator->
E* operator->()

Method const;
recommended
for operator*

operator& Address-of N/A Never N/A
operator

operator->* Dereference N/A Never N/A
pointer-to-
member

operator, Comma N/A Never N/A
operator

operator type() Conversion, Method When you operator type()
or cast, required want to const;
operators provide
(separate conversions
operator for from your
each type) class to other

types

Overloading the Arithmetic Operators
In Chapter 9, you learned how to write the binary arithmetic operators and the shorthand arithmetic
assignment operators. However, you did not yet learn how to overload all of the arithmetic operators.

Overloading Unary Minus and Unary Plus
C++ has several unary arithmetic operators. Two of these are unary minus and unary plus. You’ve prob-
ably used unary minus, but you might be surprised to learn about unary plus. Here is an example of
these operators using ints:

438

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 438

int i, j = 4;
i = -j; // Unary minus
i = +i; // Unary plus
j = +(-i); // Apply unary plus to the result of applying unary minus to i.
j = -(-i); // Apply unary minus to the result of applying unary minus to i.

Unary minus negates the operand, while unary plus returns the operand directly. The result of unary
plus or minus is not an lvalue: you can’t assign to it. This means you should return a const object
when you overload them. However, note that you can apply unary plus or unary minus to the result of
unary plus or unary minus. Because you’re applying these operations to a const temporary object, you
must make operator- and operator+ themselves const; otherwise, the compiler won’t let you call
them on the const temporary.

Here is an example of a SpreadsheetCell class definition with an overloaded operator-. Unary plus
is usually a no-op, so this class doesn’t bother to overload it.

class SpreadsheetCell
{

public:
// Omitted for brevity. Consult Chapter 9 for details.

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator-(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator*(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

friend const SpreadsheetCell operator/(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

SpreadsheetCell& operator+=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator*=(const SpreadsheetCell& rhs);
SpreadsheetCell& operator/=(const SpreadsheetCell& rhs);
const SpreadsheetCell operator-() const;

protected:
// Omitted for brevity. Consult Chapter 9 for details.

};

Here is the definition of the unary operator-.

const SpreadsheetCell SpreadsheetCell::operator-() const
{

SpreadsheetCell newCell(*this);
newCell.set(-mValue); // call set to update mValue and mStr

return (newCell);
}

operator- doesn’t change the operand, so this method must construct a new SpreadsheetCell with
the negated value, and return a copy of it. Thus, it can’t return a reference.

Overloading Increment and Decrement
Recall that there are four ways to add one to a variable:

439

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 439

i = i + 1;
i += 1;
++i;
i++;

The last two are called the increment operators. The first form is prefix increment, which adds one to the
variable, then returns the newly incremented value for use in the rest of the expression. The second form
is postfix increment, which returns the old (nonincremented) value for use in the rest of the expression.
The decrement operators function similarly.

The two possible meanings for operator++ and operator-- (prefix and postfix) present a problem
when you want to overload them. When you write an overloaded operator++, for example, how do
you specify whether you are overloading the prefix or the postfix version? C++ introduced a hack to
allow you to make this distinction: the prefix versions of operator++ and operator-- take no argu-
ments, while the postfix versions take one unused argument of type int.

If you want to overload these operators for your SpreadsheetCell class, the prototypes would look
like this:

class SpreadsheetCell
{

public:
// Omitted for brevity. Consult Chapter 9 for details.
SpreadsheetCell& operator++(); // Prefix
const SpreadsheetCell operator++(int); // Postfix
SpreadsheetCell& operator--(); // Prefix
const SpreadsheetCell operator--(int); // Postfix

protected:
// Omitted for brevity. Consult Chapter 9 for details.

};

The C++ standard specifies that the prefix versions of increment and decrement return an lvalue, so
they can’t return a const value. The return value in the prefix forms is the same as the end value of the
operand, so prefix increment and decrement can return a reference to the object on which they are called.
The postfix versions of increment and decrement, however, return values that are different from the end
values of the operands, so they cannot return references.

Here are the implementations of these operators:

SpreadsheetCell& SpreadsheetCell::operator++()
{

set(mValue + 1);
return (*this);

}

const SpreadsheetCell SpreadsheetCell::operator++(int)
{

SpreadsheetCell oldCell(*this); // Save the current value before incrementing
set(mValue + 1); // Increment
return (oldCell); // Return the old value.

}

SpreadsheetCell& SpreadsheetCell::operator--()

440

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 440

{
set(mValue - 1);
return (*this);

}

const SpreadsheetCell SpreadsheetCell::operator--(int)
{

SpreadsheetCell oldCell(*this); // Save the current value before incrementing
set(mValue - 1); // Increment
return (oldCell); // Return the old value.

}

Now you can increment and decrement your SpreadsheetCell objects to your heart’s content!

SpreadsheetCell c1, c2;
c1.set(4);
c2.set(4);

c1++;
++c1;

Recall that increment and decrement also work on pointers. When you write classes that are smart point-
ers or iterators, you can overload operator++ and operator-- to provide pointer incrementing and
decrementing. You can see this topic in action in Chapter 23, in which you learn how to write your own
STL iterators.

Overloading the Bitwise and
Binary Logical Operators

The bitwise operators are similar to the arithmetic operators, and the bitwise shorthand assignment
operators are similar to the arithmetic shorthand assignment operators. However, they are significantly
less common, so we do not show examples here. The table in the “Summary of Overloadable Operators”
section shows sample prototypes, so you should be able to implement them easily if the need ever arises.

The logical operators are trickier. We don’t recommend overloading && and ||. These operators don’t
really apply to individual types: they aggregate results of Boolean expressions. Additionally, you lose
the short-circuit evaluation. Thus, it rarely makes sense to overload them for specific types.

Overloading the Insertion and
Extraction Operators

In C++, you use operators not only for arithmetic operations, but also for reading from and writing to
streams. For example, when you write ints and strings to cout you use the insertion operator, <<:

int number = 10;
cout << “The number is “ << number << endl;

When you read from streams you use the extraction operator, >>:
441

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 441

int number;
string str;
cin >> number >> str;

You can write insertion and extraction operators that work on your classes as well, so that you can read
and write them like this:

SpreadsheetCell myCell, anotherCell, aThirdCell;

cin >> myCell >> anotherCell >> aThirdCell;
cout << myCell << “ “ << anotherCell << “ “ << aThirdCell << endl;

Before you write the insertion and extraction operators, you need to decide how you want to stream your
class out and how you want to read it in. For SpreadsheetCells it makes sense to read and write
strings because all doubles can be read as strings (and converted back to doubles), but not vice versa.

The object on the left of an insertion or extraction operator is the istream or ostream (such as cin or
cout), not a SpreadsheetCell object. Because you can’t add a method to the istream or ostream
class, you should write the insertion and extraction operators as global friend functions of the
SpreadsheetCell class. The declaration of these functions in your SpreadsheetCell class looks like this:

class SpreadsheetCell
{

public:
// Omitted for brevity
friend ostream& operator<<(ostream& ostr, const SpreadsheetCell& cell);
friend istream& operator>>(istream& istr, SpreadsheetCell& cell);
// Omitted for brevity

};

By making the insertion operator take a reference to an ostream as its first parameter, you allow it to be
used for file output streams, string output streams, cout, and cerr. See Chapter 14 for details. Similarly,
by making the extraction operator take a reference to an istream, you can make it work on file input
streams, string input streams, and cin.

The second parameter to operator<< and operator>> is a reference to the SpreadsheetCell object
that you want to read or write. The insertion operator doesn’t change the SpreadsheetCell it writes, so
that reference can be const. The extraction operator, however, modifies the SpreadsheetCell object,
requiring the argument to be a non-const reference.

Both operators return a reference to the stream they were given as their first argument so that calls to the
operator can be nested. Remember that the operator syntax is shorthand for calling the global operator>>
or operator<< functions explicitly. Consider this line:

cin >> myCell >> anotherCell >> aThirdCell;

It’s actually shorthand for this line:

operator>>(operator>>(operator>>(cin, myCell), anotherCell), aThirdCell);

As you can see, the return value of the first call to operator>> is used as input to the next. Thus, you
must return the stream reference so that it can be used in the next nested call. Otherwise, the nesting
won’t compile.

442

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 442

Here are the implementations for operator<< and operator>> for the SpreadsheetCell class:

ostream& operator<<(ostream& ostr, const SpreadsheetCell& cell)
{

ostr << cell.mString;
return (ostr);

}

istream& operator>>(istream& istr, SpreadsheetCell& cell)
{

string temp;
istr >> temp;
cell.set(temp);
return (istr);

}

The trickiest part of these functions is that, in order for mValue to be set correctly, operator>> must
remember to call the set() method on the SpreadsheetCell instead of setting mString directly.

Overloading the Subscripting Operator
Pretend, for a few minutes, that you have never heard of the vector template class in the STL, and so you
have decided to write your own dynamically allocated array class. This class would allow you to set and
retrieve elements at specified indices, and would take care of all memory allocation “behind the scenes.”
A first stab at the class definition for a dynamically allocated integer array might look like this:

class Array
{

public:
// Creates an array with a default size that will grow as needed.
Array();
~Array();

// Returns the value at index x. If index x does not exist in the array,
// throws an exception of type out_of_range.
int getElementAt(int x) const;

// Sets the value at index x to val. If index x is out of range,
// allocates more space to make it in range.
void setElementAt(int x, int val);

protected:
static const int kAllocSize = 4;
void resize(int newSize);
int* mElems;
int mSize;

private:
// Disallow assignment and pass by value.
Array(const Array& src);
Array& operator=(const Array& rhs);

};

443

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 443

In order to present only the salient points, we have omitted exception throw lists and have not made this
class a template. The interface supports setting and accessing elements. It provides random-access guar-
antees: a client could create an array and set elements 1, 100, and 1000 without worrying about memory
management.

Here are the implementations of the methods:

#include “Array.h”

const int Array::kAllocSize;

Array::Array()
{

mSize = kAllocSize;
mElems = new int[mSize];

}

Array::~Array()
{

delete [] mElems;
}

int Array::getElementAt(int x) const
{

if (x < 0 || x >=mSize) {
throw out_of_range(“”);

}
return (mElems[x]);

}

void Array::setElementAt(int x, int val)
{

if (x < 0) {
throw out_of_range(“”);

}
if (x >= mSize) {

// Allocate kAllocSize past the element the client wants
resize (x + kAllocSize);

}
mElems[x] = val;

}

void Array::resize(int newSize)
{

int* newElems = new int[newSize]; // Allocate the new array of the new size.

// The new size is always bigger than the old size.
for (int i = 0; i < newSize; i++) {

// Copy the elements from the old array to the new one.
newElems[i] = mElems[i];

}
mSize = newSize; // Store the new size.
delete [] mElems; // Free the memory for the old array.
mElems = newElems; // Store the pointer to the new array.

}

444

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 444

Here is a small example of how you could use this class:

Array arr;
int i;

for (i = 0; i < 10; i++) {
arr.setElementAt(i, 100);

}

for (i = 0; i < 10; i++) {
cout << arr.getElementAt(i) << “ “;

}
cout << endl;

As you can see, you never have to tell the array how much space you need. It allocates as much space as
it requires to store the elements you give it. However, it’s inconvenient to use the setElementAt() and
getElementAt() functions. It would be nice to be able use real array index notation like this:

Array arr;
int i;

for (i = 0; i < 10; i++) {
arr[i] = 100;

}

for (i = 0; i < 10; i++) {
cout << arr[i] << “ “;

}
cout << endl;

This is where the overloaded subscripting operator comes in. You can replace getElementAt() and
setElementAt() in your class with an operator[] like this:

class Array
{

public:
Array();
~Array();
int& operator[](int x)

protected:
static const int kAllocSize = 4;
void resize(int newSize);
int* mElems;
int mSize;

private:
// Disallow assignment and pass by value.
Array(const Array& src);
Array& operator=(const Array& rhs);

};

The preceding code using array index notation on the array now compiles. The operator[] can replace
both setElementAt() and getElementAt() because it returns a reference to the element at location x.
This reference can be an lvalue, so it can be used to assign to that element. Here is the implementation
of the operator:

445

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 445

int& Array::operator[](int x)
{

if (x < 0) {
throw out_of_range(“”);

}
if (x >= mSize) {

// Allocate kAllocSize past the element the client wants.
resize (x + kAllocSize);

}
return (mElems[x]);

}

When operator[] is used on the left-hand-side of an assignment statement, the assignment actually
changes the value at location x in the mElems array.

Providing Read-Only Access with operator[]
Although it’s sometimes convenient for operator[] to return an element that can serve as an lvalue,
you don’t always want that behavior. It would be nice to be able to provide read-only access to the ele-
ments of the array as well, by returning a const value or const reference. Ideally, you would provide
two operator[]s: one returns a reference and one returns a const reference.

class Array
{

public:
Array();
~Array();
int& operator[](int x);
const int& operator[](int x); // BUG! Can’t overload based on return type

protected:
static const int kAllocSize = 4;
void resize(int newSize);
int* mElems;
int mSize;

private:
// Disallow assignment and pass by value.
Array(const Array& src);
Array& operator=(const Array& rhs);

};

However, there is one small problem: you can’t overload a method or operator based only on return type.
The above code doesn’t compile. Luckily, C++ provides a way around this restriction: if you mark the
second operator[] const, then the compiler can distinguish between the two. If you call operator[]
on a const object, it will use the const operator[], and, if you call it on a non-const object, it will use
the non-const operator[]. Here are the two operators with the correct signatures:

int& operator[](int x);
const int& operator[](int x) const;

Here is the implementation of the const operator[]. It throws an exception if the index is out of range
instead of trying to allocate new space. It doesn’t make sense to allocate new space when you’re only
trying to read the element value.

446

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 446

const int& Array::operator[](int x) const
{

if (x < 0 || x >=mSize) {
throw out_of_range(“”);

}
return (mElems[x]);

}

The following code demonstrates these two forms of operator[]:

#include “Array.h”

void printArray(const Array& arr, int size);

int main(int argc, char** argv)
{

Array arr;
int i;

for (i = 0; i < 10; i++) {
arr[i] = 100; // Calls the non-const operator[] because

// arr is a non-const object.
}
printArray(arr, 10);
return (0);

}

void printArray(const Array& arr, int size)
{

for (int i = 0; i < size; i++) {
cout << arr[i] << “ “; // Calls the const operator[] because arr is a const

// object.
}
cout << endl;

}

Note that the const operator[] is called in printArray() only because arr is const. If arr were not
const, the non-const operator[] would be called, despite the fact that the result is not modified.

Non-Integral Array Indices
You can also write an operator[] that uses a different, non-integral, type as its index. For example, you
could create an associative array, in which you use string keys instead of integers. Here is the definition
for an associative array class that stores ints:

class AssociativeArray
{

public:
AssociativeArray();
~AssociativeArray();

int& operator[](const string& key);
const int& operator[](const string& key) const;

447

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 447

private:
// Implementation details omitted

};

We leave the implementation of this class as an exercise for the reader. You might also be interested to
know that the STL map provides associative array-like functionality, including the use of operator[]
with any possible type as the key.

Overloading the Function Call Operator
C++ allows you to overload the function call operator, written as operator(). If you write an operator()
for your class, you can use objects of that class as if they were function pointers. You can only overload this
operator as a non-static method in a class. Here is an example of a simple class with an overloaded
operator() and a class method with the same behavior:

class FunctionObject
{

public:
int operator() (int inParam); // Function-call operator
int aMethod(int inParam); // Normal method

};

//Implementation of overloaded function-call operator
int FunctionObject::operator() (int inParam)
{

return (inParam * inParam);
}

// Implementation of normal method
int FunctionObject::aMethod(int inParam)
{

return (inParam * inParam);
}

Here is an example of code that uses the function-call operator, contrasted with the call to a normal
method of the class:

int main(int argc, char** argv)
{

int x = 3, xSquared, xSquaredAgain;
FunctionObject square;

xSquared = square(x); // Call the function-call operator
xSquaredAgain = square.aMethod(x); // Call the normal method

}

You cannot overload the subscripting operator to take more than one parameter. If
you want to provide subscripting on more than one index, you can use the function
call operator.

448

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 448

An object of a class with a function call operator is called a function object, or functor for short.

At first, the function call operator probably seems a little strange. Why would you want to write a spe-
cial method for a class to make objects of the class look like function pointers? Why wouldn’t you just
write a function or a standard method of a class? The advantage of function objects over standard meth-
ods of objects is simple: these objects can sometimes masquerade as function pointers. You can pass
function objects as callback functions to routines that expect function pointers, as long as the function
pointer types are templatized. See Chapter 22 for details.

The advantages of function objects over global functions are more intricate. There are two main benefits:

❑ Objects can retain information in their data members between repeated calls to their function-
call operators. For example, a function object might be used to keep a running sum of numbers
collected from each call to the function-call operator.

❑ You can customize the behavior of a function object by setting data members. For example, you
could write a function object to compare an argument to the function against a data member.
This data member could be configurable so that the object could be customized for whatever
comparison you want.

Of course, you could implement either of the preceding benefits with global or static variables.
However, function objects provide a cleaner way to do it. The true benefits of function objects will
become apparent when you learn more about the STL in Chapters 21 and 23.

By following the normal method overloading rules, you can write as many operator()s for your classes
as you want. Specifically, the various operator()s must have different numbers of types of parameters.
For example, you could add an operator() to the FunctionObject class that takes a string reference:

class FunctionObject
{

public:
int operator() (int inParam);
void operator() (string& str);
int aMethod(int inParam);

};

The function call operator can also be used to provide subscripting for multiple indices of an array. Simply
write an operator() that behaves like operator[] but allows more than one parameter. The only prob-
lem with this technique is that now you have to use () to index instead of [], as in myArray(3, 4) = 6;

Overloading the Dereferencing Operators
There are three de-referencing operators you can overload: *, ->, and ->*. Ignoring ->* for the moment
(we’ll get back to it later), consider the built-in meanings of * and ->. * dereferences a pointer to give you
direct access to its value, while -> is shorthand for a * dereference followed by a . member selection. The
following code shows the equivalences:

SpreadsheetCell* cell1 = new SpreadsheetCell;
(*cell1).set(5); // Dereference plus member selection
cell1->set(5); // Shorthand arrow dereference and member selection together

449

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 449

You can overload the dereferencing operators for your classes in order to make objects of the classes
behave like pointers. The main use of this capability is for implementing smart pointers, which you learned
about in Chapters 4, 13, and 15. It is also useful for iterators, which the STL uses and which you can think
of as fancy smart pointers. Chapters 21 to 23 cover iterators in more detail, and Chapter 25 provides a
sample implementation of a smart pointer class. This chapter teaches you the basic mechanics for over-
loading the relevant operators in the context of a simple smart pointer template class.

Here is the smart pointer template class definition, without the dereference operators filled in yet:

template <typename T>
class Pointer
{

public:
Pointer(T* inPtr);
~Pointer();

// Dereference operators will go here.
protected:

T* mPtr;
private:

// Prevent assignment and pass by reference.
Pointer(const Pointer<T>& src);
Pointer<T>& operator=(const Pointer<T>& rhs);

};

This smart pointer is about as simple as you can get. All it does is store a dumb pointer and delete it
when the object is destroyed. The implementations are equally simple: the constructor takes a real
(“dumb”) pointer, which is stored as the only data member in the class. The destructor frees the pointer.

template <typename T>
Pointer<T>::Pointer(T* inPtr)
{

mPtr = inPtr;
}

template <typename T>
Pointer<T>::~Pointer()
{

delete mPtr;
}

You would like to be able to use the smart pointer template like this:

#include “Pointer.h”
#include “SpreadsheetCell.h”
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

Pointer<int> smartInt(new int);

*smartInt = 5; // Dereference the smart pointer.
cout << *smartInt << endl;

450

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 450

Pointer<SpreadsheetCell> smartCell(new SpreadsheetCell);

smartCell->set(5); // Dereference and member select the set method.
cout << smartCell->getValue() << endl;

return (0);
}

As you can see, you need to provide implementations of * and -> for this class.

Implementing operator*
When you dereference a pointer, you expect to be able to access the memory to which the pointer points.
If that memory contains a simple type such as an int, you should be able to change its value directly. If
the memory contains a more complicated type, such as an object, you should be able to access its data
members or methods with the . operator.

To provide these semantics, you should return a reference to a variable or object from operator*. In the
Pointer class, the declaration and definition look like this:

template <typename T>
class Pointer
{

public:
Pointer(T* inPtr);
~Pointer();
T& operator*();
const T& operator*() const;

protected:
T* mPtr;

private:
Pointer(const Pointer<T>& src);
Pointer<T>& operator=(const Pointer<T>& rhs);

};

template <typename T>
T& Pointer<T>::operator*()
{

return (*mPtr);
}

As you can see, operator* returns a reference to the object or variable to which the underlying dumb
pointer points. As in overloading the subscripting operators, it’s useful to provide both const and non-
const versions of the method, which return a const reference and reference, respectively. The const
version is implemented identically to the non-const version, so its implementation is not shown here.

You should rarely write operator* or operator-> alone. Always implement both
together if they have appropriate semantics for your class. It would be confusing for
a smart pointer–like object to support -> but not *, or vice-versa.

451

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 451

Implementing operator->
The arrow operator is a bit trickier. The result of applying the arrow operator should be a member or
method of an object. However, in order to implement it like that, you would have to be able to implement
the equivalent of operator* followed by operator.. C++ doesn’t allow you to overload operator. for
good reason: it’s impossible to write a single prototype that allows you to capture any possible member or
method selection. Similarly, you couldn’t write an operator-> with such semantics.

Therefore, C++ treats operator-> as a special case. Consider this line:

smartCell->set(5);

C++ translates the preceding to:

(smartCell.operator->())->set(5);

As you can see, C++ applies another operator-> to whatever you return from your overloaded
operator->. Therefore, you must return a pointer to an object like this:

template <typename T>
class Pointer
{

public:
Pointer(T* inPtr);
~Pointer();
T& operator*();
const T& operator*() const;
T* operator->();
const T* operator->() const;

protected:
T* mPtr;

private:
Pointer(const Pointer<T>& src);
Pointer<T>& operator=(const Pointer<T>& rhs);

};

template <typename T>
T* Pointer<T>::operator->()
{

return (mPtr);
}

Again, you should write both const and non-const forms of the operator. The implementation of the
const version is identical to the non-const, so it is not shown here.

It’s unfortunate that operator* and operator-> are asymmetric, but, once you see them a few times,
you’ll get used to it.

What in the World Is operator->* ?
Recall from Chapter 9 that you can manipulate pointers to members and methods of a class. When you
try to dereference the pointer, it must be in the context of an object of that class. Here is the example
from Chapter 9:

452

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 452

SpreadsheetCell myCell;
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;
cout << (myCell.*methodPtr)() << endl;

Note the use of the .* operator to derefence the method pointer and call the method. There is also an
equivalent operator->* for calling methods via pointers when you have a pointer to an object instead
of the object itself. The operator looks like this:

SpreadsheetCell* myCell = new SpreadsheetCell();
double (SpreadsheetCell::*methodPtr) () const = &SpreadsheetCell::getValue;
cout << (myCell->*methodPtr)() << endl;

C++ does not allow you to overload operator.* (just as you can’t overload operator.), but you could
overload operator->*. However, it is very tricky, and, given that most C++ programmers don’t even
know that you can access methods and members through pointers, it’s probably not worth the trouble.
The auto_ptr template in the standard library does not overload operator->*.

Writing Conversion Operators
Going back to the SpreadsheetCell example, consider these two lines of code:

SpreadsheetCell cell1;
string s1 = cell1; // DOES NOT COMPILE!

A SpreadsheetCell contains a string representation, so it seems logical that you could assign it
to a string variable. Well, you can’t. The compiler tells you that it doesn’t know how to convert a
SpreadsheetCell to a string. You might be tempted to try forcing the compiler to do what you want
like this:

string s1 = (string) cell1; // STILL DOES NOT COMPILE!

First, the preceding code still doesn’t compile because the compiler still doesn’t know how to convert the
SpreadsheetCell to a string. It already knew from the first line what you wanted it to do, and it would
do it if it could. Second, it’s a bad idea in general to add gratuitous casts to your program. Even if the
compiler allowed this cast to compile, it probably wouldn’t do the right thing at run time. For example,
it might try to interpret the bits representing your object as a string.

If you want to allow this kind of assignment, you must tell the compiler how to perform it. Specifically,
you can write a conversion operator to convert SpreadsheetCells to strings. The prototype looks
like this:

class SpreadsheetCell
{

public:
// Omitted for brevity
operator string() const;
// Omitted for brevity

};

453

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 453

The name of the function is operator string. It has no return type because the return type is specified
by the name of the operator: string. It is const because it doesn’t change the object on which it is
called. Yes, it looks odd at first, but you’ll get used to it. The implementation looks like this:

SpreadsheetCell::operator string() const
{

return (mString);
}

That’s all you need to do to write a conversion operator from SpreadsheetCell to string. Now the
compiler accepts this line and does the right thing at run time:

SpreadsheetCell cell1;
string s1 = cell1; // Works as expected

You can write conversion operators for any type with this same syntax. For example, here is the proto-
type for a double conversion operator from SpreadsheetCell:

class SpreadsheetCell
{

public:
// Omitted for brevity
operator string() const;
operator double() const;
// Omitted for brevity

};

The implementation looks like this:

SpreadsheetCell::operator double() const
{

return (mValue);
}

Now you can write code like the following:

SpreadsheetCell cell1;
double d2 = cell1;

Ambiguity Problems with Conversion Operators
Unfortunately, writing the double conversion operator for the SpreadsheetCell object introduces an
ambiguity problem. Consider this line:

SpreadsheetCell cell1;
double d1 = cell1 + 3.3; // DOES NOT COMPILE IF YOU DEFINE operator double()

This line now fails to compile. It worked before you wrote operator double(), so what’s the problem
now? The issue is that the compiler doesn’t know if it should convert cell1 to a double with operator
double() and perform double addition, or convert 3.3 to a SpreadsheetCell with the double con-
structor and perform SpreadsheetCell addition. Before you wrote operator double(), the compiler
had only one choice: convert 3.3 to a SpreadsheetCell with the double constructor and perform

454

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 454

SpreadsheetCell addition. However, now the compiler could do either. It doesn’t want to make a
choice for you, which you might not like, so it refuses to make any choice at all.

The usual solution to this conundrum is to make the constructor in question explicit, so that the auto-
matic conversion using that constructor is prevented. Unfortunately, we don’t want that constructor to
be explicit because we generally like the automatic conversion of doubles to SpreadsheetCells, as
explained in Chapter 9. In this case, it’s probably better not to write the double conversion operator for
the SpreadsheetCell class.

Conversions for Boolean Expressions
Sometimes it is useful to be able to use objects in Boolean expressions. For example, programmers often
use pointers in conditional statements like this:

if (ptr != NULL) {
// Perform some dereferencing action.

}

Sometimes they write shorthand conditions such as:

if (ptr) {
// Perform some dereferencing action.

}

Other times, you see code like the following:

if (!ptr) {
// Do something.

}

Currently, none of the preceding expressions compiles with the Pointer smart pointer class defined ear-
lier. However, you can add a conversion operator to the class to convert it to a pointer type. Then, the
comparisons to NULL, as well as the object alone in an if statement, trigger the conversion to the pointer
type. The usual pointer type for the conversion operator is void*. Here is the modified Pointer class:

template <typename T>
class Pointer
{

public:
Pointer(T* inPtr);
~Pointer();
T& operator*();
const T& operator*() const;
T* operator->();
const T* operator->() const;
operator void*() const { return mPtr; }

protected:
T* mPtr;

private:
Pointer(const Pointer<T>& src);
Pointer<T>& operator=(const Pointer<T>& rhs);

};

Now the following statements all compile and do what you expect:

455

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 455

Pointer<SpreadsheetCell> smartCell(new SpreadsheetCell);
smartCell->set(5);
if (smartCell != NULL) {

cout << “not NULL!\n”;
}
if (smartCell) {

cout << “not NULL!\n”;
}
if (!smartCell) {

cout << “NULL\n”;
}

Another alternative is to overload operator bool instead of operator void*. After all, you’re using
the object in a Boolean expression; why not convert it directly to a bool? You could write your Pointer
class like this:

template <typename T>
class Pointer
{

public:
Pointer(T* inPtr);
~Pointer();
T& operator*();
const T& operator*() const;
T* operator->();
const T* operator->() const;
operator bool() const { return (mPtr != NULL); }

protected:
T* mPtr;

private:
Pointer(const Pointer<T>& src);
Pointer<T>& operator=(const Pointer<T>& rhs);

};

All three of the preceding tests continue to work, though the comparison to NULL explicitly might cause
your compiler to generate warnings. This technique seems especially appropriate for objects that don’t
represent pointers and for which conversion to a pointer type really doesn’t make sense. Unfortunately,
adding a conversion operator to bool presents some unanticipated consequences. C++ applies “promo-
tion” rules to silently convert bool to int whenever the opportunity arises. Therefore, with the preced-
ing conversion operator, such code compiles and runs:

Pointer<SpreadsheetCell> smartCell(new SpreadsheetCell);
int i = smartCell; // Converts smartCell Pointer to bool to int.

That’s usually not behavior that you expect or desire. Thus, many programmers prefer operator
void* to operator bool. In fact, recall the following use of streams from Chapter 14:

ifstream istr;
int temp;
// Open istr
while (istr >> temp) {

// Process temp
}

456

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 456

In order to allow stream objects to be used in Boolean expressions, but prohibit their undesired promo-
tion to int, the basic_ios class defines operator void* instead of operator bool.

A third alternative is to implement operator! and require clients of the class to use only negative com-
parisons, such as:

if (!smartCell) {
cout << “NULL\n”;

}

As you can see, there is a design element to overloading operators. Your decisions about which opera-
tors to overload directly influence the ways in which clients can use your classes.

Overloading the Memory Allocation and
Deallocation Operators

C++ gives you the ability to redefine the way memory allocation and deallocation work in your programs.
You can provide this customization both on the global level and the class level. This capability is most
useful when you are worried about performance and would like to provide more efficient memory man-
agement than is provided by default. For example, instead of going to the default C++ memory alloca-
tion each time you need memory, you could write a memory pool allocator that reuses fixed-size chunks
of memory. This section explains the subtleties of the memory allocation and deallocation routines and
shows you how to customize them. With these tools, you should be able to write a memory pool if the
need ever arises.

How new and delete Really Work
One of the trickiest aspects of C++ is the details of new and delete. Consider this line of code:

SpreadsheetCell* cell = new SpreadsheetCell();

The new SpreadsheetCell() is called the new expression. It does two things. First, it allocates space for
the SpreadsheetCell object by making a call to operator new. Second, it calls the constructor for the
object. Only after the constructor has completed does it return the pointer to you.

delete functions similarly. Consider this line of code:

delete cell;

This line is called the delete expression. It first calls the destructor for cell, then calls operator delete
to free the memory.

Unless you know a lot about memory allocation strategies, attempts to overload the
memory allocation routines are rarely worth the trouble. Don’t overload them just
because it sounds like a neat idea. Only do so if you have a genuine performance or
space requirement and the necessary knowledge.

457

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 457

You can overload operator new and operator delete to control memory allocation and deallocation,
but you cannot overload the new expression or the delete expression. Thus, you can customize the
actual memory allocation and deallocation, but not the calls to the constructor and destructor.

The New Expression and operator new
There are six different forms of the new expression, each of which has a corresponding operator new.
You’ve already seen the first four new expressions in Chapters 13 and 15: new, new[], nothrow new, and
nothrow new[]. The operator news for each them are defined in the header file <new> and are repro-
duced here respectively:

void* operator new(size_t size) throw(bad_alloc); // For new
void* operator new[](size_t size) throw(bad_alloc); // For new[]
void* operator new(size_t size, const nothrow_t&) throw(); // For nothrow new
void* operator new[](size_t size, const nothrow_t&) throw(); // For nothrow new[]

The fifth and sixth forms of new are called placement new (including both single and array forms). They
allow you to construct an object in preexisting memory like this:

void* ptr = allocateMemorySomehow();
SpreadsheetCell* cell = new (ptr) SpreadsheetCell();

This feature is a bit obscure, but it’s important to realize that it exists. It can come in handy if you want
to implement memory pools such that you reuse memory without freeing it in between. The correspond-
ing operator news look like this:

void* operator new(size_t size, void* p) throw();
void* operator new[](size_t size, void* p) throw();

The Delete Expression and operator delete
There are only two different forms of the delete expression that you can call: delete, and delete[];
there are no nothrow or placement forms. However, there are all six forms of operator delete. Why
the asymmetry? The four nothrow and placement forms are used only if an exception is thrown from a
constructor. In that case, the operator delete is called that matches the operator new that was used
to allocate the memory prior to the constructor call. However, if you delete a pointer normally, delete
will call either operator delete or operator delete[] (never the nothrow or placement forms).
Practically, this doesn’t really matter: delete never throws an exception anyway, so the nothrow version
of operator delete is superfluous, and placement delete should be a no-op. (The memory wasn’t allo-
cated in placement operator new, so there’s nothing to free). Here are the prototypes for the operator
delete forms:

void operator delete(void* ptr) throw();
void operator delete[](void* ptr) throw();
void operator delete(void* ptr, const nothrow_t&) throw();

When you use the keyword new to allocate memory, you are not directly calling
operator new. When you use the keyword delete to free memory, you are not
directly calling operator delete.

458

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 458

void operator delete[](void* ptr, const nothrow_t&) throw();
void operator delete(void* p, void*) throw();
void operator delete[](void* p, void*) throw();

Overloading operator new and operator delete
You can actually replace the global operator new and operator delete routines if you want. These
functions are called for every new expression and delete expression in the program, unless there are
more specific routines in individual classes. However, to quote Bjarne Stroustrup, “. . . replacing the
global operator new() and operator delete() is not for the fainthearted.” (The C++ Programming
Language, third edition). We don’t recommend it either!

A more useful technique is to overload operator new and operator delete for specific classes. These
overloaded operators will be called only when you allocate and deallocate objects of that particular
class. Here is an example of a class that overloads the four nonplacement forms of operator new and
operator delete:

#include <new>
using namespace std;

class MemoryDemo
{

public:
MemoryDemo() {}
~MemoryDemo() {}

void* operator new(size_t size) throw(bad_alloc);
void operator delete(void* ptr) throw();

void* operator new[](size_t size) throw(bad_alloc);
void operator delete[](void* ptr) throw();

void* operator new(size_t size, const nothrow_t&) throw();
void operator delete(void* ptr, const nothrow_t&) throw();

void* operator new[](size_t size, const nothrow_t&) throw();
void operator delete[](void* ptr, const nothrow_t&) throw();

};

Here are simple implementations of these operators that pass the argument through to calls to the global
versions of the operators. Note that nothrow is actually a variable of type nothrow_t.

#include “MemoryDemo.h”
#include <iostream>
using namespace std;

If you fail to heed our advice and decide to replace the global operator new, keep in
mind that you cannot put any code in the operator that makes a call to new: an infinite
loop would result. For example, you cannot write a message to console with cout.

459

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 459

void* MemoryDemo::operator new(size_t size) throw(bad_alloc)
{

cout << “operator new\n”;
return (::operator new(size));

}

void MemoryDemo::operator delete(void* ptr) throw()
{

cout << “operator delete\n”;
::operator delete(ptr);

}

void* MemoryDemo::operator new[](size_t size) throw(bad_alloc)
{

cout << “operator new[]\n”;
return (::operator new[](size));

}

void MemoryDemo::operator delete[](void* ptr) throw()
{

cout << “operator delete[]\n”;
::operator delete[](ptr);

}

void* MemoryDemo::operator new(size_t size, const nothrow_t&) throw()
{

cout << “operator new nothrow\n”;
return (::operator new(size, nothrow));

}

void MemoryDemo::operator delete(void* ptr, const nothrow_t&) throw()
{

cout << “operator delete nothrow\n”;
::operator delete[](ptr, nothrow);

}

void* MemoryDemo::operator new[](size_t size, const nothrow_t&) throw()
{

cout << “operator new[] nothrow\n”;
return (::operator new[](size, nothrow));

}

void MemoryDemo::operator delete[](void* ptr, const nothrow_t&) throw()
{

cout << “operator delete[] nothrow\n”;
::operator delete[](ptr, nothrow);

}

Here is some code that allocates and frees objects of this class in several ways:

#include “MemoryDemo.h”

int main(int argc, char** argv)
{

MemoryDemo* mem = new MemoryDemo();

460

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 460

delete mem;

mem = new MemoryDemo[10];
delete [] mem;

mem = new (nothrow) MemoryDemo();
delete mem;

mem = new (nothrow) MemoryDemo[10];
delete [] mem;

return (0);
}

Here is the output from running the program:

operator new
operator delete
operator new[]
operator delete[]
operator new nothrow
operator delete
operator new[] nothrow
operator delete[]

These implementations of operator new and operator delete are obviously trivial and not particu-
larly useful. They are intended only to give you an idea of the syntax in case you ever want to imple-
ment nontrivial versions of them.

It might seem overkill to overload all of the various forms of operator new. However, it’s generally a
good idea to do so in order to prevent inconsistencies in the memory allocations. If you don’t want to
provide implementations, you can declare the function as protected or private in order to prevent
anyone from using it.

Overloading operator new and operator
delete with Extra Parameters

In addition to overloading the standard forms of operator new, you can write your own versions with
extra parameters. For example, here is the MemoryDemo class showing an additional operator new
with an extra integer parameter:

Overload all forms of operator new, or provide private declarations without
implementations to prevent their use.

Whenever you overload operator new, overload the corresponding form of
operator delete. Otherwise, memory will be allocated as you specify but freed
according to the built-in semantics, which may not be compatible.

461

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 461

#include <new>
using namespace std;

class MemoryDemo
{

public:
MemoryDemo();
~MemoryDemo();
void* operator new(size_t size) throw(bad_alloc);
void operator delete(void* ptr) throw();
void* operator new[](size_t size) throw(bad_alloc);
void operator delete[](void* ptr) throw();
void* operator new(size_t size, const nothrow_t&) throw();
void operator delete(void* ptr, const nothrow_t&) throw();
void* operator new[](size_t size, const nothrow_t&) throw();
void operator delete[](void* ptr, const nothrow_t&) throw();
void* operator new(size_t size, int extra) throw(bad_alloc);

};

void* MemoryDemo::operator new(size_t size, int extra) throw(bad_alloc)
{

cout << “operator new with extra int arg\n”;
return (::operator new(size));

}

When you write an overloaded operator new with extra parameters, the compiler will automatically
allow the corresponding new expression. So, you can now write code like this:

int x = 5;
MemoryDemo* memp = new(5) MemoryDemo();
delete memp;

The extra arguments to new are passed with function call syntax (as in nothrow new). These extra argu-
ments can be useful for passing various flags or counters to your memory allocation routines.

You cannot add arbitrary extra arguments to operator delete. However, an alternate form of operator
delete gives you the size of the memory that should be freed as well as the pointer. Simply declare the
prototype for operator delete with an extra size parameter.

You can replace operator delete with the version that takes a size for any of the versions of operator
delete independently. Here is the MemoryDemo class definition with the first operator delete modified
to take the size of the memory to be deleted.

#include <new>
using namespace std;

If your class declares two identical versions of operator delete except that one
takes the size parameter and the other doesn’t, the version without the size parame-
ter will always get called. If you want the version with the size to be used, write
only that version.

462

Chapter 16

19_574841 ch16.qxd 12/15/04 3:45 PM Page 462

class MemoryDemo
{

public:
MemoryDemo();
~MemoryDemo();
void* operator new(size_t size) throw(bad_alloc);
void operator delete(void* ptr, size_t size) throw();
void* operator new[](size_t size) throw(bad_alloc);
void operator delete[](void* ptr) throw();
void* operator new(size_t size, const nothrow_t&) throw();
void operator delete(void*ptr, const nothrow_t&) throw();
void* operator new[](size_t size, const nothrow_t&) throw();
void operator delete[](void* ptr, const nothrow_t&) throw();
void* operator new(size_t size, int extra) throw(bad_alloc);

};

The implementation of this operator delete calls the global operator delete without the size
parameter because there is no global operator delete that takes the size.

void MemoryDemo::operator delete(void* ptr, size_t size) throw()
{

cout << “operator delete with size\n”;
::operator delete(ptr);

}

This capability is useful only if you are writing a complicated memory allocation and deallocation
scheme for your classes.

Summary
This chapter summarized the rationale for operator overloading, and provided examples and explana-
tions for overloading the various categories of operators. We hope that this chapter taught you to look
past the ugly syntax of operator overloading, and to appreciate the power that it gives you.

Subsequent chapters in this book employ operator overloading to provide abstractions, including itera-
tors in Chapter 23 and smart pointers in Chapter 25.

463

Overloading C++ Operators

19_574841 ch16.qxd 12/15/04 3:45 PM Page 463

19_574841 ch16.qxd 12/15/04 3:45 PM Page 464

Writing Efficient C++

The efficiency of your programs is important regardless of your application domain. If your prod-
uct competes with others in the marketplace, speed can be a major differentiator: given the choice
between a slower and a faster program, which one would you choose? No one would buy an
operating system that takes two weeks to boot up, unless it was the only option. Even if you don’t
intend to sell your products, they will have users. Those users will not be happy with you if they
end up wasting time waiting for your programs to complete tasks.

Now that you understand the concepts of Professional C++ design and coding, and have tackled
some of the more complex facilities that the language provides, you are ready to incorporate per-
formance into your programs. Writing efficient programs involves thought at the design level, as
well as details at the implementation level. Although this chapter falls late in this book, remember
to consider performance from the beginning of your program life cycle.

This chapter first provides working definitions of “efficiency” and “performance” as they relate to
software, describes the two levels at which you can increase efficiency in your programs, and dis-
cusses the two major classes of applications. Specific strategies follow for writing efficient programs,
including language-level optimizations and design-level guidelines. Finally, the chapter provides
an in-depth discussion of profiling tools.

Overview of Performance and Efficiency
Before delving further into the details, it’s helpful to define the terms performance and efficiency,
as used in this book. The performance of a program can refer to several areas, such as speed, mem-
ory usage, disk access, and network use. This chapter focuses on speed performance. The term
efficiency, when applied to programs, means running without wasted effort. An efficient program
completes its tasks as quickly as possible within the given circumstances. A program can be effi-
cient without being fast, if the application domain is inherently prohibitive to quick execution.

20_574841 ch17.qxd 12/15/04 3:45 PM Page 465

Note that the title of this chapter, “Writing Efficient C++,” means writing programs that run efficiently,
not efficiently writing programs. That is, the time you learn to save by reading this chapter will be your
users’, not your own!

Two Approaches to Efficiency
The traditional approach to writing efficient programs is to aim for optimizing, or improving the perfor-
mance of, preexisting code. This technique usually involves only language-level efficiency: specific, inde-
pendent, code changes such as passing objects by reference instead of by value. That approach will only
get you so far. If you want to write truly high-performance applications, you must think about efficiency
from the beginning of your design. This design-level efficiency includes choosing efficient algorithms,
avoiding unnecessary steps and computations, and selecting appropriate design optimizations.

Two Kinds of Programs
As noted, efficiency is important for all application domains. Additionally, there is a small subset of pro-
grams, such as systems-level software, embedded systems, intensive computational applications, and
real-time games, which require extremely high levels of efficiency. Most programs don’t. Unless you
write those types of high-performance applications, you probably don’t need to worry about squeezing
every ounce of speed out of your C++ code. Think of it as the difference between building normal family
cars and building sports cars. Every car must be reasonably efficient, but sports cars require extremely
high performance. You wouldn’t want to waste your time optimizing family cars for speed when they’ll
never go faster than 70 miles per hour.

Is C++ an Inefficient Language?
C programmers often resist using C++ for high-performance applications. They claim that the language
is inherently less efficient than C or a similar procedural language. On the surface, the argument is com-
pelling: C++ includes high-level constructs, such as exceptions and virtual methods, which are funda-
mentally slow. However, there are problems with the argument.

First, you cannot ignore the effect of compilers. When discussing the efficiency of a language, you must
separate the performance capabilities of the language itself from the effectiveness of its compilers at opti-
mizing it. Recall that the C or C++ code you write is not the code that the computer executes. A compiler
first translates that code into machine language, applying optimizations in the process. This means that
you can’t simply run benchmarks of C and C++ programs and compare the result. You’re really compar-
ing the compiler optimizations of the languages, not the languages themselves. C++ compilers can “opti-
mize away” many of the high-level constructs in the language to generate machine code similar to that
generated from a comparable C program.

Critics, however, still maintain that some features of C++ cannot be optimized away. For example, as
explained in Chapter 10, virtual methods require the existence of a vtable and an additional level of indi-
rection at run time, making them unarguably slower than regular nonvirtual function calls. However,
when you really think about it, this argument is still unconvincing. Virtual method calls provide more

An efficient, or high-performance, program runs as fast as is possible for the particu-
lar tasks.

466

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 466

than just a function call: they also give you a run-time choice of which function to call. A comparable
nonvirtual function call would need a conditional statement to decide which function to call. If you
don’t need those extra semantics, you can use a nonvirtual function (although for safety and style rea-
sons, we recommend you don’t). A general design rule in the C++ language is, “if you don’t use it, you
don’t need to pay for it.” If you don’t use virtual methods, you pay no performance penalty for the fact
that you could use them. Thus, nonvirtual function calls in C++ are identical to function calls in C in
terms of performance.

The critics might be right in one sense, however: some aspects of C++ make it easy to write inefficient code
at the language-level. Using exceptions and virtual functions indiscriminately can slow down your pro-
gram. However, this issue is insubstantial in light of the advantages C++ offers for your algorithms and
overall design. The high-level constructs of C++ enable you to write cleaner programs that are more effi-
cient at the design level, are more easily maintained, and avoid accumulating unnecessary and dead code.

Finally, both authors of this book have used C++ for successful systems level software where high-
performance was required. We believe that you will be better served in your development, performance,
and maintenance by choosing C++ instead of a procedural language.

Language-Level Efficiency
Many books, articles, and programmers spend a lot of time trying to convince you to apply language-
level optimizations to your code. These tips-and-tricks are important, and can speed up your programs
in some cases. However, they are far less important than the overall design and algorithm choices in
your program. You can pass-by-reference all you want, but it won’t ever make your program fast if you
perform twice as many disk writes as you need. It’s easy to get bogged down in references and pointers
and forget about the big picture.

Furthermore, some of these language-level tricks can be performed automatically by good optimizing
compilers. Check your compiler documentation for details before spending time optimizing a particular
area yourself.

In this book, we’ve tried to present a balance of strategies. Thus, we’ve included here what we feel are
the most useful language-level optimizations. This list is not comprehensive, but should give you a good
start if you want to optimize your code. However, make sure to read, and practice, the design-level effi-
ciency advice described later in this chapter as well.

Handle Objects Efficiently
C++ does a lot of work for you behind the scenes, particularly with regard to objects. You should always
be aware of the performance impact of the code you write. If you follow a few simple guidelines, your
code will become significantly more efficient.

Pass-by-Reference
This rule is discussed elsewhere in this book, but it’s worth repeating here.

Apply language-level optimizations judiciously.

467

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 467

Pass-by-value incurs copying costs that are avoided by pass-by-reference. One reason why this rule can
be difficult to remember is that on the surface there doesn’t appear to be any problem when you pass-
by-value. Consider a class to represent a person that looks like this:

class Person
{

public:
Person();
Person(const string& inFirstName, const string& inLastName, int inAge);
string getFirstName() { return firstName; }
string getLastName() { return lastName; }
int getAge() { return age; }

private:
string firstName, lastName;
int age;

};

You could write a function that takes a Person object in the following way:

void processPerson(Person p)
{

// Process the person.
}

You might call it like this:

Person me(“Nicholas”, “Solter”, 28);
processPerson(me);

This doesn’t look like there’s any more code than if you instead wrote the function like this:

void processPerson(const Person& p)
{

// Process the person.
}

The call to the function remains the same. However, consider what happens when you pass-by-value in
the first version of the function. In order to initialize the p parameter of processPerson(), me must be
copied with a call to its copy constructor. Even though you didn’t write a copy constructor for the Person
class, the compiler generates one that copies each of the data members. That still doesn’t look so bad:
there are only three data members. However, two of those are strings, which are themselves objects
with copy constructors. So, each of their copy constructors will be called as well. The version of
processPerson() that takes p by reference incurs no such copying costs. Thus, pass-by-reference in
this example avoids three function calls when the code enters the function.

And you’re still not done. Remember that p in the first version of processPerson() is a local variable
to the processPerson() function, and so must be destroyed when the function exits. This destruction
requires a call to the Person destructor. Because you didn’t write a destructor, the default destructor

Objects should rarely be passed by value to a function or method.

468

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 468

simply calls the destructor of all of the data members. strings have destructors, so exiting this function
(if you passed by value) incurs calls to three destructors. None of those calls are needed if the Person
object is passed by reference.

In summary, if a function must modify an object, you can simply pass the object by reference. If the func-
tion should not modify the object, you can pass it by const reference, as in the preceding example. See
Chapter 12 for details on reference and const.

Return by Reference
Just as you should pass objects by reference to functions, you should also return them by reference from
functions in order to avoid copying the objects unnecessarily. Unfortunately, it is sometimes impossible
to return objects by reference, such as when you write overloaded operator+ and other similar opera-
tors. You should never return a reference or a pointer to a local object that will be destroyed when the
function exits!

Catch Exceptions by Reference
As noted in Chapter 15, you should catch exceptions by reference in order to avoid an extra copy. As
described later in this section, exceptions are heavy in terms of performance, so any little thing you can
do to improve their efficiency will help.

Avoid Creating Temporary Objects
The compiler creates temporary, unnamed objects in several circumstances. Recall from Chapter 9 that
after writing a global operator+ for a class, you can add objects of that class to other types, as long as
those types can be converted to objects of that class. For example, the SpreadsheetCell class definition
looks in part like the following:

class SpreadsheetCell
{

public:
// Other constructors omitted for brevity
SpreadsheetCell(double initialValue);

friend const SpreadsheetCell operator+(const SpreadsheetCell& lhs,
const SpreadsheetCell& rhs);

// Remainder omitted for brevity
};

The constructor that takes a double allows you to write code like this:

SpreadsheetCell myCell(4), aThirdCell;

aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

The first addition line constructs a temporary SpreadsheetCell object from the 5.6 argument, then
calls the operator+ with myCell and the temporary object as arguments. The result is stored in
aThirdCell. The second addition line does the same thing, except that 4 must be coerced to a double
in order to call the double constructor of the SpreadsheetCell.

469

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 469

The important point in the above example is that the compiler generates code to create an extra, unnamed
SpreadsheetCell object for each addition line. That object must be constructed and destructed with
calls to its constructor and destructor. If you’re still skeptical, try inserting cout statements in your con-
structor and destructor and watching the printout.

In general, the compiler constructs a temporary object whenever your code converts a variable of one type
to another type for use in a larger expression. This rule applies mostly to function calls. For example, sup-
pose that you write a function with this signature:

void doSomething(const SpreadsheetCell& s);

You can call it like this:

doSomething(5.56);

The compiler constructs a temporary SpreadsheetCell object from 5.56 using the double constructor,
which it passes to doSomething(). Note that if you remove the const from the s parameter, you can no
longer call doSomething() with a constant: you must pass a variable. Temporary objects can only serve
as targets of a const reference, not a non-const reference.

You should generally attempt to avoid cases in which the compiler is forced to construct temporary objects.
Although it is impossible to avoid in some situations, you should at least be cognizant of the existence of
this “feature” so you aren’t surprised by performance and profiling results.

The Return-Value Optimization
A function that returns an object by value can cause the creation of a temporary object. Continuing with
the Person example, consider this function:

Person createPerson()
{

Person newP;
return (newP);

}

Suppose that you call it like this (assuming that operator<< is implemented for the Person class):

cout << createPerson();

Even though this call does not store the result of createPerson() anywhere, the result must be stored
somewhere in order to pass to the operator<< call. In order to generate code for this behavior, the
compiler is allowed to create a temporary variable in which to store the Person object returned from
createPerson().

Even if the result of the function is not used anywhere, the compiler might still generate code to create
the temporary object. For example, suppose that you have this code:

createPerson();

The compiler might generate code to create a temporary object for the return value, even though it is not
used.

470

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 470

However, you usually don’t need to worry about this issue because the compiler will optimize away the
temporary variable in most cases. This optimization is called the return value optimization.

Don’t Overuse Costly Language Features
Several C++ features are costly in terms of execution speed: exceptions, virtual methods, and RTTI are
the biggest offenders. If you are worried about efficiency, you should consider avoiding these features.
Unfortunately, support for exceptions and RTTI incurs performance overhead even if you don’t explic-
itly use the features in your program. Support for only the possible use of those features requires extra
steps during execution. Thus, many compilers allow you to specify that your program should be com-
piled without support for these features at all. For example, consider the following simple program that
uses both exceptions and RTTI:

// test.cpp
#include <iostream>
#include <exception>
using namespace std;

class base
{

public:
base() {}
virtual ~base() {}

};

class derived : public base {};

int main(int argc, char** argv)
{

base* b = new derived();
derived* d = dynamic_cast<derived*>(b); // Use RTTI.
if (d == NULL) {

throw exception(); // Use exceptions.
}
return (0);

}

Using g++ 3.2.2 on Linux, you can compile the program in the following way:

>g++ test.cpp

If you specify the g++ flag to disable exceptions, your attempt to compile looks like this:

>g++ -fno-exceptions test.cpp
test.cpp: In function `int main (int, char**)’:
test.cpp:20: exception handling disabled, use -fexceptions to enable

Strangely, if you specify the g++ flag to disable RTTI, the compiler successfully compiles the program,
despite the obvious use of dynamic_cast:

>g++ -fno-rtti test.cpp
>

471

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 471

However, the use of RTTI fails at run time, causing the program to generate a segmentation violation.

Consult your compiler documentation for the proper flags to disable these features.

Use Inline Methods and Functions
As described in Chapter 9, the code for an inline method or function is inserted directly into the code
where it is called, avoiding the overhead of a function call. You should mark as inline all functions and
methods that you think can qualify for this optimization. However, remember that inlining requests by
the programmer are only a recommendation to the compiler. It can refuse to inline the function that you
want it to inline.

On the other hand, some compilers inline appropriate functions and methods during their optimization
steps, even if those functions aren’t marked with the inline keyword. Thus, you should read your com-
piler documentation before wasting a lot of effort deciding which functions to inline.

Design-Level Efficiency
The design choices in your program affect its performance far more than do language details such as
pass-by-reference. For example, if you choose an algorithm for a fundamental task in your application
that runs in O(n2) time instead of a simpler one that runs in O(n) time, you could potentially perform the
square of the number of operations that you really need. To put numbers on that, a task that uses an
O(n2) algorithm and performs one million operations would perform only one thousand with an O(n)
algorithm Even if that operation is optimized beyond recognition at the language level, the simple fact
that you perform one million operations when a better algorithm would only use one thousand will
make your program very inefficient. Remember, though, that big-O notation ignores constant factors,
so it’s not always the most valid guideline. Nonetheless, you should choose your algorithms carefully.
Refer to Part I, specifically Chapter 4, of this book for a detailed discussion of algorithm design choices.

In addition to your choice of algorithms, design-level efficiency includes specific tips and tricks. The
remainder of this section presents three design techniques for optimizing your program: caching, object
pools, and thread pools.

Cache as Much as Possible
Caching means storing items for future use in order to avoid retrieving or recalculating them. You might be
familiar with the principle from its use in computer hardware. Modern computer processors are built with
memory caches that store recently and frequently accessed memory values in a location that is quicker to
access than main memory. Most memory locations that are accessed at all are accessed more than once in a
short time period, so caching at the hardware level can significantly speed up computations.

Disabling support for language features is risky. You never know when a third-party
library will suddenly throw an exception or rely on RTTI for correct behavior. Thus,
you should only disable support for exceptions and RTTI when you are sure that
none of your code and none of the library code you use require those features, and
when you are writing a performance-critical application.

472

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 472

Caching in software follows the same approach. If a task or computation is particularly slow, you should
make sure that you are not performing it more than necessary. Store the results in memory the first time
you perform the task so that they are available for future needs. Here is a list of tasks that are usually slow:

❑ Disk access. You should avoid opening and reading the same file more than once in your pro-
gram. If memory is available, save the file contents in RAM if you need to access it frequently.

❑ Network communication. Whenever you need to communicate over a network, your program
is subject to the vagaries of the network load. Treat network accesses like file accesses, and cache
as much static information as possible.

❑ Mathematical computations. If you need the result of a computation in more than one place in
your program, perform the calculation once and share the result.

❑ Object allocation. If you need to create and use a large number of short-lived objects in your
program, consider using an object pool, which is described in the next section.

❑ Thread creation. This task can also be slow. You can “cache” threads in a thread-pool. See the
section on Thread Pools below.

Cache Invalidation
One common problem with caching is that the data you store are often only copies of the underlying
information. The original data might change during the lifetime of the cache. For example, you might
want to cache the values in a configuration file so that you don’t need to read it repeatedly. However, the
user might be allowed to change the configuration file while your program is running, which would
make your cached version of the information obsolete. In cases like this, you need a mechanism for cache
invalidation: when the underlying data change, you must either stop using your cached information, or
repopulate your cache.

One technique for cache invalidation is to request that the entity managing the underlying data notify
your program if the data change. It could do this through a callback that your program registers with the
manager. Alternatively, your program could poll for certain events that would trigger it to repopulate
the cache automatically. Regardless of your specific cache invalidation implementation, make sure that
you think about these issues before relying on a cache in your program.

Use Object Pools
As you learned in Chapter 13, object pools are a technique for avoiding the creation and deletion of a
large number of objects throughout the lifetime of your program. If you know that your program needs
a large number of short-lived objects of the same type, you can create a pool, or cache, of those objects.
Whenever you need an object in your code, you ask the pool for one. When you are done with the object,
you return it to the pool. The object pool creates the objects only once, so their constructor is called only
once, not each time they are used. Thus, object pools are appropriate when the constructor performs
some setup actions that apply to many uses of the object, and when you can set instance-specific param-
eters on the object through nonconstructor method calls.

An Object Pool Implementation
This section provides an implementation of a pool class template that you can use in your programs.
The pool allocates a chunk of objects of the specified class when it is constructed and hands them out
via the acquireObject() method. When the client is done with the object, she returns it via the
releaseObject() method. If aquireObject() is called but there are no free objects, the pool allocates
another chunk of objects.

473

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 473

The most difficult aspect of an object pool implementation is keeping track of which objects are free and
which are in use. This implementation takes the approach of storing free objects on a queue. Each time
a client requests an object, the pool gives that client the top object from the queue. The pool does not
explicitly track objects that are in use. It trusts the clients to return them correctly to the pool when the
clients are finished with them. Separately, the pool keeps track of all allocated objects in a vector. This
vector is used only when the pool is destroyed in order to free the memory for all the objects, thereby
preventing memory leaks.

The code uses the STL implementations of queue and vector, which were introduced in Chapter 4. The
queue container allows clients to add elements with push(), remove them with pop(), and examine
the top element with front(). The vector allows clients to add elements with push_back(). Consult
Chapters 21 through 23 for more details of these two containers.

Here is the class definition, with comments that explain the details. Note that the template is parameter-
ized on the class type from which the objects in the pool are to be constructed.

#include <queue>
#include <vector>
#include <stdexcept>
#include <memory>

using std::queue;
using std::vector;

//
// template class ObjectPool
//
// Provides an object pool that can be used with any class that provides a
// default constructor
//
// The object pool constructor creates a pool of objects, which it hands out
// to clients when requested via the acquireObject() method. When a client is
// finished with the object it calls releaseObject() to put the object back
// into the object pool.
//
// The constructor and destructor on each object in the pool will be called only
// once each for the lifetime of the program, not once per acquisition and release.
//
// The primary use of an object pool is to avoid creating and deleting objects
// repeatedly. The object pool is most suited to applications that use large
// numbers of objects for short periods of time.
//
// For efficiency, the object pool doesn’t perform sanity checks.
// It expects the user to release every acquired object exactly once.
// It expects the user to avoid using any objects that he or she has released.
//
// It expects the user not to delete the object pool until every object
// that was acquired has been released. Deleting the object pool invalidates
// any objects that the user has acquired, even if they have not yet been released.
//
template <typename T>
class ObjectPool
{

474

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 474

public:
//
// Creates an object pool with chunkSize objects.
// Whenever the object pool runs out of objects, chunkSize
// more objects will be added to the pool. The pool only grows:
// objects are never removed from the pool (freed), until
// the pool is destroyed.
//
// Throws invalid_argument if chunkSize is <= 0
//
ObjectPool(int chunkSize = kDefaultChunkSize)

throw(std::invalid_argument, std::bad_alloc);

//
// Frees all the allocated objects. Invalidates any objects that have
// been acquired for use
//
~ObjectPool();

//
// Reserve an object for use. The reference to the object is invalidated
// if the object pool itself is freed.
//
// Clients must not free the object!
//
T& acquireObject();

//
// Return the object to the pool. Clients must not use the object after
// it has been returned to the pool.
//
void releaseObject(T& obj);

protected:
//
// mFreeList stores the objects that are not currently in use
// by clients.
//
queue<T*> mFreeList;
//
// mAllObjects stores pointers to all the objects, in use
// or not. This vector is needed in order to ensure that all
// objects are freed properly in the destructor.
//
vector<T*> mAllObjects;

int mChunkSize;
static const int kDefaultChunkSize = 10;

//
// Allocates mChunkSize new objects and adds them
// to the mFreeList
//
void allocateChunk();
static void arrayDeleteObject(T* obj);

475

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 475

private:
// Prevent assignment and pass-by-value.
ObjectPool(const ObjectPool<T>& src);
ObjectPool<T>& operator=(const ObjectPool<T>& rhs);

};

There are a few points to emphasize about this class definition. First, note that objects are acquired and
released by reference, instead of by pointer, in order to discourage clients from manipulating them or
freeing them through pointers. Next, note that the user of the object pool specifies through the template
parameter the name of the class from which objects can be created, and through the constructor the allo-
cation “chunk size.” This “chunk size” controls the number of objects created at one time. Here is the
code that defines the kDefaultChunkSize:

template<typename T>
const int ObjectPool<T>::kDefaultChunkSize;

The default of 10, given in the class definition, is probably too small for most uses. If your program
requires thousands of objects at once, you should use a larger, more appropriate, value.

The constructor validates the chunkSize parameter, and calls the allocateChunk() helper method to
obtain a starting allocation of objects.

template <typename T>
ObjectPool<T>::ObjectPool(int chunkSize) throw(std::invalid_argument,

std::bad_alloc) : mChunkSize(chunkSize)
{

if (mChunkSize <= 0) {
throw std::invalid_argument(“chunk size must be positive”);

}
// Create mChunkSize objects to start.
allocateChunk();

}

The allocateChunk() method allocates mChunkSize elements in contiguous storage. It stores a
pointer to the array of objects in the mAllObjects vector, and pushes each individual object onto the
mFreeLlist queue.

//
// Allocates an array of mChunkSize objects because that’s
// more efficient than allocating each of them individually.
// Stores a pointer to the first element of the array in the mAllObjects
// vector. Adds a pointer to each new object to the mFreeList.
//
template <typename T>
void ObjectPool<T>::allocateChunk()
{

T* newObjects = new T[mChunkSize];
mAllObjects.push_back(newObjects);
for (int i = 0; i < mChunkSize; i++) {

mFreeList.push(&newObjects[i]);
}

}

476

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 476

The destructor simply frees all of the arrays of objects that were allocated in allocateChunk(). However,
it uses the for_each() STL algorithm to do so, passing it a pointer to the arrayDelete() static method,
which in turn makes the actual delete call on each object array. Consult the STL chapters, Chapters 21
through 23, for details if this code confuses you.

//
// Freeing function for use in the for_each algorithm in the
// destructor
//
template<typename T>
void ObjectPool<T>::arrayDeleteObject(T* obj)
{

delete [] obj;
}

template <typename T>
ObjectPool<T>::~ObjectPool()
{

// Free each of the allocation chunks.
for_each(mAllObjects.begin(), mAllObjects.end(), arrayDeleteObject);

}

acquireObject() returns the top object from the free list, first calling allocateChunk() if there are no
free objects.

template <typename T>
T& ObjectPool<T>::acquireObject()
{

if (mFreeList.empty()) {
allocateChunk();

}
T* obj = mFreeList.front();
mFreeList.pop();
return (*obj);

}

Finally, releaseObject() returns the object to the tail of the free list.

template <typename T>
void ObjectPool<T>::releaseObject(T& obj)
{

mFreeList.push(&obj);
}

Using the Object Pool
Consider an application that is structured around obtaining requests for actions from users and process-
ing those requests. This application would most likely be the middleware between a graphical front-end
and a back-end database. For example, it could be part of an airline reservation system or an online
banking application. You might want to encode each user request in an object, with a class that looks
something like this:

477

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 477

class UserRequest
{

public:
UserRequest() {}
~UserRequest() {}

// Methods to populate the request with specific information
// Methods to retrieve the request data
// (not shown)

protected:
// Data members (not shown)

};

Instead of creating and deleting large numbers of requests throughout the lifetime of your program, you
could use an object pool. Your program structure would then be something like the following:

UserRequest& obtainUserRequest(ObjectPool<UserRequest>& pool)
{

// Obtain a UserRequest object from the pool.
UserRequest& request = pool.acquireObject();

// Populate the request with user input
// (not shown).

return (request);
}

void processUserRequest(ObjectPool<UserRequest>& pool, UserRequest& req)
{

// Process the request
// (not shown).

// Return the request to the pool.
pool.releaseObject(req);

}

int main(int argc, char** argv)
{

ObjectPool<UserRequest> requestPool(1000);

// Set up program
// (not shown).

while (/* program is running */) {
UserRequest& req = obtainUserRequest(requestPool);
processUserRequest(requestPool, req);

}

return (0);
}

478

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 478

Use Thread Pools
Thread pools are very similar to object pools. Instead of creating and deleting threads dynamically
throughout your program lifetime, you can create a pool of threads that can be used as needed. This
technique is often used in programs that process incoming network requests. Your Web server might
keep a pool of threads ready to lookup pages in response to each client request that arrives.

As discussed further in Chapter 18, threading support is platform-specific, so we do not show an exam-
ple of a thread pool here. However, you can write one in a similar way to an object pool.

Profiling
Although we urge you to think about efficiency as you design and code, you should accept that not
every finished application will perform as well as it could. It is easy for efficiency to fall by the wayside
in an attempt to generate a functional program; in our experience, most efficiency optimization is per-
formed on already working programs. Even if you did consider efficiency in your development, you
might not have optimized the right parts of the program! Recall from Chapter 4 that 90 percent of the
running time of most programs is spent in only 10 percent of the code. This means that you could opti-
mize 90 percent of your code out of existence, but still only improve the running time of the program by
10 percent. Obviously, you want to optimize the parts of the code that are exercised the most for the spe-
cific workload that you expect the program to run.

Consequently, it is often helpful to profile your program to determine which parts of the code require opti-
mization. There are many profiling tools available that analyze programs as they run in order to generate
data about their performance. Most profiling tools provide analysis at the function level by specifying the
amount of time (or percent of total execution time) spent in each function in the program. After running a
profiler on your program, you can usually tell immediately which parts of the program need optimiza-
tion. Profiling before and after optimizing is also useful to prove that your optimizations had an effect.

In our experience, the best profiling tool is Rational Quantify from IBM. It requires significant license
fees, but you should check if your company or academic institution has a license for its use. If the license
restriction is prohibitive, there are several free profiling tools. One of the most well-known is gprof, which
can be found on most Unix systems, including Solaris and Linux.

Profiling Example with gprof
The power of profiling can best be seen with a real coding example. As a disclaimer, the performance
bugs in the first attempt shown are not subtle. Real efficiency issues would probably be more complex,
but a program long enough to demonstrate them would be too lengthy for this book.

Suppose that you work for the United States Social Security Administration. Every year the administra-
tion puts up a Web site that allows users to look up the popularity of new baby names from the previous
year. Your job is to write the back-end program that looks up names for users. Your input is a file con-
taining the name of every new baby. This file will obviously contain redundant names. For example, in
the file for boys for 2003, the name Jacob was the most popular, showing up 29,195 times. Your program
must read the file to construct an in-memory database. A user may then request the absolute number of
babies with a given name, or the rank of that name among all the babies.

479

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 479

First Design Attempt
A logical design for this program consists of a NameDB class with the following public methods:

#include <string>
#include <stdexcept>

using std::string;

class NameDB
{

public:
// Reads the list of baby names in nameFile to populate the database.
// Throws invalid_argument if nameFile cannot be opened or read.
NameDB(const string& nameFile) throw (std::invalid_argument);

// Returns the rank of the name (1st, 2nd, etc).
// Returns –1 if the name is not found.
int getNameRank(const string& name) const;

// Returns the number of babies with this name.
// Returns –1 if the name is not found.
int getAbsoluteNumber(const string &name) const;

// Protected and private members and methods not shown
};

The hard part is choosing a good data structure for the in-memory database. A first attempt might be an
array, or a vector from the STL, of name/count pairs. Each entry in the vector would store one of the
names, along with a count of the number of times that name shows up in the raw data file. Here is the
complete class definition with such a design:

#include <string>
#include <stdexcept>
#include <vector>

using std::string;

class NameDB
{

public:
NameDB(const string& nameFile) throw (std::invalid_argument);

int getNameRank(const string& name) const;
int getAbsoluteNumber(const string& name) const;

protected:
std::vector<std::pair<string, int> > mNames;

// Helper methods
bool nameExists(const string& name) const;
void incrementNameCount(const string& name);
void addNewName(const string& name);

private:

480

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 480

// Prevent assignment and pass-by-value.
NameDB(const NameDB& src);
NameDB& operator=(const NameDB& rhs);

};

Note the use of the STL vector and pair. A pair is simply a utility class that combines two variables of
different types. Consult Chapters 21 to 23 for details on the STL.

Here is the implementation of the constructor and the helper functions nameExists(),
incrementNameCount(), and addNewName(). If you’re unfamiliar with the STL, you might be con-
fused by the loops in nameExists() and incrementNameCount(). They simply iterate over all
the elements of the mNames vector.

//
// Reads the names from the file and populates the database.
// The database is vector of name/count pairs, storing the
// number of times each name shows up in the raw data.
//
NameDB::NameDB(const string& nameFile) throw (invalid_argument)
{

// Open the file and check for errors.
ifstream inFile(nameFile.c_str());
if (!inFile) {

throw invalid_argument(“Unable to open file\n”);
}

// Read the names one at a time.
string name;
while (inFile >> name) {

// Look up the name in the database so far.
if (nameExists(name)) {

// If the name exists in the database, just
// increment the count.
incrementNameCount(name);

} else {
// If the name doesn’t yet exist, add it with
// a count of 1.
addNewName(name);

}
}
inFile.close();

}

//
// nameExists
//
// Returns true if the name exists in the database. Returns false otherwise.
//
bool NameDB::nameExists(const string& name) const
{

// Iterate through the vector of names looking for the name.
for (vector<pair<string, int> >::const_iterator it = mNames.begin();

it != mNames.end(); ++it) {
if (it->first == name) {

481

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 481

return (true);
}

}
return (false);

}

//
// incrementNameCount
//
// Precondition: name exists in the vector of names.
// Postcondition: the count associated with name is incremented.
//
void NameDB::incrementNameCount(const string& name)
{

for (vector<pair<string, int> >::iterator it = mNames.begin();
it != mNames.end(); ++it) {
if (it->first == name) {

it->second++;
return;

}
}

}

//
// addNewName
//
// Adds a new name to the database
//
void NameDB::addNewName(const string& name)
{

mNames.push_back(make_pair<string, int>(name, 1));
}

Note that in the preceding example, you could use an algorithm like find_if to accomplish the same
thing as the loops in nameExists() and incrementNameCount(). We show the loops explicitly in
order to emphasize the performance problems.

The savvy reader might notice some performance problems already. What if there are hundreds of thou-
sands of names? The many linear searches involved in populating the database might become slow.

In order to complete the example, here are the implementations of the two public methods:

//
// getNameRank
//
// Returns the rank of the name.
// First looks up the name to obtain the number of babies with that name.
// Then iterates through all the names, counting all the names with a higher
// count than the specified name. Returns that count as the rank.
//
int NameDB::getNameRank(const string& name) const
{

// Make use of the getAbsoluteNumber() method.
int num = getAbsoluteNumber(name);

482

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 482

// Check if we found the name.
if (num == -1) {

return (-1);
}

//
// Now count all the names in the vector that have a
// count higher than this one. If no name has a higher count,
// this name is rank number 1. Every name with a higher count
// decreases the rank of this name by 1.
//
int rank = 1;
for (vector<pair<string, int> >::const_iterator it = mNames.begin();

it != mNames.end(); ++it) {
if (it->second > num) {

rank++;
}

}

return (rank);
}

//
// getAbsoluteNumber
//
// Returns the count associated with this name
//
int NameDB::getAbsoluteNumber(const string& name) const
{

for (vector<pair<string, int> >::const_iterator it = mNames.begin();
it != mNames.end(); ++it) {
if (it->first == name) {

return(it->second);
}

}
return (-1);

}

Profile of the First Attempt
In order to test the program, you need a main function:

#include “NameDB.h”

int main(int argc, char** argv)
{

NameDB boys(“boys_long.txt”);

cout << boys.getNameRank(“Daniel”) << endl;
cout << boys.getNameRank(“Jacob”) << endl;
cout << boys.getNameRank(“William”) << endl;

return (0);
}

483

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 483

This main creates one NameDB database called boys, telling it to populate itself with the file boys_long
.txt This file contains 500,500 names.

There are three steps to using gprof:

1. Compile your program with a special flag that causes it to log raw execution information next
time it is run. On Solaris 9, using the SunOne Studio 8 C++ Compiler, the flag is –xpg:

> CC -o namedb -xpg main.cpp NameDB.cpp

2. Next, run your pogram. This run should generate a file gmon.out in the working directory.

3. The final step is to run the gprof command in order to analyze the gmon.out profiling informa-
tion and produce a (somewhat) readable report. The –C option tells gprof to demangle C++ func-
tion names so they are more readable. gprof outputs to standard out, so you should redirect the
output to a file:

> gprof -C namedb gmon.out > gprof_analysis.out

Now you can analyze the data. Unfortunately, the output file is somewhat cryptic and intimidating. It
takes a little while to learn how to interpret it. gprof provides two separate sets of information. The sec-
ond set summarizes the amount of time spent executing each function in the program. The first, and
more useful, set summarizes the amount of time spent executing each function and its descendents. Here
is some of the output from the gprof_analysis.out file, edited to make it more readable:

[2] 85.1 0.00 48.21 1 main [2]

The preceding line means that main() and its descendents took 85.1 percent of the total execution time
of the program, for a total of 48.21 seconds. The remaining 14.9 percent of the time was spent performing
other tasks like looking for dynamically linked libraries and initializing global variables. The next entry
shows that the NameDB constructor and its descendents took 48.18 seconds, which is almost the entire
time of main(). The nested entries below NameDB::NameDB show which of its descendents took the
most time. Here you can see that nameExists() and incrementNameCount() both took approximately
14 seconds. Remember that these times are the sums of all the calls to the functions. The third column
in those lines shows the number of calls to the function (500,500 to nameExists() and 499,500 to
incrementNameCont()). No other function took a significant amount of the NameDB time.

[3] 85.1 0.03 48.18 1 NameDB::NameDB
9.60 14.04 500500/500500 bool NameDB::nameExists
8.36 14.00 499500/499500 void NameDB::incrementNameC

ount

Without going any further in this analysis, two things should jump out at you:

1. 48 seconds to populate the database of approximately 500,000 names is slow. Perhaps you need
a better data structure.

2. nameExists() and incrementNameCount() take almost identical time, and are called almost
the same number of times. If you think about the application domain, that makes sense: most
names in the text file input are duplicates, so the vast majority of the calls to nameExists() are
followed by a call to incrementNameCount(). If you look back at the code, you can see that
these functions are almost identical; they could probably be combined. In addition, most of
what they are doing is searching the vector. It would probably be better to use a sorted data
structure to reduce the searching time.

484

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 484

Second Attempt
With these two observations from the gprof output, it’s time to redesign the program. The new design
uses a map instead of a vector. Recall from Chapter 4 that the STL map employs an underlying tree
structure that keeps the entries sorted, and provides O(log n) lookup instead of the O(n) searches in the
vector.

The new version of the program also combines nameExists() and incrementNameCount() into one
nameExistsAndIncrement() function.

Here is the new class definition:

#include <string>
#include <stdexcept>
#include <map>

using std::string;

class NameDB
{

public:
NameDB(const string& nameFile) throw (std::invalid_argument);

int getNameRank(const string& name) const;
int getAbsoluteNumber(const string& name) const;

protected:
std::map<string, int> mNames;

bool nameExistsAndIncrement(const string& name);
void addNewName(const string& name);

private:
// Prevent assignment and pass-by-value
NameDB(const NameDB& src);
NameDB& operator=(const NameDB& rhs);

};

Here are the new method implementations:

//
// Reads the names from the file and populates the database.
// The database is a map associating names with their frequency.
//
NameDB::NameDB(const string& nameFile) throw (invalid_argument)
{

//
// Open the file and check for errors.
//
ifstream inFile(nameFile.c_str());

if (!inFile) {
throw invalid_argument(“Unable to open file\n”);

}

485

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 485

//
// Read the names one at a time.
//
string name;
while (inFile >> name) {

//
// Look up the name in the database so far.
//
if (!nameExistsAndIncrement(name)) {

//
// If the name exists in the database, the
// function incremented it, so we just continue.
// We get here if it didn’t exist, in case which
// we add it with a count of 1.
//
addNewName(name);

}
}
inFile.close();

}

//
// nameExistsAndIncrement
//
// Returns true if the name exists in the database. false
// otherwise. If it finds it, it increments it.
//
bool NameDB::nameExistsAndIncrement(const string& name)
{

//
//Find the name in the map.
//
map<string, int>::iterator res = mNames.find(name);
if (res != mNames.end()) {

res->second++;
return (true);

}
return (false);

}

//
// addNewName
//
// Adds a new name to the database
//
void NameDB::addNewName(const string& name)
{

mNames.insert(make_pair<string, int>(name, 1));
}

//
// getNameRank
//
// Returns the

486

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 486

int NameDB::getNameRank(const string& name) const
{

int num = getAbsoluteNumber(name);

//
// Check if we found the name.
//
if (num == -1) {

return (-1);
}

//
// Now count all the names in the map that have
// count higher than this one. If no name has a higher count,
// this name is rank number 1. Every name with a higher count
// decreases the rank of this name by 1.
//
int rank = 1;
for (map<string, int>::const_iterator it = mNames.begin();

it != mNames.end(); ++it) {
if (it->second > num) {

rank++;
}

}

return (rank);
}

//
// getAbsoluteNumber
//
// Returns the count associated with this name
//
int NameDB::getAbsoluteNumber(const string& name) const
{

map<string, int>::const_iterator res = mNames.find(name);
if (res != mNames.end()) {

return (res->second);
}

return (-1);
}

Profile of the Second Attempt
By following the same steps shown earlier, you can obtain the gprof performance data on the new ver-
sion of the program. The data are quite encouraging:

[2] 85.3 0.00 3.19 1 main [2]

main() now takes only 3.19 seconds: a 15-fold improvement! There are certainly further improvements
that you could make on this program, but we leave those as an exercise for the reader. One hint is that
caching could come in handy for ranking the names.

487

Writing Efficient C++

20_574841 ch17.qxd 12/15/04 3:45 PM Page 487

Summary
This chapter discussed the key aspects of efficiency and performance in C++ programs, and provided
several specific tips and techniques for designing and writing more efficient applications. We hope you
gained an appreciation for the importance of performance and for the power of profiling tools.
Remember to think about performance and efficiency from the beginning of your program life cycle:
design-level efficiency is far more important than is language-level efficiency.

488

Chapter 17

20_574841 ch17.qxd 12/15/04 3:45 PM Page 488

Developing Cross-Platform
and Cross-Language

Applications

C++ programs can be compiled to run on a variety of computing platforms and the language has
been rigorously defined to ensure that programming in C++ for one platform is very similar to
programming in C++ for another. Yet, despite the standardization of the language, platform differ-
ences eventually come into play when writing professional-quality programs in C++. Even when
development is limited to a particular platform, small differences in compilers can elicit major
programming headaches. This chapter examines the necessary complication of programming in
a world with multiple platforms and multiple programming languages.

The first part of this chapter surveys the platform-related issues that C++ programmers encounter.
A platform is the collection of all of the details that make up your development and/or run-time
system. For example, your platform may be a Microsoft C++ compiler running on Windows XP on
a Pentium processor. Alternatively, your platform might be the gcc compiler running on Linux on
a PowerPC processor. Both of these platforms are able to compile and run C++ programs, but there
are significant differences between them.

The second part of this chapter looks at how C++ can interact with other programming languages.
While C++ is a general-purpose language, it may not always be the right tool for the job. Through
a variety of mechanisms, you can integrate C++ with other languages that may better serve your
needs.

Cross-Platform Development
There are several reasons why the C++ language encounters platform issues. Even though C++ is
a high-level language, its definition includes low-level implementation details. For example, C++
arrays are defined to live in contiguous blocks of memory. Such a specific implementation detail

21_574841 ch18.qxd 12/15/04 3:45 PM Page 489

exposes the language to the possibility that not all systems arrange and manage their memory in the same
way. C++ also faces the challenge of providing a standard language and a standard library without a
standard implementation. Varying interpretations of the specification among C++ compiler and library
vendors can lead to trouble when moving from one system to another. Finally, C++ is selective in what
the language provides as standard. Despite the presence of a standard library, sophisticated programs
often need functionality that is not provided by the language. This functionality generally comes from
third-party libraries or the platform, and can vary greatly.

Architecture Issues
The term architecture generally refers to the processor, or family of processors, on which a program runs.
A standard PC running Windows or Linux generally runs on the x86 architecture and Mac OS is usually
found on the PowerPC architecture. As a high-level language, C++ shields you from the differences
between these architectures. For example, a Pentium processor may have a single instruction that per-
forms the same functionality as six PowerPC instructions. As a C++ programmer, you don’t need to know
what this difference is or even that it exists. One advantage to using a high-level language is that the
compiler takes care of converting your code into the processor’s native assembly code format.

Processor differences do, however, rise up to the level of C++ code at times. You won’t face most of these
issues unless you are doing particularly low-level work, but you should be aware that they exist.

Binary Compatibility
As you probably already know, you cannot take a program written and compiled for a Pentium computer
and run it on a Mac. These two platforms are not binary compatible because their processors do not sup-
port the same set of instructions. Recall that when you compile a C++ program, your source code is
turned into binary instructions that the computer executes. That binary format is defined by the plat-
form, not by the C++ language.

The solution for binary compatibility issues is usually cross-compiling. When you cross-compile a pro-
gram, you build a separate version for each architecture on which it is destined to run. Some compilers
support cross-compiling directly. Others require that you build each version separately on the destina-
tion architecture.

Another solution to differences in binary representation is open source distribution. By making your source
available to the end user, she can compile it natively on her system and build a version of the program
that is in the correct binary format for her machine. As discussed in Chapter 4, open-source software has
become increasingly popular in the last several years. One of the major reasons is that it allows program-
mers to collaboratively develop software and increase the number of platforms on which it can run.

Word and Type Sizes
A word is the fundamental unit of storage for computer architectures. In most systems, a word is the size
of an address and/or a single processor instruction. When someone describes an architecture as 32-bit,
they most likely mean that the word size is 32 bits, or 4 bytes. In general, a system with a larger word
size can handle more memory and operate more quickly on complex programs.

Since pointers are memory addresses, they are inherently tied to word sizes. Many programmers are
taught that pointers are always 4 bytes, but this is not always the case. For example, consider the follow-
ing program, which outputs the size of a pointer.

490

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 490

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

int *ptr;

cout << “ptr size is “ << sizeof(ptr) << “ bytes” << endl;
}

If this program is run on a 32-bit Pentium architecture, the output is:

ptr size is 4 bytes

On a 64-bit Itanium system, the output is:

ptr size is 8 bytes

From a programmer’s point of view, the upshot of varying pointer sizes is simply that you cannot equate
a pointer with 4 bytes. More generally, you need to be aware that most sizes are not prescribed by the
C++ standard. The standard only says that a short integer has as much, or less, space as an integer, which
has as much, or less, space as a long integer. An integer itself is supposed to contain enough space to
hold a word, but as you saw above, this number can vary.

Word Order
All modern computers store numbers in a binary representation, but the representation of the same
number on two platforms may not be identical. This sounds contradictory, but as you’ll see, there are
two approaches to reading numbers that both make sense.

A single slot in your computer’s memory is usually a byte because most computers are byte addressable.
Number types in C++ are usually multiple bytes. For example, a short may be 2 bytes. Imagine that
your program contains the following line:

short myShort = 513;

In binary, the number 513 is 0000001000000001. This number contains 16 1s and 0s, or 16 bits. Because
there are 8 bits in a byte, the computer would need 2 bytes to store the number. Because each individual
memory address contains 1 byte, the computer needs to split the number up into multiple bytes.
Assuming that a short is 2 bytes, the number will get split into two even parts. The higher part of the
number is put into the high-order byte and the lower part of the number is put into the low-order byte. In
this case, the high-order byte is 00000010 and the low-order byte is 00000001.

Now that the number has been split up into memory-sized parts, the only question that remains is how
to store them in memory. Two bytes are needed, but the order of the bytes is unclear and in fact depends
on the architecture of the system in question.

One way to represent the number is to put the high-order byte first in memory and the low-order byte
next. This strategy is called big-endian ordering because the bigger part of the number comes first. PowerPC
and Sparc processors use a big-endian approach. Some other processors, such as x86, order the bytes
in the opposite order, putting the low-order byte first in memory. This approach is called little-endian

491

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 491

ordering because the smaller part of the number comes first. An architecture may choose one approach or
the other, usually based on backward compatibility. For the curious, the terms “big-endian” and “little-
endian” predate modern computers by several hundred years. Jonathan Swift coined the terms in his
eighteenth-century novel Gulliver’s Travels to describe the opposing camps of a debate about the proper
end on which to break an egg. Many computer scientists feel that the current debate about endianness is
at least as silly as the one described by Swift.

Regardless of the word ordering a particular architecture uses, your program can continue to use numeri-
cal values without paying any attention to whether the machine uses big-endian ordering or little-endian
ordering. The word ordering only comes into play when data moves between architectures. For exam-
ple, if you are sending binary data across a network, you may need to consider the word ordering of the
other system. Similarly, if you are writing binary data to a file, you may need to consider what will hap-
pen if that file is opened on a system with opposite word ordering.

Implementation Issues
When a C++ compiler is written, it is designed by a human being who attempts to adhere to the C++
standard. Unfortunately, the C++ standard is several hundred pages long and written in a combination
of prose, language grammars, and examples. Two human beings implementing a compiler according to
such a standard are unlikely to interpret every piece of prescribed information in the exact same way or
to catch every single edge case. As difficult as it is to believe, even compilers have bugs.

Compiler Quirks and Extensions
The first compiler bug you encounter is a surreal experience. After all these years of tracking down and
correcting your own bugs, you’ve finally discovered that the very program you have been depending on
contains flaws! C++ compilers have improved greatly since the creation of the language, but bugs do
exist in C++ compilers. At best, these are simply different interpretations of the specification or omitted
language features. From time to time, however, you may find a case where the compiler simply does the
wrong thing.

There is no simple rule for finding or avoiding compiler bugs. The best you can do is stay up to date on
compiler updates and perhaps subscribe to a mailing list or newsgroup for your compiler. If you suspect
that you have encountered a compiler bug, a simple Web search for the error message or condition you
have witnessed could uncover a workaround or patch.

One area that compilers are notorious for having trouble with is the set of more recent language addi-
tions. For example, some of the template and run-time type features in C++ weren’t originally part of the
language. As mentioned in Chapter 11, some compilers still don’t properly support these features.

Another issue to be aware of is that compilers often include their own language extensions without mak-
ing it obvious to the programmer. For example, variable-sized stack-based arrays are not part of the C++
language, yet the following line compiles with the g++ compiler:

int i = 4;
char myStackArray[i]; // Not a standard language feature!

Some compiler extensions may be useful, but if there is a chance that you will switch compilers at some
point, you should see if your compiler has a strict mode where it will avoid such extensions. For exam-
ple, compiling the previous line with the pedantic flag passed to g++ will yield the following warning:

492

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 492

warning: ISO C++ forbids variable-size array ‘myStackArray’

The C++ specification allows for a certain type of compiler-defined language extension through the
#pragma mechanism. #pragma is a precompiler directive whose behavior is defined by the implementa-
tion. If the implementation does not understand the directive, it simply ignores it. For example, some
compilers allow the programmer to turn compiler warnings off temporarily with #pragma. However,
this behavior is compiler-dependent and you should not rely on it.

Library Implementations
Most likely, your compiler includes an implementation of the C++ standard library, including the stan-
dard template library. Since the STL is written in C++, however, you aren’t required to use the one that
came bundled with your compiler. You could use a third-party STL that has been optimized for speed or
you could even write your own.

Of course, STL implementers face the same problem that compiler writers face — the standard is subject
to interpretation. In addition, certain implementations may make tradeoffs that are incompatible with
your needs. For example, some implementations may increase their single-processor performance pro-
file by giving up multiple-processor support. Others may be tuned especially for multiple processors.

When working with an STL implementation, or indeed any third-party library, it is important to consider
the tradeoffs that the designer made during development. If the library is open source, you may be able
to find a current list of open issues or a bug database. Chapter 4 contains a more detailed discussion of
the issues involved in using libraries.

Platform-Specific Features
C++ is a great general-purpose language. With the addition of the Standard Library, the language is packed
full of so many features that a casual programmer could happily code in C++ for years without going
beyond what is built in. However, professional programs require facilities that C++ does not provide. This
section lists several important features that are provided by the platform, not by the C++ language.

❑ Graphical user interfaces. Most commercial programs today run on an operating system that has
a graphical user interface, containing such elements as clickable buttons, movable windows, and
hierarchical menus. C++, like the C language, has no notion of these elements. To write a graphi-
cal application in C++, you need to use platform-specific libraries that allow you to draw win-
dows, accept input through the mouse, and perform other graphical tasks. Chapter 25 describes
object-oriented graphical frameworks as one way that platforms provide this functionality.

❑ Networking. The Internet has changed the way we write applications. These days, it’s not uncom-
mon for an application to check for updates through the Web or for a game to provide a net-
worked multiplayer mode. C++ does not provide a mechanism for networking, though several
standard libraries exist. The most common means of writing networking software is through an
abstraction called sockets. A socket library implementation can be found on most platforms and it
provides a simple procedure-oriented way to transfer data over a network. Some platforms sup-
port a streams-based networking system that operates like I/O streams in C++.

❑ OS Events and application interaction. In pure C++ code, there is little interaction with the sur-
rounding operating system and other applications. The command-line arguments are about all

493

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 493

you get in a standard C++ program without platform extensions. For example, operations such
as copy and paste are not directly supported in C++ and require platform-provided libraries.

❑ Low-level files. In Chapter 14, you read about standard I/O in C++, including reading and
writing files. Many operating systems provide their own file APIs, which are sometimes incom-
patible with the standard file classes in C++. These libraries often provide OS-specific file tools,
such as a mechanism to get the home directory of the current user or access to OS configuration
files. In general, once you start using the APIs for a particular platform, you should switch from
C++ I/O classes to the platform’s I/O classes if any exist.

❑ Threads. Concurrent threads of execution within a single program are not directly supported in
C++. Their implementation depends heavily on the inner workings of the operating system, so
threads were not included in the language. The most commonly used thread library is called
pthreads. Many operating systems and object-oriented frameworks also provide their own
threading models.

Cross-Language Development
For certain types of programs, C++ may not be the best tool for the job. For example, if your Unix program
needs to interact closely with the shell environment, you may be better off writing a shell script than a C++
program. If your program performs heavy text parsing, you may decide that the Perl language is the way
to go. Sometimes what you want is a language that blends the general features of C++ with the specialized
features of another language. Fortunately, there are some techniques you can use to get the best of both
worlds — the flexibility of C++ combined with the unique specialty of another language.

Mixing C and C++
As you already know, the C++ language is a superset of the C language. All C programs will compile
and run in C++ with a few minor exceptions. These exceptions usually have to do with reserved words.
In C, for example, the term class has no particular meaning. Thus, it could be used as a variable name, as
in the following C program.

#include <stdio.h>

int main(int argc, char** argv)
{

int class = 1; // Compiles in C, not C++

printf(“class is %d\n”, class);
}

This program will compile and run in C, but will yield an error when compiled as C++ code. When you
translate, or port, a program from C to C++, this is the type of error you will face. Fortunately, the fixes are
usually quite simple. In this case, simply rename the class variable to classID and the code will compile.

The ease of incorporating C code in a C++ program comes in handy when you encounter a useful library
or legacy code that was written in C. Functions and classes, as you’ve seen many times in this book,
work just fine together. A class method can call a function, and a function can make use of objects.

494

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 494

Shifting Paradigms
One of the dangers of mixing C and C++ is that your program may start to lose its object-oriented prop-
erties. For example, if your object-oriented Web browser is implemented with a procedural networking
library, the program will be mixing these two paradigms. Given the importance and quantity of net-
working tasks in such an application, you might consider writing an object-oriented wrapper around the
procedural library.

For example, imagine that you are writing a Web browser in C++, but you are using a C networking
library that contains the functions declared in the following code. Note that the HostRecord and
Connection data structures have been omitted for brevity.

// netwrklib.h

#include “hostrecord.h”
#include “connection.h”

/**
* Gets the host record for a particular Internet host given
* its hostname (i.e. www.host.com)
*/

HostRecord* lookupHostByName(char* inHostName);

/**
* Connects to the given host
*/

Connection* connectToHost(HostRecord* inHost);

/**
* Retrieves a Web page from an already-opened connection
*/

char* retrieveWebPage(Connection* inConnection, char* page);

The netwrklib.h interface is fairly simple and straightforward. However, it is not object-oriented, and
a C++ programmer who uses such a library is bound to feel icky, to use a technical term. This library
isn’t organized into a cohesive class and it isn’t even const-correct! Of course, a talented C programmer
could have written a better interface, but as the user of a library, you have to accept what you are given.
Writing a wrapper is your opportunity to customize the interface.

Before we build an object-oriented wrapper for this library, take a look at how it might be used as is to
gain an understanding of actual usage. In the following program, the netwrklib library is used to
retrieve the Web page at www.wrox.com/index.html.

#include <iostream>
#include “netwrklib.h”

using namespace std;

int main(int argc, char** argv)
{

HostRecord* myHostRecord = lookupHostByName(“www.wrox.com”);
Connection* myConnection = connectToHost(myHostRecord);

495

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 495

char* result = retrieveWebPage(myConnection, “/index.html”);

cout << “The result is “ << result << endl;
}

A possible way to make the library more object-oriented is to provide a single abstraction that recognizes
the links between looking up a host, connecting to the host, and retrieving a Web page. A good object-
oriented wrapper could hide the unnecessarily complexity of the HostRecord and Connection types.

Recalling the design principles you read about in Chapters 3 and 5, the new class should capture the com-
mon use case for the library. The previous example shows the most frequently used pattern — first a host
is looked up, then a connection is established, then a page is retrieved. It is also likely that subsequent
pages will be retrieved from the same host so a good design will accommodate that mode of use as well.

Following is the public portion of the definition for the WebHost class. This class makes the common
case easy for the client programmer.

// WebHost.h

class WebHost {

public:
/**
* Constructs a WebHost object for the given host
*/

WebHost(const string& inHost);

/**
* Obtains the given page from this host
*/

string getPage(const string& inPage);

};

Consider the way a client programmer would use this class. To repeat the example used for the netwrk-
lib library:

#include <iostream>
#include “WebHost.h”

int main(int argc, char** argv)
{

WebHost myHost(“www.wrox.com”);
string result = myHost.getPage(“/index.html”);

cout << “The result is “ << result << endl;
}

The WebHost class effectively encapsulates the behavior of a host and provides useful functionality with-
out unnecessary calls and data structures. The class even provides a useful new piece of functionality —
once a WebHost is created, it can be used to obtain multiple Web pages, saving code and possibly making
the program run faster.

496

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 496

The implementation of the WebHost class makes extensive use of the netwrklib library without expos-
ing any of its workings to the user. To enable this abstraction, the class needs a data member, as shown
in the revised header file below.

// WebHost.h

#include “netwrklib.h”

class WebHost {

public:
/**
* Constructs a WebHost object for the given host
*/

WebHost(const string& inHost);

/**
* Obtains the given page from this host
*/

string getPage(const string& inPage);

protected:
Connection* mConnection;

};

The corresponding source file puts a new face on the functionality contained in the netwrklib library.
First, the constructor builds a HostRecord for the specified host. Because the WebHost class deals with
C++ strings instead of C-style strings, it uses the c_str() method on inHost to obtain a const char*,
then performs a const cast to make up for netwrklib’s const-incorrectness. The resulting HostRecord
is used to create a Connection, which is stored in the mConnection data member for later use.

WebHost::WebHost(const string& inHost)
{

const char* host = inHost.c_str();

HostRecord* theHost = lookupHostByName(const_cast<char*>(host));

mConnection = connectToHost(theHost);
}

Subsequent calls to getPage() pass the stored connection to netwrklib’s retrieveWebPage() func-
tion and return the value as a C++ string.

string getPage(const string& inPage)
{

const char* page = inPage.c_str();

string result = retrieveWebPage(mConnection, const_cast<char*>(page));

return result;
}

497

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 497

Networking-savvy readers may note that keeping a connection open to a host indefinitely is considered
bad practice and doesn’t adhere to the HTTP specification. We’ve chosen elegance over etiquette in this
example.

As you can see, the WebHost class provides an object-oriented wrapper around the C library. By provid-
ing an abstraction, you can change the underlying implementation without affecting client code or pro-
vide additional features, such as connection reference counting or parsing of pages.

Linking with C Code
In the previous example, we assumed that you had the raw C code to work with. The example took
advantage of the fact that most C code will successfully compile with a C++ compiler. If you only have
compiled C code, perhaps in the form of a library, you can still use it in your C++ program, but you need
to take a few extra steps.

Compiled C code is in a different format from compiled C++ code, so you need to tell the compiler that
certain functions are written in C so that the linker can properly make use of them. This is done with the
extern keyword.

In the following code, the function prototype for doCFunction() is specified as an external C function.

extern “C” {
void doCFunction(int i);

}

int main(int argc, char** argv)
{

// Call the C function.
doCFunction(8);

}

The actual definition for doCFunction() is provided in a compiled binary file that is attached in the
link phase. The extern keyword above simply informs the compiler that the linked-in code was com-
piled in C.

A more common pattern for using extern is at the header level. For example, if you are using a graphics
library written in C, it probably came with a .h file for you to use. You can write another header file that
wraps the original one in an extern block to specify that the entire header defines functions written in
C. The wrapper .h file is often named with .hpp to distinguish it from the C version of the header:

// graphicslib.hpp

extern “C” {
#include “graphicslib.h”

}

Whether you are including C code in your C++ program or linking against a compiled C library, remem-
ber that even though C++ is essentially a superset of C, they are different languages with different
design goals. Adapting C code to work in C++ is quite common, but providing an object-oriented C++
wrapper around procedural C code is often much better.

498

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 498

Mixing Java and C++ with JNI
Even though this is a C++ book, we won’t pretend that there aren’t newer and snazzier languages out
there. The Java language took the programming world by storm in the mid-1990s and has grown
immensely in popularity ever since. Java and C++ are similar languages to an extent, but they have
different strengths. Without getting into a religious war, the most commonly cited advantage of C++
is its speed, and the most commonly cited advantages of Java are its built-in libraries for network pro-
gramming and graphical interfaces.

The Java Native Interface, or JNI, is a part of the Java language that allows the programmer to access func-
tionality that was not written in Java. Because Java is a cross-platform language, the original intent was
to make it possible for Java programs to interact with the operating system. JNI also allows program-
mers to make use of libraries written in other languages, such as C++. Access to C++ libraries may be
useful to a Java programmer who has a performance-critical piece of his application or who needs to use
legacy code.

JNI can also be used to execute Java code within a C++ program, but such a use is far less common.
There is currently much more legacy C++ code than legacy Java code, so most applications that use Java
code are Java through-and-through. Because this is a C++ book, we do not include an introduction to the
Java language. This section is targeted at readers who already know Java and wish to incorporate C++
code into their Java code.

To begin your cross-language adventure, start with the Java program. For this example, the simplest of
Java programs will suffice:

public class HelloCpp {

public static void main(String[] args)
{

System.out.println(“Hello from Java!\n”);
}

}

The next step is a little strange. You need to declare a Java method that will be written in another lan-
guage. To do this, you use the native keyword and leave out the implementation:

public class HelloCpp {

// This will be implemented in C++.
public native void callCpp();

public static void main(String[] args)
{

System.out.println(“Hello from Java!\n”);
}

}

C++ code will eventually be compiled into a shared library that gets dynamically loaded into the Java pro-
gram. You need to load this library inside of a Java static block so that it is loaded when the Java program
begins executing. The name of the library can be whatever you want this example uses hellocpp.so. A
file ending in .so is a shared library on Unix systems. Windows users would most likely use a .dll file.

499

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 499

public class HelloCpp {

static {
System.load(“hellocpp.so”);

}

// This will be implemented in C++.
public native void callCpp();

public static void main(String[] args)
{

System.out.println(“Hello from Java!\n”);
}

}

Finally, you need to actually call the C++ code from within the Java program. The callCpp() Java
method serves as a placeholder for the not-yet-written C++ code. Because callCpp() is a method of the
HelloCpp class, simply create a new HelloCpp object and call the callCpp() method.

public class HelloCpp {

static {
System.load(“hellocpp.so”);

}

// This will be implemented in C++.
public native void callCpp();

public static void main(String[] args)
{

System.out.println(“Hello from Java!\n”);

HelloCpp cppInterface = new HelloCpp();
cppInterface.callCpp();

}
}

That’s all for the Java side! Now, just compile the Java program as you normally would:

javac HelloCpp.java

Then use the javah program (the authors like to pronounce it jav-AHH!) to create a header file for the
native method:

javah HelloCpp

After running javah, you will find a file named HelloCpp.h, which is a fully working (if somewhat
ugly) C/C++ header file. Inside of that header file is a C function definition for a function called
Java_HelloCpp_callCpp(). Your C++ program will need to implement this function to be called from
within the Java program. The full signature is:

void Java_HelloCpp_callCpp(JNIEnv* env, jobject javaobj);

500

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 500

Your C++ implementation of this function can make full use of the language. This example simply out-
puts some text from C++. First, you need to include the jni.h header file and the HelloCpp.h file that
was created by javah. You will also need to include any C or C++ headers that you intend to use.

#include <jni.h>
#include “HelloCpp.h”
#include <iostream>

The C++ function is written as normal. Keep in mind that you are implementing a function, not writing
a program. You will not need a main(). The parameters to the function allow interaction with the Java
environment and the object that called the native code. They are beyond the scope of this example.

#include <jni.h>
#include “HelloCpp.h”
#include <iostream>

void Java_HelloCpp_callCpp(JNIEnv* env, jobject javaobj)
{

std::cout << “Hello from C++!” << std::endl;
}

Compiling this code depends on your environment, but you will most likely need to tweak your com-
piler’s settings to include the JNI headers and the location of the native Java library files. Using the gcc
compiler on Linux, your compile command might look like this:

g++ -shared -I/usr/java/jdk/include/ -I/usr/java/jdk/include/linux HelloCpp.cpp \
-o hellocpp.so

The output from the compiler is the library that is used by the Java program. As long as the shared
library is somewhere in the Java class path, you can execute the Java program normally:

java HelloCpp

You should see the following result:

Hello from Java!

Hello from C++!

Of course, this example just scratches the surface of what is possible through JNI. You can use JNI to
interface with OS-specific features or hardware drivers. For complete coverage of JNI, you should con-
sult a Java text.

Mixing C++ with Perl and Shell Scripts
C++ contains a built-in general-purpose mechanism to interface with other languages and environments.
You’ve already used it many times, probably without paying it much attention — it’s the arguments to
and return value from the main() function.

C and C++ were designed with command-line interfaces in mind. The main() function receives the
arguments that a user types at the command line and returns a status code that can be interpreted by the
caller. Many large graphical applications ignore the parameters to main() because graphical interfaces

501

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 501

tend to avoid passing arguments. However, in a scripting environment, arguments to your program can
be a powerful mechanism that allows you to interface with the environment.

Scripting versus Programming
Before delving into the details of mixing C++ and scripts, consider whether your project is an application
or a script. The difference is subtle and subject to debate. The following descriptions are just guidelines.
Many so-called scripts are just as sophisticated as full-blown applications. The question isn’t whether or
not something can be done as a script, but whether or not a scripting language is the best tool.

An application is a program that performs a particular task. Modern applications typically involve some
sort of user interaction. In other words, applications tend to be driven by the user, who directs the appli-
cation to take certain actions. Applications often have multiple capabilities. For example, a user can use
a photo editing application to scale an image, paint over an image, or print an image. Most of the soft-
ware you would buy in a box is an application. Applications tend to be relatively large and often com-
plex programs.

A script generally performs a single task, or a set of related tasks. You might have a script that automati-
cally sorts your email, or backs up your important files. Scripts often run without user interaction, per-
haps at a particular time each day or triggered by an event, such as the arrival of new mail. Scripts can
be found at the OS level (such as a script that compresses files every night) or at the application level
(such as a script that automates the process of shrinking and printing images). Automation is an impor-
tant part of the definition of a script — scripts are usually written to codify a sequence of steps that a
user would otherwise perform manually.

Now, consider the difference between a scripting language and a programming language. Not all scripts are
necessarily written in scripting languages. You could write a script that sorts your email using the C pro-
gramming language, or you could write an equivalent script using the Perl scripting language. Similarly,
not all applications are written in programming languages. A suitably motivated coder could write a
Web browser in Perl if she really wanted to. The line is blurry. In fact, the Perl language is so flexible that
many programmers consider it both a programming language and a scripting language.

In the end, what matters most is which language provides the functionality you need. If you are going to
be interacting with the operating system heavily, you might consider a scripting language because script-
ing languages tend to have better support for OS interaction. If your project is going to be larger in scope
and involve heavy user interaction, a programming language will probably be easier in the long run.

A Practical Example — Encrypting Passwords
Assume that you have a system that writes everything a user sees and types to a file for auditing pur-
poses. The file can be read only by the system administrator so that she can figure out who to blame if
something goes wrong. An excerpt of such a file might look like this:

Login: bucky-bo
Password: feldspar

bucky-bo> mail

bucky-bo has no mail

bucky-bo> exit

502

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 502

While the system administrator may want to keep a log of all user activity, she may wish to obscure
everybody’s passwords in case the file is somehow obtained by a hacker. A script seems like the natural
choice for this project because it should happen automatically, perhaps at the end of every day. There
is, however, one piece of the project that might not be best suited for a scripting language. Encryption
libraries tend to exist mainly for high-level languages such as C and C++. Therefore, one possible imple-
mentation is to write a script that calls out to a C++ program to perform the encryption.

The following script uses the Perl language, though almost any scripting language could accomplish this
task. We chose Perl because it is cross-platform and has facilities that make text parsing simple. If you
don’t know Perl, you will still be able to follow along. The most important element of Perl syntax for this
example is the ` character. The ` character instructs the Perl script to shell out to an external command.
In this case, the script will shell out to a C++ program called encryptString.

The strategy for the script is to loop over every line of a file looking for lines that contain a password
prompt. The script will write a new file, userlog.out, which contains the same text as the source file,
except that all passwords are encrypted. The first step is to open the input file for reading and the output
file for writing. Then, the script needs to loop over all the lines in the file. Each line in turn is placed in a
variable called $line.

open (INPUT, “userlog.txt”) or die “Couldn’t open input file!”;
open (OUTPUT, “>userlog.out”) or die “Couldn’t open output file!”;

while ($line = <INPUT>) {

Next, the current line is checked against a regular expression to see if this particular line contains the
Password: prompt. If it does, Perl will store the password in the variable $1.

if ($line =~ m/^Password: (.*)/) {

Since a match has been found, the script calls the encryptString program with the detected password
to obtain an encrypted version of it. The output of the program is stored in the $result variable, and
the result status code from the program is stored in the variable $?. The script checks $? and quits
immediately if there was a problem. If everything is okay, the password line is written to the output file
with the encrypted password instead of the original one.

$result = `encryptString $1`;
if ($? != 0) { exit(-1) }
print OUTPUT “Password: $result\n”;

If the current line was not a password prompt, the script simply writes the line as is to the output file. At
the end of the loop, it closes both files and exits.

} else {
print OUTPUT “$line”;

}
}

close (INPUT);
close (OUTPUT);

503

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 503

That’s it! The only other required piece is the actual C++ program. Implementation of a cryptographic
algorithm is beyond the scope of this book. The important piece is the main() function because it accepts
the string that should be encrypted as an argument.

Arguments are contained in the argv array of C-style strings. You should always consult the argc
parameter before accessing an element of argv. Remember that if argc is 1, there is one element in the
argument list and it is accessible at argv[0]. The 0th element of the argv array is generally the name of
the program, so actual parameters begin at argv[1].

Following is the main() function for a C++ program that encrypts the input string. Notice that the pro-
gram returns 0 for success and non-0 for failure, as is standard in Unix.

int main(int argc, char** argv)
{

if (argc < 2) {
cerr << “Usage: “ << argv[0] << “ string-to-be-encrypted” << endl;
return -1;

}

cout << encrypt(argv[1]);

return 0;
}

There is actually a blatant security hole in this code. When the to-be-encrypted string is passed to the
C++ program as a command-line argument, it may be visible to other users through the process table. A
more secure way to get the information into the C++ program would be to send it through standard
input, which is the forte of the expect scripting language.

Now that you’ve seen how easily C++ programs can be incorporated into scripting languages, you can
combine the strengths of the two languages for your own projects. You can use a scripting language to
interact with the OS and control the flow of the script, and a traditional programming language for the
heavy lifting.

Mixing C++ with Assembly Code
C++ is generally considered a fast language, especially relative to other object-oriented languages. Yet,
there is simply no way to beat raw assembly code when speed is absolutely critical. Recall that when
your program is compiled, it is turned from high-level C++ into low-level assembly. The automatically
generated assembly code is fast enough for most purposes. Optimizers are often run over the generated
assembly code to make it even faster. Yet, for all the advances in compiler writing, a talented human
being can often write assembly code that outperforms compiled C++ code.

In C++, the keyword asm is used by many compilers to allow the programmer to insert raw assembly
code. The keyword is part of the C++ standard, but its implementation is compiler-defined. In most
compilers, you can use asm to drop from C++ down to the level of assembly right in the middle of your
program.

Inline assembly can be very useful in certain applications, such as intensive 3-D graphics, but we don’t
recommend it for most programs. There are several reasons to avoid inline assembly code:

504

Chapter 18

21_574841 ch18.qxd 12/15/04 3:45 PM Page 504

❑ Your code is no longer portable to another processor once you start including raw assembly
code for your platform.

❑ Most programmers don’t know assembly languages and won’t be able to modify or maintain
your code.

❑ Assembly code is not known for its readability. It can hurt your program’s use of style.

❑ Most of the time, it is simply not necessary. If your program is slow, look for algorithmic prob-
lems or consult some of the other performance suggestions in Chapter 17.

Summary
If you take away one point from this chapter, it should be that C++ is a flexible language. It exists in the
sweet spot between languages that are too tied to a particular platform and languages that are too high-
level and generic. Rest assured that when you develop code in C++, you aren’t locking yourself into the
language forever. C++ can be mixed with other technologies and has a solid history and code base that
help guarantee its relevance in the future.

505

Developing Cross-Platform and Cross-Language Applications

21_574841 ch18.qxd 12/15/04 3:45 PM Page 505

21_574841 ch18.qxd 12/15/04 3:45 PM Page 506

Becoming Adept at Testing

A programmer has overcome a major hurdle in her career when she realizes that testing is a part of
the software development process. Bugs are not an occasional occurrence. They are found in every
project of significant size. A good quality-assurance (QA) team is invaluable, but the full burden of
testing cannot be placed on QA alone. Your responsibility as a programmer is to write code that
works and tests to prove its correctness.

A distinction is often made between white box testing, in which the tester is aware of the inner work-
ings of the program, and black box testing, which tests the program’s functionality without concern for
its implementation. Both forms of testing are important to professional-quality projects. Black box
testing is the most fundamental approach because it typically models the behavior of a user. For
example, a black box test can examine interface components like buttons. If the tester clicks the
button and nothing happens, there is obviously a bug in the program.

Black box testing cannot cover everything. Modern programs are too large to employ a simulation
of clicking every button, providing every kind of input, and performing all combinations of com-
mands. White box testing is necessary because it is easier to ensure test coverage when tests are
written at the object or subsystem level. White box tests are often easier to write and automate
than black box tests. This chapter focuses on topics that would generally be considered white box
testing techniques because the programmer can use these techniques during development.

This chapter begins with a high-level discussion of quality control, including some approaches to
viewing and tracking bugs. A section on unit testing, one of the simplest and most useful types of
testing, follows this introduction. You will read about the theory and practice of unit testing, as
well as several examples of unit tests in action. Next, higher-level tests are covered, including inte-
gration tests, system tests, and regression tests. Finally, this chapter ends with a list of tips for suc-
cessful testing.

Quality Control
Large programming projects are rarely finished when a feature-complete goal is reached. There are
always bugs to find and fix, both during and after the main development phase. Understanding

22_574841 ch19.qxd 12/15/04 3:46 PM Page 507

the shared responsibility of quality control and the life cycle of a bug is essential to performing well in a
group.

Whose Responsibility Is Testing?
Software development organizations have different approaches to testing. In a small startup, there may
not be a group of people whose full-time job is testing the product. Testing may be the responsibility of the
individual developers, or all the employees of the company may be asked to lend a hand and try to break
the product before its release. In larger organizations, a full-time quality assurance staff probably qualifies
a release by testing it according to a set of criteria. Nonetheless, some aspects of testing may still be the
responsibility of the developers. Even in organizations where the developers have no role in formal test-
ing, you still need to be aware of what your responsibilities are in the larger process of quality assurance.

The Life Cycle of a Bug
All good engineering groups recognize that bugs will occur in software both before and after its release.
There are many different ways to deal with these problems. Figure 19-1 shows a formal bug process,
expressed as a flow chart. In this particular process, a bug is always filed by a member of the QA team.
The bug reporting software sends a notification to the development manager, who sets the priority of the
bug and assigns the bug to the appropriate module owner. The module owner can accept the bug or
explain why the bug actually belongs in a different module or is invalid, giving the development man-
ager the opportunity to assign it to someone else. Once the bug has found its rightful owner, a fix is
made and the developer marks the bug as “fixed.” At this point, the QA engineer verifies that the bug no
longer exists and marks the bug as “closed” or reopens the bug if it is still present.

Figure 19-1

A less formal approach is shown in Figure 19-2. In this workflow, anybody can file a bug and assign an ini-
tial priority and a module. The module owner receives the bug report and can either accept it or reassign it
to another engineer or module. When a correction is made, the bug is marked as “fixed.” Toward the end
of the testing phase, all the implementation and QA engineers divide up the fixed bugs and verify that each
bug is no longer present in the current build. The release is ready when all bugs are marked as “closed.”

Received
by

Manager

Received by
Module
Owner

Bug Fixed

Priority
Assigned

Owner
Determined

Accept
or

RejectBug Report
Filed by QA

Bug Closed

Received
by QA

Engineer

Check
Fix

RejectedRejected

Re-openedRe-opened

AcceptedAccepted

VerifiedVerified

508

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 508

Figure 19-2

Bug-Tracking Tools
There are many ways to keep track of software bugs, from informal email- or spreadsheet-based
schemes to expensive third-party bug-tracking software. The appropriate solution for your organization
depends on the group’s size, the nature of the software, and the level of formality you wish to build
around bug fixing.

Bugzilla is a popular free tool for bug tracking, written by the authors of the Mozilla Web browser. As an
open-source project, Bugzilla has gradually accumulated a number of useful features to the point where
it now rivals expensive bug-tracking software packages. Among its many features are:

❑ Customizable settings for a bug, including its priority, associated component, status, and so on

❑ Email notification of new bug reports or changes to an existing report

❑ Tracking of dependencies between bugs and resolution of duplicate bugs

❑ Reporting and searching tools

❑ A Web-based interface for filing and updating bugs

Figure 19-3 shows a bug being entered into a Bugzilla project that we set up for this book. For our pur-
poses, each chapter was input as a Bugzilla component. The filer of the bug can specify the severity of
the bug (how big of a deal it is) as well as the priority of the bug (how soon it needs to be fixed). A sum-
mary and description are included to make it possible to search for the bug or list it in a report format.

Bug-tracking tools like Mozilla are becoming essential components of a professional software develop-
ment environment. In addition to supplying a central list of currently open bugs, bug-tracking tools pro-
vide an important archive of previous bugs and their fixes. A support engineer, for instance, might use
Bugzilla to search for a problem similar to one reported by a customer. If a fix was made, the support
person will be able to tell the customer to which version they need to update or how to work around the
problem.

Received by
Module
Owner

Bug Fixed

Accept
or

RejectBug Report
Filed with
Priority

and Module
AcceptedAccepted

Reassigned

509

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 509

Figure 19-3

Unit Testing
The only way to find bugs is through testing. One of the most important types of tests from a devel-
oper’s point of view is the unit test. Unit tests are pieces of code that exercise specific functionality of a
class or subsystem. These are the most granular tests that you could possibly write. Ideally, one or more
unit tests should exist for every low-level task that your code can perform. For example, imagine that
you are writing a math library that can perform addition and multiplication. Your suite of unit tests
might contain the following tests:

❑ Basic test of addition

❑ Test addition of large numbers

❑ Test addition of negative numbers

❑ Test addition of zero to a number

510

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 510

❑ Test the commutative property of addition

❑ Basic test of multiplication

❑ Test multiplication of large numbers

❑ Test multiplication of negative numbers

❑ Test multiplication by zero

❑ Test the commutative property of multiplication

Well-written unit tests protect you in many ways. First, they prove that a piece of functionality actually
works. Until you have some code that actually makes use of your class, its behavior is a major unknown.
Second, they provide a first alert when a recently introduced change breaks something. This specific
usage, called a regression test, is covered later in this chapter. Third, when used as part of the development
process, they force the developer to fix problems from the start. If you are prevented from checking in
your code with failed unit tests, you’re forced to address problems right away. Fourth, unit tests let you
try code out before other code is in place. When you first started programming, you could write a whole
program and then run it for the first time. Professional programs are too big for that approach, so you
need to be able to test components in isolation. Last, but certainly not least, they provide an example of
usage. Almost as a side effect, unit tests make great reference code for other programmers. If a coworker
wants to know how to perform matrix multiplication using your math library, you can point her to the
appropriate test.

Approaches to Unit Testing
It’s hard to go wrong with unit tests, unless you don’t write them or write them poorly. In general, the
more tests you have, the more coverage you have. The more coverage you have, the less likely it is for
bugs to fall through the cracks and for you to have to tell your boss, or worse, your customer, “Oh, we
never tested that.”

There are several methodologies for writing unit tests most effectively. The Extreme Programming
methodology, explained in Chapter 6, instructs its followers to write unit tests before writing code. In the-
ory, writing tests first helps you solidify the requirements for the component and provide a metric that
can be used to determine when it is done. Writing tests first can be tricky and requires diligence on the
part of the programmer. For some programmers, it simply doesn’t mesh well with their coding style. A
less rigid approach is to design the tests before coding, but implement them later in the process. This
way, the programmer is still forced to understand the requirements of the module but doesn’t have to
write code that makes use of nonexistent classes.

In some groups, the author of a particular subsystem doesn’t write the unit tests for that subsystem. The
theory is that if you write the tests for your own code, you might subconsciously work around problems
that you know about, or only cover certain cases that you know your code handles well. In addition, it’s
sometimes difficult to get excited about finding bugs in code you just wrote, so you might only put in
a half-hearted effort. In practice, having one developer write unit tests for another developer’s code
requires a lot of extra overhead and coordination. When such coordination is accomplished, however,
this approach helps guarantee more effective tests.

Another way to ensure that unit tests are actually testing the right parts of the code is to write them so
that they maximize code coverage. You can use a code coverage tool, such as gcov, or have your resident
Perl hacker write a script that will tell you what percentage of public methods are called by unit tests. In
theory, a properly tested class has unit tests for all of its public methods.

511

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 511

The Unit Testing Process
The process of providing unit tests for your code begins before the code is written. Even if you do not
subscribe to the methodology of writing unit tests before you write code, you should take the time to
consider what sorts of tests you will provide. This way, you can break the task up into well-defined
chunks, each of which has its own test-validated criteria. For example, if your task is to write a database
access class, you might first write the functionality that inserts data into the database. Once that is fully
tested with a suite of unit tests, you can continue to write the code to support updates, deletes, and
selects, testing each piece as you go.

The following list of steps is a suggested approach for designing and implementing unit tests. As with
any programming methodology, the best process is the one that yields the best results. We suggest that
you experiment with different ways of using unit tests to discover what works best for you.

Define the Granularity of Your Tests
Before you start designing the individual tests, you need to do a reality check. Given the requirements
of your component, its complexity, and the amount of time available, what level of unit testing can you
provide? In an ideal world, you would write more tests than code to thoroughly validate the functional-
ity of a program (though if it were truly an ideal world, we probably wouldn’t need tests because every-
thing would work!) In reality, you are probably already crunched for time, and your initial task is to
maximize the effectiveness of unit tests given the constraints placed upon you.

The granularity of tests refers to their scope. As the following table illustrates, you can unit test a
database class with just a few test functions or you can go nuts and really ensure that everything works
as it should.

Large-Grained Tests Medium-Grained Tests Fine-Grained Tests

testConnection() [all of the large-grained tests] [all large and medium-grained tests]
testInsert() testConnectionDroppedError() testConnectionThroughHTTP()
testUpdate() testInsertBadData() testConnectionLocal()
testDelete() testInsertStrings() testConnectionErrorBadHost()
testSelect() testInsertIntegers() testConnectionErrorServerBusy()

testUpdateStrings() testInsertWideCharacters()
testUpdateIntegers() testInsertLargeData()
testDeleteNonexistentRow() testInsertMalformed()
testSelectComplicated() testUpdateWideCharacters()
testSelectMalformed() testUpdateLargeData()

testUpdateMalformed()test
DeleteWithoutPermissions()
testDeleteThenUpdate()
testSelectNested()
testSelectWideCharacters()
testSelectLargeData()

As you can see, each successive column brings in more specific tests. As you move from large-grained
tests to more finely grained tests, you start to consider error conditions, different input data sets, and dif-
ferent modes of operation.

512

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 512

Of course, the decision you make initially when choosing the granularity of your tests is not set in stone.
Perhaps the database class is just being written as a proof-of-concept and might not even be used. A few
simple tests may be adequate now, and you can always add more later. Or perhaps the use case changes
at a later date. The database class might not initially have been written with international characters in
mind. Once such features are added, they should be tested with specific targeted unit tests.

If you plan to revisit or refine the tests at a later date, you should make every effort to actually do so.
Consider the unit tests to be part of the actual implementation. When you make a modification, don’t
just modify the tests so that they continue to work, write new tests and reevaluate the existing ones.

Brainstorm the Individual Tests
Over time, you will gain an intuition for which aspects of a piece of code should turn into a unit test.
Certain methods or inputs just feel like they should be tested. This intuition is gained through trial and
error and by looking at unit tests that other people in your group have written. It should be pretty easy
to pick out which programmers are the best unit testers. Their tests tend to be organized and frequently
modified.

Until unit test creation becomes second nature, approach the task of figuring out which tests to write by
brainstorming. To get some ideas flowing, consider the following questions.

1. What are the things that this piece of code was written to do?

2. What are the typical ways each method would be called?

3. What preconditions of the methods could be violated by the caller?

4. How could each method be misused?

5. What kinds of data are you expecting as input?

6. What kinds of data are you not expecting as input?

7. What are the edge cases or exceptional conditions?

You don’t need to write formal answers to those questions (unless your manager is a particularly fervent
devotee of this book), but they should help you generate some ideas for unit tests. The table of tests for
the database class contained test functions that each arose from one of these questions.

Once you have generated ideas for some of the tests you would like to use, consider how you might
organize them into categories and the breakdown of tests will fall into place. In the database class exam-
ple, the tests could be split into the following categories:

❑ Basic tests

❑ Error tests

❑ Internationalization tests

❑ Bad input tests

❑ Complicated tests

Unit tests are part of the subsystem that they are testing. As you enhance and refine
the subsystem, enhance and refine the tests.

513

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 513

Splitting your tests into categories makes them easier to identify and augment. It might also make it eas-
ier to realize which aspects of the code are thoroughly tested and which could use a few more unit tests.

Create Sample Data and Results
The most common trap to fall into when writing unit tests is to match the test to the behavior of the code
instead of using the test to validate the code. If you write a unit test that performs a database select and
the test fails, is it a problem with the code or a problem with the test? It’s usually easier to assume that
the code is right and to modify the test to match. This approach is usually wrong.

To avoid this pitfall, you should understand the inputs to the test and the expected output before you try
it out. This is sometimes easier said than done. For example, say you wrote some code to encrypt an arbi-
trary block of text using a particular key. A reasonable unit test would take a fixed string of text and pass it
in to the encryption module. Then, it would examine the result to see if it was correctly encrypted. When
you go to write such a test, it is tempting to try out the behavior with the encryption module first and see
the result. If it looks reasonable, you might write a test to look for that value. Doing so really doesn’t prove
anything, however. You haven’t actually tested the code — you’ve just written a test that guarantees it will
continue to return that same value. Often times writing the test requires some real work — you would
need to encrypt the text independently of your encryption module to get an accurate result.

Write the Tests
The exact code behind a test will vary depending on what type of test framework you have in place. One
framework, cppunit, is discussed below. Independent of the actual implementation, however, the fol-
lowing guidelines will help ensure effective tests:

❑ Make sure that you’re only testing one thing in each test. That way, if a test fails, it will point to
a specific piece of functionality.

❑ Be specific inside the test. Did the test fail because an exception was thrown or because the
wrong value was returned?

❑ Use logging extensively inside of test code. If the test fails some day, you will have some insight
into what happened.

❑ Avoid tests that depend on earlier tests or are otherwise interrelated. Tests should be as atomic
and isolated as possible.

❑ If the test requires the use of other subsystems, consider writing stub versions of those subsys-
tems that simulate the modules’ behavior so that changes in loosely related code don’t cause the
test to fail.

❑ Ask your code reviewers to look at your unit tests as well. When you do a code review, tell the
other engineer where you think additional tests could be added.

Decide on the correct output for your test before you ever run the test.

It’s easy to write a massive number of simple tests, but don’t forget about the more
complicated cases!

514

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 514

As you will see in the example below, unit tests are usually very small and simple pieces of code. In
most cases, writing a single unit test will only take a few minutes, making them one of the most produc-
tive uses of your time.

Run the Tests
When you’re done writing a test, you should run it right away before the anticipation of the results
becomes too much to bear. The joy of a screen full of passing unit tests shouldn’t be minimized. For most
programmers, this is the easiest way to see quantitative data that declare your code useful and correct.

Even if you adopt the methodology of writing tests prior to writing code, you should still run the tests
immediately after they are written. This way, you can prove to yourself that the test fails initially. Once
the code is in place, you have tangible data that shows that it accomplished what it was supposed to
accomplish.

It’s unlikely that every test you write will have the expected result the first time. In theory, if you are
writing tests before writing code, all of your tests should fail. If one passes, either the code magically
appeared or there is a problem with a test. If the code is done and tests still fail (some would say that if
the tests fail, the code is actually not done!), there are two possibilities. The code could be wrong or the
test could be wrong. As mentioned previously, it’s often quite tempting to turn to the test and twiddle
some Booleans to make everything work. Resist this urge!

Unit Testing in Action
Now that you’ve read about unit testing in theory, it’s time to actually write some tests. The following
example draws on the object pool example from Chapter 17. As a brief recap, the object pool is a class
that can be used to avoid excessive object creation. By keeping track of already created objects, the pool
acts as a broker between code that needs a certain type of object and such objects that already exist.

The public interface for ObjectPool is shown here:

//
// template class ObjectPool
//
// Provides an object pool that can be used with any class that provides a
// default constructor.
//
// The object pool constructor creates a pool of objects, which it hands out
// to clients when requested via the acquireObject() method. When a client is
// finished with the object it calls releaseObject() to put the object back
// into the object pool.
//
// The constructor and destructor on each object in the pool will be called only
// once each for the lifetime of the program, not once per acquisition and release.
//
// The primary use of an object pool is to avoid creating and deleting objects
// repeatedly. The object pool is most suited to applications that use large
// numbers of objects for short periods of time.
//
// For efficiency, the object pool doesn’t perform sanity checks.
// Expects the user to release every acquired object exactly once.
// Expects the user to avoid using any objects that he or she has released.
//

515

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 515

// Expects the user not to delete the object pool until every object
// that was acquired has been released. Deleting the object pool invalidates
// any objects that the user had acquired, even if they had not yet been released.
//
template <typename T>
class ObjectPool
{

public:
//
// Creates an object pool with chunkSize objects.
// Whenever the object pool runs out of objects, chunkSize
// more objects will be added to the pool. The pool only grows:
// objects are never removed from the pool (freed), until
// the pool is destroyed.
//
// Throws invalid_argument if chunkSize is <= 0.
//
ObjectPool(int chunkSize = kDefaultChunkSize)

throw(std::invalid_argument, std::bad_alloc);

//
// Frees all the allocated objects. Invalidates any objects that have
// been acquired for use.
//
~ObjectPool();

//
// Reserve an object for use. The reference to the object is invalidated
// if the object pool itself is freed.
//
// Clients must not free the object!
//
T& acquireObject();

//
// Return the object to the pool. Clients must not use the object after
// it has been returned to the pool.
//
void releaseObject(T& obj);

// [Private/Protected methods and data omitted]
};

If the notion of an object pool is new to you, you may wish to peruse Chapter 17 before continuing with
this example.

Introducing cppunit
cppunit is an open-source unit testing framework for C++ that is based on a Java package called junit.
The framework is fairly lightweight (in a good way), and it is very easy to get started. The advantage of
using a framework such as cppunit is that it allows the developer to focus on writing tests instead of
dealing with setting up tests, building logic around tests, and gathering results. cppunit includes a num-
ber of helpful utilities for test developers and automatic output in various formats. The full breadth of fea-
tures is not covered here. We suggest you read up on cppunit at http://cppunit.sourceforge.net.

516

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 516

The most common way of using cppunit is to subclass the CppUnit::TestFixture class (note that
CppUnit is the namespace and TestFixture is the class). A fixture is simply a logical group of tests. A
TestFixture subclass can override the setUp() method to perform any tasks that need to happen
prior to the tests running as well as the tearDown() method, which can be used to clean up after the
tests have run. A fixture can also maintain state with member variables. A skeleton implementation of
ObjectPoolTest, a class for testing the ObjectPool class, is shown here:

// ObjectPoolTest.h

#include <cppunit/TestFixture.h>

class ObjectPoolTest : public CppUnit::TestFixture
{

public:
void setUp();
void tearDown();

};

Because the tests for ObjectPool are relatively simple and isolated, empty definitions will suffice for
setUp() and tearDown(). The beginning stage of the source file is shown here:

// ObjectPoolTest.cpp

#include “ObjectPoolTest.h”

void ObjectPoolTest::setUp()
{
}

void ObjectPoolTest::tearDown()
{
}

That’s all the initial code we need to start developing unit tests!

Writing the First Test
Since this may be your first exposure to cppunit, or to unit tests at large, the first test will be a very sim-
ple one. It simply tests whether 0 < 1.

An individual unit test in cppunit is just a method of the fixture class. To create a simple test, add its
declaration to the ObjectPoolTest.h file:

// ObjectPoolTest.h

#include <cppunit/TestFixture.h>

class ObjectPoolTest : public CppUnit::TestFixture
{

public:
void setUp();
void tearDown();

517

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 517

// Our first test!
void testSimple();

};

The test definition uses the CPPUNIT_ASSERT macro to perform the actual test. CPPUNIT_ASSERT, like
other assert macros you may have used, simply surrounds an expression that should be true. See Chapter
20 for details on assert. In this case, the test claims that 0 is less than 1, so it surrounds the statement 0 < 1
in a CPPUNIT_ASSERT macro call. This macro is defined in the cppunit/TestAssert.h file.

// ObjectPoolTest.cpp

#include “ObjectPoolTest.h”
#include <cppunit/TestAssert.h>

void ObjectPoolTest::setUp()
{
}

void ObjectPoolTest::tearDown()
{
}

void ObjectPoolTest::testSimple()
{

CPPUNIT_ASSERT(0 < 1);
}

That’s it! Of course, most of your unit tests will do something a bit more interesting than a simple assert.
As you will see, the common pattern is to perform some sort of calculation and assert that the result is
the value you expected. With cppunit, you don’t even need to worry about exceptions — the frame-
work will catch and report them as necessary.

Building a Suite of Tests
There are a few more steps before the simple test can be run. cppunit runs a group of tests as a suite. A
suite tells cppunit which tests to run, as opposed to a fixture, which simply groups tests together logi-
cally. The common pattern is to give your fixture class a static method that builds a suite containing all
of its tests. In the updated versions of ObjectPoolTest.h and ObjectPoolTest.cpp, the suite()
method is used for this purpose.

// ObjectPoolTest.h

#include <cppunit/TestFixture.h>
#include <cppunit/TestSuite.h>
#include <cppunit/Test.h>

class ObjectPoolTest : public CppUnit::TestFixture
{

public:
void setUp();
void tearDown();

// Our first test!
void testSimple();

518

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 518

static CppUnit::Test* suite();
};

// ObjectPoolTest.cpp

#include “ObjectPoolTest.h”
#include <cppunit/TestAssert.h>

void ObjectPoolTest::setUp()
{
}

void ObjectPoolTest::tearDown()
{
}

void ObjectPoolTest::testSimple()
{

CPPUNIT_ASSERT(0 < 1);
}

CppUnit::Test* ObjectPoolTest::suite()

CppUnit::TestSuite* suiteOfTests = new CppUnit::TestSuite(“ObjectPoolTest”);
suiteOfTests->addTest(new CppUnit::TestCaller<ObjectPoolTest>(

“testSimple”,
&ObjectPoolTest::testSimple));

return suiteOfTests; // Note that Test is a superclass of TestSuite
}

The template syntax for creating a TestCaller is a bit dense, but just about every single test you write
will follow this exact pattern, so you can ignore the implementation of TestSuite and TestCaller for
the most part.

To actually run the suite of tests and see the results, you will need a test runner. cppunit is a flexible
framework. It contains several different runners that operate in different environments, such as the MFC
Runner, which is designed to run within a program written with the Microsoft Foundation Classes. For
a text-based environment, you should use the Text Runner, which is defined in the CppUnit::TextUi
namespace.

The code to run the suite of tests defined by the ObjectPoolTest fixture follows. It simply creates a
runner, adds the tests returned by the suite() method, and calls run().

// main.cpp

#include “ObjectPoolTest.h”
#include <cppunit/ui/text/TestRunner.h>

int main(int argc, char** argv)
{

CppUnit::TextUi::TestRunner runner;
runner.addTest(ObjectPoolTest::suite());

519

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 519

runner.run();
}

After the code is all compiled, linked, and run, you should see output similar to the following:

OK (1 tests)

If you modify the code to assert that 1 < 0, the test will fail, cppunit will report the failure as follows:

!!!FAILURES!!!
Test Results:
Run: 1 Failures: 1 Errors: 0

1) test: testSimple (F) line: 21 ObjectPoolTest.cpp
assertion failed
- Expression: 1 < 0

Note that by using the CPPUNIT_ASSERT macro, the framework was able to pinpoint the exact line on
which the test failed — a useful piece of information for debugging!

Adding the Real Tests
Now that the framework is all set up and a simple test is working, it’s time to turn your attention to the
ObjectPool class and write some code that actually tests it. All of the following tests will be added to
ObjectPoolTest.h and ObjectPoolTest.cpp, just like the earlier simple test.

Before you can write the tests, you’ll need a helper object to use with the ObjectPool class. As you
recall, the ObjectPool creates chunks of objects of a certain type and hands them out to the caller as
requested. Some of the tests will need to check if a retrieved object is the same as a previously retrieved
object. One way to do this is to create a pool of serial objects — objects that have a monotonically
increasing serial number. The following code defines such a class:

// Serial.h

class Serial
{

public:
Serial();

int getSerialNumber() const;

protected:
static int sNextSerial;

int mSerialNumber;
};

// Serial.cpp

#include “Serial.h”

520

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 520

Serial::Serial()
{

// A new object gets the next serial number.
mSerialNumber = sNextSerial++;

}

int Serial::getSerialNumber() const
{

return mSerialNumber;
}

int Serial::sNextSerial = 0; // The first serial number is 0.

On to the tests! As an initial sanity check, you might want a test that simply creates an object pool. If any
exceptions are thrown during creation, cppunit will report an error:

void ObjectPoolTest::testCreation()
{

ObjectPool<Serial> myPool;
}

The next test is a negative test because it is doing something that should fail. In this case, the test tries to cre-
ate an object pool with an invalid chunk size of 0. The object pool constructor should throw an exception.
Normally, cppunit would catch the exception and report an error. However, since that is the desired
behavior, the test catches the exception explicitly and sets a flag. The final step of the test is to assert that
the flag was set. Thus, if the constructor does not throw an exception, the test will fail:

void ObjectPoolTest::testInvalidChunkSize()
{

bool caughtException = false;

try {
ObjectPool<Serial> myPool(0);

} catch (const invalid_argument& ex) {
// OK. We were expecting an exception.
caughtException = true;

}

CPPUNIT_ASSERT(caughtException);
}

testAcquire() tests a specific piece of public functionality — the ability of the ObjectPool to give out
an object. In this case, there is not much to assert. To prove validity of the resulting Serial reference, the
test asserts that its serial number is greater than or equal to zero.

void ObjectPoolTest::testAcquire()
{

ObjectPool<Serial> myPool;

Serial& serial = myPool.acquireObject();

CPPUNIT_ASSERT(serial.getSerialNumber() >= 0);
}

521

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 521

The next test is a bit more interesting. The ObjectPool should not give out the same Serial object twice
(unless it is explicitly released). This test checks the exclusivity property of the ObjectPool by creating
a pool with a fixed chunk size and retrieving exactly that many objects. If the pool is properly dishing
out unique objects, none of their serial numbers should match. Note that this test only covers objects cre-
ated as part of a single chunk. A similar test for multiple chunks would be an excellent idea.

void ObjectPoolTest::testExclusivity()
{

const int poolSize = 5;
ObjectPool<Serial> myPool(poolSize);
set<int> seenSerials;

for (int i = 0; i < poolSize; i++) {
Serial& nextSerial = myPool.acquireObject();

// Assert that this number hasn’t been seen before.
CPPUNIT_ASSERT(seenSerials.find(nextSerial.getSerialNumber()) ==

seenSerials.end());

// Add this number to the set.
seenSerials.insert(nextSerial.getSerialNumber());

}
}

This implementation uses the set container from the STL. Consult Chapter 21 for details if you are unfa-
miliar with this container.

The final test (for now) checks the release functionality. Once an object is released, the ObjectPool can
give it out again. The pool shouldn’t create additional chunks until it has recycled all released objects.
This test first retrieves a Serial from the pool and records its serial number. Then, the object is immedi-
ately released back into the pool. Next, objects are retrieved from the pool until either the original object
is recycled (identified by its serial number) or the chunk has been used up. If the code gets all the way
through the chunk without seeing the recycled object, the test fails.

void ObjectPoolTest::testRelease()
{

const int poolSize = 5;
ObjectPool<Serial> myPool(poolSize);

Serial& originalSerial = myPool.acquireObject();

int originalSerialNumber = originalSerial.getSerialNumber();

// Return the original object to the pool.
myPool.releaseObject(originalSerial);

// Now make sure that the original object is recycled before
// a new chunk is created.
bool wasRecycled = false;
for (int i = 0; i < poolSize; i++) {

Serial& nextSerial = myPool.acquireObject();
if (nextSerial.getSerialNumber() == originalSerialNumber) {

wasRecycled = true;
break;

522

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 522

}
}

CPPUNIT_ASSERT(wasRecycled);
}

Once these tests are added to the suite, you should be able to run them, and they should all pass. Of
course, if one or more tests fails, you are presented with the quintessential issue in unit tests — is it the
test or the code that is broken?

Basking in the Glorious Light of Unit Test Results
Hopefully, the tests in the previous section gave you a good idea of how to get started writing actual
professional-quality tests for real code. It’s just the tip of the iceberg though. The previous examples
should help you think of additional tests that you could write for the ObjectPool class. For example,
none of the tests dealt with allocation of multiple chunks — there should definitely be coverage of that
functionality. There also weren’t complex tests that acquired and released the same object multiple times.

There is no end to the number of unit tests you could write for a given piece of code, and that’s the best
thing about unit tests! If you find yourself wondering how your code might react to a certain situation,
that’s a unit test! If a particular aspect of your subsystem seems to be presenting problems, increase unit
test coverage of that particular area. Even if you simply want to put yourself in the client’s shoes to see
what it’s like to work with your class, writing unit tests is a great way to get a different perspective.

Higher-Level Testing
While unit tests are the best first line of defense against bugs, they are only part of the larger testing pro-
cess. Higher-level tests focus on how pieces of the product work together, as opposed to the relatively
narrow focus of unit tests. In a way, higher-level tests are more challenging to write because it’s less clear
what tests need to be written. Yet, you cannot really claim that the program works until you have tested
how its pieces work together.

Integration Tests
An integration test covers areas where components meet. Unlike a unit test, which generally acts on the
level of a single class, an integration test usually involves two or more classes. Integration tests excel at
testing interactions between two components, often written by two different programmers. In fact, the
process of writing an integration test often reveals important incongruities in designs.

Sample Integration Tests
Since there are no hard-and-fast rules to determine what integration tests you should write, some exam-
ples might help you get a sense of when integration tests are useful. The following scenarios depict cases
where an integration test is appropriate, but they do not cover every possible case. Just as with unit tests,
over time you will refine your intuition for useful integration tests.

523

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 523

An XML-Based File Serializer
Suppose that your project includes a persistence layer that is used to save certain types of objects to disk
and to read them back in. The hip way to serialize data is to use the XML format, so a logical breakdown
of components might include an XML conversion layer sitting on top of a custom file API. Both of these
components can be thoroughly unit tested. The XML layer would have unit tests that ensure that differ-
ent types of objects are correctly converted to XML and populated from XML. The file API would have
tests that read, write, update, and delete files on disk. When these modules start to work together, inte-
gration tests are appropriate. At the very least, you should have an integration test that saves an object to
disk through the XML layer, then reads it back in and does a comparison to the original. Because the test
covers both modules, it is a basic integration test.

Readers and Writers to a Shared Resource
Imagine a program that contains a data space shared by different components. For example, a stock-
trading program might have a queue of buy and sell requests. Components related to receiving stock
transaction requests would add orders to the queue, and components related to performing stock trades
would take data off the queue. You could unit test the heck out of the queue class, but until it is tested
with the actual components that will be using it, you really don’t know if any of your assumptions are
wrong. A good integration test would use the stock request components and the stock trade components
as clients of the queue class. You would write some sample orders and make sure that they successfully
entered and exited the queue through the client components.

Wrapper around a Third-Party Library
Integration tests do not always need to occur at integration points in your own code. Many times, inte-
gration tests are written to test the interaction between your code and a third-party library. For example,
you may be using a database connection library to talk to a relational database system. Perhaps you built
an object-oriented wrapper around the library that adds support for connection caching or provides a
friendlier interface. This is a very important integration point to test because, even though the wrapper
probably provides a more useful interface to the database, it introduces possible misuse of the original
library. In other words, writing a wrapper is a good thing, but writing a wrapper that introduces bugs is
going to be a disaster.

Methods of Integration Testing
When it comes to actually writing integration tests, there is often a fine line between integration and unit
tests. If a unit test is modified so that it touches another component, is it suddenly an integration test? In
a way, the answer is moot because a good test is a good test regardless of the type of test. We recommend
that you use the concepts of integration and unit testing as two approaches to testing, but avoid getting
caught up in labeling the category of every single test.

In terms of implementation, integration tests are often written using a unit testing framework, further
blurring their distinction. As it turns out, unit testing frameworks provide an easy way to write a yes/no
test and produce useful results. Whether the test is looking at a single unit of functionality or the inter-
section of two components hardly makes a difference from the framework’s point of view.

For performance and organizational reasons, you may wish to attempt to separate unit tests from inte-
gration tests. For example, your group may decide that everybody must run integration tests before
checking in new code, but be a bit more lax on running unrelated unit tests. Separating the two types of

524

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 524

tests also increases the value of results. If a test failure occurs within the XML class tests, it will be clear
that it’s a bug in that class, not in the interaction between that class and the file API.

System Tests
System tests operate at an even higher level than integration tests. These tests examine the program as a
whole. System tests often make use of a virtual user that simulates a human being working with the pro-
gram. Of course, the virtual user must be programmed with a script of actions to perform. Other system
tests rely on scripts or a fixed set of inputs and expected outputs.

Much like unit and integration tests, an individual system test performs a specific test and expects a
specific result. It is not uncommon to use system tests to make sure that different features work in com-
bination with one another. In theory, a fully system-tested program would contain a test for every per-
mutation of every feature. This approach quickly grows unwieldy but you should still make an effort to
test many features in combination. For example, a graphics program could have a system test that imports
an image, rotates it, performs a blur filter, converts it to black and white, and then saves it. The test
would compare the saved image to a file that contains the expected result.

Unfortunately, few specific rules can be stated about system tests because they are highly dependent on
the actual application. For applications that process files with no user interaction, system tests can be
written much like unit and integration tests. For graphical programs, a virtual user approach may be
best. For server applications, you might need to build stub clients that simulate network traffic. The
important part is that you are actually testing real use of the program, not just a piece of it.

Regression Tests
Regression testing is more of a testing concept than a specific type of test. The idea is that once a feature
works, developers tend to put it aside and assume that it will continue to work. Unfortunately, new fea-
tures and other code changes often conspire to break previously working functionality. Regression tests
are often put in place as a sanity check for features that are, more or less, complete and working. If the
regression test is well written, it will cease to pass when a change is introduced that breaks the feature.

If your company has an army of quality-assurance testers, regression testing may take the form of man-
ual testing. The tester acts as a user would and goes through a series of steps, gradually testing every
feature that worked in the previous release. This approach is thorough and accurate if carefully per-
formed, but not particularly scalable. At the other extreme, you could build a completely automated sys-
tem that performs each function as a virtual user. This would be a scripting challenge, though several
commercial and noncommercial packages exist to ease the scripting of various types of applications. A
middle ground is known as smoke testing. Some tests will only test the subset of the most important fea-
tures that should work. The idea is that if something is broken, it should show up right away. If smoke
tests pass, they could be followed by more rigorous manual or automated testing.

Some bugs are like the dream where you show up for school in your underwear — they are both terrify-
ing and recurring. Recurring bugs are frustrating and a poor use of engineering resources. Even if, for
some reason, you decide not to write a suite of regression tests, you should still write regression tests for
bugs that you fix. By writing a test for a bug fix, you both prove that the bug is fixed and set up an alert
that is triggered if the bug ever comes back (for example, if your change is rolled back or otherwise
undone). When a regression test of a previously fixed bug fails, it should be easy to fix because the
regression test can refer to the original bug number and describe how it was fixed the first time.

525

Becoming Adept at Testing

22_574841 ch19.qxd 12/15/04 3:46 PM Page 525

Tips for Successful Testing
As a software engineer, your role in testing may range anywhere from basic unit testing responsibility to
complete management of an automated test system. Because testing roles and styles vary so much, we
have assembled several tips from our experiences that may help you in various testing situations.

❑ Spend some time designing your automated test system. A system that runs constantly through-
out the day will detect failures quickly. A system that sends email to engineers automatically or
sits in the middle of the room loudly playing show tunes when a failure occurs will result in
increased visibility of problems.

❑ Don’t forget about stress testing. Even though a full suite of unit tests passes for your database
access class, it could still fall down when used by several dozen threads simultaneously. You
should test your product under the most extreme conditions it could face in the real world.

❑ Test on a variety of platforms or a platform that closely mirrors the customer’s system. One
method of testing on multiple operating systems is to use a third-party virtual machine environ-
ment that allows you to run several different operating systems on the same machine.

❑ Some tests can be written to intentionally inject faults in a system. For example, you could write
a test that deletes a file while it is being read or simulates a network outage during a network
operation.

❑ Bugs and tests are closely related. Bug fixes should be proven by writing a regression test. The
comment with the test should refer to the original bug number.

❑ Don’t simply comment out the tests that are failing. When a coworker is slaving over a bug and
finds your commented out tests, he will come looking for you!

The most important tip we can give you is to remember that testing is a part of software development. If
you agree with that and accept it before you start coding, it won’t be quite as unexpected when the fea-
ture is finished but there is still more work to do to prove that it works.

Summary
This chapter has covered the basic information that all professional programmers should know about
testing. Unit testing in particular is the easiest and most effective way to increase the quality of your
own code. Higher-level tests provide coverage of use cases, synchronicity between modules, and protec-
tion against regressions. No matter what your role is with regard to testing, you should now be able to
confidently design, create, and review tests at various levels.

Now that you know how to find bugs, it’s time to learn how to fix them. To that end, Chapter 20 covers
techniques and strategies for effective debugging.

526

Chapter 19

22_574841 ch19.qxd 12/15/04 3:46 PM Page 526

Conquering Debugging

Your code will contain bugs. Every professional programmer would like to write bug-free code,
but the reality is that few software engineers succeed in this endeavor. As computer users know,
bugs are endemic in computer software. The software that you write is probably no exception.
Therefore, unless you plan to bribe your coworkers into fixing all your bugs, you cannot be a
Professional C++ programmer without knowing how to debug C++ code. One factor that often
distinguishes an experienced programmer from a novice is his or her debugging skills.

Despite the obvious importance of debugging, it is rarely given enough attention in courses and
books. Debugging seems to be the type of skill that everyone wants you to know, but no one knows
how to teach. This chapter attempts to provide you with concrete guidelines and techniques for
debugging even the most galling problems. The contents include an introduction to the Fundamental
Law of Debugging and bug taxonomies, followed by tips for avoiding bugs. Techniques for planning
for bugs include error logging, debug traces, and asserts. The chapter concludes with specific tips for
debugging the problems that arise, including techniques for reproducing bugs, debugging repro-
ducible bugs, debugging nonreproducible bugs, debugging memory errors, and debugging multi-
threaded programs. The chapter concludes with a step-by-step debugging example.

The Fundamental Law of Debugging
The first rule of debugging is to be honest with yourself and admit that your program will contain
bugs. This realistic assessment enables you to put your best effort into preventing bugs from crawl-
ing into your program in the first place while you simultaneously include the necessary features to
make debugging as easy as possible.

The Fundamental Law of Debugging: avoid bugs when you’re coding, but plan for
bugs in your code.

23_574841 ch20.qxd 12/15/04 3:46 PM Page 527

Bug Taxonomies
A bug in a computer program is incorrect run-time behavior. This undesirable behavior includes both catas-
trophic bugs that cause program death, data corruption, operating system panics, or some other similarly
horrific outcome and noncatastrophic bugs that cause the program to behave incorrectly in more subtle ways.
For example, a Web browser might return the wrong Web page, or a spreadsheet application might calcu-
late the standard deviation of a column incorrectly. The underlying cause, or root cause, of the bug is the
mistake in the program that causes this incorrect behavior. The process of debugging a program includes
both determining the root cause of the bug and fixing the code so that the bug will not occur again.

Programmers often use the term root-cause as a verb, as in “Have you root-caused that core dump yet?”

Avoiding Bugs
The powerful features of C++ make it an especially error-prone language, so debugging skills are even
more important when coding in C++ than when using most other languages. Here are a few tips for
avoiding bugs in your programs:

❑ Read this book from cover to cover. Learn the C++ language intimately, especially pointers and
memory management. Then, recommend this book to your friends and coworkers so they avoid
bugs too!

❑ Follow the style guidelines in this book, specifically those described in Chapter 7. They will lead
to fewer bugs because you, and other people, will be able to understand your programs.

❑ Design before you code. Designing while you code tends to lead to convoluted designs that are
harder to understand and are more error-prone. It also makes you more likely to omit possible
edge cases and error conditions.

❑ Utilize code reviews: At least two people should look at every line of code that you write.
Sometimes it takes a fresh perspective to notice problems.

❑ Test, test, and test again. Follow the guidelines in Chapter 19.

❑ Expect error conditions, and handle them appropriately. In particular, plan for and handle out-
of-memory conditions. They will occur. See Chapter 15.

❑ Last, and probably most importantly, use smart pointers to avoid memory leaks. See Chapters
13, 15, and 25 for details.

Planning for Bugs
Your programs should contain features that enable easier debugging when the inevitable bugs arise.
This section describes these features and presents sample implementations that you can incorporate into
your own programs.

Error Logging
Imagine this scenario: You have just released a new version of your flagship product, and one of the first
users reports that the program “stopped working.” You attempt to pry more information from the user,

528

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 528

and eventually discover that the program died in the middle of an operation. The user can’t quite remem-
ber what he was doing, or if there were any error messages. How will you debug this problem?

Now imagine the same scenario, but in addition to the limited information from the user, you are also
able to examine the error log on the user’s computer. In the log you see a message from your program
that says “Error: unable to allocate memory.” Looking at the code near the spot where that error mes-
sage was generated, you find a line in which you dereferenced a pointer without checking for NULL.
You’ve found the root cause of your bug!

Error logging is the process of writing error messages to persistent storage so that they will be available
following an application, or even machine, death. Despite the example scenario, you might still have
doubts about this strategy. Won’t it be obvious by your program’s behavior if it encounters errors? Won’t
the user notice if something goes wrong? As the preceding example shows, user reports are not always
accurate or complete. In addition, many programs, such as the operating system kernel and long-running
daemons like inetd or syslogd on Unix, are not interactive and run unattended on a machine. The
only way these programs can communicate with users is through error logging.

Thus, your program should log errors as it encounters them. That way, if a user reports a bug, you will
be able to examine the log files on the machine to see if your program reported any errors prior to
encountering the bug. Unfortunately, error logging is platform dependent: C++ does not contain a stan-
dard logging mechanism. Examples of platform-specific logging mechanisms include the syslog facility
in Unix and the event reporting API in Windows. You should consult the documentation for your devel-
opment platform. There are also some open-source implementations of cross-platform logging classes,
including log4cpp (available at http://sourceforge.net).

Now that you’re convinced that error logging is a great feature to add to your programs, you might be
tempted to log error messages every few lines in your code, so that, in the event of any bug, you’ll be
able to trace the code path that was executing. These types of error messages are appropriately called
“traces.” However, you should not write these traces to error logs for two reasons. First, writing to per-
sistent storage is slow. Even on systems that write the logs asynchronously, logging that much informa-
tion will slow down your program. Second, and most importantly, most of the information that you
would put in your traces is not appropriate for the end user to see. It will just confuse the user, leading
to unwarranted service calls. That said, tracing is an important debugging technique under the correct
circumstances, as described in the next section.

Here are some specific guidelines for the types of errors your programs should log:

❑ Unrecoverable errors, such as an inability to allocate memory or a system call failing unexpect-
edly. These errors will usually directly precede an application exit or memory core dump.

❑ Errors for which an administrator can take action, such as low memory, an incorrectly formatted
data file, an inability to write to disk, or a network connection being down.

❑ Unexpected errors such as a code path that you never expected to take or variables with unex-
pected values. Note that your code should “expect” users to enter invalid data and should han-
dle it appropriately. An unexpected error would represent a bug in your program.

❑ Security breaches such as a network connection attempted from an unauthorized address or too
many network connections attempted (denial of service).

Additionally, most APIs allow you to specify a log level or error level. You can log nonerror conditions
under a log level that is less severe than “error.” For example, you might want to log significant state

529

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 529

changes in your application, or startup and shutdown of the program. You also might consider giving
your users a way to adjust the log level of your program at run time so that they can customize the
amount of logging that occurs.

Debug Traces
When debugging complicated problems, public error messages generally do not contain enough infor-
mation. You often need a complete trace of the code path taken or values of variables before the bug
showed up. In addition to basic messages, it’s sometimes helpful to include the following information in
debug traces:

❑ The thread ID, if a multithreaded program.

❑ The name of the function that generated the trace.

❑ The name of the source file in which the code that generates this trace lives.

You can add this tracing to your program through a special debug mode, or via a ring buffer. Both of
these methods are explained in detail below.

Debug Mode
The first technique to add debug traces is to provide a debug mode for your program. In debug mode,
the program writes trace output to standard error or to a file, and perhaps does extra checking during
execution. There are several ways to add a debug mode to your program.

Compile-Time Debug Mode
You can use preprocessor #ifdefs to selectively compile the debug code into your program. The advan-
tage of this method is that your debug code is not compiled into the “release” binary, and so does not
increase its size. The disadvantages are that there is no way to enable debugging at a customer site for
testing or following the discovery of a bug, and your code starts to look cluttered and indecipherable.

The rest of this section shows an example of a simple program instrumented with a compile-time debug
mode. This program doesn’t do anything useful: it is only for demonstrating the technique.

In order to generate a debug version of the program, it should be compiled with the symbol DEBUG_MODE
defined. Your compiler should allow you to specify symbols to define during compilation; consult your
documentation for details. For example, g++ allows you to specify –Dsymbol on the compile command.

Note that this example uses a global variable for the ofstream object. This example is one of the only
times that we recommend using global variables! It’s acceptable here because debug mode should not
interfere with the rest of the program. If the ofstream object were not global, you would have to pass it
to each function, requiring changes to all the function prototypes in the whole program.

// CTDebug.cpp
#include <exception>
#include <fstream>
#include <iostream>
using namespace std;

530

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 530

#ifdef DEBUG_MODE
ofstream debugOstr;

const char* debugFileName = “debugfile.out”;
#endif

class ComplicatedClass
{

public:
ComplicatedClass() {}

// Class details omitted for brevity
};

class UserCommand
{

public:
UserCommand() {}

// Class details not shown for brevity
};

ostream& operator<<(ostream& ostr, const ComplicatedClass& src);
ostream& operator<<(ostream& ostr, const UserCommand& src);
UserCommand getNextCommand(ComplicatedClass* obj);
void processUserCommand(UserCommand& cmd);
void trickyFunction(ComplicatedClass* obj) throw(exception);

int main(int argc, char** argv)
{
#ifdef DEBUG_MODE

// Open the output stream.
debugOstr.open(debugFileName);
if (debugOstr.fail()) {

cout << “Unable to open debug file!\n”;
return (1);

}

// Print the command-line arguments to the trace.
for (int i = 0; i < argc; i++) {

debugOstr << argv[i] << “ “;
debugOstr << endl;

}
#endif

// Rest of the function not shown
return (0);

}

ostream& operator<<(ostream& ostr, const ComplicatedClass& src)
{

ostr << “ComplicatedClass”;
return (ostr);

}

531

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 531

ostream& operator<<(ostream& ostr, const UserCommand& src)
{

ostr << “UserCommand”;
return (ostr);

}

UserCommand getNextCommand(ComplicatedClass* obj)
{

UserCommand cmd;
return (cmd);

}

void processUserCommand(UserCommand& cmd)
{

// Details omitted for brevity
}

void trickyFunction(ComplicatedClass* obj) throw(exception)
{
#ifdef DEBUG_MODE

// If in debug mode, print the values with which this function starts
debugOstr << “trickyFunction(): given argument: “ << *obj << endl;

#endif

while (true) {
UserCommand cmd = getNextCommand(obj);

#ifdef DEBUG_MODE
debugOstr << “trickyFunction(): retrieved cmd “ << cmd << endl;

#endif
try {

processUserCommand(cmd);
} catch (exception& e) {

#ifdef DEBUG_MODE
debugOstr << “trickyFunction(): “

<< “ received exception from procesUserCommand(): “
<< e.what() << endl;

#endif
throw;

}
}

}

Start-Time Debug Mode
Start-time debug mode is an alternative to #ifdefs that is just as simple to implement. A command-line
argument to the program can specify whether it should run in debug mode. Unlike compile-time debug
mode, this strategy includes the debug code in the “release” binary, and allows debug mode to be enabled
at a customer site. However, it still requires users to restart the program in order to run it in debug
mode, which is not always an attractive alternative for customers, and which may prevent you from
obtaining useful information about bugs.

532

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 532

The following example of start-time debug mode uses the same program as that shown for compile-time
debug mode so that you can directly compare the differences. This version of the program again uses
global variables: this time for the ofstream and the Boolean specifying whether the program is in debug
mode. This choice is acceptable here to avoid imposing extra debug arguments on all the function
prototypes.

One aspect of this program needs further comment: there is no standard library functionality in C++ for
parsing command-line arguments. This program uses a simple function isDebugSet() to check for the
debug flag among all the command-line arguments, but a function to parse all command-line arguments
would need to be more sophisticated.

// STDebug.cpp
#include <exception>
#include <fstream>
#include <iostream>
using namespace std;

ofstream debugOstr;
bool debug = false;

const char* debugFileName = “debugfile.out”;

class ComplicatedClass
{

public:
ComplicatedClass() {}
~ComplicatedClass() {}

};

class UserCommand
{

public:
UserCommand() {}

};

bool isDebugSet(int argc, char** argv);
ostream& operator<<(ostream& ostr, const ComplicatedClass& src);
ostream& operator<<(ostream& ostr, const UserCommand& src);
UserCommand getNextCommand(ComplicatedClass* obj);
void processUserCommand(UserCommand& cmd);
void trickyFunction(ComplicatedClass* obj) throw(exception);

int main(int argc, char** argv)
{

debug = isDebugSet(argc, argv);
if (debug) {

// Open the output stream.
debugOstr.open(debugFileName);
if (debugOstr.fail()) {

cout << “Unable to open debug file!\n”;
return (1);

}

// Print the command-line arguments.

533

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 533

for (int i = 0; i < argc; i++) {
debugOstr << argv[i] << “ “;
debugOstr << endl;

}
}

// Rest of the function not shown
return (0);

}

bool isDebugSet(int argc, char** argv)
{

for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], “-d”) == 0) {

return (true);
}

}
return (false);

}

ostream& operator<<(ostream& ostr, const ComplicatedClass& src)
{

ostr << “ComplicatedClass”;
return (ostr);

}

ostream& operator<<(ostream& ostr, const UserCommand& src)
{

ostr << “UserCommand”;
return (ostr);

}

UserCommand getNextCommand(ComplicatedClass* obj)
{

UserCommand cmd;
return (cmd);

}

void processUserCommand(UserCommand& cmd)
{

// Details omitted for brevity
}

void trickyFunction(ComplicatedClass* obj) throw(exception)
{

if (debug) {
// If in debug mode, print the values with which this function starts
debugOstr << “trickyFunction(): given argument: “ << *obj << endl;

}

while (true) {
UserCommand cmd = getNextCommand(obj);
if (debug) {

debugOstr << “trickyFunction(): retrieved cmd “ << cmd << endl;
}

534

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 534

try {
processUserCommand(cmd);

} catch (exception& e) {
if (debug) {

debugOstr << “trickyFunction(): “
<< “ received exception from procesUserCommand(): “
<< e.what() << endl;

}
throw;

}
}

}

Run-Time Debug Mode
The most flexible way to provide a debug mode is to allow it to be enabled or disabled at run time. One
way to provide this feature is to supply an asynchronous interface that controls debug mode on the fly.
In a GUI program, this interface could take the form of a menu command. In a CLI program, this inter-
face could be an asynchronous command that makes an interprocess call into the program (using sockets,
signals, or remote procedure calls for example). C++ provides no standard way to perform interprocess
communication or GUIs, so we do not show an example of this technique.

Ring Buffers
Debug mode is useful for debugging reproducible problems and for running tests. However, bugs often
appear when the program is running in nondebug mode, and by the time you or the customer enables
debug mode, it is too late to gain any information about the bug. One solution to this problem is to enable
tracing in your program at all times. You usually need only the most recent traces to debug a program,
so you should store only the most recent traces at any point in a program’s execution. One way to pro-
vide this limitation is through careful use of log file rotations.

However, in order to avoid the problems with logging traces described earlier in the “Error Logging”
section, it is better if your program doesn’t log these traces at all; it should store them in memory. Then,
it should provide a mechanism to dump all the trace messages to standard error or to a log file if the
need arises. A common technique is to use a ring buffer to store a fixed number of messages, or messages
in a fixed amount of memory. When the buffer fills up, it starts writing messages at the beginning of the
buffer again, overwriting the older messages. This cycle can repeat indefinitely. The following sections
provide an implementation of a ring buffer and show you how you can use it in your programs.

Ring Buffer Interface
#include <vector>
#include <string>
#include <fstream>

using std::string;
using std::vector;
using std::ostream;

//
// class RingBuffer
//
// Provides a simple debug buffer. The client specifies the number
// of entries in the constructor and adds messages with the addEntry()

535

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 535

// method. Once the number of entries exceeds the number allowed, new
// entries overwrite the oldest entries in the buffer.
//
// The buffer also provides the option to print entries as they
// are added to the buffer. The client can specify an output stream
// in the constructor, and can reset it with the setOutput() method.
//
// Finally, the buffer supports streaming to an output stream.
//
class RingBuffer
{

public:
//
// Constructs a ring buffer with space for numEntries.
// Entries are written to *ostr as they are queued.
//
RingBuffer(int numEntries = kDefaultNumEntries, ostream* ostr = NULL);
~RingBuffer();

//
// Adds the string to the ring buffer, possibly overwriting the
// oldest string in the buffer (if the buffer is full).
//
void addEntry(const string& entry);

//
// Streams the buffer entries, separated by newlines, to ostr.
//
friend ostream& operator<<(ostream& ostr, const RingBuffer& rb);

//
// Sets the output stream to which entries are streamed as they are added.
// Returns the old output stream.
//
ostream* setOutput(ostream* newOstr);

protected:
vector<string> mEntries;
ostream* mOstr;

int mNumEntries, mNext;
bool mWrapped;

static const int kDefaultNumEntries = 500;

private:
// Prevent assignment and pass-by-value.
RingBuffer(const RingBuffer& src);
RingBuffer& operator=(const RingBuffer& rhs);

};

Ring Buffer Implementation
This implementation of the ring buffer stores a fixed number of strings. Each of these strings must be
copied into the ring buffer, requiring dynamic allocation of memory. This approach certainly is not the

536

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 536

most efficient solution. Other possibilities would be to provide a fixed number of bytes of memory for
the buffer. However, that requires mucking with low-level C-strings and memory management, which
you should avoid whenever possible. This implementation should be sufficient unless you’re writing a
high-performance application.

This ring buffer uses the STL vector to store the string entries. You could also use a standard C-style
array. The use of the STL is straightforward except for the implementation of operator<< for the
RingBuffer, which employs some fancy iterators. Consult Chapters 21, 22, and 23 for the details of
iterators and the copy algorithm.

#include <algorithm>
#include <iterator>
#include <iostream>
#include “RingBuffer.h”

using namespace std;

const int RingBuffer::kDefaultNumEntries;

//
// Initialize the vector to hold exactly numEntries. The vector size
// does not need to change during the lifetime of the object.
//
// Initialize the other members.
//
RingBuffer::RingBuffer(int numEntries, ostream* ostr) : mEntries(numEntries),

mOstr(ostr), mNumEntries(numEntries), mNext(0), mWrapped(false)
{
}

RingBuffer::~RingBuffer()
{
}

//
// The algorithm is pretty simple: add the entry to the next
// free spot, then reset mNext to indicate the free spot after
// that. If mNext reaches the end of the vector, it starts over at 0.
//
// The buffer needs to know if the buffer has wrapped or not so
// that it knows whether to print the entries past mNext in operator<<
//
void RingBuffer::addEntry(const string& entry)
{

// Add the entry to the next free spot and increment
// mNext to point to the free spot after that.
mEntries[mNext++] = entry;

// Check if we’ve reached the end of the buffer. If so, we need to wrap.
if (mNext >= mNumEntries) {

mNext = 0;
mWrapped = true;

}

// If there is a valid ostream, write this entry to it.

537

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 537

if (mOstr != NULL) {
*mOstr << entry << endl;

}
}

ostream* RingBuffer::setOutput(ostream* newOstr)
{

ostream* ret = mOstr;
mOstr = newOstr;
return (ret);

}

//
// This function uses an ostream_iterator to “copy” entries directly
// from the vector to the output stream.
//
// This function must print the entries in order. If the buffer has wrapped,
// the earliest entry is one past the most recent entry, which is the entry
// indicated by mNext. So first print from entry mNext to the end.
//
// Then (even if the buffer hasn’t wrapped) print from the beginning to mNext - 1.
//
ostream& operator<<(ostream& ostr, const RingBuffer& rb)
{

if (rb.mWrapped) {
//
// If the buffer has wrapped, print the elements from
// the earliest entry to the end.
//
copy (rb.mEntries.begin() + rb.mNext, rb.mEntries.end(),

ostream_iterator<string>(ostr, “\n”));
}

//
// Now print up to the most recent entry.
// Go up to begin() + mNext because the range is not inclusive on the
// right side.
//
copy (rb.mEntries.begin(), rb.mEntries.begin() + rb.mNext,

ostream_iterator<string>(ostr, “\n”));

return (ostr);
}

Using the Ring Buffer
In order to use the ring buffer, you can simply declare an object and start adding messages to it. When
you want to print the buffer, just use operator<< to print it to the appropriate ostream. Here is the ear-
lier start-time debug mode program modified to show use of a ring buffer instead:

#include “RingBuffer.h”
#include <exception>
#include <fstream>
#include <iostream>
#include <cassert>

538

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 538

#include <sstream>
using namespace std;

RingBuffer debugBuf;

class ComplicatedClass
{

public:
ComplicatedClass() {}
~ComplicatedClass() {}

};

class UserCommand
{

public:
UserCommand() {}

};

ostream& operator<<(ostream& ostr, const ComplicatedClass& src);
ostream& operator<<(ostream& ostr, const UserCommand& src);
UserCommand getNextCommand(ComplicatedClass* obj);
void processUserCommand(UserCommand& cmd);
void trickyFunction(ComplicatedClass* obj) throw(exception);

int main(int argc, char** argv)
{

// Print the command-line arguments.
for (int i = 0; i < argc; i++) {

debugBuf.addEntry(argv[i]);
}

trickyFunction(new ComplicatedClass());

// Print the current contents of the debug buffer to cout.
cout << debugBuf;

return (0);
}

ostream& operator<<(ostream& ostr, const ComplicatedClass& src)
{

ostr << “ComplicatedClass”;
return (ostr);

}

ostream& operator<<(ostream& ostr, const UserCommand& src)
{

ostr << “UserCommand”;
return (ostr);

}

UserCommand getNextCommand(ComplicatedClass* obj)
{

UserCommand cmd;
return (cmd);

}

539

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 539

void processUserCommand(UserCommand& cmd)
{

// Details omitted for brevity
}

void trickyFunction(ComplicatedClass* obj) throw(exception)
{

assert(obj != NULL);

// Trace log the values with which this function starts.
ostringstream ostr;
ostr << “trickyFunction(): given argument: “ << *obj;
debugBuf.addEntry(ostr.str());

while (true) {
UserCommand cmd = getNextCommand(obj);

ostringstream ostr;
ostr << “trickyFunction(): retrieved cmd “ << cmd;
debugBuf.addEntry(ostr.str());

try {
processUserCommand(cmd);

} catch (exception& e) {
string msg = “trickyFunction(): received exception from procesUserCommand():”;

msg += e.what();
debugBuf.addEntry(msg);
throw;

}
break;

}
}

Note that this interface to the ring buffer sometimes requires you to construct strings using
ostringstreams or string concatenation before adding entries to the buffer.

Displaying the Ring Buffer Contents
Storing trace debug messages in memory is a great start, but in order for them to be useful, you need a
way to access these traces for debugging. Your program should provide a “hook” to tell it to print the
messages. This hook could be similar to the interface you would use to enable debugging at run time.
Additionally, if your program encounters a fatal error that causes it to exit, it should print the ring buffer
to standard error or to a log file before exiting.

Another way to retrieve these messages is to obtain a memory dump of the program. Each platform han-
dles memory dumps differently, so you should consult a book or expert on your platform.

Asserts
The assert macro in the <cassert> library is a powerful tool. It takes a Boolean expression and, if the
expression evaluates to false, prints an error message and terminates the program. If the expression
evaluates to true, it does nothing. Although this behavior may not sound particularly helpful, it turns

540

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 540

out to be quite useful in some cases. It allows you to “force” your program to exhibit a bug at the exact
point where that bug originates. If you didn’t assert at that point, your program might proceed with
those incorrect values, and the bug might not show up until much later. Thus, asserts allow you to detect
bugs earlier than you otherwise would.

The behavior of assert depends on the NDEBUG preprocessor symbol: if the symbol is not defined, the
assertion takes place, otherwise it is ignored. Compilers often define this symbol when compiling “debug”
builds. If you want to leave asserts in run time code, you must specify your compiler settings, or write
your own version of assert that isn’t affected by the value of NDEBUG.

You should use asserts in your code whenever you are “assuming” something about the state of your
variables. For example, if you call a library function that is supposed to return a pointer and claims
never to return NULL, throw in an assert after the function call to make sure that pointer isn’t NULL.

Note that you should assume as little as possible. For example, if you are writing a library function,
don’t assert that the parameters are valid. Instead, check the parameters and return an error code or
throw an exception if they are invalid. Asserts should be reserved for cases in which you have no other
option. For example, in the start-time debugging example, the function trickyFunction() takes a
parameter of type ComplicatedClass*. Instead of assuming that the argument is valid, it might be a
good idea to assert it like this:

#include <cassert>

void trickyFunction(ComplicatedClass* obj) throw(exception)
{

assert(obj != NULL);
// Remainder of the function omitted for brevity

}

Debugging Techniques
Debugging a program can be incredibly frustrating. However, with a systematic approach it becomes
significantly easier. Your first step in trying to debug a program should always be to reproduce the bug.
Depending on whether or not you can reproduce the bug, your subsequent approach will differ. The
next three sections explain how to reproduce bugs, how to debug reproducible bugs, and how to debug
nonreproducible bugs. Additional sections explain details about debugging memory errors and debug-
ging multithreaded programs.

Reproducing Bugs
If you can reproduce the bug consistently, it will be much easier to determine the root cause. Any repro-
ducible bug can be root-caused and fixed. Bugs that are not reproducible are difficult, if not impossible,

Be careful not to put any code that must be executed for correct program
functioning inside asserts. For example, a line like this is asking for trouble:
assert(myFunctionCall() != NULL). If a release build in your code strips
asserts, then the call to myFunctionCall() will be missing as well!

541

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 541

to root-cause. As a first step to reproduce the bug, run the program with exactly the same inputs as the
run when the bug first appeared. Be sure to include all inputs, from the program’s startup to the time of
the bug’s appearance. A common mistake is to attempt to reproduce the bug by performing only the
triggering action. This technique may not reproduce the bug because the bug might be caused by an
entire sequence of actions. For example, if your Web browser program dies with a segmentation viola-
tion when you request a certain Web page, it may be due to memory corruption triggered by that partic-
ular request’s network address. On the other hand, it may be because your program records all requests
in a queue, with space for one million entries, and this entry was number one million and one. Starting
the program over and sending one request certainly wouldn’t trigger the bug in that case.

Sometimes it is impossible to emulate the entire sequence of events that leads to the bug. Perhaps the
bug was reported by someone who can’t remember everything that he or she did. Alternatively, maybe
the program was running for too long to emulate every input. In that case, simply do your best to repro-
duce the bug. It takes some guesswork, and can be time-consuming, but effort at this point will save
time later in the debugging process. Here are some techniques you can try:

❑ Repeat the triggering action in the correct environment and with as many inputs as possible
similar to the initial report.

❑ Run automated tests that exercise similar functionality. Reproducing bugs is one benefit of auto-
mated tests. If it takes 24 hours of testing before the bug shows up, it’s preferable to let those
tests run on their own rather than spend 24 hours of your time trying to reproduce it.

❑ If you have the necessary hardware available, running slight variations of tests concurrently on
different machines can sometimes save time.

❑ Run stress tests that exercise similar functionality. If your program is a Web server that died on a
particular request, try running millions of browsers simultaneously that make that request.

After you are able to reproduce the bug consistently, you should attempt to determine the simplest and
most efficient test case to reproduce it. That makes it simpler to root-cause the problem and easier to ver-
ify the fix.

Debugging Reproducible Bugs
When you can reproduce a bug consistently and efficiently, it’s time to figure out the problem in the
code that causes the bug. Your goal at this point is to find the exact lines of code that trigger the problem.
You can use two different strategies:

1. cout debugging. By adding enough debug messages to your program and watching its output
when you reproduce the bug, you should be able to pinpoint the exact lines of code where the
bug occurs. If you have a debugger at your disposal, this method is usually not recommended
because it requires modifications to the program and can be time-consuming. However, if you
have already instrumented your program with debug messages as described earlier, you might
be able to root-cause your bug simply by running your program in debug mode while repro-
ducing the bug. This technique may actually be faster than firing up a debugger.

2. Using a debugger. We hope that you are familiar with debuggers, which allow you to step
through the execution of your program and to view the state of memory and the values of vari-
ables at various points. If you have not yet used debuggers, you should learn to use them as
soon as possible. They are often indispensable tools for root-causing bugs. When you have
access to the source code, you will use a symbolic debugger: a debugger that utilizes the variable

542

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 542

names, class names, and other symbols in your code. In order to use a symbolic debugger you
must compile your program with debugging information included. Otherwise, the symbol
information is stripped from the program executable and is not available in the debugger.

The debugging example at the end of this chapter demonstrates both these approaches.

Debugging Nonreproducible Bugs
Fixing bugs that are not reproducible is significantly more difficult than root-causing reproducible bugs.
You often have very little information and must employ a lot of guesswork. Nevertheless, a few strate-
gies can aid you:

1. Try to turn a nonreproducible bug into a reproducible bug. By using educated guesses, you can
often determine approximately where the bug lies. It’s worthwhile to spend some time trying to
reproduce the bug. Once you have a reproducible bug you can figure out its root cause using
the techniques described earlier.

2. Analyze error logs. Hopefully, you instrumented your program with error log generation as
described previously. You should sift through this information because any errors that were
logged directly before the bug occurred are likely to have contributed to the bug itself. If you’re
lucky (or if you coded your program well), your program will have logged the exact reason for
the bug at hand!

3. Obtain and analyze traces. Hopefully you instrumented your program with tracing output via a
ring buffer as described previously. At the time of the bug’s occurrence, you hopefully obtained
a copy of the traces. These traces should lead you right to the location of the bug in your code.

4. Examine a memory dump file, if it exists. Some platforms generate memory dump files of applica-
tions that terminate abnormally. On Unix these memory dumps are called core files. Each plat-
form provides tools for analyzing these memory dumps. Even without symbolic debugging
information, you can often obtain a surprising amount of information from these files. For
example, you can usually generate a stack trace of the application before its death because
global symbols such as function and method names are usually available in stripped binaries.
If you are familiar with the assembly of your platform, you can disassemble the machine code
to get assembly code. In addition, you can view the contents of memory, although without sym-
bols it is untyped and unnamed.

5. Inspect the code. Unfortunately, this is often the only strategy to determine the cause of a nonre-
producible bug. Surprisingly, it often works. When you examine code, even code that you wrote
yourself, with the perspective of the bug that just occurred, you can often find mistakes that you
overlooked previously. We don’t recommend spending hours staring at your code, but tracing
through the code path by hand will often lead you directly to the problem.

6. Use a memory-watching tool, such as one of those described in the “Debugging Memory
Problems” section, which follows. Such tools will often alert you to memory errors that don’t
always cause your program to misbehave, but could potentially be the cause of the bug at hand.

7. File or update a bug report. Even if you can’t find the root cause of the bug right away, the
report will be a useful record of your attempts if the problem is encountered again. Consult
Chapter 19 for details on bug-tracking systems.

Once you have root-caused a nonreproducible bug, you should create a reproducible test case and move
it to the “reproducible bugs” category. It is important to be able to reproduce a bug before you actually

543

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 543

fix it. Otherwise, how will you test the fix? A common mistake when debugging nonreproducible bugs is
to fix the wrong problem in the code. Because you can’t reproduce the bug, you don’t know if you’ve
really fixed it, so don’t be surprised when it shows up again a month later.

Debugging Memory Problems
Most catastrophic bugs, such as application death, are caused by memory errors. Many noncatastrophic
bugs are triggered by memory errors as well. Some memory bugs are obvious: if your program attempts
to dereference a NULL pointer, it will terminate immediately. However, others are more insidious. If
you write past the end of an array in C++, your program will probably not crash directly at that point.
However, if that array was on the stack, you may have written into a different variable or array, chang-
ing values that won’t show up until later in the program. Alternatively, if the array was on the heap, you
could cause memory corruption in the heap, which will cause errors later when you attempt to allocate
or free more memory dynamically. Chapter 13 introduced some of the common memory errors from the
perspective of what to avoid when you’re coding. This section discusses memory errors from the per-
spective of identifying problems in code that exhibits bugs. You should be familiar with the discussion in
Chapter 13 before reading this section.

Categories of Memory Errors
In order to debug memory problems you should be familiar with the types of errors that can occur. This
section describes the major categories of memory errors. Each memory error includes a small code exam-
ple demonstrating the error and a list of possible symptoms that you might observe. Note that a symptom
is not the same thing as a bug itself: a symptom is an observable behavior caused by a bug.

Memory Freeing Errors
This following table summarizes the five major errors involving freeing memory.

Error Type Symptoms Example

Memory Process grows over time. void memoryLeak()
leak Process runs slower {

over time. int* ip = new int[1000];
Eventually, commands return; // Bug! Not freeing ip.
and system calls fail }
because of lack of
memory.

Using Does not usually cause void mismatchedFree()
mismatched a program crash {
allocation immediately. int* ip1 = (int *)malloc(sizeof(int));
and free Can cause memory int* ip2 = new int;
commands corruption on some int* ip3 = new int[1000];

platforms, which might
show up as a program delete ip1; // BUG! Should use free
crash (segmentation delete[] ip2; // BUG! Should use delete
violation) later in the free (ip3); // BUG! Should use delete[]
program. }

544

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 544

Error Type Symptoms Example

Freeing Can cause a program void doubleFree()
memory crash (segmentation {
more than violation) If the memory int* ip1 = new int[1000];
once at that location has been delete[] ip1;

handed out in another int* ip2 = new int[1000];
allocation between the delete[] ip1; // BUG! freeing ip1 twice
two calls to delete. }

Freeing Will usually cause void freeUnallocated()
unallocated a program crash {
memory (segmentation violation int* ip1 =

or bus error). reinterpret_cast<int*>(10000);
// BUG! ip1 is not a valid pointer.
delete ip1;

}

Freeing Technically a special case void freeStack()
stack of freeing unallocated {
memory memory. Will usually int x;

cause a program crash. int* ip = &x;
delete ip; // BUG! Freeing stack memory

}

As you can see, some of the memory free errors do not cause immediate program termination. These
bugs are more subtle, leading to problems later in the run of the program.

Memory Access Errors
The second category of memory errors involves the actual reading and writing of memory.

Error Type Symptoms Example

Accessing Almost always causes void accessInvalid()
Invalid program to crash {
Memory immediately. int* ip1 =

reinterpret_cast<int*>(10000);
// BUG! ip1 is not a valid pointer.
*ip1 = 5;

}

Table continued on following page

545

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 545

Error Type Symptoms Example

Accessing Does not usually cause a void accessFreed()
Freed program crash. {
Memory If the memory has been int* ip1 = new int;

handed out in another delete ip1;
allocation, can cause int* ip2 = new int;
“strange” values to appear
unexpectedly. // BUG! The memory pointed to by ip1

// has been freed.
*ip1 = 5;

}

Accessing Does not cause a program void accessElsewhere()
Memory in crash. {
a Different Can cause “strange” values int x, y[10], z;
Allocation to appear unexpectedly. x = 0;

z = 0;

// BUG! element 10 is past the
// end of the array.
for (int i = 0; i <= 10; i++) {

y[i] = 10;
}

}

Reading Does not cause a program void readUninitialized()
Uninitialized crash unless you use the {
Memory uninitialized value as a int* ip;

pointer and dereference it
(as in the example). Even // BUG! ip is uninitialized.
then, it will not always cout << *ip << endl;
cause a program crash. }

Memory access errors are more likely than memory free errors to cause program crashes. However, they
don’t always do so. They can instead lead to subtle noncatastrophic bugs in your program.

Tips for Debugging Memory Errors
Memory-related bugs often show up in slightly different places in the code each time you run the pro-
gram. This is usually the case with heap memory corruption. Heap memory corruption is like a time
bomb, ready to explode at some attempt to allocate, free, or use memory on the heap. So, when you see a
bug that is reproducible, but shows up in slightly different places, suspect memory corruption. For exam-
ple, the program might get a segmentation violation one time followed by a bus error the next time.

If you suspect a memory bug, your best option is to use a memory-checking tool for C++. Debuggers
often provide options to run the program while checking for memory errors. Additionally, there are
some excellent third-party tools such as purify from Rational Software (now owned by IBM) or valgrind
for Linux (discussed in Chapter 13). These debuggers and tools work by interposing their own memory
allocation and freeing routines in order to check for any misuse of dynamic memory, such as freeing
unallocated memory, dereferencing unallocated memory, or writing off the end of an array.

546

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 546

If you don’t have a memory-checking tool at your disposal, and the normal strategies for debugging are
not helping, you may need to resort to code inspection. Once you’ve narrowed down the part of the
code containing the bug, here are some specific items to look for.

Object and Class-related Errors
❑ Verify that your classes with dynamically allocated memory have destructors that free exactly

the memory that’s allocated in the object: no more, and no less.

❑ Ensure that your classes handle copying and assignment correctly with copy constructors and
assignment operators, as described in Chapter 9.

❑ Check for suspicious casts. If you are casting a pointer to an object from one type to another,
make sure that it’s valid.

General Memory Errors
❑ Make sure that every call to new is matched with exactly one call to delete. Similarly, every call

to malloc, alloc, or calloc should be matched with one call to free. And every call to new[]
should be matched with one call to delete[]. Although duplicate free calls are generally
harmless, they can cause problems if that same memory was handed out in a different memory
allocation call after the first free.

❑ Check for buffer overruns. Anytime you iterate over an array or write into or read from a
C-style string, verify that you are not accessing memory past the end of the array.

❑ Check for dereferencing invalid pointers.

Debugging Multithreaded Programs
Unlike in Java, the C++ language does not provide any mechanisms for threading and synchronization
between threads. However, multithreaded C++ programs are common, so it is important to think about
the special issues involved in debugging a multithreaded program. Bugs in multithreaded programs are
often caused by variations in timing in the operating system scheduling, and can be difficult to reproduce.
Thus, debugging multithreaded programs takes a special set of techniques:

1. Use cout debugging. When debugging multithreaded programs, cout debugging is often more
effective than using a debugger. Most debuggers do not handle multiple threads of execution
very well, or at least don’t make it easy to debug a multithreaded program. It is difficult to step
through your program when you don’t know which thread will run at any given time. Add
debug statements to your program before and after critical sections, and before acquiring and
after releasing locks. Often by watching this output, you will be able to detect deadlocks and
race conditions because you will be able to see that two threads are in a critical section at the
same time or that one thread is stuck waiting for a lock.

2. Insert forced sleeps and context switches. If you are having trouble reproducing the problem
consistently, or have a hunch about the root cause but want to verify it, you can force certain
thread-scheduling behavior by making your threads sleep for specified amounts of time.
Although there is no standard way in C++ to make a thread sleep, most platforms provide a
call, often called sleep(). Sleeping for several seconds right before releasing a lock, immedi-
ately before signaling a condition variable, or directly before accessing shared data can reveal
race conditions that would otherwise go undetected.

547

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 547

Debugging Example: Article Citations
This section presents a buggy program and shows you the steps to take in order to debug it and fix the
problem.

Suppose that you’re part of a team writing a Web page that allows users to search for the research arti-
cles that cite a particular paper. This type of service is useful for authors who are trying to find work
similar to their own. Once they find one paper representing a related work, they can look for every
paper that cites that one to find other related work.

In this project, you are responsible for the code that reads the raw citations data from text files. For sim-
plicity, assume that the citation info for each paper is found in its own file. Furthermore, assume that the
first line of each file contains the author, title, and publication info for the paper; the second line is always
empty; and all subsequent lines contain the citations from the article (one on each line). Here is an exam-
ple file for one of the most important papers in Computer Science:

Alan Turing,”On Computable Numbers with an Application to the Entscheidungsproblem”,\
Proceedings of the London Mathematical Society, Series 2, Vol.42 (1936 - 37) pages\
230 to 265.
Godel, “Uber formal unentscheidbare Satze der Principia Mathernatica und verwant der\
Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.
Alonzo Church. “An unsolvable problem of elementary number theory”, American J of\
Math., 58(1936), 345 363.
Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic logic, 1 (1930),\
40 41.
Cf. Hobson, “Theory of functions of a real variable (2nd ed., 1921)”, 87, 88.\
Proc. London Math. Soc (2) 42 (1936 7), 230 265.

Note that the \ character is the continuation character to ensure that the computer treats the multiple
lines as a single line during processing.

Buggy Implementation of an ArticleCitations Class
You decide to structure your program by writing an ArticleCitations class that reads the file and stores
the information. This class stores the article info from the first line in one string, and the citations info in
an array of strings. Please note that this design decision is not necessarily the best possible. However, for
the purposes of illustrating buggy applications, it’s perfect! The class definition looks like this:

#include <string>
using std::string;

class ArticleCitations
{

public:
ArticleCitations(const string& fileName);
~ArticleCitations();
ArticleCitations(const ArticleCitations& src);
ArticleCitations& operator=(const ArticleCitations& rhs);

548

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 548

string getArticle() const { return mArticle; }
int getNumCitations() const { return mNumCitations; }
string getCitation(int i) const { return mCitations[i]; }

protected:
void readFile(const string& fileName);

string mArticle;
string* mCitations;
int mNumCitations;

};

The implementations of the methods follow. This program is buggy! Don’t use it verbatim or as a model.

#include “ArticleCitations.h”
#include <iostream>
#include <fstream>
#include <string>
#include <stdexcept>
using namespace std;

ArticleCitations::ArticleCitations(const string& fileName)
{

// All we have to do is read the file.
readFile(fileName);

}

ArticleCitations::ArticleCitations(const ArticleCitations& src)
{

// Copy the article name, author, etc.
mArticle = src.mArticle;
// Copy the number of citations.
mNumCitations = src.mNumCitations;
// Allocate an array of the correct size.
mCitations = new string[mNumCitations];
// Copy each element of the array.
for (int i = 0; i < mNumCitations; i++) {

mCitations[i] = src.mCitations[i];
}

}

ArticleCitations& ArticleCitations::operator=(const ArticleCitations& rhs)
{

// Check for self-assignment.
if (this == &rhs) {

return (*this);
}
// Free the old memory.
delete [] mCitations;
// Copy the article name, author, etc.
mArticle = rhs.mArticle;
// Copy the number of citations.
mNumCitations = rhs.mNumCitations;
// Allocate a new array of the correct size.
mCitations = new string[mNumCitations];

549

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 549

// Copy each citation.
for (int i = 0; i < mNumCitations; i++) {

mCitations[i] = rhs.mCitations[i];
}
return (*this);

}

ArticleCitations::~ArticleCitations()
{

delete[] mCitations;
}

void ArticleCitations::readFile(const string& fileName)
{

// Open the file and check for failure.
ifstream istr(fileName.c_str());
if (istr.fail()) {

throw invalid_argument(“Unable to open file\n”);
}
// Read the article author, title, etc. line.
getline(istr, mArticle);

// Skip the white space before the citations start.
istr >> ws;

int count = 0;
// Save the current position so we can return to it.
int citationsStart = istr.tellg();
// First count the number of citations.
while (!istr.eof()) {

string temp;
getline(istr, temp);
// Skip white space before the next entry.
istr >> ws;
count++;

}

if (count != 0) {
// Allocate an array of strings to store the citations.
mCitations = new string[count];
mNumCitations = count;
// Seek back to the start of the citations.
istr.seekg(citationsStart);
// Read each citation and store it in the new array.
for (count = 0; count < mNumCitations; count++) {

string temp;
getline(istr, temp);
mCitations[count] = temp;

}
}

}

Testing the ArticleCitations class
Following the advice of Chapter 19, you decide you unit test your ArticleCitations class before pro-
ceeding, though for simplicity in this example, the unit test does not use a test framework. The following

550

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 550

program asks the user for a filename, constructs an ArticleCitations class with that filename, and
passes the object by value to the processCitations() function, which prints out the info using the
public accessor methods on the object.

#include “ArticleCitations.h”
#include <iostream>
using namespace std;

void processCitations(ArticleCitations cit);

int main(int argc, char** argv)
{

string fileName;

while (true) {
cout << “Enter a file name (\”STOP\” to stop): “;
cin >> fileName;

if (fileName == “STOP”) {
break;

}
// Test constructor
ArticleCitations cit(fileName);
processCitations(cit);

}
return (0);

}

void processCitations(ArticleCitations cit)
{

cout << cit.getArticle() << endl;
int num = cit.getNumCitations();
for (int i = 0; i < num; i++) {

cout << cit.getCitation(i) << endl;
}

}

cout Debugging
You decide to test the program on the Alan Turing example (stored in a file called paper1.txt). Here is
the output:

Enter a file name (“STOP” to stop): paper1.txt
Alan Turing.”On Computable Numbers with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936 - 37) pages 230 to 265.

Enter a file name (“STOP” to stop): STOP

That doesn’t look right! There are supposed to be five citations printed instead of five blank lines.

551

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 551

For this bug, you decide to try good ole cout debugging. In this case, it makes sense to start by looking
at the function that reads the citations from the file. If that doesn’t work right, then obviously the object
won’t have the citations. You can modify readFile() as follows:

void ArticleCitations::readFile(const string& fileName)
{

// Open the file and check for failure.
ifstream istr(fileName.c_str());
if (istr.fail()) {

throw invalid_argument(“Unable to open file\n”);
}
// Read the article author, title, etc. line.
getline(istr, mArticle);

// Skip the white space before the citations start.
istr >> ws;

int count = 0;
// Save the current position so we can return to it.
int citationsStart = istr.tellg();
// First count the number of citations.
cout << “readFile(): counting number of citations\n”;
while (!istr.eof()) {

string temp;
getline(istr, temp);
// Skip white space before the next entry.
istr >> ws;
cout << “Citation “ << count << “: “ << temp << endl;
count++;

}

cout << “Found “ << count << “ citations\n” << endl;
cout << “readFile(): reading citations\n”;
if (count != 0) {

// Allocate an array of strings to store the citations.
mCitations = new string[count];
mNumCitations = count;
// Seek back to the start of the citations.
istr.seekg(citationsStart);
// Read each citation and store it in the new array.
for (count = 0; count < mNumCitations; count++) {

string temp;
getline(istr, temp);
cout << temp << endl;
mCitations[count] = temp;

}
}

Running the same test on this program gives this output:

Enter a file name (“STOP” to stop): paper1.txt
readFile(): counting number of citations
Citation 0: Godel, “Uber formal unentscheidbare Satze der Principia Mathernatica
und verwant der Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.

552

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 552

Citation 1: Alonzo Church. “An unsolvable problem of elementary number theory”,
American J of Math., 58(1936), 345 363.
Citation 2: Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic
logic, 1 (1930), 40 41.
Citation 3: Cf. Hobson, “Theory of functions of a real variable (2nd ed., 1921)”,
87, 88.
Citation 4: Proc. London Math. Soc (2) 42 (1936 7), 230 265.
Found 5 citations

readFile(): reading citations

Alan Turing,”On Computable Numbers with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936 - 37) pages 230 to 265.

Enter a file name (“STOP” to stop):

As you can see from the output, the first time the program reads the citations from the file, in order to
count them, they are read correctly. However, the second time, they are not read correctly. Why not? One
way to delve deeper into this issue is to add some debugging code to check the state of the file stream
after each attempt to read a citation:

void printStreamState(const istream& istr)
{

if (istr.good()) {
cout << “stream state is good\n”;

}
if (istr.bad()) {

cout << “stream state is bad\n”;
}
if (istr.fail()) {

cout << “stream state is fail\n”;
}
if (istr.eof()) {

cout << “stream state is eof\n”;
}

}

void ArticleCitations::readFile(const string& fileName)
{

// Open the file and check for failure.
ifstream istr(fileName.c_str());
if (istr.fail()) {

throw invalid_argument(“Unable to open file\n”);
}
// Read the article author, title, etc. line.
getline(istr, mArticle);

553

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 553

// Skip the white space before the citations start.
istr >> ws;

int count = 0;
// Save the current position so we can return to it.
int citationsStart = istr.tellg();
// First count the number of citations.
cout << “readFile(): counting number of citations\n”;
while (!istr.eof()) {

string temp;
getline(istr, temp);
// Skip white space before the next entry.
istr >> ws;
printStreamState(istr);
cout << “Citation “ << count << “: “ << temp << endl;
count++;

}

cout << “Found “ << count << “ citations\n” << endl;
cout << “readFile(): reading citations\n”;
if (count != 0) {

// Allocate an array of strings to store the citations.
mCitations = new string[count];
mNumCitations = count;
// Seek back to the start of the citations.
istr.seekg(citationsStart);
// Read each citation and store it in the new array.
for (count = 0; count < mNumCitations; count++) {

string temp;
getline(istr, temp);
printStreamState(istr);
cout << temp << endl;
mCitations[count] = temp;

}
}

}

When you run your program this time, you find some interesting information:

Enter a file name (“STOP” to stop): paper1.txt
readFile(): counting number of citations
stream state is good
Citation 0: Godel, “Uber formal unentscheidbare Satze der Principia Mathernatica
und verwant der Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.
stream state is good
Citation 1: Alonzo Church. “An unsolvable problem of elementary number theory”,
American J of Math., 58(1936), 345 363.
stream state is good
Citation 2: Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic
logic, 1 (1930), 40 41.
stream state is good
Citation 3: Cf. Hobson, “Theory of functions of a real variable (2nd ed., 1921)”,
87, 88.
stream state is eof
Citation 4: Proc. London Math. Soc (2) 42 (1936 7), 230 265.
Found 5 citations

554

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 554

readFile(): reading citations
stream state is fail
stream state is eof

stream state is fail
stream state is eof

stream state is fail
stream state is eof

stream state is fail
stream state is eof

stream state is fail
stream state is eof

Alan Turing,”On Computable Numbers with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936 - 37) pages 230 to 265.

Enter a file name (“STOP” to stop):

It looks like the stream state is good until after the final citation is read for the first time. Then, the
stream state is eof, because the end-of-file has been reached. That is expected. What is not expected is
that the stream state is both fail and eof after all attempts to read the citations a second time. That
doesn’t appear to make sense at first: the code uses seekg() to seek back to the beginning of the cita-
tions before reading them a second time, so the file shouldn’t still be at the end. However, recall from
Chapter 13 that streams maintain their error and eof states until you clear them explicitly. seekg()
doesn’t clear the eof state automatically. When in an error or eof state, streams fail to read data cor-
rectly, which explains why the stream state is fail also after trying to read the citations a second time. A
closer look at your method reveals that it fails to call clear() on the istream after reaching the end of
file. If you modify the method by adding a call to clear(), it will read the citations properly.

Here is the corrected readFile() method without the debugging cout statements:

void ArticleCitations::readFile(const string& fileName)
{

// CODE OMMITTED FOR BREVITY

if (count != 0) {
// Allocate an array of strings to store the citations.
mCitations = new string[count];
mNumCitations = count;
// Clear the previous eof.
istr.clear();
// Seek back to the start of the citations.
istr.seekg(citationsStart);
// Read each citation and store it in the new array.
for (count = 0; count < mNumCitations; count++) {

string temp;

555

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 555

getline(istr, temp);
mCitations[count] = temp;

}
}

}

Using a Debugger
The following example uses the gdb debugger on the Linux operating system.

Now that your ArticleCitations class seems to work well on one citations file, you decide to blaze
ahead and test some special cases, starting with a file with no citations. The file looks like this, and is
stored in a file named paper2.txt:

Author with no citations

When you try to run your program on this file, you get the following result:

Enter a file name (“STOP” to stop): paper1.txt
Alan Turing.”On Computable Numbers with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936 - 37) pages 230 to 265.
Godel, “Uber formal unentscheidbare Satze der Principia Mathernatica und verwant
der Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.
Alonzo Church. “An unsolvable problem of elementary number theory”, American J of
Math., 58(1936), 345 363.
Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic logic, 1
(1930), 40 41.
Cf. Hobson, “Theory of functions of a real variable (2nd ed., 1921)”, 87, 88.
Proc. London Math. Soc (2) 42 (1936 7), 230 265.
Enter a file name (“STOP” to stop): paper2.txt
Author with no citations
Segmentation fault

Oops. There must be some sort of memory error. This time you decide to give the debugger a shot. The
Gnu DeBugger (gdb) is widely available on Unix platforms, and works quite well. First, you must com-
pile your program with debugging info (-g with g++). After that, you can launch the program under gdb.
Here’s an example session using the debugger to root-cause this problem:

>gdb buggyprogram
GNU gdb Red Hat Linux (5.2-2)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “ia64-redhat-linux”...
(gdb) run
Starting program: buggyprogram
Enter a file name (“STOP” to stop): paper1.txt
Alan Turing.”On Computable Numbers with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society, Series 2,
Vol.42 (1936 - 37) pages 230 to 265.

556

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 556

Godel, “Uber formal unentscheidbare Satze der Principia Mathernatica und verwant
der Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.
Alonzo Church. “An unsolvable problem of elementary number theory”, American J of
Math., 58(1936), 345 363.
Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic logic, 1
(1930), 40 41.
Cf. Hobson, “Theory of functions of a real variable (2nd ed., 1921)”, 87, 88.
Proc. London Math. Soc (2) 42 (1936 7), 230 265.
Enter a file name (“STOP” to stop): paper2.txt
Author with no citations

Program received signal SIGSEGV, Segmentation fault.
__libc_free (mem=0x6000000000010320) at malloc.c:3143
3143 malloc.c: No such file or directory.

in malloc.c
Current language: auto; currently c

When the SEGV occurs, the debugger allows you to poke around in the state of program at the time. The
bt command shows the current stack trace. You can move up and down the function calls in the stack
with up and down.

(gdb) bt
#0 __libc_free (mem=0x6000000000010320) at malloc.c:3143
#1 0x2000000000089010 in __builtin_delete ()

from /usr/lib/libstdc++-libc6.2-2.so.3
#2 0x2000000000089050 in __builtin_vec_delete ()

from /usr/lib/libstdc++-libc6.2-2.so.3
#3 0x400000000000a820 in ArticleCitations::~ArticleCitations (

this=0x80000fffffffb920, __in_chrg=2) at ArticleCitations.cpp:51
#4 0x4000000000004f40 in main (argc=1, argv=0x80000fffffffb968)

at BuggyProgram.cpp:20

One item of interest in this stack trace is that delete calls free(). It’s actually fairly common for new
and delete to be implemented in terms of malloc() and free(). More importantly, from this stack
trace you can see that there seems to be some sort of problem in the ArticleCitations destructor. The
list command shows the code in the current stack frame.

(gdb) up 3
#3 0x400000000000a820 in ArticleCitations::~ArticleCitations (

this=0x80000fffffffb920, __in_chrg=2) at ArticleCitations.cpp:51
51 delete [] mCitations;
Current language: auto; currently c++
(gdb) list
46 return (*this);
47 }
48
49 ArticleCitations::~ArticleCitations()
50 {
51 delete [] mCitations;
52 }
53
54 void ArticleCitations::readFile(const string& fileName)
{

557

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 557

The only thing in the destructor is a single delete[] call. In gdb, you can print values available in the
current scope with print. In order to root-cause the problem, you can try printing some of the object
member variables. Recall that the string type in C++ is really a typedef of the basic_string tem-
plate instantiated for chars.

(gdb) print mCitations
$3 = (

basic_string<char,string_char_traits<char>,__default_alloc_template<true, 0> >
*) 0x6000000000010338

Hmm, mCitations looks like a valid pointer (though it’s hard to tell, of course).

(gdb) print mNumCitations
$2 = 5

Ah ha! Here’s the problem. This article isn’t supposed to have any citations. Why is mNumCitations set
to 5? Take another look at the code in readFile() for the case that there are no citations. In that case, it
looks like it never initializes mNumCitations and mCitations! The code is left with whatever junk is in
memory already in those locations. In this case, the previous ArticleCitations object had the value 5
in mNumCitations. The second ArticleCitations object must have been placed in the same location
in memory and so received that same value. However, the pointer value that it was assigned randomly
is certainly not a valid pointer to delete! You need to initialize mCitations and mNumCitations
whether or not you actually find any citations in the file. Here is the fixed code:

void ArticleCitations::readFile(const string& fileName)
{

// CODE OMMITTED FOR BREVITY

mCitations = NULL;
mNumCitations = 0;
if (count != 0) {

// Allocate an array of strings to store the citations.
mCitations = new string[count];
mNumCitations = count;
// Clear the previous eof.
istr.clear();
// Seek back to the start of the citations.
istr.seekg(citationsStart);
// Read each citation and store it in the new array.
for (count = 0; count < mNumCitations; count++) {

string temp;
getline(istr, temp);
mCitations[count] = temp;

}
}

}

As this example shows, memory errors don’t always show up right away. It often takes a debugger and
some persistence to figure them out.

If you attempt to replicate this debugging session on a different platform, you may find that, due to the
vagaries of memory errors, the program crashes in a different place than this example shows.

558

Chapter 20

23_574841 ch20.qxd 12/15/04 3:46 PM Page 558

Lessons from the ArticleCitations Example
You might be inclined to disregard this example as too small to be representative of real debugging.
Although the buggy code is not lengthy, many classes that you write will not be much bigger, even in
large projects. Thus, this example corroborates the message from Chapter 19 about the importance of
unit testing. Imagine if you had failed to test this example thoroughly before integrating it with the rest
of the project. If these bugs showed up later, you and other engineers would have to spend more time
narrowing down the problem before you could debug it as shown here. Additionally, the techniques
shown in this example apply to all debugging, large scale or small.

Summary
The most important concept in this chapter was the Fundamental Law of Debugging: avoid bugs when
you’re coding, but plan for bugs in your code. The reality of programming is that bugs will appear. If
you’ve prepared your program properly, with error logging, debug traces in a ring buffer, and asserts,
then the actual debugging will be significantly easier.

In addition to these techniques, this chapter also presented specific approaches for debugging bugs. The
most important rule when actually debugging is to reproduce the problem. Then, you can use cout
debugging or a symbolic debugger to track down the root cause. Memory errors present particular diffi-
culties, and account for the majority of bugs in C++ code. This chapter described the various categories
of memory bugs and their symptoms, and showed several examples of debugging errors in a program.

559

Conquering Debugging

23_574841 ch20.qxd 12/15/04 3:46 PM Page 559

23_574841 ch20.qxd 12/15/04 3:46 PM Page 560

Delving into the STL:
Containers and Iterators

Many programmers who claim to know C++ have never heard of the standard template library. As
a Professional C++ programmer, it behooves you to familiarize yourself with its powerful capabili-
ties. You can save yourself immeasurable time and energy by incorporating the STL containers and
algorithms into your programs instead of writing and debugging your own versions. Now that you
have read Chapters 1 through 20, and are an expert C++ designer, coder, tester, and debugger, it’s
time to master the STL.

Chapter 4 introduced the STL, described its basic philosophy and provided an overview of the
various containers and algorithms. You should be familiar with that section of Chapter 4, as well
as the content of most of the Chapters in Parts II and III, specifically Chapter 11 and Chapter 16.

This chapter begins a three-part tour of the STL by covering the STL containers, including:

❑ Containers Overview: requirements on elements, general error handling, and iterators.

❑ Sequential Containers: vector, deque, and list.

❑ Container Adapters: queue, priority_queue, and stack.

❑ Associative Containers: the pair utility, map, multimap, set, and multiset.

❑ Other Containers: arrays, strings, streams, and bitset.

Chapter 22 continues the STL by describing and showing examples of the generic algorithms that
you can use on container elements. The chapter also describes the predefined function object
classes in the STL and shows you how to use them effectively as callbacks with the algorithms.

Chapter 23 examines some advanced aspects of STL programming with a focus on customizing
and extending the library. It covers using and writing allocators, using iterator adapters, writing
algorithms, writing containers, and writing iterators.

24_574841 ch21.qxd 12/15/04 3:46 PM Page 561

Despite the depth of material found in this chapter and the next two, the standard template library is too
large for this book to cover exhaustively. The resource material on the Web site contain a reference for
the most useful parts of the standard library. Standard Library Header Files provides a summary of all
the header files in the standard library, while the Standard Library Reference presents a reference for the
various classes and algorithms in the STL. You should read Chapters 21 to 23 to learn about the STL, but
keep in mind that they don’t mention every method and member that the various classes provide, or
show you the prototypes of every algorithm. Consult the appendices for those details.

Containers Overview
Recall from Chapter 4 that the containers in the STL are generic data structures useful for storing collec-
tions of data. You should rarely need to use a C-style array, write a linked list, or design a stack when
you use the STL. The containers are implemented as templates, which allows you to instantiate them for
any type that meets certain basic conditions outlined below.

The STL provides 11 containers, divided into four categories. The sequential containers include the vector
(dynamic array), list, and deque. The associative containers include the map, multimap, set, and
multiset. The container adapters include the queue, priority_queue, and stack. The final container,
the bitset, is in a class of its own. Additionally, C-style arrays, C++ strings, and streams all can be
used as STL containers to a certain degree.

In our experience, the containers are the most valuable part of the STL (although some C++ aficionados
find that statement heretical.) If you don’t have much time or interest to pursue the STL in detail, at least
consider learning about the containers. Once you get past a few syntax details, they are not difficult to
use, and will save you debugging time down the road.

Everything in the STL is in the std namespace. The examples in this book usually use the blanket using
namespace std; statement in source files, but you can be more selective in your own programs about
which symbols from std to use.

Requirements on Elements
STL containers use value semantics on elements. That is, they store a copy of the element that they are
given, and return copies of elements when requested. They also assign to elements with the assignment
operator and destroy elements with the destructor. Thus, when you write classes that you intend to use
with the STL, make sure that it’s okay to have multiple copies of an object in the program at the same
time.

If you prefer reference semantics, you must implement them yourself by storing pointers to elements
instead of the elements themselves. When the containers copy a pointer, the result still refers to the same
element.

There is some debate about exactly which containers in C++ qualify as being part of
the STL. This book is somewhat more inclusive in its definition than are others.
Some people feel that only the sequential and associative containers qualify. Others
allow strings, but not bitset and container adapters.

562

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 562

The specific requirements on elements in containers are shown in the following table:

Method Desription Notes

Copy Creates a new element that is “equal” Used every time you insert an element.
Constructor to the old one, but that can safely

be destructed without affecting the
old one.

Assignment Replaces the contents of an element Used every time you modify an element.
Operator with a copy of the source element.

Destructor Cleans up an element. Used every time you remove an element.

Default Constructs an element without any Required only for certain operations such
Constructor arguments. as vector resize() method and the map

operator[] access.

operator== Compares two elements for equality. Required only for certain operations such
as operator== on two containers.

operator< Determines if one element is less Required only for certain operations such
than another. as operator< on two containers.

operator< is also the default comparison
for keys in associative containers.

Consult Chapters 9 and 16 for details about writing these methods.

Exceptions and Error Checking
The STL containers provide limited error checking. Clients are expected to ensure that their uses are
valid. However, some container methods and functions throw exceptions in certain conditions such as
out-of-bounds indexing. This chapter mentions exceptions where appropriate. The Standard Library
Reference resource on the Web site attempts to catalog the possible exceptions thrown from each method.
However, it is impossible to list exhaustively the exceptions that can be thrown from these methods
because they perform operations on user-specified types with unknown exception characteristics.

The STL containers call the copy constructor and assignment operator for elements
often, so make those operations efficient.

If you store pointers in containers, we recommend using reference-counted smart
pointers in order to handle the memory management properly. However, you cannot
use the C++ auto_ptr class in containers because it does not implement copying
correctly (as far as the STL is concerned). See Chapter 25 for a SuperSmartPointer
class that you can use in the STL containers.

563

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 563

Iterators
As described in Chapter 4, the STL uses the iterator pattern to provide a generic abstraction for accessing
the elements of the containers. Each container provides a container-specific iterator, which is a glorified
smart pointer that knows how to iterate over the elements of that specific container. The iterators for all
the different containers adhere to a specific interface defined in the C++ standard. Thus, even though the
containers provide different functionality, the iterators present a common interface to code that wishes to
work with elements of the containers.

You can think of an iterator as a pointer to a specific element of the container. Like pointers to elements
in an array, iterators can move to the next element with operator++. Similarly, you can usually use
operator* and operator-> on the iterator to access the actual element or field of the element. Some
iterators allow comparison with operator== and operator!=, and support operator-- for moving
to previous elements. Different containers provide iterators with slightly different capabilities. The stan-
dard defines five categories of iterators, summarized in the following table.

Iterator Category Operations Supported Comments

Input operator++ Provides read-only access, forward-only (no
operator* operator-- to move backward).
operator-> Iterators can be assigned and copied with
copy constructor assignment operator and copy constructor.
operator= Iterators can be compared for equality.
operator==
operator!=

Output operator++ Provides write-only access, forward only.
operator* Iterators cannot be assigned or copied.
copy constructor Iterators cannot be compared for equality.

Note the absence of operator->.

Forward operator++ Provides read/write access, forward only.
operator* Iterators can be assigned and copied with
operator-> assignment operator and copy constructor.
copy constructor Iterators can be compared for equality.
default constructor
operator=
operator==
operator!=

Bidirectional Capbilities of Forward Provides everything forward iterator provides
iterators, plus: Iterators can also move backward to previous
operator-- element.

Random Access Bidirectional capability, plus: Equivalent to dumb pointers: iterators
operator+, operator-, support pointer arithmetic, array index
operator+=, operator-= syntax, and all forms of comparison.
operator<, operator>,
operator<=, operator>=
operator[]

The standard containers that provide iterators all furnish either random access or bidirectional iterators.

564

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 564

Iterators are implemented similarly to smart pointer classes in that they overload the specific desired
operators. Consult Chapter 16 for details on operator overloading. See Chapter 23 for a sample iterator
implementation.

The basic iterator operations are similar to those supported by dumb pointers, so a dumb pointer is a
legitimate iterator for certain containers. In fact, the vector iterator is often implemented as simply a
dumb pointer. However, as a client of the containers, you need not worry about the implementation
details; you can simply use the iterator abstraction.

Iterators might not be implemented internally as pointers, so this text uses the term “refers to” instead
of “points to” when discussing the elements accessible via an iterator.

Chapters 22 and 23 delve into more detail about iterators and the STL algorithms that use them. This
chapter simply shows you the basics of using the iterators for each container.

Common Iterator Typedefs and Methods
Every container class in the STL that supports iterators provides public typedefs for its iterator types
called iterator and const_iterator. That way, clients can use the container iterators without worry-
ing about the actual types.

The containers also provide a method begin() that returns an iterator referring to the first element in
the container. The end() method returns a reference to the “past-the-end” value of the sequence of ele-
ments. That is, end() returns an iterator that is equal to the result of applying operator++ to an iterator
referring to the last element in the sequence. Together begin() and end() provide a half-open range that
includes the first element but not the last. The reason for this apparent complication is to support empty
ranges (containers without any elements), in which case begin() is equal to end(). The half-open range
bounded by iterators start and end is often written mathematically like this: [start,end).

Sequential Containers
The vector, deque, and list are called the sequential containers because they store elements in a
client-visible order. The best way to learn about the sequential containers is to jump in with an example
of the vector, which is the container most commonly used. This section describes the vector in detail

The half-open range concept also applies to iterator ranges that are passed to con-
tainer methods such as insert() and erase(). See the specific container descrip-
tions in this chapter for details.

const_iterators provide read-only access to elements of the container.

Only the sequential and associative containers provide iterators. The container
adapters and bitmap do not support iteration over their elements.

565

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 565

as an example of a sequential container, followed by briefer descriptions of the deque and the list.
Once you become familiar with the sequential containers, it’s trivial to switch between them.

Vector
As described in Chapter 4, the STL vector is similar to an array: the elements are stored in contiguous
memory, each in its own “slot.” You can index into the vector, as well as add new elements to the back
or insert them anywhere else. Inserting and deleting elements into and from the vector generally takes
linear time, though these operations actually run in amortized constant time (explained in the “Vector
Memory Allocation Scheme” section) at the end of the vector. Random access of individual elements is
constant complexity.

Vector Overview
The vector is defined in the <vector> header file as a class template with two type parameters: the ele-
ment type to store in the vector, and an allocator type.

template <typename T, typename Allocator = allocator<T> > class vector;

The Allocator parameter specifies the type for a memory allocator object that the client can set in order
to use custom memory allocation. The template parameter has a default value, which uses the element
type parameter T. See Chapter 11 for details on template parameters.

Fixed-Length Vectors
The simplest way to use a vector is as a fixed-length array. The vector provides a constructor that
allows you to specify the number of elements, and provides overloaded operator[] in order to access
and modify those elements.

For example, here is a small program to “normalize” test scores so that the highest score is set to 100,
and all other scores are adjusted accordingly. The program creates a vector of 10 doubles, reads in 10
values from the user, divides each value by the max score (times 100), and prints out the new values. For
the sake of brevity, the program forsakes error checking.

#include <vector>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

Like “real” array indexing, the vector operator[] does not provide bounds
checking.

The default value for the Allocator type parameter is sufficient for most applica-
tions. Programmers do not usually find it useful to customize allocators, but Chapter
23 provides more detail in case you are interested. This chapter assumes that you
always use the default allocator.

566

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 566

vector<double> doubleVector(10); // Create a vector of 10 doubles.
double max;
int i;

for (i = 0; i < 10; i++) {
doubleVector[i] = 0;

}

// Read the first score before the loop in order to initialize max.
cout << “Enter score 1: “;
cin >> doubleVector[0];
max = doubleVector[0];

for (i = 1; i < 10; i++) {
cout << “Enter score “ << i + 1 << “: “;
cin >> doubleVector[i];
if (doubleVector[i] > max) {

max = doubleVector[i];
}

}

max /= 100;
for (i = 0; i < 10; i++) {

doubleVector[i] /= max;
cout << doubleVector[i] << “ “;

}
cout << endl;
return (0);

}

As you can see from this example, you can use a vector just as you would use an array.

Specifying an Initial Element Value

You can specify an initial value for the elements when you create the vector like this:

#include <vector>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

vector<double> doubleVector(10, 0); // Creates vector of 10 doubles of value 0
double max;
int i;

// No longer need to initialize each element: the ctor did it for you.

The vector operator[] normally returns a reference to the element, which can be
used on the left-hand side of assignment statements. If operator[] is called on a
const vector object, it returns a reference to a const element, which cannot be
used as the target of an assignment. See Chapter 16 for details on how this trick is
implemented.

567

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 567

// Read the first score before the loop in order to initialize max.
cout << “Enter score 1: “;
cin >> doubleVector[0];
max = doubleVector[0];

for (i = 1; i < 10; i++) {
cout << “Enter score “ << i + 1 << “: “;
cin >> doubleVector[i];
if (doubleVector[i] > max) {

max = doubleVector[i];
}

}

max /= 100;
for (i = 0; i < 10; i++) {

doubleVector[i] /= max;
cout << doubleVector[i] << “ “;

}
cout << endl;
return (0);

}

Other Vector Element Access Methods

In addition to using operator[], you can access vector elements via at(), front(), and back().
at() is identical to operator[], except that it performs bounds checking, and throws an out_of_range
exception if the index is out of bounds. front() and back() return the references to the first and last
elements of the vector, respectively.

Dynamic-Length Vectors
The real power of the vector lies in its ability to grow dynamically. For example, consider the test score
normalization program from the previous section with the additional requirement that it handle any
number of test scores. Here is the new version:

int main(int argc, char** argv)
{

vector<double> doubleVector; // Create a vector with zero elements.
double max, temp;
size_t i;

// Read the first score before the loop in order to initialize max.
cout << “Enter score 1: “;
cin >> max;
doubleVector.push_back(max);

for (i = 1; true; i++) {
cout << “Enter score “ << i + 1 << “ (-1 to stop): “;
cin >> temp;
if (temp == -1) {

All vector element accesses run in constant complexity.

568

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 568

break;
}
doubleVector.push_back(temp);
if (temp > max) {

max = temp;
}

}

max /= 100;
for (i = 0; i < doubleVector.size(); i++) {

doubleVector[i] /= max;
cout << doubleVector[i] << “ “;

}
cout << endl;
return (0);

}

This version of the program uses the default constructor to create a vector with zero elements. As each
score is read, it’s added to the vector with the push_back() method. push_back() takes care of allo-
cating space for the new element. Note that the last for loop uses the size() method on the vector to
determine the number of elements in the container. size() returns an unsigned integer, so the type of i
was changed to size_t for compatibility.

Vector Details
Now that you’ve had a taste of the power of vectors, it’s time to delve into their details.

Constructors and Destructors
The default constructor creates a vector with 0 elements.

#include <vector>
using namespace std;

int main(int argc, char** argv)
{

vector<int> intVector; // Creates a vector of ints with zero elements
return (0);

}

As you’ve already seen, you can specify a number of elements and, optionally, a value for those ele-
ments, like this:

#include <vector>
using namespace std;

int main(int argc, char** argv)
{

vector<int> intVector(10, 100); // Creates a vector of 10 ints with value 100
return (0);

}

If you omit the default value, the new objects are zero-initialized. As described in Chapter 11, zero-
initialization constructs objects with the default constructor and initializes primitives such as int and
double with 0.

569

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 569

You can also create vectors of built-in classes like this:

#include <vector>
#include <string>
using namespace std;

int main(int argc, char** argv)
{

vector<string> stringVector(10, “hello”);
return (0);

}

Finally, you can create vectors of user-defined classes:

#include <vector>
using namespace std;

class Element
{

public:
Element() {}
~Element() {}

};

int main(int argc, char** argv)
{

vector<Element> elementVector;
return (0);

}

The vector stores copies of the objects, and its destructor calls the destructor for each of the objects.

You can allocate vectors in the heap as well:

#include <vector>
using namespace std;

class Element
{

public:
Element() {}
~Element() {}

};

int main(int argc, char** argv)
{

vector<Element>* elementVector = new vector<Element>(10);
delete elementVector;
return (0);

}

Remember to call delete when you are finished with a vector that you allocated with new!

570

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 570

Copying and Assigning Vectors
The copy constructor and assignment operator for the vector class perform deep copies of all the ele-
ments in the vector. Thus, for efficiency, you should pass vectors by reference or const reference to
functions and methods. Consult Chapter 11 for the details on writing functions that take template
instantiations as parameters.

In addition to normal copying and assignment, vectors provide an assign() method that allows you
to remove all the current elements and add any number of new elements. This method is useful if you
want to reuse a vector. Here is a trivial example:

vector<int> intVector(10, 0);
// Other code . . .
intVector.assign(5, 100);

Vectors also provide a swap() method that allows you to swap the contents of two vectors. Here is a
simple example:

vector<int> vectorOne(10, 0);
vector<int> vectorTwo(5, 100);

vectorOne.swap(vectorTwo);
// vectorOne now has 5 elements with the value 100.
// vectorTwo now has 10 elements with the value 0.

Comparing Vectors
The STL provides the usual six overloaded comparison operators for vectors: ==, !=, <, >, <=, >=. Two
vectors are equal if they have the same number of elements and all the corresponding elements in the
two vectors are equal to each other. One vector is “less than” another if all elements 0 through i –1
in the first vector are equal to 0 through i - 1 in the second vector, but element i in the first is less
than element i in the second.

Here is an example of a simple program that compares vectors of ints:

#include <vector>
#include <iostream>
using namespace std;

Comparing two vectors with operator== or operator!= requires the individual
elements to be comparable with operator==. Comparing two vectors with
operator<, operator>, operator<=, or operator>= requires the individual
elements to be comparable with operator<. If you intend to store objects of a
custom class in a vector, make sure to write those operators.

Use delete, not delete[], to free vectors. Even though the vector is implemented
as an array, you are deleting only the vector object. The vector handles the underly-
ing array itself.

571

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 571

int main(int argc, char** argv)
{

vector<int> vectorOne(10, 0);
vector<int> vectorTwo(10, 0);

if (vectorOne == vectorTwo) {
cout << “equal!\n”;

} else {
cout << “not equal!\n”;

}

vectorOne[3] = 50;

if (vectorOne < vectorTwo) {
cout << “vectorOne is less than vectorTwo\n”;

} else {
cout << “vectorOne is not less than vectorTwo\n”;

}
return (0);

}

The output of the program is:

equal!
vectorOne is not less than vectorTwo

Vector Iterators
The section on “Iterators” at the beginning of this chapter explained the basics of container iterators. The
discussion can get a bit abstract, so it’s helpful to jump in and look at a code example. Here is the test
score normalization program from earlier with the for loop previously using size() replaced by a for
loop using an iterator.

#include <vector>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

vector<double> doubleVector;
double max, temp;
int i;

// Read the first score before the loop in order to initialize max.
cout << “Enter score 1: “;
cin >> max;
doubleVector.push_back(max);

for (i = 1; true; i++) {
cout << “Enter score “ << i + 1 << “ (-1 to stop): “;
cin >> temp;
if (temp == -1) {

break;
}
doubleVector.push_back(temp);

572

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 572

if (temp > max) {
max = temp;

}
}

max /= 100;
for (vector<double>::iterator it = doubleVector.begin();

it != doubleVector.end(); ++it) {
*it /= max;
cout << *it << “ “;

}
cout << endl;
return (0);

}

You see for loops like the new one in this example quite a bit in STL code. First, take a look at the for
loop initialization statement:

vector<double>::iterator it = doubleVector.begin();

Recall that every container defines a type named iterator to represent iterators for that type of con-
tainer. begin() returns an iterator of that type referring to the first element in the container. Thus, the
initialization statement obtains in the variable it an iterator referring to the first element of
doubleVector. Next, look at the for loop comparison:

it != doubleVector.end();

This statement simply checks if the iterator is past the end of the sequence of elements in the vector.
When it reaches that point, the loop terminates. The increment statement, ++it, increments the iterator
to refer to the next element in the vector.

The for loop body contains these two lines:

*it /= max;
cout << *it << “ “;

As you can see, your code can both access and modify the elements over which it iterates. The first line
uses * to dereference it to obtain the element to which it refers, and assigns to that element. The second
line dereferences it again, but this time only to stream the element to cout.

Accessing Fields of Object Elements

If the elements of your container are objects, you can use the -> operator on iterators to call methods
or access members of those objects. For example, the following small program creates a vector of 10
strings, then iterates over all of them appending a new string to the old one:

Use preincrement instead of postincrement when possible because preincrement is
at least as efficient, and usually more efficient. it++ must return a new iterator
object, while ++it can simply return a reference to it. See Chapter 16 for details on
implementing operator++, and Chapter 23 for details on writing iterators.

573

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 573

#include <vector>
#include <string>
using namespace std;

int main(int argc, char** argv)
{

vector<string> stringVector(10, “hello”);

for (vector<string>::iterator it = stringVector.begin();
it != stringVector.end(); ++it) {
it->append(“ there”);

}
}

const_iterator

The normal iterator is read/write. However, if you call begin() and end() on a const object, you
receive a const_iterator. The const_iterator is read-only; you cannot modify the elements. An
iterator can always be converted to a const_iterator, so it’s always safe to write something like this:

vector<type>::const_iterator it = myVector.begin();

However, a const_iterator cannot be converted to an iterator. If myVector is const, the following
line doesn’t compile:

vector<type>::iterator it = myVector.begin();

Thus, if you do not need to modify the elements of a vector, you should use a const_iterator. This
rule will make your code more generic.

Iterator Safety

Generally, iterators are about as safe as pointers: extremely insecure. For example, you can write code
like this:

vector<int> intVector;

vector<int>::iterator it = intVector.end();
*it = 10; // BUG! it doesn’t refer to a valid element.

Recall that the iterator returned by end() is past the end of the vector. Trying to dereference it is unde-
fined, which usually means that your program will crash. However, the iterators themselves are not
required to perform any verification.

Another problem can occur if you use mismatched iterators. For example, the following code initializes
an iterator from vectorTwo and tries to compare it to the end iterator for vectorOne. Needless to say,
this loop will not do what you intended, and may never terminate.

Remember that end() returns an iterator past the end of the container, not the
iterator referring to the last element of the container.

574

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 574

vector<int> vectorOne(10);
vector<int> vectorTwo(10);

// Fill in the vectors.

// BUG! Infinite loop
for (vector<int>::iterator it = vectorTwo.begin(); it != vectorOne.end();

++it) {
// Loop body

}

Other Iterator Operations

The vector iterator is random access, which means that you can move it backward or forward, or jump
around. For example, the following code eventually changes the fifth element (index 4) in the vector to
the value 4:

vector<int> intVector(10, 0);

vector<int>::iterator it = intVector.begin();
it += 5;
--it;
*it = 4;

Chapter 23 provides more information on the different categories of iterators.

Iterators versus Indexing

Given that you can write a for loop that uses a simple index variable and the size() method to iterate
over the elements of the vector, why should you bother using iterators? That’s a valid question, for
which there are three main answers:

❑ Iterators allow you to insert and delete elements and sequences of elements at any point in the
container. See the following “Adding and Removing Elements” section.

❑ Iterators allow you to use the STL algorithms, which are discussed in Chapter 22.

❑ Using an iterator to access each element sequentially is often more efficient than indexing the
container to retrieve each element individually. This generalization is not true for vectors, but
applies to lists, maps, and sets.

Adding and Removing Elements
As you have already read, you can append an element to a vector with the push_back() method. The
vector provides a parallel remove method called pop_back().

You can also insert elements at any point in the vector with the insert() method. insert() adds one
or more elements to a position specified by an iterator, shifting all subsequent elements down to make

pop_back() does not return the element that it removed. If you want the element
you must first retrieve it with back().

575

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 575

room for the new ones. There are three different overloaded forms of insert(): one that inserts a single
element, one that inserts n copies of a single element, and one that inserts elements from an iterator
range. Recall that the iterator range is half-open, such that it includes the element referred to by the start-
ing iterator but not the one referred to by the ending iterator.

You can similarly remove elements from any point in the vector with erase(). There are two forms of
erase(): single element and range specified by an iterator. You can remove all elements with clear().

Here is a small program that demonstrates the methods for adding and removing elements. It uses a
helper function printVector() that prints the contents of the vector to cout, but whose implementa-
tion is not shown here because it uses algorithms covered in the next two chapters.

int main(int argc, char** argv)
{

vector<int> vectorOne, vectorTwo;
int i;

vectorOne.push_back(1);
vectorOne.push_back(2);
vectorOne.push_back(3);
vectorOne.push_back(5);

// Oops, we forgot to add 4. Insert it in the correct place.
vectorOne.insert(vectorOne.begin() + 3, 4);

// Add elements 6 through 10 to vectorTwo.
for (i = 6; i <= 10; i++) {

vectorTwo.push_back(i);
}

printVector(vectorOne);
printVector(vectorTwo);

// Add all the elements from vectorTwo to the end of vectorOne.
vectorOne.insert(vectorOne.end(), vectorTwo.begin(), vectorTwo.end());

printVector(vectorOne);

// Clear vectorTwo entirely.
vectorTwo.clear();

// And add 10 copies of the value 100.
vectorTwo.insert(vectorTwo.begin(), 10, 100);

// Decide we only want 9 elements.
vectorTwo.pop_back();

// Now erase the numbers 2 through 5 in vectorOne.
vectorOne.erase(vectorOne.begin() + 1, vectorOne.begin() + 5);

push_back() and insert() take const references to elements, allocate memory as
needed to store the new elements, and store copies of the element arguments.

576

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 576

printVector(vectorOne);
printVector(vectorTwo);

return (0);
}

The output of the program is:

1 2 3 4 5
6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 6 7 8 9 10
100 100 100 100 100 100 100 100 100

Recall that iterator pairs represent a half-open range, and insert() adds elements before the element
referred to by the iterator position. Thus, you can insert the entire contents of vectorTwo into the end of
vectorOne, like this:

vectorOne.insert(vectorOne.end(), vectorTwo.begin(), vectorTwo.end());

Algorithmic Complexity and Iterator Invalidation

Inserting or erasing elements in a vector causes all subsequent elements to shift up or down to make
room for, or fill in the holes left by, the affected elements. Thus, these operations take linear complexity.
Furthermore, all iterators referring to the insertion or removal point or subsequent positions are invalid
following the action. The iterators are not “magically” moved to keep up with the elements that are
shifted up or down in the vector.

Also keep in mind that an internal vector reallocation can cause invalidation of all iterators referring to
elements in the vector, not just those referring to elements past the point of insertion or deletion. See the
next section for details.

The Vector Memory Allocation Scheme
The vector allocates memory automatically to store the elements that you insert. Recall that the vector
requirements dictate that the elements must be in contiguous memory, like in C-style arrays. Because it’s
impossible to request to add memory to the end of a current chunk of memory, every time the vector
allocates more memory it must allocate a new, larger, chunk in a separate memory location and copy all
the elements to the new chunk. This process is time-consuming, so the vector implementations attempt
to avoid it by allocating more space than needed when they have to perform a reallocation. That way,
they can avoid reallocating memory every time you insert an element.

One obvious question at this point is why you, as a client of the vector, care how it manages its memory
internally. You might think that the principle of abstraction should allow you to disregard the internals
of the vector memory allocation scheme. Unfortunately, there are two reasons why you need to under-
stand how it works:

Methods such as insert() and erase() that take a vector range as arguments
assume that the beginning and ending iterators refer to elements in the same
container, and that the end iterator refers to an element at or past the begin iterator.
The methods will not work correctly if these preconditions are not met!

577

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 577

1. Efficiency. The vector allocation scheme can guarantee that element insert runs in amortized
constant time: most of the time the operation is constant, but once in a while (if it requires a real-
location), it’s linear. If you are worried about efficiency you can control when the vector per-
forms reallocations.

2. Iterator invalidations. A reallocation invalidates all iterators referring to elements in the vector.

Thus, the vector interface allows you to query and control the vector reallocations. If you don’t con-
trol the reallocations explicitly, you should assume that all insertions cause a reallocation and thus inval-
idate all iterators.

Size and Capacity

The vector provides two methods for obtaining information about its size: size() and capacity().
size() returns the number of elements in the vector, while capacity() returns the number of ele-
ments that it can hold without a reallocation. Thus, the number of elements that you can insert without
causing a reallocation is capacity() – size().

Reserving Capacity

If you don’t care about efficiency or iterator invalidations, there is never a need to control the vector
memory allocation explicitly. However, if you want to make your program as efficient as possible, or
want to guarantee that iterators will not be invalidated, you can force the vector to preallocate enough
space to hold all of its elements. Of course, you need to know how many elements it will hold, which is
sometimes impossible to predict.

One way to preallocate space is to call reserve(). That method allocates enough memory to hold the
specified number of elements. The next section shows an example of the reserve() method in action.

Another way to preallocate space is to specify, in the constructor, how many elements you want the
vector to store. This method actually creates a vector of that size (and probably of that capacity).

Vector Example: A Round-Robin Class
A common problem in computer science is distributing requests among a finite list of resources. For
example, a network load balancer distributes incoming network connections among the various hosts
that can service the request. Ideally, each of the hosts would be kept equally busy. One of the simplest
algorithmic solutions to this problem is round-robin scheduling, in which the resources are used or pro-
cessed in order. When the last resource has been used, the scheduler starts over again at the beginning.
For example, in the case of a network load balancer with three hosts, the first request would go the first
host, the second to the second host, the third to the third host, and the fourth back to the first host. The
cycle would continue in this way indefinitely.

Reserving space for elements changes the capacity, but not the size. That is, it
doesn’t actually create elements. Don’t access elements past the vector size.

You can query whether a vector is empty with the empty() method. A vector can
be empty but have nonzero capacity.

578

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 578

Suppose that you decide to write a generic round-robin scheduling class that can be used with any type
of resource. The class should support adding and removing resources, which occurs infrequently, and
should support cycling through the resources in order to obtain the next one. You could use the STL
vector directly, but it’s often helpful to write a wrapper class that provides more directly the functional-
ity you need for your specific application. The following example shows a RoundRobin class template
with comments explaining the code. First, here is the class definition:

#include <stdexcept>
#include <vector>
using std::vector;

//
// Class template RoundRobin
//
// Provides simple round-robin semantics for a list of elements.
// Clients add elements to the end of the list with add().
//
// getNext() returns the next element in the list, starting with the first,
// and cycling back to the first when the end of the list is reached.
//
// remove() removes the element matching the argument.
//
template <typename T>
class RoundRobin
{

public:
//
// Client can give a hint as to the number of expected elements for
// increased efficiency.
//
RoundRobin(int numExpected = 0);
~RoundRobin();

//
// Appends elem to the end of the list. May be called
// between calls to getNext().
//
void add(const T& elem);

//
// Removes the first (and only the first) element
// in the list that is equal (with operator==) to elem.
// May be called between calls to getNext().
//
void remove(const T& elem);

//
// Returns the next element in the list, starting from 0 and continuously
// cycling, taking into account elements that are added or removed.
//
T& getNext() throw(std::out_of_range);

protected:
vector<T> mElems;
typename std::vector<T>::iterator mCurElem;

579

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 579

private:
// Prevent assignment and pass-by-reference.
RoundRobin(const RoundRobin& src);
RoundRobin& operator=(const RoundRobin& rhs);

};

As you can see, the public interface is straightforward: only three methods plus the constructor and
destructor. The resources are stored in the vector mElems. mCurElem is an iterator that always refers to the
next element in mElems that should be used in the round-robin scheme. Note the use of the typename
keyword in front of the line declaring mCurElem. So far, you’ve only seen that keyword used to specify
template parameters, but there is another use for it. You must specify typename explicitly whenever you
access a type based on one or more template parameters. In this case, the template parameter T is used
to access the iterator type. Thus, you must specify typename. This is another example of arcane C++
syntax.

The implementation of the RoundRobin class follows. Note the use of reserve() in the constructor, and
the extensive use of the iterator in add(), remove(), and getNext(). The trickiest aspect is keeping
mCurElem valid and referring to the correct element following add() or remove().

template <typename T>
RoundRobin<T>::RoundRobin(int numExpected)
{

// If the client gave a guideline, reserve that much space.
mElems.reserve(numExpected);

// Initialize mCurElem even though it isn’t used until
// there’s at least one element.
mCurElem = mElems.begin();

}

template <typename T>
RoundRobin<T>::~RoundRobin()
{

// Nothing to do here--the vector will delete all the elements
}

//
// Always add the new element at the end.
//
template <typename T>
void RoundRobin<T>::add(const T& elem)
{

//
// Even though we add the element at the end,
// the vector could reallocate and invalidate the iterator.
// Take advantage of the random access iterator features to save our
// spot.
//
int pos = mCurElem - mElems.begin();

// Add the element.
mElems.push_back(elem);

// If it’s the first element, initialize the iterator to the beginning.

580

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 580

if (mElems.size() == 1) {
mCurElem = mElems.begin();

} else {
// Set it back to our spot.
mCurElem = mElems.begin() + pos;

}
}

template <typename T>
void RoundRobin<T>::remove(const T& elem)
{

for (typename std::vector<T>::iterator it = mElems.begin(); it != mElems.end();
++it) {
if (*it == elem) {

//
// Removing an element will invalidate our mCurElem iterator if
// it refers to an element past the point of the removal.
// Take advantage of the random access features of the iterator
// to track the position of the current element after the removal.
//
int newPos;

// If the current iterator is before or at the one we’re removing,
// the new position is the same as before.
if (mCurElem <= it) {

newPos = mCurElem - mElems.begin();
} else {

// Otherwise, it’s one less than before.
newPos = mCurElem - mElems.begin() - 1;

}
// Erase the element (and ignore the return value).
mElems.erase(it);

// Now reset our iterator.
mCurElem = mElems.begin() + newPos;

// If we were pointing to the last element and it was removed,
// we need to loop back to the first.
if (mCurElem == mElems.end()) {

mCurElem = mElems.begin();
}
return;

}
}

}

template <typename T>
T& RoundRobin<T>::getNext()throw(std::out_of_range)
{

// First, make sure there are any elements.
if (mElems.empty()) {

throw std::out_of_range(“No elements in the list”);
}

// Retrieve a reference to return.
T& retVal = *mCurElem;

581

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 581

// Increment the iterator modulo the number of elements.
++mCurElem;
if (mCurElem == mElems.end()) {

mCurElem = mElems.begin();
}

// Return the reference.
return (retVal);

}

Here’s a simple implementation of a load balancer that uses the RoundRobin class template. The actual
networking code is omitted because networking is operating system specific.

#include “RoundRobin.h”

//
// Forward declaration for NetworkRequest
// Implementation details omitted
//
class NetworkRequest;

//
// Simple Host class that serves as a proxy for a physical machine.
// Implementation details omitted.
//
class Host
{

public:
//
// Implementation of processRequest would forward
// the request to the network host represented by the
// object. Omitted here.
//
void processRequest(NetworkRequest& request) {}

};

//
// Simple load balancer that distributes incoming requests
// to its hosts using a round-robin scheme
//
class LoadBalancer
{

public:
//
// Constructor takes a vector of hosts.
//
LoadBalancer(const vector<Host>& hosts);
~LoadBalancer() {}

//
// Ship the incoming request to the next host using
// a round-robin scheduling algorithm.
//
void distributeRequest(NetworkRequest& request);

582

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 582

protected:
RoundRobin<Host> rr;

};

LoadBalancer::LoadBalancer(const vector<Host>& hosts)
{

// Add the hosts.
for (size_t i = 0; i < hosts.size(); ++i) {

rr.add(hosts[i]);
}

}

void LoadBalancer::distributeRequest(NetworkRequest& request)
{

try {
rr.getNext().processRequest(request);

} catch (out_of_range& e) {
cerr << “No more hosts.\n”;

}
}

The vector<bool> Specialization
The standard requires a partial specialization of vector for bools, with the intention that it optimize
space allocation by “packing” the Boolean values. Recall that a bool is either true or false, and thus
could be represented by a single bit, which can take on exactly two values. However, most C++ compil-
ers make bools the same size as ints. The vector<bool> is supposed to store the “array of bools” in
single bits, thus saving space.

In a half-hearted attempt to provide some bit-field routines for the vector<bool>, there is one addi-
tional method: flip(). This method can be called on either the container, in which case it negates all the
elements in the container, or a single reference returned from operator[] or a similar method, in which
case it negates that element.

At this point, you should be wondering how you can call a method on a reference to bool. The answer is
that you can’t. The vector<bool> specialization actually defines a class called reference that serves
as a proxy for the underlying bool (or bit). When you call operator[], at(), or a similar method, the
vector<bool> returns a reference object, which is a proxy for the real bool.

The fact that references returned from vector<bool> are really proxies means that
you can’t take their addressees to obtain pointers to the actual elements in the con-
tainer. The proxy design pattern is covered in detail in Chapter 26.

You can think of the vector<bool> as a bit-field instead of a vector. The bitset
container described below provides a more full-featured bit-field implementation
than does vector<bool>. However, the benefit of vector<bool> is that it can
change size dynamically.

583

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 583

In practice, the little amount of space saved by packing bools hardly seems worth the extra effort.
However, you should be familiar with this partial instantiation because of the additional flip() method,
and because of the fact that references are actually proxy objects. Many C++ experts recommend avoid-
ing vector<bool> in favor of the bitset, unless you really need a dynamically sized bit-field.

deque
The deque is almost identical to the vector, but is used far less frequently. The principle differences are:

❑ The implementation is not required to store elements contiguously in memory.

❑ The deque supports constant-time insertion and removal of elements at both the front and the
back (the vector supports amortized constant time at just the back).

❑ The deque provides push_front() and pop_front(), which the vector omits.

❑ The deque does not expose its memory management scheme via reserve() or capacity().

Rarely will your applications require a deque, as opposed to a vector or list. Thus, we leave the
details of the deque methods to the Standard Library Reference resource on the Web site.

list
The STL list is a standard doubly linked list. It supports constant-time insertion and deletion of ele-
ments at any point in the list, but provides slow (linear) time access to individual elements. In fact, the
list does not even provide random access operations like operator[]. Only through iterators can you
access individual elements.

Most of the list operations are identical to those of the vector, including the constructors, destructor,
copying operations, assignment operations, and comparison operations. This section focuses on those
methods that differ from those of vector. Consult the Standard Library Reference resource on the Web
site for details on the list methods not discussed here.

Accessing Elements
The only methods provided by the list to access elements are front() and back(), both of which run
in constant time. All other element access must be performed through iterators.

Iterators
The list iterator is bidirectional, not random access like the vector iterator. That means that you can-
not add and subtract list iterators from each other, or perform other pointer arithmetic on them.

Adding and Removing Elements
The list supports the same element add and remove methods that does the vector, including
push_back(), pop_back(), the three forms of insert(), the two forms of erase(), and clear().

Lists do not provide random access to elements.

584

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 584

Like the deque, it also provides push_front() and pop_front(). The amazing thing about the list is
that all these methods (except for clear()) run in constant time, once you’ve found the correct position.
Thus, the list is appropriate for applications that perform many insertions and deletions from the data
structure, but do not need quick index-based element access.

List Size
Like deques, and unlike vectors, lists do not expose their underlying memory model. Consequently,
they support size() and empty(), but not resize() or capacity().

Special List Operations
The list provides several special operations that exploit its quick element insertion and deletion. This
section provides an overview and examples. The Standard Library Reference resource on the Web site
gives a thorough reference for all the methods.

Splicing
The linked-list characteristics of the list class allow it to splice, or insert, an entire list at any position
in another list in constant time. The simplest version of this method works like this:

#include <list>
#include <string>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

list<string> dictionary, bWords;

// Add the a words.
dictionary.push_back(“aardvark”);
dictionary.push_back(“ambulance”);
dictionary.push_back(“archive”);

// Add the c words.
dictionary.push_back(“canticle”);
dictionary.push_back(“consumerism”);
dictionary.push_back(“czar”);

// Create another list, of the b words.
bWords.push_back(“bathos”);
bWords.push_back(“balderdash”);
bWords.push_back(“brazen”);

// Splice the b words into the main dictionary.
list<string>::iterator it;
int i;

// Iterate up to the spot where we want to insert bs
// for loop body intentionally empty--we’re just moving up three elements.
for (it = dictionary.begin(), i = 0; i < 3; ++it, ++i);

// Add in the bwords. This action removes the elements from bWords.
dictionary.splice(it, bWords);

585

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 585

// Print out the dictionary.
for (it = dictionary.begin(); it != dictionary.end(); ++it) {

cout << *it << endl;
}

return (0);
}

The result from running this program looks like this:

aardvark
ambulance
archive
bathos
balderdash
brazen
canticle
consumerism
czar

There are also two other forms of splice(): one that inserts a single element from another list and one that
inserts a range from another list. See the Standard Library Reference resource on the Web site for details.

More Efficient Versions of Algorithms
In addition to splice(), the list class provides special implementations of several of the generic STL
algorithms. The generic forms are covered in Chapter 22. Here we discuss only the specific versions pro-
vided by list.

The following table summarizes the algorithms for which list provides special implementations as
methods. See the Standard Library Reference resource on the Web site and Chapter 22 for prototypes,
details on the algorithms, and their specific running time when called on list.

Method Description

remove() Removes certain elements from the list.
remove_if()

unique() Removes duplicate consecutive elements from the list.

merge() Merges two lists. Both lists must be sorted to start. Like splice(),
merge() is destructive to the list passed as an argument.

When you have a choice, use the list methods rather than the generic algorithms
because the former are more efficient.

Splicing is destructive to the list passed as a parameter: it removes the spliced ele-
ments from one list in order to insert them into the other.

586

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 586

Method Description

sort() Performs a stable sort on elements in the list.

reverse() Reverses the order of the elements in the list.

The following program demonstrates most of these methods.

List Example: Determining Enrollment
Suppose that you are writing a computer registration system for a university. One feature you might
provide is the ability to generate a complete list of enrolled students in the university from lists of the
students in each class. For the sake of this example, assume that you must write only a single function
that takes a vector of lists of student names (as strings), plus a list of students that have been
dropped from their courses because they failed to pay tuition. This method should generate a complete
list of all the students in all the courses, without any duplicates, and without those students who have
been dropped. Note that students might be in more than one course.

Here is the code for this method. With the power of the STL lists, the method is practically shorter than
its written description! Note that the STL allows you to “nest” containers: in this case, you can use a
vector of lists.

#include <list>
#include <vector>
#include <string>
using namespace std;

//
// classLists is a vector of lists, one for each course. The lists
// contain the students enrolled in those courses. They are not sorted.
//
// droppedStudents is a list of students who failed to pay their
// tuition and so were dropped from their courses.
//
// The function returns a list of every enrolled (nondropped) student in
// all the courses.
//
list<string>
getTotalEnrollment(const vector<list<string> >& classLists,

const list<string>& droppedStudents)
{

list<string> allStudents;

// Concatenate all the course lists onto the master list.
for (size_t i = 0; i < classLists.size(); ++i) {

allStudents.insert(allStudents.end(), classLists[i].begin(),
classLists[i].end());

}

// Sort the master list.
allStudents.sort();

// Remove duplicate student names (those who are in multiple courses).
allStudents.unique();

587

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 587

//
// Remove students who are on the dropped list.
// Iterate through the dropped list, calling remove on the
// master list for each student in the dropped list.
//
for (list<string>::const_iterator it = droppedStudents.begin();

it != droppedStudents.end(); ++it) {
allStudents.remove(*it);

}

// Done!
return (allStudents);

}

Container Adapters
In addition to the three standard sequential containers, the STL provides three container adapters: the
queue, priority_queue, and stack. Each of these adapters is a wrapper around one of the sequential
containers. The intent is to simplify the interface and to provide only those features that are appropriate
for the stack or queue abstraction. For example, the adapters don’t provide iterators or the capability to
insert or erase multiple elements simultaneously.

queue
The queue container adapter, defined in the header file <queue>, provides standard “first-in, first-out”
(FIFO) semantics. As usual, it’s written as a class template, which looks like this:

template <typename T, typename Container = deque<T> > class queue;

The T template parameter specifies the type that you intend to store in the queue. The second template
parameter allows you to stipulate the underlying container that the queue adapts. However, the queue
requires the sequential container to support both push_back() and pop_front(), so you only have
two built-in choices: deque and list. For most purposes, you can just stick with the default deque.

Queue Operations
The queue interface is extremely simple: there are only six methods plus the constructor and the normal
comparison operators. The push() method adds a new element to the tail of the queue, and pop()
removes the element at the head of the queue. You can retrieve references to, without removing, the first
and last elements with front() and back(), respectively. As usual, when called on const objects,
front() and back() return const references, and when called on non-const objects they return
non-const (read/write) references.

The container adapters’ interfaces may be too limiting for your needs. If so, you can
use the sequential containers directly or write your own, more full-featured,
adapters. See Chapter 26 for details on the adapter design pattern.

588

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 588

The queue also supports size() and empty(). See the Standard Library Reference resource on the Web
site for details.

Queue Example: A Network Packet Buffer
When two computers communicate over a network, they send information to each other divided up into
discrete chunks called packets. The networking layer of the computer’s operating system must pick up the
packets and store them as they arrive. However, the computer might not have enough bandwidth to pro-
cess all of them at once. Thus, the networking layer usually buffers, or stores, the packets until the higher
layers have a chance to attend to them. The packets should be processed in the order they arrive, so this
problem is perfect for a queue structure. Following is a small PacketBuffer class that stores incoming
packets in a queue until they are processed. It’s a template so that different layers of the networking layer
can use it for different kinds of packets, such as IP packets or TCP packets. It allows the client to specify a
max size because operating systems usually limit the number of packets that can be stored, so as not to
use too much memory. When the buffer is full, subsequently arriving packets are ignored

#include <queue>
#include <stdexcept>
using std::queue;

template <typename T>
class PacketBuffer
{

public:
//
// If maxSize is nonpositive, the size is unlimited.
// Otherwise only maxSize packets are allowed in
// the buffer at any one time.
//
PacketBuffer(int maxSize = -1);

//
// Stores the packet in the buffer.
// Throws overflow_error is the buffer is full.
//
void bufferPacket(const T& packet);

//
// Returns the next packet. Throws out_of_range
// if the buffer is empty.
//
T getNextPacket() throw (std::out_of_range);

protected:
queue<T> mPackets;
int mMaxSize;

private:
// Prevent assignment and pass-by-value.

pop() does not return the element popped. If you want to retain a copy, you must
first retrieve it with front().

589

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 589

PacketBuffer(const PacketBuffer& src);
PacketBuffer& operator=(const PacketBuffer& rhs);

};

template <typename T>
PacketBuffer<T>::PacketBuffer(int maxSize)
{

mMaxSize = maxSize;
}

template <typename T>
void PacketBuffer<T>::bufferPacket(const T& packet)
{

if (mMaxSize > 0 && mPackets.size() ==
static_cast<size_t>(mMaxSize)) {
// No more space. Just drop the packet.
return;

}

mPackets.push(packet);
}

template <typename T>
T PacketBuffer<T>::getNextPacket() throw (std::out_of_range)
{

if (mPackets.empty()) {
throw (std::out_of_range(“Buffer is empty”));

}
// Retrieve the head element.
T temp = mPackets.front();
// Pop the head element.
mPackets.pop();
// Return the head element.
return (temp);

}

A practical application of this class would require multiple threads. However, here is a quick unit testlike
example of its use:

#include “PacketBuffer.h”
#include <iostream>
using namespace std;

class IPPacket {};

int main(int argc, char** argv)
{

PacketBuffer<IPPacket> ipPackets(3);

ipPackets.bufferPacket(IPPacket());
ipPackets.bufferPacket(IPPacket());
ipPackets.bufferPacket(IPPacket());
ipPackets.bufferPacket(IPPacket());

590

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 590

while (true) {
try {

IPPacket packet = ipPackets.getNextPacket();
} catch (out_of_range&) {

cout << “Processed all packets!” << endl;
break;

}
}
return (0);

}

priority_queue
A priority queue is a queue that keeps its elements in sorted order. Instead of a strict FIFO ordering, the
element at the head of queue at any given time is the one with the highest priority. This element could be
the oldest on the queue or the most recent. If two elements have equal priority, their relative order in the
queue is FIFO.

The STL priority_queue container adapter is also defined in <queue>. Its template definition looks
something like this (slightly simplified) one:

template <typename T, typename Container = vector<T>, typename Compare =
less<T> >;

It’s not as complicated as it looks! You’ve seen the first two parameters before: T is the element type stored
in the priority_queue and Container is the underlying container on which the priority_queue is
adapted. The priority_queue uses vector as the default, but deque works as well. list does not
work because the priority_queue requires random access to its elements for sorting them. The third
parameter, Compare, is trickier. As you’ll learn more about in Chapter 22, less is a class template that
supports comparison of two objects of type T with operator<. What this means for you is that the prior-
ity of elements in the queue is determined according to operator<. You can customize the comparison
used, but that’s a topic for Chapter 22. For now, just make sure that you define operator< appropriately
for the types stored in the priority_queue.

Priority Queue Operations
The priority_queue provides even fewer operations than does the queue. push() and pop() allow
you to insert and remove elements respectively, and top() returns a const reference to the head element.

top() returns a const reference even when called on a non-const object. The
priority_queue provides no mechanism to obtain the tail element.

pop() does not return the element popped. If you want to retain a copy, you must
first retrieve it with top().

The head element of the priority queue is the one with the “highest” priority, by
default determined according to operator< such that elements that are “less” than
other elements have lower priority.

591

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 591

Like the queue, the priority_queue supports size() and empty(). However, it does not provide any
comparison operators. The Standard Library Reference resource on the Web site for details.

This interface is obviously limited. In particular, the priority_queue provides no iterator support, and
it is impossible to merge two priority_queues.

Priority Queue Example: An Error Correlator
Single failures on a system can often cause multiple errors to be generated from different components. A
good error-handling system uses error correlation to avoid processing duplicate errors and to process the
most important errors first. You can use a priority_queue to write a very simple error correlator. This
class simply sorts events according to their priority, so that the highest-priority errors are always pro-
cessed first. Here is the class definition:

#include <ostream>
#include <string>
#include <queue>
#include <stdexcept>

// Sample Error class with just a priority and a string error description
class Error
{

public:
Error(int priority, std::string errMsg) :

mPriority(priority), mError(errMsg) {}
int getPriority() const {return mPriority; }
std::string getErrorString() const {return mError; }

friend bool operator<(const Error& lhs, const Error& rhs);
friend std::ostream& operator<<(std::ostream& str, const Error& err);

protected:
int mPriority;
std::string mError;

};

// Simple ErrorCorrelator class that returns highest priority errors first
class ErrorCorrelator
{

public:
ErrorCorrelator() {}

//
// Add an error to be correlated.
//
void addError(const Error& error);

//
// Retrieve the next error to be processed.
//
Error getError() throw (std::out_of_range);

protected:
std::priority_queue<Error> mErrors;

592

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 592

private:
// Prevent assignment and pass-by-reference.
ErrorCorrelator(const ErrorCorrelator& src);
ErrorCorrelator& operator=(const ErrorCorrelator& rhs);

};

Here are the definitions of the functions and methods.

#include “ErrorCorrelator.h”
using namespace std;

bool operator<(const Error& lhs, const Error& rhs)
{

return (lhs.mPriority < rhs.mPriority);
}

ostream& operator<<(ostream& str, const Error& err)
{

str << err.mError << “ (priority “ << err.mPriority << “)”;
return (str);

}

void ErrorCorrelator::addError(const Error& error)
{

mErrors.push(error);
}

Error ErrorCorrelator::getError() throw (out_of_range)
{

//
// If there are no more errors, throw an exception.
//
if (mErrors.empty()) {

throw (out_of_range(“No elements!”));
}

// Save the top element.
Error top = mErrors.top();
// Remove the top element.
mErrors.pop();
// Return the saved element.
return (top);

}

Here is a simple unit test showing how to use the ErrorCorrelator. Realistic use would require multi-
ple threads so that one thread adds errors, while another processes them.

#include “ErrorCorrelator.h”
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

ErrorCorrelator ec;

593

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 593

ec.addError(Error(3, “Unable to read file”));
ec.addError(Error(1, “Incorrect entry from user”));
ec.addError(Error(10, “Unable to allocate memory!”));

while (true) {
try {

Error e = ec.getError();
cout << e << endl;

} catch (out_of_range&) {
cout << “Finished processing errors\n”;
break;

}
}

return (0);
}

stack
The stack is almost identical to the queue, except that it provides “last-in, first-out” (LIFO) semantics
instead of FIFO. The template definition looks like this:

template <typename T, typename Container = deque<T> > class stack;

You can use any of the three standard sequential containers as the underlying model for the stack.

Stack Operations
Like the queue, the stack provides push() and pop(). The difference is that push() adds a new ele-
ment to the top of the stack, “pushing down” all elements inserted earlier, and pop() removes the ele-
ment from the top of the stack, which is the most recently inserted element. The top() method returns
a const reference to the top element if called on a const object and a non-const reference if called on a
non-const object.

The stack supports empty(), size(), and the standard comparison operators. See the Standard
Library Reference resource on the Web site for details.

Stack Example: Revised Error Correlator
Suppose that you decide to rewrite the previous ErrorCorrelator class so that it gives out the most
recent errors instead of those with the highest priority. You can simply substitute a stack for the
priority_queue in the ErrorCorrelator class definition. Now, the Errors will be distributed from
the class in LIFO instead of priority order. Nothing in the method definitions needs to change because
the push(), pop(), top(), and empty() methods exist on both the priority_queue and stack.

#include <ostream>
#include <string>

pop() does not return the element popped. If you want to retain a copy, you must
first retrieve it with top().

594

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 594

#include <stack>
#include <stdexcept>

// Details of Error class omitted for brevity

//
// Simple ErrorCorrelator class that returns most recent errors first
//
class ErrorCorrelator
{

public:
ErrorCorrelator() {}

//
// Add an error to be correlated.
//
void addError(const Error& error);

//
// Retrieve the next error to be processed.
//
Error getError() throw (std::out_of_range);

protected:
std::stack<Error> mErrors;

private:
// Prevent assignment and pass-by-reference.
ErrorCorrelator(const ErrorCorrelator& src);
ErrorCorrelator& operator=(const ErrorCorrelator& rhs);

};

Associative Containers
Unlike the sequential containers, the associative containers do not store elements in a linear configura-
tion. Instead, they provide a mapping of keys to values. They generally offer insertion, deletion, and
lookup times that are equivalent to each other.

The four associative containers provided by the STL are map, multimap, set, and multiset. Each of
these containers stores its elements in a sorted, treelike, data structure.

The pair Utility Class
Before learning about the associative containers, you must become familiar with the pair class, which
is defined in the <utility> header file. pair is a class template that groups together two values of pos-
sibly different types. The values are accessible through the first and second public data members.
operator== and operator< are defined for pairs to compare both the first and second elements.
Here are some examples:

#include <utility>
#include <string>
#include <iostream>

595

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 595

using namespace std;

int main(int argc, char** argv)
{

// Two-argument ctor and default ctor
pair<string, int> myPair(“hello”, 5), myOtherPair;

// Can assign directly to first and second
myOtherPair.first = “hello”;
myOtherPair.second = 6;

// Copy ctor.
pair<string, int> myThirdPair(myOtherPair);

// operator<
if (myPair < myOtherPair) {

cout << “myPair is less than myOtherPair\n”;
} else {

cout << “myPair is greater than or equal to myOtherPair\n”;
}

// operator==
if (myOtherPair == myThirdPair) {

cout << “myOtherPair is equal to myThirdPair\n”;
} else {

cout << “myOtherPair is not equal to myThirdPair\n”;
}

return (0);
}

The library also provides a utility function template, make_pair(), that constructs a pair from two
variables. For example, you could use it like this:

pair<int, int> aPair = make_pair(5, 10);

Of course, in this case you could have just used the two-argument constructor. However, make_pair()
is more useful when you want to pass a pair to a function. Unlike class templates, function templates
can infer types from parameters, so you can use make_pair() to construct a pair without explicitly
specifying the types.

map
The map is one of the most useful containers. It stores key/value pairs instead of just a single value.
Insertion, lookup, and deletion are all based on the key; the value is just “along for the ride.” The term
“map” comes from the conceptual understanding that the container “maps” keys to values. You might
be more familiar with the concept of a hash table. The map provides a similar interface; the differences
are in the underlying data structure and the algorithmic complexity of the operations.

Using pointer types in pairs is risky because the pair copy constructor and assign-
ment operator perform only shallow copies and assignments of pointer types.

596

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 596

The map keeps elements in sorted order, based on the keys, so that insertion, deletion, and lookup all
take logarithmic time. It is usually implemented as some form of balanced tree, such as a red-black tree.
However, the tree structure is not exposed to the client.

You should use a map whenever you need to store and retrieve elements based on a “key” value.

Constructing Maps
The map template takes four types: the key type, the value type, the comparison type, and the allocator
type. As usual, we ignore the allocator in this chapter; see Chapter 23 for details. The comparison type is
similar to the comparison type for priority_queue described above. It allows you to specify a different
comparison class than the default. You usually shouldn’t need to change the sorting criteria. In this chap-
ter, we use only the default less comparison. When using the default, make sure that your keys all
respond to operator< appropriately.

If you’re interested in further detail, Chapter 22 explains how to write your own comparison classes.

If you ignore the comparison and allocator parameters (which we urge you to do), constructing a map is
just like constructing a vector or list, except that you specify the key and value types separately in the
template. For example, the following code constructs a map that uses ints as the key and stores objects
of the Data class (whose full definition is not shown):

#include <map>
using namespace std;

class Data
{

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }
// Remainder of definition omitted

protected:
int mVal;

};

int main(int argc, char** argv)
{

map<int, Data> dataMap;
return (0);

}

Inserting Elements
Inserting an element into the sequential containers such as vector and list always requires you to
specify the position at which the element is to be added. The map, along with the other associative con-
tainers, is different. The map internal implementation determines the position in which to store the new
element; you need only to supply the key and the value.

map and the other associative containers do provide a version of insert() that takes
an iterator position. However, that position is only a “hint” to the container as to the
correct position. The container is not required to insert the element at that position.

597

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 597

When inserting elements, it is important to keep in mind that maps support so-called “unique keys:”
every element in the map must have a different key. If you want to support multiple elements with the
same key, you must use multimaps, which are described below.

There are two ways to insert an element into the map: one clumsy and one not so clumsy.

The insert() Method
The clumsy mechanism to add an element to a map is the insert() method. One problem is that you
must specify the key/value pair as a pair object. The second problem is that the return value from the
basic form of insert() is a pair of an iterator and a bool. The reason for the complicated return
value is that insert() does not overwrite an element value if one already exists with the specified key.
The bool element of the return pair specifies whether the insert() actually inserted the new key/
value pair. The iterator refers to the element in the map with the specified key (with a new or old value,
depending on whether the insert succeeded or failed). Continuing the map example from the previous
section, here is how to use insert():

#include <map>
#include <iostream>
using namespace std;

class Data
{

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }
// Remainder of definition omitted

protected:
int mVal;

};

int main(int argc, char** argv)
{

map<int, Data> dataMap;
pair<map<int, Data>::iterator, bool> ret;

ret = dataMap.insert(make_pair(1, Data(4)));
if (ret.second) {

cout << “Insert succeeded!\n”;
} else {

cout << “Insert failed!\n”;
}

ret = dataMap.insert(make_pair(1, Data(6)));
if (ret.second) {

cout << “Insert succeeded!\n”;
} else {

cout << “Insert failed!\n”;
}
return (0);

}

598

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 598

Note the use of make_pair() to construct the pair to pass to the insert() method. The output from
the program is:

Insert succeeded!
Insert failed!

operator[]
The less clumsy way to insert an element into the map is through the overloaded operator[]. The dif-
ference is mainly in the syntax: you specify the key and value separately. Additionally, operator[]
always succeeds. If no element value with the given key exists, it creates a new element with that key
and value. If an element with the key exists already, operator[] replaces the element value with the
newly specified value. Here is the previous example using operator[] instead of insert():

#include <map>
#include <iostream>
using namespace std;

class Data
{

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }
// Remainder of definition omitted

protected:
int mVal;

};

int main(int argc, char** argv)
{

map<int, Data> dataMap;
dataMap[1] = Data(4);
dataMap[1] = Data(6); // Replaces the element with key 1
return (0);

}

There is, however, one major caveat to operator[]: it always constructs a new value object, even if it
doesn’t need to use it. Thus, it requires a default constructor for your element values, and can be less
efficient than insert().

Map Iterators
map iterators work similarly to the iterators on the sequential containers. The major difference is that the
iterators refer to key/value pairs instead of just the values. In order to access the value, you must retrieve
the second field of the pair object. Here is how you can iterate through the map from the previous
example:

#include <map>
#include <iostream>
using namespace std;

class Data
{

599

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 599

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }
// Remainder of definition omitted

protected:
int mVal;

};

int main(int argc, char** argv)
{

map<int, Data> dataMap;

dataMap[1] = Data(4);
dataMap[1] = Data(6); // Replaces the element with key 1

for (map<int, Data>::iterator it = dataMap.begin();
it != dataMap.end(); ++it) {
cout << it->second.getVal() << endl;

}
return (0);

}

Take another look at the expression used to access the value:

it->second.getVal()

it refers to a key/value pair, so you can use the -> operator to access the second field of that pair,
which is a Data object. You can then call the getVal() method on that data object.

Note that the following code is functionally equivalent:

(*it).second.getVal()

You still see a lot of code that like around because -> didn’t used to be required for iterators.

map iterators are bidirectional.

Looking Up Elements
The map provides logarithmic lookup of elements based on a supplied key. If you already know that an
element with a given key is in the map, the simplest way to look it up is through operator[]. The nice
thing about operator[] is that it returns a reference to the element that you can use (or modify on a
non-const map) directly, without worrying about pulling the value out of a pair object. Here is an
extension to the preceding example to call the setVal() method on the Data object value at key 1:

You can modify element values through non-const iterators, but you cannot modify
the key of an element, even through a non-const iterator, because it would destroy
the sorted order of the elements in the map.

600

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 600

#include <map>
#include <iostream>
using namespace std;

class Data
{

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }
// Remainder of definition omitted

protected:
int mVal;

};

int main(int argc, char** argv)
{

map<int, Data> dataMap;
dataMap[1] = Data(4);
dataMap[1] = Data(6);
dataMap[1].setVal(100);

return (0);
}

However, if you don’t know whether the element exists, you may not want to use operator[], because
it will insert a new element with that key if it doesn’t find one already. As an alternative, the map pro-
vides a find() method that returns an iterator referring to the element with the specified key, if it
exists, or the end() iterator if its not in the map. Here is an example using find() to perform the
same modification to the Data object with key 1:

#include <map>
#include <iostream>
using namespace std;

class Data
{

public:
Data(int val = 0) { mVal = val; }
int getVal() const { return mVal; }
void setVal(int val) {mVal = val; }

// Remainder of definition omitted
protected:

int mVal;
};

int main(int argc, char** argv)
{

map<int, Data> dataMap;
dataMap[1] = Data(4);
dataMap[1] = Data(6);

601

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 601

map<int, Data>::iterator it = dataMap.find(1);
if (it != dataMap.end()) {

it->second.setVal(100);
}

return (0);
}

As you can see, using find() is a bit clumsier, but it’s sometimes necessary.

If you only want to know whether or not an element with a certain key is in the map, you can use the
count() member function. It returns the number of elements in the map with a given key. For maps, the
result will always be 0 or 1 because there can be no elements with duplicate keys. The following section
shows an example using count().

Removing Elements
The map allows you to remove an element at a specific iterator position or to remove all elements in a
given iterator range, in amortized constant and logarithmic time, respectively. From the client perspec-
tive, these two erase() methods are equivalent to those in the sequential containers. A great feature of
the map, however, is that it also provides a version of erase() to remove an element matching a key.
Here is an example:

// #includes, Data class definition, and beginning of main function omitted.
// See previous examples for details.
map<int, Data> dataMap;
dataMap[1] = Data(4);
cout << “There are “ << dataMap.count(1) << “ elements with key 1\n”;
dataMap.erase(1);
cout << “There are “ << dataMap.count(1) << “ elements with key 1\n”;

Map Example: Bank Account
You can implement a simple bank account database using a map. A common pattern is for the key to be
one field of a class or struct that is stored in the map. In this case, the key is the account number. Here
are simple BankAccount and BankDB classes:

#include <map>
#include <string>
#include <stdexcept>
using std::map;
using std::string;
using std::out_of_range;

class BankAccount
{

public:
BankAccount(int acctNum, const string& name) :

mAcctNum(acctNum), mClientName(name) {}
void setAcctNum(int acctNum) { mAcctNum = acctNum; }
int getAcctNum() const {return (mAcctNum); }
void setClientName(const string& name) { mClientName = name; }
string getClientName() const { return mClientName; }

602

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 602

// Other public methods omitted

protected:
int mAcctNum;
string mClientName;
// Other data members omitted

};

class BankDB
{

public:
BankDB() {}

// Adds acct to the bank database. If an account
// exists already with that number, the new account is
// not added. Returns true if the account is added, false
// if it’s not.
bool addAccount(const BankAccount& acct);

// Removes the account acctNum from the database
void deleteAccount(int acctNum);

// Returns a reference to the account represented
// by its number or the client name.
// Throws out_of_range if the account is not found
BankAccount& findAccount(int acctNum) throw(out_of_range);
BankAccount& findAccount(const string& name) throw(out_of_range);

// Adds all the accounts from db to this database.
// Deletes all the accounts in db.
void mergeDatabase(BankDB& db);

protected:
map<int, BankAccount> mAccounts;

};

Here are implementations of the BankDB methods:

#include “BankDB.h”
#include <utility>
using namespace std;

bool BankDB::addAccount(const BankAccount& acct)
{

// Declare a variable to store the return from insert().
pair<map<int, BankAccount>::iterator, bool> res;
// Do the actual insert, using the account number as the key.
res = mAccounts.insert(make_pair(acct.getAcctNum(), acct));

// Return the bool field of the pair specifying success or failure.
return (res.second);

}

void BankDB::deleteAccount(int acctNum)
{

603

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 603

mAccounts.erase(acctNum);
}

BankAccount& BankDB::findAccount(int acctNum) throw(out_of_range)
{

// Finding an element via its key can be done with find().
map<int, BankAccount>::iterator it = mAccounts.find(acctNum);
if (it == mAccounts.end()) {

throw (out_of_range(“No account with that number.”));
}
// Remember that iterators into maps refer to pairs of key/value.
return (it->second);

}

BankAccount& BankDB::findAccount(const string& name) throw(out_of_range)
{

//
// Finding an element by a non-key attribute requires a linear
// search through the elements.
//
for (map<int, BankAccount>::iterator it = mAccounts.begin();

it != mAccounts.end(); ++it) {
if (it->second.getClientName() == name) {

// Found it!
return (it->second);

}
}
throw (out_of_range(“No account with that name.”));

}

void BankDB::mergeDatabase(BankDB& db)
{

// Just insert copies of all the accounts in the old db
// into the new one.
mAccounts.insert(db.mAccounts.begin(), db.mAccounts.end());

// Now delete all the accounts in the old one.
db.mAccounts.clear();

}

multimap
The multimap is a map that allows multiple elements with the same key. The interface is almost identical
to the map interface, with the following changes:

❑ multimaps do not provide operator[]. The semantics of this operator do not make sense if
there can be multiple elements with a single key.

❑ Inserts on multimaps always succeed. Thus, the multimap insert() that adds a single element
doesn’t need to return the pair of the iterator and bool. It returns only the iterator.

multimaps allow you to insert identical key/value pairs. If you want to avoid this
redundancy, you must check explicitly before inserting a new element.

604

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 604

The trickiest aspect of multimaps is looking up elements. You can’t use operator[], because it is not
provided. find() isn’t very useful because it returns an iterator referring to any one of the elements
with a given key (not necessarily the first element with that key).

Luckily, multimaps store all elements with the same key together and provide methods to obtain
iterators for this subrange of elements with the same key in the container. lower_bound() and
upper_bound() each return a single iterator referring to the first and one-past-the-last elements
matching a given key. If there are no elements matching that key, the iterators returned by
lower_bound() and upper_bound() will be equal to each other.

In case you don’t want to call two separate methods to obtain the iterators bounding the elements
with a given key, multimaps also provide equal_range(), which returns a pair of the two iterators
that would be returned by lower_bound() and upper_bound().

The example in the next section illustrates the use of these methods.

multimap Example: Buddy Lists
Most of the numerous online chat programs allow users to have a “buddy list” or list of friends. The chat
program confers special privileges on users in the buddy list, such as allowing them to send unsolicited
messages to the user.

One way to implement the buddy lists for an online chat program is to store the information in a
multimap. One multimap could store the buddy lists for every user. Each entry in the container stores
one buddy for a user. The key is the user and the value is the buddy. For example, if the two authors of
this book had each other on their individual buddy lists, there would be two entries of the form “Nicholas
Solter” maps to “Scott Kleper” and “Scott Kleper” maps to “Nicholas Solter.” The multimap allows mul-
tiple values for the same key, so the same user is allowed multiple buddies. Here the BuddyList class
definition:

#include <map>
#include <string>
#include <list>

using std::multimap;
using std::string;
using std::list;

class BuddyList
{

public:
BuddyList();

//
// Adds buddy as a friend of name
//
void addBuddy(const string& name, const string& buddy);

The lower_bound(), upper_bound(), and equal_range() methods exist for maps
as well, but their usefulness is limited.

605

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 605

//
// Removes buddy as a friend of name
//
void removeBuddy(const string& name, const string& buddy);

//
// Returns true if buddy is a friend of name.
// Otherwise returns false.
//
bool isBuddy(const string& name, const string& buddy) const;

//
// Retrieves a list of all the friends of name
//
list<string> getBuddies(const string& name) const;

protected:
multimap<string, string> mBuddies;

private:
// Prevent assignment and pass-by-value.
BuddyList(const BuddyList& src);
BuddyList& operator=(const BuddyList& rhs);

};

Here is the implementation. It demonstrates the use of lower_bound(), upper_bound(), and
equal_range():

#include “BuddyList.h”
using namespace std;

BuddyList::BuddyList()
{
}

void BuddyList::addBuddy(const string& name, const string& buddy)
{

// Make sure this buddy isn’t already there.
// We don’t want to insert an identical copy of the
// key/value pair.
if (!isBuddy(name, buddy)) {

mBuddies.insert(make_pair(name, buddy));
}

}

void BuddyList::removeBuddy(const string& name, const string& buddy)
{

// Declare two iterators into the map.
multimap<string, string>::iterator start, end;

// Obtain the beginning and end of the range of elements with
// key name. Use both lower_bound() and upper_bound() to demonstrate
// their use. Otherwise, could just call equal_range().
start = mBuddies.lower_bound(name);
end = mBuddies.upper_bound(name);

606

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 606

// Iterate through the elements with key name looking
// for a value buddy.
for (start; start != end; ++start) {

if (start->second == buddy) {
// We found a match! Remove it from the map.
mBuddies.erase(start);
break;

}
}

}

bool BuddyList::isBuddy(const string& name, const string& buddy) const
{

// Declare two iterators into the map.
multimap<string, string>::const_iterator start, end;
// Obtain the beginning and end of the range of elements with
// key name. Use both lower_bound() and upper_bound() to demonstrate
// their use. Otherwise, could just call equal_range().
start = mBuddies.lower_bound(name);
end = mBuddies.upper_bound(name);

// Iterate through the elements with key name looking
// for a value buddy. If there are no elements with key name,
// start equals end, so the loop body doesn’t execute.
for (start; start != end; ++start) {

if (start->second == buddy) {
// We found a match!
return (true);

}
}
// No matches
return (false);

}

list<string> BuddyList::getBuddies(const string& name) const
{

// Create a variable to store the pair of iterators.
pair<multimap<string, string>::const_iterator,

multimap<string, string>::const_iterator> its;

// Obtain the pair of iterators marking the range containing
// elements with key name.
its = mBuddies.equal_range(name);

// Create a list with all the names in the range
// (all the buddies of name).
list<string> buddies;
for (its.first; its.first != its.second; ++its.first) {

buddies.push_back((its.first)->second);
}

return (buddies);
}

607

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 607

Note that removeBuddy() can’t simply use the version of erase() that erases all elements with a given
key, because it should erase only one element with the key, not all of them. Note also that getBuddies()
can’t use insert() on the list to insert the elements in the range returned by equal_range(),
because the elements referred to by the multimap iterators are key/value pairs, not strings.
getBuddies() must iterate explicitly through the list extracting the string from each key/value pair
and pushing it onto the new list to be returned.

Here is a simple test of the BuddyList:

#include “BuddyList.h”
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

BuddyList buddies;

buddies.addBuddy(“Harry Potter”, “Ron Weasley”);
buddies.addBuddy(“Harry Potter”, “Hermione Granger”);
buddies.addBuddy(“Harry Potter”, “Hagrid”);
buddies.addBuddy(“Harry Potter”, “Draco Malfoy”);
// That’s not right! Remove Draco.
buddies.removeBuddy(“Harry Potter”, “Draco Malfoy”);

buddies.addBuddy(“Hagrid”, “Harry Potter”);
buddies.addBuddy(“Hagrid”, “Ron Weasley”);
buddies.addBuddy(“Hagrid”, “Hermione Granger”);

list<string> harryBuds = buddies.getBuddies(“Harry Potter”);

cout << “Harry’s friends: \n”;
for (list<string>::const_iterator it = harryBuds.begin();
it != harryBuds.end(); ++it) {

cout << “\t” << *it << endl;
}

return (0);
}

set
The set container is very similar to the map. The difference is that instead of storing key/value pairs, in
sets the value itself is the key. sets are useful for storing information in which there is no explicit key,
but that you want sorted for quick insertion, lookup, and deletion.

The interface supplied by set is almost identical to that of the map. The main difference is that the set
doesn’t provide operator[]. Also, although the standard doesn’t state it explicitly, most implementa-
tions make the set iterator identical to const_iterator, such that you can’t modify the elements
of the set through the iterator. Even if your version of the STL permits you to modify set elements
through an iterator, you should avoid doing so because modifying elements of the set while they are
in the container would destroy the sorted order.

608

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 608

set Example: Access Control List
One way to implement basic security on a computer system is through access control lists. Each entity
on the system, such as a file or a device, has a list of users with permissions to access that entity. Users
can generally be added to and removed from the permissions list for an entity only by users with special
privileges. Internally, the set container provides a nice way to represent the access control list. You
could use one set for each entity, containing all the usernames who are allowed to access the entity.
Here is a class definition for a simple access control list:

#include <set>
#include <string>
#include <list>
using std::set;
using std::string;
using std::list;

class AccessList
{

public:
AccessList() {}

//
// Adds the user to the permissions list
//
void addUser(const string& user);

//
// Removes the user from the permissions list
//
void removeUser(const string& user);

//
// Returns true if user is in the permissions list
//
bool isAllowed(const string& user) const;

//
// Returns a list of all the users who have permissions
//
list<string> getAllUsers() const;

protected:
set<string> mAllowed;

};

Here are the method definitions.

#include “AccessList.h”
using namespace std;

void AccessList::addUser(const string& user)
{

mAllowed.insert(user);
}

609

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 609

void AccessList::removeUser(const string& user)
{

mAllowed.erase(user);
}

bool AccessList::isAllowed(const string& user) const
{

return (mAllowed.count(user) == 1);
}

list<string> AccessList::getAllUsers() const
{

list<string> users;
users.insert(users.end(), mAllowed.begin(), mAllowed.end());
return (users);

}

Finally, here is a simple test program:

#include “AccessList.h”
#include <iostream>
#include <iterator>
using namespace std;

int main(int argc, char** argv)
{

AccessList fileX;

fileX.addUser(“nsolter”);
fileX.addUser(“klep”);
fileX.addUser(“baduser”);
fileX.removeUser(“baduser”);

if (fileX.isAllowed(“nsolter”)) {
cout << “nsolter has permissions\n”;

}

if (fileX.isAllowed(“baduser”)) {
cout << “baduser has permissions\n”;

}

list<string> users = fileX.getAllUsers();
for (list<string>::const_iterator it = users.begin();
it != users.end(); ++it) {

cout << *it << “ “;
}
cout << endl;

return (0);
}

multiset
The multiset is to the set what the multimap is to the map. The multiset supports all the operations
of the set, but it allows multiple elements that are equal to each other to be stored in the container

610

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 610

simultaneously. Note that it’s possible for elements that are objects to be equal to each other with
operator== even if they are not identical. We don’t show an example of the multiset because it’s so
similar to set and multimap.

Other Containers
As mentioned earlier, there are several other parts of the C++ language that work with the STL to vary-
ing degrees, including arrays, strings, streams, and the bitset.

Arrays as STL Containers
Recall that “dumb” pointers are bona fide iterators because they support the required operators. This
point is more than just a piece of trivia. It means that you can treat normal C++ arrays as STL containers
by using pointers to their elements as iterators. Arrays, of course, don’t provide methods like size(),
empty(), insert(), and erase(), so they aren’t true STL containers. Nevertheless, because they do
support iterators through pointers, you can use them in the algorithms described in Chapter 22 and in
some of the methods described in this chapter.

For example, you could copy all the elements of an array into a vector using the vector insert()
method that takes an iterator range from any container. The insert() method prototype looks like this:

template <typename InputIterator> void insert(iterator position,
InputIterator first, InputIterator last);

If you want to use an int array as the source, then the templatized type of InputIterator becomes
int*. Here is the full example:

#include <vector>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

int arr[10]; // normal C++ array
vector<int> vec; // STL vector

//
// Initialize each element of the array to the value of
// its index.
//
for (int i = 0; i < 10; i++) {

arr[i] = i;
}

//
// Insert the contents of the array into the
// end of the vector.
//
vec.insert(vec.end(), arr, arr + 10);

611

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 611

// Print the contents of the vector.
for (i = 0; i < 10; i++) {

cout << vec[i] << “ “;
}

return (0);
}

Note that the iterator referring to the first element of the array is simply the address of the first element.
Recall from Chapter 13 that the name of an array alone is interpreted as the address of the first element.
The iterator referring to the end must be one past the last element, so it’s the address of the first element
plus 10.

Strings as STL Containers
You can think of a string as a sequential container of characters. Thus, it shouldn’t be surprising to
learn that the C++ string is a full-fledged sequential container. It contains begin() and end() methods
that return iterators into the string, insert() and erase() methods, size(), empty(), and all the
rest of the sequential container basics. It resembles a vector quite closely, even providing methods
reserve() and capacity(). However, unlike vectors, strings are not required to store their ele-
ments contiguously in memory. They also fail to provide a few methods that vectors support, such as
push_back().

The C++ string is actually a typedef of a char instantiation of the basic_string template class.
However, we refer to string for simplicity. The discussion here applies equally to wstring and other
instantiations of the basic_string template.

You can use string as an STL container just as you would use vector. Here is an example:

#include <string>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

string str1;

str1.insert(str1.end(), ‘h’);
str1.insert(str1.end(), ‘e’);
str1.insert(str1.end(), ‘l’);
str1.insert(str1.end(), ‘l’);
str1.insert(str1.end(), ‘o’);

for (string::const_iterator it = str1.begin(); it != str1.end(); ++it) {
cout << *it;

}
cout << endl;

return (0);
}

612

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 612

In addition to the STL sequential container methods, strings provide a whole host of useful methods
and friend functions. The string interface is actually quite a good example of a cluttered interface,
one of the design pitfalls discussed in Chapter 5. The full string interface is summarized in the Standard
Library Reference resource on the Web site; this section merely showed you how strings can be used as
STL containers.

Streams as STL Containers
Input and output streams are not containers in the traditional sense: they do not store elements. However,
they can be considered sequences of elements, and as such share some characteristics with the STL con-
tainers. C++ streams do not provide any STL-related methods directly, but the STL supplies special itera-
tors called istream_iterator and ostream_iterator that allow you to “iterate” through input and
output streams. Chapter 23 explains how to use them.

bitset
The bitset is a fixed-length abstraction of a sequence of bits. Recall that a bit can represent two values,
often referred to as 1 and 0, on and off, or true and false. The bitset also uses the terminology set and
unset. You can toggle or flip a bit from one value to the other.

The bitset is not a true STL container: it’s of fixed size, it’s not templatized on an element type, and it
doesn’t support iteration. However, it’s a useful utility, which is often lumped with the containers, so we
provide a brief introduction here. The Standard Library Reference resource on the Web site contains a
thorough summary of the bitset operations.

bitset Basics
The bitset, defined in the <bitset> header file, is templatized on the number of bits it stores. The
default constructor initializes all fields of the bitset to 0. An alternative constructor creates the bitset
from a string of 0s and 1s.

You can adjust the values of the individual bits with the set(), reset(), and flip() methods, and
you can access and set individual fields with an overloaded operator[]. Note that operator[] on a
non-const object returns a proxy object to which you can assign a Boolean value, call flip(), or negate
with ~. You can also access individual fields with the test() method.

Additionally, you can stream bitsets with the normal insertion and extraction operators. The bitset is
streamed as a string of 0s and 1s.

Here is a small example:

#include <bitset>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

bitset<10> myBitset;

myBitset.set(3);
myBitset.set(6);

613

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 613

myBitset[8] = true;
myBitset[9] = myBitset[3];

if (myBitset.test(3)) {
cout << “Bit 3 is set!\n”;

}
cout << myBitset << endl;

return (0);
}

The output is:

Bit 3 is set!
1101001000

Note that the leftmost character in the output string is the highest numbered bit.

Bitwise Operators
In addition to basic bit manipulation routines, the bitset provides implementations of all the bitwise
operators: &, |, ^, ~, <<, >>, &=, |=, ^=, <<=, and >>=. They behave just as they would on a “real”
sequence of bits. Here is an example:

#include <bitset>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

string str1 = “0011001100”;
string str2 = “0000111100”;
bitset<10> bitsOne(str1), bitsTwo(str2);

bitset<10> bitsThree = bitsOne & bitsTwo;
cout << bitsThree << endl;
bitsThree <<= 4;
cout << bitsThree << endl;

return (0);
}

The output of the program is:

0000001100
0011000000

bitset Example: Representing Cable Channels
One possible use of bitsets is tracking channels of cable subscribers. Each subscriber could have a
bitset of channels associated with his or her subscription, with set bits representing the channels to
which he or she actually subscribes. This system could also support “packages” of channels, also repre-
sented as bitsets, which represent commonly subscribed combinations of channels.

614

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 614

The following CableCompany class is a simple example of this model. It uses two maps, each of string/
bitset, storing the cable packages as well as the subscriber information.

#include <bitset>
#include <map>
#include <string>
#include <stdexcept>
using std::map;
using std::bitset;
using std::string;
using std::out_of_range;

const int kNumChannels = 10;

class CableCompany
{

public:
CableCompany() {}

// Adds the package with the specified channels to the databse
void addPackage(const string& packageName,

const bitset<kNumChannels>& channels);

// Removes the specified package from the database
void removePackage(const string& packageName);

// Adds the customer to the database with initial channels found in package
// Throws out_of_range if the package name is invalid.
void newCustomer(const string& name, const string& package)

throw (out_of_range);

// Adds the customer to the database with initial channels specified
// in channels
void newCustomer(const string& name, const bitset<kNumChannels>& channels);

// Adds the channel to the customers profile
void addChannel(const string& name, int channel);

// Removes the channel from the customers profile
void removeChannel(const string& name, int channel);

// Adds the specified package to the customers profile
void addPackageToCustomer(const string& name, const string& package);

// Removes the specified customer from the database
void deleteCustomer(const string& name);

// Retrieves the channels to which this customer subscribes
// Throws out_of_range if name is not a valid customer
bitset<kNumChannels>& getCustomerChannels(const string& name)

throw (out_of_range);

protected:
typedef map<string, bitset<kNumChannels> > MapType;
MapType mPackages, mCustomers;

};

615

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 615

Here are the implementations of the preceding methods:

#include “CableCompany.h”
using namespace std;

void CableCompany::addPackage(const string& packageName,
const bitset<kNumChannels>& channels)

{
// Just make a key/value pair and insert it into the packages map.
mPackages.insert(make_pair(packageName, channels));

}

void CableCompany::removePackage(const string& packageName)
{

// Just erase the package from the package map.
mPackages.erase(packageName);

}

void CableCompany::newCustomer(const string& name, const string& package)
throw (out_of_range)

{
// Get a reference to the specified package.
MapType::const_iterator it = mPackages.find(package);
if (it == mPackages.end()) {

// That package doesn’t exist. Throw an exception.
throw (out_of_range(“Invalid package”));

} else {
// Create the account with the bitset representing that package.
// Note that it refers to a name/bitset pair. The bitset is the
// second field.
mCustomers.insert(make_pair(name, it->second));

}
}

void CableCompany::newCustomer(const string& name,
const bitset<kNumChannels>& channels)

{
// Just add the customer/channels pair to the customers map.
mCustomers.insert(make_pair(name, channels));

}

void CableCompany::addChannel(const string& name, int channel)
{

// Find a reference to the customers.
MapType::iterator it = mCustomers.find(name);
if (it != mCustomers.end()) {

// We found this customer; set the channel.
// Note that it is a reference to a name/bitset pair.
// The bitset is the second field.
it->second.set(channel);

}
}

void CableCompany::removeChannel(const string& name, int channel)
{

616

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 616

// Find a reference to the customers.
MapType::iterator it = mCustomers.find(name);
if (it != mCustomers.end()) {

// We found this customer; remove the channel.
// Note that it is a refernce to a name/bitset pair.
// The bitset is the second field.
it->second.reset(channel);

}
}

void CableCompany::addPackageToCustomer(const string& name, const string& package)
{

// Find the package.
MapType::iterator itPack = mPackages.find(package);
// Find the customer.
MapType::iterator itCust = mCustomers.find(name);
if (itCust != mCustomers.end() && itPack != mPackages.end()) {

// Only if both package and customer are found, can we do the update.
// Or-in the package to the customers existing channels.
// Note that it is a reference to a name/bitset pair.
// The bitset is the second field.
itCust->second |= itPack->second;

}
}

void CableCompany::deleteCustomer(const string& name)
{

// Remove the customer with this name.
mCustomers.erase(name);

}

bitset<kNumChannels>& CableCompany::getCustomerChannels(const string& name)
throw (out_of_range)

{
// Find the customer.
MapType::iterator it = mCustomers.find(name);
if (it != mCustomers.end()) {

// Found it!
// Note that it is a reference to a name/bitset pair.
// The bitset is the second field.
return (it->second);

}
// Didn’t find it. Throw an exception.
throw (out_of_range(“No customer of that name”));

}

Finally, here is a simple program demonstrating how to use the CableCompany class:

#include “CableCompany.h”
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

CableCompany myCC;

617

Delving into the STL: Containers and Iterators

24_574841 ch21.qxd 12/15/04 3:46 PM Page 617

string basic_pkg = “1111000000”;
string premium_pkg = “1111111111”;
string sports_pkg = “0000100111”;

myCC.addPackage(“basic”, bitset<kNumChannels>(basic_pkg));
myCC.addPackage(“premium”, bitset<kNumChannels>(premium_pkg));
myCC.addPackage(“sports”, bitset<kNumChannels>(sports_pkg));

myCC.newCustomer(“Nicholas Solter”, “basic”);
myCC.addPackageToCustomer(“Nicholas Solter”, “sports”);
cout << myCC.getCustomerChannels(“Nicholas Solter”) << endl;

return (0);
}

Summary
This chapter introduced the standard template library containers. It also presented sample code illustrat-
ing a variety of uses to which you can put these containers. Hopefully you appreciate the power of the
vector, deque, list, stack, queue, priority_queue, map, multimap, set, multiset, string, and
bitset. Even if you don’t incorporate them into your programs immediately, at least keep them in the
back of your mind for future projects.

Now that you are familiar with the containers, the next chapter can illustrate the true beauty of the STL
by discussing the generic algorithms. Chapter 23, the third, and final, STL chapter, closes with a discus-
sion of the more advanced features and provides a sample container and iterator implementation.

618

Chapter 21

24_574841 ch21.qxd 12/15/04 3:46 PM Page 618

Mastering STL Algorithms
and Function Objects

As you read in Chapter 21, the STL provides an impressive collection of generic data structures.
Most libraries stop there. The STL, however, contains an additional assortment of generic algo-
rithms that can, with some exceptions, be applied to elements from any container. Using these
algorithms, you can find elements in containers, sort elements in containers, process elements in
containers, and perform a whole host of other operations. The beauty of the algorithms is that they
are independent not only of the types of the underlying elements, but of the types of the contain-
ers on which they operate. Algorithms perform their work using only the iterator interfaces.

Many of the algorithms accept callbacks: a function pointer or something that behaves like a func-
tion pointer, such as an object with an overloaded operator(). Conveniently, the STL provides a
set of classes that can be used to create callback objects for the algorithms. These callback objects
are called function objects, or just functors.

This chapter includes:

❑ An overview of the algorithms and three sample algorithms: find(), find_if(), and
accumulate()

❑ A detailed look at function objects

❑ Predefined function object classes: arithmetic function objects, comparison func-
tion objects, and logical function objects

❑ Function object adapters

❑ How to write your own function objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 619

❑ The details of the STL algorithms

❑ The utility algorithms

❑ The nonmodifying algorithms: search, numerical processing, comparison, and
operational

❑ The modifying algorithms

❑ Sorting algorithms

❑ Set algorithms

❑ A large example: auditing voter registrations

Overview of Algorithms
The “magic” behind the algorithms is that they work on iterator intermediaries instead of on the con-
tainers themselves. In that way, they are not tied to specific container implementations. All the STL algo-
rithms are implemented as function templates, where the template type parameters are usually iterator
types. The iterators themselves are specified as arguments to the function. Recall from Chapter 11 that
templatized functions can usually deduce the template types from the function arguments, so you can
generally call the algorithms as if they were normal functions, not templates.

The iterator arguments are usually iterator ranges. As explained in Chapter 21, iterator ranges are half-
open such that they include the first element in the range, but exclude the last. The last iterator is really a
“past-the-end” marker.

Some algorithms require additional template type parameters and arguments, which are sometimes
function callbacks. These callbacks can be function pointers or function objects. Function objects are dis-
cussed in more detail in the next section. First, it’s time to take a detailed look at a few algorithms.

The best way to understand the algorithms is to look at some examples. After you’ve seen how a few of
them work, it’s easy to pick up the others. This section describes the find(), find_if(), and accumu-
late() algorithms in detail. The next section presents the function objects, and the final section dis-
cusses each of the classes of algorithms with representative samples.

The find() and find_if() Algorithms
find() looks for a specific element in an iterator range. You can use it on elements in any container
type. It returns an iterator referring to the element found, or the end iterator of the range. Note that the
range specified in the call to find() need not be the entire range of elements in a container; it could be
a subset.

If find() fails to find an element, it returns an iterator equal to the end iterator
specified in the function call, not the end iterator of the underlying container.

620

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 620

Here is an example of find():

#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

int num;

vector<int> myVector;
while (true) {

cout << “Enter a number to add (0 to stop): “;
cin >> num;
if (num == 0) {

break;
}
myVector.push_back(num);

}

while (true) {
cout << “Enter a number to lookup (0 to stop): “;
cin >> num;
if (num == 0) {

break;
}
vector<int>::iterator it = find(myVector.begin(), myVector.end(), num);
if (it == myVector.end()) {

cout << “Could not find “ << num << endl;
} else {

cout << “Found “ << *it << endl;
}

}

return (0);
}

The call to find() is made with myVector.begin() and myVector.end() as arguments, in order to
search all the elements of the vector.

Here is a sample run of the program:

Enter a number to add (0 to stop): 3
Enter a number to add (0 to stop): 4
Enter a number to add (0 to stop): 5
Enter a number to add (0 to stop): 6
Enter a number to add (0 to stop): 0
Enter a number to lookup (0 to stop): 5
Found 5
Enter a number to lookup (0 to stop): 8
Could not find 8
Enter a number to lookup (0 to stop): 4
Found 4

621

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 621

Enter a number to lookup (0 to stop): 2
Could not find 2
Enter a number to lookup (0 to stop): 0

Some containers, such as map and set, provide their own versions of find() as class methods.

find_if() is similar to find(), except that it accepts a predicate function callback instead of a simple ele-
ment to match. A predicate returns true or false. find_if() calls the predicate on each element in the
range until the predicate returns true. find_if() then returns an iterator referring to that element. The
following program reads test scores from the user, then checks if any of the scores are “perfect.” A per-
fect score is a score of 100 or higher. The program is similar to the previous example. Only the differ-
ences are highlighted.

#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;

bool perfectScore(int num)
{

return (num >= 100);
}

int main(int argc, char** argv)
{

int num;

vector<int> myVector;
while (true) {

cout << “Enter a test score to add (0 to stop): “;
cin >> num;
if (num == 0) {

break;
}
myVector.push_back(num);

}

vector<int>::iterator it = find_if(myVector.begin(), myVector.end(),
perfectScore);

if (it == myVector.end()) {
cout << “No perfect scores\n”;

} else {
cout << “Found a \”perfect\” score of “ << *it << endl;

}
return (0);

}

If a container provides a method with the same functionality as a generic algorithm,
you should use the method instead, because it’s faster. For example, the generic
find() algorithm runs in linear time, even on a map iterator, while the find()
method on a map runs in logarithmic time.

622

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 622

This program passed a pointer to the perfectScore() function, which the find_if() algorithm then
called on each element until it returned true.

Unfortunately, the STL provides no find_all() or equivalent algorithm that returns all instances
matching a predicate. Chapter 23 shows you how to write your own find_all() algorithm.

The accumulate() Algorithms
It’s often useful to calculate the sum, or some other arithmetic quantity, of all the elements in a container.
The accumulate() function does just that. In its most basic form, it calculates the sum of the elements
in a specified range. For example, the following function calculates the arithmetic mean of a sequence of
integers in a vector. The arithmetic mean is simply the sum of all the elements divided by the number
of elements.

#include <numeric>
#include <vector>
using namespace std;

double arithmeticMean(const vector<int>& nums)
{

double sum = accumulate(nums.begin(), nums.end(), 0);
return (sum / nums.size());

}

Note that accumulate() is declared in <numeric>, not in <algorithm>. Note also that accumulate()
takes as its third parameter an initial value for the sum, which in this case should be 0 (the identity for
addition) to start a fresh sum.

The second form of accumulate() allows the caller to specify an operation to perform instead of addi-
tion. This operation takes the form of a binary callback. Suppose that you want to calculate the geomet-
ric mean, which is the product of all the numbers in the sequence to the power of the inverse of the size.
In that case, you would want to use accumulate() to calculate the product instead of the sum. You
could write it like this:

#include <numeric>
#include <vector>
#include <cmath>
using namespace std;

int product(int num1, int num2)
{

return (num1 * num2);
}

double geometricMean(const vector<int>& nums)
{

double mult = accumulate(nums.begin(), nums.end(), 1, product);
return (pow(mult, 1.0 / nums.size()));

}

623

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 623

Note that the product() function is passed as a callback to accumulate() and that the initial value for
the accumulation is 1 (the identity for multiplication) instead of 0. The next section shows you how to
use accumulate() in the geometricMean() function without writing a function callback.

Function Objects
Now that you’ve seen a few STL algorithms, you are able to appreciate function objects. Recall from
Chapter 16 that you can overload the function call operator in a class such that objects of the class can be
used in place of function pointers. These objects are called function objects, or just functors.

Many of the STL algorithms, such as find_if() and the second form of accumulate(), require a func-
tion pointer as one of the parameters. When you use these functions, you can pass a functor instead of a
function pointer. That fact, in and of itself, is not necessarily cause for jumping up and down with joy.
While you can certainly write your own functor classes, the real attraction is that C++ provides several
predefined functor classes that perform the most commonly used callback operations. This section
describes these predefined classes and shows you how to use them.

Arithmetic Function Objects
C++ provides functor class templates for the five binary arithmetic operators: plus, minus,
multiplies, divides, and modulus. Additionally, unary negate is supplied. These classes are templa-
tized on the type of the operands and are wrappers for the actual operators. They take one or two
parameters of the template type, perform the operation, and return the result. Here is an example using
the plus class template:

#include <functional>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

plus<int> myPlus;

int res = myPlus(4, 5);
cout << res << endl;

return (0);
}

This example is silly, because there’s no reason to use the plus class template when you could just use
operator+ directly. The benefit of the arithmetic function objects is that you can pass them as callbacks
to algorithms, which you cannot do directly with the arithmetic operators.

For example, the implementation of the geometricMean() function earlier in this chapter used the
accumulate() function with a function pointer callback to multiply two integers. You could rewrite it
to use the multiplies function object:

All the predefined function object classes are located in the <functional> header file.

624

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 624

#include <numeric>
#include <vector>
#include <cmath>
#include <functional>
using namespace std;

double geometricMean(const vector<int>& nums)
{

double mult = accumulate(nums.begin(), nums.end(), 1,
multiplies<int>());

return (pow(mult, 1.0 / nums.size()));
}

The expression multiplies<int>() creates a new object of the multiplies class, instantiating it with
the int type.

The other arithmetic function objects behave similarly.

Comparison Function Objects
In addition to the arithmetic function object classes, the C++ language provides all the standard
comparisons: equal_to, not_equal_to, less, greater, less_equal, and greater_equal. You’ve
already seen less in Chapter 21 as the default comparison for elements in the priority_queue and
the associative containers. Now you can learn how to change that criterion. Here’s an example of a
priority_queue using the default comparison operator: less.

#include <queue>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

priority_queue<int> myQueue;

myQueue.push(3);
myQueue.push(4);
myQueue.push(2);
myQueue.push(1);

while (!myQueue.empty()) {
cout << myQueue.top() << endl;
myQueue.pop();

}

return (0);
}

The arithmetic function objects are just wrappers around the arithmetic operators.
If you use the function objects as callbacks in algorithms, make sure that the
objects in your container implement the appropriate operation, such as operator*
or operator+.

625

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 625

The output from the program looks like this:

4
3
2
1

As you can see, the elements of the queue are removed in descending order, according to the less com-
parison. You can change the comparison to greater by specifying it as the comparison template argu-
ment. Recall from chapter 21 that the priority_queue template definition looks like this:

template <typename T, typename Container = vector<T>, typename Compare =
less<T> >;

Unfortunately, the Compare type parameter is last, which means that in order to specify the comparison
you must also specify the container. Here is an example of the above program modified so that the
priotity_queue sorts elements in ascending order using greater:

#include <queue>
#include <functional>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

priority_queue<int, vector<int>, greater<int> > myQueue;

myQueue.push(3);
myQueue.push(4);
myQueue.push(2);
myQueue.push(1);

while (!myQueue.empty()) {
cout << myQueue.top() << endl;
myQueue.pop();

}

return (0);
}

The output now looks like this:

1
2
3
4

Several algorithms that you will learn about later in this chapter require comparison callbacks, for which
the predefined comparators come in handy.

626

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 626

Logical Function Objects
C++ also provides function object classes for the three logical operations: logical_not, logical_and,
and logical_or. However, they are not typically useful with the standard STL.

Function Object Adapters
When you try to use the basic function objects provided by the standard, it often feels as if you’re trying
to put a square peg into a round hole. For example, you can’t use the basic comparison function objects
with find_if() because find_if() passes only one argument to its callback each time instead of two.
The function adapters attempt to rectify this problem and others. They provide a modicum of support for
functional composition, or combining functions together to create the exact behavior you need.

Binders
Suppose that you want to use the find_if() algorithm to find the first element in a sequence that is
greater than or equal to 100. To solve this problem earlier in the chapter, we wrote a function
perfectScore() and passed a function pointer to it to find_if(). Now that you know about the com-
parison functors, it seems as if you should be able to implement a solution using the greater_equal
class template.

The problem with greater_equal is that it takes two parameters, whereas find_if() passes only one
parameter to its callback predicate each time. You need the ability to specify that find_if() should use
greater_equal, but should pass 100 as the second argument each time. That way, each element of the
sequence will be compared against 100. Luckily, C++ gives you a way to say exactly that:

#include <algorithm>
#include <vector>
#include <iostream>
#include <functional>
using namespace std;

int main(int argc, char** argv)
{

int num;

vector<int> myVector;
while (true) {

cout << “Enter a test score to add (0 to stop): “;
cin >> num;
if (num == 0) {

break;
}
myVector.push_back(num);

}

vector<int>::iterator it = find_if(myVector.begin(), myVector.end(),
bind2nd(greater_equal<int>(), 100));

627

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 627

if (it == myVector.end()) {
cout << “No perfect scores\n”;

} else {
cout << “Found a \”perfect\” score of “ << *it << endl;

}
return (0);

}

The bind2nd() function is called a binder because it “binds” the value 100 as the second parameter to
greater_equal. The result is that find_if() compares each element against 100 with
greater_equal.

You can use bind2nd() with any binary function. There is also an equivalent bind1st() function that
binds an argument to the first parameter of a binary function.

Negators
The negators are functions similar to the binders that simply negate the result of a predicate. For exam-
ple, if you wanted to find the first element in a sequence of test scores less than 100, you could apply a
negator adapter to the result of greater_equal like this:

int main(int argc, char** argv)
{

int num;

vector<int> myVector;
while (true) {

cout << “Enter a test score to add (0 to stop): “;
cin >> num;
if (num == 0) {

break;
}
myVector.push_back(num);

}

vector<int>::iterator it = find_if(myVector.begin(), myVector.end(),
not1(bind2nd(greater_equal<int>(), 100)));

if (it == myVector.end()) {
cout << “All perfect scores\n”;

} else {
cout << “Found a \”less-than-perfect\” score of “ << *it << endl;

}
return (0);

}

The function not1() negates the result of every call to the predicate it takes as an argument. Of course,
you could also just use less instead of greater_equal. There are cases, often when using nonstandard
functors, that not1() comes in handy. The “1” in not1() refers to the fact that its operand must be a
unary function (one that takes a single argument). If its operand is a binary function (takes two argu-
ments), you must use not2() instead. Note that you use not1() in this case because, even though
greater_equal is a binary function, bind2nd() has already converted it to a unary function, by bind-
ing the second argument always to 100.

628

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 628

As you can see, using functors and adapters can quickly become complicated. Our advice is to limit their
use to simple cases where the intention is clearly understandable, and to write your own functors or
employ explicit loops for more complicated situations.

Calling Member Functions
If you have a container of objects, you sometimes want to pass a pointer to a class method as the
callback to an algorithm. For example, you might want to find the first empty string in a vector of
strings by calling empty() on each string in the sequence. However, if you just pass a pointer to
string::empty() to find_if(), the algorithm has no way to know that it received a pointer to a
method instead of a normal function pointer or functor. As explained in Chapter 9, the code to call a
method pointer is different from that to call a normal function pointer, because the former must be called
in the context of an object. Thus, C++ provides a conversion function called mem_fun_ref() that you
can call on a method pointer before passing it to an algorithm (the “fun” in mem_fun_ref() refers to
“function” and in no way implies that using it is fun). You can use it like this:

#include <functional>
#include <algorithm>
#include <string>
#include <vector>
#include <iostream>
using namespace std;

void findEmptyString(const vector<string>& strings)
{

vector<string>::const_iterator it = find_if(strings.begin(), strings.end(),
mem_fun_ref(&string::empty));

if (it == strings.end()) {
cout << “No empty strings!\n”;

} else {
cout << “Empty string at position: “ << it - strings.begin() << endl;

}
}

mem_fun_ref() generates a function object that serves as the callback for find_if(). Each time it is
called back, it calls the empty() method on its argument.

If you have a container of pointers to objects instead of objects themselves, you must use a different
function adapter, mem_fun(), to call member functions. For example:

#include <functional>
#include <algorithm>
#include <string>
#include <vector>
#include <iostream>
using namespace std;

mem_fun_ref() works for both 0-argument and unary methods. The result can be
used as the callback where a unary or binary function is expected, respectively.

629

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 629

void findEmptyString(const vector<string*>& strings)
{

vector<string*>::const_iterator it = find_if(strings.begin(), strings.end(),
mem_fun(&string::empty));

if (it == strings.end()) {
cout << “No empty strings!\n”;

} else {
cout << “Empty string at position: “ << it - strings.begin() << endl;

}
}

Adapting Real Functions
You can’t use normal function pointers directly with the function adapters bind1st(), bind2nd(),
not1(), or not2(), because these adapters require specific typedefs in the function objects they adapt.
Thus, one last function adapter provided by the C++ standard library, ptr_fun(), allows you to wrap
regular function pointers in a way that they can be used with the adapters. It is useful primarily for
using legacy C functions, such as those in the C Standard Library. If you write your own callbacks, we
encourage you to write function object classes, as described in the next section.

For example, suppose that you want to write a function isNumber() that returns true if every character
in a string is a digit. As explained in Chapter 21, the C++ string provides an iterator. Thus, you can
use the find_if() algorithm to search for the first nondigit in the string. If you find one, the string is
not a number. The <cctype> header file provides a legacy C function called isdigit(), which returns
true if a character is a digit, false otherwise. The problem is that you want to find the first character
that is not a digit, which requires the not1() adapter. However, because isdigit() is a C function, not
a function object, you need to use the ptr_fun() adapter to generate a function object that can be used
with not1(). The code looks like this:

#include <functional>
#include <algorithm>
#include <cctype>
#include <string>
using namespace std;

bool isNumber(const string& str)
{

string::const_iterator it = find_if(str.begin(), str.end(),
not1(ptr_fun(::isdigit)));

return (it == str.end());
}

Note the use of the :: scope resolution operator to specify that isdigit() should be found in the global
scope.

Writing Your Own Function Objects
You can, of course, write your own function objects to perform more specific tasks than those provided
by the predefined functors. If you want to be able to use the function adapters with these functors, you
must supply certain typedefs. The easiest way to do that is to subclass your function object classes from

630

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 630

either unary_function or binary_function, depending on whether they take one or two arguments.
These two classes, both defined in <functional>, are templatized on the parameter and return types of
the “function” they provide. For example, instead of using ptr_fun() to convert isdigit(), you could
write a wrapper function object like this:

#include <functional>
#include <algorithm>
#include <cctype>
#include <string>
using namespace std;

class myIsDigit : public unary_function<char, bool>
{

public:
bool operator() (char c) const { return (::isdigit(c)); }

};

bool isNumber(const string& str)
{

string::const_iterator it = find_if(str.begin(), str.end(),
not1(myIsDigit()));

return (it == str.end());
}

Note that the overloaded function call operator of the myIsDigit class must be const in order to pass
objects to find_if().

Algorithm Details
This chapter describes the general categories of algorithms, with examples of each. The Standard Library
Reference resource on the Web site contains a summary of all the algorithms, but for nitty-gritty details,
you should consult one of the books on the STL listed in Appendix B.

Recall from Chapter 21 that there are five types of iterators: input, output, forward, bidirectional, and
random-access. There is no formal class hierarchy of these iterators, because the implementations for
each container are not part of the standard hierarchy. However, one can deduce a hierarchy based on the
functionality they are required to provide. Specifically, every random access iterator is also bidirectional,
every bidirectional iterator is also forward, and every forward iterator is also input and output.

The standard way for the algorithms to specify what kind of iterators they need is to use the following
names for the iterator template arguments: InputIterator, OutputIterator, ForwardIterator,
BidirectionalIterator, and RandomAccessIterator. These names are just names: they don’t pro-
vide binding type checking. Therefore, you could, for example, try to call an algorithm expecting a

The algorithms are allowed to make multiple copies of function object predicates
and call different ones for different elements. Thus, you shouldn’t write them such
that they count on any internal state to the object being consistent between calls.

631

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 631

RandomAccessIterator by passing a bidirectional iterator. The template doesn’t do type checking, so it
would allow this instantiation. However, the code in the function that uses the random access iterator
capabilities would fail to compile on the bidirectional iterator. Thus, the requirement is enforced, just not
where you would expect. The error message can therefore be somewhat confusing. For example,
attempting to use the generic sort() algorithm, which requires a random access iterator, on a list,
which provides only a bidirectional iterator, gives this error in g++:

/usr/include/c++/3.2.2/bits/stl_algo.h: In function `void
std::sort(_RandomAccessIter, _RandomAccessIter) [with _RandomAccessIter =
std::_List_iterator<int, int&, int*>]’:

Sorting.cpp:38: instantiated from here
/usr/include/c++/3.2.2/bits/stl_algo.h:2178: no match for `

std::_List_iterator<int, int&, int*>& - std::_List_iterator<int, int&,
int*>&’ operator

Don’t worry if you don’t understand this error yet. The sort() algorithm is covered later in this
chapter.

Most of the algorithms are defined in the <algorithm> header file, but a few algorithms are located in
<numeric>. They are all in the std namespace. See the Standard Library Reference resource on the Web
site for details.

Utility Algorithms
The STL provides three utility algorithms implemented as function templates: min(), max(), and
swap(). min() and max() compare two elements of any type with operator< or a user-supplied binary
predicate, returning a reference to the smaller or larger element, respectively. swap() takes two elements
of any type by reference and switches their values.

These utilities do not work on sequences of elements, so they do not take iterator parameters.

The following program demonstrates the three functions:

#include <algorithm>
#include <iostream>
using namespace std;

int main(int argc, char** argv)
{

int x = 4, y = 5;
cout << “x is “ << x << “ and y is “ << y << endl;
cout << “Max is “ << max(x, y) << endl;
cout << “Min is “ << min(x, y) << endl;
swap(x, y);
cout << “x is “ << x << “ and y is “ << y << endl;
cout << “Max is “ << max(x, y) << endl;
cout << “Min is “ << min(x, y) << endl;

return (0);
}

632

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 632

Here is the program output:

x is 4 and y is 5
Max is 5
Min is 4
x is 5 and y is 4
Max is 5
Min is 4

Nonmodifying Algorithms
The nonmodifying algorithms include functions for searching elements in a range, generating numerical
information about elements in a range, comparing two ranges to each other, and processing each ele-
ment in a range.

Search Algorithms
You’ve already seen two examples of search algorithms: find() and find_if(). The STL provides
several other variations of the basic find() algorithm that work on unsorted sequences of elements.
adjacent_find() finds the first instance of two consecutive elements that are equal to each other.
find_first_of() searches for one of several values simultaneously. search() and find_end()
search for subsequences matching a specified sequence of elements, starting from either the beginning or
end of the supplied range. search_n() can be thought of as a special case of search() or a general case
of adjacent_find(): it finds the first sequence of n consecutive elements matching a supplied value.
Finally, min_element() and max_element() find the minimum or maximum element in a sequence.

find(), adjacent_find(), min_element(), and max_element() run in linear time. The others run in
quadratic time. All the algorithms use default comparisons of operator== or operator<, but also pro-
vide overloaded versions that allow the client to specify a comparison callback.

Here are examples of the preceding search algorithms:

#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

int main(int argc, char** argv)
{

// The list of elements to be searched
int elems[] = {5, 6, 9, 8, 8, 3};

find_end() is the equivalent of search() that starts from the end of the sequence
instead of the beginning. It is not the reverse equivalent of find(). There is no
reverse equivalent of find(), find_if(), or other algorithms that search for a sin-
gle element, because you can use a reverse_iterator to achieve the same effect.
reverse_iterators are described in Chapter 23.

633

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 633

// Construct a vector from the list, exploiting the
// fact that pointers are iterators too.
vector<int> myVector(elems, elems + 6);
vector<int>::const_iterator it, it2;

// Find the min and max elements in the vector.
it = min_element(myVector.begin(), myVector.end());
it2 = max_element(myVector.begin(), myVector.end());
cout << “The min is “ << *it << “ and the max is “ << *it2 << endl;

// Find the first pair of matching consecutive elements.
it = adjacent_find(myVector.begin(), myVector.end());
if (it != myVector.end()) {

cout << “Found two consecutive equal elements of value “
<< *it << endl;

}

// Find the first of two values.
int targets[] = {8, 9};
it = find_first_of(myVector.begin(), myVector.end(), targets,

targets + 2);

if (it != myVector.end()) {
cout << “Found one of 8 or 9: “ << *it << endl;

}

// Find the first subsequence.
int sub[] = {8, 3};
it = search(myVector.begin(), myVector.end(), sub, sub + 2);
if (it != myVector.end()) {

cout << “Found subsequence 8, 3 at position “ << it - myVector.begin()
<< endl;

}

// Find the last subsequence (which should be the same as the first).
it2 = find_end(myVector.begin(), myVector.end(), sub, sub + 2);
if (it != it2) {

cout << “Error: search and find_end found different subsequences “
<< “ even though there is only one match.\n”;

}

// Find the first subsequence of two consecutive 8s.
it = search_n(myVector.begin(), myVector.end(), 2, 8);
if (it != myVector.end()) {

cout << “Found two consecutive 8s starting at position “
<< it - myVector.begin() << endl;

}

return (0);
}

634

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 634

Here is the output:

The min is 3 and the max is 9
Found two consecutive equal elements of value 8
Found one of 8 or 9: 9
Found subsequence 8, 3 at position 4
Found two consecutive 8s starting at position 3

There are also several search algorithms that work only on sorted sequences: binary_search(),
lower_bound(), upper_bound(), and equal_range(). binary_search() finds a matching element
in logarithmic time. The other three are similar to their method equivalents on the map and set contain-
ers. See Chapter 21 and the Standard Library Reference resource on the Web site.

Numerical Processing Algorithms
You’ve seen an example of one numerical processing algorithm already: accumulate(). In addition, the
count() and count_if() algorithms are useful for counting the number of elements of a given value in
a container. They function similarly to the count() method on the map and set containers.

The other numerical processing algorithms are less useful, so they are not discussed here. See the
Standard Library Reference resource on the Web site for details if you are interested.

Comparison Algorithms
You can compare entire ranges of elements in three different ways: equal(), mismatch(), and
lexicographical_compare(). Each of the algorithms compares elements at parallel positions in the
two ranges to each other in order. equal() returns true if all parallel elements are equal. mismatch()
returns iterators referring into each range at the first point where parallel elements are unequal.
lexicographical_compare() returns true if all the elements in the first range are less than their
parallel elements in the second range, or if the first range is shorter than the second, and all elements up
to that point are less than the parallel elements in the second range. You can think of this function as a
generalization of alphabetization to noncharacter elements.

If you want to compare the elements of two containers of the same type, you can use
operator== or operator< instead of equal() or lexicographical_compare().
The algorithms are useful primarily for comparing sequences of elements from dif-
ferent container types.

Remember to use equivalent container methods when available instead of the algo-
rithms, because the methods are more efficient.

635

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 635

Here are some examples of equal(), mismatch(), and lexicographical_compare():

#include <algorithm>
#include <vector>
#include <list>
#include <iostream>
using namespace std;

// Function template to populate a container of ints.
// The container must support push_back().
template<typename Container>
void populateContainer(Container& cont)
{

int num;

while (true) {
cout << “Enter a number (0 to quit): “;
cin >> num;
if (num == 0) {

break;
}
cont.push_back(num);

}
}

int main(int argc, char** argv)
{

vector<int> myVector;
list<int> myList;

cout << “Populate the vector:\n”;
populateContainer(myVector);
cout << “Populate the list:\n”;
populateContainer(myList);
if (myList.size() < myVector.size()) {

cout << “Sorry, the list is not long enough.\n”;
return (0);

}

// Compare the two containers.
if (equal(myVector.begin(), myVector.end(), myList.begin())) {

cout << “The two containers have equal elements\n”;
} else {

// If the containers were not equal, find out why not.
pair<vector<int>::iterator, list<int>::iterator> miss =

mismatch(myVector.begin(), myVector.end(), myList.begin());
cout << “The first mismatch is at position “

<< miss.first - myVector.begin() << “. The vector has value “
<< *(miss.first) << “ and the list has value “ << *(miss.second)
<< endl;

}

// Now order them.
if (lexicographical_compare(myVector.begin(), myVector.end(), myList.begin(),

myList.end())) {

636

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 636

cout << “The vector is lexicographically first.\n”;
} else {

cout << “The list is lexicographically first.\n”;
}

return (0);
}

Here is a sample run of the program:

Populate the vector:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
Populate the list:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 9
Enter a number (0 to quit): 0
The first mismatch is at position 3. The vector has value 8 and the list has value 9
The vector is lexicographically first.

Operational Algorithms
There is only one algorithm in this category: for_each(). However, it is one of the most useful algo-
rithms in the STL. It executes a callback on each element of the range. You can use it with simple func-
tion callbacks for things like printing every element in a container. For example:

#include <algorithm>
#include <map>
#include <iostream>
using namespace std;

void printPair(const pair<int, int>& elem)
{

cout << elem.first << “->” << elem.second << endl;
}

int main(int argc, char** argv)
{

map<int, int> myMap;
myMap.insert(make_pair(4, 40));
myMap.insert(make_pair(5, 50));
myMap.insert(make_pair(6, 60));
myMap.insert(make_pair(7, 70));
myMap.insert(make_pair(8, 80));

for_each(myMap.begin(), myMap.end(), &printPair);

return (0);
}

637

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 637

You can also perform much fancier tasks by using a functor to retain information between elements.
for_each() returns a copy of the callback object, so you can accumulate information in your functor
that you can retrieve after for_each() has finished processing each element. For example, you could
calculate both the min and max elements in one pass by writing a functor that tracks both the minimum
and maximum elements found so far. The MinAndMax functor shown in the following example assumes
that the range on which it is called contains at least one element. It uses a Boolean first variable to
initialize min and max to the first element, after which it compares each subsequent element to the cur-
rently stored min and max values.

#include <algorithm>
#include <functional>
#include <vector>
#include <iostream>
using namespace std;

// The populateContainer() function is identical to the one shown above for
// comparison alglorithms, so is omitted here.

class MinAndMax : public unary_function<int, void>
{

public:
MinAndMax();
void operator()(int elem);

// Make min and max public for easy access.
int min, max;

protected:
bool first;

};

MinAndMax::MinAndMax() : min(-1), max(-1), first(true)
{
}

void MinAndMax::operator()(int elem)
{

if (first) {
min = max = elem;

} else if (elem < min) {
min = elem;

} else if (elem > max) {
max = elem;

}
first = false;

}

int main(int argc, char** argv)
{

vector<int> myVector;
populateContainer(myVector);

638

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 638

MinAndMax func;
func = for_each(myVector.begin(), myVector.end(), func);
cout << “The max is “ << func.max << endl;
cout << “The min is “ << func.min << endl;

return (0);
}

You might be tempted to ignore the return value of for_each(), yet still try to read information from
func after the call. However, that doesn’t work because func is not necessarily passed-by-reference into
for_each(). You must capture the return value in order to ensure correct behavior.

A final point about for_each() is that your callback is allowed to take its argument by reference and
modify it. That has the effect of changing values in the actual iterator range. The voter registration exam-
ple later in this chapter shows a use of this capability.

Modifying Algorithms
The STL provides a variety of modifying algorithms that perform tasks such as copying elements from
one range to another, removing elements, or reversing the order of elements in a range.

The modifying algorithms all have the concept of source and destination ranges. The elements are read
from the source range and added to or modified in the destination range. The source and destination
ranges can often be the same, in which case the algorithm is said to operate in place.

Transform
The transform() algorithm is similar to for_each(), in that it applies a callback to each element in a
range. The difference is that transform() expects the callback to generate a new element for each call,
which it stores in the destination range specified. The source and destination ranges can be the same if
you want transform to replace each element in a range with the result from the call to the callback. For
example, you could add 100 to each element in a vector like this:

#include <algorithm>
#include <functional>
#include <iostream>
#include <vector>
using namespace std;

Ranges from maps and multimaps cannot be used as destinations of modifying
algorithms. These algorithms overwrite entire elements, which in a map consist of
key/value pairs. However, maps and multimaps mark the key const, so it cannot be
assigned to. Similarly, many implementations of set and multiset provide only
const iteration over the elements, so you cannot generally use ranges from these
containers as destinations of modifying algorithms either. Your alternative is to use
an insert iterator, described in Chapter 23.

639

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 639

// The populateContainer() function is identical to the one shown above for
// comparison alglorithms, so is omitted here.

void print(int elem)
{

cout << elem << “ “;
}

int main(int argc, char** argv)
{

vector<int> myVector;
populateContainer(myVector);
cout << “The vector contents are:\n”;
for_each(myVector.begin(), myVector.end(), &print);
cout << endl;
transform(myVector.begin(), myVector.end(), myVector.begin(),

bind2nd(plus<int>(), 100));
cout << “The vector contents are:\n”;
for_each(myVector.begin(), myVector.end(), &print);
cout << endl;
return (0);

}

Another form of transform() calls a binary function on pairs of elements in the range. See the
Standrad Library Reference resource on the Web site. Interestingly, by writing the right functors for
transform(), you could use it to achieve the functionality of many of the other modifying algorithms,
such as copy() and replace(). However, it is usually more convenient to use the simpler algorithms
when possible.

Copy
The copy() algorithm allows you to copy elements from one range to another. The source and destina-
tion ranges must be different, but they can overlap. Note that copy() doesn’t insert elements into the
destination range. It just overwrites whatever elements were there already. Thus, you can’t use copy()
directly to insert elements into a container, only to overwrite elements that were previously in a
container.

Here is a simple example of copy() that exploits the resize() method on vectors to ensure that there
is enough space in the destination container:

Chapter 23 describes how to use iterator adapters to insert elements into a container
or stream with copy().

transform() and the other modifying algorithms often return an iterator referring
to the past-the-end value of the destination range. The examples in this book usu-
ally ignore that return value. Consult the Standard Library Reference resource on
the Web site for the specifics.

640

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 640

#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;

// The populateContainer() and print() functions are identical to those
// in the previous example, so are omitted here.

int main(int argc, char** argv)
{

vector<int> vectOne, vectTwo;

populateContainer(vectOne);

vectTwo.resize(vectOne.size());
copy(vectOne.begin(), vectOne.end(), vectTwo.begin());
for_each(vectTwo.begin(), vectTwo.end(), &print);

return (0);
}

Replace
The replace() and replace_if() algorithms replace elements in a range matching a value or predi-
cate, respectively, with a new value. For example, you could force all elements in an integer range to be
between 0 and 100 by replacing all values less than 0 with 0 and replacing all values greater than 100
with 100:

#include <algorithm>
#include <functional>
#include <vector>
#include <iostream>
using namespace std;

// The populateContainer() and print() functions are identical to those
// in the previous example, so are omitted here.

int main(int argc, char** argv)
{

vector<int> myVector;
populateContainer(myVector);
replace_if(myVector.begin(), myVector.end(), bind2nd(less<int>(), 0), 0);
replace_if(myVector.begin(), myVector.end(), bind2nd(greater<int>(), 100),

100);
for_each(myVector.begin(), myVector.end(), &print);
cout << endl;

return (0);
}

There are also variants of replace() called replace_copy() and replace_copy_if() that copy the
results to a different destination range.

641

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 641

Remove
The remove() and remove_if() algorithms remove certain elements from a range. The elements to
remove can be specified by either a specific value or with a predicate. It is important to remember that
these elements are not removed from the underlying container, because the algorithms have access only
to the iterator abstraction, not to the container. Instead, the removed elements are copied to the end of
the range, and the new end of the (shorter) range is returned. If you want to actually erase the removed
elements from the container, you must use the remove() algorithm, then call erase() on the container.
Here is an example of a function that removes empty strings from a vector of strings. It is similar to
the function findEmptyString() shown earlier in the chapter.

#include <functional>
#include <algorithm>
#include <string>
#include <vector>
#include <iostream>
using namespace std;

void removeEmptyStrings(vector<string>& strings)
{

vector<string>::iterator it = remove_if(strings.begin(), strings.end(),
mem_fun_ref(&string::empty));

// Erase the removed elements.
strings.erase(it, strings.end());

}

void printString(const string& str)
{

cout << str << “ “;
}

int main(int argc, char** argv)
{

vector<string> myVector;
myVector.push_back(“”);
myVector.push_back(“stringone”);
myVector.push_back(“”);
myVector.push_back(“stringtwo”);
myVector.push_back(“stringthree”);
myVector.push_back(“stringfour”);

removeEmptyStrings(myVector);
cout << “Size is “ << myVector.size() << endl;
for_each(myVector.begin(), myVector.end(), &printString);
cout << endl;
return (0);

}

The remove_copy() and remove_copy_if() variations of remove() do not change the source range.
Instead they copy all unremoved elements to a different destination range. They are similar to copy(),
in that the destination range must already be large enough to hold the new elements.

642

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 642

Unique
The unique() algorithm is a special case of remove() that removes all duplicate contiguous elements.
You may recall from Chapter 21 that the list container provides a unique() method that implements
the same semantics. You should generally use unique() on sorted sequences, but nothing prevents you
from running it on unsorted sequences.

The basic form of unique() runs in place, but there is also a version of the algorithm called
unique_copy() that copies its results to a new destination range.

Chapter 21 showed an example of the list unique() algorithm, so we omit an example of the general
form here.

Reverse
The reverse() algorithms simply reverses the order of the elements in a range. The first element in the
range is swapped with the last, the second with the second-to-last, and so on.

The basic form of reverse() runs in place, but there is also a version of the algorithm called
reverse_copy() that copies its results to a new destination range.

Other Modifying Algorithms
There are several other modifying algorithms described in the Standard Library Reference resource
on the Web site, including iter_swap(), swap_ranges(), fill(), generate(), rotate(),
next_permutation(), and prev_permutation(). We have found these algorithms to be less useful
on a day-to-day basis than those shown earlier. However, if you ever need to use them, the Standard
Library Reference resource on the Web site contains all the details.

Sorting Algorithms
The STL provides several variations of sorting algorithms. These algorithms don’t apply to associative
containers, which always sort their elements internally. Additionally, the list container supplies its
own version of sort(), which is more efficient than the general algorithm. Thus, most of these sorting
algorithms are useful only for vectors and deques.

Basic Sorting and Merging
The sort() function uses a quicksort-like algorithm to sort a range of elements in O(N log N) time in
the general case. Following the application of sort() to a range, the elements in the range are in nonde-
creasing order (lowest to highest), according to operator<. If you don’t like that order, you can specify
a different comparison callback such as greater.

A variant of sort(), called stable_sort(), maintains the relative order of equal elements in the range.
stable_sort() uses a mergesort-like algorithm.

The remove() family of functions is stable in that it maintains the order of elements
remaining in the container even while moving the removed elements to the end.

643

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 643

Once you have sorted the elements in a range, you can apply the binary_search() algorithm to find
elements in logarithmic instead of linear time.

The merge() function allows you to merge two sorted ranges together, while maintaining the sorted
order. The result is a sorted range containing all the elements of the two source ranges. merge() works
in linear time. Without merge(), you could still achieve the same effect by concatenating the two ranges
and applying sort() to the result, but that would be less efficient (O(N log N) instead of linear).

Here is an example of sorting and merging:

#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;

// The populateContainer() and print() functions are identical to those
// in the example above, so they are omitted here.

int main(int argc, char** argv)
{

vector<int> vectorOne, vectorTwo, vectorMerged;
cout << “Enter values for first vector:\n”;
populateContainer(vectorOne);
cout << “Enter values for second vector:\n”;
populateContainer(vectorTwo);

sort(vectorOne.begin(), vectorOne.end());
sort(vectorTwo.begin(), vectorTwo.end());
// Make sure the vector is large enough to hold the values
// from both source vectors.
vectorMerged.resize(vectorOne.size() + vectorTwo.size());
merge(vectorOne.begin(), vectorOne.end(), vectorTwo.begin(),

vectorTwo.end(), vectorMerged.begin());

cout << “Merged vector: “;
for_each(vectorMerged.begin(), vectorMerged.end(), &print);
cout << endl;

while (true) {
int num;
cout << “Enter a number to find (0 to quit): “;
cin >> num;
if (num == 0) {

break;
}
if (binary_search(vectorMerged.begin(), vectorMerged.end(), num)) {

cout << “That number is in the vector.\n”;
} else {

cout << “That number is not in the vector\n”;

Always ensure that you supply a big enough range to store the result of the merge!

644

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 644

}
}

return (0);
}

Heapsort
A heap structure stores elements in a semi-sorted order so that finding the highest element is a constant
time operation. Removing the highest element and adding a new element both take logarithmic time.
For general information on heap data structures, consult one of the data structures books listed in
Appendix B.

The STL provides four algorithms for manipulating a heap structure.

❑ make_heap() turns a range of elements into a heap in linear time. The highest element is the
first element in the range.

❑ push_heap() adds a new element to the heap by incorporating the element in the previous end
position of the range. That is, push_heap() takes an iterator range [first,last) and expects that
[first,last-1) is a valid heap and that the element at position last – 1 is a new element to be added
to the heap. In terms of containers, if you have a heap in a deque container, you can use
push_back() to add a new element to the deque, then call push_heap() on the deque begin-
ning and end iterators. push_heap() runs in logarithmic time.

❑ pop_heap() removes the highest element from the heap and reorders the remaining elements
to keep the heap structure. It reduces the range representing the heap by one element. If the
range before the call was [first,last), the new range is [first,last-1). As usual, the algorithm can’t
actually remove the element from the container. If you want to remove it you must call erase()
or pop_back() after calling pop_heap(). pop_heap() runs in logarithmic time.

❑ sort_heap() turns a heap range into a fully sorted range in O(N log N) time.

Heaps are useful for implementing priority queues. In fact, the priority_queue container presented in
Chapter 21 is implemented with these heap algorithms. If you are ever tempted to use the heap algo-
rithms directly, you should first make sure that the priority_queue interface does not meet with your
satisfaction. We don’t show an example of the heap functions here, but the Standard Library Reference
resource on the Web site contains the details in case you ever need to use them.

Other Sorting Routines
There are several other sorting routines, including partition(), partial_sort(), and
nth_element(). They are mostly useful as building blocks for a quicksort-like algorithm. Given that
sort() already provides a quicksort-like algorithm, you usually shouldn’t need to use these other sort-
ing routines. However, the Standard Library Reference resource on the Web site contains the details in
case the need arises.

random_shuffle()
The final “sorting” algorithm is technically more of an “anti-sorting” algorithm. random_shuffle()
rearranges the elements of a range in a random order. It’s useful for implementing tasks like sorting a
deck of cards.

645

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 645

Set Algorithms
The final class of algorithms in the STL is five functions for performing set operations. Although these
algorithms work on any sorted iterator range, they are obviously aimed at ranges from the set container.

The includes() function implements standard subset determination, checking if all the elements of one
sorted range are included in another sorted range, in any order.

The set_union(), set_intersection(), set_difference(), and set_symmetric_difference()
functions implement the standard semantics of those operations. In case you haven’t studied set theory
recently, here’s a rundown. The result of union is all the elements in either set. The result of intersection
is all the elements in both sets. The result of difference is all the elements in the first set but not the sec-
ond. The result of symmetric difference is the “exclusive or” of sets: all the elements in one, but not
both, sets.

Here is an example of these algorithms:

#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

// The populateContainer() and print() functions are identical to those
// in the example above, so are omitted here.

int main(int argc, char** argv)
{

vector<int> setOne, setTwo, setThree;
cout << “Enter set one:\n”;
populateContainer(setOne);
cout << “Enter set two:\n”;
populateContainer(setTwo);

// set algorithms work on sorted ranges
sort(setOne.begin(), setOne.end());
sort(setTwo.begin(), setTwo.end());

if (includes(setOne.begin(), setOne.end(), setTwo.begin(), setTwo.end())) {
cout << “The second set is a subset of the first\n”;

As usual, make sure that your result range is large enough to hold the result of the
operations. For set_union() and set_symmetric_difference(), the result is at
most the sum of the sizes of the two input ranges. For set_intersection() and
set_difference() it’s at most the maximum of the two sizes.

Remember that you can’t use iterator ranges from associative containers, including
sets, to store the results.

646

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 646

}
if (includes(setTwo.begin(), setTwo.end(), setOne.begin(), setOne.end())) {

cout << “The first set is a subset of the second\n”;
}

setThree.resize(setOne.size() + setTwo.size());
vector<int>::iterator newEnd;
newEnd = set_union(setOne.begin(), setOne.end(), setTwo.begin(),

setTwo.end(), setThree.begin());
cout << “The union is: “;
for_each(setThree.begin(), newEnd, &print);
cout << endl;

newEnd = set_intersection(setOne.begin(), setOne.end(), setTwo.begin(),
setTwo.end(), setThree.begin());

cout << “The intersection is: “;
for_each(setThree.begin(), newEnd, &print);
cout << endl;

newEnd = set_difference(setOne.begin(), setOne.end(), setTwo.begin(),
setTwo.end(), setThree.begin());

cout << “The difference between set one and set two is: “;
for_each(setThree.begin(), newEnd, &print);
cout << endl;

newEnd = set_symmetric_difference(setOne.begin(), setOne.end(), setTwo.begin(),
setTwo.end(), setThree.begin());

cout << “The symmetric difference is: “;
for_each(setThree.begin(), newEnd, &print);
cout << endl;

return (0);
}

Here is a sample run of the program:

Enter set one:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
Enter set two:
Enter a number (0 to quit): 8
Enter a number (0 to quit): 9
Enter a number (0 to quit): 10
Enter a number (0 to quit): 0
The union is: 5 6 7 8 9 10
The intersection is: 8
The difference between set one and set two is: 5 6 7
The symmetric difference is: 5 6 7 9 10

647

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 647

Algorithms and Function Objects Example:
Auditing Voter Registrations

Voter fraud can be a problem in the United States. People sometimes attempt to register and vote in two
or more different counties. Additionally, convicted felons, who are ineligible to vote in some states, occa-
sionally attempt to register and vote anyway. Using your newfound algorithm and function object skills,
you could write a simple voter registration auditing function that checks the voter rolls for certain
anomalies.

The Voter Registration Audit Problem Statement
The voter registration audit function should audit the information for a single state. Assume that voter
registrations are stored by county in a map that maps county names to a list of voters. Your audit func-
tion should take this map and a list of convicted felons as parameters, and should remove all convicted
felons from the lists of voters. Additionally, the function should find all voters who are registered in
more than one county and should remove those names from all counties. For simplicity, assume that the
list of voters is simply a list of string names. A real application would obviously require more data,
such as address and party affiliation.

The auditVoterRolls() Function
This example takes a top-down approach, starting from the highest-level function and making calls to
functions and functors that are not yet written. As the example progresses, the missing implementations
will be filled in.

The top-level function, auditVoterRolls(), works in three steps:

1. Find all the duplicate names in all the registration lists by making a call to getDuplicates().

2. Combine the list of duplicates and the list of convicted felons, and remove duplicates in the
combined list.

3. Remove from every voter list all the names found in the combined list of duplicates and
convicted felons. The approach taken here is to use for_each() to process each list in the
map, applying a user-defined functor RemoveNames to remove the offending names from
each list.

Here’s the implementation of auditVoterRolls():

//
// auditVoterRolls
//
// Expects a map of string/list<string> pairs keyed on county names
// and containing lists of all the registered voters in those counties
//
// Removes from each list any name on the convictedFelons list and
// any name that is found on any other list
//
void auditVoterRolls(map<string, list<string> >& votersByCounty,

648

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 648

const list<string>& convictedFelons)
{

// Get all the duplicate names.
list<string> duplicates = getDuplicates(votersByCounty);

// Combine the duplicates and convicted felons--we want
// to remove names on both lists from all voter rolls.
duplicates.insert(duplicates.end(), convictedFelons.begin(),

convictedFelons.end());

// If there were any duplicates, remove them.
// Use the list versions of sort and unique instead of the generic
// algorithms, because the list versions are more efficient.
duplicates.sort();
duplicates.unique();

// Now remove all the names we need to remove.
for_each(votersByCounty.begin(), votersByCounty.end(),

RemoveNames(duplicates));
}

The getDuplicates() Function
The getDuplicates() function must find any name that is on more than one voter registration list.
There are several different approaches one could use to solve this problem. This implementation simply
combines the lists from each county into one big list and sorts it. At that point, any duplicate names
between the different lists will be next to each other in the big list. Now getDuplicates() can use
the adjacent_find() algorithm on the big, sorted, list to find all consecutive duplicates. Here is the
implementation:

//
// getDuplicates()
//
// Returns a list of all names that appear in more than one list in
// the map
//
// The implementation generates one large list of all the names from
// all the lists in the map, sorts it, then finds all duplicates
// in the sorted list with adjacent_find().
//
list<string> getDuplicates(const map<string, list<string> >& voters)
{

list<string> allNames, duplicates;

// Collect all the names from all the lists into one big list.
map<string, list<string> >::const_iterator it;
for(it = voters.begin(); it != voters.end(); ++it) {

allNames.insert(allNames.end(), it->second.begin(), it->second.end());
}

// Sort the list--use the list version, not the general algorithm,
// because the list version is faster.
allNames.sort();

649

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 649

//
// Now that it’s sorted, all duplicate names will be next to each other.
// Use adjacent_find() to find instances of two or more identical names
// next to each other.
//
// Loop until adjacent_find returns the end iterator.
//
list<string>::iterator lit;
for (lit = allNames.begin(); lit != allNames.end(); ++lit) {

lit = adjacent_find(lit, allNames.end());
if (lit == allNames.end()) {

break;
}
duplicates.push_back(*lit);

}

//
// If someone was on more than two voter lists, he or she will
// show up more than once in the duplicates list. Sort the list
// and remove duplicates with unique.
//
// Use the list versions because they are faster than the generic versions.
//
duplicates.sort();
duplicates.unique();

return (duplicates);
}

The RemoveNames Functor
The auditVoterRolls() function uses the following line to remove all the offending (duplicate and
felon) names from each list in the voter registration map:

for_each(votersByCounty.begin(), votersByCounty.end(),
RemoveNames(duplicates));

The for_each() algorithm calls the RemoveNames functor on each string/list<string> pair in the
map. The definition of the RemoveNames functor class looks like this:

//
// RemoveNames
//
// Functor class that takes a string/list<string> pair and removes
// any strings from the list that are found in a list of names
// (supplied in the constructor)
//
class RemoveNames : public unary_function<pair<const string, list<string> >,

void>
{
public:

RemoveNames(const list<string>& names) : mNames(names) {}
void operator() (pair<const string, list<string> >& val);

650

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 650

protected:
const list<string>& mNames;

};

Note that RemoveNames subclasses unary_function, a technique described earlier in this chapter. The
constructor takes a reference to a list of names, which it stores for use in its function-call operator. Recall
that the parameter to the functor callback is an element of the map, which is a string/list<string>
pair. The function call operator’s job is to remove any names from the string list that are found in
the mNames list. The implementation uses the remove_if() algorithm with a special predicate
NameInList.

//
// Function-call operator for RemoveNames functor.
//
// Uses remove_if() followed by erase to actually delete the names
// from the list
//
// Names are removed if they are in our list of mNames. Use the NameInList
// functor to check if the name is in the list.
//
void RemoveNames::operator() (pair<const string, list<string> >& val)
{

list<string>::iterator it = remove_if(val.second.begin(), val.second.end(),
NameInList(mNames));

val.second.erase(it, val.second.end());
}

Remember that the remove() family of algorithms don’t really remove elements; they only move them
to the end of the range. You must call erase() on the container to actually remove the elements.

The NameInList Functor
The RemoveNames functor calls remove_if() with a predicate functor of the NameInList class. The
NameInList functor returns true if the string given to it as an argument is in the list mNames. The
class definition looks like this:

//
// NameInList
//
// Functor to check if a string is in a list of strings (supplied
// at construction time).
//
class NameInList : public unary_function<string, bool>
{

public:
NameInList(const list<string>& names) : mNames(names) {}
bool operator() (const string& val);

protected:
const list<string>& mNames;

};

651

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 651

The implementation of the function-call operator simply uses find() to search for the name parameter
in the mNames list of strings, returning true if find() returns a valid iterator, and false if it returns
the end iterator.

//
// function-call operator for NameInList functor
//
// Returns true if it can find name in mNames, false otherwise.
// Uses find() algorithm.
//
bool NameInList::operator() (const string& name)
{

return (find(mNames.begin(), mNames.end(), name) != mNames.end());
}

Testing the auditVoterRolls() Function
That’s the complete implementation of the voter roll audit functionality. Here is a small test program:

#include <algorithm>
#include <functional>
#include <map>
#include <list>
#include <iostream>
#include <utility>
#include <string>
using namespace std;

void printString(const string& str)
{

cout << “ {“ << str << “}”;
}

void printCounty(const pair<const string, list<string> >& county)
{

cout << county.first << “:”;
for_each(county.second.begin(), county.second.end(), &printString);
cout << endl;

}

int main(int argc, char** argv)
{

map<string, list<string> > voters;
list<string> nameList, felons;
nameList.push_back(“Amy Aardvark”);
nameList.push_back(“Bob Buffalo”);
nameList.push_back(“Charles Cat”);
nameList.push_back(“Dwayne Dog”);

voters.insert(make_pair(“Orange”, nameList));

nameList.clear();
nameList.push_back(“Elizabeth Elephant”);

652

Chapter 22

25_574841 ch22.qxd 12/15/04 3:47 PM Page 652

nameList.push_back(“Fred Flamingo”);
nameList.push_back(“Amy Aardvark”);

voters.insert(make_pair(“Los Angeles”, nameList));

nameList.clear();
nameList.push_back(“George Goose”);
nameList.push_back(“Heidi Hen”);
nameList.push_back(“Fred Flamingo”);

voters.insert(make_pair(“San Diego”, nameList));

felons.push_back(“Bob Buffalo”);
felons.push_back(“Charles Cat”);

for_each(voters.begin(), voters.end(), &printCounty);
cout << endl;
auditVoterRolls(voters, felons);
for_each(voters.begin(), voters.end(), &printCounty);

return (0);
}

The output of the program is:

Los Angeles: {Elizabeth Elephant} {Fred Flamingo} {Amy Aardvark}
Orange: {Amy Aardvark} {Bob Buffalo} {Charles Cat} {Dwayne Dog}
San Diego: {George Goose} {Heidi Hen} {Fred Flamingo}

Los Angeles: {Elizabeth Elephant}
Orange: {Dwayne Dog}
San Diego: {George Goose} {Heidi Hen}

Summary
This chapter concludes the basic STL functionality. It provided an overview of the various algorithms
and function objects available for your use, and showed you how to write your own function objects.
We hope that you have gained an appreciation for the usefulness of the STL containers, algorithms, and
function objects. If not, think for a moment about rewriting the voter registration audit example without
the STL. You would need to write your own linked-list and map classes, and your own searching,
removing, finding, iterating, and other algorithms. The program would be much longer, harder to
debug, and more difficult to maintain.

If you aren’t impressed by the algorithms and function objects, or find them too complex, you obviously
don’t have to use them. Feel free to pick and choose as well: if the find() algorithm fits perfectly in
your program, don’t eschew it just because you aren’t using the other algorithms. Also, don’t take the
STL as an all-or-nothing proposition. If you want to use only the vector container and nothing else,
that’s fine too.

Chapter 23 continues the STL topic with some advanced features, including allocators, iterator adapters,
and writing your own algorithms, containers, and iterators.

653

Mastering STL Algorithms and Function Objects

25_574841 ch22.qxd 12/15/04 3:47 PM Page 653

25_574841 ch22.qxd 12/15/04 3:47 PM Page 654

Customizing and
Extending the STL

The previous two chapters have shown that the STL is a powerful general-purpose collection of
containers and algorithms. The information covered so far should be sufficient for most applica-
tions. The STL, however, is much more flexible and extensible than the previous chapters have
demonstrated. For example, you can apply iterators to input and output streams; write your own
containers, algorithms, and iterators; and even specify your own memory allocation schemes for
containers to use. This chapter provides a taste of these advanced features, primarily through the
development of a new STL container: the hashmap. The specific contents of the chapter include:

❑ A closer look at allocators

❑ Iterator adapters

❑ Extending the STL

❑ Writing algorithms

❑ Writing containers: a hash map implementation

❑ Writing Writing iterators: a hash map iterator implementation

This chapter is not for the faint of heart! The contents delve into some of the most complicated
and syntactically confusing areas of the C++ language. If you’re happy with the basic STL con-
tainers and algorithms from the previous two chapters, you can skip this one. However, if you
really want to understand the STL, not just use it, give this chapter a chance. Make sure that
you’re comfortable with the template material in Chapter 11 before reading this chapter.

26_574841 ch23.qxd 12/15/04 3:47 PM Page 655

Allocators
Recall from Chapter 21 that every STL container takes an Allocator type as a template parameter, for
which the default will usually suffice. For example, the vector template definition looks like this:

template <typename T, typename Allocator = allocator<T> > class vector;

The container constructors then allow you to specify an object of type Allocator. These extra parame-
ters permit you to customize the way the containers allocate memory. Every memory allocation per-
formed by a container is made with a call to the allocate() method of the Allocator object.
Conversely, every deallocation is performed with a call to the deallocate() method of the Allocator
object. The standard library provides a default Allocator class called allocator, which implements
these methods simply as wrappers for operator new and operator delete.

If you want containers in your program to use a custom memory allocation and deallocation scheme,
such as a memory pool, you can write your own Allocator class. Any class that provides allocate(),
deallocate(), and several other required methods and typedefs can be used in place of the default
allocator class. However, in our experience, this feature is rarely used, so we have omitted the details
from this book. For more details, consult one of the books on the C++ Standard Library listed in
Appendix B.

Iterator Adapters
The Standard Library provides three iterator adapters: special iterators that are built on top of other itera-
tors. You’ll learn more about the adapter design pattern in Chapter 26. For now, just appreciate what
these iterators can do for you. All three iterator adapters are declared in the <iterator> header.

You can also write your own iterator adapters. Consult one of the books on the Standard Library listed
in Appendix B for details.

Reverse Iterators
The STL provides a reverse_iterator class that iterates through a bidirectional or random access iter-
ator in reverse direction. Applying operator++ to a reverse_iterator calls operator-- on the
underlying container iterator, and vice versa. Every reversible container in the STL, which happens to be
every container that’s part of the standard, supplies a typedef reverse_iterator and methods called
rbegin() and rend(). rbegin() returns a reverse_iterator starting at the last element of the con-
tainer, and rend() returns a reverse_iterator starting at the first element of the container.

The reverse_iterator is useful mostly with algorithms in the STL that have no equivalents that work
in reverse order. For example, the basic find() algorithm searches for the first element in a sequence. If
you want to find the last element in the sequence, you can use a reverse_iterator instead. Note that
when you call an algorithm like find() with a reverse_iterator, it returns a reverse_iterator as
well. You can always obtain a normal iterator from a reverse_iterator by calling the base()
method on the reverse_iterator. However, due to the implementation details of reverse_iterator,
the iterator returned from base() always refers to one element past the element referred to by the
reverse_iterator on which it’s called.

656

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 656

Here is an example of find() with a reverse_iterator:

#include <algorithm>
#include <vector>
#include <iostream>
#include <iterator>
using namespace std;

// The implementation of populateContainer() is identical to that shown in
// Chapter 22, so it is omitted here.

int main(int argc, char** argv)
{

vector<int> myVector;
populateContainer(myVector);

int num;
cout << “Enter a number to find: “;
cin >> num;

vector<int>::iterator it1;
vector<int>::reverse_iterator it2;
it1 = find(myVector.begin(), myVector.end(), num);
it2 = find(myVector.rbegin(), myVector.rend(), num);

if (it1 != myVector.end()) {
cout << “Found “ << num << “ at position “ << it1 - myVector.begin()

<< “ going forward.\n”;
cout << “Found “ << num << “ at position “

<< it2.base() - 1 - myVector.begin() << “ going backward.\n”;
} else {

cout << “Failed to find “ << num << endl;
}

return (0);
}

One line in this program needs further explanation. The code to print out the position found by the
reverse iterator looks like this:

cout << “Found “ << num << “ at position “
<< it2.base() - 1 - myVector.begin() << “ going backward.\n”;

As noted earlier, base() returns an iterator referring to one past the element referred to by the
reverse_iterator. In order to get to the same element, you must subtract one.

Stream Iterators
As mentioned in Chapter 21, the STL provides adapters that allow you to treat input and output streams
as input and output iterators. Using these iterators you can adapt input and output streams so that they
can serve as sources and destinations, respectively, in the various STL algorithms. For example, you can
use the ostream_iterator with the copy() algorithm to print the elements of a container with only
one line of code:

657

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 657

#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
using namespace std;

int main(int argc, char** argv)
{

vector<int> myVector;
for (int i = 0; i < 10; i++) {

myVector.push_back(i);
}

// Print the contents of the vector.
copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, “ “));
cout << endl;

}

ostream_iterator is a template class that takes the element type as a type parameter. Its constructor
takes an output stream and a string to write to the stream following each element.

Similarly, you can use the istream_iterator to read values from an input stream using the iterator
abstraction. An istream_iterator can be used as sources in the algorithms and container methods. It’s
usage is less common than that of the ostream_iterator, so we don’t show an example here. Consult
one of the references in Appendix B for details.

Insert Iterators
As mentioned in Chapter 22, algorithms like copy() don’t insert elements into a container; they simply
replace old elements in a range with new ones. In order to make algorithms like copy() more useful, the
STL provides three insert iterator adapters that actually insert elements into a container. They are tem-
platized on a container type, and take the actual container reference in their constructor. By supplying
the necessary iterator interfaces, these adapters can be used as the destination iterators of algorithms like
copy(). However, instead of replacing elements in the container, they make calls on their container to
actually insert new elements.

The basic insert_iterator calls insert(position, element) on the container, the back_insert_
iterator calls push_back(element), and the front_insert_iterator calls push_front(element).

For example, you can use the back_insert_iterator with the remove_copy_if() algorithm to pop-
ulate a new vector with all elements from an old vector that are not equal to 100:

#include <algorithm>
#include <functional>
#include <iterator>
#include <vector>
#include <iostream>

using namespace std;

// The implementation of populateContainer() is identical to that shown in
// Chapter 22, so it is omitted here.

658

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 658

int main(int argc, char** argv)
{

vector<int> vectorOne, vectorTwo;
populateContainer(vectorOne);

back_insert_iterator<vector<int> > inserter(vectorTwo);
remove_copy_if(vectorOne.begin(), vectorOne.end(), inserter,

bind2nd(equal_to<int>(), 100));

copy(vectorTwo.begin(), vectorTwo.end(), ostream_iterator<int>(cout, “ “));
cout << endl;

return (0);
}

As you can see, when you use insert iterators, you don’t need to size the destination containers ahead
of time.

The insert_iterator and front_insert_iterator function similarly, except that the
insert_iterator also takes an initial iterator position in its constructor, which it passes to the first call
to insert(position, element). Subsequent iterator position hints are generated based on the return
value from each insert() call.

One huge benefit of insert_iterator is that it allows you to use associative containers as destinations
of the modifying algorithms. Recall from Chapter 22 that the problem with associative containers is
that you are not allowed to modify the elements over which you iterate. By using an insert_iterator,
you can instead insert elements, allowing the container to sort them properly internally. Recall from
Chapter 21 that associative containers actually support a form of insert() that takes an iterator posi-
tion, and are supposed to use the position as a “hint,” which they can ignore. When you use an
insert_iterator on an associative container, you can simply pass the begin or end iterator of the con-
tainer to use as the hint. Here is the previous example modified so that the destination container is a set
instead of a vector:

#include <algorithm>
#include <functional>
#include <iterator>
#include <vector>
#include <iostream>
#include <set>

using namespace std;

// The implementation of populateContainer() is identical to that shown in
// Chapter 22, so it is omitted here.

int main(int argc, char** argv)
{

vector<int> vectorOne;
set<int> setOne;
populateContainer(vectorOne);

insert_iterator<set<int> > inserter(setOne, setOne.begin());
remove_copy_if(vectorOne.begin(), vectorOne.end(), inserter,

659

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 659

bind2nd(equal_to<int>(), 100));

copy(setOne.begin(), setOne.end(), ostream_iterator<int>(cout, “ “));
cout << endl;

return (0);
}

Note that the insert_iterator modifies the iterator position hint that it passes to insert() after each
call to insert(), such that the position is one past the just-inserted element.

Extending the STL
The STL includes many useful containers, algorithms, and iterators that you can use in your applica-
tions. It is impossible, however, for any library to include all possible utilities that all potential clients
might need. Thus, the best libraries are extensible: they allow clients to adapt and add to the basic capa-
bilities to obtain exactly the functionality they require. The STL is inherently extensible because of its
fundamental structure of separating data from the algorithms that operate on them. You can write your
own container that can work with the STL algorithms simply by providing an iterator that conforms to
the STL standard. Similarly, you can write a function that works with iterators from the standard con-
tainers. This section explains the rules for extending the STL and provides sample implementations of
extensions.

Why Extend the STL?
If you sit down to write an algorithm or container in C++, you can either make it adhere to the STL con-
ventions or not. For simple containers and algorithms, it might not be worth the extra effort to follow the
STL guidelines. However, for substantial code that you plan to reuse, the effort pays off. First, the code
will be easier for other C++ programmers to understand, because you follow well-established interface
guidelines. Second, you will be able to utilize your container or algorithm on the other parts of the STL
(algorithms or containers), without needing to provide special hacks or adapters. Finally, it will force
you to employ the necessary rigor required to develop solid code.

Writing an STL Algorithm
The algorithms described in Chapter 22 are useful, but you will inevitably encounter situations in your
programs for which you need new algorithms. When that happens, it is usually not difficult to write
your own algorithm that works with STL iterators just like the standard algorithms.

find_all()
Suppose that you wanted to find all the elements matching a predicate in a given range. find() and
find_if() are the most likely candidate algorithms, but each return an iterator referring to only one
element. In fact, there is no standard algorithm to find all the elements matching a predicate. Luckily,
you can write your own version of this functionality called find_all().

The first task is to define the function prototype. You can model find_all() after find_if(). It will be
a templatized function on two type parameters: the iterator and the predicate. Its arguments will be start

660

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 660

and end iterators and the predicate object. Only its return value differs from find_if(): instead of
returning a single iterator referring to the matching element, find_all() returns a vector of iterators
referring to all the matching elements. Here is the prototype:

template <typename InputIterator, typename Predicate>
vector<InputIterator>
find_all(InputIterator first, InputIterator last, Predicate pred);

Another option would be to return an iterator that iterates over all the matching elements in the con-
tainer, but that would require you to write your own iterator class.

The next task is to write the implementation. find_all() can be layered on top of find_if() by call-
ing find_if() repeatedly. The first call to find_if() uses the whole supplied range from first to
last. The second call uses a smaller range, from the element found from the previous call to last. The
loop continues until find_if() fails to find a match. Here is the implementation:

template <typename InputIterator, typename Predicate>
vector<InputIterator>
find_all(InputIterator first, InputIterator last, Predicate pred)
{

vector<InputIterator> res;

while (true) {
// Find the next match in the current range.
first = find_if(first, last, pred);
// check if find_if failed to find a match
if (first == last) {

break;
}
// Store this match.
res.push_back(first);
// Shorten the range to start at one past the current match
++first;

}
return (res);

}

Here is some code that tests the function:

int main(int argc, char** argv)
{

int arr[] = {3, 4, 5, 4, 5, 6, 5, 8};
vector<int*> all = find_all(arr, arr + 8, bind2nd(equal_to<int>(), 5));

cout << “Found “ << all.size() << “ matching elements: “;

for (vector<int*>::iterator it = all.begin(); it != all.end(); ++it) {
cout << **it << “ “;

}
cout << endl;

return (0);
}

661

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 661

This test code is somewhat cryptic, so here’s a bit of explanation. The test uses an array of ints as an
STL container. Recall from Chapter 21 that C-style arrays are legitimate containers, with pointers serving
as the iterators. The begin iterator of an array is simply a pointer to the first element. The end iterator is a
pointer to one-past the last element.

After finding iterators to all the elements, the test code counts the number of elements found, which is
simply the number of iterators in the all vector. Then, it iterates through the all vector, printing
each element. Note the double dereference of it: the first dereference gets to the int* and the second
gets to the actual int.

Iterator Traits
Some algorithm implementations need additional information about their iterators. For example, they
might need to know the type of the elements referred to by the iterator in order to store temporary val-
ues, or perhaps they want to know whether the iterator is bidirectional or random access.

C++ provides a class template called iterator_traits that allows you to find this info. You instantiate
the iterator_traits class template with the iterator type of interest, and access one of five typedefs:
value_type, difference_type, iterator_category, pointer, and reference. For example, the
following template function declares a temporary variable of the type to which an iterator of type
IteratorType refers:

#include <iterator>

template <typename IteratorType>
void iteratorTraitsTest(IteratorType it)
{

typename std::iterator_traits<IteratorType>::value_type temp;
temp = *it;
cout << temp << endl;

}

Note the use of the typename keyword in front of the iterator_traits line. As explained in Chapter
21, you must specify typename explicitly whenever you access a type based on one or more template
parameters. In this case, the template parameter IteratorType is used to access the value_type type.

Writing an STL Container
The C++ standard contains a list of requirements that any container must fulfill in order to qualify as an
STL container. Additionally, if you want your container to be sequential (like a vector) or associative
(like a map), it must conform to supplementary requirements.

Our suggestion when writing a new container is to write the basic container first following the general
STL rules such as making it a class template, but without worrying too much about the specific details of
STL conformity. After you’ve developed the implementation, you can add the iterator and methods so
that it can work with the STL framework. This section takes that approach to develop a hashmap.

A Basic Hashmap
The most glaring omission from the STL is a hash table container. Unlike the STL map and set, which
provide logarithmic insertion, lookup, and deletion times, a hash table provides constant time insertion,

662

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 662

deletion, and lookup in the average case. Instead of storing elements in sorted order, it hashes, or maps,
each element to a particular bucket. As long as the number of elements stored isn’t significantly greater
than the number of buckets, and the hash function evenly distributes elements between the buckets, the
insertion, deletion, and lookup operations all run in constant time.

This section assumes that you are familiar with hashed data structures. If you are not, consult one of the
standard data structure texts listed in Appendix B.

Many specific implementations of the STL provide a nonstandard hash table. As you can guess, how-
ever, due to the lack of standardization, each implementation is slightly different. This section provides
an implementation of a simple, but fully functional, hashmap that you can take with you between plat-
forms. Like a map, a hashmap stores key/value pairs. In fact, the operations it provides are almost identi-
cal to those provided by the map.

This hashmap implementation uses chained hashing (also called open hashing) and does not attempt to
provide advanced features like rehashing.

The Hash Function
The first choice when writing a hashmap is how to handle hash functions. Recalling the adage that a
good abstraction makes the easy case easy and the hard case possible, a good hashmap interface allows
clients to specify their own hash function and number of buckets in order to customize the hashing
behavior for their particular workload. On the other hand, clients that do not have the desire, or ability,
to write a good hash function and choose a number of buckets should be able to use the container with-
out doing so. One solution is to allow clients to provide a hash function and number of buckets in the
hashmap constructor, but also to provide defaults values. It also makes sense to package the hash func-
tion and the number of buckets into a hashing class. Our default hash class definition looks like this:

// Any Hash Class must provide two methods: hash() and numBuckets().
template <typename T>
class DefaultHash
{

public:
// Throws invalid_argument if numBuckets is nonpositive
DefaultHash(int numBuckets = 101) throw (invalid_argument);
int hash(const T& key) const;
int numBuckets() const { return mNumBuckets; }

protected:
int mNumBuckets;

};

Note that the DefaultHash class is templatized on the key type that it hashes, in order to support a tem-
platized hashmap container. The implementation of the constructor is trivial:

// Throws invalid_argument if numBuckets is nonpositive
template <typename T>
DefaultHash<T>::DefaultHash(int numBuckets) throw (invalid_argument)
{

if (numBuckets <= 0) {
throw (invalid_argument(“numBuckets must be > 0”));

}

663

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 663

mNumBuckets = numBuckets;
}

The implementation of hash() is trickier, partially because it must apply to keys of any type. It is sup-
posed to map the key to one of the mNumBuckets buckets. It uses the division method for hashing, in
which the bucket is an integer value of the key modulo the number of buckets.

// Uses the division method for hashing.
// Treats the key as a sequence of bytes, sums the ASCII
// values of the bytes, and mods the total by the number
// of buckets.
template <typename T>
int DefaultHash<T>::hash(const T& key) const
{

int bytes = sizeof(key);
unsigned long res = 0;
for (int i = 0; i < bytes; ++i) {

res += *((char*)&key + i);
}
return (res % mNumBuckets);

}

Unfortunately, the preceding method doesn’t work on strings because different string objects can
contain the same string value. Thus, the same string value could hash to different buckets. Therefore,
it’s also a good idea to provide a partial specialization of the DefaultHash class for strings:

// Specialization for strings
template <>
class DefaultHash<string>
{

public:
// Throws invalid_argument if numBuckets is nonpositive
DefaultHash(int numBuckets = 101) throw (invalid_argument);
int hash(const string& key) const;
int numBuckets() const { return mNumBuckets; }

protected:
int mNumBuckets;

};

// Throws invalid_argument if numBuckets is nonpositive
DefaultHash<string>::DefaultHash(int numBuckets) throw (invalid_argument)
{

if (numBuckets <= 0) {
throw (invalid_argument(“numBuckets must be > 0”));

}
mNumBuckets = numBuckets;

}

// Uses the division method for hashing after summing the
// ASCII values of all the characters in key.
int DefaultHash<string>::hash(const string& key) const
{

664

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 664

int sum = 0;

for (size_t i = 0; i < key.size(); i++) {
sum += key[i];

}
return (sum % mNumBuckets);

}

If the client wants to use other pointer types or objects as the key, she should write her own hash class
for those types.

The Hashmap Interface
A hashmap supports three basic operations: insertion, deletion, and lookup. Of course, it provides a con-
structor, destructor, copy constructor, and assignment operator as well. Here is the public portion of the
hashmap class template:

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;

// Constructors
// Throws invalid_argument if the hash object specifies a nonpositive
// number of buckets
explicit hashmap(const Compare& comp = Compare(),

const Hash& hash = Hash()) throw(invalid_argument);

// destructor, copy constructor, assignment operator
~hashmap();
hashmap(const hashmap<Key, T, Compare, Hash>& src);
hashmap<Key, T, Compare, Hash>& operator=(

const hashmap<Key, T, Compare, Hash>& rhs);

// Element insert
// Inserts the key/value pair x
void insert(const value_type& x);

// Element delete
// Removes the element with key x, if it exists
void erase(const key_type& x);

The hash functions shown in this section are simple examples for the basic hashmap
implementation. They do not guarantee uniform hashing for all key universes.
If you need more mathematically rigorous hash functions (or don’t know what
“uniform hashing” is), consult an algorithms reference.

665

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 665

// Element lookup
// find returns a pointer to the element with key x.
// Returns NULL if no element with that key exists.
value_type* find(const key_type& x);

// operator[] finds the element with key x or inserts an
// element with that key if none exists yet. Returns a reference to the
// value corresponding to that key.
T& operator[] (const key_type& x);

protected:
// Implementation details not shown yet

};

As you can see, the key and value types are both template arguments like in the STL map. The hashmap
stores pair<const Key, T> as the actual elements in the container. The insert(), erase(), find(),
and operator[] methods are straightforward. However, a few aspects of this interface require further
explanation.

The Compare Template Argument

Like the map, set, and other standard containers, the hashmap allows the client to specify the compari-
son type as a template parameter and to pass a specific comparison object of that type in the constructor.
Unlike the map and set, the hashmap does not sort elements by key, but must still compare keys for
equality. Thus, instead of using less as the default comparison, it uses equal_to. The comparison
object is used only to detect attempts to insert duplicate keys into the container.

The Hash Template Argument

When you allow clients to define their own classes, from which they construct objects to pass in the con-
structor, you must figure out how to specify the type of that parameter in the constructor. There are sev-
eral ways to do it. The STL way, which is on the complicated end of the spectrum, takes the class type as
a template parameter and uses that templatized type as the type in the constructor. We follow that
approach for the hash class, as you can see above. Thus, the hashmap template takes four template
parameters: the key type, the value type, the comparison type, and the hash type.

The typedefs

The hashmap class template defines three typedefs:

typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;

The value_type, in particular, is useful for referring to the more cumbersome pair<const Key, T>.
As you will see, these typedefs are also required of STL containers by the standard.

The Implementation
After finalizing the hashmap interface, it’s time to choose the implementation model. The basic hash
table structure generally consists of a fixed number of buckets, each of which can store one or more ele-
ments. The buckets should be accessible in constant time based on a bucket-id (the result of hashing a

666

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 666

key). Thus, a vector is the most appropriate container for the buckets. Each bucket must store a list of
elements, so the STL list can be used as the bucket type. Thus, the final structure is a vector of lists
of pair<const Key, T> elements. Here are the protected members of the hashmap class:

protected:
typedef list<value_type> ListType;

// In this first implementation, it would be easier to use a vector
// instead of a pointer to a vector, which requires dynamic allocation.
// However, we use a ptr to a vector so that, in the final
// implementation, swap() can be implemented in constant time.
vector<ListType>* mElems;
int mSize;
Compare mComp;
Hash mHash;

Without the typedefs for value_type and ListType, the line declaring mElems would look like this:

vector<list<pair<const Key, T> > >* mElems;

The mComp and mHash members store the comparison and hashing objects, respectively, and mSize
stores the number of elements currently in the container.

The Constructor

The constructor initializes all the fields and allocates a new vector. Unfortunately, the template syntax
is somewhat dense. Consult Chapter 11 for details on writing class templates if the syntax confuses you.

// Construct mElems with the number of buckets.
template <typename Key, typename T, typename Compare, typename Hash>
hashmap<Key, T, Compare, Hash>::hashmap(

const Compare& comp, const Hash& hash) throw(invalid_argument) :
mSize(0), mComp(comp), mHash(hash)

{
if (mHash.numBuckets() <= 0) {

throw (invalid_argument(“Number of buckets must be positive”));
}
mElems = new vector<list<value_type> >(mHash.numBuckets());

}

The implementation requires at least one bucket, so the constructor enforces that restriction.

Destructor, Copy Constructor, and Assignment Operator

Only the mElems data member needs destroying, copying, and assigning. Here are the implementations
of the destructor, copy constructor, and assignment operator:

template <typename Key, typename T, typename Compare, typename Hash>
hashmap<Key, T, Compare, Hash>::~hashmap()
{

delete mElems;
}

667

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 667

template <typename Key, typename T, typename Compare, typename Hash>
hashmap<Key, T, Compare, Hash>::hashmap(

const hashmap<Key, T, Compare, Hash>& src) :
mSize(src.mSize), mComp(src.mComp), mHash(src.mHash)

{
// Don’t need to bother checking if numBuckets is positive, because
// we know src checked

// Use the vector copy constructor.
mElems = new vector<list<value_type> >(*(src.mElems));

}

template <typename Key, typename T, typename Compare, typename Hash>
hashmap<Key, T, Compare, Hash>& hashmap<Key, T, Compare, Hash>::operator=(

const hashmap<Key, T, Compare, Hash>& rhs)
{

// Check for self-assignment.
if (this != &rhs) {

delete mElems;
mSize = rhs.mSize;
mComp = rhs.mComp;
mHash = rhs.mHash;
// Don’t need to bother checking if numBuckets is positive, because
// we know rhs checked

// Use the vector copy constructor.
mElems = new vector<list<value_type> >(*(rhs.mElems));

}
return (*this);

}

Note that the copy constructor and assignment operator both construct the new vector using its copy
constructor with the vector from the source hashmap as the source.

Element Lookup

Each of the three major operations (lookup, insertion, and deletion) requires code to find an element
with a given key. Thus, it is helpful to have a protected helper method that performs that task.
findElement() first uses the hash object to hash the key to a specific bucket. Then, it looks in that
bucket for an element with a key matching the given key. The elements stored are key/value pairs, so
the actual comparison must be done on the first field of the element. The comparison function object
specified in the constructor is used to perform the comparison. lists require linear search to find
matching elements, but you could use the find() algorithm instead of an explicit for loop.

template <typename Key, typename T, typename Compare, typename Hash>
typename list<pair<const Key, T> >::iterator
hashmap<Key, T, Compare, Hash>::findElement(const key_type& x, int& bucket) const
{

// Hash the key to get the bucket.
bucket = mHash.hash(x);

// Look for the key in the bucket.
for (typename ListType::iterator it = (*mElems)[bucket].begin();

668

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 668

it != (*mElems)[bucket].end(); ++it) {
if (mComp(it->first, x)) {

return (it);
}

}
return ((*mElems)[bucket].end());

}

Note that findElement() returns an iterator referring to an element in the list representing the
bucket to which the key hashed. If the element is found, the iterator refers to that element; otherwise, it
is the end iterator for that list. The bucket is returned by reference in the bucket argument.

The syntax in this method is somewhat confusing, particularly the use of the typename keyword. As
explained in Chapter 21, you must use the typename keyword whenever you are using a type that is
dependent on a template parameter. Specifically, the type list<pair<const Key, T> >::iterator
type is dependent on both the Key and T template parameters.

Another note on the syntax: mElems is a pointer, so it must be dereferenced before you can apply
operator[] to it to obtain a specific element. Hence the somewhat ugly: (*mElems)[bucket].

You can implement the find() method as a simple wrapper for findElement():

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::value_type*
hashmap<Key, T, Compare, Hash>::find(const key_type& x)
{

int bucket;
// Use the findElement() helper.
typename ListType::iterator it = findElement(x, bucket);
if (it == (*mElems)[bucket].end()) {

// We didn’t find the element--return NULL.
return (NULL);

}
// We found the element. Return a pointer to it.

return (&(*it));
}

The operator[] method is similar, except that if it can’t find the element it inserts it:

template <typename Key, typename T, typename Compare, typename Hash>
T& hashmap<Key, T, Compare, Hash>::operator[] (const key_type& x)
{

// Try to find the element.
// If it doesn’t exist, add a new element.
value_type* found = find(x);
if (found == NULL) {

insert(make_pair(x, T()));
found = find(x);

}
return (found->second);

}

669

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 669

This method is somewhat inefficient, because in the worst case it calls find() twice and insert() once.
However, each of these operations runs in constant time with respect to the number of elements in the
hashmap, so the overhead is not too significant.

Element Insert

insert() must first check if an element with that key is already in the hashmap. If not, it can add the
element to the list in the appropriate bucket. Note that findElement() returns by reference the
bucket to which the key hashes, even if the element with that key is not found.

template <typename Key, typename T, typename Compare, typename Hash>
void hashmap<Key, T, Compare, Hash>::insert(const value_type& x)
{

int bucket;
// Try to find the element.
typename ListType::iterator it = findElement(x.first, bucket);

if (it != (*mElems)[bucket].end()) {
// The element already exists.
return;

} else {
// We didn’t find the element, so insert a new one.
mSize++;
(*mElems)[bucket].insert((*mElems)[bucket].end(), x);

}
}

Element Delete

erase() follows the same pattern as insert(): it first attempts to find the element by calling
findElement(). If the element exists, it erases it from the list in the appropriate bucket. Otherwise, it
does nothing.

template <typename Key, typename T, typename Compare, typename Hash>
void
hashmap<Key, T, Compare, Hash>::erase(const key_type& x)
{

int bucket;

// First, try to find the element.
typename ListType::iterator it = findElement(x, bucket);

if (it != (*mElems)[bucket].end()) {
// The element already exists--erase it.
(*mElems)[bucket].erase(it);
mSize--;

}
}

Using the Basic Hashmap
Here is a small test program demonstrating the basic hashmap class template.

670

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 670

#include “hashmap.h”

int main(int argc, char** argv)
{

hashmap<int, int> myHash;
myHash.insert(make_pair(4, 40));
myHash.insert(make_pair(6, 60));

hashmap<int, int>::value_type* x = myHash.find(4);
if (x != NULL) {

cout << “4 maps to “ << x->second << endl;
} else {

cout << “cannot find 4 in map\n”;
}

myHash.erase(4);

hashmap<int, int>::value_type* x2 = myHash.find(4);
if (x2 != NULL) {

cout << “4 maps to “ << x2->second << endl;
} else {

cout << “cannot find 4 in map\n”;
}

myHash[4] = 35;

return (0);
}

The output is:

4 maps to 40
cannot find 4 in map

Making the Hashmap an STL Container
The basic hashmap shown in the previous section follows the spirit, but not the letter, of the STL. For
most purposes, the preceding implementation is good enough. However, if you want to use the STL
algorithms on your hashmap, you must do a bit more work. The C++ standard specifies specific meth-
ods and typedefs that a data structure must provide in order to qualify as a container.

Typedef Container Requirements
The typedefs include:

Type Name Description

value_type The element type stored in the container

reference A reference to the element type stored in the container

const_reference A reference to a const element type stored in the container

Table continued on following page

671

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 671

Type Name Description

iterator The type of the “smart pointer” for iterating over elements of the
container

const_iterator A version of iterator for iterating over const elements of the
container

size_type Type that can represent the number of elements in the container;
usually just size_t (from <cstddef>)

difference_type Type that can represent the difference of two iterators for the
container; usually just ptrdiff_t (from <cstddef>)

Here are the definitions in the hashmap class of all these typedefs except iterator and const_iterator.
Writing an iterator is covered in detail in a subsequent section. Note that value_type (plus key_type
and mapped_type, which are discussed later) was already defined in our previous version of the
hashmap.

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef pair<const Key, T>& reference;
typedef const pair<const Key, T>& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
// Remainder of class definition omitted for brevity

};

Method Container Requirements
In addition to the typedefs, every container must provide the following methods:

Method Description Complexity

Default Constructor Constructs an empty container Constant

Copy constructor Performs a deep copy Linear

Assignment operator Performs a deep copy Linear

Destructor Destroys dynamically allocated Linear
memory; calls destructor on all
elements left in container

iterator begin(); Returns an iterator referring to Constant
const_iterator begin() const; the first element in the container

672

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 672

Method Description Complexity

iterator end(); Returns an iterator referring to Constant
const_iterator end() end; the last element in the container

operator== Comparison operators that Linear
operator!= compare two containers,
operator< element by element
operator>
operator<=
operator>=

void swap(Container&); Swaps the contents of the Constant (though
container passed to the method technically the
with the object on which the standard says only
method is called “should”)

size_type size() const; Returns the number of elements Constant (though
in the container technically the

standard says only
“should”)

size_type max_size() const; Returns the maximum number of Constant (though
elements the container can hold technically the

standard says only
“should”)

bool empty() const; Specifies whether the container Constant
has any elements

In this hashmap example, we omit the comparison operators. Implementing them would be a good exer-
cise for the reader!

Here are the declarations and definitions of all the remaining methods except for begin() and end().
Those are covered in the next section:

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
// typedefs omitted for brevity
// Constructors
explicit hashmap(const Compare& comp = Compare(),

const Hash& hash = Hash()) throw(invalid_argument);
// destructor, copy constructor, assignment operator
~hashmap();
hashmap(const hashmap<Key, T, Compare, Hash>& src);
hashmap<Key, T, Compare, Hash>& operator=(

const hashmap<Key, T, Compare, Hash>& rhs);

673

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 673

// Size methods
bool empty() const;
size_type size() const;
size_type max_size() const;
// Other modifying utilities
void swap(hashmap<Key, T, Compare, Hash>& hashIn);

// Other methods omitted for brevity
};

The implementations of the constructor, destructor, copy constructor, and
assignment operator are identical to those shown above in the “Basic Hashmap
Implementation” section.

The implementations of size() and empty() are easy because the hashmap implementation tracks its
size in the mSize data member. Note that the size() method returns a size_type, which, as a return
type, must be qualified with the explicit hashmap<Key, T, Compare, Hash> type name.

template <typename Key, typename T, typename Compare, typename Hash>
bool hashmap<Key, T, Compare, Hash>::empty() const
{

return (mSize == 0);
}

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::size_type

hashmap<Key, T, Compare, Hash>::size() const
{

return (mSize);
}

max_size() is a little trickier. At first, you might think the maximum size of the hashmap container is
the sum of the maximum size of all the lists. However, the worst-case scenario is that all the elements
hash to the same bucket. Thus, the maximum size it can claim to support is the maximum size of a
single list.

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::size_type

hashmap<Key, T, Compare, Hash>::max_size() const
{

// In the worst case, all the elements hash to the
// same list, so the max_size is the max_size of a single
// list. This code assumes that all the lists have the same
// max_size.
return ((*mElems)[0].max_size());

}

Finally, the implementation of swap() simply uses the swap() utility function to swap each of the four
data members. Note that the vector pointers are swapped, which is a constant-time operation.

674

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 674

// Just swap the four data members.
// Use the generic swap template.
template <typename Key, typename T, typename Compare, typename Hash>
void hashmap<Key, T, Compare, Hash>::swap(

hashmap<Key, T, Compare, Hash>& hashIn)
{

// Explicitly qualify with std:: so the compiler doesn’t think
// it’s a recursive call.
std::swap(*this, hashIn);

}

Writing an Iterator
The most important container requirement is the iterator. In order to work with the generic algorithms,
every container must provide an iterator for accessing the elements in the container. Your iterator should
generally be a class that looks like a smart pointer: it provides overloaded operator* and operator->,
plus some other operations depending on its specific behavior. As long as your iterator provides the
basic iteration operations, everything should be fine.

The first decision to make about your iterator is what kind it will be: forward, bidirectional, or random
access. Random access iterators don’t make much sense for associative containers, so bidirectional seems
like the logical choice for the hashmap iterator. That means you must provide the additional operations
described in Chapter 21, including operator++, operator--, operator==, and operator!=.

The second decision is how to order the elements of your container. The hashmap is unsorted, so iterat-
ing in a sorted order is probably too difficult. Instead, your iterator can just step through the buckets,
starting with the elements in the first bucket and progressing to those in the last bucket. This order will
appear random to the client, but will be consistent and repeatable.

The third decision is how to represent your iterator internally. The implementation is usually quite
dependent on the internal implementation of the container. The first purpose of an iterator is to refer to a
single element in the container. In the case of the hashmap, each element is in an STL list, so perhaps the
hashmap iterator can be a wrapper around a list iterator referring to the element in question. However,
the second purpose of a bidirectional iterator is to allow the client to progress to the next or previous ele-
ment from the current. In order to progress from one bucket to the next, you need to track also the cur-
rent bucket and the hashmap object to which the iterator refers.

Once you’ve chosen your implementation, you must decide on a consistent representation for the end
iterator. Recall that the end iterator should really be the “past-the-end” marker: the iterator that’s
reached by applying ++ to an iterator referring to the final element in the container. The hashmap iterator
can simply use as its end iterator the end iterator of the list of the final bucket in the hashmap.

The HashIterator Class

Given the decisions made in the previous section, it’s time to define the HashIterator class. The first
thing to note is that each HashIterator object is an iterator for a specific instantiation of the hashmap
class. In order to provide this one-to-one mapping, the HashIterator must also be a class template on
the same parameters as the hashmap class.

675

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 675

The main question in the class definition is how to conform to the bidirectional iterator requirements.
Recall that anything that behaves like an iterator is an iterator. Your class is not required to subclass
another class in order to qualify as a bidirectional iterator. However, if you want your iterator to be
usable in the generic algorithms functions, you must specify its traits. Recall from the discussion of writ-
ing STL algorithms earlier that iterator_traits is a class template that defines five typedefs for each
iterator type. It can be partially specialized for your new iterator type if you want. Alternatively, the
default implementation of the iterator_traits class template just grabs the five typedefs out of the
iterator class itself. Thus, you can define those typedefs directly in your iterator class. In fact, C++
makes it even easier than that. Instead of defining them yourself, you can just subclass the iterator
class template, which provides the typedefs for you. That way you only need to specify the iterator
type and the element type as template arguments to the iterator class template. The HashIterator is
a bidirectional iterator, so you can specify bidirectional_iterator_tag as the iterator type. Other
legal iterator types are input_iterator_tag, output_iterator_tag, forward_iterator_tag, and
random_access_iterator_tag. The element type is simply pair<const Key, T>.

Basically, it all boils down to the fact that you should subclass your iterator classes from the generic
iterator class template.

Here is the basic HashIterator class definition:

// HashIterator class definition
template<typename Key, typename T, typename Compare, typename Hash>
class HashIterator : public std::iterator<std::bidirectional_iterator_tag,

pair<const Key, T> >
{

public:
HashIterator(); // Bidirectional iterators must supply default ctors.
HashIterator(int bucket,

typename list<pair<const Key, T> >::iterator listIt,
const hashmap<Key, T, Compare, Hash>* inHashmap);

pair<const Key, T>& operator*() const;

// Return type must be something to which -> can be applied.
// Return a pointer to a pair<const Key, T>, to which the compiler will
// apply -> again.
pair<const Key, T>* operator->() const;
HashIterator<Key, T, Compare, Hash>& operator++();
const HashIterator<Key, T, Compare, Hash> operator++(int);

HashIterator<Key, T, Compare, Hash>& operator--();
const HashIterator<Key, T, Compare, Hash> operator--(int);

// Don’t need to define a copy constructor or operator= because the
// default behavior is what we want

// Don’t need destructor because the default behavior
// (not deleting mHashmap) is what we want.

// These are ok as member functions because we don’t support
// comparisons of different types to this one.
bool operator==(const HashIterator& rhs) const;
bool operator!=(const HashIterator& rhs) const;

676

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 676

protected:
int mBucket;
typename list<pair<const Key, T> >::iterator mIt;
const hashmap<Key, T, Compare, Hash>* mHashmap;

// Helper methods for operator++ and operator--
void increment();
void decrement();

};

If the definitions and implementations (shown in the next section) of the overloaded operators confuse
you, consult Chapter 16 for details on operator overloading.

The HashIterator Method Implementations

The HashIterator constructors initialize the three member variables. The default constructor exists
only so that clients can declare HashIterator variables without initializing them. An iterator con-
structed with the default constructor does not need to refer to any value, and attempting any operations
on it is allowed to have undefined results.

// Dereferencing or incrementing an iterator constructed with the
// default ctor is undefined, so it doesn’t matter what values we give
// here.
template<typename Key, typename T, typename Compare, typename Hash>
HashIterator<Key, T, Compare, Hash>::HashIterator()
{

mBucket = -1;
mIt = list<pair<const Key, T> >::iterator();
mHashmap = NULL;

}

template<typename Key, typename T, typename Compare, typename Hash>
HashIterator<Key, T, Compare, Hash>::HashIterator(

int bucket, typename list<pair<const Key, T> >::iterator listIt,
const hashmap<Key, T, Compare, Hash>* inHashmap) :
mBucket(bucket), mIt(listIt), mHashmap(inHashmap)

{
}

The implementations of the dereferencing operators are concise, but can be tricky. Recall from Chapter
16 that operator* and operator-> are asymmetric. operator* returns the actual underlying value,
which in this case is the element to which the iterator refers. operator->, on the other hand, must
return something to which the arrow operator can be applied again. Thus, it returns a pointer to the ele-
ment. The compiler then applies -> to the pointer, which will result in accessing a field of the element.

// Return the actual element
template<typename Key, typename T, typename Compare, typename Hash>
pair<const Key, T>& HashIterator<Key, T, Compare, Hash>::operator*() const
{

return (*mIt);
}

677

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 677

// Return the iterator, so the compiler can apply -> to it to access
// the actual desired field.
template<typename Key, typename T, typename Compare, typename Hash>
pair<const Key, T>*

HashIterator<Key, T, Compare, Hash>::operator->() const
{

return (&(*mIt));
}

The increment and decrement operators are implemented as described in Chapter 16, except that
the actual incrementing and decrementing procedures are performed in the increment() and
decrement() helper methods.

// Defer the details to the increment() helper.
template<typename Key, typename T, typename Compare, typename Hash>
HashIterator<Key, T, Compare, Hash>&

HashIterator<Key, T, Compare, Hash>::operator++()
{

increment();
return (*this);

}

// Defer the details to the increment() helper.
template<typename Key, typename T, typename Compare, typename Hash>
const HashIterator<Key, T, Compare, Hash>

HashIterator<Key, T, Compare, Hash>::operator++(int)
{

HashIterator<Key, T, Compare, Hash> oldIt = *this;
increment();
return (oldIt);

}

// Defer the details to the decrement() helper.
template<typename Key, typename T, typename Compare, typename Hash>
HashIterator<Key, T, Compare, Hash>&

HashIterator<Key, T, Compare, Hash>::operator--()
{

decrement();
return (*this);

}

// Defer the details to the decrement() helper.
template<typename Key, typename T, typename Compare, typename Hash>
const HashIterator<Key, T, Compare, Hash>

HashIterator<Key, T, Compare, Hash>::operator--(int)
{

HashIterator<Key, T, Compare, Hash> newIt = *this;
decrement();
return (newIt);

}

Incrementing a HashIterator tells it to refer to the “next” element in the container. This method first
increments the list iterator, then checks if it’s reached the end of its bucket. If so, it finds the next
empty bucket in the hashmap and sets the list iterator equal to the start element in the bucket. Note

678

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 678

that it can’t simply move to the next bucket, because there might not be any elements in it. If there are no
more empty buckets, mIt is set to the end iterator of the last bucket in the hashmap, which is the special
“end” position of the HashIterator. Recall that iterators are not required to be any safer than dumb
pointers, so error checking for things like incrementing an iterator already at the end is not required.

// Behavior is undefined if mIt already refers to the past-the-end
// element in the table, or is otherwise invalid.
template<typename Key, typename T, typename Compare, typename Hash>
void HashIterator<Key, T, Compare, Hash>::increment()
{

// mIt is an iterator into a single bucket.
// Increment it.
++mIt;

// If we’re at the end of the current bucket,
// find the next bucket with elements.
if (mIt == (*mHashmap->mElems)[mBucket].end()) {

for (int i = mBucket + 1; i < (*mHashmap->mElems).size(); i++) {
if (!((*mHashmap->mElems)[i].empty())) {

// We found a nonempty bucket.
// Make mIt refer to the first element in it.
mIt = (*mHashmap->mElems)[i].begin();
mBucket = i;
return;

}
}
// No more empty buckets. Assign mIt to refer to the end
// iterator of the last list.
mBucket = (*mHashmap->mElems).size() - 1;
mIt = (*mHashmap->mElems)[mBucket].end();

}
}

Decrement is the inverse of increment: it makes the iterator refer to the “previous” element in the con-
tainer. However, there is an asymmetry because of the asymmetry between the way the start and end
positions are represented: start is the first element, but end is “one past” the last element. The algorithm
for decrement checks first if the underlying list iterator is at the start of its current bucket. If not, it can
just be decremented. Otherwise, the code needs to check for the first nonempty bucket before the current
one. If one is found, the list iterator must be set to refer to the last element in the bucket, which is the
end iterator decremented by one. If no nonempty buckets are found, the decrement is invalid, so the
code can do anything it wants (behavior is undefined).

// Behavior is undefined if mIt already refers to the first element
// in the table, or is otherwise invalid.
template<typename Key, typename T, typename Compare, typename Hash>
void HashIterator<Key, T, Compare, Hash>::decrement()
{

// mIt is an iterator into a single bucket.
// If it’s at the beginning of the current bucket, don’t decrement it.
// Instead, try to find a nonempty bucket ahead of the current one.
if (mIt == (*mHashmap->mElems)[mBucket].begin()) {

for (int i = mBucket - 1; i >= 0; --i) {
if (!((*mHashmap->mElems)[i].empty())) {

679

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 679

mIt = (*mHashmap->mElems)[i].end();
--mIt;
mBucket = i;
return;

}
}
// No more nonempty buckets. This is an invalid decrement.
// Assign mIt to refer to one before the start element of the first
// list (an invalid position).
mIt = (*mHashmap->mElems)[0].begin();
--mIt;
mBucket = 0;

} else {
// We’re not at the beginning of the bucket, so
// just move down.
--mIt;

}
}

Note that both increment() and decrement() access protected members of the hashmap class. Thus,
the hashmap class must declare HashIterator to be a friend class.

After increment() and decrement(), operator== and operator!= are positively simple. They just
compare each of the three data members of the objects.

template<typename Key, typename T, typename Compare, typename Hash>
bool HashIterator<Key, T, Compare, Hash>::operator==(

const HashIterator& rhs) const
{

// All fields, including the hashmap to which the iterators refer,
// must be equal.
return (mHashmap == rhs.mHashmap && mBucket == rhs.mBucket &&

mIt == rhs.mIt);
}

template<typename Key, typename T, typename Compare, typename Hash>
bool HashIterator<Key, T, Compare, Hash>::operator!=(

const HashIterator& rhs) const
{

return (!operator==(rhs));
}

Const Iterators

Technically, you should provide both an iterator and a const iterator for your hashmap class. The const
iterator should function like the iterator, but should provide read-only access to the elements. The itera-
tor should always be convertible to a const iterator. We omit the details of the const iterator and leave
its implementation as an exercise for the reader.

Iterator Typedefs and Access Methods

The final piece involved in providing iterator support for the hashmap is to supply the necessary
typedefs in the hashmap class definition and to write the begin() and end() methods on the
hashmap. The typedefs and method prototypes look like this:

680

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 680

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
// Other typedefs omitted for brevity
typedef HashIterator<Key, T, Compare, Hash> iterator;
typedef HashIterator<Key, T, Compare, Hash> const_iterator;

// Iterator methods
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
// Remainder of class definition omitted for brevity

};

The trickiest aspect of begin() is to remember to return the end iterator if there are no elements in the
table.

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::iterator

hashmap<Key, T, Compare, Hash>::begin()
{

if (mSize == 0) {
// Special case: there are no elements, so return the end iterator
return (end());

}

// We know there is at least one element. Find the first element.
for (size_t i = 0; i < mElems->size(); ++i) {

if (!((*mElems)[i].empty())) {
return (HashIterator<Key, T, Compare, Hash>(i,

(*mElems)[i].begin(), this));
}

}
// Should never reach here, but if we do, return the end iterator
return (end());

}

end() creates a HashIterator referring to the end iterator of the last bucket.

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::iterator

hashmap<Key, T, Compare, Hash>::end()
{

// The end iterator is just the end iterator of the list in last bucket.
return (HashIterator<Key, T, Compare, Hash>(mElems->size() - 1,

(*mElems)[mElems->size() - 1].end(), this));
}

Because we don’t provide a const_iterator, the implementations of the const versions of begin()
and end() are identical to the non-const begin() and end().

681

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 681

Using the HashIterator

Now that the hashmap supports iteration, you can iterate over its elements just as you would on any
STL container, and you can pass the iterators to methods and functions.

#include “hashmap.h”
#include <iostream>
#include <map>
using namespace std;

int main(int argc, char** argv)
{

hashmap<string, int> myHash;
myHash.insert(make_pair(“KeyOne”, 100));
myHash.insert(make_pair(“KeyTwo”, 200));
myHash.insert(make_pair(“KeyThree”, 300));

for (hashmap<string, int>::iterator it = myHash.begin();
it != myHash.end(); ++it) {
// Use both -> and * to test the operations.
cout << it->first << “ maps to “ << (*it).second << endl;

}

// Create a map with all the elements in the hashmap.
map<string, int> myMap(myHash.begin(), myHash.end());
for (map<string, int>::iterator it = myMap.begin();

it != myMap.end(); ++it) {
// Use both -> and * to test the operations.
cout << it->first << “ maps to “ << (*it).second << endl;

}

return (0);
}

Note on Allocators
As described earlier in this chapter, all the STL containers allow you to specify a custom memory alloca-
tor. A “good citizen” hashmap implementation should do the same. However, we omit those details
because they obscure the main points of this implementation.

Note on Reversible Containers
If your container supplies a bidirectional or random access iterator, it is considered reversible. Reversible
containers are supposed to supply two additional typedefs:

Type Name Description

reverse_iterator The type of the “smart pointer” for iterating over elements of
the container in reverse order

const_reverse_iterator A version of reverse_iterator for iterating over const ele-
ments of the container in reverse order

682

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 682

Additionally, the container should provide rbegin() and rend() which are symmetric with begin()
and end(). The usual implementations just use the reverse_iterator adapter described earlier in this
chapter. We leave them as an exercise for the reader.

Making the Hashmap an Associative Container
In addition to the basic container requirements shown already, you can also make your container adhere
to additional requirements for either associative or sequential containers. The hashmap, like the map, is
obviously an associative container, so it should conform to the following typedefs and methods.

Associative Container Typedef Requirements
Associative containers require three additional typedefs:

Type Name Description

key_type The key type with which the container is instantiated

key_compare The comparison class or function pointer type with which the
container is instantiated

value_compare Class for comparing two value_type elements

Our implementation also throws in a mapped_type typedef, because that’s what the map does. The
value_compare is implemented not as a typedef, but as a nested class definition. Alternatively, the
class could be a friend class of the hashmap, but this definition follows the map definition found in the
standard. The purpose of the value_compare class is to call the comparison function on the keys of two
elements.

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef pair<const Key, T>& reference;
typedef const pair<const Key, T>& const_reference;
typedef HashIterator<Key, T, Compare, Hash> iterator;
typedef HashIterator<Key, T, Compare, Hash> const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

// Required class definition for associative containers
class value_compare :

public std::binary_function<value_type, value_type, bool>
{

friend class hashmap<Key, T, Compare, Hash>;
public:

683

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 683

bool operator() (const value_type& x, const value_type& y) const
{

return comp(x.first, y.first);
}

protected:
Compare comp;
value_compare(Compare c) : comp(c) {}

};
// Remainder of hashmap class definition omitted for brevity

};

Associative Container Method Requirements
The standard prescribes quite a few additional method requirements for associative containers:

Method Description Complexity

Constructor taking an iterator Constructs the container and inserts NlogN
range. elements in the iterator range. The

iterator range need not refer into
another container of the same type.
Note that all constructors of
associative containers must take
a comparison object of type
value_compare. The constructors
should provide a default constructed
object as the default value.

key_compare key_comp() Returns the comparison objects for Constant
const; comparing just keys or entire values.

value_compare value_comp()
const;

pair<iterator, bool> Three different forms of insert. Logarithmic
insert(value_type&); The iterator position in the second

is a hint, which can be ignored.
iterator insert(iterator, The range in the third need not be from
value_type&); a container of the same type.

Containers that allow duplicate keys
void insert(InputIterator return just iterator from the first form,
start, InputIterator end); because insert() always succeeds.

size_type erase(key_type&); Three different forms of erase. Logarithmic,
void erase(iterator); The first form returns the number of except for the

values erased (0 or 1, in containers that second form,
void erase(iterator start, do not allow duplicate keys). which should
iterator end); The second and third forms erase the be amortized

elements at iterator position, or in constant.
the range start to end.

void clear(); Erases all elements Linear

684

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 684

Method Description Complexity

iterator find(key_type&); Finds the element with the specified key. Logarithmic

const_iterator
find(key_type&) const;

size_type count(key_type&) Returns the number of elements with the Logarithmic
const; specified key (0 or 1 in containers that do

not allow duplicate keys).

iterator Returns iterators referring to the first Logarithmic
lower_bound(key_type&); element of specified key, one past the

last element of specified key, or both.
iterator
upper_bound(key_type&);

pair<iterator, iterator>
equal_range(key_type&);

const_iterator
lower_bound(key_type&)
const;

const_iterator
upper_bound(key_type&)
const;

pair<const_iterator,
const_iterator>
equal_range(key_type&)
const;

Note that lower_bound(), upper_bound(), and equal_range() make sense only on sorted contain-
ers. Thus, the hashmap does not provide them.

Here is the complete hashmap class definition. Note that the prototype for insert(), erase(), and
find() need to change slightly from the previous versions shown.

template <typename Key, typename T, typename Compare = std::equal_to<Key>,
typename Hash = DefaultHash<Key> >

class hashmap
{

public:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef pair<const Key, T>& reference;
typedef const pair<const Key, T>& const_reference;
typedef HashIterator<Key, T, Compare, Hash> iterator;
typedef HashIterator<Key, T, Compare, Hash> const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type; 685

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 685

// Required class definition for associative containers
class value_compare :

public std::binary_function<value_type, value_type, bool>
{

friend class hashmap<Key, T, Compare, Hash>;
public:

bool operator() (const value_type& x, const value_type& y) const
{

return comp(x.first, y.first);
}

protected:
Compare comp;
value_compare(Compare c) : comp(c) {}

};

// The iterator class needs access to protected members of the hashmap.
friend class HashIterator<Key, T, Compare, Hash>;

// Constructors
explicit hashmap(const Compare& comp = Compare(),

const Hash& hash = Hash()) throw(invalid_argument);

template <class InputIterator>
hashmap(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Hash& hash = Hash())
throw(invalid_argument);

// destructor, copy constructor, assignment operator
~hashmap();
hashmap(const hashmap<Key, T, Compare, Hash>& src);
hashmap<Key, T, Compare, Hash>& operator=(

const hashmap<Key, T, Compare, Hash>& rhs);

// Iterator methods
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

// Size methods
bool empty() const;
size_type size() const;
size_type max_size() const;

// Element insert methods
T& operator[] (const key_type& x);
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);

// Element delete methods
void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);

// Other modifying utilities

686

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 686

void swap(hashmap<Key, T, Compare, Hash>& hashIn);
void clear();

// Access methods for STL conformity
key_compare key_comp() const;
value_compare value_comp() const;

// Lookup methods
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

protected:
typedef list<value_type> ListType;

typename ListType::iterator findElement(
const key_type& x, int& bucket) const;

vector<ListType>* mElems;
size_type mSize;
Compare mComp;
Hash mHash;

};

hashmap Constructors

The implementation of the default constructor was shown earlier. The second constructor is a method
template so that it can take an iterator range from any container, not just other hashmaps. If it were not a
method template, it would need to specify the InputIterator type explicitly as HashIterator, limit-
ing it to iterators from hashmaps. Despite the syntax, the implementation is uncomplicated: it initializes
all the data members, then calls insert() to actually insert all the elements in the specified range.

// Make a call to insert() to actually insert the elements.
template <typename Key, typename T, typename Compare, typename Hash>
template <class InputIterator>
hashmap<Key, T, Compare, Hash>::hashmap(

InputIterator first, InputIterator last, const Compare& comp,
const Hash& hash) throw(invalid_argument) : mSize(0), mComp(comp), mHash(hash)

{
if (mHash.numBuckets() <= 0) {

throw (invalid_argument(“Number of buckets must be positive”));
}
mElems = new vector<list<value_type> >(mHash.numBuckets());
insert(first, last);

}

hashmap Insertion Operations

The first version of insert() adds a key/value pair to the hashmap. It is identical to the version shown
earlier in the “A Basic Hashmap” section, except that it returns an iterator/bool pair. The iterator
must be a HashIterator, constructed to refer to the element that was just inserted, or the element with
the specified key, if it already exists.

687

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 687

template <typename Key, typename T, typename Compare, typename Hash>
pair<typename hashmap<Key, T, Compare, Hash>::iterator, bool>

hashmap<Key, T, Compare, Hash>::insert(const value_type& x)
{

int bucket;
// Try to find the element.
typename ListType::iterator it = findElement(x.first, bucket);

if (it != (*mElems)[bucket].end()) {
// The element already exists.
// Convert the list iterator into a HashIterator, which
// also requires the bucket and a pointer to the hashmap.
HashIterator<Key, T, Compare, Hash> newIt(bucket, it, this);

// Some compilers don’t like make_pair here.
pair<HashIterator<Key, T, Compare, Hash>, bool> p(newIt, false);
return (p);

} else {
// We didn’t find the element, so insert a new one.
mSize++;
typename ListType::iterator endIt =

(*mElems)[bucket].insert((*mElems)[bucket].end(), x);
pair<HashIterator<Key, T, Compare, Hash>, bool> p(

HashIterator<Key, T, Compare, Hash>(bucket, endIt, this), true);
return (p);

}
}

The version of insert() that takes a position is useless for hashmaps. The implementation completely
ignores position, and defers to the first version of insert().

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::iterator

hashmap<Key, T, Compare, Hash>::insert(typename hashmap<Key, T, Compare,
Hash>::iterator position, const value_type& x)

{
// Completely ignore position
return (insert(x).first);

}

The third form of insert() is a method template for the same reason as the constructor shown earlier:
it should be able to insert elements using iterators from containers of any type. The actual implementa-
tion uses an insert_iterator, which was described earlier in this chapter.

template <typename Key, typename T, typename Compare, typename Hash>
template <class InputIterator>
void hashmap<Key, T, Compare, Hash>::insert(InputIterator first,

InputIterator last)
{

// Copy each element in the range by using an insert_iterator
// adapter. Give begin() as a dummy position--insert ignores it
// anyway.
insert_iterator<hashmap<Key, T, Compare, Hash> > inserter(*this, begin());
copy(first, last, inserter);

}

688

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 688

hashmap Erase Operations

The first version of erase() is identical to the version shown earlier in the “A Basic Hashmap” section,
except that it returns the number of elements erased (either 0 or 1).

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::size_type
hashmap<Key, T, Compare, Hash>::erase(const key_type& x)
{

int bucket;

// First, try to find the element.
typename ListType::iterator it = findElement(x, bucket);

if (it != (*mElems)[bucket].end()) {
// The element already exists--erase it.
(*mElems)[bucket].erase(it);
mSize--;
return (1);

} else {
return (0);

}
}

The second form of erase() must remove the element at a specific iterator position. The iterator given
is, of course, a HashIterator. Thus, the hashmap must have some ability to obtain the underlying
bucket and list iterator from the HashIterator. The approach we take is to make the hashmap class a
friend of the HashIterator (not shown in the class definition above).

template <typename Key, typename T, typename Compare, typename Hash>
void hashmap<Key, T, Compare, Hash>::erase(

hashmap<Key, T, Compare, Hash>::iterator position)
{

// Erase the element from its bucket.
(*mElems)[position.mBucket].erase(position.mIt);
mSize--;

}

The final version of erase() removes a range of elements. It simply iterates from first to last, calling
erase() on each element, thus letting the previous version of erase() do all the work.

template <typename Key, typename T, typename Compare, typename Hash>
void hashmap<Key, T, Compare, Hash>::erase(

hashmap<Key, T, Compare, Hash>::iterator first,
hashmap<Key, T, Compare, Hash>::iterator last)

{
typename hashmap<Key, T, Compare, Hash>::iterator cur, next;

// Erase all the elements in the range.
for (next = first; next != last;) {

cur = next++;
erase(cur);

}
}

689

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 689

clear() uses the for_each() algorithm to call clear() on the list representing each bucket.

template <typename Key, typename T, typename Compare, typename Hash>
void hashmap<Key, T, Compare, Hash>::clear()
{

// Call clear on each list.
for_each(mElems->begin(), mElems->end(), mem_fun_ref(&ListType::clear));
mSize = 0;

}

hashmap Accessor Operations

The standard requires accessors for the key comparison and value comparison objects.

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::key_compare

hashmap<Key, T, Compare, Hash>::key_comp() const
{

return (mComp);
}

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::value_compare

hashmap<Key, T, Compare, Hash>::value_comp() const
{

return (value_compare(mComp));
}

The find() method is identical to the version shown earlier for the basic hashamp, except for the return
code. Instead of returning a pointer to the element, it constructs a HashIterator referring to it. The
const version is identical, so its implementation is not shown here.

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::iterator

hashmap<Key, T, Compare, Hash>::find(const key_type& x)
{

int bucket;
// Use the findElement() helper.
typename ListType::iterator it = findElement(x, bucket);
if (it == (*mElems)[bucket].end()) {

// We didn’t find the element--return the end iterator.
return (end());

}
// We found the element--convert the bucket/iterator to a HashIterator.
return (HashIterator<Key, T, Compare, Hash>(bucket, it, this));

}

The implementation of count() is a wrapper for find(), returning 1 if it finds the element, 0 if it doesn’t.
Recall that find() returns the end iterator if it can’t find the element. count() retrieves an end iterator
by calling end() in order to compare it.

690

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 690

template <typename Key, typename T, typename Compare, typename Hash>
typename hashmap<Key, T, Compare, Hash>::size_type

hashmap<Key, T, Compare, Hash>::count(const key_type& x) const
{

// There are either 1 or 0 elements matching key x.
// If we can find a match, return 1, otherwise return 0.
if (find(x) == end()) {

return (0);
} else {

return (1);
}

}

The final method is not required by the standard, but is provided for ease of use. The prototype and
implementations are identical to those of the operator[] in the STL map. The comments explain the
potentially confusing one-line implementation.

template <typename Key, typename T, typename Compare, typename Hash>
T& hashmap<Key, T, Compare, Hash>::operator[] (const key_type& x)
{

// This definition is the same as that used by map, according to
// the standard.
// It’s a bit cryptic, but it basically attempts to insert
// a new key/value pair of x and a new value. Regardless of whether
// the insert succeeds or fails, insert() returns a pair of an
// iterator/bool. The iterator refers to a key/value pair, the
// second element of which is the value we want to return.
return (((insert(make_pair(x, T()))).first)->second);

}

Note on Sequential Containers
The hashmap developed in the preceding sections is an associative container. However, you could also
write a sequential container, in which case you would need to follow a different set of requirements.
Instead of listing them here, it’s easier to point out that the deque container follows the prescribed
sequential container requirements almost exactly. The only difference is that it provides an extra
resize() method (not required by the standard). Consult the Standard Library Reference resource on
the Web site for details on the deque capabilities.

Summary
The final example in this chapter showed almost complete development of a hashmap associative con-
tainer and its iterator. This hashmap implementation is available for downloading with the rest of the
examples, as described in the Introduction. Feel free to incorporate it into your programs. In the process
of reading this chapter, you also hopefully gained an appreciation for the steps to develop containers.
Even if you never write another STL algorithm or container, you understand better the STL’s mentality
and capabilities, and you can put it to better use.

691

Customizing and Extending the STL

26_574841 ch23.qxd 12/15/04 3:47 PM Page 691

This chapter concluded the three-chapter tour of the STL. Even with three chapters, there are still fea-
tures that we omitted. If this material excited you, consult some of the resources in Appendix B for more
information. On the other hand, we realize that the syntax and material in these chapters was dense. As
described in Chapters 21 and 22, don’t feel compelled to use all the features discussed here. Forcing
them into your programs without a true need will just complicate them. However, we encourage you to
consider incorporating aspects of the STL into your programs where they make sense. Start with the con-
tainers, maybe throw in an algorithm or two, and before you know it, you’ll be a convert!

692

Chapter 23

26_574841 ch23.qxd 12/15/04 3:47 PM Page 692

Exploring Distributed
Objects

Distributed computing is simply the idea that a program’s operation can be spread across multiple
computers on a network. As networks grow faster and more common, an increasing number of
applications leverage other computers on the network during their processing.

In this chapter, you will learn about distributed objects: the application of object-oriented technolo-
gies to distributed computing. This chapter begins by defining distributed computing and dis-
tributed objects in more detail, including sample use cases. Next, you will be introduced to
CORBA, a powerful architecture for programming distributed objects. Finally, you’ll read about
XML technologies and their role in distributed computing.

The Appeal of Distributed Computing
Distributed computing has received much attention in the last decade as the Internet has risen to
prominence. Yet it is more than a buzzword — a distributed program is an ideal fit for certain
types of applications. For example, try to imagine writing a program that contains all of the infor-
mation available on the Web. It would be nearly impossible. The Web is only able to contain its
massive amount of data and dynamic content because it is distributed across many different
machines.

Distribution for Scalability
In an average day, your desktop computer probably spends most of its time doing nothing. Even
when you are actively using your computer, modern processors are so fast that they are idle much
of the time, waiting for us human beings to catch up. The reality is that the world contains many
computers, most of which aren’t exactly overworked. They are, however, ready to be put to use.

27_574841 ch24.qxd 12/15/04 3:47 PM Page 693

Most computer users have more than enough power on their desktop PC’s. If you use a monitoring tool
to examine the utilization of your processor, you’ll see that it rarely hits 100 percent for any length of
time. Some applications, however, are extremely processor-intensive. It might take hours to run a pro-
gram full of complex calculations on your desktop computer. If you were able to harness the power of
the unused processors on your network, that time could be greatly reduced. This technique is referred to
as grid computing.

One of the classic real-world examples of an application that uses distribution for speed is image render-
ing. The generation of just one still frame of movie-quality computer animation requires an enormous
amount of computation. 3-D rendering applications have taken advantage of distributed computing for
many years. So-called rendering farms can be assembled with high-speed network connections. One
machine might serve as the central “brain” and hand out small chunks of computation to each machine
in the farm. The brain machine would gather the results to assemble the final image or movie.

The SETI@home project is another example of using distributed computing to increase computational
performance. The program aids in the Search for Extra-Terrestrial Intelligence (SETI) by spreading the
analysis of signals from space among all participating computers. It would be impractical to attempt to
analyze such an enormous amount of data on a single computer. The SETI@home project gives users a
program they can run on their home PC’s that processes chunks of data when the computer isn’t being
used. Of course, we can’t call it a success quite yet (no little green men have been found), but as an early
widespread distributed Internet application, it helped popularize the technology.

Distribution for Reliability
Distributed computing can be seen as a solution to Murphy’s Law — whatever can go wrong, will go
wrong. Certain applications, such as Web sites and databases, need to be available and working at all
times. These applications can be written so that they are running on multiple computers on the network.
If one machine goes down, another can immediately take over. In cases like this, distribution becomes
mainly an issue of synchronization. All instances of the application need to communicate enough so that
when a failover occurs, the user doesn’t experience any change.

When you access a large-scale Web site, you are really connecting to one of many servers, all of which
contain mirror images of the same data. A device known as a load balancer is often used to route incom-
ing requests to an available machine. If one machine fails, the load balancer ceases to send it any
requests until it is repaired.

Distribution for Centrality
It is often useful to have one system on a network that controls or monitors the behavior of other appli-
cations. For example, Sassafras Software’s KeyServer is an application that allows network administra-
tors to ensure that software being used on their network doesn’t violate licensing terms. When a user on
the network launches an application, the application contacts the KeyServer to request permission to
run. The KeyServer keeps track of how many copies are currently running. If additional licenses are
available, the requested application starts up normally. Incidentally, KeyServer also makes use of distri-
bution for reliability — administrators can install multiple “shadow” KeyServers in case one goes down.

694

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 694

Distributed Content
Peer-to-peer applications have exploded in popularity recently. The basic idea is that users on a network
all run an application that lets them communicate on a one-to-one basis. In a file-sharing application,
each user makes files stored on his or her local computers available on the network. Users seeking that
file can connect to the user who has it and begin a transfer. By distributing the file-sharing application
across all of its users, the application is able to offer a larger quantity of content than could be housed on
a single server. It also distributes the communications load, so there is no central server that becomes a
bottleneck for all requests.

Distributed versus Networked
You should keep in mind that not all applications that take advantage of networking are necessarily dis-
tributed applications. A networked application communicates with other machines to request or transfer
data. The term distributed implies a much richer interaction.

The distinction is sometimes difficult to see. For example, consider a video game. If the game communi-
cates with a central server to check for updates, it would be a networked application because the game
itself isn’t running on multiple applications — it simply talks to another machine in the course of its
operation. However, if the game allowed multiple players to participate on different machines, it could
be implemented as a distributed application.

The best approach to labeling an application as distributed or networked (other than deciding it’s an
entirely academic distinction and doesn’t really matter) is to take the position of one machine and deter-
mine whether computation is happening on another machine. In the networked game case, the individ-
ual copies of the game are most likely operating on their own machines. They use the network only for
status updates, as shown in Figure 24-1. As the figure shows, when the player on Machine A shoots his
or her gun, the information about the shot is transmitted to Machine B. Both machines take appropriate
action based on the same event. This style of networked game isn’t generally considered a distributed
application.

Figure 24-1

Machine A

Player A shoots gun
Machine A sends event
Machine A calculates result

Machine B

Machine B receives event
Machine B calculates result

695

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 695

You could imagine such a game that actually was implemented in a distributed manner. Instead of one
machine sending an event to the other machine and processing the result independently, the processing
could be performed once, spread across the two machines. As shown in Figure 24-2, Machine A might
send the event and let Machine B determine what the outcome is. From the point of view of Machine A,
some of the data processing occurs externally, which is a good indication that it is running a distributed
application.

Figure 24-2

Distributed Objects
Distributed computing existed before object-oriented programming (OOP) became popular, so the two
ideas are definitely distinct. However, the application of OOP concepts to distributed computing yields
powerful new abstractions. If you imagine calling a method on an object that actually exists on a com-
puter thousands of miles away, or passing an object between hosts on a network, you start to see how
nicely OOP meshes with distributed computing.

Serialization and Marshalling
Fundamentally, transmitting raw data is all that a network knows how to do. Networks don’t know any-
thing about C++, objects, or code execution. They simply move data from one place to another. This sim-
plicity is one of the greatest features of networks. A heterogeneous collection of computers, with various
architectures and operating systems, can participate on the same network because the network makes
few assumptions about the environments of its participants.

For distributed applications, the simplicity of networking presents a slight problem. It would be nice if
you could send an object from one machine to another simply by calling a function that puts that object
on the network, but it’s more complicated than that because the network doesn’t know about objects.
Instead, you need to convert the object into raw bytes. Instead of sending the actual object, you must
send data that describes the object. The recipient needs to interpret the raw bytes to reconstruct what
will hopefully be a duplicate of the original.

Machine A

Player A shoots gun
Machine A sends event

Machine A receives result

Machine B

Machine 1 Machine 2

Machine B receives event
Machine B calculates result
Machine B sends result

696

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 696

The process of converting an in-memory object to a flattened raw representation is known as serialization
or marshalling. The process of reconstructing the object is called deserialization or unmarshalling. You may
be familiar with marshalling from Chapter 14, which showed an example of using a string to represent
an object. Marshalling is useful for more than just networking. If you want to save an object to disk, you
will most likely marshal it into a flattened format first.

Serialization in Action
Consider the following function declarations, which provide the ability to send data to another com-
puter over the network and receive data from another computer. As explained in Chapter 18, network-
ing isn’t a built-in capability of C++, so the actual networking library provided by your operating
system will certainly be different from that in this extremely simple version.

/**
* Sends data to another host on the network
*
* @param inHostName the name of the other machine
* @param inData the data you want to send
*/

void send(const string& inHostName, const string& inData);

/**
* Receives incoming data from the network
*
* @return the data that was received
*/

string read();

Imagine that you are writing an inventory control application for a company that has warehouses
throughout the United States. Each warehouse location will run a copy of the program, but the program
needs to be able to fulfill orders for any location. In other words, you can use the program running in
Pittsford, New York to order an item at the warehouse in Onion Creek, Washington.

Because all of the programs at all of the locations use the same Order class to represent an order, what
you really want to do is send orders over the network from Pittsford to Onion Creek. Here is a class defi-
nition for the Order class:

// Order.h

class Order
{

public:
Order();

int getItemNumber() const;
void setItemNumber(int inItemNumber);

int getQuantity() const;
void setQuantity(int inQuantity);

int getCustomerNumber() const;
void setCustomerNumber(int inCustomerNumber);

697

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 697

protected:
int mItemNumber;
int mQuantity;
int mCustomerNumber;

};

At this point, there is a mismatch between the data you want to send (an object) and the capabilities of
the network functions, which only process strings. The solution is to add serialization and deserializa-
tion capabilities to the Order class. The new class definition is shown here:

// Order.h

#include <string>

class Order
{

public:
Order();

int getItemNumber() const;
void setItemNumber(int inItemNumber);

int getQuantity() const;
void setQuantity(int inQuantity);

int getCustomerNumber() const;
void setCustomerNumber(int inCustomerNumber);

/**
* Converts the object into raw data that can be sent over the
* network
*
* @return a string representing this object
*/

std::string serialize();

/**
* Adjusts this object to represent the data in inData
*
* @param inData a string representing Order data
*/

void deserialize(const std::string& inData);

protected:
int mItemNumber;
int mQuantity;
int mCustomerNumber;

};

The implementation of the Order class follows. Only the serialization methods are highlighted because
the rest of the class implementation is remarkably uninteresting.

698

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 698

// Order.cpp

#include “Order.h”
#include <iostream>
#include <sstream>
#include <string>

using namespace std;

Order::Order() : mItemNumber(-1), mQuantity(-1), mCustomerNumber(-1)
{
}

int Order::getItemNumber()
{

return mItemNumber;
}

void Order::setItemNumber(int inItemNumber)
{

mItemNumber = inItemNumber;
}

int Order::getQuantity()
{

return mQuantity;
}

void Order::setQuantity(int inQuantity)
{

mQuantity = inQuantity;
}

int Order::getCustomerNumber()
{

return mCustomerNumber;
}

void Order::setCustomerNumber(int inCustomerNumber)
{

mCustomerNumber = inCustomerNumber;
}

string serialize()
{

// Use a stream to output all the values, separated by tabs.
ostringstream outStream;

outStream << getItemNumber() << “\t” <<
getQuantity() << “\t” <<
getCustomerNumber();

return outStream.str();
}

699

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 699

void deserialize(const string& inData)
{

// Use an input stream to read the values back in the same order.
istringstream inStream(inData);

if (!inStream.good()) {
cerr << “Error deserializing!” << endl;

} else {
inStream >> mItemNumber;
inStream >> mQuantity;
inStream >> mCustomerNumber;

}
}

Simply by providing a way to convert an object to and from a string, you can transmit a representation
of the object through a network. If your program makes heavy use of serialization, you may decide to
include operator<< and operator>> in every class to provide serialization.

Remote Procedure Calls
A remote procedure call (RPC) refers to the conceptual behavior of calling a method or function that exe-
cutes on another machine. In C++, this behavior is conceptual in nature because the language doesn’t pro-
vide any actual mechanism to call a function that isn’t in some way linked into the actual program
binary. Rather, RPC in C++ generally involves calling a stub method locally that is actually hiding some
networking code that obtains the result from a remote host.

By using the networking capabilities of your operating system and the serialization techniques shown
earlier, it is possible to write your own RPC mechanism. You might define a class that represents a
remote host, containing a number of stub methods that are actually executed on the remote host but
return the result to the local caller. Such a class definition follows, containing stub methods that can be
used to obtain information about the status of the remote machine or perform a restart.

class RemoteHost
{

public:
/**
* Creates a remote host, which is available at the
* given address
*/

RemoteHost(const string& inAddress);

int getNumConnectedUsers() const;
int getAvailableMemory() const ;
int getAvailableDiskSpace() const ;

void restartNow();

protected:
string mAddress;

};

700

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 700

The implementations of these methods would still be defined normally, but would make use of the
networking library to obtain the actual result from the remote machine. The actual code would vary
depending on the networking library, but here is some pseudocode that makes use of the networking
functions defined in the previous section:

int RemoteHost::getAvailableMemory() const
{

// Send the string “getAvailableMemory()” to the remote host, instructing
// it to send back its available memory.
send(mAddress, “getAvailableMemory()”);

// Get the result from the remote host.
string result = read();

// Convert result into an int.
// Return the int result.

}

The implementation on the remote host would need to parse and interpret the messages it receives in
order to respond with the correct result. Here is some pseudocode for the remote host implementation.

void respondToRPC(const string& inRequestHost, const string& inMessage)
{

string response = “”;

// Look at the message to determine which operation is requested.
if (inMessage == “getAvailableMemory()”) {

// Use a local function to get the available memory on this machine.
int memAvail = getAvailMem();
// Convert the result into a string and put it in the response variable.

} else if (...) {
// Handle other messages.

}

// Send the response back to the requestor.
send(inRequestHost, response);

}

The preceding pseudocode examples look simple, but a number of complications would quickly arise if
you tried to turn it into actual production code. Some of the issues you would encounter are:

❑ How do you deal with different data types, including complex types such as objects?

❑ How do you deal with RPC calls that aren’t recognized by the remote machine?

❑ How do you deal with versioning? What if some remote machines are upgraded and no longer
respond in the same way as others?

❑ How do you deal with network errors, missing hosts, overloaded networks, and so on?

❑ How do you deal with platform issues, such as byte order differences?

For these reasons, as well as for the usual avoidance of reinventing the wheel, programmers typically
use an existing RPC package that facilitates this type of interaction. The rest of this chapter covers
CORBA and XML, two very different technologies that can both aid in RPC communication.

701

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 701

CORBA
The Common Object Request Broker Architecture, or CORBA, is a standardized language-independent and
platform-independent architecture for defining, implementing, and using distributed objects. The main
goal of CORBA is to provide a programming environment that hides all the details of serialization and
remote procedure calls discussed in the previous section. CORBA also supports location transparency: you
can write code that uses objects without knowing whether those objects are really local or remote.

The CORBA architecture itself is not an implementation, and actually includes several standards. The
two most important standards are the Interface Definition Language (IDL), which defines the syntax for
writing distributed object definitions, and the Internet Inter-ORB Protocol (IIOP) for making remote
method invocations. Additionally, CORBA defines many optional accompanying services, including a
name service, an event service, a time service, and numerous others.

There are a number of open-source implementations of the CORBA standards available for use at no
cost. The examples in this chapter use the “omniORB” framework, which is available at
http://omniorb.sourceforge.net/.

Using CORBA requires several steps, including defining your object interfaces, “compiling” the inter-
faces to generate the networking and serialization code, defining the class method implementation, writ-
ing a server process, and writing clients. This section examines each of those steps in the context of
developing an extremely simple distributed database, in which clients can access a database server that
resides in a different process or even on a different node. The discussion here barely scratches the surface
of this powerful, but complicated, architecture. If you are interested in using it for your distributed
object framework, you should consult some of the references in Appendix B.

Interface Definition Language
CORBA does an excellent job of separating object interfaces from their implementations. You write a dis-
tributed CORBA class by first defining its interface in the Interface Definition Language (IDL). This lan-
guage looks a lot like C++, but isn’t identical. In fact, the IDL is implementation language independent.
You could theoretically write an implementation for the class in C++ and a client that uses it in Java.

Writing the Interface
In this step, you specify the prototypes for methods that the object implements. However, unlike in C++
class definitions, you don’t show member variables or other implementation details.

For example, suppose that you want your simple distributed database to store key/value records where
the key and value are both strings. Here is the IDL file for a database that supports two methods:

// database.idl

interface database {
void addRecord(in string key, in string record);
string lookupRecord(in string key);

};

The word “in” before the parameters specifies value parameters instead of reference parameters.

702

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 702

Generating Stubs and Skeletons
After writing your object interface, you compile the IDL file with an IDL compiler, which generates the
remote procedure call and networking layers for you. There are IDL compilers available for a variety of
languages, including Java, Python, C, and, of course, C++. This step generates two sets of files: the stubs
and the skeletons.

Stubs
As described in the previous section on RPC, the stubs are the client side of the object methods, which
hide the networking and serialization code required to make the actual remote call to another machine.
The omniORB IDL compiler puts stub code from the IDL file name.idl in the header file name.hh and
the source file nameSK.cc. Here is a small sample of the stub code in database.hh, which is generated
from the database.idl file:

// This file is generated by omniidl (C++ backend)- omniORB_4_0. Do not edit.

// <There’s a lot more code than we show here.>

class _objref_database :
public virtual CORBA::Object, public virtual omniObjRef

{
public:

void addRecord(const char* key, const char* record);
char* lookupRecord(const char* key);

inline _objref_database() { _PR_setobj(0); } // nil
_objref_database(omniIOR*, omniIdentity*);

protected:
virtual ~_objref_database();

private:
virtual void* _ptrToObjRef(const char*);

_objref_database(const _objref_database&);
_objref_database& operator = (const _objref_database&);
// not implemented

friend class database;
};

Here is one of the method implementations from databaseSK.cc:

// This file is generated by omniidl (C++ backend)- omniORB_4_0. Do not edit.

// <There’s a lot more code than we show here.>

void _objref_database::addRecord(const char* key, const char* record)
{

_0RL_cd_D115D31DB8E47435_00000000 _call_desc(_0RL_lcfn_D115D31DB8E47435_10000\
000, “addRecord”, 10);

703

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 703

_call_desc.arg_0 = key;
_call_desc.arg_1 = record;

_invoke(_call_desc);
}

Don’t worry about understanding this code! We just want to give you an example of the work that goes
on “behind the scenes.”

Skeletons
The skeletons are the basis for your class implementation and are usually abstract base classes generated
from the IDL interface. omniORB places the skeletons in the same database.hh and databaseSK.cc
files in which it puts the stub code. Here is some of the skeleton code from database.hh:

class _impl_database :
public virtual omniServant

{
public:

virtual ~_impl_database();

virtual void addRecord(const char* key, const char* record) = 0;
virtual char* lookupRecord(const char* key) = 0;

public: // Really protected, workaround for xlC
virtual _CORBA_Boolean _dispatch(omniCallHandle&);

private:
virtual void* _ptrToInterface(const char*);
virtual const char* _mostDerivedRepoId();

};

class POA_database :
public virtual _impl_database,
public virtual PortableServer::ServantBase

{
public:

virtual ~POA_database();

inline ::database_ptr _this() {
return (::database_ptr) _do_this(::database::_PD_repoId);

}
};

Note that an in string parameter in the IDL file is translated as a const char* in the generated C++
code. POA stands for Portable Object Adapter, a CORBA component that manages object references on the
server side.

Implementing the Class
Now that you’ve defined your interface and generated the stubs and skeletons, the next step is to write
a class that provides actual implementations of the methods in the IDL file. You write this class by

704

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 704

subclassing the abstract skeleton class and filling in the data members and method implementations.
You don’t need to worry about serialization or networking code when you implement the methods. You
just write them as if they were normal methods. The skeleton code handles all the gory RPC details for
you. Here is a definition of the DatabaseServer class based on the previous omniORB skeleton code:

// DatabaseServer.h
#include “database.hh”
#include <map>
#include <string>

class DatabaseServer : public POA_database,
public PortableServer::RefCountServantBase

{
public:

DatabaseServer();
virtual ~DatabaseServer();
virtual void addRecord(const char* key, const char* record);
virtual char* lookupRecord(const char* key);

protected:
std::map<std::string, std::string> mDb;

};

Note that this class subclasses the previous POA_database skeleton abstract class, as well as a reference
counting mix-in class supplied by the framework. It adds a protected map data member for storing the
key/value pairs.

Here are the method implementations:

#include “DatabaseServer.h”
using namespace std;

DatabaseServer::DatabaseServer()
{
}

DatabaseServer::~DatabaseServer()
{
}

void DatabaseServer::addRecord(const char* key, const char* record)
{

mDb[key] = record;
}

char* DatabaseServer::lookupRecord(const char* key)
{

return (CORBA::string_dup(mDb[key].c_str()));
}

The only tricky thing about these implementations is to remember to copy the string you return from
lookupRecord() using the CORBA::string_dup() method.

705

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 705

Using the Objects
You’re now ready to use your distributed objects. Using the objects requires two steps. One piece of code
must create an object and register it with the Object Request Broker (ORB) framework via the Portable
Object Adapter. It must also provide a way for client code to lookup references to the object. One tech-
nique is to use a nameserver. This nameserver must be available from all the machines on which the dis-
tributed program runs. As a nameserver, it maps names to object references and tracks the actual
physical location of all the distributed objects on the system. If you don’t have a nameserver available,
you can use other ad hoc methods to register and lookup object references. Although the CORBA stan-
dard includes a nameserver, and omniORB supplies one, for simplicity our database example just writes
the object reference key to a file.

The code that wants to use an object looks it up in the nameserver, or, in our case, the file, to retrieve a
reference to it. When this client code calls a method on the reference, the request is sent to the ORB layer,
which is either a layer in each process, or its own process on each node, depending on the implementa-
tion. At this point, there are two options. If the underlying object is in the same process as the caller, the
method is executed locally as a normal C++ method call. However, if the underlying object is in a differ-
ent process on the same machine, or on a remote machine, the ORB sends the method request over the
network to the server process. All this work occurs under the surface: the code that makes the method
call on the object reference doesn’t need to worry about whether the actual object is local or remote.

Figure 24-3 shows the basic CORBA architecture.

Figure 24-3

The rest of this section continues the database example by showing a sample implementation of a server
and client. We don’t expect you to understand all the code details; we merely want to give you a sample

CORBA works for interprocess communication on the same machine as well as
intermachine communication. You can use CORBA as a mechanism for “sharing”
objects between processes on the same machine.

Client

Stub

ORB

Name
server

Lookup
object
reference

Make
Method
Call

Machine 1

Object
Implementation

Call
Method
Implementation

Skeleton

Portable Object
Adapter

ORB

Machine 2

Make Remote Procedure
Cell using IIOP

706

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 706

so you get a general feeling for CORBA programming and a taste of how powerful the technology can
be. If you want to become an expert CORBA programmer, you should consult the references listed in
Appendix B.

The Server Process
The server process must initialize the ORB, create a new DatabaseServer object, register the object, and
save a key to its reference in a file for clients to find. This example assumes that clients will have access
to the directory from which this server process is started, either through a network file system, or
because they are running on the same node. The comments explain the steps taken. Note that you don’t
use a special compiler to compile this code; you can use a standard C++ compiler, such as g++, as long
as you link to the appropriate omniORB libraries.

#include “DatabaseServer.h”
#include <iostream>
#include <fstream>
using namespace std;

const char* objRefFile = “OBJ_REF_FILE.dat”;

int main(int argc, char** argv)
{

// Try to initialize the orb.
CORBA::ORB_var orb;
try {

orb = CORBA::ORB_init(argc, argv);
} catch(CORBA::SystemException&) {

cerr << “Unable to initialize the ORB\n”;
exit(1);

}

// Obtain a reference to the “Portable Object Adapter” and downcast
// it to the appropriate type.
CORBA::Object_var obj = orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

// Create the DatabaseServer object and register/activate it
// with the portable object adapter.
DatabaseServer* myDb = new DatabaseServer();
PortableServer::ObjectId_var dbid = poa->activate_object(myDb);

// Write a string version of the object reference to a
// file so clients can find us.
CORBA::Object_var dbobj = myDb->_this();
CORBA::String_var sior(orb->object_to_string(dbobj));

ofstream ostr(objRefFile);
if (ostr.fail()) {

cerr << “Unable to open object reference file for writing.\n”;
exit(1);

}
ostr << (char*)sior;
ostr.close();

707

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 707

// Tell the reference counter that we’re done with the object.
// Now only the POA has a reference to it.
myDb->_remove_ref();

// Move the POA from holding to active state, so that it will process
// incoming requests.
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();

// Wait for incoming requests.
orb->run();

// Shouldn’t return from the run call, but if we do, we need to clean up
orb->destroy();
return (0);

}

The Client Process
The final step is to write a client process. Here is a basic client that reads the object reference key from a
file, creates an object reference from the key, and calls two methods on the object reference. These calls
are translated by the ORB layer into calls to the DatabaseServer object in the server process.

#include “database.hh”
#include <iostream>
#include <fstream>
using namespace std;

const char* objRefFile = “OBJ_REF_FILE.dat”;

int main(int argc, char** argv)
{

// Try to initialize the orb.
CORBA::ORB_var orb;
try {

orb = CORBA::ORB_init(argc, argv);
} catch(CORBA::SystemException&) {

cerr << “Unable to initialize the ORB\n”;
exit(1);

}

// Read the server object reference from the file.
ifstream istr(objRefFile);
if (istr.fail()) {

cerr << “No object reference file!\n”;
exit(1);

}
char objRef[1024];
istr.getline(objRef, 1024);

// Construct an object reference from the string.
database_var dbref;
try {

CORBA::Object_var obj = orb->string_to_object(objRef);

708

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 708

dbref = database::_narrow(obj);
if(CORBA::is_nil(dbref)) {

cerr << “Can’t narrow reference to type database\n”;
exit (1);

}
} catch(CORBA::SystemException&) {

cerr << “Unable to find the object reference\n”;
}

// Make calls on the object reference, which are translated to
// calls on the server object in the server process.
try {

dbref->addRecord(“key1”, “value1”);
const char* lookup = dbref->lookupRecord(“key1”);
if (strcmp(lookup, “value1”) == 0) {

cout << “Success!\n”;
} else {

cout << “strings don’t match\n”;
}

} catch(CORBA::COMM_FAILURE&) {
cerr << “Communication error\n”;
exit(1);

} catch(CORBA::SystemException&) {
cerr << “Communication error (SystemException)\n”;
exit(1);

}

// We’re done.
orb->destroy();

return (0);
}

As you can see, the CORBA framework is certainly complicated and has a steep learning curve.
However, it can be invaluable for industrial-strength distributed programming.

XML
Extensible Markup Language (XML) is a simple and general markup language. Fundamentally, XML can
be used to represent just about anything. You could use XML as the file format for storing an MP3 music
playlist or as the internal representation of a complex purchase order. Because XML is easy to work with
and has cross-platform support, it has quickly become popular as a format for network communication,
remote procedure calls, and distributed objects.

A Crash Course in XML
One of the greatest aspects of XML, and surely one of the reasons for its rapid adoption, is that it has a
very friendly learning curve. Getting started with XML is easy. Within minutes, you’ll know the termi-
nology and be able to read and write valid XML. From there, an XML developer can proceed down any

709

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 709

number of more complex roads, such as XML transformations, or Simple Object Access Protocol (SOAP),
a distributed object technology built upon XML.

What Is XML?
XML is merely a syntax for describing data. Outside of a specific application, XML data has no meaning.
For example, you could write a home inventory program that produces a perfectly valid XML document
describing all of your worldly possessions. If you gave that document to somebody else, they might be
able to look at it and figure it out, but the XML-based home inventory program that they wrote wouldn’t
necessarily be able to interpret it. The reason is that XML defines the structure of the document but not
its meaning. Another application may represent the same information in a different structure.

XML is written in a plain text format, which makes it easy for human beings to grok. Even if you’ve
never seen XML before, you can probably understand the following snippet of XML data:

<inventory>
<office>

<desk type=”wood”/>
<computer type=”Macintosh”/>
<chair type=”leather”/>

</office>
<kitchen>

<mixer type=”chrome”/>
<stove type=”electric”/>

</kitchen>
</inventory>

In addition to readability, the text format also means that XML is easy to work with in software. You
don’t need to learn a complicated framework or purchase an expensive toolset to parse text. Because
even the most obscure operating systems understand plain text, it’s easy to send XML between systems
without worrying about binary compatibility issues.

To be fair, textual representation has some downsides. Readability quickly becomes verbosity. An XML
representation of data is usually larger than its equivalent binary representation. When the data set is
large, the XML representation can grow to be enormous. Text also takes time to parse, unlike a binary
format, which doesn’t require any parsing at all.

The other important characteristic about XML, implied by the indentation of the previous example, is
that it is hierarchical. As you’ll see, XML is often parsed into a tree structure that you can walk through
to process the data.

XML Structure and Terminology
XML documents begin with a document prolog, which specifies the character encoding and other meta-
data about the document. Many programmers omit the prolog, but some stricter XML parsers will fail to
recognize the document as XML if the prolog is not found on the first line. The details of information
that can be specified in the prolog are beyond the scope of this book. The following prolog is sufficient
for most uses:

<?xml version=”1.0”?>

710

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 710

The document prolog is a special type of tag, a piece of syntax that XML recognizes as having some sort
of meaning. If you have written HTML files, you’re already familiar with tags. The body of an XML
document is made up of element tags. They are simply markers that identify the start and end of a logical
piece of the structure. In XML, every starting element tag has a corresponding ending element tag. For
example, the following line of XML uses the tag sentence to mark the start and end of a sentence
element.

<sentence>Let’s go get some ice cream.</sentence>

In XML, the end tag is written as a slash followed by the name of the element. Element tags don’t always
have to contain data as the previous example does. In XML, you can have an empty tag, which simply
exists on its own. One way of doing this is to follow a start tag immediately with an end tag:

<empty></empty>

XML also provides a shorthand for empty element tags. If you end a tag with a slash, it serves as both
the start tag and the end of the element:

<empty />

The topmost element, which contains all other elements in the document, is known as the root element.

In addition to its name, an element tag can contain key/value pairs called attributes. There are no set-in-
stone rules about what can be written as an attribute (remember: XML is just a syntax) but in general,
attributes provide metainformation about the element. For example, the sentence element could have an
attribute that gives the speaker of the sentence:

<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>

Elements can have multiple attributes, though they must have unique keys:

<sentence speaker=”Marni” tone=”pleading”>Let’s go get some ice cream.</sentence>

When you see an XML element whose name has a colon in it, such as <a:sentence>, the string prior to
the colon, is its namespace. Just like namespaces in C++, namespaces in XML allow you to segment the
use of names.

In the previous examples, the content of an element was either empty or textual data, commonly
referred to as a text node. In XML, elements can also contain other elements, which gives XML its hierar-
chical structure. In the following example, the dialogue element is made up of two sentence elements.
Note that the indentation exists only for readability — XML ignores white space between tags.

<dialogue>
<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>
<sentence speaker=”Scott”>After I’m done writing this C++ book.</sentence>

</dialogue>

Those are the basics! Elements, attributes, and text nodes are the building blocks of XML. For more
advanced syntax, such as special character escaping, consult one of the XML reference books listed in
Appendix B.

711

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 711

XML as a Distributed Object Technology
Since XML is simple and easy to work with, it has become popular as a mechanism for serialization.
XML serialized objects can be sent across a network, and the sender can be confident that the recipient
will be able to parse them, regardless of their platform. For example, consider the simple class shown
here:

class Simple
{

public:
std::string mName;
int mPriority;

std::string mData;
};

An object of type Simple could be serialized to the following XML:

<Simple name=”some name” priority=”7”>this is the data</Simple>

Of course, since XML doesn’t specify how individual nodes should be used, you could just as easily seri-
alize it as follows:

<Simple name=”some name” priority=”7” data=”this is the data” />

As long as the recipient of the serialized XML is aware of the rules you are using to serialize the object,
they should be able to deserialize it.

XML serialization has increased in popularity as a simpler alternative to heavyweight distributed object
technologies such as CORBA. XML has a much more gradual learning curve than CORBA and offers
many of the same benefits, such as platform and language independence.

Generating and Parsing XML in C++
Because XML is merely a file format, and not an object description language, the task of converting data
to and from XML is left to the programmer. In general, writing XML is the easy part. Reading XML is
usually aided by a third-party XML library.

Generating XML
To use XML as a serialization technology, your objects will need to be able to convert themselves into
XML. In many cases, building a stream of XML on the fly is the easiest way to output XML. In fact, the
notion that XML elements are “wrapped” in other elements makes things even easier. You can build new
XML documents as amalgams of existing ones. If that sounds a bit complicated, consider the following
example. Assume that you have a function called getNextSentenceXML(), which asks the user for a
sentence and returns it as an XML representation of the sentence. Because that function returns the sen-
tence as a valid XML element, you could create a dialogue of sentences by wrapping the results of multi-
ple calls to getNextSentenceXML() in a dialogue element tag:

712

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 712

string getDialogueXML()
{

sstringstream outStream;

// Begin the dialogue element.
outStream << “<dialogue>”;

while (true) {
// Get the next sentence.
string sentenceXML = getNextSentenceXML();
if (sentenceXML == “”) break;

// Add the sentence element.
outStream << sentenceXML;

}

// End the dialogue element.
outStream << “</dialogue>”;

return outStream.toString();
}

If subsequent calls to getNextSentenceXML() returned the sentences from the preceding example, the
result of this function would be:

<dialogue><sentence speaker=”Marni”>Let’s go get some ice
cream.</sentence><sentence speaker=”Scott”>After I’m done writing this C++
book.</sentence></dialogue>

The output is a bit strange because it wasn’t formatted with line breaks and tabs. It is, however, valid
XML. If you wanted to beautify the output a bit, you have a few options:

❑ You could use a third-party tool after the fact. For example, the open-source command-line pro-
gram tidy (http://tidy.sourceforge.net) has an XML pretty-print feature among its many
useful tools.

❑ You could include carriage returns and spaces manually in your code. This quickly gets compli-
cated because inside of getNextSentenceXML(), the code has no idea how many tabs to use.

❑ You could use (or write) a simple XML generation class library that is aware of nested elements
and formats them appropriately.

An XML Output Class
Even though outputting XML is straightforward, there are several good reasons to factor XML output
code into a separate class or set of classes. In addition to the formatting issue seen previously, separating
out the code for XML generation provides the following benefits:

❑ Cleaner code. Who wants < all over the place?!

❑ A central location to implement escaping of special characters.

713

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 713

❑ A more object-oriented approach. XML elements could be objects, which can then be stored,
passed to methods, and organized.

❑ Reduction of the possibility of XML syntax errors by centralizing output.

Writing an XML generation class is also temptingly simple. The class definition of a simple XML
Element class is shown here:

// XMLElement.h

#include <string>
#include <vector>
#include <map>
#include <iostream>

class XMLElement
{

public:
XMLElement();

void setElementName(const std::string& inName);

void setAttribute(const std::string& inAttributeName,
const std::string& inAttributeValue);

void addSubElement(const XMLElement* inElement);

// Setting a text node will override any nested elements.
void setTextNode(const std::string& inValue);

friend std::ostream& operator<<(std::ostream& outStream,
const XMLElement& inElem);

protected:
void writeToStream(std::ostream& outStream, int inIndentLevel = 0) const;

void indentStream(std::ostream& outStream, int inIndentLevel) const;

private:
std::string mElementName;
std::map<std::string, std::string> mAttributes;
std::vector<const XMLElement*> mSubElements;
std::string mTextNode;

};

Using this class, a user could easily create XMLElement objects, set their attributes, and set text nodes or
subelements. At any time, the client can call operator<< to get the XML representation of the current
state of the element.

A sample implementation is shown next. Because it uses C++ syntax, which you’re a pro at by now, we
won’t explain every single line. Take a look at the inline comments if it doesn’t make sense at first
glance.

714

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 714

#include “XMLElement.h”

using namespace std;

XMLElement::XMLElement() : mElementName(“unnamed”)
{
}

void XMLElement::setElementName(const string& inName)
{

mElementName = inName;
}

void XMLElement::setAttribute(const string& inAttributeName,
const string& inAttributeValue)

{
// Set the key/value pair, replacing the existing one if it exists.
mAttributes[inAttributeName] = inAttributeValue;

}

void XMLElement::addSubElement(const XMLElement* inElement)
{

// Add the new element to the vector of subelements.
mSubElements.push_back(inElement);

}

void XMLElement::setTextNode(const string& inValue)
{

mTextNode = inValue;
}

ostream& operator<<(ostream& outStream, const XMLElement& inElem)
{

inElem.writeToStream(outStream);
return (outStream);

}

void XMLElement::writeToStream(ostream& outStream, int inIndentLevel) const
{

indentStream(outStream, inIndentLevel);
outStream << “<” << mElementName; // open the start tag

// Output any attributes.
for (map<string, string>::const_iterator it = mAttributes.begin();

it != mAttributes.end(); ++it) {
outStream << “ “ << it->first << “=\”” << it->second << “\””;

}

// Close the start tag.
outStream << “>”;

if (mTextNode != “”) {
// If there’s a text node, output it.

715

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 715

outStream << mTextNode;
} else {

outStream << endl;
// Call writeToStream at inIndentLevel+1 for any subelements.
for (vector<const XMLElement*>::const_iterator it = mSubElements.begin();

it != mSubElements.end(); ++it) {
(*it)->writeToStream(outStream, inIndentLevel + 1);

}
indentStream(outStream, inIndentLevel);

}

// Write the close tag.
outStream << “</” << mElementName << “>” << endl;

}

void XMLElement::indentStream(ostream& outStream, int inIndentLevel) const
{

for (int i = 0; i < inIndentLevel; i++) {
outStream << “\t”;

}
}

The preceding implementation is a great starting point and is perfect for simple XML applications. One
of the features that is missing is the escaping of special characters. For example, the character & needs to
be escaped as & inside of an XML document. Here is a sample program that shows the use of the
XMLElement class to build the document that was output manually in the previous example:

int main(int argc, char** argv)
{

XMLElement dialogueElement;
dialogueElement.setElementName(“dialogue”);

XMLElement sentenceElement1;
sentenceElement1.setElementName(“sentence”);
sentenceElement1.setAttribute(“speaker”, “Marni”);
sentenceElement1.setTextNode(“Let’s go get some ice cream.”);

XMLElement sentenceElement2;
sentenceElement2.setElementName(“sentence”);
sentenceElement2.setAttribute(“speaker”, “Scott”);
sentenceElement2.setTextNode(“After I’m done writing this C++ book.”);

// Add the sentence elements as subelements of the dialogue element.
dialogueElement.addSubElement(&sentenceElement1);
dialogueElement.addSubElement(&sentenceElement2);

// Output the dialogue element to stdout.
cout << dialogeElement;

return 0;
}

716

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 716

The output of this program is:

<dialogue>
<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>
<sentence speaker=”Scott”>After I’m done writing this C++ book.</sentence>

</dialogue>

Parsing XML
To deserialize XML objects, you’ll need to interpret, or parse, the document. Unless the XML you are
reading is extremely simple and rigidly defined, you will most likely want to use a third-party XML
parsing library. XML parsing libraries typically come in two flavors, SAX and DOM.

A SAX (Simple API for XML) parser uses an event-based parsing model. To use a SAX parser, you register
callback functions or an object that implements certain methods. As the document is parsed, the appro-
priate functions or methods are called, giving you a chance to perform an action. For example, if you
wanted to look for duplicate XML element names in a document, you could register a callback that is
triggered upon reaching an element start tag. Internally, you would keep a list of elements that had
already been encountered. Using that list, you could detect the duplicates.

A DOM (Document Object Model) parser converts an XML document into a treelike structure that you can
easily walk through in code. To programmers accustomed to object-oriented hierarchies and tree data
structures, the DOM approach may seem more natural. The disadvantage of the DOM approach is per-
formance. Because it parses the entire document and builds a structure, it is generally slower and more
memory-intensive than SAX. Though the rest of this section deals only with DOM parsers, you will find
that most XML parsers support both SAX and DOM.

The Xerces XML Library
One of the most popular XML parsers is Xerces, which is part of the Apache XML project. Xerces is an
open-source parser and is available for several languages, including C++. You can download the Xerces-
C++ library from http://xml.apache.org/.

Once you have Xerces installed and added to your C++ project, you can offload the work of parsing
XML. Xerces is easy to get started with even though it has a wealth of functionality — a sign of a well-
designed library!

The most important class in the Xerces DOM parser is DOMNode. A DOMNode is a single unit of XML
data, possibly including other nodes. The subclasses of DOMNode include DOMDocument, DOMElement,
DOMAttr, DOMText, an so on. Working with an Xerces DOM generally involves starting with the root
node (a DOMDocument) and walking through the tree of nodes to find the desired data. Figure 24-4
shows a slightly simplified version of the node tree for the <dialogue> XML document. It is simplified
in that it only shows nodes that actually contain data.

Many XML Parsing libraries also include XML output facilities. If you are using an
XML parser for input (described next), check into its output capabilities before writ-
ing your own.

717

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 717

Figure 24-4

The XML attributes are not shown in Figure 24-4 because they are properties of an element, not children
of the element.

Using Xerces
The one tricky aspect that you will face first is the way that Xerces represents strings. Because XML can
be encoded in various ways, the library has its own character type: XMLch. It also has a utility class
called XMLString that makes it easy to work with XMLch strings and convert them to more familiar
chars. For example, if a Xerces method returns data as an XMLch* string, you can output it by using
XMLString::transcode() to get a C-style string:

void outputXercesString(XMLch* inXercesString)
{

char* familiarString = XMLString::transcode(inXercesString);
cout << familiarString << endl;

}

Because transcode() allocates memory for the C-style string, you must also release it with
XMLString::release(), which (in a somewhat bizarre design choice) takes a pointer to the C-style
string. The modified version below avoids a memory leak:

void outputXercesString(XMLch* inXercesString)
{

char* familiarString = XMLString::transcode(inXercesString);
cout << familiarString << endl;
XMLString::release(&familiarString);

}

DocumentRoot
(DOMDocument)

<dialogue>
(DOMElement)

<sentence>
(DOMElement)

After I'm done...
(DOMText)

<sentence>
(DOMElement)

Let's go get...
(DOMText)

718

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 718

With that bit of oddness out of the way, it’s time to parse some XML. This example parses a file named
test.xml into a DOM tree, and then loops through all of the nodes, printing out the names of all ele-
ments that are encountered, any attributes contained within those elements, and the contents of any text
nodes.

The program begins by including the necessary standard headers and Xerces headers. It also declares
XERCES_CPP_NAMESPACE_USE, which is a #define in Xerces that gives the correct namespace to the file.

#include <xercesc/util/PlatformUtils.hpp>

#include <xercesc/dom/DOM.hpp>
#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/util/XMLString.hpp>

#include <iostream>

XERCES_CPP_NAMESPACE_USE
using namespace std;

void printNode(const DOMNode* inNode);

The program’s main() is fairly straightforward, even though this is where the actual parsing is taking
place. It begins by initializing the Xerces library. Next, it creates a new DOM parser and tells it to parse
the file. The result of this operation is a DOMNode that represents the document as a whole. To obtain the
root element, getDocumentElement() is called. This value is passed to printNode(), which walks
through the tree, printing out the data. Finally, the program cleans up the XML library before exiting.

int main(int argc, char** argv)
{

XMLPlatformUtils::Initialize();

XercesDOMParser* parser = new XercesDOMParser();
parser->parse(“test.xml”);

DOMNode* node = parser->getDocument();
DOMDocument* document = dynamic_cast<DOMDocument*>(node);
if (document != NULL) {

printNode(document->getDocumentElement());
}

delete parser;
XMLPlatformUtils::Terminate();

return 0;
}

The printNode() function is where things get interesting. Because the parameter inNode can be any
type of XML node, the function tries its two known node types in sequence. It first attempts to dynami-
cally cast the node into a text node, catching the cast error in case the node is a different type:

719

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 719

void printNode(const DOMNode* inNode)
{

try {
const DOMText& textNode = dynamic_cast<const DOMText&>(*inNode);
char* text = XMLString::transcode(textNode.getData());
cout << “Found text data: “ << text << endl;
XMLString::release(&text);

} catch (bad_cast) {
// Not a text node . . .

}

Next, it tries to cast to an element node. If this cast is successful, the element’s name and any attributes
are printed out.

try {
const DOMElement& elementNode = dynamic_cast<const DOMElement&>(*inNode);
char* tagName = XMLString::transcode(elementNode.getTagName());
cout << “Found tag named: “ << tagName << endl;
XMLString::release(&tagName);

// Look at the attribute list.
DOMNamedNodeMap* attributes = elementNode.getAttributes();
for (int i = 0; i < attributes->getLength(); i++) {

try {
const DOMAttr& attrNode =

dynamic_cast<const DOMAttr&>(*attributes->item(i));
char* name = XMLString::transcode(attrNode.getName());
char* value = XMLString::transcode(attrNode.getValue());
cout << “Found attribute pair: (“ << name << “=” << value << “)”

<< endl;
XMLString::release(&name);
XMLString::release(&value);

} catch (bad_cast) {
cerr << “Error converting attribute!” << endl;

}
}

} catch (bad_cast) {
// Not an element node . . .

}

Finally, the function calls printNode() recursively on children nodes. In practice, children nodes will
only exist on element nodes.

// Print any subelements.
DOMNodeList* children = inNode->getChildNodes();
for (int i = 0; i < children->getLength(); i++) {

printNode(children->item(i));
}

}

720

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 720

If the <dialogue> document is provided as input, this program will produce the following output:

Found tag named: dialogue
Found text data:

Found tag named: sentence
Found attribute pair: (speaker=Marni)
Found text data: Let’s go get some ice cream.
Found text data:

Found tag named: sentence
Found attribute pair: (speaker=Scott)
Found text data: After I’m done writing this C++ book.
Found text data:

Note that the white space between tags is being read as a text node.

XML Validation
XML is a general-purpose syntax with no predefined tags or semantics of its own. However, that doesn’t
mean that any XML application can interpret any XML input. When you write an application that deals
with XML, you need to specify the specific type of XML that you can interpret. XML validation allows
you to define the specific format of XML that your application allows, including the element names,
their organization, and their attributes.

DTD (Document Type Definition)
Document Type Definitions are the original technique for specifying the type of an XML document. The
structure of a DTD initially looks like XML itself, but it’s not. Instead of a hierarchical format, DTDs are
written as a series of declarations about the document type. The details of DTD creation are beyond the
scope of this book. To give you an idea of what a DTD looks like, however, here is the DTD correspond-
ing to the <dialogue> document:

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT dialogue (sentence+)>
<!ELEMENT sentence (#PCDATA)>
<!ATTLIST sentence
speaker (Marni | Scott) #REQUIRED

>

Inside of an XML document, you can specify the DTD to which it conforms by including a DOCTYPE
assertion at the top of the file:

The Xerces library is exception-savvy. The previous example will abort in the face of
an exception other than bad_cast, but a production-quality application would catch
and handle Xerces exceptions.

721

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 721

<?xml version=”1.0”?>
<!DOCTYPE dialogue SYSTEM “dialogue.dtd”>
<dialogue>

<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>
<sentence speaker=”Scott”>After I’m done writing this C++ book.</sentence>

</dialogue>

The DOCTYPE assertion requires two parameters. The first is the root element of the document and the
second is the location of the DTD file. In this case, the DTD resides on the local system in a file named
dialogue.dtd.

Most XML parsing libraries, including Xerces, can validate an XML file against its DTD. That way, you
can guarantee that your program will only operate on data that it can interpret.

XML Schema
Validation of XML documents is a great idea, but the DTD format leaves much to be desired. On com-
plex documents, DTDs quickly become unwieldy. They also don’t provide facilities for defining complex
types, ordering, or data content. Not to mention the fact that DTDs aren’t even written in XML!

XML Schema is an attempt to provide a more functional way of defining the type of an XML document.
XML Schema definitions are vastly more flexible than DTDs, but that added flexibility brings added
complexity. There are several excellent books about XML Schema (see Appendix B), so we will again
provide only a very simple example:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”dialogue”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”sentence” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”sentence”>

<xs:complexType>
<xs:simpleContent>

<xs:extension base=”xs:string”>
<xs:attribute name=”speaker” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:NMTOKEN”>

<xs:enumeration value=”Marni”/>
<xs:enumeration value=”Scott”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:schema>

722

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 722

Just as with a DTD, you can correlate an XML schema with an XML document. Instead of using a DOC-
TYPE declaration, you specify the location of the schema within an attribute of the root element:

<?xml version=”1.0”?>
<dialogue xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”dialogue.xsd”>
<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>
<sentence speaker=”Scott”>After I’m done writing this C++ book.</sentence>

</dialogue>

Note that the xmlns:xsi attribute specifies that the document is an instance of the XML Schema located
at the xsi:noNamespaceSchemaLocation attribute.

Building a Distributed Object with XML
An XML distributed object is simply an object that knows how to output itself as XML and populate
itself from XML. In this section, you will turn the Simple class defined earlier into a distributed object
using XML serialization.

The XMLSerializable Mix-in Class
In an application that deals with many distributed objects, it is often convenient to have a common par-
ent class for all such objects. The XMLSerializable class, defined in the following example, requires
that subclasses implement methods to read themselves from XML and write themselves to XML. This is
an example of a mix-in class (see Chapter 25 for further details).

class XMLSerializable
{

public:
virtual std::string toXML() = 0;
virtual void fromXML(const std::string& inXML) = 0;

};

Here is the new Simple class, modified to inherit from XMLSerializable:

class Simple : public XMLSerializable
{

public:
std::string mName;
int mPriority;

std::string mData;

Software packages such as xmlspy from Altova Software (www.xmlspy.com)
can greatly ease the process of generating and interpreting XML, XML schemas,
and DTDs.

723

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 723

virtual std::string toXML();
virtual void fromXML(const std::string& inXML);

};

Implementing XML Serialization
The actual serialization code is aided greatly by the XMLElement class implemented earlier and the use
of the Xerces library:

string Simple::toXML()
{

XMLElement simpleElement;
simpleElement.setElementName(“simple”);

simpleElement.setAttribute(“name”, mName);

// Convert the int into a string.
ostringstream tempStream;
tempStream << mPriority;
simpleElement.setAttribute(“priority”, tempStream.str());

// Add the data as a text node.
simpleElement.setTextNode(mData);

// Convert the XMLElement into a string.
ostringstream resultStream;
resultStream << simpleElement;

return resultStream.str();
}

void Simple::fromXML(const string& inString)
{

static const char* bufID = “simple buffer”;

// Use MemBufInputSource to read the XML content from a string.
MemBufInputSource src((const XMLByte*)inString.c_str(),

inString.length(), bufID);
XercesDOMParser* parser = new XercesDOMParser();
parser->parse(src);

DOMNode* node = parser->getDocument();
DOMDocument* document = dynamic_cast<DOMDocument*>(node);
if (document == NULL) {

delete parser;
return;

}

// Document should be the <simple> element.
try {

const DOMElement& elementNode =
dynamic_cast<const DOMElement&>(*document->getDocumentElement());

724

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 724

// Get the name attribute.
XMLCh* nameKey = XMLString::transcode(“name”);
char* name = XMLString::transcode(elementNode.getAttribute(nameKey));
XMLString::release(&nameKey);
mName = name;
XMLString::release(&name);

// Get the priority attribute.
XMLCh* priorityKey = XMLString::transcode(“priority”);
char* priorityStr =

XMLString::transcode(elementNode.getAttribute(priorityKey));
XMLString::release(&priorityKey);
// Parse the priority number.

istringstream tmpStream(priorityStr);
tmpStream >> mPriority;

XMLString::release(&priorityStr);

// Get the data as a text node.
const XMLCh* textData = elementNode.getTextContent();
char* data = XMLString::transcode(textData);
mData = data;
XMLString::release(&data);

} catch (bad_cast) {
cerr << “cast exception while parsing Simple object from XML” << endl;

} catch (...) {
cerr << “an unknown error occurred while parsing a Simple object from XML”

<< endl;
}

delete parser;
}

Following is a main() that tests the serialization functionality by creating a Simple object, writing it to
XML, then reading that same XML output into a new Simple object. When finished, both objects should
be equivalent.

int main(ing argc, char** argv)
{

XMLPlatformUtils::Initialize();

Simple test;
test.mName = “myname”;
test.mPriority = 7;
test.mData = “my data”;

string xmlData = test.toXML();

Simple test2;
test2.fromXML(xmlData);

725

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 725

if (test.mName == test2.mName) {
cout << “Names are equivalent!” << endl;

} else {
cout << “ERROR: Names are not equivalent!” << endl;

}

if (test.mPriority == test2.mPriority) {
cout << “Priorities are equivalent!” << endl;

} else {
cout << “ERROR: Priorities are not equivalent!” << endl;

}

if (test.mData == test2.mData) {
cout << “Data is equivalent!” << endl;

} else {
cout << “ERROR: Data is not equivalent!” << endl;

}

XMLPlatformUtils::Terminate();

return 0;
}

Using the Distributed Object
Now that Simple objects can read themselves from XML and write themselves to XML, they are fully
XML serializable. XML serialization is the foundation for using XML as a distributed object technology.
The other piece to the puzzle is the transmission of XML serialized objects between different machine
and applications.

Just as with the traditional serialization schemes described earlier in this chapter, you can use XML seri-
alization with any network or data interchange technology that you wish. You can write a program that
emails serialized objects around, or compresses them and sends them as binary data over a network.
Because XML is merely a syntax, the programmer is left to decide on the exact semantics of the XML
content and the mechanism of its transmission.

SOAP (Simple Object Access Protocol)
One of the “killer apps” for XML is the exchange of data over a network. As you already know, XML is
perfect for such applications because it is easy to work with and recognized by all platforms. The major
downside is that applications that are exchanging data via XML need to be in agreement on the particu-
lar semantics of the XML data being exchanged. With only XML at your disposal, you couldn’t write an
application that made RPC-style calls to somebody else’s application without obtaining the format of the
XML they are expecting.

SOAP is an XML-based standard for exchanging data. It provides a standard way to make RPC-style
requests, provide metadata about XML, represent simple and complex data types in XML (using XML
schemas), and handle errors. By using SOAP-based XML as a data exchange format, applications can
communicate without reinventing the wheel.

726

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 726

An Introduction to SOAP
This section introduces some of the terminology used in SOAP without getting into the nitty-gritty
details of the syntax. The details of implementing SOAP applications are best left to SOAP-specific texts.
Additionally, a number of emerging SOAP frameworks and hardware appliances spare programmers
the details of the SOAP syntax by wrapping it in a programmatic or graphical interface. So, while you
may have to look at raw SOAP data for debugging purposes, it’s becoming less likely that you’ll have to
write it by hand.

All of the data in a SOAP message is contained in a SOAP Envelope. The envelope is divided into two
parts — the SOAP Header and the SOAP Body. As you may have guessed, the SOAP Header contains
metainformation about the message. For example, because XML is a plain text–readable format, it is
highly susceptible to malicious changes as it moves through the network. The header can contain digital
signatures that are used to verify the integrity of a SOAP message.

The contents of the SOAP Body vary depending on the style of SOAP being used. Document-style SOAP
messages simply provide an XML payload in the SOAP Body. An application that wants to move XML-
serialized data from one machine to another using the SOAP standard would most likely take advantage
of Document-style SOAP. Here is an example of a Document-style SOAP message:

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/ “>
<soap:Body>

<dialogue>
<sentence speaker=”Marni”>Let’s go get some ice cream.</sentence>
<sentence speaker=”Scott”>After I’m done writing this C++

book.</sentence>
</dialogue>

</soap:Body>
</soap:Envelope>

RPC-style SOAP is a more structured type of SOAP message that is used to make requests to remote
machines and receive responses. In an RPC-style request, the SOAP Body contains a description of the
request being made on the remote machine, including parameters to the request. Here is a simple RPC
request to a method that adds two numbers:

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/ “>
<soap:Body>

<myNS:AddNumbers xmlns:myNS=”mynamespace”>
<myNS:arg1>7</myNS:arg1>
<myNS:arg2>4</myNS:arg2>

</myNS:AddNumbers>
</soap:Body>

</soap:Envelope>

The SOAP Body of the response to an RPC-style request contains an XML element containing the results
of the RPC call:

727

Exploring Distributed Objects

27_574841 ch24.qxd 12/15/04 3:47 PM Page 727

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/ “>
<soap:Body>

<myNS:AddNumbersResponse xmlns:myNS=”mynamespace”>
<myNS:result>11</myNS:result>

</myNS:AddNumbersResponse>
</soap:Body>

</soap:Envelope>

While some of the syntax may still be a mystery, hopefully you have a good idea of what is contained in
a SOAP message. You should also begin to see the power of using SOAP for distributed applications —
using only simple XML, you can issue requests and receive responses from any application that speaks
SOAP. No elaborate, expensive, or platform-specific technologies are required. SOAP also has an advan-
tage over non-SOAP serialized XML because the semantics are specified. If two people were to write
applications that communicated via serialized XML, they would have to agree on the names of attributes
and elements. If they used SOAP, they could focus on the specifics of their application.

SOAP is quickly gaining popularity as a data exchange mechanism for businesses and for Web services.
Many of the existing SOAP frameworks are written for Java (with the notable exception of Microsoft’s
.NET which tends to have C# in mind). However, there is nothing platform specific about SOAP. In fact,
SOAP may be the perfect way to expose your C++ applications to a wider audience using other
languages.

Summary
In this chapter, you’ve seen how you can write new types of applications by using network technologies.
You’ve learned about the mechanisms for distributed communication — serialization and remote proce-
dure calls. You’ve also been exposed to several ways to implement these technologies, including custom
serialization, CORBA, XML, and SOAP.

Distributed computing truly opens up a new world of possibilities for your applications. Now that you
know the concepts and the different technologies, you have the basic requirements for the next dis-
tributed killer app.

728

Chapter 24

27_574841 ch24.qxd 12/15/04 3:47 PM Page 728

Incorporating Techniques
and Frameworks

One of the major themes of this book has been the adoption of reusable techniques and patterns.
As a programmer, you tend to face similar problems repeatedly. With an arsenal of diverse
approaches, you can save yourself time by applying the proper technique to a given problem.

This chapter focuses on design techniques — C++ idioms that aren’t necessarily built-in parts of
the language, but are nonetheless frequently used. The first part of this chapter covers the lan-
guage features in C++ that are common but involve easy-to-forget syntax. Most of this material is
a review, but it is a useful reference tool when the syntax escapes you. The topics covered include:

❑ Starting a class from scratch

❑ Extending a class with a subclass

❑ Throwing and catching exceptions

❑ Reading from a file

❑ Writing to a file

❑ Defining a template class

The second part of this chapter focuses on higher-level techniques that build upon C++ language
features. These techniques offer a better way to accomplish everyday programming tasks. Topics
include:

❑ Smart pointers with reference counting

❑ The double-dispatch technique

❑ Mix-in classes

28_574841 ch25.qxd 12/15/04 3:48 PM Page 729

Many of the previous chapters referred to these concepts without providing detailed code examples.
In this chapter, you will see concrete examples of these concepts with code that you can use in your
programs.

This chapter concludes with an introduction to frameworks, a coding technique that greatly eases the
development of large applications.

“I Can Never Remember How to . . .”
Chapter 1 compared the size of the C standard to the size of the C++ standard. It is possible, and some-
what common, for a C programmer to memorize the entire C language. The keywords are few, the lan-
guage features are minimal, and the behaviors are well defined. This is not the case with C++. Even the
authors of this book, who are self-proclaimed geniuses, need to look things up. With that in mind, we
present the following examples of coding techniques that are used in almost all C++ programs. When
you remember the concept but forget the syntax, turn to these pages for a refresher.

. . . Write a Class
Don’t remember how to get started? No problem — here is the definition of a simple class:

/**
* Simple.h
*
* A simple class that illustrates class definition syntax.
*
*/

#ifndef _simple_h_
#define _simple_h_

class Simple {

public:
Simple(); // Constructor
virtual ~Simple(); // Destructor

virtual void publicMethod(); // Public method

int mPublicInteger; // Public data member

protected:
int mProtectedInteger; // Protected data member

private:
int mPrivateInteger; // Private data member

static const int mConstant = 2; // Private constant

static int sStaticInt; // Private static data member

// Disallow assignment and pass-by-value

730

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 730

Simple(const Simple& src);
Simple& operator=(const Simple& rhs);

};
#endif

Next, here is the implementation, including the initialization of the static data member:

/**
* Simple.cpp
*
* Implementation of a simple class
*
*/

#include “Simple.h”

int Simple::sStaticInt = 0; // Initialize static data member.

Simple::Simple()
{

// Implementation of constructor
}

Simple::~Simple()
{

// Implementation of destructor
}

void Simple::publicMethod()
{

// Implementation of public method
}

. . . Subclass an Existing Class
To subclass, you declare a new class that is a public extension of another class. Here is the definition for a
sample subclass called SubSimple:

/**
* SubSimple.h
*
* A subclass of the Simple class
*
*/

#ifndef _subsimple_h_
#define _subsimple_h_

#include “Simple.h”

class SubSimple : public Simple
{

731

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 731

public:
SubSimple(); // Constructor
virtual ~SubSimple(); // Destructor

virtual void publicMethod(); // Overridden method

virtual void anotherMethod(); // Added method
};

#endif

The implementation:

/**
* SubSimple.cpp
*
* Implementation of a simple subclass
*
*/

#include “SubSimple.h”

SubSimple::SubSimple() : Simple()
{

// Implementation of constructor
}

SubSimple::~SubSimple()
{

// Implementation of destructor
}

void SubSimple::publicMethod()
{

// Implementation of overridden method
}

void SubSimple::anotherMethod()
{

// Implementation of added method
}

. . . Throw and Catch Exceptions
If you’ve been working on a team that doesn’t use exceptions (for shame!) or if you’ve gotten used to
Java-style exceptions, the C++ syntax may escape you. Here’s a simple refresher, which uses the built-in
exception class std::runtime_error. In most large programs, you will write your own exception
classes.

#include <stdexcept>
#include <iostream>

732

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 732

void throwIf(bool inShouldThrow) throw (std::runtime_error)
{

if (inShouldThrow) {
throw std::runtime_error(“Here’s my exception”);

}
}

int main(int argc, char** argv)
{

try {
throwIf(false); // doesn’t throw
throwIf(true); // throws!

} catch (const std::runtime_error& e) {
std::cerr << “Caught exception: “ << e.what() << std::endl;

}
}

. . . Read from a File
Complete details for file input are included in Chapter 14. Below is a quick sample program for file read-
ing basics. This program reads its own source code and outputs it one token at a time.

/**
* readfile.cpp
*/

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main()
{

ifstream inFile(“readfile.cpp”);

if (inFile.fail()) {
cerr << “Unable to open file for reading.” << endl;
exit(1);

}

string nextToken;
while (inFile >> nextToken) {

cout << “Token: “ << nextToken << endl;
}

inFile.close();

return 0;
}

733

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 733

. . . Write to a File
The following program outputs a message to a file, then reopens the file and appends another message.
Additional details can be found in Chapter 14.

/**
* writefile.cpp
*/

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

ofstream outFile(“writefile.out”);

if (outFile.fail()) {
cerr << “Unable to open file for writing.” << endl;
exit(1);

}

outFile << “Hello!” << endl;

outFile.close();

ofstream appendFile(“writefile.out”, ios_base::app);

if (appendFile.fail()) {
cerr << “Unable to open file for writing.” << endl;
exit(1);

}

appendFile << “Append!” << endl;

appendFile.close();
}

. . . Write a Template Class
Template syntax is one of the messiest parts of the C++ language. The most-forgotten piece of the tem-
plate puzzle is that code that uses the template needs to be able to see the method implementations as
well as the class template definition. The usual technique to accomplish this is to #include the source
file in the header file so that clients can simply #include the header file as they normally do. The fol-
lowing program shows a class template that simply wraps an object and adds get and set semantics to it.

/**
* SimpleTemplate.h
*/

template <typename T>
class SimpleTemplate
{

734

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 734

public:
SimpleTemplate(T& inObject);

const T& get();
void set(T& inObject);

protected:
T& mObject;

};

#include “SimpleTemplate.cpp” // Include the implementation!

/**
* SimpleTemplate.cpp
*/

template<typename T>
SimpleTemplate<T>::SimpleTemplate(T& inObject) : mObject(inObject)
{
}

template<typename T>
const T& SimpleTemplate<T>::get()
{

return mObject;
}

template<typename T>
void SimpleTemplate<T>::set(T& inObject)
{

mObject = inObject;
}

/**
* TemplateTest.cpp
*/

#include <iostream>
#include <string>

#include “SimpleTemplate.h”

using namespace std;

int main(int argc, char** argv)
{

// Try wrapping an integer.
int i = 7;
SimpleTemplate<int> intWrapper(i);
i = 2;
cout << “wrapper value is “ << intWrapper.get() << endl;

// Try wrapping a string.
string str = “test”;

735

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 735

SimpleTemplate<string> stringWrapper(str);
str += “!”;
cout << “wrapper value is “ << stringWrapper.get() << endl;

}

There Must Be a Better Way
As you read this paragraph, thousands of C++ programmers throughout the world are solving problems
that have already been solved. Someone in a cubicle in San Jose is writing a smart pointer implementa-
tion from scratch that uses reference counting. A young programmer on a Mediterranean island is
designing a class hierarchy that could benefit immensely from the use of mix-in classes.

As a Professional C++ programmer, you need to spend less of your time reinventing the wheel, and
more of your time adapting reusable concepts in new ways. The following techniques are general-
purpose approaches that you can apply directly to your own programs or customize for your needs.

Smart Pointers with Reference Counting
Chapters 4 and 13 introduced the notion of a smart pointer: a method for wrapping dynamically allocated
memory in a safe stack-based variable. Chapter 16 showed an implementation of a smart pointer using a
template class. The following technique enhances the example from Chapter 16 by including reference
counting.

The Need for Reference Counting
As a general concept, reference counting is the technique for keeping track of the number of instances of a
class or particular object that are in use. A reference-counting smart pointer is one that keeps track of
how many smart pointers have been built to refer to a single real pointer. This way, smart pointers can
avoid double deletion.

The double deletion problem is easy to provoke with non-reference-counting smart pointers. Consider
the following class, Nothing, which simply prints out messages when an object is created or destroyed.

class Nothing
{

public:
Nothing() { cout << “Nothing::Nothing()” << endl; }
~Nothing() { cout << “Nothing::~Nothing()” << endl; }

};

If you were to create two standard C++ auto_ptrs and have them both refer to the same Nothing
object, both smart pointers would attempt to delete the same object when they go out of scope:

void doubleDelete()
{

Nothing* myNothing = new Nothing();

auto_ptr<Nothing*> autoPtr1(myNothing);
auto_ptr<Nothing*> autoPtr2(myNothing);

}

736

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 736

The output of the previous function would be:

Nothing::Nothing()
Nothing::~Nothing()
Nothing::~Nothing()

Yikes! One call to the constructor and two calls to the destructor? And this from a class that’s supposed
to make pointers safe?

If you only use smart pointers for simple cases, such as allocating memory that is only used within a
function, this issue will not be a problem. However, if your program stores several smart pointers in a
data structure or otherwise complicates the use of smart pointers by copying them, assigning them, or
passing them as arguments to functions, adding another level of safety is essential.

The SuperSmartPointer
The approach for SuperSmartPointer, a reference-counting smart pointer implementation is to keep a
static map for reference counts. Each key in the map is the memory address of a traditional pointer that is
referred to by one or more SuperSmartPointers. The corresponding value is the number of
SuperSmartPointers that refer to that object.

The implementation of SuperSmartPointer that follows is based on the smart pointer code shown in
Chapter 16. You may want to review that code before continuing. The major changes occur when a new
pointer is set (through the single argument constructor, the copy constructor, or operator=) and when a
SuperSmartPointer is finished with an underlying pointer (upon destruction or reassignment with
operator=).

On initialization of a new pointer, the initPointer() method checks the static map to see if the pointer
is already contained by an existing SuperSmartPointer. If it is not, the count is initialized to 1. If it is
already in the map, the count is bumped up. When the pointer is reassigned or the containing
SuperSmartPointer is destroyed, the finalizePointer() method is called. The method begins by
printing an error if the pointer is not found in the map. If the pointer is found, its count is decremented
by one. If this brings the count down to zero, the underlying pointer can be safely released. At this time,
the key/value pair is explicitly removed from the map to keep the map size down.

#include <map>
#include <iostream>

template <typename T>
class SuperSmartPointer
{

public:
explicit SuperSmartPointer(T* inPtr);
~SuperSmartPointer();

SuperSmartPointer(const SuperSmartPointer<T>& src);
SuperSmartPointer<T>& operator=(const SuperSmartPointer<T>& rhs);

A reference-counting smart pointer is safer than the built-in auto_ptr because it
keeps track of the number of references to a pointer and deletes the memory only
when it is no longer in use.

737

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 737

const T& operator*() const;
const T* operator->() const;
T& operator*();
T* operator->();

operator void*() const { return mPtr; }

protected:
T* mPtr;
static std::map<T*, int> sRefCountMap;

void finalizePointer();
void initPointer(T* inPtr);

};

template <typename T>
std::map<T*, int>SuperSmartPointer<T>::sRefCountMap;

template <typename T>
SuperSmartPointer<T>::SuperSmartPointer(T* inPtr)
{

initPointer(inPtr);
}

template <typename T>
SuperSmartPointer<T>::SuperSmartPointer(const SuperSmartPointer<T>& src)
{

initPointer(src.mPtr);
}

template <typename T>
SuperSmartPointer<T>&
SuperSmartPointer<T>::operator=(const SuperSmartPointer<T>& rhs)
{

if (this == &rhs) {
return (*this);

}
finalizePointer();
initPointer(rhs.mPtr);

return (*this);
}

template <typename T>
SuperSmartPointer<T>::~SuperSmartPointer()
{

finalizePointer();
}

template<typename T>
void SuperSmartPointer<T>::initPointer(T* inPtr)
{

mPtr = inPtr;
if (sRefCountMap.find(mPtr) == sRefCountMap.end()) {

738

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 738

sRefCountMap[mPtr] = 1;
} else {

sRefCountMap[mPtr]++;
}

}

template<typename T>
void SuperSmartPointer<T>::finalizePointer()
{

if (sRefCountMap.find(mPtr) == sRefCountMap.end()) {
std::cerr << “ERROR: Missing entry in map!” << std::endl;
return;

}
sRefCountMap[mPtr]--;
if (sRefCountMap[mPtr] == 0) {

// No more references to this object--delete it and remove from map
sRefCountMap.erase(mPtr);
delete mPtr;

}
}

template <typename T>
const T* SuperSmartPointer<T>::operator->() const
{

return (mPtr);
}

template <typename T>
const T& SuperSmartPointer<T>::operator*() const
{

return (*mPtr);
}

template <typename T>
T* SuperSmartPointer<T>::operator->()
{

return (mPtr);
}

template <typename T>
T& SuperSmartPointer<T>::operator*()
{

return (*mPtr);
}

Unit Testing the SuperSmartPointer
The Nothing class defined above can be employed for a simple unit test for SuperSmartPointer. One
modification is needed to determine if the test passed or failed. Two static members are added to the
Nothing class, which track the number of allocations and the number of deletions. The constructor and
destructor modify these values instead of printing a message. If the SuperSmartPointer works, the
numbers should always be equivalent when the program terminates.

739

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 739

class Nothing
{

public:
Nothing() { sNumAllocations++; }
~Nothing() { sNumDeletions++; }

static int sNumAllocations;
static int sNumDeletions;

};

int Nothing::sNumAllocations = 0;
int Nothing::sNumDeletions = 0;

Following is the actual test. Note that an extra set of curly braces is used to keep the
SuperSmartPointers in their own scope so that they are both allocated and destroyed inside of the
function.

void testSuperSmartPointer()
{

Nothing* myNothing = new Nothing();

{
SuperSmartPointer<Nothing> ptr1(myNothing);
SuperSmartPointer<Nothing> ptr2(myNothing);

}

if (Nothing::sNumAllocations != Nothing::sNumDeletions) {
std::cout << “TEST FAILED: “ << Nothing::sNumAllocations <<

“ allocations and “ << Nothing::sNumDeletions <<
“ deletions” << std::endl;

} else {
std::cout << “TEST PASSED” << std::endl;

}
}

A successful execution of this test program will result in the following output:

TEST PASSED

You should also write additional tests for the SuperSmartPointer class. For example, you should test
the copy construction and operator= functionality.

Enhancing This Implementation
The static reference count map provides the SuperSmartPointer with an additional layer of safety over
built-in C++ smart pointers. However, the new implementation is not completely free of problems.

Recall that templates exist on a per-type basis. In other words, if you have some SuperSmartPointers
that store pointers to integers and others that store pointers to characters, there are actually two classes
generated at compile time: SuperSmartPointer<int> and SuperSmartPointer<char>. Because the
reference count map is stored statically within the class, two maps will be generated. In most cases, this
won’t cause a problem, but you could cast a char* to an int* resulting in two SuperSmartPointers of

740

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 740

two different template classes that refer to the same variable. Because the table data is separate, double
deletion would occur, as demonstrated by the following code:

char* ch = new char;

SuperSmartPointer<char> ptr1(ch);
SuperSmartPointer<int> ptr2((int*)ch); // BUG! Double deletion will occur!

One solution to this problem is to make the reference map a global variable, though globals are often
frowned upon. Another solution would be to wrap the map in a nontemplate class, perhaps called
MapManager, which is referenced by the SuperSmartPointer template classes.

The other issue with this implementation is that it is not thread safe. As you have read previously,
threads are not a feature of the C++ language. However, threads are so common in modern program-
ming that you should be aware of this omission. Access to the static map should be protected by a lock
so that concurrent additions and deletions do not conflict with each other.

If you use the SuperSmartPointer in production code, you should consider whether the code given
above is appropriate for your application or if you should add thread safety and a global map.

Double Dispatch
Double dispatch is a technique that adds an extra dimension to the concept of polymorphism. As
described in Chapter 3, polymorphism lets the program determine behavior based on run-time types.
For example, you could have an Animal class with a move() method. All Animals move, but they differ
in terms of how they move. The move() method is defined for every subclass of Animal so that the
appropriate method can be called, or dispatched, for the appropriate animal at run time without know-
ing the type of the animal at compile time. Chapter 10 explained how to use virtual methods to imple-
ment this run-time polymorphism.

Sometimes, however, you need a method to behave according to the run-time type of two objects,
instead of just one. For example, suppose that you want to add a method to the Animal class that
returns true if the animal eats another animal and false otherwise. The decision is based on two fac-
tors — the type of the animal doing the eating, and the type of the animal being eaten. Unfortunately,
C++ provides no language mechanism to choose a behavior based on the run-time type of more than
one object. Virtual methods alone are insufficient for modeling this scenario because they determine a
method, or behavior, depending on the run-time type of only the receiving object.

Some object-oriented languages provide the ability to choose a method at run-time based on the run-
time types of two or more methods. They call this feature multi-methods. In C++, however, there is no
core language feature to support multi-methods. Fortunately, the double dispatch technique provides a
technique to make functions virtual for more than one object.

Double dispatch is really a special case of multiple dispatch, in which a behavior is
chosen depending on the run-time types of two or more objects. In practice, double
dispatch, which chooses a behavior based on the run-time types of exactly two
objects, is usually sufficient.

741

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 741

Attempt #1: Brute Force
The most straightforward way to implement a method whose behavior depends on the run-time types
of two different objects is to take the perspective of one of the objects and use a series of if/else con-
structs to check the type of the other. For example, you could implement a method called eats() on
each Animal subclass that takes the other animal as an argument. The method would be declared pure
virtual in the base class as follows:

class Animal
{

public:
virtual bool eats(const Animal& inPrey) const = 0;

};

Each subclass would implement the eats() method and return the appropriate value based on the type
of the argument. The implementation of eats() for several subclasses follows. Note that the Dinosaur
subclass avoids the series of if/else constructs because (according to the authors) dinosaurs eat any-
thing.

bool Bear::eats(const Animal& inPrey) const
{

if (typeid(inPrey) == typeid(Bear&)) {
return false;

} else if (typeid(inPrey) == typeid(Fish&)) {
return true;

} else if (typeid(inPrey) == typeid(Dinosaur&)) {
return false;

}
return false;

}

bool Fish::eats(const Animal& inPrey) const
{

if (typeid(inPrey) == typeid(Bear&)) {
return false;

} else if (typeid(inPrey) == typeid(Fish&)) {
return true;

} else if (typeid(inPrey) == typeid(Dinosaur&)) {
return false;

}
return false;

}

bool Dinosaur::eats(const Animal& inPrey) const
{

return true;
}

The brute force approach works, and it’s probably the most straightforward technique for a small num-
ber of classes. However, there are several reasons why you might want to avoid such an approach:

742

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 742

❑ OOP purists often frown upon explicitly querying the type of an object because it implies a
design that is lacking in proper object-oriented structure.

❑ Because all types are checked inside a single method, a subclass would have to override all
cases or none. For example, if you wanted to implement a CannibalisticBear class, which
ate other Bears, you would have to reimplement all the existing Bear eating behavior in the
subclass.

❑ As the number of types grows, such code can grow messy and repetitive.

❑ This approach does not force subclasses to consider new types. For example, if you added a
Donkey subclass, the Bear class would continue to compile, but would return false when told to
eat a Donkey, even though everybody knows that bears eat donkeys.

Attempt #2: Single Polymorphism with Overloading
You could attempt to use polymorphism with overloading to circumvent all of the cascading if/else
constructs. Instead of giving each class a single eats() method that takes an Animal reference, why not
overload the method for each Animal subclass? The base class definition would look like this:

class Animal
{

public:
virtual bool eats(const Bear& inPrey) const = 0;
virtual bool eats(const Fish& inPrey) const = 0;
virtual bool eats(const Dinosaur& inPrey) const = 0;

};

Because the methods are pure virtual in the superclass, each subclass would be forced to implement
the behavior for every other type of Animal. For example, the Bear class would contain the following
methods:

class Bear : public Animal
{

public:
virtual bool eats(const Bear& inBear) const { return false; }
virtual bool eats(const Fish& inFish) const { return true; }
virtual bool eats(const Dinosaur& inDinosaur) const { return false; }

};

This approach initially appears to work, but it really solves only half of the problem. In order to call the
proper eats() method on an Animal, the compiler needs to know the compile-time type of the animal
being eaten. A call such as the following will be successful because the compile-time types of both the
eater and the eaten animals are known:

Bear myBear;
Fish myFish;

cout << myBear.eats(myFish) << endl;

743

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 743

The missing piece is that the solution is only polymorphic in one direction. You could access myBear in
the context of an Animal and the correct method would be called:

Bear myBear;
Fish myFish;
Animal& animalRef = myBear;

cout << animalRef.eats(myFish) << endl;

The reverse is not true. If you accessed myFish in the context of the Animal class and passed that to the
eats method, you would get a compile error because there is no eats method that takes an Animal.
The compiler cannot determine, at compile time, which version to call. The following example will
not compile:

Bear myBear;
Fish myFish;
Animal& animalRef = myFish;

cout << myBear.eats(animalRef) << endl; // BUG! No such method Bear::eats(Animal&)

Because the compiler needs to know which overloaded version of the eats() method is going to be
called at compile time, this solution is not truly polymorphic. It would not work, for example, if you
were iterating over an array of Animal references and passing each one to a call to eats().

Attempt #3: Double Dispatch
The double dispatch technique is a truly polymorphic solution to the multiple type problem. In C++,
polymorphism is achieved by overriding methods in subclasses. At run time, methods are called based
on the actual type of the object. The single polymorphic attempt above didn’t work because it attempted
to use polymorphism to determine which overloaded version of a method to call instead of using it to
determine on which class to call the method.

To begin, focus on a single subclass, perhaps the Bear class. The class needs a method with the following
declaration:

virtual bool eats(const Animal& inPrey) const;

The key to double dispatch is to determine the result based on a method call on the argument. Suppose
that the Animal class had a method called eatenBy(), which took an Animal reference as a parameter.
This method would return true if the current Animal gets eaten by the one passed in. With such a
method, the definition of eats() becomes very simple:

bool Bear::eats(const Animal& inPrey) const
{

return inPrey.eatenBy(*this);
}

At first, it looks like this solution simply adds another layer of method calls to the single polymorphic
method. After all, each subclass will still have to implement a version of eatenBy() for every subclass
of Animal. However, there is a key difference. Polymorphism is occurring twice! When you call the eats
method on an Animal, polymorphism determines whether you are calling Bear::eats, Fish::eats, or

744

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 744

one of the others. When you call eatenBy(), polymorphism again determines which class’s version of
the method to call. It calls eatenBy() on the run-time type of the inPrey object. Note that the run-time
type of *this is always the same as the compile-time type so that the compiler can call the correctly
overloaded version of eatenBy() for the argument (in this case Bear).

Following are the class definitions for the Animal hierarchy using double dispatch. Note that forward
class declarations are necessary because the base class uses references to the subclasses.

// forward references
class Fish;
class Bear;
class Dinosaur;

class Animal
{

public:
virtual bool eats(const Animal& inPrey) const = 0;

virtual bool eatenBy(const Bear& inBear) const = 0;
virtual bool eatenBy(const Fish& inFish) const = 0;
virtual bool eatenBy(const Dinosaur& inDinosaur) const = 0;

};

class Bear : public Animal
{

public:
virtual bool eats(const Animal& inPrey) const;

virtual bool eatenBy(const Bear& inBear) const;
virtual bool eatenBy(const Fish& inFish) const;
virtual bool eatenBy(const Dinosaur& inDinosaur) const;

};

class Fish : public Animal
{

public:
virtual bool eats(const Animal& inPrey) const;

virtual bool eatenBy(const Bear& inBear) const;
virtual bool eatenBy(const Fish& inFish) const;
virtual bool eatenBy(const Dinosaur& inDinosaur) const;

};

class Dinosaur : public Animal
{

public:
virtual bool eats(const Animal& inPrey) const;

virtual bool eatenBy(const Bear& inBear) const;
virtual bool eatenBy(const Fish& inFish) const;
virtual bool eatenBy(const Dinosaur& inDinosaur) const;

};

745

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 745

The implementations follow. Note that each Animal subclass implements the eats() method in the
same way, but it cannot be factored up into the parent class. The reason is that if you attempt to do so,
the compiler won’t know which overloaded version of the eatenBy() method to call because *this
would be an Animal, not a particular subclass. Recall that method overload resolution is determined
according the compile-time type of the object, not its run-time type.

bool Bear::eats(const Animal& inPrey) const
{

return inPrey.eatenBy(*this);
}

bool Bear::eatenBy(const Bear& inBear) const
{

return false;
}

bool Bear::eatenBy(const Fish& inFish) const
{

return false;
}

bool Bear::eatenBy(const Dinosaur& inDinosaur) const
{

return true;
}

bool Fish::eats(const Animal& inPrey) const
{

return inPrey.eatenBy(*this);
}

bool Fish::eatenBy(const Bear& inBear) const
{

return true;
}

bool Fish::eatenBy(const Fish& inFish) const
{

return true;
}

bool Fish::eatenBy(const Dinosaur& inDinosaur) const
{

return true;
}

bool Dinosaur::eats(const Animal& inPrey) const
{

return inPrey.eatenBy(*this);
}

bool Dinosaur::eatenBy(const Bear& inBear) const

746

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 746

{
return false;

}

bool Dinosaur::eatenBy(const Fish& inFish) const
{

return false;
}

bool Dinosaur::eatenBy(const Dinosaur& inDinosaur) const
{

return true;
}

Double dispatch is a concept that takes a bit of getting used to. We suggest playing with this code to
adapt to the concept and its implementation.

Mix-In Classes
Chapters 3 and 10 introduced the technique of using multiple inheritance to build mix-in classes. As you
may recall, mix-in classes add a small piece of extra behavior to a class in an existing hierarchy. You can
usually spot a mix-in class by its name, such as Clickable, Drawable, Printable, or Lovable.

Designing a Mix-In Class
Mix-in classes come in several forms. Because mix-in classes are not a formal language feature, you
can write them however you want without breaking any rules. Some mix-in classes simply indicate that
a class supports a certain behavior, such as a hypothetical Drawable mix-in class. Any class that mixes
in the Drawable class must implement the method draw(). The mix-in class itself contains no
functionality — it simply marks an object as supporting the draw() behavior. This usage is similar to
Java’s notion of an interface — a list of prescribed behaviors without their implementation.

Other mix-in classes contain actual code. You might have a mix-in class called Playable that is mixed
into certain types of media objects. The mix-in class could contain most of the code to communicate
with the computer’s sound drivers. By mixing in the class, the media object would get that functionality
for free.

When designing a mix-in class, you need to consider what behavior you are adding and whether it
belongs in the object hierarchy or in a separate class. Using the previous example, if all media classes are
playable, the base class should descend from Playable instead of mixing the Playable class into all of
the subclasses. If only certain media classes are playable and they are scattered throughout the hierarchy,
a mix-in class makes sense.

One of the cases where mix-in classes are particularly useful is when you have classes organized into a
hierarchy on one axis, but they also contain similarity on another axis. For example, consider a war sim-
ulation game played on a grid. Each grid location can contain an Item with attack and defense capabili-
ties and other characteristics. Some items, such as a Castle, are stationary. Others, such as a Knight or
FloatingCastle, can move throughout the grid. When initially designing the object hierarchy, you
might end up with something like Figure 25-1, which organizes the classes according to their attack and
defense capabilities.

747

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 747

Figure 25-1

The hierarchy in Figure 25-1 ignores the movement functionality that certain classes contain. Building
your hierarchy around movement would result in a structure similar to Figure 25-2.

Figure 25-2

Of course, the design of Figure 25-2 throws away all the organization of Figure 25-1. What’s a good
object-oriented programmer to do?

There are two common solutions for this problem. Assuming that you go with the first hierarchy, orga-
nized around attackers and defenders, you need some way to work movement into the equation. One
possibility is that, even though only a portion of the subclasses support movement, you could add a
move() method to the Item base class. The default implementation would do nothing. Certain sub-
classes would override move() to actually change their location on the grid.

The other approach is to write a Movable mix-in class. The elegant hierarchy from Figure 25-1 could be
preserved, but certain classes in the hierarchy would subclass Movable in addition to their parent in the
diagram. Figure 25-3 shows this design.

Item

MoverNonMover

FloatingCastleKnight

SuperKnight

BarrierCastleTurret

Item

AttackerDefender

TurretKnight

SuperKnight

BarrierCastle

FloatingCastle

748

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 748

Figure 25-3

Implementing a Mix-In Class
Writing a mix-in class is no different from writing a normal class. In fact, it’s usually much simpler.
Using the earlier war simulation, the Movable mix-in class might look as follows:

class Movable
{

public:
virtual void move() = 0;

};

The Movable mix-in class, as defined earlier, doesn’t contain any actual functionality. However, it does
two very important things. First, it provides a type for Items that can be moved. This allows you to cre-
ate, for example, an array of all movable items without knowing or caring what actual subclass of Item
they belong to. The Movable class also declares that all movable items must implement a method called
move(). This way, you could iterate over all of the Movable objects and tell each of them to move.

Using a Mix-In Class
The code for a mix-in class is syntactically equivalent to multiple inheritance. In addition to subclassing
your parent class in the main hierarchy, you also subclass the mix-in class:

class FloatingCastle : public Castle, public Movable
{

public:
virtual void move();

// Other methods and members not shown here
}

The only remaining task is to provide a definition of the move() method for FloatingCastle. Once
that is done, you’ll have a class that exists in the most logical place in the hierarchy but still shares com-
monality with objects elsewhere in the hierarchy.

Item

Attacker

Movable

Defender

TurretKnight

SuperKnight

BarrierCastle

FloatingCastle

749

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 749

Object-Oriented Frameworks
When graphical operating systems first came on the scene in the 1980s, procedural programming was
the norm. At the time, writing a GUI application usually involved manipulating complex data structures
and passing them to OS-provided functions. For example, to draw a rectangle in a window, you might
populate a Window struct with the appropriate information and pass it to a drawRect() function.

As object-oriented programming grew in popularity, programmers looked for a way to apply the OO
paradigm to GUI development. The result is known as an Object-Oriented Framework. In general, a frame-
work is a set of classes that are used collectively to provide an object-oriented interface to some underly-
ing functionality. When talking about frameworks, programmers are usually referring to large class
libraries that are used for general application development. However, a framework can really represent
functionality of any size. If you write a suite of classes that provides database functionality for your
application, those classes could be considered a framework.

Working with Frameworks
The defining characteristic of a framework is that it provides its own set of techniques and patterns.
Frameworks usually require a bit of learning to get started with because they have their own mental
model. Before you can work with a large application framework, such as the Microsoft Foundation
Classes (MFC), you need to understand its view of the world.

Frameworks vary greatly in their abstract ideas and in their actual implementation. Many frameworks
are built on top of legacy procedural APIs, which may affect various aspects of their design. Other
frameworks are written from the ground up with object-oriented design in mind. Some frameworks
might ideologically oppose certain aspects of the C++ language, such as the BeOS framework, which
consciously shunned the notion of multiple inheritance.

When you start working with a new framework, your first task is to find out what makes it tick. To what
design principles does it subscribe? What mental model were its developers trying to convey? What
aspects of the language does it use extensively? These are all vital questions, even though they may
sound like things that you’ll pick up along the way. If you fail to understand the design, model, or lan-
guage features of the framework, you will quickly get into situations where you overstep the bounds of
the framework. For example, if the framework uses a custom String class and you start coding with C-
style strings, you will be stuck with conversion work that could have been easily avoided.

An understanding of the framework’s design will also make it possible for you to extend it. For example,
if the framework omits a feature, such as support for printing, you could write your own printing
classes using the same model as the framework. By doing so, you retain a consistent model for your
application, and you have code that can be reused by other applications.

The Model-View-Controller Paradigm
As mentioned, frameworks vary in their approaches to object-oriented design. One common paradigm is
known as model-view-controller, or MVC. This paradigm models the notion that many applications com-
monly deal with a set of data, one or more views on that data, and manipulation of the data.

750

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 750

In MVC, a set of data is called the model. In a race car simulator, the model would keep track of various
statistics, such as the current speed of the car and the amount of damage it has sustained damage. In
practice, the model often takes the form of a class with many getters and setters. The class definition for
the model of the race car might look like this:

class RaceCar
{

public:
RaceCar();

int getSpeed();
void setSpeed(int inValue);

int getDamageLevel();
void setDamageLevel(int inValue);

protected:
int mSpeed;
int mDamageLevel;

};

A view is a particular visualization of the model. For example, there could be two views on a RaceCar.
The first view could be a graphical view of the car, and the second could be a graph that shows the level
of damage over time. The important point is that both views are operating on the same data — they are
simply different ways of looking at the same information. This is one of the main advantages of the
MVC paradigm — by keeping data separated from its display, you can keep your code more organized
and easily create additional views.

The final piece to the MVC paradigm is the controller. The controller is the piece of code that changes the
model in response to some event. For example, when the driver of the race car simulator runs into a con-
crete barrier, the controller would instruct the model to bump up the car’s damage level and reduce its
speed.

The three components of MVC interact in a feedback loop. Actions are handled by the controller, which
adjusts the model, resulting in a change to the view(s). This interaction is shown in Figure 25-4.

Figure 25-4

View

Model

Controller

User action
or event

Data
update

Display
update

751

Incorporating Techniques and Frameworks

28_574841 ch25.qxd 12/15/04 3:48 PM Page 751

The model-view-controller paradigm has gained widespread support within many popular frameworks.
Even nontraditional applications, such as Web applications, are starting to move in the direction of MVC
because it enforces a clear separation between data, the manipulation of data, and the displaying of data.

Summary
In this chapter, you have read about some of the common techniques that Professional C++ program-
mers use consistently in their projects. As you advance as a software developer, you will undoubtedly
form your own collection of reusable classes and libraries. Discovering design techniques opens the door
to developing and using patterns, which are higher-level reusable constructs. You will experience the
many applications of patterns next in Chapter 26.

752

Chapter 25

28_574841 ch25.qxd 12/15/04 3:48 PM Page 752

Applying Design
Patterns

The design pattern concept is a simple, but powerful, idea. Once you are able to recognize the
recurring object-oriented interactions that occur in a program, finding an elegant solution becomes
a matter of merely selecting the appropriate pattern to apply. You have already learned about one
pattern in depth — the Iterator pattern, which is used heavily in the STL. This chapter describes
several additional design patterns in detail and presents sample implementations.

Recall from Chapter 4 that design patterns are an emerging concept. Certain patterns go by differ-
ent names or are subject to different interpretations. Any aspect of design is likely to provoke
debate among programmers, and the authors believe that is a good thing. Don’t simply accept
these patterns as the only way to accomplish a task — draw on their approaches and ideas to
refine them and form new patterns.

The patterns discussed in this chapter are:

❑ Singleton

❑ Factory

❑ Proxy

❑ Adapter

❑ Decorator

❑ Chain of Responsibility

❑ Observer/Listener

29_574841 ch26.qxd 12/15/04 3:48 PM Page 753

The Singleton Pattern
The singleton is one of the simplest design patterns. In English the word “singleton” means “one of a
kind” or “individual.” It has a similar meaning in programming. The singleton pattern is a strategy for
enforcing the existence of exactly one instance of a class in a program. Applying the singleton pattern to
a class guarantees that only one object of that class will ever be created. The singleton pattern also speci-
fies that the one object is globally accessible from anywhere in the program. Programmers usually refer
to a class following the singleton pattern as a singleton class.

The singleton pattern is especially helpful when you design a program with a general application class that
handles the startup, shutdown, and flow control of the application. It would be inappropriate to have
two application objects in a single program. In fact, it could prove disastrous to have two application
objects that both think they are controlling the flow of the application. By using the singleton pattern,
you can ensure that there is exactly one application object accessible from anywhere in the program.

You should use the singleton pattern whenever you want to create exactly one object of a class in a pro-
gram. If your program relies on the assumption that there will be exactly one instance of a class, you
should enforce that assumption with the singleton pattern.

Example: A Logging Mechanism
Singletons are particularly useful for utility classes. Many applications have a notion of a logger — a
class that is responsible for writing status information, debugging data, and errors to a central location.
The ideal logging class has the following characteristics:

❑ It is available at all times.

❑ It is easy to use.

❑ It provides a set of useful features.

The singleton pattern is a good match for a logger because, even though the logger could be used in
many different contexts and for many different purposes, it is conceptually a single instance.
Implementing the logger class as a singleton also makes it easier to use because you never have to worry
about which logger is the current one or how to get a hold of the current logger. Because there’s only one,
it’s a moot point!

Implementation of a Singleton
There are two basic ways to implement a singleton in C++. The first approach uses static methods to
form a class that needs no instantiation. The second uses access control levels to regulate the creation
and access of one single instance.

Both approaches are shown here, using a simple Logger class as an example. This Logger class provides
the following features:

❑ It can log a single string or a vector of strings.

❑ Each log message has an associated log level, which is prefixed to the log message.

❑ Every log message is flushed to disk so that it will appear in the file immediately.

754

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 754

Static Class Singleton
Technically, a class that uses all static methods isn’t really a singleton: it’s a nothington, to coin a new
term. The term singleton implies that there is exactly one instance of the class. If all of the methods are
static and the class is never instantiated at all, can you call it a singleton? The authors claim that, because
design patterns exist to help you build a mental model of object-oriented structures, you can call a static
class a singleton if you please. However, you should recognize that a static class as a singleton lacks
polymorphism and a built-in mechanism for construction and destruction. For cases like the Logger
class, these may be acceptable losses.

The public interface to the Logger static class follows. Note that it uses all static methods for access, so
there is no need ever to instantiate a Logger object. In fact, the constructor has been made private to
enforce this behavior.

/**
* Logger.h
*
* Definition of a singleton logger class, implemented with static methods
*/

#include <iostream>
#include <fstream>
#include <vector>
class Logger
{

public:
static const std::string kLogLevelDebug;
static const std::string kLogLevelInfo;
static const std::string kLogLevelError;

// Logs a single message at the given log level
static void log(const std::string& inMessage,

const std::string& inLogLevel);

// Logs a vector of messages at the given log level
static void log(const std::vector<std::string>& inMessages,

const std::string& inLogLevel);

// Closes the log file
static void teardown();

protected:
static void init();

static const char* const kLogFileName;

static bool sInitialized;
static std::ofstream sOutputStream;

private:
Logger() {}

};

755

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 755

The implementation of the Logger class is fairly straightforward. The sInitialized static member is
checked within each logging call to make sure that the init() method has been called to open the log
file. Once the log file has been opened, each log message is written to it with the log level prepended.

/**
* Logger.cpp
*
* Implementation of a singleton logger class
*/

#include <string>
#include “Logger.h”

using namespace std;

const string Logger::kLogLevelDebug = “DEBUG”;
const string Logger::kLogLevelInfo = “INFO”;
const string Logger::kLogLevelError = “ERROR”;

const char* const Logger::kLogFileName = “log.out”;

bool Logger::sInitialized = false;
ofstream Logger::sOutputStream;

void Logger::log(const string& inMessage, const string& inLogLevel)
{

if (!sInitialized) {
init();

}
// Print the message and flush the stream with endl.
sOutputStream << inLogLevel << “: “ << inMessage << endl;

}

void Logger::log(const vector<string>& inMessages, const string& inLogLevel)
{

for (size_t i = 0; i < inMessages.size(); i++) {

log(inMessages[i], inLogLevel);
}

}

void Logger::teardown()
{

if (sInitialized) {
sOutputStream.close();
sInitialized = false;

}
}

void Logger::init()
{

if (!sInitialized) {
sOutputStream.open(kLogFileName, ios_base::app);
if (!sOutputStream.good()) {

756

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 756

cerr << “Unable to initialize the Logger!” << endl;
return;

}
sInitialized = true;

}
}

Access-Controlled Singleton
Object-oriented purists (Warning: they are out there, and they may work at your company!) might scoff
at the static class solution to the singleton problem. Since you can’t instantiate a Logger object, you can’t
build a hierarchy of loggers and make use of polymorphism. Such a hierarchy is rarely employed in the
singleton case, but it is a valid drawback. Perhaps more significantly, as a result of using entirely static
methods, there is no object orientation at all. The class built in the previous example is essentially a col-
lection of C-style functions, not a cohesive class.

To build a true singleton in C++, you can use the access control mechanisms as well as the static key-
word. With this approach, an actual Logger object exists at run time, and the class enforces that exactly
one exists. Clients can always get a hold of that object through a static method called instance(). The
class definition looks like this:

/**
* Logger.h
*
* Definition of a true singleton logger class
*/

#include <iostream>
#include <fstream>
#include <vector>

class Logger
{

public:
static const std::string kLogLevelDebug;
static const std::string kLogLevelInfo;
static const std::string kLogLevelError;

// Returns a reference to the singleton Logger object
static Logger& instance();

// Logs a single message at the given log level
void log(const std::string& inMessage,

const std::string& inLogLevel);

// Logs a vector of messages at the given log level
void log(const std::vector<std::string>& inMessages,

const std::string& inLogLevel);

protected:
// Static variable for the one-and-only instance
static Logger sInstance;

// Constant for the filename

757

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 757

static const char* const kLogFileName;

// Data member for the output stream
std::ofstream mOutputStream;

private:
Logger();
~Logger();

};

One advantage of this approach is already apparent. Because an actual object will exist, the init() and
teardown() methods present in the static solution can be omitted in favor of a constructor and destruc-
tor. This is a big win, because the previous solution required the client to explicitly call teardown() to
close the file. Now that the logger is an object, the file can be closed when the object is destructed, which
will happen when the program ends.

The implementation follows. Notice that the actual log() methods remain unchanged, except for the
fact that they are no longer static. The constructor and destructor are called automatically because the
class contains an instance of itself as a static member. Because they are private, no external code can cre-
ate or delete a Logger.

/**
* Logger.cpp
*
* Implementation of a singleton logger class
*/

#include <string>
#include “Logger.h”

using namespace std;

const string Logger::kLogLevelDebug = “DEBUG”;
const string Logger::kLogLevelInfo = “INFO”;
const string Logger::kLogLevelError = “ERROR”;

const char* const Logger::kLogFileName = “log.out”;

// The static instance will be constructed when the program starts and
// destructed when it ends.
Logger Logger::sInstance;

Logger& Logger::instance()
{

return sInstance;
}

Logger::~Logger()
{

mOutputStream.close();
}

Logger::Logger()

758

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 758

{
mOutputStream.open(kLogFileName, ios_base::app);
if (!mOutputStream.good()) {

cerr << “Unable to initialize the Logger!” << endl;
}

}

void Logger::log(const string& inMessage, const string& inLogLevel)
{

mOutputStream << inLogLevel << “: “ << inMessage << endl;
}

void Logger::log(const vector<string>& inMessages, const string& inLogLevel)
{

for (size_t i = 0; i < inMessages.size(); i++) {
log(inMessages[i], inLogLevel);

}
}

Using a Singleton
The two programs below display the usage of the two different versions of the Logger class.

// TestStaticLogger.cpp

#include “Logger.h”
#include <vector>
#include <string>

int main(int argc, char** argv)
{

Logger::log(“test message”, Logger::kLogLevelDebug);

vector<string> items;
items.push_back(“item1”);
items.push_back(“item2”);

Logger::log(items, Logger::kLogLevelError);

Logger::teardown();
}

// TestTrueSingletonLogger.cpp

#include “Logger.h”
#include <vector>
#include <string>

int main(int argc, char** argv)
{

Logger::instance().log(“test message”, Logger::kLogLevelDebug);

vector<string> items;

759

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 759

items.push_back(“item1”);
items.push_back(“item2”);

Logger::instance().log(items, Logger::kLogLevelError);
}

Both programs have the same functionality. After executing, the file log.out should contain the follow-
ing lines:

DEBUG: test message
ERROR: item1
ERROR: item2

The Factory Pattern
A factory in real life constructs tangible objects, such as tables or cars. Similarly, a factory in object-oriented
programming constructs objects. When you use factories in your program, portions of code that want to
create a particular object ask the factory for an instance of the object instead of calling the object construc-
tor themselves. For example, an interior decorating program might have a FurnitureFactory object.
When part of the code needs a piece of furniture such as a table, it would call the createTable() method
of the FurnitureFactory object, which would return a new table.

At first glance, factories seem to lead to complicated designs without clear benefits. It appears that
you’re only adding another layer of complexity to the program. Instead of calling createTable() on
a FurnitureFactory, you could simply create a new Table object directly. However, factories can
actually be quite useful. Instead of creating various objects all over the program, you centralize the
object creation for a particular domain. This localization is often a better model of real-world creation
of objects.

Another benefit of factories is that you can use them alongside class hierarchies to construct objects
without knowing their exact class. As you’ll see in the following example, factories can run parallel to
class hierarchies.

Example: A Car Factory Simulation
In the real world, when you talk about driving a car, you can do so without referring to the specific type
of car. You could be discussing a Toyota or a Ford. It doesn’t matter, because both Toyotas and Fords are
drivable. Now, suppose that you want a new car. You would then need to specify whether you wanted a
Toyota or a Ford, right? Not always. You could just say “I want a car,” and depending on where you
were, you would get a specific car. If you said, “I want a car” in a Toyota factory, chances are you’d get a
Toyota. (Or you’d get arrested, depending on how you asked). If you said, “I want a car” in a Ford fac-
tory, you’d get a Ford.

The same concepts apply to C++ programming. The first concept, of a generic car that’s drivable, is
nothing new: it’s standard polymorphism, which you learned about in Chapter 3. You could write an
abstract Car class that defines a drive() method. Both Toyota and Ford could be subclasses of the
Car class, as shown in Figure 26-1.

760

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 760

Figure 26-1

Your program could drive Cars without knowing whether they were really Toyotas or Fords. However,
with standard object-oriented programming, the one place that you’d need to specify Toyota or Ford
is when you create the car. Here, you would need to call the constructor for one or the other. You can’t
just say, “I want a car.” However, suppose that you also had a parallel class hierarchy of car factories.
The CarFactory superclass could define a virtual buildCar() method. The ToyotaFactory and
FordFactory subclasses would override the buildCar() method to build a Toyota or a Ford.
Figure 26-2 shows the CarFactory hierarchy.

Figure 26-2

Now, suppose that there is one CarFactory object in a program. When code in the program, such as a
car dealer, wants a new car, it calls buildCar() on the CarFactory object. Depending on whether that
car factory was really a ToyotaFactory or a FordFactory, the code would get either a Toyota or a
Ford. Figure 26-3 shows the objects in a car dealer program using a ToyotaFactory:

Figure 26-3

Figure 26-4 shows the same program, but with a FordFactory instead of a ToyotaFactory. Note that
the CarDealer object and its relationship with the factory stay the same:

Figure 26-4

CarDealer

FordFactory

BuildsFordReturns "Car"

Requests "Car"

CarDealer

ToyotaFactory

BuildsToyotaReturns "Car"

Requests "Car"

CarFactory

ToyotaFactory FordFactory

Car

Toyota Ford

761

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 761

The main benefit of this approach is that factories abstract the object creation process: you can easily sub-
stitute a different factory in your program. Just as you can use polymorphism with the created objects,
you can use polymorphism with factories: when you ask the car factory for a car, you might not know
whether it’s a Toyota factory or a Ford factory, but either way it will give you a Car that you can drive.
This approach leads to easily extensible programs: simply changing the factory instance can allow the
program to work on a completely different set of objects and classes.

Implementation of a Factory
One reason for using factories is if the type of the object you want to create depends on some condition.
For example, if you are a dealer who needs a car right away, you might want to put your order into the
factory that has the fewest requests, regardless of whether the car you eventually get is a Toyota or a
Ford. The following implementation will show how to write such factories in C++.

The first thing you’ll need is the hierarchy of cars. To keep this example simple, the Car class simply has
an abstract method that returns a description of the car. Both Car subclasses are also defined in the fol-
lowing example, using inline methods to return their descriptions.

/**
* Car.h
*
*/

#include <iostream>

class Car
{

public:
virtual void info() = 0;

};

class Ford : public Car
{

public:
virtual void info() { std::cout << “Ford” << std::endl; }

};

class Toyota : public Car
{

public:
virtual void info() { std::cout << “Toyota” << std::endl; }

};

The CarFactory base class is a bit more interesting. Each factory keeps track of the number of cars in
production. When the public requestCar() method is called, the number of cars in production at the
factory is increased by one, and calling the pure virtual createCar() method returns a new car. The
idea is that individual factories will override createCar() to return the appropriate type of car. The fac-
tory itself implements requestCar(), which takes care of updating the number of cars in production.
CarFactory also provides a public method to query the number of cars being produced at each factory.

762

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 762

The class definitions for the CarFactory subclass are shown here:

/**
* CarFactory.h
*/

// For this example, the Car class is assumed to already exist.
#include “Car.h”

class CarFactory
{

public:
CarFactory();

Car* requestCar();

int getNumCarsInProduction() const;

protected:
virtual Car* createCar() = 0;

private:
int mNumCarsInProduction;

};

class FordFactory : public CarFactory
{

protected:
virtual Car* createCar();

};

class ToyotaFactory : public CarFactory
{

protected:
virtual Car* createCar();

};

As you can see, the subclasses simply override createCar() to return the specific type of car that they
produce. The implementation of the CarFactory hierarchy is shown here:

/**
* CarFactory.cpp
*/

#include “CarFactory.h”

// Initialize the count to zero when the factory is created.
CarFactory::CarFactory() : mNumCarsInProduction(0) {}

// Increment the number of cars in production and return the
// new car.
Car* CarFactory::requestCar()
{

763

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 763

mNumCarsInProduction++;
return createCar();

}

int CarFactory::getNumCarsInProduction() const
{

return mNumCarsInProduction;
}

Car* FordFactory::createCar()
{

return new Ford();
}

Car* ToyotaFactory::createCar()
{

return new Toyota();
}

The implementation approach used in this example is called an abstract factory because the type of the
object that is created depends on which concrete subclass of the factory class is being used. A similar pat-
tern can be implemented in a single class instead of a class hierarchy. In that case, a single create()
method takes a type or string parameter from which it decides which object to create. For example, a
CarFactory object would provide a buildCar() method that takes a string representing the type of car
and constructs the appropriate type. However, that technique is less interesting and less flexible than the
factory hierarchy described previously.

Using a Factory
The simplest way to use a factory is simply to instantiate it and to call the appropriate method, as in the
following piece of code:

ToyotaFactory myFactory;

Car* myCar = myFactory.requestCar();

A more interesting example makes use of the virtual constructor idea to build a car in the factory that
has the fewest cars in production. To do this, you will need a function that looks at several factories and
chooses the least busy one, such as the following function:

CarFactory* getLeastBusyFactory(const vector<CarFactory*>& inFactories)
{

if (inFactories.size() == 0) return NULL;

CarFactory* bestSoFar = inFactories[0];

Factory methods are one way to implement virtual constructors: methods that
create objects of different types. For example, the buildCar() method creates both
Toyotas and Fords, depending on the concrete factory object on which it is called.

764

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 764

for (size_t i = 1; i < inFactories.size(); i++)
{

if (inFactories[i]->getNumCarsInProduction() <
bestSoFar->getNumCarsInProduction()) {
bestSoFar = inFactories[i];

}
}

return bestSoFar;
}

The following sample program makes use of this function to build 10 cars, whatever brand they might
be, from the currently least busy factory.

int main(int argc, char** argv)
{

vector<CarFactory*> factories;

// Create 3 Ford factories and 1 Toyota factory.
FordFactory* factory1 = new FordFactory();
FordFactory* factory2 = new FordFactory();
FordFactory* factory3 = new FordFactory();
ToyotaFactory* factory4 = new ToyotaFactory();

// To get more interesting results, preorder some cars.
factory1->requestCar();
factory1->requestCar();
factory2->requestCar();
factory4->requestCar();

// Add the factories to a vector.
factories.push_back(factory1);
factories.push_back(factory2);
factories.push_back(factory3);
factories.push_back(factory4);

// Build 10 cars from the least busy factory.
for (int i = 0; i < 10; i++) {

CarFactory* currentFactory = getLeastBusyFactory(factories);
Car* theCar = currentFactory->requestCar();
theCar->info();

}
}

When executed, the program will print out the make of each car produced:

Ford
Ford
Ford
Toyota
Ford
Ford
Ford

765

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 765

Toyota
Ford
Ford

The results are rather predictable because the loop effectively iterates through the factories in a round-
robin fashion. However, one could imagine a scenario where multiple dealers are requesting cars, and
the current status of each factory isn’t quite so predictable.

Other Uses of Factories
You can also use the factory pattern for more than just modeling real-world factories. For example, con-
sider a word processor in which you want to support documents in different languages so that each doc-
ument uses a single language. There are many aspects of the word processor in which the choice of
document language requires different support: the character set used in the document (whether or not
accented characters are needed), the spellchecker, the thesaurus, and the way the document is displayed
to name a few. You could use factories to design a clean word processor by writing an abstract
LanguageFactory superclass and concrete factories for each language of interest, such as
EnglishLanguageFactory and FrenchLangugaeFactory. When the user specifies a language for a
document, the program instantiates the appropriate language factory and attaches it to the document.
From then on, the program doesn’t need to know which language is supported in the document. When
it needs a language-specific piece of functionality, it can just ask the LanguageFactory. For example,
when it needs a spellchecker, it can call the createSpellchecker() method on the factory, which will
return a spellchecker in the appropriate language.

The Proxy Pattern
The proxy pattern is one of several patterns that divorce the abstraction of a class from its underlying
representation. A proxy object serves as a stand-in for a real object. Such objects are generally used when
using the real object would be time-consuming or impossible.

You may have already used the proxy pattern without formally recognizing it as such. Proxies are very
handy in unit testing. Instead of using live stock price data to test a stock prediction tool, you could
write a proxy class that mimics the behavior of a stock feed but uses fixed data.

Example: Hiding Network Connectivity Issues
Consider a networked game with a Player class that represents a person on the Internet who has joined
the game. The Player class would include functionality that requires network connectivity, such as an
instant messaging feature. In the event that a player’s connection becomes slow or unresponsive, the
Player object representing that person can no longer receive instant messages.

Because you don’t want to expose network problems to the user, it may be desirable to have a separate
class that hides the networked parts of a Player. This PlayerProxy object would substitute for the
actual Player object. Clients of the class would either use the PlayerProxy class at all times as a gate-
keeper to the real Player class, or the system would substitute a PlayerProxy when a Player became
unavailable. During a network failure, the PlayerProxy object could still display the player’s name and
last-known state, and could continue to function when the original Player object cannot. Thus, the
proxy class hides some undesirable semantics of the underlying Player class.

766

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 766

Implementation of a Proxy
The public interface for a Player class follows. The sendInstantMessage() method requires network
connectivity to properly function.

class Player
{

public:
virtual string getName();

// Sends an instant message to the player over the network
// and returns the reply as a string. Network connectivity
// is required.
virtual string sendInstantMessage(const string& inMessage) const;

};

Proxy classes often evoke the is-a versus has-a debate. You could implement PlayerProxy as a com-
pletely separate class that contains a Player object. This design would make most sense if the
PlayerProxy is always used by the program when it wants to talk to a Player object. Alternatively,
you could implement PlayerProxy as a subclass that overrides functionality that requires network con-
nectivity. This design makes it easy to swap out a Player for a PlayerProxy when network connectiv-
ity ceases. This example uses the latter approach by subclassing Player, as shown here:

class PlayerProxy : public Player
{

public:
virtual string sendInstantMessage(const string& inMessage) const;

};

The implementation of the PlayerProxy’s sendInstantMessage() method simply cuts out the net-
work functionality and returns a string indicating that the player has gone offline.

string PlayerProxy::sendInstantMessage(const string& inMessage)
{

return “The player could not be contacted.”;
}

Using a Proxy
If a proxy is well written, using it should be no different from using any other object. For the
PlayerProxy example, the code that uses the proxy could be completely unaware of its existence. The
following function, designed to be called when the Player has won, could be dealing with an actual
Player or a PlayerProxy. The code is able to handle both cases in the same way because the proxy
ensures a valid result.

bool informWinner(const Player* inPlayer)
{

string result;

result = inPlayer->sendInstantMessage(“You have won! Want to play again?”);

if (result == “yes”) {

767

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 767

cout << inPlayer->getName() << “ wants to play again” << endl;
return true;

} else {
// The player said no, or is offline.
cout << inPlayer->getName() << “ does not want to play again” << endl;
return false;

}
}

The Adapter Pattern
The motivation for changing the abstraction given by a class is not always driven by a desire to hide
functionality or protect against performance concerns. Sometimes, the underlying abstraction cannot be
changed but it doesn’t suit the current design. In this case, you can build an adapter or wrapper class. The
adapter provides the abstraction that the rest of the code uses and serves as the bridge between the
desired abstraction and the actual underlying code. You’ve already seen adapters in use by the STL.
Recall that the STL provides container adapters, such as the stack and queue, which are wrappers
around other containers like deque and list.

Example: Adapting an XML Library
In Chapter 24, you read about the Xerces XML parsing library. Xerces is a great general-purpose tool —
it implements many obscure XML standards and provides much flexibility. However, there are several
reasons why you might want a wrapper around Xerces. Your use case might be simple enough that you
require only a subset of Xerces’ functionality. By writing a wrapper, you can maximize ease of use for the
features that are relevant to you. Also, putting a wrapper around Xerces gives you the freedom to switch
between different XML libraries. Perhaps you foresee a move to custom XML code down the road, or
wish to allow users to write their own XML parsing code. As long as their code supports the same inter-
face as your wrapper, it will work.

Implementation of an Adapter
The first step in writing an adapter is reading and understanding the class or library that you’re going to
adapt. If you are unfamiliar with Xerces, you should review Chapter 24 before continuing.

The next step is to define the new interface to the underlying functionality. For this example, we will
assume that users only need the Xerces features that were discussed in Chapter 24 — the ability to read
XML elements, attributes, and text nodes. A single class, ParsedXMLElement, serves as an adapter to
Xerces. The client creates a ParsedXMLElement from a file, which represents the root node. All subele-
ments of that element are also represented as ParsedXMLElements. The following class definition shows
the public functionality of ParsedXMLElement:

// ParsedXMLElement.h

#include <string>
#include <vector>

class ParsedXMLElement
{

768

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 768

public:
ParsedXMLElement(const std::string& inFilename);
~ParsedXMLElement();

std::string getName() const;
std::string getTextData() const;
std::string getAttributeValue(const std::string& inKey) const;
std::vector<ParsedXMLElement*> getSubElements() const;

};

Because the adapter will be using Xerces behind the scenes, some additions are needed to this class defi-
nition. The ParsedXMLElement will be responsible for initializing the Xerces library when the first
ParsedXMLElement root object is created and terminating the library when the last root object is
deleted. In order to implement this functionality, the ParsedXMLElement needs to keep a static count of
the number of root element objects in existence. Additionally, each ParsedXMLElement will contain a
pointer to a Xerces DOMElement, which is used to actually obtain the parsed data. The
XercesDOMParser object will need to remain in existence as long as associated DOMElements exist. The
parser will live in the root object, so a comment warns clients that subelements are invalid once the root
element is destroyed. Here is the modified definition of ParsedXMLElement:

// ParsedXMLElement.h

#include <string>
#include <vector>

#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/dom/DOM.hpp>

XERCES_CPP_NAMESPACE_USE

/**
* Note: If the root element is deleted, subelements become
* invalid.
*/

class ParsedXMLElement
{

public:
ParsedXMLElement(const std::string& inFilename);
~ParsedXMLElement();

std::string getName() const;
std::string getTextData() const;
std::string getAttributeValue(const std::string& inKey) const;
// The caller is responsible for freeing the ParsedXMLElements
// pointed to by the elements of the vector.
std::vector<ParsedXMLElement*> getSubElements() const;

protected:
// This constructor is used internally to create subelements.
ParsedXMLElement(DOMElement* inElement);

XercesDOMParser* mParser;
DOMElement* mElement;

769

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 769

static int sReferences;

private:
// Disallow copy construction and op=.
ParsedXMLElement(const ParsedXMLElement&);
ParsedXMLElement& operator=(const ParsedXMLElement& rhs);

};

The implementation of the wrapper is very similar to the examples in Chapter 24, so we won’t go
into too much detail here: the code below should speak for itself. The important point is that every
public method of ParsedXMLElement is really fronting calls to Xerces. We hope you agree that
ParsedXMLElement provides a friendlier interface to this subset of Xerces functionality:

#include “ParsedXMLElement.h”

#include <xercesc/util/XMLString.hpp>

#include <iostream>

XERCES_CPP_NAMESPACE_USE
using namespace std;

// No references by default
int ParsedXMLElement::sReferences = 0;

ParsedXMLElement::ParsedXMLElement(const std::string& inFilename)
{

if (sReferences == 0) {
// First element--initialize the library
XMLPlatformUtils::Initialize();

}
sReferences++;

mParser = new XercesDOMParser();
mParser->parse(inFilename.c_str());

DOMNode* node = mParser->getDocument();
DOMDocument* document = dynamic_cast<DOMDocument*>(node);
if (document == NULL) {

cerr << “WARNING: No XML document!” << endl;
return;

}

mElement = dynamic_cast<const DOMElement*>(document->getDocumentElement());
if (mElement == NULL) {

cerr << “WARNING: XML Document had no root element!” << endl;
}

}

ParsedXMLElement::~ParsedXMLElement()
{

if (mParser != NULL) {
// This is the root element.

770

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 770

delete mParser;

sReferences--;
if (sReferences == 0) {

// Last element destroyed
XMLPlatformUtils::Terminate();

}
}

}

string ParsedXMLElement::getName() const
{

char* tagName = XMLString::transcode(mElement->getTagName());
string result(tagName);
XMLString::release(&tagName);

return result;
}

string ParsedXMLElement::getTextData() const
{

// We assume that the first text node we reach is the one we want.
DOMNodeList* children = mElement->getChildNodes();
for (int i = 0; i < children->getLength(); i++) {

DOMText* textNode = dynamic_cast<DOMText*>(children->item(i));
if (textNode != NULL) {

char* textData = XMLString::transcode(textNode->getData());
string result(textData);
XMLString::release(&textData);
return result;

}
}

// No text nodes were found.
return “”;

}

string ParsedXMLElement::getAttributeValue(const std::string& inKey) const
{

XMLCh* key = XMLString::transcode(inKey.c_str());

const XMLCh* value = mElement->getAttribute(key);
XMLString::release(&key);

char* valueString = XMLString::transcode(value);
string result(valueString);
XMLString::release(&valueString);

return result;
}

vector<ParsedXMLElement*> ParsedXMLElement::getSubElements() const
{

771

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 771

vector<ParsedXMLElement*> result;

DOMNodeList* children = mElement->getChildNodes();
for (int i = 0; i < children->getLength(); i++) {

DOMElement* elNode = dynamic_cast<DOMElement*>(children->item(i));
if (elNode != NULL) {

result.push_back(new ParsedXMLElement(elNode));
}

}

return result;
}

ParsedXMLElement::ParsedXMLElement(DOMElement* inElement)
{

mParser = NULL; // No parser for a subelement
mElement = inElement;

}

Using an Adapter
Since adapters exist to provide a more appropriate interface for underlying functionality, their use
should be straightforward and specific to the particular case. Given the previous example, the following
program outputs selected information about an XML file:

int main(int argc, char** argv)
{

ParsedXMLElement e(“test.xml”);
cout << “root name: “ << e.getName() << endl;

vector<ParsedXMLElement*> subelements = e.getSubElements();
for (vector<ParsedXMLElement*>::iterator it = subelements.begin();

it != subelements.end(); ++it) {
cout << “subelement name: “ << (*it)->getName() << endl;
cout << “subelement speaker: “ << (*it)->getAttributeValue(“speaker”)

<< endl;
cout << “subelement text data: “ << (*it)->getTextData() << endl;

}

for (vector<ParsedXMLElement*>::iterator it = subelements.begin();
it != subelements.end(); ++it) {

delete *it;
}

return 0;
}

772

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 772

When used with the example file from Chapter 24, the output will be:

root name: dialogue
subelement name: sentence
subelement speaker: Marni
subelement text data: Let’s go get some ice cream.
subelement name: sentence
subelement speaker: Scott
subelement text data: After I’m done writing this C++ book.

The Decorator Pattern
The decorator pattern is exactly what it sounds like — a “decoration” on an object. The pattern is used to
change the behavior of an object at runtime. Decorators are a lot like subclasses, but their effects can be
temporary. For example, if you have a stream of data that you are parsing and you reach data that repre-
sents an image, you could temporarily decorate the stream object with an ImageStream object. The
ImageStream constructor would take the stream object as a parameter and would have built-in knowl-
edge of image parsing. Once the image was parsed, you could continue using the original object to parse
the remainder of the stream. The ImageStream acts as a decorator because it adds new functionality
(image parsing) to an existing object (a stream).

Example: Defining Styles in Web Pages
As you may already know, Web pages are written in a simple text-based structure called Hypertext
Markup Language (HTML). In HTML, you can apply styles to a text by using style tags, such as and
 for bold and <I> and </I> for italic. The following line of HTML will display the message in bold:

A party? For me? Thanks!

The following line will display the message in bold italic:

<I>A party? For me? Thanks!</I>

Assume that you are writing an HTML editing application. Your users will be able to type in paragraphs
of text and apply one or more styles to them. You could make each type of paragraph a new subclass, as
shown in Figure 26-5, but that design could be cumbersome and would grow exponentially as new
styles were added.

Figure 26-5

BoldParagraph ItalicParagraph

Paragraph

BoldItalicParagraph

773

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 773

The alternative is to consider styled paragraphs not as types of paragraphs, but as decorated paragraphs.
This leads to situations like the one shown in Figure 26-6, where an ItalicParagraph operates on a
BoldParagraph, which in turn operates on a Paragraph. The recursive decoration of objects nests the
styles in code just as they are nested in HTML.

Figure 26-6

Implementation of a Decorator
To decorate the Paragraph class with zero or more styles, you will need a hierarchy of styled
Paragraph classes. Each of the styled Paragraph classes will be able to be constructed from an existing
Paragraph. This way, they can all decorate a Paragraph or a styled Paragraph. The most convenient
way to implement the styled classes is as subclasses of Paragraph. Here is the Paragraph base class,
with inlined method implementations:

class Paragraph
{

public:
Paragraph(const string& inInitialText) : mText(inInitialText) {}

virtual string getHTML() const { return mText; }

protected:
string mText;

};

The BoldParagraph class will be a subclass of Paragraph so that it can override getHTML(). However,
vecause we intend to use it as a decorator, its only public noncopy constructor takes a const reference to
a Paragraph. Note that it passes an empty string to the Paragraph constructor because
BoldParagraph doesn’t make use of the mText data member — its only purpose in subclassing
Paragraph is to override getHTML().

Paragraph

BoldParagraph

ItalicParagraph

774

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 774

class BoldParagraph : public Paragraph
{

public:
BoldParagraph(const Paragraph& inParagraph) :

Paragraph(“”), mWrapped(inParagraph) {}

virtual string getHTML() const {
return “” + mWrapped.getHTML() + “”;

}

protected:
const Paragraph& mWrapped;

};

The ItalicParagraph class is almost identical:

class ItalicParagraph : public Paragraph
{

public:
ItalicParagraph(const Paragraph& inParagraph) :

Paragraph(“”), mWrapped(inParagraph) {}

virtual string getHTML() const {
return “<I>” + mWrapped.getHTML() + “</I>”;

}

protected:
const Paragraph& mWrapped;

};

Again, remember that BoldParagraph and ItalicParagraph only subclass Paragraph so that they
can override getHTML(). The content of the paragraph comes from the wrapped object, not from the
mText data member.

Using a Decorator
From the user’s point of view, the decorator pattern is appealing because it is very easy to apply, and is
transparent once applied. The client doesn’t need to know that a decorator has been employed at all. A
BoldParagraph behaves just like a Paragraph.

Here is a quick program that creates and outputs a paragraph, first in bold, then in bold and italic:

int main(int argc, char** argv)
{

Paragraph p(“A party? For me? Thanks!”);

// Bold
cout << BoldParagraph(p).getHTML() << endl;

// Bold and Italic
cout << ItalicParagraph(BoldParagraph(p)).getHTML() << endl;

}

775

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 775

The output of this program will be:

A party? For me? Thanks!
<I>A party? For me? Thanks!</I>

There is an interesting side effect of this implementation that just happens to work correctly for HTML.
If you applied the same style twice in a row, the effect would only occur once:

cout << BoldParagraph(BoldParagraph(p)) .getHTML() << endl;

The result of this line is:

A party? For me? Thanks!

If you can see the reason why, you’ve mastered C++! What’s happening here is that instead of using the
BoldParagraph constructor that takes a const Paragraph reference, the compiler is using the built-in
copy constructor for BoldParagraph! In HTML, that’s fine — there’s no such thing as double-bold.
However, other decorators built using a similar framework may need to implement the copy constructor
to properly set the reference.

The Chain of Responsibility Pattern
A chain of responsibility is used when you want each class in an object-oriented hierarchy to get a crack at
performing a particular action. The technique generally employs polymorphism so that the most specific
class gets called first and can either handle the call or pass it up to its parent. The parent then makes the
same decision — it can handle the call or pass it up to its parent. A chain of responsibility does not nec-
essarily have to follow a class hierarchy, but it typically does.

Chains of responsibility are perhaps most commonly used for event handling. Many modern applica-
tions, particularly those with graphical user interfaces, are designed as a series of events and responses.
For example, when a user clicks on the File menu and selects Open, an open event has occurred. When
the user clicks the mouse on the drawable area of a paint program, a mouse down event occurs. As the
shape is drawn, mouse move events continually occur until the eventual mouse up event. Each operat-
ing system has its own way of naming and using these events, but the overall idea is the same. When an
event occurs, it is somehow communicated to the program, which takes appropriate action.

As you know, C++ does not have any built-in facilities for graphical programming. It also has no notion
of events, event transmission, or event handling. A chain of responsibility is a reasonable approach to
event handling because in an object-oriented hierarchy, the processing of events often maps to the
class/subclass structure.

Example: Event Handling
Consider a drawing program, which has a hierarchy of Shape classes, as in Figure 26-7.

776

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 776

Figure 26-7

The leaf nodes handle certain events. For example, Square or Circle can receive mouse down events
that will select the chosen shape. The parent class handles events that have the same effect regardless of
the particular shape. For example, a delete event is handled the same way, regardless of the type of
shape being deleted. The ideal algorithm for handling a particular event is to start at the leaf nodes and
walk up the hierarchy until the message is handled. In other words, if a mouse down event occurs on a
Square object, first the Square will get a chance to handle the event. If it doesn’t recognize the event,
the Shape class gets a chance. This approach is an example of a chain of responsibility because each sub-
class may pass the message up to the next class in the chain.

Implementation of a Chain of Responsibility
The code for a chained messaging approach will vary based on how the operating system handles
events, but it tends to resemble the following code, which uses integers to represent types of events.

void Square::handleMessage(int inMessage)
{

switch (inMessage) {
case kMessageMouseDown:

handleMouseDown();
break;

case kMessageInvert:
handleInvert();
break;

default:
// Message not recognized--chain to superclass
Shape::handleMessage(inMessage);

}
}

void Shape::handleMessage(int inMessage)
{

switch (inMessage) {
case kMessageDelete:

handleDelete();
break;

default:
cerr << “Unrecognized message received: “ << inMessage << endl;
break;

}
}

Square Circle

Shape

Triangle

777

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 777

When the event-handling portion of the program or framework receives a message, it finds the corre-
sponding shape and calls handleMessage(). Through polymorphism, the subclass’s version of
handleMessage() is called. This gives the leaf node first crack at handling the message. If it doesn’t
know how to handle it, it passes it up to its superclass, which gets the next chance. In this example, the
final recipient of the message simply prints an error if it is unable to handle the event. You could also
throw an exception or have your handleMessage() method return a boolean indicating success or
failure.

Note that while event chains usually correlate with the class hierarchy, they do not have to. In the pre-
ceding example, the Square class could have just as easily passed the message to an entirely different
object. The chained approach is flexible and has a very appealing structure for object-oriented hierarchies.
The downside is that it requires diligence on the part of the programmer. If you forget to chain up to the
superclass from a subclass, events will effectively get lost. Worse, if you chain to the wrong class, you
could end up in an infinite loop!

Using a Chain of Responsibility
For a chain of responsibility to respond to events, there must be another class that dispatches the events
to the correct object. Because this task varies so greatly by framework or platform, pseudocode for han-
dling a mouse down event is presented below in lieu of platform-specific C++ code.

MouseLocation loc = getClickLocation();

Shape* clickedShape = findShapeAtLocation(loc);

clickedShape->handleMessage(kMessageMouseDown);

The Observer Pattern
The other common model for event handling is known as observer, listener messaging, or publish and sub-
scribe. This is a more prescriptive model that is often less error-prone than message chains. With the pub-
lish and subscribe technique, individual objects register the events they are able to understand with a
central event handling registry. When an event is received, it is transmitted to the list of subscribed
objects.

Example: Event Handling
Just as with the earlier chain of responsibility pattern, observers are often used to handle events. The
main difference between the two patterns is that the chain of responsibility works best for logical hierar-
chies where you need to find the correct class to handle the event. Observers work best when events can
be handled by multiple objects or are unrelated to a hierarchy.

Implementation of an Observer
The definition of a simple event registry class is shown in the following example. It allows any object
that extends the mix-in class Listener to subscribe to one or more events. It also contains a method for

778

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 778

the program to call when an event is received, which will dispense the event to all subscribed
Listeners.

/**
* Listener.h
*
* Mix-in class for objects that are able to respond to events
*/

class Listener
{

public:
virtual void handleMessage(int inMessage) const = 0;

};

/**
* EventRegistry.h
*
* Maintains a directory of Listeners and their corresponding events. Also
* handles transmission of an event to the appropriate Listener.
*/

#include “Listener.h”
#include <vector>
#include <map>

class EventRegistry
{

public:
static void registerListener(int inMessage, const Listener* inListener);

static void handleMessage(int inMessage);

protected:
static std::map<int, std::vector<const Listener*> > sListenerMap;

};

The implementation of the EventRegistry class follows. When a new Listener is registered, it is
added to the vector of Listener references stored in the listener map for the given event. When an
event is received, the registry simply retrieves the vector and passes the event to each Listener.

/**
* EventRegistry.cpp
*
* Implements the EventRegistry class
*/

#include “EventRegistry.h”
#include <iostream>

using namespace std;

779

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 779

// Define the static map.
map<int, vector<const Listener*> > EventRegistry::sListenerMap;

void EventRegistry::registerListener(int inMessage, const Listener* inListener)
{

// Recall from Chapter 21 that indexing into a map adds the element
// with the specified key if it does not already exist.
sListenerMap[inMessage].push_back(inListener);

}

void EventRegistry::handleMessage(int inMessage)
{

// Check to see if the message has *any* listeners.
if (sListenerMap.find(inMessage) == sListenerMap.end()) return;

for (int i = 0; i < sListenerMap[inMessage].size(); i++) {
sListenerMap[inMessage].at(i)->handleMessage(inMessage);

}
}

Using an Observer
Following is a very simple unit test that demonstrates how to use the publish and subscribe technique. The
class TestListener subscribes to message 0 in its constructor. Subscribing to a message in a constructor
is a common pattern for objects that are Listeners. The class contains two flags that keep track of
whether message 0 was successfully received and whether any unknown messages were received. If
message 0 was received and no unknowns were received, the test passes.

class TestListener : public Listener
{

public:
TestListener();

void handleMessage(int inMessage);

bool fMessage0Received;
bool fUnknownMessageReceived;

};

TestListener::TestListener()
{

fMessage0Received = false;
fUnknownMessageReceived = false;

// Subscribe to event 0.
EventRegistry::registerListener(0, this);

}

void TestListener::handleMessage(int inMessage)
{

switch (inMessage) {
case 0:

fMessage0Received = true;

780

Chapter 26

29_574841 ch26.qxd 12/15/04 3:48 PM Page 780

break;

default:
fUnknownMessageReceived = true;
break;

}
}

int main(int argc, char** argv)
{

TestListener tl;

EventRegistry::handleMessage(0);
EventRegistry::handleMessage(1);
EventRegistry::handleMessage(2);

if (!tl.fMessage0Received) {
cout << “TEST FAILED: Message 0 was not received” << endl;

} else if (tl.fUnknownMessageReceived) {
cout << “TEST FAILED: TestListener received unknown message” << endl;

} else {
cout << “TEST PASSED” << endl;

}
}

An actual implementation in your program would vary from the implementation shown based on the
services provided by the environment and your individual needs. As you may have noticed, this imple-
mentation does not provide a way to unregister a Listener. Unless all objects are guaranteed to stick
around forever, they should be unregistered on deletion to avoid bugs. This implementation also allows
objects to register twice, which may be undesirable depending on your use case.

Summary
This chapter has given you just a taste of how patterns can help you organize object-oriented concepts
into high-level designs. There is a seemingly infinite supply of design patterns cataloged and discussed
on the Portland Pattern Repository Wiki at www.c2.com. It’s easy to get carried away and spend all your
time trying to find the specific pattern that applies to your task. We recommend that you focus on a few
patterns that interest you and focus your learning on how patterns are developed, not just the small dif-
ferences between similar ones. After all, to paraphrase the old saying, “Teach me a design pattern, and
I’ll code for a day. Teach me how to create design patterns, and I’ll code for a lifetime.”

Design patterns are a terrific way to end your journey through Professional C++ Programming because
they are a perfect example of how good C++ programmers can become great C++ programmers. By
thinking through your designs, experimenting with different approaches in object-oriented program-
ming, and selectively adding new techniques to your coding repertoire, you’ll be able to take your C++
skills to the Professional level.

781

Applying Design Patterns

29_574841 ch26.qxd 12/15/04 3:48 PM Page 781

29_574841 ch26.qxd 12/15/04 3:48 PM Page 782

C++
Interviews

Reading this book will surely give your C++ career a kick-start, but employers will want you to
prove yourself before they offer the big bucks. Interview methodologies vary from company to
company, but many aspects of technical interviews are predictable. A thorough interviewer will
want to test your basic coding skills, your debugging skills, your design and style skills, and your
problem solving skills. The set of questions you might be asked is quite large. In this appendix,
you’ll read about some of the different types of questions you may encounter and the best tactics
for landing that high-paying C++ programming job you’re after.

This appendix iterates through the chapters of the book, discussing the aspects of each chapter
that are likely to come up in an interview situation. Each section also includes a discussion of the
types of questions that could be designed to test those skills and the best ways to deal with the
questions.

Chapter 1: A Crash Course in C++
A technical interview will often include some basic C++ questions to weed out the candidates who
put C++ on their resume simply because they’ve heard of the language. These questions might be
asked during a phone screen, when a developer or recruiter calls you before bringing you in for an
in-person interview. They could also be asked via email or in person. When answering these ques-
tions, remember that the interviewer is just trying to establish that you’ve actually learned and
used C++. You generally don’t need to get every detail right to earn high marks.

30_574841 appa.qxd 12/15/04 3:48 PM Page 783

Things to Remember
❑ main() and its parameters

❑ Header file syntax, including the omission of “.h” for standard library headers

❑ Basic use of namespaces

❑ Language basics, such as loop syntax, the ternary operator, and variables

❑ The difference between the stack and the heap

❑ Dynamically allocated arrays

❑ Use of const

Types of Questions
Basic C++ questions will often come in the form of a vocabulary test. The interviewer may ask you to
define C++ terms, such as const or static. He or she may simply be looking for the textbook answer,
but you can often score extra points by giving sample usage or extra detail. For example, in addition to
saying that one of the uses of const is to specify that a reference argument cannot be changed, you can
also say that a const reference is more efficient than a copy when passing an object into a function or
method.

The other form that basic C++ competency questions can take is a short program that you write in front
of the interviewer. An interviewer may give you a warm-up question, such as, “Write Hello, World in
C++.” When you get a seemingly simple question like this, make sure that you score all the extra points
you can by showing that you are namespace-savvy, you use streams instead of printf(), and you
know which standard headers to include.

Chapter 2: Designing Professional
C++ Programs

Your interviewer will want to make sure that in addition to knowing the C++ language, you are skilled
at applying it. You may not be asked a design question explicitly, but good interviewers have a variety of
techniques to sneak design into other questions, as you’ll see.

Things to Remember
❑ Design is subjective — be prepared to defend design decisions you make during the interview.

❑ Recall the details of a design you’ve done in the past prior to the interview in case you are asked
for an example.

❑ Be prepared to define abstraction and give an example.

❑ Be prepared to tout the benefits of code reuse.

❑ Be prepared to sketch out a design visually, including class hierarchies.

784

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 784

Types of Questions
Design questions are hard for an interviewer to come up with — any program that you could design in
an interview setting is probably too simple to demonstrate real-world design skills. Design questions
may come in a more fuzzy form, such as, “Tell me the steps in designing a good program” or “Explain
the principle of abstraction.” They can also be less explicit. When discussing your previous job, the inter-
viewer can say, “Can you explain the design of that project to me?”

Chapter 3: Designing with Objects
Object-oriented design questions are used to weed out C programmers who merely know what a
reference is from C++ programmers who actually use the object-oriented features of the language.
Interviewers don’t take anything for granted; even if you’ve been using object-oriented languages for
years, they may still want to see evidence that you understand the methodology.

Things to Remember
❑ The difference between the procedural and object-oriented paradigms

❑ The difference between a class and an object

❑ Expressing classes in terms of components, properties, and behaviors

❑ Is-a and has-a relationships

❑ The tradeoffs involved in multiple inheritance

Types of Questions
There are typically two ways to ask object-oriented design questions. You can be asked to define an
object-oriented concept, or you can be asked to sketch out an object-oriented hierarchy. The former is
pretty straight-forward. Remember that examples might earn you extra credit.

If you’re asked to sketch out an OO hierarchy, the interviewer will usually provide a simple application,
such as a card game, for which you should design a class hierarchy. Interviewers often ask design ques-
tions about games because they are applications with which most people are already familiar. They also
help lighten the mood a bit when compared to questions about things like database implementation. The
hierarchy you generate will, of course, vary based on the game or application they are asking you to
design. Here are some points to consider:

❑ The interviewer wants to see your thought process. Think aloud, brainstorm, engage the inter-
viewer in a discussion, and don’t be afraid to erase and go in a different direction.

❑ The interviewer may assume that you are familiar with the application. If you’ve never heard of
blackjack and you get a question about it, ask the interviewer to clarify or change the question.

785

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 785

❑ Unless the interviewer gives you a specific format to use when describing the hierarchy, we rec-
ommend that your class diagram take the form of an inheritance tree with a rough list of meth-
ods and data members for each class.

❑ You may have to defend your design or revise it to take added requirements into consideration.
Try to gauge whether the interviewer sees actual flaws in your design or whether she just wants
to put you on the defensive to see your skills of persuasion.

Chapter 4: Designing with Libraries
and Patterns

A potential employer will want to know that you’re able to work with code that you didn’t write. If
you’ve listed specific libraries on your resume, you should be prepared to answer questions on those. If
not, a general understanding of the importance of libraries will probably suffice.

Things to Remember
❑ The tradeoffs between building from scratch and reusing existing code

❑ The basics of big-O notation (or at least remember that O(n log n) is better than O(n2))

❑ The functionality that is included in the C++ Standard Library

❑ The high-level definition of design patterns

Types of Questions
If the interviewer is asking you about a specific library, he or she will probably focus on the high-level
aspects of the library as opposed to technical specifics. For example, one of the authors often asks candi-
dates what the strengths and weaknesses of the STL are from a library design point of view. The best
candidates talk about the STL’s breadth and standardization as strengths and its steep learning curve as
the major drawback.

You may also be asked a design question that initially doesn’t sound as if it’s related to libraries. For
example, the interviewer could ask how you would go about creating an application that downloads
MP3 music off the Web and plays it on the local computer. This question isn’t explicitly related to
libraries, but that’s what it’s getting at: the question is really asking about process. You should begin by
talking about how you would gather requirements and do initial prototypes. Because the question men-
tions two specific technologies, the interviewer would like to know how you would deal with them. This
is where libraries come into play. If you tell the interviewer that you would write your own Web classes
and MP3 playing code, you won’t fail the test, but you will be challenged to justify the time and expense
of reinventing these tools. A better answer would be to say that you would survey existing libraries that
perform Web and MP3 functionality to see if one exists that suits the project. You might want to name
some technologies that you would start with, such as libcurl for Web retrieval in Linux or the Windows
Media library for music playback in Windows.

786

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 786

Chapter 5: Designing for Reuse
Interviewers rarely ask questions about designing reusable code. This omission is unfortunate because
having programmers on staff who can only write single-purpose code can be detrimental to a program-
ming organization. Occasionally, you’ll find a company that is savvy on code reuse and asks about it in
their interviews. Such a question is an indication that it might be a good company to work for!

Things to Remember
❑ The principle of abstraction

❑ The creation of subsystems and class hierarchies

❑ The general rules for good interface design

❑ When to use templates and when to use inheritance

Types of Questions
Questions about reuse will almost certainly be about previous projects on which you have worked. For
example, if you worked at a company that produced both consumer and professional video-editing
applications, the interviewer may ask how code was shared between the two applications. Even if you
aren’t explicitly asked about code reuse, you might be able to sneak it in. When you’re describing some
of your past work, tell the interviewer if the modules you wrote were used in other projects. Even when
answering apparently straight coding questions, make sure to consider and mention the interfaces
involved.

Chapter 6: Maximizing Software
Engineering Methods

You should be suspicious if you go through the complete interview process with a company, and the
interviewers do not ask any process questions — it may mean that they don’t have any process or that
they don’t care about it. Alternatively, they might not want to scare you away with their process behe-
moth. Most of the time, you’ll get a chance to ask questions of the company. We suggest you consider
asking about engineering processes as one of your standard questions.

Things to Remember
❑ Traditional life-cycle models

❑ The tradeoffs of formal models, such as the Rational Unified Process

❑ The main principles of Extreme Programming

❑ Other processes you have used

787

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 787

Types of Questions
The most common question you’ll be asked is to describe the process that your previous employer used.
When answering, you should mention what worked well and what failed, but try not to denounce any
particular methodology. The methodology you criticize could be the one that your interviewer uses. If
you loathe Extreme Programming, keep it to yourself for now!

The authors spend a dizzying amount of their time reading resumes and one trend is clear — everybody
is listing Extreme Programming as a skill these days. While there’s little hard data on the subject, it cer-
tainly seems unlikely that strict adherence to XP is commonplace in programming environments. What
we’ve found is that many organizations have started to look into XP and have adopted some of its prin-
ciples without subscribing to it in any formal way.

If the interviewer asks you about XP, he or she probably doesn’t want you simply to recite the textbook
definition — the interviewer knows that you can read the table of contents of an XP book. Instead, pick
a few ideas from XP that you find appealing. Explain each to the interviewer along with your thoughts
on them. Try to engage the interviewer in a conversation, proceeding in a direction in which he or she is
interested based on the cues that person gives.

Chapter 7: Coding with Style
Anybody who’s coded in the professional world has had a coworker who codes as if they learned C++
from the back of a cereal box. Nobody wants to work with someone who writes messy code, so inter-
viewers sometimes attempt to determine a candidate’s style skills.

Things to Remember
❑ Style matters, even during interview questions that aren’t explicitly style related!

❑ Well-written code doesn’t need extensive comments.

❑ Comments can be used to convey metainformation.

❑ The principle of decomposition

❑ The principle of refactoring

❑ Naming techniques

Types of Questions
Style questions can come in a few different forms. One of the authors was once asked to write the code
for a relatively complex algorithm on a whiteboard. As soon as he wrote the first variable name, the

The more time you spend chatting about high-level concepts such as XP, the less
time the interviewer will have to grill you on details like template syntax. You can’t
avoid technical questions entirely, but you can minimize them!

788

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 788

interviewer stopped him and told him he passed. The question wasn’t about the algorithm; it was just a
red herring to see how well he named his variables. More commonly, you may be asked to submit code
that you’ve written or simply to give your opinions on style.

You need to be careful when a potential employer asks you to submit code. You probably cannot legally
submit code that you wrote for a previous employer. You also have to find a piece of code that shows off
your skills without requiring too much background knowledge. For example, you wouldn’t want to sub-
mit your master’s thesis on high-speed image rendering to a company that is interviewing you for a
database administration position.

If the company gives you a specific program to write, that’s a perfect opportunity to show off what
you’ve learned in this book. How many other candidates will include unit tests with their program or
extensive comments? Even if the potential employer doesn’t specify the program, you should consider
writing a small program specifically to submit to the company. Instead of selecting some code you’ve
already written, start from scratch to produce code that is relevant to the job and highlights good style.

Chapters 8 and 9: Classes and Objects
There are no bounds to the types of questions you can be asked about classes and objects. Some inter-
viewers are syntax-fixated and might throw some complicated code at you. Others are less concerned
with the implementation and more interested in your design skills.

Things to Remember
❑ Basic class definition syntax

❑ Access specifiers for methods and data members

❑ The use of the “this” pointer

❑ Object creation and destruction

❑ Cases when the compiler generates a constructor for you

❑ Initializer lists

❑ Copy constructor and assignment operator

❑ The mutable keyword

❑ Method overloading and default parameters

❑ Friend classes

Types of Questions
Questions such as, “What does the keyword mutable mean?” make great phone screening questions. A
recruiter may have a list of C++ terms and will move candidates to the next stage of the process based
on the number that they get right. You may not know all of the terms that are thrown at you, but keep in
mind that other candidates are facing the same questions and it’s one of the few metrics available to a
recruiter.

789

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 789

The find the bug style of question is popular among interviewers and course instructors alike. You will be
presented with some nonsense code and asked to point out its flaws. Interviewers struggle to find quan-
titative ways to analyze candidates, and this is one of the few ways to do it. In general, your approach
should be to read each line of code and voice your concerns, brainstorming aloud. The types of bugs can
fall into these categories:

❑ Syntax errors. These are rare — interviewers know you can find compile-time bugs with a
compiler.

❑ Memory problems. These include problems such as leaks and double deletion.

❑ “You wouldn’t do that” problems. This category includes things that are technically correct but
have an undesirable outcome.

❑ Style errors. Even if the interviewer doesn’t count it as a bug, point out poor comments or vari-
able names.

Here’s a find the bug problem that demonstrates each of these areas:

class Buggy
{

Buggy(int param);
~Buggy();

double fjord(double inVal);
int fjord(double inVal);

protected:
void turtle(int i = 7, int j);
int param;
double* graphicDimension;

};

Buggy::Buggy(int param)
{

param = param;
graphicDimension = new double;

}

Buggy::~Buggy()
{
}

double Buggy::fjord(double inVal)
{

return inVal * param;
}

int Buggy::fjord(double inVal)
{

return (int)fjord(inVal);
}

void Buggy::turtle(int i, int j)

790

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 790

{
cout << “i is “ << i << “, j is “ << j << endl;

}

Take a careful look at the code, and then consult the following corrected version for the answers:

#include <iostream> // Streams are used in the implementation.

class Buggy
{
public: // These should probably be public or else the class is pretty useless.

Buggy(int inParam); // Parameter naming
~Buggy();

Buggy(const Buggy& src); // Provide copy ctor and operator=
Buggy& operator=(const Buggy& rhs); // when the class has dynamically

// allocated memory.

double fjord(double inVal); // int version won’t compile
// (overloaded methods differ only
// in return type). It’s also useless
// because it just returns the argument
// it’s given.

protected:
void turtle(int i, int j); // Only last arguments can have defaults.
int mParam; // Data member naming
double* graphicDimension;

};

Buggy::Buggy(int inParam) : mParam(inParam) // Avoid name ambiguity.
{

graphicDimension = new double;
}

Buggy::~Buggy()
{

delete graphicDimension; // Avoid memory leak.
}

Buggy::Buggy(const Buggy& src)
{

graphicDimension = new double;
*graphicDimension = *(src.graphicDimension);

}

Buggy& Buggy::operator=(const Buggy& rhs)
{

if (this == &rhs) {
return (*this);

}
delete graphicDimension;
graphicDimension = new double;

791

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 791

*graphicDimension = *(rhs.graphicDimension);
return (*this);

}

double Buggy::fjord(double inVal)
{

return inVal * mParam; // Changed data member name
}

void Buggy::turtle(int i, int j)
{

std::cout << “i is “ << i << “, j is “ << j << std::endl; // Namespaces
}

Chapter 10: Discovering Inheritance
Techniques

Questions about inheritance usually come in the same forms as questions about classes. The interviewer
might also ask you to implement a class hierarchy to show that you have worked with C++ enough to
subclass without looking it up in a book.

Things to Remember
❑ The syntax for subclassing a class

❑ The difference between private and protected from a subclass point of view

❑ Method overriding and virtual

❑ Chained constructors

❑ The ins and outs of upcasting and downcasting

❑ The principle of polymorphism

❑ Pure virtual methods and abstract base classes

❑ Multiple inheritance

❑ Runtime Type Identification (RTTI)

Types of Questions
Many of the pitfalls in inheritance questions are related to getting the details right. When you are writ-
ing a base class, don’t forget to make the methods virtual. If you mark all methods virtual, be pre-
pared to justify that decision. You should be able to explain what virtual means and how it works.
Similarly, don’t forget the public keyword before the name of the parent class in the subclass definition
(e.g., class Foo : public Bar). It’s unlikely that you’ll be asked to perform nonpublic inheritance
during an interview.

792

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 792

More challenging inheritance questions have to do with the relationship between a superclass and a sub-
class. Be sure you know how the different access levels work, and the difference between private and
protected. Remind yourself of the phenomenon known as slicing, when certain types of casts cause a
class to lose its subclass information.

Chapter 11: Writing Generic Code
with Templates

As one of the most arcane parts of C++, templates are a good way for interviewers to separate the C++
novices from the pros. While most interviewers will forgive you for not remembering some of the
advanced template syntax, you should go into the interview knowing the basics.

Things to Remember
❑ How to write a basic templatized class

❑ The two main disadvantages of templates — ugly syntax and code bloat

❑ How to use a templatized class

Types of Questions
Many interview questions start out with a simple problem and gradually add complexity. Often, inter-
viewers have an endless amount of complexity that they are prepared to add and they simply want to
see how far you get. For example, an interviewer might begin a problem by asking you to create a class
that provides sequential access to a fixed number of ints. Next, the class will need to grow to accommo-
date an arbitrary sized array. Then, it will need arbitrary data types, which is where templates come in.
From there, the interviewer could take the problem in a number of directions, asking you to use operator
overloading to provide array-like syntax or continuing down the template path by asking you to pro-
vide a default type.

Templates are more likely to be employed in the solution of another coding problem than to be asked
about explicitly. You should brush up on the basics in case the subject comes up. However, most inter-
viewers understand that the template syntax is difficult, and asking someone to write complex template
code in an interview is rather cruel.

Chapter 12: Understanding C++ Quirks
and Oddities

Many interviews tend to focus on the more obscure cases because that way experienced C++ program-
mers can demonstrate that they have conquered the unusual parts of C++. Sometimes interviewers have
difficulty coming up with interesting questions and end up asking the most obscure question they can
think of.

793

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 793

Things to Remember
❑ References must be bound to a variable when they are declared and the binding cannot be

changed.

❑ The advantages of pass-by-reference over pass-by-value

❑ The many uses of const

❑ The many uses of static

❑ The different types of casts in C++

Types of Questions
Asking a candidate to define const and static is a classic C++ interview question. Both keywords pro-
vide a sliding scale with which an interviewer can assess an answer. For example, a fair candidate will
talk about static methods and static data members. A good candidate will give good examples of
static methods and static data members. A great candidate will also know about static linkage
and static variables in functions.

The edge cases described in this chapter also come in find-the-bug type problems. Be on the lookout for
misuse of references. For example, imagine a class that contains a reference as a data member:

class Gwenyth
{

public:
int& mCaversham;

};

Because mCaversham is a reference, it needs to be bound to a variable when the class is constructed. To
do that, you’ll need to use an initializer list. The class could take the variable to be referenced as a
parameter to the constructor:

class Gwenyth
{

public:
Gwenyth(int i);
int& mCaversham;

};

Gwenyth::Gwenyth(int i) : mCaversham(i)
{
}

Chapter 13: Effective Memory Management
Memory-related questions tend to be asked by low-level programmers or C++ programmers who have a
background in C. The goal is to determine whether the object-oriented aspects of C++ have distanced
you too much from the underlying implementation details. Memory management questions will give
you a chance to prove that you know what’s really going on.

794

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 794

Things to Remember
❑ Drawing the stack and the heap can help you understand what’s going on.

❑ Use new and delete instead of malloc() and free().

❑ Use new[] and delete[] for arrays.

❑ If you have an array of pointers to objects, you still need to allocate memory for each individual
pointer and delete the memory — the array allocation syntax doesn’t take care of pointers!

❑ In a pinch, you can always say, “Of course in real life, I would run this through valgrind to
expose the problem.”

Types of Questions
Find-the-bug questions often contain memory issues, such as double-deletion, new/new[] mixup, and
memory leaks. When you are tracing through code that makes heavy use of pointers and arrays, you
should draw and update the state of memory as you process each line of code. Even if you see the
answer right away, it will let the interviewer know that you’re able to draw the state of memory.

Another good way to find out if a candidate understands memory is to ask how pointers and arrays dif-
fer. At this point, the differences may be so tacit in your mind that the question catches you off-guard for
a moment. If that’s the case, skim Chapter 13 again for the discussion.

Chapter 14: Demystifying C++ I/O
If you’re interviewing for a job writing GUI applications, you probably won’t get too many questions
about I/O streams because GUI apps tend to use other mechanisms for I/O. However, streams can come
up in other problems and, as a standard part of C++, they are fair game as far as the interviewer is
concerned.

Things to Remember
❑ The definition of a stream

❑ Basic input and output using streams

❑ The concept of manipulators

❑ Types of streams (console, file, string, etc.)

❑ Error-handling techniques

❑ The importance of internationalization

Types of Questions
I/O may come up in the context of any question. For example, the interviewer could ask you to read in a
file containing test scores and put them in a vector. This question tests basic C++ skills, basic STL, and
basic I/O. Even if I/O is only a small part of the problem you’re working on, be sure to check for errors.

795

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 795

If you don’t, you’re giving the interviewer an opportunity to say something negative about your other-
wise perfect program.

Your interviewer may not ask specifically about internationalization, but you can show your worldwide
appeal by using wchar_t instead of char during the interview. If you do receive a question about your
experience with internationalization, be sure to mention the importance of considering worldwide use
from the beginning and show that you know about the locale facilities of C++.

Chapter 15: Handling Errors
Managers sometimes shy away from hiring recent graduates or novice programmers for vital (and high-
paying) jobs because it is assumed that they don’t write production-quality code. You can prove to an
interviewer that your code won’t keel over randomly by demonstrating your error-handling skills dur-
ing an interview.

Things to Remember
❑ Catch exceptions as const references.

❑ For production code, hierarchies of exceptions are preferable to a few generic ones.

❑ Throw lists in C++ aren’t like throw lists in Java!

❑ Smart pointers help avoid memory leaks when exceptions are thrown.

Types of Questions
You’re unlikely to get a question directly about exceptions, unless it’s something cruelly specific, such as
asking you to describe how the stack unwinds. However, interviewers will be on the lookout to see how
you report and handle errors.

Of course, not all programmers understand or appreciate exceptions. Some may even have a bias against
them for performance reasons. If the interviewer asks you to do something without exceptions, you’ll
have to revert to traditional NULL checks and error codes. That would be a good time to demonstrate
your knowledge of nothrow new!

Chapter 16: Overloading C++ Operators
It’s possible, though somewhat unlikely, that you would have to perform something more difficult than
a simple operator overload during an interview. Some interviewers like to have an advanced question
on hand that they don’t really expect anybody to answer correctly. The intricacies of operator overload-
ing make great nearly impossible questions because few programmers get the syntax right without look-
ing it up. That means it’s a great area to review before an interview.

796

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 796

Things to Remember
❑ Overloading stream operators, because they are the most commonly overloaded operators, and

are conceptually unique

❑ What a functor is and how to create one

❑ Choosing between a method operator or a global friend function

❑ Some operators can be expressed in terms of others (i.e., operator<= can be written by negat-
ing the result of operator >).

Types of Questions
Let’s face it — operator overloading questions (other than the simple ones) are cruel. Anybody who is
asking such questions knows this and is going to be impressed when you get it right. It’s impossible to
predict the exact question that you’ll get, but the number of operators is finite. As long as you’ve seen an
example of overloading each operator that it makes sense to overload, you’ll do fine!

Besides asking you to implement an overloaded operator, you could be asked high-level questions about
overloaded operators. A find-the-bug question could contain an operator that is overloaded to do some-
thing that is conceptually wrong for the particular operator. In addition to syntax, keep the use cases and
theory of operator overloading in mind.

Chapter 17: Writing Efficient C++
Efficiency questions are quite common in interviews because many organizations are facing scalability
issues with their code and need programmers who are savvy about performance.

Things to Remember
❑ Language level efficiency is important, but it can only go so far. Design-level choices are ulti-

mately more significant.

❑ Reference parameters are more efficient because they avoid copying.

❑ Object pools can help avoid the overhead of creating and destroying objects.

❑ Profiling is vital to determine which operations are really consuming the most running time.

Types of Questions
Often, the interviewer will use his own product as an example to drive efficiency questions. Sometimes
the interviewer will describe an older design and some performance-related symptoms he experienced.
The candidate is supposed to come up with a new design that alleviates the problem. Unfortunately,
there is a major problem with questions like this — what are the odds that you’re going to come up with
the same solution that the interviewer did when the problem was actually solved? Because the odds are
slim, you need to be extra careful to justify your designs. You may not come up with the actual solution,
but you can still have an answer that is correct or even better than the company’s newer design.

797

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 797

Other types of efficiency questions may ask you to tweak some C++ code for performance or iterate on
an algorithm. For example, the interviewer could show you code that contains extraneous copies or inef-
ficient loops.

Chapter 18: Developing Cross-Platform
and Cross-Language Applications

Few programmers submit resumes that list only a single language or technology, and few large applica-
tions rely on only a single language or technology. Even if you’re only interviewing for a C++ position,
the interviewer can still ask questions about other languages, especially as they relate to C++.

Things to Remember
❑ The ways in which platforms can differ (architecture, sizes, etc.)

❑ The fine line between programming and scripting

❑ The interactions between C++ and other languages

Types of Questions
The most popular cross-language question is to compare and contrast two different languages. You
should avoid saying just positive or just negative things about a particular language, even if you really
hate Java. The interviewer wants to know that you are able to see tradeoffs and make decisions based
on them.

Cross-platform questions are more likely to be asked while discussing previous work. If your resume
indicates that you once wrote C++ applications that ran on a custom hardware platform, you should be
prepared to talk about the compiler you used and the challenges of that platform.

Chapter 19: Becoming Adept at Testing
Potential employers value strong testing abilities. Because your resume probably doesn’t indicate your
testing skills, unless you have explicit QA experience, you might face interview questions about testing.

Things to Remember
❑ The difference between black box and white box testing

❑ The concept of unit testing and writing tests along with code

❑ Techniques for higher-level tests

❑ Testing and QA environments in which you’ve worked before: what worked and what didn’t?

798

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 798

Types of Questions
An interviewer could ask you to write some tests during the interview, but it’s unlikely that a program
presented during an interview would contain the depth necessary for interesting tests. It’s more likely
that you will be asked high-level testing questions. Be prepared to describe how testing was done at
your last job and what you liked and didn’t like about it. After you answer, this is a good question for
you to ask the interviewer. Hopefully, it will start a conversation about testing and give you a better idea
of the environment at your potential job.

Chapter 20: Conquering Debugging
Engineering organizations look for candidates who are able to debug both their own code as well as
code that they’ve never seen before. Technical interviews often attempt to size up your debugging
muscles.

Things to Remember
❑ Debugging doesn’t start when bugs appear; you should instrument your code ahead of time so

you’re prepared for the bugs when they arrive

❑ Logs and debuggers are your best tools

❑ The symptom that a bug exhibits may appear to be unrelated to the actual cause

❑ Memory diagrams can be helpful in debugging, especially during an interview

Types of Questions
During an interview, you might be challenged with an obscure debugging problem. Remember that the
process is the most important thing, and the interviewer probably knows that. Even if you don’t find the
bug during the interview, make sure that the interviewer knows what steps you would go through to
track it down. If the interviewer hands you a function and tells you that it crashes when run, he or she
should award just as many points to a candidate who properly discusses the sequence of steps to find
the bug as to a candidate who finds it right away.

Chapters 21, 22, and 23: The Standard
Template Library

As you’ve seen, the STL can be difficult to work with. Few interviewers would expect you to recite the
details of STL classes unless you claim to be an STL expert. If you know that the job you’re interviewing
for makes heavy use of the STL, you might want to write some STL code the day before to refresh your
memory. Otherwise, recalling the high-level design of the STL should suffice.

799

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 799

Things to Remember
❑ The different types of containers and their relationships with iterators

❑ Basic usage of vector, which is probably the most frequently used STL class

❑ Usage of associative containers, such as map

❑ The purpose of STL algorithms and some of the built-in algorithms

❑ The ways in which you can extend the STL (details are most likely unnecessary)

❑ Your own opinions about the STL

Types of Questions
If interviewers are dead set on asking detailed STL questions, there really are no bounds to the types of
questions they could ask. If you’re feeling uncertain about syntax though, you should state the obvious
during the interview — “In real life, of course, I’d look that up in Professional C++, but I’m pretty sure it
works like this . . .” At least that way the interviewer is reminded that he or she should forgive the
details as long as you get the basic idea right.

High-level questions about the STL are often used to gauge how much you’ve used the STL without
making you recall all the details. For example, casual users of the STL are familiar with associative and
nonassociative containers. A slightly more advanced user would be able to define an iterator and
describe how iterators work with containers. Other high-level questions could ask you about your expe-
rience with STL algorithms or whether you’ve customized the STL.

Chapter 24: Exploring Distributed Objects
Because distributed applications are quite common, you might be asked to design a distributed system
or answer questions about a particular distributed technology.

Things to Remember
❑ The reasons why distributed computing is used

❑ The difference between distributed and networked computing

❑ The concepts of serialization and RPC

❑ The details of CORBA or XML if you are claiming competence in these technologies

Types of Questions
Many technical resumes are a sea of acronyms and buzzwords. If you list a technology like XML on your
resume, a potential employer has no way of knowing your level of expertise. Unless you specifically say
“Basic XML skills” or “XML expert,” you can expect questions that are designed to determine where you
stand on that continuum. For XML in particular, questions may involve defining terms like schema or
hands-on exercises such as writing a schema that applies to a given XML document.

800

Appendix A

30_574841 appa.qxd 12/15/04 3:48 PM Page 800

Since XML has become such a popular buzzword, one of the authors has started bringing a simple XML
document to interviews. The candidate is asked to point out all of the attributes, all of the elements, and
all of the text nodes. It puts the candidate on the spot, but effectively proves whether that person has
worked with XML or simply understands that it’s an HTML-like syntax.

Chapter 25: Incorporating Techniques
and Frameworks

Each of the techniques presented in Chapter 25 would make a fine interview question. Rather than
repeat what you already read in the chapter, we suggest that you skim back over Chapter 25 prior to an
interview to make sure that you are able to understand each of the techniques.

Chapter 26: Applying Design Patterns
Because design patterns are becoming very popular in the professional world (many candidates even list
them as skills), it’s likely that you’ll encounter an interviewer who wants you to explain a pattern, give a
use case for a pattern, or implement a pattern.

Things to Remember
❑ The basic idea of a pattern as a reusable object-oriented design concept

❑ The patterns you have read about in this book as well as others that you’ve used in your work

❑ The fact that there are hundreds of patterns with often-conflicting names, so you and your inter-
viewer may use different words for the same thing

Types of Questions
Answering questions about design patterns is usually a walk in the park, unless the interviewer expects
you to know the details of every single pattern known to humankind. Luckily, most programmers who
appreciate design patterns will simply want to chat about them with you and get your opinions. After
all, looking concepts up in a book or online instead of memorizing them is a good pattern itself!

801

C++ Interviews

30_574841 appa.qxd 12/15/04 3:48 PM Page 801

30_574841 appa.qxd 12/15/04 3:48 PM Page 802

Annotated Bibliography

This appendix contains a list of books and online resources on various C++-related topics that we
either consulted while writing this book or recommend for further or background reading.

C++

Beginning C++
❑ Harvey M. Deitel and Paul J. Deitel, C++ How to Program (Fourth Edition), Prentice Hall,

2002, ISBN: 0-130-38474-7

Known as simply the “Deitel” book, this text assumes no prior programming experience.

❑ Bruce Eckel, Thinking in C++, Volume 1: Introduction to Standard C++ (Second Edition),
Prentice Hall, 2000, ISBN: 0-139-79809-9.

An excellent introduction to C++ programming that expects the reader to know C already.
Available at no cost online at www.bruceeckel.com.

❑ Stanley B. Lippman and Josée Lajoie, C++ Primer (Third Edition), Addison Wesley, 1998,
ISBN: 0-201-82470-1.

This book requires no knowledge of C++, but experience with high-level object-oriented languages
is assumed.

❑ Steve Oualline, Practical C++ Programming (Second Edition), O’Reilly, 2003, ISBN:
0-596-00419-2.

An introductory C++ text that assumes no prior programming experience.

❑ Walter Savitch, Problem Solving with C++: The Object of Programming (Fourth Edition),
Addison Wesley Longman, 2002, ISBN: 0-321-11347-0.

This book assumes no prior programming experience. It is often used as a textbook in introductory
programming courses.

31_574841 appB.qxd 12/15/04 3:49 PM Page 803

General C++
❑ Marshall Cline, C++ FAQ LITE, www.parashift.com/c++-faq-lite.

❑ Marshall Cline, Greg Lomow, and Mike Giru, C++ FAQs (Second Edition), Addison Wesley, 1998,
ISBN: 0-201-30983-1.

This compilation of frequently asked questions from the comp.lang.c++ newsgroup is useful for quickly
looking up a specific point about C++. The printed version contains more information than the online ver-
sion, but the material available online should be sufficient for most professional C++ programmers.

❑ Stephen C. Dewhurst, C++ Gotchas, Addison Wesley, 2003, ISBN: 0-321-12518-5.

Provides 99 specific tips for C++ programming.

❑ Bruce Eckel and Chuck Allison, Thinking in C++, Volume 2: Practical Programming (Second Edition),
Prentice Hall, 2003, ISBN: 0-130-35313-2.

The second volume of Eckel’s book covers more advanced C++ topics. It’s also available at no cost
online at www.bruceeckel.com.

❑ Ray Lischner, C++ in a Nutshell, O’Reilly, 2003, ISBN: 0-596-00298-X.

A C++ reference, covering everything from the basics to more advanced material.

❑ Scott Meyers, Effective C++ (Second Edition): 50 Specific Ways to Improve Your Programs and
Designs, Addison Wesley, 1998, ISBN: 0-201-92488-9.

❑ Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs, Addison
Wesley, 1996, ISBN: 0-201-63371-X.

These two books provide excellent tips-and-tricks on commonly misused and misunderstood features
of C++.

❑ Stephen Prata, C++ Primer Plus, Sams Publishing, 2001, ISBN: 0-672-32223-4.

One of the most comprehensive C++ books available.

❑ Bjarne Stroustrup, The C++ Programming Language (Special Third Edition), Addison Wesley, 2000,
ISBN: 0-201-70073-5.

The “Bible” of C++ books, written by the designer of C++ himself. Every C++ programmer should own
a copy of this book, but it can be a bit obscure in places for the C++ novice.

❑ The C++ Standard: Incorporating Technical Corrigendum No. 1, John Wiley & Sons, 2003, ISBN:
0-470-84674-7.

This book is almost 800 pages of dense standard-eze. It doesn’t explain how to use C++, only what the for-
mal rules are. We don’t recommend this book unless you really want to understand every detail of C++.

❑ Newsgroups at http://groups.google.com, including comp.lang.c++.moderated and
comp.std.c++.

The newsgroups contain a lot of useful information if you’re willing to wade through the flame wars,
insults, and misinformation that appear as well.

804

Appendix B

31_574841 appB.qxd 12/15/04 3:49 PM Page 804

❑ The C++ Resources Network at www.cplusplus.com/.

This Web page isn’t as useful as it sounds. As of this writing, the C++ reference section is still under con-
struction.

I/O Streams
❑ Cameron Hughes and Tracey Hughes, Mastering the Standard C++ Classes: An Essential Reference,

Wiley, 1999, ISBN: 0-471-328-936.

A good book for learning how to write custom istream and ostream classes.

❑ Cameron Hughes and Tracey Hughes, Stream Manipulators and Iterators in C++,
Professional Technical Reference, Prentice Hall, http://phptr.com/articles/
article.asp?p=171014&seqNum=2.

This well-written article by the authors of Mastering the Standard C++ Classes takes the mystery out of
defining custom stream manipulators in C++.

❑ Philip Romanik and Amy Muntz, Applied C++: Practical Techniques for Building Better Software,
Addison Wesley, 2003, ISBN: 0-321-10894-9.

In addition to a unique blend of software development advice and C++ specifics, this book provides one
of the best explanations we’ve read of locale and Unicode support in C++.

❑ Joel Spolsky, The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!), www.joelonsoftware.com/articles/Unicode.html.

After reading Joel’s treatise on the importance of internationalization, you’ll want to check out his other
entries on Joel on Software.

❑ Unicode, Inc., Where is my Character?, www.unicode.org/standard/where.

The best resource for finding Unicode characters, charts, and tables.

The C++ Standard Library
❑ Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison Wesley, 1999,

ISBN: 0-201-37926-0.

This book covers the entire standard library, including I/O streams and strings as well as the contain-
ers and algorithms. It’s an excellent reference.

❑ Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library,
Addison Wesley, 2001, 0-201-74962-9.

Meyers wrote this book in the same spirit as his “Effective C++” books. It provides targeted tips for
using the STL, but is not a reference or tutorial.

❑ David R. Musser, Gillmer J. Derge, and Atul Saini, STL Tutorial and Reference Guide (Second
Edition), Addison Wesley, 2001, ISBN: 0-201-37923-6.

This book is similar to the Josuttis text, but covers only the STL part of the standard library.

805

Annotated Bibliography

31_574841 appB.qxd 12/15/04 3:49 PM Page 805

C++ Templates
❑ Herb Sutter, Sutter’s Mill: Befriending Templates, C/C++ User’s Journal, www.cuj.com/

documents/s=8244/cujcexp2101sutter/sutter.htm.

The best explanation we could find about making function templates friends of classes.

❑ David Vandevoorde and Nicolai M. Josuttis, C++ Templates: The Complete Guide, Addison Wesley,
2002, ISBN: 0-201-73484-2.

Everything you ever wanted to know (or didn’t want to know) about C++ templates. It assumes signifi-
cant background in general C++.

C
❑ Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (second edition), Prentice

Hall, 1998, ISBN: 0-13-110362-8.

“K and R,” as this book is known, is an excellent reference on the C language. It’s not as useful for learn-
ing it the first time.

❑ Peter Prinz, Tony Crawford (Translator), Ulla Kirch-Prinz, C Pocket Reference, O’Reilly, 2002,
ISBN: 0-596-00436-2.

A concise reference to all things C.

❑ Eric S. Roberts, The Art and Science of C: A Library Based Introduction to Computer Science, Addison
Wesley, 1994, ISBN: 0-201-54322-2.

❑ Eric S. Roberts, Programming Abstractions in C: A Second Course in Computer Science, Addison
Wesley, 1997, ISBN: 0-201-54541-1.

These two books provide a great introduction to programming in C with good style. They are often used
as textbooks in introductory programming courses.

❑ Peter Van Der Linden, Expert C Programming: Deep C Secrets, Pearson Education, 1994, ISBN:
0-131-77429-8.

An enlightening and often hysterical look at the C language, its evolution, and its inner workings.

Integrating C++ and Other Languages
❑ Ian F. Darwin, Java Cookbook, O’Reilly, 2001, ISBN: 0-596-00170-3.

This book provides step-by-step instructions for using JNI to integrate Java with other languages,
including C++.

806

Appendix B

31_574841 appB.qxd 12/15/04 3:49 PM Page 806

Algorithms and Data Structures
❑ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to

Algorithms (Second Edition), The MIT Press, 2001, ISBN: 0-262-03293-7.

This text is one of the most popular introductory algorithms books, covering all the common data struc-
tures and algorithms. The authors learned algorithms and data structures as an undergraduate from the
first edition of this book.

❑ Donald E. Knuth, The Art of Computer Programming Volume 1: Fundamental Algorithms (Third
Edition), Addison Wesley, 1997, ISBN: 0-201-89683-4.

❑ Donald E. Knuth, The Art of Computer Programming Volume 2: Seminumerical Algorithms (Third
Edition), Addison Wesley, 1997, ISBN: 0-201-89684-2.

❑ Donald E. Knuth, The Art of Computer Programming Volume 3: Sorting and Searching (Third
Edition), Addison Wesley, 1998, ISBN: 0-201-89685-0.

For those of you who enjoy mathematical rigor, there is no better algorithms and data structures text
than Knuth’s three-volume tome. It is probably inaccessible without undergraduate knowledge of math-
ematics or theoretical computer science.

❑ Kyle Loudon, Mastering Algorithms with C, O’Reilly, 1999, ISBN: 1-565-92453-3.

An approachable reference to data structures and algorithms.

Open-Source Software
❑ The Open Source Initiative at www.opensource.org.

❑ The GNU Operating System — Free Software Foundation at www.gnu.org.

These Web pages for the two main open-source movements explain their philosophies and provide
information about obtaining open-source software and contributing to its development.

❑ sourceforge.net at www.sourceforge.net.

This Web site hosts many open-source projects. It’s a great resource for finding useful open-source
software.

Software-Engineering Methodology
❑ Barry W. Boehm, TRW Defense Systems Group, A Spiral Model of Software Development and

Enhancement, IEEE Computer, 21(5):61-72, 1988.

This landmark paper described the state of software development at the time and proposed the Spiral
Model.

807

Annotated Bibliography

31_574841 appB.qxd 12/15/04 3:49 PM Page 807

❑ Kent Beck, Extreme Programming Explained: Embrace Change, Pearson Education, 1999, ISBN:
0-201-61641-6.

One of several books in a series that promote Extreme Programming as a new approach to software
development.

❑ Robert T. Futrell, Donald F. Shafer, and Linda Isabell Shafer, Quality Software Project Management,
Pearson Education, 2003, ISBN: 0-130-91297-2.

A guidebook for anybody who is responsible for the management of the software development process.

❑ Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2002, ISBN:
0-321-11742-5.

This book discusses various aspects of the software development process and exposes hidden truisms
along the way.

❑ Philippe Kruchten, Rational Unified Process: An Introduction (Second Edition), Addison Wesley,
2000, ISBN: 0-201-70710-1.

Provides an overview of RUP, including its mission and processes.

❑ Edward Yourdon, Death March (Second Edition), Prentice Hall, 2003, ISBN: 0-131-43635-X.

A wonderfully enlightening book about the politics and realities of software development.

❑ Rational Unified Process from IBM, www3.software.ibm.com/ibmdl/pub/software/
rational/web/demos/viewlets/rup/runtime/index.html

The IBM Web site contains a wealth of information about RUP, including the interactive presentation at
the above URL.

Programming Style
❑ Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts, Refactoring: Improving the

Design of Existing Code, Addison Wesley, 1999, ISBN: 0-201-48567-2.

This classic book espouses the practice of recognizing and improving bad code.

❑ James Foxall, Practical Standards for Microsoft Visual Basic .NET, Microsoft Press, 2002, ISBN:
0-7356-1356-7.

Exhibits the tenets of Microsoft Windows coding style, using Visual Basic

❑ Diomidis Spinellis, Code Reading: The Open Source Perspective, Addison Wesley, 2003, ISBN:
0-201-79940-5.

This unique book turns the issue of programming style upside down by challenging the reader to learn
to read code properly in order to become a better programmer.

❑ Dimitri van Heesch, Doxygen, http://www.stack.nl/~dimitri/doxygen/index.html.

A highly configurable program that generates documentation from source code and comments.

808

Appendix B

31_574841 appB.qxd 12/15/04 3:49 PM Page 808

Computer Architecture
❑ David A. Patterson and John L. Hennessy, Computer Organization & Design: The

Hardware/Software Interface (Second Edition), Morgan Kaufman, 1997, ISBN: 1-558-60428-6.

❑ John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach (Third
Edition), Morgan Kaufman, 2002, ISBN: 1-558-60596-7.

These two books provide all the information most software engineers ever need to know about com-
puter architecture.

Efficiency
❑ Dov Bulka and David Mayhew, Efficient C++: Performance Programming Techniques, Addison

Wesley, 1999, ISBN: 0-201-37950-3.

One of the few books to focus exclusively on efficient C++ programming, it covers both language-level
and design-level efficiency.

❑ GNU gprof, www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.

Information about the gprof profiling tool.

❑ Rational Software from IBM, www-306.ibm.com/software/rational.

Rational Quantify is an excellent (but not free) profiling tool.

Testing
❑ Elfriede Dustin, Effective Software Testing: 50 Specific Ways to Improve Your Testing, Addison

Wesley, 2002, ISBN: 0-201-79429-2.

While this book is aimed at quality assurance professionals, any software engineer will benefit from its
discussion of the software-testing process.

Debugging
❑ The Gnu DeBugger (GDB), at www.gnu.org/software/gdb/gdb.html.

GDB is an excellent symbolic debugger.

❑ Rational Software from IBM, www-306.ibm.com/software/rational.

Rational Purify is an excellent (but not free) memory error–debugging tool.

❑ Valgrind, at http://valgrind.kde.org.

An open-source memory-debugging tool for Linux.

809

Annotated Bibliography

31_574841 appB.qxd 12/15/04 3:49 PM Page 809

Distributed Objects
❑ Jim Farley, Java Distributed Computing, O’Reilly, 1998, ISBN: 1-56592-206-9.

Provides a Java-centric view of distributed computing technologies.

❑ Ron Hipschman, How SETI@home Works, http://setiathome.ssl.berkeley.edu/
about_seti/about_seti_at_home_1.html.

Interesting background on the SETI@home project, which uses distributed computing to analyze data
from space.

❑ Sassafras Software, General KeyServer Questions, http://www.sassafras.com/faq/
general.html

Information about KeyServer, an application that uses distributed computing to control software licenses.

CORBA
❑ The Object Management Group’s CORBA site at http://www.corba.org

CORBA is a “product” of the Object Management Group (OMG). This Web site contains basic back-
ground information and links to the actual standards involved.

❑ Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++, Addison Wesley,
1999, ISBN: 0-201-379270-9.

There are a lot more books out there on CORBA with Java than with C++. This book focuses on C++,
and, despite the title, is accessible to a CORBA beginner.

XML and SOAP
❑ Ethan Cerami, Web Services Essentials, O’Reilly, 2002, ISBN: 0-596-00224-6.

This book explains the emerging concept of Web services and the use of SOAP for distributed comput-
ing. Examples are provided in Java.

❑ Erik T. Ray, Learning XML (Second Edition), O’Reilly, 2003, ISBN: 0-596-00420-6.

The de-facto XML reference. Includes discussions of associated technologies like XML schema, XPath,
and XHTML.

❑ James Snell, Doug Tidwell, Pavel Kulchenko, Programming Web Services with SOAP, O’Reilly,
2001, ISBN: 0-596-00095-2.

This book discusses SOAP and related technologies, such as UDDI and WSDL. Examples are provided
in Java, Perl, C#, and Visual Basic.

❑ Eric van der Vlist, XML Schema, O’Reilly, 2002, ISBN: 0-596-00252-1.

This book tackles the difficult topic of XML Schema and discusses the nuances of the language.

❑ Altova Software xmlspy, www.xmlspy.com.

Information about the xmlspy software package from Altova Software.

810

Appendix B

31_574841 appB.qxd 12/15/04 3:49 PM Page 810

Design Patterns
❑ Andrei Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns Applied,

Addison Wesley, 2001, ISBN: 0-201-70431-5.

Offers an approach to C++ programming employing highly reusable code and patterns.

❑ Cunningham and Cunningham, The Portland Pattern Repository, www.c2.com/cgi/
wiki?WelcomeVisitors.

You could spend all day browsing through this community-edited Web site about design patterns.

❑ Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995, ISBN: 0-201-63361-2.

Called the “Gang of Four” book (because of its four authors), this text is the seminal work in design
patterns.

811

Annotated Bibliography

31_574841 appB.qxd 12/15/04 3:49 PM Page 811

31_574841 appB.qxd 12/15/04 3:49 PM Page 812

In
de

x

Index

SYMBOLS
&= (ampersand, equal) operator, 8
& (ampersand) operator, 8
\ (backslash) escape character, 4
^= (caret, equal) operator, 9
^ (caret) operator, 9
\r (carriage return) escape character, 4
{} (curly braces), 153
/= (division, equal) operator, 8
/ (division) operator, 8
-- (double minus) decrement operator, 8
= (equals) assignment operator, 8, 264
! (exclamation point) operator, 8
%= (mod, equal) operator, 8
% (mod) operator, 8
*= (multiplication, equal) operator, 8
* (multiplication) operator, 8
\n (new line) escape character, 4
() parentheses in code, 154
| (pipe) operator, 8
+ (plus) operator, 8
+= (plus, equal) operator, 8
++ (plus, plus) operator, 8
\“ (quotation mark) escape character, 4
:: (scope resolution) operator, 161, 237–239
-= (subtraction, equal) operator, 8
- (subtraction) operator, 8
t (tab) escape character, 4
| (vertical line) operator, 8

A
The Absolute Minimum Every Software Developer Absolutely,

Positively Must Know About Unicode and Character
Sets (No Excuses!), Joel Spolsky, 805

abstract classes
abstract base classes, 242–243
implementations, 218–221
interfaces, 218–221

abstraction
code reuse, 107–108
defined, 47–48
designing, 76
interface versus implementation, 73

access control
members (classes), 159–160
methods, 159–160
private, 159–160
protected, 159
public, 159

access specifiers, 159–160
accessing

data members (classes), 161, 195–196
out-of-bounds memory, 378

accessing fields of object elements, 573–574
accumulate() algorithm, 97, 623–624
ad hoc comments, 144
adapter design pattern, 768–773
adapters. See function object adapters
add() method, 209
adjacent_difference() algorithm, 97
adjacent_find() algorithm, 96, 633
Advanced CORBA Programming with C++, Michi Henning

and Steve Vinoski, 810
aggregation, 63, 110
Alexandrescu, Andrei, Modern C++ Design: Generic

Programming and Design Patterns Applied, 811
algorithms
accumulate(), 97, 623–624
adjacent_difference(), 97
adjacent_find(), 96, 633
binary_search(), 96, 635
choosing, 100
comparison, 97, 635
copy(), 98, 640–641
copy_backward(), 98
count(), 97, 635

32_574841 index.qxd 12/15/04 3:49 PM Page 813

algorithms (continued)
count_if(), 97, 635
defined, 95, 620
equal(), 97, 635–636
equal_range(), 96, 635
fill(), 98
fill_n(), 98
find(), 96, 620–622, 633
find_end(), 96
find_first_of(), 96, 633
find_if(), 96, 622–623, 633
for_each(), 98, 637–639
generate(), 98
generate_n(), 98
includes(), 99, 646
inner_product(), 97
inplace_merge(), 99
iterator traits, 662
iterators, 95, 631–632
iter_swap(), 98
lexicographical_compare(), 97, 635–637
lists, 586–587
lower_bound(), 96, 635
make_heap(), 99, 645
max(), 96, 632–633
max_element(), 96, 633
merge(), 99, 644
min(), 96, 632–633
min_element(), 96, 633
mismatch(), 97, 635–636
modifying, 98, 639
next_permutation(), 98
nonmodifying, 96, 633
nth_element(), 99, 645
numerical processing, 97, 635
operational, 98, 637
partial_sort(), 99, 645
partial_sort_copy(), 99
partial_sum(), 97
partition(), 99, 645
pop_heap(), 99, 645
prev_permutation(), 98
push_heap(), 99, 645
random_shuffle(), 99, 645
remove(), 98, 642
remove_copy(), 98, 642
remove_copy_if(), 98, 642
remove_if(), 98, 642
replace(), 98, 641
replace_copy(), 98
replace_copy_if(), 98
replace_if(), 98, 641
reverse(), 98, 643
reverse_copy(), 98, 643
rotate(), 98
rotate_copy(), 98
search(), 96, 633
search_n(), 96

set_difference(), 99, 646
set_intersection(), 99, 646
set_symmetric_difference(), 99, 646
set_union(), 99, 646
sort(), 99, 643–644
sort_heap(), 99, 645
sorting, 99
stable_partition(), 99
stable_sort(), 99, 643
swap(), 96, 632
swap_ranges(), 98
transform(), 98, 639–640
unique(), 98, 643
unique_copy(), 98
upper_bound(), 96, 635
utility, 96, 632–633
writing, 660–662

aliasing, 102
Allison, Chuck, Thinking in C++, Volume 2: Practical

Programming (Second Edition), 804
allocators, 656, 682
Altova Software xmlspy, 723, 810
ambiguity of names and multiple inheritance, 249–252
ambiguous base classes, 249–252
ampersand, equal (&=) operator, 8
ampersand (&) operator, 8
API (application programming interface), 74–75, 78
Applied C++: Practical Techniques for Building Better

Software, Philip Romanik and Amy Muntz, 805
arguments

operator overloading, 434
variable-length argument lists, 345–347

arithmetic function objects, 624–625
arithmetic operator overloading, 212–215, 438–439
arrays

associative arrays, 93
containers, 611–612
declaring, 15
defined, 15–16, 353
deleting, 20, 356–357
dynamic allocation, 19–20
heap-based arrays, 354
multidimensional, 16
multidimensional arrays, 357–360
non-integral array indices, 447–448
objects, 355–356
one-dimensional, 16
pointers, 362–364
realloc() function, 355
stack-based arrays, 354
variable-sized arrays, 355

arrow operator, 452
The Art and Science of C: A Library Based Introduction to

Computer Science, Eric S. Roberts, 806
The Art of Computer Programming Volume 1: Fundamental

Algorithms (Third Edition), Donald E. Knuth, 807
The Art of Computer Programming Volume 2: Seminumerical

Algorithms (Third Edition), Donald E. Knuth, 807

814

algorithms (continued)

32_574841 index.qxd 12/15/04 3:49 PM Page 814

The Art of Computer Programming Volume 3: Sorting and
Searching (Third Edition), Donald E. Knuth, 807

asm keyword, 504
assembly code, 504–505
assert macro, 540–541
assigning object values, 177–178
assignment operator, 8, 264

code example, 191–193
containers, 563
declaring, 178–179
defining, 179–180, 194
disallowing assignment, 194
distinguishing from copy constructors, 180
vectors, 571

associative arrays, 93
associative containers, 595, 683–687
at() method, 568
attributes (XML), 711
auditing voter registrations example program, 648–653
auto_ptr template, 88–89

B
back() method, 568
backslash (\) escape character, 4
bad() method, 383
base classes

abstract, 242–243
ambiguous, 249–252
virtual, 269–270

Beck, Kent
eXtreme Programming eXplained, 128, 808
Refactoring: Improving the Design of Existing Code, 808

begin() method, 565
behaviors, 59–60
BeOS framework, 750
bidirectional iterators, 564
bidirectional streams, 396–397
big-O notation, 82–83
binary logical operator overloading, 441
binary operators, 8
binary_search() algorithm, 96, 635
binders, 627–628
bitsets, 93–94
bitwise operator overloading, 441
black box testing, 507
Boehm, Barry W., A Spiral Model of Software Development

and Enhancement, 807
bool variable type, 7
boolalpha manipulator, 383, 389
Boolean expression conversions, 455–457
braces ({}), 153
Brant, John, Refactoring: Improving the Design of Existing

Code, 808
buffer overflow errors, 378
buffers (output streams), 382

bugs
buffer overflow errors, 378
catastrophic bugs, 528
error logging, 528–530
Fundamental Law of Debugging, 527
life cycle, 508–509
noncatastrophic bugs, 528
nonreproducible, 543–544
regression testing, 525
reproducible, 541–543
root cause, 528
tips for avoiding bugs, 528

Bugzilla bug-tracking tool, 509–510
Bulka, Dov, Efficient C++: Performance Programming

Techniques, 809
bundling third-party applications, 85

C
C functions, 630
C Pocket Reference, Peter Prinz, Tony Crawford (Translator),

Ulla Kirch-Prinz, 806
The C Programming Language (Second Edition),

Brian W. Kernighan and Dennis M. Ritchie, 806
C standard library, 88
C++ FAQ LITE, Marshall Cline, 804
C++ FAQs (Second Edition), Marshall Cline, Greg Lomow,

and Mike Giru, 804
C++ Gotchas, Stephen C. Dewhurst, 804
C++ How to Program (Fourth Edition), Harvey M. Deitel and

Paul J. Deitel, 803
C++ in a Nutshell, Ray Lischner, 804
C++ Primer Plus, Stephen Prata, 804
C++ Primer (Third Edition), Stanley B. Lippman and

Josée Lajoie, 803
The C++ Programming Language (Special Third Edition),

Bjarne Stroustrup, 1, 804
C++ Resources Network Web site, 805
The C++ Standard: Incorporating Technical Corrigendum

No. 1 (John Wiley & Sons), 804
C++ standard library, 87, 89
The C++ Standard Library: A Tutorial and Reference, Nicolai

M. Josuttis, 805
C++ strings, 21–22
C++ Templates: The Complete Guide, David Vandevoorde and

Nicolai M. Josuttis, 806
cache invalidation, 473
caching, 472–473
calling

member functions, 629–630
methods, 161–163

capitalization of code, 150
caret, equal (^=) operator, 9
caret (^) operator, 9
carriage return (\r) escape character, 4

815

carriage return (\r) escape character

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 815

casting
downcasting, 239–240
pointers, 361–362
slicing, 239
upcasting, 239
variables, 7–8

casts
const_cast, 338–339, 342
dynamic_cast, 267–268, 341–342
reinterpret_cast, 340, 342
static_cast, 339–340, 342

catastrophic bugs, 528
catching exceptions, 402, 405–406, 732–733
centrality of distributed computing, 694
Cerami, Ethan, Web Services Essentials, 810
chain of responsibility design pattern, 776–778
changing method characteristics, 253–256
char variable type, 7
character sets

facets, 400
internationalization, 397–398
locales, 398–400
non-Western, 398
Unicode, 398
wide characters, 397–398

Chess program, 51–55
child classes, 234. See also subclasses
cin input stream, 384–385
class templates. See template classes
classes

abstract classes
abstract base classes, 242–243
implementations, 218–221
interfaces, 218–221

access specifiers, 159–160
base classes

abstract, 242–243
ambiguous, 249–252
virtual, 269–270

child classes, 234
code example, 730–731
constructors, 27
data members

access control, 159–160
accessing, 161, 195–196
const, 196–198
const reference, 199
defined, 158
pointers, 217–218
reference, 198–199
static, 195–196, 333
static const, 197–198

declaring, 26–27
defined, 26, 58
definition, 158, 730–731
destructors, 27
exception classes, 419–421, 732

extending, 224–225, 731–732
friend, 208
fstream, 396
ifstream, 392
implementation, 731
instances, 58–59
istringstream, 391
methods

access control, 160
calling, 161–163
defined, 26–29, 158
defining, 161
static, 333
this pointer, 163–164

mix-in classes
defined, 73
designing, 747–749
implementation, 749
uses, 749
XMLSerializable class, 723–724

nested, 206–207
ofstream, 392
order of declarations, 160
ostringstream, 391
pair class, 595–596
parent classes

constructors, 234–235
destructors, 235–237
inheritance, 224–225

reusable code, 78
string, 88, 367–369
stringstream, 397
subclasses

adding functionality, 231–233
copy constructors, 263–264
creating, 731–732
default arguments, 260–261
assignment (=) operator, 264
implementation, 732
inheritance, 226–227
overridden methods, 230
replacing functionality, 233
template classes, 293–294

superclasses
default arguments, 260–261
defined, 65
inheritance, 224–225

template classes
method definitions, 277–279, 281–282
subclasses, 293–294
syntax, 276–277
uses, 273
writing, 273–275, 734–736

wifstream, 397
wofstream, 397

cleanup (exceptions), 423
clear() method, 383

816

casting

32_574841 index.qxd 12/15/04 3:49 PM Page 816

Cline, Marshall
C++ FAQ LITE, 804
C++ FAQs (Second Edition), 804

code bloat, 111, 281
code coverage (unit testing), 511
Code Reading: The Open Source Perspective,

Diomidis Spinellis, 808
code reuse

abstraction, 107–108
advantages, 79
aggregation, 110
capabilities, 81
categories of, 78
disadvantages, 79–80
error checking, 112
frameworks, 78
goals, 106–107
hierarchies, 109–110
inheritance, 230
interfaces, 107–108, 112–118
libraries, 78
licensing, 84
limitations, 81
open-source libraries, 86–87
performance, 81
philosophy, 106
platforms, 83–84
polymorphism, 66
program design, 49–50
safeguards, 112
stand-alone functions or classes, 78
subsystems, 109
support, 84–85
templates, 110–112
tips for writing, 49–50, 108–109

coding
const keyword, 151
constants, 151
custom exceptions, 152
decomposition, 145–148
documentation, 136–145
formatting, 152–154
importance of “good” code, 135–136
naming conventions, 148–151
references versus pointers, 151–152
stylistic consistency, 155

coercing variables, 7
collections, 60
commands. See specific commands by name
comments

ad hoc, 144
complicated code, 137–138
C-style, 2
defined, 2
fixed-format, 142–143
interfaces, 115–116
line by line, 140–141
metainformation, 139

prefix, 141–142
self-documenting code, 144–145
testing, 526
usage information, 136–137

Common Object Request Broker Architecture (CORBA).
See CORBA (Common Object Request Broker
Architecture)

comparing vectors, 571–572
comparison algorithms, 97, 635
comparison function objects, 625–626
comparison operator overloading, 215–216
compiler support for templates, 272
compiler-generated constructors, 175–176
compile-time debug mode, 530–532
component interface, 75
components, 59
Computer Architecture: A Quantitative Approach (Third Edi-

tion), John L. Hennessy and David A. Patterson, 809
Computer Organization & Design: The Hardware/Software

Interface (Second Edition), David A. Patterson and
John L. Hennessy, 809

conditional operators, 13–14
conditionals

defined, 12
if/else statements, 12
switch statements, 12–13

console streams, 380
const data members (classes), 196–198
const keyword

constants, 25
methods, 200–202, 333
pointers, 330–332, 362
proper use, 151
references, 26, 199, 332
uses, 25
variables, 25, 330

constants
const keyword, 25
defining, 25
smart constants, 150
uses, 151

const_cast, 338–339, 342
const_iterator, 574
const_iterators, 565
constructors

child classes, 234
compiler-generated, 175–176
default constructor, 168–171
defined, 27, 165
error handling, 427–428
on the heap, 167
initializer lists, 171–172
multiple constructors, 167–168
parent classes, 234–235
on the stack, 166–167
vectors, 569–570
writing, 166

817

constructors

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 817

containers
accessing fields of object elements, 573–574
arrays, 611–612
assignment operator, 563
associative, 595, 683–687
bitsets, 93
copy constructor, 563
defined, 89–90
deques, 91, 565, 584
destructors, 563
element requirements, 562–563
error checking, 563
exceptions, 563
hash tables

accessor operations, 690–691
constructors, 687
erase operations, 688–689
insertion operations, 687–688
methods, 672–675
typedefs, 671–672
writing, 662–670

iterators, 95, 564–565
lists, 90–91, 565, 584
maps, 93, 596–599
multimaps, 93, 604–605
multisets, 92–93, 610–611
performance comparison, 94
pointers, 563
priority queues, 91–92, 591–592
queues, 91, 588–589
reference semantics, 562
reversible, 682
sequential, 691
sequential containers, 565
sets, 92–93, 608
smart pointers, 563
stacks, 92
std namespace, 562
streams, 613–618
strings, 612–613
value semantics, 562
vectors, 90, 565–566
writing, 662–670

conversion operators, 453–455
conversions (implicit and explicit), 211
converting variable types, 7
copy() algorithm, 98, 640–641
copy constructors

calling, 173–174
containers, 563
defined, 172
defining, 190–191
object members, 181
private, 194
subclasses, 263–264

copy_backward() algorithm, 98

copyFrom() method, 193–194
copying vectors, 571
CORBA (Common Object Request Broker Architecture)

client process, 708–709
defined, 702
Interface Definition Language (IDL), 702–705
intermachine communication, 706
Internet Inter-ORB Protocol (IIOP), 702
interprocess communication, 706
location transparency, 702
nameserver, 706
Object Request Broker (ORB) framework, 706
omniORB framework, 702
open-source implementations, 702
Portable Object Adapter (POA), 704
server process, 707–708
Web site, 810

Cormen, Thomas H., Introduction to Algorithms (Second
Edition), 807

count() algorithm, 97, 635
counters, 149
count_if() algorithm, 97, 635
cout output stream, 381
covariant returns types, 253
cppunit open-source unit testing framework, 516–523
creating

mix-in classes, 747–749
objects, 164–166
subclasses, 731–732

cross-language applications
C and C++, 494–498
C++ with assembly code, 504–505
C++ with perl and shell scripts, 501–502
Java and C++ with JNI, 499–501

cross-platform applications
architecture issues

binary compatibility, 490
cross-compiling, 490
open source distribution, 490
word and type sizes, 490–491
word order, 491–492

code reuse, 83–84
implementation issues

compilers, 492–493
libraries, 493

platform-specific features, 493–494
cruft, 147
C-style comments, 2
C-style strings, 21, 365–366
Cunningham and Cunningham, The Portland Pattern

Repository, 811
curly braces {}, 153
custom exceptions, 152
customizability of interfaces, 117

818

containers

32_574841 index.qxd 12/15/04 3:49 PM Page 818

D
Darwin, Ian F., Java Cookbook, 806
data members (classes)

access control, 159–160
access specifiers, 159–160
accessing, 161, 195–196
const, 196–198
const reference, 199
declaring, 158
defined, 26
pointers, 217–218
reference, 198–199
static, 195–196, 333
static const, 197–198

data members (references), 326
Death March, Edward Yourdon, 132, 808
debug traces

debug modes, 530–535
defined, 530
ring buffers, 535–540

debuggers
Gnu DeBugger (gdb), 556–558, 809
Rational Purify, 809
symbolic debugger, 542
Valgrind, 809

debugging
Article Citations example, 548–559
assert macro, 540–541
error logging, 528–530
Fundamental Law of Debugging, 527
memory errors, 544–547
multithreaded programs, 547
nonreproducible bugs, 543–544
reproducible bugs, 541–543
tips for avoiding bugs, 528

dec manipulator, 383, 389
declarations

arrays, 15
classes, 26–27
data members (classes), 158
functions, 16–17
methods, 158
order of, 160
pointers, 19
variables, 6

decomposition, 145–148
decorator design pattern, 773–776
decrement operator, 8

overloading, 439–441
default constructor, 168–171
default parameters, 203–204
#define [key] [value] preprocessor directive, 3
defining

constants, 25
methods, 161

Deitel, Harvey M. and Paul J., C++ How to Program (Fourth
Edition), 803

delete command, 20
delete expression, 457–458
delete keyword, 351
deleting arrays, 20, 356–357
deques, 91, 94, 584
dereferencing operator overloading, 449–451
dereferencing pointers, 20–21
Derge, Gillmer J., STL Tutorial and Reference Guide (Second

Edition), 805
deserialization

C++, 697
XML, 717

design patterns
adapter, 768–773
chain of responsibility, 776–778
decorator, 773–776
defined, 51, 102
factory, 760–766
iterator pattern, 103
observer, 778–781
proxy, 766–768
singleton, 754–760

Design Patterns: Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, 811

design-level efficiency
cache invalidation, 473
caching, 472–473
defined, 466
object pools, 473–478
thread pools, 479

destructors
containers, 563
error handling, 428
freeing memory, 186
non-virtual destructors, 266–267
objects, 27, 176–177
parent classes, 235–237
vectors, 569–570
virtual destructors, 236–237

Dewhurst, Stephen C., C++ Gotchas, 804
disabling support for language features, 472
disallowing

assignment, 194
pass-by-value, 194

distributed computing
centrality, 694
content, 695
grid computing, 694
load balancer, 694
reliability, 694
rendering farms, 694
scalability, 693–694
SETI@home project, 694
versus networked computing, 695–696

819

distributed computing

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 819

distributed objects
CORBA, 702–709
deserialization, 697
marshalling, 696–700
remote procedure call (RPC), 700–701
serialization, 696–700
unmarshalling, 697
XML, 712, 723, 725–726

division, equal (/=) operator, 8
division (/) operator, 8
Document Object Model (DOM) parser, 717
Document Type Definition (DTD) (XML), 721–722
documentation

comments, 136–145
Doxygen tool, 142–143
interfaces, 115–116
JavaDoc tool, 142
performance, 83
self-documenting code, 145

DOM (Document Object Model) parser, 717
double deletion (memory leaks), 377
double dispatch, 741, 744–747
double minus (--) decrement operator, 8
double variable type, 7
doubly linked lists, 90–91
do/while loops, 15
downcasting, 239–240
Doxygen, Dimitri van Heesch, 808
Doxygen documentation tool, 142–143
DTD (Document Type Definition) (XML), 721–722
dumb pointers, 565
Dustin, Elfriede, Effective Software Testing: 50 Specific

Ways to Improve Your Testing, 809
dynamic memory

advantages of using, 350
allocation, 183–190, 351–352
arrays, 353–360
deallocation, 351–352
defined, 18–19
failure of memory allocation, 353
free() function, 353
malloc() function, 352–353
mental model, 350–351
orphaned memory, 351–352
realloc() function, 355

dynamic_cast, 267–268, 341–342
dynamic-length vectors, 568–569

E
Eckel, Bruce

Thinking in C++, Volume 1: Introduction to Standard C++
(Second Edition), 803

Thinking in C++, Volume 2: Practical Programming (Second
Edition), 804

Effective C++ (Second Edition): 50 Specific Ways to Improve
Your Programs and Designs, Scott Meyers, 804

Effective Software Testing: 50 Specific Ways to Improve Your
Testing, Elfriede Dustin, 809

Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library, Scott Meyers, 805

efficiency (of programs)
defined, 465–466
design-level, 466, 472–479
exceptions, 471
inline functions, 472
inline methods, 472
language-level, 466–472
RTTI, 471–472
virtual methods, 471

Efficient C++: Performance Programming Techniques,
Dov Bulka and David Mayhew, 809

element tags (XML documents), 711
Employee Records System program

Database class, 34–38
Employee class, 29–34
user interface, 38–41

empty element tag (XML documents), 711
encrypting passwords, 502–504
end() method, 565
#endif preprocessor directive, 3
endl manipulator, 383
enumerated types, 10–11
equal() algorithm, 97, 635–636
equal_range() algorithm, 96, 635
errno macro, 403
error checking

containers, 563
reusable code, 112

error handling
constructors, 427–428
destructors, 428
errno macro, 403
integer function return codes, 403
memory allocation errors, 424–426

error logging, 528–530
errors

input streams, 387–388
memory errors

accessing memory, 545–546
freeing memory, 544–545

output streams, 382–383
escape characters, 4
evaluating reusable code, 81
event handling

chain of responsibility design pattern, 776–778
observer design pattern, 778–781

exceptions
advantages of using, 403
catching, 24–25, 402, 405–406, 732–733
cleanup, 423
containers, 563
custom exceptions, 152
defined, 23–24, 402

820

distributed objects

32_574841 index.qxd 12/15/04 3:49 PM Page 820

disadvantages of using, 404
effect on program efficiency, 471
file input/output, 404–405
hierarchy, 416–419
matching, 410–411
multiple exceptions, 408–410
objects, 406–408
polymorphism, 416
stack unwinding, 422–423
support, 89
throw lists, 412, 414–416
throwing, 24–25, 402, 405–406, 732–733
try-catch block, 24
uncaught exceptions, 411–412
unexpected exceptions, 413–414
writing exception classes, 419–421, 732

exceptions() method, 406
exclamation point (!) operator, 8
Expert C Programming: Deep C Secrets,

Peter Van Der Linden, 806
explicit conversions, 211
explicit keyword, 211
exposed interface, 74
extending classes, 224–225, 731–732
extending the STL (standard template library), 660
Extensible Markup Language (XML)

attributes, 711
defined, 709–710
deserialization, 717
distributed objects, 723, 725–726
document structure, 710–711
Document Type Definition (DTD), 721–722
element tags, 711
empty element tag, 711
generating XML, 712–713
hierarchy, 710
learning curve, 709
namespaces, 711
output class, 713–717
parsing XML

DOM (Document Object Model) parser, 717
SAX (Simple API for XML) parser, 717
Xerces parser, 717–721

plain text format, 710
prolog, 710–711
root element, 711
serialization, 712, 723–726
SOAP (Simple Object Access Protocol), 726–728
text node, 711
validation, 721–723
XML Schema, 722–723

extern keyword, 335–336
external linkage, 333–334
extraction operator overloading, 441–443
Extreme Programming (XP), 128–131
eXtreme Programming eXplained, Kent Beck, 128, 808

F
facets, 400
factory design pattern, 760–766
Facts and Fallacies of Software Engineering,

Robert L. Glass, 808
fail() method, 383
Farley, Jim, Java Distributed Computing, 810
FIFO (first in, first out), 91
file streams, 380, 393–394
files

reading, 733
writing, 734

files streams, 392
fill() algorithm, 98
fill_n() algorithm, 98
FILO (first-in, last-out), 92
find() algorithm, 96, 620–622, 633
find_end() algorithm, 96
find_first_of() algorithm, 96, 633
find_if() algorithm, 96, 622–623, 633
finding memory leaks, 375–376
first in, first out (FIFO), 91
first-in, last-out (FILO), 92
fixed-format comments, 142–143
fixing memory leaks, 375–376
float variable type, 7
flush() method, 382–383, 395
for loops, 15
for_each() algorithm, 98, 637–639
formatting code, 152–154
forward iterators, 564
Fowler, Martin, Refactoring: Improving the Design of

Existing Code, 808
Foxall, James, Practical Standards for Microsoft Visual

Basic .NET, 808
frameworks

BeOS, 750
defined, 78, 750
Microsoft Foundation Classes (MFC), 750
model-view-controller (MVC), 750–752
omniORB, 702
reusable code, 78

free() function, 353
free software open-source movement, 86
freeing memory, 186
freeware, 86
friend classes, 208
friend methods, 208
front() method, 568
fstream class, 396
function call operator overloading, 448–449
function object adapters

binders, 627–628
negators, 628–629

function objects
arithmetic, 624–625
calling member functions, 629–630

821

function objects

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 821

function objects (continued)
comparison, 625–626
defined, 624
logical, 627
writing, 630–631

function pointers, 372–373
function templates, 295–299
functional relationships, 69–70
functions

declaring, 16–17
default parameters, 203–204
defined, 16, 272
free(), 353
getline(), 387
inline functions, 204–205, 472
legacy C functions, 630
main(), 3
malloc(), 352–353
mem_fun_ref(), 629–630
parameters, 272
printf(), 379
realloc(), 355
reusable code, 78
scanf(), 379
static variables, 336

functors. See function objects
Fundamental Law of Debugging, 527
Futrell, Robert T., Quality Software Project Management, 808

G
Gamma, Erich, Design Patterns: Elements of Reusable

Object-Oriented Software, 811
garbage collection, 101–102, 370–371
gcov code coverage tool, 511
gdb (Gnu DeBugger), 556–558, 809
General KeyServer Questions, Sassafras Software, 810
general purpose interfaces, 116, 118
generate() algorithm, 98
generate_n() algorithm, 98
generating XML, 712–713
generic code. See code reuse; templates
get() method, 385–386
getline() function, 387
getline() method, 387
getters, 149
Giru, Mike, C++ FAQs (Second Edition), 804
Glass, Robert L., Facts and Fallacies of Software

Engineering, 808
global functions and operator overloading, 433–434
global scope, 343
Gnu DeBugger (gdb), 556–558, 809
GNU gprof Web site, 809
GNU Operating System — Free Software Foundation Web

site, 807
good() method, 382–383
gprof profiling tool, 479–483, 485–487
grid computing, 694

H
half-open range, 565
has-a relationship, 63, 66–69
hash tables

accessor operations, 690–691
constructors, 687
erase operations, 688–689
insertion operations, 687–688
methods, 672–675
typedefs, 671–672
writing, 662–670

header files, 343–344
heap

algorithms, 645
arrays, 354
constructors, 167
defined, 18
multidimensional arrays, 359–360
objects, 165
sorting algorithms, 99

Hello, World! program, 2
Helm, Richard, Design Patterns: Elements of Reusable

Object-Oriented Software, 811
Hennessy, John L.

Computer Architecture: A Quantitative Approach (Third
Edition), 809

Computer Organization & Design: The Hardware/Software
Interface (Second Edition), 809

Henning, Michi, Advanced CORBA Programming
with C++, 810

hex manipulator, 383, 389
hiding methods, 264–265
hierarchies

defined, 70–71
exceptions, 416–419
iterators, 631
parallel hierarchy, 253
reusable code, 109–110

How SETI@home Works, Ron Hipschman, 810
Hughes, Cameron and Tracey

Mastering the Standard C++ Classes: An Essential
Reference, 805

Stream Manipulators and Iterators in C++, 805
Hungarian Notation, 150

I
IBM

Rational Purify, 809
Rational Quantify profiling tool, 479
Rational Software, 809
Rational Unified Process (RUP), 126–127, 808

idea reuse, 50
IDL (Interface Definition Language), 702–705
#ifdef [key] preprocessor directive, 3
if/else statements, 12
#ifndef [key] preprocessor directive, 3

822

function objects (continued)

32_574841 index.qxd 12/15/04 3:49 PM Page 822

ifstream class, 392
IIOP (Internet Inter-ORB Protocol), 702
implementation

abstract classes, 218–221
classes, 731
iterators, 565
mix-in classes, 749
subclasses, 732
versus interface, 73

implicit conversions, 211
#include [file] preprocessor directive, 3
includes() algorithm, 99, 646
increment operators, 8

overloading, 439, 441
overloading operators, 440

indexing versus iterators, 575
inheritance

casting
downcasting, 239–240
slicing, 239
upcasting, 239

child classes, 234
clients’ view, 225–226
code reuse, 230
defined, 64–65
multiple inheritance, 72–73, 248–252
non-public inheritance, 269
overriding methods, 227–230
parent classes, 224–225, 234–237
polymorphism, 240–247
scope resolution operator (::), 237–239
subclasses

adding functionality, 231–233
copy constructors, 263–264
default arguments, 260–261
assignment (=) operator, 264
overridden methods, 230
replacing functionality, 233
view of inheritance, 226–227

superclasses, 224–225, 260–261
templates, 111–112, 295
weather prediction program, 230–233

initializer lists, 171–172
initializing variables, 336–337
initPointer() method, 737
inline functions, 204–205, 472
inline methods, 204–205, 472
in-memory streams, 390
inner_product() algorithm, 97
inplace_merge() algorithm, 99
input iterators, 564
input methods
get(), 385–386
getline(), 387
peek(), 387
printf() function, 379
putback(), 387
scanf() function, 379

seek(), 392–393
seekg(), 393
tell(), 392–393
tellg(), 393
unget(), 386

input streams
bidirectional, 396–397
cin, 384–385
console, 380
defined, 3–4, 88, 379–380
errors, 387–388
facets, 400
files, 380, 392–394
ifstream class, 392
istringstream class, 391
linking, 395
locales, 398–400
manipulators, 388–389
objects, 389–390
source, 380
strings, 380, 391
wide characters, 397–398
wifstream class, 397

inRange() method, 185
insert iterators, 658–660
insertion operator overloading, 441–443
instances, 58–59
instantiating templates, 279–280
int variable type, 7
integer function return codes, 403
integration tests, 523–525
Interface Definition Language (IDL), 702–705
interfaces

abstract classes, 218–221
application programming interface (API), 74–75, 78
comments, 115–116
component interface, 75
customizability, 117
documentation, 115–116
exposed interface, 74
future use, 75
general purpose, 116, 118
intuitive, 113–114
operator overloading, 113–114
reusable code, 107–108, 112–118
subsystem interface, 75
versus implementation, 73

internal linkage, 333–334
internationalization, 88, 397
Internet Inter-ORB Protocol (IIOP), 702
Introduction to Algorithms (Second Edition), Thomas H.

Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, 807

intuitive interfaces, 113–114
invalid pointers, 377
I/O streams

bidirectional, 396–397
console, 380

823

I/O streams

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 823

I/O streams (continued)
defined, 3–4, 88, 379–380
facets, 400
files, 380, 392–394
in-memory, 390
input streams, 384–389
linking, 395
locales, 398–400
objects, 389–390
output streams, 380–384
printf() function, 379
scanf() function, 379
strings, 380, 390–392
user, 380
wide characters, 397–398

is-a relationship, 64–69
istringstream class, 391
iterator adapters

defined, 656
insert iterators, 658–660
reverse iterators, 656–657
stream iterators, 657–658

iterator design pattern, 103
iterator traits, 662
iterators

algorithms, 631–632
bidirectional, 564
const_iterator, 565, 574
defined, 95
dumb pointers, 565
forward, 564
half-open range, 565
hierarchy, 631
implementation, 565
indexing, 575
input, 564
iterator, 565
lists, 584
maps, 599–600
output, 564
pointers, 565
random access, 564
safety, 574–575
vectors, 572–577
writing, 675–682

iter_swap() algorithm, 98

J
Java and C++ with JNI, 499–501
Java Cookbook, Ian F. Darwin, 806
Java Distributed Computing, Jim Farley, 810
JavaDoc tool, 142
job interview questions

C++ basics, 783–784
C++ quirks and oddities, 793–794
classes, 789–792

code reuse, 787
coding style, 788–789
cross-platform/cross-language applications, 798
debugging skills, 799
design patterns, 801
distributed objects, 800–801
efficient code, 797–798
error handling, 796
frameworks, 801
inheritance, 792–793
I/O streams, 795–796
libraries, 786
memory management, 794–795
object design, 785–786
objects, 789–790, 792
overloading operators, 796–797
patterns, 786
program design, 784–785
software engineering methods, 787–788
Standard Template Library (STL), 799–800
templates, 793
testing skills, 798–799

Johnson, Ralph, Design Patterns: Elements of Reusable
Object-Oriented Software, 811

Josuttis, Nicolai M.
The C++ Standard Library: A Tutorial and Reference, 805
C++ Templates: The Complete Guide, 806

K
Kernighan, Brian W, The C Programming Language (Second

Edition), 806
KeyServer (Sassafras Software), 694
keywords
asm, 504
const

constants, 25
methods, 333
pointers, 330–332, 362
proper use, 151
references, 26, 332
uses, 25
variables, 25, 330

delete, 351
explicit, 211
extern, 335–336
new, 351
public, 269
static, 333–335
template, 276
typename, 276
using, 258–259
virtual, 227–228

Kirch-Prinz, Ulla, C Pocket Reference, 806
Knuth, Donald E.

The Art of Computer Programming Volume 1: Fundamental
Algorithms (Third Edition), 807

824

I/O streams (continued)

32_574841 index.qxd 12/15/04 3:49 PM Page 824

The Art of Computer Programming Volume 2: Seminumerical
Algorithms (Third Edition), 807

The Art of Computer Programming Volume 3: Sorting and
Searching (Third Edition), 807

Kruchten, Philippe, Rational Unified Process: An
Introduction (Second Edition), 808

Kulchenko, Pavel, Programming Web Services with SOAP, 810

L
Lajoie, Josée, C++ Primer (Third Edition), 803
language features, 472
language-level efficiency, 466–472
Learning XML (Second Edition), T. Ray, 810
legacy C functions, 630
Leiserson, Charles E., Introduction to Algorithms (Second

Edition), 807
lexicographical_compare() algorithm, 97, 635–637
libraries

C standard library, 88
C++ standard library, 87, 89
defined, 78
open-source, 86–87
reusable code, 78

licensing
code reuse, 84
third-party applications, 85

life cycle
bugs, 508–509
objects, 165

life cycle models
defined, 120
Rational Unified Process (RUP), 126–127
Spiral Method, 123–126
Stagewise Model, 121–122
Waterfall Model, 122–123

line by line comments, 140–141
linkage
extern keyword, 335–336
external, 333–334
internal, 333–334
static keyword, 333–335

linking streams, 395
Lippman, Stanley B., C++ Primer (Third Edition), 803
Lischner, Ray, C++ in a Nutshell, 804
lists

accessing elements, 584
adding elements, 584–585
algorithms, 586–587
defined, 90, 565, 584
doubly linked lists, 90–91
iterators, 584
performance, 94
removing elements, 584–585
size, 585
splicing, 585–586
university or college enrollment example, 587–588

load balancer, 694
locales, 398–400
location transparency, 702
logger, 754–760
logging errors, 528–530
logical function objects, 627
Lomow, Greg, C++ FAQs (Second Edition), 804
long variable type, 7
loops

defined, 14
do/while loops, 15
for loops, 15
while loops, 14–15

Loudon, Kyle, Mastering Algorithms with C, 807
lower_bound() algorithm, 96, 635

M
macros
assert macro, 540–541
errno macro, 403
preprocessor macros, 347

main() function, 3
make_heap() algorithm, 99, 645
malloc() function, 352–353
manipulators
boolalpha, 383, 389
dec, 383, 389
endl, 383
hex, 383, 389
input streams, 388–389
noboolalpha, 383, 389
noshowpoint, 383
noskipws, 389
oct, 383, 389
output streams, 383–384
setfill, 383
setprecision, 383
setw, 383
showpoint, 383
skipws, 389
ws, 389

maps
bank account example, 602–604
defined, 93–94
iterators, 599–600
looking up elements, 600–602
operations, 596–599
removing elements, 602

marshalling (distributed objects), 696–700
Mastering Algorithms with C, Kyle Loudon, 807
Mastering the Standard C++ Classes: An Essential Refer-

ence, Cameron Hughes and Tracey Hughes, 805
matching exceptions, 410–411
mathematical utilities, 89
max() algorithm, 96, 632–633
max_element() algorithm, 96, 633

825

max_element() algorithm

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 825

Mayhew, David, Efficient C++: Performance Programming
Techniques, 809

members (classes)
access control, 159–160
access specifiers, 159–160
accessing, 161, 195–196
const, 196–198
const reference, 199
declaring, 158
pointers, 217–218
reference, 198–199
static, 195–196, 333
static const, 197–198

members (references), 326
mem_fun_ref() function, 629–630
memory

aliasing, 102
dynamic memory

advantages of using, 350
allocation, 183–190, 351–352
arrays, 353–360
deallocation, 351–352
defined, 18–19
failure of memory allocation, 353
free() function, 353
malloc() function, 352–353
mental model, 350–351
orphaned memory, 351–352
realloc() function, 355

freeing with destructors, 186
heap

algorithms, 645
arrays, 354
constructors, 167
defined, 18
multidimensional arrays, 359–360
objects, 165
sorting algorithms, 99

out-of-bounds memory, 378
pointer arithmetic, 369–370
pointers

arrays, 362–364
casting, 361–362
declaring, 19
dereferencing, 20–21
invalid pointers, 377
mental model, 360–361
smart pointers, 88–89, 101–102, 376–377, 424
variables, 20

stack
arrays, 354
constructors, 166–167
defined, 18
error correlation, 594–595
multidimensional arrays, 357–358
objects, 164
operations, 594

stack frames, 18–19
underallocating strings, 374

memory allocation operator overloading, 457–458
memory deallocation operator overloading, 457–458
memory errors

accessing memory, 545–546
allocation errors, 424–426
debugging, 546–547
freeing memory, 544–545

memory leaks, 374–377, 544
memory management

function pointers, 372–373
garbage collection, 370–371
object pools, 371

merge() algorithm, 99, 644
metainformation comments, 139
method behavior and run-time types

brute force approach, 742–743
double dispatch, 741, 744–747
single polymorphism with overloading, 743–744

method overloading, 202–203
method templates, 285–290
methodPtr pointer, 217
methods

access control, 159–160
access specifiers, 159–160
add(), 209
at(), 568
back(), 568
bad(), 383
begin(), 565
calling, 161–163
clear(), 383
const, 200–202
const keyword, 333
constructor, 165
copyFrom(), 193–194
declaring, 158
default parameters, 203–204
defined, 26–29
defining, 161
destructor, 176–177
end(), 565
exceptions(), 406
fail(), 383
flush(), 382–383, 395
friend, 208
front(), 568
get(), 385–386
getline(), 387
good(), 382–383
hiding, 264–265
initPointer(), 737
inline methods, 204–205, 472
inRange(), 185
multi-methods, 741
operator [], 446–447, 567, 599

826

Mayhew, David

32_574841 index.qxd 12/15/04 3:49 PM Page 826

operator+, 210–212
operator overloading, 433–434
overriding

changing method characteristics, 253–256
clients’ view, 229–230
private method, 259–260
protected method, 259–260
slicing, 230
special cases, 256–263
syntax, 228–229
virtual methods, 227–228

parameters, 254–256
peek(), 387
pointers, 217–218
pure virtual methods, 242–243
push_back(), 569
put(), 381–382
putback(), 387
return types

changing, 253–254
covariant returns types, 253

scope resolution operator (::), 161
seek(), 392–393
seekg(), 393
seekp(), 393
size(), 569
static, 199–200, 333
str(), 391
tell(), 392–393
tellg(), 393
tellp(), 393
template classes, 277–279, 281–282
this pointer, 163–164
tie(), 395
unget(), 386
virtual methods, 227–228, 264–267
write(), 381–382

Meyers, Scott
Effective C++ (Second Edition): 50 Specific Ways to Improve

Your Programs and Designs, 804
Effective STL: 50 Specific Ways to Improve Your Use of the

Standard Template Library, 805
More Effective C++: 35 New Ways to Improve Your

Programs and Designs, 804
Microsoft Foundation Classes (MFC), 750
mImpl pointer, 220–221
min() algorithm, 96, 632–633
min_element() algorithm, 96, 633
mismatch() algorithm, 97, 635–636
mix-in classes

defined, 73
designing, 747–749
implementation, 749
uses, 749
XMLSerializable class, 723–724

mixing languages
C and C++, 494–498
C++ with assembly code, 504–505

C++ with perl and shell scripts, 501–502
Java and C++ with JNI, 499–501

mod, equal (%=) operator, 8
mod (%) operator, 8
model-view-controller (MVC), 750–752
Modern C++ Design: Generic Programming and Design

Patterns Applied, Andrei Alexandrescu, 811
modifying algorithms, 98, 639
modifying category of references, 324–325
More Effective C++: 35 New Ways to Improve Your Programs

and Designs, Scott Meyers, 804
multidimensional arrays, 16, 357–360
multimaps

buddy lists, 605–608
defined, 93–94, 604–605

multi-methods, 741
multiple dispatch, 741
multiple exceptions, 408–410
multiple inheritance, 71–73, 248–252
multiplication, equal (*=) operator, 8
multiplication (*) operator, 8
multisets, 92–94, 610–611
multithreaded programs, 547
Muntz, Amy, Applied C++: Practical Techniques for Building

Better Software, 805
Musser, David R., STL Tutorial and Reference Guide (Second

Edition), 805
MVC (model-view-controller), 750–752

N
name ambiguity and multiple inheritance, 249–252
nameserver, 706
namespaces

defined, 4–6
std namespace, 562
XML, 711

naming conventions, 148–151
negators, 628–629
nested classes, 206–207
networked computing versus distributed computing,

695–696
new command, 20
new expression, 457–458
new keyword, 351
new line (\n) escape character, 4
newsgroups, 804
next_permutation() algorithm, 98
noboolalpha manipulator, 383, 389
noncatastrophic bugs, 528
non-integral array indices, 447–448
nonmodifying algorithms, 96, 633
non-public inheritance, 269
nonreproducible bugs, 543–544
nonstandard strings, 23
non-virtual destructors, 266–267
non-Western character sets, 398
noshowpoint manipulator, 383

827

noshowpoint manipulator

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 827

noskipws manipulator, 389
not-a relationship, 69
nth_element() algorithm, 99, 645
numerical processing algorithms, 97, 635

O
Object Management Group’s CORBA Web site, 810
object pools

class template, 473–477
implementation of a pool class template, 478
memory management, 371
program efficiency, 473

object relationships
defined, 63
functional, 69–70
has-a, 63, 66–69
is-a, 64–69
not-a, 69

Object Request Broker (ORB) framework, 706
object-oriented frameworks

BeOS, 750
defined, 750
Microsoft Foundation Classes (MFC), 750
model-view-controller (MVC), 750–752

object-oriented programming (OOP), 26, 58
objects

arrays, 355–356
assigning values to objects, 177–178
copy constructors, 172–174, 181, 190–191
creating, 164–166
destruction, 176–177
distributed objects

CORBA, 702–709
deserialization, 697
marshalling, 696–700
remote procedure call (RPC), 700–701
serialization, 696–700
unmarshalling, 697
XML, 712, 723, 725–726

dynamic memory allocation, 183–190
exceptions, 406–408
function objects

adapters, 627–629
arithmetic, 624–625
calling member functions, 629–630
comparison, 625–626
defined, 624
logical, 627
writing, 630–631

on the heap, 165
I/O streams, 389–390
life cycle, 165
out of scope, 176
overly general objects, 62
overobjectification, 61–62
passing by reference, 174–175

polymorphism, 66
return values, 180–181
on the stack, 164
temporary objects, 469–470

observer design pattern, 779–781
oct manipulator, 383, 389
ofstream class, 392
omniORB framework, 702
one-dimensional arrays, 16
OOP (object-oriented programming), 26, 58
Opdyke, William, Refactoring: Improving the Design of

Existing Code, 808
Open Source Initiative, 86, 807
open-source libraries, 86–87
open-source movements, 86
operational algorithms, 98, 637
operator overloading
add() method, 209
arguments, 434
arithmetic operators, 212–215, 438–439
behavior, 435
binary logical operators, 441
bitwise operators, 441
built-in types, 216–217
comparison operators, 215–216
decrement operators, 439–441
dereferencing operators, 449–451
extraction operator, 441–443
function call operator, 448–449
global functions, 433–434
global operator+ method, 211–212
implicit conversions, 211
increment operators, 439–441
insertion operator, 441–443
intuitive interfaces, 113–114
limitations, 432–433
memory allocation operators, 457–458
memory deallocation operators, 457–458
methods, 433–434
operator*, 451
operator [] method, 446–447, 567, 599
operator delete, 459–463
operator+ method, 210–211
operator new, 459–463
operators to avoid, 435
rationale for, 432
return types, 434–435
subscripting operator, 443–446
summary table of overloadable operators, 435–438

operators
ampersand (&), 8
ampersand, equal (&=), 8
assignment (=), 8, 178–180, 191–194, 264, 563
binary, 8
caret (^), 9
caret, equal (^=), 9
conditional, 13–14

828

noskipws manipulator

32_574841 index.qxd 12/15/04 3:49 PM Page 828

conversion operators, 453–455
decrement (--), 8
defined, 8
division (/), 8
division, equal (/=), 8
exclamation point (!), 8
increment (++), 8
mod (%), 8
multiplication (*), 8
multiplication, equal (*=), 8
plus (+), 8
plus, equal (+=), 8
precedence, 9–10
scope resolution (::), 161, 237–239
subtraction (-), 8
subtraction, equal (-=), 8
ternary, 8, 13
typeid operator, 268–269
unary, 8
vertical line (|), 8

optimization of return values, 470–471
ORB (Object Request Broker) framework, 706
order of declarations, 160
order of initialization of nonlocal variables, 336–337
orphaned memory, 351
<ostream> header file, 380
ostringstream class, 391
Oualline, Steve, Practical C++ Programming (Second

Edition), 803
out of scope objects, 176
out-of-bounds memory, 378
output iterators, 564
output methods
bad(), 383
clear(), 383
fail(), 383
flush(), 382–383, 395
good(), 382–383
printf() function, 379
put(), 381–382
scanf() function, 379
seek(), 392–393
seekp(), 393
tell(), 392–393
tellp(), 393
write(), 381–382

output streams
bidirectional, 396–397
buffers, 382
console, 380
cout, 381
defined, 3–4, 88, 379–380
destination, 380
errors, 382–383
facets, 400
files, 380, 392–394

linking, 395
locales, 398–400
manipulators, 383–384
objects, 389–390
ofstream class, 392
<ostream> header file, 380
ostringstream class, 391
strings, 380, 391
wide characters, 397–398
wofstream class, 397

overloading methods, 202–203
overloading operators
add() method, 209
arguments, 434
arithmetic operators, 212–215, 438–439
behavior, 435
binary logical operators, 441
bitwise operators, 441
built-in types, 216–217
comparison operators, 215–216
decrement operators, 439–441
dereferencing operators, 449–451
extraction operator, 441–443
function call operator, 448–449
global functions, 433–434
global operator+ method, 211–212
implicit conversions, 211
increment operators, 439–441
insertion operator, 441–443
intuitive interfaces, 113–114
limitations, 432–433
memory allocation operators, 457–458
memory deallocation operators, 457–458
methods, 433–434
operator*, 451
operator [] method, 446–447, 567, 599
operator delete, 459–463
operator+ method, 210–211
operator new, 459–463
operators to avoid, 435
rationale for, 432
return types, 434–435
subscripting operator, 443–446
summary table of overloadable operators, 435–438

overloading template functions, 297–298
overly general objects, 62
overobjectification, 61–62
overriding methods

changing method characteristics, 253–256
clients’ view, 229–230
private method, 259–260
protected method, 259–260
slicing, 230
special cases, 256–263
syntax, 228–229
virtual methods, 227–228

829

overriding methods

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 829

P
pair class, 595–596
parallel hierarchy, 253
parameters

default parameters, 203–204
functions, 272
methods, 254–256
references, 326
templates

nontype, 283–285, 305–306
syntax, 282–283
template, 303
type, 299–304
zero-initialization syntax, 307

parent classes
constructors, 234–235
destructors, 235–237
inheritance, 224–225

parentheses () in code, 154
parsing XML

DOM (Document Object Model) parser, 717
SAX (Simple API for XML) parser, 717
Xerces parser, 717–721

partial_sort() algorithm, 99, 645
partial_sort_copy() algorithm, 99
partial_sum() algorithm, 97
partition() algorithm, 99, 645
passing by reference

defined, 21
language-level efficiency, 467–469
objects, 174–175
references, 327

passing by value
defined, 21
disallowing, 194
references, 327

password encryption, 502–504
patterns. See design patterns
Patterson, David A.

Computer Architecture: A Quantitative Approach (Third
Edition), 809

Computer Organization & Design: The Hardware/Software
Interface (Second Edition), 809

peek() method, 387
performance

big-O notation, 82–83
bitsets, 94
defined, 465
deques, 94
documentation, 83
lists, 94
maps, 94
multimaps, 94
multisets, 94
priority queues, 94
queues, 94
reusable code, 81
sets, 94

stacks, 94
vectors, 94

perl, 501–502
pipe (|) operator, 8
platforms. See cross-platform applications
plus (+) operator, 8
plus, equal (+=) operator, 8
plus, plus (++) operator, 8
POA (Portable Object Adapter), 704
pointer arithmetic, 369–370
pointers

arrays, 362–364
casting, 361–362
const keyword, 330–332, 362
containers, 563
data members (classes), 217–218
declaring, 19
dereferencing, 20–21
invalid pointers, 377
iterators, 565
mental model, 360–361
methodPtr, 217
methods, 217–218
mImpl, 220–221
references, 151–152, 325–330
smart pointers
auto_ptr template, 88–89
containers, 563
memory leaks, 376–377, 424
reference counting, 736–737
SuperSmartPointer implementation, 737–741
uses, 101–102

this, 163–164
variables, 20

polymorphism
code reuse, 66
defined, 66
double dispatch, 741, 744–747
exceptions, 416
inheritance, 240–247
single polymorphism with overloading, 743–744

pools
object pools

class template, 473–478
memory management, 371
program efficiency, 473

thread pools, 479
pop_heap() algorithm, 99, 645
Portable Object Adapter (POA), 704
The Portland Pattern Repository, Cunningham and

Cunningham, 811
Practical C++ Programming (Second Edition), Steve

Oualline, 803
Practical Standards for Microsoft Visual Basic .NET,

James Foxall, 808
#pragma preprocessor directive, 3
Prata, Stephen, C++ Primer Plus, 804
precedence of operators, 9–10
prefix comments, 141–142

830

pair class

32_574841 index.qxd 12/15/04 3:49 PM Page 830

prefixes, 149
preprocessor directives, 2–3
preprocessor macros, 347
prev_permutation() algorithm, 98
printf() function, 379
Prinz, Peter, C Pocket Reference, 806
priority queues

defined, 91–92, 94
error correlation, 592–594
operations, 591–592

private access control, 159–160
private assignment operators, 194
private copy constructors, 194
Problem Solving with C++: The Object of Programming

(Fourth Edition), Walter Savitch, 803
procedures, 57–58. See functions
profiling programs, 479
profiling tools

gprof, 479–487
Rational Quantify, 479

program design
abstraction, 47–48
C++ features and challenges, 46–47
Chess program example, 51–55
defined, 44
importance of, 44–46
procedures, 57–58
prototypes, 85
reusable code, 49–50

Programming Abstractions in C: A Second Course in
Computer Science, Eric S. Roberts, 806

Programming Web Services with SOAP, James Snell,
Doug Tidwell, and Pavel Kulchenko, 810

programs
auditing voter registrations, 648–653
Chess, 51–55
efficiency

defined, 465–466
design-level, 466, 472–479
exceptions, 471
inline functions, 472
inline methods, 472
language-level, 466–472
RTTI, 471–472
virtual methods, 471

Employee Records System
Database class, 34–38
Employee class, 29–34
user interface, 38–41

Hello, World!, 2
performance, 465
profiling, 479

prolog (XML documents), 710–711
properties, 59
protected access control, 159
prototypes, 85
proxy design pattern, 766–768

public access control, 159
public keyword, 269
pure virtual methods, 242–243
push_back() method, 569
push_heap() algorithm, 99, 645
put() method, 381–382
putback() method, 387

Q
Quality Software Project Management, Robert T. Futrell,

Donald F. Shafer, and Linda Isabell Shafer, 808
quality-assurance, 507
queues

defined, 91, 588
first in, first out (FIFO), 91
network buffer packet example, 589–591
operations, 588–589
performance, 94

quotation mark (\“) escape character, 4

R
random access iterators, 564
random_shuffle() algorithm, 99, 645
Rational Purify (IBM), 809
Rational Quantify profiling tool, 479
Rational Software (IBM), 809
Rational Unified Process: An Introduction (Second Edition),

Philippe Kruchten, 808
Rational Unified Process (RUP), 126–127, 808
raw output methods, 381–382
Ray, T., Learning XML (Second Edition), 810
reading from a file, 733
read-only access, 446–447
realloc() function, 355
refactoring, 147
Refactoring: Improving the Design of Existing Code, Martin

Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts, 808

reference counting, 736–737
reference data members (classes), 198–199
references
const keyword, 26, 199, 332
data members, 326
defined, 23, 323
modifying, 324–325
parameters, 326
pass-by-reference, 327
pass-by-value, 327
pointers, 151–152, 325–330
return values, 327
variables, 23, 323–324
versus pointers, 151–152

regression testing, 525
reinterpret_cast, 340, 342

831

reinterpret_cast

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 831

relationships (objects)
defined, 63
functional, 69–70
has-a, 63, 66–69
is-a, 64–69
not-a, 69

reliability of distributed computing, 694
remote procedure call (RPC)

SOAP (Simple Object Access Protocol), 726–728
stub method, 700
writing, 700–701

remove() algorithm, 98, 642
remove_copy() algorithm, 98, 642
remove_copy_if() algorithm, 98, 642
remove_if() algorithm, 98, 642
rendering farms, 694
replace() algorithm, 98, 641
replace_copy() algorithm, 98
replace_copy_if() algorithm, 98
replace_if() algorithm, 98, 641
reproducible bugs, 541–543
return types

changing, 253–254
covariant returns types, 253
operator overloading, 434–435

return values
objects, 180–181
optimization, 470–471
references, 327

reusable code
abstraction, 107–108
advantages, 79
aggregation, 110
categories of, 78
disadvantages, 79–80
error checking, 112
evaluating, 81
frameworks, 78
goals, 106–107
hierarchies, 109–110
inheritance, 230
interfaces, 107–108, 112–118
libraries, 78
licensing, 84
limitations, 81
open-source libraries, 86–87
performance, 81
philosophy, 106
platforms, 83–84
polymorphism, 66
program design, 49–50
safeguards, 112
stand-alone functions or classes, 78
subsystems, 109
support, 84–85
templates, 110–112
tips for writing, 49–50, 108–109

reusable ideas, 50
reverse() algorithm, 98, 643
reverse iterators, 656–657
reverse_copy() algorithm, 98, 643
reversible containers, 682
ring buffers, 535–540
Ritchie, Dennis M., The C Programming Language (Second

Edition), 806
Rivest, Ronald L., Introduction to Algorithms (Second

Edition), 807
Roberts, Don, Refactoring: Improving the Design of Existing

Code, 808
Roberts, Eric S.

The Art and Science of C: A Library Based Introduction to
Computer Science, 806

Programming Abstractions in C: A Second Course in Computer
Science, 806

Romanik, Philip, Applied C++: Practical Techniques for
Building Better Software, 805

root cause of bugs, 528
root element (XML documents), 711
rotate() algorithm, 98
rotate_copy() algorithm, 98
RPC (remote procedure call)

SOAP (Simple Object Access Protocol), 726–728
stub method, 700
writing, 700–701

RTTI (Runtime Type Identification)
dynamic_cast, 267–268
effect on program efficiency, 471–472
typeid operator, 268–269

running unit tests, 515
run-time debug mode, 535
Runtime Type Identification (RTTI). See RTTI (Runtime Type

Identification)
RUP (Rational Unified Process), 126–127, 808

S
safeguards for reusable code, 112
Saini, Atul, STL Tutorial and Reference Guide (Second

Edition), 805
Sassafras Software

General KeyServer Questions, 810
KeyServer, 694

Savitch, Walter, Problem Solving with C++: The Object of
Programming (Fourth Edition), 803

SAX (Simple API for XML) parser, 717
scalability of distributed computing, 693–694
scanf() function, 379
scope resolution (defined), 343
scope resolution operator (::), 161, 237–239
scripting, 502
search() algorithm, 96, 633
Search for Extra-Terrestrial Intelligence (SETI), 694
search_n() algorithm, 96
seek() method, 392–393

832

relationships (objects)

32_574841 index.qxd 12/15/04 3:49 PM Page 832

seekg() method, 393
seekp() method, 393
selective instantiation, 281
self-documenting code, 144–145
sequential containers, 565, 691
serialization

C++, 696–700
XML, 712, 723–726

set_difference() algorithm, 99, 646
setfill manipulator, 383
SETI (Search for Extra-Terrestrial Intelligence), 694
SETI@home project, 694
set_intersection() algorithm, 99, 646
setprecision manipulator, 383
sets

access control list example, 609–610
defined, 92–94, 608

set_symmetric_difference() algorithm, 99, 646
setters, 149
set_union() algorithm, 99, 646
setw manipulator, 383
Shafer, Donald F. and Linda Isabell, Quality Software Project

Management, 808
shareware, 86
shell scripts, 501–502
short variable type, 7
short-circuit logic, 14
showpoint manipulator, 383
Simonyi, Charles, inventor of Hungarian Notation, 150
Simple API for XML (SAX) parser, 717
Simple Object Access Protocol (SOAP), 726–728
singleton design pattern, 754–760
size() method, 569
skeletons, 704
skipws manipulator, 389
slicing, 230, 239
smart constants, 150
smart pointers
auto_ptr template, 88–89
containers, 563
memory leaks, 376–377, 424
reference counting, 736–737
SuperSmartPointer implementation, 737–741
uses, 101–102

smoke testing, 525
Snell, James, Programming Web Services with SOAP, 810
SOAP (Simple Object Access Protocol), 726–728
software bugs

buffer overflow errors, 378
Bugzilla bug-tracking tool, 509–510
catastrophic bugs, 528
error logging, 528–530
Fundamental Law of Debugging, 527
life cycle, 508–509
noncatastrophic bugs, 528
nonreproducible, 543–544
regression testing, 525
reproducible, 541–543

root cause, 528
tips for avoiding bugs, 528

software design
abstraction, 47–48
C++ features and challenges, 46–47
Chess program example, 51–55
defined, 44
importance of, 44–46
procedures, 57–58
prototypes, 85
reusable code, 49–50

software engineering
bugs, 120
business risks, 120
developing your own processes and methodologies,

132–133
development time, 120
Extreme Programming (XP), 128–131
failures, 119–120
feature creep, 120
software triage, 132
unpredictability, 120

software life cycle models
defined, 120
Rational Unified Process (RUP), 126–127
Spiral Method, 123–126
Stagewise Model, 121–122
Waterfall Model, 122–123

software triage, 132
sort() algorithm, 99, 643–644
sort_heap() algorithm, 99, 645
sorting algorithms, 99
sourceforge.net Web site, 807
spaces in code, 154
specializing templates

full class specialization, 290–293, 295
partial class specialization, 307–313

Spinellis, Diomidis, Code Reading: The Open Source
Perspective, 808

Spiral Method, 123–126
A Spiral Model of Software Development and Enhancement,

Barry W. Boehm, 807
splicing lists, 585–586
Spolsky, Joel, The Absolute Minimum Every Software Devel-

oper Absolutely, Positively Must Know About Unicode
and Character Sets (No Excuses!), 805

spreadsheet example, 157–158
stable_partition() algorithm, 99
stable_sort() algorithm, 99, 643
stack

arrays, 354
constructors, 166–167
defined, 18
error correlation, 594–595
multidimensional arrays, 357–358
objects, 164
operations, 594

stack frames, 18–19

833

stack frames

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 833

stack unwinding, 422–423
stacks (STL containers), 92, 94
Stagewise Model, 121–122
standard template library (STL). See STL (standard

template library)
standard template library (STL) algorithms. See STL

(standard template library) algorithms
standard template library (STL) containers. See STL

(standard template library) containers
start-time debug mode, 532–535
static const data members (classes), 197–198
static data members (classes), 195–196, 333
static keyword, 333–335
static methods, 199–200
static variables, 336
static_cast, 339–340, 342
std namespace, 562
Stein, Clifford, Introduction to Algorithms (Second

Edition), 807
STL (standard template library)

defined, 89
extending, 660
omissions, 100
std namespace, 562
unsupported functionality, 100

STL (standard template library) algorithms
accumulate(), 97, 623–624
adjacent_difference(), 97
adjacent_find(), 96, 633
binary_search(), 96, 635
choosing, 100
comparison, 97, 635
copy(), 98, 640–641
copy_backward(), 98
count(), 97, 635
count_if(), 97, 635
defined, 95, 620
equal(), 97, 635–636
equal_range(), 96, 635
fill(), 98
fill_n(), 98
find(), 96, 620–622, 633
find_end(), 96
find_first_of(), 96, 633
find_if(), 96, 622–623, 633
for_each(), 98, 637–639
generate(), 98
generate_n(), 98
includes(), 99, 646
inner_product(), 97
inplace_merge(), 99
iterator traits, 662
iterators, 95, 631–632
iter_swap(), 98
lexicographical_compare(), 97, 635–637
lists, 586–587
lower_bound(), 96, 635
make_heap(), 99, 645

max(), 96, 632–633
max_element(), 96, 633
merge(), 99, 644
min(), 96, 632–633
min_element(), 96, 633
mismatch(), 97, 635–636
modifying, 98, 639
next_permutation(), 98
nonmodifying, 96, 633
nth_element(), 99, 645
numerical processing, 97, 635
operational, 98, 637
partial_sort(), 99, 645
partial_sort_copy(), 99
partial_sum(), 97
partition(), 99, 645
pop_heap(), 99, 645
prev_permutation(), 98
push_heap(), 99, 645
random_shuffle(), 99, 645
remove(), 98, 642
remove_copy(), 98, 642
remove_copy_if(), 98, 642
remove_if(), 98, 642
replace(), 98, 641
replace_copy(), 98
replace_copy_if(), 98
replace_if(), 98, 641
reverse(), 98, 643
reverse_copy(), 98, 643
rotate(), 98
rotate_copy(), 98
search(), 96, 633
search_n(), 96
set_difference(), 99, 646
set_intersection(), 99, 646
set_symmetric_difference(), 99, 646
set_union(), 99, 646
sort(), 99, 643–644
sort_heap(), 99, 645
sorting, 99
stable_partition(), 99
stable_sort(), 99, 643
swap(), 96, 632
swap_ranges(), 98
transform(), 98, 639–640
unique(), 98, 643
unique_copy(), 98
upper_bound(), 96, 635
utility, 96, 632–633
writing, 660–662

STL (standard template library) containers
accessing fields of object elements, 573–574
arrays, 611–612
assignment operator, 563
associative, 595, 683–687
bitsets, 93
copy constructor, 563

834

stack unwinding

32_574841 index.qxd 12/15/04 3:49 PM Page 834

defined, 89–90
deques, 91, 565, 584
destructors, 563
element requirements, 562–563
error checking, 563
exceptions, 563
hash tables

accessor operations, 690–691
constructors, 687
erase operations, 688–689
insertion operations, 687–688
methods, 672–675
typedefs, 671–672
writing, 662–670

iterators, 95, 564–565
lists, 90–91, 565, 584
maps, 93, 596–599
multimaps, 93, 604–605
multisets, 92–93, 610–611
performance comparison, 94
pointers, 563
priority queues, 91–92, 591–592
queues, 91, 588–589
reference semantics, 562
reversible, 682
sequential, 691
sequential containers, 565
sets, 92–93, 608
stacks, 92
std namespace, 562
streams, 613–618
strings, 612–613
value semantics, 562
vectors, 90, 565–566
writing, 662–670

STL Tutorial and Reference Guide (Second Edition),
David R. Musser, Gillmer J. Derge, and Atul Saini, 805

str() method, 391
stream iterators, 657–658
Stream Manipulators and Iterators in C++, Cameron Hughes

and Tracey Hughes, 805
streams

bidirectional, 396–397
console, 380
containers, 613–618
defined, 3–4, 88, 379–380
facets, 400
files, 380, 392–394
in-memory, 390
input streams, 384–389
linking, 395
locales, 398–400
objects, 389–390
output streams, 380–384
strings, 380, 390–392
user, 380
wide characters, 397–398

stress testing, 526
string streams, 380, 390–392
strings

C++, 21–22
containers, 612–613
C-style, 21, 365–366
nonstandard, 23
string class, 88, 367–369
string literals, 366–367
underallocating, 374

stringstream class, 397
Stroustrup, Bjarne, The C++ Programming Language, 1, 804
structs, 11–12
stub method, 700
stubs, 703–704
stylistic consistency (when writing code), 155
subclasses, 234

assignment (=) operator, 264
copy constructors, 263–264
creating, 731–732
default arguments, 260–261
implementation, 732
inheritance

adding functionality, 231–233
overridden methods, 230
replacing functionality, 233
view of, 226–227

template classes, 293–294
subscripting operator overloading, 443–446
subsystems

interfaces, 75
reusable code, 109

subtraction, equal (-=) operator, 8
subtraction (-) operator, 8
superclasses

default arguments, 260–261
defined, 65
inheritance, 224–225

SuperSmartPointer implementation, 737–741
support for reusable code, 84–85
Sutter, Herb, Sutter’s Mill: Befriending Templates, 806
swap() algorithm, 96, 632
swap_ranges() algorithm, 98
switch statements, 12–13
symbolic debugger, 542
system tests, 525

T
tab (t) escape character, 4
tabs, 154
tell() method, 392–393
tellg() method, 393
tellp() method, 393
template classes

method definitions, 277–279, 281–282
subclasses, 293–294

835

template classes

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 835

template classes (continued)
syntax, 276–277
uses, 273
writing, 273–275, 734–736

template keyword, 276
templates
auto_ptr smart pointer, 88–89
code bloat, 111, 281
compiler processes, 280–281
compiler support, 272
function templates, 295–299
inheritance, 111–112, 295
instantiating, 279–280
method templates, 285–290
parameterization, 272, 276–277
parameters

nontype, 283–285, 305–306
syntax, 282–284
template, 303
type, 299–304
zero-initialization syntax, 307

recursion, 314–322
reusable code, 110–112
selective instantiation, 281
specialization

full class specialization, 290–293, 295
partial class specialization, 307–313

type requirements, 281
type specification, 279–280
type-safe, 111

temporary objects, 469–470
ternary operator, 8, 13
testing

black box testing, 507
bugs

bug-tracking tools, 509–510
life cycle, 508–509

comments, 526
integration tests, 523–525
quality-assurance (QA), 507
regression testing, 525
responsibilities of team members, 508
smoke testing, 525
stress testing, 526
system tests, 525
tips for successful testing, 526
unit tests

code coverage, 511
cppunit open-source framework, 516–523
defined, 510–511
example unit tests, 515–516
granularity, 512–513
process, 512–514
running, 515
sample data and results, 514
writing, 511, 514–515

white box testing, 507

text node (XML documents), 711
Thinking in C++, Volume 1: Introduction to Standard C++

(Second Edition), Bruce Eckel, 803
Thinking in C++, Volume 2: Practical Programming (Second

Edition), Bruce Eckel and Chuck Allison, 804
third-party applications, 85
this pointer, 163–164
thread pools, 479
throw lists (exceptions), 412, 414–416
throwing exceptions, 402, 405–406, 732–733
Tidwell, Doug, Programming Web Services with SOAP, 810
tidy open-source command-line program, 713
tie() method, 395
transform() algorithm, 98, 639–640
try-catch block, 24
type specification templates, 279–280
typeid operator, 268–269
typename keyword, 276
types

casts, 338–342
operator overloading, 216–217
typedefs, 337–338
wchar_t, 397

type-safe templates, 111

U
unary operators, 8
uncaught exceptions, 411–412
underallocating strings, 374
unexpected exceptions, 413–414
unget() method, 386
Unicode, 398
Unicode Web site, 805
unique() algorithm, 98, 643
unique_copy() algorithm, 98
unit tests

code coverage, 511
cppunit open-source framework, 516–523
defined, 510–511
example unit tests, 515–516
granularity, 512–513
process, 512–514
running unit tests, 515
sample data and results, 514
writing unit tests, 511, 514–515

unmarshalling (distributed objects), 697
unsigned int variable type, 7
unsigned long variable type, 7
unsigned short variable type, 7
upcasting, 239
upper_bound() algorithm, 96, 635
user streams, 380
using keyword, 258–259
utility algorithms, 96, 632–633

836

template classes (continued)

32_574841 index.qxd 12/15/04 3:49 PM Page 836

V
valgrind memory leak checking program, 377
Valgrind memory-debugging tool, 809
validation of XML, 721–723
value assignment to objects, 177–178
Van Der Linden, Peter, Expert C Programming: Deep C

Secrets, 806
van der Vlist, Eric, XML Schema, 810
van Heesch, Dimitri, Doxygen, 808
Vandevoorde, David, C++ Templates: The Complete Guide, 806
variable-length argument lists, 345–347
variables
bool, 7
casting, 7–8
char, 7
coercing, 7
const keyword, 25, 330
converting types, 7
declaring, 6
defined, 6
double, 7
enumerated types, 10–11
float, 7
initializing, 336–337
int, 7
long, 7
order of initialization of nonlocal variables, 336–337
passing by reference, 21
passing by value, 21
pointers, 20
references, 23, 323–324
short, 7
static, 336
structs, 11–12
unsigned int, 7
unsigned long, 7
unsigned short, 7

variable-sized arrays, 355
vectors

allocator type parameter, 566
assignment operator, 571
at() method, 568
back() method, 568
bool specialization, 583–584
comparing, 571–572
constructors, 569–570
copying, 571
defined, 90, 565
destructors, 569–570
dynamic-length, 568–569
element type parameter, 566
fixed-length arrays, 566–567
front() method, 568
initial element value, 567–568
iterators, 572–577
memory allocation scheme, 577–578

operator [] method, 567
performance, 94
push_back() method, 569
round-robin scheduling, 578–583
size and capacity, 578
size() method, 569
template parameter, 566
vector header file, 566

vertical line (|) operator, 8
Vinoski, Steve, Advanced CORBA Programming with C++, 810
virtual base classes, 269–270
virtual destructors, 236–237
virtual keyword, 227–228
virtual methods, 227–228, 264–267, 471
Vlissides, John, Design Patterns: Elements of Reusable

Object-Oriented Software, 811
voter registration auditing example program, 648–653

W
Waterfall Model, 122–123
wchar_t type, 397
weather prediction program, 230–233
Web Services Essentials, Ethan Cerami, 810
Web sites

Altova Software xmlspy, 810
C++ Resources Network, 805
cppunit open-source unit testing framework, 516
GNU gprof, 809
GNU Operating System — Free Software Foundation, 807
Object Management Group’s CORBA, 810
Open Source Initiative, 807
sourceforge.net, 807
Unicode, 805

while loops, 14–15
white box testing, 507
wide characters, 397–398
wifstream class, 397
wofstream class, 397
write() method, 381–382
writing algorithms, 660–662
writing classes

access specifiers, 159–160
class definitions, 158
code example, 730–731
exception classes, 419–421, 732
extending existing classes, 731–732
implementation, 731
members (defined), 158
methods (defined), 158
order of declarations, 160
template classes, 273–275, 734–736

writing code
const keyword, 151
constants, 151
custom exceptions, 152
decomposition, 145–147

837

writing code

In
de

x

32_574841 index.qxd 12/15/04 3:49 PM Page 837

writing code (continued)
documentation, 136–145
formatting, 152–154
importance of “good” code, 135–136
naming conventions, 148–151
references versus pointers, 151–152
stylistic consistency, 155

writing constructors, 166
writing containers, 662–670
writing conversion operators, 453–455
writing function objects, 630–631
writing iterators, 675–682
writing remote procedure call (RPC), 700–701
writing to a file, 734
writing unit tests, 511, 514–515
ws manipulator, 389

X
Xerces parser, 717–721
XML (Extensible Markup Language)

defined, 709–710
deserialization, 717
distributed objects, 723, 725–726
document structure, 710–711
Document Type Definition (DTD), 721–722
element tags, 711
empty element tag, 711
generating XML, 712–713

hierarchy, 710
learning curve, 709
namespaces, 711
output class, 713–717
parsing XML

DOM (Document Object Model) parser, 717
SAX (Simple API for XML) parser, 717
Xerces parser, 717–721

plain text format, 710
prolog, 710–711
root element, 711
serialization, 712, 723–726
SOAP (Simple Object Access Protocol), 726–728
text node, 711
validation, 721–723
XML Schema, 722–723

XML Schema, Eric van der Vlist, 810
XMLSerializable class, 723–724
xmlspy (Altova Software), 723, 810
XP (Extreme Programming), 128–131

Y
Yourdon, Edward, Death March, 132, 808

Z
zero-initialization syntax, 289

838

writing code (continued)

32_574841 index.qxd 12/15/04 3:49 PM Page 838

	Professional C++
	Cover

	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Introduction to Professional C++
	Chapter 1: A Crash Course in C++
	The Basics of C++
	The Obligatory Hello, World
	Namespaces
	Variables
	Operators
	Types
	Conditionals
	Loops
	Arrays
	Functions
	Those Are the Basics

	Diving Deeper into C++
	Pointers and Dynamic Memory
	Strings in C++
	References
	Exceptions
	The Many Uses of const

	C++ as an Object-Oriented Language
	Declaring a Class

	Your First Useful C++ Program
	An Employee Records System
	The Employee Class
	The Database Class
	The User Interface
	Evaluating the Program

	Summary

	Chapter 2: Designing Professional C++ Programs
	What Is Programming Design?
	The Importance of Programming Design
	What's Different about C++ Design?
	Two Rules for C++ Design
	Abstraction
	Reuse

	Designing a Chess Program
	Requirements
	Design Steps

	Summary

	Chapter 3: Designing with Objects
	An Object-Oriented View of the World
	Am I Thinking Procedurally?
	The Object-Oriented Philosophy
	Living in a World of Objects
	Object Relationships
	Abstraction

	Summary

	Chapter 4: Designing with Libraries and Patterns
	Reusing Code
	A Note on Terminology
	Deciding Whether or Not to Reuse Code
	Strategies for Reusing Code
	Bundling Third-Party Applications
	Open-Source Libraries
	The C++ Standard Library

	Designing with Patterns and Techniques
	Design Techniques
	Design Patterns

	Summary

	Chapter 5: Designing for Reuse
	The Reuse Philosophy
	How to Design Reusable Code
	Use Abstraction
	Structure Your Code for Optimal Reuse
	Design Usable Interfaces
	Reconciling Generality and Ease of Use

	Summary

	Chapter 6: Maximizing Software-Engineering Methods
	The Need for Process
	Software Life-Cycle Models
	The Stagewise and Waterfall Models
	The Spiral Method
	The Rational Unified Process

	Software-Engineering Methodologies
	Extreme Programming (XP)
	Software Triage

	Building Your Own Process and Methodology
	Be Open to New Ideas
	Bring New Ideas to the Table
	Recognize What Works and What Doesn't Work
	Don't Be a Renegade

	Summary

	Part II: C++ Coding the Professional Way
	Chapter 7: Coding with Style
	The Importance of Looking Good
	Thinking Ahead
	Keeping It Clear
	Elements of Good Style

	Documenting Your Code
	Reasons to Write Comments
	Commenting Styles
	Comments in This Book

	Decomposition
	Decomposition through Refactoring
	Decomposition by Design
	Decomposition in This Book

	Naming
	Choosing a Good Name
	Naming Conventions

	Using Language Features with Style
	Use Constants
	Take Advantage of const Variables
	Use References Instead of Pointers
	Use Custom Exceptions

	Formatting
	The Curly Brace Alignment Debate
	Coming to Blows over Spaces and Parentheses
	Spaces and Tabs

	Stylistic Challenges
	Summary

	Chapter 8: Gaining Proficiency with Classes and Objects
	Introducing the Spreadsheet Example
	Writing Classes
	Class Definitions
	Defining Methods
	Using Objects

	Object Life Cycles
	Object Creation
	Object Destruction
	Assigning to Objects
	Distinguishing Copying from Assignment

	Summary

	Chapter 9: Mastering Classes and Objects
	Dynamic Memory Allocation in Objects
	The Spreadsheet Class
	Freeing Memory with Destructors
	Handling Copying and Assignment

	Different Kinds of Data Members
	Static Data Members
	Const Data Members
	Reference Data Members
	Const Reference Data Members

	More about Methods
	Static Methods
	Const Methods
	Method Overloading
	Default Parameters
	Inline Methods

	Nested Classes
	Friends
	Operator Overloading
	Implementing Addition
	Overloading Arithmetic Operators
	Overloading Comparison Operators
	Building Types with Operator Overloading

	Pointers to Methods and Members
	Building Abstract Classes
	Using Interface and Implementation Classes

	Summary

	Chapter 10: Discovering Inheritance Techniques
	Building Classes with Inheritance
	Extending Classes
	Overriding Methods

	Inheritance for Reuse
	The WeatherPrediction Class
	Adding Functionality in a Subclass
	Replacing Functionality in a Subclass

	Respect Your Parents
	Parent Constructors
	Parent Destructors
	Referring to Parent Data
	Casting Up and Down

	Inheritance for Polymorphism
	Return of the Spreadsheet
	Designing the Polymorphic Spreadsheet Cell
	The Spreadsheet Cell Base Class
	The Individual Subclasses
	Leveraging Polymorphism
	Future Considerations

	Multiple Inheritance
	Inheriting from Multiple Classes
	Naming Collisions and Ambiguous Base Classes

	Interesting and Obscure Inheritance Issues
	Changing the Overridden Method's Characteristics
	Special Cases in Overriding Methods
	Copy Constructors and the Equals Operator
	The Truth about Virtual
	Runtime Type Facilities
	Non-Public Inheritance
	Virtual Base Classes

	Summary

	Chapter 11: Writing Generic Code with Templates
	Overview of Templates
	Class Templates
	Writing a Class Template
	How the Compiler Processes Templates
	Distributing Template Code between Files
	Template Parameters
	Method Templates
	Template Class Specialization
	Subclassing Template Classes
	Inheritance versus Specialization

	Function Templates
	Function Template Specialization
	Function Template Overloading
	Friend Function Templates of Class Templates

	Advanced Templates
	More about Template Parameters
	Template Class Partial Specialization
	Emulating Function Partial Specialization with Overloading
	Template Recursion

	Summary

	Chapter 12: Understanding C++ Quirks and Oddities
	References
	Reference Variables
	Reference Data Members
	Reference Parameters
	Reference Return Values
	Deciding between References and Pointers

	Keyword Confusion
	The const Keyword
	The static Keyword
	Order of Initialization of Nonlocal Variables

	Types and Casts
	typedefs
	Casts

	Scope Resolution
	Header Files
	C Utilities
	Variable-Length Argument Lists
	Preprocessor Macros

	Summary

	Part III: Mastering Advanced Features of C++
	Chapter 13: Effective Memory Management
	Working with Dynamic Memory
	How to Picture Memory
	Allocation and Deallocation
	Arrays
	Working with Pointers

	Array-Pointer Duality
	Arrays Are Pointers!
	Not All Pointers Are Arrays!

	Dynamic Strings
	C-Style Strings
	String Literals
	The C++ string Class

	Low-Level Memory Operations
	Pointer Arithmetic
	Custom Memory Management
	Garbage Collection
	Object Pools
	Function Pointers

	Common Memory Pitfalls
	Underallocating Strings
	Memory Leaks
	Double-Deleting and Invalid Pointers
	Accessing Out-of-Bounds Memory

	Summary

	Chapter 14: Demystifying C++ I/O
	Using Streams
	What Is a Stream, Anyway?
	Stream Sources and Destinations
	Output with Streams
	Input with Streams
	Input and Output with Objects

	String Streams
	File Streams
	Jumping around with seek() and tell()
	Linking Streams Together

	Bidirectional I/O
	Internationalization
	Wide Characters
	Non-Western Character Sets
	Locales and Facets

	Summary

	Chapter 15: Handling Errors
	Errors and Exceptions
	What Are Exceptions, Anyway?
	Why Exceptions in C++ Are a Good Thing
	Why Exceptions in C++ Are a Bad Thing
	Our Recommendation

	Exception Mechanics
	Throwing and Catching Exceptions
	Exception Types
	Throwing and Catching Multiple Exceptions
	Uncaught Exceptions
	Throw Lists

	Exceptions and Polymorphism
	The Standard Exception Hierarchy
	Catching Exceptions in a Class Hierarchy
	Writing Your Own Exception Classes

	Stack Unwinding and Cleanup
	Catch, Cleanup, and Rethrow
	Use Smart Pointers

	Common Error-Handling Issues
	Memory Allocation Errors
	Errors in Constructors
	Errors in Destructors

	Putting It All Together
	Summary

	Part IV: Ensuring Bug-Free Code
	Chapter 16: Overloading C++ Operators
	Overview of Operator Overloading
	Why Overload Operators?
	Limitations to Operator Overloading
	Choices in Operator Overloading
	Operators You Shouldn't Overload
	Summary of Overloadable Operators

	Overloading the Arithmetic Operators
	Overloading Unary Minus and Unary Plus
	Overloading Increment and Decrement

	Overloading the Bitwise and Binary Logical Operators
	Overloading the Insertion and Extraction Operators
	Overloading the Subscripting Operator
	Providing Read-Only Access with operator[]
	Non-Integral Array Indices

	Overloading the Function Call Operator
	Overloading the Dereferencing Operators
	Implementing operator*
	Implementing operator->
	What in the World Is operator->* ?

	Writing Conversion Operators
	Ambiguity Problems with Conversion Operators
	Conversions for Boolean Expressions

	Overloading the Memory Allocation and Deallocation Operators
	How new and delete Really Work
	Overloading operator new and operator delete
	Overloading operator new and operator delete with Extra Parameters

	Summary

	Chapter 17: Writing Efficient C++
	Overview of Performance and Efficiency
	Two Approaches to Efficiency
	Two Kinds of Programs
	Is C++ an Inefficient Language?

	Language-Level Efficiency
	Handle Objects Efficiently
	Don't Overuse Costly Language Features
	Use Inline Methods and Functions

	Design-Level Efficiency
	Cache as Much as Possible
	Use Object Pools
	Use Thread Pools

	Profiling
	Profiling Example with gprof

	Summary

	Chapter 18: Developing Cross-Platform and Cross-Language Applications
	Cross-Platform Development
	Architecture Issues
	Implementation Issues
	Platform-Specific Features

	Cross-Language Development
	Mixing C and C++
	Shifting Paradigms
	Linking with C Code
	Mixing Java and C++ with JNI
	Mixing C++ with Perl and Shell Scripts
	Mixing C++ with Assembly Code

	Summary

	Chapter 19: Becoming Adept at Testing
	Quality Control
	Whose Responsibility Is Testing?
	The Life Cycle of a Bug
	Bug-Tracking Tools

	Unit Testing
	Approaches to Unit Testing
	The Unit Testing Process
	Unit Testing in Action

	Higher-Level Testing
	Integration Tests
	System Tests
	Regression Tests

	Tips for Successful Testing
	Summary

	Chapter 20: Conquering Debugging
	The Fundamental Law of Debugging
	Bug Taxonomies
	Avoiding Bugs
	Planning for Bugs
	Error Logging
	Debug Traces
	Asserts

	Debugging Techniques
	Reproducing Bugs
	Debugging Reproducible Bugs
	Debugging Nonreproducible Bugs
	Debugging Memory Problems
	Debugging Multithreaded Programs
	Debugging Example: Article Citations
	Lessons from the ArticleCitations Example

	Summary

	Chapter 21: Delving into the STL: Containers and Iterators
	Containers Overview
	Requirements on Elements
	Exceptions and Error Checking
	Iterators

	Sequential Containers
	Vector
	The vector<bool> Specialization
	deque
	list

	Container Adapters
	queue
	priority_queue
	stack

	Associative Containers
	The pair Utility Class
	map
	multimap
	set
	multiset

	Other Containers
	Arrays as STL Containers
	Strings as STL Containers
	Streams as STL Containers
	bitset

	Summary

	Part V: Using Libraries and Patterns
	Chapter 22: Mastering STL Algorithms and Function Objects
	Overview of Algorithms
	The find() and find_if() Algorithms
	The accumulate() Algorithms

	Function Objects
	Arithmetic Function Objects
	Comparison Function Objects
	Logical Function Objects
	Function Object Adapters
	Writing Your Own Function Objects

	Algorithm Details
	Utility Algorithms
	Nonmodifying Algorithms
	Modifying Algorithms
	Sorting Algorithms
	Set Algorithms

	Algorithms and Function Objects Example: Auditing Voter Registrations
	The Voter Registration Audit Problem Statement
	The auditVoterRolls() Function
	The getDuplicates() Function
	The RemoveNames Functor
	The NameInList Functor
	Testing the auditVoterRolls() Function

	Summary

	Chapter 23: Customizing and Extending the STL
	Allocators
	Iterator Adapters
	Reverse Iterators
	Stream Iterators
	Insert Iterators

	Extending the STL
	Why Extend the STL?
	Writing an STL Algorithm
	Writing an STL Container

	Summary

	Chapter 24: Exploring Distributed Objects
	The Appeal of Distributed Computing
	Distribution for Scalability
	Distribution for Reliability
	Distribution for Centrality
	Distributed Content
	Distributed versus Networked

	Distributed Objects
	Serialization and Marshalling
	Remote Procedure Calls

	CORBA
	Interface Definition Language
	Implementing the Class
	Using the Objects

	XML
	A Crash Course in XML
	XML as a Distributed Object Technology
	Generating and Parsing XML in C++
	XML Validation
	Building a Distributed Object with XML
	SOAP (Simple Object Access Protocol)

	Summary

	Chapter 25: Incorporating Techniques and Frameworks
	"I Can Never Remember How to . . ."
	. . . Write a Class
	. . . Subclass an Existing Class
	. . . Throw and Catch Exceptions
	. . . Read from a File
	. . . Write to a File
	. . . Write a Template Class

	There Must Be a Better Way
	Smart Pointers with Reference Counting
	Double Dispatch
	Mix-In Classes

	Object-Oriented Frameworks
	Working with Frameworks
	The Model-View-Controller Paradigm

	Summary

	Chapter 26: Applying Design Patterns
	The Singleton Pattern
	Example: A Logging Mechanism
	Implementation of a Singleton
	Using a Singleton

	The Factory Pattern
	Example: A Car Factory Simulation
	Implementation of a Factory
	Using a Factory
	Other Uses of Factories

	The Proxy Pattern
	Example: Hiding Network Connectivity Issues
	Implementation of a Proxy
	Using a Proxy

	The Adapter Pattern
	Example: Adapting an XML Library
	Implementation of an Adapter
	Using an Adapter

	The Decorator Pattern
	Example: Defining Styles in Web Pages
	Implementation of a Decorator
	Using a Decorator

	The Chain of Responsibility Pattern
	Example: Event Handling
	Implementation of a Chain of Responsibility
	Using a Chain of Responsibility

	The Observer Pattern
	Example: Event Handling
	Implementation of an Observer
	Using an Observer

	Summary

	Appendix A: C++ Interviews
	Chapter 1: A Crash Course in C++
	Chapter 2: Designing Professional C++ Programs
	Chapter 3: Designing with Objects
	Chapter 4: Designing with Libraries and Patterns
	Chapter 5: Designing for Reuse
	Chapter 6: Maximizing Software Engineering Methods
	Chapter 7: Coding with Style
	Chapters 8 and 9: Classes and Objects
	Chapter 10: Discovering Inheritance Techniques
	Chapter 11: Writing Generic Code with Templates
	Chapter 12: Understanding C++ Quirks and Oddities
	Chapter 13: Effective Memory Management
	Chapter 14: Demystifying C++ I/O
	Chapter 15: Handling Errors
	Chapter 16: Overloading C++ Operators
	Chapter 17: Writing Efficient C++
	Chapter 18: Developing Cross-Platform and Cross-Language Applications
	Chapter 19: Becoming Adept at Testing
	Chapter 20: Conquering Debugging
	Chapters 21, 22, and 23: The Standard Template Library
	Chapter 24: Exploring Distributed Objects
	Chapter 25: Incorporating Techniques and Frameworks
	Chapter 26: Applying Design Patterns

	Appendix B: Annotated Bibliography
	C++
	Beginning C++
	General C++
	I/O Streams
	The C++ Standard Library
	C++ Templates

	C
	Integrating C++ and Other Languages
	Algorithms and Data Structures
	Open-Source Software
	Software-Engineering Methodology
	Programming Style
	Computer Architecture
	Efficiency
	Testing
	Debugging
	Distributed Objects
	CORBA
	XML and SOAP

	Design Patterns

	Index
	Team DDU

