

Poornachandra Sarang, Ph.D.

Pro Apache XML

6412_fm_final.qxd 4/7/06 1:17 PM Page i

Pro Apache XML

Copyright © 2006 by Poornachandra Sarang, Ph.D.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-641-8

ISBN-10: 1-59059-641-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Lalitha Sanatkumar
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editor: Sharon Wilkey
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: April Eddy
Indexer: Valerie Perry
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6412_fm_final.qxd 4/7/06 1:17 PM Page ii

To my mother, Shobha

6412_fm_final.qxd 4/7/06 1:17 PM Page iii

6412_fm_final.qxd 4/7/06 1:17 PM Page iv

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xviii

Acknowledgments . xix

Introduction . xx

Preface . xxii

■CHAPTER 1 XML . 1

■CHAPTER 2 XML Processing . 39

■CHAPTER 3 Web Services Architecture . 105

■CHAPTER 4 Apache SOAP . 151

■CHAPTER 5 XSLT and Apache Xalan . 195

■CHAPTER 6 XSL-FO . 237

■CHAPTER 7 The Apache Cocoon Framework . 279

■CHAPTER 8 XML-Security . 327

■CHAPTER 9 XML Databases . 375

■CHAPTER 10 Apache Forrest . 415

■APPENDIX A Linux Installations . 449

■INDEX . 455

v

6412_fm_final.qxd 4/7/06 1:17 PM Page v

6412_fm_final.qxd 4/7/06 1:17 PM Page vi

Contents

About the Author . xvii

About the Technical Reviewer . xviii

Acknowledgments . xix

Introduction . xx

Preface . xxii

■CHAPTER 1 XML . 1

Why Use XML? . 1

What Is XML? . 2

XML Syntax. 3

XML Documents Are Text Based. 4

XML Is Case Sensitive. 4

XML Restricts the Use of Certain Characters . 4

XML Documents Begin with an XML Declaration. 5

XML Documents Are Marked by Using Elements 5

Every Element Has a Start and an End Tag. 5

Every XML Document Must Start with a Root Element 5

Elements in an XML Document Can Be Nested 5

An Element Can Be Empty . 6

An XML Document Can Contain User-Written Comments 6

CDATA Encloses Data That Should Not Be Interpreted by Parsers . . . 7

XML Namespaces . 7

What Is a Namespace? . 7

Creating Fully Qualified Elements . 8

Creating Multiple Namespaces . 8

Using a Default Namespace. 10

Using Both Default and Prefixed Namespaces 11

Document Type Definition . 12

Writing a DTD . 12

Including a DTD in a Document. 18

Understanding DTD Drawbacks . 20

vii

6412_fm_final.qxd 4/7/06 1:17 PM Page vii

XML Schema . 20

Defining Elements . 21

Defining Attributes . 21

Using Additional Specifiers. 21

Annotating XML Schemas . 23

Using Simple Data Types in XML Schemas. 24

Using Complex Types in XML Schemas. 28

Including XML Schemas . 36

Summary. 37

■CHAPTER 2 XML Processing . 39

Need for XML Parsing . 39

Understanding the Need for Parsing. 39

Extracting Data by Using Parsers . 40

Using Parsing Techniques . 41

Obtaining Ready-to-Use Parsers . 41

Using XML Transformations. 42

Practical Applications of XML Parsing . 42

Stock Brokerage. 42

Market Survey Application . 43

Application Configurations . 44

Other Applications . 45

System Architecture for XML Processing . 45

Installing Software. 46

Parsing with SAX . 47

SAX Processing Model . 47

Pros and Cons of SAX Processing. 49

SAX Processing Model Architecture . 50

Document Processing Using SAX . 50

SAX API . 63

DOM. 65

DOM Processing Model. 66

Pros and Cons of DOM . 66

Document Processing Using DOM . 68

Application for Counting Number of Customers 69

Updating a Document by Using DOM . 73

DOM API. 79

■CONTENTSviii

6412_fm_final.qxd 4/7/06 1:17 PM Page viii

XMLBeans. 80

XMLBeans Processing Model . 81

Pros and Cons of XMLBeans . 81

Installing the XMLBeans Software . 82

Document Processing Using XMLBeans . 83

SAX, DOM, XMLBeans—Which One to Use? . 102

Summary. 103

■CHAPTER 3 Web Services Architecture . 105

What Is a Web Service? . 105

Web Services Integration Model . 106

Why Web Services?. 108

Platform Independent . 108

Language Independent . 108

Transport Independent . 108

Web Services Architecture. 109

Service Creation. 110

Service Publication . 110

Service Location. 111

Service Description . 111

Service Binding . 112

Service Invocation . 112

SOAP . 113

What Is SOAP? . 113

SOAP Message Structure . 114

SOAP Messaging Modes. 126

SOAP over HTTP. 129

WSDL. 131

Why WSDL? . 131

How to Use WSDL . 131

WSDL Document Structure . 131

The definitions Element . 132

The types Element . 133

The import Element . 133

The message Element. 134

The portType and operation Elements . 135

The binding Element . 135

The service Element . 136

Messaging Exchange Pattern . 137

The Complete WSDL Example . 139

■CONTENTS ix

6412_fm_final.qxd 4/7/06 1:17 PM Page ix

UDDI. 141

Public and Private Registries . 141

UDDI Data Structures . 142

UDDI APIs . 146

Publishing API Save Messages . 147

Publishing API Delete Messages . 147

Publishing API Security Messages . 148

Inquiry API Find Messages . 148

Inquiry API Get Messages. 149

Summary. 149

■CHAPTER 4 Apache SOAP . 151

Installing Apache SOAP and Related Software. 151

Installing JRE 1.5 . 152

Installing Apache Tomcat . 152

Installing Apache SOAP. 154

SOAP Implementation Architecture . 156

Developing Web Services. 157

Creating an RPC-Style Web Service . 157

Creating a Document-Style Web Service. 167

Exception Handling . 176

Data Type Mappings . 181

Deployment Descriptors . 189

Summary. 193

■CHAPTER 5 XSLT and Apache Xalan . 195

What Is Transformation? . 196

Need for Transformation . 196

Apache Xalan Project . 197

Downloading Xalan . 197

Installing Xalan . 197

Testing the Installation . 198

The Extensible Stylesheet Language (XSL) . 198

Quick Tour of XPath . 199

XPath Syntax. 200

XPath Axes . 205

XPath Operators . 207

■CONTENTSx

6412_fm_final.qxd 4/7/06 1:17 PM Page x

A Quick Tour of XSLT . 207

XSLT Processing Model . 208

XSLT Example. 208

XSLT Document Structure . 212

Xalan’s Transformation Capabilities. 214

Using the Command-Line Transformation Tool 214

Writing Your First Transformation Program. 214

Compiling and Running the Application . 216

Server-Side Transformations . 217

Performing Transformation in JSP . 217

Invoking JSP . 218

Transforming Selected Contents. 219

Partially Processing Documents . 219

Compiling and Running the Application . 222

Filters. 224

Java XSLT-Filtering Application. 224

The Push Filtering Model . 229

Translets . 232

Command-Line Tool . 232

Programming Interface for Translets . 233

Summary. 235

■CHAPTER 6 XSL-FO . 237

Installing FOP . 237

Downloading and Installing FOP . 238

Testing the Installation . 238

First FO Example . 239

Performing Transformation . 241

Viewing Output . 242

The XSL-FO Document Structure . 242

The Top-Level Document Structure . 243

XSL-FO Areas . 243

XSL-FO Page Templates. 245

Organizing Content . 246

Incorporating Graphics . 248

Adding Images . 249

Including SVG Images . 249

Creating Tables . 252

■CONTENTS xi

6412_fm_final.qxd 4/7/06 1:17 PM Page xi

Columnar Text . 258

Creating the XSL-FO Document . 258

Rendering Columnar Output. 263

Processing Documents Programmatically. 264

Stand-Alone Applications for Transformations 264

Creating a Server-Side Transformation Application. 270

Summary. 276

■CHAPTER 7 The Apache Cocoon Framework . 279

Why Another Web Framework? . 280

A Brief History of Cocoon . 281

Downloading the Software. 282

Building and Installing the Software. 282

Testing Your Installation . 283

Cocoon’s Pipeline Architecture . 284

Generator. 285

Transformer . 285

Serializer . 286

Matchers . 286

Your First Cocoon Application . 287

Creating the Input Source Document . 287

Defining the Transformation . 287

Defining the Serializer. 289

Creating a Sitemap . 289

Deploying and Running the Application . 290

The Sitemap Document . 291

The components Element. 291

The views Element . 291

The resources Element . 292

The actions Element . 294

The pipelines Element. 295

Modifying Pipelines . 296

Generating Text Output. 296

Generating PDF Output . 297

Generating Output in Other Formats. 301

The Transformers in Cocoon . 302

The i18n Transformer . 303

The Generators in Cocoon . 308

The Serializers in Cocoon. 308

■CONTENTSxii

6412_fm_final.qxd 4/7/06 1:17 PM Page xii

The Sitemap Components . 309

The components Element. 309

The generators Element . 310

The transformers Element . 310

The serializers Element. 311

The selectors Element. 311

The matchers Element . 312

XML Server Pages . 313

Understanding the XSP Document Structure 313

Processing XSP Documents . 314

Creating a Web Page for Live Data Feed . 314

Looking Under the Hood . 317

Using Logicsheets in XSP . 318

Using Other Predefined Logicsheets. 321

Cocoon Configurations . 321

Understanding Cocoon Internals . 321

Setting Configuration Parameters . 323

Summary. 325

■CHAPTER 8 XML-Security . 327

Why Security? . 327

Important Terms in Security . 328

Authentication . 328

Authorization. 328

Nonrepudiation. 328

Message Integrity . 328

Message Confidentiality . 329

Brief Introduction to Cryptography . 329

Symmetric Cryptography . 331

Asymmetric Cryptography . 332

Digital Signatures. 333

Digital Certificates . 335

Using XML Signatures. 336

Advantages . 336

Signature Types . 338

Canonical XML . 338

XML Signature Structure . 338

Downloading and Installing Software. 339

■CONTENTS xiii

6412_fm_final.qxd 4/7/06 1:17 PM Page xiii

Signing XML Documents . 339

Generating and Signing an XML Document 340

Running the Application . 344

Examining the Signed Document . 345

Verifying the Purchase Order. 346

Developing an Application for Verifying the Document 346

Running the Application . 349

Using Digital Certificates . 349

Creating a Key Pair . 350

Listing Keys in Your Keystore . 351

Exporting the Certificate . 351

Requesting a Certificate from a CA. 352

Importing Certificates . 352

Using Digital Certificates for Document Signing. 353

Running the CertifiedPO Application. 357

Verifying Documents Containing Digital Certificates 359

Running the VerifyCertifiedPO Application. 360

Using XML Encryption/Decryption . 360

Developing an Application for Encrypting the PO 360

Running the EncryptPO Application . 366

Examining the Encrypted Document . 366

Developing an Application for Decrypting the PO. 367

Running the DecryptPO Application . 371

Summary. 372

■CHAPTER 9 XML Databases. 375

Introducing Apache Xindice . 375

Understanding the XML Database Structure. 376

Installing Xindice . 377

Downloading the Software . 377

Starting the Xindice Server. 377

Creating an XML Database . 378

Creating a Collection . 379

Creating Subcollections . 379

Adding Documents . 380

Adding Multiple Documents . 380

Querying the Database . 381

Listing Documents in the Database . 381

Retrieving a Document . 382

Selecting Records Based on a Selection Criterion 382

■CONTENTSxiv

6412_fm_final.qxd 4/7/06 1:17 PM Page xiv

Using the XML:DB API. 386

Creating Collections. 387

Adding Documents to Collections . 392

Listing All Documents in the Specified XPath 398

Deleting Documents . 402

Using the XUpdate Language . 404

Creating the XUpdate Query. 404

Removing a Node. 405

Inserting a Node in the Orders Collection . 409

Updating a Node in the Orders Collection . 410

Performing Database Administration . 411

Creating/Managing Indexes . 411

Listing Indexes . 412

Deleting an Index . 412

Backing Up Your Data . 412

Exporting Data . 412

Importing Data . 413

Shutting Down the Server . 413

Summary. 413

■CHAPTER 10 Apache Forrest . 415

The History of Forrest . 415

Forrest Features. 416

Installing Forrest . 417

Downloading the Software . 417

Testing the Installation . 418

Creating the Brokerage Site. 419

Deploying the Brokerage Project. 420

Examining the Project . 423

Customizing the Default Site’s Content . 423

Modifying the Home Page Content . 424

Creating Your Own Tabs. 426

Incorporating Images . 430

Adding Menus. 431

Modifying the Site’s Appearance . 433

Installing Provided Skins. 433

Installing Third-Party Skins . 436

Customizing Skins . 437

■CONTENTS xv

6412_fm_final.qxd 4/7/06 1:17 PM Page xv

Customizing Forrest Properties. 438

Changing the Folder Hierarchy . 439

Configuring Proxy Settings. 440

Adding External Documents . 440

Including a Text Document . 440

Including PDF Documents . 441

Further Enhancing the Page’s Appearance. 442

Rendering Web Page Content . 443

Rendering to PDF . 444

Adding Support for Other Formats . 444

Adding External RSS Content . 446

Creating Short Names to External Links . 447

Deploying the Forrest Site on Other Web Servers 448

Summary. 448

■APPENDIX A Linux Installations . 449

JDK 1.5.0 . 449

Chapter 2 . 450

Apache Xerces . 450

Apache XMLBeans. 450

Apache Ant . 450

Chapter 4 . 451

Apache Tomcat . 451

Apache SOAP . 451

Chapter 5 . 452

Apache Xalan . 452

Chapter 6 . 452

Apache FOP . 452

Chapter 7 . 452

Apache Cocoon . 452

Chapter 8 . 453

Apache XML-Security . 453

Chapter 9 . 453

Apache Xindice. 453

Chapter 10 . 454

Apache Forrest . 454

■INDEX . 455

■CONTENTSxvi

6412_fm_final.qxd 4/7/06 1:17 PM Page xvi

About the Author

■DR. POORNACHANDRA SARANG, one of the leading software architects in the
industry, has more than 20 years of IT experience and provides consulting
on the architecture and design of IT solutions to worldwide clients. He has
taught at the University of Notre Dame and is currently an adjunct profes-
sor in the Department of Computer Science at the University of Mumbai
in India. Fond of open source technologies and Java, Dr. Sarang has suc-
cessfully completed several industry projects on these and other platforms.

He is a regular speaker at many international events. Dr. Sarang has several journal articles and
research papers to his credit and has also coauthored several books, including Professional
Apache 2.0 and Professional Open Source Web Services (Wrox Press, 2002).

xvii

6412_fm_final.qxd 4/7/06 1:17 PM Page xvii

xviii

About the Technical Reviewer

■MS. LALITHA SANATKUMAR has been in the field of Information Technology for over three
decades and has worked in a variety of environments, from mainframes to desktop systems,
assembly languages to Java. She holds a master’s degree in operations research and is also a
Certified Information Systems Security Professional (CISSP). She has worked on technology
applications in the fields of financial markets, banking, e-governance, health-care systems,
textiles, and the chemical industry. She has also conducted training programs and seminars
on a variety of topics. She is currently working on a web multimedia presentation of classical
works in the Sanskrit language.

6412_fm_final.qxd 4/7/06 1:17 PM Page xviii

Acknowledgments

I would like to acknowledge the efforts of Pradeep Shinde in helping me test all applica-
tions in this book on both Windows and Linux platforms. I thank Vijay Jadhav, who provided
valuable assistance in formatting the manuscript. I am indebted to the technical reviewer,
Lalitha Sanatkumar, who constantly provided valuable suggestions for improving the tech-
nical content and who performed rigorous testing of all code examples. My sincere thanks
to the entire Apress editorial team, without whose efforts this book would not have been
possible. I would like to mention a few names of those on the editorial team with whom
I had direct interactions throughout the writing of this book. I thank Jason Gilmore for pro-
viding valuable tips during the entire editing process; this helped improve the quality of the
book. I thank Sharon Wilkey, from whom I learned several English grammar tips during the
copyediting process. I would like to thank Janet Vail for her support during the book’s pro-
duction stage. Finally, I am grateful to Richard Dal Porto for providing excellent coordination
and management during the entire project life cycle.

xix

6412_fm_final.qxd 4/7/06 1:17 PM Page xix

xx

Introduction

In recent years, open source technologies have gained wide acceptance in the industry, as
has XML. If you want to create XML-based applications by using powerful and tested open
source technologies, this book is for you.

The Apache Software Foundation (http://www.apache.org/) has played a particularly
important role in spearheading the adoption of these XML-focused open source technologies
due to its oversight of several key projects. This book provides comprehensive coverage of
many of these projects.

The book begins with an introduction to XML—defining XML syntax, its structure, and
several fundamental concepts such as the Document Type Definition (DTD) and XML schema.

Chapter 2 covers various XML parsing techniques. It covers both SAX and DOM APIs and
Apache’s implementation of them in the Xerces project. Apache also provides XML data binding
techniques in their XMLBeans project, and this chapter covers the XMLBeans implementation.

Chapter 3 introduces you to today’s widely accepted and most popular web application
architecture: web services. Here you will learn the web services architecture and its three
important components, SOAP, WSDL, and UDDI.

Chapter 4 introduces you to Apache’s implementation of the SOAP API. You will learn to
create web services by using this implementation. The chapter discusses the creation of both
RPC- and Document-style web services. You will learn to develop client applications for these
web services. You will also study the structure of SOAP request and response messages.

Chapter 5 introduces you to yet another important feature of XML: XSL transformations.
XSL allows you to transform an XML document from one format to another. XSL is a language
that defines such transformations. You will learn how to use XSL to transform XML documents
via both command-line utilities and Java applications.

Chapter 6 takes you a step further in XSL transformations by covering the Apache XSL-FO
project, which defines a way to transform XML documents into a device-specific format for
rendering content on a specific output device. You will learn the use of command-line tools
and a programmatic approach for performing such transformations.

Chapter 7 discusses the popular web development framework: Apache Cocoon. Cocoon
uses an easily configurable pipeline architecture for processing web clients’ requests. The
pipeline uses pluggable components for the various stages of processing. This chapter pro-
vides thorough coverage of this architecture and teaches you to define processing pipelines
for your web applications.

Being text-based, XML can be a cause for concern among developers interested in transfer-
ring XML-based data over otherwise unsecure networks. Chapter 8 covers security principles and
Apache’s XML-Security project to teach you how to implement security in your XML applications.

XML-dependent organizations soon amass a large number of XML documents that need
to be organized for quick and easy access. The Apache Xindice project defines a way to organ-
ize XML documents. Chapter 9 introduces this project.

6412_fm_final.qxd 4/7/06 1:17 PM Page xx

Finally, any software project needs documentation. The Apache Forrest project provides
a framework for creating documentation for your software projects. Forrest is also used for
creating extensible websites. Chapter 10 shows you how to use Forrest to create a website
containing dynamic content.

This book uses a brokerage case study to illustrate the usefulness of the various Apache
projects. The code examples in each chapter are based on this brokerage theme.

This book can help you master the development of XML-based web applications by using
several open source projects.

xxi■INTRODUCTION

6412_fm_final.qxd 4/7/06 1:17 PM Page xxi

xxii

Preface

Recent years have seen tremendous acceptance of both XML and open source technologies
in the IT industry. Apache developed several projects that use XML extensively. However, most
of the Apache projects are documented primarily for programmers and carry very little docu-
mentation for novices. It becomes extremely difficult for a beginner or an intermediate user
to use these projects in their applications without the availability of adequate code examples.
This book tries to bridge this gap by bringing together important Apache projects that are use-
ful for developing XML applications along with documentation and ample code examples on
each project.

The general impression in the industry is that Apache projects necessarily require use of
the Linux operating system. Thus, most books on Apache are written around Linux. However,
Apache projects support the Windows operating system and run equally well on Windows.
Although all of the examples in this book are developed on Windows, the applications are Java
based. Because Java is a platform-neutral language, all the applications could run on both
operating systems without any code modifications; what differs is only the software installa-
tion for each project. These differences are minor and typically involve only setting the path
and other environment variables. For those who use Linux, I have included an appendix that
describes the software installation for each chapter.

The book uses a stock brokerage theme to describe the XML-based application develop-
ment. This gives you a near real-life application development perspective.

6412_fm_final.qxd 4/7/06 1:17 PM Page xxii

XML

In today’s world, electronic data transfer has become an important aspect of our everyday
life. When you withdraw money from an ATM, make credit card purchases, pay your utility
bills on the Web, look up a news channel for current world happenings, look up an online map
for driving directions, and so on, the data flows in electronic format between various applica-
tions. These applications have been developed by different vendors at different times without
any prior agreement on the format of data transfers.

Many companies have set up their own standards for communication with business
partners. These are generally binary based, not human-readable, and require extra effort to
implement. These communication protocols never became world standards because of their
complexities. What people really wanted was a standard that everybody across the globe
would accept as a common protocol for data transport. That’s where Extensible Markup
Language (XML) was born. XML solves most of the problems faced in the existing protocols
of data transport.

XML is rapidly becoming the de facto industry standard for data transport. Nowadays
XML is used everywhere: for setting your application configurations, transporting data across
machines, storing data in databases, invoking business methods on remote servers, and so on.
These days you will hardly find any recently developed application that does not use XML.

Thus, with the widespread use of XML in software applications, you need to learn how to
create, process, and successfully use XML documents for data interchange. This chapter gives
you a brief overview of XML, its syntax, and namespaces. You’ll also be introduced to the Doc-
ument Type Definition (DTD) and XML Schema standards, which play a key role in creating
valid XML documents. You’ll begin by first understanding the need for XML.

Why Use XML?
The Web is heavily based on the use of HyperText Markup Language (HTML). HTML defines
several tags—for example, <h1>, <h2>, and <body>—that describe how to render the docu-
ment’s contents on the browser. However, these tag elements do not usually convey any
meaning about the data embedded in the document but instead just describe how the data
should be presented. XML solves this problem by allowing the document creator to devise
meaningful tag names that express the purpose of the embedded data rather than how it
should be presented.

1

C H A P T E R 1

■ ■ ■

6412_c01_final.qxd 4/7/06 1:23 AM Page 1

XML offers several benefits to the user:

• XML simplifies data interchange: A readily-available third-party tool can be used
to transform an XML document into any other standard format. This makes it easy to
exchange data between various organizations or within several departments in an
organization.

• XML is extensible: Because new tags can be created by anybody, the language itself is
easily extensible and is not restricted to the use of limited tags (as in the case of HTML).
There is no restriction on the number of tags you create. Such tags can be defined in
a document definition against which the documents can be validated. The document
definition can be reused to create multiple documents having the same structure.

• XML is text based: This makes XML documents easily human-readable.

• XML tags are meaningful: Because there is no restriction on the length of the tag name,
the designer can create tags that convey to other users the meaning of the encapsulated
data. For example, you can create tags called Heading1 and Heading2 in place of the stan-
dard HTML tags h1 and h2. Similarly, you can create tags called catalog, bookAuthor,
zipcode, and more. These tag names are generally self-explanatory to human readers.

• XML can penetrate firewalls: Because XML is text based and corporate firewalls are usu-
ally opened for text-based HTML documents, XML documents can penetrate corporate
firewalls. An XML document can encapsulate a remote procedure call, making it possi-
ble to invoke remote methods on servers. This makes it easy to integrate applications
deployed on diverse platforms and technologies.

• XML enables smart searches: Because XML documents can be structured to identify
every piece of information that they represent, you can create smart searches on XML
documents. For example, an XML document that stores an inventory of computer parts
can be easily searched for the presence or the quantity of a particular part because the
document tags typically refer to fields such as part name or part quantity.

What Is XML?
Extensible Markup Language (XML) is a specification created and maintained by the World
Wide Web Consortium (W3C, http://www.w3c.org), an organization focused on the promotion
of interoperability standards for the Web. Derived from its more complicated predecessor,
Standard Generalized Markup Language (SGML), XML is optimized for the definition, exchange,
validation, and interpretation of data used for a variety of applications.

Like HTML, XML relies on a set of tags in order to describe a document. However,
whereas HTML is constrained to a fixed set of tags, XML is extensible and allows document
creators to devise their own tags to describe the information contained therein. For instance,
consider the XML document shown in Listing 1-1.

CHAPTER 1 ■ XML 2

6412_c01_final.qxd 4/7/06 1:23 AM Page 2

Listing 1-1. A Sample XML Document

<?xml version="1.0" encoding="UTF-8"?>
<catalog>
<product>
<name>
Shampoo

</name>
<price>
$5.50

</price>
</product>
<product>
<name>
HairTonic

</name>
<price>
$10.25

</price>
</product>

</catalog>

All statements in this listing use nonstandard tags—except the first statement, which
is common to all XML documents. For example, catalog, product, name, and price are non-
standard tags.

As seen in Listing 1-1, an XML document consists of the following two components:

• Data that makes up the content: For example, Shampoo and HairTonic are the data items
that describe the product names, and $5.50 and $10.25 represent the corresponding
product prices.

• Meta information about data: The meta information is also called markup. This markup
describes the document structure. The catalog, product, name, and price specify the
meta information in Listing 1-1.

The meaningful names used for this markup make it easier for the human reader to interpret
the document contents. Looking at Listing 1-1, a person can easily deduce that this document
refers to a product catalog listing two products, Shampoo and HairTonic. You can easily deduce the
price of each item by looking up the data enclosed in the price tag.

XML Syntax
Although XML allows you to create your own tags, it follows stricter rules of document format-
ting than HTML. The syntax rules for XML documents are discussed in this section.

CHAPTER 1 ■ XML 3

6412_c01_final.qxd 4/7/06 1:23 AM Page 3

XML Documents Are Text Based
XML documents contain only human-readable text characters. This gives the benefit of easy
interpretation by humans and also the advantage of penetrating corporate firewalls. The dis-
advantage of being text based is that such documents could turn out to be much longer than
corresponding documents based on binary standards. Typically, an XML document may be
four to five times larger than its corresponding binary version. This results in larger bandwidth
requirements during transmission and more storage space on your hard drive and databases.

XML Is Case Sensitive
The markup, or metadata, in XML is case sensitive. Thus, the tag names Catalog and catalog
are considered distinct. Similarly, productPrice and ProductPrice would be considered dis-
tinct. Because the data embedded within elements is not interpreted by XML parsers,1 this
need not be case sensitive.

XML Restricts the Use of Certain Characters
XML tags use angle brackets (> and < symbols) for enclosing tag names. Thus, these charac-
ters cannot appear in the element data. If you want to include these symbols in your data, you
must use replacement character sequences. Table 1-1 lists all special characters and their cor-
responding replacement character sequences in XML.

Table 1-1. XML Representation of Special Characters

Special Character Replacement

& &

' '

" "

< <

> >

Because these special characters are used in meta information, if you include them in
your text contents, the parser will try to interpret them as a part of the markup, resulting
in an error. Say you would like to include the following string in your data:

This is <servlet> tag

This string must be written as follows in your XML document:

This is <servlet> tag

The parser will now interpret this correctly and produce the desired output.
Likewise, if you decide to include the string Tom&Jerry in your contents, you will need to

specify it as Tom&Jerry. When the document is rendered or interpreted, it will convert this
string to Tom&Jerry as desired.

CHAPTER 1 ■ XML 4

1. XML parsers are discussed in Chapter 2.

6412_c01_final.qxd 4/7/06 1:23 AM Page 4

XML Documents Begin with an XML Declaration
An XML document typically begins with the following line of code, although (as per the XML
specification) it is not mandatory:

<?xml version="1.0" encoding="UTF-8"?>

This indicates that the current document is an XML document, and is formally referred to
as the XML declaration. The xml element uses optional attributes that indicate the version and
the encoding used by the document contents.

XML Documents Are Marked by Using Elements
An entire XML document consists of markups specified by several elements. The element in
an XML document is specified by using the following syntax:

<elementName attribute=value … >

The markup starts with an opening angle bracket (<) and closes with a closing angle
bracket (>). Within the bracket, elementName appears first. This is mandatory. This is followed
by one or more optional attribute/value pairs. The following line defines an element called
article with one attribute named type. The value assigned to type is journal:

<article type="journal">

Every Element Has a Start and an End Tag
An element declaration begins with <elementName>. Each element declaration must end with
a corresponding end tag.

The end tag for an element is specified by prefixing the element name with a forward
slash. The following code fragment declares an element called article that is properly closed
with the corresponding end tag </article>:

<article type="journal">
Indigo Architecture - an overview

</article>

Between the start and end tags, you write the content (data) that the element represents.

Every XML Document Must Start with a Root Element
The first element in an XML document is treated as its root element. The remaining elements
of the document are arranged in a tree structure under this root.

Elements in an XML Document Can Be Nested
An XML document typically consists of several element declarations. The document starts
with a root element, and all other elements appear under this root. The element declarations
can be nested; however, you must observe proper scoping while nesting the elements. A par-
tial overlap during nesting is not permitted.

CHAPTER 1 ■ XML 5

6412_c01_final.qxd 4/7/06 1:23 AM Page 5

The following example shows a properly nested XML document:

<article>
<articleData>
<title>
Introduction to EJB 3.0

</title>
<author>
John Dhvorak

</author>
</articleData>
</article>

The following example depicts an improper nesting of elements:

<article>
<articleData>
<title>
Introduction to EJB 3.0

<author>
</title>
John Dhvorak

</author>
</articleData>
</article>

Note the start of the author element; it starts before the title element is closed. The
XML parsers2 and validators recognize the nesting errors and will flag such documents as
invalid when they process it.

An Element Can Be Empty
An empty element does not contain any data. The following example declares an empty
element called br. In your XML document, you will declare an empty element as follows:

 </br>

An empty element can also be specified as follows:

An XML Document Can Contain User-Written Comments
A comment starts with the character sequence <!-- and closes with the character sequence
-->. The text between these character sequences is ignored by XML parsers and is generally
useful only to human readers. The following example shows a comment declaration:

<!-- This is a Comment -->

CHAPTER 1 ■ XML 6

2. XML parsers are discussed in Chapter 2.

6412_c01_final.qxd 4/7/06 1:23 AM Page 6

CDATA Encloses Data That Should Not Be Interpreted by Parsers
Sometimes you may want to include data containing valid XML elements in your XML docu-
ments. However, you may not want the parser to interpret this data. This is achieved by using
the CDATA element, as illustrated in Listing 1-2.

Listing 1-2. Use of the CDATA Element in an XML Document

<?xml version="1.0" encoding="UTF-8"?>
<articles>
<article>
<articleData>
<![CDATA[
<title>EJB Programming</title>
<author>Dr. John</author>

]]>
</articleData>

</article>
</articles>

In this example, title and author elements enclosed in the CDATA section will not be
interpreted by parsers.

XML Namespaces
As seen in the previous paragraphs, XML allows you to create your own tags. To represent a
customer address, you could create elements such as customer, street, zipcode, and so forth.
Because these are generic names, many other programmers in the world could use the same
element names in their documents. However, these programmers could assign different
meanings to these elements in their documents. Then, when the documents were exchanged,
it would be difficult to deduce the correct meanings, especially given the likelihood that these
documents would be interpreted by machines and not humans. To resolve this ambiguity in
naming elements in an XML document, the concept of a namespace is introduced.

What Is a Namespace?
Your local machine can have more than one file with the same name. As long as these identi-
cally named files are stored in a distinct directory, there is no conflict, and the operating system
will manage files with duplicate names by examining their full path. Thus, by adding a qualify-
ing path string, the filenames are resolved without any ambiguity. The same concept is applied
in XML by using a namespace.

A namespace is essentially a qualifying path for the element that you use in your docu-
ments. A namespace is declared by using an attribute/value pair as shown here:

xmlns:xmlbook="http://www.apress.com/2005/apache"

The namespace declaration uses the xmlns prefix. The xmlns is a prefix used only to declare
namespace bindings and is by definition bound to the namespace name http://www.w3.org/
2000/xmlns/.

CHAPTER 1 ■ XML 7

6412_c01_final.qxd 4/7/06 1:23 AM Page 7

The xmlns prefix is followed by a colon (:) and a name to be used as a short name for the
Uniform Resource Identifier (URI) on the right-hand side of the expression. In the preceding
example, the prefix name is xmlbook.

■Note An XML namespace is identified by an Internationalized Resource Identifier (IRI) reference. IRIs con-
tain URIs and certain additional characters (most Unicode characters from #xA0 onward). However, because
work is currently in progress to define RFCs for IRIs, only URI references are used in the declarations.

The namespace name should be unique. After a namespace is declared as shown in the
preceding example, you use it to qualify the elements in your document.

■Note The prefix xml is by definition bound to the namespace name http://www.w3.org/XML/1998/
namespace. All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are
reserved.

Creating Fully Qualified Elements
Consider the following code fragment that declares a namespace called xmlbook. We use the
xmlbook prefix to qualify the different elements belonging to this namespace:

<book xmlns:xmlbook="http://www.apress.com/2005/apache">
...
<xmlbook:title>Pro Apache XML</xmlbook:title>
<xmlbook:author>Poornachandra Sarang</xmlbook:author>
<xmlbook:isbn>1-59059-641-2</xmlbook:isbn>

...
</book>

Now, even if another document uses element names such as title, author, or isbn, the
elements in our document will be resolved correctly because they belong to a unique name-
space prefixed by the short name xmlbook. Each element in the preceding document should
be prefixed with the name xmlbook to resolve any naming ambiguities.

Creating Multiple Namespaces
Your organization could have several projects under development at the same time. If you
create a single namespace to reference the elements required by all the projects, the list could
become too long. In such a case, you could create a project namespace or even create multiple
namespaces within a large project. This is equivalent to creating a directory hierarchy on your
hard drive for organizing various files. How to create multiple namespaces is discussed in this
section.

CHAPTER 1 ■ XML 8

6412_c01_final.qxd 4/7/06 1:23 AM Page 8

Just as you can create multiple folders on your hard drive to create several qualifying
pathnames for your files, in XML you can create multiple namespaces. You declare multiple
namespaces in your document as follows:

<book
xmlns:mlbook="http://www.apress.com/2005/apache"
xmlns:javabook="http://www.apress.com/2005/java"
xmlns:netbook="http://www.apress.com/2005/net" >

The preceding example creates three namespaces called mlbook, javabook, and netbook.
You can now include the following declarations in your document:

<mlbook:title>
Apache XML Programmer's Guide

</mlbook:title>
<mlbook:author>
Poornachandra Sarang

</mlbook:author>
<javabook:title>
Java Programmer's Guide

</javabook:title>
<javabook:author>
James Gosling

</javabook:author>
<netbook:title>
Programmer's heaven to .NET

</netbook:title>
<netbook:author>
Bill Gates

</netbook:author>

Although in the preceding example title and author elements in all three namespaces
contain similar data and have the same constraints, nothing prevents you from assigning an
altogether different data type for each of these elements. Thus, the meaning of each element
will differ depending on the namespace it belongs to.

A namespace can contain any element names. For example, the namespace javabook can
contain a definition for an element called BookAuthor in addition to the definition for an author
element. The use of namespaces just ensures that even if anybody else in the world uses the
same name while defining an element, your element will be resolved properly by the parser
because the parser would use a fully qualified name for each element.

Consider another example using multiple namespaces:

<Limousine
xmlns:midsize="http://www.toyota.com/car/2005/midsize"
xmlns:luxury="http://www.toyota.com/car/2005/luxury">

<midsize:seats>
Leather

</midsize:seats>

CHAPTER 1 ■ XML 9

6412_c01_final.qxd 4/7/06 1:23 AM Page 9

<luxury:stereo>
Blapunkt

</luxury:stereo>
</Limousine>

This example declares two namespaces denoted by midsize and luxury prefixes. The
midsize namespace contains an element called seats, and the luxury namespace contains an
element called stereo. Because the luxury cars have extra fittings as compared to the midsize
cars, we create a separate set of elements to specify these extra fittings. This additional set of
elements can be organized in a separate luxury namespace.

The use of namespaces mandates you to prefix each element that is used in the docu-
ment. Sometimes, this can be too much to type, if you are not a good typist. That is where the
concept of a default namespace is introduced.

Using a Default Namespace
When you declare a namespace without a prefix, it is treated as the default namespace for the
current document. The following statement declares a default namespace:

xmlns="http://java.sun.com/xml/ns/j2ee"

An element declared in the document without the use of a prefix will be treated as belong-
ing to the default namespace. Consider the following code fragment that uses the preceding
declared namespace:

<servlet>
<name>
MyServlet

</name>
</servlet>

Both servlet and name elements are assumed to belong to the default namespace identi-
fied by the URI http://java.sun.com/xml/ns/j2ee.

Listing 1-3 provides another example of a default namespace, used by a web service.

Listing 1-3. A Sample XML Document Using a Default Namespace

<?xml version="1.0" encoding="utf-8" ?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.serviceModel>
<services>

<service
serviceType="abcom.BrokerageCalculatorService"
behaviorConfiguration="BrokerageCalculatorServiceBehavior">
<!-- use base address provided by host -->
<endpoint address=""

bindingSectionName="wsProfileBinding"
bindingConfiguration="CalcBinding"

CHAPTER 1 ■ XML 10

6412_c01_final.qxd 4/7/06 1:23 AM Page 10

contractType="abcom.ICalculator, service"/>
</service>

</services>

<bindings>
<wsProfileBinding>

<binding configurationName="CalcBinding" soapVersion="Soap12" />
</wsProfileBinding>

</bindings>

<behaviors>
<behavior

configurationName="BrokerageCalculatorServiceBehavior"
returnUnknownExceptionsAsFaults="True" >

</behavior>
</behaviors>

</system.serviceModel>

<system.web>
<compilation debug="true" />

</system.web>

</configuration>

In the preceding document, configuration is the root element. The default namespace
is specified by the URI http://schemas.microsoft.com/.NetConfiguration/v2.0. All the ele-
ments used in the document, such as service, bindings, behaviors, behavior, and so on,
belong to this default namespace.

Using Both Default and Prefixed Namespaces
You can use both default and prefixed namespaces in the same document. The following
example illustrates this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee ➥

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<display-name>books</display-name>
<listener>
<listener-class>listeners.ContextListener</listener-class>

</listener>

CHAPTER 1 ■ XML 11

6412_c01_final.qxd 4/7/06 1:23 AM Page 11

<servlet>
<display-name>books</display-name>
<servlet-name>books</servlet-name>
<jsp-file>/books.jspx</jsp-file>

</servlet>
...

</web-app>

Here the default namespace is specified by the URL http://java.sun.com/xml/ns/j2ee.
The second namespace is named xsi and is specified by the URI http://www.w3.org/2001/
XMLSchema-instance. The elements belonging to this namespace are prefixed with xsi. The
schemaLocation attribute belongs to the xsi namespace, while the rest of the elements in the
document do not use any prefix. Thus, all these elements belong to the default namespace.

Now that you have seen how to resolve the name conflict, your next task is to understand
how to define different element types and the structure for the document. This is done with
the help of DTDs and XML schemas. Both are explained in the following sections.

Document Type Definition
The Document Type Definition (DTD) consists of formalized definitions of all data elements
found in an XML document. Given a DTD and corresponding XML document, it’s possible to
validate an XML document for correctness.

The following example shows a sample DTD specified as a part of an XML document:

<?xml version="1.0" encoding="us-ascii"?>
<!--
DTD for a simple "slide show".
-->
<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

The DTD defines elements called slideshow, slide, title, and item. The definition also
shows the subelements, the number of allowed occurrences of these subelements, the data
type, and other characteristics for each element. In this section, you will learn how to create
a DTD and then how to include one in your documents. You will also see some of the draw-
backs of DTDs.

Writing a DTD
An XML document consists of a collection of elements, with each element containing zero or
more attribute/value pairs. The DTD defines the structure of these elements and attributes.

Writing Elements
To define an element, we use the following syntax:

<!ELEMENT element_name (child_element)>

CHAPTER 1 ■ XML 12

6412_c01_final.qxd 4/7/06 1:23 AM Page 12

The keyword ELEMENT marks the beginning of the element definition, and element_name
specifies the name of the element. This name has to be unique within the given scope. An ele-
ment can contain other elements (nesting of elements). These are called child elements of the
current element. The child elements are specified in parentheses following the element name.
Consider the code fragment from the earlier example:

<!ELEMENT slideshow (slide+)>

This statement declares an element called slideshow. The slideshow element contains
a slide element. The plus sign (+) indicates that the subelement slide must appear at least
one time within the slideshow element.

The child element containment is specified by an element content model. The contain-
ment rules of this model are listed next.

An Element Can Contain a Single Child Element

This rule indicates that there can be only one child element within the specified element. For
example, the following declaration specifies that the slideshow element can contain only one
child element, called slide:

<!ELEMENT slideshow (slide)>

An Element Can Contain More Than One Child Element

If an element contains more than one child element, a comma-delimited list of such child
elements is specified in parentheses. Consider the following code fragment from our previous
example:

<!ELEMENT slide (title, item)>

In this example, the slide element contains two elements, called title and item. The list
also specifies the order in which the elements should appear within the slide element. Chang-
ing this order will make the document invalid. An element can be omitted in the document if it
is declared optional in the definition. You will see how to create an optional element in the sub-
sequent section.

An Element Can Be Empty

An element can be empty; this means that it does not contain any child elements.
The use of the keyword EMPTY indicates that the given element does not contain any child

elements. Consider the following declaration:

<!ELEMENT slide (EMPTY)>

The statement indicates that the slide element should not contain any child elements,
and an error will result if child elements are declared within the slide element.

You will declare a slide element based on the preceding definition in your XML docu-
ment as follows:

<slide/>

or

<slide></slide>

CHAPTER 1 ■ XML 13

6412_c01_final.qxd 4/7/06 1:23 AM Page 13

An Element Can Contain Text Data

You may want to include character data in the element that should not be parsed by the
parser. You do so by using the keyword (#PCDATA). The following statement declares an ele-
ment called slide that contains character data that should not be parsed by the parser:

<!ELEMENT slide (#PCDATA)>

You can now declare the slide element in your XML document as follows:

<slide>
This can contain any character data including valid XML statements

</slide>

An Element Can Contain Any Combination of Subelements

The ANY keyword specifies that the element can contain any combination of subelements.
Listing 1-4 illustrates the use of the ANY keyword.

Listing 1-4. Use of the ANY Keyword

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE slideshow [
<!ELEMENT slideshow (slide+)>
<!ELEMENT slide ANY>
<!ELEMENT subslide (#PCDATA)>

]>

<slideshow>
<slide>
This is slide data.
<subslide>
This is subslide data.

</subslide>
</slide>

</slideshow>

The XML document in Listing 1-4 includes a DTD at the beginning. The root element
of the document is slideshow, as specified by the DOCTYPE keyword. The slideshow element
contains one or more slide elements. A slide element can contain any combination of
subelements, as indicated by the ANY keyword. In the current situation, the slide element can
contain a subelement called subslide that contains any character data. Additionally, the slide
element itself can contain any character data. In this case, the character data is specified by
the string This is slide data.

As you have seen under the first containment rule, if you want to include the child ele-
ment subslide within an element slide, you would write the following declaration:

<!ELEMENT slide (subslide)>

CHAPTER 1 ■ XML 14

6412_c01_final.qxd 4/7/06 1:23 AM Page 14

If you want to include only character data in the slide element, you would write the fol-
lowing declaration (refer to the earlier rule, “An Element Can Contain Text Data”):

<!ELEMENT slide (#PCDATA)>

If you want to include both child element and character data, you would use the ANY key-
word as in the following declaration:

<!ELEMENT slide ANY>

An Element Can Contain Only Subelements Specified in a Choice List

To restrict the subelements within an element, you specify the list of desired subelements, each
separated from the other with a pipe (|) character. Consider the following code fragment:

<!ELEMENT slide (subslideA|subslideB)>

The slide element can contain either a subslideA or subslideB element. The use of both
elements within a single instance of the slide element will result in an error. Consider another
example:

<!ELEMENT slide (#PCDATA|subslideA|subslideB)*>

In this case, the slide element can contain any character data or the child element
subslideA or subslideB. The asterisk (*) indicates that the subelement can occur zero or
many times, as discussed next.

Specifying Instance Quantities
The number of occurrences of each subelement can be specified in the definition of an element.
By default the subelement must occur one and only one time. Table 1-2 lists the available options.

Table 1-2. Instance Quantity Specifiers

Symbol Meaning

+ At least one time

* Any number of times

? At most one time

Quantity Specifier +

The quantity specifier + indicates that the subelement must occur at least one time.
Consider the following declaration:

<!ELEMENT slideshow (slide+)>

The statement declares an element called slideshow that contains at least one occurrence
of the slide element. The slideshow element can contain multiple slide elements. Listing 1-5
illustrates the use of the quantity specifier +.

CHAPTER 1 ■ XML 15

6412_c01_final.qxd 4/7/06 1:23 AM Page 15

Listing 1-5. A Sample XML File Using the Quantity Specifier +

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE slideshow [
<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (#PCDATA)>

]>

<slideshow>
<slide>
First Slide

</slide>
<slide>
Second Slide

</slide>
</slideshow>

Here slideshow must contain at least one slide. The example document in Listing 1-5
creates two instances of the slide element within the slideshow element.

Quantity Specifier *

In the following example, the element slide contains a subelement called item:

<!ELEMENT slide (item*)>

The element item can occur within the slide element multiple times or may not occur
at all.

Quantity Specifier ?

In the following example, the subelement slide can occur at most one time within the
slideshow element:

<!ELEMENT slideshow (slide?)>

An error will result if slide is included more than once in slideshow.

Writing Attributes
Instead of individually defining each attribute of a particular element, we specify them
together in the attribute list for that element. For this we use the ATTLIST keyword.

The attributes are specified by using the following syntax:

<!ATTLIST elementname attrname attrtype defaultvalue>

The elementname represents the tag for which we are defining the attribute. The name of the
attribute is specified by attrname. The attrtype can be any one of the values specified in
Table 1-3.

CHAPTER 1 ■ XML 16

6412_c01_final.qxd 4/7/06 1:23 AM Page 16

Table 1-3. List of Attribute Types

Attribute Type Meaning

CDATA Character data with no markup

ID and IDREFID A unique value that cannot be repeated anywhere in
the document

NMTOKEN Name token, the value of the attribute is intended to act
as a name for the element

(choice1 | choice 2 | …… | choice n) Choice list

The defaultvalue specifies the additional characteristics of the attribute and can be one
of the following:

• #Fixed default_value: Here the value specified by default_value is the only acceptable
value for this attribute. Consider the following statement:

<!ATTLIST address country #PCDATA #Fixed USA>

This statement declares a country attribute for the element address. The country attrib-
ute has the fixed value USA assigned to it. Assigning any other value results in an error.

• #Required: The use of the additional specifier #Required indicates that the value for this
attribute must always be specified. Not specifying the attribute value will result in an
error in this case.

• #Implied: The #Implied specifier indicates that the use of this attribute is implicit in
the definition and thus the attribute need not be explicitly declared in the element
instance.

Writing Entities
Entities allow you to create shorter names for long fragments of contents. For example, say
that the word California occurs in your document several times. You can create a shorter
name such as CA for this word by creating an entity as shown here:

<!ENTITY CA "California">

Any occurrence of CA in your document will be replaced by the word California before
the document is validated. The following code illustrates how to define and use an entity in
your XML documents:

<!DOCTYPE travel [
<!ELEMENT travel (word)>
<!ELEMENT word ANY>
<!ENTITY CA "California">

]>
<travel>
<word>
&CA;
</word>

</travel>

CHAPTER 1 ■ XML 17

6412_c01_final.qxd 4/7/06 1:23 AM Page 17

All the entities are resolved before the validation takes place. If you open the preceding
document in Microsoft Internet Explorer, you will see the following output:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE travel (View Source for full doctype...)>
<travel>
<word>California</word>

</travel>

Including a DTD in a Document
Now you know how to create a DTD, the next task is to learn how to include it in your document.
You include the DTD in your document so that your document structure can be validated
against the structure defined in the DTD. There are two ways to include the DTD in your XML
document: internal or external.

Internal
In an internal DTD, the DTD is placed directly in the XML document itself. Listing 1-6 illus-
trates an internal DTD.

Listing 1-6. An XML Document Using an Internal DTD

<?xml version="1.0"?>
<!DOCTYPE note [
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

]>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

The code shown in bold contains the DTD, which starts with the character sequence
<!DOCTYPE and ends with the character sequence]>. The rest of the XML document uses the
element names defined in this DTD. The structure of the XML document will be validated
against this DTD by validating parsers.3

CHAPTER 1 ■ XML 18

3. Parsers are discussed in Chapter 2.

6412_c01_final.qxd 4/7/06 1:23 AM Page 18

External
An external DTD is external to the XML document and resides in a separate file on the local
or remote file system. A sample external DTD is shown in the following code:

<?xml version="1.0"?>
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

This is stored in a physical file called note.dtd. DTD files generally have the extension
.dtd.

Referencing a Local DTD

If the preceding DTD file is available on a local system disk, you will create an XML document
that uses this file as follows:

<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "note.dtd">
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

The line in bold shows the inclusion of note.dtd in the current document. We use the
SYSTEM keyword to indicate that the DTD is available on the current system. If you do not
specify the full path for the file, it is assumed to be present in the current folder. If the file
exists in some other folder, you can specify either the relative or the full path of the file.

Referencing a Remote DTD

If the DTD is not available on the current system, it can be included in the XML document
by using the URL reference, as illustrated in Listing 1-7.

Listing 1-7. An XML Document Referencing a Remote DTD

<?xml version="1.0"?>
<!DOCTYPE note PUBLIC "http://www.mydomain.com/dtd/booklist.dtd">
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

We use the PUBLIC keyword to designate the URI reference to the external DTD.

CHAPTER 1 ■ XML 19

6412_c01_final.qxd 4/7/06 1:23 AM Page 19

Understanding DTD Drawbacks
As seen in the preceding examples, DTDs use Extended Backus-Naur Form (EBNF) notation
for defining elements and attributes. This notation is somewhat cryptic and may not be easily
interpreted by many people.

■Note The Backus-Naur Form (BNF) is a notation for writing the grammar of a context-free language.
The Extended Backus-Naur Form (EBNF) adds the regular expression syntax of regular languages to the
BNF notation. The documentation on this may be obtained from the International Organization for Standard-
ization (http://www.iso.org).

DTDs have another major drawback: they do not provide any data validation and provide
only the structure validation for the document.

The XML schemas discussed in the next section provide both structure and data validations.

XML Schema
An XML schema provides an alternative to a DTD for describing the document structure.
Unlike a DTD, the schema itself is written in XML and is thus easily interpreted by humans.
The schema is defined by using the format shown in Listing 1-8.

Listing 1-8. Format for Defining XML Schemas

<? xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="ROOT_ELEMENT_OF_THE_XML_DOCUMENT">
.
.
Element definition etc

.

.
</xsd:element>

</xsd:schema>

The root element for this document is schema. This is prefixed by the xsd namespace.
The xsd namespace designates the URI http://www.w3.org/2001/XMLSchema. Within the schema
element, all its child elements are defined, starting with the definition of the root element.

In the preceding document, the root element is specified by the value of the ROOT_ELEMENT_
OF_THE_XML_DOCUMENT variable. All other element definitions follow the root element declaration.

CHAPTER 1 ■ XML 20

6412_c01_final.qxd 4/7/06 1:23 AM Page 20

Defining Elements
You define the elements in an XML schema by using following notation:

<xsd:element
name="element_name"
type="element_type"

/>

You use the element tag to begin the definition of an element. The name attribute specifies
the name of the element, and the type attribute specifies its data type. The following state-
ment illustrates how to define an element:

<xsd:element name="author" type="xsd:string"/>

The element that is defined in the preceding statement is called author. The data type for
this element is of type string. Like string, there are several other primitive data types defined
in the xsd namespace. If you do not specify the type, the default is taken as xsd:string type.

■Note A complete list of built-in data types can be found at http://www.w3.org/TR/2001/REC-xml➥

schema-2-20010502/#built-in-datatypes.

Defining Attributes
You define element attributes by using the following notation:

<xsd:attribute
name="attribute_name"
type="attribute_type"

/>

The attribute name is specified by the name attribute, and its data type is specified by the
type attribute. Consider the following attribute definition:

<xsd:attribute name="first" type="xsd:string"/>

In this example, we define an attribute called first having the data type string.

Using Additional Specifiers
There are several additional specifiers that can be used while defining attributes. These are
discussed here.

The optional Specifier
The optional specifier indicates that the inclusion of this attribute in an XML document is
optional. Consider the following code fragment:

CHAPTER 1 ■ XML 21

6412_c01_final.qxd 4/7/06 1:23 AM Page 21

<xsd:element name= "competition" type="xsd:string">
<xsd:attribute name="race" type="xsd:string" use="optional"/>
</xsd:element>

Here, the element competition is declared to have one attribute called race. The data type
for the attribute is string, and its use is optional. Thus, the following statements in an XML
document based on the preceding definition would be valid:

<competition>
2005 World Championship

</competition>
<competition race= "horse">
2005 Horse Race Championship

</competition>

Note the second instance of competition declares the attribute race and assigns the value
horse to it.

The required Specifier
The required specifier indicates that the corresponding attribute must be defined in the XML
document wherever the concerned element is instantiated. The following code segment defines
a race attribute for the competition element with the required specifier:

<xsd:element name= "competition" type="xsd:string">
<xsd:attribute name="race" type="xsd:string" use="required"/>
</xsd:element>

The value for race must be specified in the instance of the competition element; otherwise,
the parser or the document validator will flag this as an error.

The default Specifier
You use the default specifier to specify the default value for the attribute. The following state-
ment defines an attribute called domain of type string that has a default value of com:

<xsd:element name= "URL" type= "xsd:string">
<xsd:attribute name="domain" type="xsd:string" default="com"/>
</xsd:element>

Consider the following XML declaration based on the preceding definition:

<URL domain= "org">
http://www.appress.com

</URL>

The element URL defines an attribute called domain with the value org. Note that in this
case we do not assign a default value to the domain attribute. Now, consider the following code
fragment:

CHAPTER 1 ■ XML 22

6412_c01_final.qxd 4/7/06 1:23 AM Page 22

<URL>
http://www.appress.com

</URL>

In this case, we do not explicitly declare the domain attribute in the URL element. The
implicitly created domain attribute would take the default value of com.

The fixed Specifier
The fixed attribute is used for specifying a fixed value for the attribute. Assigning any other
value to the attribute results in an error. You declare the fixed value as follows:

<xsd:attribute name="country" type="xsd:string" fixed="US"/>

In this example, the country attribute has a fixed value of US. Assigning any other value to
this attribute would result in making the document invalid.

The minOccurs and maxOccurs Specifiers
The minOccurs and maxOccurs specifiers specify the minimum and maximum occurrences of
the attribute. Consider the following definition for the element articleList:

<xs:element name="articleList">
<xs:complexType>
<xs:sequence>
<xs:element name="articleTitle" type="xs:string" minOccurs="1"➥

maxOccurs="10" />
</xs:sequence>

</xs:complexType>
</xs:element>

The following XML code can be created based on the preceding definition:

<articleList ... >
<articleTitle>Indigo - Architecture and Overview</articleTitle>
<articleTitle>J2EE Web Services Architecture</articleTitle>
<articleTitle>Open Source implementation of Web Services</articleTitle>
</articleList>

This is a valid XML code fragment. It uses the attribute articleTitle three times in the
definition of the articleList element. The minimum number of occurrences for articleTitle
is one and the maximum is ten. Thus, three occurrences are within the specified range.

Annotating XML Schemas
Though XML documents are easily read by humans, sometimes you may want to add some
annotation to the document. Such annotation is added by using annotation and documenta-
tion tags. You can annotate the entire schema and/or an individual element.

CHAPTER 1 ■ XML 23

6412_c01_final.qxd 4/7/06 1:23 AM Page 23

Annotating Schema
To annotate the entire schema, you add the annotation tag immediately after the
<xsd:schema> element as shown here:

<xsd:schema
targetNamespace="http://www.appress.com/xml/book/apache"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
... >

<xsd:annotation>
<xsd:documentation>
Copyright Apress L.P. All rights reserved.

</xsd:documentation>
</xsd:annotation>

...
</xsd:schema>

You can add your comments under the documentation tag. These comments would per-
tain to the entire schema definition.

Annotating Elements
To annotate an element defined in the schema, you add the annotation tag immediately after
the element definition tag, as shown in the following example:

<xsd:element name="PersonalComputer">
<xsd:complexType name="Memory">
<xsd:annotation>
<xsd:documentation>

Specifies the type of memory
</xsd:documentation>

</xsd:annotation>
</xsd:complexType>

</xsd:element>

Thus, each element defined in the schema can include its own comments.

Using Simple Data Types in XML Schemas
A schema definition supports two types of data: simple and complex. In this section, you’ll
look at simple types. A discussion of complex types will follow.

A simple type of element contains only unstructured data. This is equivalent to primitive
data types in programming language grammar. An XML schema provides a rich set of simple
types. Some of the common predefined simple types are listed in Table 1-4.

CHAPTER 1 ■ XML 24

6412_c01_final.qxd 4/7/06 1:23 AM Page 24

Table 1-4. Built-in Data Types

Type Description

xsd:string Character string

xsd:date Calendar date

xsd:time Instance of time

xsd:decimal Decimal number

xsd:Boolean Boolean type

■Note The complete list of all simple types can be found at its source: http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/#built-in-datatypes.

The following XML code fragment illustrates the use of simple types:

<xsd:element name="publicationDate" type="xsd:date"/>
<xsd:element name="author" type="xsd:string"/>

Here the publicationDate element has a data type of date, and author has a data type of
string. You will create elements of this type in your XML document as follows:

<publicationDate>2006-01-01</publicationDate>
<author>"Poornachandra Sarang"</author>

Derived Types
You may also derive new data types from simple types. Derived types provide for type extensi-
bility. The general syntax for derived types is given here:

<xsd:simpleType name="typeName">
<xsd:restriction base="someSimpleType">
Deriving Rule

</xsd:restriction>
</xsd:simpleType>

Deriving Rule can be a string pattern, range of values, enumeration, and so on. The fol-
lowing examples illustrate the use of some of the deriving rules.

Using Patterns

You may want to restrict the user to a predefined format while entering element data. This is
achieved by extending the simple data types to create a derived type. For example, a telephone
number must be specified, say, in the format ###-#######, where # denotes a decimal number
between 0 and 9. You could then define an element called phone as follows:

CHAPTER 1 ■ XML 25

6412_c01_final.qxd 4/7/06 1:23 AM Page 25

<xsd:element name="phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{7}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

The data type for phone is a string type. The string value follows a pattern definition spec-
ified by the string "\d{3}-\d{7}". This indicates that the phone number must consist of three
decimal digits followed by a hyphen that is then followed by seven decimal digits. If this pat-
tern is not followed while entering the values for the phone number, the document is treated
as invalid.

■Note The complete list of patterns can be found at http://www.w3.org/TR/2001/REC-xml➥

schema-2-20010502/#built-in-datatypes.

Limiting String Length

State codes in the United States are restricted to a two-character length. This can be specified
in the document definition as follows:

<xsd:element name="stateCode">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="2"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

Here we define an element called stateCode that is of string data type. The length of this
string is restricted to two characters. Thus, IL, IN, CA, and VA will be valid stateCodes, whereas
ILL, CAL, and so on will be invalid codes.

Restricting Numbers

You may want to restrict the number input to a certain width and precision. For example,
weight measurements may be restricted to five digits, with two digits assigned for the preci-
sion. This can be achieved by creating a weight element defined as follows:

<xsd:element name="weight">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:precision value="5"/>
<xsd:scale value="2"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

CHAPTER 1 ■ XML 26

6412_c01_final.qxd 4/7/06 1:23 AM Page 26

Valid values for the weight would be 140.50, 50.35, and 20, whereas invalid values would
be 100.125 and 1000.50.

Specifying Lists

You may sometimes want to specify a list of values to the element such as top gainers or losers
in the stock market. The following code fragment illustrates how to specify the list of values for
an element:

<xsd:element name="topGainers">
<xsd:simpleType>
<xsd:list base="xsd:string"/>
<xsd:length value="5">

</xsd:simpleType>
</xsd:element>

The topGainers element in the preceding definition can contain a list of five strings. The
following XML declaration based on this definition is valid:

<topGainers>
"IBM" "Microsoft" "GE" "ACCENTURE" "INFOSYS"

</topGainers>

■Note The complete list of deriving rules can be found at http://www.w3.org/TR/2001/REC-xml➥

schema-2-20010502/#built-in-datatypes.

Named vs. Anonymous Types
You assign a name to a simpleType by adding the name attribute to its definition as shown here:

<xsd:simpleType name="USPhone">

If the data type is named, it can be used while defining other elements within the scope
of such a definition. To extend the definition scope, we create such named data types outside
the scope of any other element. Thus, the definition can be applied to all subsequent element
definitions. This is illustrated in the following example:

<xsd:simpleType name="value">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="15"/>
<xsd:maxExclusive value="40"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name="PlayerAge" type="value"/>
<xsd:element name="RefereeAge" type="value"/>

CHAPTER 1 ■ XML 27

6412_c01_final.qxd 4/7/06 1:23 AM Page 27

The preceding example creates a simple type called value. The value is of integer type,
and the minimum value that can be assigned to it is 15 and the maximum is 40. Because this
simple type is named, its definition can be used while defining subsequent elements. The
example creates two elements called PlayerAge and RefereeAge that use the value simple
type as their data type.

Using Complex Types in XML Schemas
If you want to create empty elements, or elements having subelements, or elements having
attributes, you will need to define them by using complexType.

The hierarchy for a complex type can be represented as follows:

• An empty element or

• Nonempty element

• With text only

• With elements only

• Mixed (with text and elements)

Empty Complex Types
You have already seen the use of an empty element in our earlier examples—the
 element
is an empty element. To define such an element in the XML schema, you use the following
definition:

<xsd:complexType name = "br" >
<xsd:complexContent>
</xsd:complexContent>

</xsd:complexType>

The tag complexType defines the complex type element. The name for the complex type in
this example is br. The complexContent tag defines the contents for the complex type, which in
this case are not defined. To use the br element in your XML document, you would use one of
the following declarations:

 </br>

or

</br>

Nonempty Complex Types
As stated, a nonempty complex type can be a text-only element, or an element containing
only subelements, or a mixture of both.

Text-Only Elements

The following example illustrates how to create a complex type element that can contain
only text:

CHAPTER 1 ■ XML 28

6412_c01_final.qxd 4/7/06 1:23 AM Page 28

<xsd:complexType name="player">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="weight" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

Here we define a complex type called player. It contains a single attribute called weight
of type string. We use simpleContent and extension tags to define this attribute. You use this
element in your XML document as follows:

<player weight = "80" />

Here, we define the player element as having a weight attribute value of 80.

Elements-Only Complex Types

A complex type can contain other subelements. The order of occurrence of these subelements,
whether they are mandatory, whether they have a fixed set of values, and so on, are controlled
by the use of the following tags:

• sequence

• all

• choice

• group

The sequenceTag

You use sequences whenever you want to create a complex type that contains subelements
in a certain strict order. Listing 1-9 illustrates the use of sequencing.

Listing 1-9. Sequence of Subelements

<xsd:element name="personinfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="address">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="street"/>
<xsd:element name="city"/>
<xsd:element name="zipcode"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

CHAPTER 1 ■ XML 29

6412_c01_final.qxd 4/7/06 1:23 AM Page 29

<xsd:element name="phone"/>
<xsd:element name="email"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Here, we define an element called personinfo. The personinfo element contains four
subelements: name, address, phone, and email. Out of these four elements, the address element
itself is a complex type element. The address element consists of street, city, and zipcode
subelements. The order of each subelement is important and must be honored while using
this personinfo element in your XML document. You declare a personinfo element in your
XML document as follows:

<personinfo>
<name>Samson Abel</name>
<address>
<street> "Carlson st" </street>
<city> "Chicago" </city>
<zipcode> "45655" </zipcode>

</address>
<phone> "312-444-5555" </phone>
<email> "Samson@gmail.com" </email>

</personinfo>

■Note Sequences can be nested or can contain choices or groups.

The xsd:allTag

If you want to define a complex type that can contain subelements declared in any order, you
use the all tag. Listing 1-10 shows the use of the all tag in the definition of the element called
playerdetails.

Listing 1-10. An XML Document Using the all Tag

<xsd:element name="playerdetails">
<xsd:complexType>
<xsd:all>
<xsd:element name="name"/>
<xsd:element name="age" type=xsd:decimal/>
<xsd:element name="weight" type=xsd:decimal />
<xsd:element name="height" type=xsd:decimal />

</xsd:all>
</xsd:complexType>
</xsd:element>

CHAPTER 1 ■ XML 30

6412_c01_final.qxd 4/7/06 1:23 AM Page 30

The playerdetails element contains subelements called name, age, weight, and height.
These subelements can be specified in any order while declaring the playerdetails element
in your XML document. This is illustrated in the following code fragment:

<playerdetails>
<name>"John Michell"</name>
<weight>80</weight>
<age>24</age>
<height>145</height>

</playerdetails>

<playerdetails>
<height>155</height>
<name>"Michael Johnson"</name>
<age>22</age>
<weight>120</weight>

</playerdetails>

Note that the two instances use a different order for nested elements. In each case, the
order in which the subelements occur also differs from the original order specified in the defi-
nition of the playerdetails element.

■Note The subelements declared under the all tag can be only elements—and not sequences, choices,
or groups.

The xsd:choiceTag

You use choice whenever you want to define a complex element that contains more than one
subelement and allows the user to specify any one of them in its declaration. The following
example illustrates the use of the choice tag:

<xsd:element name="student">
<xsd:complexType>
<xsd:choice>
<xsd:element name="name"/>
<xsd:element name="id" type=xsd:decimal />

</xsd:choice>
</xsd:complexType>

</xsd:element>

Here, the student element can be specified with the subelement value name or id. You
declare student in your XML document as follows:

CHAPTER 1 ■ XML 31

6412_c01_final.qxd 4/7/06 1:23 AM Page 31

<student>
name = "Sam Johnathan"

</student>
<student>
id = 15

</student>

■Note The choice element can consist of a group of elements defined by using another complex type
within.

The xsd:groupTag

Sometimes you may want to group together a set of related elements and use this group in
definitions of other elements. In this case, you use a group tag as illustrated in Listing 1-11.

Listing 1-11. Using the group Tag

<xsd:group name="PAN">
<xsd:all>
<xsd:element name="number"/>
<xsd:element name="dateOfIssue">

</xsd:all>
</xsd:group>

<xsd:element name="individual">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:group ref="PAN"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="corporation">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="dateOfIncorporation"/>
<xsd:group ref="PAN"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

CHAPTER 1 ■ XML 32

6412_c01_final.qxd 4/7/06 1:23 AM Page 32

Here we define a group by using the xsd:group tag. The group name is PAN. In India, the
government issues a unique number called the Permanent Account Number (PAN) to tax-
payers—both individuals and corporations. The PAN consists of a decimal number and the
date of issue and may contain additional elements such as details of the issuing authority.
Because this set of information is applicable to both individual and corporate taxpayers,
we create a group and apply it to individual and corporate elements. The definitions of
individual and corporate elements differ from each other in terms of the elements they
contain, as seen in Listing 1-11.

The following code fragment shows the use of the group defined in Listing 1-11.

<individual>
<name>Smita Desai</name>
<number>123-456-7890</number>
<dateOfIssue>"1/1/2000"</dateOfIssue>

</individual>
<corporation>
<name>Tata Consultancy Services</name>
< dateOfIncorporation >"2/5/1990"</ dateOfIncorporation >
<number>987-654-3210</number>
<dateOfIssue>"5/8/1995"</dateOfIssue>

</corporation>

Note the use of group elements in both individual and corporation element declarations.

Mixed Elements

The use of the mixed attribute allows you to define a complex type that can contain text as well
as the subelements within it. The following example illustrates the use of the mixed attribute in
the definition of the complex type called text:

<xsd:complexType name="text" mixed="true">
<xsd:all>
<xsd:element name="bold"/>
<xsd:element name="italic"/>
<xsd:element name="underscore"/>
<xsd:element name="strikethrough"/>

</xsd:all>
</xsd:complexType>

The text element contains bold, italic, underscore, and strikethrough elements. The
text can also contain any text (character string) in its declaration. The following code frag-
ment illustrates the use of the text element in an XML document:

<text>
The text may contain
<bold>bold </bold>
<italic>italic</italic>
<underscore>underscored</underscore>

CHAPTER 1 ■ XML 33

6412_c01_final.qxd 4/7/06 1:23 AM Page 33

and
<strikethrough>strikethrough</strikethrough>

words.
</text>

A document formatter could render the following output after appropriately interpreting
the tags in the preceding declaration:

The text may contain bold, italic, underscored, and strikethrough words.

Named and Anonymous Complex Types
Just as you created named and anonymous simple types, you can create named and anony-
mous complex types. If you want to use the complex type definition in other definitions, you
name the complex type. If you want to use the definition immediately within its scope and
not use it elsewhere, you create an anonymous type.

Named Complex Type

The following example illustrates how to create a named complex type:

<xsd:complexType name="height">
<xsd:sequence>
<xsd:element name="unit"/>
<xsd:element name="value" type=xsd:decimal/>

</xsd:sequence>
</xsd:complexType>

The name assigned to complexType is height and it contains two elements: unit and value.
The element height now can be included in other definitions as illustrated here:

<xsd:element name="person">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="personHeight" type=height/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="building">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="street"/>
<xsd:element name="buildingHeight" type=height/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

CHAPTER 1 ■ XML 34

6412_c01_final.qxd 4/7/06 1:23 AM Page 34

In the preceding example, both person and building elements use the complex type height.
You can now create instances of person and building in your XML document as follows:

<person>
<name>Lisa Ray</name>
<personHeight>
<unit>cms</unit>
<value>136</value>

</personHeight>
</person>

<building>
<name>Washington Plaza</name>
<street>"Washington St"</street>
<buildingHeight>
<unit>feet</unit>
<value>50</value>

</buildingHeight >
</building>

Anonymous Complex Type

In the preceding example, we created a height data type and used its definition in the person
and building elements. However, if you do not want to reuse the height definition in multiple
elements, you do not name it, thereby creating an anonymous data type. The following code
snippet shows the definition of the person data type that uses the definition of the height data
type from the previous example, but without naming it. The code marked in bold shows the
definition of an anonymous complex type:

<xsd:element name="person">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="unit"/>
<xsd:element name="value" type=xsd:decimal/>

</xsd:sequence>
</xsd:complexType>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

You can now instantiate a person in your XML document as follows:

<person>
<name>Lisa Ray</name>
<unit>cms</unit>
<value>136</value>

</person>

CHAPTER 1 ■ XML 35

6412_c01_final.qxd 4/7/06 1:23 AM Page 35

Including XML Schemas
After defining the schema, you need to add its reference to an XML document during its cre-
ation so that the validating parsers can validate your document against the definitions in the
schema. You add a reference to the schema after the first line of the XML document and before
the actual document content.

The schema definition can be specified by a file on the local system or as a URI reference.

Local System File Reference
The schema file can be stored on your local drive. Listing 1-12 illustrates how to reference a
schema stored on the local file system.

Listing 1-12. Referencing Schema from a Local File System

<?xml version="1.0" encoding="UTF-8"?>
<articleList

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\ArticleList.xsd">

<article>
...

</article>
</articleList>

This schema definition is stored in the file called ArticleList.xsd that is located in the
root folder of drive C. The document structure is now validated against the structure defined
in this schema by validating parsers.

URI Reference
A reference to the external schema file can also be specified by using a URI as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>
...

</servlet>
</web-app>

Here the schemaLocation attribute specifies the URI for the external schema. The current
document will be validated against this schema definition by validating parsers.

CHAPTER 1 ■ XML 36

6412_c01_final.qxd 4/7/06 1:23 AM Page 36

Summary
XML has become a de facto industry standard for data interchange. XML is derived from
SGML and offers several benefits over HTML. XML is human-readable, extensible, and allows
smart searches. In this chapter, you studied the basic structure of an XML document.

In XML, tags are user defined. This can give rise to a conflict in tag names when the
same tag names meaning different things are created by different users across the globe.
Such name conflicts can be problematic, especially when the documents are interpreted
by machines. The name conflicts in XML documents are resolved by introducing the con-
cept of a namespace. Each tag name is associated with a namespace. The namespace itself
is guaranteed to be unique because it is based on URI definitions. This chapter has dis-
cussed the importance and use of namespaces in XML documents.

The XML document follows certain document-formatting rules. We use DTDs to define
the structure of an XML document. The structure of an XML document is validated against the
structure defined in the DTD by validating parsers. You studied how to create DTDs in this
chapter. DTDs carry a few drawbacks: they are not easily understood by humans because of
their cryptic syntax and also do not provide any data validations.

The new standard for defining XML document structure is called an XML schema. The
schemas are written in XML and thus are easily interpreted by humans. The schema provides
both structure validations and data validations.

The schema allows the definition of simple and complex types. The simple types are use-
ful for creating only unstructured data, whereas complex types allow you to create elements
that contain structured data and empty elements. Both simple and complex types can be
named or anonymous. You use named types if you want to reuse the definition in other ele-
ment definitions. You can derive new types from both simple and complex types to extend
their functionalities. After defining a schema, you can include it in the XML document by
using a local file reference or a remote reference. This chapter has covered the schema defini-
tions and its use to a sufficient depth.

In the next chapter, you will learn how to parse XML documents. You will see the various
parsing techniques and their use in practical situations.

CHAPTER 1 ■ XML 37

6412_c01_final.qxd 4/7/06 1:23 AM Page 37

6412_c01_final.qxd 4/7/06 1:23 AM Page 38

XML Processing

As you learned in Chapter 1, XML offers an efficient and standardized mode for data trans-
port. Accordingly, you can find XML support for many tasks, including managing configuration
files, communicating customer data, and archiving data. Given such diversity, it is important
that applications are able to properly interpret and manipulate XML files. That is where XML
parsing techniques come into play. An XML parser accepts an XML document as its input and
processes it to interpret the data that it contains. The parser may even manipulate the data and
re-create yet another XML document for further use by another application.

In this chapter, you will learn about the need for XML parsing. You’ll review a few practi-
cal applications where such techniques are used and then see the details of the three main
XML parsing techniques.

Need for XML Parsing
When considering XML parsing, the following questions need to be answered:

• Why do I need to parse an XML document?

• Do I need a parser to extract data from an XML document?

• What parsing techniques are available to me?

• Are there any ready-to-use parsers available, and if so how do I get them?

• After parsing the document, can I convert it to some other form?

We will consider answers to all these questions in this section.

Understanding the Need for Parsing
As you learned in the previous chapter, XML documents are used in practically every application
in the world today. Although these documents are often easily interpreted by humans, their true
use lies in electronic processing and manipulation. This is accomplished with a parser, which is
responsible for scanning the document, identifying the various elements in it, and making these
elements and the data they contain available for further electronic processing.

39

C H A P T E R 2

■ ■ ■

6412_c02_final.qxd 4/14/06 12:41 PM Page 39

Extracting Data by Using Parsers
An XML document consists of elements, attributes, and data. A typical XML document that
describes a purchase order may contain elements such as PersonalComputer, Scanner, Printer,
and so on. Each of these may contain subelements such as Quantity and Price. Listing 2-1
presents such a purchase order.

Listing 2-1. A Sample Purchase Order

<?xml version="1.0" encoding="utf-8" ?>
<PurchaseOrder>
<PersonalComputer Type="Desktop">
<Price>
$995

</Price>
<Quantity>
10

</Quantity>
</PersonalComputer>
<PersonalComputer Type="Portable">
<Price>
$1295

</Price>
<Quantity>
5

</Quantity>
</PersonalComputer>
<Scanner Type="Desktop">
<Price>
$165

</Price>
<Quantity>
2

</Quantity>
</Scanner>
<Printer Type="Inkjet">
<Price>
$85

</Price>
<Quantity>
4

</Quantity>
</Printer>
<Printer Type="LaserPrinter">
<Price>
$485

</Price>

CHAPTER 2 ■ XML PROCESSING40

6412_c02_final.qxd 4/14/06 12:41 PM Page 40

<Quantity>
1

</Quantity>
</Printer>

</PurchaseOrder>

You may like to process the purchase order document to gather information about the
number of personal computers, scanners, and printers ordered; their net purchase price; and
the total purchase value of the order.

The XML document parser scans the purchase order to locate each of the aforementioned
elements in the purchase document. It extracts the Quantity and Price element data for each
of the ordered items and does the arithmetic to derive the net order value of each item and the
gross value of the order. Thus, the XML parsers help in extracting data from XML documents
for further processing.

Using Parsing Techniques
There are three major techniques available for XML parsing:

• Simple API for XML (SAX): This is an event-based parsing. The parser generates an
application event whenever it encounters an element or data in the document being
parsed.

• Document Object Model (DOM): In this model, the parser builds an in-memory structure
for the entire document that is parsed. You can then traverse the memory tree structure
to visit various nodes, examine their contents, modify their contents, and more.

• XMLBeans: In this technique, the document is mapped to Java classes that represent
the document structure. The entire document instance can be created in memory by
using this technique while retaining the original document structure in the image cre-
ated in memory.

All three techniques are discussed in depth later in this chapter.

Obtaining Ready-to-Use Parsers
Based on the various techniques listed in the previous section, there are both commercial and
open-source noncommercial parsers available for your use. Some of the popular parsers are
listed here:

• The Apache Xerces project: http://xml.apache.org/dist/xerces-j/

• Microsoft XML parser: http://msdn.microsoft.com/xml

• The Expat XML parser: http://sourceforge.net/projects/expat/

Because this book is on Apache XML APIs, we will use the Apache Xerces parser in this
chapter and all subsequent chapters.

CHAPTER 2 ■ XML PROCESSING 41

6412_c02_final.qxd 4/14/06 12:41 PM Page 41

Using XML Transformations
After parsing an XML document, it is possible to convert it to some other format. For example,
to render an XML document on a browser, you will need to first convert it to HTML. This
process is known as XML transformation. We use stylesheets to perform these conversions.
Such transformations are called Extensible Stylesheet Language Transformations (XSLT).1

Practical Applications of XML Parsing
Before learning the details of the parsing techniques, you will explore a few applications where
such techniques are practically used. This section describes a few practical scenarios in which
XML parsing techniques are useful: a stock brokerage, a market survey application, and appli-
cation configurations.

Stock Brokerage
Consider a stock brokerage that has many brokers as affiliates. In turn, each broker works with
many clients. Figure 2-1 shows an infrastructure architectural diagram for our brokerage.

CHAPTER 2 ■ XML PROCESSING42

1. XSLT is covered in depth in Chapter 5.

Figure 2-1. Stock brokerage order application architecture

6412_c02_final.qxd 4/14/06 12:41 PM Page 42

As Figure 2-1 illustrates, a client places an order with a broker by using a web-based
interface. Such orders are typically placed by using HTML forms. The orders are placed over
a secured channel using HTTPS.2 Each broker web application validates the order and con-
verts it to an XML format for further processing by our stock brokerage. Our stock brokerage
is registered with stock exchanges—for example, the NYSE, NASDAQ, or AMEX.

The XML-based order is then dispatched over a channel that may be a public Internet
channel or a secured proprietary channel. Upon receiving orders from the broker, an appli-
cation controlled by the brokerage processes them for placement on various stock exchanges.
For instance, prior to placement, each order must be validated for correctness. Furthermore,
several orders possessing the same trade value may be consolidated in order to facilitate order
placement. We might also consider validating the net value of orders from each broker against
that broker’s current credit limit.

Likewise, a considerable amount of processing may be performed on these XML docu-
ments in the order processing system at our stock brokerage. After processing the orders, the
same order processing system may generate XML documents containing orders to be placed
on a stock exchange such as the NYSE. Finally, these newly created XML order documents will
be dispatched to the NYSE, which in turn would require internal processing to execute the order
that may result in a trade.

As you can see, XML processing is required at various tiers. Some of the applications in
this architecture simply parse the XML document to extract the data, and some applications
generate new XML documents based on the parsed data.

Market Survey Application
Imagine an application that enables you to conduct a market survey for a particular company.
You might design a multiple-choice questionnaire, with each question having a fixed set of
answers. After collecting all the survey forms, you want to consolidate the results to find out how
many participants answered A to the first question, how many answered C to the third question,
and so on. A general architecture for implementing this solution is proposed in Figure 2-2.

In this application, each survey participant completes an HTML form presented within a
web browser. After the required validations are completed, the data is converted into an XML
document before being dispatched to the central processing application on a remote machine.
The survey processing application processes each received document, consolidates the results,
and generates a report by using its reporting tool. The report may be another XML document.
The report can then be dispatched to a printer or local storage or another remote application
for warehousing or further processing.

Again, you will notice that XML processing is required at each participating node in the
entire architecture.

CHAPTER 2 ■ XML PROCESSING 43

2. HyperText Transfer Protocol over SSL, or Secured HyperText Transport Protocol

6412_c02_final.qxd 4/14/06 12:41 PM Page 43

6e067a1cf200c3b6e021f18882237192

Application Configurations
When developing and deploying a Java web or J2EE3 application, the application configura-
tion information is stored in an XML document. The application configuration may consist of
the name of the servlet, its class name, initialization parameters, security access information,
and other items. Similarly, an Enterprise JavaBeans (EJB) container’s configuration informa-
tion may consist of the name of the EJB object, its local and remote interfaces, home interface,
implementation class, and so forth. A typical EJB configuration file is presented in Listing 2-2.

Listing 2-2. A Typical EJB Deployment Configuration File

<?xml version = "1.0" encoding = "UTF-8"?>

<ejb-jar xmlns = "http://java.sun.com/xml/ns/j2ee" version = "2.1"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
<display-name>Car Rental</display-name>
<enterprise-beans>
<session>
<display-name>ReservationAgentBean</display-name>
<ejb-name>ReservationAgent</ejb-name>
<home>samples.ejb.stateless.simple.ejb.CarRental</home>
<remote>samples.ejb.stateless.simple.ejb.Reservation</remote>
<ejb-class>samples.ejb.stateless.simple.ejb.ReservationAgent</ejb-class>
<session-type>Stateless</session-type>

CHAPTER 2 ■ XML PROCESSING44

Figure 2-2. Market survey system architecture

3. J2EE’s latest version is now known as Java EE 5.

6412_c02_final.qxd 4/14/06 12:41 PM Page 44

<transaction-type>Bean</transaction-type>
<security-identity>
<use-caller-identity/>

</security-identity>
</session>

</enterprise-beans>
</ejb-jar>

As you can see in Listing 2-2, the configuration file also contains information about trans-
action control, access permissions to various methods, and so on.

At the application level, another XML configuration file contains information about the
application roles, mapping users to roles, references to resources required by the application
at deployment time, and more. Thus, both web and EJB containers require a module for XML
processing to understand the required application configuration before the application is
deployed on the container.

Other Applications
I have listed only a few cases that illustrate the usefulness of XML processing. You will find
many more applications in which XML processing is used. Thus, it is important for an appli-
cation programmer to study the various XML processing techniques, which are covered in
subsequent sections. First, however, you need to take a moment to examine how these tech-
niques fit into the larger system architecture.

System Architecture for XML Processing
A typical client/server application exchanges data by using XML documents. The XML process-
ing takes place at both client and server tiers. I will discuss the XML processing architecture
with the help of the diagram in Figure 2-3.

A client sends a request, consisting of an XML document, to the business application server.
The request may consist of invoking a method on the remote server or may contain some data for
the server application’s use. The request is encapsulated in an XML document as in the case of
web services architecture.4 For this, the business application must be exposed as a web service;
the client sends a SOAP request (which is an XML document) to the business application server.
The SOAP request contains information about the method to be invoked on the remote server
and contains a message type that tells the server the format of the response expected by the
client. The SOAP request may also encapsulate data to be processed by the remote application.

The messaging between the client and server is achieved with the help of Java APIs for
XML Messaging (JAXM). The web services standard does not restrict you to use JAXM; you may
use a messaging standard of your choice.

After the XML document is received by the server, the server will process the document
by using any one or all three of the processing techniques, as depicted in Figure 2-3. After pro-
cessing the document, the server may create a new XML document as a way of response. The
response is dispatched back to the client with the help of JAXM. In web services architecture,
such a response will be a SOAP response, which is once again an XML document.

CHAPTER 2 ■ XML PROCESSING 45

4. Web services architecture is covered in Chapter 3.

6412_c02_final.qxd 4/14/06 12:41 PM Page 45

Installing Software
To execute the applications in the following sections, you will need XML parsing libraries
developed as a part of the Apache Xerces project. You can download Apache Xerces project
code from the following URL: http://xml.apache.org/xerces2-j/ or http://archive.apache.
org/dist/xml/xerces-j/. After downloading the archive file, unzip it to the desired folder and
follow the instructions to set up your environment.

Set the XERCES_HOME environment variable to the directory where you have installed Xerces
and add %XERCES_HOME%\bin to your PATH variable. Also include the xerces-api.jar file in your
classpath.

■Note For those of you installing on Linux, Appendix A provides detailed installation instructions for all the
chapters in this book.

CHAPTER 2 ■ XML PROCESSING46

Figure 2-3. XML processing system architecture

6412_c02_final.qxd 4/14/06 12:41 PM Page 46

Parsing with SAX
Simple API for XML (SAX) processing was developed by the members of the XML-DEV mailing
list and does not have an official standards body. It is not maintained by the W3C or any other
official body. However, SAX has become a de facto standard in the industry and is widely used
by developers interested in XML parsing.

As its name indicates, SAX really is a simple API for processing XML documents. SAX is
event based; as the document is processed, SAX generates events for the use of the processing
application. Such events indicate the beginning of the document, the end of the document,
each element occurrence, and so on. For example, referring to Listing 2-2, when the EJB config-
uration file is parsed, an event will be generated whenever the parser encounters an element
such as <session> or <home>. Because the events are generated while the document is being
parsed, you do not have to wait for the entire document to be read before processing occurs.

SAX Processing Model
Consider the sample XML program first presented in Chapter 1, reproduced here as Listing 2-3
for your convenience.

Listing 2-3. A Sample XML Document

<?xml version="1.0" encoding="UTF-8"?>
<catalog>
<product>
<name>
Shampoo

</name>
<price>
$5.50

</price>
</product>
<product>
<name>
HairTonic

</name>
<price>
$10.25

</price>
</product>

</catalog>

When this document is processed by a SAX parser, the following events will be generated:

■Note For brevity, all Characters events are not shown in the following output.

CHAPTER 2 ■ XML PROCESSING 47

6412_c02_final.qxd 4/14/06 12:41 PM Page 47

Start document
Start element (catalog)
Characters (white space)
Start element (product)
Start element (name)
Characters (Shampoo)
End element (name)
Start element (price)
Characters ($5.50)
End element (price)
End element (product)
Start element (product)
…
End element (product)
Characters (white space)
End element (catalog)
End document

In the beginning, a Start document event is generated, which indicates to the processing
application that processing of the XML document has begun. Next, a Start element event is
generated with the parameter value equal to catalog. This indicates to the processing applica-
tion that the parser has encountered an element called catalog during its processing. Moving
on, a Characters event is generated with a parameter value equal to white space, indicating
that some white space was found in the document. In fact, whenever the parser encounters a
white space in the document, it generates a Characters event. This may be too disturbing for
the processing application. You can set the parser to ignore all white spaces. How to do this is
discussed later. After the catalog element, the parser encounters the product element and
once again generates a Start element event. This is followed by another Start element event
for the name element. The name element contains character data. Thus, the parser generates the
Characters event with the value Shampoo; these are the data contents of the name element. After
this data, the parser encounters the end tag for the name element. Thus, it generates the End
element event.

After the name element, the document contains the price element. The parser again gener-
ates the appropriate start and end element events and Characters event for the price element
data. After the price element ends, the product element ends. This is indicated by the End
element event with the product value.

After this, another product element starts. The sequence of events will be the same as the
earlier product event. At the end of the product element, the parser encounters the end of the
catalog element. It generates an End element to indicate this to the processing application.

At the end of the document, the End document event is generated, indicating to the appli-
cation that the document processing is over.

As you can see, the SAX parser generates an event for each element or data encountered
in the processed document.

CHAPTER 2 ■ XML PROCESSING48

6412_c02_final.qxd 4/14/06 12:41 PM Page 48

Pros and Cons of SAX Processing
Being event based, SAX offers several benefits to its user. At the same time, it also comes with
certain disadvantages. Both sides of this coin are presented in this section.

SAX presents four particularly compelling advantages, each of which is presented here:

• Immediate analysis: SAX generates the events continually while processing a docu-
ment. The document analysis can begin immediately, and you need not wait to do the
analysis until the entire document is processed. This is equivalent to streaming media,
where the media contents are rendered immediately and you need not wait until the
entire media is read.

• Fewer constraints on memory requirements: SAX examines the document contents as it
reads the document and immediately generates events on the processing application.
Thus, it need not store the data that it has already processed. This puts fewer constraints
on the application memory requirements.

• Easier processing of large documents: Because the document’s contents are not stored
in memory, it is easier to process very large documents as compared to other process-
ing techniques discussed later. Other techniques that require the entire document to be
read into memory before processing can sometimes place severe constraints on system
resources.

• Faster processing: The application need not process the entire document if it is interested
in a certain criterion. After that criterion is met, further processing can be abandoned.
Other techniques (discussed later in this chapter) require the document to be parsed
fully before any processing can be done.

SAX does come with certain disadvantages:

• No backward navigation: SAX is akin to a one-pass compiler. After it reads part of the doc-
ument, it cannot navigate backward to reread the data it has processed, unless you start
all over again. Backward navigation is required while processing a purchase order such
as the one in Listing 2-1. To get the gross purchase value for each type of item (printer or
scanner, for example), you need to navigate the document back and forth several times.
Backward navigation may also be required while processing the purchase order placed
on our stock brokerage application, illustrated in Figure 2-1.

• No data manipulation: Because SAX does not store the data that it has processed, you
cannot modify this data and store it back in the original document. In our stock broker-
age example, a broker may modify the order placed by the customer before forwarding
it to the stock brokerage. The broker may also add identity information along with the
time of processing of the order. This is required for postauditing of orders. SAX will not
be useful in such applications.

• No document creation: Because SAX does not create an in-memory document structure,
you cannot build an XML document by using a SAX parser. In our stock brokerage exam-
ple, I mentioned that the stock brokerage may create a consolidated order to place it on
the NYSE. Thus, the processing application should be able to build an XML document
dynamically from scratch. Again, SAX cannot be used in such cases.

CHAPTER 2 ■ XML PROCESSING 49

6412_c02_final.qxd 4/14/06 12:41 PM Page 49

SAX Processing Model Architecture
The SAX implementation provides several classes for flexible, extensible processing based on
the SAX model. Figure 2-4 presents the SAX processing model architecture.

At the heart of the architecture, the SAXReader class is responsible for processing a given
XML document. SAXReader obtains its input for parsing from the specified XML document.
We associate an instance of the SAXParser class to SAXReader. The SAXParser object is created
by using the SAXParserFactory instance. SAXParser is pluggable, and you can easily choose
from several parsers, maybe from different vendors.

The SAXReader class also has many pluggable event handlers associated with it, several of
which are available by default. For example, ErrorHandler is responsible for error processing,
and DTDHandler handles DTD processing. DefaultHandler includes the implementations of both
ContentHandler and ErrorHandler methods and also others. You can extend DefaultHandler to
override the existing functionality or to provide additional functionality. You can write your own
custom handler for handling events. The handlers are pluggable, and the SAXReader can use any
such custom handlers.

During processing, SAXReader will generate events in your application to be handled by
your event handlers. You are responsible for providing any desired business processing in
these handlers.

Document Processing Using SAX
Now that you understand the SAX processing model and the pros and cons of SAX, you are
ready to look at the steps used in processing a document and how to code these steps.

CHAPTER 2 ■ XML PROCESSING50

Figure 2-4. SAX processing model architecture

6412_c02_final.qxd 4/14/06 12:41 PM Page 50

SAX processing incorporates the following steps:

1. Create an event handler.

2. Create the SAX parser.

3. Parse the document.

4. Process the document data.

To illustrate these steps, we’ll create an application. Consider the stock brokerage applica-
tion presented earlier in the chapter. Our stock brokerage receives orders from various brokers.
Such orders are created as XML documents. We will write a console application to process the
order documents. To begin, we’ll determine the number of customers who have placed their
orders through an order document. Next, we will determine the number of trade requests for
the specified stock, and last we will determine the gross trade quantity for all buy/sell trades
requested for the specified stock.

We will first consider the structure of this purchase order.

Sample Document Structure
Listing 2-4 shows the sample purchase order document.

Listing 2-4. Orders.xml Stock Purchase Order (Ch02\src\Orders.xml)

<?xml version="1.0" encoding="utf-8" ?>
<Orders>
<Customer ID="C001">
<StockSymbol>
MSFT
<Quantity>
200

</Quantity>
<TradeType>
B

</TradeType>
</StockSymbol>

</Customer>
…

<Customer ID="C004">
<StockSymbol>
MSFT
<Quantity>
150

</Quantity>
<TradeType>
B

</TradeType>
</StockSymbol>

CHAPTER 2 ■ XML PROCESSING 51

6412_c02_final.qxd 4/14/06 12:41 PM Page 51

<StockSymbol>
IBM
<Quantity>
150

</Quantity>
<TradeType>
S

</TradeType>
</StockSymbol>

</Customer>
…

</Orders>

■Note Listing 2-4 gives only the partial purchase order document. The complete listing of Orders.xml
(Ch02\src\Orders.xml) is available from the Source Code area of the Apress website (http://www.
apress.com).

Each broker uses this format to place orders with the stock brokerage. The Orders element
is the root element of our purchase document. The document contains orders from several
customers. Each customer is identified by an ID attribute and can place orders for one or more
buy/sell trades. Each trade is identified by the StockSymbol element, which contains text data
indicating the stock symbol on which the trade is desired. The StockSymbol element contains
Quantity and TradeType subelements. The Quantity element indicates the trade quantity, and
TradeType specifies buy or sell.

■Note In reality, such a purchase order document would consist of many more fields. For example, each
trade should also contain an indicative price at which trade is desired. I have excluded such additional ele-
ments to keep the document simple and facilitate your understanding of how to process an XML document
by using SAX.

Application for Processing Purchase Order
We will write a console-based Java application to process the purchase order given in Listing 2-4.
The application uses the SAX parsing technique. The full application code is given in Listing 2-5.

CHAPTER 2 ■ XML PROCESSING52

6412_c02_final.qxd 4/14/06 12:41 PM Page 52

Listing 2-5. Java Application for Processing Purchase Order (Ch02\src\SAXExample1.java)

package apress.apacheXML.ch02;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

/**
*This class implements SAX Parser
*/

public class SAXExample1 extends DefaultHandler {
private int count=0;

public static void main(String[] argv) {
if (argv.length != 1) {
System.err.println("Usage: SAXExample1 Filename");
System.exit(1);

}

// Create an Object of the SAXExample1 class for SAX event handler
SAXExample1 saxObject = new SAXExample1();

// Create an object of SAXParserFactory for validating purpose.
SAXParserFactory spfactory = SAXParserFactory.newInstance();

try {
// Parse the specified ".xml" file
SAXParser saxParse = spfactory.newSAXParser();
saxParse.parse(new File(argv[0]), saxObject);

} catch (SAXParseException spExcept) {
// Error generated while parsing
System.out.println("\n** Error occurred while parsing **" + ", line " +

spExcept.getLineNumber());
System.out.println(" " + spExcept.getMessage());

} catch (SAXException sExcept) {
// Error generated while initializing the parser.
Exception Except = sExcept;
if (sExcept.getException() != null) {
Except = sExcept.getException();

}
Except.printStackTrace();

} catch (ParserConfigurationException pcExcept) {

CHAPTER 2 ■ XML PROCESSING 53

6412_c02_final.qxd 4/14/06 12:41 PM Page 53

// Parser with specified options cannot be built
pcExcept.printStackTrace();

} catch (IOException ioExcept) {
// I/O error
ioExcept.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

}

/**
* The parser calls this method whenever it encounters END of document
*/
public void endDocument() throws SAXException {
System.out.println("\nNumber of Customers: "+ count);

}

/**
* The parser calls this method whenever it encounters START of element
*/
public void startElement(String namespaceURI, String simpleName,

String qualifiedName, Attributes attributeList) throws SAXException {
if (qualifiedName.equals("Customer"))

count++;
}

/**
* This overrides the default Error Handler.
*/
public void error(SAXParseException spExcept) throws SAXParseException {
throw spExcept;

}
}

The various classes required for SAX parsing are defined in the org.xml.sax, org.xml.sax.
helpers, and javax.xml.parsers packages. You need to import these packages in your code
to use the SAX parser.

Creating a SAX Parser
We create a SAX parser instance by first instantiating the SAXParserFactory class. This class
cannot be directly instantiated because the class does not provide a public constructor. We
obtain its instance by calling its newInstance static method:

SAXParserFactory spfactory = SAXParserFactory.newInstance();

CHAPTER 2 ■ XML PROCESSING54

6412_c02_final.qxd 4/14/06 12:41 PM Page 54

Next, we call the newSAXParser method on the created factory instance to create an
instance of the parser:

SAXParser saxParse = spfactory.newSAXParser();

At this stage, we will have an instance of the parser available and referred by the saxParse
variable. The property org.xml.sax.driver in our environment decides the parser class to be
used for instantiation. While running the application, we can specify this property on the
command line as follows:

java -Dorg.xml.sax.driver=org.apache.xerces.jaxp.SAXParserFactoryImpl SAXExample1

Extending the Event Handler
As you learned earlier in this section, SAX provides default implementations for several event
handlers. The built-in DefaultHandler provides implementations for both ContentHandler and
ErrorHandler. Thus, we simply need to extend our class from DefaultHandler to provide event
handling code in our application:

public class SAXExample1 extends DefaultHandler

The class SAXExample1 extends from DefaultHandler. This is going to be our main applica-
tion class. We will create a console application to process the document file given in Listing 2-4.
As the DefaultHandler class implements all the event handling methods with a null implemen-
tation body, we need to override only those event handling methods in which we are interested.

To determine the number of customers who have placed orders in the current order doc-
ument, we simply count the number of occurrences of the Customer element. For this, we
override the startElement method as shown here:

/* The parser calls this method whenever it encounters an element in the
parsed document. The method receives the namespace, simple name,
qualified name and list of attributes as parameters.

*/
public void startElement(String namespaceURI, String simpleName,

String qualifiedName, Attributes attributeList) throws SAXException {
if (qualifiedName.equals("Customer"))

count++;
}

The startElement method receives four parameters and throws SAXException. All the event
handling methods are required to throw SAXException.

We compare the qualifiedName parameter value to the Customer string. If this matches, we
increment a class variable called count. Thus, every time the parser encounters the Customer
element, the event handler will increment the count variable. At the document end, the count
variable will hold the count for the total number of occurrences of the Customer element.

To print the total count at the end of processing, we need to override the endDocument
method as follows:

CHAPTER 2 ■ XML PROCESSING 55

6412_c02_final.qxd 4/14/06 12:41 PM Page 55

/* The parser calls this method when it encounters an end of document being
processed */

public void endDocument() throws SAXException
{
// Print the count value on the user console
System.out.println("\nNumber of Customers: "+ count);

}

The endDocument method simply prints the count value on the user console.
We do not need to override other event handling methods to accomplish our task of

counting the total number of customers who have placed orders in the current document.

Parsing a Document
After we create an event handler and an instance of the parser, we can start parsing the XML
document by calling the parse method on the parser:

SAXExample1 saxObject = new SAXExample1();
saxParse.parse(new File(argv[0]), saxObject);

The parse method takes two arguments. The first argument specifies the name of the file
to be parsed. In our application, the name of the file to be parsed is specified as the first
parameter on the command line. The second parameter to the parse method specifies the
instance of the event handler. Remember, we extended SAXExample1 from the DefaultHandler
class. Thus, we instantiate the SAXExample1 class and pass its instance as the second parameter
to the parse method.

Processing Document Data
After the parsing begins with the invocation of the parse method, the parser keeps calling the
event handler for each occurrence of a node in your document. For instance, in our example,
the startElement method of the ContentHandler is overridden. The parser calls this method
whenever it encounters a new element in the document:

/* The parser calls this method whenever it encounters an element in the
parsed document. The method receives the namespace, simple name,
qualified name and list of attributes as parameters.

*/
public void startElement(String namespaceURI, String simpleName,

String qualifiedName, Attributes attributeList) throws SAXException {
if (qualifiedName.equals("Customer"))

count++;
}

The startElement event handler method keeps incrementing the count for every occur-
rence of the Customer element.

When the file is fully parsed, the endDocument event handler is called, in which we print
the count value on the user console:

CHAPTER 2 ■ XML PROCESSING56

6412_c02_final.qxd 4/14/06 12:41 PM Page 56

public void endDocument() throws SAXException
{

System.out.println("\nNumber of Customers: "+ count);
}

The events that are not overridden by our application code will use the default handler
that does nothing.

Providing Error Handling
Our program must catch several parsing errors while parsing the document. This is illustrated
in the following code snippet:

try
{

SAXParser saxParse = spfactory.newSAXParser();
saxParse.parse(new File(argv[0]), saxObject);

}
catch (SAXParseException spExcept) {...}
catch (SAXException sExcept) {...}
catch (ParserConfigurationException pcExcept) {...}
catch (IOException ioExcept) {...}
catch (Throwable t) {...}

Note that the actual event handling code in the catch block is not shown here.
SAXParseException encapsulates an XML parse error or warning, and contains information
for locating the error in the original XML document. SAXParseException inherits from
SAXException. SAXException contains basic error or warning information from either the
XML parser or the application. ParserConfigurationException details the configuration
errors.

Running the Application
Compile the source SAXExample1.java by using the following command line:

C:\<working folder>\ch02\src>javac -d . SAXExample1.java

Run the application by using the following command line:

C:\<working folder>\ch02\src>java apress.apacheXML.ch02.SAXExample1 Orders.xml

When you run this application on the sample XML document that is provided in the
download folder, you will see the following output:

Number of Customers: 6

■Note The full source code for this application (Ch02\src\SAXExample1.java) can be downloaded from
the Source Code area of the Apress website (http://www.apress.com).

CHAPTER 2 ■ XML PROCESSING 57

6412_c02_final.qxd 4/14/06 12:41 PM Page 57

Extending Application Functionality
We will now extend the functionality of our application to determine the number of trade
orders and the total trade quantity for the specified stock.

We’ll begin by copying SAXExample1.java to SAXExample2.java and adding more function-
ality to the existing code. The complete code for SAXExample2 is given in Listing 2-6.

Listing 2-6. Application That Counts Number of Trades and Total Trade Quantity
(Ch02\src\SAXExample2.java)

package apress.apacheXML.ch02;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

/**
*This class implements SAX Parser
*/
public class SAXExample2 extends DefaultHandler {
private int count=0;
private int stockCount=0;
private String stockSymbol;
private boolean countQuantity;
private boolean countSymbol;
private long Quantity=0;

public static void main(String[] argv) {
if (argv.length != 2) {
System.err.println("Usage: SAXExample2 Filename StockSymbol");
System.exit(1);

}

// Create an Object of the SAXExample2 class for SAX event handler
SAXExample2 saxObject = new SAXExample2();
saxObject.stockSymbol = argv[1];

// Create an object of SAXParserFactory for validationg purpose.
SAXParserFactory spfactory = SAXParserFactory.newInstance();

CHAPTER 2 ■ XML PROCESSING58

6412_c02_final.qxd 4/14/06 12:41 PM Page 58

try {
// Parse the specified ".xml" file
SAXParser saxParse = spfactory.newSAXParser();
saxParse.parse(new File(argv[0]), saxObject);
} catch (SAXParseException spExcept) {
// Error generated while parsing
System.out.println("\n** Error occurred while parsing **" + ", line " +
spExcept.getLineNumber());

System.out.println(" " + spExcept.getMessage());
} catch (SAXException sExcept) {
// Error generated while initializing the parser.
Exception Except = sExcept;

if (sExcept.getException() != null) {
Except = sExcept.getException();

}

Except.printStackTrace();
} catch (ParserConfigurationException pcExcept) {

// Parser with specified options can't be built
pcExcept.printStackTrace();

} catch (IOException ioExcept) {
// I/O error
ioExcept.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

}

/**
* The parser calls this method whenever it encounters END of document
*/
public void endDocument() throws SAXException {
// Print the desired information on the user console
System.out.println("\nNumber of Customers: "+ count);
System.out.println("Number of " + stockSymbol + " Orders: " + stockCount);
System.out.println("Total Trade Quantity: " + Quantity);

}

/**
* The parser calls this method whenever it encounters START of element
*/

CHAPTER 2 ■ XML PROCESSING 59

6412_c02_final.qxd 4/14/06 12:41 PM Page 59

public void startElement
(String namespaceURI, String simpleName, String qualifiedName,

Attributes attributeList) throws SAXException {
if (qualifiedName.equals("Customer"))
count++;
// if the qualified name of the current element is Quantity set
//counting true.
if (qualifiedName.equals("Quantity"))
countQuantity = true;

}

/**
* The parser calls this method whenever it encounters the END of element
*/
public void endElement
(String namespaceURI, String simpleName, String qualifiedName)

throws SAXException {
// if the current element is Quantity, reset both counting flags
if (qualifiedName.equals("Quantity")) {
countQuantity = false;
countSymbol = false;

}
}

/**
* The parser calls this method whenever it encounters a character data
* in the document being processed
*/
public void characters(char[] buff, int offset, int len) throws SAXException
{
// retrieve the string
String str = new String(buff, offset, len);
str = str.trim();
// check if character string matches the desired symbol string
if (str.equals(stockSymbol)) {
// set counting true
countSymbol = true;
// increment stock count
stockCount++;

}
// if counting for quantity and symbol both are set true, add count
// for quantity
if (countQuantity && countSymbol) {
Quantity += Integer.parseInt(str.trim());
countQuantity = false;

}
}

CHAPTER 2 ■ XML PROCESSING60

6412_c02_final.qxd 4/14/06 12:41 PM Page 60

/**
* This overrides the default Error Handler.
*/
public void error(SAXParseException spExcept) throws SAXParseException {
throw spExcept;

}
}

We extend SAXExample2 from DefaultHandler as in the earlier case:

public class SAXExample2 extends DefaultHandler

The SAXExample2 application accepts two command-line parameters instead of one. The
first parameter specifies the name of the XML file to be processed. The second parameter speci-
fies the stock code on which the information is sought. We will print the number of trade orders
and the total trade quantity for this stock code. The program copies the stock code from the sec-
ond argument into a class variable called stockSymbol:

SAXExample2 saxObject = new SAXExample2();
saxObject.stockSymbol = argv[1];

We modify the startElement event handler to add the following code:

public void startElement(String namespaceURI, String simpleName,
String qualifiedName, Attributes attributeList) throws SAXException

{
if (qualifiedName.equals("Customer"))
count++;

// if the qualified name of the current element is Quantity set counting true.
if (qualifiedName.equals("Quantity"))
countQuantity = true;

}

We now check for the Quantity element. If it is found, we set the countQuantity Boolean
variable to true. The true value on this variable indicates that the quantity value found as data
under the Quantity element should be accumulated in the grand total variable.

We now override the characters method as follows:

/* The parser calls this method whenever it encounters character data
in the document being processed

*/
public void characters(char[] buff, int offset, int len)

throws SAXException
{

// retrieve the string
String str = new String(buff, offset, len);
str = str.trim();

CHAPTER 2 ■ XML PROCESSING 61

6412_c02_final.qxd 4/14/06 12:41 PM Page 61

// check if character string matches the desired symbol string
if (str.equals(stockSymbol))
{
// set counting true
countSymbol = true;
// increment stock count
stockCount++;

}
// if counting for quantity and symbol both are set true, add count
// for quantity
if (countQuantity && countSymbol)
{
Quantity += Integer.parseInt(str.trim());
countQuantity = false;

}
}

The characters method is an event handler that is called by the parser whenever it encoun-
ters the element data. Because the element data is always available in text format, the event
handling method receives the character buffer, offset, and length as its parameters. Using these
parameters, we construct a new String object str. We now compare the value of this str vari-
able with the stock symbol that was received as the second command-line argument. If a match
is found, we set the countSymbol Boolean variable to true to begin a quantity count on this sym-
bol. We also increment the stockCount variable. The stockCount variable will track the number
of trade orders for the specified stock.

The characters event handler is called for each and every element in the document that
contains some data. Thus, for both StockSymbol and Quantity elements, the parser calls this
method. In this method, we check whether both countQuantity and countSymbol variables are
set to true. If so, we accumulate the current element data in the gross Quantity variable and
reset the countQuantity flag.

We will also need to override the endElement method as follows:

/* The parser calls this method whenever it encounters the end of element */
public void endElement(String namespaceURI, String simpleName,

String qualifiedName) throws SAXException
{
// if the current element is Quantity, reset both counting flags
if (qualifiedName.equals("Quantity"))
{
countQuantity = false;
countSymbol = false;

}
}

In this method, we look for the occurrence of the Quantity element. If it is found, we reset
both the flags countQuantity and countSymbol.

CHAPTER 2 ■ XML PROCESSING62

6412_c02_final.qxd 4/14/06 12:41 PM Page 62

Finally, we will modify our endDocument method as follows:

/* The parser calls this method whenever it encounters end of document */
public void endDocument() throws SAXException
{

// Print the desired information on the user console
System.out.println("\nNumber of Customers: "+ count);
System.out.println("Number of " + stockSymbol + " Orders: " + stockCount);
System.out.println("Total Trade Quantity: " + Quantity);

}

In this event handler, we print the stockCount variable that indicates the number of trade
orders found for the specified stock. Note that such trade orders consist of both buy and sell
orders. We also print the total trade quantity. Again, this includes quantities for both buy and
sell orders.

When you run this application on the sample XML document that is provided in the
download folder, you will see the following output:

Number of Customers: 6
Number of MSFT Orders: 5
Total Trade Quantity: 600

■Note The full source for this application (Ch02\src\SAXExample2.java) can be downloaded from the
Source Code area of the Apress website (http://www.apress.com).

SAX API
The previous section presented several examples of SAX processing. In this section, you will
study some of the important SAX classes and interfaces.

The SAXParserFactory Class
This class provides a factory API that allows you to configure a SAX-based parser for your
applications. Some of the important methods of this class are as follows:

• newInstance: This is the static method that returns a new instance of
SAXParserFactory. You cannot instantiate the factory class directly by using the new
operator because the class does not provide any public constructor. You need to call
the newInstance method to obtain the factory object.

• newSAXParser: This method creates a new instance of the SAX parser by using the
parameters in your installation’s configuration file.

CHAPTER 2 ■ XML PROCESSING 63

6412_c02_final.qxd 4/14/06 12:41 PM Page 63

• setValidating: This method accepts one parameter and if set to true, it sets the validat-
ing parser for your application. The validating parser validates your input document
against the specified schema to ensure that it conforms to the structure defined in the
schema.

• setSchema: This method sets the XML schema to be used during parsing. The method is
used for setting the XML schema dynamically in your application code. The document
that is parsed after this method call will be validated against the schema set by this
method call.

The SAXParser Class
This is an abstract class that wraps an XMLReader implementation class. You obtain a reference
to this class by calling the newSAXParser method on the factory class.

The input to the parser can come from a variety of sources, such as InputStreams, Files,
URLs, and SAX InputSources. You can open an InputStream on the document to be parsed and
send the reference to it as an argument to the parse method of the parser. Instead of InputStream,
you can pass an instance of the File class or a URL reference or a SAX InputSource as an argu-
ment to the parse method. The InputSource class defined in the org.xml.sax package provides
a single input source for an XML entity. A single input source may be a byte stream and/or a
character stream. It may also be a public or system identifier.

As this parser object parses the document, the handler methods will be called. Some of
the important methods of the SAXParser class are as follows:

• parse: This is the most important method of this class. There are several overloaded
parse methods that take different parameters, such as File, InputSource, InputStream,
and uri. For each of the different input types, you also specify the handler to be used
during parsing.

• getXMLReader: This method returns the XMLReader that is encapsulated by the imple-
mentation of this class.

• get/setProperty: These methods allow you to get and set the parser properties, such
as the validating parser.

The XMLReader Interface
Implemented by the parser’s driver, this interface is used for reading an XML document. The
interface allows you to register an event handler for document processing. Some of the impor-
tant methods of this interface follow:

• parse: There are two overloaded parse methods that take input from either an
InputSource object or a String URI. The method parses the input source document and
generates events in your handler. The method call is synchronous and does not return
until the entire document is parsed or an exception occurs during parsing.

• setContentHandler: This method registers a content event handler. If the content event
handler is not registered, all the content events during parsing will be ignored. It is pos-
sible to change the content handler in the middle of parsing. If a new content handler
is registered during parsing, the parser will immediately use the new handler while pro-
cessing the rest of the document.

CHAPTER 2 ■ XML PROCESSING64

6412_c02_final.qxd 4/14/06 12:41 PM Page 64

• setDTDHandler: Like a content handler in the previous paragraph, this method registers a
DTD handler. You use DTDHandler to report notation and unparsed entity declarations to
the application. If the DTD handler is not registered, all DTD events are ignored. As with
the content handler, it is possible to change the DTD handler during parsing. Because
DTDs are supported only for maintaining backward compatibility (the new standard
being XML schemas5), you may not be using this handler frequently in your applications.

• setEntityResolver: Like the previous two methods, setEntityResolver allows you to
define an EntityResolver that can be changed during processing.

The DefaultHandler Class
This class provides a default implementation for all the callback methods defined in the fol-
lowing interfaces:

• ContentHandler: The class implementing this interface receives notifications on basic
document-related events such as the start and end of elements and character data.

• ErrorHandler: This provides the basic interface for SAX error handlers. The SAX appli-
cation implements this interface to provide customized error handling.

• DTDHandler: The class implementing this interface receives notification of basic
DTD-related events.

• EntityResolver: This provides a basic interface for resolving entities. The SAX appli-
cation implements this interface to provide customized handling for external entities.

You can use only the DefaultHandler in your application and override the desired meth-
ods from the four handler interfaces.

Some of the important methods of the DefaultHandler class are as follows:

• startDocument/endDocument: These are callback methods called by the parser whenever
it encounters a start and end of a parsed document.

• startElement/endElement: These are callback methods called by the parser whenever
it encounters a start and end of an element during parsing. The method receives the
parameters that indicate the local and qualified name of the element.

• characters: This method receives notification of character data inside an element
during parsing.

• processingInstruction: This method receives notification of a processing instruction
during parsing.

DOM
In Chapter 1, you learned that a well-formed XML document consists of a hierarchy of nodes.
The entire document can be arranged in a tree-like structure. Document Object Model (DOM)
creates a tree representation of an XML document, describing the nodes and the relationship
between them.

CHAPTER 2 ■ XML PROCESSING 65

5. XML schemas are discussed in Chapter 1.

6412_c02_final.qxd 4/14/06 12:41 PM Page 65

DOM is maintained by the W3C. The W3C recommendation, which is currently at Level 3,
is an API that defines objects in an XML document. The API also defines methods and proper-
ties to access and manipulate these objects.

DOM Processing Model
When you process a document by using the DOM API, it builds an in-memory tree structure of
nodes representing your document. A node can be an element, text, attribute, and so on. Con-
sider the example document in Listing 2-3. If you process this by using the DOM API, you will
have the in-memory structure shown in Figure 2-5 representing the document.

■Note For brevity, the diagram does not show all the document nodes.

At the root of the tree appears the catalog node. A catalog contains two child nodes of
product type. Each product node, in turn, contains two nodes of name and price type. Each
name and price node has a text node.

Because the entire document tree is available in memory, you can use the DOM API to
navigate the tree, modify the document contents, and store the modified document into
another XML file. You can also add nodes, delete nodes, add and delete attributes, and per-
form other tasks to the in-memory tree before you save the document tree to an external file.

Pros and Cons of DOM
Just as you have seen the pros and cons of using SAX, you will look at the advantages and
disadvantages of DOM.

CHAPTER 2 ■ XML PROCESSING66

Figure 2-5. DOM representation in memory

6412_c02_final.qxd 4/14/06 12:41 PM Page 66

DOM offers the following advantages:

• Bidirectional navigation: Because the entire document is loaded in memory and arranged
in a tree structure, it is possible to navigate the document tree in both backward and for-
ward directions. Note that this was not possible with SAX, in which case you could move
only forward. Bidirectional navigation is useful when you want to process XML documents
such as the purchase order in Listing 2-1. While computing the gross purchase value of
each of the items listed in the purchase order, you will need to move back and forth in the
document several times.

• Data manipulation: As you visit each node in the built-in memory structure, you can
easily modify the element data. The data you modify will be the in-memory copy of the
document data. You can later serialize the modified data to an XML file. Once again,
note that this was not possible with SAX. The purchase order of Listing 2-1 may require
modifications of the quantity element during its approval by the senior management.
In such cases, the DOM API will be useful in modifying the in-memory copy of the
document and writing these changes back to a new XML document.

• Structure creation and modification: It is possible to add/delete nodes containing
elements, attributes, and so on to the in-memory tree. You can even create a new
independent tree structure. After a tree is built in memory, it can be saved to an
external file as an XML document. Again, this is not possible with SAX. Considering
again our purchase order example of Listing 2-1, the approving authority may like to
add a few comments to the document before returning it to the originator. Using the
DOM API, you can add nodes to the document. The approving authority may disap-
prove purchases of certain items listed in the purchase order. This can be done by
deleting nodes in the in-memory document.

• XML document creation: After manipulating data in an existing tree or after creating an
altogether new tree structure, the memory contents can be easily serialized to an XML
document. Thus, your application can programmatically create an XML document.

• Manipulation of partial trees: You may manipulate only a part of the entire tree and
serialize it to an external XML file, thus creating a subset of a large XML document.

Like SAX, DOM also comes with certain disadvantages:

• Resource intensive: DOM is resource-hungry. Because the entire document is read into
memory, it can take up a huge amount of memory resources, especially when large
documents are parsed using the DOM API. Therefore, using DOM on large documents
is not recommended. What is “large” is determined by your system resources.

• Increased processing time and power: Building the in-memory tree for the entire docu-
ment may require substantial processing time and CPU power. SAX is faster because
it keeps processing the document while reading it. When using DOM, you cannot
process the document until the entire tree structure is built in the memory.

• Not suited for large documents: Because of the aforementioned disadvantages, DOM
is not suitable for processing large documents. For processing large documents, SAX
provides a better alternative.

CHAPTER 2 ■ XML PROCESSING 67

6412_c02_final.qxd 4/14/06 12:41 PM Page 67

Document Processing Using DOM
Now you are ready to look at the steps for processing a document when using DOM and how
to code those steps. DOM processing uses the following steps:

1. Create the instance of the DocumentBuilderFactory class.

2. Create the instance of the DocumentBuilder class.

3. Parse the document.

Creating the DocumentBuilderFactory Class Instance
You obtain an instance of DocumentBuilderFactory by calling its static newInstance method:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

Before you create a parser by using the created factory, you can set a few parameters for
customizing parser operations. For example, the following line of code will make the parser
ignore the white space within the element contents:

dbf.setIgnoringElementContentWhitespace(true);

You might also request that the parser validate the document by calling the setValidating
method on the factory object, as shown here:

dbf.setValidating(true);

The default value for validation is false, so you need to set this to true by using the pre-
ceding call, if you want the parser to validate your document.

For setting the parser properties, the factory class provides four other methods:
setIgnoringComments, setCoalescing, setExpandEntityReferences, and setNamespaceAware.
They provide the functionality suggested by their names. For example, calling
setIgnoringComments instructs the parser to ignore comments in the input document. The
setCoalescing method determines whether the parser turns CDATA nodes into text, and
merges them with surrounding text nodes. You can refer to the API documentation6 for an
explanation of the remaining methods.

Creating the DocumentBuilder Class Instance
You obtain the instance of the DocumentBuilder class by calling the newDocumentBuilder
method on the factory object:

DocumentBuilder db = dbf.newDocumentBuilder();

You use the document builder for parsing the document.

CHAPTER 2 ■ XML PROCESSING68

6. http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/parsers/DocumentBuilderFactory.html

6412_c02_final.qxd 4/14/06 12:41 PM Page 68

Parsing the Document
You parse the document by calling the parse method on the DocumentBuilder object. The method
takes a File object as a parameter:

Document doc = db.parse(new File (fileName));

The method returns a Document object. This refers to the document root and is used as
a starting reference to traverse the entire document tree.

To better illustrate these steps, we will write an application. We will use the Orders.xml file
from Listing 2-4 and process it by using the DOM API. First, we will write an application that
counts the total number of customers who have placed an order in the current order document.
Next, we will modify this application so that it allows us to change a sell order to a buy order
for a specified customer.

Application for Counting Number of Customers
We will write an application that counts the total number of customers in our Orders.xml
document. The full application code is given in Listing 2-7.

Listing 2-7. Application That Uses DOM Parsing Technique (Ch02\src\DOMExample1.java)

package apress.apacheXML.ch02;

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*; // DOM parser uses SAX methods

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class DOMExample1 {
static private int count=0;
public static void main(String[] args) {
if (args.length != 1) {
System.err.println("Usage: DOMExample1 Filename");
System.exit(1);

}

Document doc = BuildTree(args[0]);
if (doc != null)
getElement(doc);
System.out.println("Number of Customers: " + count);

}

/**
* The BuildTree method parses the received document and creates an
in-memory instance.
*/

CHAPTER 2 ■ XML PROCESSING 69

6412_c02_final.qxd 4/14/06 12:41 PM Page 69

public static Document BuildTree(String fileName) {
Document doc;
try {
// Obtain Factory instance
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
// Request parser to ignore white space in the document
dbf.setIgnoringElementContentWhitespace(true);
// Obtain DocumentBuilder instance from the factory object
DocumentBuilder db = dbf.newDocumentBuilder();
// Parse the input file
doc = db.parse(new File(fileName));
// return reference to the root node
return doc;

} catch (Exception ex) {
ex.printStackTrace();

}
return null;

}

/**
* The getElement method receives a node reference as an argument and traverses
* the tree recursively taking this reference as the tree root.
*/
public static void getElement(Node node) {
// the null value indicates that you have reached a leaf node
if (node == null) { return; }
// Increment the count if the node is of type Customer.
if(node.getNodeName().equals("Customer"))
count++;

// Look for children of the current node
NodeList children = node.getChildNodes();
// for each child call the function recursively to visit nodes of each child.
for (int i = 0; i < children.getLength(); i++)
getElement(children.item(i));

}
}

The required classes for DOM processing are defined in the org.w3c.dom package. The
DOM internally uses SAX, and thus you need to include the org.xml.sax package:

import org.w3c.dom.*;
import org.xml.sax.*; // DOM parser uses SAX methods

The main function receives a command-line parameter that identifies the order document
to be processed. It calls the BuildTree method to parse and build an in-memory DOM. On suc-
cessfully building the tree, it calls the getElement method that counts the number of occurrences
of the Customer element in the memory tree.

CHAPTER 2 ■ XML PROCESSING70

6412_c02_final.qxd 4/14/06 12:41 PM Page 70

Building DOM in Memory
The BuildTree method builds the in-memory tree structure representing the input document
and returns a reference to the root node of the document. It first creates the factory object,
then obtains a DocumentBuilder, and finally uses this builder to construct an in-memory DOM:

/* The BuildTree method parses the received document and creates an
in-memory instance.

*/
public static Document BuildTree(String fileName) {
Document doc;
try {
// Obtain Factory instance
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
// Request parser to ignore white space in the document
dbf.setIgnoringElementContentWhitespace(true);
// Obtain DocumentBuilder instance from the factory object
DocumentBuilder db = dbf.newDocumentBuilder();
// Parse the input file
doc = db.parse(new File(fileName));
// return reference to the root node
return doc;
} catch (Exception ex) {
ex.printStackTrace();

}
return null;

}

Processing Data
In our application, we want to determine the number of customers who have placed their
orders in the current order document. For this, we will write a method called getElement that
traverses the tree recursively to count the number of times the Customer element is encoun-
tered. The method definition is shown here:

/*
The getElement method receives a node reference as an argument and traverses
the tree recursively taking this reference as the tree root.
*/
public static void getElement(Node node)
{

// the null value indicates that you have reached a leaf node
if (node == null) { return; }
// Increment the count if the node is of type Customer.
if(node.getNodeName().equals("Customer"))
count++;

// Look for children of the current node
NodeList children = node.getChildNodes();

CHAPTER 2 ■ XML PROCESSING 71

6412_c02_final.qxd 4/14/06 12:41 PM Page 71

// for each child call the function recursively to visit nodes of each child.
for (int i = 0; i < children.getLength(); i++)

getElement(children.item(i));
}

The method visits each node in the document until there are no more nodes, as indicated
by a null reference. The node name is retrieved by calling the getNodeName method on the node
object. We compare this with the name Customer, and if a match is found, we increment our
counter. The program retrieves the child nodes of a given node by calling the getChildNodes
method on it. It then iterates through all the child nodes and its children recursively by calling
the getElement method with the new node value.

The main function now simply calls the preceding getElement method by passing the
document reference to it:

getElement(doc);

Note that doc refers to the root element. When the method completes, the count will con-
tain the number of occurrences of the Customer element in the entire document. We print this
number on the user console:

System.out.println ("Number of Customers: " + count);

Providing Error Handling
While processing the document, you will need to catch several exceptions that may occur due
to errors during processing. You can catch the exceptions as illustrated in the following code
snippet:

try
{
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(File);

}
catch (javax.xml.parsers.ParserConfigurationException pce) {...}
catch (java.io.IOException ie) {...}
catch (org.xml.sax.SAXException se) {...}
catch (java.lang.IllegalArgumentException ae) {...}
...

As in the SAX example, the implementation of exception handlers is not shown here. The
exception handlers are similar to the SAX exception handlers discussed earlier.

■Note The full source for this application (Ch02\src\DOMExample1.java) can be downloaded from the
Source Code area of the Apress website (http://www.apress.com).

CHAPTER 2 ■ XML PROCESSING72

6412_c02_final.qxd 4/14/06 12:41 PM Page 72

Updating a Document by Using DOM
In the previous example (DOMExample1.java), we parsed the Orders.xml document to count
the number of customers who placed an order. Earlier we concluded that SAX is a better API
than DOM for this kind of application, and this can be easily verified by examining the cod-
ing involved in the two program examples. However, the real usefulness of DOM is that it can
be used for modifying document contents.

In this section, we will write an application that parses the Orders.xml file, locates a
specified customer, and modifies its trade order to sell. The program that updates the orders
document is shown in Listing 2-8.

Listing 2-8. Application That Updates Purchase Order Using DOM API (Ch02\src\DOMExample2.
java)

package apress.apacheXML.ch02;

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*; // DOM parser uses SAX methods

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class DOMExample2 {
static String CustomerID;

// application main method
public static void main(String[] args) {
if (args.length != 2) {
System.err.println("Usage: DOMExample2 Filename CustomerID");
System.exit(1);

}

// Store the received customer ID in a local variable
CustomerID = args[1];
// Construct an in-memory document instance
Document doc = BuildTree(args[0]);
// Locate and modify the order for the specified customer
updateOrder(doc);

}

/**
* The BuildTree method parses the received document and creates an
* in-memory instance.
*/

CHAPTER 2 ■ XML PROCESSING 73

6412_c02_final.qxd 4/14/06 12:41 PM Page 73

public static Document BuildTree(String fileName) {
Document doc;
try {
// Obtain Factory instance
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
// Request parser to ignore white space in the document
dbf.setIgnoringElementContentWhitespace(true);
// Obtain DocumentBuilder instance from the factory object
DocumentBuilder db = dbf.newDocumentBuilder();
// Parse the input file
doc = db.parse(new File(fileName));
// return reference to the root node
return doc;

} catch (Exception ex) {
ex.printStackTrace();

}
return null;

}

/* The LocateAndUpdateTrade method receives the node containing the
* desired customer. It searches this node recursively for TradeType
* element. Once located it modifies its contents.
*/
public static void LocateAndUpdateTrade(Node node) {
Node nn = null;
// Get list of child nodes
NodeList nl = node.getChildNodes();
for (int i = 0; i < nl.getLength(); i++) {
nn = nl.item(i);
// Check if node name matches TradeType node
if (nn.getNodeName().equals("TradeType")) {
// The first child of this node contains the trade type
Node nd = nn.getFirstChild();
System.out.println("Current Trade Type: " + nd.getNodeValue());
// Set the trade type to sell
nd.setNodeValue("S");
System.out.println("New Trade Type: " + nd.getNodeValue());

}
// recursively traverse the tree
LocateAndUpdateTrade(nn);

}
}

/* The searchCustomer receives a node as an argument. The method obtains the
* attributes of the current node and checks if it matches the desired
* customer.
*/

CHAPTER 2 ■ XML PROCESSING74

6412_c02_final.qxd 4/14/06 12:41 PM Page 74

public static void searchCustomer(Node node) {
// check if element contains the attributes
if (node.getAttributes() != null) {
// Get the list of attributes
NamedNodeMap nmdrp = node.getAttributes();
if ((nmdrp.item(0) != null))
// Check if the attribute is CustomerID
if (nmdrp.item(0).getNodeValue().equals(CustomerID)) {
// Print its value on user console
System.out.println("Customer: "

+ nmdrp.item(0).getNodeValue() + " found");
// Pass the node to next method for updation
LocateAndUpdateTrade(node);

}
}

}

/* The UpdateOrder method recursively traveses the tree and passes each
* located Node to searchCustomer method for further processing
*/
public static void updateOrder(Node node) {
// Return on presence of leaf node
if (node == null) {
return;

}
// Pass the current node to searchCustomer method for searching the
// desired customer.
searchCustomer(node);
// Get children of current node
NodeList children = node.getChildNodes();
// Iterate through all children nodes recursively
for (int i = 0; i < children.getLength(); i++)

updateOrder(children.item(i));
}

}

The Orders.xml file identifies each customer by its ID specified as an attribute to the
Customer tag. The trade type is saved as either B or S depending on whether it is a buy or sell
order, respectively. The trade type is stored as TradeType element data. We will send the cus-
tomer ID as a command-line argument to our application.

Application Class
In the application class file DOMExample2, we create a class variable called CustomerID for stor-
ing the parameter obtained from the command line:

public class DOMExample2 {
static String CustomerID;

CHAPTER 2 ■ XML PROCESSING 75

6412_c02_final.qxd 4/14/06 12:41 PM Page 75

The main Method
In the main method, we store the second command-line argument and call the BuildTree
method to parse the document specified by the first command-line argument:

// application main method
public static void main(String[] args) {
// Store the received customer ID in a local variable
CustomerID = args[1];
// Construct an in-memory document instance
Document doc = BuildTree(args[0]);
// Locate and modify the order for the specified customer
UpdateOrder(doc);

}

After the DOM tree is constructed, the main method calls UpdateOrder by passing the ref-
erence to the document instance. The UpdateOrder method will locate the desired customer,
and if found will update its trade order.

The UpdateOrder Method
The UpdateOrder method receives the root node as its parameter, traverses the memory tree
recursively, and passes each located node to the searchCustomer method:

/* The UpdateOrder method recursively traveses the tree and passes each
located Node to searchCustomer method for further processing

*/
public static void updateOrder(Node node) {
// Return on presence of leaf node
if (node == null) {
return;

}
// Pass the current node to searchCustomer method for searching the
// desired customer.
searchCustomer(node);
// Get children of current node
NodeList children = node.getChildNodes();
// Iterate through all children nodes recursively
for (int i = 0; i < children.getLength(); i++)
updateOrder(children.item(i));

}

The searchCustomer Method
The searchCustomer method receives a node as an argument. It calls the getAttributes method
on the node to obtain its attributes. The getAttributes method returns a NamedNodeMap object
that contains the map list of all the available attributes to the specified element. The function
iterates through each attribute and compares its value with the CustomerID variable. If a match
is found, the method prints a message on the user console and calls the LocateAndUpdateTrade
method to update the trade type for the located customer:

CHAPTER 2 ■ XML PROCESSING76

6412_c02_final.qxd 4/14/06 12:41 PM Page 76

/* The searchCustomer receives a node as an argument. The method obtains the
attributes of the current node and checks if it matches the desired
customer.

*/
public static void searchCustomer(Node node) {
// check if element contains the attributes
if (node.getAttributes() != null) {
// Get the list of attributes
NamedNodeMap nmdrp = node.getAttributes();
if ((nmdrp.item(0) != null))
// Check if the attribute is CustomerID
if (nmdrp.item(0).getNodeValue().equals(CustomerID)) {
// Print its value on user console
System.out.println("Customer: "

+ nmdrp.item(0).getNodeValue() + " found");
// Pass the node to next method for updation
LocateAndUpdateTrade(node);

}
}

}

The LocateAndUpdateTrade Method
The LocateAndUpdateTrade method receives a node object as an argument. This method is
again recursive and traverses down the tree until it locates the TradeType element:

/* The LocateAndUpdateTrade method receives the node containing the desired
customer. It searches this node recursively for TradeType element. Once
located it modifies its contents.

*/
public static void LocateAndUpdateTrade(Node node) {
Node nn = null;
// Get list of child nodes
NodeList nl = node.getChildNodes();
for (int i = 0; i < nl.getLength(); i++) {
nn = nl.item(i);
// Check if node name matches TradeType node
if (nn.getNodeName().equals("TradeType"))
{
// The first child of this node contains the trade type
Node nd = nn.getFirstChild();
System.out.println("Current Trade Type: "

+ nd.getNodeValue());
// Set the trade type to sell
nd.setNodeValue("S");
System.out.println("New Trade Type: "

+ nd.getNodeValue());
}

CHAPTER 2 ■ XML PROCESSING 77

6412_c02_final.qxd 4/14/06 12:41 PM Page 77

// recursively traverse the tree
LocateAndUpdateTrade (nn);

}
}

When the TradeType element is located, the method finds its first child element. As we
understand from the Orders.xml document, the TradeType element contains only one child of
the character data type that holds the trade type value. We obtain the node value of the child
element and print it on the user console. The program then sets the node value to S by calling
the setNodeValue method on the node object. The program finally prints the new value on the
user console.

Program Output
If you run the preceding program with the second command-line argument equal to C003, the
program will locate the customer with ID C003 and modify its trade order type to S. You will see
the following program output:

Customer: C003 found
Current Trade Type:

B

New Trade Type: S

If you run the program with the customer ID C004 as the second argument, you will see
the following output:

Customer: C004 found
Current Trade Type:

B

New Trade Type: S
Current Trade Type:

S

New Trade Type: S

Note that for the located customer, each order is modified to the sell type, irrespective
of its earlier order type.

You could modify this application further to accept the stock code as one of the command-
line arguments and modify the order for only the specified stock.

■Note The full source for this application (ch02\src\DOMExample2.java) can be downloaded from the
Source Code area of the Apress website (http://www.apress.com).

CHAPTER 2 ■ XML PROCESSING78

6412_c02_final.qxd 4/14/06 12:41 PM Page 78

DOM API
Now that you have seen a few examples of DOM processing, you will study some of the impor-
tant classes and interfaces in the DOM API.

The DocumentBuilderFactory Class
As seen in our programming examples, we use this class to obtain a reference to the factory
object. The factory object enables us to obtain a parser for parsing XML documents and pro-
ducing DOM trees from them. The following are the important methods of this class:

• newInstance: The DocumentBuilderFactory provides a newInstance static method to
obtain a reference to itself. After a factory object is obtained, you can call different
methods on it to set the parser features. Note that the class does not define any public
constructor and thus the reference to the class object is obtained by calling the
newInstance static method.

• setValidating: This method is used to turn on/off the document validation. If you need
to validate the document against the schema, you will need to turn on the validations
by using this method.

• setNamespaceAware: This method specifies whether the parser should support XML
namespaces.7 By default the value of this method is set to false. Thus, the parser by
default will not support the namespaces if your document contains the namespaces.

• setIgnoringComments: This method instructs the parser to ignore the comments in the
document. Your document may contain many comments. The processing application
often will not be interested in the events generated on the occurrence of comments in
your document. You will use these methods to enable/disable those events. By default
the value of this is set to false, indicating that the events would be generated on the
occurrence of comments.

• setCoalescing: This method instructs the parser to convert the CDATA nodes to Text
nodes and append each to an adjacent text node, if it exists. As you learned in
Chapter 1, the CDATA element may contain an XML code fragment that is not processed
by the parser. By calling this method, you instruct the parser to convert such CDATA
nodes to Text nodes.

• setSchema: This method sets the schema to be used by parsers created from this factory.
The XML schema is used for validating documents. The schema can be changed dynam-
ically so that different document instances can be validated against different schemas.

The DocumentBuilder Class
An instance of the DocumentBuilder class parses the XML documents. The source for an XML
document can be InputStreams, Files, URLs, and SAX InputSources. You obtain an instance of
this class by calling the newDocumentBuilder method on the factory object. The class is useful

CHAPTER 2 ■ XML PROCESSING 79

7. XML namespaces are covered in Chapter 1.

6412_c02_final.qxd 4/14/06 12:41 PM Page 79

for obtaining a DOM Document instance. Some of the important methods of this class are as
follows:

• parse: This is the most important method of this class. The class provides five over-
loaded versions of this method. The different versions take different parameters such
as File, InputSource, InputStream, and uri. After the document is parsed, a Document
object is returned to the caller.

• newDocument: This method returns a new instance of a DOM Document object that may
be used to build a DOM tree.

• setEntityResolver: This specifies the EntityResolver that should be used for resolving
entities. The EntityResolver is basically an interface. The DefaultHandler class that we
saw earlier implements this interface. This method can be used for setting your custom
handlers.

The Interfaces
The DOM API defines several interfaces that help you in navigating the DOM tree, access-
ing/modifying its contents, creating new document instances, and more. We will discuss
a few of the important interfaces here:

• Document: This interface represents the entire XML document. It refers to the document
root and provides methods for creating subelements, text nodes, comments, processing
instructions, and more. It provides several create methods (such as createElement,
createComment, and createAttribute) to create such nodes. It also provides several
getter methods for accessing document nodes. The getElementById method returns the
element with the ID attribute matching the specified value. The getElementsByTagName
returns a list of nodes with a matching tag name.

• Element: This represents an element in the XML document. The elements may have
attributes and thus this interface provides accessor/mutator methods for manipulating
these attributes. It also provides methods for adding/removing attributes.

• Node: This is the primary data type for the entire DOM. The Element interface inherits
from the Node interface, and so do several other interfaces including Attr,
CharacterData, Comment, Document, and Entity. This provides several getter methods,
such as getFirstChild, getLastChild, and getNextSibling with which you can navigate
the entire DOM tree. It also provides setter methods for setting the node value, text
contents, and more.

XMLBeans
So far you’ve examined the SAX and DOM parsers, both of which require the user to know
XML. However, most Java developers would like to forego such knowledge and take advantage
of the document without intimate knowledge of its content and structure. XMLBeans provides
this capability by allowing you to access and manipulate XML documents in Java.

CHAPTER 2 ■ XML PROCESSING80

6412_c02_final.qxd 4/14/06 12:41 PM Page 80

XMLBeans Processing Model
In XMLBeans, the starting point is the XML schema. As you learned in Chapter 1, the XML
schema defines rules for an XML document. A well-formed valid XML document conforms
to this schema.

XMLBeans maps this schema to a set of Java interfaces. It provides a compiler called scomp
to do this. Figure 2-6 illustrates the result of the schema compilation.

When you run the schema compiler on a schema definition, it generates a set of Java
classes. Each Java class is mapped to a particular data type (simple or complex) in the schema
definition. The compiler creates a Java ARchive (JAR) file containing these classes. It also pro-
vides Java interfaces for these classes. By default, you get only the compiled Java classes in your
JAR file; however, if you want to look up the generated source, you can request that the com-
piler keep the source files by adding appropriate command-line switches during compilation.

After you obtain the Java interfaces and the JAR file containing the Java classes, you can
instantiate them in your Java application. The generated classes contain a Factory class with
a parse method. You use this parse method to parse the desired XML document. If the docu-
ment is successfully parsed, an in-memory document instance will be created. You can access
this instance, both data and structure, by using the generated interfaces and classes. You will
study this process very shortly in the following sections.

Pros and Cons of XMLBeans
As compared to other XML processing techniques discussed so far, XMLBeans offers several
benefits:

CHAPTER 2 ■ XML PROCESSING 81

Figure 2-6. Schema compilation

6412_c02_final.qxd 4/14/06 12:41 PM Page 81

• Object-based view of XML data: As XMLBeans creates Java classes that map to an XML
document instance, you get an object-based view of an XML document. Developers are
generally more comfortable with object-based views than text-based views, especially
when they are required to access and manipulate the document through their program
code. A text-based view of the document requires lots of string processing code, as seen
in the SAX and DOM models examples. The object-based view preserves the original,
native structure of the XML document.

• No loss in document integrity: When parsing the document, XMLBeans creates a docu-
ment instance in memory. In contrast, the SAX model does not create an in-memory
document instance, and the DOM model tears apart the document and works on it
piecemeal. Thus, the document integrity is lost from the developer’s sight. The docu-
ment instance created by XMLBeans preserves the document’s integrity by creating an
instance of the entire document in memory. It maintains the order of elements in the
document along with their original contents inclusive of the white spaces, if any.

• JavaBeanlike access: Because each data type of the XML schema is mapped to a Java
interface, the developer can access each data element of the XML document through
a Java object interface. Each Java object follows the JavaBeans standard and contains
accessor/mutator methods for manipulating the contents of the XML structure.

• Support for different schema definitions: The starting point for XMLBeans is the XML
schema. Because XMLBeans was designed with this in mind, support for different
schema versions is always provided.

• Faster access to document contents: Because the entire document instance is created
in memory while retaining its structure, you have fast access to its structure and con-
tents. In the SAX model, the entire document is not available in memory, so even
though SAX also provides fast access to document contents, you cannot go backward
in the document and therefore will have to parse the document again if you need to
access previously visited data. In DOM, the entire document is loaded in memory and
is arranged in a tree structure. Thus, accessing the document contents may require
recursive travel on the tree.

The major disadvantage of XMLBeans is the need for additional compilation. If the schema
changes, you will need to perform compilation again and make modifications to your Java
code to incorporate the new classes. With SAX and DOM, the schema changes need not
require major changes in the application code.

Installing the XMLBeans Software
Before you try out the programs described in the next section, you will need to download and
install XMLBeans software on your machine. You can download the archive file from http://
xmlbeans.apache.org/. Unzip the downloaded file and follow the setup instructions.

Set the XMLBEANS_HOME environment variable to the directory where you installed XMLBeans
and add %XMLBEANS_HOME%\bin to your PATH.

CHAPTER 2 ■ XML PROCESSING82

6412_c02_final.qxd 4/14/06 12:41 PM Page 82

■Note For those of you installing on Linux, Appendix A provides detailed installation instructions for all
the chapters in this book.

You can test the installation by trying the scomp command at your command prompt. It
should display the usage message on your console. The installation comes with several sample
examples installed under the samples folder. We will create our applications in this samples
folder and follow the folder structure used by sample applications.

Create a subfolder called XMLBeans-Example under the samples folder. Under the
XMLBeans-Example folder, create three subfolders: schemas, src, and xml. We will save our
schema definition that is to be processed under the schemas folder. The src folder will contain
our application source, and the xml folder contains the XML document to be parsed and
processed.

The samples use Apache Ant to build and run the applications. We will also use Ant to
build and run our applications, so you will need to follow the suggested folder structure.

■Note If you decide not to use the Ant tool, you will need to study the build.xml file used by Ant to
understand how it builds the source and runs the generated application by using the predefined libraries.

Document Processing Using XMLBeans
In this section, you will learn how to use XMLBeans to process an XML document. We will use
the Orders.xml document from our earlier examples. As in the earlier cases, we will first write
an application that counts the number of customers who have placed an order in the current
document. Next, we will write an application that modifies an existing order for a specified
customer and changes its trade type to sell. We will then write an application that deletes a
record for the specified customer in the document instance and writes the modified document
instance to a new XML file for forwarding to further business logic. Finally, we will write an
application that builds a new orders document by using the generated classes.

XMLBeans requires a schema definition. So, we’ll first discuss the schema definition for
our Orders.xml document file.

Schema Definition
All the applications in this section will process the Orders.xml file. The schema definition to
which Orders.xml conforms is given in Listing 2-9.

CHAPTER 2 ■ XML PROCESSING 83

6412_c02_final.qxd 4/14/06 12:41 PM Page 83

Listing 2-9. Orders.xsd Schema Definition

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace = "http://www.apress.com/apacheXML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
attributeFormDefault="unqualified"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Orders">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Customer">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="StockSymbol">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element name="Quantity" type="xs:unsignedByte" />
<xs:element name="TradeType" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="ID" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Note that Orders is the root element that can contain multiple occurrences of Customer
elements. Each Customer element can contain any number of StockSymbol elements. The
StockSymbol is a mixed complexType and contains Quantity and TradeType elements. The
Quantity element is of unsignedByte type, and the TradeType element is of string type. Each
Customer also has a required attribute called ID of type string.

Using the Ant Tool
We will be using Apache Ant to compile all the applications in this section. You can refer to the
Ant build script (C:\<working folder>\Ch02\src\XMLBeans-examples\build.xml) provided at
the Source Code area of the Apress website. When you run the Ant build tool, the preceding
schema definition from the schema folder will be mapped to Java interfaces and classes. All the
generated classes and interfaces are stored under the build folder created by the Ant tool. We
will be interested in the OrdersDocument.java file that contains the interfaces required by our
application.

CHAPTER 2 ■ XML PROCESSING84

6412_c02_final.qxd 4/14/06 12:41 PM Page 84

Generated Code
The schema compiler generates the interfaces for all the elements in your schema file. The
interfaces follow the same structure as the structure defined in the schema file. Thus, for each
subelement defined in the schema, you will find an inner (nested) interface created within the
outer interface. The entire Java code is packaged in a Java package.

The Java Package

If you open the OrdersDocument.java file, you will notice that it defines a package called
com.apress.apacheXML. The schema compiler uses the targetNamespace string defined in the
schema to create a package name. The package name follows the hierarchy defined by the target
namespace. If you do not create the targetNamespace in your schema definition, the compiler
creates a default package called noNamespace.

Java Interfaces

The root element of our Orders.xsd schema is Orders. The compiler creates an interface called
OrdersDocument that will represent an instance of the XML document conforming to our
schema definition:

public interface OrdersDocument extends org.apache.xmlbeans.XmlObject

The interface declares methods for getting/setting Orders and adding new Orders:

com.apress.apacheXML.OrdersDocument.Orders getOrders();
void setOrders(com.apress.apacheXML.OrdersDocument.Orders orders);
com.apress.apacheXML.OrdersDocument.Orders addNewOrders();

Within the OrdersDocument interface, the Orders interface is declared:

public interface Orders extends org.apache.xmlbeans.XmlObject

The Orders interface declares methods such as the following:

com.apress.apacheXML.OrdersDocument.Orders.Customer[] getCustomerArray();
com.apress.apacheXML.OrdersDocument.Orders.Customer getCustomerArray(int i);
int sizeOfCustomerArray();
void setCustomerArray

(com.apress.apacheXML.OrdersDocument.Orders.Customer[] customerArray);
void setCustomerArray

(int i, com.apress.apacheXML.OrdersDocument.Orders.Customer customer);
com.apress.apacheXML.OrdersDocument.Orders.Customer insertNewCustomer(int i);
com.apress.apacheXML.OrdersDocument.Orders.Customer addNewCustomer();
void removeCustomer(int i);

Our Orders element can contain multiple occurrences of the Customer element. The
schema compiler creates a Customer array to represent multiple occurrences of the Customer
element in the document. It provides methods for accessing and manipulating this array. The
compiler also provides methods for inserting a new Customer element at a desired index in the
array and provides methods for adding/deleting a specified customer. With these add/new/
insert methods, you will be able to modify the document instance in memory easily. Thus,

CHAPTER 2 ■ XML PROCESSING 85

6412_c02_final.qxd 4/14/06 12:41 PM Page 85

you will be able to add new customer orders to an existing order document. Changes made
to the document instance can then be serialized to another XML document file. This is illus-
trated later, in Listing 2-12.

Within the Orders interface, the compiler creates an inner interface called Customer:

public interface Customer extends org.apache.xmlbeans.XmlObject

Note that the Customer is a subelement of the Orders element. Thus, the compiler gener-
ates an inner interface for Customer within the Orders interface. The Customer interface defines
several methods for accessing/manipulating StockSymbol element instances. The StockSymbol
element is contained within the Customer element.

Each interface also contains an inner Factory class to create instances that map to these
interfaces. The Factory class defined within the StockSymbol interface is shown here:

public static final class Factory
{
public static com.apress.apacheXML.OrdersDocument.Orders.

Customer.StockSymbol newInstance()
{
return (com.apress.apacheXML.OrdersDocument.Orders.

Customer.StockSymbol)
org.apache.xmlbeans.XmlBeans.getContextTypeLoader().

newInstance(type, null);
}

public static com.apress.apacheXML.OrdersDocument.Orders.
Customer.StockSymbol

newInstance(org.apache.xmlbeans.XmlOptions options)
{
return (com.apress.apacheXML.OrdersDocument.Orders.

Customer.StockSymbol)
org.apache.xmlbeans.XmlBeans.getContextTypeLoader().newInstance

(type, options); }

private Factory() { } // No instance of this class allowed
}

}

The Factory class is final and cannot be extended. It also defines a no-argument con-
structor that is declared private. Thus, the class cannot be instantiated. The class declares two
overloaded newInstance methods. By using these methods, you will be able to create new doc-
ument instances of the StockSymbol type and add them to the outer Customer array.

Likewise, the compiler generates the interfaces for all the subelements and provides meth-
ods to manipulate various XML data instances. You can refer to the generated Java file to study
the various generated interfaces and accessor/mutator methods on various Java objects that
map to XML instances. Also, note the declaration of the Factory class within each interface.

Now, we will develop console applications by using the classes we have discussed to
access the contents of an XML document based on the Orders.xsd schema.

CHAPTER 2 ■ XML PROCESSING86

6412_c02_final.qxd 4/14/06 12:41 PM Page 86

As in the earlier cases of SAX and DOM, our first application will simply count the num-
ber of occurrences of Customer elements in the given document and print this information on
the user console.

Application for Counting Customers
The console application that counts the number of customers in a given purchase order is
given in Listing 2-10.

Listing 2-10. XMLBeans-Based Application for Counting Customers (Ch02\src\
XMLBeans-Example\src\XMLBeansExample1.java)

/**
* This example uses Schema-Compiler generated classes to count
* the number of customers whose orders are present in the
* specified Orders.xml document.
*/

package apress.apacheXML.ch02;

import org.apache.xmlbeans.*;
import com.apress.apacheXML.*;
import com.apress.apacheXML.OrdersDocument.*;
import com.apress.apacheXML.OrdersDocument.Orders.*;

import java.io.File;
import java.util.ArrayList;
import java.util.Iterator;

public class XMLBeansExample1 {
static OrdersDocument doc;
/**
* The main method parses and validates the document specified
* in the parameter and on success counts the number of occurences of
* Customer element.
*/
public static void main(String[] args)

throws org.apache.xmlbeans.XmlException, java.io.IOException {
if (validate(args[0]))
countCustomers();

}

/**
* Build and validate the specified document
*/

CHAPTER 2 ■ XML PROCESSING 87

6412_c02_final.qxd 4/14/06 12:41 PM Page 87

public static boolean validate(String filename)
throws org.apache.xmlbeans.XmlException, java.io.IOException {

System.out.println("parsing document: " + filename);
// Use the generated classes' parse method to parse input document
doc = OrdersDocument.Factory.parse(new File(filename));
// Create an array list
ArrayList errors = new ArrayList();
// Set up an error listener
XmlOptions opts = new XmlOptions();
opts.setErrorListener(errors);
// Validate the document
if (doc.validate(opts)) {
System.out.println("document is valid.");

} else // Print the error list
{
System.out.println("document is invalid!");
Iterator iter = errors.iterator();
while (iter.hasNext()) {
System.out.println(">> " + iter.next());

}
return false;

}
return true;

}

// Counts the total number of customers
public static void countCustomers() {
// get a reference to Orders instance
Orders orders = doc.getOrders();
// Determine the customer count from the array size
System.out.println("Customer count: " + orders.sizeOfCustomerArray());

}
}

We declare a class called XMLBeansExample1 and create a class variable called
OrdersDocument:

public class XMLBeansExample1
{
static OrdersDocument doc;

Note that the schema-compiler (scomp) generated classes contain the OrdersDocument
class, which represents the root of our document instance.

In the main method of the application, we first validate the input document for confor-
mance and then call the countCustomers method to obtain the number of customers:

if (validate(args[0]))
countCustomers();

The XML file to be processed is passed to the application as the command-line parameter.

CHAPTER 2 ■ XML PROCESSING88

6412_c02_final.qxd 4/14/06 12:41 PM Page 88

The validate method parses the input file by calling the factory parse method:

// Use the generated classes' parse method to parse input document
doc = OrdersDocument.Factory.parse (new File(filename));

The program may generate errors during parsing. To catch exceptions, we instantiate the
XmlOptions class provided in the XMLBeans library and set the error listener on it to the errors
array list:

// Create an array list
ArrayList errors = new ArrayList();

// Set up an error listener
XmlOptions opts = new XmlOptions();
opts.setErrorListener(errors);

When we parse the input file, the errors, if any, will be accumulated in the errors list. The
document itself is parsed with the following command:

// Validate the document
if (doc.validate(opts))

If the function returns true, the input file is valid. If not, we iterate through the errors list
and print out the errors on the user console.

After the document is validated, we call the countCustomers method to compute the total
number of customers. The countCustomers method calls the getOrders method on the root
element of the document instance to obtain a reference to the Orders instance. Calling the
sizeOfCustomerArray method on this instance returns the number of customers in the current
document; this is printed on the user console:

// get a reference to Orders instance
Orders orders = doc.getOrders();
// Determine the customer count from the array size
System.out.println ("Customer count: " + orders.sizeOfCustomerArray());

You can run this application with the Ant tool by using the provided build file. Run the
application by running the Ant task run-1 as shown in the following command:

C:\<working folder>\ch02\src\XMLBeans-examples>ant run-1

You will see the following output:

run-1:
[echo] ============================== running XMLBeansExample1
[java] parsing document: xml/Orders.xml
[java] document is valid.

[java] Customer count: 6

BUILD SUCCESSFUL

CHAPTER 2 ■ XML PROCESSING 89

6412_c02_final.qxd 4/14/06 12:41 PM Page 89

■Note The main program does not check for the presence of command-line parameters. The Ant build
script ensures that proper parameters are passed on the command line. This is the case for all the subse-
quent examples in this section. If you decide not to use the Ant tool and provided build.xml file, you may
want to provide the error handling code for checking the presence of appropriate command-line parameters.

Compare this code with the SAX and DOM application code written for counting cus-
tomers. XMLBeans gives us more compact code that is more intuitive to Java programmers.
The programmers do not have to work with a text-based file; instead they work with an object
view of the document instance.

■Note The full source for this application (Ch02\src\XMLBeans-Example\src\XMLBeansExample1.
java) can be downloaded from the Source Code area of the Apress website (http://www.apress.com).

Application for Modifying Trade Order
We will now write our next application that modifies the trade order type for a specified cus-
tomer. This application accepts the name of the XML file to be processed as the first parameter,
and the customer ID for which the trade type is to be modified as the second parameter. The
complete program source is given in Listing 2-11.

Listing 2-11. Application for Modifying Trade Order (Ch02\src\XMLBeans-Example\src\
XMLBeansExample2.java)

/**
* This example uses Schema-Compiler generated classes to
* update the specified customer's order from buy to sell
* specified Orders.xml document.
*/
package apress.apacheXML.ch02;

import org.apache.xmlbeans.*;
import com.apress.apacheXML.*;
import com.apress.apacheXML.OrdersDocument.*;
import com.apress.apacheXML.OrdersDocument.Orders.*;
import com.apress.apacheXML.OrdersDocument.Orders.Customer.*;

import java.io.File;
import java.util.ArrayList;
import java.util.Iterator;

CHAPTER 2 ■ XML PROCESSING90

6412_c02_final.qxd 4/14/06 12:41 PM Page 90

public class XMLBeansExample2 {
static OrdersDocument doc;
static String customerID = null;

/**
* The main method parses and validates the document specified
* in the parameter and on success updates the specified
* customer's order.
*/
public static void main(String[] args)

throws org.apache.xmlbeans.XmlException, java.io.IOException {
customerID = args[1];
if (validate(args[0]))
updateCustomerTrade();

}

/**
* Build and validate the specified document
*/
public static boolean validate(String filename)

throws org.apache.xmlbeans.XmlException, java.io.IOException {
System.out.println("parsing document: " + filename);
// Use the generated classes' parse method to parse input document
doc = OrdersDocument.Factory.parse(new File(filename));
// Create an array list
ArrayList errors = new ArrayList();
// Set up an error listener
XmlOptions opts = new XmlOptions();
opts.setErrorListener(errors);
// Validate the document
if (doc.validate(opts)) {
System.out.println("document is valid.");

} else // Print the error list
{
System.out.println("document is invalid!");
Iterator iter = errors.iterator();
while (iter.hasNext()) {
System.out.println(">> " + iter.next());

}
return false;

}
return true;

}

/**
* This method updates the customer's order from buy to sell type
*/

CHAPTER 2 ■ XML PROCESSING 91

6412_c02_final.qxd 4/14/06 12:41 PM Page 91

public static void updateCustomerTrade() {
// get a reference to Orders instance
Orders orders = doc.getOrders();
// Get a list of customers from orders instance
Customer[] customers = orders.getCustomerArray();
// Iterate through the list of customers
for (int i=0; i<customers.length; i++) {
// Check for the desired customer ID
if (customers[i].getID().equals(customerID)) {
System.out.println("Customer " + customerID + " Found");
// Retrieve the list of orders placed by the customer
StockSymbol[] stocks = customers[i].getStockSymbolArray();
// For each ordered stock, change the trade type to sell
for (int j=0; j<stocks.length; j++) {
System.out.println("Current Trade Type: " +

stocks[j].getTradeType());
stocks[j].setTradeType("S");
System.out.println("New Trade Type: " +

stocks[j].getTradeType());
}

}
}

}
}

We declare a class called XMLBeansExample2 and create two class variables:

public class XMLBeansExample2
{
static OrdersDocument doc;
static String customerID = null;

The customerID variable stores the value of the second command-line argument. As in
the previous application, the main function calls the validate method to ensure that the input
document conforms to our schema:

if (validate(args[0]))
updateCustomerTrade();

In the updateCustomerTrade method, we first obtain an instance of the Orders class by
calling the getOrders method on the document instance:

// get a reference to Orders instance
Orders orders = doc.getOrders();

We now obtain the customer array by calling the getCustomerArray method on the orders
object. This returns the list of customers in the current orders document instance in the
customers array:

// Get a list of customers from orders instance
Customer[] customers = orders.getCustomerArray();

CHAPTER 2 ■ XML PROCESSING92

6412_c02_final.qxd 4/14/06 12:41 PM Page 92

The program then iterates through the entire array to locate the customer with the ID
matching customerID:

// Iterate through the list of customers
for (int i=0; i<customers.length; i++)
{

// Check for the desired customer ID
if (customers[i].getID().equals (customerID))

After the desired customer is located, we call the getStockSymbolArray method on it to
retrieve all the stocks for which the customer has placed the order:

// Retrieve the list of orders placed by the customer
StockSymbol[] stocks = customers[i].getStockSymbolArray();

We now iterate through the stocks array and obtain the trade type for each stock by calling
its getTradeType method. We print the value of TradeType for each stock on the user console. The
program also modifies the trade type to sell, and prints the modified value on the user console:

// For each ordered stock, change the trade type to sell
for (int j=0; j<stocks.length; j++)
{
System.out.println ("Current Trade Type: " + stocks[j].getTradeType());
stocks[j].setTradeType ("S");
System.out.println ("New Trade Type: " + stocks[j].getTradeType());

}

You can run this application by using the provided Ant build file. Use the run-2 argument
on the ant command to run the application as shown:

C:\<working folder>\ch02\src\XMLBeans-examples>ant run-2

You can change the customer ID parameter in the build file to any desired value. If you
run the application with the customer ID value set to C003, you will see the following output:

run-2:
[echo] ============================== running XMLBeansExample2
[java] parsing document: xml/Orders.xml
[java] document is valid.

[java] Customer C003 Found
[java] Current Trade Type:
[java] B
[java]
[java] New Trade Type: S

BUILD SUCCESSFUL

Note that the current trade type for customer C003 is modified from buy to sell.

CHAPTER 2 ■ XML PROCESSING 93

6412_c02_final.qxd 4/14/06 12:41 PM Page 93

If you run the application for customer C004, you will see the following output:

run-2:
[echo] ============================== running XMLBeansExample2
[java] parsing document: xml/Orders.xml
[java] document is valid.

[java] Customer C004 Found
[java] Current Trade Type:
[java] B
[java]
[java] New Trade Type: S
[java] Current Trade Type:
[java] S
[java]
[java] New Trade Type: S

BUILD SUCCESSFUL

In this case, both orders for the C004 customer are changed to the sell type. The order that
is originally of sell type remains of the same type.

■Note The full source for this application (Ch02\src\XMLBeans-Example\src\XMLBeansExample2.
java) can be downloaded from the Source Code area of the Apress website (http://www.apress.com).

Application for Deleting Order
Now we will develop an application that deletes the entire order placed by a specified customer
and writes the modified document instance to a new XML document for further processing.
The program source is given in Listing 2-12.

Listing 2-12. XMLBeans-Based Application for Deleting Customer Order (Ch02\src\
XMLBeans-Example\src\XMLBeansExample3.java)

/**
* This example uses Schema-Compiler generated classes to
* delete all orders placed by a specified customer and
* generate a new orders document.
*/
package apress.apacheXML.ch02;

CHAPTER 2 ■ XML PROCESSING94

6412_c02_final.qxd 4/14/06 12:41 PM Page 94

import org.apache.xmlbeans.*;
import com.apress.apacheXML.*;
import com.apress.apacheXML.OrdersDocument.*;
import com.apress.apacheXML.OrdersDocument.Orders.*;
import com.apress.apacheXML.OrdersDocument.Orders.Customer.*;

import java.io.File;
import java.util.ArrayList;
import java.util.Iterator;

public class XMLBeansExample3 {
static OrdersDocument doc;
static String customerID = null;
/**
* The main method parses and validates the document specified
* in the parameter and on success deletes the specified
* customer's orders. It then generates a new orders document.
*/
public static void main(String[] args)

throws org.apache.xmlbeans.XmlException, java.io.IOException {
// store the command line argument
customerID = args[1];
// Validate the input XML document
if (validate(args[0])) {
// Delete customer order
deleteCustomerOrder();
// Save the contents to new XML document
saveXML();

}
}

/**
* Build and validate the specified document
*/
public static boolean validate(String filename)

throws org.apache.xmlbeans.XmlException, java.io.IOException {
System.out.println("parsing document: " + filename);
// Use the generated classes' parse method to parse input document
doc = OrdersDocument.Factory.parse(new File(filename));
/ Create an array list
ArrayList errors = new ArrayList();
// Set up an error listener
XmlOptions opts = new XmlOptions();
opts.setErrorListener(errors);

CHAPTER 2 ■ XML PROCESSING 95

6412_c02_final.qxd 4/14/06 12:41 PM Page 95

// Validate the document
if (doc.validate(opts)) {
System.out.println("document is valid.");

} else // Print the error list
{
System.out.println("document is invalid!");
Iterator iter = errors.iterator();
while (iter.hasNext()) {
System.out.println(">> " + iter.next());

}
return false;

}
return true;

}

/**
* This method locates and deletes the customer record from the
* list of orders loaded in memory structure
*/
public static void deleteCustomerOrder() {
// get a reference to Orders instance
Orders orders = doc.getOrders();
// Get a list of customers from Orders instance
Customer[] customers = orders.getCustomerArray();
// iterate through customer list
for (int i=0; i<customers.length; i++) {
// Check for the desired customer ID
if (customers[i].getID().equals(customerID)) {
System.out.println("Customer " + customerID + " Found");
// Remove the customer record from the orders list
orders.removeCustomer(i);

}
}

}

/**
* This method saves the modified in-memory document to a physical file
*/
public static void saveXML() {
// Set options for saving the document
XmlOptions xmlOptions = new XmlOptions();
xmlOptions.setSavePrettyPrint();
// Create a new file for outputting memory document
File f = new File("test.xml");
try{

CHAPTER 2 ■ XML PROCESSING96

6412_c02_final.qxd 4/14/06 12:41 PM Page 96

// Save the document
doc.save(f,xmlOptions);
} catch(java.io.IOException e){

e.printStackTrace();
}

System.out.println("\nXML Instance Document saved at : " + f.getPath());
}

}

As in the previous application, we will accept the customer ID as a command-line param-
eter. The main function saves this argument in a local variable and validates the input file. If
the file is valid, it calls the deleteCustomerOrder method to delete the customer record. It then
calls the saveXML method to save the modified document instance to a physical file:

/* The program accepts the customer ID as a command line parameter and
deletes the order placed by the customer from the XML document.

*/
public static void main(String[] args)
throws org.apache.xmlbeans.XmlException, java.io.IOException
{
// store the command line argument
customerID = args[1];
// Validate the input XML document
if (validate(args[0]))
{

// Delete customer order
deleteCustomerOrder();
// Save the contents to new XML document
saveXML();

}
}

As in the previous example, the deleteCustomerOrder method first obtains a reference
to the Orders instance and gets a list of customers in the Customer array. The method iterates
through this array to locate the desired customer. After a desired customer is located, the pro-
gram calls the removeCustomer method to delete the customer instance from the document.
Note that this results in removing all the orders placed by the specified customer:

/**
* This method locates and deletes the customer record from the
* list of orders loaded in memory structure
*/
public static void deleteCustomerOrder()
{

// get a reference to Orders instance
Orders orders = doc.getOrders();
// get a list of customers from Orders instance
Customer[] customers = orders.getCustomerArray();

CHAPTER 2 ■ XML PROCESSING 97

6412_c02_final.qxd 4/14/06 12:41 PM Page 97

// iterate through customer list
for (int i=0; i<customers.length; i++)
{

// Check the current customer ID with the desired one
if (customers[i].getID().equals (customerID))
{

// Desired Customer located
System.out.println ("Customer " + customerID + " Found");
// Remove customer record from Orders
orders.removeCustomer(i);

}
}

}

Next, we save the document instance to a physical XML file by calling the saveXML method.
The saveXML method creates an instance of XmlOptions and calls its setSavePrettyPrint method
to provide us with a nicely formatted document file:

// Set options for saving the document
XmlOptions xmlOptions = new XmlOptions();
xmlOptions.setSavePrettyPrint();

Next, we create a File object to store our document instance:

// Create a new file for outputting memory document
File f = new File("test.xml");

We save the document instance to this physical file by calling the save method on the
document object:

// Save the document
doc.save(f,xmlOptions);

The program then prints an appropriate message to the user:

System.out.println("\nXML Instance Document saved at : " + f.getPath());

Use the run-3 task on the Ant tool to run this application:

C:\<working folder>\ch02\src\XMLBeans-examples>ant run-3

When you run this application by using the customer ID of C003, you will see the following
output:

run-3:
[echo] ============================== running XMLBeansExample3
[java] parsing document: xml/Orders.xml
[java] document is valid.

[java] Customer C003 Found

CHAPTER 2 ■ XML PROCESSING98

6412_c02_final.qxd 4/14/06 12:41 PM Page 98

[java] XML Instance Document saved at : C:\xmlbeans-2.0.0\samples\XMLBeans-
Example\test.xml

BUILD SUCCESSFUL

Examine the generated test.xml file to verify that the order for customer C003 has been
deleted.

■Note The full source for this application (Ch02\src\XMLBeans-Example\src\XMLBeansExample3.
java) can be downloaded from the Source Code area of the Apress website (http://www.apress.com).

Application for Creating Order Document
XMLBeans-generated classes allow you not only to parse and manipulate an existing docu-
ment, but also to create a new XML document easily. We will develop an application that
creates a new purchase order conforming to the Orders schema definition. Create a console
application called XMLBeansExample4 as given in Listing 2-13.

Listing 2-13. XMLBeans-Based Application for Creating XML-Based Order Document (Ch02\src\
XMLBeans-Example\src\XMLBeansExample4.java)

/**
* This examples uses the schema-compiler generated classes to dynamically create
* a new orders document.
*/
package apress.apacheXML.ch02;

import org.apache.xmlbeans.*;
import com.apress.apacheXML.*;
import com.apress.apacheXML.OrdersDocument.*;
import com.apress.apacheXML.OrdersDocument.Orders.*;
import com.apress.apacheXML.OrdersDocument.Orders.Customer.*;

import java.io.File;
import java.util.ArrayList;
import java.util.Iterator;

public class XMLBeansExample4 {
static OrdersDocument doc;
/**
* The main method builds an in-memory document using
* schema-compiler generated classes and saves it to
* an XML file.
*/

CHAPTER 2 ■ XML PROCESSING 99

6412_c02_final.qxd 4/14/06 12:41 PM Page 99

public static void main(String[] args)
throws org.apache.xmlbeans.XmlException, java.io.IOException {

// Create an in-memory instance of XML document
createOrderDocument();
// Save the memory instance to a physical file
saveXML();

}

public static void createOrderDocument() {
// Create a document instance
doc = com.apress.apacheXML.OrdersDocument.Factory.newInstance();
// Add Orders element to the created document
com.apress.apacheXML.OrdersDocument.Orders orders = doc.addNewOrders();
// Add a Customer element with ID equal to C005
com.apress.apacheXML.OrdersDocument.Orders.Customer customer =

orders.addNewCustomer();
customer.setID("C005");
// Add an order for GE

com.apress.apacheXML.OrdersDocument.Orders.Customer.StockSymbol stockSymbol =
customer.addNewStockSymbol();

XmlString xmlStr = XmlString.Factory.newValue("GE");
stockSymbol.set(xmlStr);
stockSymbol.setQuantity((short)200);
stockSymbol.setTradeType("B");

}

/**
* This method saves the modified in-memory document to a physical file
*/
public static void saveXML() {
// Set options for saving the document
XmlOptions xmlOptions = new XmlOptions();
xmlOptions.setSavePrettyPrint();
// Create a new file for outputting memory document
File f = new File("NewOrder.xml");
try{
// Save the document
doc.save(f,xmlOptions);
} catch(java.io.IOException e){
e.printStackTrace();

}
System.out.println("\nXML Instance Document saved at : " + f.getPath());

}
}

The main method calls the createOrderDocument method to create a new document. The
saveXML method (that is the same as in the earlier example) saves the created document to
a physical file:

CHAPTER 2 ■ XML PROCESSING100

6412_c02_final.qxd 4/14/06 12:41 PM Page 100

/**
* The main method builds an in-memory document using
* schema-compiler generated classes and saves it to
* an XML file.
*/
public static void main(String[] args)

throws org.apache.xmlbeans.XmlException, java.io.IOException
{
// Create an in-memory instance of XML document
createOrderDocument();
// Save the memory instance to a physical file
saveXML();

}

The createOrderDocument method creates a document instance by using the Factory class
and calling the newInstance method on it:

// Create a document instance
doc = com.apress.apacheXML.OrdersDocument.Factory.newInstance();

After a document object is created, we add an Orders element to it by calling the
addNewOrders method on the instance of the document:

// Add Orders element to the created document
com.apress.apacheXML.OrdersDocument.Orders orders = doc.addNewOrders();

The program now adds a Customer element to it by calling the addNewCustomer method on
the orders object. Note that Customer is a subelement of the Orders element:

// Add a Customer element with ID equal to C005
com.apress.apacheXML.OrdersDocument.Orders.Customer customer =

orders.addNewCustomer();

We set the customer ID by calling the setID method on the customer object:

customer.setID ("C005");

Next, we create a StockSymbol element within the Customer element:

// Add an order for GE
com.apress.apacheXML.OrdersDocument.Orders.Customer.

StockSymbol stockSymbol =?customer.addNewStockSymbol();

For the stock symbol, we need to set the stock name as a text element and its quantity and
trade type. We do this by using the following code snippet:

XmlString xmlStr = XmlString.Factory.newValue("GE");
stockSymbol.set (xmlStr);
stockSymbol.setQuantity ((short)200);
stockSymbol.setTradeType ("B");

CHAPTER 2 ■ XML PROCESSING 101

6412_c02_final.qxd 4/14/06 12:41 PM Page 101

Note that we create an instance of XmlString by using the available Factory class and then
set this as text content for the stock symbol. We add the quantity and trade type to the stock
symbol by calling setQuantity and setTradeType methods on it.

At this stage, the addition of customer C005 is completed. For this application, we will add
only one customer to our order document. The main function now calls saveXML to save the
document contents to a physical file.

When you run the application by using the run-4 task in the Ant tool, you will see the
NewOrder.xml file created on your disk:

C:\<working folder>\ch02\src\XMLBeans-examples>ant run-4

The contents of the generated XML document are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<apac:Orders xmlns:apac="http://www.apress.com/apacheXML">
<apac:Customer ID="C005">
<apac:StockSymbol>
GE
<apac:Quantity>200</apac:Quantity>
<apac:TradeType>B</apac:TradeType>

</apac:StockSymbol>
</apac:Customer>

</apac:Orders>

SAX, DOM, XMLBeans—Which One to Use?
This chapter has covered three techniques of XML parsing. All three techniques have their
own merits. Which one you select depends on the needs of the application.

SAX is useful for quickly searching for a particular element and discarding the rest of the
processing after the element or the desired data is found. SAX is also preferred for parsing
large document files because it puts less strain on resources.

DOM is used if you want to navigate bidirectionally in the parsed document. DOM builds
an in-memory structure of the parsed document and thus allows you to navigate in either
direction after the document is parsed. DOM is also useful if you want to modify the contents
of an existing document and save it to a physical XML file, or if you want to create a new XML
document from scratch. DOM comes with the disadvantage of requiring heavy resources and
longer processing time. The initial response time or the time required before you start manipu-
lating your document could be extremely long, especially in the case of very large documents.
For these reasons, avoid using DOM for large documents.

If you are not good at XML or prefer working with an object-based view of data rather
than a text-based view, use the XMLBeans technique of parsing. XMLBeans provides an object
view of the document, enabling easier manipulation by programmers.

There is another way of creating an object view of the XML document, although I did not
mention this anywhere so far. This is provided by the Java Architecture for XML Binding

CHAPTER 2 ■ XML PROCESSING102

6412_c02_final.qxd 4/14/06 12:41 PM Page 102

(JAXB)8 API developed by the Java Community Process (JCP). Like XMLBeans, JAXB creates
several classes that map to document data types. It provides methods for marshalling and
unmarshalling data between Java objects and the parsed document. Because such Java objects
exist in isolation and are independent of each other, the entire document structure is not
retained in memory.

XMLBeans maintains the document structure in memory and thus reduces the overhead
of marshalling and unmarshalling. This makes even the navigation easier as compared to JAXB
techniques, which require understanding the complete object model. JAXB follows the DOM-
oriented model to represent the document instance in memory.

■Note Apache provides an implementation of JAXB in their JAXMe 2 project (http://ws.apache.org/
jaxme/).

Summary
This chapter started by explaining the need for and importance of XML parsing. Because XML
documents are manipulated electronically, we need to parse them electronically. You learned
about several parsing techniques supported by Apache and considered several practical situa-
tions in which XML parsing techniques are applied.

The chapter covered three main techniques of parsing XML documents: SAX, DOM, and
XMLBeans. For each technique, the processing model was explained. We considered the pros
and cons of each technique. The chapter discussed several programming examples to illus-
trate the processing models. Finally, the chapter covered the merits and demerits of each
technique, comparing and contrasting their use in practical applications.

You will now move on to study an important and very wide use of XML in today’s appli-
cations. XML is the foundation for data transport in web services architecture, which you will
learn about in the next chapter. Subsequent chapters will cover the in-depth use of XML in
this new and widely accepted architecture.

CHAPTER 2 ■ XML PROCESSING 103

8. Refer to http://java.sun.com/webservices/jaxb/index.jsp for information on JAXB architecture.

6412_c02_final.qxd 4/14/06 12:41 PM Page 103

6412_c02_final.qxd 4/14/06 12:41 PM Page 104

Web Services Architecture

In the previous two chapters, you learned about XML and XML processing techniques. In this
chapter, you will study an important application architecture that is based on XML technolo-
gies: web services architecture.

Over the last few years, the web services wave has caught the IT industry by storm. No
longer solely a subject of marketing hype, web services are already achieving tremendous
acceptance in the marketplace. Several new applications have been developed by using web
services technology. Also, several existing applications have been rewritten or modified to
expose their otherwise closed interfaces as web services.

Several companies (Google, Yahoo!, and Microsoft, for example) are providing access to
their traditionally website-specific services by way of a web service interface. For example,
Internet juggernaut Google provides a web API service (http://www.google.com/apis/) that
can be used by your application to query more than 8 billion of its indexed web pages. Yahoo!
also exposes several of its services as web services (http://developer.yahoo.net/), which
allow you to interact with services such as a travel trip planner, photo-sharing website Flickr,
and its indexed page repository. XMethods (http://services.xmethods.net/) provides several
stock-related web services that allow you to easily retrieve a delayed quote for any stock listed
on the NYSE or obtain fundamentals and technical charts for any corporation listed on the
stock exchange. Additionally, Microsoft, IBM, Sun Microsystems, SAP, and others provide
a lot of developer support for creating your own web services.

So what is a web service? In this chapter, you will learn about web services, the web
service architecture, and its various components.

What Is a Web Service?
Simply put, a web service can be defined as any application component that exposes its
functionality by using standard web protocols.

Gartner (http://www.gartner.com) offers the following web services definition:

Web services are loosely coupled software components that interact with one another

dynamically via standard Internet technologies.

105

C H A P T E R 3

■ ■ ■

6412_c03_final.qxd 4/14/06 12:45 PM Page 105

Forrester Research (http://www.forrester.com) defines web services as follows:

Web services are automated connections between people, systems, and applications that

expose elements of business functionality as a software service and create new business

value.

IBM (http://www.ibm.com) offers a somewhat more technical definition:

A software system designed to support interoperable machine-to-machine interaction

over a network. It has an interface described in a machine-processable format.

Finally, the W3C (http://www.w3c.com) offers the most elaborate definition, describing
a web service as follows:

A service that is accessible by means of messages sent using standard web protocols,

notations, and naming conventions, including XML protocol (or until XML protocol is

standardized, SOAP).Web service may also imply the use of ancillary mechanisms, such

as WSDL and UDDI for defining web services interfaces.

Though multiple definitions exist, ultimately each conveys the same meaning—that a
web service is an application component that exposes its functionality by using standard web
protocols. The standard web protocols are SOAP1 and Web Services Description Language
(WSDL). Both are XML based. SOAP is typically used for invoking a method on a remote
server, and WSDL describes the service interface for a remote service. SOAP can also be used
for exchanging data between two applications, for example, returning response data from the
server to the client in a format both sides can understand.

Web services help integrate heterogeneous applications that were developed using differ-
ent languages, run on different platforms, and use different technologies. In this chapter, you
will learn how this is achieved. First, I describe the web services integration model, which
explains how the two applications connect to each other.

Web Services Integration Model
Web services technology connects two applications by using XML-based protocols. An appli-
cation requests a service from another cooperating application by sending an XML-based
message to it. This message is called a SOAP request. The requestor embeds a method call for
the remote application within the message. In addition, this message contains the parameters
required by the remote method. The remote application executes the requested method and
may send another XML-based message in response to the requestor. Like the requesting mes-
sage, the response is also in SOAP format and contains the return value of the remote
procedure call. This request/response messaging model is illustrated in Figure 3-1.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE106

1. SOAP was originally an acronym for Simple Object Access Protocol, but the full name has been
dropped.

6412_c03_final.qxd 4/14/06 12:45 PM Page 106

In some situations, a client may not be interested in receiving any response from the
server. In this case, we use one-way messaging, as illustrated in Figure 3-2.

In both situations, SOAP is the protocol of choice for transporting data between the appli-
cations. In both models, a SOAP request encapsulates a call to a method exposed on the remote
machine. In the first model, when a SOAP response is returned to the client, it contains the data
for the service requestor. Thus, SOAP does not always have to embed a method call. It can sim-
ply be used for data transport between two applications. SOAP is a high-level protocol that
rides over another network protocol such as HyperText Transport Protocol (HTTP), Simple Mail
Transfer Protocol (SMTP), or Transmission Control Protocol/Internet Protocol (TCP/IP).

■Tip There is another model available for web services construction: Representational State Transfer (REST). 2

It is based on transaction-oriented services, rather than publishing-oriented services. REST is a term coined by
Roy Fielding in his PhD dissertation (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm).

Before learning about web services architecture and components in detail, take a look at
why you should use web services.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 107

Figure 3-1. Request/response messaging model

Figure 3-2. One-way messaging model

2. The topic of REST is beyond the scope of this book. For further information, refer to the article
“Building Web Services the REST Way” by Roger L. Costello (http://www.xfront.com/
REST-Web-Services.html).

6412_c03_final.qxd 4/14/06 12:45 PM Page 107

Why Web Services?
As mentioned earlier in the chapter, web services easily integrate heterogeneous applications
and use XML-based protocols for communication. You studied XML in Chapter 1 and its
parsing techniques in Chapter 2. Now you will see how XML helps web services connect
heterogeneous applications by making the entire architecture platform neutral, language
neutral, and transport neutral.

Platform Independent
As you learned in previous chapters, XML is platform independent. Not a binary protocol, XML’s
text-based implementation does not depend on a particular hardware or software platform.
XML-based web services use SOAP and WSDL. Because both are XML based, the applications
that you write by using web services technology also become platform neutral. Note that the
business application at either end is platform dependent; however, the software component that
connects two business applications is platform neutral. Thus, by using XML, web services tech-
nology allows you to connect two applications that run on different platforms.

Language Independent
A client calls a web service by using SOAP. The method to be called along with its parameters
is encapsulated in a SOAP request. The call itself is described by using XML elements, and the
parameters use XML data types. We use the parsing techniques described in Chapter 2 to cre-
ate a SOAP request at the client end and again use another parser at the server end to interpret
the call into a binary method call required by the server. Because the SOAP calls use XML data
types, the calls are language neutral. Thus, even if the client and server applications are writ-
ten in different languages, the data type mismatch on the method parameters and method
return types does not occur.

Transport Independent
SOAP is a high-level protocol that rides on top of HTTP. Though the current SOAP implemen-
tations support only HTTP, nothing prevents us from using other transport protocols. This makes
the web services architecture transport neutral.

In addition to having a platform-, language-, and transport-neutral architecture, web
services derive additional benefits from the use of XML and HTTP.

XML’s Extensibility
XML is extensible, meaning you can add your own tags to an XML document. You simply need
to follow a few formatting rules described in Chapter 1. When SOAP was originally designed,
it came with several limitations. Most notably, transporting a binary security context or a
transaction context in a SOAP request was not possible because it was a text-based protocol.
However, XML’s extensibility made it possible to add new features to SOAP. For instance, now
a SOAP request can have binary attachments containing security and transaction context.
In the future, even more features may be easily added to SOAP because of XML’s extensible
nature.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE108

6412_c03_final.qxd 4/14/06 12:45 PM Page 108

HTTP Tunneling
HTTP tunneling is defined as the process of hiding another protocol inside HTTP messages.
This is important because even tightly controlled corporate firewalls are generally open to
HTTP traffic. Because the SOAP protocol rides on top of HTTP, SOAP requests and responses
can penetrate the firewall as if they were HTTP messages.

Web Services Architecture
The web services architecture consists of three major components:

• Service provider

• Service requestor

• Universal Description, Discovery, and Integration (UDDI) registry

The first two components are mandatory. Use of the UDDI registry is optional. The service
provider creates a service and publishes it for the use of others. The service requestor requests
the service from the service provider and consumes it. The UDDI registry makes available a list
of services for service consumers to find. If a service requestor is aware of an existing service, it
does not need to use the registry to locate the service. The service registry stores the references
to service descriptions, namely WSDL documents. WSDL is discussed later in this chapter.

Let’s now consider the purpose of each component by walking through the sequence of
operations as illustrated in Figure 3-3.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 109

Figure 3-3. Web services architecture

6412_c03_final.qxd 4/14/06 12:45 PM Page 109

The following operations take place in the specified sequence throughout the life cycle
of a web service, from creation to consumption:

1. Creating the service

2. Publishing the service

3. Locating the service

4. Obtaining the service description

5. Binding the service

6. Invoking the service

Each of these operations is explained in detail next.

Service Creation
The service provider creates a service in much the same way as a standard application has
been built over the years, because a service is essentially a software component written in any
desired language. The difference is that the service exposes a certain part of its functionality to
the public. The service requestor invokes these public methods by sending a SOAP request.
The server may send a SOAP response to the requestor. The service provider must contain an
XML parser to interpret SOAP requests and to generate a SOAP response to the consumer. The
service provider may use a SOAP toolkit to facilitate this development.

■Note A SOAP toolkit is essentially an implementation of the SOAP protocol provided by a vendor, such
as Apache (http://ws.apache.org/soap/), Microsoft (http://msdn.microsoft.com/webservices/
webservices/building/soaptk/default.aspx), or IBM (http://www.alphaworks.ibm.com/tech/
soap4j/—an early implementation of SOAP 1.1 specifications).

The service provider must also make available its service description to the clients. The
service description is written in a WSDL document. The service provider may use a WSDL
generator tool to write a WSDL document mapping to its binary service interface.

Service Publication
After a service is created, it needs to be advertised. This is done with the help of a public reg-
istry. The standard registry used in web services architecture is based on UDDI specifications.3

A registry contains the list of publicly available services and the references to their WSDL doc-
uments, thus facilitating the search for the location of a desired service. In the context of a
UDDI registry, a service entry may be a business with its organizational details and the kind
of services it offers to the public. Note that UDDI does not tell us how to invoke a service; this

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE110

3. http://www.uddi.org

6412_c03_final.qxd 4/14/06 12:45 PM Page 110

is accomplished in a WSDL document. UDDI simply holds the reference URL from which the
WSDL document can be obtained. Note that the registry itself can be private or public; this
matter is discussed in further detail later in the chapter.

Service Location
A client searches for a desired service on the UDDI registry. UDDI itself is exposed as a web
service and thus the search uses XML-based protocols. The client specifies a search criterion
while searching the UDDI registry. The UDDI API provides methods for publishing informa-
tion in the registry and searching the registry for desired information. UDDI uses the request/
response messaging model for the search. Thus, the client sends a SOAP request for searching
UDDI and receives a SOAP response containing search results. A typical search result may
return a collection of services that match the given search criterion.

Service Description
After selecting a service from the list of services obtained from the registry, the client obtains
the service description from the URL specified in the registry. The service description is con-
tained in a WSDL document, which describes the message structures for both the SOAP request
and response. To give you a feel for what a WSDL document looks like, I have included a sample
in Listing 3-1. The structure of this document is fully explained later, in the “WSDL” section.

Listing 3-1. A Sample WSDL Document

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="urn:Foo"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

name="MyHelloService" targetNamespace="urn:Foo">
<types/>
<message name="HelloIF_sayHello">
<part name="String_1" type="xsd:string"/>

</message>
<message name="HelloIF_sayHelloResponse">
<part name="result" type="xsd:string"/>

</message>
<portType name="HelloIF">
<operation name="sayHello" parameterOrder="String_1">
<input message="tns:HelloIF_sayHello"/>
<output message="tns:HelloIF_sayHelloResponse"/>

</operation>
</portType>
<binding name="HelloIFBinding" type="tns:HelloIF">
<soap:binding transport=

"http://schemas.xmlsoap.org/soap/http" style="rpc"/>
<operation name="sayHello">
<soap:operation soapAction=""/>
<input>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 111

6412_c03_final.qxd 4/14/06 12:45 PM Page 111

<soap:body
encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
use="encoded" namespace="urn:Foo"/>

</input>
<output>
<soap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

</output>
</port>

</service>
</definitions>

The client and server must both adhere to the structures defined within the WSDL while
interacting with the service. For instance, the request may require a few input parameters to
be passed to the service. The type of parameters and their restrictions are listed in the message
structure given in the WSDL document. Similarly, the data type of the response is described in
the output message structure. Note that in both cases the data types used are XML data types.4

Service Binding
The WSDL document obtained from the service provider also provides information on how to
bind to the service. The binding information consists of the network IP at which the service is
running, the port at which it is listening, and the network protocol that the service understands.
The client uses this information to connect to the service provider. When the client connects
successfully to the service, we say that it is bound to the service.

Service Invocation
At this stage, the client is connected to the service provider. From there, the client consumes
the service by invoking various methods exposed by the provider (see Figure 3-4).

For each method call, the client has to construct a SOAP request. You can use DOM or
XMLBeans models described in Chapter 2 to construct an XML-based SOAP request document.
Alternatively, you can use other APIs such as SOAP with Attachments API for Java (SAAJ)5 for
constructing SOAP request documents using Java. The request document is dispatched to the
server by using messaging infrastructure.

On the server side, the message request document is parsed by using some of the pars-
ing techniques described in Chapter 2. A binary method call is constructed that maps to the
requested operation. The server runs this method and returns a binary result. The result is
then encapsulated in a SOAP document and dispatched to the client by using a messaging
infrastructure. The client interprets this message and extracts the return value of the
method call for its use.

This completes our discussion of the complete life cycle of a web service operation. Now
you will study the web service components: SOAP, WSDL, and UDDI.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE112

4. XML data types are discussed in Chapter 1.

5. http://java.sun.com/webservices/saaj/index.jsp

6412_c03_final.qxd 4/14/06 12:45 PM Page 112

SOAP
SOAP is a widely accepted standard messaging protocol that facilitates the exchange of data
between network-enabled applications. Supported by Microsoft, IBM, Sun Microsystems,
HP, Oracle, SAP, BEA Systems, and many others, and endorsed by the W3C in May 2000 as
the standard protocol for application-to-application messaging, SOAP is enjoying strong
support in all areas of the web services camp. SOAP is also endorsed by other major stan-
dards organizations including the Web Services Interoperability Organization (WS-I)6 and
the Organization for the Advancement of Structured Information Standards.7 At the time of
this writing, the current version of SOAP is 1.2.

What Is SOAP?
SOAP encapsulates and encodes XML-based data, readying it for transmission as a payload of
some other network protocol such as HTTP, although protocols such as File Transfer Protocol
(FTP), SMTP, and TCP/IP are all perfectly acceptable network vehicles.

Figure 3-5 illustrates how SOAP messages can be communicated among several protocols
throughout the course of transmission. The communication protocol between Application A
and Application B is raw TCP/IP. Between Application B and Application C, SOAP messages
are sent as part of e-mail that uses SMTP for transport. Applications C and D connect by using
HTTP, and SOAP rides on HTTP in this case. Thus, SOAP is a top-level protocol that can ride
on any of the existing network protocols.

An XML-based protocol, SOAP also facilitates interoperability between applications writ-
ten in different programming languages and running on different operating systems.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 113

Figure 3-4. Invocation of multiple services

6. http://www.ws-i.org/

7. http://www.oasis-open.org

6412_c03_final.qxd 4/14/06 12:45 PM Page 113

SOAP Message Structure
A SOAP message conforms to the SOAP 1.1 XML schema. The basic structure of a SOAP mes-
sage is shown in Figure 3-6.

A SOAP message consists of an outer Envelope element. This becomes the root element
of a SOAP document. Within the Envelope, you have an optional Header and a mandatory Body
element.

The header provides for extensibility and can be used for passing information that is not
part of the application payload. The application payload contains the data that one applica-
tion wants to share with the other application, whereas the header may contain contextual
information related to the processing of the current message. Additionally, the header may

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE114

Figure 3-5. SOAP riding on TCP/IP, SMTP, and HTTP

Figure 3-6. SOAP message structure

6412_c03_final.qxd 4/14/06 12:45 PM Page 114

contain instructions to the receiving node on how to process the payload. Thus, the header
effectively extends the SOAP message in an application-specific manner.

A typical SOAP message is shown in Listing 3-2. This message is fully explained in
Chapter 4.

Listing 3-2. A Typical SOAP Message

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<ns1:getStockQuote
xmlns:ns1="urn:QuoteService"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<symbol xsi:type="xsd:string">
MSFT

</symbol>
</ns1:getStockQuote>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first statement in Listing 3-2 declares the current document as an XML document
instance. The root element Envelope on the second line indicates that this is a SOAP docu-
ment. The Envelope element declares the SOAP-ENV namespace. The Body element belongs to
this SOAP-ENV namespace. Similarly, the Header and Fault elements belong to the SOAP-ENV
namespace. The Fault element may occur in a response message generated by the server.

You can declare other namespaces in the Envelope element or in any other element, such
as Header or Body. Such declarations will obviously have the scope of the corresponding ele-
ment. Thus, if you declare a namespace in the Body element, it will be visible within the scope
of that element. The namespaces and their declaration scopes were discussed in Chapter 1.

The optional Header element can contain application-specific data, if it is present. This
information might be added by an application after processing the information in the mes-
sage body. For instance, in our stock brokerage application in Chapter 2, an intermediary can
add the “processed by” information in the header. Because such information is independent
of the document contents (for example a purchase order), it should not be added in the SOAP
body. Thus, it is added in the SOAP header. The subsequent recipients can examine the header
to check the approvals. This scenario is explained further in the upcoming section “Applica-
tion of Header Blocks.”

The Body element contains the application payload. This might include a call to the remote
server method. If a call results in some exception, the SOAP document describes it by using the
Fault element. For a request message, the Body element encapsulates the method call and its
parameters. For a response message, the Body element encapsulates the method result or an
exception object.

I will now describe these three elements (Envelope, Header, Body) in more detail.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 115

6412_c03_final.qxd 4/14/06 12:45 PM Page 115

The Envelope Element
Envelope is the SOAP message’s root element and is mandatory in all messages. It identifies
the current XML document as a SOAP message. Envelope consists of an optional Header ele-
ment and a mandatory Body element and can contain an attribute called encodingStyle. This
attribute indicates the serialization rules used in a SOAP message. You declare the encoding
style as shown in the following code fragment:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

soap:encodingStyle=http://www.w3.org/2001/12/soapencoding>
...

</soap:Envelope>

The encodingStyle attribute is global and can be used on other elements in the SOAP doc-
ument. The following declaration shows the application of encodingStyle in other elements:

<soap:body use="encoded" namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

Thus, the different elements in the document can use different encoding styles.

The Header Element
Header is an optional element. If present, it must be the first child of the Envelope element.
The Header must be fully qualified, and all its child elements must also be fully namespace
qualified. As seen in Chapter 1, a fully qualified element consists of a namespace URI and
a local name.

The header provides a mechanism for extending the SOAP message in a decentralized
and modular way because it can consist of zero or more SOAP header blocks. A SOAP message
may pass through several nodes before it reaches its ultimate destination. A header block can
be used for storing processing information for the intermediate nodes.

The Header element can possess the following attributes:

• actor

• mustUnderstand

• encodingStyle

The actor Attribute

This actor attribute is used to address the Header element to a particular endpoint. A URI is
used to specify the attribute value. Omitting this attribute indicates that the recipient is the
ultimate destination of the SOAP message. The following code fragment illustrates the use
of the actor attribute:

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE116

6412_c03_final.qxd 4/14/06 12:45 PM Page 116

<soap:Header>
<book:Order
xmlns:book="http://www.apress.com/book/"
soap:actor="http://www.amazon.com/xml/">
Java XML book

</book:Order>
</soap:Header>

In this document, the actor www.amazon.com operates on the order before forwarding the
request to the next node, which may be www.apress.com.

The mustUnderstand Attribute

The mustUnderstand attribute indicates to the message receiver whether processing the
received message is mandatory or optional. A value of 1 for this attribute indicates that the
receiving node must process the message. A value of 0 indicates that processing is optional.
This is an optional attribute, and its absence is semantically equivalent to its presence with
the value 0. Note that the message recipient is defined by the corresponding SOAP actor
attribute in the header block. The following code fragment illustrates the use of this attribute:

<soap:Header>
<book:Order
xmlns:book="http://www.apress.com/book/"
soap:actor="http://www.amazon.com/xml/"
soap:mustUnderstand="1">
Java XML book

</book:Order>
</soap:Header>

In this case, the receiving node, www.amazon.com, must process the current order before
forwarding it to the next node.

The encodingStyle Attribute

The purpose of the encodingStyle attribute is the same as discussed earlier in the context of
the Envelope element. It defines the serialization rules used in the XML document.

Application of Header Blocks
The application of header blocks can be illustrated with the use of a typical processed-by
header block. This is one of the important header blocks used by intermediaries when the
message gets routed through several nodes. Figure 3-7 illustrates a typical path a SOAP mes-
sage may take on its way to its ultimate destination.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 117

6412_c03_final.qxd 4/14/06 12:45 PM Page 117

The initial sender sends a message to node ABC. After processing the message, node ABC
forwards it to node XYZ. The XYZ node further processes the message and forwards it to the
ultimate message recipient. The header blocks may contain the processing instructions for
these intermediaries, ABC and XYZ.

Returning to our example of the stock brokerage from Chapter 2, suppose a customer
places an online trade order with the broker. After processing the order, the broker forwards it
to the main broker, that is, our stock brokerage. The stock brokerage further processes the
order and forwards it to a stock exchange, which is the ultimate recipient of the trade order.
The message path is illustrated in Figure 3-8.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE118

Figure 3-7. A typical SOAP message path

Figure 3-8. Order processing by intermediaries

6412_c03_final.qxd 4/14/06 12:45 PM Page 118

As the order travels through different nodes, the stock exchange would like to track all the
members who processed the order. Each member (node) can store the processed information
in the header block of the message. This information can be captured in the processed-by
header block, as shown in Listing 3-3.

Listing 3-3. SOAP Header Blocks

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder"
xmlns:processor="http://www.example.com/NYSE/trades/processed-by">
<soap:Header>
<NYSE:message-id>
...

</NYSE:message-id>
<processor:processed-by>
<node>
<name>
broker

</name>
<time-in-millis>
1015984780200

</time-in-millis>
<identity>
http://www.example.com/broker

</identity>
</node>
<node>
<name>
Brokerage

</name>
<time-in-millis>
1015984780210

</time-in-millis>
<identity>
http://www.example.com/brokerage/trades

</identity>
</node>
</processor:processed-by>

</soap:Header>
<soap:Body>
<NYSE:scrip>
MSFT

</NYSE:scrip>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 119

6412_c03_final.qxd 4/14/06 12:45 PM Page 119

<NYSE:quantity>
1000

</NYSE:quantity>
<NYSE:price>
25.25

</NYSE:price>
</soap:Body>

</soap:Envelope>

The processed-by header block contains a subelement called node. Each processing node
will add this element to the processed-by header block. The node element contains subelements
such as name, time-in-millis, and identity.

In Listing 3-3, the customer has placed a trade request for MSFT; the quantity equals 1,000
and the price equals $25.25. Before the order reaches the NYSE, it goes through the broker node
and our stock brokerage node. The broker node has added its name, the processing time, and
identity information to the processed-by header block by adding a node element to it.

Our brokerage has added similar information to this processed-by header block by
adding another node element to it. Ultimately, when the order is received by the NYSE, the
stock exchange will know who has processed the order on its way and also have the process-
ing details at their disposal.

Note that this processing information is not relevant to the trade request and thus should
not be placed in the document body, although nothing prevents you from doing so. It is a
good practice to separate the application data from the other application-irrelevant data such
as processing information by intermediaries.

The Body Element
All SOAP messages must contain exactly one Body element. The Body element contains the
information that is exchanged with the message recipient. The information may be appli-
cation-specific data, a method call on the remote application, or details on the
application-generated exception.

A Body element can contain many child elements, known as body entries. Like the Body
element, each body entry must be identified by its fully qualified element name consisting
of the namespace URI and the local name.

Each body entry is encoded as an independent element. The encodingStyle attribute can
be applied to each body entry to indicate the encoding style.

The Body element from Listing 3-3 is reproduced in Listing 3-4 for easy reference.

Listing 3-4. Code Fragment Illustrating Use of the SOAP Body Element

<soap:Body>
<NYSE:scrip>
MSFT

</NYSE:scrip>
<NYSE:quantity>
1000

</NYSE:quantity>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE120

6412_c03_final.qxd 4/14/06 12:45 PM Page 120

<NYSE:price>
100.25

</NYSE:price>
</soap:Body>

The Body element in this example contains scrip, quantity, and price body entries.
A Body element may contain a Fault entry to describe the exception, as shown in Listing 3-5.

Listing 3-5. Code Fragment Illustrating Fault

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<soap:Fault>

...
</soap:Fault>

</soap:Body>
</soap:Envelope>

The Fault element, in turn, contains subelements that describe the generated exception.
Use of this element is discussed next.

The Fault Element
A SOAP Body element can contain a Fault element to indicate that a fault was generated dur-
ing message processing. Such messages containing a Fault element are called fault messages.
They provide a mechanism by which an application reports an error to upstream nodes in the
message path.

A fault message might be generated by the ultimate receiver or any intermediary. In the
request/response model, the receiver must send a SOAP fault back to its sender. In one-way
messaging, the receiver might store the fault somewhere for postoperation auditing.

If a Fault element is present, it must appear as a body entry and it must not appear more
than once within a Body element. The Fault element contains the following subelements:

• faultcode

• faultstring

• faultactor

• detail

The faultcode element

This element identifies the type of fault and is a mandatory subelement of a Fault element.
The SOAP specifications define the following standard codes:

• Client

• Server

• VersionMismatch

• MustUnderstand

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 121

6412_c03_final.qxd 4/14/06 12:45 PM Page 121

The Client faultcode The Client faultcode indicates that the sending node caused the cur-
rent error. This might be because a message is not well formed or contains invalid data content.
Sometimes the message is well formed but lacks the information the receiver is expecting. In
this case too, the Client faultcode should be thrown to the sender. Listing 3-6 illustrates the
use of Client faultcode.

Listing 3-6. Example of Client faultcode

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<faultcode>
soap:Client

</faultcode>
<faultstring>
Too LARGE quantity

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

In this example, the client has placed a trade order for a quantity that exceeds his credit
limit. The processing node, which may be the broker node, should send a fault message to the
client, as given in Listing 3-6.

The Server faultcode The Server faultcode indicates that the receiving node has malfunc-
tioned or it is unable to process the SOAP message. Listing 3-7 illustrates the use of Server
faultcode.

Listing 3-7. Example of Server faultcode

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>

<faultcode>soap:Server</faultcode>
<faultstring>

The Order processing application is currently unavailable.➥

Please try after some time.
</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE122

6412_c03_final.qxd 4/14/06 12:45 PM Page 122

In this example, the server could be too busy or the order processing application could be
down. The server then generates a fault message as in Listing 3-7 and sends it to its sender.

The VersionMismatch faultcode The VersionMismatch faultcode indicates that the receiving
node doesn’t recognize the namespace of a SOAP message’s Envelope element. Listing 3-8
illustrates the use of this faultcode.

Listing 3-8. Example of VersionMismatch faultcode

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<faultcode>soap:VersionMismatch</faultcode>
<faultstring>
Order Request was not SOAP 1.1-conformant

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

The MustUnderstand faultcode If the SOAP request sets the mustUnderstand attribute to 1, the
receiving node must process the message. However, if it does not recognize the header block,
it will generate and send a fault message to the sender, as illustrated in Listing 3-9.

Listing 3-9. Example of MustUnderstand faultcode

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:fault><soap:Fault>
<faultcode>
soap:MustUnderstand

</faultcode>
<faultstring>
Mandatory header block not understood.

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

Nonstandard SOAP faultcodes In addition to the standard faultcodes, you may be required
to report other fault conditions to the sender. For example, a sender may send a previously

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 123

6412_c03_final.qxd 4/14/06 12:45 PM Page 123

obtained security token to the server while making a fresh request. If this token has become
invalid by this time, the server will send an invalid security token fault message to the sender.
The message is illustrated in Listing 3-10.

Listing 3-10. Example of a Nonstandard faultcode

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/06/secext">
<soap:Body>
<soap:Fault>
<faultcode>
wsse:InvalidSecurityToken

</faultcode>
<faultstring>
Session timed out. Please logon again!

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

The faultstring Element

This is a mandatory element that provides a human-readable description of the fault. Different
people may write different descriptions for the same fault. So far, there is no standardization on
the text contents of this element. The text message can be written in any language. The special
attribute xml:lang indicates the language used. Listing 3-11 illustrates use of the faultstring
element.

Listing 3-11. Example of a faultstring Element

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<faultcode>
soap:Client

</faultcode>
<faultstring xml:lang="en">
Order contains Invalid Stock Code

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE124

6412_c03_final.qxd 4/14/06 12:45 PM Page 124

The faultactor element

The faultactor element indicates which node encountered the error and generated the fault.
This is a required element if the faulting node is an intermediary. If the faulting node is an ulti-
mate receiver, this element is optional. Listing 3-12 illustrates the use of the faultactor element.

Listing 3-12. Example of a faultactor Element

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<faultcode>
soap:MustUnderstand

</faultcode>
<faultstring>
Mandatory header block not understood.

</faultstring>
<faultactor>
http://www.example.com/brokerage/trades

</faultactor>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

In this example, the faulting node is www.example.com/brokerage/trades as indicated by
the contents of the faultactor element.

The detail Element

This element is included if the fault was caused by the contents of the Body element. This must
not be included if the error occurred while processing a header block. This may contain other
application-specific elements. The use of the detail element is illustrated in Listing 3-13.

Listing 3-13. Example of a detail Element

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<soap:Body>
<soap:Fault>
<faultcode>
soap:Client

</faultcode>
<faultstring>
Invalid Purchase Order

</faultstring>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 125

6412_c03_final.qxd 4/14/06 12:45 PM Page 125

<detail>
<NYSE:invalidOrderDetail>
<NYSE:offending-scrip>
MSFT

</NYSE:offending-scrip>
<NYSE:reason>

The requested stock price for the buy order is too large as ➥

compared to the current market price.
</NYSE:reason>

</NYSE:invalidOrderDetail>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

In this example, the client has placed a buy order with an astronomically high purchase
price on the NYSE for MSFT. The server sends a fault message by giving out the offending
details in the detail element. The detail element contains application-specific tags,
offending-scrip and reason.

You have so far studied the structure of a SOAP document. After a document is con-
structed, it is dispatched by using a messaging server. SOAP defines two messaging modes
that dictate how the message is dispatched. This topic is discussed next.

SOAP Messaging Modes
A SOAP message can be transported in one of two modes: Document-style or RPC-style. In
Document-style mode, the entire document is sent within the body of the message or as an
attachment to the message. In RPC-style mode, a particular method call is embedded in the
document. After processing the message, the server may return a response to the client.

Either of these modes can use literal or SOAP encoding. In literal encoding, the docu-
ment fragment can be validated against its XML schema. SOAP encoding is described in
section 5 of the SOAP 1.1 specification.8 SOAP encoding causes interoperability problems.
The XML schema makes the use of SOAP encoding obsolete.

Based on the type of messaging and the encoding style, there are four distinct messaging
modes:

• Document/Literal

• RPC/Literal

• RPC/Encoded

• Document/Encoded

The last two modes are not currently supported by the WS-I and thus are not covered in
this book.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE126

8. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

6412_c03_final.qxd 4/14/06 12:45 PM Page 126

Document/Literal
In this mode, a SOAP Body element contains an XML document fragment. The XML document
fragment is a well-formed XML element that contains arbitrary application data conforming
to an XML schema. The document fragment uses a namespace separate from the SOAP mes-
sage’s namespace. Listing 3-14 shows a code fragment that illustrates how a document fragment
is embedded in the SOAP Body element.

Listing 3-14. Document/Literal Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<soap:Body>
<po:purchaseOrder orderDate="2005-08-25"

xmlns:po="http://www.example.com/brokerage/orders/PO">
<po:accountName>
Poornachandra Sarang

</po:accountName>
<po:accountNumber>
7219

</po:accountNumber>
...
<NYSE:scrip>
MSFT

</NYSE:scrip>
<NYSE:quantity>
1000

</NYSE:quantity>
<NYSE:price>
100.25

</NYSE:price>
...

</po:purchaseOrder>
</soap:Body>

</soap:Envelope>

The SOAP Body element contains a purchaseOrder element. This element belongs to the
www.example.com/brokerage/orders/PO namespace prefixed po. This namespace is distinct
from the global namespace NYSE. The po namespace is application specific. The receiver after
parsing the document acts on the Body contents.

RPC/Literal
This mode enables SOAP messages to model calls to procedures with parameters and return
values. An RPC request message contains the following items:

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 127

6412_c03_final.qxd 4/14/06 12:45 PM Page 127

• Method name

• Input parameters (optional)

An RPC response message contains these items:

• Return value

• Any output parameters (optional)

• Fault (optional)

RPC/Literal messaging is used to expose traditional components as web services. A tradi-
tional component might be a servlet, stateless session bean, Java Remote Method Invocation
(RMI) object, Common Object Request Broker Architecture (CORBA) object, or Distributed
Component Object Model (DCOM) object. You will learn how to create web services by using
some of these components in the next chapter.

RPC/Literal Request Message

In RPC-style messaging, the operation to be invoked on the web service is listed in the SOAP
Body element. Listing 3-15 shows a typical RPC/Literal request SOAP message.

Listing 3-15. RPC-Style Request Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<soap:Body>
<NYSE:getStockQuote>
<NYSE:StockSymbol>
MSFT

</NYSE:StockSymbol>
</NYSE:getStockQuote>

</soap:Body>
</soap:Envelope>

In this case, the client sends a quote request to www.example.com/NYSE for the current price
of MSFT stock. The method to be invoked on the remote server is getStockQuote, and the
requested symbol is listed in the StockSymbol element.

RPC/Literal Response Message

After the message request in Listing 3-15 is executed, the server may send a response message.
This response is shown in Listing 3-16.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE128

6412_c03_final.qxd 4/14/06 12:45 PM Page 128

Listing 3-16. RPC-Style SOAP Response Message

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<soap:Body>
<NYSE:getStockQuoteResponse>
<NYSE:StockSymbol>
MSFT

</NYSE:StockSymbol>
<NYSE:price>
26.81

</NYSE:price>
</NYSE:getStockQuoteResponse>

</soap:Body>
</soap:Envelope>

The server returns the stock price for the requested symbol specified by the StockSymbol
element in the contents of the price element.

SOAP over HTTP
So far you have learned how to create a SOAP request message and how to interpret a SOAP
response document. Once constructed, a SOAP message needs an underlying transport—HTTP
for instance. When you use HTTP as transport, SOAP messages are placed in its payload. In this
section, I will illustrate both SOAP request and response messages riding on top of HTTP.

SOAP Request over HTTP
Consider our RPC-style request message in Listing 3-15. When this message is sent over HTTP,
the data shown in Listing 3-17 would be sent to the server.

Listing 3-17. SOAP Request over HTTP

POST /IndigoService4/Service.svc HTTP/1.1
Host: localhost:8079
Content-Type: text/xml; charset="utf-8"
Content-Length: 282
SOAPAction: ""
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
<?xml version="1.0" encoding="UTF-8" ?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 129

6412_c03_final.qxd 4/14/06 12:45 PM Page 129

<soap:Body>
<NYSE:getStockQuote>
<NYSE:StockSymbol>
MSFT

</NYSE:StockSymbol>
</NYSE:getStockQuote>

</soap:Body>
</soap:Envelope>

Note the addition of the HTTP header information on top of the SOAP message. The client
stub in your application adds this header information to your SOAP request. If you open the
socket connection directly on the server, you will be responsible for generating this header
information and adding it to the SOAP document.

■Note As you go along, you will understand the meaning of each and every statement in the SOAP
request. Keep reading.

SOAP Reply over HTTP
After processing the request, the server sends a response to the client as a SOAP document. Such
a response may consist of the result value of the method call or exception information. The server
adds the header information to the SOAP response document as shown in Listing 3-18.

Listing 3-18. SOAP Response over HTTP

HTTP/1.1 200 OK
Content-Type:text/xml; charset='utf-8'
Content-Length: 311
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<soap:Body>
<NYSE:getStockQuoteResponse>
<NYSE:StockSymbol>
MSFT

</NYSE:StockSymbol>
<NYSE:price>
26.81

</NYSE:price>
</NYSE:getStockQuoteResponse>

</soap:Body>
</soap:Envelope>

You will now study the next important component of web services architecture, that is,
WSDL.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE130

6412_c03_final.qxd 4/14/06 12:45 PM Page 130

WSDL
As noted earlier in this chapter, WSDL is an acronym for Web Services Description Language.
A WSDL document is an XML document used for describing the interface of a web service. It
specifies the service’s location, and describes both how to bind to it and which operations may
be invoked on it. In other words, WSDL tells us where the service is located and how to use it.
Like SOAP, WSDL has become another industry standard, with endorsements by major stan-
dards organizations such as the W3C, WS-I, and OASIS.

Why WSDL?
When you create a web service, you need to tell others how to use it. WSDL provides a standard
means for doing so. For instance, to use the service, you need to know the kind of message you
need to send to the service provider. Also, when the service sends you a reply, the client appli-
cation should be able to interpret it. WSDL describes the structure for both these request and
response messages.

A service may be connected to the client by using a particular Internet protocol, such as
HTTP or FTP. WSDL describes the Internet protocol required by the service. Finally, the service
is deployed at a specific URI. WSDL describes this URI.

Using the preceding information, the client connects to the specified URI by using the
specified transport. After the connection is obtained, the client sends a request message con-
forming to the structure defined in the WSDL document and waits for the server response. The
server response message conforms to the structure defined in the WSDL document. The client
interprets the message by using the message structure information read from the WSDL.

How to Use WSDL
WSDL is ideally suited for code generators that generate the client stub code by using the
information available in a WSDL document. The client application then uses this stub to con-
sume the service.

However, in some situations you may want to construct the SOAP request message your-
self. This is the case with APIs such as SAAJ, Apache SOAP,9 and others. In such cases, the
human readability of a WSDL document becomes useful. By examining the WSDL document,
you can understand the operations on the remote service along with the parameters it requires.

You can hand-code a SOAP request to invoke the desired operation. The response can be
interpreted by parsing the SOAP response document and using the message structure infor-
mation available in the WSDL document.

WSDL Document Structure
A WSDL document is an XML-based document that conforms to the WSDL schema definition.
Listing 3-19 illustrates the document structure.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 131

9. Apache SOAP is discussed in depth in Chapter 4.

6412_c03_final.qxd 4/14/06 12:45 PM Page 131

Listing 3-19. Structure of a WSDL Document

<definitions>
<types>
type definitions

</types>
<message>
definitions of request/response messages

</message>
<portType>
abstract interface

</portType>
<binding>
protocol assignment and encoding style

</binding>
<service>
Internet address of a web service

</service>
…

</definitions>

The definitions element is the root element of the WSDL document. It contains several
nested elements:

• types

• import

• message

• portType

• operations

• binding

• service

• documentation

The purpose of each of these elements is described in the following subsections.

The definitions Element
This is the root element of the WSDL document. This declares the namespace for the
WSDL 1.1 XML schema and other namespaces required by the current document. The
following code fragment illustrates the use of the definitions element:

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE132

6412_c03_final.qxd 4/14/06 12:45 PM Page 132

<definitions
name="MyHelloService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="urn:Foo"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="urn:Foo">
...

</definitions>

The name attribute defines the name of this document. The name of the current document
is MyHelloService. Note the declarations of multiple namespaces in the definitions element.

The types Element
The types element contains the data type definitions used by the current document. The data
types are defined by using XML schema language. Chapter 1 discussed how to define data types
in XML. Remember those SimpleType and ComplexType declarations in Chapter 1? The following
code fragment illustrates the use of the types element:

<types>
<schema
targetNamespace="http://example.com/stockquote.xsd"
xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="TradePriceRequest">
<complexType>
<all>
<element name="ticker" type = "string"/>

</all>
</complexType>

</element>
</schema>

</types>

In this example, we declare a new element type called TradePriceRequest. Note the use of
the schema element to encapsulate the types declarations. As mentioned, we use XML schema
language to declare new types. The types element can contain any number of such declara-
tions. These declarations are visible within the scope of the current document.

The import Element
The import element specifies references to other WSDL documents from which you want to
import the definitions in your current document. The following code fragment imports the
definitions from stockquote.wsdl from the URI specified by the location attribute:

<import
namespace="http://example.com/stockquote/definitions"

location=http://example.com/stockquote/stockquote.wsdl
/>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 133

6412_c03_final.qxd 4/14/06 12:45 PM Page 133

The message Element
The message element describes a message’s payload. It describes both outgoing and incom-
ing messages. The message element contains a nested element called part that describes the
method parameter and its data type. The following code fragment declares a message called
getStockQuote that requires one parameter called symbol of type XML string:

<message name="getStockQuote">
<part name="symbol" type="xs:string"/>

</message>

The message element describes payloads for both RPC-style and Document-style web
services, discussed next.

The RPC-Style Message
The following code fragment declares two RPC-style messages. The getStockQuote is a request
message that takes a parameter called symbol of type string. The getStockQuoteResponse is a
response message that returns a value called price of type string:

<message name="getStockQuote">
<part name="symbol" type="xs:string"/>

</message>
<message name="getStockQuoteResponse">
<part name="price" type="xs:string"/>

</message>

The Document-Style Message
The following code fragment defines a Document-style message called
SubmitPurchaseOrderMessage. This element uses a parameter called order. The order element
is of type purchaseOrder. Note that the part element uses the element attribute. In RPC-style
messaging, it uses the type attribute.

In Document-style messaging, the part name specifies the name of the document, and
the type attribute specifies the element that defines the structure of this document. In RPC-
style messaging, the part name specifies the parameter to a method of a type specified by the
type attribute:

<definitions name="PurchaseOrderDefinitions"
xmlns:PO="http://www.example.com/brokerage/orders/PO">
<types>
<xsd:schema
targetNamespace="http://www.example.com/brokerage/subbrokers">
<xsd:import namespace="http:// www.example.com/brokerage/orders/PO"
schemalocation="http:// www.example.com/brokerage/orders/po.xsd" />

</xsd:schema>
</types>
<message name="SubmitPurchaseOrderMessage">
<part name="order" element="PO:purchaseOrder" />

</message>
</definitions>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE134

6412_c03_final.qxd 4/14/06 12:45 PM Page 134

The portType and operation Elements
The portType element defines a web service’s abstract interface. This can be compared to a
Java interface. The portType element has a name attribute. The name attribute defines a unique
name for this abstract interface in the scope of the enclosing WSDL document.

Just as a Java interface contains method declarations, the portType element contains one
or more operation elements. The operation specifies the method that may be invoked on a
web service. The operation has input and output subelements. The input and output elements
can occur at most one time within a given operation element.

The operation may generate SOAP faults. Thus, the operation element may have any
number of Fault elements.

The following code fragment illustrates the use of the portType and operation elements:

<portType name="StockQuote">
<operation name="getStockQuote">
<input name="symbol" message="getStockQuoteRequest"/>
<output name="price" message="getStockQuoteResponse"/>

</operation>
</portType>

In this example, the abstract interface name of the portType is StockQuote. It defines one
operation called getStockQuote, which requires a single parameter called symbol. The request
message structure is given by getStockQuoteRequest. The operation returns a response message
defined by the getStockQuoteResponse element. The name of the output parameter is price.

From this definition, you can conclude that you can invoke a getStockQuote operation
on the StockQuote service. To invoke the operation, you need to send a message of type
getStockQuoteRequest. On the operation’s return, the server sends you a message of type
getStockQuoteResponse.

You can include multiple operation elements within a single service interface to define
several operations defined in the interface.

The binding Element
The binding element provides the mapping between an abstract portType and concrete proto-
cols. It also defines the messaging styles (RPC or Document) and the encoding styles (Literal
or Encoded). Listing 3-20 illustrates the use of the binding element.

Listing 3-20. Code Fragment Illustrating Use of binding Element

<binding type="stockorders" name="StockQuoteBinding">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation>
<soap:operation soapAction="http://www.example.com/broker/placeOrder"/>
<input>
<soap:body use="literal"/>

</input>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 135

6412_c03_final.qxd 4/14/06 12:45 PM Page 135

<output>
<soap:body use="literal"/>

</output>
</operation>

</binding>

This example uses SOAP protocol-specific binding as specified by the use of the
soap:binding element. The style attribute specifies the document type of binding. The other
option is rpc style. The binding specifies one operation called placeOrder. The operation input
is a Document Literal, and its output also is Document Literal as specified by the contents of
the input and output elements, respectively.

The service Element
The service element lists one or more ports defined earlier and associates a URL with each
port. The following code fragment declares a service called StockQuoteService:

<service name="StockQuoteService">
<documentation>
Provides latest stock quotes for stocks traded on NYSE

</documentation>
<port name="StockQuote" binding="broker:StockQuoteBinding">
<soap:address location="http://www.example.com/broker/stockquote"/>

</port>
</service>

The documentation element provides the human-friendly description of the service. This
example declares one port called StockQuote. To bind to this port, you use binding specified by
the StockQuoteBinding element. It associates the specified www.example.com/broker/stockquote
URI with the StockQuote port.

You can associate more than one URL to the same binding. This is illustrated in the fol-
lowing code fragment:

<port name="StockQuote" binding="broker:StockQuoteBinding">
<soap:address location="http://www.example.com/broker/stockquote"/>

</port>
<port name="StockQuote_alternate" binding="broker:StockQuoteBinding">
<soap:address location="http://www.example.com/brokerage/stockquote"/>

</port>

The purpose behind providing two URLs to the same binding is that if one URL is not
available because of network or server failure, the service can be obtained from the alternate
URL.

So far, you have studied how to define messages in a WSDL document. Now, you will
study the different modes for exchanging messages.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE136

6412_c03_final.qxd 4/14/06 12:45 PM Page 136

Messaging Exchange Pattern
There are four distinct ways of exchanging messages between the two applications:

• One-way: The client sends a message to the server endpoint.

• Request/response: The endpoint first receives a message and then sends a correlated
message.

• Solicit/response: The endpoint first sends a message and then receives a correlated
message.

• Notification: The endpoint sends a message to the client.

One-Way Messaging
In one-way messaging, the client sends a message to the server endpoint and does not expect
a response from the server. The message flow is thus one-way, from client to server. The fol-
lowing code snippet illustrates one-way messaging:

<message name="lastTradePrice">
<part name="symbol" type="xs:string"/>
<part name="price" type="xs:string"/>

</message>
<portType name="TradePrices">
<operation name="setLastTradePrice">
<input name="newPrice" message="lastTradePrice"/>

</operation>
</portType >

In this example, first we create a message type called lastTradePrice. The message takes
two parameters, symbol and price, both of type string. The abstract interface is TradePrices
that defines one operation called setLastTradePrice. The operation uses only the input ele-
ment, thus making it a one-way operation. The input message for this operation is
lastTradePrice. You use this operation to set the last trade price for a desired stock.

Request/Response Messaging
In request/response messaging, the sender sends a message to some endpoint and expects a
response message from it. The following code snippet illustrates this:

<message name="getStockQuoteRequest">
<part name="symbol" type="xs:string"/>

</message>
<message name="getStockQuoteResponse">
<part name="price" type="xs:string"/>

</message>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 137

6412_c03_final.qxd 4/14/06 12:45 PM Page 137

<portType name="StockQuotes">
<operation name="getStockQuote">
<input message="getStockQuoteRequest"/>
<output message="getStockQuoteResponse"/>

</operation>
</portType>

First, we define two message types required by our getStockQuote operation. The
getStockQuoteRequest message defines the input message and uses one parameter called
symbol of type string. The getStockQuoteResponse defines the response message type that
returns a parameter called price of type string.

The abstract service interface is called StockQuotes that defines one operation called
getStockQuote. The operation uses the two messages as input and output messages. The use
of both input and output elements indicates that this operation is of request/response type.

Solicit/Response Messaging
In solicit/response messaging, the client subscribes to the service and waits for a message
from the server. On receipt of the server message, the client sends a request message to the
endpoint. The following code snippet illustrates the solicit/response type of messaging:

<message name="getStockQuoteRequest">
<part name="symbol" type="xs:string"/>

</message>
<message name="ReadyForQuote"/>
<portType name="StockQuotes">
<operation name="getStockQuote">
<output message="ReadyForQuote"/>
<input message="getStockQuoteRequest"/>

</operation>
</portType>

In this example, the getStockQuote message waits for the server to get ready. The server
sends a message called ReadyForQuote whenever it gets ready for serving the stock quotes. On
receipt of this message from the server, the client sends a getStockQuoteRequest message to
the server. Note that the ReadyForQuote message does not have any input parameters.

Notification Messaging
This is similar to the solicit/response type of messaging, except that the client does not send
any message back to the server after it receives a message from the server. Thus, as the name
suggests, the notification is one-way from server to client. The following code snippet illus-
trates notification of messaging:

<message name="ShutDownMessage">
<part name="reason" type="xs:string"/>

</message>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE138

6412_c03_final.qxd 4/14/06 12:45 PM Page 138

<portType name="StockServer">
<operation name="ShutDown">
<output message="ShutDownMessage"/>

</operation>
</portType>

In this example, the client registers with the server for some notification such as server
shutdown. Whenever the server shuts down, it sends a ShutDownMessage to the client. The
message contains a parameter called reason of type string that describes the reason for
shutting down.

So far, we have dissected different parts of a WSDL document. Now you will study the
WSDL document in its totality.

The Complete WSDL Example
Listing 3-21 presents a complete WSDL listing.

Listing 3-21. Sample Complete WSDL Document

1. <?xml version="1.0" encoding="UTF-8"?>
2. <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="urn:Foo"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
name="MyHelloService" targetNamespace="urn:Foo">

3. <types/>
4. <message name="HelloIF_sayHello">
5. <part name="String_1" type="xsd:string"/>
6. </message>
7. <message name="HelloIF_sayHelloResponse">
8. <part name="result" type="xsd:string"/>
9. </message>
10. <portType name="HelloIF">
11. <operation name="sayHello" parameterOrder="String_1">
12. <input message="tns:HelloIF_sayHello"/>
13. <output message="tns:HelloIF_sayHelloResponse"/>
14. </operation>
15. </portType>
16. <binding name="HelloIFBinding" type="tns:HelloIF">
17. <soap:binding transport=

"http://schemas.xmlsoap.org/soap/http" style="rpc"/>
18. <operation name="sayHello">
19. <soap:operation soapAction=""/>
20. <input>
21. <soap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
use="encoded" namespace="urn:Foo"/>

22. </input>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 139

6412_c03_final.qxd 4/14/06 12:45 PM Page 139

23. <output>
24. <soap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
use="encoded" namespace="urn:Foo"/>

25. </output>
26. </operation>
27. </binding>
28. <service name="MyHelloService">
29. <port name="HelloIFPort" binding="tns:HelloIFBinding">
30. <soap:address location=http://PGS:8080/hello-jaxrpc/hello

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
31. </port>
32. </service>
33. </definitions>

Line 1 indicates that this is an XML document.
Line 2 declares the top-level element called definitions, making the current document

a WSDL document. The name of the document is specified by the name attribute that is set to
MyHelloService. Line 2 also declares the use of required namespaces.

Line 3 begins and ends with the types element. Thus, the current document does not
declare any custom types.

Lines 4–6 declare a message called HelloIF_sayHello that takes one parameter called
String_1 of type string.

Lines 7–9 declare another message type called HelloIF_sayHelloResponse that returns
a result called result of type string.

Lines 10–15 define an abstract interface called HelloIF with the help of the portType
element.

Lines 11–14 define an operation within this interface. The operation uses the request/
response type of messaging as indicated by the use of both input and output subelements.

Line 11 names this operation sayHello and specifies that it takes one parameter called
String_1. If the operation requires more than one parameter, the parameterOrder defines the
sequence for these parameters by listing these parameter names in the desired order.

Line 12 specifies that the input to the sayHello operation is provided by the message
called HelloIF_sayHello. Note that this message was defined earlier in the document.

Line 13 declares that sayHello sends a response message to the caller of type
HelloIF_sayHelloResponse.

Lines 16–27 define binding for the HelloIF interface.
Line 16 assigns the name to this binding. The name is HelloIFBinding. The binding type

is HelloIF as defined earlier.
Line 17 declares a protocol-specific binding with the use of the soap:binding element.

The transport for this binding is http, and the messaging style is rpc.
Lines 18–26 define operations in this binding by using the operation element. The name

of the operation is sayHello.
Line 19 declares this as a SOAP operation with no action required.
Lines 20–22 declare the input message bindings.
Line 21 declares the encoding style for the input message.
Lines 23–25 declare the output message bindings.
Line 24 declares the encoding style for the output message.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE140

6412_c03_final.qxd 4/14/06 12:45 PM Page 140

Lines 28–33 use the service element to bind the HelloIF service to a specific service URL.
Line 28 names this service MyHelloService.
Lines 29–31 declare a port within this service. Remember, we could declare more than

one port within a service.
Line 29 names the current port as HelloIFPort and sets its binding to HelloIFBinding

declared previously.
Line 30 specifies the address for this port. The address is specified by the location

attribute.
Line 33 closes our WSDL document definition.

UDDI
UDDI is an acronym for Universal Description, Discovery, and Integration. UDDI is one of the
standards for creating an XML-based registry. The other standard is Electronic Business Using
XML (ebXML).10

The UDDI standard defines a way to centrally store information about businesses that is
accessible on the World Wide Web. The standard also defines a mechanism for accessing this
information in an efficient manner.

As seen earlier, businesses develop web services and publish their service interfaces in
WSDL documents. The location of these WSDL documents is published in the UDDI registry.
Additionally, the registries may be used to store general information about the businesses.
A client can search the registry for the desired service as well as this general information on
businesses. Access to the UDDI registry is SOAP based. A client can access, update, and search
a UDDI registry by using a SOAP request/response mechanism.

Public and Private Registries
Registries can be public or private. A public registry is accessible to all users, and a private reg-
istry restricts its access to only authorized members. Two popular public registries are hosted
by Microsoft and SAP, and are accessible through the following URLs:

• Microsoft: http://test.uddi.microsoft.com/

• SAP: http://udditest.sap.com/

■Note IBM used to offer a public registry. As of Jan 12, 2006, IBM decided to shut down its registry and
it is thus no longer available. Refer to http://uddi.ibm.com/testregistry/registry.html.

The use of a public registry requires you to create a user account. Currently, such user
accounts are free for test purposes. Private registries are generally used for intranet applica-
tions and are not accessible outside the organization’s network.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 141

10. ebXML was designed to meet the needs of business-to-business applications and is not covered in
this book.

6412_c03_final.qxd 4/14/06 12:45 PM Page 141

Having seen the purpose of the UDDI registry, you will now learn the internal data struc-
tures of the registry. Knowledge of these structures is required to understand the format in
which the data is stored in the registry.

UDDI Data Structures
The UDDI specification defines five core data structures to express information in the UDDI
registry (see Figure 3-9).

These data structures are defined in the UDDI version 2.0 API schema. Additionally, this
schema defines approximately 40 SOAP messages that are used as requests and responses
while communicating with the registry. The client uses these messages for accessing, updat-
ing, and searching the registry.

The businessEntity structure holds the information about a business. The
businessEntity answers the question who in the registry. A businessService holds the
information about the services offered by a business and answers what in the registry. The
businessEntity has a one-to-many relationship to the businessService. This indicates that
a business might offer more than one service.

Each businessService structure contains a specific instance of a bindingTemplate struc-
ture. The bindingTemplate instance provides information on where the service is running and
how to bind to the service. The bindingTemplate answers the question where/how in the reg-
istry. A bindingTemplate is modeled based on the tModel instance.

A business may call another business as its associate. When such information is
published by the first business in the registry, the second business must assert it. The
publisherAssertion structure describes the “relationship” between two parties asserted
by one or both.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE142

Figure 3-9. UDDI data structures

6412_c03_final.qxd 4/14/06 12:45 PM Page 142

Figure 3-9 also gives the containment hierarchy for the various structures. It is important
that this hierarchy is strictly followed. For example, a businessEntity contains a
businessService. A businessService cannot contain a businessEntity. Thus, a single instance
of businessService cannot be associated with more than one instance of a businessEntity.

Whenever you store the information in the registry by using any of these data structures,
the registry generates a Universally Unique Identifier (UUID) that identifies this information.

You will now study each of these data structures and learn how to use them.

The businessEntity Structure
The businessEntity structure is a top-level data structure that contains information about a
business or entity. It contains the descriptions of the various services offered by the business.
Listing 3-22 gives an XML schema definition for the businessEntity.

Listing 3-22. Schema Defintion for businessEntity Structure

<element name = "businessEntity">
<complexType>
<sequence>
<element ref = "discoveryURLs" minOccurs = "0"/>
<element ref = "name" maxOccurs = "unbounded"/>
<element ref = "description" minOccurs = "0" maxOccurs = unbounded"/>
<element ref = "contacts" minOccurs = "0"/>
<element ref = "businessServices" minOccurs = "0"/>
<element ref = "identifierBag" minOccurs = "0"/>
<element ref = "categoryBag" minOccurs = "0"/>

</sequence>
<attribute ref = "businessKey" use = "required"/>
<attribute ref = "operator"/>
<attribute ref = "authorizedName"/>

</complexType>
</element>

As seen in Listing 3-22, the businessEntity structure stores business information such
as its name, description, contacts, and other items. The businessServices element holds a list
of one or more logical business service descriptions. The categoryBag holds taxonomy infor-
mation under which the entity is classified. The taxonomies define different classification
schemes for businesses. It is the job of the publisher to list the business in one of the appro-
priate classifications. The find_business method provides a search on categoryBag elements.

The businessKey element contains the UUID for the current instance.
Also, note the authorizedName and operator elements. The authorizedName element speci-

fies the publisher’s name. The operator element specifies the name of the certified authority
controlling the registry. The controlling operator generates both the authorizedName and
operator elements while saving the businessEntity instance. The registry client should not
supply these fields.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 143

6412_c03_final.qxd 4/14/06 12:45 PM Page 143

The businessService Structure
The businessService structure describes the service offered by a business. Listing 3-23 gives
the schema definition for this structure.

Listing 3-23. Schema Definition for businessService Structure

<element name = "businessService">
<complexType>
<sequence>
<element ref = "name" maxOccurs = "unbounded"/>
<element ref = "description" minOccurs = "0"
maxOccurs = "unbounded"/>

<element ref = "bindingTemplates"/>
<element ref = "categoryBag" minOccurs = "0"/>

</sequence>
<attribute ref = "serviceKey" use = "required"/>
<attribute ref = "businessKey"/>

</complexType>
</element>

Each service is described by its name, description, bindingTemplate, and categoryBag. The
bindingTemplate describes the binding information to the service. As before, the categoryBag
element holds the taxonomy classification for the service. The serviceKey element holds the
UUID for the current instance. The businessKey element holds a reference to the parent
businessEntity object. This is how we connect the service to a business instance. Note that
we can connect each service to only a single business instance.

The bindingTemplate Structure
The bindingTemplate structure contains the technical descriptions of a web service. Each
instance of the bindingTemplate structure has a single logical businessService parent.
Listing 3-24 gives the schema definition for the bindingTemplate structure.

Listing 3-24. Schema Definition for bindingTemplate Structure

<element name = "bindingTemplate">
<complexType>
<sequence>
<element ref = "description" minOccurs = "0" maxOccurs = "unbounded"/>
<choice>
<element ref = "accessPoint" minOccurs = "0"/>
<element ref = "hostingRedirector" minOccurs = "0"/>

</choice>
<element ref = "tModelInstanceDetails"/>

</sequence>
<attribute ref = "bindingKey" use = "required"/>
<attribute ref = "serviceKey"/>

</complexType>
</element>

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE144

6412_c03_final.qxd 4/14/06 12:45 PM Page 144

Each bindingTemplate instance contains its description in the description element. The
accessPoint element is the required attribute and specifies the entry point address for the web
service. The entry point address may be supplied as a URL, an e-mail, or even a telephone
number. The hostingRedirector element is required if the value for the accessPoint is not
specified. When specified, this refers to an alternate bindingTemplate that should be used for
obtaining technical information about the service.

The bindingKey holds the UUID for the current instance. The serviceKey element corre-
sponds to the serviceKey of the parent businessService object.

The tModel Structure
The tModel structure provides a URL that, in turn, provides information about the specifica-
tions and the standards that a web service complies with. The tModel structure also provides
further information on how the web service behaves and what conventions it follows. It is
metadata that describes the service. It describes the service’s compliance with a specification
or a concept. This is described with the help of description and overviewDoc elements. The
identifierBag element contains name-value pairs that record identification numbers for the
tModel. These IDs are used during a search operation on tModel. The categoryBag element
specifies the taxonomy under which the service is listed. Listing 3-25 gives the schema defini-
tion of the tModel structure.

Listing 3-25. Schema Definition of tModel Structure

<element name = "tModel">
<complexType>
<sequence>
<element ref = "name"/>
<element ref = "description" minOccurs = "0"maxOccurs = "unbounded"/>
<element ref = "overviewDoc" minOccurs = "0"/>
<element ref = "identifierBag" minOccurs = "0"/>
<element ref = "categoryBag" minOccurs = "0"/>

</sequence>
<attribute ref = "tModelKey" use = "required"/>
<attribute ref = "operator"/>
<attribute ref = "authorizedName"/>

</complexType>
</element>

The tModelKey element contains the current instance’s UUID. The values for operator and
authorizedName elements are generated by the controlling operator during save. The overview-
Doc holds references to remote descriptive information or instructions related to the tModel.

The publisherAssertion Structure
The publisherAssertion structure enables two cooperating businesses to make their rela-
tionship visible in the registry. Both businesses in the relationship must publish their own
publisherAssertion with exactly the same information to make the relationship visible in the
registry. If a single publisher is responsible for both businesses, only one of the assertions is

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 145

6412_c03_final.qxd 4/14/06 12:45 PM Page 145

sufficient to make the relationship visible in the registry. Listing 3-26 presents the schema
definition for the publisherAssertion structure.

Listing 3-26. Schema Definition for publisherAssertion Structure

<element name = "publisherAssertion">
<complexType>
<sequence>
<element ref = "fromKey"/>
<element ref = "toKey"/>
<element ref = "keyedReference"/>

</sequence>
</complexType>

</element>

The fromKey element is a required element and represents the first businessEntity in the
relationship. The toKey element is also required and represents the second businessEntity in
the relationship. The keyedReference is required and represents the relation type. The relation
type is specified in terms of the key name–key value pair within a tModel.

Having seen all the data structures in a UDDI registry, you will now study UDDI APIs that
allow you to publish your data in the registry and also search the registry for the desired infor-
mation.

UDDI APIs
The UDDI specification defines a contract for publishing, locating, and inspecting business
services in the registry. This contract lists the message structures that you need to use while
requesting a service from the UDDI registry. The UDDI specification categorizes the APIs as
follows:

• Publishing API

• Inquiry API

The publishing API allows a service provider to publish its services in the UDDI registry.
The inquiry API allows you to search a desired service in the registry and retrieve information
about a located service.

Publishing API
The publishing API provides several message structures for saving and deleting information
in the registry. There is no message structure for modifying the information; in fact, the save
operation itself can be used for modifying the data in the registry. As you have seen in the data
structures description, each entry in the registry is identified by a key (UUID) that is generated
by the registry during the first save operation. The subsequent save with the same key value
modifies the record in the registry.

Authorization is required to publish anything in the registry. You acquire authorization by
obtaining an authentication token from the registry. The publishing API provides a method for
obtaining an authentication token. This must be supplied in all publishing requests made to
the registry.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE146

6412_c03_final.qxd 4/14/06 12:45 PM Page 146

Inquiry API
You use the inquiry API to locate a desired service in the registry and retrieve information
about the located service. You search the registry by using the inquiry API. After a search
returns a list of matching services, you can retrieve their details by using other methods in the
inquiry API. The inquiry API defines several find and get methods for searching the registry
and obtaining object details.

Because the registry is XML-based, you invoke the methods listed in the publishing and
inquiry APIs by sending SOAP requests to the registry. You will now study these publishing
and inquiry messages.

Publishing API Save Messages
The UDDI publishing API defines four messages for saving information to the UDDI registry:

• save_business

• save_service

• save_binding

• save_tModel

As the name suggests, each message saves the corresponding registry object. For example,
the save_business message is used for saving a businessEntity instance, and the save_service
message saves a businessService instance. Each of these messages can also be used for modi-
fying the data in the registry. To modify an existing instance, supply the same key value as in
the original record while saving the modified field values.

If the save operation succeeds, the registry will send you a message containing the newly
registered information. The save_business message returns a businessDetail message that
contains the information on the newly registered business.

In case of error, a SOAP fault is generated and a dispositionReport structure is returned
to the client. The dispositionResult element details the error.

Publishing API Delete Messages
Similar to save messages, the publishing API defines four corresponding delete messages:

• delete_business

• delete_service

• delete_binding

• delete_tModel

Once again, as the name suggests, each message deletes the corresponding object type
from the registry. While deleting an object from the registry, you must supply the existing key
value in the registry. If the key does not exist or if any other error occurs during processing, the
registry generates a SOAP fault and returns a dispositionReport structure in the response
message.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 147

6412_c03_final.qxd 4/14/06 12:45 PM Page 147

The delete_tModel message requires more explanation. Remember, the tModel instance may
be referred by multiple entities in the registry. The delete_tModel message removes or retires the
specified tModel instance. If other entities refer the specified tModel instance, the instance is not
removed, but is marked as hidden. Such hidden instances are still accessible to their owner, but
are not visible in the result set of the find_tModel method call. To make a hidden model visible
again, you need to send the save_tModel message with the key for the hidden model instance. To
permanently remove all the details of the tModel instance, you need to send the save_tModel mes-
sage with empty values in the data field. Follow this save_tModel message with the delete_tModel
message to permanently remove the instance.

Publishing API Security Messages
The security messages consist of the following two messages:

• get_authToken: The get_authToken message accepts a user ID and credentials as param-
eters and returns an authentication token to the caller. The token is an opaque value
that is used in all other publisher API calls.

• discard_authToken: The discard_authToken message informs the operator site to dis-
card a specified authentication token. The operator site generally retains the security
token for managing the client session state.

Inquiry API Find Messages
The UDDI inquiry API defines four messages for searching information based on a certain
search criterion:

• find_business

• find_service

• find_binding

• find_tModel

Each of these messages accepts a partial search string and returns a collection of the
appropriate object types. For example, the find_business message returns a businessList
message to the caller. The businessList message contains a list of businessInfo objects.
Likewise, the find_service message returns a serviceList message to the client containing
businessServices objects. If there are no records found, the list contains zero objects. The
default behavior of the search functionality can be modified by specifying the desired search
qualifiers in the findQualifier element in the message.

You can specify the number of rows you want to retrieve during the search operation. For
a large number of results, the registry may truncate the list before sending it to the client. In
such a case, it also sets the truncated attribute in the message to indicate this to the client.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE148

6412_c03_final.qxd 4/14/06 12:45 PM Page 148

Inquiry API Get Messages
As with find messages, the publishing API defines four get messages:

• get_businessDetail

• get_serviceDetail

• get_bindingDetail

• get_tModelDetail

Each of these messages require you to provide the key (UUID) as a parameter in the
request message. On return, each message returns an appropriate object type. For example,
the get_businessDetail message returns the businessEntity instance; the get_serviceDetail
message returns the serviceDetail instance, and so on.

Summary
In this chapter, you studied one of the important architectures in today’s IT industry: the web
services architecture. A web service is essentially an application component that exposes its
functionality by using standard web protocols. These web protocols are SOAP and WSDL.

Web services architecture consists of three major parts: the service provider, service
requestor, and UDDI registry. The third component, the registry, is optional. A service
provider creates a service and publishes the location of its service description in the UDDI
registry. The service provider may supply the description directly to the service requestor.
In such a case, the use of the registry becomes redundant.

A web service has three major components: SOAP, WSDL, and UDDI. All three components,
which were discussed in depth, are XML based.

SOAP allows you to call operations on the remote service and also exchange data between
two applications. WSDL describes the interface for the service, and the UDDI stores the busi-
ness and its services information in the registry. The UDDI defines APIs for publishing and
accessing information in the registry.

Web services heavily rely on the use of XML. This chapter described several XML-based
message structures for web services operations. In the next chapter, you will study the imple-
mentations with several code examples that illustrate how to use these XML-based messages.

CHAPTER 3 ■ WEB SERVICES ARCHITECTURE 149

6412_c03_final.qxd 4/14/06 12:45 PM Page 149

6412_c03_final.qxd 4/14/06 12:45 PM Page 150

Apache SOAP

Chapter 3 covered the SOAP standard theoretically, without discussing the practical imple-
mentations. This chapter introduces Apache’s SOAP implementation.

Several major organizations have implemented SOAP. The Apache Software Foundation
is one of them. Although nothing prevents you from hand-coding SOAP requests and manu-
ally interpreting SOAP responses, it’s much easier to use the standard libraries provided by
these SOAP implementers to construct the SOAP requests and electronically interpret SOAP
responses.

In this chapter, you will learn how to install the Apache SOAP toolkit on Tomcat. You will
then see an overview of the SOAP implementation architecture. You will create both RPC- and
Document-style web services and will develop the client applications that access these serv-
ices. You will examine the SOAP requests and responses created by the SOAP toolkit. You will
learn how to handle exceptions in web services and how to use user-defined data types in
your web services implementations. Finally, you will learn about the deployment issues with
web services.

The chapter covers several programming examples. If you want to try experimenting with
the code, you will need to download and install the SOAP implementation. Because you need
to deploy your web service on a server, you will also have to install an HTTP server with servlet
support. The Apache SOAP implementation supports several popular HTTP servers, such as
Apache Tomcat, BEA WebLogic, IBM’s WebSphere, Sun Microsystems’ Sun ONE (previously
known as iPlanet), the open source Jetty, Macromedia JRun, and Caucho Technology’s Resin.
Because this book is mainly about Apache implementations of XML APIs, I have used Apache
Tomcat for the examples in this chapter.

Installing Apache SOAP and Related Software
Installing Apache SOAP is fairly easy. However, before installing these SOAP libraries on your
machine, you need to install several other software packages. Specifically, you need three
packages in order to use Apache SOAP:

• The Java Runtime Environment (JRE) 1.5: This is required for running any Java appli-
cation on your machine.

• Apache Tomcat: This is the web server on which you will deploy the web services.

• Apache SOAP: This is the Apache implementation of the SOAP specifications.

151

C H A P T E R 4

■ ■ ■

6412_c04_final.qxd 4/14/06 12:43 PM Page 151

Installing JRE 1.5
Tomcat version 5.5.91 was used for running the web services throughout this chapter. This ver-
sion of Tomcat requires JRE 1.5. Therefore, if you do not have JRE 1.5 installed on your machine,
download it from the following URL:

http://java.sun.com/j2se

The installation procedure is usually very simple. For example, for the Windows platform,
an installer is provided. When you download the software, you get a Windows installer named
jdk-1_5_0-windows-i586.exe. Double-clicking on this installer guides you through the various
steps of installation. These steps are not exhaustive; they simply ask you to accept the license
agreement and specify the folder where you would like to install the software.

■Note For those of you installing on Linux, Appendix A provides detailed installation instructions for all the
chapters in this book.

Installing Apache Tomcat
The latest version of Tomcat can be downloaded from the following URL:

http://jakarta.apache.org/

The download is available in various formats supporting different platforms. The entire
source is also available for download. You can download the source and build it for your
desired platform.

For Windows, you can download the zip archive. If you download the .zip version, simply
unzip the software to your desired folder. The .zip version (apache-tomcat-5.5.9.zip2) does
not come with administrator software for the server. This has to be downloaded
(apache-tomcat-5.5.9-admin.zip) separately and unzipped to the same folder as Tomcat.
The administrator software can be downloaded from the archives listed on the Apache site.3

For the Windows platform, the software is also supplied as an executable that you can
download (apache-tomcat-5.5.9.exe). Running this executable results in it asking you to select
the components you want to install, the installation folder, the port number, and the user name
and password for the server. After you enter this information, the installer installs Tomcat on
your machine, ready for testing. If you install by using this installer, you will still need to install
the administrator service separately as explained in the previous paragraph. This is required
only if you need to administer the server.

CHAPTER 4 ■ APACHE SOAP152

1. This is the latest stable build available at the time of this writing.

2. The filename will vary depending on the version you are downloading.

3. http://jakarta.apache.org/

6412_c04_final.qxd 4/14/06 12:43 PM Page 152

■Note For those of you installing on Linux, Appendix A provides detailed installation instructions for all the
chapters in this book.

Testing the Installation
To start Tomcat, run the startup.bat batch file (if you are running Windows) or the startup.sh
script (if you are running Linux).

■Note If you have installed Tomcat as a Windows service, you need not run the startup.bat file because
Windows automatically starts Tomcat at boot.

Open your browser and type in the following URL:

http://localhost:8080

This should open the Apache Tomcat/5.5.9 opening screen in your browser, as shown in
Figure 4-1.

CHAPTER 4 ■ APACHE SOAP 153

Figure 4-1. Tomcat server welcome screen

6412_c04_final.qxd 4/14/06 12:43 PM Page 153

To run the administrator utilities, use the links listed under the Administration panel on
the left side of the opening screen. When invoked, these links will ask you to enter credentials
before they grant access to web server administration. For this, you will need to create an admin
account for your server, if you have not done so during installation. You create the administra-
tor account by modifying the tomcat-users.xml file under the config folder in your Tomcat
installation. The modified configuration file is shown in Listing 4-1. You will need to add the
lines shown in bold to the existing file.

Listing 4-1. The tomcat-users.xml Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<tomcat-users>
<role rolename="tomcat" />
<role rolename="role1" />
<role rolename="manager" />
<role rolename="admin" />
<user username="tomcat" password="tomcat" roles="tomcat" />
<user username="both" password="tomcat" roles="tomcat,role1" />
<user username="role1" password="tomcat" roles="role1" />
<user username="admin" password="admin" roles="admin,manager" />

</tomcat-users>

To shut down the server, run shutdown.bat (on Windows) or shutdown.sh (on Unix). If you
have configured Tomcat as a Windows service, you will see a Tomcat icon in the system tray.
Right-clicking this icon brings up a menu with an Exit option. Select this option to stop Tomcat.

Installing Apache SOAP
To install Apache SOAP, you first need to download the latest stable version from the following
URL:

http://ws.apache.org/soap/

Unzip the downloaded file to the desired folder. The archive contains a web application
archive file called soap.war. This file contains the classes that are used for creating SOAP requests
and parsing SOAP responses. Copy this file to the webapps folder of your Tomcat installation. You
also need to copy the mail.jar and activation.jar files to the \shared\lib folder of your Tomcat
installation. The mail.jar file contains a JavaMail implementation, and the activation.jar file
contains classes required for supporting Mulipurpose Internet Mail Extensions (MIME) types.
Because SOAP is message based, both these files are required. Both come with the J2EE4 installa-
tion or can be downloaded as a part of the JavaMail API from Sun’s website.5

■Note For those of you installing on Linux, Appendix A provides detailed installation instructions for all the
chapters in this book.

CHAPTER 4 ■ APACHE SOAP154

4. The latest version of J2EE is known as Java EE 5.

5. http://java.sun.com/products/javamail/downloads/index.html

6412_c04_final.qxd 4/14/06 12:43 PM Page 154

Testing the Installation
Test your installation by typing the following URL in your browser:

http://localhost:8080/soap

You should see a welcome screen, as shown in Figure 4-2.

The welcome screen contains two hyperlinks:

• Run the Admin Client: This hyperlink takes you to a screen that allows you to deploy
and undeploy web services. The admin client screen also allows you to retrieve the list
of deployed services.

• Visit the SOAP RPC router URL: This hyperlink takes you to the URL http://localhost:
8080/soap/servlet/rpcrouter. It prints a SOAP RPC router message on your browser.
This is an important URL for us. All our clients will be sending the web service requests
to this URL.

You can try clicking both the links to ensure that the correct pages open in your browser.
Additionally, test the message-routing servlet by typing the following URL in your browser:

http://localhost:8080/soap/servlet/messagerouter

This prints a message similar to the RPC router on your browser. You will be using this
router for calling Document-style web services.

This completes our server-side installation of Apache SOAP. If you are using a different
machine for client development, you will need to follow the instructions in the Apache SOAP
documentation to set up your client machine. If you use the same machine for both client and
server deployment (which would be the case for most of us), you are ready for some real cod-
ing of web services.

CHAPTER 4 ■ APACHE SOAP 155

Figure 4-2. Apache SOAP welcome screen

6412_c04_final.qxd 4/14/06 12:43 PM Page 155

You can test your client installation by using the following command at the command
prompt:

C:\>java org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter list

This should print the list of all deployed services (which at this stage could be none at all)
on your console.

SOAP Implementation Architecture
As you learned in the previous chapter, in a web services implementation the entire commu-
nication between a client and a server takes place by using SOAP request/response documents.
A SOAP call can be RPC-oriented or document-oriented. When the web service application
receives one of these SOAP requests, the application needs to parse the XML document frag-
ment to understand the request and then needs to convert it to an appropriate binary request
to the implementing service object. When the service object returns a result to the caller, it is
mapped into a SOAP response first and then dispatched to the client. This marshalling and
unmarshalling of messages is exactly what the Apache SOAP server implementation provides.
The implementation architecture is shown in Figure 4-3.

Apache’s SOAP implementation provides two servlets called rpcrouter and messsagerouter,
which together provide the desired functionality of transforming the messages from XML to
binary and vice versa. The rpcrouter servlet services all the RPC-based requests, and the mes-
sagerouter servlet services all document-oriented requests. When the client makes a SOAP
request to the SOAP server, it specifies the Uniform Resource Name (URN) for the service.

CHAPTER 4 ■ APACHE SOAP156

Figure 4-3. Apache SOAP server implementation

6412_c04_final.qxd 4/14/06 12:43 PM Page 156

■Note The URN is a unique identifier consisting of any text string for each defined service. At the time of
deployment, this URN is mapped to the server implementation class. The deployment process is explained
in depth later in this chapter.

Each deployed service has an associated unique identifier specified by this URN. The
SOAP server uses this URN to invoke the call on the appropriate service object. How does
the SOAP server know the appropriate service object? This is resolved with the help of a
deployment descriptor (deployment descriptors are described in depth later in this chapter).
The deployment descriptor associates a URN with the service object and its methods. Thus,
looking at the deployment descriptor, the SOAP server knows which method on which Java
class is to be invoked.

The service object itself can be implemented by using different technologies. You can
implement the service object as a Plain Old Java Object (POJO), an Enterprise JavaBean (EJB),
or a method written in a scripting language. As Figure 4-3 illustrates, both rpcrouter and
messagerouter servlets can redirect the requests to any of these service objects. When the
service object returns a response to the caller, the underlying runtime maps this into a SOAP
response document and dispatches the response to the caller via the same servlets.

As you can see, the use of a Tomcat server is not unique. You can use any web server that
provides the servlet support. Ensure that your web server supports the minimum servlet API
version that is required by the Apache SOAP implementation.

Developing Web Services
As you learned in Chapter 3, a web service can be RPC-style or Document-style. In this sec-
tion, we will develop both RPC- and Document-style web services and write clients for both.

Remember that a web service is essentially a component that exposes its interface by using
standard web protocols. This component can be written as a simple Java class, a JavaBean, an
EJB, a servlet, or even a .NET component or a Common Object Request Broker Architecture
(CORBA) server object. To keep the component development simple so as to concentrate more
on the SOAP implementation, we will be using only POJOs to develop the example web services.

Creating an RPC-Style Web Service
We will develop an RPC-style web service for our stock brokerage as discussed in Chapter 3.
The web service will provide the requesting client with the latest trade price for a particular
stock symbol.

The web service development consists of the following steps:

1. Developing the service that is deployed on the server

2. Developing a client that consumes this service

3. Running the client

Each of these tasks is described in detail here.

CHAPTER 4 ■ APACHE SOAP 157

6412_c04_final.qxd 4/14/06 12:43 PM Page 157

Developing the Service
Developing and deploying our web service comes as a result of completing two tasks. First we’ll
write the server code, and then we’ll need to deploy it.

Writing the Server Code

The server code can consist of a POJO or an EJB or scripting language code. We will develop the
server using POJO. The server code for our stock brokerage web service is shown in Listing 4-2.

Listing 4-2. The Stock Quote Service Server Class (<working folder>\Ch04\RPC\
StockQuoteService.java)

package StockBroker;
public class StockQuoteService
{
// A web service method
public float getStockQuote(String symbol)
{
// We return the hard-coded value for simplicity
return ((float)25.35);

}
}

This is a simple Java class with one public method called getStockQuote. The method
receives a parameter of String type that represents the stock symbol for which the trade
price is sought. The method returns a float value to the requesting client that contains the
last traded price. The method implementation simply returns a fixed value to the client. In
real life, the method would read the live database of the stock exchange to retrieve the last
traded price.

Compile the code in Listing 4-2 by using the following command line:

C:\<working folder>\Ch04\RPC>javac -d . StockQuoteService.java

Copy the generated .class file (<working folder>\Ch04\RPC\StockBroker\
StockQuoteService.class) to the following folder:

<Tomcat Installation Folder>\webapps\soap\WEB-INF\classes\StockBroker

Deploying the Service

After you develop the service, you can choose from two techniques to deploy it on the server:

• Using a GUI-based admin tool

• Using a command-line interface

I will describe both methods of deployment.

CHAPTER 4 ■ APACHE SOAP158

6412_c04_final.qxd 4/14/06 12:43 PM Page 158

Deploying by Using a GUI tool
To deploy the service, you use the Admin tool. Type the following URL in your browser to
invoke the Admin tool:

http://localhost:8080/soap/admin/

Click the Deploy button on the Admin screen. This opens a screen as shown in Figure 4-4. All
the fields on this screen are initially blank. The screen output shows the values that you will be
filling in.

Complete the following steps to fill in the displayed form and deploy the web service:

1. In the ID field, type urn:QuoteService. The client supplies this URN in the request.
The rpcrouter servlet redirects the client request to this URN on the server side.

2. Set the Scope combo box to Application. This option decides the lifetime of the server
object. The lifetime may be Request, Session, or Application.

3. In the Methods text box, type getStockQuote. Remember, this is the method that our
web service wants to expose as a web method that can be invoked by using SOAP.

4. As the Provider Type, select Java. This is the default selection. You can select the Script
provider type if your server implementation uses a script code.

CHAPTER 4 ■ APACHE SOAP 159

Figure 4-4. Deployment wizard

6412_c04_final.qxd 4/14/06 12:43 PM Page 159

5. In the Java Provider group, set the Provider Class as StockBroker.StockQuoteService.
Note that this is the fully qualified name of our web service class.

6. Use defaults for the rest of the selections.

7. Click the Deploy button on the left side of the screen to deploy the service.

8. If the deployment is successful, you will see a “Service urn:QuoteService deployed”
message on your browser.

9. You can click the List button at any time to list all the deployed services.

Deploying by Using a Command Interface
The Apache SOAP implementation provides a Java application called ServiceManagerClient
that allows you to deploy and undeploy services and to list the available services. To deploy
the service by using this command-line utility, you first need to write a deployment descriptor.
The deployment descriptor for QuoteService is given in Listing 4-3.

Listing 4-3. Deployment Descriptor for QuoteService (<working folder>\Ch04\RPC\
DeploymentDescriptor.xml)

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:QuoteService">

<isd:provider type="java"
scope="Application"
methods="getStockQuote">

<isd:java
class="Apress.XMLBook.StockBroker.StockQuoteService" static="false"

/>
</isd:provider>
<isd:faultListener>

org.apache.soap.server.DOMFaultListener
</isd:faultListener>

</isd:service>

The service element defines an id attribute and sets its value to a namespace that is unique
within the current deployment environment. In our case, this is set to urn:QuoteService. The
provider element defines type, scope, and the web methods to be called. If the service exposes
more than one method as a web method, all such methods are listed in the methods attribute,
each separated by a space from the other. The class attribute in the isd:java element defines
the name of the POJO class that implements the service. The deployment descriptors are dis-
cussed in depth later in the chapter.

After you write the deployment descriptor for your service, you can deploy the service by
using the following command line:

C:\<working folder>\Ch04\RPC>java org.apache.soap.server.ServiceManagerClient➥

http://localhost:8080/soap/servlet/rpcrouter deploy DeploymentDescriptor.xml

CHAPTER 4 ■ APACHE SOAP160

6412_c04_final.qxd 4/14/06 12:43 PM Page 160

You can verify that the service has been deployed successfully by listing all the deployed
services via the following command line:

C:\<working folder>\Ch04\RPC>java org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter list

The program will list all the deployed services, as shown here:

Deployed Services:

urn:QuoteService
urn:AddressFetcher
urn:Hello

To undeploy a deployed service, use the following command line:

C:\<working folder>\Ch04\RPC>java org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter undeploy urn:QuoteService

The URN (such as urn:QuoteService shown in the preceding statement) uniquely identi-
fies the service to be undeployed.

Developing the Client
Developing a client is a simple process that requires you to write an application that con-
structs a call to the web service and invokes it. Such a client application can be written in any
programming language of your choice. For this example, we will use Java.

To construct a call, you do not need to construct a SOAP request. You simply use provided
Java classes to input the desired information for the web service. The underlying SOAP imple-
mentation converts the call to an XML SOAP request. Similarly, when the web service returns
a response to the client, it does so as a SOAP response. The SOAP response document is inter-
preted by the SOAP runtime, and the result is returned to the client as a Java object.

Writing the Client Code

We will write a console-based Java application for the purpose of developing a client for our
web service. Listing 4-4 provides the complete listing for the console application.

Listing 4-4. Client Program for Stock Quote Service (<working folder>\Ch04\RPC\
StockQuoteRequest.java)

package StockClient;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

CHAPTER 4 ■ APACHE SOAP 161

6412_c04_final.qxd 4/14/06 12:43 PM Page 161

public class StockQuoteRequest {
public static void main (String[] args) throws Exception {
if (args.length != 1)
{
System.err.println ("Usage: java StockQuoteRequest symbol");
System.exit (1);

}

String ServiceURL = "http://localhost:8080/soap/servlet/rpcrouter";
URL url = new URL (ServiceURL);
String symbol = args[0];

// Build the call.
Call call = new Call ();
call.setTargetObjectURI ("urn:QuoteService");
call.setMethodName ("getStockQuote");
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
Vector params = new Vector ();
params.addElement (new Parameter("symbol", String.class, symbol, null));
call.setParams (params);

Response resp = call.invoke (/* router URL */ url, /* actionURI */ "");

// Check the response.
if (resp.generatedFault ())

{
Fault fault = resp.getFault ();

System.err.println("Generated fault: " + fault);
}

else
{
Parameter result = resp.getReturnValue ();
System.out.println (symbol + " last trade: $" + result.getValue ());

}
}

}

The program sets the service URL in the following statement:

String ServiceURL = "http://localhost:8080/soap/servlet/rpcrouter";

This is the URL of our rpcrouter servlet. The client sends a request to this URL, and the
router servlet redirects the request to our POJO providing the service. The underlying imple-
mentation converts the request to a binary request required by our POJO service object. Next,
the program constructs a URL object that points to this service URL, which will be used while
invoking this service:

URL url = new URL (ServiceURL);

CHAPTER 4 ■ APACHE SOAP162

6412_c04_final.qxd 4/14/06 12:43 PM Page 162

Next, the program constructs a Call object for invoking the service:

Call call = new Call ();

We call the setTargetObjectURI method on the call object to set the target URI:

call.setTargetObjectURI ("urn:QuoteService");

Note that this is the ID used while deploying the service. Using this information, the
rpcrouter servlet routes the requests to the appropriate service.

We call the setMethodName method on the call object to set the desired method call on
the web service:

call.setMethodName ("getStockQuote");

The getStockQuote is the web method exposed by our stock quote web service.
We set the encoding style URI for the request by using the predefined constant:

call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

The value of this predefined constant is http://schemas.xmlsoap.org/soap/encoding/.
Next, we construct the parameter to our web method by using following code snippet:

Vector params = new Vector ();
params.addElement (new Parameter("symbol", String.class, symbol, null));
call.setParams (params);

The code constructs the parameters for the method by creating a Vector and adding
Parameter objects to it. Thus, for multiple parameters, you construct the appropriate desired
number of Parameter objects and add them to the Vector object.

Now, you are ready to invoke the call on the web service. You invoke the web service by
calling the invoke method on the call object:

Response resp = call.invoke (/* router URL */ url, /* actionURI */ "");

The invoke method takes two parameters. The first parameter is the router URL, which
is the URL of our rpcrouter servlet. The second parameter is the action URI, which is set to
a null string. This parameter is currently not used and will be implemented in future versions.
The invoke method returns a Response object to the caller. The Response object may contain
valid data returned by the service or a SOAP fault.

The program checks for the exception by using the following code snippet:

if (resp.generatedFault ())
{
Fault fault = resp.getFault ();
System.err.println("Generated fault: " + fault);

}

If the generatedFault method of the Response class returns true, the server has reported
a fault condition. We retrieve the fault information by calling the getFault method on the
response object. The program simply prints the fault information on the user console.

CHAPTER 4 ■ APACHE SOAP 163

6412_c04_final.qxd 4/14/06 12:43 PM Page 163

On success from the server, the program retrieves the returned value and prints it on
the console by using the following code snippet:

Parameter result = resp.getReturnValue ();
System.out.println (symbol + " last trade: $" + result.getValue ());

Running the Client

Compile the client code by using the following command line:

C:\<working folder>Ch04\RPC>javac -d . StockQuoteRequest.java

To run the client, you use a java command in your command line with the appropriate
parameter that represents a stock symbol. The client invocation and its output are shown here:

C:\<working folder>Ch04\RPC>java StockClient.StockQuoteRequest MSFT
MSFT last trade: $25.35

Investigating the RPC Implementation
As seen in both the client and server code examples, the developer does not have to deal
with any SOAP code. The underlying implementation on both sides takes care of mar-
shalling and unmarshalling the SOAP request and response. If you want to look up the
SOAP request and response generated by the underlying implementation, you need to
snoop around the network traffic. Fortunately, Apache’s SOAP implementation provides
a tool for this very purpose.

Running the Network Traffic Interceptor

You invoke the network snooping tool by running the provided Java console application via
the following command line:

C:\ >java org.apache.soap.util.net.TcpTunnelGui 8079 localhost 8080

When you run this program, the screen will appear as shown in Figure 4-5.

CHAPTER 4 ■ APACHE SOAP164

Figure 4-5. Network traffic sniffer

6412_c04_final.qxd 4/14/06 12:43 PM Page 164

■Note When you run the TcpTunnelGui tool, both the panes initially will be blank. Only when you modify and
rerun your client application (as described later in this section) will you see the SOAP request and response
displayed in the two panes, as seen in Figure 4-5.

This TCP Tunnel/Monitor program sets up a server socket to listen to incoming requests.
In our case, we specify 8079 as the port on which this server socket should be listening. When
a request is received, the program dumps the request contents in the edit field on the left side
of the screen. Then it forwards the request to the URL and the port specified by the second
(localhost) and the third (8080) parameters on the program invocation command line. When
the service returns a response, the program dumps the response contents in the second edit
field on the right side of the screen.

Intercepting network traffic by using this tool gives us an opportunity to examine the gener-
ated SOAP request and response. For this, you will need to modify the client application and set
the ServiceURL port to 8079 from the earlier value of 8080. You do this by modifying the source to
the following:

String ServiceURL = "http://localhost:8079/soap/servlet/rpcrouter";

Now, when you run the program (you will need to open another command prompt),
the request will be sent to port 8079 on which the Tunnel/Monitor program is listening.
The Tunnel/Monitor tool then redirects the request to port 8080.

This modified program is provided with the source download at the path <working
folder>\Ch04\RPC\StockQuoteRequestNTS.java. You can compile this program and run it on
a separate command window to see the SOAP request and response displayed in the TCP
Tunnel/Monitor.

Examining SOAP Requests

When you capture the SOAP request by using the monitor tool, you will see the request in the
left panel of the network traffic sniffer window. Listing 4-5 shows this request.

Listing 4-5. SOAP Request with HTTP Header

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost:8079
Content-Type: text/xml;charset=utf-8
Content-Length: 452
SOAPAction: ""
Accept-Encoding: gzip

<?xml version="1.0" encoding="UTF-8" ?>

CHAPTER 4 ■ APACHE SOAP 165

6412_c04_final.qxd 4/14/06 12:43 PM Page 165

<SOAP-ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

>
<SOAP-ENV:Body>
<ns1:getStockQuote
xmlns:ns1="urn:QuoteService"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<symbol xsi:type="xsd:string">
MSFT

</symbol>
</ns1:getStockQuote>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You may want to refer to Chapter 3 to understand the various parts of the SOAP request
shown in Listing 4-5. The SOAP request starts with an xml declaration that is followed by an
Envelope element. The Envelope element encapsulates the Body element and does not contain
an optional header. The SOAP body contains a getStockQuote element; this is our web method.
Note the declaration of urn:QuoteService as an XML namespace. The parameter to the method
is specified by the symbol element of type xsd:string. The element text contents are set to MSFT.

At the top of the XML declaration, note the use of an HTTP header (refer to the “SOAP
over HTTP” section in Chapter 3). The HTTP header contains the required information for
transporting the XML document payload to the destination. We use HTTP post to invoke the
web service. You cannot use HTTP get for this purpose. The request is posted to the rpcrouter
at localhost:8079. From this port, it is redirected to port 8080 by the TCP Tunnel/Monitor tool.

Examining the SOAP Response

After executing the request, the server returns a SOAP response to the client. This response indi-
cates either success of the request’s execution or failure (in which case a SOAP fault is generated
due to an application exception or network error). Listing 4-6 shows a SOAP response document
that results from successful execution of the SOAP request in Listing 4-5. The response appears
in the right-hand panel of the network traffic sniffer window.

Listing 4-6. SOAP Response with HTTP Header

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=8BA93045F0253C0A654A1458D15A3A29; Path=/soap
Accept-Encoding: gzip
Content-Type: text/xml;charset=utf-8
Content-Length: 468
Date: Sun, 11 Sep 2005 07:47:04 GMT
Connection: close

CHAPTER 4 ■ APACHE SOAP166

6412_c04_final.qxd 4/14/06 12:43 PM Page 166

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

>
<SOAP-ENV:Body>
<ns1:getStockQuoteResponse
xmlns:ns1="urn:QuoteService"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

>
<return
xsi:type="xsd:float"

>25.35</return>
</ns1:getStockQuoteResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XML document is identified by the xml declaration as in the previous example.
The Envelope element is the root element and encapsulates the mandatory Body element.
The optional Header element is not used. The Body element contains the return value of
float type. The return value is identified by the return element, whose value is set to
25.35 in the current example.

As in the SOAP request (Listing 4-5), an HTTP header is on top of the XML payload in
the SOAP response (Listing 4-6). The header contains an HTTP 200 response code, which
indicates an OK response. It also contains information on the server that returned the response.
The server has also sent a cookie to the client as indicated by the Set-Cookie element. The
server indicates the date and time of response.

Creating a Document-Style Web Service
Continuing with our stock brokerage example, we will now create a Document-style web serv-
ice. This service will process a purchase order sent by a client as an XML document fragment.
Our web service will receive the purchase order as part of a SOAP request. The web service will
parse the request to extract the XML document fragment containing the purchase order. We
will parse the XML fragment by using the DOM API (discussed in Chapter 2) to extract the order
details. The web service will then generate a confirmation response to the client. The response
will be another XML document fragment.

We will write a client that dispatches the purchase order to our web service. We will use
a messaging API to send the XML document. Listing 4-7 shows the XML code that we will use
as the input document containing the purchase order to be placed on our server.

CHAPTER 4 ■ APACHE SOAP 167

6412_c04_final.qxd 4/14/06 12:43 PM Page 167

Listing 4-7. The po.xml Document (<working folder>\Ch04\Messaging\BrokerApp\po.xml)

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body >
<purchaseOrder xmlns="urn:po-processor"

xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<NYSE:scrip>
MSFT

</NYSE:scrip>
<NYSE:quantity>
1000

</NYSE:quantity>
<NYSE:price>
25.25

</NYSE:price>
</purchaseOrder>
</s:Body>
</s:Envelope>

Developing the Service
Like the RPC-style web service, the development of a document-style web service consists of
two parts: writing the server code and deploying the service. Both tasks are described in this
section.

Writing the Server Code

We will implement the server in a POJO, as we did for the RPC-style web service. In the RPC-style
web service, the Java class was registered with the rpcrouter servlet. In this case we will register
the class with the messagerouter servlet. After receiving the message, the messagerouter servlet
passes it to the registered Java class. Listing 4-8 shows the complete program for the server code.

Listing 4-8. Document-Style Web Service (<working folder>\Ch04\Messaging\BrokerApp\
StockOrderProcessor.java)

package StockBroker;

import java.util.Vector;
import org.w3c.dom.Attr;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.apache.soap.*;
import org.apache.soap.rpc.SOAPContext;

/* The StockOrderProcessor defines a method called purchaseOrder that
* is SOAP-aware
*/

CHAPTER 4 ■ APACHE SOAP168

6412_c04_final.qxd 4/14/06 12:43 PM Page 168

public class StockOrderProcessor {
// purchaseOrder method is a SOAP-method
public void purchaseOrder(Envelope env, SOAPContext reqCtx,

SOAPContext resCtx)
throws Exception {

// Create variable for storing node values
String scripName = null;
String quantity = null;
String price = null;

// Extract SOAP body
Body b = env.getBody();
// Get all the entries in the body and iterate through the list
Vector entries = b.getBodyEntries();
for (int i = 0; i < entries.size(); i++) {
// get the element
Element e = (Element) entries.elementAt(i);
// Read the node name
String nodeName = e.getNodeName();
// Check if it is purchaseOrder
if (nodeName.equals("purchaseOrder")) {
// Iterate through the list of child nodes
NodeList children = e.getChildNodes();
for (int j = 0; j < children.getLength(); j++) {
Node n = children.item(j);
switch (n.getNodeType()) {
// for each type of element node, extract the
// text contents into appropriate variable
case Node.ELEMENT_NODE:
if (n.getNodeName().equals("NYSE:scrip"))
scripName = n.getTextContent();

else if (n.getNodeName().equals("NYSE:quantity"))
quantity = n.getTextContent();

else if (n.getNodeName().equals("NYSE:price"))
price = n.getTextContent();

else
throw new Exception("Unknown element: " + n.getNodeName());

break;
case Node.ATTRIBUTE_NODE:
break;

}
}

}
}

CHAPTER 4 ■ APACHE SOAP 169

6412_c04_final.qxd 4/14/06 12:43 PM Page 169

// Create a buffer for user response
StringBuffer response = new StringBuffer(1024);
// Create SOAP response for the client
response.append(Constants.XML_DECL)
.append("<SOAP-ENV:Envelope ➥

xmlns:SOAP-ENV=\"http://schemas.xmlsoap.org/soap/envelope/\">")
.append("<SOAP-ENV:Body>")
.append("<purchaseOrderResponse xmlns=\"urn:po-processor\">")
.append("<return>")
.append("Thanks, Received Order for ")
.append(scripName)
.append(" quantity= ")
.append(quantity)
.append(" price= " + price)
.append("</return>")
.append("</purchaseOrderResponse>")
.append("</SOAP-ENV:Body>")
.append("</SOAP-ENV:Envelope>");
resCtx.setRootPart(response.toString(), "text/xml");

}
}

We call our class StockOrderProcessor and define a method called purchaseOrder in it:

public class StockOrderProcessor {
// purchaseOrder method is a SOAP-method
public void purchaseOrder(Envelope env, SOAPContext reqCtx,

SOAPContext resCtx)
throws Exception {

The method is SOAP aware, that is, it is invoked with a SOAP request and returns a
SOAP response to the client. The request/response process is achieved through the method
parameters.

We expect that the SOAP request will contain the stock name, desired trade quantity,
and price elements. The purchaseOrder method retrieves the values of these elements from
the request document and stores them into the class variables declared as follows:

// Create variable for storing node values
String scripName = null;
String quantity = null;
String price = null;

The method then extracts the SOAP body by calling the getBody method of the Envelope
class:

// Extract SOAP body
Body b = env.getBody();

CHAPTER 4 ■ APACHE SOAP170

6412_c04_final.qxd 4/14/06 12:43 PM Page 170

The program retrieves all the entries in the body by calling its getBodyEntries method:

// Get all the entries in the body and iterate through the list
Vector entries = b.getBodyEntries();
for (int i = 0; i < entries.size(); i++) {

The getBodyEntries method retrieves a Vector object containing all the entries in the
body. These entries consist of elements and their attributes. The program reads the element
at each node in the vector and retrieves its name:

// get the element
Element e = (Element) entries.elementAt(i);
// Read the node name
String nodeName = e.getNodeName();

If the node name equals purchaseOrder, we obtain its children by calling the
getChildNodes method of the Element class:

if (nodeName.equals("purchaseOrder")) {
// Iterate through the list of child nodes
NodeList children = e.getChildNodes();

The getChildNodes method returns a NodeList object. The NodeList object contains a list
of child nodes. We iterate through this list to retrieve each child node:

for (int j = 0; j < children.getLength(); j++) {
Node n = children.item(j);

A switch statement is used to distinguish between the different node types. The node may
be an element node or an attribute node:

switch (n.getNodeType()) {
case Node.ELEMENT_NODE:

Our request document elements do not contain any attributes. Thus, we process only
element nodes. We check the name of each node and copy the contents into an appropriate
string variable depending on its name:

if (n.getNodeName().equals("NYSE:scrip"))
scripName = n.getTextContent();

else if (n.getNodeName().equals("NYSE:quantity"))
quantity = n.getTextContent();

else if (n.getNodeName().equals("NYSE:price"))
price = n.getTextContent();

else
throw new Exception("Unknown element: " + n.getNodeName());

After the SOAP body is processed, we will generate a SOAP response to the client. For this,
first we declare a buffer for storing the response:

// Create a buffer for user response
StringBuffer response = new StringBuffer(1024);

CHAPTER 4 ■ APACHE SOAP 171

6412_c04_final.qxd 4/14/06 12:43 PM Page 171

Then we build the response by adding appropriate XML statements into the buffer. First,
we add the XML declaration (available in the Constants class) to indicate that the current doc-
ument is an XML document:

// Create SOAP response for the client
response.append(Constants.XML_DECL)

Next, we add the Envelope element indicating that this is going to be a SOAP document:

.append("<SOAP-ENV:Envelope xmlns:SOAP- ➥

ENV=\"http://schemas.xmlsoap.org/soap/envelope/\">")

Next, we add the Body element:

.append("<SOAP-ENV:Body>")

Inside the Body element, we create a purchaseOrderResponse element and another sub-
element, return, within it:

.append("<purchaseOrderResponse xmlns=\"urn:po-processor\">")

.append("<return>")

Within the return element, we add the scripName, quantity, and price details obtained
earlier:

.append("Thanks, Received Order for ")

.append(scripName)

.append(" quantity= ")

.append(quantity)

.append(" price= " + price)

Finally, all the tags are closed in the appropriate order, and the created buffer is copied to
the response context:

.append("</return>")

.append("</purchaseOrderResponse>")

.append("</SOAP-ENV:Body>")

.append("</SOAP-ENV:Envelope>");
resCtx.setRootPart(response.toString(), "text/xml");

This completes our server code. Next, we will compile and deploy this server code on the
Tomcat server.

Deploying the Service

Compile the server code by using a javac compiler and the following command line:

C:\<working folder>\Ch04\Messaging\BrokerApp>javac -d . StockOrderProcessor.java

Copy the generated .class file (<working folder>\Ch04\Messaging\BrokerApp\
StockBroker\StockOrderProcess.class) to the folder <Tomcat Installation Folder>\webapps\
soap\WEB-INF\classes\StockBroker.

CHAPTER 4 ■ APACHE SOAP172

6412_c04_final.qxd 4/14/06 12:43 PM Page 172

You can deploy the server by using the GUI tool discussed earlier or you can deploy it from
the command line. To deploy the server from the command line, use the following command:

C:\<working folder>\Ch04\Messaging\BrokerApp>java org.apache.soap.server.➥

ServiceManagerClient http://localhost:8080/soap/servlet/rpcrouter deploy ➥

DeploymentDescriptor.xml

You will need to set the appropriate Internet Protocol (IP) address and the port number
for your server. You will also need the deployment descriptor shown in Listing 4-9.

Listing 4-9. Deployment Descriptor for Deploying StockOrderProcessor Application (<working
folder>\Ch04\Messaging\BrokerApp\DeploymentDescriptor.xml)

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:po-processor" type="message">

<isd:provider type="java"
scope="Application"
methods="purchaseOrder">

<isd:java class="StockBroker.StockOrderProcessor"
static="false"/>

</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

Note that the service type is declared as message by specifying the value of the type attribute
in the service element. The service provider is declared by the provider element. The attributes
for this element declare the provider type as java. The methods attribute lists all the service meth-
ods separated by a space. In our service class, we provide only one method called purchaseOrder
that we want to expose as a SOAP-aware method.

The name of the Java class is defined in the isd:java element by setting its class attribute.
This is set to our Java class called StockOrderProcessor with its fully qualified name.

The faultListener element declares DOMFaultListener as the Java class that listens to
generated faults.

Our next task is to write a client application that transmits the purchase order XML docu-
ment to the server.

Developing the Client
Developing the client consists of two parts: writing the client code and running it. Both tasks
are described in this section.

Writing the Client Code

Our client is a console-based Java application called SendMessage and is shown in Listing 4-10.

CHAPTER 4 ■ APACHE SOAP 173

6412_c04_final.qxd 4/14/06 12:43 PM Page 173

Listing 4-10. Java Client Application That Consumes Document-Style Web Service (<working
folder>\Ch04\Messaging\BrokerApp\SendMessage.java)

package StockClient;

import java.io.*;
import java.net.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import org.apache.soap.*;
import org.apache.soap.messaging.*;
import org.apache.soap.transport.*;
import org.apache.soap.util.xml.*;

public class SendMessage {
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println

("Usage: java SendMessage SOAP-router-URL envelope-file");
System.exit(1);

}

// Read input XML document file
FileReader reader = new FileReader(args[1]);
// Build document tree
DocumentBuilder builder = XMLParserUtils.getXMLDocBuilder();
Document doc = builder.parse(new InputSource(reader));
if (doc == null) {
throw new SOAPException(Constants.FAULT_CODE_CLIENT, "parsing error");

}
// get SOAP Envelope
Envelope msgEnv = Envelope.unmarshall(doc.getDocumentElement());

// send the message
Message msg = new Message();
msg.send(new URL(args[0]), "urn:action-uri", msgEnv);

// receive response
SOAPTransport st = msg.getSOAPTransport();
BufferedReader br = st.receive();
// Dump the response to user screen
String line;
while ((line = br.readLine()) != null) {
System.out.println(line);

}
}

}

CHAPTER 4 ■ APACHE SOAP174

6412_c04_final.qxd 4/14/06 12:43 PM Page 174

The client application is a command-line Java application called SendMessage:

public class SendMessage {
public static void main (String[] args) throws Exception {

The main method receives two command-line parameters:

if (args.length != 2) {
System.err.println

("Usage: java SendMessage SOAP-router-URL envelope-file");
System.exit (1);

}

The first command-line argument specifies the URL for the messagerouter servlet, and
the second parameter specifies the name of the XML document to be dispatched to the server.

The method reads the input document file by creating a FileReader object on it:

// Read input XML document file
FileReader reader = new FileReader (args[1]);

We create the DocumentBuilder object by calling the getXMLDocBuilder static method of
the XMLParserUtils class. We parse the input document by calling the parse method on the
builder object:

// Build document tree
DocumentBuilder builder = XMLParserUtils.getXMLDocBuilder();
Document doc = builder.parse (new InputSource (reader));

The parse method on its successful completion returns the root node in the Document object.
The program then extracts the envelope from the document by calling the unmarshall method of
the Envelope class:

// get SOAP Envelope
Envelope msgEnv = Envelope.unmarshall (doc.getDocumentElement ());

To send the envelope in a message, we create a Message object:

// send the message
Message msg = new Message ();

The envelope is dispatched in a message by calling the send method on the Message object:

msg.send (new URL (args[0]), "urn:action-uri", msgEnv);

The client application now waits for the server response by obtaining the SOAPTransport
object and calling the receive method on it:

// receive response
SOAPTransport st = msg.getSOAPTransport ();
BufferedReader br = st.receive ();

The receive method is a blocking call that waits until the server response is received.
After receiving the response, the application dumps its contents on the user console:

CHAPTER 4 ■ APACHE SOAP 175

6412_c04_final.qxd 4/14/06 12:43 PM Page 175

// Dump the response to user screen
String line;
while ((line = br.readLine ()) != null) {
System.out.println (line);

}

Running the Client

Compile the application by using the javac compiler. Copy the generated .class file to the
Tomcat installation as described in the previous example.

Run the client application by using the following command line:

C:\<working folder>\Ch04\Messaging\BrokerApp>java StockClient.SendMessage ➥

http://localhost:8080/soap/servlet/messagerouter po.xml

When you run the application successfully, you should see the following output on your
console:

<?xml version='1.0' encoding='UTF-8'?><SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Body><purchaseOrderResponse xmlns=
"urn:po-processor"><return>Thanks, Received Order for

MSFT
quantity=
1000
price=
25.25

</return></purchaseOrderResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

Exception Handling
The Apache SOAP server provides an exception handler for processing any errors that may
occur while invoking the web service. You have seen such exception handlers in our earlier
example, where the exception handler class was listed in the deployment descriptor as the
value of the faultListener element. The code fragment is reproduced here:

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>

The DOMFaultListener class augments the SOAP fault message with additional infor-
mation about the fault. The Apache SOAP server also provides another class called
ExceptionFaultListener. This class wraps the root exception in a parameter.

You can provide your own classes for exception handling to generate application-
specific messages. To illustrate this, we will modify our StockOrderProcessor class from
the previous example to use a custom exception handler. The order processor will check the
order value, and will generate a custom exception message to the client if the value exceeds
a preset credit limit.

To begin, we will write a custom exception handler.

CHAPTER 4 ■ APACHE SOAP176

6412_c04_final.qxd 4/14/06 12:43 PM Page 176

Writing a Custom Exception Handler
A custom exception handler is a Java class that implements the SOAPFaultListener interface.
Listing 4-11 provides the code for the custom handler.

Listing 4-11. Custom Exception Handler (<working folder>\Ch04\Messaging\BrokerAppEx\
BrokerFaultHandler.java)

package StockBroker;

import org.apache.soap.*;
import org.apache.soap.rpc.SOAPContext;
import org.apache.soap.server.*;

/* The custom Fault Handler implements SOAPFaultListener interface
*/

public class BrokerFaultHandler implements SOAPFaultListener
{

/** Creates a new instance of BrokerFaultHandler */
public BrokerFaultHandler() {

}

/* fault method receives SOAPFaultEvent object that may
* be manipulated by the method
*/

public void fault(SOAPFaultEvent evt) {
Fault ft = evt.getFault();
ft.setFaultString("Application Exception: Exceeded Credit Limit");

}
}

As a part of the interface, the BrokerFaultHandler class needs to implement the sole
method fault. The fault method receives an argument type SOAPFaultEvent. After the
BrokerFaultHandler class is registered (this is shown later) with the SOAP server application,
the server instantiates this class at the time of deployment. If there is an error, the fault
method is called with the populated event object sent as a parameter to the fault method.
From this event object, we retrieve the Fault object by calling its getFault method. You may
now use the various methods of the Fault class to get and set its attributes. We use the
setFaultString method to set the value of the fault string to a desired message.

Modifying the StockOrderProcessor Class
You will need to modify the stock order processor class to compute the purchase order value.
If this value exceeds the predetermined limit, a custom exception is generated. Listing 4-12
shows the modification required in the StockOrderProcessor class.

CHAPTER 4 ■ APACHE SOAP 177

6412_c04_final.qxd 4/14/06 12:43 PM Page 177

■Note The modified code is available under the name StockOrderProcessorEx class in the down-
loaded files of this book’s source code (<working folder>\Ch04\Messaging\BrokerAppEx\
StockOrderProcessorEx.java>).

Listing 4-12. Throwing a Custom Exception

case Node.ELEMENT_NODE:
if (n.getNodeName().equals("NYSE:scrip"))
scripName = n.getTextContent();

else if (n.getNodeName().equals("NYSE:quantity"))
quantity = n.getTextContent();

else if (n.getNodeName().equals("NYSE:price"))
{

price = n.getTextContent();
float Amount = Float.parseFloat(price)* Integer.parseInt(quantity);

if (Amount > 1000)
throw new Exception ();

}
else
throw new Exception("Unknown element: " + n.getNodeName());

break;

If the node element equals NYSE:price, we retrieve the price and multiply it by the previously
obtained quantity. We compare the product with a predetermined value, and if it exceeds the
limit, we throw an exception. Note that the exception will be handled by the exception handler
defined in the deployment descriptor.

Our next task is to register the custom exception handler.

Registering a Custom Exception Handler
The exception handlers are registered in the deployment descriptor. Listing 4-13 provides the
deployment descriptor for the application.

■Note This deployment descriptor is available in the file DeploymentDescriptorEx.xml in the down-
loaded files of this book’s source code (<working folder>\Ch04\Messaging\BrokerAppEx\
DeploymentDescriptor.xml>.

CHAPTER 4 ■ APACHE SOAP178

6412_c04_final.qxd 4/14/06 12:43 PM Page 178

Listing 4-13. Deployment Descriptor (<working folder\Ch04\Messaging\BrokerAppEx\
DeploymentDescriptor.xml)

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:po-processorEx" type="message">

<isd:provider type="java"
scope="Application"
methods="purchaseOrder">

<isd:java class="StockBroker.StockOrderProcessorEx"
static="false"/>

</isd:provider>
<isd:faultListener>
StockBroker.BrokerFaultHandler

</isd:faultListener>
</isd:service>

The value for the faultListener element specifies the class to be used as a fault handler.
Note that you can list multiple faultListeners in the deployment descriptor. These listeners
will be called in the order they are listed.

Deploying the Application
Compile the source by using the following commands:

C:\<working folder>\Ch04\Messaging\BrokerAppEx>javac -d . BrokerFaultHandler.java
C:\<working folder>\Ch04\Messaging\BrokerAppEx>javac -d . StockOrderProcessorEx.java

Copy the generated .class files to the folder <Tomcat Installation Folder>\webapps\
soap\WEB-INF\classes\StockBroker.

To deploy the application on Tomcat, use the following command line:

C:\<working folder>\Ch04\Messaging\BrokerAppEx>java ➥

org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter deploy DeploymentDescriptorEx.xml

You can verify that the application is deployed by using the following command:

C:\<working folder>\Ch04\Messaging\BrokerAppEx>java ➥

org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter list

Be sure to use the appropriate port number for your installation.

Running the Application
You can run the application by using the following command line:

C:\<working folder>\Ch04\Messaging\BrokerAppEx>java StockClient.SendMessage ➥

http://localhost:8080/soap/servlet/messagerouter poEx.xml

CHAPTER 4 ■ APACHE SOAP 179

6412_c04_final.qxd 4/14/06 12:43 PM Page 179

The SendMessage client in the command line is the same as the one described in the ear-
lier section. The poEx.xml (available in the downloaded source) that will cause an exception is
given in Listing 4-14.

Listing 4-14. poEx.xml That Causes an Exception During Processing (<working folder>\Ch04\
Messaging\BrokerAppEx\poEx.xml)

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body >
<purchaseOrder xmlns="urn:po-processorEx"

xmlns:NYSE="http://www.example.com/NYSE/Stocks/Tradeorder">
<NYSE:scrip>
MSFT

</NYSE:scrip>
<NYSE:quantity>
1000

</NYSE:quantity>
<NYSE:price>
25.25

</NYSE:price>
</purchaseOrder>
</s:Body>
</s:Envelope>

During processing of the poEx.xml document, the net order is computed as 1,000 multiplied
by 25.25. This exceeds the predefined value of 1,000 and thus causes an exception generation.
The output produced by running the client application is given here:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:x
sd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-ENV="http://schemas.xmlsoap.org
/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Application Exception: Exceeded Credit Limit</faultstring>
<faultactor>/soap/servlet/messagerouter</faultactor>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that the fault string element contains the application-specific message. To appreciate
the importance of custom exception handling, replace the fault handler class in the deployment
descriptor with the org.apache.soap.server.DOMFaultListener class and run the application
one more time. This time you will see a message on the screen with a long stack trace describing
the error.

CHAPTER 4 ■ APACHE SOAP180

6412_c04_final.qxd 4/14/06 12:43 PM Page 180

Such types of error screens do the end user little good. Using the custom exception handlers,
you will be able to generate messages that are application-domain specific and more meaningful
to the end user.

Data Type Mappings
When you invoke a web service, you may occasionally want to send or receive user-defined
data types in addition to the predefined data types. Note that any data type must be marshalled/
unmarshalled to an XML data type. Apache SOAP defines mappings for several data types. In
addition to primitive data types such as int and float, the list also contains data types such as
GregorianCalendar, Date, Vector, Hashtable, TreeMap, and List. The list is quite exhaustive, and
you can refer to Apache SOAP documentation for the complete list.6

Creating mappings for user-defined data types is not a complex process. Continuing with
our example of a stock brokerage, say we want to offer the client a web service that returns the
latest stock information for a desired stock code. The stock information consists of today’s high
price, today’s low price, and the current bid and offer prices. The user sends the stock code to
the service as a parameter and expects the four details in the response. One way to implement
this would be to send the four values individually in the response. However, if your brokerage
application has a built-in-class, say StockInfo, that contains all the required information, it
would be easy to serialize an instance of this class in the response to the client.

Creating a User-Defined Data Type
You can write your StockInfo class representing the user-defined data type as shown in
Listing 4-15.

Listing 4-15. StockInfo Class (<working folder>\Ch04\StockInfoService\StockInfo.java)

package stockinfoservice;

public class StockInfo {
private float TodayHigh;
private float TodayLow;
private float CurrBid;
private float CurrOffer;

public StockInfo() {
}

/** Creates a new instance of StockInfo */
public StockInfo(String Symbol) {

if (Symbol.equals("IBM")) {
setTodayHigh(25);
setTodayLow(20);

CHAPTER 4 ■ APACHE SOAP 181

6. Refer to “Creating Type Mappings” in the Apache SOAP v2.3.1 documentation that is the part of the
SOAP installation.

6412_c04_final.qxd 4/14/06 12:43 PM Page 181

setCurrBid(22);
setCurrOffer(23);

} else if (Symbol.equals("MSFT")) {
setTodayHigh(55);
setTodayLow(50);
setCurrBid(52);
setCurrOffer(53);

} else {
setTodayHigh(15);
setTodayLow(10);
setCurrBid(12);
setCurrOffer(13);

}
}
public float getTodayHigh() {

return TodayHigh;
}
public void setTodayHigh(float TodayHigh) {

this.TodayHigh = TodayHigh;
}
public float getTodayLow() {

return TodayLow;
}
public void setTodayLow(float TodayLow) {

this.TodayLow = TodayLow;
}
public float getCurrBid() {

return CurrBid;
}
public void setCurrBid(float CurrBid) {

this.CurrBid = CurrBid;
}
public float getCurrOffer() {

return CurrOffer;
}
public void setCurrOffer(float CurrOffer) {

this.CurrOffer = CurrOffer;
}

}

The StockInfo class follows the JavaBeans convention and defines its members as private
and provides public getter/setter (accessor/mutator) methods. We define two constructors.
The constructor that takes a string argument initializes the object state depending on the value
of its argument. We have used hard-coded values for the stock. In real-life situations, you would
pick up the values from a real-time database. You need to define a no-argument constructor
because it is required by the web service that instantiates this class.

CHAPTER 4 ■ APACHE SOAP182

6412_c04_final.qxd 4/14/06 12:43 PM Page 182

Web Service Implementation
Your web service implementation provides a method that can be invoked by a client to obtain
the stock information provided by the StockInfo class in Listing 4-15. Listing 4-16 provides the
server code that instantiates the StockInfo class.

Listing 4-16. The Stock Info Server That Uses the StockInfo Class (<working folder>\Ch04\
StockInfoService\StockInfoServer.java)

package stockinfoservice;

public class StockInfoServer {

/** Creates a new instance of StockInfoServer */
public StockInfoServer() {
}

public StockInfo getStockInfo (String Symbol)
{

StockInfo info = new StockInfo(Symbol);
return info;

}
}

The getStockInfo method simply constructs a StockInfo object and returns it to the caller.
The underlying runtime marshals this data to the appropriate XML data types.

Modifying the Deployment Descriptor
You will need to make a few modifications to your deployment descriptor before deploying the
web service. Listing 4-17 shows the modified deployment descriptor.

Listing 4-17. Deployment Descriptor for Mapping Java Objects (<working folder>\Ch04\
StockInfoService\DeploymentDescriptor.xml)

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:QuoteService">

<isd:provider type="java"
scope="Application"
methods="getStockInfo">

<isd:java class="stockinfoservice.StockInfoServer" static="false"/>
</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>

CHAPTER 4 ■ APACHE SOAP 183

6412_c04_final.qxd 4/14/06 12:43 PM Page 183

<isd:mappings>
<isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:x="urn:xml-stockinfoserver-demo" qname="x:info"
javaType="stockinfoservice.StockInfo"
java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>

</isd:mappings>

</isd:service>

You will need to add the mappings element as shown in Listing 4-17 to the deployment
descriptor. The mappings element is a subelement of the service element. The mappings ele-
ment may contain multiple mappings, each defined by using the map subelement.

The map element defines the encoding style by using its encodingStyle attribute. The
qualified name for the XML data type is defined by using the qname attribute. The class to be
marshalled/unmarshalled is defined by using the javaType attribute.

The map element defines how to serialize this class and uses two attributes that define the
classes for serialization and deserialization. The java2XMLClassName attribute defines the class
to be used for converting from Java to an XML data type. The BeanSerializer class provides
this functionality. The xml2JavaClassName attribute provides the reverse mapping. Again, the
Apache-provided BeanSerializer class provides this functionality. If you need custom func-
tionality while serializing or deserializing, you can create your own classes and specify their
names in these two attribute values.

Deploying the Service
Compile the two Java files in Listing 4-16 and Listing 4-17 by using the following commands:

C:\<working folder>\Ch04\StockInfoService\javac -d . StockInfo.java
C:\<working folder>\Ch04\StockInfoService\javac -d . StockInfoServer.java

Copy the generated .class files to the folder <Tomcat Installation Folder>\webapps\
soap\WEB-INF\classes\stockinfoservice.

You are now ready to deploy the service. You can use the GUI tool or the following com-
mand line to deploy the service:

C:\<working folder>\Ch04\StockInfoService java ➥

org.apache.soap.server.ServiceManagerClient ➥

http://localhost:8080/soap/servlet/rpcrouter deploy DeploymentDescriptor.xml

This command is the same as the previous commands you have used while deploying
web services.

After the service is deployed, our next task is to write the client that invokes this service.

Writing the Client
You will write a console-based Java application that invokes the web service. Listing 4-18 gives
the source code for the client application.

CHAPTER 4 ■ APACHE SOAP184

6412_c04_final.qxd 4/14/06 12:43 PM Page 184

Listing 4-18. Client Application That Uses the StockInfo Service (C:\<working folder>\Ch04\
StockInfoService\InvestorClient.java)

package stockinfoservice;

// import required classes

public class InvestorClient {

public static void main(String[] args) throws Exception {

if (args.length != 2) {
System.err.println("Usage:");
System.err.println(
" java stockinfoservice.InvestorClient SOAP-router-URL StockSymbol");
System.exit(1);

}

String encodingStyleURI = Constants.NS_URI_SOAP_ENC;
URL url = new URL(args[0]);
String StockSymbol = args[1];
SOAPMappingRegistry smr = new SOAPMappingRegistry();
BeanSerializer beanSer = new BeanSerializer();

// Map the types.
smr.mapTypes(Constants.NS_URI_SOAP_ENC,
new QName("urn:xml-stockinfoserver-demo", "info"),
StockInfo.class, beanSer, beanSer);

// Build the call.
Call call = new Call();

call.setSOAPMappingRegistry(smr);
call.setTargetObjectURI("urn:QuoteService");
call.setMethodName("getStockInfo");
call.setEncodingStyleURI(encodingStyleURI);

Vector params = new Vector();

params.addElement(new Parameter("Symbol",
String.class,
StockSymbol, null));

call.setParams(params);

// Invoke the call.
Response resp;

CHAPTER 4 ■ APACHE SOAP 185

6412_c04_final.qxd 4/14/06 12:43 PM Page 185

try {
resp = call.invoke(url, "");

} catch (SOAPException e) {
System.err.println("Caught SOAPException (" +
e.getFaultCode() + "): " +
e.getMessage());

return;
}

// Check the response.
if (!resp.generatedFault()) {
Parameter ret = resp.getReturnValue();
stockinfoservice.StockInfo info =
(stockinfoservice.StockInfo) ret.getValue();
System.out.println ("Stock Info for " + StockSymbol);
System.out.println("Today High: " + info.getTodayHigh());
System.out.println("Today Low: " + info.getTodayLow());
System.out.println("Current Bid: " + info.getCurrBid());
System.out.println("Current Offer: " + info.getCurrOffer());

} else {
Fault fault = resp.getFault();

System.err.println("Generated fault: " + fault);
}

}
}

In the main method of the class, create instances of the SOAPMappingRegistry and
BeanSerializer classes as shown here:

SOAPMappingRegistry smr = new SOAPMappingRegistry();
BeanSerializer beanSer = new BeanSerializer();

Next, you will need to map the data types. This is done by calling the mapTypes method
of the SOAPMappingRegistry class:

// Map the types.
smr.mapTypes(Constants.NS_URI_SOAP_ENC,

new QName("urn:xml-stockinfoserver-demo", "info"),
StockInfo.class, beanSer, beanSer);

The mapTypes method accepts the encoding style as its first parameter. The second parame-
ter specifies the XML data type that is to be marshalled and unmarshalled. The third parameter
specifies the Java class name to which the XML data type is marshalled and unmarshalled. The
fourth parameter specifies the serialization class that implements this marshalling, and the fifth
parameter specifies the class to be used for reverse mapping.

After you register the mappings in the mapping registry, your next task is to construct
a call to the server:

Call call = new Call();

CHAPTER 4 ■ APACHE SOAP186

6412_c04_final.qxd 4/14/06 12:43 PM Page 186

You need to specify the mapping registry that will be used by the call:

call.setSOAPMappingRegistry(smr);

On the call object, you set the URN of the web service, the method to be called, and the
encoding style URI:

call.setTargetObjectURI("urn:StockInfoServer");
call.setMethodName("getStockInfo");
call.setEncodingStyleURI(encodingStyleURI);

Next, you need to construct and set the method parameters:

Vector params = new Vector();
params.addElement(new Parameter("Symbol",
String.class,
StockSymbol, null));

call.setParams(params);

In our case, we set the stock code as the only parameter to the method. Note that our web
service implementation uses the hard-coded values for two stock symbols, IBM and MSFT. For
other stock symbols, it returns another set of hard-coded values. The service implementation
can be modified to retrieve the real-time information for the requested stock code and return
its value to the client. However, to keep things simple enough so that we keep our focus on map-
ping user-defined data types, I have avoided this additional coding.

After constructing the call object, we call its invoke method by passing the URL of the
web service as a parameter:

Response resp;
String url = "http://localhost:8080/soap/servlet/rpcrouter";

try
{
resp = call.invoke(url, "");

}
catch (SOAPException e)
{

System.err.println("Caught SOAPException (" +
e.getFaultCode() + "): " +
e.getMessage());

return;
}

The invoke method returns a response to the client. Any exceptions are caught in the
SOAPException catch block.

The program then checks whether the response contains a fault by calling its generated-
Fault method:

CHAPTER 4 ■ APACHE SOAP 187

6412_c04_final.qxd 4/14/06 12:43 PM Page 187

// Check the response.
if (!resp.generatedFault())
{
Parameter ret = resp.getReturnValue();
stockinfoservice.StockInfo info =
(stockinfoservice.StockInfo)ret.getValue();

System.out.println ("Stock Info for " + StockSymbol);
System.out.println("Today High: " + info.getTodayHigh());
System.out.println("Today Low: " + info.getTodayLow());
System.out.println("Current Bid: " + info.getCurrBid());
System.out.println("Current Offer: " + info.getCurrOffer());

}
else
{
Fault fault = resp.getFault();
System.err.println("Generated fault: " + fault);

}

If the program finds no fault, the program retrieves the response’s returned value and
prints it on the user console. Note how the return value is mapped to the StockInfo class.
If the program finds a fault, the program prints the fault details on the console.

Examining the SOAP Request and Response
Use the SOAP message interceptor program described earlier to study the mappings between
a Java class and XML in the SOAP request and response. You will need to change the service
request port to 8079, where the interceptor is configured to listen to input requests.

The SOAP request is given in the following screen output:

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost:8079
Content-Type: text/xml;charset=utf-8
Content-Length: 450
SOAPAction: ""
Accept-Encoding: gzip

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<ns1:getStockInfo xmlns:ns1="urn:QuoteService"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<Symbol xsi:type="xsd:string">MSFT</Symbol>
</ns1:getStockInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

CHAPTER 4 ■ APACHE SOAP188

6412_c04_final.qxd 4/14/06 12:43 PM Page 188

Note how the getStockInfo method call is embedded in the SOAP body. Also, notice the
presence of the xsd:string type parameter passed to the method.

When the server executes the request successfully, it returns a SOAP response to the client.
The SOAP response is given here:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=46E561B2B240F52681DDB0C90D4D8481; Path=/soap
Accept-Encoding: gzip
Content-Type: text/xml;charset=utf-8
Content-Length: 692
Date: Sun, 08 Jan 2006 16:13:19 GMT
Connection: close

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<ns1:getStockInfoResponse xmlns:ns1="urn:QuoteService"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="urn:xml-stockinfoserver-demo" xsi:type="ns2:info">
<currBid xsi:type="xsd:float">52.0</currBid>
<currOffer xsi:type="xsd:float">53.0</currOffer>
<todayHigh xsi:type="xsd:float">55.0</todayHigh>
<todayLow xsi:type="xsd:float">50.0</todayLow>
</return>
</ns1:getStockInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note the presence of several xsd:float elements that map to the individual data members
of our StockInfo class.

The mappings for both the SOAP request and response are performed by the Apache-
provided BeanSerializer class.

Deployment Descriptors
You have seen the use of deployment descriptors in the previous examples. You will now learn
about their structure and purpose.

Purpose of the Deployment Descriptor
A deployment descriptor provides information on the runtime services required by the running
application with the help of the service element. The service element describes the URN for
the service, the method and the class name of the POJO class, and more. Note that the service

CHAPTER 4 ■ APACHE SOAP 189

6412_c04_final.qxd 4/14/06 12:43 PM Page 189

can be provided not only by a POJO, but also by EJBs or by a service routine written in a script-
ing language. The scripting languages supported by the Bean Scripting Framework (BSF) are
described later in this chapter. The contents of the deployment descriptor vary depending
on the artifact that is exposed via SOAP.

Deployment Descriptor Structure
The deployment descriptor is basically an XML document. This XML document has a root
element called service, which is defined in the http://xml.apache.org/xml-soap/deployment
namespace:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:QuoteService">

...
</isd:service>

The service element also contains an id attribute that defines the URN for the service. When
the client invokes the service by using the specified URN, the SOAP server will redirect the call
to the provider defined in the service element. How to define this provider is discussed next.

Depending on the artifact that is exposed via SOAP, we get three versions of the deploy-
ment descriptor:

• Standard Java class deployment descriptor

• EJB deployment descriptor

• BSF script deployment descriptor

Standard Java Class Deployment Descriptor

You have used the standard Java class deployment descriptors in the previous examples.
To describe the structure, I have reproduced in Listing 4-19 a descriptor from Listing 4-3.

Listing 4-19. Structure of a Deployment Descriptor for a POJO

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:QuoteService">

<isd:provider type="java"
scope="Application"
methods="getStockQuote">

<isd:java
class="StockBroker.StockQuoteService"
static="false"/>

</isd:provider>
<isd:faultListener>
org.apache.soap.server.DOMFaultListener

</isd:faultListener>
</isd:service>

The provider subelement provides provider details such as its type, scope, and methods.
The code in bold shows the provider used by the service. The type attribute specifies that the

CHAPTER 4 ■ APACHE SOAP190

6412_c04_final.qxd 4/14/06 12:43 PM Page 190

provider is a Java class. The scope attribute specifies the lifetime of the Java object. This can
be Request, Session, or Application. The scope of the object (lifespan) will be the scope as
indicated by one of these values. The methods attribute defines the methods of the class that
are exposed as SOAP-aware methods. If more than one method needs to be exposed, these
will be separated by a space.

The java element defines the fully qualified path of the Java class that provides the service.
The fully qualified name is specified as the value for the class attribute. The static attribute
specifies whether the class methods are static.

The faultListener element specifies the class to be used for processing faults.

EJB Deployment Descriptor

Listing 4-20 provides an example of an EJB deployment descriptor.

Listing 4-20. Deployment Descriptor for EJB Provider

<?xml version="1.0"?>
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

id="urn:testprovider">
<isd:provider type="org.apache.soap.providers.StatelessEJBProvider"

scope="Application"
methods="create">

<isd:java class="samples/MyHelloService"/>
<isd:option key="FullHomeInterfaceName" value="samples.MyHelloServiceHome" />
<isd:option key="ContextProviderURL" value="iiop://localhost:9000" />
<isd:option key="FullContextFactoryName"

value="com.ibm.ejs.ns.jndi.CNInitialContextFactory" />
</isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener
</isd:faultListener>

</isd:service>

The id attribute of the service element defines a unique identifier that is used by the SOAP
server to redirect the call to the appropriate service provider. The type of provider in Listing 4-20
is StatelessEJBProvider. This indicates that the service is provided by a stateless EJB. Note that
an EJB can be a stateless bean, a stateful bean, or an entity bean. If the service is provided by a
stateful EJB, you specify the type as StatefulEJBProvider. If the service is provided by an entity
bean (both bean-managed and container-managed persistence beans), you specify the type as
EntityEJBProvider.

Because the life cycle of an EJB is controlled by the EJB container, the only allowed value
for the scope attribute is Application. The value for the methods attribute lists all the SOAP-
aware bean methods.

The java element defines the name of the bean class as a value of its class attribute. This
specifies the local or the remote interface of your EJB.

The option element is specified more than once. The key attribute differentiates between
multiple occurrences of the option element. The key value of FullHomeInterfaceName specifies
the fully qualified name of your EJB home class. The ContextProviderURL key specifies the

CHAPTER 4 ■ APACHE SOAP 191

6412_c04_final.qxd 4/14/06 12:43 PM Page 191

Internet InterOperable Protocol (IIOP) listener on your EJB server. Note that the communica-
tion between the EJB client and the server is done using IIOP. You will specify the URL of your
EJB’s IIOP listener as the value of the value attribute. You will need to specify both the IP and
the port number while specifying the IIOP listener. The key value of FullContextFactoryName
specifies the name of the initial context factory class. This class is specific to the application
server provider and thus varies depending on the application server you are using.

BSF Script Deployment Descriptor

Listing 4-21 shows the deployment descriptor for a web service provided by a method written
in a scripting language.

Listing 4-21. Deployment Descriptor for BSF Script Language Service

<?xml version="1.0"?>

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:soap-calculator">

<isd:provider type="script"
scope="Application"
methods="ADD SUBTRACT MULTIPLY DIVIDE">

<isd:script language="javascript">
function ADD (x, y) {
return x + y;

}

function SUBTRACT (x, y) {
return x - y;

}

function MULTIPY (x, y) {
return x * y;

}

function DIVIDE (x, y) {
return x / y;

}
</isd:script>

</isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener
</isd:faultListener>

</isd:service>

In Listing 4-21, the service provider type is defined as script. The scope can be Request,
Session, or Application as in the case of the POJO class. The methods attribute lists all the
exposed methods separated by a space character. The script element defines these various
methods. The language attribute specifies the script language. Listing 4-21 defines four
JavaScript methods.

CHAPTER 4 ■ APACHE SOAP192

6412_c04_final.qxd 4/14/06 12:43 PM Page 192

Specifying Fault Listeners
You have learned how to create your own fault listeners for providing custom exception
handling. Such fault listeners are registered in the deployment descriptor by using the
faultListener element. In the faultListener element, you simply specify the fully qualified
Java class name that receives fault events. You can list multiple fault listeners by using the
faultListener element. Such fault listeners will be invoked in the order they are specified.

Specifying Type Mappings
If you want to map Java class types to XML types, you specify the type mappings in the
deployment descriptor. The deployment descriptor provides an element called mappings for
this purpose. Inside the mappings, you can include multiple occurrences of the map element.
Each map element maps a Java class type to an XML data type. The map element defines attrib-
utes for specifying a Java class type, an XML data type, and classes used for serializing and
deserializing data. You have studied how to specify such type mappings in the earlier section.

Summary
SOAP has been widely accepted as a standard of communication in distributed computing.
Apache SOAP provides an important implementation of this SOAP standard. Web services
use SOAP for communication between client and server. SOAP is XML based. Thus, a client
requesting a service needs to create an XML-based SOAP request and receives an XML-based
SOAP response from the server. On the server side, the server must be capable of interpreting
a SOAP request and generating a SOAP response.

The Apache SOAP implementation provides the entire framework for generating SOAP
requests and responses and parsing SOAP messages. This chapter discussed the architecture
of the SOAP engine. The SOAP engine uses two servlets, one for RPC-type calls and another
one for Document-type calls. Both servlets use configuration files by way of a deployment
descriptor to redirect the calls to the appropriate server objects.

This chapter covered the development and deployment of both RPC-style and Document-
style web services based on the Apache SOAP implementation. Both server and client applica-
tions were developed. The application may generate runtime errors. The chapter discussed
how to handle the exceptions by using provided exception handlers or creating custom excep-
tion handlers.

When you invoke a web service, you may need to send a few parameters to the service.
The mapping between the standard Java types and XML data types is desired. The Apache
SOAP implementation provides such mappings for many standard data types and allows the
developer to extend these mappings to other user-defined Java data types. The chapter cov-
ered how to map a user-created Java data type to an XML data type.

In a web service implementation, the service object can be a POJO, EJB, or a script code.
You specify the type of service object in a deployment descriptor. The deployment descriptor
defines the mapping between the service URN and the service object. The deployment descrip-
tor also allows you to declare the custom exception handlers and type mappings. This chapter
covered the structure and use of deployment descriptors.

CHAPTER 4 ■ APACHE SOAP 193

6412_c04_final.qxd 4/14/06 12:43 PM Page 193

6412_c04_final.qxd 4/14/06 12:43 PM Page 194

XSLT and Apache Xalan

In the preceding two chapters, you studied web services architecture and the Apache SOAP
implementation that helps in developing applications based on that architecture. Because
web services make your application globally available, you will need to internationalize your
applications so that people in different parts of the world can use them.

Your application delivers information to users through documents. So far you have writ-
ten such documents in English. However, these documents must be translated into a language
of the user’s choice before that user can understand them. You need a translator to do this.
Similarly, an XML document that is read by different devices must be translated to the device-
specific language before that device can understand its contents.

XML provides an excellent means of data transport and can be easily interpreted by
humans. However, interpretation may not always be easy for applications, machines, and
devices that must work with XML documents. In other words, XML is not easily discernible
by other software applications and electronic devices.

In this chapter, you will learn how to transform an XML document from one form to
another. Specifically, you will learn the following:

• Transformation changes a given XML document from one format to another. You will
learn about these transformations and why they are needed.

• XSL is the language used for transformation. You will learn how to perform trans-
formations using the Apache implementation of XSL.

• The transformation of a document requires searching the nodes in that document
and converting them into another node. The nodes in a given XML document are
located by using XPath specifications. This chapter provides a quick introduction
to XPath.

• You will learn how XML documents are processed using instructions specified in
an XSLT document and you will learn the structure of XSLT documents.

• Apache provides a full implementation of XSL and XPath specifications. This Apache
project is called Xalan. You will use Xalan in this chapter to learn transformations.

• XSL transformations can be performed in either the client or the server applications.
We will develop both client-side and server-side applications for transformations.

• A given XML document need not be fully transformed using XSL. You may transform
only part of the document. You will learn how to perform such partial transformations.

195

C H A P T E R 5

■ ■ ■

6412_c05_final.qxd 4/14/06 12:42 PM Page 195

• A series of transformations can be cascaded. Such transformations are based on the
push model or pull model. You will create applications based on both models.

• Translets provide a sort of precompilation on transformations. In this chapter, you will
learn how to create and use translets.

What Is Transformation?
The process of converting an XML document from one form into another is called transfor-
mation. Transformation can also result in an XML document itself conforming to a different
schema than the original document’s schema. The transformed document can then be fur-
ther translated into device-specific commands so its contents can be rendered on the desired
device. Thus, you can visualize transformation as a two-step process:

1. Transforming a given document into another XML document that can be interpreted
by a particular device

2. Formatting the contents of the transformed document to render it on the device

Accordingly, there are two specifications: The first is called Extensible Stylesheet Language
(XSL), and the second is called XSL-Formatting Objects (XSL-FO). You will study XSL in this
chapter and XSL-FO in the next chapter.

Need for Transformation
Consider a web browser that can render an HTML document. If you input an XML document,
what is displayed? The browser renders the unformatted document as is, because the browser
is not capable of making any sense of the XML tags as it would with HTML tags.

We would prefer that the browser could render the document contents in a format that is
more appealing to a human reader. For example, an XML document may contain a list of items.
Presenting a human reader with a tabular format of this data makes more sense to the reader
than presenting the original XML document in its core format containing several tags.

Consider another example in which XML is used to transport data from a front-end appli-
cation to a back-end storage device such as Oracle Database, MySQL, or Microsoft SQL Server.
Because the database engine requires input data in SQL format, you’ll need to generate appro-
priate SQL statements. Thus, the XML document that contains the data must be converted into
the corresponding SQL dialect before it can be used meaningfully by the database engine.

Consider yet another example of a business-to-business (B2B) scenario. Imagine that one
partner company places a purchase order with another partner company. The purchase order
is an XML document that adheres to the schema specifications of the first partner. However,
the other partner does not follow the same schema definition. Thus, the purchase order docu-
ment must undergo a transformation to another form that conforms to the schema definition
of the receiving partner.

From these discussions, you can easily understand the need to devise a methodology for
transforming an XML document to another XML format. The language used for defining
transformations is called XSL.

The Apache Xalan project provides implementation for XML transformations based on XSL.

CHAPTER 5 ■ XSLT AND APACHE XALAN196

6412_c05_final.qxd 4/14/06 12:42 PM Page 196

Apache Xalan Project
The Apache Xalan project provides a robust Java processor for transforming XML documents
using XSL. This open source project is a result of contributions from IBM, Lotus, Oracle, Sun
Microsystems, and others. Apache Xalan was initially a subproject of the Apache XML project
but in October 2004 became an independent project in its own right. This was done to facili-
tate collaborative development for providing commercial-quality, full-featured support for XSLT
on a wide variety of platforms. There are currently two subprojects under the Xalan project:
Xalan-C++ and Xalan-Java. Both are compliant to XSLT (1.0) and XPath (1.0) specifications
controlled by the W3C. You will be using Xalan-Java in this book.

The Xalan-Java project provides an XSLT processor, a command-line utility that trans-
forms a specified XML document by using a stylesheet document specified on the command
line. The processor libraries can also be invoked through your Java application code.

To use Xalan, you first need to download it from the Apache site and install it on your
machine. This process is described next.

Downloading Xalan
You can download the Xalan distributions from the following URL:

http://xalan.apache.org/

The site contains the following binary distributions:

• xalan-j_2_7_0-bin.zip (for Windows) or xalan-j_2_7_0-bin.tar.gz (for Linux)

• xalan-j_2_7_0-bin-2jars.zip (for Windows) or xalan-j_2_7_0-bin-2jars.tar.gz
(for Linux)

Both contain the same distribution but are packaged differently. The first one contains
a Xalan interpretive processor, a compiled processor, and the runtime support packages in a
single JAR file called xalan.jar. The second one contains the Xalan interpretive processor in
xalan.jar, and the compiled processor and the runtime support packages in xsltc.jar. There
is no advantage of one over the other. Both are identical, and you can download either one.
You will need to add the corresponding JAR files (based on which version you download) in
your classpath.

If you are interested in the implementation details, you can download the complete
source code from the Apache download site.

Installing Xalan
Installing Xalan is as simple as most of the other Apache software installations. Just unzip the
previously downloaded file to a desired folder. That folder will then contain many JAR files
that you need to add to your classpath environment variable. Minimally, you need to add the
following files to your classpath:

• xalan.jar or (xalan.jar and xsltc.jar): Processor and runtime libraries.

• serializer.jar: Contains serialization classes that are used by the Xalan processor.

CHAPTER 5 ■ XSLT AND APACHE XALAN 197

6412_c05_final.qxd 4/14/06 12:42 PM Page 197

• xml-apis.jar: Implementation of Java API for XML Parsing (JAXP) APIs.

• xercesImpl.jar: Implementation of XML parsers. You used this file in Chapter 2 for
parsing XML documents.

After this is done, you are ready to test the Xalan installation.

Testing the Installation
The Xalan installation package contains Java source files for several sample programs located
in the samples folder under your installation directory. The samples folder also contains a
xalansamples.jar file that contains some of the compiled sources. Include this file in your
classpath or copy it into the webapps folder of your Tomcat installation. If you are using some
other application server or a servlet engine, follow the appropriate instructions to install the
application JAR.

To test your installation, you can try compiling the SimpleTransform program. This is
located in the <xalan installation folder>\samples\SimpleTransform folder. Compile the
SimpleTransform.java file by using the following command line:

C:\<xalan installation folder>\samples\SimpleTransform>javac SimpleTransform.java

Run the program by using the following java command line. On success, you will see the
following output:

C:\xalan-j_2_7_0\samples\SimpleTransform>java SimpleTransform
************* The result is in birds.out *************

The SimpleTransform application takes birds.xml as the input document and applies the
transformation commands stored in the birds.xsl file to create as output the birds.out file.
Both the birds.xml and birds.xsl files are in the same folder.

Alternatively, you can test the installation by running the command-line transformation
processor as shown here:

C:\<xalan installation folder>\samples\SimpleTransform>java ➥

org.apache.xalan.xslt.Process -IN birds.xml -XSL birds.xsl -OUT birds.out

This creates the birds.out file in your working folder. If you are curious to see the trans-
formation results, open the birds.out and birds.xml files in your favorite text editor. You can
even examine birds.xsl to look at XSL commands used for performing transformations.

The Extensible Stylesheet Language (XSL)
Now that you understand the need for transformation and have successfully installed the
required software, you are ready to try some real-life transformations and develop programs
to do these transformations.

You are probably familiar with Cascading Style Sheets (CSS), which grant the user consid-
erable control over how HTML elements are rendered. CSS helps in rendering HTML contents
in a nicely formatted document. CSS is not XML based. XSL is another standard similar to CSS,
but it is XML based.

CHAPTER 5 ■ XSLT AND APACHE XALAN198

6412_c05_final.qxd 4/14/06 12:42 PM Page 198

As mentioned earlier, XSL is a language used for transformation. Such transformations
usually consist of two parts: converting a given document from one XML form to another and
formatting the resultant output so it is suitable for rendering on a desired device. Though XSL
was created with the intention of transforming and formatting the output, its purpose soon
evolved into two distinct specifications in order to better separate its transformation and for-
matting functionalities. These two specifications are as follows:

• XSLT1 (XSL Transformations): a specification for transforming XML documents

• XSL-FO (XSL Formatting Objects): a specification for formatting documents

As stated earlier, this chapter introduces XSLT, while the next introduces XSL-FO. More
specifically, the purpose of this chapter is to introduce XSLT in conjunction with the Apache
implementation of XSLT (Xalan project) that defines several classes and utilities for trans-
forming XML documents. We will focus on various programming techniques used in XML
transformations.

While performing transformations, our program should be able to locate and extract any
desired portion of a given XML document. This is where the XPath specifications come into
the picture. XPath defines the syntax for locating any part of a given XML document. There-
fore, before delving into the details of XSLT, let’s have a quick tour of XPath specifications.

Quick Tour of XPath
XPath is a language for finding information in an XML document. A W3C standard since
November 1999, it can be used for navigating through elements and attributes of an XML
document. Specifically, XPath is capable of the following tasks:

• Locating parts of an XML document by using a specially defined syntax

• Navigating in an XML document by using path expressions, which allow the selection
of nodes or node-sets in the document

• Performing complex node manipulation through its 100 functions, which are available
for node comparisons, node manipulations, sequence manipulations, and more

A well-formed XML document can be represented as a tree containing nodes. Every node
has a unique path in the tree with respect to the root node. This is similar to your hard drive’s
folder hierarchy, which consists of a root folder containing several subfolders. You can uniquely
identify any folder or file on your disk by specifying the path starting from the root folder. Simi-
larly, XPath defines the syntax for locating any element or attribute in an XML document with
respect to the document’s root node.

Also, in your hard drive’s folder hierarchy, given any folder name, you can locate other
folders or files on the hard drive starting from this given name. That is to say, you can specify
the path for any folder or file relative to a known location. Similarly, XPath defines syntax for
relative paths. The relative paths can be used for locating any node relative to a given node
or for navigating to other nodes.

CHAPTER 5 ■ XSLT AND APACHE XALAN 199

1. XSLT is now simply called XSL.

6412_c05_final.qxd 4/14/06 12:42 PM Page 199

The operating system provides utilities (for example, search on Windows and find on Unix
and Linux) for locating any file or folder on your hard drive. You create search expressions to nar-
row your search. Similarly, XSL defines several functions that can be used for comparisons during
search operations to restrict your searches, with other functions available for performing node
and sequence manipulations. Interested readers are referred to the XPath specifications for fur-
ther details.2

XSLT depends heavily on XPath. Without XPath, you will not be able to use XSLT. So you
will look at XPath syntax next.

XPath Syntax
To understand the XPath syntax, consider an example. Listing 5-1 displays a sample XML
document first presented in Chapter 2.

Listing 5-1. Sample XML Document for Illustrating XPath Syntax (Ch05\src\po.xml)

<?xml version="1.0" encoding="utf-8" ?>
<PurchaseOrder>
<PersonalComputer Type="Desktop">
<Price>
$995

</Price>
<Quantity>
10

</Quantity>
</PersonalComputer>
<PersonalComputer Type="Portable">
<Price>
$1295

</Price>
<Quantity>
5

</Quantity>
</PersonalComputer>
<Scanner Type="Desktop">
<Price>
$165

</Price>
<Quantity>
2

</Quantity>
</Scanner>
<Printer Type="Inkjet">

CHAPTER 5 ■ XSLT AND APACHE XALAN200

2. XPath specifications: http://www.w3.org/TR/xpath

6412_c05_final.qxd 4/14/06 12:42 PM Page 200

<Price>
$85

</Price>
<Quantity>
4

</Quantity>
</Printer>
<Printer Type="LaserPrinter">
<Price>
$485

</Price>
<Quantity>
1

</Quantity>
</Printer>

</PurchaseOrder>

We will now create various XPath expressions to locate the various nodes in this docu-
ment. First, you will look at the XPath syntax for locating nodes.

Locating Nodes
To locate and select the nodes found in an XML document, we use the expression syntax
shown in Table 5-1.

Table 5-1. XPath Syntax for Locating Nodes in an XML Document

Expression Description

nodename Selects all child nodes of the node

/ Selects from the root node

// Starting at the current node, selects nodes in the document that match the
selection

. Selects the current node

.. Selects the parent of the current node

@ Selects an attribute

For example, the XPath expression (/) selects all the nodes in the preceding XML tree
starting with the root element. In Listing 5-1, the root element is PurchaseOrder. Thus, the /
expression selects all the nodes under the PurchaseOrder node. You use such selections to
extract and operate on a part of the tree. Refer to the following tip for help in displaying the
selection output for a given XPath expression.

CHAPTER 5 ■ XSLT AND APACHE XALAN 201

6412_c05_final.qxd 4/14/06 12:42 PM Page 201

■Tip Later in the chapter, you will be developing a Java console application that takes an XML document
as a first command-line parameter and the XPath expression as the second command-line parameter. The
application displays the selected nodes by way of the user console. The application is called PathSelector,
which is available from the Source Code area of the Apress website (http://www.apress.com). Compile
the program by using following command line:

C:\<working folder>\Ch05\src>javac -d . PathSelector.java

You can use the following command to run the application:

C:\<working folder>\Ch05\src>java xslt.PathSelector po.xml /PurchaseOrder/Printer

This command uses a sample XML document called po.xml from Listing 5-1 as an input source (po.xml
is available from the Source Code area of the Apress website, at the path <working folder>/Ch05/src/
po.xml). Note that you will need to specify the appropriate path depending on where po.xml is located on
your system. The application searches the document by using the XPath expression /PurchaseOrder/
Printer. The output in this case will be as follows:

Querying DOM using /PurchaseOrder/Printer
<output>
<Printer Type="Inkjet">

<Price>
$85

</Price>
<Quantity>
4

</Quantity>
</Printer><Printer Type="LaserPrinter">
<Price>
$485

</Price>
<Quantity>
1

</Quantity>
</Printer></output>

Use this utility for testing the various XPath expressions that you create in this section. You can try other
XPath expressions yourself to understand its syntax fully.

Building on this, the expression /PurchaseOrder/PersonalComputer selects all elements
that are children of PersonalComputer, which itself is a child of the PurchaseOrder element.
Thus, it will select Price and Quantity elements of each PersonalComputer node along with
the text nodes that denote the text values for these nodes. Further, the expression
//PersonalComputer selects all PersonalComputer elements in the document.

CHAPTER 5 ■ XSLT AND APACHE XALAN202

6412_c05_final.qxd 4/14/06 12:42 PM Page 202

Locating Specific Nodes
To locate a specific node in the document, you use predicates. For example, the expression
/PurchaseOrder/PersonalComputer[1] selects the first PersonalComputer element that is the
child of the PurchaseOrder element. If you use the PathSelector utility (mentioned in the tip)
to try this XPath expression, you will see the following output:

Querying DOM using /PurchaseOrder/PersonalComputer[1]
<output>
<PersonalComputer Type="Desktop">

<Price>
$995

</Price>
<Quantity>
10

</Quantity>
</PersonalComputer></output>

The expression /PurchaseOrder/PersonalComputer[last()] selects the last
PersonalComputer element that is the last child of the PurchaseOrder element. The program
output for this XPath query is as follows:

Querying DOM using /PurchaseOrder/PersonalComputer[last()]
<output>
<PersonalComputer Type="Portable">

<Price>
$1295

</Price>
<Quantity>
5

</Quantity>
</PersonalComputer></output>

The expression /PurchaseOrder/PersonalComputer["Quantity>5"] selects all the
PersonalComputer elements of PurchaseOrder that have a Quantity element having a value
greater than 5. The program output is shown here:

Querying DOM using /PurchaseOrder/PersonalComputer[Quantity>5]
<output>
<PersonalComputer Type="Desktop">

<Price>
$995

</Price>
<Quantity>
10

</Quantity>
</PersonalComputer></output>

CHAPTER 5 ■ XSLT AND APACHE XALAN 203

6412_c05_final.qxd 4/14/06 12:42 PM Page 203

Using Wildcards
You can use wildcards as shown in Table 5-2 to select one or more nodes matching the given
criterion.

Table 5-2. Wildcards for Matching Nodes in an XPath Query

Wildcard Description

* Matches any element node

@* Matches any attribute node

node() Matches any node of any kind

Let’s consider a few examples. To begin, the expression //PersonalComputer/* selects all
child nodes of the PersonalComputer element. The program output is shown here:

Querying DOM using //PersonalComputer/*
<output>
<Price>

$995
</Price><Quantity>
10

</Quantity><Price>
$1295

</Price><Quantity>
5

</Quantity></output>

■Note Compare this output with the output produced by the query //PersonalComputer from the
previous example. In the current query, only the child elements of PersonalComputer are displayed,
whereas in the earlier case the element PersonalComputer is also displayed in the output.

The expression //Printer[@*] selects all Printer elements irrespective of their attributes.
The program output is shown here:

Querying DOM using //Printer[@*]
<output>
<Printer Type="Inkjet">

<Price>
$85

</Price>

CHAPTER 5 ■ XSLT AND APACHE XALAN204

6412_c05_final.qxd 4/14/06 12:42 PM Page 204

<Quantity>
4

</Quantity>
</Printer><Printer Type="LaserPrinter">
<Price>
$485

</Price>
<Quantity>
1

</Quantity>
</Printer></output>

Finally, the expression //* selects all elements in the document. The program output is
not shown for brevity.

Combining Paths
You can combine several paths by using the pipe character (|) to select multiple nodes. For
example, the expression "//Scanner | //Printer" selects all Scanner and Printer elements
in the document.

■Note If you try this expression by using the PathSelector utility, enclose the expression in double quotes
as illustrated.

The expression //Printer/Price | //Printer/Quantity selects the Price and Quantity
elements of all the Printer elements in the document. You can try this query to see the output
for yourself.

XPath Axes
XPath defines what is known as an axis that locates a node-set relative to the current node. With
respect to a given node, you can specify both its ancestors and descendants. As the name sug-
gests, ancestors point to the parent of the current node, and descendants point to its children.
You can also specify the siblings as following and preceding axes. All the nodes that are at the
same level in the tree as the current node and also follow the current node will be addressed by
using the following axis. Similarly, all nodes that precede the current node at the same level will
be addressed by using the preceding axis. The relative positioning of the ancestor, descendant,
following, and preceding axes are illustrated in Figure 5-1.

CHAPTER 5 ■ XSLT AND APACHE XALAN 205

6412_c05_final.qxd 4/14/06 12:42 PM Page 205

XPath specifications define several constant strings for navigating the tree by using the
axes described in Figure 5-1. These names and their meanings are shown in Table 5-3. The
meaning assigned to each axis is always with respect to the current node unless otherwise
stated.

Table 5-3. XPath Axes

Axis Name Meaning

ancestor Selects all ancestors

ancestor-or-self Selects all ancestors and the current node

attribute Selects all attributes

child Selects all children

descendant Selects all descendants

descendant-or-self Selects all descendants and the current node

following Selects all nodes after the closing tag of the current node

following-sibling Selects all following siblings

namespace Selects all namespace nodes

parent Selects the parent

preceding Selects all nodes before the start tag of the current node

preceding-sibling Selects all preceding siblings

self Selects the current node

For example, the expression child::Printer selects all Printer nodes that are children
to the current node. The expression child::text() selects all text nodes of the current node.
The expression ancestor::Printer selects all Printer ancestors of the current node.

Finally, you will look at the various operators defined in the XPath specifications.

CHAPTER 5 ■ XSLT AND APACHE XALAN206

Figure 5-1. XPath axes

6412_c05_final.qxd 4/14/06 12:42 PM Page 206

XPath Operators
XPath defines several operators that can be used in XPath expressions. These operators are
provided in Table 5-4.

Table 5-4. XPath Operators

Operator Description

| Computes two node-sets

+ Addition

- Subtraction

* Multiplication

div Division

= Equals

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

or Or

and And

mod Modulus (division remainder)

Most of the operators have conventional meanings and thus do not require additional
explanation. Multiple operators can be combined in an expression, and they then follow
conventional precedence rules.

A Quick Tour of XSLT
XSL transforms an XML document into another document format, or perhaps more precisely,
it transforms a source tree into a result tree. Note that every well-formed XML document can
be represented as a tree. The output produced by XSLT can also be represented as a well-
formed tree.

XSLT is not restricted to just transforming one document type to another. It can also be
used to add elements and attributes to an output file, or to remove elements and attributes
from the source file while creating an output file. You can also rearrange the source docu-
ment, sort it on certain elements, and hide and display elements based on user-defined
criteria, and more.

To perform these operations, XSLT must navigate the source tree. It uses XPath expres-
sions discussed in the previous sections to navigate and select the desired part of the tree
and then transforms the selected portion of the source tree into a result tree.

CHAPTER 5 ■ XSLT AND APACHE XALAN 207

6412_c05_final.qxd 4/14/06 12:42 PM Page 207

XSLT Processing Model
The XSLT processing model is illustrated in Figure 5-2.

A stylesheet processor accepts two inputs:

• The XML document that is to be transformed

• The XSL stylesheet that contains the transformation instructions

The stylesheet processor uses XPath to locate the various parts of the input document.
When a part is located, it is transformed by using a template defined in the stylesheet. The
stylesheet contains several templates. The processor applies the template to a part of the input
document that is selected using the XPath expression. The output of the processor is a tree that
may represent another XML document, or even some other type of document such as HTML.

XSLT Example
Before getting into the XSL syntax, let’s consider an example of how XSLT works. Listing 5-2
shows a sample XML document that we will transform into HTML by using XSL.

■Note Only part of the XML document is shown here. The full listing for CustomerOrders.xml is avail-
able from the Source Code area of the Apress website (http://www.apress.com).

CHAPTER 5 ■ XSLT AND APACHE XALAN208

Figure 5-2. XSLT processing model

6412_c05_final.qxd 4/14/06 12:42 PM Page 208

Listing 5-2. Sample XML Document for XSL Transformation (Ch05\src\CustomerOrders.xml)

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="OrderProcessing.xslt"?>

<customers>

<customer>
<name>Hillary A. Johnston</name>
<order>GFW</order>
<quantity>50</quantity>
<price>$25.35</price>

</customer>

<customer>
<name>Leslie Doherty</name>
<order>GFZ</order>
<quantity>75</quantity>
<price>$25.30</price>

</customer>

<customer>
<name>Don Mrskos</name>
<order>SXA</order>
<quantity>29</quantity>
<price>$25.23</price>

</customer>
…

<customer>
<name>C. W. Southport</name>
<order>ECT</order>
<quantity>125</quantity>
<price>$25.41</price>

</customer>

</customers>

The XSLT file that we will use for transformation is shown in Listing 5-3.

Listing 5-3. XSLT Document Used for Transformation (Ch05\src\OrderProcessing.xslt)

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>

CHAPTER 5 ■ XSLT AND APACHE XALAN 209

6412_c05_final.qxd 4/14/06 12:42 PM Page 209

<xsl:template match="/">
<TABLE BORDER="1">
<TR bgcolor="0x0000ff">
<TD>

Customer Name

</TD>
<TD>

Order Scrip

</TD>
<TD>

Order Quantity

</TD>
<TD>

Order Price

</TD>

</TR>
<xsl:apply-templates select ="customers"/>

</TABLE>
</xsl:template>

<xsl:template match="customers">
<xsl:apply-templates select ="customer">
<xsl:sort select="price" order="ascending"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="customer">
<TR>
<TD>

<xsl:value-of select ="name"/>

</TD>
<TD bgcolor="#00FFFF">
<xsl:value-of select="order"/>

</TD>
<TD>
<p align="right">
<xsl:value-of select="quantity"/>

</p>
</TD>

CHAPTER 5 ■ XSLT AND APACHE XALAN210

6412_c05_final.qxd 4/14/06 12:42 PM Page 210

<TD bgcolor="#00FFFF">
<p align="right">
<xsl:value-of select="price"/>

</p>
</TD>

</TR>
</xsl:template>

</xsl:stylesheet>

We tell the browser to apply the template by including the following line in the XML
document after the XML declaration:

<?xml-stylesheet type="text/xsl" href="OrderProcessing.xslt"?>

Make sure that the OrderProcessing.xslt file shown in Listing 5-3 resides in the same folder
as the CustomerOrders.xml file also shown in that listing. If you now open the CustomerOrders.xml
file in a browser that supports XSLT, you will see a nicely formatted output in your browser win-
dow. The output as seen in Microsoft Internet Explorer 6 is shown in Figure 5-3.3

CHAPTER 5 ■ XSLT AND APACHE XALAN 211

3. Some of the other browsers that support XSLT are Firefox 1.0.2, Mozilla 1.7.8, Netscape 8, and Opera 8.

Figure 5-3. Screen output of CustomerOrders.xml (Ch05\src\CustomerOrders.xml)

6412_c05_final.qxd 4/14/06 12:42 PM Page 211

■Tip You can try the output in the browser after removing the preceding XSLT processing line to under-
stand the significance of transformation.

Note that using the built-in transformer in your browser is not an ideal way of transform-
ing your XML documents. To perform the transformations, you can use the programming API
(discussed later) or the command-line processor provided by Xalan as shown here:

C:\<working folder>\Ch05\src>java org.apache.xalan.xslt.Process -in ➥

CustomerOrders.xml –xsl OrderProcessing.xslt -out test.html

XSLT Document Structure
Having seen how an XSLT sample document transforms the given XML document into
another format, you will now study the structure of an XSLT document to learn XSL syntax.

The XSLT document begins with an XML declaration followed by the stylesheet element,
which is the root element:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>

The stylesheet element defines the version attribute and the xsl namespace. Instead
of stylesheet, you can use the transform element:

<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>

The stylesheet and transform elements substitute for one another, and you can use
either one in your stylesheet definitions.

This is now followed by one or more template definitions:

<xsl:template match="/">

The template element uses an attribute called match. We assign an XPath expression to
this match attribute. In the current example, the expression / indicates that all the nodes under
the root will be selected during transformation.

The subsequent lines create an HTML table and display the row heading:

<TABLE BORDER="1">
<TR bgcolor="0x0000ff">
<TD>

Customer Name

</TD>

CHAPTER 5 ■ XSLT AND APACHE XALAN212

6412_c05_final.qxd 4/14/06 12:42 PM Page 212

<TD>

Order Scrip

</TD>
<TD>

Order Quantity

</TD>
<TD>

Order Price

</TD>

</TR>

Following this, we have this statement:

<xsl:apply-templates select ="customers"/>

This statement indicates that we will apply the customers template to all the selected
nodes. The customers template is defined next:

<xsl:template match="customers">
<xsl:apply-templates select ="customer">
<xsl:sort select="price" order="ascending" data-type="number"/>

</xsl:apply-templates>
</xsl:template>

For elements located under customers, we further apply the customer template. We arrange
all the located customer elements by sorting them on the price subelement. The sorting order is
ascending.

Next, we define the customer template itself:

<xsl:template match="customer">

Here, we create a row for our HTML table and display the contents of the name subelement
in the first column:

<TR>
<TD>

<xsl:value-of select ="name"/>

</TD>
…

</TR>

We use the value-of element with the select attribute set to the desired subelement.
Likewise, we display order, quantity, and price subelements in the subsequent HTML table

CHAPTER 5 ■ XSLT AND APACHE XALAN 213

6412_c05_final.qxd 4/14/06 12:42 PM Page 213

columns. Note that the value of the select attribute is an XPath expression that is used for
navigating the XML document.

When you apply this template to CustomerOrders.xml shown in Listing 5-2, the various
templates will be applied during transformation and you will see the output as illustrated in
Figure 5-3.

With this brief introduction to XSLT completed, we will now proceed to the Apache Xalan
implementation so you can learn how transformations are achieved through the provided
tools and user-written Java code. While discussing the various programming techniques, you
will also learn more about XSL.

Xalan’s Transformation Capabilities
Apache Xalan provides a set of classes for performing XSL transformations through Java pro-
gram code. It also provides a command-line utility to perform transformation. In this section,
you will study several programming examples to learn how to do the following:

• Perform transformations through a stand-alone program

• Perform transformations on a server

• Cascade multiple transformations

You will begin by learning the command-line tool to perform transformations.

Using the Command-Line Transformation Tool
The Xalan implementation provides a command-line utility for performing transformations.
For example, to perform the transformation on our CustomerOrders.xml file from Listing 5-2,
you will run the following command at the command prompt:

C:\<working folder>\Ch05\src>java org.apache.xalan.xslt.Process -in ➥

CustomerOrders.xml -xsl OrderProcessing.xslt -out test.html

The org.apache.xalan.xslt.Process utility defines several command-line switches. The
-in switch specifies the name of the XML file to be processed. The -xsl switch specifies the
name of the XSLT file used for transformation, and the -out switch specifies the name of
the output file to be generated as a result of transformation.

After running the preceding command-line utility, you will find a test.html file created
in your current folder. You can now open this file in your browser to view the output. This will
be the same as the one displayed in Figure 5-3.

Additionally, this command-line tool provides several other switches. For example, the
-XML switch uses an XML formatter to format the output and also adds an XML header to the
output. The -TEXT switch uses a simple Text formatter, and the -HTML switch uses an HTML
formatter. For further details, refer to Xalan documentation.

Writing Your First Transformation Program
Performing transformations through a Java application is easy. Listing 5-4 gives the complete
listing of a Java console application that performs such XSL transformations.

CHAPTER 5 ■ XSLT AND APACHE XALAN214

6412_c05_final.qxd 4/14/06 12:42 PM Page 214

Listing 5-4. A Console-Based Java Application for XSL Transformations (Ch05\src\
TransformTest.java)

package xslt;

public class TransformTest {

public static void main(String[] args) {
if (args.length != 2)
{
System.out.println ("Usage: java TransformTest xsltFile xmlFile");
System.exit(1);

}
String xsltFile = args[0];
String xmlFile = args[1];

// Create a TransformerFactory instance
javax.xml.transform.TransformerFactory tFactory =

javax.xml.transform.TransformerFactory.newInstance();

try {
// Create a Transformer for the specified stylesheet

javax.xml.transform.Transformer transformer = tFactory.newTransformer
(new javax.xml.transform.stream.StreamSource(xsltFile));

//Transform an XML Source and send the
// output to a Result object

transformer.transform (
new javax.xml.transform.stream.StreamSource(xmlFile),
new javax.xml.transform.stream.StreamResult (

new java.io.FileOutputStream("SortedOrders.html")
)

);
} catch (Exception e){}

}
}

The application first creates a factory instance by calling the newInstance static method of
the TransformerFactory class. We create transformers from this factory object. A Transformer
object is created by calling the newTransformer method of the factory. The newTransfomer method
takes one argument of XSLT document type. The XSLT document source can be input as a
DOMSource, SAXSource, or StreamSource. In the current example, we use a StreamSource object.

After a Transformer object is created, you can use it to transform any XML document with
the transformation instructions (templates) embedded in the Transformer object. We call the
transform method of the Transformer object to perform the transformations. The transform
method takes two arguments. The first argument is an XML file source to be processed, and
the second argument is the target output to which the result is serialized.

CHAPTER 5 ■ XSLT AND APACHE XALAN 215

6412_c05_final.qxd 4/14/06 12:42 PM Page 215

The XML source can be specified as any of the three sources specified earlier: DOMSource,
SAXSource, or StreamSource. Additionally, it can be specified as an XSLTCSource object. The
XSLTCSource object is created from a JAXP4 source. In the current example, we use a file stream
as a source.

The target object can be specified by using one of the three source types: DOMSource,
SAXSource, or StreamSource. In the current situation, we use a StreamSource object to specify
a physical file source called SortedOrders.html. Thus, the program output will create a file
with this name and output the target object to this file.

Compiling and Running the Application
Compile the preceding code by using a javac compiler:

C:\<working folder>\Ch05\src>javac -d . TransformTest.java

Run the application by using the following command:

C:\<working folder>\Ch05\src>java xslt.TransformTest OrderProcessing.xslt ➥

CustomerOrders.xml

The arguments specify the XSLT file to be used for transformation and the XML source
document that is to be transformed. The download site contains the two files ready for your
use. The OrderProcessing.xslt file is the transformation file, and CustomerOrders.xml is the
source document to be transformed into an HTML file.

When you run the application, you will find the SortedOrders.html file created in your
working folder. You can open this file in your browser to examine the processing result. The
output is shown in Figure 5-4.

CHAPTER 5 ■ XSLT AND APACHE XALAN216

4. Java API for XML Processing—refer to Chapter 2 for details.

Figure 5-4. The result of transformation (Ch05\src\SortedOrders.html)

6412_c05_final.qxd 4/14/06 12:42 PM Page 216

Many times, you may want to perform XSL transformation at the server end and present
the output as HTML in the user’s browser. You will learn how to perform transformations at
the server end in the following section.

Server-Side Transformations
To perform transformations on the server, you will need to write server-side code in a lan-
guage such as Java, which might be embedded in a servlet or a JSP page. For demonstrational
purposes, we will create a JSP page for our Sorted Orders example from the previous section.

Performing Transformation in JSP
The program listing for a JSP page that performs XSL transformations is given in Listing 5-5.

Listing 5-5. Performing XSL Transformations (Ch05\src\SortedOrders.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page pageEncoding="UTF-8"%>
<%@ page import="javax.xml.transform.*"%>
<%@ page import="javax.xml.transform.stream.*"%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Customer Orders</title>

</head>
<body>

<h1>Customer Orders</h1>

<%! String FS = System.getProperty("file.separator"); %>
<%
String xmlFile = request.getParameter("XML");
String xslFile = request.getParameter("XSL");

// get the real path for xml and xsl files;
String ctx = getServletContext().getRealPath("") + FS;
xslFile = ctx + xslFile;
xmlFile = ctx + xmlFile;

TransformerFactory tFactory =
TransformerFactory.newInstance();

Transformer transformer =
tFactory.newTransformer(new StreamSource(xslFile));

transformer.transform(
new StreamSource(xmlFile), new StreamResult(out));

%>
</body>

</html>

CHAPTER 5 ■ XSLT AND APACHE XALAN 217

6412_c05_final.qxd 4/14/06 12:42 PM Page 217

To begin, you need to import the required class libraries by using the following statements:

<%@ page import="javax.xml.transform.*"%>
<%@ page import="javax.xml.transform.stream.*"%>

In the HTML body tag, we first obtain the file-separator character:

<%! String FS = System.getProperty("file.separator"); %>

We use this file separator while constructing the input and XSLT filename path. We read
the two input parameters:

String xmlFile = request.getParameter("XML");
String xslFile = request.getParameter("XSL");

We now obtain the context path and create the paths for the two input files:

String ctx = getServletContext().getRealPath("") + FS;
xslFile = ctx + xslFile;
xmlFile = ctx + xmlFile;

The rest of the code is the same as the code used in a stand-alone Java application dis-
cussed in the earlier section. We first create the TransformerFactory instance, followed by
a Transformer instance based on the XSLT file input:

TransformerFactory tFactory =
TransformerFactory.newInstance();

Transformer transformer =
tFactory.newTransformer(new StreamSource(xslFile));

Finally, we perform the transformation by calling the transform method of the Transformer
class:

transformer.transform(
new StreamSource(xmlFile), new StreamResult(out));

The two parameters to this method specify the input and output source. The output source
in our example is the JSP out object. Thus, the output of the transformation is displayed in the
browser.

Invoking JSP
To run the preceding JSP, first copy it to the appropriate folder under the webapps\jsp-exam-
ples folder of your Tomcat installation. Run JSP by passing the appropriate parameters as
shown here:

http://localhost:8080/jsp-examples/SortedOrders.jsp?XML=CustomerOrders.xml&➥

XSL=OrderProcessing.xslt

Make sure that you replace the context root jsp-examples with the appropriate context
root of your installation, if you copy the files into another folder. Also ensure that the
CustomerOrders.xml and OrderProcessing.xslt files are copied to the appropriate folder
under the webapps\jsp-examples folder of your Tomcat installation.

CHAPTER 5 ■ XSLT AND APACHE XALAN218

6412_c05_final.qxd 4/14/06 12:42 PM Page 218

Program Output
When you open the JSP page in your browser, you will see the output shown in Figure 5-5.

Transforming Selected Contents
So far you have seen the processing and transforming of an entire XML document. Yet some-
times you might want to process only part of the document and transform it to another format.
We will use XPath expressions for selecting parts of the input XML document.

Xalan provides the XPathAPI class for this purpose. This class’s selectNodeIterator
method allows you to specify an XPath expression as input and return a NodeList matching
the requested path. Yet all the methods of this class are static and slow. To remedy this ineffi-
ciency, the CachedXPathAPI class provides a cached version of this class and is faster than
using the static methods of the XPath class.

We will write a console-based Java application to illustrate how to use XPath expressions
for processing only parts of an XML input file.

Partially Processing Documents
The source listing for a Java console application that processes and transforms part of a given
input XML document is shown in Listing 5-6.

CHAPTER 5 ■ XSLT AND APACHE XALAN 219

Figure 5-5. Performing XSL transformation (Ch05\src\SortedOrders.jsp)

6412_c05_final.qxd 4/14/06 12:42 PM Page 219

Listing 5-6. Processing XML Documents Partially (Ch05\src\PathSelector.java)

package xslt;

import com.sun.org.apache.xpath.internal.XPathAPI;
import java.io.FileInputStream;
import java.io.OutputStreamWriter;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.traversal.NodeIterator;
import org.xml.sax.InputSource;
import org.apache.xpath.CachedXPathAPI;

public class PathSelector{
public static void main(String[] args)
throws Exception {
String filename = null;
String xpath = null;
filename = args[0];
xpath = args[1];

// Set up a DOM tree to query.
InputSource in = new InputSource(new FileInputStream(filename));
DocumentBuilderFactory dfactory = DocumentBuilderFactory.newInstance();
dfactory.setNamespaceAware(true);
Document doc = dfactory.newDocumentBuilder().parse(in);

// Set up transformer.
Transformer transformer = TransformerFactory.newInstance().newTransformer();
transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

// Use the simple XPath API to select a nodeIterator.
System.out.println("Querying DOM using "+ xpath);
CachedXPathAPI path = new CachedXPathAPI();
NodeIterator nl = path.selectNodeIterator(doc, xpath);

// Serialize the found nodes to System.out
System.out.println("<output>");

CHAPTER 5 ■ XSLT AND APACHE XALAN220

6412_c05_final.qxd 4/14/06 12:42 PM Page 220

Node n;
while ((n = nl.nextNode())!= null)
transformer.transform(new DOMSource(n),

new StreamResult (new OutputStreamWriter(System.out)));

System.out.println("</output>");
}

}

The application receives two command-line arguments. The first argument specifies the
name of the input file to be processed, and the second argument specifies the XPath expres-
sion that is used for selecting a node list in the input document.

We first build a DOM5 tree from the input file. We create an instance of
DocumentBuilderFactory and create a DocumentBuilder by using the factory object. We then
call the parse method of DocumentBuilder to parse the input document and build a Document
object that gives the DOM representation of the input document.

As in the earlier examples, we create a Transformer object by first creating a
TransformerFactory and then calling its newTransformer method. We set a property on the
transformer object as follows:

transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

This instructs the transformer object to omit the XML declaration statement in the output.

■Note The Transformer class has several predefined properties that can be set by the user
programmatically.

To select the desired nodes based on the input XPath expression, CachedXPathAPI is
instantiated:

CachedXPathAPI path = new CachedXPathAPI();

We now call the selectNodeIterator method on the CachedXPathAPI instance:

NodeIterator nl = path.selectNodeIterator(doc, xpath);

The selectNodeIterator method takes two arguments. The first argument is of Document
type. We input the Document object obtained earlier in this argument. The second argument is
the XPath expression that was obtained from the command line. The method creates a node
list satisfying the XPath expression and returns an iterator to iterate through the list.

CHAPTER 5 ■ XSLT AND APACHE XALAN 221

5. DOM and its API are covered in Chapter 2.

6412_c05_final.qxd 4/14/06 12:42 PM Page 221

The program now iterates through the returned list of nodes until a leaf node (null) is
reached:

Node n;
while ((n = nl.nextNode())!= null)
transformer.transform(new DOMSource(n), new StreamResult ➥

(new OutputStreamWriter(System.out)));

In each iteration, a transformation is performed by passing the node object as the first
argument to the transform object.

■Note The node object is passed by constructing a DOMSource instance representing the node. In earlier
examples, we used a stream source as input to the transform method. The other input sources could be
any of the following: DOMSource, SAXSource, StreamSource, or XSLTCSource.

The second argument to the transform method specifies the output tree. In this example,
we set this to the console output. Thus, as each node is processed, the transformation output
is printed on the user console.

The program emits the opening output tag before the transformation begins and emits
the closing output tag at the end of transformation.

Compiling and Running the Application
You compile the application by using a javac compiler and run the application by using the
following command line:

C:\<working folder>\Ch05\src>java xslt.PathSelector CustomerOrders.xml ➥

/customers/customer[order='AFK']

The input document is CustomerOrders.xml, and the XPath expression is /customers/
customer[order='AFK']. The XPath expression selects all the customers who have placed an
order on AFK stock. When you run the application, the following output will be generated:

Querying DOM using /customers/customer[order='AFK']
<output>
<customer>
<name>Ray Jacobsen</name>
<order>AFK</order>
<quantity>119</quantity>
<price>$24.00</price>

</customer><customer>
<name>Mark Williams</name>
<order>AFK</order>
<quantity>125</quantity>
<price>$24.00</price>

CHAPTER 5 ■ XSLT AND APACHE XALAN222

6412_c05_final.qxd 4/14/06 12:42 PM Page 222

</customer><customer>
<name>Tom Buggy</name>
<order>AFK</order>
<quantity>132</quantity>
<price>$48.21</price>

</customer><customer>
<name>Chris Kryza</name>
<order>AFK</order>
<quantity>138</quantity>
<price>$259.75</price>

</customer><customer>
<name>Chris Kryza</name>
<order>AFK</order>
<quantity>144</quantity>
<price>$23.91</price>

</customer><customer>
<name>Chris Kryza</name>
<order>AFK</order>
<quantity>151</quantity>
<price>$25.51</price>

</customer></output>

You can change the XPath expression to select a different set of nodes. For example, you
may want to list all the orders for which the quantity is greater than or equal to 170. Use the
following command line to list all such orders:

C:\<working folder>\Ch05\src>java xslt.PathSelector CustomerOrders.xml ➥

/customers/customer["quantity>=170"]

When you run the application, you will see the following output:

Querying DOM using /customers/customer[quantity>=170]
<output>
<customer>
<name>Martin Dean</name>
<order>AFE</order>
<quantity>170</quantity>
<price>$25.29</price>

</customer><customer>
<name>Peter Spears</name>
<order>BACPRU</order>
<quantity>170</quantity>
<price>$23.71</price>

</customer></output>

CHAPTER 5 ■ XSLT AND APACHE XALAN 223

6412_c05_final.qxd 4/14/06 12:42 PM Page 223

To list all the orders placed by the customer called Martin Dean, you use the following
command line:

C:\<working folder>\Ch05\src>java xslt.PathSelector customer.xml ➥

/customers/customer["name='Martin Dean'"]

To list the fifth order in the orders document, you use the following command line:

C:\<working folder>\Ch05\src>java xslt.PathSelector customer.xml ➥

/customers/customer[5]

Likewise, you can input the appropriate XPath expression to select and process the
desired portion of the input XML document.

Filters
Just as in Chapter 2’s brokerage example, you will encounter situations when a purchase order
placed by a customer passes through several approval stages. Each order initially needs an
immediate manager’s approval, followed by a broker’s approval, and finally by the brokerage
house’s approval before it is placed on the stock exchange. We can run the XML-based orders
document through a series of filters, where at each stage the document is examined, modified,
and forwarded to the next stage. Xalan provides such filtering capabilities.

Java XSLT-Filtering Application
We will develop a Java application that applies a series of transformations to the orders docu-
ment as illustrated in Figure 5-6.

The orders document is our CustomerOrders.xml file that contains the consolidated orders
from all the customers. The first transformation that we apply to this document is to provide
the manager approval on a selected customer’s order. We will add a tag and text to the orders
document indicating the manager’s approval. The next transformation that we apply will be
the broker transformation. The broker receives the transformed document from the manager

CHAPTER 5 ■ XSLT AND APACHE XALAN224

Figure 5-6. XSLT filtering

6412_c05_final.qxd 4/14/06 12:42 PM Page 224

and appends approval to the document. Finally, the resultant document goes through another
transformation at the stock brokerage, which also adds its approval to the document. We will
now look at the various transformation files.

Manager XSLT Document
The XSLT document used by the manager is shown in Listing 5-7.

Listing 5-7. Manager.xslt Document (Ch05\src\Manager.xslt)

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="customers">
<xsl:apply-templates select ="customer">
<xsl:sort select="name" order="ascending"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="/customers/customer[name='Jim Morey']">
<Manager>
<xsl:value-of select="." />
Manager Approved</Manager>

</xsl:template>
</xsl:stylesheet>

The transformation first creates a template for arranging all the orders in the ascending
order of customer names. Then it applies another template for selecting all the orders from
the customer called Jim Morey. The template adds the Manager tag and the message Manager
Approved to all the orders placed by Jim. The transformed document along with this additional
text will now be processed by the broker transformation document.

Broker XSLT Document
The transformation document used at the broker end is shown in Listing 5-8.

Listing 5-8. Broker.xslt Document (Ch05\src\Broker.xslt)

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="Manager">
<Broker>
<xsl:value-of select="."/>
Broker Approved</Broker>

</xsl:template>
</xsl:stylesheet>

In this transformation, we search for the Manager tag. If one is found, we add the Broker
tag to the located nodes and add the message Broker Approved to it. The document will now
be further processed by the brokerage.

CHAPTER 5 ■ XSLT AND APACHE XALAN 225

6412_c05_final.qxd 4/14/06 12:42 PM Page 225

Brokerage House XSLT Document
The transformation document used by the brokerage is shown in Listing 5-9.

Listing 5-9. Brokerage.xslt Document (Ch05\src\Brokerage.xslt)

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="Broker">
<xsl:value-of select="."/>
Brokerage House Approved

</xsl:template>
</xsl:stylesheet>

The transformation looks for the Broker tag. Remember, this was added to the input docu-
ment by the broker transformation for all manager-approved orders. The transformation simply
appends the text Brokerage House Approved to the selected node.

Let’s now look at the application code that implements this filtering.

Filtering Application
The complete source of the filtering application is shown in Listing 5-10.

Listing 5-10. Chaining Filters—Pull Model (Ch05\src\PullFilter.java)

package xslt;

import org.apache.xml.serializer.Serializer;
import org.apache.xml.serializer.SerializerFactory;
import org.apache.xml.serializer.OutputPropertiesFactory;
import java.io.IOException;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.sax.SAXResult;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.stream.StreamSource;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLFilter;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

public class PullFilter{
public static void main(String[] args)
throws TransformerException, TransformerConfigurationException,

SAXException, IOException {

CHAPTER 5 ■ XSLT AND APACHE XALAN226

6412_c05_final.qxd 4/14/06 12:42 PM Page 226

// Instantiate a TransformerFactory.
SAXTransformerFactory saxTFactory =

((SAXTransformerFactory) TransformerFactory.newInstance());

// Create an XMLFilter for each stylesheet.
XMLFilter ManagerFilter = saxTFactory.newXMLFilter

(new StreamSource ("Manager.xslt"));
XMLFilter BrokerFilter = saxTFactory.newXMLFilter

(new StreamSource ("Broker.xslt"));
XMLFilter HouseFilter = saxTFactory.newXMLFilter

(new StreamSource ("Brokerage.xslt"));

// Create an XMLReader.
XMLReader reader = XMLReaderFactory.createXMLReader();

// ManagerFilter uses the XMLReader as its reader.
ManagerFilter.setParent(reader);

// BrokerFilter uses ManagerFilter as its reader.
BrokerFilter.setParent(ManagerFilter);

// HouseFilter uses BrokerFilter as its reader.
HouseFilter.setParent(BrokerFilter);

// HouseFilter outputs SAX events to the serializer.
java.util.Properties xmlProps = OutputPropertiesFactory.➥

getDefaultMethodProperties("xml");
Serializer serializer = SerializerFactory.getSerializer(xmlProps);
serializer.setOutputStream(System.out);
HouseFilter.setContentHandler(serializer.asContentHandler());

HouseFilter.parse(new InputSource("CustomerOrders.xml"));
}

}

As in the earlier cases, the application first creates a factory instance for performing
transformations:

SAXTransformerFactory saxTFactory =
((SAXTransformerFactory) TransformerFactory.newInstance());

We will use the SAX6 model for parsing during transformations. Thus, we typecast the fac-
tory object to the SAXTransformerFactory class.

CHAPTER 5 ■ XSLT AND APACHE XALAN 227

6. SAX is covered in Chapter 2.

6412_c05_final.qxd 4/14/06 12:42 PM Page 227

■Note The SAXTransformerFactory class extends the TransfomerFactory class to support the SAX
model. It provides two types of ContentHandlers. One is used for creating Transformer objects, and the
other is used for creating Template objects.

Next, we create filters by calling the newXMLFilter method on the factory object:

XMLFilter ManagerFilter = saxTFactory.newXMLFilter
(new StreamSource ("Manager.xslt"));

XMLFilter BrokerFilter = saxTFactory.newXMLFilter
(new StreamSource ("Broker.xslt"));

XMLFilter HouseFilter = saxTFactory.newXMLFilter
(new StreamSource ("Brokerage.xslt"));

The newXMLFilter method receives the appropriate XSLT file input as a stream source.
We will pass the input document to the parse method of the HouseFilter:

HouseFilter.parse(new InputSource("CustomerOrders.xml"));

We set the parent for the HouseFilter to BrokerFilter and its parent in turn to
ManagerFilter:

HouseFilter.setParent(BrokerFilter);
BrokerFilter.setParent(ManagerFilter);

The parent of ManagerFilter is set to an instance of XMLReader:

XMLReader reader = XMLReaderFactory.createXMLReader();
ManagerFilter.setParent(reader);

Thus, the document that is input into the HouseFilter will be read by this reader and
passed to the ManagerFilter first. The ManagerFilter applies its transformations and serializes
the output to BrokerFilter. The BrokerFilter applies further transformations as discussed
earlier and sends its output to HouseFilter. The HouseFilter, after performing its own trans-
formations, serializes the output to the system console:

Serializer serializer = SerializerFactory.getSerializer(xmlProps);
serializer.setOutputStream(System.out);

Thus, after the input document undergoes transformations defined by three filters, the
result is printed on the user console.

Running the Application
If you run the preceding application, you will see a sorted list of orders on your system con-
sole. If you scroll through the list and locate the orders placed by the customer Jim Morey, you
will see the following output:

CHAPTER 5 ■ XSLT AND APACHE XALAN228

6412_c05_final.qxd 4/14/06 12:42 PM Page 228

…
Jean Paul Putzys
ILAPRP
87
$31.50

Jim Morey
BAXPR
75
$25.26

Manager Approved
Broker Approved
Brokerage House Approved

Jim Morey
BSCPRX
75
$24.26

Manager Approved
Broker Approved
Brokerage House Approved

Jody Hornor
ABNPRF
87
$24.83

...

Note that only the orders placed by Jim have been marked as approved, while on other
orders no such annotation is added.

The filtering technique discussed here is based on the pull model. Using this model, each
filter pulls the contents from the previous filter. However, there is another filtering technique
based on what is termed the push model. This model is discussed next.

The Push Filtering Model
In the push model, every filter pushes its output to the next filter. The first filter reads the
contents from an input source document and therefore becomes the content handler for
that document. The second filter becomes the content handler for the output of the first
filter. The third filter becomes the content handler for the output of the second filter, and
so on. We will illustrate this technique by writing a Java console application that processes
our CustomerOrders.xml file by using the three filters discussed in the previous section.

CHAPTER 5 ■ XSLT AND APACHE XALAN 229

6412_c05_final.qxd 4/14/06 12:42 PM Page 229

Filtering Application
The complete listing of a Java application (PushFilter.java) for filtering that is based on the
push model is shown in Listing 5-11.

Listing 5-11. Chaining Filters—Push Model (Ch05\src\PushFilter.java)

package xslt;

import java.io.IOException;

import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.sax.SAXResult;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.TransformerHandler;
import javax.xml.transform.stream.StreamSource;

import org.apache.xml.serializer.Serializer;
import org.apache.xml.serializer.SerializerFactory;
import org.apache.xml.serializer.OutputPropertiesFactory;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

public class PushFilter{
public static void main(String[] args)
throws TransformerException, TransformerConfigurationException,

SAXException, IOException {
// Instantiate a TransformerFactory.
SAXTransformerFactory saxTFactory = ((SAXTransformerFactory)

TransformerFactory.newInstance());

// Create a TransformerHandler for each stylesheet.
TransformerHandler tHandler1 = saxTFactory.newTransformerHandler

(new StreamSource("Manager.xslt"));
TransformerHandler tHandler2 = saxTFactory.newTransformerHandler

(new StreamSource("Broker.xslt"));
TransformerHandler tHandler3 = saxTFactory.newTransformerHandler

(new StreamSource("Brokerage.xslt"));

// Create an XMLReader.
XMLReader reader = XMLReaderFactory.createXMLReader();
reader.setContentHandler(tHandler1);
reader.setProperty

("http://xml.org/sax/properties/lexical-handler", tHandler1);

CHAPTER 5 ■ XSLT AND APACHE XALAN230

6412_c05_final.qxd 4/14/06 12:42 PM Page 230

tHandler1.setResult(new SAXResult(tHandler2));
tHandler2.setResult(new SAXResult(tHandler3));

// transformer3 outputs SAX events to the serializer.
java.util.Properties xmlProps = OutputPropertiesFactory.

getDefaultMethodProperties("xml");
Serializer serializer = SerializerFactory.getSerializer(xmlProps);
serializer.setOutputStream(System.out);
tHandler3.setResult(new SAXResult(serializer.asContentHandler()));

// Parse the XML input document.
reader.parse("CustomerOrders.xml");

}
}

As in the earlier example, we first create a SAXTransformerFactory instance. We then
create a TransformerHandler for each stylesheet:

TransformerHandler tHandler1 = saxTFactory.newTransformerHandler
(new StreamSource("Manager.xslt"));

TransformerHandler tHandler2 = saxTFactory.newTransformerHandler
(new StreamSource("Broker.xslt"));

TransformerHandler tHandler3 = saxTFactory.newTransformerHandler
(new StreamSource("Brokerage.xslt"));

Next, we create an XMLReader for reading our input document and set its content handler to
the first handler we created:

XMLReader reader = XMLReaderFactory.createXMLReader();
reader.setContentHandler(tHandler1);

Thus, the input document that is read by XMLReader will be handled by a content handler
based on the Manager.xslt transformation file.

We now set the content handler for the output of the first content handler:

tHandler1.setResult(new SAXResult(tHandler2));

The output of the first content handler is handled by tHandler2, which is based on the
Broker.xslt transformation file.

The output of the second content handler is handled by tHandler3, which is based on
the Brokerage.xslt transformation file.

tHandler2.setResult(new SAXResult(tHandler3));

The output of the third content handler will be dumped to the user console. This is done
by creating a Serializer for the console output and setting it as the content handler for
tHandler3:

Serializer serializer = SerializerFactory.getSerializer(xmlProps);
serializer.setOutputStream(System.out);
tHandler3.setResult(new SAXResult(serializer.asContentHandler()));

CHAPTER 5 ■ XSLT AND APACHE XALAN 231

6412_c05_final.qxd 4/14/06 12:42 PM Page 231

After the filter chain is created, you need to simply read the input file by using the first
XMLReader:

reader.parse("CustomerOrders.xml");

The file is now transformed by using transformation filters defined in the chain, and the
output tree is produced.

Running the Application
When you run this application, you will get an output exactly identical to the program output
of the previous section.

The only difference between the two applications is the processing model that is employed
for filtering.

Translets
Xalan-Java provides an XSLT compiler and a runtime processor collectively called XSLTC. This
can be used for compiling a stylesheet into a set of classes, known as the translet. This translet
can later be applied to an XML document to perform transformations. In this section, you
will learn how to create translets and use them to transform XML documents. A command-line
tool is provided for creating translets and using them to transform documents. You can also do
the same through a programmatic interface. You will learn both techniques here.

Command-Line Tool
To create a translet at the command prompt, the Xalan implementation provides a Java appli-
cation called org.apache.xalan.xsltc.cmdline.Compile. To perform the transformation, it
provides another application called org.apache.xalan.xsltc.cmdline.Transform. We will use
these applications to compile our OrderProcessing.xslt file that we have used in our earlier
examples. We will then apply the created translet to the CustomerOrders.xml file.

Creating a Translet
To create a translet, use the following command line:

C:\<working folder>\Ch05\src>java org.apache.xalan.xsltc.cmdline.Compile ➥

OrderProcessing.xslt

This compiles the specified XSLT file and creates a set of Java classes, namely
OrderProcessing.class and OrderProcessing$0.class in your working folder. Alternatively,
you can request that the tool emit a JAR file containing all these created classes by using the
-j switch on the command line as follows:

C:\<working folder>\Ch05\src>java org.apache.xalan.xsltc.cmdline.Compile ➥

-j Orders.jar OrderProcessing.xslt

This creates an Orders.jar file in your working folder containing all the created classes.

CHAPTER 5 ■ XSLT AND APACHE XALAN232

6412_c05_final.qxd 4/14/06 12:42 PM Page 232

Performing Transformation by Using a Translet
You can use the translet created in the previous step to perform transformations on any num-
ber of XML documents. To transform the CustomerOrders.xml file from our earlier examples,
use the following command line:

C:\<working folder>\Ch05\src>java org.apache.xalan.xsltc.cmdline.Transform ➥

CustomerOrders.xml OrderProcessing

This outputs the transformed document to the console.
If you have archived the classes into a JAR file called Orders.jar, use the following com-

mand line to perform the transformation:

C:\<working folder>\Ch05\src>java org.apache.xalan.xsltc.cmdline.Transform ➥

-j Orders.jar CustomerOrders.xml OrderProcessing

Before running this command, make sure that the Orders.jar file is placed in your system
classpath.

Programming Interface for Translets
Translets can be created through your program code at runtime. You can use such translets to
transform your documents through your application program. A console-based Java applica-
tion that creates and uses translets to transform documents is shown in Listing 5-12.

Listing 5-12. Console Application Illustrating Use of Translets (Ch05\src\Translets.java)

package xslt;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.util.Properties;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Templates;

public class Translets{
public static void main(String argv[]) {
// Set the TransformerFactory system property to generate and use translets.
Properties props = System.getProperties();
props.put("javax.xml.transform.TransformerFactory",

"org.apache.xalan.xsltc.trax.TransformerFactoryImpl");
System.setProperties(props);

CHAPTER 5 ■ XSLT AND APACHE XALAN 233

6412_c05_final.qxd 4/14/06 12:42 PM Page 233

try {
// Instantiate the TransformerFactory
TransformerFactory tFactory = TransformerFactory.newInstance();
// Create a translet based on the specified XSLT file
Templates translet = tFactory.newTemplates(new StreamSource

("OrderProcessing.xslt"));

// Perform transformations
Transformer transformer = translet.newTransformer();
transformer.transform(new StreamSource("CustomerOrders.xml"),
new StreamResult(new FileOutputStream("SortedOrders.html")));

System.out.println("Produced SortedOrders.html");

transformer.transform(new StreamSource("CustomerOrders1.xml"),
new StreamResult(new FileOutputStream("SortedOrders1.html")));

System.out.println("Produced SortedOrders1.html");
} catch (Exception e) {
e.printStackTrace();

}
}

}

As in the earlier cases, we will instantiate a transformer factory and a transformer.
For a transformer factory, Xalan provides an implementation in the class called
TransformerFactoryImpl. To instantiate this class, we set a system property called
TransformerFactory. The newInstance method of the TransformerFactory class uses this
property to instantiate the factory class.

We set the required system property by using the following code snippet:

Properties props = System.getProperties();
props.put("javax.xml.transform.TransformerFactory",

"org.apache.xalan.xsltc.trax.TransformerFactoryImpl");
System.setProperties(props);

Next, we instantiate the transformer factory:

TransformerFactory tFactory = TransformerFactory.newInstance();

To create a translet based on a certain XSLT file, we call the newTemplates factory method:

Templates translet = tFactory.newTemplates(new StreamSource
("OrderProcessing.xslt"));

The method receives the XSLT file as a stream source and returns an object of type
Templates.

We create a transformer based on this Templates object by calling its newTransformer
method:

Transformer transformer = translet.newTransformer();

CHAPTER 5 ■ XSLT AND APACHE XALAN234

6412_c05_final.qxd 4/14/06 12:42 PM Page 234

After a transformer is created, it can be applied to an XML document to transform it to
another form by using the templates defined in the Templates object:

transformer.transform(new StreamSource("CustomerOrders.xml"),
new StreamResult(new FileOutputStream("SortedOrders.html")));

The transform method, as seen in the earlier examples, receives the source tree as the first
argument and a reference to the output tree as the second argument. When the method com-
pletes, it will create an output tree. In our example, a file called SortedOrders.html would be
created in the working folder.

The created translet can now be applied to another XML document:

transformer.transform(new StreamSource("CustomerOrders1.xml"),
new StreamResult(new FileOutputStream("SortedOrders1.html")));

The output will be a SortedOrders1.html file, the same as the one shown earlier.

Summary
In this chapter, you studied one of the important features in XML processing: transforming
XML documents. XML documents are ideally suited for data transport. Though they are
easily read by humans, they cannot be easily interpreted by other software applications.
Thus, the XML documents need to be converted into a format that is understandable to
other applications. The Extensible Stylesheet Language (XSL) is used for defining such
transformations.

When a document is transformed, it can be transformed fully or partially. To transform
a document partially, you need a way to identify and locate the parts of the document. The
XPath specification allows you to locate a desired part of the document and returns you a
node list containing the located part. The desired part itself is specified as an XPath expres-
sion. In this chapter, you studied XPath syntax and its application in locating the parts of the
XML document.

The original XSL specifications have been split into two parts: XSLT and XSL-FO. The XSLT
specification (now simply known as XSL) defines how transformations are performed on a
given XML document, and XSL-FO defines how a transformed document is formatted. In this
chapter, you studied XSLT. The transformation commands are written in an XSLT file. The
XML document can specify the desired transformation file in its definition immediately fol-
lowing the XML declaration. The browsers enabled for XSLT interpret the commands in the
specified transformation file and transform the document contents before presenting those
in the output window.

The transformations can also be performed by using the API provided in the Xalan imple-
mentation. In this chapter, you learned how to use this API to perform your transformations
through application code. First, we wrote a stand-alone console application to perform trans-
formations. Next, we wrote transformation code in a JSP so as to perform the transformations
on the server side.

You also learned the techniques of chaining multiple transformations. Both push and pull
models for chaining and filtering were discussed.

CHAPTER 5 ■ XSLT AND APACHE XALAN 235

6412_c05_final.qxd 4/14/06 12:42 PM Page 235

Finally, we covered the concept of translets, through which any desired XSLT file is con-
verted into a set of Java classes. The created translet can then be applied to multiple XML
documents for transformations. Both command-line interfaces and programmatic interfaces
of translets were covered.

In the next chapter, you will learn how to format the transformed document by using XSL-
FO specifications.

CHAPTER 5 ■ XSLT AND APACHE XALAN236

6412_c05_final.qxd 4/14/06 12:42 PM Page 236

XSL-FO

In the preceding chapter, you learned how to transform XML by using XSLT. Often these
transformations convert an XML document into another XML variant; however, it’s also pos-
sible to convert these documents into other formats such as HTML and plain text. If you want
to render a document for use within a format-specific device, you need to transform it into the
format required by that device. If the desired output device is a printer, the difficulties can
quickly compound because hundreds of printer models are available. Thus, to print the docu-
ment to any user-specific printer, you would have to provide transformation instructions for
each of these printer-specific document formats. Obviously, this task would be not only
impractical, but likely impossible. An ideal alternative solution is available.

XSL-Formatting Objects (XSL-FO) provides for the formatting of objects intended for
display on multiple media outlets. Thus, it promotes a “write once, display anywhere” philo-
sophy. Fortunately, the Portable Document Format (PDF) supports several output devices.
If you transform your document into PDF, it can be printed on any printer in the world for
which you have a printer driver available.

The Apache Formatting Objects Processor (FOP) project offers a Java implementation for
print formatting based on XSL-FO specifications.1 The implementation provides both a com-
mand-line tool and the program libraries for use in your applications. It reads a formatting
object (FO) tree and renders the result to various output formats. The default output target is
PDF. However, the FOP also supports a variety of other output formats, including AWT, MIF,
PCL, Print, PS, SVG, TXT, and XML.

In this chapter, you will learn to use both the FOP’s command-line utility and a pro-
grammatic interface for creating PDF files from an XML document. To convert a given input
XML document, you will need to create an XSL-FO document that contains the formatting
commands written in XSL-FO. You will learn XSL-FO syntax and its use for creating PDF
documents that can contain not only plain text, but also graphics, tables, multicolumnar
reports, and more.

Installing FOP
Before we proceed with XSL-FO specifications, you need to download and install the software
on your machine so that you can try out the various examples illustrated in this chapter.

237

C H A P T E R 6

■ ■ ■

1. http://www.w3.org/TR/xsl/slice6.html#fo-section

6412_c06_final.qxd 4/7/06 1:19 AM Page 237

Downloading and Installing FOP
You need to download FOP from the Apache website. You can download the binaries from
the following URL:

http://xmlgraphics.apache.org/fop/download.html

You may download the source if you wish to build the binaries locally or to study its
implementation.

Like all other earlier Apache software that you have seen in this book, the installation of
FOP is easy. You need to unzip the downloaded archive to a desired folder. After installing the
software, make sure that you add the installation folder to your environment PATH and the
several library JAR files to your classpath environment variable.

■Note In addition to the JAR files in the <installation folder>\lib folder, you also need to add the
fop.jar file from <installation folder>\build folder to your classpath.

■Note For those of you installing on Linux, Appendix A gives detailed installation instructions for all the
chapters in this book.

Testing the Installation
You can test the installation by running the FOP command-line utility. The installation pro-
vides several examples. Open a command prompt and change the directory to <installation
folder>\ examples\fo\basic. Here you will find several FO files (which have the .fo exten-
sion). Run the fop command on any of the FO files. The sample command line is as follows:

C:\fop-0.20.5\examples\fo\basic>fop simple.fo simple.pdf

The formatting processor takes the input from the specified FO file and creates a PDF file
with the specified name. You will see the following output on the screen:

C:\fop-0.20.5\examples\fo\basic>fop simple.fo simple.pdf
[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] FOP 0.20.5
[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] building formatting object tree
[INFO] setting up fonts
[INFO] [1]
[INFO] Parsing of document complete, stopping renderer

Check for the presence of the simple.pdf file in your working directory. You can open this
in Adobe Reader to see its contents.

CHAPTER 6 ■ XSL-FO238

6412_c06_final.qxd 4/7/06 1:19 AM Page 238

First FO Example
Now that you have installed the software, you are ready to learn the XSL-FO syntax. We will
continue our case study from Chapter 2 and design a few PDF reports required by our stock
brokerage. Imagine that the stock brokerage needs to send some confidential reports to its
customers periodically. Every report begins with a cover page. We will write an FO document
to create this cover page, which we will call Cover.fo. The complete listing of Cover.fo is
shown in Listing 6-1.

Listing 6-1. Formatting Document for Cover Page (Ch06\src\Cover.fo)

<?xml version="1.0" encoding="utf-8" ?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master master-name="Cover Page">
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="Cover Page">
<fo:flow flow-name="xsl-region-body">
<fo:block
font-family="Helvetica"
font-size="36pt"
font-weight="bold"
space-before ="360pt"
text-align="center"
>
Stock Brokerage

</fo:block>
<fo:block
font-family="Times Roman"
font-size="24pt"
font-style="italic"
space-before ="12pt"
text-align="center"
>
Confidential Report

</fo:block>
</fo:flow>

</fo:page-sequence>
</fo:root>

We will now analyze the Cover.fo document so you will understand how the document
formatting is achieved.

CHAPTER 6 ■ XSL-FO 239

6412_c06_final.qxd 4/7/06 1:19 AM Page 239

■Note If you are curious to see the output produced after processing the Cover.fo document in
Listing 6-1, refer to Figure 6-1.

The first line is an XML declaration indicating that this is an XML document. The second
line declares the required namespaces:

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

The fo:root element forms the root of the XSL-FO document. The various FO elements
are defined in the fo namespace specified by the URI http://www.w3.org/1999/XSL/Format.

Within the root element we define the page layout templates:

<fo:layout-master-set>
<fo:simple-page-master master-name="Cover Page">
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

The layout-master-set element defines the layouts for the various pages in the docu-
ment. We are creating only one layout that is used by our cover page. Later, we will create
more layouts for documents requiring multiple output templates.

Page masters are created by adding subelements to the layout-master-set element. As its
name suggests, the simple-page-master element is used for creating simple page layouts. The
master-name attribute of this element specifies the name of our template. We name this master
Cover Page. We will refer to this master name later while defining pages in the document.

Each master defines the geometry of a page. A page is divided into several areas, or regions.
The region-body subelement defines the body of the output page. This body is similar to an
HTML body element in which you write your content. In addition to the body region, the mas-
ter defines regions such as those before and after the body. We will look at these areas and other
areas on a page later in this chapter.

After defining the master page layouts, we start creating pages. This is done with the help
of a page-sequence element:

<fo:page-sequence master-reference="Cover Page">

The page-sequence element specifies how to create a sequence of pages within a docu-
ment. We specify the master page layout to be used while creating pages by specifying the
value for the master-reference attribute. Note that the value for this attribute is defined in
the layout master set created earlier.

Within a page we define the content flow by using the flow element:

<fo:flow flow-name="xsl-region-body">

The flow element is a container for the flow objects. A flow object may be text or an
image. The flow-name attribute defines the region for the flow. This should map to the prede-
fined names. In this case, we will flow our content in the body area of the document. Other
areas, as said before, could be regions before and after.

CHAPTER 6 ■ XSL-FO240

6412_c06_final.qxd 4/7/06 1:19 AM Page 240

Within the flow, we now define one or more flow objects. A flow object is defined by using
a block subelement:

<fo:block
font-family="Helvetica"
font-size="36pt"
font-weight="bold"
space-before ="360pt"
text-align="center"
>
Stock Brokerage

</fo:block>

We write the desired content within the opening and closing block tag. In the preceding
example, we use the text Stock Brokerage as our content. This text will be rendered on the
output page.

We define the text formatting with the help of various attributes of the block element. For
example, the font-family attribute defines the font to be used. The font-size and font-weight
define the font size and weight, respectively. The space-before attribute defines the leading
space before the content. In the current example, this is set to 360pt. Thus, the space before
the text content with respect to the previous block will be 360 points. Note that publishers use
points as units for page measurement; however, these dimensions can also be specified in
inches and centimeters.

The text-align attribute defines the alignment for the block content. The alignment can
be left, center, right, or other predefined values in the schema.

After the heading block, another block is defined as follows:

<fo:block
font-family="Times Roman"
font-size="24pt"
font-style="italic"
space-before ="12pt"
text-align="center"
>
Confidential Report

</fo:block>

Here, we use the text Confidential Report as the block content. We use a different font,
font size, and style than the previous block. The space before the content now equals 12 points.

Performing Transformation
Your next task is to use the FOP engine to create a PDF document based on the layout speci-
fied in Listing 6-1. The screen output when you run fop is shown here:

CHAPTER 6 ■ XSL-FO 241

6412_c06_final.qxd 4/7/06 1:19 AM Page 241

Ch06\src>fop Cover.fo Cover.pdf
[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] FOP 0.20.5
[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] building formatting object tree
[INFO] setting up fonts
[INFO] [1]
[INFO] Parsing of document complete, stopping renderer

Viewing Output
After a successful run, the FOP utility creates a Cover.pdf file in the working folder. You can
use Adobe Reader to open this file. The screen output is shown in Figure 6-1.

From this you can gauge how easy it is to create a nicely formatted document by using
XSL-FO and the provided print formatter.

The XSL-FO Document Structure
The XSL-FO document is a well-formed XML document that should conform to the schema
definition provided by the W3C. In this section, you will look at the various elements of this
schema and how the entire document is structured.

CHAPTER 6 ■ XSL-FO242

Figure 6-1. Cover.pdf file in Adobe Reader (Ch06\PDFDocs\Cover.pdf)

6412_c06_final.qxd 4/7/06 1:19 AM Page 242

The Top-Level Document Structure
An XSL-FO document is ultimately an XML document and thus always begins with an XML
declaration. Listing 6-2 shows the top-level structure of an XSL-FO document.

Listing 6-2. Top-Level Structure of XSL-FO Document

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master master-name="A4">
<!-- Page template goes here -->

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="A4">
<!-- Page content goes here -->

</fo:page-sequence>
</fo:root>

The root element of the document is called root. This is declared in the namespace
http://www.w3.org/1999/XSL/Format. After the root element, we declare the set of layout mas-
ter pages with the help of the layout-master-set element. Each master page is given a unique
name in the current context. As seen earlier, while ordering the content, we use this page name.
You can define multiple master templates here. You will look at how to define the template
shortly.

After the page master templates are declared, we declare a sequence of pages for defining
our page content. Before we discuss how to add the page content, let’s examine the various
regions of the page where such page content can be placed.

XSL-FO Areas
To organize the content on a page, the entire page is divided into several rectangular areas.
XSL-FO defines several such rectangular areas, or boxes:

• Page: Each page consists of several regions.

• Region: Each region contains several blocks.

• Block: Each block contains several lines.

• Line: A line contains the matter to be rendered.

• Inline: Certain characters in a line, such as bullets or the first character of a paragraph,
may be formatted differently by using the inline subelement within a line element.

The output of XSL-FO goes into pages. The output may go into a single page or multiple
pages depending on the amount of content and the type of output device. If you are outputting
to a printer, multiple pages may be output, whereas if you are outputting to a browser, you may
get a single long page.

I will now describe each of these areas in additional detail.

CHAPTER 6 ■ XSL-FO 243

6412_c06_final.qxd 4/7/06 1:19 AM Page 243

Pages
The output of an XSL-FO document runs into one or more pages. Each page can contain static
information such as a header or footer. A page can display a page number. The formatting
engine tracks the page numbers as the contents are laid out in multiple pages. A page can be
odd- or even-numbered. An odd-numbered page may use a different formatting style than an
even-numbered page.

Each page is divided into regions as shown in Figure 6-2.

Regions
A page consists of five distinct regions:

• region-body: This refers to the body of the page. This is where your document content
will flow across multiple pages.

• region-before: This refers to the page header. This generally contains the static content
that will be displayed on every page.

• region-after: This refers to the page footer. This again contains static content (such as
page numbers) that will be displayed on every page.

• region-start: This refers to the left sidebar of the page. Typically, this may not be very
useful. If you place any content in this region, it will appear on all subsequent pages,
just like the header and the footer.

• region-end: This refers to the right sidebar of the page. This has a similar purpose to
region-start, except that the static content will be placed on the right side of the
region body and will be repeated on each page.

CHAPTER 6 ■ XSL-FO244

Figure 6-2. Page structure

6412_c06_final.qxd 4/7/06 1:19 AM Page 244

Blocks
Each region on a page consists of blocks. A block generally consists of paragraphs, tables, lists,
images, and so on. Remember, in Listing 6-1 we used blocks to define the text on our cover
page document. Several attributes of the block element allow you to define the formatting for
its content. For example, you can specify the font to be used, its size, style, and more. You can
also specify the content alignment such as left, center, right, and other items. For each block,
you can also specify the white space around the content by using margins and various space
attributes.

A block can contain line areas.

Lines
The line area defines the formatting for its line content. As with a block, for each line you can
specify a different formatting style. You can put inline areas inside the line.

Inlines
The inline areas define the formatting of the text inside lines. Typically, this is used for defin-
ing line bullets, graphics, and other items. For example, you might want to place a graphic in
front of the current line or you might simply decide to make the first character of the line big-
ger than the rest of the text. In such cases, you would use the inline tag to specify formatting
different from the formatting used by the rest of the content.

XSL-FO Page Templates
Now that you have seen the various areas in which the page content will flow, you are ready
to look at how to define a page template that uses these various areas. A page template defines
the layout of a page. As seen earlier, you can define multiple templates, each with a unique
name within the layout master set. For example, you can define a template for the cover page,
left page, right page, index page, and so on. Additionally, we use the simple-page-master ele-
ment to define the template page. This element has attributes that define the page height,
width, orientation, and other items. The following example illustrates how to format a page
with a specified height, width, and margins:

<fo:simple-page-master master-name="left"
page-height="297mm"
page-width="210mm"
margin-top="1cm"
margin-bottom="2cm"
margin-left="2.5cm"
margin-right="2.5cm"

>
<!-- The various regions are defined here -->
</fo:simple-page-master>

Here we have defined a page master called left with a height equal to 297 millimeters (mm)
and a width equal to 210 mm. We have also defined the various sizes for the page margins.

CHAPTER 6 ■ XSL-FO 245

6412_c06_final.qxd 4/7/06 1:19 AM Page 245

Within this page, we will now define regions as follows:

<fo:region-body margin="3cm"/>
<fo:region-before extent="2cm"/>
<fo:region-after extent="2cm"/>
<fo:region-start extent="2cm"/>
<fo:region-end extent="2cm"/>

As mentioned earlier (and shown in Figure 6-2), the page has five regions. The purpose
of each region was specified earlier.

For each region, several attributes are defined that determine the content alignment,
orientation, background, padding, and more. Additionally, the region-body element has a
column-count attribute that determines the number of columns in the document. Thus, you
can flow the content in multiple columns easily by setting the attribute value for this element.

After you define the various page masters, you are ready to set the content on the page.

Organizing Content
You start laying out the page and putting content on it by using the page-sequence element.
You declare the page-sequence element as follows:

<fo:page-sequence master-reference="first">

The master-reference attribute specifies the master page to be used. The master pages
were defined earlier in the page templates.

Within the page-sequence element, you use the flow element that defines the various blocks:

<fo:flow flow-name="xsl-region-body">

The flow element has only one attribute, called flow-name. We set this to xsl-region-body,
indicating that we want to flow the content in the region body. You can specify other regions if
you want to organize the contents into those regions. The various regions were discussed ear-
lier, and the allowed values for flow-name are as follows:

• xsl-region-body: Content is placed in the page body.

• xsl-region-before: Content is placed in the region-before area depicted in Figure 6-2.
This is the header area of the page.

• xsl-region-after: Content is placed in the region-after area depicted in Figure 6-2.
This is the footer area of the page.

• xsl-region-start: Content is placed in the region-start area depicted in Figure 6-2.

• xsl-region-end: Content is placed in the region-end area depicted in Figure 6-2.

A flow consists of block elements.

CHAPTER 6 ■ XSL-FO246

6412_c06_final.qxd 4/7/06 1:19 AM Page 246

Blocks
A typical block element is shown here:

<fo:block font-family="Helvetica" font-size="14pt">
This text is displayed in Helvetica font.

</fo:block>

A block contains the text or image to be rendered in the output. In the current example,
the following text will be rendered in the output: “This text is displayed in Helvetica font.” This
will be displayed by using 14-point Helvetica font. The block has various attributes that define
the fonts, margins, alignment, borders, background, and other items.

The block contains various areas as shown in Figure 6-3.

The content area contains the actual content, such as the text, image, and so on. On
four sides of the content, we define the padding. Outside the padding, the border is defined.
Surrounding the border, we have margins. Outside the margins, we define the space-before
and space-after areas. Values for each of these areas can be specified with their respective
attributes.

The various attributes together define the block decoration and the format of its content.
The FOP schema defines several common properties that are then applied to various elements.
The margin properties, for example, are applied to a block to define the top, bottom, left, and
right margins. The border properties are used for defining the border styles. The border style
can be independently set for top, bottom, left, and right borders. Similarly, the border color can
be independently set for the four areas. Likewise, you can set the individual width and the

CHAPTER 6 ■ XSL-FO 247

Figure 6-3. Various areas in a block

6412_c06_final.qxd 4/7/06 1:19 AM Page 247

padding for each border area. The background-color attribute sets the background color, and
the background-image attribute sets the background image for the block.

For the content within the block, the various attributes are provided to define the font
style, size, text alignment, and so on.

A typical block with the various properties set is shown here:

<fo:block font-size="18pt"
font-family="sans-serif"
line-height="24pt"
background-color="rgb(0,0,255)"
color="rgb(255,255,255)"
text-align="center"
padding-top="3pt">
Cover Page

</fo:block>

When you render this block to an output device, you will see the output as shown in
Figure 6-4.

Lines and Inlines
The use of line and inline elements is similar to the use of the block element, whereby you
can set the formatting style of the line contents. The inline element, as stated earlier, allows
you to control the appearance of part of the line contents. The use of these elements will be
discussed through the code examples later in the chapter.

Incorporating Graphics
Now that you’ve learned the page template structure and how to write an XSL-FO document
for creating a simple page, you’re ready to look at how to enhance the formatted document. In
this section, you’ll learn how to incorporate graphics images. First you’ll learn how to add any
type of image, such as a GIF or JPG image. Then you’ll focus on two techniques for including
SVG images.

CHAPTER 6 ■ XSL-FO248

Figure 6-4. A typical formatted output

6412_c06_final.qxd 4/7/06 1:19 AM Page 248

Adding Images
Adding an image to a page is a simple matter. You need to add a block that specifies the image
file as its contents. We will add an image of the company logo for our stock brokerage cover
page. We add the image by including the following block in the content flow:

<fo:block text-align="center">
<fo:external-graphic src="url(../Ch06/src/ais.JPG)"/>

</fo:block>

The image file is specified by using the external-graphic element. The src attribute spec-
ifies the path where this file is located. In our example, the path is specified as a relative URL
with respect to the current folder. The image file is a JPG file. When you render this block along
with the other two text blocks containing the text, the output looks like Figure 6-5.

The images that can be rendered like this can be any of the several formats, with exten-
sions such as .gif, .jpg, .bmp, or .tif.

Including SVG Images
Scalable Vector Graphics (SVG)2 is an XML-based language for describing two-dimensional
graphics. Just as we have incorporated a graphics image in other formats in an XSL-FO docu-
ment, we can also incorporate an SVG image that is stored in an external file. Because SVG is
written in XML, we can embed the graphics definition directly in an XSL-FO document. You
will learn both techniques of incorporating SVG images next.

Using an External Definition
An SVG image can be defined in an external file and included as a reference URL by using the
external-graphic element as in the earlier examples. Listing 6-3 provides the definition of an

CHAPTER 6 ■ XSL-FO 249

Figure 6-5. Incorporating an image (Ch06\PDFDocs\CoverImage.pdf)

2. The SVG specifications can be downloaded from http://xml.apache.org/batik or http://www.w3.org/
TR/SVG11/

6412_c06_final.qxd 4/7/06 1:19 AM Page 249

SVG image that consists of a series of embedded rectangles, where the color values increment
from red to black as you move to the inner rectangle.

Listing 6-3. SVG Definition (Ch06\src\boxes.svg)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"

"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg width="100" height="100" xml:space="preserve">
<g style="fill:red; stroke:#000000">
<rect x="0" y="0" width="100" height="100"/>

</g>
<g style="fill:rgb(200,0,0); stroke:#000000">
<rect x="5" y="5" width="90" height="90"/>

</g>
<g style="fill:rgb(150,0,0); stroke:#000000">
<rect x="10" y="10" width="80" height="80"/>

</g>
<g style="fill:rgb(100,0,0); stroke:#000000">
<rect x="15" y="15" width="70" height="70"/>

</g>
<g style="fill:rgb(50,0,0); stroke:#000000">
<rect x="20" y="20" width="60" height="60"/>

</g>
<g style="fill:rgb(0,0,0); stroke:#000000">
<rect x="25" y="25" width="50" height="50"/>

</g>
</svg>

To render this image to your output document, you would need to include following
blocks in your document flow:

<fo:block
space-before ="12pt"
text-align="center">
Including SVG image

</fo:block>
<fo:block
space-before ="12pt"
text-align="center">
<fo:external-graphic src="url(../Ch06/src/boxes.svg)"/>

</fo:block>

The first block displays a text message, while the second block includes the SVG image
from the external file boxes.svg. When you render this to the output device, you will see out-
put similar to Figure 6-6.

CHAPTER 6 ■ XSL-FO250

6412_c06_final.qxd 4/7/06 1:19 AM Page 250

Embedding SVG
In the previous example, we used the SVG definition stored in an external file. Because SVG is
an XML document, we can embed the SVG code directly into the XSL-FO document. The block
shown in Listing 6-4 does this.

Listing 6-4. Embedding SVG in a Block

<fo:block xmlns:svg="http://www.w3.org/2000/svg"
text-align="center"
space-before="15pt">

<fo:instream-foreign-object
content-width="6cm"
content-height="6cm">

<svg:svg width="6cm" height="6cm" xml:space="preserve">
<svg:g style="fill:rgb(211,211,211);">
<svg:circle cx="100" cy="100" r="50"/>

</svg:g>
<svg:g style="fill:rgb(175,175,175);">
<svg:circle cx="100" cy="100" r="40"/>

</svg:g>
<svg:g style="fill:rgb(150,150,150);">
<svg:circle cx="100" cy="100" r="30"/>

</svg:g>
<svg:g style="fill:rgb(100,100,100);">
<svg:circle cx="100" cy="100" r="20"/>

</svg:g>
<svg:g style="fill:rgb(75,75,75);">
<svg:circle cx="100" cy="100" r="10"/>

</svg:g>

</svg:svg>
</fo:instream-foreign-object>

</fo:block>

CHAPTER 6 ■ XSL-FO 251

Figure 6-6. Output from incorporating SVG image from an external source file
(Ch06\PDFDocs\FileSVG.fo)

6412_c06_final.qxd 4/7/06 1:19 AM Page 251

The program first declares the SVG namespace in the block element. The use of the
instream-foreign-object element allows you to enter the SVG definition in the block.
The instream-foreign-object element takes content-width and content-height as attributes
that determine the overall size of the image. This is followed by the SVG code that draws con-
centric circles of different shades of grey. The program output is shown in Figure 6-7.

■Note Use the embedding technique of incorporating SVG files in your document only if such image defi-
nitions are small and do not change periodically. If the definition changes too often or if it is too large, it will
raise document maintenance issues.

Having studied how to incorporate graphics in your document, you will now learn to
create tabular reports.

Creating Tables
Continuing with the stock brokerage theme, suppose the firm would like to send the
confirmation report for the orders received from the customer. We would like to print this
report in a nice tabular form. XSL-FO allows you to create tabular reports easily. We will create
a tabular order report that will list out all the trade orders requested by the customer. The table
will list the stock name, code, quantity ordered, desired price, and the type of order (buy or
sell). In earlier chapters, this kind of data was generated as HTML. Now, we will create a nice-
looking PDF document for this data. Listing 6-5 provides the complete code of an XSL-FO
document that creates such a tabular report.

Listing 6-5. XSL-FO Document That Generates Tabular Report (Ch06\src\OrderReport.fo)

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<!-- defines the layout master -->
<fo:layout-master-set>
<fo:simple-page-master
master-name="first"
page-height="29.7cm"

CHAPTER 6 ■ XSL-FO252

Figure 6-7. Image produced by embedded SVG (Ch06\src\EmbeddingSVG.fo)

6412_c06_final.qxd 4/7/06 1:19 AM Page 252

page-width="21cm"
margin-top="1cm"
margin-bottom="2cm"
margin-left="1.5cm"
margin-right="1.5cm">

<fo:region-body margin-top="3cm" margin-bottom="1.5cm"/>
<fo:region-before extent="3cm"/>
<fo:region-after extent="1.5cm"/>

</fo:simple-page-master>
</fo:layout-master-set>

<!-- starts actual layout -->
<fo:page-sequence master-reference="first">

<fo:flow flow-name="xsl-region-body">
fo:block font-size="18pt"
font-family="sans-serif"
font-weight="bold"
line-height="24pt"
space-after="15pt"
background-color="Blue"
color="white"
text-align="center"
padding-top="3pt">
Stock Brokerage

</fo:block>

<!-- normal text -->
<fo:block text-align="start" line-height="24pt">
We have received the following trade orders from you.

</fo:block>

<!-- table start -->
<fo:table table-layout="fixed"
font-size="10pt"
line-height="24pt"
border-color="black"
border-style="solid"
border-width=".5mm" >
<fo:table-column column-width="70mm" />
<fo:table-column column-width="30mm" />
<fo:table-column column-width="25mm" />
<fo:table-column column-width="25mm" />
<fo:table-column column-width="30mm" />
<fo:table-body>

CHAPTER 6 ■ XSL-FO 253

6412_c06_final.qxd 4/7/06 1:19 AM Page 253

<fo:table-row background-color="Cyan" font-weight="bold" >
<fo:table-cell >
<fo:block>Scrip Name</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Scrip Code</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Quantity</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Price</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Order Type</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row background-color="White">
<fo:table-cell >
<fo:block>American Financial Group Inc.</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>AFE</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>170</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>$25.29</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Buy</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row background-color="rgb (200,200,200)">
<fo:table-cell >
<fo:block>BAC Capital Trust IV</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>BACPRU</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>170</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>$23.71</fo:block>

</fo:table-cell>

CHAPTER 6 ■ XSL-FO254

6412_c06_final.qxd 4/7/06 1:19 AM Page 254

<fo:table-cell >
<fo:block>Sell</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row background-color="White">
<fo:table-cell >
<fo:block>Dominion Resources, Inc.</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>DPRU</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>87</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>$53.53</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Sell</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row background-color="rgb (200,200,200)">
<fo:table-cell >
<fo:block>Delphi Financial Group Inc.</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>DPRU</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>29</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>$26.04</fo:block>

</fo:table-cell>
<fo:table-cell >
<fo:block>Sell</fo:block>

</fo:table-cell>
</fo:table-row>

</fo:table-body>
</fo:table>
<!-- table end -->

<!-- normal text -->
<fo:block text-align="center" space-before="12pt" font-size="6pt" >
This is just for your notification.
You need not respond to this mail.

CHAPTER 6 ■ XSL-FO 255

6412_c06_final.qxd 4/7/06 1:19 AM Page 255

</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

As in the earlier examples, the document starts with an XML declaration followed by the
root element called root. This is followed by the declaration of page masters. We create only
one master page layout called first:

<fo:layout-master-set>
<fo:simple-page-master
master-name="first"
...

>
...
</fo:simple-page-master>

</fo:layout-master-set>

The various attributes of the simple-page-master define the page size, margins for the
region-body, and so on. After defining the set of master pages, we start the actual page
sequence where we would organize the contents. The contents are displayed in the region
body:

<!-- starts actual layout -->
<fo:page-sequence master-reference="first">
<fo:flow flow-name="xsl-region-body">

In the region body, we declare a block that prints the name of our stock brokerage in a
reverse background. The various attributes define the font, size, background color, and so on:

<fo:block font-size="18pt"
...>
Stock Brokerage

</fo:block>

After this, we print another block displaying a text message. At this point, we start the def-
inition of the table structure. The table definition starts with an fo:table element. We set the
table layout to fixed dimensions by setting its table-layout attribute:

<fo:table table-layout="fixed"
...

border-color="black"
border-style="solid"
border-width=".5mm" >

We define the border for the table by setting the border color, style, and width attributes.
Within the table, we will now create the desired number of columns. This is done by using the
fo:table-column element. We create five columns as follows:

CHAPTER 6 ■ XSL-FO256

6412_c06_final.qxd 4/7/06 1:19 AM Page 256

<fo:table-column column-width="70mm" />
<fo:table-column column-width="30mm" />
<fo:table-column column-width="25mm" />
<fo:table-column column-width="25mm" />
<fo:table-column column-width="30mm" />

For each column, we set the width by using the column-width attribute. After the table
structure is defined, we flow the content in the table by opening a table-body element:

<fo:table-body>
...

</fo:table-body>

Within the body of the table, we define various rows by using the table-row element. For
the first row, we set the background color to cyan and the font weight to bold. Thus, the text in
this row will be shown in bold font:

<fo:table-row background-color="Cyan" font-weight="bold" >

Within each row, we define various table cells by using the fo:table-cell element. Within
a table cell we create a block element to flow the text content:

<fo:table-cell>
<fo:block>Stock Name</fo:block>

</fo:table-cell>

In the first cell, we display Stock Name as our text. Likewise, in subsequent table columns,
we will display headings such as Stock Code, Quantity, Price, and Order Type. After this, we
close the row by using the closing table-row element:

</fo:table-row>

We now begin another row by using the table-row element again. This time, we set the
background color to white:

<fo:table-row background-color="White">

As with the previous row, we will declare various table cells for this row and display the
desired data in them.

Likewise, you can create as many rows as you wish in a table. After you are finished
inputting all the desired rows, you close the table by using the appropriate closing tags for the
table body and table itself:

</fo:table-body>
</fo:table>
<!-- table end -->

After the table is closed, we create one more block to display a notification message to the
user. Finally, we close the flow and the page-sequence by using the appropriate closing tags
before the closing tag of our document:

CHAPTER 6 ■ XSL-FO 257

6412_c06_final.qxd 4/7/06 1:19 AM Page 257

</fo:flow>
</fo:page-sequence>

</fo:root>

You may now run the FOP utility on this FO document to generate the PDF. If you view the
generated PDF in a PDF reader, you will see the output shown in Figure 6-8.

Columnar Text
You may occasionally want to present text by using a multicolumn format. XSL-FO allows you
to easily accomplish this task. In fact, after a page is defined, you can change the number of
columns and the content will automatically flow into the newly defined layout. In this section,
you will learn how to create a multicolumn report. First you will create the XSL-FO document
and then you will render it as a PDF file.

Creating the XSL-FO Document
We will develop an XSL-FO document that creates a multicolumn output. To demonstrate,
a short paragraph from Chapter 3 will be used as the text content. We will repeat this para-
graph multiple times, each time applying a different style. The entire matter will flow over four
pages. The page height has been reduced so that you can see the effect of flowing text over
multiple pages.

We will also use the inline element to format the first character and the first two words
of the first two paragraphs. The XSL-FO document that produces a columnar report page is
shown in Listing 6-6.

Listing 6-6. XSL-FO for Generating Columnar Report (Ch06\src\MultiColumn.fo)

<?xml version="1.0" encoding="utf-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

CHAPTER 6 ■ XSL-FO258

Figure 6-8. Generated tabular report of Listing 6-5 (Ch06\PDFDocs\OrderReport.pdf)

6412_c06_final.qxd 4/7/06 1:19 AM Page 258

<!-- defines page layout -->
<fo:layout-master-set>

<fo:simple-page-master master-name="columnarPage"
page-height="6in"
page-width="8.5in"
margin-top="1in"
margin-bottom="1in"
margin-left="0.75in"
margin-right="0.75in">

<fo:region-body
margin-top="1in" margin-bottom="1in"
column-count="3" column-gap="0.25in"/>

<fo:region-before extent="1in"/>
<fo:region-after extent="1in"/>

</fo:simple-page-master>

</fo:layout-master-set>

<!-- actual layout -->
<fo:page-sequence master-reference="columnarPage">

<fo:static-content flow-name="xsl-region-before">
<fo:block font-size="16pt"

font-family="sans-serif"
line-height="normal"
text-align="start"

color="blue">Multi-Columnar Report</fo:block>
</fo:static-content>

<fo:static-content flow-name="xsl-region-after">
<fo:block font-size="10pt"

font-family="sans-serif"
line-height="12pt"

space-before.optimum="6pt"
text-align="end"

color="blue">Page # <fo:page-number/></fo:block>
</fo:static-content>

<fo:flow flow-name="xsl-region-body">
<fo:block font-size="12pt"

font-family="sans-serif"
line-height="15pt"
space-after.optimum="3pt"
text-align="start"

span="none">

CHAPTER 6 ■ XSL-FO 259

6412_c06_final.qxd 4/7/06 1:19 AM Page 259

<fo:inline color="blue"
font-weight="bold"
font-size="24pt">
W<fo:inline
font-size="12pt">

eb services
</fo:inline>

</fo:inline>
technology connects two applications by using XML-based protocols. An application
requests a service from another cooperating application by sending an XML-based
message to it. This message is called a SOAP request. The requestor embeds a
method call for the remote application within the message. In addition, this
message contains the parameters required by the remote method. The remote
application executes the requested method and may send another XML-based message
in response to the requestor. Like the requesting message, the response is also in SOAP
format and contains the return value of the remote procedure call.

</fo:block>
<fo:block font-size="12pt"

font-family="sans-serif"
color="green"
line-height="15pt"
space-after.optimum="3pt"
space-before="5pt"
text-align="start"

span="none">
<fo:inline color="blue"
font-weight="bold"
font-size="24pt">
W<fo:inline
font-size="12pt">
eb services

</fo:inline>
</fo:inline>

technology connects two applications by using XML-based protocols. An application
...

</fo:block>
<fo:block font-size="12pt"

font-family="Times Roman"
font-style="italic"
line-height="15pt"
space-after.optimum="3pt"
text-align="start"
background-color="yellow"
span="none">

CHAPTER 6 ■ XSL-FO260

6412_c06_final.qxd 4/7/06 1:19 AM Page 260

Web services technology connects two applications by using XML-based protocols. An
...

</fo:block>
<fo:block font-size="14pt"

font-family="Helvetica"
line-height="15pt"
space-after.optimum="3pt"
text-align="start"

span="none">
Web services technology connects two applications by using XML-based protocols. An
...

</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

We start by defining master page layouts. We create a master page called columnarPage:

<fo:simple-page-master master-name="columnarPage"

We set the page height, width, and various margins to the desired values. We then create
the regions within the page: region-body, region-before, and region-after. The region-body
element is important to us because this is where we will be flowing page content:

<fo:region-body
margin-top="1in" margin-bottom="1in"
column-count="2" column-gap="0.25in"/>

In the region-body element, we define the column-count as 2. This attribute determines
the number of columns for the text. Later, you will try changing the value of this attribute to
flow the text in more than two columns.

After defining the page layout masters, we will start placing the content. First, we place
content in the region-before area:

<fo:static-content flow-name="xsl-region-before">
<fo:block font-size="16pt"

font-family="sans-serif"
line-height="normal"
text-align="start"
color="blue">Multi-Columnar Report</fo:block>

</fo:static-content>

After this, we define content for the region-after area:

<fo:static-content flow-name="xsl-region-after">
<fo:block font-size="10pt"

font-family="sans-serif"
line-height="12pt"

CHAPTER 6 ■ XSL-FO 261

6412_c06_final.qxd 4/7/06 1:19 AM Page 261

space-before.optimum="6pt"
text-align="end"
color="blue">Page # <fo:page-number/></fo:block>

</fo:static-content>

In the region-after area that appears at the bottom of each page, we place the page
number. Note how the page numbers are automatically generated with the help of the
fo:page-number element. The space-before.optimum attribute for this block element sets
the optimum spacing to 6 points. Thus, the space before this block may not always equal
6 points, but could be more depending on how the rest of the page content is placed.

Now, we define the flow for the region-body area:

<fo:flow flow-name="xsl-region-body">

For each paragraph in this area, we create a block element. Each block will use a different
formatting style. We declare the first block as follows:

<fo:block font-size="12pt"
font-family="sans-serif"
line-height="15pt"
space-after.optimum="3pt"
text-align="start"
span="none">

The block defines the formatting for its content by using its various attributes. Within this
block, we use the inline element to set different formatting for the first character and the first
two words of the paragraph:

<fo:inline color="blue"
font-weight="bold"
font-size="24pt">
W<fo:inline
font-size="12pt">
eb services

</fo:inline>

Note the use of nested inline elements to set the formatting of the first character differ-
ent from the other characters in the first two words. The first character is displayed in blue
color in bold 24-point size. The first character, which is W, is placed as the content of the inline
element. The rest of the characters (that is, eb services) are displayed in 12 points and the
same blue color.

After the first two words are placed, we place the rest of the matter for the paragraph as
the content of the outer block element. This text will be displayed using the font style defined
for this block element.

We repeat this block along with its content three more times, changing the block style
each time.

CHAPTER 6 ■ XSL-FO262

6412_c06_final.qxd 4/7/06 1:19 AM Page 262

Rendering Columnar Output
You can now run the FOP utility on this FO document to generate the PDF. If you view the gen-
erated PDF in a PDF reader, you will see a four-page document. The first page of the output is
shown in Figure 6-9.

You can generate the document yourself to see how the text flows nicely across multiple
pages in two columns. Also, note the page number as it autoincrements on each page count.

■Note Because this book is printed in black-and-white, some of the formatting effects, such as font color
and highlights, will not be visible here. You will need to observe these effects on your color monitor.

Now you can try changing the column count to 3. Figure 6-10 shows the generated output
for page 2.

CHAPTER 6 ■ XSL-FO 263

Figure 6-9. Two-column output

Figure 6-10. Three-column report (Ch06/PDFDocs/MultiColumn.pdf)

6412_c06_final.qxd 4/7/06 1:19 AM Page 263

The XSL-FO specification provides several such elements for producing nicely formatted
documents. You can refer to this specification to understand the use of other elements. The
use of such elements is not complicated, and whatever knowledge you have gained in this
chapter so far should be enough to help you learn the rest of the elements on your own.

Processing Documents Programmatically
So far, you have used the FOP utility to create PDF files from XSL-FO documents. You can
also use the FOP API in your application code to generate PDF files dynamically through your
program. In this section, you will learn the techniques of creating PDF files programmatically
from a given XSL-FO or XML source document. You will use client-side programming to
develop a stand-alone application and will use server-side programming to develop a servlet.

Stand-Alone Applications for Transformations
Apache’s FOP engine can be invoked through your application code to generate a PDF from a
given FO document. Alternatively, you can translate an XML document into an FO document
by using XSLT. The resultant FO document can then be rendered into a PDF document. Both
of these techniques are described next.

The FO to PDF Transformation
The programmatic creation of a PDF file from an XSL-FO document is an easy process. The
complete code for a console-based Java application is given in Listing 6-7.

Listing 6-7. Console Application for PDF Creations (Ch06\src\FOTransformation.java)

package xmlfo;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import org.xml.sax.InputSource;
import org.xml.sax.InputSource;
import org.apache.fop.apps.Driver;

public class FOTransformation {
public static void main(String[] args) {
if(args.length !=2)
{
System.out.println("Usage:java FOTransformation FOFileName PDFFileName");
System.exit(1);

}
try {
Driver driver = new Driver();

CHAPTER 6 ■ XSL-FO264

6412_c06_final.qxd 4/7/06 1:19 AM Page 264

// set the logger

//Setup Renderer (output format)
driver.setRenderer(Driver.RENDER_PDF);

//Setup output
OutputStream out = new java.io.FileOutputStream(args[1]);
try {
driver.setOutputStream(out);
//Setup input
InputStream in = new java.io.FileInputStream(args[0]);
try {
driver.setInputSource(new InputSource(in));
//Process FO
driver.run();

} finally {
in.close();
}

} finally {
out.close();

}
System.out.println("Output file created successfully!");

} catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}
}

}

The FOP implementation provides the Driver class for performing the transformation.
You simply need to instantiate this class, set its input and output streams, and call the run
method to produce the output. The class is instantiated as follows:

Driver driver = new Driver();

After you have instantiated it, you will need to set up the renderer by calling the
setRenderer method on the Driver class:

//Setup Renderer (output format)
driver.setRenderer(Driver.RENDER_PDF);

In the current example, we set the renderer to PDF by using the Driver.RENDER_PDF pre-
defined constant as an argument to the setRenderer method.

You set the output for the renderer by constructing a file output stream and assigning
it to the driver by calling its setOutputStream method as follows:

//Setup output
OutputStream out = new java.io.FileOutputStream(args[1]);
try {

driver.setOutputStream(out);

CHAPTER 6 ■ XSL-FO 265

6412_c06_final.qxd 4/7/06 1:19 AM Page 265

Likewise, you set the input stream for the driver by first constructing an input stream
object and then assigning it to the driver by calling its setInputSource method:

//Setup input
InputStream in = new java.io.FileInputStream(args[0]);
try {

driver.setInputSource(new InputSource(in));

At this stage, your driver is set up and you are ready to perform the transformations,
which you do by simply calling the run method on the driver object:

driver.run();

If the run method runs to its success, the specified PDF file will be created in the current
folder. In case of errors while processing, the program captures the exceptions and prints
them on the user console.

Compiling and Running the Application

You can compile the code by using the javac compiler on the command line as follows:

C:\<installation folder>\Ch06\src>javac -d . FOTransformation.java

After it is compiled, run the application from a command line by specifying the desired
parameters:

C:\<installation folder>\Ch06\src>java xmlfo.FOTransformation Cover.fo Cover.pdf

Before compiling and running the application, ensure that you have all the required
libraries in your environment’s classpath. You will need to include the various JAR files from
<your installation folder>\lib folder into your classpath.

■Note You will also need to include in your classpath the fop.jar file from <your installation
folder>\build folder.

The XML to PDF Transformation
In the previous section, you learned how to convert an FO document into a PDF document
through your application code. Now, you will learn how to convert a given XML document
directly into a PDF document through application code. The application code that performs
this transformation is given in Listing 6-8.

CHAPTER 6 ■ XSL-FO266

6412_c06_final.qxd 4/7/06 1:19 AM Page 266

Listing 6-8. XML2PDF Transformation—Stand-Alone Application (Ch06\src\XMLTransformation.
java)

package xmlfo;
//Java
import java.io.File;
import java.io.IOException;
import java.io.OutputStream;

//JAXP
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.Source;
import javax.xml.transform.Result;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.sax.SAXResult;

//FOP
import org.apache.fop.apps.Driver;

public class XMLTransformation {

public static void main(String[] args) {
if(args.length !=2)
{
System.out.println

("Usage:java XMLTransformation XMLFileName PDFFileName");
System.exit(1);
}

try {
//Setup input and output files
File xmlfile = new File("args[0]");
File xsltfile = new File("args[1]");

//Construct driver
Driver driver = new Driver();

// set the logger

//Setup Renderer (output format)
driver.setRenderer(Driver.RENDER_PDF);

//Setup output
OutputStream out = new java.io.FileOutputStream("Result.pdf");
try {

driver.setOutputStream(out);

CHAPTER 6 ■ XSL-FO 267

6412_c06_final.qxd 4/7/06 1:19 AM Page 267

//Setup XSLT
TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer

(new StreamSource(xsltfile));

//Setup input for XSLT transformation
Source src = new StreamSource(xmlfile);

//Resulting SAX events (the generated FO) must be
//piped through to FOP
Result res = new SAXResult(driver.getContentHandler());

//Start XSLT transformation and FOP processing
transformer.transform(src, res);

} finally {
out.close();

}

System.out.println("Success!");
} catch (Exception e) {

e.printStackTrace();
System.exit(-1);

}
}

}

For transforming an XML document into a PDF file, you need to first transform the given
XML document into an FO document. You do so by using transformations defined in another
XSLT document. The application accepts two command-line parameters that specify the
name of the input XML file as the first parameter and the name of the XSLT file as the second
parameter. The application first constructs the File objects on these two input files:

//Setup input and output files
File xmlfile = new File("args[0]");
File xsltfile = new File("args[1]");

The application then creates a Driver instance and sets its renderer type to a predefined
value of Driver.RENDER_PDF:

//Construct driver
Driver driver = new Driver();

//Setup Renderer (output format)
driver.setRenderer(Driver.RENDER_PDF);

We set the output for the transformation result by creating a stream object for the
Result.pdf file and assigning it to the driver instance:

CHAPTER 6 ■ XSL-FO268

6412_c06_final.qxd 4/7/06 1:19 AM Page 268

//Setup output
OutputStream out = new java.io.FileOutputStream("Result.pdf");
try {

driver.setOutputStream(out);

Next, we create a transformer based on the specified XSLT file:

//Setup XSLT
TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer

(new StreamSource(xsltfile));

■Tip XSLT transformations were discussed in Chapter 5.

Next, we create a StreamSource object for input to XSLT transformations:

//Setup input for XSLT transformation
Source src = new StreamSource(xmlfile);

The output of the XSLT transformation must be piped through to FOP, where another
transformation will convert FO to PDF:

//Resulting SAX events (the generated FO) must be piped through to FOP
Result res = new SAXResult(driver.getContentHandler());

//Start XSLT transformation and FOP processing
transformer.transform(src, res);

The transformer finally transforms the XML source document to a resultant output
stream by using its transform method. Note that it does first perform transformation of XML
to intermediate FO by using the specified XSLT document.

Compiling and Running the Application

You can use the javac compiler to compile the preceding application code by using the follow-
ing command line:

C:\<installation folder>\Ch06\src>javac -d . FOTransformation.java

To run the application, use the command as follows:

C:\<installation folder>\Ch06/src>java xmlfo.XMLTransformation ➥

CustomerOrders.xml Process.xsl

When the application runs successfully, you will find the Result.pdf file created in the
working folder.

CHAPTER 6 ■ XSL-FO 269

6412_c06_final.qxd 4/7/06 1:19 AM Page 269

Creating a Server-Side Transformation Application
Now we will look at the development of the server-side code, which will enable us to create a
PDF file on the server and render its output in the client browser. To perform transformations
on the server side, we will create a servlet and deploy it on a Tomcat server. We will consider
both techniques of converting FO to PDF and converting XML to PDF.

The FO to PDF Transformation
The process for server-side transformation is identical to the one described in the console
application in the previous section. Again, we will use the provided Driver class to perform
the transformation. The complete code for the servlet that performs this transformation is
given in Listing 6-9.

Listing 6-9. Fop2PDFServlet Performs FO to PDF Transformation on Server (Ch06\src\
Fop2PDFServlet.java)

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import org.xml.sax.InputSource;

import org.apache.fop.apps.Driver;

public class Fop2PDFServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException {
try {
String foParam = request.getParameter("fo");

if (foParam != null) {
FileInputStream file = new FileInputStream(foParam);

try {
ByteArrayOutputStream out = new ByteArrayOutputStream();
response.setContentType("application/pdf");

Driver driver = new Driver(new InputSource(file), out);
driver.setRenderer(Driver.RENDER_PDF);
driver.run();

byte[] content = out.toByteArray();
response.setContentLength(content.length);
response.getOutputStream().write(content);

CHAPTER 6 ■ XSL-FO270

6412_c06_final.qxd 4/7/06 1:19 AM Page 270

response.getOutputStream().flush();
} catch (Exception ex) {
throw new ServletException(ex);

}

} else {
PrintWriter out = response.getWriter();
out.println("<html><head><title>Error</title></head>\n"+

"<body><h1>Fop2PDFServlet Error</h1><h3>No 'fo' "+
"request param given.</body></html>");

}
} catch (ServletException ex) {
throw ex;

}
catch (Exception ex) {
throw new ServletException(ex);

}
}

}

The servlet takes one parameter that specifies the name of the XSL-FO file to be trans-
formed and renders its output on the client browser:

String foParam = request.getParameter("fo");
if (foParam != null) {
FileInputStream file = new FileInputStream(foParam);

As in the previous example, we first construct an input source object. The program reads
the value of the fo parameter and constructs a FileInputStream object on it. The Driver object
will use this as the input stream.

We construct the byte array output stream for the program output:

ByteArrayOutputStream out = new ByteArrayOutputStream();

The driver renders its output to the stream. As the driver renders the output of PDF type,
we need to set the content type in the output stream. This is done by calling the
setContentType method on the response object:

response.setContentType("application/pdf");

If you register the PDF reader application in your browser, the browser will display the
content of the PDF file.

After setting the input and output streams and the content type for the output, we
instantiate the Driver:

Driver driver = new Driver(new InputSource(file), out);

The driver is initialized with the desired input and output streams passed as parameters
to its constructor.

CHAPTER 6 ■ XSL-FO 271

6412_c06_final.qxd 4/7/06 1:19 AM Page 271

As in the earlier example, we set the renderer to PDF type and call the run method on the
driver object to perform the transformation:

driver.setRenderer(Driver.RENDER_PDF);
driver.run();

The output produced by the driver goes in the specified byte array stream. We need to
copy this in the response object of the servlet. We read the contents of the byte array output
stream into a byte array:

byte[] content = out.toByteArray();

We set the content length on the response object by calling its setContentLength method.
The length equals the length of the byte array in which the response has been generated:

response.setContentLength(content.length);

We write the actual content to the response object by calling the write method on its out-
put stream:

response.getOutputStream().write(content);

The output stream contents need to be flushed to the browser by calling its flush method:

response.getOutputStream().flush();

At this stage, the generated PDF output will be displayed on the user browser.

Compiling the Servlet

You can use the javac compiler from the command line to compile the servlet code given in
Listing 6-5. In this case, you will need to ensure that all the required library files are available
in your classpath. Also, you will need to create the WAR file for deployment on the web server.

The easier way to compile and deploy the servlet is to use the Apache-provided build file.
The build.bat file is available in your <fop installation folder>\examples\servlet folder.
Copy the servlet source file to your <fop installation folder>\examples\servlet\src folder.
You will need to modify the build.xml file from the servlet folder. The only change you would
need in the build.xml file is to change the value for the property name as follows:

<property name="name" value="Fop2PDFservlet"/>

Set the value attribute to the name of your servlet. When you build the project, the
fop.war file will be created in your servlet\build folder. Drop this file in the webapps folder of
your Tomcat installation and restart Tomcat. This will install the servlet and make it ready for
invocation.

■Note If you are using another web server, you will need to follow its instructions for installing the servlet.

CHAPTER 6 ■ XSL-FO272

6412_c06_final.qxd 4/7/06 1:19 AM Page 272

Running the Servlet

You can run the servlet by typing the following URL in your browser:

http://localhost:8080/fop/Fop2PDFServlet?fo=c:\apress\ch06\src\Cover.fo

■Note Before you run this URL, ensure that the Cover.fo file is available in the specified folder.

The Cover.fo file is shown in Listing 6-1 and is available from the Source Code area of the
Apress website (http://www.apress.com). If you have registered Adobe Reader for reading PDF
files in your browser, you will see the output as shown in Figure 6-11.

XML to PDF Transformation
The previous example showed the transformation of an FO file into PDF. Now we will write
servlet code that takes XML and XSLT documents as input parameters. The content of the
XML document will first be transformed into an intermediate FO document by using the
transformation instructions given in the XSLT file. The content of the FO file will then be
rendered on the output device as a PDF document.

The code for the XML2PDF servlet is given in Listing 6-10.

Listing 6-10. XML2PDF Servlet (Ch06\src\XML2PDFServlet.java)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.xml.sax.InputSource;
import org.apache.fop.apps.Driver;
import org.apache.fop.apps.XSLTInputHandler;

CHAPTER 6 ■ XSL-FO 273

Figure 6-11. Fop2PDFServlet Response Output (Ch06\PDFDocs\Cover.pdf)

6412_c06_final.qxd 4/7/06 1:19 AM Page 273

public class XML2PDFServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException {
String xmlParam = request.getParameter("xml");
String xsltParam = request.getParameter("xslt");
try {
if ((xmlParam != null) && (xsltParam != null)) {
XSLTInputHandler input =
new XSLTInputHandler(new File(xmlParam),
new File(xsltParam));

try {
ByteArrayOutputStream out = new ByteArrayOutputStream();

response.setContentType("application/pdf");

Driver driver = new Driver();
driver.setRenderer(Driver.RENDER_PDF);
driver.setOutputStream(out);
driver.render(input.getParser(), input.getInputSource());

byte[] content = out.toByteArray();
response.setContentLength(content.length);
response.getOutputStream().write(content);
response.getOutputStream().flush();
} catch (Exception ex) {

throw new ServletException(ex);
}

} else {
PrintWriter out = response.getWriter();
out.println("<html><head><title>Error</title></head>\n"+
"<body><h1>XML2PDFServlet Error</h1><h3>"+
"request params not proper.</h3></body></html>");

}
}catch (ServletException ex) {
throw ex;

}
catch (Exception ex) {
throw new ServletException(ex);

}
}

}

The servlet accepts two parameters, namely xml and xslt. The first parameter specifies
the XML document whose contents are to be rendered to a PDF file. The second parameter
specifies the XSLT file that transforms the input XML file to an intermediate FO document.
The transformation output is directly rendered on the browser as in the previous example.

CHAPTER 6 ■ XSL-FO274

6412_c06_final.qxd 4/7/06 1:19 AM Page 274

The servlet first reads the two input parameters into local variables:

String xmlParam = request.getParameter("xml");
String xsltParam = request.getParameter("xslt");

If the input parameters are not specified, the servlet displays a proper error message on
the browser. If both parameters are specified, we construct an input handler that is later used
by the driver object:

if ((xmlParam != null) && (xsltParam != null)) {
XSLTInputHandler input =
new XSLTInputHandler(new File(xmlParam),

new File(xsltParam));

Apache provides a special class called XSLTInputHandler for creating an input to the
Driver class that performs the rendering. The input handler class takes two parameters: The
first parameter is the XML document, and the second parameter is the XSLT document that
is used for transformation.

After constructing the input handler, we construct the output stream as in the previous
example:

ByteArrayOutputStream out = new ByteArrayOutputStream();

We set the content type to PDF in the response object:

response.setContentType("application/pdf");

We create the Driver instance, set its renderer type, and set the output stream:

Driver driver = new Driver();
driver.setRenderer(Driver.RENDER_PDF);
driver.setOutputStream(out);

Next, we call the render method on the driver object to perform the transformation:

driver.render(input.getParser(), input.getInputSource());

The render method uses the parser passed in its first argument and uses the source docu-
ment passed in the second argument. The driver will output its results to the byte stream as in
the earlier example. We copy these contents into a byte buffer and output the buffer to the
response object of the servlet:

byte[] content = out.toByteArray();
response.setContentLength(content.length);
response.getOutputStream().write(content);
response.getOutputStream().flush();

The output will now be displayed on the client browser.

CHAPTER 6 ■ XSL-FO 275

6412_c06_final.qxd 4/7/06 1:19 AM Page 275

Compiling and Running the XML2PDF Servlet

To compile the servlet, you can use the provided build.bat file as in the previous example.

■Note You will need to modify build.xml to specify the name of your servlet as XML2PDFServlet.

After a WAR file is created, deploy it on the web server. To test this servlet, you can use the
provided XML (CustomerOrders.xml) and XSL (Process.xsl) files in the src folder of your code
download. These are available in the <your installation folder>\Ch06\src folder.
CustomerOrders.xml is the file you have used in the previous examples. The Process.xsl file
defines the XSLT transformation to transform the CustomerOrders document into a tabular
format as depicted in Figure 6-12.

Open the following URL in your browser:

http://localhost:8080/fop/XML2PDFServlet?xml=C:\Apress\Ch06\src\CustomerOrders.➥

xml&xsl= C:\Apress\Ch06\src\Process.xsl

You will see the output as shown in Figure 6-12.

Summary
XSL-FO is a powerful language for rendering the contents of an XML document to a format spe-
cific to an output device. In this chapter, you learned the transformation process by using the
Apache-supplied FOP utility. This chapter covered the XSL-FO syntax so that you can create
your own FO documents that can be easily transformed into PDF documents by using the FOP
utility.

CHAPTER 6 ■ XSL-FO276

Figure 6-12. Output produced by XML2PDF servlet

6412_c06_final.qxd 4/7/06 1:19 AM Page 276

XSL-FO is XML based and allows you to create complicated page layouts easily. The speci-
fications define several tags in an XML schema. You create an XML-FO document adhering to
this schema. You use various elements from this schema in an FO document to specify the
desired formatting for each paragraph in the document.

You learned how to create simple title pages in which you could control the font size,
style, foreground color, and background color for your titles. You learned how to incorporate
graphics in your output documents. XSL-FO specifications allow you to import graphics
images from various popular formats including the latest SVG format.

XSL-FO specifications allow you to create tables in your output document. You learned
the syntax for creating tabular outputs. In a continuation of our stock brokerage application
from Chapter 2, you learned how the stock brokerage created a tabular report for its clients.

You also learned how to create a multicolumn page layout and flow the contents in mul-
tiple columns. The number of columns on a page can be easily changed by modifying a single
attribute value. For a multipage document, the FOP engine keeps track of page numbering.
You learned how to place an autocounting page number on your document.

Instead of using the command-line FOP utility, you can generate PDF documents through
your application code. Such transformations can be done by writing a console application or
can be performed on a server by using a servlet. You learned both techniques of client- and
server-side processing.

The transformation through your application code can be done starting with an FO docu-
ment or it can be performed directly on an XML source document. If you decide to use an
XML document as the content input, it needs to be converted into an intermediate FO docu-
ment before rendering its output to PDF. For this, we use XSLT. The XSLT document contains
instructions for transforming an XML document into an FO document. You learned how to
perform such transformations through your application code.

CHAPTER 6 ■ XSL-FO 277

6412_c06_final.qxd 4/7/06 1:19 AM Page 277

6412_c06_final.qxd 4/7/06 1:19 AM Page 278

The Apache Cocoon
Framework

In the first six chapters of this book, you have learned several XML technologies such as pars-
ing, invoking web services, XSL transformations, and formatting objects. In this chapter, we
will bring all of these technologies together to create a web application that people would like
to use and application developers could manage with ease. This is exactly what the Apache
Cocoon framework provides.

Apache Cocoon is an XML publishing framework that accepts XML data as the input
source, transforms it by using the transformation rules defined by you, and eventually con-
verts it to a presentation format of your choice. These three processes—document creation,
transformation, and presentation—are loosely coupled, meaning that each can be respec-
tively managed by an appropriate individual or group without interfering with efforts made
by other individuals or groups working on the other components. For example, the person
responsible for choosing the document content will not necessarily be tasked with how the
content is transformed and rendered on the client’s display. Apache Cocoon accounts for this
separation, resulting in more efficient management of your web application.

In this chapter, you will learn web development techniques using Cocoon.
First, you will learn why this new publishing framework is needed, obtain some brief

information about Cocoon’s history, and download the software needed for this chapter. Then
you will learn about Cocoon’s pipeline architecture—how it isolates and defines the three
aforementioned roles and manages the process flows. You will see an overview of the archi-
tecture’s main components.

Next you will create a Cocoon application that builds on the stock brokerage case study
from Chapter 2. You will then take a closer look at Cocoon’s sitemap document and its various
elements. You will learn to render the web page content into several formats by modifying the
Cocoon pipeline. You will learn the purpose of various components such as transformers, gen-
erators, and serializers in the Cocoon pipeline and learn to create internationalized sites by
modifying some of these components.

You will also learn about an important technology called XML server pages, which allows
you to create dynamic websites and provides a better separation between content and presen-
tation by using Logicsheets. Finally, you will learn to configure Cocoon for performance
optimizations.

279

C H A P T E R 7

■ ■ ■

6412_c07_final.qxd 4/7/06 1:14 AM Page 279

Why Another Web Framework?
In the Web’s early days, content was served to the user in a static fashion. Although static
HTML pages initially sufficed, developers soon realized that more power and flexibility could
be had by generating content dynamically. This opened up the possibility of retrieving data
from numerous sources (from a database, for instance) and then inserting that data into the
page by using embedded logic. Thus came a barrage of languages such as JavaServer Pages
(JSP), Active Server Pages (ASP), and PHP: Hypertext Processor (PHP). Although these tech-
nologies greatly enhanced the developer’s capabilities in terms of creating dynamic content,
they aren’t without their problems.

Page designers who typically focus on HTML syntax generally are not so adept at the
embedded application logic code written in a language such as Java or Perl. At the same
time, application developers generally have little idea of how to present their content in a
user-friendly manner. Therefore, to most effectively manage a website, ideally a method for
separating the logic and presentation into components that can be managed irrespective of
the maintainer would be available. While the content provider would choose the document
structure and what is to be presented to the reader, the logic provider would develop appli-
cation code to generate content. A style provider would be responsible for deciding how the
content is formatted for rendering on the user device. Of course, a workflow would exist
that coordinates the three entities; however, the requirements would stay independent of
each other.

If the reader uses a different device for viewing a web page, the person who is respon-
sible for rendering the output will be concerned with transforming the page content to a
new format. Similarly, if the data source changes, only the logic programmer should be
concerned with how to fetch the data from the new source. Finally, if the actual page con-
tent requires updating, only the content provider will decide what needs to be changed.
Although the earlier technologies do not easily enable the separation of these three con-
cerns, the Cocoon framework does so in a clear and structured way.

Formally defined, the three concerns are depicted in Figure 7-1.

Besides the three concerns, Figure 7-1 also depicts one additional role: the management
role. This individual is responsible for site management and coordinates the three other roles.

To achieve a manageable separation between the three roles, we need to provide a loose
coupling between the three so that each can be managed independently of the others and so
changes in one would not necessitate changes in the others. This can be achieved by defining
clear-cut contracts between the different concerns.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK280

Figure 7-1. Three concerns of web page development and management

6412_c07_final.qxd 4/7/06 1:14 AM Page 280

To begin, we will define a contract between the Logic and Content roles. The Logic role
generates the data dynamically and passes it to the page structure by using a certain specified
contract. The content provider defines the page structure. The style provider retrieves the page
content and transforms it by using its own rules for rendering to the output device. The trans-
formation rules are independent of what is being transformed. There is no need to have any
contract between the Logic and the Style roles because they never talk to each other.

Apache Cocoon provides the separation of these concerns and their management by
creating a framework for web development.

A Brief History of Cocoon
The Cocoon project was founded by Stefano Mazzocchi in 1998 as an open source project
under the Apache Software Foundation. Mazzocchi realized that HTML allows people to ren-
der document content on an output device but fails to perform any semantic analysis on the
document. XML solves this problem by allowing the creator to design her own meaningful
tags. However, the semantic analysis of an XML document is again restricted to a human
reader and does not extend to a machine. Consider the following XML document fragment:

<book>
<title>

Professional Apache XML
</title>
<author>

Poornachandra Sarang
</author>

</book>

Looking at this XML code, a human reader can easily see that the code describes a book
having the title Professional Apache XML that is authored by Poornachandra Sarang. Thus, an
author tag in an XML document makes sense to a human reader in understanding who has
authored the document, but makes no sense to a machine reading this document. Even if
some other document creator uses the tag writer instead of author, a human reader will
understand that the book was written by Sarang. Human readers possess this capability of
semantic analysis; machines do not.

By designing the Cocoon framework, Mazzocchi provided a model that is flexible enough
to implement semantic analysis and provide functionality to meet the ever-changing needs of
a typical web application. It provides the tools and mechanism to incorporate changes in the
processing of a document.

The Cocoon project started as a simple servlet that would provide XSL transformation for
styling XML content. It used the reactor design pattern for connecting components and was
based on the DOM Level 1 API. As you saw in Chapter 2, DOM is expensive in terms of its
memory and processing time requirements. This provided severe limitations in designing
large, dynamic sites and thus failed quickly.

A new model was soon proposed that is currently known as Cocoon 2. This was designed
to be scalable, fast, and memory efficient. It uses SAX instead of DOM for document process-
ing. It provides separate management functionality for managing the components of a pipe-
line. It also supports precompilation, pregeneration, and caching for better performance. All
this is explained in more detail later in this chapter.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 281

6412_c07_final.qxd 4/7/06 1:14 AM Page 281

Before you look into this framework and its architecture, you first need to install the soft-
ware so that you can run the sample applications presented in the chapter while learning
Cocoon.

Downloading the Software
The Cocoon source can be downloaded from the Apache site:

http://cocoon.apache.org

The latest version as of this writing and the one used in this chapter is 2.1.8. According to
a policy instituted as of version 2.1, binaries are no longer provided. Therefore, you will need
to download and build the source code regardless of platform. Note that this is a whopping
45+ MB download. You will also need to ensure that you have Java Development Kit (JDK)
installed on your machine.

Building and Installing the Software
Unzip the downloaded source to a desired folder. Build the code by running the provided
build script found in the extracted package. This will build the Cocoon source to generate all
the required libraries. After the code is successfully built, run it by using the following com-
mand at the command prompt. For instance, on Microsoft Windows this process might look
like this:

C:\{installation folder}>cocoon

This starts a light version of the Jetty server containing a servlet engine.

■Note A light version of the Jetty web server is provided as a part of Cocoon for quick deployment and
testing of your Cocoon applications.

You will see a message similar to the following in the command window after the server
starts successfully:

16:57:13.015 EVENT Started SocketListener on 0.0.0.0:8888
16:57:13.031 EVENT Started org.mortbay.jetty.Server@e94e92

The preceding build process generates a cocoon.jar file in the <installation folder>\
build folder. This file cannot be deployed on a Tomcat web server. To create an installation for
Tomcat, use the following command line to build the source:

C:\{installation folder}>build war

This creates a cocoon.war file in the <installation folder>\build\cocoon folder. After it is
successfully built, you will see screen output similar to the following:

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK282

6412_c07_final.qxd 4/7/06 1:14 AM Page 282

…
war:
Trying to override old definition of task manifest
Writing: build/webapp/WEB-INF/Manifest.mf
Building jar: C:\cocoon-2.1.8\build\cocoon\cocoon.war

BUILD SUCCESSFUL
Total time: 3 minutes 15 seconds

Copy the cocoon.war file in the webapps folder of your Tomcat installation and restart
Tomcat if it is already running.

Testing Your Installation
You can test the installation by opening the following URL in your browser (if you are using
the provided Jetty web server):

http://localhost:8888

The Jetty server listens to the 8888 port by default. You will see the Cocoon welcome
screen on your browser, as shown in Figure 7-2.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 283

Figure 7-2. Cocoon welcome screen

6412_c07_final.qxd 4/7/06 1:14 AM Page 283

If you have deployed the cocoon.war file on Tomcat, you will need to use the following
URL:

http://localhost:8080/cocoon

■Note Use the appropriate port number for your Tomcat installation.

On success, you will see the welcome screen shown in Figure 7-2.
Now that you have successfully installed Cocoon, you are ready to study its architecture.

Understanding the architecture is important in learning even how the conventional Hello
World web page is developed and deployed in Cocoon.

Cocoon’s Pipeline Architecture
The Web uses HTTP for communication, and its application model is based on a request/
response mechanism. A web client requests a web page from a site by making an HTTP
request. The responding server parses the request and either reads a static page from local
storage or generates a web page dynamically to fulfill the client request. The web page may
then be transformed into HTML or any other desired format as an HTTP response to the
client. The entire scenario can be visualized as a document flow that undergoes a series of
transformations by various components. You can imagine that these components are placed
in a pipeline, through which the document flows.

Cocoon follows a similar architecture, in which an XML document traverses through the
various components placed in a pipeline. These components transform the XML document
at each stage to produce the final desired output to the client. In this section, you’ll see an
overview of the Cocoon architecture and then take a closer look at its specific components.
You’ll also learn about the use of multiple pipelines.

Figure 7-3 shows the document flow through the various components in a pipeline.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK284

Figure 7-3. Cocoon pipeline architecture

6412_c07_final.qxd 4/7/06 1:14 AM Page 284

The pipeline architecture results in breaking down processing of every web request into
the following three stages:

• File generator: Responsible for parsing XML data to generate the desired content

• XSLT transformer: Responsible for transforming the content to a desired output format

• HTML serializer: Responsible for serializing the transformed data, for rendering to the
output device

Each component in the Cocoon pipeline is pluggable and can be individually replaced
without affecting the functioning of other components in the pipeline. The communication
between the components is event based and uses SAX for document processing. As you saw
in Chapter 2, the SAX processing model generates events whenever it encounters an ele-
ment in the input document.

The Cocoon pipeline can have three or more components. Figure 7-3 shows the three
essential components. The pipeline begins with a generator component, which generates
the document content. The output of a generator is fed into a transformer, where the
document might undergo zero or more transformations. The transformed content can
be aggregated by another aggregator component (not shown in the figure). Finally, the
pipeline ends with a serializer.

If you are familiar with servlet chaining, you can compare the pipeline architecture to it.
Just as servlets are chained to provide the desired processing of a client request and to gener-
ate a client response, the various components in a pipeline are chained to provide the desired
processing on a client request and to produce the response to the client.

Generator
As I have said, the generator is the first component in Cocoon’s pipeline. A typical (and the
simplest) generator is FileGenerator. It picks up the document content from a local XML file,
parses the document, and sends the SAX events on the occurrence of each element in the
document down the pipeline. FileGenerator is just one of the generators provided by Cocoon.
Cocoon provides implementations for several other generators that pick up the data from var-
ious input sources. For example, a request generator picks up the input from the client’s HTTP
request, whereas a JSP generator picks up its input from a JavaServer page. You will study
these classes in later sections.

Transformer
A transformer takes its input from a generator and transforms the given input into another
XML document. A typical transformer is an XSLT transformer that transforms an input source
tree into an output tree based on the rules defined in an XSLT document. Other types of trans-
formers are an SQL transformer, which queries the database and transforms the result into an
XML document. The internationalization (i18n) transformer transforms the input document
into various locale-specific code snippets. Again, Cocoon provides several such transformers
that you will learn about later in this chapter.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 285

6412_c07_final.qxd 4/7/06 1:14 AM Page 285

Serializer
This component is the last in the Cocoon chain and is responsible for generating the final
presentation to the client. A typical serializer is an HTML serializer that processes SAX events
generated by the transformer and returns an HTML document to the user waiting on the other
end of the pipeline. Cocoon defines several serializers. For example, in Chapter 6 you saw a
serializer that serializes an XML document into a PDF document. Other useful serializers are
XML, VRML, and WAP, which convert the input source into the corresponding output formats,
as their names suggest. You will learn more about the different serializers later in this chapter.

Matchers
You have seen the important components of a pipeline. However, this process can quickly
become a bit more involved, because a typical web application may require several pipelines.
The need for more than one pipeline stems from the idea that client requests may use several
URL patterns. Each URL pattern may require its own customized processing and thus a differ-
ent pipeline. For example, all of the URLs requesting HTML documents (URLs ending with
.html) would pass through a certain pipeline, while all the requests ending with .xml would
pass through another pipeline.

The Cocoon processing model must parse the input request to determine which pipeline
should be assigned for processing. This is done by creating a sitemap. A sitemap is an XML-
based configuration document that allows the creator to define several pipelines, one for each
distinct URL pattern. This is achieved by creating matchers in the sitemap. A matcher matches
the input URL pattern with a predefined filter pattern in the sitemap. Figure 7-4 depicts this
processing model.

The URL pattern in the input request is compared with each of the matchers in the
sitemap until a match is found. Depending on the match result, the associated pipeline is
assigned for processing the request. The response generated to the user depends on the pro-
cessing pipeline used.

Thus far, we have covered the theory necessary to understand Cocoon’s behavior. Before
going further into implementation details, let’s create our first Cocoon program.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK286

Figure 7-4. Matching input requests for pipeline assignments

6412_c07_final.qxd 4/7/06 1:14 AM Page 286

Your First Cocoon Application
We will continue our case study of the stock brokerage from Chapter 2 and design a page for
the brokerage. We will begin with the cover page for the confidential document generated by
the brokerage. This page is same as the one first created in Chapter 6 (refer to Figure 6-5 for
more information). We will use an XML input source that defines the structure for this page.
We will then use an XSLT file to define the transformation of the input source into an HTML
document. Finally, we will use the HTML serializer to serialize the generated HTML document
to a browser, where the final output will be rendered. We will also need to create a sitemap that
defines a pipeline consisting of these three components.

Creating the Input Source Document
The content provider decides on the page content. Suppose that the content provider decides
that the cover page should contain the company name, the confidentiality statement, and the
company logo. Thus, the content provider has to create a document structure that will provide
the data for these three elements.

The structure of our cover page document that provides this data is given in Listing 7-1.

Listing 7-1. Cover Page Document Structure (Ch07\HTMLOutApp\coverpage.xml)

<?xml version="1.0"?>
<page>
<CompanyName>
Stock Brokerage

</CompanyName>
<Security>
Confidential Report

</Security>
<Logo/>

</page>

The root element of this document is page. The page element has three subelements:
CompanyName, Security, and Logo. The CompanyName element defines the company name, the
Security element defines the confidentiality message, and the Logo element is a placeholder
for the company logo. During the XSLT transformation, we will add to this placeholder the
image tag that refers to the physical source of the image.

Note that nowhere does the content provider say what the output will look like, because
this is of no concern to this team member. Rather, it is the page designer’s job to decide how
the output will look to the user.

Defining the Transformation
The next step is to define the transformation that converts the preceding XML document into
an HTML document. Listing 7-2 shows how this transformation is performed.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 287

6412_c07_final.qxd 4/7/06 1:14 AM Page 287

Listing 7-2. Transformation Document for Cover Page (Ch07\HTMLOutApp\page2html.xsl)

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/1999/xhtml">

<xsl:template match="page">
<html>
<head>
<title>
<xsl:value-of select="CompanyName"/>

</title>
</head>
<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

<xsl:template match="CompanyName">
<h1 align="center">
<xsl:apply-templates/>

</h1>
</xsl:template>

<xsl:template match="Security">
<h2 align="center">
<xsl:apply-templates/>

</h2>
</xsl:template>

<xsl:template match="Logo">
<p align="center">

</p>
</xsl:template>

</xsl:stylesheet>

You learned about XSL transformations in Chapter 5, so I will only briefly describe the
XSL document in Listing 7-2. The transformation first looks for the root element of our cover
page document and defines an HTML header and body structure. For the CompanyName and
Security elements, we create the HTML headings with a center alignment. Last, for the Logo
element, an img tag that specifies the JPG filename in its src attribute is created.

When the Cocoon engine applies this XSL transformation to the document source given
in Listing 7-1, it will produce the desired HTML page.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK288

6412_c07_final.qxd 4/7/06 1:14 AM Page 288

Defining the Serializer
Though you can write your own serializer, Cocoon fortunately provides many classes that
define serializers to standard output devices. Because we wish to render our cover page on
a browser, we will use the provided HTML serializer. If you want to output the cover page
as a PDF document, you use a different serializer. More on this later.

Creating a Sitemap
The last, but most important, part of our Cocoon application is to create a sitemap that
defines the pipeline for processing the client requests. By default, the sitemap must be stored
in a file named sitemap.xmap. However, you’ll later learn how to change this default through
the Cocoon configuration file. Listing 7-3 presents the sitemap definition.

Listing 7-3. Sitemap for Cover Page Application (Ch07\HTMLOutApp\sitemap.xmap)

<?xml version="1.0"?>

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">

<map:pipelines>
<map:pipeline>

<map:match pattern="coverpage.html">
<map:generate src="coverpage.xml"/>
<map:transform src="page2html.xsl"/>
<map:serialize type="html"/>

</map:match>

</map:pipeline>
</map:pipelines>

</map:sitemap>

The root element of the sitemap document is sitemap. We can define one or more
pipelines within this sitemap element. In the current document, we create only one pipeline.
The pipeline is defined by using the pipeline subelement within the pipelines element.

The input to the pipeline comes from a client request. We must match the client request
to a particular pipeline. The pipeline element contains a subelement called match for this very
purpose. The match subelement has an attribute called pattern that defines the URL pattern
for matching with the input request. In our case, we define the pattern as coverpage.xml.
Thus, if the client input request contains the URL pattern coverpage.xml, it is matched to the
current pipeline and the request will be processed by the components defined in this pipeline.

The first component in the pipeline is a document generator. We use the src attribute to
specify the source document to the generator. This is set to coverpage.xml. Thus, the generator
reads the content of the coverpage.xml file and after parsing it, creates SAX events for the next
component in the pipeline, that is, the transformer.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 289

6412_c07_final.qxd 4/7/06 1:14 AM Page 289

The transformer is defined by using the transform subelement. The source for the trans-
former is defined by using the src attribute. This is set to page2html.xsl. The input document
will be transformed to HTML by using the transformation commands defined in this source file.

The last component in the pipeline is the serializer that is defined by using the serialize
subelement. The type attribute defines the type of serializer. We use html as our type in the
current example because the browser requires an HTML source.

The next task is to deploy this application and run it to examine the output.

Deploying and Running the Application
The deployment of our first Cocoon application is a simple XCOPY deployment process. If you
are running Cocoon on Tomcat, create a folder structure called Ch07\HTMLOutApp in the
webapps\cocoon\samples folder of your Tomcat installation. Copy the three files (Listings 7-1
through 7-3) created in the previous sections into the newly created HTMLOutApp folder.

■Tip I recommend that you copy the entire Ch07 folder along with its subfolders into the webapps\
cocoon\samples folder, following the same folder hierarchy as defined in the provided source. If you do
not copy the entire source, you will need to copy at least the sitemap.xmap file from the Ch07 folder of
the source download to the newly created Ch07 folder under the samples folder.

Now, run the application by typing the following URL in your browser:

http://localhost:8080/cocoon/samples/Ch07/HTMLOutApp/coverpage.html

When you open this URL in your browser, you will see the output as shown in Figure 7-5.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK290

Figure 7-5. Screen output of our first Cocoon application

6412_c07_final.qxd 4/7/06 1:14 AM Page 290

The Sitemap Document
Now that you have some hands-on experience creating a Cocoon application, you’re ready to
delve into the details of the sitemap that is the heart of the Cocoon framework.

The general structure of a sitemap is as follows:

<?xml version="1.0"?>
<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:components/>
<map:views/>
<map:resources/>
<map:action-sets/>
<map:pipelines/>

</map:sitemap>

As seen in our first Cocoon application, a sitemap is an XML document that defines one or
more pipelines for the web application. The root element of the sitemap document is sitemap.
The various elements of the sitemap are defined in the namespace http://apache.org/cocoon/
sitemap/1.0.

The sitemap contains various subelements, as shown in the preceding document struc-
ture. These subelements define the components, views, resources, actions, and pipelines. The
purpose of each component is discussed throughout the rest of this section.

The components Element
The components element allows you to define components of different types that are then used
in pipeline processing. You will generally create components if you want to reuse the same
functionality in multiple pipelines. Under such situations, you create a component with a
given name and reference it in a pipeline by using that assigned name.

All components have a few common attributes such as name and src. The name attribute
specifies the component name that can be referenced later in the pipeline. The src attribute
specifies the name of the .class file that implements this component. In our first application,
we did not use the components element. You will use this element in later examples when you
create components with given names and reuse them multiple times in your pipelines.

The views Element
The views element defines the exit point for the pipeline processing with the help of a view
subelement. Every view is assigned a name. The user specifies the desired view by using this
name on the command line while requesting a page. For example, the user may specify a view
as shown here:

http://localhost:8080/cocoon/documents/broker.html?cocoon-view=fancyPage

In the preceding URL, the user is requesting the broker.html page from the specified
path. The presentation made to the user is decided by the formatting defined in the fancyPage
view. Each view in the sitemap defines the format in which a document is presented to the
user; fancyPage is the name of the view that is defined in the views section of the sitemap.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 291

6412_c07_final.qxd 4/7/06 1:14 AM Page 291

The pipeline output undergoes the processing defined in the fancyPage view before the output
is rendered on the device.

You can define one or more view elements within views, each defining a different output
format to the user. Whatever is achieved with the view can also be achieved in the serializer
component of the pipeline. However, defining views allows the user to select the format at
runtime and does not require modifications to the sitemap. The user specifies the desired
view on the command line at runtime to use it.

The resources Element
A sitemap can consist of many pipelines, and at the same time a given pipeline can be used
multiple times in a document. The resources element allows you to create a name for a
pipeline resource so that it can be used multiple times in a document without having to
define it at every place where it is called. After you define a resource with a given name,
you call the resource by using the call subelement within a pipeline. This is illustrated in
Listing 7-4.

Listing 7-4. Defining and Using Resources in a Sitemap

<?xml version="1.0"?>
<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:resources>

<map:resource name="pipeline1" >
<map:generate ... />
<map:transform ... />
<map:serialize ... />

</map:resource>

<map:resource name="pipeline2" >
<map:generate ... />
<map:transform ... />
<map:serialize ... />

</map:resource>

</map:resources>

<map:pipeline>

<map:match pattern="default-processing/*/*">
<map:call resource="pipeline1">
...

</map:call>
</map:match>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK292

6412_c07_final.qxd 4/7/06 1:14 AM Page 292

<map:match pattern="custom-processing/*" >
<map:call resource="pipeline2">
...

</map:call>
</map:match>

</map:pipeline>

</map:sitemap>

In Listing 7-4, we create two pipelines, pipeline1 and pipeline2, by using the resource
element. These resources are then called after the pattern matching is done in the match ele-
ment. You can call the same pipeline for different patterns.

The first match in Listing 7-4 uses the pattern /*/*, indicating that any URL pattern such
as /myfolder/mypage.html will be matched. The first * indicates a match between the two for-
ward slashes, and the second * indicates a match after the last forward slash in the URL. The
second match uses the pattern /*, indicating that anything after the last slash in the URL is
selected. We use the default matching when no other match is found.

When a resource element is created, it need not contain all three components of a pipe-
line. For example, you can create a resource that contains only the generator component.
When you define the pipeline, you can call this resource to incorporate the generator compo-
nent and then use other transformer and serializer components of your own. This is illustrated
in Listing 7-5.

Listing 7-5. Creating and Using a Resource with the generate Component

<?xml version="1.0"?>
<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:resources>

<map:resource name="pipeline1" >
<map:generate ...="" />

</map:resource>

</map:resources>

<map:pipeline>

<map:match pattern="default-processing/*/*">
<map:call resource="pipeline1">
...

</map:call>
<map:serialize ...="" />

</map:match>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 293

6412_c07_final.qxd 4/7/06 1:14 AM Page 293

<map:match pattern="custom-processing/*" >
<map:call resource="pipeline1">
...

</map:call>
<map:transform ...="" />
<map:serialize ...="" />

</map:match>
</map:pipeline>

</map:sitemap>

Listing 7-5 defines a resource called pipeline1 that contains only one component of gen-
erator type:

<map:resource name="pipeline1" >
<map:generate ...="" />

</map:resource>

The ellipsis (...) in the generate element will specify the name of the .class file used by
the generator component. We use this resource whenever we want this generator for creating
the content for our pipeline.

In Listing 7-5, we call this pipeline1 resource in two different pipelines. The first pipeline
after calling this generator resource provides only the serialization, as shown here:

<map:call resource="pipeline1">
...

</map:call>
<map:serialize ...="" />

Note that we invoke this pipeline for default processing. For custom processing, we define
another pipeline that calls the pipeline1 resource to generate the content and then performs
a transformation before serializing the content to the output device, as shown here:

<map:call resource="pipeline1">
...

</map:call>
<map:transform ...="" />
<map:serialize ...="" />

The actions Element
So far, you have seen that a pipeline has an orderly set of components. These components are
invoked in the order in which they are listed in the pipeline. What if you want to change the
processing order depending on the output results of the intermediate processing? The actions
element allows you to do this. Depending on the runtime results of a processed component,
you can initiate a different action in the pipeline. Not only this, but actions can also be used
to control the pipeline flow depending on the parameter values in the input request.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK294

6412_c07_final.qxd 4/7/06 1:14 AM Page 294

Defining actions in your sitemap is easy. The following code snippet shows how to define
actions:

<map:actions>
<map:action name="DoShopping" src="shopping.ShoppingAction"/>
<map:action name="CommitCart" src="shopping.CommitAction"/>
<map:action name="AbortCart" src="shopping.AbortAction"/>
<map:action name="ValidateCart" src="shopping.ValidateAction"/>

</map:actions>

Here we have defined four actions for shopping, committing, aborting, and validating
a shopping cart. Note that ShoppingAction, CommitAction, AbortAction, and ValidateAction
actions are the Java classes that you must create, and you must make the corresponding
.class files available to Cocoon at runtime. These action classes extend from the provided
AbstractAction class. This class provides an abstract method called act that has access to
the input request object. The class returns a Map object to the caller. It can also set parameters
to be used as request parameters by the next action.

You call the action with the following code snippet:

<input type="submit" name="cocoon-action-ACTIONNAME" value="DoShopping">

This results in calling the implementation in the ShoppingAction class. This class may
return a null or a valid Map object. If it returns a null, all other actions enclosed within the
currently called action will be discarded. Depending on the result of the DoShopping action,
you will call different components in your pipeline and invoke further actions such as
CommitAction, AbortAction, and ValidateAction depending on your application logic.

It is also possible to define an action set in your sitemap with the help of the action-set
element. The action set defines more than one action, which are called in the sequence they
are defined.

Finally, we come to the most important element of the sitemap: the pipelines element.

The pipelines Element
A pipelines element can define one or more pipelines for processing. Each pipeline is defined
by using a pipeline element. A pipeline element has several subelements. Out of these, the
most frequently used element is match.

Within a pipeline, you can provide one or more match elements. Each match element
specifies a URL pattern that is matched to the client request. Within a match, you define the
pipeline with the help of generate, transform, and serialize elements in this order. The
generate element specifies the source document. Note that this source need not have any
resemblance to the URL pattern defined in the match, although it could be the same. For
example, the URL pattern could be index.html, and the source document used by the genera-
tor could also be index.html. Alternatively, the URL pattern could be simply a wildcard such
as *, and the input source could be welcome.html. In general, these two attribute values need
not be the same as each other.

The generator output is fed to a transformer component as SAX events. The transformer
is defined by using the transform element. The src attribute specifies the transformation doc-
ument (XSLT) to be used for transformation.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 295

6412_c07_final.qxd 4/7/06 1:14 AM Page 295

Finally, the serialize element specifies the serializer component that transforms the
SAX events into a stream of characters or binary digits for the final consumption of the output
device.

Listing 7-6 shows a typical pipelines structure.

Listing 7-6. The pipelines Element Structure (Ch07\HTMLOutApp\sitemap.xmap)

<map:pipelines>
<map:pipeline>
<map:match pattern="coverpage.html">
<map:generate src="coverpage.xml"/>
<map:transform src="page2html.xsl"/>
<map:serialize type="html"/>

</map:match>
</map:pipeline>

</map:pipelines>

As seen in Listing 7-6, whenever the URL request pattern contains coverpage.html, the
pipeline defined here will be applied. The pipeline uses coverpage.xml as a source document
that must exist on the server. This source is transformed into another format, in this case to
HTML as the name suggests, by using the page2html.xsl transformation document. The out-
put HTML document is then serialized into a character stream by the serializer component of
type html. This component is implemented as a Java file that receives the SAX events from the
previous component (that is, the transformer) and writes the document content into a charac-
ter stream.

Besides these frequently used elements, the pipeline element contains many child ele-
ments such as call and act, which we have used earlier. The pipeline has other elements,
including select, when, redirect-to, aggregate, and handle-errors. I will not cover the use
of each of these elements in this text; refer to the Cocoon documentation for details.

Modifying Pipelines
In this section, you will study more programming examples to further understand pipeline
processing and the creation of sitemaps. We will modify the sitemap used in our first Cocoon
application so you can see how easy it is to alter pipeline processing to achieve different out-
put. In our first application, we started out with an XML document created by the server and
transformed it into an HTML document to be output on a browser. We will now render this
document in different formats by modifying our pipeline.

Generating Text Output
The Cocoon library provides a special serializer to transform the document into text format.
This serializer is called text.

■Note Every serializer has an associated Java class.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK296

6412_c07_final.qxd 4/7/06 1:14 AM Page 296

To use this serializer in the serialize element of your pipeline, set the type attribute
value to text. This is illustrated in the following code snippet:

<map:match pattern="coverpage.txt">
<map:generate src="coverpage.xml"/>
<map:serialize type="text"/>

</map:match>

Note that the matching pattern is set to coverpage.txt. If you examine the source code
that is available in the downloaded file for this book, you will notice that there is no file called
coverpage.txt provided. Similarly, you would not have found any file called coverpage.html
used in our first application in the downloaded source. This is simply a URL context that is
used for selecting the desired pipeline. This can be any text string, although we generally use
explicit extensions such as .html or .txt so that the user knows what to expect in the output.

The generate element uses the same source document, coverpage.xml, as in the first
application case. We do not provide any transformation in the current pipeline. Thus, the
SAX events produced by the generator will be fed into the serializer, which is the next compo-
nent in the pipeline. The serializer component is the text type. This component transforms
the SAX input events into a stream of text.

To invoke this pipeline, you use the following URL:

http://localhost:8080/cocoon/samples/Ch07/TextOutApp/coverpage.txt

The output produced by this URL is shown in Figure 7-6. Note that the text output does not
contain an image. Images are automatically removed if you render the output to text format.

Generating PDF Output
To generate the PDF document from the XML source, you will need to create a transformation
file that converts the XML document to an FO1 tree. The FO tree will then be transformed into
a PDF document by using the fo2pdf serializer. You learned how to convert an FO tree into a
PDF document in Chapter 6. First, we will write a transformation that converts the source
XML document into an FO document.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 297

Figure 7-6. Text output generated by the pipeline

1. FOs (formatting objects) are covered in Chapter 6.

6412_c07_final.qxd 4/7/06 1:14 AM Page 297

Transforming XML to FO
The code snippet in Listing 7-7 shows how the given XML document is transformed into FO
commands.

Listing 7-7. Code Snippet for XML-to-FO Transformation (Ch07\PDFOutApp\page2fo.xsl)

<xsl:template match="CompanyName">
<fo:block font-size="36pt" space-before.optimum="24pt" text-align="center">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

<xsl:template match="Security">
<fo:block font-size="12pt" space-before.optimum="12pt" text-align="center">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

<xsl:template match="Logo">
<fo:block space-before.optimum="12pt" text-align="center">
<fo:external-graphic src="url(file:///ais.jpg"/>
<xsl:apply-templates/>

</fo:block>
</xsl:template>

■Note Listing 7-7 does not give the full transformation document. You can refer to the page2fo.xsl
file in the download for the complete listing.

After writing the transformation document, you will need to make changes in the
sitemap. In the sitemap, you will create an entry as given in Listing 7-8.)

Listing 7-8. The Match Entry in the Sitemap for PDF Conversion (Ch07\PDFOutApp\sitemap.xmap)

<map:match pattern="coverpage.pdf">
<map:generate src="coverpage.xml"/>
<map:transform src="page2fo.xsl"/>
<map:serialize type="xml"/>

</map:match>

Here we define the match pattern as coverpage.pdf. Thus, when the user types this pat-
tern as part of the request URL, he will see the input source document displayed in PDF
format (initially we will output the intermediate XSL-FO document). The generator source is
the same as in the earlier examples: coverpage.xml. The transformation is now performed by
using the page2fo.xsl transformation file. The serializer is specified as xml. Thus, the output

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK298

6412_c07_final.qxd 4/7/06 1:14 AM Page 298

of this match operation would result in an XML document that is the FO document created
from the input source coverpage.xml.

■Note You will first examine the generated FO document in your browser and later modify the serializer to
output it as PDF.

After adding the preceding match entry in your sitemap, open the following URL in your
browser:

http://localhost:8080/cocoon/samples/Ch07/PDFOutApp/coverpage.pdf

■Note Do not forget to make appropriate adjustments to the port number in the preceding URL for your
installation.

When you open the preceding URL, you will see the document shown in Listing 7-9 in
your browser.

Listing 7-9. XSL-FO Document Created by Transformer (Ch07\PDFOutApp\page2fo.xsl)

<?xml version="1.0" encoding="iso-8859-1" ?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master margin-right="2.5cm" margin-left="2.5cm"

margin-bottom="2cm" margin-top="1cm"
page-width="21cm" page-height="29.7cm"
master-name="page">

<fo:region-before extent="3cm" />
<fo:region-body margin-top="3cm" />
<fo:region-after extent="1.5cm" />

</fo:simple-page-master>
<fo:page-sequence-master master-name="all">
<fo:repeatable-page-master-alternatives>
<fo:conditional-page-master-reference page-position="first"

master-reference="page" />
</fo:repeatable-page-master-alternatives>

</fo:page-sequence-master>
</fo:layout-master-set>
<fo:page-sequence master-reference="all">
<fo:static-content flow-name="xsl-region-after">
<fo:block line-height="14pt" font-family="serif"

font-size="10pt" text-align="center">

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 299

6412_c07_final.qxd 4/7/06 1:14 AM Page 299

page
<fo:page-number />

</fo:block>
</fo:static-content>
<fo:flow flow-name="xsl-region-body">
<fo:block text-align="center" space-before.optimum="24pt"

font-size="36pt">Stock Brokerage</fo:block>
<fo:block text-align="center" space-before.optimum="12pt"

font-size="12pt">Confidential Report</fo:block>
<fo:block text-align="center" space-before.optimum="12pt">
<fo:external-graphic src="url(file:///C:/ais.jpg)" />

</fo:block>
</fo:flow>

</fo:page-sequence>
</fo:root>

This is the XSL-FO document created by the transformer component in our pipeline.

Transformations to PDF
We need to transform this further into a PDF. We do this by applying another transformation.

Listing 7-10 shows these transformations.

Listing 7-10. Pipelines for Converting FO Document to PDF (Ch07\PDFOutApp\sitemap.xmap)

<map:match pattern="coverpage.pdf">
<map:generate src="coverpage.xml"/>
<map:transform src="page2fo.xsl"/>
<map:serialize type="fo2pdf"/>

</map:match>

The serializer component is now fo2pdf, which is a Cocoon-supplied class that trans-
forms FO document SAX events into a stream object used by a PDF reader. When you open
the PDF URL (http://localhost:8080/cocoon/samples/Ch07/PDFOutApp/coverpage.pdf) listed
earlier, you will see the PDF document as shown in Figure 7-7.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK300

6412_c07_final.qxd 4/7/06 1:14 AM Page 300

Generating Output in Other Formats
So far we have converted our input source document in HTML, text, PDF, and of course XML
formats.

■Note You can output in XML format by changing the type attribute of serialize to xml, just the way
it was done for producing the XSL-FO document in the previous example.

To change the output format, you simply need to change the serializer in the pipeline.
If the new serializer expects the input in a specific XML format, you need to provide an
appropriate transformer in the pipeline. Changing the transformer requires writing an XSLT
document to provide the desired transformation. The Cocoon samples provide examples of
several such transformations.

■Tip Refer to the <Tomcat installation folder>\webapps\cocoon\samples\hello-world\
style\xsl folder for the list of transformation files.

The Cocoon Hello World example (http://localhost:8080/cocoon/samples/hello-world/)
illustrates how to convert the input source document into XHTML, WML, CHTML, VoiceML,
Zip Archive, RTF, XLS, and many other formats. Figure 7-8 shows the screen output of the Hello
World application that is supplied as a part of Apache sample applications.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 301

Figure 7-7. PDF transformation output

6412_c07_final.qxd 4/7/06 1:14 AM Page 301

Clicking a link option shown on the screen (see Figure 7-8) renders the input document
into that specified format.

The Transformers in Cocoon
You probably agree that the transformer is the most important component in the Cocoon
pipeline. The transformers are placed between the generator and the serializer in the pipeline.
You can place any number of transformers in a pipeline. The input message passes through
each transformer in the order in which they are defined. Each transformer is associated with
a Java class.

Cocoon provides several transformer classes ready for your use. A few are listed here:

• xslt: The default transformer

• i18n: Used for internationalization and localization

• log: Used for logging and debugging

• sql: Used for querying a database and translating the result to XML

• filter: Used for filtering the number of elements that can pass through a given block

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK302

Figure 7-8. Screen output of Apache Hello World sample application

6412_c07_final.qxd 4/7/06 1:14 AM Page 302

There are many more transformers defined in the Cocoon framework. You can find
further details in the Cocoon’s user guide (http://cocoon.apache.org/2.1/userdocs/
transformers.html).

I will now discuss one more application that uses one of these predefined transformers.

The i18n Transformer
The i18n transformer is useful for customizing your site for different countries and locales.
In the example program, I will demonstrate how to format date, time, currency, and number
in different locales. Our stock brokerage can use this feature while doing business with inter-
national clients.

First we will discuss the sitemap for this page.

The Sitemap for i18n
Listing 7-11 shows the sitemap used for our i18n page.

Listing 7-11. The Sitemap for the i18n Application (Ch07\i18n\sitemap.xmap)

<?xml version="1.0"?>

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">

<map:components>
<map:generators default="file">
<map:generator name="file"
src="org.apache.cocoon.generation.FileGenerator"
logger="sitemap.generator.file"/>

</map:generators>
<map:transformers default="xslt">
<!-- Configure i18n transformer -->
<map:transformer name="i18n"
src="org.apache.cocoon.transformation.I18nTransformer">
<catalogs default="messages">
<catalog id="messages" name="messages" location="translations"/>

</catalogs>
<cache-at-startup>true</cache-at-startup>

</map:transformer>
</map:transformers>

</map:components>

<map:pipelines>
<map:pipeline>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 303

6412_c07_final.qxd 4/7/06 1:14 AM Page 303

<map:match pattern="i18ntest.html">
<map:generate src="i18ntest.xml"/>
<map:transform type="i18n"/>
<map:serialize type="html"/>

</map:match>

</map:pipeline>
</map:pipelines>

</map:sitemap>

The sitemap first defines the components for i18n transformation. The components are
declared in the components element. We create two types of components here, a generator and
a transformer. The generator is created by using the generator element:

<map:generators default="file">
<map:generator name="file"
src="org.apache.cocoon.generation.FileGenerator"
logger="sitemap.generator.file"/>

</map:generators>

We create only one generator, which is named file. The src attribute defines the name
of the .class file that is used by the generator. The logger attribute specifies the log file to be
used for logging the errors and the output during the generation process. The default attrib-
ute for the generators element specifies the default generator to be used, if the pipeline does
not specify any generator.

After defining generators, we define transformers. The transformers are specified in the
transformers element. You can define one or more transformers under this element by using
the transformer element for each. The default transformer is specified by using the default
attribute of the transformers element:

<map:transformers default="xslt">

The transformer for i18n is declared by creating a transformer entry:

<!-- Configure i18n transformer -->
<map:transformer name="i18n"
src="org.apache.cocoon.transformation.I18nTransformer">

The transformer is assigned the name i18n. We will use this name in our pipeline to call
this transformer. The src attribute specifies the name of the .class file that is provided by
Cocoon. A transformer requires one or more catalog elements specified by the catalogs tag.

<catalogs default="messages">
<catalog id="messages" name="messages" location="translations"/>

</catalogs>

The default catalog is specified by using the default attribute of the catalogs element.
The catalog itself has a unique id in the current context, a unique name, and the location of
the catalog file that contains the language translations to be used for each defined key. You
can cache all the catalogs at start-up by including the following line fragment:

<cache-at-startup>true</cache-at-startup>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK304

6412_c07_final.qxd 4/7/06 1:14 AM Page 304

The catalogs contain the equivalent text strings in different languages. Because we are not
performing any text translations in our example, we will not use catalogs; however, the pres-
ence of the catalog element is mandatory. After the components are defined, we define the
pipelines. We define only one pipeline in the current example that matches the pattern
i18ntest.html in the request URL:

<map:pipeline>
<map:match pattern="i18ntest.html">
<map:generate src="i18ntest.xml"/>
<map:transform type="i18n"/>
<map:serialize type="html"/>

</map:match>
</map:pipeline>

If a match is found, we use the source document specified as i18ntest.xml. The file is
transformed by the i18n component defined in the components section. The pipeline serializes
the output of transformation to HTML format.

We will now examine the i18ntest.xml test document.

The i18n Test Document
The XML input document that is used for testing internationalization features is given in
Listing 7-12.

Listing 7-12. The i18n Test Document (Ch07\i18n\i18ntest.xml)

<?xml version="1.0" encoding="utf-8" ?>
<page xmlns:i18n="http://apache.org/cocoon/i18n/2.1">
<para>
<h3>Date in different formats</h3>
<i18n:date-time pattern="short" locale="en_US"/>

<i18n:date-time pattern="medium" locale="en_US"/>

<i18n:date-time pattern="long" locale="en_US"/>

<i18n:date-time pattern="FULL" locale="en_US"/>

<h3>Different Locales</h3>
US Full Date:
<i18n:date-time pattern="FULL" locale="en_US"/>

German Full Date:
<i18n:date-time pattern="FULL" locale="de_DE"/>

India Full Date:
<i18n:date-time pattern="FULL" locale="hi_IN"/>

Japan Full Date:
<i18n:date-time pattern="FULL" locale="ja_JP"/>

China Full Date:
<i18n:date-time pattern="FULL" locale="zh_CN"/>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 305

6412_c07_final.qxd 4/7/06 1:14 AM Page 305

US Currency:
<i18n:number type="currency" value="2501.9845"/>

German Currency:
<i18n:number type="currency" currency="de_DE" value="2501.9845"/>

Indian Currency:
<i18n:number type="currency" currency="hi_IN" value="2501.9845"/>

Japan Currency:
<i18n:number type="currency" currency="ja_JP" value="2501.9845"/>

China Currency:
<i18n:number type="currency" currency="zh_CN" value="2501.9845"/>

US Number:
<i18n:number locale="en_US" value="10000000"/>

German Number:
<i18n:number locale="de_DE" value="10000000"/>

France Number:
<i18n:number locale="fr_FR" value="10000000"/>

</para>
</page>

The document first declares the namespace required for internationalization support:

<page xmlns:i18n="http://apache.org/cocoon/i18n/2.1">

We will print the current date and time in different formats by using the US English locale.
The current date and time is printed by using the date-time element:

<i18n:date-time pattern="short" locale="en_US"/>

The locale attribute specifies the locale to be used while outputting the date. We will
change this locale in the subsequent statements to see its effect. The pattern attribute defines
several predefined values such as short, medium, long, and full. Additionally, you can also cre-
ate your own patterns.

Next, we change the locale value as follows:

German Full Date:
<i18n:date-time pattern="FULL" locale="de_DE"/>

India Full Date:
<i18n:date-time pattern="FULL" locale="hi_IN"/>

This will print the current date and time in the full format, using German and Indian for-
mats. The program similarly outputs the date and time in Japanese and Chinese formats.

Next, we print the currency in different formats specific to different locales:

US Currency:
<i18n:number type="currency" value="2501.9845"/>

German Currency:
<i18n:number type="currency" currency="de_DE" value="2501.9845"/>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK306

6412_c07_final.qxd 4/7/06 1:14 AM Page 306

This will print the number 2501.9845 in the currency format for the specified locale.
Finally, we will print a large number in different locales by using the number element as follows:

US Number:
<i18n:number locale="en_US" value="10000000"/>

German Number:
<i18n:number locale="de_DE" value="10000000"/>

France Number:
<i18n:number locale="fr_FR" value="10000000"/>

Page Output
If you open the i18n page given in Listing 7-12 with the URL http://localhost:8080/cocoon/
samples/Ch07/i18n/i18ntest.html, you will see the output as shown in Figure 7-9.

From this example, you can understand how easy it is to extend the internationalization
support to your website created by using Cocoon. Cocoon provides many useful transformers.
It is beyond the scope of this book to cover all of the predefined transformers, but you can go
through the online documentation for further details.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 307

Figure 7-9. The output of the i18n page

6412_c07_final.qxd 4/7/06 1:14 AM Page 307

The Generators in Cocoon
As seen earlier, the generator is the starting component in a Cocoon pipeline. Every pipeline
containing a generator must terminate with a serializer. A generator reads the input source
document and generates the SAX events for the next component in the pipeline. You write
a generator by creating a Java class that reads the input document, parses it, and generates
the SAX events for consumption by the next component in the pipeline.

A generator is declared in the sitemap by using the generate element. A generator may
take additional configuration information from the child elements of this generate tag. The
generate element is a subelement of the generators element. You must declare one of the
generators as the default in the generators element.

Cocoon provides several generators, including the following:

• file: Reads the input document from the local file system or any URL.

• request: Converts the current request into a structured XML.

• stream: Reads input from HTTPRequest InputStream.

• directory: Reads the specified source directory structure and generates a structured
XML document containing the directory structure. You can specify the depth of the
directory structure as an input parameter.

• xpathdirectory: This is similar to the directory generator, but additionally performs
XPath queries on the input document.

• jsp: This feeds the HTTP request into the JSP servlet engine and generates the SAX
events from the JSP response generated by the JSP engine.

There are several important generators provided in Cocoon libraries. Again, I urge you
to go through the online documentation for more details.

The Serializers in Cocoon
Like transformers and generators, many ready-to-use serializers are provided in Cocoon.
We have used different types of serializers in our earlier examples. A serializer is an end point
of a Cocoon pipeline. A serializer transforms the input SAX events into a binary or a character
stream for the final consumption of an output device. A serializer is created by writing a Java
class to perform this serialization. You can declare more than one serializer in the sitemap.
One serializer must be declared as the default.

Some of the commonly used serializers are as follows:

• HTML: This is the default serializer that serializes XML to HTML.

• XML: This is the simplest possible serializer because it simply serializes input SAX
events generated from an XML source into another XML document format. This can
be used for outputting to any of the XML formats such as SVG, VRML, and so on.

• Text: This serializes XML to plain text.

• WML: This serializes XML to WML (Wireless Markup Language).

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK308

6412_c07_final.qxd 4/7/06 1:14 AM Page 308

• PDF : This takes SAX events generated from an XSL-FO document as input and gener-
ates a PDF output stream using FOP.2

• SVG: This is one of the advanced serializers that accepts input from an SVG document,
encodes the SVG image as an image file using Batik’s3 transcoder, and renders the out-
put like any other component in Cocoon. For example, the client may request a JPG
image in its URL request. The source for this JPG may be an SVG image. The SVG image
will then be transcoded into a JPG image and served to the client.

There are many useful serializers provided in Cocoon. Again, you can read the online
documentation for further details.

Having seen the various transformers, generators, and serializers provided in Cocoon,
we will now revisit the sitemap structure to discuss its components element in more detail.

The Sitemap Components
As you have already seen, a sitemap can contain one or more pipelines. A pipeline consists of
components. Such components can be declared at the time of their use or prior to their use.
Components are declared prior to their use by using the components element. A component,
once created, can be used multiple times in the sitemap. In this section, you’ll take a look at
the sitemap’s components element and then some of its subelements.

The components Element
The components element has following subelements:

<map:components>
<map:generators/>
<map:transformers/>
<map:serializers/>
<map:readers/>
<map:selectors/>
<map:matchers/>
<map:actions/>
<map:pipelines/>

</map:components>

As can be seen from the list, the components element allows you to define components of
several types, which are then used in pipeline processing. All the components have a few com-
mon attributes such as name and src. The name attribute specifies the component’s name, with
which the component can be referenced later in the pipeline. The src attribute specifies the
name of the .class file that implements this component.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 309

2. FOP is covered in Chapter 6.

3. For details on the Batik project, refer to the Apache site: http://xml.apache.org/batik/.

6412_c07_final.qxd 4/7/06 1:14 AM Page 309

The generators Element
As seen earlier, the generator is the first component in the Cocoon pipeline. The generator
reads the input source document and generates the SAX events for the next component in the
pipeline. A typical generators entry is shown in Listing 7-13.

Listing 7-13. A Typical generators Entry

<map:generators default="file">
<map:generator name="file"
src="org.apache.cocoon.generation.FileGenerator"/>

<map:generator name="serverpages"
src="org.apache.cocoon.generation.ServerPagesGenerator">

<map:generator name="dir"
src="DirectoryGenerator"/>
...

</map:generator>
</map:generators>

A generators element defines one or more generator elements. Each generator specifies
a different source of input. Listing 7-13 defines three such generators. The first generator is
called file and uses the Cocoon-supplied FileGenerator as its input class. The second gener-
ator is called serverpages and uses the supplied ServerPagesGenerator class as its source. The
third generator is called dir and uses a custom-defined class called DirectoryGenerator as its
input source class. Note that it is your responsibility to provide the class definition and the
fully qualified name for the .class file in the src attribute.

The generators element has a default attribute. The value of this attribute specifies the
generator to use if none is specified in the pipeline definition.

The transformers Element
The next element in the components element is the transformers element. The transformers
element defines a transformer component. The transformer component takes its input from
the generator component as SAX events. After performing the transformations on the input
source, the transformer then generates another set of SAX events for the next component in
the pipeline. A typical transformers entry is shown in Listing 7-14.

Listing 7-14. A Typical transformers Entry

<map:transformers default="xslt">
<map:transformer name="xslt"
src="org.apache.cocoon.transformation.TraxTransformer">

<map:transformer name="xinclude"
src="org.apache.cocoon.transformation.XIncludeTransformer"/>

</map:transformers>

You can define one or more transformer components under the transformers element.
In the example given in Listing 7-14, we create two transformer components. The first one is
called xslt, and the second one is named xinclude. For each of these components, we define

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK310

6412_c07_final.qxd 4/7/06 1:14 AM Page 310

the src class. In both cases, the source class is provided by Cocoon. You can also create your
own transformer classes.

The serializers Element
The serializers element defines the last component in the Cocoon pipeline. As seen ear-
lier, the Cocoon libraries provide several predefined serializers for your ready use. The
serializer component receives the SAX events from the previous component in the pipeline
and transforms them into a stream for the final consumption of the output device. A typical
serializers entry is shown in Listing 7-15.

Listing 7-15. A Typical serializers Entry

<map:serializers default="html">
<map:serializer name="html" mime-type="text/html"

src="org.apache.cocoon.serialization.HTMLSerializer"/>
<map:serializer name="wap" mime-type="text/vnd.wap.wml"

src="org.apache.cocoon.serialization.XMLSerializer"/>
<map:serializer name="svg2jpeg" mime-type="image/jpeg"

src="org.apache.cocoon.serialization.SVGSerializer"/>
<map:serializer name="svg2png" mime-type="image/png"

src="org.apache.cocoon.serialization.SVGSerializer"/>
</map:serializers>

The serializers element can contain definitions for one or more serializer compo-
nents. Listing 7-15 defines four serializer elements. For each one, the mime-type is set to the
appropriate value for the output device. The src attribute, as in earlier cases, defines the class
to be used for converting the SAX events into a stream.

The selectors Element
The selectors element defines one or more selector components. A selector component
allows you to implement conditional logic in your sitemap. It evaluates an expression and
returns a boolean value. A typical selectors map entry is shown in Listing 7-16.

Listing 7-16. A Typical selectors Entry

<map:selectors default="browser">
<map:selector name="media"
src="org.apache.cocoon.selection.MediaSelector">
...

</map:selector>
<map:selector name="browser"
src="org.apache.cocoon.selection.BrowserSelector">
...

</map:selection>
<map:selector name="mail"
src="org.apache.cocoon.selection.MailCommandSelector">

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 311

6412_c07_final.qxd 4/7/06 1:14 AM Page 311

...
</map:selector>

</map:selectors>

In Listing 7-16, we have created three selectors. Each one uses the built-in classes for
selection. For example, the BrowserSelector selects the browser, and the MediaSelector selects
the media. All the selector classes internally implement the Selector interface. The Selector
interface defines a select method that accepts expression as one of the parameters. The
method signals a boolean depending on the result of expression evaluation.

The matchers Element
A matchers element defines a class that is used for matching the URL pattern against the
client request. On a successful match, it returns a Map object; otherwise, it returns a null.
The pattern itself can consist of wildcards or regular expressions. On success of the match
operation, the wildcards or regular expressions in the pattern will be replaced with the val-
ues in the input request. The Cocoon libraries provide several predefined classes for pattern
matching. Listing 7-17 shows a typical matchers entry in the sitemap.

Listing 7-17. A Typical matchers Entry

<map:matchers default="wildcard">
<map:matcher name="wildcard"
src="org.apache.cocoon.matching.WildcardURIMatcher">
...

</map:matcher>
<map:matcher name="regexp"
src="org.apache.cocoon.matching.RegexpURIMatcher">
...

</map:matcher>
<map:matcher name="local"
src="org.apache.cocoon.matching.LocaleMatcher">
...

</map:matcher>
<map:matcher name="requestParameter"
src="org.apache.cocoon.matching.RequestParamMatcher">
...

</map:matcher>
</map:matchers>

The matchers element in Listing 7-17 defines four matchers. The source class for each
matcher is specified by its src attribute. Every matcher class implements the Matcher inter-
face. The interface declares a method called match that takes a string pattern as one of the
parameters.

Having discussed the architecture and the various components used in the pipeline, now
we will turn our attention to another important aspect in the Cocoon framework. So far, all
our Cocoon applications use static page content. You will now study how to generate dynamic
XML content.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK312

6412_c07_final.qxd 4/7/06 1:14 AM Page 312

XML Server Pages
XML Server Pages, also known as XSP, is a Cocoon technology for generating dynamic XML
content. The XML documents thus created are fed into the Cocoon pipeline for further trans-
formation and presentation to the client. The data for these dynamic XML pages can come
from various sources, such as databases, URLs, flat files, and more. XSP allows you to manipu-
late data before the output document is created. Thus, it contains programming logic that is
written in Java for data retrieval and manipulations.

In this section, you will learn about the structure of an XSP document and how to process
these documents. You will create a web page by using XSP for our brokerage site and will learn
how XSP is internally processed. Finally, you will learn about Logicsheets.

Understanding the XSP Document Structure
The general structure of the XSP document is shown in Listing 7-18.

Listing 7-18. General Structure of XSP Document

<?xml version="1.0" encoding="utf-8" ?>
<xsp:page language="java" xmlns:xsp="http://apache.org/xsp">
<xsp:structure>
<xsp:include> ... </xsp:include>
<xsp:include> ... </xsp:include>
...

</xsp:structure>
<document>
<xsp:logic>
...

</xsp:logic>
<xsp:logic>
...

</xsp:logic>
...

<!-- other elements -->
</document>

</xsp:page>

Being an XML document, the XSP starts with an XML declaration. The root element is
called page. The language attribute sets the programming language. The current implementa-
tion that we are using in this chapter uses the Java language. Other implementations of XSP
can use other programming languages. The page contains zero or more structure elements
and any number of logic elements. Besides these, a page can contain a single user element
that is not relevant to us in the current context.

An XSP page can contain Java logic code. This is put in one or more logic elements. Java
code may require importing some Java packages. Such imports are put in structure/include
elements.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 313

6412_c07_final.qxd 4/7/06 1:14 AM Page 313

Processing XSP Documents
For processing XSP documents, Cocoon provides a generator class called
ServerPagesGenerator. We will need to specify this class in our sitemap as a generator com-
ponent in our pipeline. Our generators entry in the sitemap will look like the following:

<map:generators default="file">
<map:generator name="xsp"

src="org.apache.cocoon.generation.ServerPagesGenerator"/>
</map:generators>

After the generator processes the input document, it will undergo further transformations
as defined by the rest of the components in the pipeline.

Creating a Web Page for Live Data Feed
We will now develop a simple web page for our stock brokerage that provides the live data
for the client-requested stock. We will create this web page based on XSP technology that
accepts the stock symbol on the command line as a parameter. The XSP will retrieve this
parameter, obtain the live data for the requested stock symbol, and generate an XML docu-
ment for the next component in the pipeline. We will not be implementing the retrieval of
live data; instead, we will have a placeholder in our Java code where later on you can plug
in the Java code for retrieving live data from an external resource.

We will begin by writing the sitemap for our web page.

Writing the Sitemap for Processing XSP
Listing 7-19 shows the required sitemap content.

Listing 7-19. The Sitemap for Processing XSP (Ch07\XSP\sitemap.xmap)

<?xml version="1.0"?>

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:components>
<map:generators default="file">
<map:generator name="xsp"

src="org.apache.cocoon.generation.ServerPagesGenerator"/>
</map:generators>

</map:components>

<map:pipelines>
<map:pipeline>
<map:match pattern="StockQuote.xsp">
<map:generate type="xsp" src="StockQuote.xsp"/>
<map:serialize type="xml"/>

</map:match>
</map:pipeline>

</map:pipelines>
</map:sitemap>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK314

6412_c07_final.qxd 4/7/06 1:14 AM Page 314

We define a generator called xsp. The src attribute of this generator is set to the
ServerPagesGenerator class. This generator will read the input document along with the
parameter on the input request and process the document to produce a series of SAX events
for the next component in the pipeline.

The sitemap defines only one pipeline that looks for the StockQuote.xsp URL pattern in
the input request. It uses the xsp generator to process the specified XSP document. Without
transforming the output further, it serializes the output by using the xml serializer. The output
device will display the generated XML document.

In practice, this dynamically generated XML document will undergo a series of further
transformations before it is output to a device.

Next, we will look at the XSP document.

Creating Live Data XSP
Listing 7-20 gives the complete listing of the XSP document that takes one input parameter
specifying the stock code. The page obtains the live quote for the requested stock and gener-
ates an XML page for further processing by the Cocoon pipeline.

Listing 7-20. XSP That Requests Live Quote (Ch07\XSP\StockQuote.xsp)

<?xml version="1.0" encoding="utf-8" ?>
<xsp:page language="java"
xmlns:xsp="http://apache.org/xsp">
<xsp:structure>
<xsp:include>java.util.Calendar</xsp:include>
<xsp:include>java.text.*</xsp:include>

</xsp:structure>

<document>
<xsp:logic>
String stockName = request.getParameter("stock").toString();
String msg = "Last Trade";
String price = "";
if (stockName.equals("IBM")) {
price = "$25.00";

}
else if (stockName.equals("MSFT")) {
price = "$35.00";

}
else {
price = "Unknown stock!";

}
SimpleDateFormat format = new SimpleDateFormat("EEE, MMM d, yyyy hh:mm:ss");
String timestamp = format.format(java.util.Calendar.getInstance().getTime());
</xsp:logic>
<msg>
<xsp:expr>msg</xsp:expr>

</msg>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 315

6412_c07_final.qxd 4/7/06 1:14 AM Page 315

<stock>
<xsp:expr>stockName</xsp:expr>

</stock>
<price>
<xsp:expr>price</xsp:expr>

</price>
<time>
<xsp:expr>timestamp</xsp:expr>

</time>
</document>

</xsp:page>

The document starts with the root element xsp, in which we define the page language and
the required namespace.

The Java code embedded in the page requires the two Java packages: java.util and
java.text. We import these by using the <xsp:include> element. In the <xsp:logic> ele-
ment, we write Java code for retrieving the stock prices. First, we read the value of the
input parameter:

String stockName = request.getParameter("stock").toString();

The parameter name is stock. The request object is implicitly provided by Cocoon at
runtime. We create two String variables:

String msg = "Last Trade";
String price = "";

The first variable is initialized to a constant string that is output in the resultant XML
document as is. The second variable is assigned a null value and is later initialized in the Java
code. The code now checks for the hard-coded string value of IBM:

if (stockName.equals("IBM")) {
price = "$25.00";

}

If the input parameter value matches IBM, the program assigns a constant value to the
price field. In reality, you will write code that sends the requested symbol as a parameter to
the external service providing live quotes for traded stocks. Likewise, the program sets the
price variable to a constant value for other stock inputs.

The following two lines retrieve the current system time and assign it to a timestamp
variable:

SimpleDateFormat format = new SimpleDateFormat("EEE, MMM d, yyyy hh:mm:ss");
String timestamp = format.format(java.util.Calendar.getInstance().getTime());

Note that this timestamp may be different than the actual trade time. I have assigned the
current time to the timestamp variable just to illustrate the use of some Java code here.

After the logic is defined, we start creating the XML document:

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK316

6412_c07_final.qxd 4/7/06 1:14 AM Page 316

<msg>
<xsp:expr>msg</xsp:expr>

</msg>

The <xsp:expr> element substitutes the value of the expression in the provided place-
holder. When the preceding code is transformed into XML, you will get the following line:

<msg>Last Trade</msg>

Note that both the opening and closing <msg> tags will be added in the output as is.
Likewise, we add other strings in the output along with the desired XML tags.

Finally, we close the document and page tags.

Opening the Live Data Page
To open the live data page, copy both the XSP (Listing 7-20) and sitemap (Listing 7-19) files
into a desired folder of your Cocoon installation. You can now open the page by using a URL
somewhat like this:

http://localhost:8080/cocoon/samples/Ch07/XSP/StockQuote.xsp?stock=IBM

This will process the XSP and produce the output as shown here:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<document xmlns:xsp="http://apache.org/xsp">
<msg>Last Trade</msg>
<stock>IBM</stock>
<price>$25.00</price>
<time>Mon, Dec 19, 2005 02:01:40</time>

</document>

You can try different input parameter values and examine the output for its correctness.

Looking Under the Hood
Having seen how to create and open an XSP document, you will now look under the hood to
understand Cocoon’s implementation of XSP processing. Figure 7-10 shows the architectural
model of XSP processing.

There is a lot of similarity between the JSP processing model and the Cocoon XSP pro-
cessing model. In JSP, the JSP engine converts the JavaServer page into a servlet. In the XSP
processing model, Cocoon converts the XSP into a generator class to be used in the pipeline.
The XSL transformations create a Java source file from the XSP file. The engine adds _xsp to
the filename while naming the created Java file. The Java compiler compiles this file into a
.class file, which is finally used in the Cocoon pipeline. You can specify the compiler to use
in the Cocoon configuration file. (Cocoon configuration is discussed later in this chapter.)

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 317

6412_c07_final.qxd 4/7/06 1:14 AM Page 317

■Tip The Java source file for our example is created in the folder <Tomcat Installation>\work\
Catalina\localhost\cocoon\cocoon-files\org\apache\cocoon\www\samples\Ch07\XSP\

StockQuote_xsp.java.

Just as in the case of JSP, if the XSP changes, Cocoon will re-create the Java file and recom-
pile it to produce a new generator. Once compiled, the same class definition will be used until
XSP changes again.

The XSP compilation pipeline is independent of the processing pipeline that is used for
client-request processing. Thus, the generated Java code does not have access to the input
request parameters at compile time. However, the executing generator class has access to the
request parameters.

Using Logicsheets in XSP
Now we will again compare XSP with JSP technology. JSPs were designed with the intention
of separating the content from the logic; however, embedded Java code in JSP does not give
a clear separation between the two. Thus came the taglibs, which provided a much better sep-
aration between the presentation and the logic. XSP faced the same problem, which is solved
by using Logicsheets, a similar concept to taglibs.

A Logicsheet defines a markup to be used in your XSP files. This markup code is then con-
verted into actual code enclosed in code-embedding directives for the XSP page. For example,
there could be a markup such as <sendmail:send-mail>, where sendmail refers to the appropri-
ate XML namespace. The send-mail will have several parameters specified by other markups.
The entire code is translated into corresponding Java code.4

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK318

Figure 7-10. XSP processing model

4. It may be some other language, depending on the XSP implementation.

6412_c07_final.qxd 4/7/06 1:14 AM Page 318

I will illustrate the use of predefined Logicsheets with an example. Imagine that our stock
brokerage wants to send an e-mail to its clients on every trade confirmation. The customer
makes a trade request, and after the trade is confirmed, the stock brokerage sends an e-mail
notification to the customer. I will discuss the fragment of the XSP page that generates and
sends mail to the customer.

First, we will look up the sitemap definition.

Writing a Sitemap for XSP Processing
The sitemap that is used for processing the XSP that sends mail is shown in Listing 7-21.

Listing 7-21. Sitemap for Processing XSP That Sends E-Mail Notifications
(Ch07\LogicSheets\sitemap.xmap)

<?xml version="1.0"?>

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:components>
<map:generators default="file">
<map:generator name="xsp"

src="org.apache.cocoon.generation.ServerPagesGenerator"/>
</map:generators>

</map:components>

<map:pipelines>
<map:pipeline>
<map:match pattern="mailtest.xsp">
<map:generate type="xsp" src="mailtest.xsp"/>
<map:serialize type="xml"/>

</map:match>
</map:pipeline>

</map:pipelines>
</map:sitemap>

Here we define one generator called xsp. The source class for this generator is specified
as ServerPagesGenerator, which you have used in earlier examples. We define one pipeline
that recognizes the pattern mailtest.xsp and passes the input document through the xsp
generator and xml serializer.

Creating an XSP Document for Sending Mail
We will now look up the XSP document that composes the mail dynamically by using prede-
fined Logicsheets and sends them to the mail server. Listing 7-22 illustrates how to compose
and send e-mail in an XSP document.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 319

6412_c07_final.qxd 4/7/06 1:14 AM Page 319

Listing 7-22. XSP to Illustrate the Use of Predefined Logicsheets (Ch07\LogicSheets\
mailtest.xsp)

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsp:page language="java"
xmlns:xsp="http://apache.org/xsp"
xmlns:sendmail="http://apache.org/cocoon/sendmail/1.0">
<email>
<sendmail:send-mail>
<sendmail:from>sarang@abcom.com</sendmail:from>
<sendmail:to>sarang@abcom.com</sendmail:to>
<sendmail:subject>Trade Confirmation</sendmail:subject>
<sendmail:body>Your order has been successfully traded.</sendmail:body>

<sendmail:smtphost>192.168.100.50</sendmail:smtphost>
<sendmail:smtpuser>sarang</sendmail:smtpuser>
<sendmail:smtppassword>ApacheXML</sendmail:smtppassword>

<sendmail:on-success>
<p>
Email successfully sent.

</p>
</sendmail:on-success>
<sendmail:on-error>
<p style="color:red;">
An error occurred: <sendmail:error-message/>

</p>
</sendmail:on-error>

</sendmail:send-mail>
</email>

</xsp:page>

In the root element, we create a namespace called sendmail:

xmlns:sendmail="http://apache.org/cocoon/sendmail/1.0">

The send-mail tag uses several parameters to specify the from, to, subject, and body for
the e-mail message. As you can see in the code, you can easily compose an e-mail by using
these tags. The attachment tag (not used in the current example) allows you to add attach-
ments to the mail.

After the mail is composed, we set the SMTP authentication information by providing
the content within smtphost, smtpuser, and smtppassword elements. Note that the SMTP
server configuration is usually placed in the Cocoon configuration file discussed later in the
chapter. By providing the content for the three mentioned smtpXXX elements, you will be
overriding the settings in the Cocoon configuration.

The on-success element content will be executed if Cocoon sends the mail successfully.
The on-error element is used for error notification.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK320

6412_c07_final.qxd 4/7/06 1:14 AM Page 320

Testing the Mail XSP Document
You may now open the XSP document given in Listing 7-22 by typing the following URL in
your browser:

http://localhost:8080/cocoon/samples/Ch07/LogicSheets/mailtest.xsp

Do not forget to make adjustments for your installation in the preceding URL. If Cocoon
successfully connects to your mail server and sends the mail, you will see the following screen
output in your browser.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<email xmlns:xsp="http://apache.org/xsp"
xmlns:sendmail="http://apache.org/cocoon/sendmail/1.0">
<p>Email successfully sent.</p>
</email>

Using Other Predefined Logicsheets
Cocoon provides several Logicsheets ready for your use. These are categorized as follows:

• Request: Wraps XML tags around standard request operations

• Session: Wraps XML tags around standard session operations

• ESQL: Used for performing SQL queries and serializing the results as XML

• Forms: Provides input form functionality

• Sendmail: Provides notifications for composing and sending e-mail

It is beyond the scope of this book to cover all these predefined Logicsheets. For more
information, you can refer to several other books, online documentation, and tutorials avail-
able on this topic.5

Cocoon Configurations
So far in this chapter, you have studied several Cocoon program examples. In this section, you
will learn how to configure Cocoon. For this, you must have some knowledge of the internal
workings of Cocoon.

Understanding Cocoon Internals
As you have seen as a part of the installation, Cocoon is deployed as a servlet on a servlet con-
tainer. The servlet container, such as Tomcat, initializes the servlet at its start-up. The servlet

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 321

5. Online Cocoon user documentation can be found at http://cocoon.apache.org/2.1/userdocs.
Tutorials are available at http://www.planetcocoon.com and at http://jsn-server5.com/cocoon/
docs/userdocs/xsp/logicsheet.html.

6412_c07_final.qxd 4/7/06 1:14 AM Page 321

initialization information is obtained from the <cocoon installation>\WEB-INF\web.xml file.
The path to the configuration file (cocoon.xconf) is stored in this file. By default, this configu-
ration file is stored in the same folder as the web.xml file.

Cocoon Servlet Initialization
During initialization of the servlet, the cocoon.xconf configuration file is loaded. The con-
figuration contains the mappings of roles to classes. The role is a concept introduced by the
Apache Avalon framework.6 Each role is implemented by an executable class code defined
in the configuration file.

The cocoon.xconf file is an XML file and thus an XML parser is required to parse this file.
The parser is obtained from the environment variable org.apache.cocoon.components.parser.
Parser. If this variable is not defined, a default parser called org.apache.cocoon.components.
parser.JaxpParser is used. You can change this parser by modifying the xml-parser’s class
attribute in the cocoon.xconf file. This is shown in the following code snippet:

<xml-parser class="org.apache.excalibur.xml.impl.JaxpParser"
logger="core.xml-parser" pool-max="32">
...

</xml-parser>

During parsing and initializing, Cocoon loads the classes for each defined role. A role can
be implemented by one or more classes. As a part of the initialization process, Cocoon also
obtains the location of the sitemap. A default sitemap (sitemap.xmap file) is provided in the
Cocoon installation folder. The sitemap is compiled during the HttpRequest handling.

■Tip To understand the sequence of events that takes place during Cocoon start-up, you can refer to
the Unified Modeling Language (UML) sequence diagram provided in the Cocoon documentation
(http://localhost:8080/cocoon/docs/developing/images/initialize_Cocoon.png).

HttpRequest Handling
Once initialized, all the HTTP requests are passed to the Cocoon servlet. The servlet obtains
the request, response, and servlet info objects as a part of the environment. The environment
decides which sitemap to use. The path to the sitemap is passed to the Manager object. The
Manager object determines whether the compiled version of the sitemap already exists. If not,
it creates one. Finally, the handler forwards the request to the generated sitemap class. The
sitemap class selects the pipeline based on the URL pattern matching and processes the
request through the selected pipeline.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK322

6. For more information, look up http://localhost:8080/cocoon/docs/developing/avalon.html in your
Cocoon documentation.

6412_c07_final.qxd 4/7/06 1:14 AM Page 322

■Tip For more details, you can refer to the UML sequence diagram (http://localhost:8080/cocoon/
docs/developing/images/get_hello_html.png) provided in the Cocoon documentation.

Setting Configuration Parameters
The cocoon.xconf file contains the configuration information that is later used by the Cocoon
runtime during the execution of web requests. As a developer, you may be required to modify
this configuration file in some situations. For example, to set up the data source, configure the
mail server, or set up your own parser, you will need to modify this file. I will discuss a few
such elements from the configuration file.

Configuring for Performance
During the development phase, you modify your sitemap several times. As mentioned earlier,
the Manager object checks whether the compiled version of the sitemap is available for pro-
cessing the request. If so, it does not generate the class for the sitemap. However, during the
development, you will want this sitemap class to be generated on every change to the sitemap.
The following entry in the configuration file (cocoon.xconf) allows you to do this:

<sitemap check-reload="yes" file="context://sitemap.xmap" logger="sitemap"/>

Set the check-reload flag to yes (which is the default) during the development. In a pro-
duction environment, make sure that this flag is set to no; otherwise, it may seriously hamper
the site’s performance.

Configuring Your Own Parsers and Processors
As mentioned earlier, you can configure your own parser by modifying the entry for the xml-
parser element:

<xml-parser class="org.apache.excalibur.xml.impl.JaxpParser"
logger="core.xml-parser" pool-max="32">

You can set up your own XSLTC processor by modifying the entries in the following code:

<component class="org.apache.excalibur.xml.xslt.XSLTProcessorImpl"
logger="core.xslt-processor"
role="org.apache.excalibur.xml.xslt.XSLTProcessor/xsltc">

<parameter name="use-store" value="true"/>
<parameter name="transformer-factory"

value="org.apache.xalan.xsltc.trax.TransformerFactoryImpl"/>
</component>

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 323

6412_c07_final.qxd 4/7/06 1:14 AM Page 323

<component class="org.apache.excalibur.xml.xslt.XSLTProcessorImpl"
logger="core.xslt-processor"
role="org.apache.excalibur.xml.xslt.XSLTProcessor/xalan">

<parameter name="use-store" value="true"/>
<parameter name="incremental-processing" value="false"/>
<parameter name="transformer-factory"

value="org.apache.xalan.processor.TransformerFactoryImpl"/>
</component>

Note that the preceding entries refer to the Xalan XSLT processor. For the Saxon XSLT
processor, refer to the corresponding entry in the configuration file.

To modify the XPath processor, you need to modify the following entry:

<xpath-processor class="org.apache.excalibur.xml.xpath.XPathProcessorImpl"
logger="core.xpath-processor"/>

Setting Up Data Sources
To set up a data source, you need to modify the entry for the datasources element:

<datasources>
<jdbc logger="core.datasources.personnel" name="personnel">
<pool-controller max="10" min="5"/>
<auto-commit>false</auto-commit>
<dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>
<user>sa</user>
<password/>

</jdbc>
</datasources>

In this entry, you need to set up the appropriate URL and the required user name/
password. Besides this, you will be able to set other features, including autocommit and the
size of the connection pool.

Setting Up the Mail Server
To set the mail server configuration, you need to modify the following entry in the config-
uration file:

<component class="org.apache.cocoon.mail.MailMessageSender"
logger="core.mail.MailSender" role="org.apache.cocoon.mail.MailSender">

<!--+
| SMTP host name, user name, and password.

<smtp-host>127.0.0.1</smtp-host>
<smtp-user>john</smtp-user>
<smtp-password>john</smtp-password>
+-->

</component>

After adding the host, user, and password information, do not forget to uncomment those
entries. These are originally commented in the default sitemap.

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK324

6412_c07_final.qxd 4/7/06 1:14 AM Page 324

Summary
The Cocoon framework provides an excellent framework for web development. Web developers
were always concerned with separating program logic from the presentation while creating
dynamic web pages. Cocoon solves this problem by providing a clear separation between the
three concerns, namely logic, content, and style. It also addresses another important concern
of web development: management of the web application.

The Cocoon framework is based on the pipeline processing model. In a Cocoon applica-
tion, we create pipelines consisting of various components. An input request enters a selected
pipeline and undergoes various transformations in several components defined in the pipeline
until the response is generated at the other end. The components in a pipeline are categorized
based on their functionality: generating content, transforming it, and serializing it to a device-
specific format. Accordingly, the pipeline consists of three important components called
generators, transformers, and serializers. You can include multiple transformers in a pipeline.

The management of the pipelines and the various components within it are achieved
through the creation of a sitemap. Every Cocoon application creates an XML-based sitemap
that defines the pipelines and the components in them. Being an XML document, the sitemap
can be easily altered to modify the processing of the input request.

After introducing a basic application development in Cocoon, this chapter discussed sev-
eral built-in components. The use of some of these components was discussed with the help
of practical examples.

The chapter also introduced you to another important Cocoon technology: XSP. XSP
allows you to create dynamic content that is processed by other components in the pipeline
before a web page is rendered to the client. The XSP technology has lot of similarities to Java’s
JSP technology. Like JSP, the XSP technology contains embedded program code. The default
programming language is Java; however, other implementations of XSP may use other lan-
guages. An XSP page is transformed by a built-in pipeline to another XML document that
contains elements to embed Java code. The runtime generates a Java class that is compiled
and used as a generator in the pipeline. The input request is piped through this generator
to the next component, which is the transformer component.

The XSP technology that allows the generation of dynamic pages also suffers from a lack
of clear-cut separation between the content generation and the presentation. Thus, XSP intro-
duced what is known as Logicsheets, which are like JSP taglibs. A Logicsheet is transformed
into a set of XML elements that embed Java code. Cocoon provides several ready-to-use Logic-
sheets. The chapter covered the use of one Logicsheet for composing and sending e-mail
dynamically in an XSP document.

Finally, the chapter covered some internals of the Cocoon framework and its configura-
tion. The Cocoon runtime is deployed as a servlet on a servlet container. Once deployed, all
the web requests are first directed to this servlet. The servlet selects the appropriate sitemap
for processing the request and passes control to the pipeline for processing the request.

The Cocoon configuration is defined in the cocoon.xconf file. We discussed a few entries
in this configuration file to look up how to improve runtime performance, how to configure
the parsers, how to configure data sources, how to configure mail servers, and more.

The Cocoon framework has a lot more to offer your web application development than
what I could cover in the limited space provided by this chapter. I urge you to go through sev-
eral other available sources such as books, websites, online tutorials, and user groups for
further reading. Happy learning!

CHAPTER 7 ■ THE APACHE COCOON FRAMEWORK 325

6412_c07_final.qxd 4/7/06 1:14 AM Page 325

6412_c07_final.qxd 4/7/06 1:14 AM Page 326

XML-Security

In the last few chapters, you have seen the extensive use of XML for data transport. When
such data is transported over public networks, is it secured? Could the data be read or even
tampered with by a malicious third party? Further, will the receiver of the data be assured
about the authenticity of the sender and integrity of the data? This chapter gives answers to
all these questions.

I will discuss the need for security and cover important security concepts. Cryptography
plays an important role in securing your applications and data, and in this chapter you will
study both symmetric- and asymmetric-key cryptography. You will learn to create digital sig-
natures and certificates and use them in your applications. XML signature specifications allow
you to sign documents partially, and you will also learn about these specifications. Finally, you
will learn the techniques of encrypting and decrypting data for protecting its contents from
prying eyes.

Why Security?
Throughout this book, we have been working on a stock brokerage case study. Our stock bro-
kerage accepts trade orders from its customers by using a web interface. As the orders pass
through a public network, it is conceivable that somebody could monitor the network traffic,
and read and modify the order, before sending the modified order to the brokerage. The stock
brokerage, unaware of the modifications to the order, might execute it on the stock exchange
and cause no end of grief for the customer.

When the brokerage receives the customer’s order, how does it know that the order did
indeed originate from the appropriate individual? In the case of trade losses, the customer
might refuse to confirm the order. Similarly, whenever the customer places an order or makes
an online payment to the broker, is the customer sure he’s really talking to the broker and not
some malicious third party masquerading as the organization?

The concepts of secure data transmission and the authentication of sender and receiver
are not restricted to stock exchange operations. Data transmissions need to be secure in sev-
eral other situations such as banking transactions, e-commerce shopping, and government
operations. Further, should that data be intercepted, we need to ensure that it cannot be read
by an intruder.

Before we look into the answers to the preceding questions and the implementations of
security in this digital world, let’s look at some of the important terms used in security.

327

C H A P T E R 8

■ ■ ■

6412_c08_final.qxd 4/7/06 1:12 AM Page 327

Important Terms in Security
The answers to the questions presented in the previous section lie in the definitions of several
important security terms: authentication, authorization, nonrepudiation, message integrity,
and message confidentiality. Each of these terms is defined in this section.

Authentication
Authentication is a process of determining whether someone is in fact whosoever he or she
claims to be.

When the customer places an order with the stock brokerage, the brokerage needs to
authenticate itself to the customer. The customer can then be sure of sending the order to the
appropriate destination. Similarly, the customer may have to authenticate himself to the bro-
ker. This is called mutual authentication, whereby both parties confirm the identity of the
other party involved in the conversation.

Authorization
Authorization is a process of granting an authenticated user the authority to access certain
resources, based on the access rights of that user.

After a user is authenticated by a web application, he will be allowed to perform various
tasks. The scope of these tasks is decided by the user’s privileges as defined by the system
administrator. This process of allowing the user to perform certain operations is called
authorization.

Nonrepudiation
Nonrepudiation is a process followed by two parties involved in a communication that will
prevent either user from denying the conversation in the future.

As mentioned earlier, a customer might deny having placed an order that resulted in
trade losses. In such cases, the stock brokerage should be able to prove to the customer that it
has a valid order from the customer in question, that the order did indeed originate from that
customer, and that the order was not tampered with on its way. This process is called non-
repudiation, whereby the customer cannot deny having placed the order.

Message Integrity
Message integrity is a process by which the message receiver is guaranteed that the received
message has not been tampered with on its way.

The stock brokerage needs to ensure that the various trade requests received from its cus-
tomers have not been modified on their way. An intruder could intercept a message, modify
its contents, and forward it to the ultimate receiver. The integrity of the message is guaranteed
by generating message digests and creating digital signatures on digests. This is discussed in
depth later in the chapter.

CHAPTER 8 ■ XML-SECURITY328

6412_c08_final.qxd 4/7/06 1:12 AM Page 328

Message Confidentiality
Message confidentiality is a process that ensures both message sender and receiver that even if
the message is intercepted by an intruder on its way, it would not make any tangible sense to the
interceptor.

Whenever a customer sends a trade request to the stock brokerage, hiding the trade order
details from an interceptor may not be required. However, when the customer sends credit
card details to the brokerage, the content must be hidden from spying eyes. Message confi-
dentiality is achieved by encrypting the message content.

Brief Introduction to Cryptography
Cryptography is the process of transforming data from one form to another in order to hide
the message content from an interceptor and to prevent undetected modifications.

The original form of data is called plaintext in cryptography, and the transformed form
is called ciphertext. The term plaintext refers to not only human-readable data, but also
binary data such as images and database content. Ciphertext is the transformed human-
unreadable data.

The cryptography process involves converting plaintext to ciphertext, and converting
ciphertext back to its original form of plaintext. Transforming plaintext into ciphertext is
known as encryption. This is illustrated in Figure 8-1.

Transforming ciphertext to plaintext is called decryption. This is illustrated in Figure 8-2.
Encryption ensures that the data is hidden from illegitimate users. But how does it pre-

vent undetected modification of the data? In cryptography, we sign the data by creating a
checksum on the data. This checksum may be generated by a simple algorithm, such as
adding binary representations of each character in the message text. This checksum is called
a message digest. At the receiver end, the receiver re-creates the checksum (message digest)
by using the same algorithm as the sender. If the two digests match, the receiver can be sure
that the data has not been tampered with on its way. It also ensures message authenticity—
that the message did originate from the sender. This process is illustrated in Figure 8-3.

CHAPTER 8 ■ XML-SECURITY 329

Figure 8-1. Encryption transforms plaintext to ciphertext.

6412_c08_final.qxd 4/7/06 1:12 AM Page 329

CHAPTER 8 ■ XML-SECURITY330

Figure 8-2. Decryption transforms ciphertext to plaintext.

Figure 8-3. Using a message digest for message authenticity and integrity checks

6412_c08_final.qxd 4/7/06 1:12 AM Page 330

In cryptography, we use a key for encryption and decryption. A key is a predefined charac-
ter sequence. The encryption process that uses a key is shown in Figure 8-4.

We can use one key or a matching pair of keys for encryption and decryption. We decrypt
the encrypted data by using either the same key used for encryption or a matching key pro-
vided by the message sender. Because the one key or matching keys used for decryption are
privately held by the two involved parties, the process ensures message confidentiality.

A key is also used for generating the message digest. The sender sends both the message
and its generated digest to the intended receiver. The signing key or a matching key is shared
with the receiver. The receiver uses the supplied key to generate a message digest on the
received message. If the two message digests match, the message authenticity and integrity
are established.

Thus, these cryptography techniques answer all the requirements of security:

• Hide information content

• Prevent undetected modification

• Prevent unauthorized use

Depending on whether a shared key or a matching pair of keys is used, two types of
cryptography techniques are available: symmetric and asymmetric cryptography. You will
learn about both in this section. You will also learn about the use of digital signatures and
certificates.

Symmetric Cryptography
Symmetric cryptography uses the same key for both encryption and decryption, or for signing
and verifying. (Its name reflects the symmetry of using the same key at both ends.) Figure 8-5
illustrates encryption and decryption using symmetric-key cryptography.

CHAPTER 8 ■ XML-SECURITY 331

Figure 8-4. Encryption algorithm that uses a key

6412_c08_final.qxd 4/7/06 1:12 AM Page 331

Either party can generate the key for the conversation. This key should not be transmitted
over unsecured channels such as the Internet and must be made available to the other party
even before the conversation begins.

Symmetric cryptography has its roots deep into the early stages of computing. In World
War II, symmetric cryptography was used extensively by many countries. The Germans con-
fidently believed that messages sent via Enigma, an electromechanical rotor-based cipher
system, could not be cracked. But the British cracked some of the Enigma codes early in the
war and continued to decrypt important messages until the Allies’ final victory.

Sharing the key with the legitimate user has posed the greatest challenge in symmetric-key
cryptography and ultimately led to the invention of asymmetric cryptography. However, although
asymmetric cryptography offers a solution to key sharing, it is slower than symmetric cryptogra-
phy. Thus, in practice, and as you will see later in this chapter, we use a combination of the two
techniques.

Asymmetric Cryptography
In asymmetric cryptography, the sender creates a pair of matching keys. It is assumed that
the techniques used for creating the pair ensure that there is one and only one matching
key. The two keys are called the public key and the private key. As its name indicates, the
public key is truly public and is made available to everybody who asks for it. Likewise, the
private key is totally private to the key generator and should never be lost or disclosed to
anybody; doing so would compromise security.

It is also assumed in asymmetric cryptography that by knowing the public key, nobody
can deduce its private key. This eliminates any risk that may be involved in making the key
truly public.

The sender uses his private key to sign or encrypt the document. The receiver uses the
matching public key obtained from the sender to verify the signature or to decrypt the gibber-
ish (this is another term used in cryptography to refer to ciphertext) received from the sender.
This process is illustrated in Figure 8-6.

CHAPTER 8 ■ XML-SECURITY332

Figure 8-5. Symmetric cryptography uses the same key for both encryption and decryption.

6412_c08_final.qxd 4/7/06 1:12 AM Page 332

■Note If encryption is carried out with one of the keys of the key pair, decryption is possible only with the
matching key of the same key pair. The encrypted message cannot be decrypted with the same key.

Digital Signatures
A digital signature is the equivalent of a paper signature in the digital world. Just as you sign
paper documents to establish their authenticity, you sign digital documents by creating and
adding a digital signature. Signatures on paper cannot be forged easily; also, any changes
made to the content of a document on physical paper can be detected easily.

In digital documents, we create a digital signature by creating a checksum based on the
document contents. In bookkeeping, you typically take a total of all debit transactions and
another total of all credit transactions. These are the two checksums. When they match, you
know that your accounts tally. Similarly, in the digital world, a checksum can be generated
with a simple algorithm such as adding binary representations of each character in the docu-
ment.1 This checksum is also known as a message digest. In fact, we create another checksum
based on the message digest, which is then called the digital signature.Thus, a digital signa-
ture is a checksum of a checksum (message digest).

We use a mix of both symmetric and asymmetric cryptography while generating digital
signatures. The process of signing and verifying the documents is as follows:

1. A sender creates a message digest on a document by using a message digest engine.
A message digest algorithm might be seeded with a symmetric key if message authen-
ticity is desired. The sender then uses asymmetric-key cryptography to encrypt the
message digest along with the symmetric key (also called a secret) used for creating the
digest. That means that two values, namely the message digest and the symmetric key,
are encrypted by using the private key of the public/private key pair. This encrypted
data (signature), along with the original document, is sent to the receiver. This process
is illustrated in Figure 8-7.

CHAPTER 8 ■ XML-SECURITY 333

Figure 8-6. Asymmetric cryptography uses different keys for encryption and decryption.

1. The checksum algorithms used in practice are much more complicated and thereby more secure than
the one suggested here.

6412_c08_final.qxd 4/7/06 1:12 AM Page 333

2. After receiving the document along with its signature, the receiver uses the public key
supplied by the sender to decrypt and thus obtain the message digest and the secret
(the symmetric key used for encryption). The receiver re-creates the message digest by
using the obtained secret. If the generated message digest matches the received mes-
sage digest, the document origin is authenticated and the message integrity is assured.
This process is illustrated in Figure 8-8.

CHAPTER 8 ■ XML-SECURITY334

Figure 8-7. Generating a digital signature

Figure 8-8. Message verification using a public key

6412_c08_final.qxd 4/7/06 1:12 AM Page 334

This technique is ideally suited for large documents. For small documents, you can use
asymmetric-key cryptography to sign the entire document.

Digital Certificates
There are many utilities available for generating a matching public/private key pair. Because
public/private key pairs can be generated with ease, how can anyone be assured about the
authenticity of the public key? It is possible for someone to create a public/private key pair
and distribute the public key to everyone while claiming to be someone else. This is where
digital certificates come into the picture.

After creating a public/private key pair, the creator should send the public key to a certifica-
tion authority (CA) such as VeriSign.2 After establishing the sender’s identity, VeriSign creates a
digital certificate for that sender. This certificate contains the sender’s public key, name, and
various other details. Itself a digital document, the certificate is signed by the CA by using its
own private key. Figure 8-9 shows the structure of a digital certificate.

The public key of the CA is available to the public, like any other public key. The docu-
ment receiver now can verify the authenticity of the sender’s public key by obtaining the
certificate issued by the CA. In short, the CA vouches for the correctness of the sender’s
public key.

CHAPTER 8 ■ XML-SECURITY 335

2. http://www.verisign.com

Figure 8-9. A digital certificate

6412_c08_final.qxd 4/7/06 1:12 AM Page 335

A widely used standard for defining digital certificates is X.509. This International Tele-
communication Union (ITU) recommendation3 is known as ITU-T X.509 (formerly CCITT4

X.509) and as ISO/IEC/ITU 9594-8, which defines a standard certificate format for public-key
certificates and certification validation.

Using XML Signatures
Digital signatures sign the entire document. XML signature is a specification that allows you
to sign the document partially. It is similar to digital signatures.

XML signature technology embodies the concepts discussed in the previous sections.
The only difference is that by using XML signatures, you can sign either the full document
or only a specified portion of it. When using other digital signatures, you sign the entire
document.

The XML signatures are not restricted to XML documents, but can be applied to any other
type of digital data such as images or even HTML documents.

The XML signature technology was developed by the XML-DSig charter (http://www.w3.org/
1999/05/XML-DSig-charter-990521.html). This technology was developed in response to the
Electronic Signatures in Global and National Commerce Act (ESIGN), which in 2000 made
digital signatures legally binding in the United States.

In this section, you will study the advantages of XML signatures over digital signatures.
You will learn about the various types of XML signatures. You will also learn about the impor-
tance of canonical XML. Finally, you will study the full structure of XML signatures.

Advantages
XML signatures offer few advantages over digital signatures. An XML signature itself is written
in XML and is thus somewhat user readable. Digital signatures are typically binary documents
consisting of both printable and nonprintable characters, whereas XML signatures are always
encoded so as to consist of only printable characters. Thus, the content of an XML signature,
although it might not make sense to a human reader, is at least readable. Listing 8-1 illustrates
a typical XML signature.

Listing 8-1. A Typical XML Signature

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315">

</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1">

</ds:SignatureMethod>

CHAPTER 8 ■ XML-SECURITY336

3. http://www.itu.int/ITU-T/asn1/database/itu-t/x/x509/1997/

4. CCITT stands for Comite Consultatif Internationale de Telegraphie et Telephonie.

6412_c08_final.qxd 4/7/06 1:12 AM Page 336

<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm=
"http://www.w3.org/2000/09/xmldsig#enveloped-signature">

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#sha1">

</ds:DigestMethod>
<ds:DigestValue>/EzketjAlFVxtuJG8Dg1bUYoKCE=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>

BHq3QeByVI7oAjLZ0ZsGDiCLjOLstBB2Z7O2jxPC88QGhQUKPxWhX0rGHDcNuS9mZYvbeO2HCnccTrC
Su1Uwys9v8GanL6akAMvdxO4tYTMwbNm+YXQgf3gBaWP/XXe6WibJzR2v2+a0IeWZnoR2gkHsIPnpL1
JeqiqYMxjMkR4=
</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>

ijqXBjmSWNbJmD7zZoauMRBYDh/1LeKhVljz/FCLhJofDQhXj+ZMY48/1J+KAG0tSa3U9UH0sAKeprX
24/tTkWiWTyIxQRHgCl/Z3B5fh/lylfvSN47WSPAgIZ6JpNf0x0a3XlVht/aCs+QbdKTk2qOs

FlJjRu8N6Kw5pNa9slU=
</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyValue>

</ds:KeyInfo>
</ds:Signature>

As you can see in Listing 8-1, the signature consists entirely of only printable characters.
A signature is an XML document. Because XML is text-based, so is the XML signature. The
entire signature is enclosed in an opening and closing Signature tag. Unlike digital signatures,
XML signatures include the name of the algorithm that was used to generate the signature.
Look at the SignatureMethod and DigestMethod elements in Listing 8-1 for the algorithm they
use. For digital signatures, there has to be a prior agreement between the sender and the receiver
on the algorithms they are going to use for signing and creating message digests. Also, look at
the DigestValue and SignatureValue element contents. They contain only printable characters.

Another major difference between digital signatures and XML signatures is that XML sig-
natures can be used to selectively sign a part of the document. This offers an advantage of not
breaking the original signature when the document is processed by multiple parties on its way
to its final destination. The customer purchase order for our stock brokerage may pass through
multiple stages of approval to its final destination. If the intermediaries modify the document,
the original signature will break. However, with the XML signature’s ability to sign only a partial
document, the original signature and all the intermediary signatures can be retained to their
final destination.

CHAPTER 8 ■ XML-SECURITY 337

6412_c08_final.qxd 4/7/06 1:12 AM Page 337

Signature Types
XML signatures are classified into three types, depending on their association with the docu-
ment that is signed:

• Enveloped: The XML signature is embedded in the document that is being signed. That
means that the Signature element will appear as one of the child elements in the origi-
nal XML document.

• Enveloping: The entire document that is to be signed appears as one of the child ele-
ments of the Signature element.

• Detached: The XML signature appears in a document that is separate from the signed
document. The Signature stores the reference to the signed document. This type of
signature is useful for signing non-XML documents.

Canonical XML
You have seen in Listing 8-1 that the Signature contains a digest value specified by the
DigestValue element. This digest is very sensitive to changes in the document. As a matter of
fact, even the slightest change such as adding one white-space character to the document will
change the digest drastically. As you might imagine, a digest algorithm should not generate a
digest that is similar to the old one whenever the original document undergoes even a very
minor change.

Unfortunately, different XML applications can generate XML documents that contain
identical content but potentially have slight variations such as the amount of white space
found within it. Also, there are no strict guidelines on how the entire document is structured
as long as it is well formed. Thus, for each document, the generated digest will vary drastically
and the signature verification on a signed document could fail due to minor differences in the
two versions of the same logical document. To overcome this limitation, canonical XML was
introduced.

Canonical XML is a normalized representation of any physical XML document. It is
a standard for signature processing. Before a document is signed, it is transformed into a
canonical XML document. Similarly, before the signature is verified, the received docu-
ment is transformed again to canonical XML to regenerate the digest for verification.

XML Signature Structure
Listing 8-2 shows the general structure of an XML Signature element.

Listing 8-2. XML Signature Structure

<Signature ID="">
<SignedInfo>
<CanonicalizationMethod Algorithm=""/>
<SignatureMethod Algorithm=""/>
<Reference URI="">
<DigestMethod Algorithm=""/>
<DigestValue> ... </DigestValue>

CHAPTER 8 ■ XML-SECURITY338

6412_c08_final.qxd 4/7/06 1:12 AM Page 338

</Reference>
</SignedInfo>
<SignatureValue> ... </SignatureValue>
<KeyInfo> ... </KeyInfo>

</Signature>

As seen in Listing 8-2, the Signature contains child elements called
CanonicalizationMethod and SignatureMethod. This is where you would specify the algorithms
used for creating canonical XML and for signing the document, respectively. Similarly, the
DigestMethod element allows you to specify the digest algorithm in its attribute value
(Algorithm). The Signature element also contains elements such as DigestValue,
SignatureValue, and KeyInfo, which contain the information that their names suggest.

Downloading and Installing Software
The Apache XML-Security project is available in source and binary distribution for both Java
and C++ libraries. If you use C++ for development, you will need to download C++ libraries. I
will use Java libraries in this book. You can download Java libraries from the following URL:

http://xml.apache.org/security/dist/java-library/

The download site contains both binary and source distributions:

• xml-security-bin-1_3_0.zip (binary distribution)

• xml-security-src-1_3_0.zip (source distribution)

You can download the source distribution and build it by using Apache Ant5 to create
the libraries. Ant is a Java-based build tool that is similar to other build tools such as make,
gnumake, nmake, and others.

Alternatively, if you download the binary distribution, which is much larger than the
source distribution, simply unzip the file to a desired folder for installing the software. After
unzipping the binary, include the various JAR files from the libs folder of your installation
in your classpath and you are ready to go.

Signing XML Documents
In this section, we will start our programming exercises. Imagine that a customer wants to
place a trade order with our stock brokerage. Because the brokerage needs to authenticate the
customer, the customer must sign the purchase order (PO). The brokerage would verify the
purchase order before executing it.

To sign the PO, the customer generates a public and private key for his own use and then
signs the PO by using the generated private key. The customer sends the original document
along with the signature and the public key to the brokerage. The brokerage retrieves the pub-
lic key from the received document and then verifies the authenticity and the integrity of the

CHAPTER 8 ■ XML-SECURITY 339

5. http://ant.apache.org/

6412_c08_final.qxd 4/7/06 1:12 AM Page 339

document. The brokerage performs this verification by using the algorithms specified in the
Signature element of the received document to re-create and match the re-created message
digest and the signature with those obtained as a part of the Signature element.

Note that this technique has one fallacy: the brokerage cannot be sure about the authen-
ticity of the customer’s public key itself. To authenticate the public key, the brokerage needs
a digital certificate issued by a CA. We will use digital certificates in our future examples. To
keep matters simple in this example, we will generate a public/private key pair dynamically
and use it while signing and verifying the document.

Generating and Signing an XML Document
Listing 8-3 illustrates how to sign a dynamically created XML document.

Listing 8-3. Signing Dynamically Generated XML Document (Ch08\src\SignedPO.java)

/*
* SignedPO.java
*/
package apress.ApacheXML.ch08;

// Import required classes
import java.io.File;
import java.io.FileOutputStream;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import org.apache.xml.security.algorithms.MessageDigestAlgorithm;
import org.apache.xml.security.signature.XMLSignature;
import org.apache.xml.security.transforms.Transforms;
import org.apache.xml.security.utils.XMLUtils;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import javax.xml.parsers.DocumentBuilder;

public class SignedPO {

static Document createDocument() throws Exception {
// Obtain an instance of Docuement Builder Factory
javax.xml.parsers.DocumentBuilderFactory dbf =

javax.xml.parsers.DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
javax.xml.parsers.DocumentBuilder db = dbf.newDocumentBuilder();

// Create a new document
Document doc = db.newDocument();

CHAPTER 8 ■ XML-SECURITY340

6412_c08_final.qxd 4/7/06 1:12 AM Page 340

// Create elements
Element root = doc.createElementNS(null, "PurchaseOrder");
Element contents = doc.createElementNS(null, "signedContents");

doc.appendChild(root);
root.appendChild(contents);
contents.appendChild(doc.createTextNode(

"\nWe request that you EXECUTE the following trades\n"));

// Add Trade details
Element stock1 = doc.createElementNS(null, "stock");
contents.appendChild(stock1);
stock1.appendChild(doc.createTextNode("GFW"));
Element quantity1 = doc.createElementNS(null, "quantity");
contents.appendChild(quantity1);
quantity1.appendChild(doc.createTextNode("50"));
Element price1 = doc.createElementNS(null, "price");
contents.appendChild(price1);
price1.appendChild(doc.createTextNode("25.35"));
Element type1 = doc.createElementNS(null, "type");
contents.appendChild(type1);
type1.appendChild(doc.createTextNode("B"));

// Add one more Trade
// ...

return doc;
}

public static void main(String unused[]) throws Exception {

org.apache.xml.security.Init.init();

// Generate a public/private key pair for temporary use
KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
KeyPair keyPair = kpg.generateKeyPair();

// Obtain reference to generated public/private keys
PrivateKey privateKey = keyPair.getPrivate();
PublicKey pubkey = keyPair.getPublic();

// Create a po document
Document doc = createDocument();

// Obtain the root element
Element root = doc.getDocumentElement();

CHAPTER 8 ■ XML-SECURITY 341

6412_c08_final.qxd 4/7/06 1:12 AM Page 341

// Create file for writing output
File f = new File("po.xml");
// Create a XMLSignature instance that uses RSA_SHA1 algorithm
XMLSignature signature = new XMLSignature(doc, f.toURL().toString(),

XMLSignature.ALGO_ID_SIGNATURE_RSA_SHA1);

// Create canonical XML
Transforms transforms = new Transforms(doc);
transforms.addTransform(Transforms.TRANSFORM_ENVELOPED_SIGNATURE);

// Add canonicalized document to signature
signature.addDocument("", transforms,

MessageDigestAlgorithm.ALGO_ID_DIGEST_SHA1);

// Add the public key information to signature
signature.addKeyInfo(pubkey);

// Add signature itself to the PO document
root.appendChild(signature.getElement());

// Sign the document
signature.sign(privateKey);

// Create an output stream
FileOutputStream fos = new FileOutputStream(f);
// Output the memory document using XMLUtils.
XMLUtils.outputDOMc14nWithComments(doc, fos);

}
}

We have to initialize the security libraries before invoking any of the Apache XML-
Security library services. The main function first initializes the security libraries with the
following code:

org.apache.xml.security.Init.init();

We then generate a public/private key pair for the current session:

// Generate a public/private key pair for temporary use
KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
KeyPair keyPair = kpg.generateKeyPair();

We are using RSA algorithms for key generation.6 This is the most popular implemen-
tation of the Public Key Infrastructure (PKI). The other well-known implementations are
Diffie-Hellman (DH)7 and Elliptic Curve Diffie-Hellman (ECDH).8

CHAPTER 8 ■ XML-SECURITY342

6. The RSA algorithm was invented by Ron Rivest, Adi Shamir, and Len Adleman. The name RSA was
coined after the initials of the inventors.

7. Refer to http://www.rsasecurity.com/rsalabs/node.asp?id=2126 for details.

8. Refer to http://www.rsasecurity.com/rsalabs/node.asp?id=2013 for details.

6412_c08_final.qxd 4/7/06 1:12 AM Page 342

We retrieve the public and private keys from the generated key pair:

// Obtain reference to generated public/private keys
PrivateKey privateKey = keyPair.getPrivate();
PublicKey pubkey = keyPair.getPublic();

We then create a purchase order XML document by calling the createDocument method.
The createDocument method uses the DOM API discussed in Chapter 2 to generate the PO
document dynamically. It returns the reference to the Document object to the caller. We will
add a Signature element to this document.

We construct the Signature element by using the following statement:

// Create a XMLSignature instance that uses RSA_SHA1 algorithm
XMLSignature signature = new XMLSignature(doc, f.toURL().toString(),

XMLSignature.ALGO_ID_SIGNATURE_RSA_SHA1);

Note that we have specified the algorithm to be used for signature generation as one of
the parameters. The XMLSignature class defines several IDs for the use of different algorithms.
For example, you can use the ALGO_ID_SIGNATURE_RSA_SHA256 ID to create a 256-bit signature
or you can use ALGO_ID_SIGNATURE_RSA_SHA512 to generate a 512-bit signature.

■Note The ALGO_ID_SIGNATURE_RSA_SHA1 generates a 172-bit signature and not a 1-bit signature
as you might conclude from the previous statement.

■Tip Try these different algorithms to see their effect on the generated signature value in the signed
document.

The first parameter to the XMLSignature constructor is the Document object that is to be
signed, and the second argument is a reference to the output file where the signed document
will later be serialized.

After constructing the Signature, the program transforms the input document to
canonical XML:

// Create canonical XML
Transforms transforms = new Transforms(doc);
transforms.addTransform(Transforms.TRANSFORM_ENVELOPED_SIGNATURE);

We then add the document to the Signature element:

// Add canonicalized document to signature
signature.addDocument("", transforms,

MessageDigestAlgorithm.ALGO_ID_DIGEST_SHA1);

We specify the digest algorithm to be used while adding the document.

CHAPTER 8 ■ XML-SECURITY 343

6412_c08_final.qxd 4/7/06 1:12 AM Page 343

■Tip I again urge you to try the different digest algorithms to see their effect on the digest value.

We add the key info to the signature so that the receiver obtains the customer’s public key
as a part of the document:

// Add the key information to signature
signature.addKeyInfo(pubkey);

The signature node is then appended to the root of the document:

// Add signature itself to the PO document
root.appendChild(signature.getElement());

After this, the document itself is signed by calling the sign method of the XMLSignature
class:

// Sign the document
signature.sign(privateKey);

During execution of this sign method, the signature is generated and inserted into the
Signature element of the document. Our document is now signed. We need to serialize
the document constructed in memory to a physical file. We do this by creating an output
stream on the desired physical file and by calling the outputDOMc14nWithComments method
of the XMLUtils class to perform the serialization:

// Create an output stream
FileOutputStream fos = new FileOutputStream(f);
// Output the memory document using XMLUtils.
XMLUtils.outputDOMc14nWithComments(doc, fos);

Running the Application
Compile the application by using the following command line:

C:\<working folder>\ch08\src>javac -d . SignedPO.java

Run the application by using the following command line:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.SignedPO

On a successful run, you will find a po.xml file created in your working folder.

CHAPTER 8 ■ XML-SECURITY344

6412_c08_final.qxd 4/7/06 1:12 AM Page 344

Examining the Signed Document
If you open the po.xml file in your browser or your console, you will see the following output:

<PurchaseOrder>
<signedContents>
We request that you EXECUTE the following trades
<stock>GFW</stock>
<quantity>50</quantity>
<price>25.35</price>
<type>B</type>
<stock>ABNPRF</stock>
<quantity>100</quantity>
<price>24.83</price>
<type>S</type>

</signedContents>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm=

"http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm=

"http://www.w3.org/2001/04/xmldsig-more#rsa-ha256">
</ds:SignatureMethod>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm=

"http://www.w3.org/2000/09/xmldsig#enveloped-signature">
</ds:Transform>

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">
</ds:DigestMethod>
<ds:DigestValue>
nkXWyyMrZ5WEfpXHUuWNqDUnF2xkmW5WkwoIkSn2nFk=

</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue>

Fzi6hsoz3bkO2Bd2GfumTKzwqu5+i14Mfw1MW3Vd8u4bTyK3K5bJqmV7mz1DibcysdbSa3bxycVdCR9
XvuWC5XtRs9xABrU7+eNRK/IeRG1dsrQIIYgZ4XN97pLVU/iu5BJDERop/5CxqwnTjRWlvLselwdKnp
PqmGaFy6mrBks=

</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>

CHAPTER 8 ■ XML-SECURITY 345

6412_c08_final.qxd 4/7/06 1:12 AM Page 345

fL1AftPy9xQo6kEmE1Pw1Swe6HeCkNKWYdP70fkFZu8PDJ43RzgflV5VYipD1u8J5YGqJg71XDIzMOQ
2IPcWU6NbCkcKrzeM4CMlw4d7Z8lQPPeIdQhVo/6+jCtqPemtwdpSZmiyfZhJyf/bXfezgBtPKM/5MP
KdepeUj0KVbh0=

</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyValue>

</ds:KeyInfo>
</ds:Signature>

</PurchaseOrder>

The root element of the generated document is PurchaseOrder. The PurchaseOrder
element contains a child element called signedContents, which in turn encapsulates the
two trade orders. The element of interest to us is the ds:Signature element. This contains
subelements that describe the algorithms used for canonicalization, signing, and creating
the message digest. It also contains elements that describe the value for the message digest
and the signature. The document also contains the key information specified by the
KeyInfo element. This contains the public key of the signing customer. We will retrieve
this key in our next application to verify the document.

Verifying the Purchase Order
In the previous section, you learned how the customer generates a purchase order dynami-
cally, signs it by using its own private key, and sends the signed document to the stock
brokerage. The brokerage now needs to verify the document and its integrity. In this section,
we will develop an application that retrieves the public key of the customer from the received
document and uses it to verify the document.

Developing an Application for Verifying the Document
Listing 8-4 illustrates how to verify a given signed document.

Listing 8-4. Program to Verify a Signed Document (Ch08\src\VerifyPO.java)

/*
* VerifyPO.java
*/

package apress.ApacheXML.ch08;

// Import required classes
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.security.PublicKey;
import org.apache.xml.security.keys.KeyInfo;
import org.apache.xml.security.samples.utils.resolver.OfflineResolver;

CHAPTER 8 ■ XML-SECURITY346

6412_c08_final.qxd 4/7/06 1:12 AM Page 346

import org.apache.xml.security.signature.XMLSignature;
import org.apache.xml.security.utils.Constants;
import org.apache.xml.security.utils.XMLUtils;
import org.apache.xpath.XPathAPI;
import org.w3c.dom.Element;

public class VerifyPO {

public static void main(String unused[]) {
// Initialize security
org.apache.xml.security.Init.init();

// Obtain a builder factory instance
javax.xml.parsers.DocumentBuilderFactory dbf =

javax.xml.parsers.DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
dbf.setAttribute("http://xml.org/sax/features/namespaces", Boolean.TRUE);

try {
// Open the file to be verified
File f = new File("po.xml");
System.out.println("Trying to verify " + f.toURL().toString());

// Create a document builder
javax.xml.parsers.DocumentBuilder db = dbf.newDocumentBuilder();
db.setErrorHandler(

new org.apache.xml.security.utils.IgnoreAllErrorHandler());

// parse the input document
org.w3c.dom.Document doc = db.parse(new java.io.FileInputStream(f));

// Look for the Signature element in the required namespace
Element nscontext = XMLUtils.createDSctx(doc, "ds",

Constants.SignatureSpecNS);
Element sigElement = (Element) XPathAPI.selectSingleNode(doc,

"//ds:Signature[1]", nscontext);

// Create signature element
XMLSignature signature = new XMLSignature(sigElement,

f.toURL().toString());

// Add a resource resolver to enable the retrieval of resources
signature.addResourceResolver(new OfflineResolver());

// Retrieve the key information
KeyInfo ki = signature.getKeyInfo();

CHAPTER 8 ■ XML-SECURITY 347

6412_c08_final.qxd 4/7/06 1:12 AM Page 347

if (ki != null) {
// Retrieve the public key from key information
PublicKey pk = signature.getKeyInfo().getPublicKey();
if (pk != null) {
boolean result = signature.checkSignatureValue(pk);
String str = null;
if (result)
str = "The document " + f.toURL().toString() + " is valid!";

else
str = "The document " + f.toURL().toString() + " is invalid!";

System.out.println(str);
} else {
System.out.println("No public key found for document verification");

}
} else {
System.out.println("Missing KeyInfo");

}
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

The main function first initializes the security libraries and like the earlier program obtains
the document builder factory instance, creates a document builder, and parses the specified
XML document by using DOM APIs.

After the document is parsed, the Signature element is located by using the XPath APIs:

// Look for the Signature element in the required namespace
Element nscontext = XMLUtils.createDSctx(doc, "ds",

Constants.SignatureSpecNS);
Element sigElement = (Element) XPathAPI.selectSingleNode(doc,

"//ds:Signature[1]", nscontext);

We construct the Signature element by using the located instance of the Signature in the
input document:

// Create signature element
XMLSignature signature = new XMLSignature(sigElement,

f.toURL().toString());

We now add a resource resolver to the constructed signature to retrieve the resources:

// Add a resource resolver to enable the retrieval of resources
signature.addResourceResolver(new OfflineResolver());

The key information stored in the input document is retrieved by calling the getKeyInfo
method of the XMLSignature class:

// Retrieve the key information
KeyInfo ki = signature.getKeyInfo();

CHAPTER 8 ■ XML-SECURITY348

6412_c08_final.qxd 4/7/06 1:12 AM Page 348

After the key information is retrieved, we retrieve a public key from it. Note that in our
case, the sender has sent his public key as part of the document:

// Retrieve the public key from key information
PublicKey pk = signature.getKeyInfo().getPublicKey();

Using the public key, the document is verified:

boolean result = signature.checkSignatureValue(pk);

The checkSignatureValue method returns a boolean value indicating the success or failure
of the document verification. Note that the Signature element itself contains the digest value,
signature value, the algorithms used, and so on. The checkSignatureValue method uses this
information to validate the document.

If there are errors, the program prints the appropriate exception messages at the appro-
priate points in the program.

Running the Application
Compile the code by using the following command line:

C:\<working folder>\ch08\src>javac -d . VerifyPO.java

Run the application by using the following command line:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.VerifyPO

When you run the program, you will see output similar to the following:

Trying to verify file:/C:/apress/ch08/src/po.xml
Feb 1, 2006 10:35:30 AM org.apache.xml.security.signature.Reference verify
INFO: Verification successful for URI ""
The document file:/C:/apress/ch08/src/po.xml is valid!

If the verification fails, you will get an appropriate failure message.

■Tip Make a minor modification to po.xml (for example, adding a white-space character) and save it. Now
rerun the application to verify that the document verification fails this time.

Using Digital Certificates
The example in the previous section used a dynamically generated key pair. This key pair is
valid only during the current session, when the application is running. Thus, there is nobody
to vouch for the public key of the sender. In fact, the sender himself will not remember this
public key unless he stores it to secondary storage in the same session as when the key is cre-
ated. In practice, each sender who wants to sign the documents must send the public key to
a CA and obtain a digital certificate that authenticates the public key.

CHAPTER 8 ■ XML-SECURITY 349

6412_c08_final.qxd 4/7/06 1:12 AM Page 349

In this section, I will describe the entire procedure for using digital certificates in your
application. The procedure consists of the following steps:

1. Creating a public/private key

2. Exporting the public key to a physical file

3. Requesting a certificate from a CA

4. Importing the CA’s certificate into your database

To complete these steps, we will use the Keytool utility provided as a part of your JDK
installation.

Creating a Key Pair
We will use the Keytool utility to create a key pair. The utility stores the generated keys in a
local database. This is a flat file known as keystore. You can give any name and extension to
this file. We will call our keystore file keystore.jks and create it in the root folder of your cur-
rent drive.

To generate a key pair for yourself, go to the C:\ root folder (assuming you are running
Windows) and run the Keytool utility at the command prompt with the –genkey option. You
will also need to specify the alias name for your key and the path to the keystore file. When
you run this utility, you will be asked a series of questions to gather information about the
key signer, that is, you. Note that you will later send this information to a CA for ultimately
including it in a digital certificate. The following transcript of the Keytool session was out-
put when I ran it on my machine:

C:\>keytool -genkey -v -alias XMLBook -keystore c:\\keystore.jks
Enter keystore password: sanjay
What is your first and last name?
[Unknown]: Poornachandra Sarang

What is the name of your organizational unit?
[Unknown]: Authoring

What is the name of your organization?
[Unknown]: ABCOM

What is the name of your City or Locality?
[Unknown]: Mumbai

What is the name of your State or Province?
[Unknown]: Maharashtra

What is the two-letter country code for this unit?
[Unknown]: IN

Is CN=Poornachandra Sarang, OU=Authoring, O=ABCOM, L=Mumbai, ST=Maharashtra,
C=I N correct?
[no]: y

CHAPTER 8 ■ XML-SECURITY350

6412_c08_final.qxd 4/7/06 1:12 AM Page 350

Generating 1,024 bit DSA key pair and self-signed certificate (SHA1WithDSA)
for: CN=Poornachandra Sarang, OU=Authoring, O=ABCOM, L=Mumbai,

ST=Maharashtra, C=IN
Enter key password for <XMLBook>

(RETURN if same as keystore password): sanjay
[Storing c:\\keystore.jks]

You can input the information specific to you while generating the key. We will need the
alias name to identify the key to be used while signing the document.

Listing Keys in Your Keystore
You can make a list of the keys in your keystore anytime by using the -list option on the
Keytool utility. If you have created the keystore and added an XMLBook key entry to it as
described in the previous section, you will get output similar to the following when you run
Keytool with the -list option:

C:\>keytool -list -keystore c:\keystore.jks
Enter keystore password: sanjay

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

xmlbook, Dec 28, 2005, keyEntry,
Certificate fingerprint (MD5): 36:79:EB:27:66:17:17:8B:47:79:FC:AB:FF:E4:5D:08

Note that every time you open the keystore, you will be asked to enter the password.

Exporting the Certificate
After creating a public and private key pair for your use, you can send this pair to a CA for
obtaining a CA’s certificate that authenticates the validity of your public key. To do this,
you export your public key to a physical file and send that to a CA. To export the public
key, you use the -export option on the Keytool utility. The transcript of the session run
on my machine is as follows:

C:\>keytool -export -alias XMLBook -file xmlbook.cer -keystore c:\keystore.jks
Enter keystore password: sanjay
Certificate stored in file <xmlbook.cer>

CHAPTER 8 ■ XML-SECURITY 351

6412_c08_final.qxd 4/7/06 1:12 AM Page 351

Note that you need to specify the alias for which you want to extract and export the public
key. The certificate containing your public key is stored in the file specified by the –file option,
and the -keystore option specifies the path to your keystore.

■Note You can create more than one keystore for use on the same machine.

Requesting a Certificate from a CA
After your public key is exported to a physical file, you send this to a CA for verification. In this
step, you do not have to do anything except send your exported certificate to a CA and wait for
its verification. After the CA is satisfied with your credentials, it will issue you another certifi-
cate (of course, they may charge some money for it). This certificate contains your public key
and your company’s information. It also contains information about the CA who issues the
certificate. The certificate itself is signed using the private key of the CA.

We will now request a test certificate from a CA for the XMLBook alias that we created in
the previous section. Export the XMLBook key to a text file and save that file as xml.txt by
using the following command:

C:\>keytool -certreq -keystore c:\keystore.jks -file xml.txt -alias xmlcer

Thawte, a certification authority, provides free Secure Sockets Layer (SSL) digital certi-
ficates for testing purposes. You can get a test certificate from their website: http://www.
thawte.com/ssl-digital-certificates/ssl123/index.html. Click on Free SSL Trial and follow
the instructions. You have to paste the contents of the xml.txt file in the space provided for
a certificate signing request. After submitting this request, your key will be processed and a
certificate will be displayed on the next page. Copy this content and save it as xml.cert. In the
next step, you will import this certificate in your keystore database.

Importing Certificates
After you receive a certificate from the CA, you can distribute it along with your signed
documents to prove your identity. Just as you distribute your certificate, you can also receive
certificates from other senders who want to prove their identities to you. You can import such
certificates into your keystore database for your future use. To import a certificate, you use the
-import option on the Keytool utility as shown in the following command:

C:\>keytool -import -file xml.cert -alias xmlcert -trustcacerts -keystore ➥

c:\keystore.jks

CHAPTER 8 ■ XML-SECURITY352

6412_c08_final.qxd 4/7/06 1:12 AM Page 352

The following is a transcript of importing a certificate into my database:

Enter keystore password: sanjay
Owner: CN=Poornachandra Sarang, OU=Authoring, O=ABCOM, L=Mumbai,

ST=Maharashtra, C=IN
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,

ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: d2d9c50eb3e45f46
Valid from: Thu Feb 02 18:32:17 GMT+05:30 2006 until: Thu Feb 23 18:32:17 GMT+0

5:30 2006
Certificate fingerprints:

MD5: 89:50:B8:1B:11:DF:B6:47:DA:97:06:72:DC:F2:0F:C5
SHA1: C1:3F:8E:4F:E6:2C:5E:CE:62:34:25:5D:0D:8E:9F:DF:5F:0C:9F:45

Trust this certificate? [no]: y
Certificate was added to keystore

If you list the certificates in your database, you will find two entries: one for XMLBook that
you created earlier and one that you imported (alias xmlcert) in this step.

Now that we are ready with our certificates and keystore, let’s look at how to use these
certificates for signing and verifying our documents.

Using Digital Certificates for Document Signing
In this section, you will learn how to sign a document and attach a digital certificate to a
signed document for establishing your identity to the client. We will use the same dynami-
cally created PO document as in the earlier example in Listing 8-3. Listing 8-5 illustrates
how to sign the document and attach a digital certificate to the signed document.

Listing 8-5. Signing and Attaching a Digital Certificate (Ch08\src\CertifiedPO.java)

/*
* CertifiedPO.java
*/
package apress.ApacheXML.ch08;

// Import Required Classes

public class CertifiedPO {

static Document createDocument() throws Exception {
// Same as in Listing 8-3 – SignedPO.java

return doc;
}

public static void main(String unused[]) throws Exception {

CHAPTER 8 ■ XML-SECURITY 353

6412_c08_final.qxd 4/7/06 1:12 AM Page 353

org.apache.xml.security.Init.init();
Constants.setSignatureSpecNSprefix("");

String keystoreType = "JKS";
String keystoreFile = "c:\\keystore.jks";
String keystorePass = "sanjay";
String privateKeyAlias = "XMLBook";
String privateKeyPass = "sanjay";
String certificateAlias = "XMLBook";

KeyStore ks = KeyStore.getInstance(keystoreType);
FileInputStream fis = new FileInputStream(keystoreFile);

//load the keystore
ks.load(fis, keystorePass.toCharArray());

//get the private key for signing.
PrivateKey privateKey = (PrivateKey) ks.getKey(privateKeyAlias,

privateKeyPass.toCharArray());

// Create a PO document
Document doc = createDocument();

// Obtain the root element
Element root = doc.getDocumentElement();

// Create file for writing output
File f = new File("PO-certified.xml");

// Create a XMLSignature instance that uses RSA_SHA1 algorithm
XMLSignature signature = new XMLSignature(doc, f.toURL().toString(),

XMLSignature.ALGO_ID_SIGNATURE_DSA);

// Create canonical XML
Transforms transforms = new Transforms(doc);
transforms.addTransform(Transforms.TRANSFORM_ENVELOPED_SIGNATURE);

// Create canonicalized document to signature
signature.addDocument("", transforms,

MessageDigestAlgorithm.ALGO_ID_DIGEST_SHA1);

//Add in the KeyInfo for the certificate that we used the private key of
X509Certificate cert =

(X509Certificate) ks.getCertificate(certificateAlias);

CHAPTER 8 ■ XML-SECURITY354

6412_c08_final.qxd 4/7/06 1:12 AM Page 354

// Add the information to signature
signature.addKeyInfo(cert);
signature.addKeyInfo(cert.getPublicKey());

// Add signature itself to the PO document
root.appendChild(signature.getElement());

// Sign the document
signature.sign(privateKey);

// Create an output stream
FileOutputStream fos = new FileOutputStream(f);

// Output the memory document using XMLUtils.
XMLUtils.outputDOMc14nWithComments(doc, fos);

}
}

After initializing the security system, the main function creates a few variables that specify
the details of our keystore and the key that we intend to use for signing the document:

String keystoreType = "JKS";
String keystoreFile = "c:\\keystore.jks";
String keystorePass = "sanjay";
String privateKeyAlias = "XMLBook";
String privateKeyPass = "sanjay";
String certificateAlias = "XMLBook";

The getInstance method of the KeyStore class obtains a reference to the KeyStore:

KeyStore ks = KeyStore.getInstance(keystoreType);

We open the keystore file by creating an input stream on it and then initialize the
KeyStore instance with the data read from the file:

FileInputStream fis = new FileInputStream(keystoreFile);
//load the keystore
ks.load(fis, keystorePass.toCharArray());

For signing, we need the private key. We obtain this from the keystore by calling its
getKey method. The getKey method requires the alias for the key and its password. The
method returns an instance of PrivateKey to the caller:

//get the private key for signing.
PrivateKey privateKey = (PrivateKey) ks.getKey(privateKeyAlias,

privateKeyPass.toCharArray());

The program then creates a document as in the earlier case (refer to Listing 8-3), obtains
its root element for later adding the signature, and opens a file for writing the signed docu-
ment. These steps are the same as the ones in Listing 8-3.

CHAPTER 8 ■ XML-SECURITY 355

6412_c08_final.qxd 4/7/06 1:12 AM Page 355

Next, we create an instance of XMLSignature by using the Digital Signature Algorithm (DSA):

// Create a XMLSignature instance that uses RSA_SHA1 algorithm
XMLSignature signature = new XMLSignature(doc, f.toURL().toString(),

XMLSignature.ALGO_ID_SIGNATURE_DSA);

We perform canonicalization as in the earlier case and add the canonicalized document
to the created signature:

// Create canonical XML
Transforms transforms = new Transforms(doc);
transforms.addTransform(Transforms.TRANSFORM_ENVELOPED_SIGNATURE);

// Create canonicalized document to signature
signature.addDocument("", transforms,

MessageDigestAlgorithm.ALGO_ID_DIGEST_SHA1);

We retrieve the certificate from the keystore by calling its getCertificate method. We will
attach this certificate to the signed document:

//Add in the KeyInfo for the certificate that we used the private key of
X509Certificate cert =

(X509Certificate) ks.getCertificate(certificateAlias);

The getCertificate method takes the certificate alias as its parameter and returns an
instance of X509Certificate. We add this certificate and the public key associated with it to
the signature object:

// Add the information to signature
signature.addKeyInfo(cert);
signature.addKeyInfo(cert.getPublicKey());

Finally, we add the signature object to the document root as in the earlier example:

// Add signature itself to the PO document
root.appendChild(signature.getElement());

The document is signed by using the sign method of the XMLSignature class:

// Sign the document
signature.sign(privateKey);

The signed document is serialized to an output file by using the XMLUtils class as in the
earlier example:

// Create an output stream
FileOutputStream fos = new FileOutputStream(f);

// Output the memory document using XMLUtils.
XMLUtils.outputDOMc14nWithComments(doc, fos);

CHAPTER 8 ■ XML-SECURITY356

6412_c08_final.qxd 4/7/06 1:12 AM Page 356

Running the CertifiedPO Application
Compile the source shown in Listing 8-5 by using the following command line:

C:\<working folder>\ch08\src>javac -d . CertifiedPO.java

Run the application by using the following command line:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.CertifiedPO

On a successful run of the application, you will find the PO-certified.xml file created in
your working folder. Outputting this file to your console or opening it in your browser would
produce a screen output similar to the one shown here:

<PurchaseOrder>
<signedContents>
We request that you EXECUTE the following trades
<stock>GFW</stock>
<quantity>50</quantity>
<price>25.35</price>
<type>B</type>
<stock>ABNPRF</stock>
<quantity>100</quantity>
<price>24.83</price>
<type>S</type>

</signedContents>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">

</CanonicalizationMethod>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1">

</SignatureMethod>
<Reference URI="">
<Transforms>
<Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">

</Transform>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">

</DigestMethod>
<DigestValue>KhvCkxATMSfEBakaOMscs1AaDmw=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>d9Z4Q3E7T+gJgQHBMCCtJm4hG6QzhU39B/bvbWZnizVF0MH3wc49vQ==
</SignatureValue>

CHAPTER 8 ■ XML-SECURITY 357

6412_c08_final.qxd 4/7/06 1:12 AM Page 357

<KeyInfo>
<X509Data>
<X509Certificate>

MIIDIzCCAuECBEPgThQwCwYHKoZIzjgEAwUAMHcxCzAJBgNVBAYTAklOMRQwEgYDVQQIEwtNYWhhcmF
zaHRyYTEPMA0GA1UEBxMGTXVtYmFpMQ4wDAYDVQQKEwVBQkNPTTESMBAGA1UECxMJQXV0aG9yaW5nMR
0wGwYDVQQDExRQb29ybmFjaGFuZHJhIFNhcmFuZzAeFw0wNjAyMDEwNTU4NDRaFw0wNjA1MDIwNTU4N
DRaMHcxCzAJBgNVBAYTAklOMRQwEgYDVQQIEwtNYWhhcmFzaHRyYTEPMA0GA1UEBxMGTXVtYmFpMQ4w
DAYDVQQKEwVBQkNPTTESMBAGA1UECxMJQXV0aG9yaW5nMR0wGwYDVQQDExRQb29ybmFjaGFuZHJhIFN
hcmFuZzCCAbgwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLfSpwu7OTn9hG3UjzvRADDHj+Atl
EmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX5
8aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvw
WBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrUWU/mcQcQgYC0SRZxI+h
MKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6oUZCJqIPf4Vrlnw
aSi2ZegHtVJWQBTDv+z0kqA4GFAAKBgQDfCQe9UlgB4/1k9gC9QqdwqTnJAzKQV+sCYkWWckmSL1LvT
jcX37pv0TO6azdSWDfdpWAH99TkrbTmX2w0opuKSTGCDNrf+bbmiWZeLg/36Vnm4F3lFLXzKk25sWx4
5DzkpW8cEu7T5G/3uwAgRVmkrHTqVOD7ezbwytD0EAD0MDALBgcqhkjOOAQDBQADLwAwLAIUMKHnmQm
z4pJT1T37I7mUb7KjhfYCFCU+b7suEeRGHQ1k7ZNeSllb2xs7

</X509Certificate>
</X509Data>
<KeyValue>
<DSAKeyValue>
<P>

/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9subVWzXgTuAHTR
v8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOuK2HXKu
/yIgMZndFIAcc=

</P>
<Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>

9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFhO3zwk
yjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKLZl6Ae1
UlZAFMO/7PSSo=

</G>
<Y>

3wkHvVJYAeP9ZPYAvUKncKk5yQMykFfrAmJFlnJJki9S7043F9+6b9Ezums3Ulg33aVgB/fU5K205l9
sNKKbikkxggza3/m25olmXi4P9+lZ5uBd5RS18ypNubFseOQ85KVvHBLu0+Rv97sAIEVZpKx06lTg+3
s28MrQ9BAA9DA=

</Y>
</DSAKeyValue>

</KeyValue>
</KeyInfo>

</Signature>
</PurchaseOrder>

Note that the output document now contains an X509Certificate element that contains
the encoded data for the certificate. The receiver will use this certificate to establish trust in
the sender-provided public key.

We will now develop an application for verifying this document.

CHAPTER 8 ■ XML-SECURITY358

6412_c08_final.qxd 4/7/06 1:12 AM Page 358

Verifying Documents Containing Digital Certificates
Like the earlier example of Listing 8-3, the document verification process using a digital
certificate is easy. The entire application for document verification is available in the
VerifyCertifiedPO.java file in your downloaded code. I will discuss only the relevant code,
shown here:

// Retrieve the key information
KeyInfo ki = signature.getKeyInfo();

if (ki != null) {
X509Certificate cert = signature.getKeyInfo().getX509Certificate();

if (cert != null) {
boolean result = signature.checkSignatureValue(cert);
String str = null;
if (result)
str = "The document " + f.toURL().toString() + " is valid!";

else
str = "The document " + f.toURL().toString() + " is invalid!";
System.out.println(str);

} else {
System.out.println("Did not find a Certificate");

}

} else {
System.out.println("Missing KeyInfo");

}

As in the earlier case, we retrieve the Signature element from the received document and
obtain the key information from it. From the key information, we retrieve the embedded cer-
tificate by calling its getX509Certificate method:

X509Certificate cert = signature.getKeyInfo().getX509Certificate();

We verify the document by calling the checkSignatureValue method on the signature.
The method takes the preceding cert as its parameter. The method returns a boolean value
that indicates the success or failure of the verification:

boolean result = signature.checkSignatureValue(cert);

■Note The sender need not attach a certificate to every signed document, if such a certificate is made
available to the intended receiver in advance. The receiver can store the certificate in his own keystore and
refer to it whenever the authenticity of the sender’s public key is to be established.

CHAPTER 8 ■ XML-SECURITY 359

6412_c08_final.qxd 4/7/06 1:12 AM Page 359

Running the VerifyCertifiedPO Application
Compile the provided VerifyCertifiedPO.java file by using the following command line:

C:\<working folder>\ch08\src>javac -d . VerifyCertifiedPO.java

Run the application by using the following command line:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.VerifyCertifiedPO

You will see output similar to the following:

Trying to verify file:/C:/apress/ch08/src/PO-certified.xml
Feb 4, 2006 4:07:43 PM org.apache.xml.security.signature.Reference verify
INFO: Verification successful for URI ""
The document file:/C:/apress/ch08/src/PO-certified.xml is valid!

So far you have seen how to sign a document and how a receiver of the document estab-
lishes the document’s authenticity and integrity. However, in all of these cases, the document
content always remains readable to an interceptor. You will now study the techniques of
encryption and decryption so that the document content would make sense only to a legiti-
mate intended receiver and not to an interceptor.

Using XML Encryption/Decryption
As stated earlier in this chapter, encryption transforms the document content known as plain-
text to gibberish, or ciphertext. The encrypted document makes little or no sense to anybody
receiving it. A legitimate receiver has to decrypt the document by using a shared secret key to
retrieve the document in its original format.

In this section, I will illustrate encryption and decryption techniques by using an
example. We will use the dynamic PO document from Listing 8-3 as a sample document for
encryption. We will encrypt the content of this document and output it to a file. Later, the
receiver will decrypt this document to read the original content.

Developing an Application for Encrypting the PO
As mentioned earlier, we will use a symmetric key for encryption because of its quicker pro-
cessing time as compared to asymmetric-key cryptography. We will create a symmetric key
during the application session. This symmetric key, which is valid only during the application
session, must be given to the receiver. Thus, we will serialize the key to a file and distribute it
along with the encrypted file. We will encrypt the symmetric key by using another key called
the key encryption key (KEK) so that even if an interceptor gets his hands on the symmetric
key, it would not be useful to him unless he decrypts the received key. The entire process is
illustrated in Figure 8-10.

The key generator uses salt9 to randomize the password.

CHAPTER 8 ■ XML-SECURITY360

9. Refer to RSA Security’s Official Guide to Cryptography by Steve Burnett and Stephen Paine
(McGraw-Hill, 2001).

6412_c08_final.qxd 4/7/06 1:12 AM Page 360

So let’s now look at the application that encrypts our PO. Listing 8-6 illustrates how to
encrypt a source XML document.

Listing 8-6. Application for Encrypting the PO (Ch08\src\EncryptPO.java)

/*
* EncryptPO.java
*/
package apress.ApacheXML.ch08;

// import required classes

public class EncryptPO{

CHAPTER 8 ■ XML-SECURITY 361

Figure 8-10. Encryption based on combination of symmetric and asymmetric cryptography

6412_c08_final.qxd 4/7/06 1:12 AM Page 361

static Document createDocument() throws Exception {
// Same as in Listing 8-3
}

public static void main(String unused[]) throws Exception {
org.apache.xml.security.Init.init();

// Create a PO document that we intend to encrypt
Document document = createDocument();

// Generate a 128 bit AES symmetric key for encryption
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
keyGenerator.init(128);
Key symmetricKey = keyGenerator.generateKey();

// Generate a key (KEK) for encrypting the above symmetric key
keyGenerator = KeyGenerator.getInstance("DESede");
Key kek = keyGenerator.generateKey();

// Store the KEK to a file
File kekFile = new File("SecretKEK");
FileOutputStream f = new FileOutputStream(kekFile);
f.write(kek.getEncoded());
f.close();
System.out.println("Key encryption key (KEK) stored in " +

kekFile.toURL().toString());

// Get a Cipher instance
XMLCipher keyCipher = XMLCipher.getInstance(XMLCipher.TRIPLEDES_KeyWrap);

// Initialize Cipher for wrapping KEK
keyCipher.init(XMLCipher.WRAP_MODE, kek);

// Encrypt symmetric key with KEK
EncryptedKey encryptedKey = keyCipher.encryptKey(document, symmetricKey);

// Obtain document root element reference for encypting the document
Element rootElement = document.getDocumentElement();

// Create and initalize cipher for encyption using our symmetric key
XMLCipher xmlCipher = XMLCipher.getInstance(XMLCipher.AES_128);
xmlCipher.init(XMLCipher.ENCRYPT_MODE, symmetricKey);

// Add the document to be signed and the encryption key into
// a KeyInfo instance
KeyInfo keyInfo = new KeyInfo(document);
keyInfo.add(encryptedKey);

CHAPTER 8 ■ XML-SECURITY362

6412_c08_final.qxd 4/7/06 1:12 AM Page 362

// Add the key information to cipher
EncryptedData encryptedData = xmlCipher.getEncryptedData();
encryptedData.setKeyInfo(keyInfo);

// This is where actual encryption takes place
xmlCipher.doFinal(document, rootElement, true);

// Open file for storing encrypted document
File encryptionFile = new File("encryptedPO.xml");
f = new FileOutputStream(encryptionFile);

// Create transformer for outputting encrypted document to a stream
Transformer transformer =

TransformerFactory.newInstance().newTransformer();
transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

// Perform the transformation
DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(f);
transformer.transform(source, result);

f.close();
System.out.println("Wrote encrypted document to " +

encryptionFile.toURL().toString());
}

}

After initializing the security system, the main function creates the PO document as in our
earlier examples.

Next, we generate a 128-bit symmetric key by using the Advanced Encryption Standard
(AES) algorithm:

// Generate a 128 bit AES symmetric key for encryption
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
keyGenerator.init(128);
Key symmetricKey = keyGenerator.generateKey();

■Note The discussion of AES or any other algorithm for key generation is beyond the scope of this book.
You can refer to a local copy of the Java Cryptography Extension (JCE) reference guide (<JDK
installation folder>\docs\guide\security\JCERefGuide.html) or its online version (at
http://java.sun.com/products/jce/reference/docs/index.html) for more general information
on cryptography.

CHAPTER 8 ■ XML-SECURITY 363

6412_c08_final.qxd 4/7/06 1:12 AM Page 363

Next, we will generate a key for encrypting this symmetric key so that if it landed in the
wrong hands en route to the intended receiver, the interceptor would not be able to use it to
decrypt the original document (unless the interceptor figured out how to decrypt the received
key to retrieve the original symmetric key). As noted earlier in this chapter, a key that is used
for encrypting another key (symmetric key) is generally called a KEK—a key that encrypts
another key.

We generate the KEK like the earlier key generation, by using the generateKey method
of the KeyGenerator class, except that we use a different algorithm for key generation. This
is an additional safety provided for securing the document contents. The point is that even
if somebody breaks the algorithm used for encryption, he will have to now break two such
algorithms:

// Generate a key (KEK) for encrypting the above symmetric key
keyGenerator = KeyGenerator.getInstance("DESede");
Key kek = keyGenerator.generateKey();

After the KEK is generated, we store it to a file for transporting it to the intended receiver:

// Store the KEK to a file
File kekFile = new File("SecretKEK");
FileOutputStream f = new FileOutputStream(kekFile);
f.write(kek.getEncoded());
f.close();
System.out.println("Key encryption key (KEK) stored in " +

kekFile.toURL().toString());

We will now look into how to encrypt our document by using these keys. As mentioned
earlier, the encrypted data is called ciphertext. Apache defines a class called XMLCipher for rep-
resenting this ciphertext. We create an instance of this class by calling its getInstance method.
The getInstance method receives the algorithm that we intend to use for encryption as a
parameter:

// Get a Cipher instance
XMLCipher keyCipher = XMLCipher.getInstance(XMLCipher.TRIPLEDES_KeyWrap);

We use a Triple DES (Digital Encryption Standard) algorithm in the current case.

■Note Many more algorithms are available in the Apache implementation of XML signatures. Refer to the
documentation of the XMLCipher class for a list of implemented algorithms.

Next, we initialize the cipher for wrapping the KEK:

// Initialize Cipher for wrapping KEK
keyCipher.init(XMLCipher.WRAP_MODE, kek);

The first parameter to the init method specifies whether the cipher is used for encryp-
tion and decryption, or for key wrapping and unwrapping. We will use the encryption mode
later in our code when we create a cipher for encrypting our document.

CHAPTER 8 ■ XML-SECURITY364

6412_c08_final.qxd 4/7/06 1:12 AM Page 364

We now encrypt the symmetric key using our KEK by calling the encryptKey method on
the cipher:

// Encrypt symmetric key using KEK
EncryptedKey encryptedKey = keyCipher.encryptKey(document, symmetricKey);

After encrypting the key, we encrypt the document. We first obtain the reference to the
root node:

// Obtain document root element reference for encypting the document
Element rootElement = document.getDocumentElement();

We create another cipher for encrypting our document, initialize it for the appropriate
mode, and specify the use of the previously generated symmetric key:

// Create and initalize cipher for encyption using our symmetric key
XMLCipher xmlCipher = XMLCipher.getInstance(XMLCipher.AES_128);
xmlCipher.init(XMLCipher.ENCRYPT_MODE, symmetricKey);

Before we perform the actual encryption, we need to inform the cipher about the where-
abouts of our document to be encrypted and the encryption key. For this, we construct a
KeyInfo object that refers to the document to be signed. We use its add method to add the
encryption key to it:

// Add the document to be signed and the encryption key into
// a KeyInfo instance
KeyInfo keyInfo = new KeyInfo(document);
keyInfo.add(encryptedKey);

Now, we add the keyInfo itself to the cipher. This is done by obtaining a reference to its
EncryptedData object and setting the KeyInfo on it:

// Add the key information to cipher
EncryptedData encryptedData = xmlCipher.getEncryptedData();
encryptedData.setKeyInfo(keyInfo);

In the next step, when we perform the actual encryption, this encryptedData element will
contain the ciphertext corresponding to the plaintext from our document.

We perform the actual encryption by calling the doFinal method on the cipher object:

// This is where actual encryption takes place
xmlCipher.doFinal(document, rootElement, true);

The first parameter to the doFinal method refers to the context document to be
encrypted; in our case, it is the program-generated PO document. The second parameter
indicates the node whose contents are to be encrypted, and the third parameter indicates
that we want to encrypt the contents of the node and not the node itself.

After successful execution, the doFinal method replaces the contents of the EncryptedData
element with the generated ciphertext. At this stage, you have an in-memory encrypted docu-
ment corresponding to our PO. We will serialize this to a physical file for transporting it to an
intended receiver. The rest of the code in the main function does the job of serialization of the
in-memory DOM structure by using XSLT transformations (discussed in Chapter 5).

CHAPTER 8 ■ XML-SECURITY 365

6412_c08_final.qxd 4/7/06 1:12 AM Page 365

Running the EncryptPO Application
Compile the EncryptPO.java file by using the following command line:

C:\<working folder>\ch08\src>javac -d . EncryptPO.java

Run the application by using the following command:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.EncryptPO

The console output from running this application is as follows:

Key encryption key (KEK) stored in file:/C:/apress/ch08/src/SecretKEK
Wrote encrypted document to file:/C:/apress/ch08/src/encryptedPO.xml

The application has created two files, the SecretKEK that contains the key for decrypting
the symmetric session key used for document encryption, and the encrypted document itself
in the encryptedPO.xml file. The receiver must have access to both files to recover the original
document contents.

Examining the Encrypted Document
If you open the generated encryptedPO.xml file in your browser, you will see output similar to
the following:

<PurchaseOrder>
<xenc:EncryptedData
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.w3.org/2001/04/xmlenc#Content">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" />

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<xenc:EncryptedKey
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" />

<xenc:CipherData
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:CipherValue

CHAPTER 8 ■ XML-SECURITY366

6412_c08_final.qxd 4/7/06 1:12 AM Page 366

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
IgeLdkOmi9KOOq8bbsKAeImpXA8/FEnNKAE+SU3UOtQ=
</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedKey>

</ds:KeyInfo>
<xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:CipherValue
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

2zqKbOKWiytZS0IwHQ5Zdb9o6stHPH8uhb2We9dQCo33a/r7JmQIe5TBdEFjl8N+ik1XZ6dTg8b7z1M
MVuN8kVZYrzQNcG/qpcuhGzbeDLYoEU7zjbMoJ1IX4fNaHltedLVJDVnPOk6ZzuFD8m6qj6ww9KtN7l
nBXGgqochuZngIBZiJV2TV41mk5SEL8HbcBHf4M3+/JJkDpg0F0tnQaA+FOX4cvd3GuIFpqy5elasGr
nVaS1DUuHfesBtPnaAJRx/CSeFD+l2+v6/vNLvbQERHIwL88hkSybTwSuXmG6B4OQvwsAeS8c06koDJ
DGWIWAF4+gz0Dc9nONemvjojyA==

</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</PurchaseOrder>

Note the presence of the CipherValue and CipherData elements. These encapsulate the
generated ciphertext. Our receiver will have to decrypt this data by using the procedures
described in the next section to retrieve the original document contents. Any interceptor
receiving this encrypted file will not gain any information about the contents in the original
document.

Now, we will develop an application that decrypts the PO: encryptedPO.xml.

Developing an Application for Decrypting the PO
The application that decrypts our encrypted PO must have access to two files: the encrypted
document file itself, and the file containing the KEK. The application will have to read the
KEK, use it to decrypt the symmetric session key used for encryption, and then decrypt the
encrypted document. This process is depicted in Figure 8-11.

CHAPTER 8 ■ XML-SECURITY 367

6412_c08_final.qxd 4/7/06 1:12 AM Page 367

Listing 8-7 illustrates how the decryption is performed.

Listing 8-7. Application for Decrypting Encrypted Purchase Order Document (Ch08\src\
DecryptPO.java)

/*
* DecryptPO.java
*/
package apress.ApacheXML.ch08;

// import required classes

public class DecryptPO {

CHAPTER 8 ■ XML-SECURITY368

Figure 8-11. Decryption based on both symmetric and asymmetric cryptography

6412_c08_final.qxd 4/7/06 1:12 AM Page 368

public static void main(String unused[]) throws Exception {
org.apache.xml.security.Init.init();

// Open the encrypted document and build a DOM tree from it
File f = new File("encryptedPO.xml");
javax.xml.parsers.DocumentBuilderFactory dbf =

javax.xml.parsers.DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
javax.xml.parsers.DocumentBuilder db = dbf.newDocumentBuilder();
Document document = db.parse(f);
System.out.println("Encrypted PO loaded from " +f.toURL().toString());

// Read encrypted data element
Element encryptedDataElement =(Element) document.getElementsByTagNameNS(

EncryptionConstants.EncryptionSpecNS,
EncryptionConstants._TAG_ENCRYPTEDDATA).item(0);

// Load KEK
String fileName = "SecretKEK";
File kekFile = new File(fileName);

// Construct the DES key specs from the file contents
DESedeKeySpec keySpec = new DESedeKeySpec(

JavaUtils.getBytesFromFile(fileName));

// Create a key factory instance
SecretKeyFactory skf = SecretKeyFactory.getInstance("DESede");

// Generate the key from the specs
Key kek = skf.generateSecret(keySpec);
System.out.println("Key encryption key loaded from " +

kekFile.toURL().toString());

// Get cipher instance
XMLCipher xmlCipher = XMLCipher.getInstance();

// Initialize cipher for decryption
xmlCipher.init(XMLCipher.DECRYPT_MODE, null);

// Set the KEK that contains the key for decryption
xmlCipher.setKEK(kek);

// Perform the actual decryption
xmlCipher.doFinal(document, encryptedDataElement);

CHAPTER 8 ■ XML-SECURITY 369

6412_c08_final.qxd 4/7/06 1:12 AM Page 369

// Open file for writing in-memory decrypted document
File decryptedFile = new File("decryptedPO.xml");
FileOutputStream fo = new FileOutputStream(decryptedFile);

// Serialize DOM to file using transformations
TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer();
transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(fo);
transformer.transform(source, result);

fo.close();
System.out.println("Wrote decrypted PO to " +

decryptedFile.toURL().toString());
}

}

After initializing the system, the main function loads the encrypted document and
constructs an in-memory DOM for further processing. This code is similar to the code in
Listing 8-4 that described how to decrypt a signed document.

The program then extracts the encrypted data element for the in-memory document:

// Read encrypted data element
Element encryptedDataElement =(Element) document.getElementsByTagNameNS(

EncryptionConstants.EncryptionSpecNS,
EncryptionConstants._TAG_ENCRYPTEDDATA).item(0);

Note that this encrypted data element contains the ciphertext and also a reference to the
keys used for encryption. Before we decrypt the data, we must obtain the KEK and thus the
symmetric key used for encryption. We construct the File object for reading the KEK:

// Load KEK
String fileName = "SecretKEK";
File kekFile = new File(fileName);

We construct the DES key specs from the data read from the KEK file:

// Construct the DES key specs from the file contents
DESedeKeySpec keySpec = new DESedeKeySpec(

JavaUtils.getBytesFromFile(fileName));

We create an instance of the secret key factory:

// Create a key factory instance
SecretKeyFactory skf = SecretKeyFactory.getInstance("DESede");

We now generate the key itself by using the factory and the key specifications read from
the KEK file:

// Generate the key from the specs
Key kek = skf.generateSecret(keySpec);

CHAPTER 8 ■ XML-SECURITY370

6412_c08_final.qxd 4/7/06 1:12 AM Page 370

Now that we have obtained the encrypted data and the key used for encryption (in fact,
only the KEK and not the symmetric key), we will proceed with the decryption. For this, we first
construct the instance of the XMLCipher class. Remember, this class represents the ciphertext:

// Get cipher instance
XMLCipher xmlCipher = XMLCipher.getInstance();

We initialize the cipher for decrypt mode:

// Initialize cipher for decryption
xmlCipher.init(XMLCipher.DECRYPT_MODE, null);

We set the KEK on the cipher. Note that the KEK encapsulates the symmetric key:

// Set the KEK that contains the key for decryption
xmlCipher.setKEK(kek);

We now perform the actual decryption by calling the doFinal method on the cipher object:

// Perform the acutal decryption
xmlCipher.doFinal(document, encryptedDataElement);

At this stage, the content of the encrypted data element is replaced by the decrypted data,
that is, the plaintext. We now simply need to serialize this in-memory DOM data to a file. The
rest of the code in the main function does this. This uses transformations and is similar to the
code described in earlier examples.

Running the DecryptPO Application
Compile the provided DecryptPO.java file by using the following command line:

C:\<working folder>\ch08\src>javac -d . DecryptPO.java

Run the application by using the following command:

C:\<working folder>\ch08\src>java apress.ApacheXML.ch08.DecryptPO

On a successful run of the application, you will find a file called decryptedPO.xml gener-
ated in your work folder. The content of this file is as follows:

<PurchaseOrder>
<signedContents>
We request that you EXECUTE the following trades
<stock>GFW</stock>
<quantity>50</quantity>
<price>25.35</price>
<type>B</type>
<stock>ABNPRF</stock>
<quantity>100</quantity>
<price>24.83</price>
<type>S</type>
</signedContents>

</PurchaseOrder>

Note that this is the content generated by our sender.

CHAPTER 8 ■ XML-SECURITY 371

6412_c08_final.qxd 4/7/06 1:12 AM Page 371

Summary
In this chapter, you studied an important aspect of XML programming: how to implement
security in your XML applications. XML is widely used for data transport, but if the data is not
securely transported, these XML applications will find little use in practical life. The XML sig-
nature provides this security.

The chapter started by describing important security terms such as authentication,
authorization, and nonrepudiation. Authentication signifies that you are allowed to use the
application. Within the application, what you are allowed to do is decided by the authoriza-
tion. Nonrepudiation guarantees that the parties involved in the secured communication
cannot deny at a later time that they performed a particular operation during their secured
communication. You were also introduced to other security terms such as message integrity
and message confidentiality.

These requirements of security are implemented by using two cryptography tech-
niques: symmetric and asymmetric. As their names suggest, symmetric cryptography is
based on a single shared key used by both sender and receiver during their secured com-
munication. Asymmetric cryptography uses a matching key pair consisting of a public and
a private key. The public key is given to everybody, while the private key is held only by the
person generating the key pair. The sender signs and/or encrypts the document by using
her private key, and the receiver verifies and/or decrypts the document by using the public
key supplied by the sender.

Asymmetric cryptography solves the problem of sharing and distributing the key. How-
ever, asymmetric cryptography is much slower than its counterpart. Thus, in practice we
use a combination of both. We create a message digest on the input document by using a
symmetric key, and encrypt this symmetric key by using asymmetric cryptography. The
symmetric key is encrypted by using the private key of the sender. The receiver retrieves
the symmetric key by using the sender’s public key. The encrypted session key must itself
be transported over a secured channel. This is what is done in HTTPS protocol, where the
session key is transported after establishing the authentication. In HTTPS, the session key
is also changed periodically to add further security against hackers who may intercept net-
work traffic and perform a brute-force or any other attack on a session key.

The XML signature uses these cryptography techniques for implementing security in
XML applications. Unlike other digital signatures, an XML signature allows you to sign only
a part of the input document. This gives us an advantage of being able to pass the XML docu-
ment through a series of approvers, where each approver can process the document and add
some information to it. Note that when using a digital signature, because the entire document
as a whole is signed, any changes made to the document invalidate its signature.

This chapter also described the three types of XML signatures: The signature can be
included in a document that is signed, or the Signature element can include the document,
or the signature can be totally detached from the document.

Because of XML’s less-restrictive structuring, two XML documents may differ physically
but carry the same logical content. Because digital signatures are sensitive to the physical con-
tent of a signed document, creating identical signatures for the two logically same documents
is impossible. This problem is solved by creating canonical XML, whereby predefined transfor-
mation rules transform the input document to standard XML format.

CHAPTER 8 ■ XML-SECURITY372

6412_c08_final.qxd 4/7/06 1:12 AM Page 372

This entire theory was explained further through examples. We considered a case of sign-
ing and verifying a purchase order by using both runtime-generated key pairs and the key pair
taken from a digital certificate.

Signing the document helps in establishing the sender’s identity and the integrity of the
signed document’s content. It does not solve the problem of hiding the content from the
hacker’s eyes. Encryption techniques solve this problem by converting the plaintext to gib-
berish that does not make any sense to the interceptor. The legitimate user of the data
decrypts the data to look up the original content. The chapter described the Apache imple-
mentation of encryption/decryption techniques with the help of practical examples.

CHAPTER 8 ■ XML-SECURITY 373

6412_c08_final.qxd 4/7/06 1:12 AM Page 373

6412_c08_final.qxd 4/7/06 1:12 AM Page 374

XML Databases

We have been using XML documents throughout this book. Considering our brokerage
house, imagine the number of XML documents that the brokerage would create and maintain
over a period of time. These documents need to be organized properly so that they can be
located on demand. Also, these documents may need to be queried to locate those containing
a specified search string. Storing these documents in an XML database can greatly enhance
your ability to effectively carry out these tasks and more.

An XML database stores the information in a hierarchical structure that enables users to
quickly search by using keyword indexes. It stores the data (that is, the information) within XML
format itself, foregoing the need to transform the data when performing inserts or retrievals.
Because the documents do not need any transformation, storing documents that have compli-
cated structures is easy. Compare this to storing data in a conventional relational database,
where the data must often undergo complicated transformations to meet the storage require-
ments defined by that technology.

However, you must be wondering how you interact with the database. To query XML
databases, we use XPath specifications. As you saw in earlier chapters, XPath provides a pow-
erful syntax for locating nodes in an XML document. Thus, we use XPath expressions to locate
documents containing the desired elements and attributes. You may also want to update doc-
uments stored in the database without extracting them from storage. We use the XML:DB
XUpdate language for writing such update queries.

You will learn all these techniques of database creation, data retrieval, and data updates
in this chapter. You will use command-line tools for creating, querying, and updating XML
databases. You will also learn about the administration tasks for the database and managing
the database through programmatic control. The XML:DB project provides the API for manag-
ing the XML databases. You will learn this API in this chapter.

Introducing Apache Xindice
The Apache Xindice (pronounced zeen-dee-chay) project, initially known as dbXML Core,
defines the structure and programming API for XML databases. The dbXML source code was
donated to the Apache Software Foundation in 2001. You will use Apache Xindice in this chap-
ter to learn about XML databases.

Apache Xindice is a native XML database designed to store XML documents. Using
Xindice, you store XML documents in their native format. Thus, there is no need to transform
these documents into any other format. Contrast this to the data storage in a typical Indexed
Sequential Access Method (ISAM) database or Relational Database Management System

375

C H A P T E R 9

■ ■ ■

6412_c09_final.qxd 4/7/06 1:09 AM Page 375

(RDBMS). The database can be queried by using command-line tools or through program-
matic control. Similarly, the data in XML documents stored in the database can be modified
without the need for retrieving them.

Understanding the XML Database Structure
Xindice is structured in a hierarchical fashion, meaning there are no tables, rows, columns,
nor relations. You can think of the database as consisting of a series of XML documents organ-
ized in a tree structure, much like you might organize files and folders in a directory structure
on your hard drive. In fact, just like a directory structure, the database has a root folder. Under
the root you create various subfolders in which to add your XML documents. Figure 9-1 shows
a typical database structure.

In Figure 9-1, db is the root folder of the database. Under this folder are four collections
called addressbook, mycollection, StockBrokerage, and system. Under StockBrokerage are two
subcollections called DailyOrders and DailyQuotes.

Each collection can store any number of XML document instances. Each collection can
have additional subcollections. After a database is built, you can query these document
instances by using XPath queries. You can also use XUpdate to update these documents with-
out first retrieving them.

CHAPTER 9 ■ XML DATABASES376

Figure 9-1. Xindice database structure

6412_c09_final.qxd 4/7/06 1:09 AM Page 376

Installing Xindice
Before you try creating a database, you must install the necessary software. In this section,
you’ll download Xindice and then start the Xindice server.

Downloading the Software
You can download Xindice binaries from the Apache site:

http://xml.apache.org/xindice/download.cgi

The stable version as of this writing for the Windows platform is xml-xindice-1.0.zip.
Download this file and unzip it to your local drive. Next perform the following tasks:

1. Set the XINDICE_HOME environment variable to <installation folder>.

2. Add the several JAR files from %XINDICE_HOME%\java\lib to your classpath.

3. Add the path %XINDICE_HOME%\bin to your environment PATH.

After you complete these steps, you are ready to test your installation.

Starting the Xindice Server
After installing the software, you need to start the Xindice database server. You do so by run-
ning the startup command in your Xindice installation folder. When you run this script, you
will see screen output similar to the following:

C:\xindice>startup
java -classpath ".;C:\xindice\java\lib\xindice.jar;C:\soap-2_3_1\lib\soap.jar;C:
\Sun\AppServer\lib\activation.jar;C:\Sun\AppServer\lib\mail.jar;c:\ApacheAnt162\
config;C:\xindice\java\lib\ant-1.4.1.jar;C:\xindice\java\lib\examples.jar;C:\xin
dice\java\lib\infozone-tools.jar;C:\xindice\java\lib\openorb-1.2.0.jar;C:\xindic
e\java\lib\openorb_tools-1.2.0.jar;C:\xindice\java\lib\xalan-2.0.1.jar;C:\xindic
e\java\lib\xerces-1.4.3.jar;C:\xindice\java\lib\xindice.jar;C:\xindice\java\lib\
xml-apis-1.0.jar;C:\xindice\java\lib\xmldb-sdk.jar;C:\xindice\java\lib\xmldb-xup
date.jar;C:\xindice\java\lib\xmldb.jar;C:\Java\jdk1.5.0\lib\tools.jar" -noverify
org.apache.xindice.core.server.Xindice C:\xindice\config\system.xml

Xindice 1.0 (Birthday)

Database: 'db' initializing
Script: 'GET' added to script storage
Service: 'db' started
Service: 'HTTPServer' started @ http://DrSarang:4080/
Service: 'APIService' started

Server Running

CHAPTER 9 ■ XML DATABASES 377

6412_c09_final.qxd 4/7/06 1:09 AM Page 377

After the server starts running, you can open the server URL (http://localhost:4080)
in your browser. When you do so, you will see the Xindice server’s home page, as shown in
Figure 9-2.

You are now ready to create a database.

Creating an XML Database
We will create a database used to store documents for the stock brokerage discussed in
Chapter 2. The stock brokerage regularly creates several XML documents such as purchase
orders, end-of-day quotes, and more. We will organize this data in a hierarchy of collections
in the default db database.

To create and manage a Xindice database, Apache provides a command-line administra-
tor utility called xindiceadmin. This utility allows you to create collections and subcollections
in an existing database. A collection and a subcollection are the equivalent of a folder and a
subfolder, respectively, in your directory hierarchy. A collection can contain a subcollection
just as a folder can contain a subfolder.

It is also possible to create collections and subcollections through application code. This
is explained later, in the “XML:DB API” section. For now, we will create collections for our
stock brokerage by using the xindiceadmin utility.

CHAPTER 9 ■ XML DATABASES378

Figure 9-2. Xindice server home page

6412_c09_final.qxd 4/7/06 1:09 AM Page 378

Creating a Collection
Open a command prompt and change your working folder to your Xindice installation folder.
You will create a collection called StockBrokerage under db.

To add a StockBrokerage collection to the db database, you use the add_collection
(abbreviated ac) command switch on the xindiceadmin utility. Create the collection with the
command line shown in the following screen output:

C:\xindice>xindiceadmin ac -c /db -n StockBrokerage
Created : /db/StockBrokerage

The -c switch specifies the context (/db in this case) under which the collection is to be
added, and the -n switch specifies the name for the new collection. The full syntax for the
add_collection command is as follows:

xindiceadmin add_collection {-c context} {-n name} [-v]

The -v switch specifies verbose output.
If you examine the folder structure on your hard drive after running the command,

you will notice that a subfolder called StockBrokerage has been created under the <xindice
installation folder>\db folder. Also, note the creation of a TBL file called
StockBrokerage.tbl in the created folder. This is used internally by the Xindice database
server to save and track the documents added to this collection.

Creating Subcollections
You will now create two subcollections for our stock brokerage. The first collection, which we
will call DailyOrders, will hold the XML document instances of the daily orders. The second
collection, DailyQuotes, holds the documents containing the daily end-of-day prices of the
various stocks traded on the exchange.

You add the DailyOrders subcollection by using the command line shown in the following
screen output:

C:\xindice>xindiceadmin ac -c /db/StockBrokerage -n DailyOrders
Created : /db/StockBrokerage/DailyOrders

Note that, in this case, we specify the context as /db/StockBrokerage. The DailyOrders
folder is now created under this context (folder). If you examine the folder structure after
running the command, you will notice that a file called DailyOrders.tbl is added under the
DailyOrders folder. Likewise, add a subcollection called DailyQuotes under StockBrokerage
with the following command line:

C:\xindice>xindiceadmin ac -c /db/StockBrokerage -n DailyQuotes

CHAPTER 9 ■ XML DATABASES 379

6412_c09_final.qxd 4/7/06 1:09 AM Page 379

Adding Documents
You will now add the daily orders documents and end-of-day quote files to the respective col-
lections created in the previous sections. To add a document to a collection, you use another
command-line utility called xindice with the add_document (abbreviated ad) switch.

Assume that our brokerage stores the daily orders files under the name
OrderMMDDYYYY.xml, where MMDDYYYY specifies the date. Likewise, assume that it stores the daily
quotation files under the name EODMMDDYYYY.xml.

■Note The sample document files are available in the Ch09\XMLDocs folder of the code downloaded from
the Source Code area of the Apress website (http://www.apress.com).

First, you will add the orders to our DailyOrders collection. The following screen output
shows how to add an orders document:

C:\xindice>xindice ad -c /db/StockBrokerage/DailyOrders -f Ch09\X
MLDocs\Orders\Order01022006.xml -n Order01022006
Added document /db/StockBrokerage/DailyOrders/Order01022006

As in the case of xindiceadmin, the -c switch specifies the context (the collection) in which
the document is to be added. The -f switch specifies the full path of the document on your
local drive, and -n specifies the key to be assigned to the document. The key uniquely identi-
fies the given document in the current context. If the -n switch is not specified, xindice will
autogenerate the key. You will need this key to access this document in the database. To delete
a document from the database, for example, you need to specify its key.

Adding Multiple Documents
You may occasionally want to add multiple documents to the database collection by using a
single command. To do so, you use add_multiple_documents (alias addmultiple) on the xindice
utility. The following screen output shows how the rest of the orders documents are added to
the DailyOrders collection:

C:\xindice>xindice addmultiple -c /db/StockBrokerage/DailyOrders -f Ch
09\XMLDocs\Orders -e xml -v
Reading files from: XMLDocs
Added document /db/StockBrokerage/DailyOrders/Order01022006.xml
Added document /db/StockBrokerage/DailyOrders/Order01032006.xml
Added document /db/StockBrokerage/DailyOrders/Order01042006.xml
Added document /db/StockBrokerage/DailyOrders/Order01052006.xml
Added document /db/StockBrokerage/DailyOrders/Order01062006.xml
Added document /db/StockBrokerage/DailyOrders/Order01092006.xml
Added document /db/StockBrokerage/DailyOrders/Order01102006.xml

CHAPTER 9 ■ XML DATABASES380

6412_c09_final.qxd 4/7/06 1:09 AM Page 380

Added document /db/StockBrokerage/DailyOrders/Order01112006.xml
Added document /db/StockBrokerage/DailyOrders/Order01122006.xml
Added document /db/StockBrokerage/DailyOrders/Order01132006.xml

When you add multiple documents in this manner, xindice creates a unique key for each
added document. This key has a value that is the same as its filename. Thus, the key for the
Order01132006.xml file is Order01132006.xml. Note that even the file extension is used in the
key value.

Likewise, add the provided EOD files to the DailyQuotes collection. The following screen
output shows how to do this:

C:\xindice>xindice addmultiple -c /db/StockBrokerage/DailyQuotes -f Ch09\XMLDocs ➥

\Quotes -e xml -v
Reading files from: EOD
Added document /db/StockBrokerage/DailyQuotes/EOD01022006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01032006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01042006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01052006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01062006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01092006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01102006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01112006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01122006.xml
Added document /db/StockBrokerage/DailyQuotes/EOD01132006.xml

Now your database is ready for some real use.

Querying the Database
After a database is created, it can be queried to get a list of documents in the database, to
retrieve a specified document from the database, to retrieve all the documents matching a
specified search criterion, and more. In this section, I will introduce several commands to
demonstrate these techniques.

Listing Documents in the Database
Imagine that our stock brokerage will retrieve a list of orders documents stored in the data-
base. You use the xindice utility for this with the command list_documents (abbreviated ld).
The screen output that results when you run the list query on your DailyOrders collection is
as follows:

CHAPTER 9 ■ XML DATABASES 381

6412_c09_final.qxd 4/7/06 1:10 AM Page 381

C:\xindice>xindice ld -c /db/StockBrokerage/DailyOrders

Order01022006.xml
Order01032006.xml
Order01042006.xml
Order01052006.xml
Order01062006.xml
Order01092006.xml
Order01102006.xml
Order01112006.xml
Order01122006.xml
Order01132006.xml

Total documents: 10

The -c switch specifies the context to search.

Retrieving a Document
Consider that the brokerage wants to retrieve the orders document for the date January 5,
2006 from the database. The following screen output shows how to perform this operation:

C:\xindice>xindice rd -c /db/StockBrokerage/DailyOrders -f c:\TempOrder.xml -n ➥

Order01052006.xml
Writing...
Wrote file c:\TempOrder.xml

The command switch used for retrieving documents is rd (retrieve_document). The -n
switch specifies the document key. Note the use of the file extension in the key name. You
specify the name of the output file with the switch -f. You can check the presence of the
TempOrder.xml file in your root folder of drive C after running the preceding command. Check
the file’s contents to verify that it matches the original orders document for the said date.

Selecting Records Based on a Selection Criterion
You will now create a few queries that will select the records from our database based on the
user-specified selection criterion. We specify the criterion with the help of an appropriate
XPath1 query. You will create a few such XPath queries to query our database.

Retrieving a Specific Order
Suppose the broker wants to retrieve an order for a specific customer on a specific date
from the database. This can be achieved by using an XPath expression such as
"/customers[@date='01022006']/customer[@ID=1]". This would select the orders placed

CHAPTER 9 ■ XML DATABASES382

1. Refer to Chapter 5 for details on XPath syntax.

6412_c09_final.qxd 4/7/06 1:10 AM Page 382

on January 2, 2006 by the customer whose ID is 1. You specify this XPath query as a value to
the -q switch on the xindice command-line utility.

The command line to run the query and its output are shown here:

C:\xindice>xindice xpath -c /db/StockBrokerage/DailyOrders -q "/customers➥

[@date='01022006']/customer[@ID=1]"

<?xml version="1.0"?>
<customer ID="1" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Pat Irwin</name>
<order>MSFT</order>
<quantity>50</quantity>
<price>25.35</price>

</customer>

■Tip The Xindice release notes given in file:///C:/xml-xindice-1.0/docs/README state the follow-
ing: “On Windows, command-line queries can have problems with the quote handling of the Windows shell.
In general, you should put double quotes around the entire query string and use single quotes in your
XPath.” If you encounter problems while running some of these queries, try them on Linux. I have success-
fully run all the examples in this chapter on Windows 2000, but had a few problems running them on
Windows XP.

Retrieving All Orders for a Specific Customer
Our broker may want to retrieve the history of all the orders placed by a certain customer. In
this case, you would use an XPath expression such as /customers/customer[@ID=1]. The result
of running this query on the sample database is as follows:

C:\xindice>xindice xpath -c /db/StockBrokerage/DailyOrders -q "/customers/➥

customer[@ID=1]"

<?xml version="1.0"?>
<customer ID="1" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Pat Irwin</name>
<order>MSFT</order>
<quantity>50</quantity>
<price>25.35</price>

</customer>
<?xml version="1.0"?>
<customer ID="1" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/

CHAPTER 9 ■ XML DATABASES 383

6412_c09_final.qxd 4/7/06 1:10 AM Page 383

db/StockBrokerage/DailyOrders" src:key="Order01032006">
<name>Pat Irwin</name>
<order>MSFT</order>
<quantity>70</quantity>
<price>25.30</price>

</customer>
<?xml version="1.0"?>
<customer ID="1" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01042006">

<name>Pat Irwin</name>
<order>MSFT</order>
<quantity>20</quantity>
<price>25.80</price>

</customer>
C:\xindice>

Retrieving Orders for a Specific Stock
Say you want to retrieve all the trade orders for IBM for a specified date. The XPath query for
selecting this is /customers[@date='01022006']/customer[order='IBM']. Note that on the
customers element you specify the date for selection of the orders, and for the customer ele-
ment you specify the order element. The date is an attribute on the customers element and
is thus preceded by an @ sign. The following is the result of running this query on our sample
database:

C:\xindice>xindice xpath -c /db/StockBrokerage/DailyOrders -q ➥

"/customers[@date='01022006']/customer[order='IBM']"

<?xml version="1.0"?>
<customer ID="2" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Nancy Scheffler</name>
<order>IBM</order>
<quantity>75</quantity>
<price>25.30</price>

</customer>
<?xml version="1.0"?>
<customer ID="3" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Cheryl Zuckschwerdt</name>
<order>IBM</order>
<quantity>30</quantity>
<price>25.50</price>

</customer>
<?xml version="1.0"?>

CHAPTER 9 ■ XML DATABASES384

6412_c09_final.qxd 4/7/06 1:10 AM Page 384

<customer ID="4" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Bennie Furlong</name>
<order>IBM</order>
<quantity>65</quantity>
<price>25.55</price>

</customer>

Determining Trades for a Specific Stock by a Specified Customer
You might want to retrieve a history of all the trades performed by a specified customer
on a specified stock. The XPath query for this is given by /customers/customer[@ID=4]
[order='IBM'].

The output after running this query on a sample database is as follows:

C:\xindice>xindice xpath -c /db/StockBrokerage/DailyOrders -q "/customers/➥

customer[@ID=4][order='IBM']"

<?xml version="1.0"?>
<customer ID="4" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01022006">

<name>Bennie Furlong</name>
<order>IBM</order>
<quantity>65</quantity>
<price>25.55</price>

</customer>
<?xml version="1.0"?>
<customer ID="4" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01032006">

<name>Bennie Furlong</name>
<order>IBM</order>
<quantity>60</quantity>
<price>25.25</price>

</customer>
<?xml version="1.0"?>
<customer ID="4" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01042006">

<name>Bennie Furlong</name>
<order>IBM</order>
<quantity>70</quantity>
<price>25.20</price>

</customer>

CHAPTER 9 ■ XML DATABASES 385

6412_c09_final.qxd 4/7/06 1:10 AM Page 385

Determining Orders for a Specified Stock at a Specified Price
A broker may want to consolidate all the orders by different customers placed on a particular
stock at a particular requested price, before the order is finally placed on the stock exchange.
The XPath query to select such records is given by /customers[@date='01032006']/
customer[price='$25.25']. The following is the result of running this query on the sample
database:

C:\xindice>xindice xpath -c /db/StockBrokerage/DailyOrders -q "/customers➥

[@date='01032006']/customer[price='$25.25']"

<?xml version="1.0"?>
<customer ID="3" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01032006">

<name>Cheryl Zuckschwerdt</name>
<order>IBM</order>
<quantity>100</quantity>
<price>25.25</price>

</customer>
<?xml version="1.0"?>
<customer ID="4" xmlns:src="http://xml.apache.org/xindice/Query" src:col="/
db/StockBrokerage/DailyOrders" src:key="Order01032006">

<name>Bennie Furlong</name>
<order>IBM</order>
<quantity>60</quantity>
<price>25.25</price>

</customer>

Using the XML:DB API
So far you have learned how to create, maintain, and query the XML database through com-
mand-line utilities. Now you will learn to do the same through a programmatic interface.

The XML:DB Working Group has developed the API for XML databases. This API can be
implemented in multiple languages. A CORBA API is designed to access the database. The
Xindice libraries provide a Java-based API that uses this CORBA API for the following:

• Creating and maintaining the database collections

• Querying the database

• Deleting the data

• Updating the database

In this section, you will learn all these techniques. First, you will learn to create and
maintain a collection of XML documents in a database. You will use the database structure
described earlier in this chapter for the command-line interface.

CHAPTER 9 ■ XML DATABASES386

6412_c09_final.qxd 4/7/06 1:10 AM Page 386

Creating Collections
You will write an application that creates a collection called Brokerage in the default database
db. You will use a different name than the earlier case. Earlier in this chapter you used the
name StockBrokerage while creating the database by using a command-line tool. If you try
to create a collection with an existing name, the program will throw an application exception.
Thus, the change in name!

Under the Brokerage collection, you will create two subcollections called DailyQuotes and
DailyOrders. You will use the same names for the subcollections as in the earlier case. Note
that the fully qualified path for these two subcollections would be different from the path for
the subcollections created earlier.

The program that creates this database is presented in Listing 9-1.

Listing 9-1. Program to Add Collections and Subcollections to a Xindice Database (Ch09\src\
BrokerDatabase.java)

package database;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;
import org.apache.xindice.client.xmldb.services.*;
import org.apache.xindice.xml.dom.*;

public class BrokerDatabase {
public static void main(String[] args) throws Exception {
Collection col = null;
try {
// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

// Create a Database instance and register it to the DatabaseManager
Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

// Get the reference to the root collection
col = DatabaseManager.getCollection("xmldb:xindice:///db");

// Set up name for the new collection
String collectionName = "Brokerage";

// Obtain an instance
CollectionManager service = (CollectionManager)
col.getService("CollectionManager", "1.0");

CHAPTER 9 ■ XML DATABASES 387

6412_c09_final.qxd 4/7/06 1:10 AM Page 387

// Build up the Collection XML configuration.
String collectionConfig =

"<collection compressed=\"true\" name=\"" +
collectionName + "\">" +
" <filer class=" +
"\"org.apache.xindice.core.filer.BTreeFiler\" " +
"gzip=\"true\"/>" +
"</collection>";

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

System.out.println("Collection " + collectionName + " created.");

col = DatabaseManager.getCollection("xmldb:xindice:///db/Brokerage");
collectionName = "DailyQuotes";
service = (CollectionManager)
col.getService("CollectionManager", "1.0");

// Build up the Collection XML configuration.
collectionConfig =

"<collection compressed=\"true\" name=\"" +
collectionName + "\">" +
" <filer class=" +
"\"org.apache.xindice.core.filer.BTreeFiler\" " +
"gzip=\"true\"/>" +
"</collection>";

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

System.out.println("Collection " + collectionName + " created.");

collectionName = "DailyOrders";
// Build up the Collection XML configuration.
collectionConfig =

"<collection compressed=\"true\" name=\"" +
collectionName + "\">" +
" <filer class=" +
"\"org.apache.xindice.core.filer.BTreeFiler\" " +
"gzip=\"true\"/>" +
"</collection>";

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

CHAPTER 9 ■ XML DATABASES388

6412_c09_final.qxd 4/7/06 1:10 AM Page 388

System.out.println("Collection " + collectionName + " created.");
} catch (XMLDBException e) {
System.err.println("XML:DB Exception occured " +
e.getLocalizedMessage());

} finally {
if (col != null) {
col.close();

}
}

}
}

Let’s examine the program in detail. To begin, the main function first loads the database
driver:

// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

The database driver is implemented in the org.apache.xindice.client.xmldb.
DatabaseImpl class. The forName method of the class Class loads this driver file in memory.

Next, the program obtains an instance of the Database class and registers it with the
DatabaseManager by calling its registerDatabase static method:

// Create a Database instance and register it to the DatabaseManager
Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

You now obtain a reference to the root collection as follows:

// Get the reference to the root collection
col = DatabaseManager.getCollection("xmldb:xindice:///db");

The /db specifies the XPath to the root collection, and xmldb:xindice specifies the proto-
col used for accessing the database collections.

At this point, you are ready to add a collection to the root you have obtained. First, you
create a name for the collection to be added:

// Set up name for the new collection
String collectionName = "Brokerage";

Next, you obtain a reference to the CollectionManager object:

// Obtain an instance
CollectionManager service = (CollectionManager)
col.getService("CollectionManager", "1.0");

The getService method of the Collection class returns a reference to the
CollectionManager. The CollectionManager class, as the name suggests, is responsible for
managing collections.

CHAPTER 9 ■ XML DATABASES 389

6412_c09_final.qxd 4/7/06 1:10 AM Page 389

Next, you need to set up the collection configuration XML fragment as follows:

<collection compressed="true" name="Brokerage">
<filer class="org.apache.xindice.core.filer.BTreeFiler" gzip="true"/>

</collection>

While creating the collection, the CollectionManager will use this configuration, which
specifies that the collection should be stored in compressed form and that the name of the
collection is Brokerage. It also specifies the class that is used for filing the document instances.
The BTreeFiler is a Xindice-provided class that files (arranges) the documents in a binary tree.

You construct this XML document fragment by creating a String object as follows:

// Build up the Collection XML configuration.
String collectionConfig =

"<collection compressed=\"true\" name=\"" +
collectionName + "\">" +
" <filer class=" +
"\"org.apache.xindice.core.filer.BTreeFiler\" " +
"gzip=\"true\"/>" +
"</collection>";

Now, you will add the collection to the root by calling the createCollection method on
the service manager. The method takes the collection name and the instance of the DOM2

tree representing the configuration:

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

On success, the collection is added to the desired path in the database. Next, you will add
a subcollection to the newly created collection. The procedure for adding a subcollection is
similar to that of adding a collection, except that you need to set the appropriate root path for
adding the subcollection. This is done by obtaining the reference to the new desired root as
follows:

col = DatabaseManager.getCollection("xmldb:xindice:///db/Brokerage");

Note that you specify the path as /db/Brokerage. The collections will now be added to this
path. As in the earlier case, you set the name for the new collection:

collectionName = "DailyQuotes";

Next, you will add this collection by using the steps as outlined earlier. Likewise, you add
another subcollection called DailyOrders to the Brokerage collection.

Running the Application
Compile the preceding program by using the following command line:

C:\{working folder}>javac -d . BrokerDatabase.java

CHAPTER 9 ■ XML DATABASES390

2. Refer to Chapter 2 for DOM details.

6412_c09_final.qxd 4/7/06 1:10 AM Page 390

Run the application by using the following command line:

C:\{working folder}>java database.BrokerDatabase

If the program succeeds, you will find that collections are created in the specified data-
base. You can verify this by using the list_collection method on the xindice command-line
utility and specifying the context as /db and /db/Brokerage, respectively. The output of these
commands is shown here:

C:\xindice>xindice lc -c /db

Brokerage
system
StockBrokerage

Total collections: 3

C:\xindice>xindice lc -c /db/Brokerage

DailyOrders
DailyQuotes

Total collections: 2

■Note The list of collections may be different on your machine, depending on the existing collections in
your database.

If you run the application a second time, you will get a duplicate collection exception. To
avoid the exception, you’ll first need to delete the created collections. You can do this by using
the delete_collection (abbreviated dc) command on the xindice utility. The screen output
when deleting the collection is shown here:

C:\xindice>xindiceadmin dc -c /db -n Brokerage
Are you sure you want to delete the collection Brokerage ? (y/n)
y
Deleted: /db/Brokerage

Alternatively, you can delete the collections through your application program by calling
the removeCollection method on the service manager.

CHAPTER 9 ■ XML DATABASES 391

6412_c09_final.qxd 4/7/06 1:10 AM Page 391

■Note The program for removing the Brokerage collection is available in the file Ch09\src\
DeleteCollection.java in the source downloaded from the Source Code area of the Apress website
(http://www.apress.com).

Adding Documents to Collections
Previously you learned how to create collections and subcollections in your XML database.
Now you will learn to add XML documents to the created collection. An XML document is
added to the collection as its resource object. For this purpose, the XML:DB API provides a
class called XMLResource. You will create an instance of this class, initialize its contents with
the contents from the XML file resource, and then add it to the desired collection. The pro-
gram that does all this is given in Listing 9-2.

Listing 9-2. Application for Adding Documents to a Database Collection (Ch09\src\
AddDocument.java)

package database;

// import required packages

public class AddDocument {
static AddDocument doc;
Collection col = null;
public static void main(String[] args) throws Exception {
if (args.length != 2)
{
System.out.println("Usage: java AddDocument path extension");
System.exit(1);

}
// Copy the command line arguments
String path = args[0];
String ext = args[1];
try {
// Create the class instance
doc = new AddDocument();
// Obtain the database collection reference
doc.col = doc.getDatabaseRoot();
// Add documents to the database
doc.addFiles(doc.col, path, ext);

} catch (XMLDBException e) {
System.err.println("XML:DB Exception occured " + e.errorCode);

} catch (Exception e) {
e.printStackTrace();

} finally {

CHAPTER 9 ■ XML DATABASES392

6412_c09_final.qxd 4/7/06 1:10 AM Page 392

// Close the collection
if (doc.col != null) {

doc.col.close();
}

}
}

/*
* getDatabaseRoot makes a database connection and returns a reference
* to the collection given by an XPath expression.
*/
private Collection getDatabaseRoot() throws XMLDBException, Exception {
Collection coll;
// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);
// Create a database instance
Database database = (Database) c.newInstance();
// Register the database instance with the Manager
DatabaseManager.registerDatabase(database);
// Obtain a reference to the predefined collection
coll = DatabaseManager.getCollection

("xmldb:xindice:///db/StockBrokerage/DailyOrders");
// Return the collection reference to the caller
return coll;

}

/*
* addFiles adds the files to the specified collection from the
* specified folder and having a specified extension
*/
private void addFiles(Collection c, String path, String ext)
throws IOException, Exception {
// Create a directory object
File f = new File(path);
// Get the list of files having the specified extension
File[] list = f.listFiles(new ExtensionFilter(ext));
// Iterate through the file collection
for (int i=0; i<list.length;i++) {
// Read the file contents into a string buffer
String data = readFileFromDisk(list[i]);
// Create a new resource on the specified collection
XMLResource document =

(XMLResource) col.createResource(null,"XMLResource");
// Set the contents of the created resource
document.setContent(data);

CHAPTER 9 ■ XML DATABASES 393

6412_c09_final.qxd 4/7/06 1:10 AM Page 393

// Add the resource to the collection
col.storeResource(document);
// Print a message to the user
System.out.println

("Document " + list[i].getCanonicalFile() + " inserted");
}

}

/*
* readFromDiskFile reads the contents of the specified File object
* into a string buffer and returns it to the caller
*/
public String readFileFromDisk(File fileName) throws IOException {
// Open an input stream on the given File
FileInputStream in = new FileInputStream(fileName);
// Create a buffer for reading file contents
byte[] fileBuffer = new byte[(int)fileName.length()];
// Read the file contents into the created buffer
in.read(fileBuffer);
// Close the file object
in.close();
// Return the buffer to the caller
return new String(fileBuffer);

}

/*
* ExtensionFilter creates a filter class for selecting the files
* with the specified extension from a folder. The class implements the
* accept method of the FilenameFilter interface that filters the files
* using the specified extension.
*/
public class ExtensionFilter implements FilenameFilter {
private String extension ;

// Constructor that initializes the extension filter
public ExtensionFilter(String ext) {
extension="." + ext;

}
// The accept method returns files matching the specified extension
public boolean accept(File dir, String name) {
return name.endsWith(extension);

}
}

}

CHAPTER 9 ■ XML DATABASES394

6412_c09_final.qxd 4/7/06 1:10 AM Page 394

The program accepts two command-line parameters. The first parameter specifies the
folder name in which the documents are stored, and the second parameter specifies the
filename extension on which the files from this folder will be filtered out. You copy the com-
mand-line arguments into local variables:

// Copy the command line arguments
String path = args[0];
String ext = args[1];

You create a class instance so that you can call its nonstatic methods:

doc = new AddDocument();

You obtain the reference to a predefined database collection in which you will add the
documents:

// Obtain the database collection reference
doc.col = doc.getDatabaseRoot();

You add the documents by calling the addFiles method (discussed later) of our class:

// Add documents to the database
doc.addFiles(doc.col, path, ext);

You provide the exception processing for the entire application in the main method and
finally close the database collection:

} catch (XMLDBException e) {
System.err.println("XML:DB Exception occured " + e.errorCode);

} catch (Exception e) {
e.printStackTrace();

} finally {
// Close the collection
if (doc.col != null) {

doc.col.close();
}

}

You will now look at the implementation of the getDatabaseRoot method:

private Collection getDatabaseRoot() throws XMLDBException, Exception {

The method throws two types of exceptions that are then processed by the caller (this is
the main method in our case).

The method first loads the database driver into the system:

// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

CHAPTER 9 ■ XML DATABASES 395

6412_c09_final.qxd 4/7/06 1:10 AM Page 395

You then create a Database instance and register it with the database manager:

// Create a database instance
Database database = (Database) c.newInstance();
// Register the database instance with the Manager
DatabaseManager.registerDatabase(database);

You obtain a reference to the predefined collection in the database. Remember that you
created the StockBrokerage/DailyOrders collection in the previous example. If you have not
run this program (Listing 9-1) earlier, you may do so now or you may create this collection by
using the command tool xindiceadmin described earlier:

// Obtain a reference to the predefined collection
coll = DatabaseManager.getCollection
("xmldb:xindice:///db/StockBrokerage/DailyOrders");

The method returns a reference to the obtained Collection object:

// Return the collection reference to the caller
return coll;

You will now learn about the implementation of the addFiles method. The addFiles
method accepts the reference to the collection object obtained in the previous method
(getDatabaseRoot) call, the folder path in which the documents are stored, and the extension
that is used as a filter string:

private void addFiles(Collection c, String path, String ext)
throws IOException, Exception {

You first construct a File object by using the specified path as its argument:

// Create a directory object
File f = new File(path);

This opens the folder with the specified path. You call the listFiles method on this folder
object to obtain a list of files from this folder:

// Get the list of files having the specified extension
File[] list = f.listFiles(new ExtensionFilter(ext));

While obtaining the list of files, you specify the filter by instantiating the custom class
ExtensionFilter (discussed later) that accepts the filter string to be used as an argument to
its constructor.

You now iterate through the list of retrieved files:

// Iterate through the file collection
for (int i=0; i<list.length;i++) {

For each File object, you read its contents by calling the readFileFromDisk method (dis-
cussed later) that returns the file contents into a string buffer:

// Read the file contents into a string buffer
String data = readFileFromDisk(list[i]);

CHAPTER 9 ■ XML DATABASES396

6412_c09_final.qxd 4/7/06 1:10 AM Page 396

You create an XMLResource object for adding it to the collection:

// Create a new resource on the specified collection
XMLResource document =

(XMLResource) col.createResource(null,"XMLResource");

You set the contents of the resource to the string data returned by the readFileFromDisk
method:

// Set the contents of the created resource
document.setContent(data);

You add the resource to the collection by calling its storeResource method:

// Add the resource to the collection
col.storeResource(document);

You print a confirmation message to the user and go into another iteration of the file list:

// Print a message to the user
System.out.println

("Document " + list[i].getCanonicalFile() + " inserted");

You will now look at the implementation of the readFromDiskFile method. The method
takes a File object as its argument and returns a string containing the file contents:

public String readFileFromDisk(File fileName) throws IOException {

You open an input stream on the specified file:

// Open an input stream on the given File
FileInputStream in = new FileInputStream(fileName);

You create a buffer equal to the length of the file for storing the file contents:

// Create a buffer for reading file contents
byte[] fileBuffer = new byte[(int)fileName.length()];

You read the file contents into the created buffer and then close the file:

in.read(fileBuffer);
in.close();

You construct a String object from the byte buffer and return it to the caller:

return new String(fileBuffer);

You will now learn about the implementation of the ExtensionFilter class that is declared
interior to our AddDocument class:

public class ExtensionFilter implements FilenameFilter {

The ExtensionFilter class implements the FilenameFilter interface. The object of
this class is used in the listFiles method of the File class to filter the file selection. The
FilenameFilter provides a method called accept that you need to implement in this class.

CHAPTER 9 ■ XML DATABASES 397

6412_c09_final.qxd 4/7/06 1:10 AM Page 397

The class constructor accepts a string argument that represents the file extension to be
used for filtering and initializes a private string variable by using this extension string:

// Constructor that initializes the extension filter
public ExtensionFilter(String ext) {

extension="." + ext;
}

The accept method returns a boolean depending on whether the given name ends with
the specified extension:

// The accept method returns files matching the specified extension
public boolean accept(File dir, String name) {
return name.endsWith(extension);

}

Running the Application
Compile the application by using the following command line:

C:\{working folder}>javac -d . AddDocument.java

Run the application by using the following command:

C:\{working folder }>java database.AddDocument ..\XMLDocs\Demo xml

The first command-line argument (..\XMLDocs\Demo) specifies the folder in which the
desired documents are stored, and the second argument (xml) specifies the file extension for
filtering. On successful run of the application, you will see output similar to the following:

Document C:\apress\Ch09\XMLDocs\Demo\Order01162006.xml inserted
Document C:\apress\Ch09\XMLDocs\Demo\Order01172006.xml inserted

Next, you will write an application to list all the documents stored in our database starting
from a specified collection path.

Listing All Documents in the Specified XPath
The XML database is arranged in a binary tree hierarchy. To visit every node of the tree, you
need to write a recursive function. The program in Listing 9-3 illustrates how to traverse the
tree recursively and list all the documents in each visited subcollection.

CHAPTER 9 ■ XML DATABASES398

6412_c09_final.qxd 4/7/06 1:10 AM Page 398

Listing 9-3. Application to List All the Documents Under a Given Node (Ch09\src\ListDocs.java)

package database;

// import required packages

public class ListDocs {
public static void main(String[] args) throws Exception {
if (args.length != 1) {
System.out.println("Usage: java ListDocs XPathtoDesiredCollection");
System.exit(1);

}
try {
// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);
// Create a database instance
Database database = (Database) c.newInstance();
// Register the database instance with the Manager
DatabaseManager.registerDatabase(database);
// Construct the XPath starting from the root
String strPath = "xmldb:xindice:///db" + args[0];
System.out.println("Printing the list of resources at " + strPath);
// Get the reference to the desired collection
Collection coll = DatabaseManager.getCollection(strPath);
// Recursively get a list of subcollections and documents therein
ListAllDocuments(coll);

} catch (XMLDBException e) {
System.err.println("XML:DB Exception occured " + e.errorCode);

} catch (Exception e) {
e.printStackTrace();

}
}

/*
* ListAllDocuments accepts a Collection object as an argument and
* traverses the tree recursively listing all the sub-collections and
* documents therein.
*/
private static void ListAllDocuments(Collection coll) throws XMLDBException {
// Get string names of all child collections
String [] str = coll.listChildCollections();
// Iterate through the list of subcollections
for (int i=0; i<str.length; i++) {
// Print the subcollection name
System.out.println("Collection: " + str[i]);

CHAPTER 9 ■ XML DATABASES 399

6412_c09_final.qxd 4/7/06 1:10 AM Page 399

// Get a list of resources within each subcollection
String [] docs = (coll.getChildCollection(str[i])).listResources();
// Print the names of document resources within a subcollection
for (int j=0; j<docs.length; j++) {
System.out.println(docs[j]);

}
// Revisit the function using the subcollection
ListAllDocuments(coll.getChildCollection(str[i]));

}
}

}

The application accepts the XPath expression to the desired collection as an argument.
In the main method, you construct the reference to this collection. To do this, you first load the
database driver in memory:

// Load the database driver
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

You create a database instance and register it with the database manager:

// Create a database instance
Database database = (Database) c.newInstance();
// Register the database instance with the Manager
DatabaseManager.registerDatabase(database);

You construct the path to the desired collection starting from the database root and using
the xmldb:xindice protocol:

String strPath = "xmldb:xindice:///db" + args[0];

You now obtain a reference to the desired collection by calling the getCollection method
on the database manager:

// Get the reference to the desired collection
Collection coll = DatabaseManager.getCollection(strPath);

Now you are ready to traverse the tree with this collection as the root element. You do so
by calling the ListAllDocuments method of our class:

// Recursively get a list of sub-collections and documents therein
ListAllDocuments(coll);

You will now learn about the implementation of the ListAllDocuments method. This
method accepts the reference to the root collection, from where the search to subcollections
begins. It throws an XMLDBException to the caller:

private static void ListAllDocuments(Collection coll) throws XMLDBException {

CHAPTER 9 ■ XML DATABASES400

6412_c09_final.qxd 4/7/06 1:10 AM Page 400

First, you obtain the list of child collections by calling the listChildCollections method
on the collection object:

// Get string names of all child collections
String [] str = coll.listChildCollections();

You iterate through the list of subcollections and print the name of each subcollection on
the user console as you visit it:

// Iterate through the list of subcollections
for (int i=0; i<str.length; i++) {
// Print the subcollection name
System.out.println("Collection: " + str[i]);

You get the list of document resources within each subcollection by calling the
listResources method on the Collection object:

// Get a list of resources within each sub-collection
String [] docs = (coll.getChildCollection(str[i])).listResources();

You print the name of each document by iterating through the entire list of documents:

// Print the names of document resources within a sub-collection
for (int j=0; j<docs.length; j++) {
System.out.println(docs[j]);

}

You revisit the ListAllDocuments method by passing the new Collection reference to it.
The reference to the subcollection is obtained by calling the getChildCollection method on
the Collection object. The method takes the name of the desired collection as an argument
and returns a Collection object having this name:

// Revisit the function using the subcollection
ListAllDocuments(coll.getChildCollection(str[i]));

Running the Application
Compile the code in Listing 9-3 by using the following command line:

C:\{working folder}>javac -d . ListDocs.java

Run the application by using the following command line:

C:\{working folder}>java database.ListDocs /StockBrokerage

If you have followed the instructions in this chapter and created the suggested sample
database, you will see output similar to the following when you run the preceding program:

CHAPTER 9 ■ XML DATABASES 401

6412_c09_final.qxd 4/7/06 1:10 AM Page 401

Printing the list of resources at xmldb:xindice:///db/StockBrokerage
Collection: DailyOrders
Order01022006.xml
Order01032006.xml
Order01042006.xml
Order01052006.xml
Order01062006.xml
Order01092006.xml
Order01102006.xml
Order01112006.xml
Order01122006.xml
Order01132006.xml
Collection: DailyQuotes
EOD01022006.xml
EOD01032006.xml
EOD01042006.xml
EOD01052006.xml
EOD01062006.xml
EOD01092006.xml
EOD01102006.xml
EOD01112006.xml
EOD01122006.xml
EOD01132006.xml

Deleting Documents
You will now write an application to remove all the documents recursively, starting from a
specified node. Listing 9-4 provides the recursive function that does this. The rest of the code
is similar to the code in Listing 9-3.

■Tip The full source of this application is available at Ch09\src\RemoveDocs.java in the source
download.

Listing 9-4. Method to Remove All Documents from a Given Collection

private static void RemoveAllDocuments(Collection coll) throws XMLDBException
{
// Get string names of all child collections
String [] str = coll.listChildCollections();
// Iterate through the list of sub-collections
for (int i=0; i<str.length; i++) {

CHAPTER 9 ■ XML DATABASES402

6412_c09_final.qxd 4/7/06 1:10 AM Page 402

// Print the subcollection name
System.out.println("Collection: " + str[i]);
// Get a list of resources within each subcollection
String [] docs = (coll.getChildCollection(str[i])).listResources();
for (int j=0; j<docs.length; j++) {
// Obtain the resource reference

Resource resource =
coll.getChildCollection(str[i]).getResource(docs[j]);

// Remove the resource
coll.getChildCollection(str[i]).removeResource(resource);

System.out.println("Resource " + resource.getId() + "removed");
}
// Revisit the function using the subcollection
RemoveAllDocuments(coll.getChildCollection(str[i]));

}
}

The RemoveAllDocuments method accepts the Collection reference under which the docu-
ments are to be deleted. This is a recursive method similar to the ListAllDocuments method
discussed earlier:

private static void RemoveAllDocuments(Collection coll) throws XMLDBException {

We first obtain the list of child collections:

// Get string names of all child collections
String [] str = coll.listChildCollections();

We iterate through the list and print the name of each subcollection as we visit it:

// Iterate through the list of subcollections
for (int i=0; i<str.length; i++) {
// Print the subcollection name
System.out.println("Collection: " + str[i]);

We obtain the list of resources within each subcollection by calling the listResources
method on the Collection object:

// Get a list of resources within each subcollection
String [] docs = (coll.getChildCollection(str[i])).listResources();

For each listed resource, we obtain its Resource object reference by calling the
getResource method on the Collection object. The getResource method accepts the resource
name as its argument and returns a reference to the Resource object:

for (int j=0; j<docs.length; j++) {
// Obtain the resource reference
Resource resource =

coll.getChildCollection(str[i]).getResource(docs[j]);

CHAPTER 9 ■ XML DATABASES 403

6412_c09_final.qxd 4/7/06 1:10 AM Page 403

The resource is removed by calling the removeResource method on the Collection object.
The method accepts the reference to the resource that is to be removed as a parameter.

// Remove the resource
coll.getChildCollection(str[i]).removeResource(resource);

System.out.println("Resource " + resource.getId() + "removed");

We revisit the method for a recursive call:

// Revisit the function using the sub-collection
RemoveAllDocuments(coll.getChildCollection(str[i]));

So far, you have learned how to create collections and subcollections, and how to manage
the database hierarchy of collections. You have also learned how to add documents to a collec-
tion, how to list documents in a given collection, and how to remove documents from a
collection. Next, you will learn how to use XUpdate to modify the content of a document
without removing it from the database.

Using the XUpdate Language
XUpdate is a language for updating XML documents and is the result of the work done as a
part of the XML:DB project. To update a document, you create an XUpdate query and then
run it by using the provided update query service. The query itself is written as a well-formed
XML document fragment.

A typical XUpdate query is shown here:

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">
<xu:remove select="/customers[@date='01022006']/customer[@ID=5]"/>

</xu:modifications>

The query is specified in the modifications element, which is defined in the
http://www.xmldb.org/xupdate namespace. The remove subelement is a subelement to
modifications and indicates that we are interested in removing something (obviously an ele-
ment). An element to be removed is located by using an XPath query. This is specified as a
value to the select attribute. This query is explained further in the “Updating a Node in the
Orders Collection” section. Let’s first look at the full syntax of the XUpdate query.

Creating the XUpdate Query
As I said, the XUpdate query is defined by using the modifications element. The modifica-
tions that are allowed consist of Insert/Update/Delete operations. Thus, it is possible to
insert a node in an existing document by using the XUpdate query. For this, the XUpdate
specifications define the following three subelements:

• xupdate:insert-before: Inserts a node before the specified record (given by an XPath
expression)

• xupdate:insert-after: Inserts a node after the specified record

• xupdate:append: Adds a node to the end of the document

CHAPTER 9 ■ XML DATABASES404

6412_c09_final.qxd 4/7/06 1:10 AM Page 404

A record position is specified by using an XPath expression assigned to the select attrib-
ute of the appropriate child element.

To insert a record, you must first construct it. The record is constructed with the help of
the following subelements:

• xupdate:element

• xupdate:attribute

• xupdate:text

• xupdate:processing-instruction

• xupdate:comment

You will learn to construct a record and add it to an existing document in the program-
ming section that follows shortly.

To modify an existing record, you use the update subelement of the modifications ele-
ment. Similarly, to remove a record, you use the remove subelement.

Let’s now look at some coding examples so you can understand how to perform database
updates by using an XUpdate query.

Removing a Node
Suppose you want to remove an order placed by a customer from the orders document. You
will use an XUpdate query to do this. Listing 9-5 shows the program that removes a record
from the specified orders document for a specified customer ID.

Listing 9-5. Application to Remove a Node (Ch09\src\DeleteNode.java)

package database;

import org.xmldb.api.base.*;
import org.xmldb.api.modules.*;
import org.xmldb.api.*;
import java.io.*;

public class DeleteNode {
public static void main(String[] args) throws Exception {
Collection col = null;
// Check arguments
if (args.length != 2) {
System.out.println("Usage: java DeleteNode CustomerID");
System.exit(1);

}
try {
// Load driver class
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

CHAPTER 9 ■ XML DATABASES 405

6412_c09_final.qxd 4/7/06 1:10 AM Page 405

// Create and register database instance
Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);
// Retrieve a reference to DailyOrders collection
col = DatabaseManager.getCollection

("xmldb:xindice:///db/StockBrokerage/DailyOrders");
// Construct a Remove query
String xupdate =
"<xu:modifications version=\"1.0\"" +
"xmlns:xu=\"http://www.xmldb.org/xupdate\">\n" +
"xu:remove " +
"select=\"/customers[@date='" +
args[0] +
"']/customer[@ID=" +
args[1] +
"]\"/>"
+ "\n</xu:modifications>";

// Obtain a reference to the update query service
XUpdateQueryService service =

(XUpdateQueryService)col.getService
("XUpdateQueryService", "1.0");

// Run the query using the service
System.out.println("Running Remove Query: ");
System.out.println(xupdate);
service.update(xupdate);

} catch (XMLDBException e) {
System.err.println("XML:DB Exception occured " + e.errorCode + " " +

e.getMessage());
} finally {

// Close the collection
if (col != null) {

col.close();
}

}
}

}

The program accepts the two command-line parameters. The first parameter specifies
the date for the orders document in our DailyOrders collection. The date is specified in
MMDDYYYY format. The second argument specifies the customer ID as a string. The record
matching this customer ID will be removed from the specified document.

The main function first loads the driver:

// Load driver class
String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
Class c = Class.forName(driver);

As in the earlier examples, you create an instance of the database and register it with the
database manager:

CHAPTER 9 ■ XML DATABASES406

6412_c09_final.qxd 4/7/06 1:10 AM Page 406

// Create and register database instance
Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

Next, you obtain a reference to the DailyOrders collection:

// Retrieve a reference to DailyOrders collection
col = DatabaseManager.getCollection

("xmldb:xindice:///db/StockBrokerage/DailyOrders");

You now construct the XML document fragment to create a remove query by using the
XUpdate language syntax:

// Construct a Remove query
String xupdate =
"<xu:modifications version=\"1.0\"" +
"xmlns:xu=\"http://www.xmldb.org/xupdate\">\n" +
"xu:remove " +
"select=\"/customers[@date='" +
args[0] +
"']/customer[@ID=" +
args[1] +
"]\"/>"
+ "\n</xu:modifications>";

The XML document fragment that is generated by the preceding statement for the com-
mand-line arguments 01022006 and 8 is given here:

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">
<xu:remove select="/customers[@date='01022006']/customer[@ID=8]"/>

</xu:modifications>

Note the use of the date attribute to select the orders document and the use of the ID
attribute to select a particular customer.

To run the query, you need to obtain a reference to the provided query service. You do this
by calling the getService method of the Collection class:

// Obtain a reference to the update query service
XUpdateQueryService service =

(XUpdateQueryService)col.getService
("XUpdateQueryService", "1.0");

Finally, you run the query itself by calling the update method on the service object
obtained in the previous step:

// Run the query using the service
System.out.println("Running Remove Query: ");
System.out.println(xupdate);
service.update(xupdate);

If the query runs successfully, the specified record will be deleted from the selected
document.

CHAPTER 9 ■ XML DATABASES 407

6412_c09_final.qxd 4/7/06 1:10 AM Page 407

Running the Application
Compile the preceding source (Listing 9-5) by using the following command line:

C:\{working folder}>javac -d . DeleteNode.java

Run the application by using the following command:

C:\{working folder}>java database.DeleteNode 01022006 8

This will delete the record for the customer with an ID equal to 8 from the
Order01022006.xml document in our database. Before you run the application, you may want
to list the document content. You can do so by running the following XPath query on your
xindice command line:

C:\xindice>xindice rd -c /db/StockBrokerage/DailyOrders -n Order01022006.xml

You will see the following output on your screen:

<?xml version="1.0"?>
<customers date="01022006">
...
<customer ID="7">

<name>John-Weigert</name>
<order>IKJ</order>
<quantity>20</quantity>
<price>25.50</price>

</customer>

<customer ID="8">
<name>Marilia-Oliver</name>
<order>IKL</order>
<quantity>87</quantity>
<price>26.00</price>

</customer>

<customer ID="9">
<name>Marilia-Oliver</name>
<order>IKM</order>
<quantity>90</quantity>
<price>25.20</price>

</customer>
...
</customers>

Now run the application. When the application runs successfully, you will see the follow-
ing screen output:

CHAPTER 9 ■ XML DATABASES408

6412_c09_final.qxd 4/7/06 1:10 AM Page 408

Running Remove Query:
<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:remove select="/customers[@date='01022006']/customer[@ID=8]"/>
</xu:modifications>

Now, if you list the document content again by using the previous command line, you
will notice that the record for the customer with ID equal to 8 has been removed from the
document.

Next, you will study how to insert a record in the orders database.

Inserting a Node in the Orders Collection
You can insert a record in your document by constructing an insert XUpdate query. You will
now insert an order record in our orders document. The XUpdate query for doing this is given
here:

String xupdate = "<xu:modifications version=\"1.0\"" +
" xmlns:xu=\"http://www.xmldb.org/xupdate\">\n" +
" <xu:insert-after select=\"/customers/customer[@ID=17]\">\n" +
" <xu:element name=\"customer\">\n"+
" <xu:attribute name=\"id\">2</xu:attribute>\n"+
" <name>pradeep</name>\n"+
" <order>IBM</order>\n"+
" <quantity>50</quantity>\n"+
" <price>25.22</price>\n"+
" </xu:element>\n" +
" </xu:insert-after>\n"+
"</xu:modifications>";

■Tip The full source for the update node application is available in the file Ch09\src\InsertNode.java
in the source download.

The XML document fragment generated by the preceding statement is as follows:

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">
<xu:insert-after select="/customers/customer[@ID=17]">
<xu:element name="customer">
<xu:attribute name="id">2</xu:attribute>
<name>pradeep</name>
<order>IBM</order>
<quantity>50</quantity>
<price>25.22</price>

</xu:element>
</xu:insert-after>

</xu:modifications>

CHAPTER 9 ■ XML DATABASES 409

6412_c09_final.qxd 4/7/06 1:10 AM Page 409

When you run the query by calling the update method on the query service object, the
following XML fragment will be added after the record with the customer ID 17.

...
<customer id="2">

<name>pradeep</name>
<order>IBM</order>
<quantity>50</quantity>
<price>25.22</price>

</customer>
...

Note that the position for inserting the record is specified by the XPath expression
/customers/customer[@ID=17] as a value of the select attribute.

Updating a Node in the Orders Collection
I will now discuss the construction of an XUpdate query for updating a specified record in our
database. Imagine that we want to modify the order placed by the customer with ID equal to 1
on January 2, 2006. We will modify the stock code from an existing value of MSFT to a new value
of IKJ. The code that constructs the XUpdate query is shown here:

// Construct an update query
String xupdate = "<xu:modifications version=\"1.0\"" +

" xmlns:xu=\"http://www.xmldb.org/xupdate\">\n" +
" <xu:update select=" +
"\"/customers[@date='01022006']/customer[@ID=1]/order\">\n"
+ " IKJ" +
"\n </xu:update>\n" +
"</xu:modifications>";

■Tip The full source for the update node application is available in the file Ch09\src\UpdateNode.java
in the source download.

The following XML document fragment is generated by the preceding code:

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">
<xu:update select="/customers[@date='01022006']/customer[@ID=1]/order">

IKJ
</xu:update>

</xu:modifications>

Note how the XPath expression selects the order element of customer ID equal to 1 from
the January 2, 2006 document. The new value for the order node is set to IKJ.

As in the earlier cases, after constructing the query, we will execute it by calling the update
method of the query service.

CHAPTER 9 ■ XML DATABASES410

6412_c09_final.qxd 4/7/06 1:10 AM Page 410

Performing Database Administration
Every database requires some sort of administration to keep it efficient while it is being
accessed. This administration consists of organizing the database collection structure,
adding/removing resources, creating indexes for faster access, backing up the data, and so
on. In this section, you will learn about the various facilities available for a Xindice database
administrator.

You use the xindiceadmin utility for administering the Xindice database. You have used
this utility previously for adding/removing collections and more. In this section, I will sum-
marize the functionalities provided by the xindiceadmin utility. The functionalities can be
classified as management commands and actions, as listed here:

• Management commands

• Collection management

• Document management

• Actions

• Indexer actions

• XPath query actions

• Miscellaneous actions

Most of the management commands have been discussed earlier and I will not repeat
them here. I will discuss whatever I have not yet covered.

■Tip You can refer to the Command Line Tools Reference guide for full details on the command syntax
(C:\<xindice installation folder>\docs\ToolsReference.html).

Creating/Managing Indexes
An index improves database access performance. To create an index, you use the add_indexer
command on the xindiceadmin utility. To illustrate how to add an index, you will create an
index on the order element of our DailyOrders collection. The command to add such an index
is as follows:

C:\xindice>xindiceadmin add_indexer -c /db/StockBrokerage/DailyOrders -n ➥

orderindex -p order
CREATED : orderindex

The -c switch specifies the collection context (which in this case is the DailyOrders
subcollection in our StockBrokerage collection). The -n switch specifies the name of the index,
and the -p switch specifies the pattern used to create an index.

CHAPTER 9 ■ XML DATABASES 411

6412_c09_final.qxd 4/7/06 1:10 AM Page 411

You can also create indexes on the element attributes. For example, if you want to create
an index on the ID attribute of the customer element, you would use a command as follows:

C:\xindice>xindiceadmin add_indexer -c /db/StockBrokerage/DailyOrders ➥

-n IDindex -p customer@ID

In this case, the pattern used is customer@ID.

Listing Indexes
You use the list_indexers (abbreviated li) command on the xindiceadmin to list the avail-
able indexes. The following screen output shows how to list the indexes in our DailyOrders
collection:

C:\xindice>xindiceadmin li -c /db/StockBrokerage/DailyOrders
Indexes:

IDindex
orderindex

Total Indexes: 2

Deleting an Index
You delete an index by using the delete_indexer (abbreviated di) command on the
xindiceadmin utility. To delete the ID index you just created, use the command shown in the
following screen output:

C:\xindice>xindiceadmin di -c /db/StockBrokerage/DailyOrders -n IDindex
Continue deletion process? (y/n)
y
DELETED: IDindex

Backing Up Your Data
Every database administrator is concerned with the periodic backups of the database. The
process of backing up the Xindice database is straightforward and simple. Simply copy the
db folder along with its subfolders to any other storage device. Restoring the database requires
the reverse process of copying from the backup folders to the db folder.

Exporting Data
Sometimes you may want to export the database contents to its native format. You do this by
using the export command on the xindiceadmin utility. The screen output from running this
command is shown here:

CHAPTER 9 ■ XML DATABASES412

6412_c09_final.qxd 4/7/06 1:10 AM Page 412

C:\xindice>xindiceadmin export -c /db/StockBrokerage -f c:\apress\Ch09\backup

Creating directory c:\apress\Ch09\backup\StockBrokerage
Extracting 0 files from /db/StockBrokerage
Creating directory c:\apress\Ch09\backup\StockBrokerage\DailyOrders
Extracting 10 files from /db/StockBrokerage/DailyOrders
Creating directory c:\apress\Ch09\backup\StockBrokerage\DailyQuotes
Extracting 0 files from /db/StockBrokerage/DailyQuotes

Here we export the contents of the StockBrokerage collection to the backup folder on the
C drive. The utility creates an appropriate folder structure under the backup folder and copies
all the documents in the subcollections to the appropriate subfolders. Each document is
copied in its native format.

Importing Data
The data that you have exported earlier can be imported into the database by using the import
command of xindiceadmin. You use the import command as follows:

C:\{xindice installation folder}>xindiceadmin import -c /db -f c:\apress\Ch09\import

This imports the data from the import folder and its subfolders into the db database.
During the imports, the folder hierarchy is maintained in the database.

Shutting Down the Server
To shut down the Xindice server, you use the shutdown command shown here:

c:\xindice>xindiceadmin shutdown -c /db

Summary
XML databases provide an easy and powerful way to store your XML documents so they can
be quickly searched later. The XML database follows a hierarchical storage structure analo-
gous to the folder structures in your file system.

The XML documents stored in the database are organized into collections. You learned
how to create collections, how to create subcollections, and how to delete collections and
subcollections by using command-line utilities. You also learned how to add and remove
documents to the collections by using command-line utilities.

In addition, you learned to perform all these activities through a program interface. You
learned the XUpdate language syntax that allows you to write queries for updating the con-
tents of the XML database.

Finally, you learned about database administration used to manage the database and its
contents. You learned the techniques of backing up and restoring the database. You also
learned to export the database content into its native format and to import the earlier
exported content into the database again.

CHAPTER 9 ■ XML DATABASES 413

6412_c09_final.qxd 4/7/06 1:10 AM Page 413

6412_c09_final.qxd 4/7/06 1:10 AM Page 414

Apache Forrest

You have studied several Apache XML projects in this book. Now comes the time for a grand
finale. In this chapter, you will put together the various techniques you have learned so far to
create a website for our stock brokerage case study of Chapter 2. Apache Forrest is the project
that helps us achieve this. It uses several APIs discussed in the previous chapters.

Apache Forrest is a publishing framework that allows you to generate a unified presen-
tation from various input sources. You might recall the Cocoon framework introduced in
Chapter 7. Cocoon uses the pipeline architecture and can generate static and dynamic con-
tent for presentation in various formats. Forrest uses Cocoon for document generation and
presentation. Thus, Forrest derives its benefits from the extensible and modular architecture
of Cocoon, which provides a separation between presentation and content. Because Cocoon
can generate content dynamically, so does Forrest. Thus, you can easily create both static and
dynamic websites when using Forrest.

In this chapter, you will learn about many of Forrest’s features by creating a website for
our stock brokerage. You will customize the website by adding tabs and menus to it. You will
learn to incorporate new content and your existing web pages into the new site. You will facili-
tate rendering the web pages to various output formats. Finally, you will learn to integrate
external RSS feeds in your web pages.

Before you create the brokerage site by using Forrest, let’s briefly look at its history.

The History of Forrest
The Apache Forrest project was founded to create consistent documentation for all Apache
projects and to provide efficient and easy management of these projects. Established in Jan-
uary 2002, its initial goal was to create uniform, lightweight, easily navigable project websites.
It was also expected to provide built-in project management tools. However, soon the focus
changed to creating a generic documentation tool.

Today Forrest can be used for various purposes, such as the following:

• Creating project documentation sites, especially quite useful for creating documenta-
tion for software projects

• Creating and maintaining both small and large static and dynamic websites

415

C H A P T E R 1 0

■ ■ ■

6412_c10_final.qxd 4/7/06 1:05 AM Page 415

The Apache Software Foundation itself has used Forrest for some of its project sites.
Besides Apache’s own sites, several third-party sites have been created by using Apache
Forrest, including the Krysalis Community Project site (http://www.krysalis.org/index.
shtml), the Learn Linux site (http://learnlinux.tsf.org.za/), and the j2world—Smart Solu-
tions for a Mobile World site (http://www.j2world.net/). The last example is not an English
language site; I selected this example to show that international sites are created by using
Forrest. There are many more sites created by using Forrest. For a more comprehensive list,
refer to http://forrest.apache.org/live-sites.html.

Using Forrest, you can easily create websites that provide a unified presentation of data
from various input sources. You need not learn HTML to create a website. Instead, Forrest
uses XML for creating web pages. The website can then be easily customized by modifying
the XML configuration files. Furthermore, the pages can be rendered in various formats
by using Cocoon’s serializers discussed in Chapter 7.

You will focus on learning all these features by creating a brokerage site rather than
learning to use Forrest merely to create documentation for a website.

Forrest Features
To a website developer or a document creator, Forrest offers several benefits:

• User-friendly: Forrest allows you to easily generate a new website. The process of
creating a new site has been greatly simplified as you will soon see in the following
sections.

• Low “start-up cost”: If you want to create a small website, Forrest provides a quick,
although not constraining, solution because the powerful features of Forrest allow for
the easy expansion of the site.

• Rapid development: Forrest quickly creates a skeleton website for you that later can
scale up to large projects. The rapid development helps in overcoming any time and
budget constraints.

• No learning curve: To use Forrest, you need not know Java or HTML. You can simply
focus on content and site design.

• Configurable: After a site is created, it can be easily configured by using content tem-
plates and prewritten skins (stylesheets) to change the site’s look and feel. Because
these configuration changes are XML based, they are easy to implement.

• Flexible: Forrest can be used for a wide variety of applications.

• Platform independent: Because Forrest is based on Java and XML, it is platform
independent.

As mentioned earlier, Forrest derives several benefits from the Apache Cocoon framework
on which it is based. If you are an advanced user who understands Cocoon, you know you
have the following additional benefits at your disposal:

CHAPTER 10 ■ APACHE FORREST416

6412_c10_final.qxd 4/7/06 1:05 AM Page 416

• Multiple input source formats: You can derive your input source documents from vari-
ous sources, such as XML, plain HTML, Text, Wiki,1 and more.

• Multiple output formats: Because Cocoon allows you to produce output content in a
wide variety of formats by providing configurable serializers2 in its pipeline, Forrest too
can produce output in different formats such as PDF, HTML, Text, XML, and so on.

• SVG (Scalable Vector Graphics) to PNG 3 (Portable Network Graphics) rendering: The
underlying Cocoon engine transforms SVG files to PNG at runtime. Thus, you can freely
include SVG documents in your site without worrying about how to render them.

• External content: Content from an external source such as an RSS4 feed can be included
in the content provided internally. This is possible due to the pluggable transformers in
the Cocoon pipeline. The content from the various sources can be aggregated by using
the aggregator component of the Cocoon framework.

• Integration with external systems: It is possible to integrate the content from external
systems such as web services or database queries in the internal content to produce
aggregate output to the user.

Installing Forrest
Before you use Forrest to create a website, you need to download and install the Forrest soft-
ware. After downloading it, you will test the installation.

Downloading the Software
Like the Apache software installations discussed in earlier chapters, the installation of Forrest
is quite easy.

Download the Forrest software (apache-forrest-0.7.tar.gz for Unix and
apache-forrest-0.7.zip for Windows) from the Apache site:

http://www.apache.org

Unzip the file to a desired folder. After this, you need to set up the environment variables.
Create a new environment variable called FORREST_HOME and set its value to your Forrest instal-
lation folder. Add the path %FORREST_HOME%\bin (for Windows) or $FORREST_HOME/bin (for Unix,
Linux) to your PATH environment variable.

That’s all that is required for the installation.

CHAPTER 10 ■ APACHE FORREST 417

1. Wiki is an online resource that allows users to add and edit content collectively. Wiki means rapid
in Hawaiian.

2. Refer to Chapter 7 for information on Cocoon pipelines.

3. Refer to the official PNG home page (http://www.libpng.org/pub/png/) for details.

4. RSS is an acronym for Rich Site Summary or Really Simple Syndication.

6412_c10_final.qxd 4/7/06 1:05 AM Page 417

Testing the Installation
You can test the installation with the forrest command-line utility provided in the bin folder
of your Forrest installation. Change the working directory to your Forrest installation folder
and type the forrest -projecthelp command at the command prompt. The result of running
this command is shown in the following screen output:

C:\apache-forrest-0.7>forrest -projecthelp

Apache Forrest. Run 'forrest -projecthelp' to list options

Buildfile: C:\apache-forrest-0.7\main\forrest.build.xml

===
| Forrest Site Builder |
| 0.7 |
===

Call this through the 'forrest' command

Main targets:

available-plugins What plugins are available?
available-skins What skins are available?
clean * Clean all directories and files generated during the build
init-plugins Ensure the required plugins are available locally, if any
are not, download them automatically
install-skin Install the needed skin from the remote repository
package-skin Make a package of an existing skin
run * Run Jetty (instant live webapp)
run_custom_jetty Run Jetty with configuration file found in the project
run_default_jetty Run Jetty with configuration file found in Forrest
seed * Seeds a directory with a template project doc structure

site * Generates a static HTML website for this project
validate Validate all: xdocs, skins, sitemap, etc
validate-sitemap Validate the project sitemap
validate-skinchoice Validate skin choice
validate-skinconf Validate skinconf
validate-skins Validate skins
validate-stylesheets Validate XSL files
validate-xdocs Validate the project xdocs
war * Generates a dynamic servlet-based website (a packaged war file)
webapp Generates a dynamic servlet-based website (an unpackaged webapp).
webapp-local Generates a dynamic servlet-based website (an unpackaged
webapp). Note this webapp is suitable for local execution only, use the 'war' or
'webapp' target if you wish to deploy remotely.
Default target: site

CHAPTER 10 ■ APACHE FORREST418

6412_c10_final.qxd 4/7/06 1:05 AM Page 418

The commands marked with an asterisk (*) are the most commonly used commands.
For example, you use the seed option to create a new project based on a predefined tem-
plate. You will use this switch while creating a new site in the next section. You use the
clean option to clear the project content. You use the site option to generate a static
HTML website for the project, and you use the war option to generate a WAR file that can
be deployed on your web server for generating a servlet-based website for your project. To
test your dynamic website, you run forrest with the run option; this deploys the project
and starts a default Jetty web server.

■Note The Jetty web server gets installed on your machine as a part of the Forrest installation. Jetty is
a 100 percent Java HTTP server and servlet container developed under the guidance of Mort Bay Consulting
and released under the Apache 2.0 license. It is free for commercial use and distribution with few restric-
tions on its usage.

We will use this default web server while developing the brokerage site. It is easier to
redeploy the site on this web server after modifications are made to it.

You can use the Tomcat web server or any other commercial web server for production
use. In this case, you will need to create a WAR file for the project and deploy it on the web
server of your choice following the instructions thereupon.

You are now ready to create the stock brokerage website.

Creating the Brokerage Site
Creating a new site by using Forrest is easy. You simply need to run the provided forrest com-
mand-line utility with the appropriate parameters. Create a folder called Brokerage in the root
of your hard drive. (You can use any other name for the folder, but for the examples in this
chapter I have created the Forrest project in this folder.) Change the directory to the Brokerage
folder and execute forrest seed on the command line. The result of running this command
is shown in the following screen output:

C:\Brokerage>forrest seed

Apache Forrest. Run 'forrest -projecthelp' to list options

Buildfile: C:\apache-forrest-0.7\main\forrest.build.xml

init-props:
Created dir: C:\Brokerage\build\tmp

seed:
Copying 49 files to C:\Brokerage

CHAPTER 10 ■ APACHE FORREST 419

6412_c10_final.qxd 4/7/06 1:05 AM Page 419

~~ Template project created! ~~

Here is an outline of the generated files:

/ # C:\Brokerage
/status.xml # List of project developers, todo list and change log
/forrest.properties # Optional file describing your site layout
/src/documentation/ # Doc-specific files
/src/documentation/skinconf.xml # Info about your project used by the skin
/src/documentation/content # Site content.
/src/documentation/content/xdocs # XML content.
/src/documentation/content/xdocs/index.xml # Home page
/src/documentation/content/xdocs/site.xml # Navigation file for site structure
/src/documentation/content/xdocs/tabs.xml # Skin-specific 'tabs' file.
/src/documentation/content/xdocs/*.html,pdf # Static content files, may have sub
dirs
/src/documentation/resources/images # Project images (logos, etc)
you can create other directories as needed (see forrest.properties)

What to do now?

- Render this template to static HTML by typing 'forrest'.
View the generated HTML in a browser to make sure everything works.

- Alternatively 'forrest run' and browse to http://localhost:8888/ live demo.
- Edit status.xml and src/documentation/skinconf.xml
to customize for your project.

- Start adding content in xdocs/ remembering to declare new files in site.xml
- Follow the document http://forrest.apache.org/docs/your-project.html
- Provide any feedback to dev@forrest.apache.org

Thanks for using Apache Forrest

BUILD SUCCESSFUL
Total time: 2 seconds

Deploying the Brokerage Project
After the project is created, you need to create a WAR file and deploy it on the web server to
make it available to users. You deploy the project created in the preceding step by running the
forrest command with the run command-line switch. This starts the default Jetty server and
deploys the site on this server.

Jetty, being fully Java-based, can be easily integrated with your application distribution
and deployment. Jetty runs in the same process as your application, thereby reducing the

CHAPTER 10 ■ APACHE FORREST420

6412_c10_final.qxd 4/7/06 1:05 AM Page 420

overhead of interconnection and improving the application performance. If you prefer using
another web server, you will need to deploy the WAR file on that web server by following the
instructions thereupon.

The output produced after running this command is given in the following screen output:

C:\Brokerage>forrest run

Apache Forrest. Run 'forrest -projecthelp' to list options

Buildfile: C:\apache-forrest-0.7\main\forrest.build.xml

check-java-version:
This is apache-forrest-0.7
Using Java 1.5 from C:\Java\jdk1.5.0\jre

init-plugins:
Copying 1 file to C:\Brokerage\build\tmp
Copying 1 file to C:\Brokerage\build\tmp
Copying 1 file to C:\Brokerage\build\tmp
Copying 1 file to C:\Brokerage\build\tmp
Installing plugin: org.apache.forrest.plugin.output.pdf

check-plugin:
org.apache.forrest.plugin.output.pdf is available in the build dir

configure-output-plugin:
Mounting output plugin: org.apache.forrest.plugin.output.pdf
Processing C:\Brokerage\build\tmp\output.xmap to C:\Brokerage\build\tmp\output.x
map.new
Loading stylesheet C:\apache-forrest-0.7\main\var\pluginMountSnippet.xsl
Moving 1 files to C:\Brokerage\build\tmp

run_default_jetty:

Note: Use Ctrl-C to stop the Jetty server

... and reply 'n' and press [Enter]
when asked about aborting the batch!

14:06:34.841 EVENT Checking Resource aliases
14:06:35.912 EVENT Starting Jetty/4.2.19
14:06:36.072 EVENT Started WebApplicationContext[/,Apache Forrest]
14:06:36.213 WARN!! Delete existing temp dir C:\DOCUME~1\DRA762~1.SAR\LOCALS~1\T
emp\Jetty__8888__ for WebApplicationContext[/,Apache Forrest]
Lazy mode: false
14:06:38.646 EVENT Started SocketListener on 0.0.0.0:8888
14:06:38.646 EVENT Started org.mortbay.jetty.Server@30e280

CHAPTER 10 ■ APACHE FORREST 421

6412_c10_final.qxd 4/7/06 1:05 AM Page 421

As you can see from the screen output, the Forrest utility starts the Jetty web server and
deploys our brokerage project on it.

■Tip If you are running Forrest for the first time, you must be connected to the Internet when you use the
run switch. Forrest requires a few plugins that are automatically downloaded as a part of running Forrest
with the run switch.

You can now open the home page for the project by opening the URL http://
localhost:8888 in your browser. Figure 10-1 shows the output produced in the browser.

You can stop the Jetty server at any time by pressing Ctrl+C in the server console window.
When prompted for terminating the batch, reply n and press Enter. If you terminate the batch
by replying y, the values of ANT_HOME and CLASSPATH variables are not restored. If you rerun
Forrest in the same shell, the new classpath would be appended to the existing classpath,
making it unnecessarily long.

Though we have run the project by deploying it as a servlet, you can create a static site for
your project by using the site switch on the forrest command. This creates all the required

CHAPTER 10 ■ APACHE FORREST422

Figure 10-1. Home page for the newly created Forrest project

6412_c10_final.qxd 4/7/06 1:05 AM Page 422

files in the various folders under the build folder of your site installation. You can examine the
various created folders in the generated screen output or examine the folder hierarchy in
Windows Explorer.

After creating the static site, open the home page by opening the file file://c:/
Brokerage/build/site/index.html in your browser. You will see a page similar to the one
shown in Figure 10-1.

Examining the Project
When you create a default project, Forrest creates several files neatly organized in a tree struc-
ture. The created folder hierarchy is shown in Figure 10-2.

To customize the site, you will modify these generated files. This process is introduced next.

Customizing the Default Site’s Content
As you can see from the preceding output, Forrest creates the skeleton code and layout for
the new site. Because Forrest is XML based and provides several templates, customizing the
site is easy. You need to know only XML for customization and you can simply concentrate
on the site content and presentation.

In this section, you will carry out several customizations in the default site. You will mod-
ify the home page content, create your own tabs, incorporate images, and add menus.

CHAPTER 10 ■ APACHE FORREST 423

Figure 10-2. Default file hierarchy

6412_c10_final.qxd 4/7/06 1:05 AM Page 423

Modifying the Home Page Content
Let’s first modify the home page of the default site. To modify the content of the home page,
you do not have to write any HTML code. Instead you will write the content in an XML docu-
ment. Create an XML document called index.xml, as shown in Listing 10-1.

Listing 10-1. The index.xml Page for the StockBrokerage Site

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE document PUBLIC "-//APACHE//DTD Documentation V2.0//EN"
"http://forrest.apache.org/dtd/document-v20.dtd">
<document>
<header>
<title>Welcome to StockBrokerage</title>

</header>
<body>
<section id="intro">
<title>Introduction</title>
<p>You have logged on to the StockBrokerage Website.

We provide the latest updates on the stocks.
</p>

</section>

<section id="quote">
<title>Technical Charting</title>
<p>
You can now obtain the technical charts of the traded stocks.

</p>
</section>

<section id="order">
<title>trade</title>
<p>
You may buy/sell stocks online using our user-friendly interface.
</p>

</section>
<p>
click hereto read about rules and regulations

</p>

</body>
</document>

Replace the <your site root folder>\src\documents\contents\xdocs\index.xml file with
the index.xml file of Listing 10-1. Run the forrest run command at the command prompt to
deploy the site and start the Jetty server. Now, if you reopen the site in your browser, you will
get the output shown in Figure 10-3.

CHAPTER 10 ■ APACHE FORREST424

6412_c10_final.qxd 4/7/06 1:05 AM Page 424

Note how various XML tags are transformed into HTML code for generating the home
page. These transformations are done by using the transformer defined in the Forrest libraries.

The root element of the XML document shown in Listing 10-1 is document. Within the
document element, you have header and body elements. As their names suggest, the header
element defines the page header, and the body element defines the body content. The header
element contains a subelement called title that defines the title for the page:

<header>
<title>Welcome to StockBrokerage</title>

</header>

You can change the text content of the title tag to display a different heading than shown
in this example.

The body element defines one or more sections with the help of the section subelement.
Each section has a unique ID associated with it. Each section contains its own title defined by
the title subelement and some text information defined by the p tag:

<body>
<section id="Unique ID">
<title>Title Text goes here</title>
<p>Some Information on the current section</p>

</section>

CHAPTER 10 ■ APACHE FORREST 425

Figure 10-3. Modified home page of the StockBrokerage site

6412_c10_final.qxd 4/7/06 1:05 AM Page 425

<section id="Unique ID">
<title>Title Text goes here</title>
<p>Some Information on the current section</p>

</section>

<!-- more sections follow here -->

</body>

You can add any number of sections in the page body. Each section appears under the page
title in the order it is defined. The section descriptions follow the section titles. The appearance
of section titles and their descriptions can be seen in Figure 10-3.

Creating Your Own Tabs
By default, the generated site contains four tabs: Home, Samples, Apache XML Projects, and
Plugins. You will now replace these tabs with three tabs specific to the brokerage site: Home,
Trades, and Technical Charting. The tabs for the page are defined in the tabs.xml document.
This document is available in the folder <brokerage site folder>\src\documentation\
content\xdocs. You will replace this document with our version of the tabs.xml file shown
in Listing 10-2.

■Note The source for tabs.xml and all subsequent modifications that we perform on the site are
available under the Brokerage folder of the code downloaded from the Apress website (http://
www.apress.com). This folder name is the same as the name of the <brokerage site folder> that
you created earlier. You need to copy the suggested files from the source Brokerage folder to the
<brokerage site folder>.

Listing 10-2. Defining Tabs for the Home Page
(\Brokerage\src\documentation\content\xdocs\tabs.xml)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE tabs PUBLIC "-//APACHE//DTD Cocoon Documentation Tab V1.1//EN"
"http://forrest.apache.org/dtd/tab-cocoon-v11.dtd">

<tabs xmlns:xlink="http://www.w3.org/1999/xlink">

<tab id="" label="Home" dir="" indexfile="index.html"/>
<tab id="trades" label="Trades" dir="docs" indexfile="trades.html"/>
<tab id="quotes" label="Technical Charting" dir="docs" indexfile="chart.html"/>

</tabs>

CHAPTER 10 ■ APACHE FORREST426

6412_c10_final.qxd 4/7/06 1:05 AM Page 426

You create tabs for your home page by creating a tabs.xml document having the root
element tabs. Within the tabs element, you define several tab elements. Each tab element
has an id associated with it that uniquely identifies a tab on the page. A tab has a label
attribute that defines the text for the tab. It also contains an attribute called indexfile that
points to the document that will be opened whenever the user selects this particular tab.
The location of this document is specified in the dir attribute. The following statement
defines the Home tab:

<tab id="" label="Home" dir="" indexfile="index.html"/>

The tab label is Home. The file opened when the user selects this tab is index.html, and this
file is located in the current folder.

After copying the tabs.xml file of Listing 10-2 into the xdocs folder of our brokerage site,
you will see the output shown in Figure 10-4 when you reopen the site.

■Tip Reopening the site requires running the forrest run command and opening the URL http://
localhost:8888 in your browser. If you are creating a static site, you will need to run the forrest site

command and use the URL file:///<brokerage site folder>/build/site/index.html in your
browser.

Note the presence of new tabs in the screen output of Figure 10-4. When the user clicks
one of the tabs, the page defined in the corresponding tab element will be shown to the user.
For example, the Trades tab uses the trades.html file found in the docs folder as defined here:

<tab id="trades" label="Trades" dir="docs" indexfile="trades.html"/>

CHAPTER 10 ■ APACHE FORREST 427

Figure 10-4. Setting tabs for the StockBrokerage site

6412_c10_final.qxd 4/7/06 1:05 AM Page 427

■Note The underlying Cocoon architecture maps the URL pattern .html to an input source document of
type .xml. Thus, you will not be required to create HTML files; rather you will work only on XML documents.

Thus, you will need to create an appropriate document and store it in the docs folder.
The path is specified with respect to the <brokerage site folder>\src\documentation\
content\xdocs folder. Create a docs folder as a subfolder to the xdocs folder. Create the
trades.xml file shown in Listing 10-3 in this folder.

Listing 10-3. XML Document That Displays Today’s Trades (\Brokerage\src\documentation\
content\xdocs\docs\trades.xml)

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE document PUBLIC "-//APACHE//DTD Documentation V2.0//EN"
"http://forrest.apache.org/dtd/document-v20.dtd">
<document>
<header>
<title>Order Book</title>

</header>
<body>
<p>
Orders executed by us today

</p>
<table>
<tr>
<th>Type</th>
<th>Order</th>
<th>quantity</th>
<th>price</th>

</tr>
...

<tr>
<td>sell</td>
<td>IBM</td>
<td>200</td>
<td>90</td>

</tr>

</table>
</body>

</document >

■Note The complete listing of trades.xml is available in the <code download folder>\brokerage\

src\documentation\content\xdocs\docs\trades.xml file.

CHAPTER 10 ■ APACHE FORREST428

6412_c10_final.qxd 4/7/06 1:05 AM Page 428

The source document name that is mentioned in the trades tag is trades.html. However,
we have created an XML document called trades.xml. The default Cocoon pipeline defined in
Forrest’s sitemap (discussed later) uses the .html pattern for page match, takes the input .xml
file as a document source, transforms it to .html, and renders it as an HTML document. This
pipeline processing was explained in Chapter 7.

The page designer does not have to work with HTML coding; rather she works on an XML
document to develop the page. The XML document has header and body elements, as in the
index.xml (Listing 10-1) document discussed earlier. Within the body, we create a table by
using the table element. The tr subelement defines the rows, and the td element defines the
column content.

Figure 10-5 shows the output rendered from trades.xml.

■Note The trades.xml file rendered in Figure 10-5 is a static file and does not generate its content
dynamically as may be the case in a real-life situation.

CHAPTER 10 ■ APACHE FORREST 429

Figure 10-5. The tabular output of today’s trade orders

6412_c10_final.qxd 4/7/06 1:05 AM Page 429

Incorporating Images
Now you’re ready to incorporate a few images in our brokerage site. When the user selects the
Technical Charting tab, we will present a few technical charts to the user. For this, create a
charts.xml document as shown in Listing 10-4 and copy it to the xdocs\docs folder.

Listing 10-4. The XML Document That Incorporates Images in the Final Output (\Brokerage\
src\documentation\content\xdocs\docs\charts.xml)

<?xml version="1.0" encoding="utf-8"?>
<document>
<header>
<title>Technical Charting</title>

</header>
<body>
<section>
<title>
Single Stock Charts

</title>
</section>

Infosys

TCS

Wipro

</body >
</document>

Listing 10-4 defines three list index items and specifies the desired chart on each list index
item by specifying the link reference. The images are stored in the images subfolder relative to
the xdocs folder.

■Note These images are provided in the source download. You will need to copy them to the <brokerage
site folder>\src\documentation\content\xdocs\images folder.

If you open the brokerage site and click on the Technical Charting tab, you will see the
output shown in Figure 10-6.

Clicking one of the links will bring the corresponding image to the front. For example,
clicking the TCS link brings the tcs.jpg file in front, and clicking the Wipro link brings the
wipro.jpg file in front. This image source is specified by the href element. A typical image for
Infosys stock is shown in Figure 10-7.

CHAPTER 10 ■ APACHE FORREST430

6412_c10_final.qxd 4/7/06 1:05 AM Page 430

Adding Menus
Now you will add a few menus to our brokerage site. The menus are defined in a file called
site.xml that is situated in the xdocs folder. Replace the existing site.xml file with the new
content shown in Listing 10-5.

CHAPTER 10 ■ APACHE FORREST 431

Figure 10-6. Incorporating images in the document

Figure 10-7. Technical charting for Infosys (infosys.jpg)

6412_c10_final.qxd 4/7/06 1:05 AM Page 431

Listing 10-5. Defining Menus for the Brokerage Site
(\Brokerage\src\documentation\content\xdocs\site.xml)

<?xml version="1.0" encoding="UTF-8"?>

<site label="StockBrokerage" href=""
xmlns="http://apache.org/forrest/linkmap/1.0" tab="">

<About label="About">
<index label="Index" href="index.html"

description="Welcome to StockBrokerage"/>
<services label="Services" href="docs/services.html"

description="Services offered by us"/>
<companyinfo label="Company Info" href="docs/info.html"

description="Company Information"/>
</About >

</site>

You create an About menu with three submenus called Index, Services, and Company Info.
For each submenu, you define the HTML document to open by specifying its name in the
value of the href attribute:

<services label="Services" href="docs/services.html"
description="Services offered by us"/>

The label attribute defines the menu text, and the description attribute defines the
ToolTip text that is displayed when the mouse hovers over the menu item.

As in earlier examples, you need not create an HTML document for the menus; instead
you will create XML documents that will be transformed by the Forrest runtime into the
HTML code for rendering on the browser. You will create three XML documents: index.xml,
services.xml, and info.xml. We have already discussed the construction of index.xml under
Listing 10-1. The services.xml and info.xml files should be created in the docs folder because
the href path in site.xml specifies this location. These files are provided in the code down-
load. Clicking on the corresponding submenus results in opening these files.

The screen output after adding the site.xml file of Listing 10-5 and copying the
services.xml and info.xml files in the xdocs\docs folder is shown in Figure 10-8.

CHAPTER 10 ■ APACHE FORREST432

6412_c10_final.qxd 4/7/06 1:05 AM Page 432

Modifying the Site’s Appearance
Forrest allows you to modify the site looks easily by using one of the provided skins. A skin is a
sort of stylesheet that defines the page layout and its looks for your web page. Forrest provides
several skins that you must first install on your machine before you use them on your site. You
can also download skins developed by third parties and install them on your machine.

Installing Provided Skins
As I said, Forrest comes with several predefined skins. When you build Forrest, these skins are
installed in your project. Examine the contents of the <forrest installation folder>\main\
webapp\skins folder. You will notice the presence of several files and folders, as shown in
Figure 10-9.

CHAPTER 10 ■ APACHE FORREST 433

Figure 10-8. Adding customized menus to the brokerage site

6412_c10_final.qxd 4/7/06 1:05 AM Page 433

CHAPTER 10 ■ APACHE FORREST434

Figure 10-9. Skins provided by Forrest

6412_c10_final.qxd 4/7/06 1:05 AM Page 434

Each skin uses its own folder name. Thus, pelt and tigris are two such skins, as seen in
the preceding output. The names ending with -dev, such as plain-dev, indicate that these
skins are still under development.

You will use these folder names as skin names in your properties file to modify the site’s
looks. You set the desired skin for your site by modifying the forrest.properties file in your
brokerage site folder. If you open this file in your text editor, you will notice that it defines
several property settings for your project. By default, all these settings are commented. To set
the site looks, you will need to uncomment the project.skin property and set its value to a
certain predefined value as shown here:

Specifies name of Forrest skin to use
See list at http://forrest.apache.org/docs/skins.html
project.skin=tigris

The skin is now set to tigris. If you set the skin to tigris and open the site, you will see
the output shown in Figure 10-10.

■Note You will need to restart the Jetty server each time you modify the properties file to see the effects
of the modifications.

CHAPTER 10 ■ APACHE FORREST 435

Figure 10-10. Effect of changing the skin

6412_c10_final.qxd 4/7/06 1:05 AM Page 435

Installing Third-Party Skins
You can also develop your own skins. Nicola Barozzi has created skins and made them avail-
able on his site (http://people.apache.org/~nicolaken/). These skins can be downloaded
from the following URL:

http://people.apache.org/~nicolaken/whiteboard/forrestskins/

Two skins are listed at this URL, and both are available in downloadable zip format. These
skins are named testskin and testskin2-0.5. Download these archives and unzip them into
the C:\<forrest installation folder>\main\webapp\skins folder. Now install them by using
the following command:

C:\<forrest installation folder>\forrest package-skin

This command asks you to enter the name of the skin that you want to install. Specify the
skin name at the command prompt when asked.

Now the skins are ready for your use. Edit the forrest.properties file and change the skin
definition to testskin as shown here:

Specifies name of Forrest skin to use
See list at http://forrest.apache.org/docs/skins.html
project.skin=testskin

Reopen the site and you will see the output shown in Figure 10-11.

CHAPTER 10 ■ APACHE FORREST436

Figure 10-11. Applying testskin to the brokerage site

6412_c10_final.qxd 4/7/06 1:05 AM Page 436

Customizing Skins
In the previous section, you changed the skin in the forrest.properties file to change the site
looks. You can further customize the site’s appearance by modifying the default values defined
for the selected skin in the skinconf.xml file. The skinconf.xml document is located in <site
installation folder>\src\documentation. You will modify this file to alter the site looks further.

Setting Your Company Logo
We will first replace the default logo with our company’s logo. The default page contains two
logos, one for your company’s group and the second one for the current project. The company
logo is defined by setting the value of the group-logo element. Change this value to the name
of our company’s logo file as shown:

<group-logo>images/ais.jpg</group-logo>

We will not display any project logo. For this, comment the statement containing the
project-logo element as follows:

<!-- <project-logo>images/project.png</project-logo> -->

Copy the supplied ais.jpg file to the site’s images folder and reopen the site. You will see
the output shown in Figure 10-12.

Setting Colors
Now we will set colors for different regions of the page. You set the colors by setting the value
of the color element in the skinconf.xml file. The skinconf.xml file contains a colors element
that in turn defines a color subelement. A color subelement contains an attribute called name

CHAPTER 10 ■ APACHE FORREST 437

Figure 10-12. Effect of setting the company logo

6412_c10_final.qxd 4/7/06 1:05 AM Page 437

that defines the page region, and another attribute called value that defines the color for the
selected region. The following example shows how to set the color for the page header to cyan:

<colors>
<color name="header" value="#00FFFF"/>

</colors>

To change the footer color, you use the following declaration:

<color name="footer" value="#FF00FF"/>

■Note The screen output of the color changes is not shown here because the changes may not be
properly visible in black-and-white print.

The color values are set as RGB values, where each color value is written as a hexadecimal
number between 0 (hex) and FF (hex).

■Tip The skinconf.xml file contains color schemes for the various skins. These are originally com-
mented in the file. You can uncomment all or the desired color elements for a skin of your choice.

Setting the Copyright Information
The copyright information displayed at the bottom of the screen is controlled by the year and
vendor elements. Modify the values of these elements as follows:

<year>2006</year>
<vendor>The Stock Brokerage</vendor>

The copyright at the bottom of the page will now display the new information.

■Note I encourage you to study the contents of the skinconf.xml document to understand the purpose
of the remaining configuration elements (which are mostly self-explanatory).

Customizing Forrest Properties
When you create a new Forrest site, the contents are organized in a predefined folder hierar-
chy. You might want to customize the folder hierarchy for your own purposes. You do this by
setting certain properties discussed in this section.

CHAPTER 10 ■ APACHE FORREST438

6412_c10_final.qxd 4/7/06 1:05 AM Page 438

Your site may be running behind a firewall. In such cases, you may need to configure the
proxy to access the site. Again, you will need to set a few properties for configuring the proxy.
This is discussed in the next section.

Changing the Folder Hierarchy
When you seed a project, Forrest creates a default folder hierarchy as shown in Figure 10-13.

Forrest organizes various documents under these folders. You might want to set up your
own folder hierarchy for organizing the documents. This can be easily configured by modify-
ing a few elements in the forrest.properties file. The forrest.properties file contains
declarations shown in Listing 10-6 that define the directory structure for your site.

Listing 10-6. Properties That Define the Directory Structure for the Site

#project.content-dir=src/documentation
#project.raw-content-dir=${project.content-dir}/content
#project.conf-dir=${project.content-dir}/conf
#project.sitemap-dir=${project.content-dir}
#project.xdocs-dir=${project.content-dir}/content/xdocs
#project.resources-dir=${project.content-dir}/resources
#project.stylesheets-dir=${project.resources-dir}/stylesheets
#project.images-dir=${project.resources-dir}/images
#project.schema-dir=${project.resources-dir}/schema
#project.skins-dir=${project.content-dir}/skins
#project.skinconf=${project.content-dir}/skinconf.xml
#project.lib-dir=${project.content-dir}/lib
#project.classes-dir=${project.content-dir}/classes
#project.translations-dir=${project.content-dir}/translations

CHAPTER 10 ■ APACHE FORREST 439

Figure 10-13. Forrest's default folder hierarchy

6412_c10_final.qxd 4/7/06 1:05 AM Page 439

By default, these properties are commented. Uncomment the desired properties and set
their values to the appropriate desired values to change the directory structure.

Configuring Proxy Settings
Another important property that you will be required to set if you are behind the firewall is the
proxy setting. The proxy settings are configured by uncommenting the host and the port set-
tings and setting their appropriate values as follows:

Proxy configuration
proxy.host=
proxy.port=

Adding External Documents
You may have several documents created in different formats such as HTML, PDF, or even
Text. You might not be able to convert these into the XML format required by Forrest because
of a lack of time or permissions to modify them. For example, a stock exchange may publish
its rules and regulations to do business on the stock exchange as a Text or a PDF document.
Obviously, you would not want to convert this into XML format. Forrest allows you to include
such documents directly in your Forrest site. To include a document, you need to simply cre-
ate an HTML link in your source document and ensure that the target document is available
in the specified path.

Including a Text Document
We will now create a link to the rules and regulations page provided by the stock exchange.
Let’s assume that this page is available only in Text format. We will store this page in the docs
folder of our brokerage site. The file called rules.txt is supplied in the code download. You
will create a link to this page by adding the following lines of code in the index.xml file before
the closing body tag:

...
<p>
Click here to read about rules and regulations

</p>
</body>

After making these modifications, reopen the index page and click the created link. This
opens the rules.txt file, as displayed in Figure 10-14.

CHAPTER 10 ■ APACHE FORREST440

6412_c10_final.qxd 4/7/06 1:05 AM Page 440

Including PDF Documents
In Chapter 7, you looked at the construction of a few PDF documents while developing the
application for the stock brokerage. One such PDF document listed all orders placed today for
a particular stock. Because this PDF file is already created by another application running at
the stock brokerage, we will provide a link on our page to directly open this PDF document.
We will create a link in our trades.xml file. Add the following lines of code in the body element
after the closing table tag in the trades.xml document:

...
</table>
<p>

Click here to see all orders for
AFK stock today.

</p>
</body>

Now, if you reopen the trades page by clicking the Trades tab, you will see the preceding
line appear below the trades table. Clicking the displayed link will open the PDF document,
as shown in Figure 10-15.

CHAPTER 10 ■ APACHE FORREST 441

Figure 10-14. Opening an external Text document

6412_c10_final.qxd 4/7/06 1:05 AM Page 441

Further Enhancing the Page’s Appearance
Forrest allows you to easily improve the page’s looks by providing a few elements such as
note, figure, and icon. The note element inserts a nicely formatted note on the web page.
To see its effect, enclose the previous rules and regulations link on the index page in the
note tag as shown here:

<note>
Click here to read about rules and regulations

</note>

If you now reopen the index page, you will see the screen shown in Figure 10-16.

CHAPTER 10 ■ APACHE FORREST442

Figure 10-15. Opening an external PDF

6412_c10_final.qxd 4/7/06 1:05 AM Page 442

Likewise, you can insert an image or an icon anywhere in your XML document by using
the img or icon elements as shown here:

<p>

</p>
<p>
<icon height="22" width="26" src="../images/icon.png" alt="feather"/>

</p>

The inclusion of the img element results in displaying the image document specified by
the src attribute at the current location on the page. The inclusion of the icon element results
in displaying the icon specified by the src attribute at the current location.

Rendering Web Page Content
Because Forrest uses Cocoon architecture, it is easy to render the web page content into various
output formats, such as PDF, Text, XML, and so on. Forrest uses the Cocoon-provided transform-
ers to transform the page content. Thus, if a new transformer is made available by Cocoon or if
you develop your own transformer and a serializer,5 you will be able to render the web pages of
your Forrest site into these new formats.

CHAPTER 10 ■ APACHE FORREST 443

Figure 10-16. Effect of using a note element

5. Refer to Chapter 7 for a discussion on transformers and serializers in the Cocoon pipeline.

6412_c10_final.qxd 4/7/06 1:05 AM Page 443

Rendering to PDF
You may have noticed the PDF icon and a link at the top-right side of each page of our broker-
age site. Clicking this link transforms the page content into a PDF and opens it in a PDF reader
if you have one installed on your machine. Figure 10-17 shows the output produced by click-
ing the PDF link on the index page.

The presence of this link is controlled by the value of the disable-pdf-link element in the
skinconf.xml document discussed earlier. The default value for this element is set to false as
shown here:

<!-- Disable the PDF link? -->
<disable-pdf-link>false</disable-pdf-link>

If you set this value to true, the PDF icon will disappear from your web pages.

Adding Support for Other Formats
As mentioned earlier, you can add support for other output formats such as Text, XML and so
on. To add support for Text format, set the value of the disable-txt-link element to false as
shown here:

<disable-txt-link>false</disable-txt-link>

Now, if you reopen the page, you will see a link for the text output next to the PDF link, as
shown in Figure 10-18.

Clicking the displayed link produces the output shown in Figure 10-19.

CHAPTER 10 ■ APACHE FORREST444

Figure 10-17. PDF output of the index page

6412_c10_final.qxd 4/7/06 1:05 AM Page 444

You can enable the XML output by setting the disable-xml-link element value to false as
shown here:

<disable-xml-link>false</disable-xml-link>

Now you will be able to render the page content in Text format.

CHAPTER 10 ■ APACHE FORREST 445

Figure 10-18. Home page displaying the Text link

Figure 10-19. Text output of the index page

6412_c10_final.qxd 4/7/06 1:05 AM Page 445

■Note You must provide the Text document index.txt in the content folder of your site.

Similarly, you can add printer support by setting the disable-print-link element value to
false as shown here:

<disable-print-link>false</disable-print-link>

Enabling printer support allows you to print the current page to any printer installed on
your machine.

Adding External RSS Content
Suppose our brokerage wants to incorporate external RSS content such as Yahoo! Stock
Markets News on their website. Adding such content is easy because of the underlying
Cocoon pipeline architecture used by Forrest. To include external RSS content, you need to
add a new match pattern element to the Cocoon pipeline defined in the sitemap.xmap docu-
ment of the brokerage site. Add the lines shown in boldface to the sitemap.xmap file:

<map:match pattern="**.xml">
<map:call resource="transform-to-document">
<map:parameter name="src" value="{project:content.xdocs}{1}.xml" />

</map:call>
</map:match>
<map:match pattern="**news.xml">
<map:generate src="http://rss.news.yahoo.com/rss/stocks"/>
<map:serialize type="xml"/>

</map:match>
</map:pipeline>

The match pattern used is news.xml. Thus, if the brokerage site opens a URL that ends
with news.xml, the RSS feed from Yahoo! will be displayed on the screen. For example, you can
try the URL http://localhost:8888/news.xml in your browser. The screen output in this case
is shown in Figure 10-20.

The pipeline takes the content of the RSS feed as a source and renders it as an XML docu-
ment on the browser. Note that you could add a transformation in the pipeline to transform
the input document into any desired format by adding the transform element in the pipeline.

CHAPTER 10 ■ APACHE FORREST446

6412_c10_final.qxd 4/7/06 1:05 AM Page 446

Creating Short Names to External Links
When you integrate external content, you need to specify the URI for the external content
source on your web page. You can include this URI at several places on your site. If the URI
changes in the future, you will need to modify all its occurrences on the site. This can be
time-consuming and sometimes unmanageable.

Forrest allows you to create a shorter name for such URIs and use this short name any-
where you want on the site. Because the definition of the short name is stored in a centralized
place, managing changes to it becomes easy if the URI changes anytime. For example, you can
create an external reference called market by adding the following lines of code in your
site.xml document:

...
<external-refs>
<market href="http://www.nyse.com/"/>

</external-refs>
</site>

You can now use this reference name anywhere on your site page as follows:

Click here to visit NYSE site.

CHAPTER 10 ■ APACHE FORREST 447

Figure 10-20. Integrating external RSS content

6412_c10_final.qxd 4/7/06 1:05 AM Page 447

When the user clicks on the displayed link, the NYSE home page will open. Should the
NYSE site change its URL in the future, you would simply need to modify the href attribute
value in the market definition.

Deploying the Forrest Site on Other Web Servers
You have created and tested Forrest sites on the provided default Jetty web server. If you prefer
to deploy the created site to any other server of your choice, it is a simple task. Simply run the
following command from your site folder:

{site folder}>forrest site

This creates all the required files under the build\site folder of your site folder. After this
is done, copy the site folder under the public folder of your web server. Restart the web server
if your web server requires it to make the changes visible. Now, open the URL http://
localhost:port/<site folder>/build/site/index.html in your browser to see the site.

Summary
In this chapter, you studied one of the important Apache projects that can help you create a
website or the documentation for an existing site. This project is called Apache Forrest. Forrest
uses several other Apache projects discussed in this book. It is mainly based on Cocoon, which
defines a pluggable, easily configurable component architecture for creating static and dynamic
web pages and for rendering web page output in several different formats. The Cocoon architec-
ture in turn uses several other Apache XML APIs such as XSLT, parsing, and so on.

This chapter took the approach of using Forrest to create a new website rather than to cre-
ate documentation for the existing site. You created a new site for the brokerage case study of
Chapter 2. Forrest allows the easy creation of a new site that is customized later to suit one’s pur-
pose. The customization involves modifications to the XML-based configuration files. To use
Forrest, you need not know anything other than XML. You can create fancy sites that are easy to
navigate and customize, and you don’t need to possess the knowledge of Java programming or
HTML coding. The Forrest-created site can be customized for its content, its appearance, and its
navigation. You learned the techniques of achieving such customizations in this chapter.

Forrest allows you to include both static and dynamic content on the site. It allows you
to link documents in different formats and even take inputs from different sources such as
RSS feeds.

Basically, this chapter served the purpose of consolidating the use of several Apache XML
projects for real practical use.

CHAPTER 10 ■ APACHE FORREST448

6412_c10_final.qxd 4/7/06 1:05 AM Page 448

Linux Installations

This appendix provides comprehensive instructions for installing on Linux- and Unix-like oper-
ating systems all the software that is required for running applications discussed in the book.
The JDK installation is common and is required by all the examples in this book. Thus, it is listed
first. Following that section, the installation procedures are listed by chapter for your conven-
ience. Also, any installation instructions presented in earlier chapters are not repeated here.

JDK 1.5.0
You can download the jdk-1_5_0_06-linux-i586.rpm archive from the following URL:

http://java.sun.com/j2se

Double-clicking on this installer guides you through the various steps of installation.
These steps are not exhaustive; they simply ask you to accept the license agreement and
specify the folder where you would like to install the software.

After installing the software, you need to set the JAVA_HOME environment variable, which
you do by using the following command:

export JAVA_HOME=/usr/java/jdk1.5.0

Add the bin folder to your PATH environment variable as follows:

export PATH=$PATH:$JAVA_HOME/bin

■Note The environment variables can be set permanently by adding the given commands to the
\etc\profile file. To make the changes visible, use the source command.

449

A P P E N D I X A

■ ■ ■

6412_appA_final.qxd 4/7/06 1:02 AM Page 449

Chapter 2
You need to install Apache Xerces, XMLBeans, and Ant to run the applications found in
Chapter 2.

Apache Xerces
You can download Apache Xerces project code from one of the following URLs:

http://xml.apache.org/xerces2-j/

or

http://archive.apache.org/dist/xml/xerces-j/

The Apache Xerces project is available in binary and source distribution. You can down-
load the Xerces-J-bin.2.7.1.tar archive and unzip it to the desired folder. After installing
software, add the xml-apis.jar file to your classpath as follows:

export CLASSPATH=$CLASSPATH:/usr/xerces/xml-apis.jar

Apache XMLBeans
You can download Apache XMLBeans project code from the following URL:

http://xmlbeans.apache.org/

Download the xmlbeans-current.tgz archive and unzip it to the desired folder. Update
your environment by using the following commands:

export XMLBEANS_HOME=/usr/xmlbeans
export PATH=$PATH:$XMLBEANS_HOME/bin

Apache Ant
The Apache Ant project is available in binary and source distribution. You can download the
binary distribution from the following URL:

http://ant.apache.org/bindownload.cgi

Unzip the archive to the desired folder and update your environment as follows:

export ANT_HOME=/usr/ant
export PATH=$PATH:$ANT_HOME/bin

APPENDIX A ■ LINUX INSTALLATIONS450

6412_appA_final.qxd 4/7/06 1:02 AM Page 450

Chapter 4
Running applications from Chapter 4 requires you to install the Tomcat web server and
Apache SOAP toolkit.

Apache Tomcat
You have to download apache-tomcat-5.5.9.tar.gz from the following URL:

http://archive.apache.org/dist/jakarta/tomcat-5/

Unzip the archive to the desired folder. Set the environment by using the following
commands:

export CATALINA_HOME=/usr/tomcat
export PATH=$PATH:/$CATALINA_HOME/bin

You can run the Tomcat server by using the following command:

./startup.sh

The command to shut down the server is as follows:

./shutdown.sh

You can test the Tomcat installation by opening the following URL in the browser:

http://localhost:8080

Apache SOAP
You can download the Apache SOAP toolkit from the following URL:

http://mirrors.isc.org/pub/apache/ws/soap/version-2.3.1/

Apache SOAP is available in binary and source distribution. If you are using the binary
distribution, simply unzip the downloaded archive. Copy the soap.war file to the webapps
folder of the Tomcat installation and restart the Tomcat server if you are running it. Make sure
that you have the mail.jar and activation.jar files in the shared\lib folder of the Tomcat
installation. Now you can test the installation by opening the following URL in the browser:

http://localhost:8080/soap

APPENDIX A ■ LINUX INSTALLATIONS 451

6412_appA_final.qxd 4/7/06 1:02 AM Page 451

Chapter 5
Running applications from Chapter 5 requires you to install code for the Apache Xalan project.

Apache Xalan
The Apache Xalan project code is available in binary and source distribution. You can down-
load it from the following URL:

http://xalan.apache.org/

Unzip the downloaded binary archive to the desired folder. Add the required JAR files to
your classpath as follows:

export CLASSPATH=$CLASSPATH:/usr/xalan/xalan.jar:/usr/xalan/xsltc.jar

Chapter 6
Running examples from this chapter requires you to install the Apache FOP project code.

Apache FOP
The Apache FOP project code is available in binary and source distribution. You can download
it from the following URL:

http://xmlgraphics.apache.org/fop/download.html

Download the fop-current-bin.tar.gz archive and unzip it to the desired folder. Add the
required JAR file to your classpath as follows:

export CLASSPATH=$CLASSPATH:/usr/fop/xml-apis.jar

Chapter 7
This chapter requires you to install Cocoon on your machine.

Apache Cocoon
Download the cocoon-2.1.8-src.tar archive from the following URL:

http://cocoon.apache.org/

Unzip the downloaded archive file to the desired folder. You have to build Cocoon to
create a WAR file. You can do this by running the build.sh file as follows:

./build.sh war

This will create a cocoon.war file in the \build\cocoon directory of the Cocoon installation
folder. Copy this WAR file to the webapps folder of your Tomcat installation and restart Tomcat
if it is already running. Test your installation by opening the following URL in the browser:

http://localhost:8080/cocoon

APPENDIX A ■ LINUX INSTALLATIONS452

6412_appA_final.qxd 4/7/06 1:02 AM Page 452

Chapter 8
Running applications from this chapter requires you to install XML-Security project code on
your machine.

Apache XML-Security
Download the distribution archive from the following URL:

http://xml.apache.org/security/dist/java-library/

Unzip the archive to the desired folder. Modify the classpath by using the following
command:

export CLASSPATH=$CLASSPATH:/usr/xml-security/libs/xmlsec-1.3.0.jar

Chapter 9
Running applications from this chapter requires you to install Apache Xindice project code on
your machine.

Apache Xindice
Download the xml-xindice-1.0.tar.gz archive from the following URL:

http://xml.apache.org/xindice/download.cgi

Unzip the archive to the desired folder. You have to set the XINDICE_HOME environment
variable to the Xindice installation folder. You have to add $XINDICE_HOME\bin to your path so
that you can use xindice and xindiceadmin commands from anywhere. Modify the environ-
ment by using the following commands:

export XINDICE_HOME=/usr/xindice
export PATH=$PATH:$XINDICE_HOME/bin

You should have the JAVA_HOME variable set to the Java installation folder to run the
Xindice server. The classpath has to be modified to include the xindice.jar file:

export CLASSPATH=$CLASSPATH:/$XINDICE_HOME/java/lib/xindice.jar

You can run the Xindice server by using the following command:

cd $XINDICE_HOME
./start

APPENDIX A ■ LINUX INSTALLATIONS 453

6412_appA_final.qxd 4/7/06 1:02 AM Page 453

Chapter 10
Running applications from this chapter requires you to install Apache Forrest project code on
your machine.

Apache Forrest
You can download Apache Forrest code from the following URL:

http://www.apache.org

Unzip the downloaded apache-forrest-0.7.tar.gz file to the desired folder. Create
a new environment variable called FORREST_HOME and set its value to your installation folder
of Forrest. Also add FORREST_HOME to your path. This can be done as follows:

export FORREST_HOME=/usr/forrest
export PATH=$PATH:$FORREST_HOME/bin

APPENDIX A ■ LINUX INSTALLATIONS454

6412_appA_final.qxd 4/7/06 1:02 AM Page 454

■Symbols
!= XPath operator, description of, 207
“ (double quotes)

replacement for, 4
using in Xindice, 383

& (ampersand), replacement for, 4
‘ (single quote), replacement for, 4
* (asterisk)

appearance next to Forrest commands,
419

quantity specifier used with DTDs, 16
using with digital signatures, 333–334
wildcard used in XPath queries, 204
XPath operator, 207

+ (plus)
quantity specifier used with DTDs, 15
XPath operator, 207

- (dash) XPath operator, description of, 207
. and .. expressions in XPath, descriptions of,

201
... (ellipsis), using in generate element, 294
/ expression

description of, 201
using with XSLT documents, 212

// expression in XPath, description of, 201
< (left angle bracket)

as less than XPath operator, 207
replacement for, 4
using with markup, 5

= XPath operator, description of, 207
> (right angle bracket)

as greater than XPath operator, 207
replacement for, 4
using with markup, 5

? quantity specifier, using with DTDs, 16
@ expression in XPath, description of, 201
@* wildcard, using in XPath queries, 204
| (pipe character)

combining XPath paths with, 205
description of, 207
using with DTD elements and

subelements, 15

■Number
128-bit symmetric key, generating with AES,

363

■A
About menu, creating with Forrest, 432
ac command in Xindice, adding collection

with, 379
actions element of sitemap document,

overview of, 294–295
actor attribute of SOAP message, overview

of, 116
AddDocument.java application, running,

392, 395, 398
addFiles method, using with Xindice

collections, 395–396
addmultiple command in Xindice, using, 380
addNewCustomer method, calling in

XMLBeans, 101
Admin tool, deploying RPC-style web service

with, 159
administrator utilities, running for Tomcat,

154
AES (Advanced Encryption Standard)

algorithm, using with
EncryptPO.java application, 363

algorithms, examples of, 343
all tags, using in XML document, 30–31
ampersand (&), replacement for, 4
ancestors of nodes, specifying with XPath

axes, 205, 207
and XPath operator, description of, 207
annotation tag, using with XML schemas, 24
anonymous types

creating, 35
using with XML schemas, 27–28

Ant build file, running modified trade order
application with, 93

Ant tool
downloading for Linux installation, 450
running application for counting

customers with, 89
using with XMLBeans, 83–84

ANY keyword, using with DTD elements, 14
Apache Ant. See Ant tool
Apache Avalon framework website, 322
Apache Cocoon. See Cocoon
Apache FOP. See FOP (Formatting Objects

Processor)
Apache Forrest. See Forrest

Index

455

6412_idx_final.qxd 4/7/06 1:03 AM Page 455

Apache SOAP. See SOAP (Simple Object
Access Protocol)

Apache Tomcat. See Tomcat
Apache website, downloading Cocoon

source from, 282
Apache Xalan. See Xalan
Apache Xerces

downloading code for, 46
downloading for Linux installation, 450
obtaining ready-to-use-parser from, 41

Apache Xindice. See Xindice
Apache XML-Security. See also security

terminology
downloading Java libraries for, 339
downloading for Linux installation, 453

Apache XMLBeans. See XMLBeans
asterisk (*)

appearance next to Forrest commands,
419

quantity specifier used with DTDs, 16
using with digital signatures, 333–334
wildcard used in XPath queries, 204
XPath operator, 207

asymmetric cryptography, overview of, 332
ATTLIST keyword, using with DTDs, 16
attributes

defining in XML schema, 21
of Header element in SOAP message,

116
selecting in XPath, 201
specifying minimum and maximum

occurrences of, 23
using specifiers with, 21, 23
writing for DTDs, 16–17

authentication, overview of, 328
authorization, overview of, 328
Avalon framework website, 322
axes, overview of, 205–206

■B
background color, setting in XSL-FO, 257
backing up data with xindiceadmin utility,

412
binding element of WSDL document,

example of, 135–136
bindingTemplate data structure in UDDI,

example of, 142, 144
birds.xsl file, examining XSL commands in,

198
block

declaring in region body, 256
setting properties for, 248

block area of XSL-FO documents, overview
of, 245

block element
creating in XSL-FO document, 262
creating in XSL-FO table cell, 257
example of, 247

Body element in SOAP message
document fragment embedded in, 127
explanation of, 114
overview of, 120–121

border, defining for table in XSL-FO, 256
boxes.svg code sample, 250
Broker.xslt document, 225
Brokerage collection, removing, 392
brokerage site, creating with Forrest, 419,

423
Brokerage.xslt document, 226
BrokerAppEx application

deploying, 179
running, 179, 181

BrokerDatabase.java code sample, 387–91
BrokerFaultHandler class, implementing

fault method with, 177
BSF script deployment descriptors, using,

192
build file, compiling XSL-FO servlet code

with, 272
build script, using with Cocoon source, 282
BuildTree method

building DOM in-memory tree structure
with, 71

parsing documents with, 76
businessEntity structure in UDDI

description of, 142
example of, 143

businessService structure in UDDI
description of, 142
example of, 144

■C
CachedXPathAPI, instantiating for partial

processing of XML document, 221
canonical XML

transforming input document to, 343
using for signature processing, 338

canonicalization, performing in
CertifiedPO.java application, 356

CAs (certificate authorities)
requesting digital certificates from, 352
sending key pairs to, 351
sending public keys to, 335

catalog elements, specifying for i18n
transformation, 304

CCITT X.509, relationship to digital
certificates, 336

CDATA element
enclosing data with, 7
using with DTDs, 17

■INDEX456

6412_idx_final.qxd 4/7/06 1:03 AM Page 456

certificates. See digital certificates
CertifiedPO.java application, running, 353,

355–358
character data, including in slide element, 15
character restrictions, examples of, 4
Characters event, generating relative to SAX

parser, 48
characters event handler, calling for SAX

document, 62
characters method

overriding, 61–62
using with DefaultHandler class in SAX

API, 65
charts.xml code sample, 430
checkSignatureValue method, verifying

documents with, 359
checksum

using in cryptography, 329
using with digital signatures, 333

child collections
listing for RemoveAllDocuments.java

application, 403
listing in ListDocs.java application, 401

child elements, using with DTDs, 13
child nodes, selecting in XPath, 201
children, obtaining in document-style web

service, 171
choice attribute types, using with DTDs, 17
choice tags, using in XML documents, 31
cipher

adding keyInfo object to, 365
initializing for decrypt mode, 371
initializing for wrapping KEK, 364

ciphertext
definition of, 329
using in EncryptPO.java application, 364

class libraries, importing for JSP server-side
transformations, 218

classes, mapping roles to in Cocoon, 322
client code

writing for document-style web services,
173, 175

writing for RPC-style web services, 161,
163

Client faultcode element in SOAP message,
overview of, 122

clients
developing for RPC-style web services, 161
running for document-style web service,

176
running for RPC-style web services, 164
writing for StockInfoService, 184, 188

Cocoon
creating Tomcat installation of, 282
deployment of, 321
development of, 280–281

downloading for Linux installation, 452
history of, 281
mapping roles to classes in, 322
overview of, 279
relationship to Forrest, 416–417
serializers in, 308
UML sequence diagram for HttpRequest

handling, 323
Cocoon application

creating input source document for, 287
creating sitemap for, 289–290
defining serializer for, 289
defining transformation for, 287–288
defining transformer for, 290
deploying and running, 290

Cocoon configuration parameters
for data sources, 324
for mail servers, 324
for parsers and processors, 323
for performance, 323

Cocoon Hello World example, converting
input source documents with, 301

Cocoon installation, testing, 283
Cocoon library, text serializer in, 296–297
Cocoon pipeline architecture

generator in, 285
matchers in, 286
overview of, 284–285
serializer in, 286
transformer in, 285

Cocoon software, building and installing,
282–283

Cocoon source, downloading, 282
Cocoon start-up, UML sequence diagram for,

322
Cocoon transformer classes. See also

transformers
examples of, 302
i18n transformer, 303

Cocoon XML Server Pages. See XSP (XML
Server Pages)

Cocoon XSP processing model versus JSP,
317

cocoon.jar file, generating, 282
cocoon.war file

creating, 282
URL used with, 284

cocoon.xconf configuration file, loading, 322
collections

adding documents to in XML:DB API, 392,
398

creating for XML databases, 379
creating subcollections for XML

databases, 379
creating with XML:DB API, 387, 391
deleting in Xindice to avoid exception, 391

■INDEX 457

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 457

colors, setting in Forrest, 437
column width, setting in XSL-FO, 257
columnar text, creating in XSL-FO

documents, 258, 264
command interface, deploying RPC-style

web service with, 160–161
command line, deploying server for

document-style web service from,
173

command prompt, creating translets at, 232
command-line transformation tool, using

with Xalan, 214
comments, including user-written

comments in XML documents, 6
company logo, setting in Forrest, 437
complex types. See also elements-only

complex types
creating anonymous complex types, 35
creating named complex types, 34–35
defining with mixed attribute, 33
empty complex types, 28
nonempty complex types, 28

components
declaring in Cocoon, 309
defining for i18n transformer, 304
overview of, 291
subelements of, 309

console application, creating to count
customers in purchase orders, 87, 90

content handlers, setting in push filtering
model, 231

ContentHandler interface, using with
DefaultHandler class in SAX API, 65

copyright information, setting in Forrest, 438
count value, printing on user console, 56
countCustomers method, calling, 89
countQuantity Boolean variable, setting to

true, 61
Cover.fo cover page, creating, 239
Cover.fo file sample, 273
Cover.pdf file, creating, 242, 273
coverpage.pdf match pattern, defining, 298
coverpage.xml document, using as source

document for pipelines element,
287, 296

createDocument method, using with
SignedPO.java application, 343

createOrderDocument method, calling in
XMLBeans, 100

cryptography
asymmetric cryptography, 332–334
digital certificates, 335–336
digital signatures, 333, 335
overview of, 329, 331
symmetric cryptography, 331–334

CSS (Cascading Style Sheets) versus XSL, 198

custom exception handlers. See also
exception handling

registering, 178–179
writing, 177

custom exception, throwing, 177–178
customer array, obtaining in XMLBeans, 92
Customer elements

counting for order document, 55
including in Orders element, 85

customer ID parameter, changing in
XMLBeans, 93

Customer inner interface, creating, 86
CustomerID class variable, creating for

Orders.xml application, 75
CustomerOrders.xml file

applying XSLT template to, 214
applying transformations to, 224, 232
transforming with translet, 233
accessing complete code for, 208

customers
counting in Orders.xml document, 69–70
counting in purchase orders, 87, 90

customers template, defining in XSLT
document, 213

■D
DailyOrders collection

adding orders to, 380
listing indexes in, 412

data
backing up with xindiceadmin utility, 412
exporting with xindiceadmin utility, 412
extracting with parsers, 40–41
importing with xindiceadmin utility, 413

data sources, setting up in Cocoon, 324
data type mappings, using in Apache SOAP,

181, 189
data types

mapping, 186
using derived types with XML schemas, 25
using simple data types in XML schemas,

24, 28
database driver

loading for AddDocuments.java
application, 395–396

loading for BrokerDatabase.java
application, 389

loading for DeleteNode.java application,
406

loading for ListDocs.java application, 400
loading for Xindice database, 389

dc (delete_collection) command in xindice
utility, using, 391

decryption, definition of, 329. See also XML
decryption

■INDEX458

6412_idx_final.qxd 4/7/06 1:03 AM Page 458

DecryptPO.java application, running, 368,
370–371

default namespaces, using, 10–11
default specifier, using with attributes in

XML schema, 22–23
DefaultHandler class

description of, 55
using with SAX API, 65

definitions element of WSDL document
example of, 132
nested elements in, 132

delete messages in publishing API,
descriptions of, 147–148

DeleteNode.java application, running,
405–409

deployment descriptors
BSF script deployment descriptor, 192
for custom exception handler, 178–179
EJB deployment descriptor, 191
modifying to map Java objects, 183
standard Java class deployment

descriptors, 190–191
structure of, 190, 192
using with Apache SOAP, 189, 193
writing for QuoteService, 160

derived types, using with XML schemas, 25
DES key specs, constructing for

DecryptPO.java application, 370
descendants of nodes, specifying with XPath

axes, 205, 207
detached XML signature, description of, 338
detail element of SOAP message, example of,

125
Diffie-Hellman algorithm website, 342
digest algorithm, specifying for

SignedPO.java application, 343
digital certificates

creating key pairs for, 350–351
exporting, 351–352
importing, 352–353
listing keys in keystores, 351
obtaining test certificates, 352
overview of, 333–336
requesting from CAs (certificate

authorities), 352
retrieving in CertifiedPO.java application,

356
running CertifiedPO.java application,

357–358
running VerifyCertifiedPO.java

application, 360
using for document signing, 353, 357
verifying documents containing digital

certificates, 359
versus XML signatures, 336–337

directory generator in Cocoon, description
of, 308

disable-pdf-link element, using with Forest
content, 444

disable-xml-link element, setting in Forrest,
445

discard_authToken security message,
description of, 148

div XPath operator, description of, 207
DOCTYPE keyword, specifying root element

of XML document with, 14
document data, processing in SAX, 56
document generator, specifying source

document to, 289
document instance, saving with XMLBeans,

98
Document interface in DOM API, description

of, 80
Document object, returning with parse

method, 69
document processing

performing with DOM, 68–69
performing with SAX, 51, 63

document signing, using digital certificates
for, 357

Document-style messages, defining, 134
document-style web services. See also web

services
deploying, 172–173
overview of, 167
running clients for, 176
writing client code for, 173, 175
writing server code for, 168, 172

Document/Literal SOAP messaging mode,
overview of, 127

documentation tag, using with XML
schemas, 24

DocumentBuilder class
instance of, 68
methods of, 80

DocumentBuilderFactory class
instance of, 68
methods of, 79

documents. See also XML documents
adding multiple documents to XML

databases, 380–381
adding to collections in XML:DB API, 392,

398
adding to XML databases, 380
deleting in XML:DB API, 402, 404
with digital certificates, 359
inserting records in with XUpdate

language, 409
listing in XML databases, 381
parsing, 56
parsing with BuildTree method, 76

■INDEX 459

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 459

parsing with DOM, 69
processing with XMLBeans, 83
retrieving in XML databases, 382
updating with DOM, 73, 78

DOM (Document Object Model)
building in memory, 71
description of, 41
pros and cons of, 66–67
versus SAX and XMLBeans, 102

DOM API
DocumentBuilder class in, 79–80
DocumentBuilderFactory class in, 79
interfaces in, 80

DOM parsing technique, example of, 69–70
DOM processing

classes required for, 70
overview of, 66

DOM tree, building for partial processing of
XML document, 221

DOMExample2, application class file in, 75
double quotes (“)

replacement for, 4
using in Xindice, 383

downloads. See websites
Driver class, performing FO to PDF

transformation with, 265
driver object, calling render method on, 275
driver. See database driver
DSA (Digital Signature Algorithm), using with

CertifiedPO.java application, 356
DTD elements

including choice-list subelements in, 15
including subelements in, 14
restricting subelements in, 15
single child elements in, 13
writing, 12

DTDHandler interface, using with
DefaultHandler class in SAX API, 65

DTDs (Document Type Definitions)
drawbacks of, 20
including in XML documents, 18–19
overview of, 12
referencing local and remote DTDs, 19
specifying instance quantities for, 15
writing, 12, 18
writing attributes for, 16
writing entities for, 17

■E
EBNF (Extended Backus-Naur Form)

notation, using with DTDs, 20
ECDH (Elliptic Curve Diffie-Hellman)

algorithm website, 342
EJB (Enterprise JavaBeans) container,

configuration information for, 44
EJB deployment descriptors, using, 191–192

Element interface in DOM API, description
of, 80

elements
defining in XML schema, 21
including more than one child element in,

13
naming in XML documents, 7
nesting in XML documents, 6
specifying empty elements, 6
using start and end tags with, 5

elements-only complex types. See also
complex types

sequence tags used with, 29–30
xsd:all tags used with, 30–31
xsd:choice tags used with, 31
xsd:group tags used with, 32–33

ellipsis (...), using in generate element, 294
EmbeddingSVG.fo example, 252
empty complex types, using in XML

schemas, 28
empty elements, specifying, 6
EMPTY keyword, using with DTDs, 13
encodingStyle attribute

overview of, 117
using with Envelope element of SOAP

message, 116
encryptedPO.xml file, examining, 366–367
encryption. See also XML encryption

definition of, 329
process of, 331

encryptKey method, using on cipher for
EncryptPO.java application, 365

EncryptPO.java application, running, 361,
363, 366

end tags, using with elements, 5
endDocument method, overriding, 55
endElement method, overriding for SAX

document, 62
entities, writing for DTDs, 17
EntityResolver interface, using with

DefaultHandler class in SAX API, 65
Envelope element of SOAP message

adding in document-style web service,
172

explanation of, 114
overview of, 116

enveloped XML signature, description of, 338
enveloping XML signature, description of,

338
error handling

providing in Orders.xml document, 72
providing in SAX, 57

ErrorHandler interface, using with
DefaultHandler class in SAX API, 65

errors array list, setting error listener to, 89

■INDEX460

6412_idx_final.qxd 4/7/06 1:03 AM Page 460

event handler, extending in SAX processing
model, 55–56

events, generating for document processed
by SAX parser, 47

exception handling. See also custom
exception handlers

in Apache SOAP, 176, 180
modifying StockOrderProcessor class for,

177–178
exceptions

catching in SOAPException catch block,
187

describing in Body element of SOAP
messages, 121

Expat XML parser, obtaining, 41
ExtensionFilter class, using with

AddDocuments.java application, 397
external DTD, including in XML documents,

19
external-graphic element, specifying image

files with, 249

■F
Factory class, defining in StockSymbol

interface, 86
factory instance

creating for Java XSLT-filtering
application, 227

creating for transformation program, 215
Fault element in SOAP message, overview of,

121
fault listeners, specifying in Apache SOAP,

193
fault method, implementing with

BrokerFaultHandler class, 177
faultcode element in SOAP message,

overview of, 121
faultstring element of SOAP message,

example of, 124–125
Figures

Apache Hello World sample application,
302

Apache SOAP server implementation, 156
Apache SOAP welcome screen, 155
asymmetric cryptography, 333
block areas in XSL-FO, 247
charting for Infosys in Forrest, 431
Cocoon application, 290
Cocoon pipeline architecture, 284
Cocoon welcome screen, 283
company logo set in Forrest, 437
Cover.pdf file in Adobe Reader, 242
CoverImage.pdf in XSL-FO document, 249
CustomerOrders.xml, 211
customized menus added to Forrest

brokerage site, 433

decryption based on symmetric and
asymmetric cryptography, 368

decryption transforms ciphertext to
plaintext, 330

Deployment wizard for RPC-style web
service, 159

digital certificate, 335
digital signature, 334
DOM representation in memory, 66
embedded SVG image, 252
encryption algorithm using key, 331
encryption transforms plaintext to

ciphertext, 329
encryption with symmetric and

asymmetric cryptography, 361
Fop2PDFServlet response output, 273
formatted block, 248
Forrest project home page, 422
home page modified for StockBrokerage

site, 425
i18n page output, 307
images incorporated into Forrest

document, 431
market survey system architecture, 44
matchers in Cocoon pipeline architecture,

286
message digest, 330
message verification with public key, 334
MultiColumn.pdf, 263
network traffic sniffer for RPC

implementation, 164
note element used on Forrest page, 443
one-way messaging model, 107
order processing by intermediaries, 118
PDF document opened in Forrest site, 442
PDF output of index page, 444
PDF transformation output, 301
request/response messaging model, 107
RSS content integrated in Forrest, 447
SAX processing model architecture, 50
schema compilation for XMLBeans

processing model, 81
service invocation, 113
skin changed in StockBrokerage site, 435
SOAP message path, 118
SOAP message structure, 114
SOAP riding on TCP/IP,SMTP, and HTTP,

114
stock brokerage order application

architecture, 42
SVG image output, 251
symmetric cryptography, 332
tabs set for StorkBrokerage site, 427
tabular output of today’s trade orders in

Forrest, 429
tabular report in XSL-FO, 258

■INDEX 461

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 461

testskin applied to Forrest brokerage site,
436

text document in Forrest sites, 441
text output generated by pipeline, 297
Tomcat server welcome screen, 153
transformation of SortedOrders.html, 216
UDDI data structures, 142
web page development and management,

280
web services architecture, 109
Xindice database structure, 376
Xindice server home page, 378
XML processing system architecture, 46
XML2PDF servlet output, 276
XPath axes, 206
XSL transformation with JSP, 219
XSL-FO document page structure, 244
XSLT filtering, 224
XSLT processing model, 208
XSP processing model, 318

file generator in Cocoon, description of, 308
file separator, using with JSP server-side

transformations, 218
FileGenerator, role in Cocoon pipeline

architecture, 285
FileInputStream object, constructing in

XSL-FO, 271
FilenameFilter interface, implementing in

AddDocuments.java application,
397

FileSVG.fo output, 251
filtering application. See Java XSLT-filtering

application
filters

creating for Java XSLT-filtering
application, 228

using with Xalan, 224, 232
find messages in inquiry API, descriptions of,

148
fixed specifier, using with attributes in XML

schema, 23
flow, defining for region-body area, 262
flow element, closing in XSL-FO, 257
flow-name attribute, values for, 246
FO, transforming XML to, 298, 300. See also

XSL-FO (XSL-Formatting Objects)
FO document, writing, 239, 241
FO to PDF transformation, implementing,

270, 273
fo table-cell element, defining table cells

with, 257
folder hierarchy, changing in Forrest,

439–440
FOP (Formatting Objects Processor)

downloading and installing, 238
downloading for Linux installation, 452

running, 241
testing installation of, 238

FOP API, generating PDF files with, 264, 269
FOP command-line utility, running, 238
FOP engine

creating PDF document with, 241
invoking, 264

FOP schema, properties defined in, 247
FOP utility, viewing output in, 242
Fop2PDFServlet response output, 273
Fop2PDFServlet.java code sample, 270–271
Forrest. See also StockBrokerage site

adding external RSS content, 446, 448
adding menus in, 431
benefits of, 416
creating brokerage site with, 419, 423
creating short names for URIs in, 447
creating tabs in, 426, 430
data type mappings in, 181, 189
downloading, 417
downloading for Linux installation, 454
exception handling in, 176, 181
history of, 415–416
incorporating images in, 430
modifying home page content in, 424, 426
relationship to Cocoon, 416–417
specifying fault listeners in, 193
specifying type mappings in, 193
testing installation of, 418
using deployment descriptors with, 189,

193
Forrest commands

forrest run, 421–422
forrest seed, 419

Forrest content
adding support for other output formats,

444, 446
rendering to PDF, 444

Forrest files, organization in tree structure,
423

forrest installation
folder>\main\webapp\skins folder,
contents of, 433, 435

Forrest pages, enhancing appearance of,
442–443

Forrest properties
changing folder hierarchy, 439–440
configuring proxy settings, 440

Forrest sites
deploying on other web servers, 448
including PDF documents in, 441
including text documents in, 440

FOTransformation.java code sample,
264–265

■INDEX462

6412_idx_final.qxd 4/7/06 1:03 AM Page 462

■G
generate component, using with resource

element, 294
generate element, using with pipelines

element, 295
generatedFault method, calling, 187
generator element, using with i18n

transformer, 304
generators

declaring in sitemaps, 308
document generator for Cocoon

application, 289
examples of, 308
role in Cocoon pipeline architecture, 285
in sitemap component, 310

get messages in inquiry API, descriptions of,
149

get/setProperty method, using with
SAXParser class, 64

getBodyEntries method, calling in
document-style web service, 171

getCertificate method, calling for
CertifiedPO.java application, 356

getChildNodes method, calling in
document-style web service, 171

getCollection method, calling in Xindice
database, 400

getDatabaseRoot method, implementing for
Xindice database collection, 395–396

getElement method, using with Orders.xml
application, 71–72

getNodeName method, calling in Orders.xml
application, 72

getOrders method, calling, 89
getResource method, using with

RemoveAllDocuments. java
application, 403

getService method, using with
DeleteNode.java application, 407

getStockInfo method, embedding in SOAP
body, 189

getStockQuote method, using with RPC-style
web service, 158

getTradeType method, calling in XMLBeans,
93

getXMLReader method, using with
SAXParser class, 64

get_authToken security message, description
of, 148

gibberish
definition of, 329
using in EncryptPO.java application, 364

Google’s website for web services, 105
greater than (>) XPath operator, description

of, 207

group tags, using with XML documents,
32–33

GUI tool, deploying RPC-style web service
with, 159–160

■H
header blocks, applying in SOAP messages,

117, 120
Header element of SOAP message

explanation of, 114
overview of, 116

home page content, modifying in Forrest,
424, 426

HTML (HyperText Markup Language),
relationship to XML, 1

HTML serializer in Cocoon, description of,
308

HTTP (Hypertext Transfer Protocol)
SOAP reply over, 130
SOAP request over, 129–130

HTTP header, using in SOAP requests, 166
HTTP tunneling, relationship to web

services, 109
HttpRequest, handling in Cocoon, 322

■I
i18n Cocoon transformer, sitemap for, 303,

305
i18n page, output of, 307
i18n transformer, test document for, 305, 307
i18ntest.xml code sample, 305–306
icon element, using on Forrest pages, 443
ID attribute type, using with DTDs, 17
IDREFID attribute type, using with DTDs, 17
images

adding to XSL-FO documents, 249
incorporating in Forrest, 430

img element, using on Forrest pages, 443
import element of WSDL document,

example of, 133
index.xml page for StockBrokerage site, 424
indexes

creating and managing with xindiceadmin
utility, 411

deleting with xindiceadmin utility, 412
listing with indiceadmin utility, 412

indiceadmin utility, creating and managing
indexes with, 411

inline area of XSL-FO documents, overview
of, 245

inline element
nesting in XSL-FO documents, 262
using in XSL-FO, 248

input source document, creating for Cocoon
application, 287

■INDEX 463

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 463

input stream, constructing in XSL-FO, 271
inquiry API in UDDI

find messages in, 148
get messages in, 149
overview of, 147

InsertNode.java code sample, 409
installing

Apache SOAP, 154, 156
Apache Tomcat, 152, 154
Cocoon software, 282–283
FOP (Formatting Objects Processor), 238
JRE 1.5, 152
Xalan, 197

instance quantities, specifying for DTDs, 15
instream-foreign-object, using in SVG

images, 252
internal DTD, including in XML documents,

18
internationalization features, testing, 305,

307
invoke method of call object, calling, 187
invoke method, using with RPC-style web

services, 163
IRI (Internationalized Resource Identifier),

identifying XML namespaces by, 8
ISO (International Organization for

Standardization) website, 20
ISO/IEC/ITU 9594-8, relationship to digital

certificates, 336
ITU-T X.509, relationship to digital

certificates, 336

■J
J2EE, storage of application configuration

information for, 44
j2world—Smart Solutions for a Mobile World

website, 416
Java applications, performing

transformations through, 214
Java class

custom exception handler as, 177
deployment descriptors for, 190–191

java command, using with RPC-style web
services, 164

Java interfaces, using with XMLBeans, 85, 87
Java libraries for XML-Security, downloading,

339
Java objects, mapping, 183–184
Java package

using with XMLBeans, 85
using with XSP web page, 316

Java web, storage of application
configuration information for, 44

Java XSLT-filtering application
broker XSLT document, 225
brokerage house XSLT document, 226

description of, 224
manager XSLT document for, 225
running, 228–229
source of, 226, 228

javabook namespace, creating, 9
javac compiler

using in FO to PDF transformation, 266
using with document-style web service,

172
using with PathSelector.java application,

222
using with transformation program,

216
using with XSL-FO servlet code, 272

JAVA_HOME environment variable, setting
for JDK 1.5.0, 449

JAXB (Java Architecture for XML Binding)
API, resource for, 102

JCE (Java Cryptography Extension) reference
guide, consulting, 363

JDK 1.5.0, downloading for Linux
installation, 449

Jetty server
availability of, 282
installing with Forrest, 419
starting for Forrest, 420
stopping in Forrest, 422
testing Cocoon installation with, 283

JRE 1.5, installing, 152
JSP (Java Server Pages)

versus Cocoon XSP processing model,
317

invoking for server-side transformations,
218

performing transformations in, 217–218
versus XSP, 318

jsp generator in Cocoon, description of, 308
JSP page, creating for Sorted Orders example,

217–218

■K
KEK (key encrypting key)

generating in EncryptPO.java application,
364

obtaining for DecryptPO.java application,
370

key information, retrieving in VerifyPO.java
application, 348

key pairs
creating for digital certificates, 350–351
exporting to CAs (certificate authorities),

351
validity of, 349

KeyInfo object, constructing for
EncryptPO.java application, 365

■INDEX464

6412_idx_final.qxd 4/7/06 1:03 AM Page 464

keys
generating message digest with, 331
generating with RSA algorithms, 342
generating for symmetric key, 364
public and private keys in asymmetric

cryptography, 332
using in encryption and decryption, 331

keystore file, opening in CertifiedPO.java
application, 355

keystore flat file, using with digital
certificates, 350

keystores, listing keys in, 351
Keytool utility

creating key pairs with, 350–351
using -export option with, 351
using -import option in, 352

Krysalis Community Project website, 416

■L
lastTradePrice message, creating, 137
left angle bracket (<)

replacement for, 4
using with markup, 5

less than (<) XPath operator, description of,
207

line area of XSL-FO documents, overview of,
245

line element, using in XSL-FO, 248
Linux installations

Ant, 450
Cocoon, 452
FOP, 452
Forrest, 454
JDK 1.5.0, 449
SOAP toolkit, 451
Tomcat, 451
Xalan, 452
Xerces, 450
Xindice, 453
XMLBeans, 450
XML-Security, 453

ListAllDocuments method
calling in ListDocs.java application, 400
passing Collection reference to, 401

ListDocs.java code sample, 399–401
Listings

ANY keyword, 14
application counting trades and trade

quantity, 58, 61
binding element in WSDL document, 135
bindingTemplate structure schema

definition, 144
Broker.xslt document, 225
Brokerage.xslt document, 226
BSF script deployment descriptor, 192

businessEntity structure schema
definition, 143

businessService structure schema
definition, 144

CDATA element in XML document, 7
client application using StockInfo service,

185–186
Client faultcode element in SOAP

message, 122
client program for stock quote service,

161–162
collections and subcollections added to

Xindice database, 387, 389
console-based Java application for XSL

transformations, 215
coverpage.xml for Cocoon application,

287
custom exception handler, 177
decrypting encrypted purchase order

document, 368, 370
default namespace, 10–11
deployment descriptor for exception

handling, 179
deployment descriptor for mapping Java

objects, 183–184
deployment descriptor for POJO, 190
deployment descriptor for QuoteService,

160
deployment descriptor for

StockOrderProcessor application,
173

deployment descriptor for exception
handling, 179

detail element of detail element in SOAP
message, 125

document-style web service, 168, 170
Document/Literal SOAP message, 127
documents added to AddDocument.java

application, 395
documents added to Xindice database

collection, 392
documents listed in specified XPath,

399–400
DOM parsing technique, 69
EJB deployment configuration file, 44–45
EJB deployment descriptor, 191
encrypting PO (purchase order), 361, 363
Fault entry in Body element of SOAP

message, 121
faultstring element of SOAP message,

124–125
Fop2PDFServlet, 270–271
formatting document for FO cover page,

239
generators entry, 310
group tag, 32–33

■INDEX 465

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 465

i18n test document, 305–306
index.xml page for StockBrokerage site,

424
Java application for processing purchase

order, 53–54
Java client application consuming

document-style web service, 174–175
Manager.xslt document, 225
match entry in sitemap for PDF

conversion, 298
matchers entry, 312
menus defined for StockBrokerage site in

Forrest, 432
MustUnderstand faultcode element of

SOAP message, 123
nonstandard faultcode in SOAP message,

124
Orders.xml stock purchase order, 51
Orders.xsd schema definition, 84
page2html.xsl transformation document

for Cocoon application, 288
partial processing of XML documents,

220–221
PDF creation console application, 264–265
pipelines element structure, 296
pipelines for converting FO document to

PDF, 300
po.xml document, 168
poEx.xml causes exception, 180
properties defining site directory structure

in Forrest, 439–440
publisherAssertion structure schema

definition, 146
PullFilter.java, 226–227
purchase order, 40
purchase order updated with DOM API,

73, 75
PushFilter.java, 230–231
removing all documents from collection,

402–403
removing nodes with XUpdate language,

405–406
resource with generate component,

293–294
resources in sitemap, 292–293
RPC-style request message, 128
RPC-style SOAP response message, 129
selectors entry, 311
sequence of subelements, 29–30
serializers entry, 311
Server faultcode element of SOAP

message, 122–123
signing and attaching digital certificate,

353, 355
signing dynamically generated XML

document, 340, 342

sitemap for i1in application, 303
sitemap for processing XSP, 314
sitemap.xmap for Cocoon application, 289
SOAP Body element, 120
SOAP header blocks, 119–120
SOAP message, 115
SOAP request over HTTP, 129–130
SOAP request with HTTP header, 165
SOAP response with HTTP header,

166–167
stock info server using StockInfo class, 183
stock quote service server class, 158
StockInfo class, 181–182
SVG definition, 250
SVG embedded in block, 251
tabs defined for Forrest home page, 426
throwing custom exception, 178
tModel structure schema definition, 145
tomcat-users.xml configuration file, 154
trade order modification, 90, 92
transformers entry, 310
Translets.java, 233
verifying signed document, 346, 348
VersionMismatch faultcode element of

SOAP message, 123
WSDL document, 111, 139–140
WSDL document structure, 132
XML document, 3
XML document displaying today’s trades,

428–429
XML document for SAX processing, 47
XML document for XSL transformation,

209, 211
XML document illustrating XPath syntax,

200–201, 203
XML document incorporating images

inForrest, 430
XML document referencing remote DTD,

19
XML document using all tag, 30–31
XML document using internal DTD, 18
XML file using quantity specifier +, 16
XML schema format, 20
XML schema referenced from local file

system, 36
XML signature, 336–337
XML signature structure, 338
XML transformations in JSP, 217
XML-to-FO transformation, 298
XML2PDF servlet, 273–274
XML2PDF transformation stand-alone

application, 267–268
XMLBeans-based application for counting

customers, 87–88
XMLBeans-based application for creating

XML-based order document, 99–101

■INDEX466

6412_idx_final.qxd 4/7/06 1:03 AM Page 466

XMLBeans-based application for deleting
customer order, 94, 97

XSL-FO document created by transformer,
299

XSL-FO document generating tabular
report, 252, 256

XSL-FO document top-level, 243
XSL-FO generating columnar report, 258,

261
XSLT document for transformation, 209,

211
XSP document structure, 313
XSP predefined Logicsheet, 320
XSP requesting live quote, 315–316

listResources method
calling for RemoveAllDocuments.java

application, 403
calling in ListDocs.java application, 401

lists, specifying in XML schemas, 27
local DTDs, referencing, 19
local file systems, referencing XML schemas

on, 36
LocateAndUpdateTrade method in

Orders.xml, using, 77–78
Logicsheets. See XSP Logicsheets
logo, setting in Forrest, 437

■M
mail servers, setting up in Cocoon, 324
mail.jar file, contents of, 154
mailtest.xsp code sample, 320
main method in Orders.xml, contents of, 76
Manager.xslt document, 225
mappings element, adding to deployment

descriptor, 184
mapTypes method of SOAPMappingRegistry

class, calling, 186
market survey XML parsing application,

description of, 43
match attribute, using with template

element, 212
match elements, using with pipelines

element, 295
match patterns, defining coveragepage.pdf

as, 298
matchers

overview of, 312
role in Cocoon pipeline architecture, 286

maxOccurs specifier, using with attributes in
XML schema, 23

Mazzocchi, Stefano and history of Cocoon
project, 281

memory, building DOM in, 71
menus, adding in Forrest, 431
message confidentiality, overview of, 329

message digests
definition of, 329
generating with key, 331
using with digital signatures, 333

message element of WSDL document,
example of, 134

messaging exchange patterns in web services
notification messaging, 138–139
one-way messaging, 137
request/response messaging, 137–138
solicit/response messaging, 138

messaging models for web services,
examples of, 107

messsagerouter servlet, role in SOAP
implementation, 156

Microsoft XML parser, obtaining, 41
minOccurs specifier, using with attributes in

XML schema, 23
mixed attribute, defining complex types

with, 33
mod XPath operator, description of, 207
modifications element, defining XUPdate

queries with, 404
MultiColumn.fo code sample, 258, 261
MultiColumn.pdf, displaying, 263
mustUnderstand attribute of SOAP message,

overview of, 117
MustUnderstand faultcode element of SOAP

message, example of, 123–124

■N
name attribute

using with components element of
sitemap, 291

using with element tag for XML schema,
21

named types
creating, 34–35
using with XML schemas, 27–28

namespaces. See XML namespaces
nesSAXparser method, using with

SAXParserFactory class, 63
nesting elements in XML documents, 6
netbook namespace, creating, 9
network traffic interceptor

using with RPC implementation, 164–165
using with TCP Tunnel/Monitor program,

165
newDocument method of DocumentBuilder

class in DOM API, description of, 80
newInstance method

calling for SAXParserFactory class, 54
description of, 79
using with SAXParserFactory class, 63

NewOrder.xml file, creating on disk, 102
newSAXParser method, calling, 55

■INDEX 467

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 467

newXMLFilter method, calling on factory
object, 228

NMTOKEN attribute type, using with DTDs,
17

Node interface in DOM API, description of,
80

node name, retrieving in Orders.xml
application, 72

node() wildcard, using in XPath queries, 204
node-set, locating relative to current node,

205–206
NodeList object, returning with

getChildNodes method, 171
nodes

inserting in orders collection with
XUpdate language, 409–410

locating in XML documents, 201, 203
removing with XUpate language, 405, 409
selecting based in input XPath expression,

221
selecting in XPath, 201
selecting with XPath expressions, 223
updating in orders collection, 410

nonempty complex types, using in XML
schemas, 28

nonrepudiation, overview of, 328
note element, using on Forrest pages, 442
notification messaging in web services,

example of, 139
numbers, restricting in XML schemas, 26–27

■O
one-way messaging in web services, example

of, 137
operations element of WSDL document,

example of, 135
operators, XPath operators, 207
optional specifier, using with attributes in

XML schema, 21–22
or XPath operator, description of, 207
order document, counting occurrences of

Customer element in, 55
order document application, creating in

XMLBeans, 99, 102
OrderProcessing.xslt code sample, 209
OrderReport.fo code sample, 252, 256
OrderReport.pdf sample, 258
orders

application for deletion of, 99
determining for specified stock at

specified price in XML databases,
386

placing with stock brokerage, 52
removing with XUpdate language, 405, 409
retrieving for specific customers in XML

databases, 383–384

retrieving for specific stocks in XML
databases, 384

XMLBeans application for deletion of,
94

orders collection, updating nodes in, 410
orders document, applying transformations

to, 224, 232
Orders element, Customer elements in, 85
Orders.xml application

application class in, 75
LocateAndUpdateTrade method in,

77–78
main method in, 76
processing data in, 71–72
searchCustomer method in, 76
UpdateOrder method in, 76

Orders.xml document
counting customers in, 69
providing error handling in, 72

Orders.xml stock purchase order code, 51
OrdersDocument class variable, creating,

88
OrdersDocument interface, description of,

85
org.apache.xalan.xslt.Process utility,

command-line switches defined in,
214

org.xml.sax package, including for DOM, 70
org.xml.sax.driver property, description of,

55
Organization for the Advancement of

Structured Information Standards
website, 113

■P
page area of XSL-FO documents, overview of,

244
page element of Cocoon application,

subelements of, 287
page numbers, generating automatically in

XSL-FO documents, 262
page template, definition of, 245
page-sequence element

closing in XSL-FO, 257
using with XSL-FO documents, 246

page2fo.xsl code sample, 298–299
page2html.xsl transformation document

creating, 288
using with pipelines element, 296

PAN (Permanent Account Number),
significance of, 33

parse method
calling on parser, 56
calling, 69
description of, 80

■INDEX468

6412_idx_final.qxd 4/7/06 1:03 AM Page 468

using with document-style web service,
175

using with SAXParser class, 64
using with XMLReader interface of SAX

API, 64
parser properties, setting with

DocumentBuilderFactory class
instance, 68

parsers
configuring in Cocoon, 323
extracting data with, 40–41
preventing from interpreting data, 7

parsing. See XML parsing
passwords, randomizing with salt, 360
paths, combining in XPath, 205
PathSelector utility

downloading and compiling, 202
testing Xpath expressions with, 203

PathSelector.java code sample, 220–224
patterns, using with XML schemas, 25–26
PDF (Portable Document Format),

transformations to, 300
PDF documents

creating with FOP engine, 241
including in Forrest sites, 441

PDF files
creating from XSL-FO documents,

264–265
generating with FOP API, 264, 269
transforming XML documents into, 268

PDF format, rendering Forrest content to,
444

PDF output, generating with pipeline, 297,
300

PDF serializer in Cocoon, description of,
309

PDF transformation
from FO, 264, 266, 270, 273
from XML, 266, 269, 273, 276

personinfo element, subelements used with,
30

pipe character (|)
combining XPath paths with, 205
description of, 207
using with DTD elements and

subelements, 15
pipeline

creating in Cocoon application, 289
document generator in, 289
invoking for default and custom

processing, 294
pipeline architecture. See Cocoon pipeline

architecture
pipeline processing, defining exit point for,

291

pipeline resource
calling, 294
defining, 294
naming, 292

pipelines
changing output format for, 301
creating with resources element, 293
defining for i18n transformer, 305
generating PDF output with, 297, 300
generating text output with, 296–297
overview of, 295–296

plaintext, definition of, 329
playerdetails element, subelements in, 31
plus (+)

quantity specifier used with DTDs, 15
XPath operator, 207

PO (purchase order)
decrypting, 367, 371
encrypting, 360, 365

poEx.xml, causing exception with, 180
POJO

deployment descriptor for, 190
developing RPC-style web service server

code with, 158
implementing document-style server in,

168
POJO class, defining for RPC-style web

service, 160
portType element of WSDL document,

example of, 135
predicates, locating specific nodes in XML

documents with, 203
prefixed namespaces, using, 11
printer support, adding in Forrest, 446
private key

obtaining in CertifiedPO.java application,
355

using in asymmetric cryptography, 332
private registries, relationship to UDDI, 141
processed-by header block

applying in SOAP messages, 117
node subelement in, 120

processingInstruction method, using with
DefaultHandler class in SAX API, 65

processors, configuring in Cocoon, 323
proxy settings, configuring in Forrest, 440
public and private key pair, generating for

SignedPO.java application, 342
public keys

retrieving in VerifyPO.java application, 349
sending to CAs (certification authorities),

335
public registries

publishing services with, 110
relationship to UDDI, 141

■INDEX 469

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 469

publisherAssertion structure in UDDI
description of, 142
example of, 145

publishing API in UDDI
delete messages in, 147–148
overview of, 146
save messages in, 147
security messages in, 148

pull model, using in Java XSLT-filtering
application, 229

PullFiler.java code sample, 226–227
purchase order code sample, 40
purchase order document

creating, 343
structure of, 51–52

purchase orders
counting customers in, 86, 90
processing, 52, 54
verifying, 346, 349

purchaseOrderResponse element creating in
document-style web service, 172

push filtering model, using, 229, 232
push model, using in Java XSLT-filtering

application, 229
PushFilter.java code sample, 230–231

■Q
Quantity element, checking for, 61
quantity specifiers, using with DTDs, 15–16
quotes (“)

replacement for, 4
using in Xindice, 383

QuoteService, deployment descriptor for,
160

■R
rd (retrieve_document) command in

Xindice, using, 382
readFileFromDisk method

using with AddDocuments.java
application, 396–397

using with Xindice database, 397
records

inserting in documents with XUpdate
language, 409

removing from orders with XUpdate
language, 405, 409

retrieving in specific order in XML
databases, 382

region area of XSL-FO documents, overview
of, 244

region body, declaring block in, 256
region-after area, placing page number in,

262
region-before area, placing content in, 261
region-body area, defining flow for, 262

regions, defining in XSL-FO pages, 246
registries related to UDDI, types of, 141
relative paths, XPath used to define syntax

for, 199
RemoveDocs.java code sample, 402–403
render method, calling on driver object, 275
renderer, setting to PDF, 265
request generator in Cocoon, description of,

308
request/response messaging in web services,

example of, 137–138
required specifier, using with attributes in

XML schema, 22
resource resolver, using with VerifyPO.java

application, 348
resources element

creating pipelines with, 293
overview of, 292, 294

REST (Representational State Transfer)
model for web services, resource for,
107

right angle bracket (>)
replacement for, 4
using with markup, 5

roles, mapping to classes in Cocoon, 322
root collection, referencing in

BrokerDatabase.java application,
389

root elements
starting XML documents with, 5
using with XML namespaces, 11

root node, selecting from in XPath, 201
rows, defining in XSL-FO, 257
RPC implementation

examining SOAP requests in, 165
examining SOAP response in, 166
running network traffic interceptor on,

164
RPC-style messages, declaring, 134
RPC-style web services. See also web

services
deploying, 158, 161
deploying and undeploying, 161
deploying with command interface,

160–161
developing clients for, 161
invoking, 163
running clients for, 164
writing client code for, 161, 164
writing server code for, 158

RPC/Literal request message, example of,
128

RPC/Literal response message, example of,
128

RPC/Literal SOAP messaging mode, overview
of, 127

■INDEX470

6412_idx_final.qxd 4/7/06 1:03 AM Page 470

rpcrouter servlet
role in SOAP implementation, 156
URL of, 162

RSA algorithms, using for key generation, 342
RSS content, adding in Forrest, 446, 448
Run the Admin Client hyperlink in Apache

SOAP, explanation of, 155
SAAJ (SOAP with Attachments API for Java)

website, 112

■S
salt, randomizing passwords with, 361
save messages in publishing API,

descriptions of, 147
save method, calling on document object in

XMLBeans, 98
saveXML method, calling in XMLBeans,

97–98, 100–101
SAX (Simple API for XML)

description of, 41
document processing with, 50–51, 63
versus DOM and XMLBeans, 102
overview of, 47
processing document data in, 56–57
providing error handling in, 57
XMLReader interface in, 64–65

SAX API classes
DefaultHandler, 65
SAXParser, 64
SAXparserFactory, 63

SAX parser instance, creating, 54
SAX parsing

classes required for, 54
using with Java XSLT-filtering application,

227
SAX processing

overview of, 47–50
pros and cons of, 49

SAXExample1 class, extending from
defaultHandler, 55

SAXExample1.java, compiling source for, 57
SAXExample2 code sample, 58, 61
SAXException

description of, 57
throwing, 55

SAXParseException, description of, 57
SAXParser object, creating, 50
SAXParserFactory class, instantiating, 54
SAXReader class, description of, 50
SAXTransformerFactory instance, creating in

push filtering model, 231
“//Scanner | //Printer”Xpath expression,

effect of, 205
schema compiler, running on schema

definitions, 81

schema definition, creating for XMLBeans
document processing, 83–84

schemas. See XML schemas
schemaLocation attribute, specifying URI for

external schema with, 36
scomp

relationship to XMLBeans, 81
testing XMLBeans installation with, 83

searchCustomer method in Orders.xml,
using, 76

security terminology. See also XML-Security
authentication, 328
authorization, 328
message confidentiality, 329
nonrepudiation, 328

selectNodeIterator method, calling on
CachedXPathAPI instance, 221

selectors element of sitemap component,
overview of, 311

SendMessage application, using with
document-style web service, 175

sequence tags, using with elements-only
complex types, 29–30

serialize element, using with pipelines
element, 296

serializers
defining for Cocooon application, 289
examples of, 308
overview of, 311
role in Cocoon pipeline architecture, 286

server code
writing for document-style web services,

168, 172
writing for RPC-style web services, 158

Server faultcode element in SOAP message,
overview of, 122–123

server for document-style web service,
deploying from command line, 173

server requestors, using in web services, 109
server, shutting down for Tomcat installation,

154
server-side transformations, performing,

217–218
ServerPagesGenerator class, using, 314
service binding, overview of, 112
service description, obtaining from URL in

registry, 111–112
service element

example of, 136
using with deployment descriptors, 189

service invocation, overview of, 112
service providers, using with web services,

109–110
service root element, location of, 190
ServiceManagerClient Java application,

using with Apache SOAP, 160

■INDEX 471

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 471

services. See also web services
creating for web services, 110
publishing for web services, 110
searching, 111

servlet chaining, comparing Cocoon pipeline
to, 285

servlet information for Cocoon, location of,
321

setCoalescing method, description of, 79
setContentHandler method, using with

XMLReader interface of SAX API, 64
setDTDHandler method, using with

XMLReader interface of SAX API, 65
setEntityResolover method, using with

XMLReader interface of SAX API, 65
setEntityResolver method of, description of,

80
setIgnoringComments method, description

of, 79
setMethodName method, calling for RPC-

style web service, 163
setNamespaceAware method, description of,

79
setRenderer method, calling on Drive class,

265
setSchema method

description of, 79
using with SAXParserFactory class, 64

setTargetObjectURI method. calling for RPC-
style web service, 163

setValidating method
description of, 79
using with SAXParserFactory class, 64

shutdown command, using with Xindice
server, 413

sign method, executing for XML documents,
344

Signature element
child elements in, 339
constructing for SignedPO.java

application, 343
digest value specified in, 338
locating for VerifyPO. java application, 348

signature object, adding digital certificate
and public key to, 356

Signature tag, using with XML signatures, 337
signed documents

examining, 345–346
serializing to output file, 356
verifying, 346, 349

SignedPO.java application, running, 340, 342,
344

simple data types, using in XML schemas, 24,
28

SimpleTransform program, compiling to test
Xalan, 198

simpleType, assigning name to, 27
single quote (‘), replacement for
site.xml, defining Forrest menus in, 431
sitemap components

components element, 309
generators element, 310
matchers element, 312
selectors element, 311
serializers element, 311
transformers element, 310

sitemap document
actions element of, 294–295
components element of, 291
pipelines element of, 295–296
resources element of, 292, 294
structure of, 291
views element of, 291

sitemap.xmap file
for Cocoon application, 289
code sample, 298, 300, 303, 314, 319
location of, 322

sitemap.xmap pipelines element structure,
296

sitemaps
creating for Cocoon application, 286,

289–290
declaring generators in, 308
for i18n Cocoon transformer, 303, 305
for PDF conversion, 298
for XSP processing, 319
for XSP web page, 314–315

skins
customizing on StockBrokerage site,

437–438
installing in StockBrokerage site, 433,

435
installing third-party skins on

StockBrokerage site, 436
slide elements

declaring, 13
including character data in, 15
using subelements with, 15

slideshow element
declaring, 13
including single child element in, 13

SOAP (Simple Object Access Protocol)
downloading for Linux installation, 451
installing, 151, 156
overview of, 113

SOAP faultcodes, nonstandard faultcodes,
124

SOAP implementation architecture, overview
of, 156–157

SOAP messages
actor attribute of, 117
application of header blocks in, 117, 120

■INDEX472

6412_idx_final.qxd 4/7/06 1:03 AM Page 472

Body element in, 120–121
Client faultcode element in, 122
detail element of, 125
encodingStyle attribute of, 117
Envelope element of, 116
Fault element in, 121
faultcode element in, 121
faultstring element of, 124–125
Header element of, 116
mustUnderstand attribute of, 117
MustUnderstand faultcode element of,

123
Server faultcode element in, 122–123
structure of, 114–115
VersionMismatch faultcode element of,

123
SOAP messaging modes

Document/Literal mode, 127
overview of, 126
RPC/Literal mode, 127, 129

SOAP reply over HTTP, example of, 130
SOAP requests

examining in RPC implementation, 165
examining, 188–189
examining, 189
over HTTP, 129–130
role in web services integration model,

106
role in XML processing, 45
using in document-style web services,

170
SOAP responses

examining, 188–189
examining in RPC implementation, 166
generating in document-style web service,

171
SOAP toolkits

downloading for Linux installation, 451
downloading for web services, 110

soap.war file, contents of, 154
SOAPException catch block. catching

exceptions in, 187
SOAPFaultListener interface, implementing

with custom exception handler, 177
solicit/response messaging in web services,

example of, 138
Sorted Orders example, creating JSP page for,

218
SortedOrders.html transformation, 216
SortedOrders.jsp code sample, 217, 219
special characters, representation of, 4
specifiers, using with attributes in XML

schema, 21, 23

src attribute
specifying for XSL-FO documents, 249
using with components element of

sitemap, 291
using with document generator, 289

SSL (Secure Sockets Layer) digital
certificates, obtaining for testing,
352

Start event, generating relative to SAX parser,
48

start tags, using with elements, 5
startDocument/endDocument method,

using with DefaultHandler class in
SAX API, 65

startElement event handler, modifying, 61
startElement/endElement method, using

with DefaultHandler class in SAX
API, 65

startup.bat batch file, starting Tomcat with,
153

stock brokerage application
applying header blocks in, 118
extending functionality of, 58, 63
XML parsing application, 42–43

stock information, obtaining from web
service, 183

stock name
including in SOAP request, 170
setting as text element in XMLBeans, 101

stock quote service, client program for,
161–162

stock symbol
adding quantity and trade type to in

XMLBeans, 102
comparing value fo str variable with, 62

StockBrokerage collection, creating with
Xindice, 379

StockBrokerage site. See also Forrest
customizing skins on, 437–438
incorporating images in, 430
index.xml page for, 424
installing skins on, 433, 435
installing third-party skins in, 436
setting tabs for, 427

stockCount variable, incrementing, 62
StockInfo class

obtaining stock information from, 183
representing user-defined data types with,

181–182
StockInfoService

deploying, 184
writing client for, 184, 188

StockOrderProcessor application,
deployment descriptor for, 173

■INDEX 473

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 473

StockOrderProcessor class
creating for document-style web service,

170
modifying for exception handling in

Apache SOAP, 176
modifying for exception handling,

177–178
modifying, 177–178

StockQuote.xsp code sample, 315–316
StockQuoteService service, declaring, 136
StockQuote_xsp.java, accessing Java source

file for, 318
StockSymbol element, identifying trades

with, 52
StockSymbol interface, defining Factory class

in, 86
storeResource method, using with

AddDocuments.java application, 397
stream generator in Cocoon, description of,

308
StreamSource object, constructing for input

to XSLT transformations, 269
string length, limiting in XML schemas, 26
stylesheet element, defining version attribute

of xsl namespace with, 212
stylesheet processors, inputs accepted by,

208
Sun website, downloading JavaMail API

from, 154
SVG (Scalable Vector Graphics), embedding,

251–252
SVG images, including in XSL-FO

documents, 249, 252
SVG serializer in Cocoon, description of, 309
switch statement, using with document-style

web service, 171
symmetric cryptography

overview of, 331–332
using with digital signatures, 333–334

symmetric keys, generating, 364
system time, retrieving in XSP web page, 316

■T
tables, creating in XSL-FO, 252, 258
tabs, creating in Forrest, 426, 430
tabs.xml document, creating in Forrest, 427
taglibs versus Logicsheets, 318
tags, using start and end tags with elements,

5
TcpTunnelGui tool, using with RPC

implementation, 165
template element, using with XSLT

documents, 212
text data, including in DTD elements, 14
text documents, including in Forrest, 440

Text format support, adding in Forrest, 444
text output, generating with pipeline, 297
text serializer in Cocoon library

description of, 308
using, 296–297

text-only elements, using in XML schemas,
29

Thawte certification authority website, 352
timestamp variable, assigning system time to

in XSP web page, 316
tModel data structure in UDDI

description of, 142
example of, 145

Tomcat
downloading for Linux installation, 451
installing, 152, 154

Tomcat installation of Cocoon, creating, 282
Tomcat version 5.5.9, using JRE 1.5 with, 152
trade order

application for modification of, 94
XMLBeans application for modification

of, 90
trades

determining for specific stocks by
specified customer in XML
databases, 385–386

identifying in stock brokerage application,
52

trades.xml code sample in Forrest, 428–429
TradeType, specifying buy or sell with, 52
transform element, using with pipelines

element, 295
transformation files, obtaining list of, 301
transformation program, compiling and

running, 216
transformations

applying to orders document, 224, 232
defining for Cocoon application, 287–288
need for, 196
to PDF, 300
performing in JSP, 217–218
performing through Java applications, 214
performing with translets, 233
of selected contents, 219, 224
server-side transformations, 217–218
visualizing, 196

Transformer object, creating for partial
processing of XML document, 221

TransformerFactory instance, creating for
JSP server-side transformation, 218

transformers. See also Cocoon transformer
classes

declaring for i18n, 304
defining for Cocoon application, 290
role in Cocoon pipeline architecture, 285

■INDEX474

6412_idx_final.qxd 4/7/06 1:03 AM Page 474

transformers element
overview of, 310
using with i18n transformer, 304

TransformTest.java code sample, 215
translets

applying to XML documents, 235
basing on XSLT files, 234
creating, 232
creating at command prompt, 232
definition of, 232
performing transformations with, 233
programming interface for, 233, 235

Translets.java code sample, 233
TRIPLE DES algorithms, using with

EncryptPO.java application, 364
true value, setting countQuantity Boolean

variable to, 61
type mappings, specifying in Apache SOAP,

193
types element of WSDL document, example

of, 133

■U
UDDI (Universal Description, Discovery, and

Integration)
overview of, 141
public and private registries in, 141

UDDI APIs
inquiry API, 147
inquiry API find messages, 148
inquiry API get messages, 149
publishing API, 146
publishing API delete messages,

147–148
publishing API save messages, 147
publishing API security messages, 148

UDDI data structures
bindingTemplate structure, 144
businessEntity structure, 143
businessService structure, 144
overview of, 142
publisherAssertion structure, 145
tModel structure, 145

UDDI registry, relationship to web services,
109

UDDI specifications, web resource for,
110

UML sequence diagram for Cocoon start-up,
accessing, 322

update method, using with DeleteNode.java
app, 407

UpdateNode.java code sample, 410
UpdateOrder method in Orders.xml, using,

76

URIs
creating short names in Forrest, 447
specifying default namespace with, 12
specifying reference to external schema

file with, 36–37
URL object, constructing for RPC-style web

service, 162
URL patterns

matching against client request in
Cocoon, 312

using with matchers in Cocoon pipeline
architecture, 286

URLs (Uniform Resource Locator)
associating to bindings, 136
for invoking text pipeline, 297
for running Cocoon application, 290
using with Tomcat installation of Cocoon,

284
URN (Uniform Resource Name), specifying

in Apache SOAP, 156
user-defined data types

creating in Apache SOAP, 181–182
creating mappings for, 181
receiving from web services, 181

user-written comments, including in XML
documents, 7

■V
validate method, parsing input file with, 89
Vector, creating for RPC-style web service,

163
VerifyCertifiedPO.java application, running,

360
VerifyPO.java application, running, 346,

348–349
VeriSign website, 335
version attribute of xsl namespace, defining,

212
VersionMismatch faultcode element of SOAP

message, overview of, 123
views element of sitemap document,

overview of, 291
Visit the SOAP RPC router URL hyperlink in

Apache SOAP, explanation of, 155

■W
W3C website, 2
WAR file, creating for Forrest site, 420
web communication, process of, 284
web service implementation, obtaining stock

information from, 183
web services. See also document-style web

services; RPC-style web services;
services

creating RPC-style web services, 157
creating services for, 110

■INDEX 475

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 475

definitions of, 105–106
integration model for, 106–107
language independence of, 108
messaging exchange patterns in, 137, 139
platform independence of, 108
protocols used for, 107
transport independence of, 108

web services architecture, components of,
109

Web, early days of, 280
websites

Ant build script for XMLBeans, 84
Apache Ant, 450
Apache Avalon framework, 322
Apache Cocoon, 452
Apache Cocoon source, 282
Apache FOP, 452
Apache Forrest, 454
Apache SOAP, 154, 451
Apache Tomcat, 152, 451
Apache Xalan, 452
Apache Xerces, 450
Apache Xerces project code, 46
Apache Xindice, 453
Apache XML-Security, 453
Apache XMLBeans, 450
Cocoon start-up UML sequence diagram,

322
Cocoon transformer classes, 303
Cocoon UML sequence diagram for

HttpRequest handling, 323
deriving rules for XML schemas, 27
DH (Diffie-Hellman) algorithm, 342
ECDH (Elliptic Curve Diffie-Hellman)

algorithm, 342
FOP binaries, 238
Forrest download, 417
Forrest websites, 416
Google’s web API service, 105
ISO (International Organization for

Standardization), 20
j2world—Smart Solutions for a Mobile

World, 416
JAXB (Java Architecture for XML Binding),

103
JCE (Java CryptographyExtension)

reference guide, 363
JDK 1.5.0, 449
JRE 1.5, 152
Krysalis Community Project, 416
Organization for the Advancement of

Structured Information Standards,
113

patterns for XML schemas, 26
REST (Representational State Transfer)

model for web services, 107

SAAJ (SOAP with Attachments API for
Java), 112

simple data types, 25
skins for Forrest, 436
SOAP toolkits, 110
Sun, 154
Thawte certification authority, 352
UDDI specifications, 110
VeriSign, 335
W3C (World Wide Web Consortium), 2
WS-I (Web Services Interoperability

Organization), 113
X.509 standard for digital certificates, 336
Xalan, 197
Xindice, 377
Xindice Command Line Tools Reference

guide, 411
XML parsers, 41
XML schema built-in data types, 21
XML-DSig charter, 336
XMLBeans software, 82
XPath specifications, 200
XSL-FO specifications, 237
Yahoo!’s web services, 105

well-formed XML documents, representing
as trees with nodes, 199

wildcards, using with XPath queries, 204–205
WML serializer in Cocoon, description of,

308
WS-I (Web Services Interoperability

Organization) website, 113
WSDL (Web Services Description Language)

overview of, 131
using, 131

WSDL documents
binding element of, 135–136
definitions element of, 132
example of, 139, 141
import element of, 133
message element of, 134
operations element of, 135
portType element of, 135
service description in, 111
service element of, 136
structure of, 131
types element of, 133

■X
X.509 standard for digital certificates,

significance of, 336
Xalan

command-line transformation tool in, 214
downloading, 197
downloading for Linux installation, 452
filtering capabilities in, 224, 232
installing, 197

■INDEX476

6412_idx_final.qxd 4/7/06 1:03 AM Page 476

overview of, 197
testing installation of, 198
transformation capabilities of, 214, 217
transformer factory in, 234
translets in, 232

Xalan XpathAPI class, using, 219, 224
XCOPY deployment process, using with

Cocoon application, 290
Xerces

downloading code for, 46
downloading for Linux installation, 450
obtaining ready-to-use-parser from, 41

Xindice
Command Line Tools Reference guide for,

411
downloading, 377
downloading for Linux installation, 453
structure of, 376
using double quotes (“) in, 383

Xindice databases
creating and managing, 378, 381
loading database driver for, 389
obtaining reference to root collection in,

389
Xindice servers

shutting down, 413
starting, 377–378

xindice utility, listing documents with, 381
xindiceadmin utility

backing up data with, 412
deleting indexes with, 412
exporting data with, 412
importing data with, 413
listing indexes with, 412
using, 378

XMethods stock-related web services,
website for, 105

XML (eXtensible Markup Language)
case sensitivity of, 4
characters restricted by, 4
extensibility of, 2, 108
overview of, 2–3
rationale for use of, 1–2
transforming to FO, 298, 300

XML databases
adding documents to, 380
adding multiple documents to, 380–381
creating collections for XML databases,

379
creating subcollections for, 379
listing documents in, 381
querying, 381, 386
retrieving documents in, 382
selecting records based on selection

criteria in, 382, 386

XML:DB API, adding document s to
collections with, 392, 398

XML declarations
adding in document-style web service,

172
beginning XML documents with, 5

XML decryption, developing application for
decrypting PO, 367, 371

XML document fragment
constructing for BrokerDatabase.java

application, 390
constructing for DeleteNode.java

application, 407
for InsertNode.java application, 409–410
for UpdateNode.java application, 410

XML documents. See also documents
applying translets to, 235
components of, 3, 40
declaring slide element in, 14
generating and signing, 340, 344
including DTDs in, 18–19
including user-written comments in, 6
locating nodes in, 201, 204
marking by using elements, 5
naming elements in, 7
nesting elements in, 5–6
parsing, 56
role in Cocoon architecture, 284
signing, 344
specifying root elements of, 14
starting with root elements, 5
text-based nature of, 4
transforming into PDFs, 268
transforming selected contents of, 219,

224
XML encryption, developing application for

encrypting PO, 360, 365
XML format, outputting in, 301
XML namespaces

creating fully qualified elements, 8
creating multiple namespaces, 8, 10
declaring, 8
element names contained in, 9
overview of, 7–8
using default and prefixed namespaces,

11–12
using default namespaces, 10–11

XML output, enabling in Forrest, 445
XML parsers, obtaining, 41
XML parsing, necessity of, 39
XML parsing applications

application configurations, 44–45
market survey, 43
stock brokerage, 42–43

XML parsing libraries, installing, 46

■INDEX 477

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 477

XML parsing techniques, examples of, 41
xml prefix, binding to namespace name, 8
XML processing, system architecture for, 45
XML schemas

annotating, 23–24
built-in data types used with, 25
complex types in, 28, 35
defining attributes in, 21
defining elements in, 20–21
including in XML documents, 36
limiting string length in, 26
overview of, 20
referencing on local file systems, 36
restricting numbers in, 26–27
simple data types in, 24, 28
specifying lists in, 27
specifying references for external schema

files, 36
text-only elements in, 28
using named anonymous types in, 27–28
using patterns with, 25–26

XML serializer in Cocoon, description of,
308

xml serializer, specifying, 298
XML signatures

advantages of, 336–337
canonical XML, 338
overview of, 336
structure of, 338
types of, 338

XML syntax, overview of, 3, 7
XML to PDF transformation, implementing,

266, 269, 273, 276
XML transformations, using, 42
XML-DSig charter website, 336
XML-Security. See also security terminology

downloading Java libraries for, 339
downloading for Linux installation, 453

XML2PDF servlet, compiling and running,
273–276

XMLBeans
description of, 41
pros and cons of, 81–82
versus SAX and DOM, 102

XMLBeans document processing
application for creating order document,

99, 102
application for deleting order, 94, 99
application for modifying trade order, 90,

94
downloading for Linux installation, 450
Java interfaces in, 85, 87
Java package in, 85
overview of, 81
schema definition for, 83–84
using Ant tool with, 84

XMLBeans software
downloading for Linux installation, 450
installing, 82

XMLBeansExample1 class, declaring, 88
XMLBeansExample1.java, downloading code

for, 90
XMLBeansExample2 class, declaring and

creating class variables for, 92
XMLBeansExample2.java, downloading

source for, 94
XMLBeansExample3.java, downloading

source for, 99
xmlbook namespace

creating, 9
declaring, 8

xmlbook prefix, qualifying namespace
elements with, 8

XML:DB API
adding document s to collections with,

392
creating collections with, 387, 391
deleting documents in, 402, 404
listing documents in specified XPath with,

398, 402
XMLDBException, throwing, 400
xmldb\:xindice protocol, using, 400
xmlns prefix, using with XML namespaces, 7
XMLReader interface

creating in push filtering model, 231
using with SAX API, 64–65

XMLResource object
creating for AddDocuments.java

application, 397
creating for Xindice database, 397

XmlString instance, creating in XMLBeans,
102

XMLTransformation.java code sample,
267–268

XPath
combining paths in, 205
listing documents in, 398, 402
overview of, 199–200
syntax for, 200–201

XPath APIs, using with VerifyPO.java
application, 348

XPath axes, overview of, 205–206
XPath expressions

changing to select different nodes, 223
for retrieving orders for specific

customers, 383–384
retrieving records in specific order with,

382
selecting parts of XML documents with,

219, 224
testing, 202
testing with PathSelector utility, 203

■INDEX478

6412_idx_final.qxd 4/7/06 1:03 AM Page 478

XPath operators, overview of, 206–207
XPath processor, modifying in Cocoon, 324
XPath queries

for determining trades for specific stocks
by specified customers, 385–386

for specified stock at specified price,
386

using wildcards with, 204–205
XPathAPI class, transforming selected

contents with, 219, 224
xpathdirectory generator in Cocoon,

description of, 308
xsd namespace, using with schema root

element, 20
xsd:all tags, using with elements-only

complex types, 30–31
xsd:choice tags, using with elements-only

complex types, 31
xsd:group tags, using with elements-only

complex types, 32–33
XSL (Extensible Stylesheet Language),

overview of, 198
XSL commands, examining in birds.xsl file,

198
xsl namespace, defining version attribute of,

212
XSL-FO (XSL-Formatting Objects). See also

FO
creating tables in, 252, 258
overview of, 237
server-side transformation application,

270
XSL-FO document structure

areas in, 243, 245
organizing content in, 246, 248
top-level of, 242–243

XSL-FO documents
adding images to, 249
creating columnar text in, 258, 264
creating PDF files from, 264–265
including SVG images in, 249, 252

XSL-FO page templates, overview of, 245
xsl-region-body, setting flow-name attribute

to, 246
XSLT (Extensible Stylesheet Language

Transformations)
example of, 208, 212
overview of, 207

XSLT documents
structure of, 212, 214
taking as input parameters in XSL-FO, 273
use by manager, 225

XSLT files, basing translets on, 234
XSLT filtering, example of, 224
XSLT processing model, 208
XSLT transformations, constructing

StreamSource object for input to, 269
XSLT transformer, role in Cocoon pipeline

architecture, 285
XSLTC processors, configuring in Cocoon,

323
XSLTC, description of, 232
XSLTInputHandler, using in XML to PDF

transformation, 275
XSP (XML Server Pages)

versus JSP, 318
overview of, 313

XSP documents
processing, 314
structure of, 313

XSP Logicsheets
categories of, 321
creating XSP document for sending mail

with, 319–320
overview of, 318
testing mail XSP document with, 321
versus taglibs, 318
writing sitemap for XSP processing with,

319
XSP processing, Cocoon implementation of,

317–318
XSP web page

creating live data XSP on, 315, 317
description of, 314
opening live data page in, 317
sitemap fo, 314–315

XUpdate language
inserting node in orders collection,

409–410
overview of, 404
removing nodes with, 405, 409
updating node in orders collection, 410

XUpdate queries, creating, 404–405

■Y
Yahoo!’s website for web services, 105

■INDEX 479

Find
itfasterathttp://superindex.apress.com

/

6412_idx_final.qxd 4/7/06 1:03 AM Page 479

	Pro Apache XML
	Contents
	Introduction
	CHAPTER 1 XML.
	CHAPTER 2 XML Processing
	CHAPTER 3 Web Services Architecture
	CHAPTER 4 Apache SOAP
	CHAPTER 5 XSLT and Apache Xalan
	CHAPTER 6 XSL-FO
	CHAPTER 7 The Apache Cocoon Framework
	CHAPTER 8 XML-Security
	CHAPTER 9 XML Databases
	CHAPTER 10 Apache Forrest
	APPENDIX A Linux Installations
	INDEX

