THE EXPERT'S VOICE® IN JAVA

Pro Apache

Ant

Levarr dna v Apwactie Ant, the stamodiared ope-sowre doiw bidiled food

Matthew Moodie

APress

Pro Apache Ant

Matthew Moodie

Apress-

Pro Apache Ant
Copyright © 2006 by Matthew Moodie

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-559-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Carsten Ziegeler

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Susan Glinert

Proofreader: Kim Burton

Indexer: Carol Burbo

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

To Laura

Contents at a Glance

About the AUTNOT xiii
About the Technical ReVIEWEN e XV
ACKNOWIBAgMEBNTS ..ottt i i e i e Xvii
CHAPTER 1 Introducing Ant 1
CHAPTER2 Installing Ant e 11
CHAPTER3 Using Antt i 33
CHAPTER4 Examining Ant’'s Types ..o 77
CHAPTER5 BuildingaProjectccoiiiiiii s 99
CHAPTER 6 Deploying an Applicationl 131
CHAPTER 7 Running an Applicationl 169
CHAPTER 8 Testing an Application 187
CHAPTER9 Using Antin Large Projectsoinet. 209
CHAPTER 10 Writing Custom Tasksccooviiiiiiiiinnnnnns. 225
CHAPTER 11 Extending Ant 269
CHAPTER 12 Usingthe AntAPI i 293

Contents

ADOUETNE AUTNOT . ..o xiii
About the Technical ReVIEWEro i e e et ae e XV
ACKNOWIBAgMEBNTS ..ottt i i e i e Xvii
CHAPTER1 IntroducingAnto, 1
Organizing Complex Projectscovieeii i s 1

Compiling Simple Projects.cooviiii i 1

Compiling Larger Projects 2

Introducing the Build Tools ...t 5

Introducingmake ... 7

Introducing Ant e e 8

Introducing Ant Targetsand Tasks.covvient.. 8

SUMIMIANY ..t i e i et i e i e 9

CHAPTER2 InstallingAnt ..., 11
Installing a Binary Ant Distribution 11

Downloading a Binary Distribution 11

Unpacking the Binary Distribution 13

Verifyingthe Downloadccoiiiiii it 14

Using PGP to Verify the Binary Distribution 14

Using MD5 and SHA1 to Verify the Download. 19

Installing a Source Ant Distributionccooii.L. 22

Downloading a Source Distribution 22

Using CVS to Obtain a Source Distribution..................... 26

Building the Ant Source Distribution with the Build Script........ 26

Taking Final Steps After Installation 28

Setting %ANT_HOME% on Windowscuets 28

Setting SANT_HOME on UniX........ovviieiiiiiiiennnns 29

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Examining the Ant Distributionl 29
Looking at the bin Directoryot 30
Looking at the docs Directoryccoviieiiiieeiin... 30
Looking at the etc Directorycciiiiiiii i, 30
Looking at the lib Directory 31

Upgrading Ant e e 31

SUMMIANY .. e e e it 31

Using Ant ... 33

Running Ant from the Command Line 33

Introducing Ant’s Build File Syntaxcoviiini.t. 35
Examining the ProjectElement.............................. 35
Examining the TargetElementot 37

Working with Properties ... 40
Using Built-in Properties ..., 42
Setting Propertiesinthe BuildFile 44
Setting Properties in Property Filescooott 48
Summarizing the Property Taskccoiiiiint, 54
Setting Properties at the Command Line...................... 56
Examining Property Precedence............................. 56

Using Properties to Control aBuildot 59
Using the Available Taskt 61
Using the Uptodate Task ..., 63
Using the Condition Task. ..., 64
Working with Property Sets..............cooiiiiiiiiat. 72

Using Pathlike Structures ... 73
Setting a Pathlike Structure............. ..., 73
Setting a Classpath Pathlike Structure........................ 74

SUMMIANY ot e e e e i e 75

Examining Ant’sTypesll. 77

Using Directory-Based Typesccoviiiiiiiiiiiinnnnnn.. 77
UsingPattern Sets ... 78
Working with Directory Sets ...t 83
Workingwith FileSets 85
Working with Class File Sets. ...t 96
Workingwith File Lists. ... 97
Workingwith ZipFile Sets. ...t 97

SUMMIAIY .. e e e e e 98

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS
BuildingaProject ...l 99
Introducing the Example Application 99
Introducing the Shared Code...............oiiiiiin.t, 100
Introducing the Third-Party Libraries 101
Introducing the Stand-Alone Application..................... 102
Introducing the Web Application............................ 103
Introducing the Final Directory Structure..................... 103
Compiling Java Applications with Ant 104
Setting Up a Working Environment.......................... 104
Adding Third-Party Libraries to the Build. 111
Assembling the Project ... 121
Manipulating File Location..................ccoiiieiinn... 122
Creatingthe JARFiles ...t 125
Creating WARFileS.ovvri e 126
Building the Example Applicationcoi.L. 128
SUMMIANY .. i e i e it i 128
Deploying an Application 131
Building Documentation Bundlesl 131
Creating JavadoCsovvii it 132
Finishingthe Bundle...............oiiiii ., 136
Writing Ant Documentation oo 137
Creating Zipand TarFilescooviiiiiiiiiiii i, 138
Zipping the Application. ... 140
Tarring the Application. ..., 147
Using the Zip and Tar Build Paths. 156
Distributing the Applicationot 156
Placing the Application on an FTP Server 156
Distributing the Applicationvia E-mail....................... 161
Deploying a Web Application.................... ..ot 163
SUMMANY ..ot i e i et it 167
Running an Application 169
USiNg SAL ... e 169
Running Java Applications ... 172
Running the Stand-Alone Client 175

Redirecting Qutput 176

ix

CONTENTS

CHAPTER 8

CHAPTER 9

CHAPTER 10

Running Native Programs ..., 179
Starting Tomcat with Ant.ol 181
Creating PGP Hashes with Ant ...t 183

SUMMIANY . i e i it it i i 185

Testing an Application 187

Testing by Instantiationo it 187

TestingwithJUnit ... 188
Installing the Testing Frameworks 188
Organizing the Test File Structure 189
Initializing the Testing Environment 190
Compiling the Test Classes.........covvieiiiiiiniinnnnn, 191
Testing the Application. 192

Testing Code Conventionsc.oiviiiiieei i, 203
Using the <checkstyle>Task..................cooiintt, 205
Transforming XMLto HTML.ot 206

SUMIMANY .ot i i e i et 207

Using Ant in Large Projects 209

Using Master Build Files and Ant Delegation 210

Moving Ant Tasks to Subordinate Build Files 211
Preparingforthe Move.t 212
Moving the Third-Party Build Targets........................ 212
Moving the Shared Build Targets 215
Moving the Application-Specific Build Targets 215
Moving the Packaging Targetscovvein... 216
Moving the TestTargets ...t 217

Changing the Master Build Filecviiiiiiiiinat. 218
Running Individual Subordinate Targets 222

SUMMANY ..ot i e i et it 223

Writing CustomTasksccoiiii.ts 225

Examining Custom Tasksc.oviiiii e 225
Introducing the Custom Task Life Cycle...................... 226
Introducing the Custom Task APlcott. 227

Working with Nested ElementsinTasks 243
Writing an addXXX() Methodl 246

Writing an addConfiguredXXX() Method. 250

CHAPTER 11

CHAPTER 12

CONTENTS
Writing a createXXX() Methodo oLl 252
Choosing Which MethodtoUseccoiiatt 255

Writing Example Custom TaskS ..ot 255
Providing Usage Information............................... 255
Extending the <javadoc> Task...............ccooviiiinnt. 257

UsinganantlibFileco i 263

Using Third-Party Custom Taskst 266

QUMM .o i i e i ettt 268

Extending Ant ... 269

Logging AntBuilds ... 269
Sending E-mail Confirmations. 271
USINg XML LOGS ..ot 271
Usinga Log4j Logger......coovviiniii i 272
Writing Your Own Listener. ...t 281
Writing Your Own Logger. ..ot 283
Using the Ant-Contrib Performance Listener.................. 286

UsiNg Mapperscoviniiii i i e 287
Using Identity Mappers ... 287
Using Flatten Mappers. ... 287
Using Merge Mapperscooeiiii it i i eaans 288
Using Glob Mappers. ... i 288
Using Regexp Mappersooviieiii i 290
Using Chained Mappers.ccviiiiiiiii i 291

SUMMANY ..ot i e i et it i 291

Usingthe AntAPI .. 293

Designinga ClasstoUsethe Ant APlcoiiiiiient,. 293
Working with the Task Life Cycle ...t 294
ChoosingaTask.......oovveveiiii i 294
WritingaUsage Check.ccovvviiiii i, 296
UsingaTaskcooviiiiiii e 299
Adding Loggers and Listeners.coiiiiiiiiinn 301

WritingaBatch Copy Classooviviieei i, 308

UMY ittt i i e e i 311

Xi

About the Author

MATTHEW MOODIE is a native of southwest Scotland and is a graduate of the University of Edin-
burgh, where he obtained a master’s degree in linguistics and artificial intelligence.
Matthew enjoys a life of fun in Glasgow, Scotland. He is a keen novice gardener with a
house full of plants.

Xiii

About the Technical Reviewer

CARSTEN ZIEGELER is a member of the Apache Software Foundation and is involved in various
open-source communities such as Cocoon, Excalibur, Portals, Ant, and Maven. In paid life,
Carsten is the chief architect of the Open Source Group at S&N AG in Paderborn, Germany. The
focus is on middleware functionality such as web frameworks, component and service-based
architectures, and portal solutions and technologies. Carsten is a well-known speaker at open-
source conferences such as ApacheCon.

Xv

Acknowledgments

I would like to thank Laura for her love, friendship and cakes.

Love to Mum, Valla, Alexandra, Harcus, Angus, Uncle Andrew, Granny, Grandpa and
Howard. A great big thank you to Andrew, Brian, Katy, Lindsey, Mad, Paul, Sally and Disco
Robot Craig for more good times. Life would be pretty grey without you all.

Thanks to Billy, Dave, Pete, Broon, Stuart and Mark for your friendship over all these years.

It’s been 20 years, give or take, and it’s been great.

Xvii

CHAPTER 1

Introducing Ant

In this first chapter, I will give you an overview of Ant so that even someone who has never
come across it before will be up to speed on what Ant is, why it was created, and why it is such
a useful tool. To start, I will deal with the history of complex programming projects and the
evolution of build tools.

By looking at the history of build tools, it should become clear why the creators of Ant
produced a new build tool. Placing the Ant project in context will be a useful exercise.

Organizing Complex Projects

To see why a build tool is necessary in most, if not all, projects, consider a typical project. You
begin by writing your code, in whatever language is appropriate, and then you compile it as
you proceed. As the project expands, this becomes a much more difficult job, especially if your
code depends on many outside libraries. If this is the case, you may find yourself with large
search paths for each compilation.

Compiling Simple Projects
The next logical step is to record the location of the code and any outside libraries and use this

information in some kind of script. For example, a Java project may have the following javac
command:

javac -classpath ./dist/antBook.jar;%CATALINA HOME%\common\1lib\ws
mysql-connector-java-3.0.11-stable-bin. jar;=
ZACATALINA_HOME%\common\1lib\servlet-api.jar;w
ZACATALINA_HOME%\common\1ib\jsp-api.jar org\mwrm\plants\client*.java

While this is not as complicated as some compilations, it is complex enough that you run
the risk of omitting or misspelling some of the JAR files in the classpath.

Note |am assuming a blank CLASSPATH variable here because that is, in general, good practice, though
adding the JAR files to the classpath would solve this problem in this instance. This kind of fix is pretty
unwieldy because either you have to specify the CLASSPATH variable every session, which replicates the
problems described, or you have to modify the existing variable when you introduce or change a library, which
means you have to start a new command-line session to reflect the update.

CHAPTER 1 INTRODUCING ANT

The simplest solution is to include the javac command in a script, such as a Windows
batch file, a Unix shell script, or a Perl script, and run the script from the command line. This
allows you to specify the correct libraries at each invocation of the javac command.

Now you have a script that you can use to compile a single class in the project. You can of
course generalize the command to compile a whole package at once. If you have more than
one package, then you can add more javac commands as needed, as is the case with commands
to package the project. This can quickly build up into a large script that you can reuse for each
compilation of the project. You can include any command from your operating system in the
script, which can make it a powerful tool when working with a project with multiple packages
and libraries.

Compiling Larger Projects

The previous situation is no bad place to be if you are working on a small- to medium-sized
project by yourself. You have control over the directory structure and the script, and build
times are quick because of the project’s size. A point will come in most projects, however,
where one of these factors makes a script unworkable.

Using a Common Format

You will undoubtedly have written your automation script in the scripting language of your
choice, which may not be the language other people working on the project are using. While
this may not be a consideration in some projects, it is amazing how often a small project that
scratches a personal itch becomes a major project that scratches alot of itches. Ant, of course,
is one such example, as are Perl and any number of open-source projects. Therefore, you should
always assume that someone other than you will want to compile your project at some point.

If everyone is using a different technique for automating their section of the project, this
mabkes it difficult to centralize the compiling and packaging process. Ideally, the lead developer
runs a single script that performs all the required tasks before a project is ready to distribute to
users or clients.

The project leader may even want to distribute the application as part of this process. If
this is the case, the script should employ some automated testing to ensure that the project
team releases a working application. The script is getting larger and larger as the project increases
in complexity.

As you can appreciate, the larger and more serious a project becomes, the larger the need
for an automated process becomes. In many stages of the process, human error can lead to
delays or unusable code. Testing is absolutely necessary before a project is released to its users.
Leaving the testing to a developer when the pressure is on, a deadline islooming, and a product
has to ship will inevitably lead to problems. A common format for the script becomes more
necessary to integrate all the stages of development.

Compiling Only New and Changed Files

Large projects have, by definition, a large number of classes, each of which may have depen-
dencies on a number of outside libraries. As a project grows, the compilation time inevitably
grows with it, eventually to the stage where a complex Java application can take up to an hour
and an operating system, such as Windows 2000, can take eight hours on the most powerful
hardware money can buy.

CHAPTER 1 INTRODUCING ANT

With this in mind, consider what happens when you change the application in some way,
for example, by making a bug fix or adding functionality. The changes are unlikely to warrant a
recompilation of the entire project, though this is unavoidable when using a script. It is possible
to work around this to a certain extent by breaking the compilation into logical, named chunks
within the script and calling only the chunk with the changed code.

Problems will still exist if the chunk itself is large or if a large number of chunks contain
changed code. This also assumes the person building the project knows which pieces of the
application have changed, which is again a problem in a large application written by a number
of people where the number of changes could be large.

Controlling the Project

On a small project, you have control of the script and the structure of the project, so you have
agood overview of where everything is in the directory hierarchy. This allows you to change the
directory structure to suit your development style and the type of scripting you are using.

On larger projects, you will not necessarily have this control, so keeping the script up-to-
date and usable becomes increasingly difficult. Large scripts used by many people can easily
degenerate into a mess of unmaintainable gibberish.

Reflecting on the Project’s Life Cycle

In the preceding sections, I hinted at certain aspects of a project’s life cycle to demonstrate
some of the deficiencies of scripting. However, it will now be useful to go through a detailed
project life cycle to explain the final problem with scripts. The following describes the process
of building the example project for this book. You will see the details of this application in later
chapters, but these details are not necessary for understanding the project’s life cycle.

1. Obtain the source code from the archive or repository.

2. Create a directory structure to hold the source code and the resultant binaries. This typi-
cally includes a temporary or scratch directory where you carry out the intermediate
stages. You may also want to move any outside libraries into this directory structure for
ease of access. The example application uses two libraries that you can download in
source form and compile if you want to use the latest version. Otherwise, you can use
precompiled binaries.

3. Configure the script to suit your environment. This is necessary here because someone
else has written the source code. Their directory hierarchy may not be the same as
yours. For instance, third-party libraries could be in different places on each system
(usr/local/java/tomcats5/common/lib/servlet-api.jar versus usr/local/java/
jakarta-tomcat-5.5.9/common/1ib/servlet-api. jar, for example). In fact, someone
else might not have been working on the same operating system. You should make sure
any paths are correct and that the script references any outside resources properly. As
described, this may be more difficult if the script is in a format with which you are not
familiar. You may even find that the script will not run on your operating system because
it was written in an incompatible scripting language, so you will have to convert it to
one your operating system understands.

4. Compile the source code with your configured script.

CHAPTER 1 INTRODUCING ANT

10.

Package the binary files into libraries for the users. You can distribute the example
application as a JAR file for command-line access or a WAR file for use on a servlet con-
tainer. In this step, you may be adding image and configuration files to the distribution.
If your application requires outside libraries to run, you may also be adding them to the
package. The web application version of the example application can include the third-
party libraries mentioned previously so that it is a discrete package. Alternatively, you
can let the administrator of the servlet container place the third-party libraries in an
appropriate location.

Unit test the application with appropriate criteria. Ideally, you would use a testing
framework with predefined test cases. If you are responsible for the code and the project is
still at a development stage, then performance testing may be appropriate once unit
testing has finished. You should test the application on a test server and not a production
server.

Create the documentation bundle. This should include README files and instructions on
how to install and use the application. The documentation could be simple text files or
could be sophisticated HTML pages that you have generated using a standard process
such as the javadoc utility. If you are distributing the documentation as a web appli-
cation, which is an option with the example application, you should create a WAR file.
Another option is an archive that the user can expand in their file system.

Package the entire distribution, which includes the packaged binaries and the docu-
mentation bundle. At this stage, you have to consider who you will be sending the
application to and tailor the package accordingly. This may mean you have to produce
more than one package. For example, Windows users prefer a *. zip file, and Unix users
prefer a *.tar.gz or *.bz2 archive.

Provide the application to your users. You can achieve this in a number of ways, including
using e-mail, using FTP, copying and pasting onto a web server, or hot deploying onto a
running web server.

Clean up the directory structure. When you have finished with the scrap directory and
the third-party libraries, you may want to remove them from your file system. The scratch
directory created in step 2 may no longer be necessary, and you could remove it if this is
the case. Should you want to do a clean build every time, you will definitely want to do
this. The example application gives you this option.

This is quite a list of actions to perform before an application is ready for your users. You
should note that the example application is not a complicated application in any way, and
many applications require you to execute more steps or perform more actions within steps.

The serial nature of the previous list belies some of the complicated dependencies and
relationships within a build process. For example, you cannot package the application unless
you have compiled the code and successfully built the documentation bundle.

The different processes outlined previously are not naturally linear because the build
process can follow many paths. Figure 1-1 shows a simplified section of the build process that
ignores the various choices for binary packages JAR, WAR, *.zip, *.tar.gz, and so on). Path (a)
compiles, tests, and documents only the web application. Path (b) compiles, tests, and docu-
ments only the client. Path (c) compiles, tests, and documents both versions of the application.
The vertical lines delineate the discrete steps mentioned in the previous discussion.

CHAPTER 1 INTRODUCING ANT

(@) (a) Test (a) (@) (c)
¢ | > web application »| Web Docs
3| compile client N Compile A (©)
(b) ompile clie (© web application © l ©
() [>
- Test client m > Client Docs 0

Figure 1-1. An example build process

A custom build script cannot adequately describe the complexities within a build process.
Describing a build process helps you as the builder and maintainer, helps other people who
may be building and maintaining the project in the future, and helps other people who may
need an overview of a large project.

Figure 1-1 also shows another reason you may not want to perform every step in a build
process every time you run it. Take, for example, an instance where you want to create a new
version of only the client for your users. In this case, you would follow path (b) from Figure 1-1
and would not want to perform any of the steps in path (a). A linear script either would force
you to do all the steps in a build process every time or would force you to encode the compli-
cated logic of dependencies into the script.

Introducing the Build Tools

Having seen a number of problems inherent in the build process and how scripts can alleviate
only some of them, you probably understand why scripts are not really a satisfactory answer.
They can become unwieldy, hard to maintain, and unhelpful when you begin to deal with
larger, complex projects. It was for this reason that many developers began working with build
tools, of which Ant is a fairly recent example.

Build tools rely on build files that describe the project and the dependencies and relation-
ships within it. Each discrete step in the build process has its own entry in the build file so that
it plugs into the build process without affecting other steps in the build process. This allows
you to change one step in the process without affecting any of the other steps.

Having a common build tool also means people who want to work on and maintain the
project can get started straightaway. If a project did not use a build tool, then new contributors
could take days to master the build/run process, thus losing valuable development time. Unifying
the process makes collaboration much easier.

As aresult of using the build file as a description of the build process, a build tool can
examine the current state of the build’s environment and act accordingly by comparing the
two. For example, a build tool will examine the timestamp of a source file that it is about to
compile. If that timestamp is later than the timestamp of the compiled version of the file, then
the build tool will not compile that file and will move to the next stage in the process. This test
is equally applicable to files and directories, where the build tool checks the timestamp of the
original version of a file against that of the copied version in the scratch directory of a build area.

CHAPTER 1 INTRODUCING ANT

The description of the process allows the build tool to determine in what order it should
perform tasks and create a running order from the many possible paths through the build
process (refer to Figure 1-1). The inherent dependencies built into the description ensure that
all the relevant steps take place throughout a build. Listing 1-1 shows a pseudo-build file
describing the situation in Figure 1-1.

Listing 1-1. Pseudocode Showing the Dependencies Described in Figure 1-1

web-compile:
javac Web.java

client-compile:
javac Client.java

web-test:
depends="web-compile"
web-testo1
web-test02

client-test:
depends="client-compile"
client-testo1
client-test02

web-docs:
depends="web-test"
javadoc web

client-docs:
depends="client-test"
javadoc client

path-a:
depends="web-docs"
echo "Path (a) completed"

path-b:
depends="client-docs"
echo "Path (b) completed"

path-c:
depends="web-compile, client-compile, =
web-test, client-test, web-docs, client-docs”
echo "Path (c) completed"

This shows how a build file can define different paths depending on how you want to build
the application. Each named section, when called, executes the code it contains and then
returns to the main build process. If a section depends on another, the build process must

CHAPTER 1 INTRODUCING ANT

successfully run the named section before it can continue. If you wanted to run only one
section, you would supply its name to the build process.

> build path-b
Path (b) completed

The path-b section tells the build process to run the client-docs section before executing
it. The client-docs section in turn tells the build process to run the client-test section, and so
on. You could of course use the code in Listing 1-2 to simplify the build file.

Listing 1-2. A Simplified path-c Section

path-c:
depends="path-a, path-b"
echo "Path (c) completed"

While this is not the situation you see in Figure 1-1, it is equally valid as a build path. The
ease with which you can make this change compared to changing complicated build logic in a
script shows the advantage of using a build tool.

Introducing make

make is one of the most widely used build tools for software products and is popular in the
open-source movement. If you have ever downloaded the source bundle of an open-source
project and installed it, you have used a version of make.

Note Java-based projects are the exception to this, as Ant is better suited to Java projects and the developers
are likely to be familiar with the way it works.

make executes the commands listed in the build file via the operating system’s shell. On
Unix systems, you can specify the shell you want make to use; on Windows, it uses the standard
command line. A number of versions of make exist, one of which is available from the GNU
Project (www.gnu.org/software/make/).

While make is an excellent tool and many users have no problems with it, it does suffer from
a few drawbacks, most of which drove Ant’s creator to produce a new build tool.

All versions of make should conform to the IEEE standard 1003.2-1992 (POSIX.2). However,
many extend this standard, and no two versions of make are the same. This means writing portable
build files that will work on any system is much harder than it should be, because you are never
sure which version of make your users will be using. This returns to the problem of different
application developers using different scripting styles, as discussed previously. If you are sending
the source bundle to your users so they can build it themselves, the problem becomes more acute.

Portability across versions of make is an important consideration but so is portability across
operating systems. make is a standard tool on Unix systems but is unfamiliar to most Windows
users. If you are confident all your users will be building the application and they will be building
it on a Unix system, then you can assume that make will be readily available. However, if some of

CHAPTER 1 INTRODUCING ANT

your users are on Windows, you cannot assume make will be available or that your users will
have experience configuring make build files.

The syntax of make’s build files, while defined by the 1003.2-1992 standard, is a new syntax
to learn, with all the frustrations and idiosyncrasies that implies. For example, each command
within a make section must be preceded by a tab, only a tab, and nothing but a tab. If you include a
space before or after the tab, the command will not work, and your build process will break.
You cannot totally escape this problem with build tools (Ant has its own idiosyncrasies, as you
will see), but you can alleviate it in some ways.

Introducing Ant

Ant is a Java-based build tool from the Apache project that was originally bundled with early
versions of Tomcat. Its creator had become dissatisfied with make as a way of building Tomcat
from source and developed a tool to make his life easier. Ant was designed to fix the problems
with make described previously and so mirrored the portability aims of Java.

As is the case with all the best projects, a tool created for a simple, specific fix was generalized
and put to use on other problems. In Ant’s case, the tool for building Tomcat was acquisitioned by
people working on other Jakarta products when they realized how useful it could be. Ant use
spread from this group with the official launch of Tomcat, and now Ant is the standard build
tool for Apache Java projects, though many non-Apache Java projects also use it.

Antis written in Java and so requires no further modifications as long as the target operating
system has a JVM written for it. As such, you can write an Ant build file with the knowledge that it
will function in a similar way, no matter which operating system the user runs Ant on. There-
fore, by harnessing Java’s portability, Ant overcomes the portability problems that can hamper
make and its ilk.

To solve the problem of learning a new format, you write Ant’s build files in XML. In this
case, XML carries at least two advantages. First, it is a well-known format, so many people are
comfortable with using it and can pick up new vocabularies quickly. The syntax of an XML
document never changes, and a well-formed Ant build file is easy to write if you have never
written one before. Second, XML is a portable, open standard, which means you can be sure
that it can be used on every platform on which Ant is available.

For those of you familiar with Tomcat, Ant’s build file resembles a Tomcat server.xml file
in that each XML element represents a Java class and each XML attribute corresponds to an
attribute in the underlying Java class. This approach means there is no DTD with which you
can validate build files, because an element can have different attributes depending on where
it is in a build file; specifically, in Ant this usually means the parent element determines what
attributes are permissible in the child element.

Ant does come with a facility you can use to create a partial DTD, though its caveat emptor
is that the user applies this DTD with the knowledge that it is not a complete or useful DTD.

Introducing Ant Targets and Tasks

Each named section of the build process in Ant is called a target, and each target contains a
number of fasks. These tasks correspond to the command-line calls described in the previous
sections and are represented by XML elements. Listing 1-3 shows a quick example of a Java
compilation.

CHAPTER 1 INTRODUCING ANT

Listing 1-3. A Simple Ant Build File

<project name="Example Application Build" default="default" basedir=".">
<!-- Compile the stand-alone application -->
<target name="default">
<javac srcdir="./src" destdir="build"/>
<echo message="Application compiled"/>
</target>

</project>

The <project> elementis the root element of every Ant build file and sets the default target
for this build project. In this case, Ant executes the default target, which tells it to compile the
code in the src directory and place it in the build directory. Once it has done this, it echoes a
message to standard out to inform the user that everything went as planned.

Ant’s tasks are split into three categories: core, optional, and custom. Core tasks are those
tasks that the Ant development team supports and actively develops. The team has given a
commitment to look after these tasks, improve them, and correct any bugs found by Ant users.

Optional tasks are bundled with Ant and depend on libraries that do not belong to the Ant
project (core tasks have no such dependences), and they come bundled as part of the Ant distribu-
tion, as do the libraries, so you can still use them in your projects.

If the tasks that come bundled with Ant do not give you the options you want, you have
two choices. First, you can use Ant to run a command-line tool if one exists that does what you
want to do. Second, you can write your own task, which simply means you would write a Java
class that implements the desired behavior. You can then use this custom task in future projects
and distribute it.

Writing a custom task has the same advantages that Ant has over other build tools in that
your new task can go wherever Ant can. If your project demanded a step that was possible only
at the command line on Windows, then you could not build it on Unix unless you wrote a
custom task. Java and Ant are portable; Windows tools aren’t necessarily so.

Summary

This chapter provided a quick introduction to building software projects, automating the build
process, using build tools, using make, and using Ant. It is simply a taster for the rest of the book,
where you will see the practicalities of using Ant.

Build tools have helped many programmers over the years. Though they may not allow
you to write your code any faster, they do take some of the pain out of turning that code into
working software.

The next chapter describes how to obtain Ant and install it.

CHAPTER 2

Installing Ant

The previous chapter described what Ant is and the reasons for its development. Therefore,
it is now time to install Ant. Ant is available in binary form as compiled Java classes that you
download to your computer and store in your file system. This form of distribution provides
you with the latest stable build of Ant, so you can be confident that it has been well tested and
that any new features will be stable. You can also obtain the latest build of Ant as a binary distri-
bution, which is available as a nightly build.

If, however, you want to build Ant from source, you can. You have two options if you want
to install it from source: the latest stable build, which corresponds to the stable binary build,
and a nightly build, which you can download or retrieve from a CVS repository.

The binary installation is straightforward, so I will cover that first. Then, I will explain how
to install Ant from source. This is a useful exercise because it means you can have the latest
version of Ant if you should so desire and because the Ant project’s build file gives a good over-
view of the Ant project’s build structure. Recall that one of the properties of a build file is that it
describes the structure of a project’s build process and as such is a useful aid for examining
a project.

Installing a Binary Ant Distribution

Binary distributions of Ant come as archive files that you can extract to your file system. Ant is
a top-level Apache project, so you can download the binary files from ant.apache.org.

Downloading a Binary Distribution

Once you are on the Anthome page (ant.apache.org), click the Binary Distributions link on the
left side. Figure 2-1 shows the binary download page.

The download script will have selected an appropriate mirror for you to use, which, unless
you have strong objections, should be fine.

1

12 CHAPTER 2 INSTALLING ANT

) Apache Ant - Binary Distributions - Mozilla Firefox =10 x|

File Edt Wiew Go Bookmarks Took Help

@-op- & @ | ™ hitp:fiznt.anache orgtindennicad.coi ERCENFN

Apache > Ant.apache =l

' 'THE

APACHE ANT d L
PROJECT = 5

Home

s Apache Ant

<APACHE ANT>

Binary Distributions
=

Use the links below to download a binary distribution of Ant from one of our mirrors, It is good practice to
verify the integrity of the distribution files, especially if you are using one of our mirror sites. In order to do
this you must use the signatures from our main distribution directary,

Antis distributed as sip, sar gz aNd sar b=z archives - the contents are the same. Flease note that the sar.»
archives contain file names longer than 100 characters and have been created using GMU tar extensions,
Thus they must be untarred with a GNU compatible version of sar.

In addition the JPackage project provides RFMs at their own distribution site

If you do not see the file you need in the links below, please see the master distribution directory or,
preferably, its mirror.

You are currently using http:/ /apache.mirror.positive-internet.com. If you encountsr a problem with this
mirrar, please select another mirror, If all mirrors are failing, there are backup mirrors (at the end of the
mirrors list) that should be available.

I
4

Figure 2-1. The Ant binary download screen

Downloading a Stable Build

As shown in Figure 2-2, the next section of the binary download page contains links to the latest
stable version of Ant. This version has been tested and verified. Any new features are stable and
will not exhibit unpredictable behavior, so you can be confident this version will work as expected.

"-)Apa(he Ant - Binary Distributions - Mozilla Firefox - | Ellll
Ele Edit “ew Go Bookmarks Tools Help
<§I - E‘\> ~ @ @ I\ http:fiant, apache orgibindownload. coi j @ Go Iﬁv

=

Current Release of Ant

Currently, Apache Ant 1.6.5 is the best available version, see the release notes,

Ant 1.6.5 has been released on 02-Jun-2005 and may not be available on all mirrors for a few days. J

Tar files in the

istribution contain long file names, and may require gnu tar to do the extraction.

* _zip archive: apache-ant-1.6.5-bin.zip [PGF] [SHAL] [MDE]
* _car_gs archive: apache-ant-1.6.5-bin.tar.gz [FGF] [EHA1] [MDE]
+ .car.psz archive: apache-ant-1.6.5-bin.tar.bz2 [PGP] [EHAL] [MDS]

SN

| Dane

Figure 2-2. The Current Release of Ant section of the binary download page

CHAPTER 2 INSTALLING ANT 13

Select the form of archive you want to download. In general, Windows users should down-
load the *.zip archive, and Unix users should choose whichever of *.tar.gz or *.tar.bz2 they
prefer. As the download page says, you should use a GNU-compatible version of tar to unpack
the archive because some of the filenames are longer than 100 characters long.

Downloading a Nightly Build

If you want the latest features, some of which won'’t be available in the stable build, you may
want to download a nightly build. Figure 2-3 shows the Nightly Builds section of the binary
download page, along with a section that allows you to download older versions of Ant.

) Apache Ant - Binary Distributions - Mozilla Firefox =3l x|
Fle Edit Wew Go Bookmarks Tooks Help

TERN = 21 [N hitpigfant. apache. orgfbindownisad.cgi -l o= [a

=l
Nighthy Builds

If you wish to use the latest Ant features, you can try downloading a nightly build,

Old Ant Releases

Older releases of Ant can be found here. Those releases are only provided as =i archives that can be extracted
by 1az =e archive.zip - we highly recommend to not use those releases but upgrade to Ant's latest release.

[bone

e

Figure 2-3. The Nightly Builds section of the binary download page

If you click the “nightly builds” link, this will take you to the nightly builds directory of the
Apache server. To download the latest build, click the link that represents the newest version of
Ant. Each link is in the form YYYYMMDD so that you can choose the appropriate directory to browse.
Navigate to the bin directory, and choose which type of archive to download. In this case, the
choice is between *.zip and *.tar.gz. Again, you should use a GNU-compatible version of tar
to extract the *.tar.gz archive.

Verifying the Binary Distribution

Once you have downloaded the binary distribution, it is good practice to verify it has not been
compromised. You can do this with the Pretty Good Privacy (PGP) application or the MD5 or
SHAI algorithms. This process is described in the “Using PGP to Verify the Binary Distribution”
section.

Unpacking the Binary Distribution

Once you have the binary distribution, extract the archive to your file system. Windows users
can use WinZip or similar to extract the *. zip file; Unix users should use a GNU-compatible
tar with options appropriate to the compression format.

If you downloaded the *.tar.gz file, navigate to the directory where the archive is, and run
the following:

> tar -xzf apache-ant-bin.tar.gz

This will extract the file to the current directory.

14

CHAPTER 2 INSTALLING ANT

If you downloaded the *.tar.bz2 file, navigate to the directory where the archive is, and
run the following:

> tar -xjf apache-ant-bin.tar.bz2

This will extract the file to the current directory.

Verifying the Download

Once you have downloaded the file, it is good practice to verify that it has not been compromised.
You can do this by using the PGP application or the MD5 or SHA1 algorithms.

Using PGP to Verify the Binary Distribution

PGP is a cryptographic suite written to ensure privacy over networks. It uses a public key encryption
to ensure that only the intended recipient can read the messages you send. However, this is not
how you will use it for verifying the download.

In this case, you will be using PGP as an authentication mechanism. Authentication allows
you to compare information to see whether it is identical to the original information. The two
main uses for authentication are checking passwords and verifying downloads. The principles
are similar, though I will describe only download verification here.

When a file is ready for download, the file’s owner can create a digital signature using PGP
and their private key. In other words, PGP encrypts the file using the private key, and you can
then decrypt it using the corresponding public key. However, this is not the whole story, because
simply encrypting large zipped files would mean twice the amount of data to be downloaded
and slow decrypting at the other end.

To solve this, PGP creates a message digest, otherwise known as a hash, from the file. This
message digest is a fixed length of characters, no matter how large the file is, and the chances
of a file having the same message digest as another are incredibly small. This character string
varies in length depending on the algorithm used, but will be something like 160 characters
long. PGP encrypts this message digest using the private key, which results in a small file.

When you download a file and ask PGP to verify it, PGP creates a digest of it and decrypts
the original message digest. It then compares the two to verify that they are digests of the same file.

A successful verification means that the creator of the public key created the digest in the
first place, because only this public key can decrypt the message digest as encrypted by the
corresponding private key.

Figure 2-4 shows how PGP verifies a file once you have downloaded it.

The signature was created when the file was created and should be obtained from the
source. This allows you to check that files hosted on a mirror have not been compromised. In
the case of Ant, you should obtain the public key and signature files from the main Ant web site;
the next sections explain the details of this.

CHAPTER 2 INSTALLING ANT

PGP digests
the contents of the file

File —»

11100110101

d033e22ae348ash5660fc2140aec35850c4da997

PGP compares the digest
PGP Qecrypts . to the signature, which is a digest
the signature using of the original file

a public key

Encrypted)
Signature d033e22ae348ash5660fc2140aec35850c4da997

Figure 2-4. Verifying a file has not been tampered with

Obtaining PGP

The short history of PGP is fairly lively. As a result of governmental restrictions on cryptographic
exports, the original PGP code was not available outside the United States. However, printed
versions of the code were exported in books set in OCR font. As such, the code was obtained
and compiled, becoming PGPi in the rest of the world.

Export restrictions have eased somewhat since the original release of PGP, and it is now
much easier to obtain the code. Readers using Windows and Mac can obtain a GUI version of
PGP from www. pgp . com. This site also has source downloads for all the major platforms,
command-line tools included.

Readers in the United States or Canada can also visit the MIT site for PGP atweb.mit.edu/
network/pgp.html for binary and source distributions without the corporate razzle-dazzle.

Readers in parts more exotic can obtain PGPi from www. pgpi.org. This site contains many
versions and options of PGP for many platforms. The main download index is at www.pgpi.org/

products/pgp/versions/freeware/. Select your operating system and then the version you require.

As things stand, all readers should choose a version of PGP that runs on the command line.
This makes it easy to automate verification, and you will also be able to follow along with the
verification process used in this book.

Downloading the Keys and the Signature

Once you have installed PGP, download the Ant public key from www.apache.org/dist/ant/
KEYS and the signature that corresponds to your Ant distribution. This will be an *. asc file.
Figure 2-5 shows the file required for a Unix *. tar.gz binary distribution. The KEYS file will also
be in your Ant distribution’s base directory, though you should use the one from the Ant web
site in preference to this one.

15

16

CHAPTER 2 INSTALLING ANT

“_glndex of /dist/ant/binaries - Mozilla Firefox 3 - |EI|1|

File Edit Wiew Go Bookmarks Tools Help

<E| - E> - @ @ I\ http: S, apache, orgfdistfant /binaries] j @ Go Ia'

| v

Index of /dist/ant/binaries

Name Last modified SGize Description

Parent Directory -

apache-ant-1.6.5-hin.tar.hbzi 0Z-Jun-2005 15:43 6.4M

apache-ant-1.6.5-hin.tar.bz.asc 02-Jun-2005 15:43 194

apache-ant-1.6.5-hin.tar.bzZ.md5 02-Jun-2005 15:43 3z

apache-ant-1.6.5-hin.tar.bzi.shal 02-Jun-2005 15:43 40

-
@
@
o

apache-ant-1.6.5-hin.tar.gz 0Z-Jun-2005 15:46 7.7M

apache-ant-1.6.5 0z -Jun-—

apache-ant-1.6.5-hin.tar.gz.md5 0Z-Jun-2005 15:46 3z

apache-ant-1.6.5-hin.tar.gz.shal 0Z2-Jun-2005 15:46 40

(o) (] (] 2 [+ o]

apache-ant-1.6.5-hin.zip 0Z-Jun-2005 15:49 9.1
apache-ant-1.6.5-hin.zip.asc 0Z-Jun-2005 15:49 194
apache-ant-1.6.5-hin.zip.wd5 0Z-Jun-2005 15:49 3z
apache-ant-1.6.5-hin.zip.shal 0Z-Jun-2005 15:49 40

a0

|D0ne

Figure 2-5. A signature file for verifying a binary Ant distribution

If you have downloaded a stable build, the PGP link next to the download link allows you
to download the *.asc file appropriate to your distribution, as shown earlier in Figure 2-2. You
can verify a nightly build using digests only (covered in the “Using MD5 and SHA1 to Verify the
Download” section). However, nightly builds come directly from Apache, so you should put
the same trust in Ant’s nightly build downloads as you put in Ant’s signatures.

Caution This form of verification is only as secure as the source of the keys and signature. The keys you
download from the Apache web site will be not be trusted as far as PGP is concerned, because they will not
come with trusted introductions. In other words, the keys and signature on the Ant web site are just as likely
to be at risk as the file you are downloading from a mirror site. Bear this in mind during the following discussion.

Using PGP

The first step is to add the Ant public keys to your PGP key ring. (Excuse the casual use of new
terms in this section, but if you’d like to know more about PGP, the manual is excellent and the
web sites listed earlier can also help you.)

CHAPTER 2 INSTALLING ANT

The following command adds the keys in the KEYS file to your PGP key ring:
> pgp -ka KEYS
To verify that the keys are on your key ring, run the following:

> pgp -kv

The Ant developers who have added public keys will be listed. Now that you have added
the public keys, you can use them to verify the signature of the download. Run the following,
where the *.asc file corresponds to the download:

> pgp apache-ant-bin.zip.asc

This will read the signature, find that the signature is not actually attached to a file, and
then read in the file that corresponds to the signature file, minus the .asc section. The result of
running the previous command is as follows:

Pretty Good Privacy(tm) Version 6.5.8

(c) 1999 Network Associates Inc.

Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

File 'apache-ant-bin.zip.asc' has signature, but with no text.
Text is assumed to be in file 'apache-ant-bin.zip'.

Good signature from user "User Name <user@ant.com>".
Signature made 2004/07/16 08:00 GMT

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "User Name <user@ant.com>".

Here you can see that PGP has assumed that the file the signature verifies is
apache-ant-bin.zip. It verifies that the signature is correct and states when it was signed. You
may be warned that the TZ environment variable is not set. This won'’t affect the verification
process, but if this extra warning bothers you, add the TZ variable as specified in the PGP manual.

The most worrying thing about this output is that PGP does not trust this signature because the
public key associated with it has not come from a trusted, signed source. If you will be working
with Ant a lot, or if you just want to trust the Ant keys for completeness, you can sign the keys
yourself. This will convince PGP that they are from a trusted source.

The first step is to create a private-public key of your own, if you do not already have one.
Run the following, and fill in the details as appropriate:

> pgp -kg

You now have a private key that you can use to sign the keys and a public key you can give
to others. To verify that you have added a key, run the key view command again:

> pgp -kv

17

18

CHAPTER 2 INSTALLING ANT

Your new key will be shown in the list with the Ant keys and will be marked as the default
key for signing, like so:

RSA 2048 0xF1964537 2005/03/28 *** DEFAULT SIGNING KEY ***
Matthew Moodie <matt@moodie.com>

To sign a key, run the following:

> pgp -ks

You will be asked for the ID of the user whose key you want to sign. You do not have to
enter the whole name, because PGP will find the nearest ID to the string you enter and present
you with the full version. You will be presented with the following warning to ensure that you
know the provenance of the key you are about to sign:

READ CAREFULLY: Based on your own direct first-hand knowledge,

are you absolutely certain that you are prepared to solemnly certify
that the above public key actually belongs to the user specified

by the above user ID (y/N)? y

If you enter y, you will be prompted for the password you specified when you created your
private key. Now that you have signed a key, PGP will allow you to use it to verify signatures.
Run the verification command again.

> pgp apache-ant-bin.zip.asc

This time there will be no warning.

Pretty Good Privacy(tm) Version 6.5.8

(c) 1999 Network Associates Inc.

Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

File 'apache-ant-bin.zip.asc' has signature, but with no text.
Text is assumed to be in file 'apache-ant-bin.zip'.

Good signature from user "User Name <user@ant.com>".
Signature made 2004/07/16 08:00 GMT

You can see who has signed the keys in your key ring with the following command:

> pgp -kc

CHAPTER 2 INSTALLING ANT

The second part of this long output shows a list of keys, each of which starts with the key
ID. Below each user ID is the ID of the signers of that key.

* O0xF1964537 ultimate complete Matthew Moodie <matt@moodie.com>
C ultimate Matthew Moodie <matt@moodie.com>

In this case, I am the only person who has signed my public key. The Ant keys will have a
number of signers. However, PGP will not trust anyone except you as a key signer, which is
another reason why PGP doesn’t trust any of the keys on your key ring.

If you want a third party’s key to sign other keys, you can change its trust level with the
following command:

> pgp -ke <username>

You will be given another warning and asked what level of trust you would like to assign to
this key.

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on available
evidence. If you think it does, then based on your estimate of

that person's integrity and competence in key management, answer

the following question:

Would you trust "User Name <user@ant.com>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know (default). 2=No. 3=Usually. 4=Yes, always.) ?

If you choose 4, this user can act as a signatory to other public keys, though you must have
signed their key initially so that PGP trusts them in the first place. You can see how the layers of
trust are built up and how important it is to trust the initial source of any key you receive.

Using MD5 and SHAL1 to Verify the Download

MD5 and SHA1 are message digest algorithms that you can use to verify the integrity of a down-
load. I covered message digests previously with reference to digital signatures, so I will go
straight into the verification process.

The md5/md5sum and sha1/shalsum tools are installed as standard on Unix; Windows users
can obtain md5 by following one of the links at the bottom of the Ant download page, as shown
in Figure 2-6. One of the links is waw. fourmilab.ch/md5/. The best way for Windows users to use
SHA1 digests is to download fsum from www. slavasoft.com/fsum/.

19

20 CHAPTER 2 INSTALLING ANT

")Apache Ant - Binary Distributions - Mozilla Firefox i - Dlﬂ
File Edit Wew Go Bookmarks Tools Help
<Z| - IZ> - @ @ I\ http:fjant.apache.orgfbindownload. cgi j @ Go IP—,,
: =l
Verify Releases
It is essential that you verify the integrity of the downloaded files using the PGP signature or the
5HAL or MDS checksums. The checksums are not as strong indicators as the PGP signature.
The PGF signatures can be verified using PGP or GPG. First download the KEYS as well as the asc
signature file for the particular distribution. Make sure you get these files from the main distribution
directory, rather than from a mirrar. Then verify the signatures using
% pgph -a KEYS
% pgpv apache-ant-1.f.5-bin.tar.gs.asc
ar
% pgp -ha KEYS
% pgp apache-ant-1.6.5-bin.tar.gs.asc
ar
4 gpg --inport KEYS
4 gpg --verify apache-anv-l.6.5-bin.var.gs.asc
Alternatively, you can verify the checksums on the files, Unix programs called nas/sna1 OF naszunshalzum
are included in many unix distributions. =-w is also available as part of GNU Textutils, Windows users
can get binary mdS programs from here, here. fsum supports MDS and SHAL.
We highly recommend to verify the PGP signature, though,
Copyright © 2000-2005 The Apache Software Foundation. All rights reserved. - Last Published: Thursday, August 25, 2005 08:52:49 ihd
‘ Done 4

Figure 2-6. You can obtain the md5 tool from the links at the bottom of the page.

You run the md5 tool at the command line, and when you are verifying a download, you
provide it with a 32-character MD5 hash.

If you have downloaded a stable build, the MD5 link next to the download link allows you
to download the *.mds file appropriate to your distribution, as shown earlier in Figure 2-2. You
can also verify a nightly build using MD5.

The *.mds file contains the message digest of the downloaded file, and you should provide
this value to the -c option of md5, followed by the filename of the download.

> md5 -ce74b9bf7297b4d7883d84d88cf6601fc apache-ant-src.zip.mds

Unfortunately, this will not provide any output to the screen. If the test was successful,
meaning the hash’s value corresponded to the hash of the file, the return code is 0. If the test
failed, the return code is 1.

To produce some human-readable output, you must write a script to verify the output of the
test. Listing 2-1 shows a Windows batch file that tests the MD5 hash against the hash of the file.

Listing 2-1. md5script. bat: Tests the Integrity of a Download
@echo off

md5 -c%1 %2
IF NOT errorlevel 1 GOTO valid

echo Signature not valid.
GOTO end

CHAPTER 2 INSTALLING ANT

:valid
echo Signature valid.
rend
To use this batch file, run the following command:
> md5script e74b9bf7297b4d7883d84d88cf6601fc apache-ant-src.zip

A successful test will result in the following:

Signature valid.

Listing 2-2 shows a Unix bash shell script that tests the MD5 hash against the hash of
the file.

Listing 2-2. md5script. sh: Tests the Integrity of a Download

if md5 -c$1 $2
then

echo Signature valid.
else

echo Signature valid.
fi

To use this script, run the following command:
> md5script e74bobf7297b4d7883d84d88cf6601fc apache-ant-src.zip

A successful test will result in the following:

Signature valid.

The procedure for sha1 is similar; just remember to use the sha1l utility on the *. sha1 file
instead of md5 on the *.mds file.

However, if you want to use fsum on Windows to check an SHA1 digest, the procedure is
slightly more complicated. First, you have to edit the *. sha1 file as follows:

94ed9d65bc38246384a11078d546566Tde050b2d ?SHA1*apache-ant-bin.zip

The change is to add ?SHA*filename after the SHA1 hash. This tells fsumwhich file was used
to generate the hash. It will then calculate the hash of this file and compare it to the hash in the
file. The relevant command is as follows:

> fsum -shal -c apache-ant-bin.zip.sha1

21

22

CHAPTER 2 INSTALLING ANT

SlavaSoft Optimizing Checksum Utility - fsum 2.51
Implemented using SlavaSoft QuickHash Library <www.slavasoft.com>
Copyright (C) SlavaSoft Inc. 1999-2004. All rights reserved.

0K SHA1 apache-ant-bin.zip

The test passed in this case. If the test failed, you wouldn’t see any output after the fsum
copyright lines.

Installing a Source Ant Distribution

You can install Ant from source in a number of ways, depending on your personal preference.
If you want the latest milestone build, then you have to download it from the Ant web site
(ant.apache.org). However, if you want to try the latest version of Ant, then you can download
a nightly build from the web site or obtain it from the Ant CVS repository. This allows you to
work with the latest features of Ant that might not be available in the stable release. Nightly
builds also contain the latest bug fixes.

Note Installing Ant from source is just as easy on Windows as it is on Unix, mainly because of Java’s
cross-platform properties. The only nonstandard Windows tool described is cvs, though you can obtain it
easily. You'll find the details in the following relevant section.

The next section will describe how you can use the Ant web site to obtain a source distri-
bution, be it a stable build or a nightly build. After that, I will describe how to use CVS to obtain
a nightly build.

Downloading a Source Distribution

Once you are on the Ant home page, click the Source Distributions link on the left side. Figure 2-7
shows the source download page.

The download script will have selected an appropriate mirror for you to use, which, unless
you have strong objections, should be fine.

CHAPTER 2 INSTALLING ANT 23

¥)apache Ant - Source Distributions - Mozilla Firefox i o [m] 3
Fle Edit View Go Bookmarks Tools Help

<EI - I:> - @ @ I\ http:ffant.apache.org/srcdownload.cgi j @ GO Ia'

Apache > Ant apache

THE [r—
APACHE ANT 1 pache Ant site
PROJECT =

Stte
Home

+ Apache Ant
|

Source Distributions
-

Use the links below to download a source distribution of Ant from one of our mirrors. It is good practice to
verify the integrity of the distribution files, espedially if you are using one of our mirror sites, In order to do
this you must use the signatures from our main distribution directory.

Ant is distributed 8% zip, tac.gs ANd var.pez archives - the contents are the same. Pleaze note that the cac.=
archives contain file names longer than 100 characters and have been created using GMU tar extensions,
Thus they must be untarred with a GNU compatible version of vaz.

If you do not see the file you need in the links below, please see the master distribution directory or,
preferably, its mirror,

Mirror

You are currently using http:/ /mirror.poundhost.com/www.apache.org. If you encounter a problem
with this mirror, please select another mirror, If all mirrors are failing, there are backup mirrars (at the end of
the mirrors list) that should be available.

Other mirrors; |hnp.n'm\rrurpuundhuSt.cumf\mwv.apache.urg j Change

Nl

Figure 2-7. The Ant source download screen

Downloading a Stable Build

As shown in Figure 2-8, the next section of the source download page contains links to the
latest stable version of Ant. This version has been tested and verified. Any new features are
stable and will not exhibit unpredictable behavior, so you can be confident that this version
will work as expected.

) apache Ant - Source Distributions - Mozilla Firefox i 1ol x|
Fle Edit Wiew Go Bookmarks Tools Help

<§| - [> - @ @ @ I\ http:/}ant. apache. .orgfsredownload. cgi j © 6o |ﬁ~v

Current Release of Ant =l

Currently, Apache Ant 1.56.5 is the best available version, see the release notes.

Ant 1.6.5 has been released on 02-lun-2005 and may not be available on all mirrors for a few days. J

Tar files in the distribution contain long file names, and may require gnu tar to do the extraction.

* _zip archive: apache-ant-1.6.5-src.zip [PGF] [SHAL] [MDS]
* _war g archive: apache-ant-1.6.5-src.tar.gz [PGF] [SHAL] [MDS]
® _car.ps2 archive: apache-ant-1.6.5-src.tar.bz2 [PGF] [SHAL] [MDS]

ST

‘ Done:

Figure 2-8. The Current Release of Ant section of the source download page

24

CHAPTER 2 INSTALLING ANT

Select the form of archive you want to download. In general, Windows users should down-
load the *.zip archive, and Unix users should choose whichever of *.tar.gz or *.tar.bz2 they
prefer. As the download page says, you should use a GNU-compatible version of tar to unpack
the archive because some of the filenames are longer than 100 characters long.

Downloading a Nightly Build

If you want the latest features, some of which won’t be available in the stable build, you may
want to download a nightly build. Figure 2-9 shows the Nightly Builds section of the source
download page, along with a section that allows you to download older versions of Ant.

) Apache Ant - Source Distributions - Mozilla Firefox

Fle Edt Yew Go Boclmarks Tools Help

ooy - & 21 [N hitpijfant.apache.orgjsrcdonrload.co =l G (A,

Nightly Builds

If you wish to use the latest Ant features, you can try downloading a nightly build,

Old Ant Releases [

Older releases of Ant can be found here, Those releases are only provided as =i archives that can be extracted

by sar =¢ archive.zip - we highly recommend to not use those releases but upgrade to Ant's latest release.

[pane

]
4

Figure 2-9. The Nightly Builds section of the source download page

If you click the link, this will take you to the nightly builds directory of the Apache server.
To download the latest build, click the link that represents the newest version of Ant. Each link
is in the form YYYYMMDD so that you can choose the appropriate directory to browse. Navigate to
the src directory, and choose which type of archive to download. In this case, the choice is
between *.zip and *.tar.gz. Again, you should use a GNU-compatible version of tar to extract
the *.tar.gz archive.

Downloading a CVS Snapshot

If you do not have CVS installed on your system, you can still download nightly snapshots of
the CVSrepository via the Ant CVS repository web site. These distributions are likely to be more
unstable than both nightly and milestone builds.

Click the CVS Repositories link on the Ant web site, and you will see the CVS Repositories
section of the web site, as shown in Figure 2-10.

This page gives you instructions on how to obtain the latest source code using CVS, which
you will see in the “Using CVS to Obtain a Source Distribution” section. For now, click the link
to cvs.apache.org/snapshots/ant/. You should see alist of the latest snapshots of the CVS tree,
as shown in Figure 2-11.

CHAPTER 2 INSTALLING ANT 25

) Apache Ant - CYS Repositories - Mozilla Firefox) i =] |

Ele Edit Yew Go Bookmarks Tools Help

<:ZI - |:> - @ @ I\ http: /fant. apache.orgfows. html j @ Go Ia;

Apache > Ant.apache =

THE T
APACHE ANT 4 the A site
PROJECT (f— A

Home

CVS Repositories

Anyone can checkout source code from our anenymous CWS server, To do so, simply use the
following commands (if you are using a GUI CWS client, configure it appropriatly):

cws -4 :prerver: anencve@ovs.apache.org:/home/ cvepublic login
passmord: anencws

cws -4 :pserver: anoncwsBovs.apache.org:fhome/ cvspublic checkout [modulz-name]
Modules available for access are:
+ ant - The "main" Ant module.
If you are not familiar with CwS, Jakarta's WS page may hold many helpful hints.

Nightly snapshots of the CWS tree are available at http://cvs.apache org/snapshots/ant/.

=
4
o =]
File Edit Wiew Go Bookmarks Tools Help
QZl - E> - @ @ @ I\ http:ficvs. apache.orgfsnapshotsfant) j @ Go Ia;
Name Last modified SGize Description

a Parent Directory - Automated snapshots of current Development Trees

ﬁ ant 20050524101200.tar.ge 24-Ahug-2005 03:13 9.0M Automated snapshots of current Development Trees

ﬁ ant 20050824161200.tar.ge 24-Ahug-2005 09:12 9.0M Automwated snapshots of current Development Trees

ﬁ ant 20050824221200.tar.ge 24-Aug-2005 15:12 9.0M Automated snapshots of current Development Trees

ﬁ ant 20050825041200.tar.ge 24-Ahug-2005 21:12 9.0M Automwated snapshots of current Development Trees

Apache/2.1.7-dev (Unig) SV .2.2-dev mod_ssli2.1.7-dev CpenSSL0.9.7e DAVYZ Server at cvs.apache.org Port 80

| Done v

Figure 2-11. CVS nightly snapshots on the Apache server

26

CHAPTER 2 INSTALLING ANT

These are all *.tar.gz files, though this shouldn’t be a problem even for Windows users
because WinZip, for example, can cope with these kind of archives without any problems.

Verifying the Source Distribution

It is good practice to verify the source bundle has not been interfered with once you have
downloaded it. You can do this with the PGP application or the MD5 or SHA1 algorithms.
This process is covered in the previous “Verifying the Download” section.

Using CVS to Obtain a Source Distribution

Using CVS to obtain a source distribution is painless. Most Unix systems have the cvs tool
installed by default. Windows users can obtain it from www. cvshome.org.

The code obtained from the CVS repository is likely to be more unstable than a nightly
build and certainly more unstable than a stable milestone build.

The following command logs you into the Apache CVS repository. When asked for the
password, enter anoncvs.

> cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
password: anoncvs

If you log in successfully, you won'’t see a confirmation. Now that you have established a
connection with the server, you can check out the Ant source code. Run the following to down-
load the source to the current directory:

> cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic checkout ant

cvs will display its progress to the console, which allows you to see the various files and
directories that are being downloaded.

Building the Ant Source Distribution with the Build Script

Now that you have the source distribution on your file system, you can build Ant. If you are
installing Ant for the first time, you will have to use the build script (build.bat on Windows and
build.sh on Unix). If you have a distribution of Ant already, then you can use the build.xml
build file. The “Upgrading Ant” section covers the latter situation.

Installing Ant from source for the first time presents an interesting problem: if you don’t
have a build tool, how do you build Ant? To solve this problem, the Ant source distribution
comes with a build script that compiles the source distribution.

Run the build script appropriate for your system as follows:

> build

This will first compile the core Ant classes from source, before using them to build the
rest of the distribution. This happens in two stages. First, the build script calls the bootstrap
script, which in turn compiles the bare minimum of Ant classes required and then calls
org.apache.tools.ant.Main to build the core of the Ant distribution. Listing 2-3 shows the
important part of build.xml that creates the bootstrap build.

CHAPTER 2 INSTALLING ANT

Listing 2-3. The bootstrap Target from build.xml

<target name="bootstrap" description="--> creates a bootstrap build">
<antcall inheritAll="false" target="dist-lite">
<param name="dist.dir" value="${bootstrap.dir}"/>
</antcall>
</target>

While this may not mean much just now, a quick discussion of this will show how the Ant
build process first builds the minimum bootstrap distribution and then builds the main distri-
bution. The bootstrap target uses the <antcall> element to call the dist-1ite target, but it
overrides the dist.dir property for the duration of the call. This ensures that the bootstrap
build is placed in a scratch bootstrap area away from the main distribution. Listing 2-4 shows
the relevant line from the Windows bootstrap script.

Listing 2-4. The bootstrap Script Calls the Main Ant Class to Build the Bootstrap Build

"%JAVAZ" %ANT OPTS% org.apache.tools.ant.Main =
-emacs %ANT_CMD_LINE_ARGS% bootstrap

The bootstrap argument at the end causes Ant to run the bootstrap target listed in Listing 2-4.
The final bootstrap build is placed in the bootstrap directory. The JAR files required to build the
main Ant distribution are placed in bootstrap/1ib, and the scripts are placed in bootstrap/bin.

In the second stage, the build script calls the bootstrap/bin/ant script, which runs the
default Ant task in build.xml using the line shown in Listing 2-5.

Listing 2-5. bootstrap/bin/ant.bat Calls Ant’s Default Target

"% _JAVACMDZ%" %ANT OPTS% -classpath "%ANT HOME%\lib\ant-launcher.jar" w
"-Dant.home=%ANT_HOME%" org.apache.tools.ant.launch.Launcher =
%ANT _ARGS% %ANT CMD_LINE_ARGS%

The default target for the Ant build is main, and this target simply calls the dist-1lite target.
However, this time the dist.dir property is set to the final distribution directory that will
contain the Ant distribution. Listing 2-6 shows the relevant details.

Listing 2-6. The Targets That Build the Main Ant Distribution

<project name="apache-ant" default="main" basedir=".">
<property name="dist.dir" value="dist"/>
<target name="main"
description="--> creates a minimum distribution in ./dist"

depends="dist-1lite"/>

</project>

27

28

CHAPTER 2 INSTALLING ANT

In this case, the dist-1ite target builds the main Ant distribution and places it in the dist
directory, as specified by the dist.dir property. The dist directory contains the bin and lib
subdirectories, which form the Ant distribution. The dist directory is your ANT_HOME, unless
you copy the files to another location.

Taking Final Steps After Installation

The final step of installation is to set the ANT_HOME environment variable. This allows Ant to find
the classes that it depends on, which means you can run it from anywhere on your file system.

Setting %ANT_HOME% on Windows

To set ANT_HOME% on Windows, open Start » Settings » Control Panel » System. Click the
Advanced tab, and select Environment Variables. You will then see the Environment Variables
dialog box, as shown in Figure 2-12.

Environment Yariables ﬂll

—User variables For matthewm
‘ariable | Walue |
Tew Edit... | Delete |
—System variables
‘ariable | Walue |;|
CLASSPATH . |
ComSpec COWINNT system32iomd. exe
digpp CH\DIGPPDIGPR ENY
JZEE_HOME Ci\jzeesdkl. 4
J8ME_HOME Ciijzsdkl. 4.2 x|
Mew, .. | Edit... | Delete |
[8]4 I Cancel |

Figure 2-12. The Windows Environment Variables dialog box

If you want to add the environment variable just for you, click the New button under the
User Variables for User section. Alternatively, if you want every user on your system to have
access to it, click the New button under the System Variables section. Whichever you choose,
enter the details of your Ant distribution, as shown in Figure 2-13.

CHAPTER 2 INSTALLING ANT

Edit System Yariable e |

Variable Name: | &NT_HOME

‘ariable Value: I Cilapache-ant

[8]4 I Cancel |

Figure 2-13. Adding ¥ANT_HOMEX as a system environment variable

Click OK, and close down the system application. To test that you have successfully added
the variable, run the following at the command line:
> echo %ANT_HOME%

This should display the name of the directory that you specified. To run Ant, you can use
the %ANT_HOME% variable like so to test the installation:

> %ANT_HOME%\bin\ant -version

For more flexibility, you can add the Ant %ANT_HOME%\bin directory to your %PATH% environ-
ment variable using the system application, just as you added the %ANT_HOME% variable. This
means you can call the ant command from any directory like so:

> ant -version

If these commands do not display the version number of Ant you installed, check the value
of ANT_HOME% and that the %ANT_HOME%\bin\ant file is accessible.

Setting SANT_HOME on Unix

To add the $ANT_HOME environment variable, use the following command (in bash):

ANT_HOME=/usr/java/apache-ant
export ANT HOME

You can also add these commands to ~/.bashrc or /etc/profile, or you can create a shell
file, antEnv.sh, and place it in /etc/profile.d. The /etc/profile directory will run this file
automatically at boot time to make the $ANT_HOME variable available to all users.

Examining the Ant Distribution

The Ant distribution is fairly simple and contains four directories: bin, docs, etc, and 1ib. The
ANT_HOME directory also contains a number of files, most of which are licenses, though KEYS,
README, welcome.html, and WHATSNEW are worth an explanation.

» KEYS: This file contains the public keys associated with the Ant project. See the “Verifying
the Download” section for more details.

e README: This is a quick introduction to Ant with details of what it is and what it does.

29

30

CHAPTER 2 INSTALLING ANT

e welcome.html: This is a fuller, more well-rounded version of README. It contains a fair bit
of useful information, including what is new in this release of Ant. You should read this
when you do a significant upgrade to see what new features are in the new version.

» WHATSNEW: This is a change log that describes the changes, new features, and bug fixes
that have been made over a number of Ant versions, starting with the change from Ant
1.1toAnt1.2.

Looking at the bin Directory

The bin directory contains scripts for Unix and Windows that run Ant. The ant. * and antRun. *
scripts have the same functions on both platforms, though the *. cmd scripts are slightly different.

Understanding the ant Scripts

The ant.* script runs the main Ant class and starts the build process. It takes a number of
command-line parameters, all of which I will discuss in the next chapter. The ant.cmd script is
aWindows NT script that calls the other *. cmd files to perform the same tasks as the other ant.*
scripts.

Understanding the antRun Scripts

The antRun. * script runs an OS-specific command. The <exec> Ant task uses it to access system
tools that may be required during a build. Its first argument is the directory from where the
command should be run, and the other arguments are arguments to this command. For example:

> antRun . echo "Hello, world."
"Hello, world."

This runs the echo command from the current directory with the string "Hello, world." as
the input to the command.

Understanding the runant Scripts

The runant.* scripts are Perl and Python scripts that run Ant, just as the ant. * scripts do. If you
want, you could use them as CGI scripts; however, as the scripts point out, this would be some-
what daft.

Looking at the docs Directory

The docs directory contains an offline version of the Ant manual. The pages are mainly HTML,
with the exception of a PDF task reference document.

Looking at the etc Directory

The etc directory contains a number of XSL transformation documents that some Ant tasks use
to transform their results. For example, the JUnit test tasks are designed to test the results of the
build process, and they use the XSL documents in this directory to form result documents.

CHAPTER 2 INSTALLING ANT

Looking at the lib Directory

The 1ib directory contains the huge number of JAR files that Ant needs to do its work. Some of
them are part of the Ant project itself, and others are from different Jakarta projects, such as
Jakarta ORO and Jakarta Bean Scripting Framework, and from different Apache projects, such
as the Apache Log4j logging framework and the Xerces XML processor.

The 1ib directory is in Ant’s classpath, and you must copy any third-party or custom task
JAR files into this directory for Ant to be able to use them.

Upgrading Ant

If the Ant developers release a new version of Ant, it is a fairly straightforward task to upgrade.
The instructions in the installation sections apply to any new release. The most important task
to remember is to reset the value of the ANT_HOME environment variable. Once you have
installed a new version of Ant, you must point to the new location using this variable.

You should also remember to add the Ant directory to your path, should you want to run
Ant from anywhere on your file system. If you do this, ensure that the old version of Ant is no
longer in the path, because this may lead to unforeseen problems when you try to use the new
version.

One final issue to consider is whether you have added any functionality beyond the core and
optional tasks. For example, to hot-deploy web applications on a running Tomcat server, you
must have the Tomcat deployment tasks in Ant’s classpath. This means the catalina-ant. jar file
must be in the ANT_HOME/1ib directory. Therefore, you must ensure it is copied into your new
version of Ant, along with any other custom JAR files you use.

Once you have successfully installed and tested the new version, you can delete the old
distribution to avoid confusion in the future. Should you need to refer to an older version,
Apache maintains an archive at archive.apache.org/dist/ant/. You can also get there via the
Ant download page.

Summary

This chapter covered how to install Ant in a number of ways. You can install a stable version of
Ant that comes as a package of compiled Java classes, or you can compile the classes yourself.
Both techniques provide you with a robust release of Ant that has been through extensive tests,
so you can be sure of its reliability.

If you want to work with new features and the latest version of Ant, you can obtain nightly
builds or newly written CVS snapshots of the code. These allow you to test the features of Ant
that have not made it into the stable releases.

You also looked at download verification and the issues surrounding it. You have two ways
to verify an Ant download: PGP and MD5/SHAL. PGP is the more robust of the two, but
requires a fair amount of effort to set up if you do not already have it on your system.

The next chapter gets into the details of build file syntax and how to run Ant from the
command line.

31

CHAPTER 3

Using Ant

N ow that you have installed Ant, you are ready to start using it. However, Ant is nothing
without its build files. You must provide Ant with a description of the project before you can
start to build the project. With this in mind, in this chapter you'll look at the syntax of build
files, with a quick refresher on XML just in case.

You write Ant’s build files in an XML dialect that is fairly simple, yet can’t be captured in a
DTD. As mentioned in a previous chapter, a Java class implements each XML element in Ant’s
build file, which means the attributes can change depending on the underlying Java class. The
attributes of nested elements can also change depending on which element contains them.

This chapter will cover running Ant from the command line and the basics of build files.
This discussion will include those XML elements in a build file that are not tasks and the <property>
task, mainly because it is such an important task that it is integral to almost any build file.

Running Ant from the Command Line

The usual method of running Ant is to use the ant shell script supplied in ANT_HOME/bin. If you
plan to use Ant a lot, it is a good idea to place this directory on your path or place a shortcut to
the script in a directory that is on your path.

The ant script has a number of options at the command line. You can see what these are
by running ant -h. The basic syntax is as follows:

ant [options] [target [target2 [target3] ...]]

The list of targets tells Ant which targets to execute in the build file. (I'll discuss targets in
the “Examining the Target Element” section.) Table 3-1 describes the options.

Table 3-1. Ant’s Command-Line Options

Option Description

-help, -h Displays the help message.

-projecthelp, -p Prints help information that describes the targets in the project
build file.

-version Prints version information.

33

34

CHAPTER 3

USING ANT

Table 3-1. Ant’s Command-Line Options (Continued)

Option Description

-diagnostics Prints information that you can use to diagnose problems. This
includes the JAR files and system properties that Ant is using.

-quiet, -q Suppresses most visible output that Ant produces. This does not
apply to print commands that are part of the build.

-verbose, -v Prints all possible output that Ant produces.

-debug, -d Prints debugging information. You can configure the <echo> task
with levels of output to help with debugging.

-emacs, -e Strips all unnecessary trimmings from visible output. For example,
when a task executes, Ant usually displays the task type. If you set
this option, Ant will not display this information.

-1ib <path> Specifies a path to search for JARs and classes, in addition to your

-logfile <file>
-1 <«file>
-logger <classname>

-listener <classname>
-noinput

-buildfile <file>
-file <file>

-f <file>
-D<property>=<value>

-keep-going, -k

-propertyfile <name>

-inputhandler <class>

-find <file>
-s <file>

-nice number

-nouserlib

-noclasspath

classpath and Ant’s two default directories (see the discussion
after this table).

Sets the log file for this build.

Sets the class that does the logging for this build. Chapter 11
covers logging.

Adds a project listener. Chapter 11 covers listeners.
Disables interactive input. Chapter 6 covers this topic.

Specifies the build file to use for this build. The value of <file> can
be an absolute path or a path relative to the current directory. The
default is a file called build.xml in the current directory.

Sets the value of property <property> to <value>. I will discuss
properties in the “Working with Properties” section.

Forces Ant to execute every target that does not depend on a failed
target. This ensures that at least part of the build was successful.

Loads all the properties from specified property file. (I will cover
property files in the “Working with Properties” section.) -Dproperties
take precedence if there is a clash.

Sets the class that will handle input requests. This is an implemen-
tation of the org.apache.tools.ant.input.InputHandler interface.
Chapter 6 covers this topic.

Tells Ant to search for the specified build file toward the root of
the file system and use it. This allows you to run a build on a
project from deep within its directory hierarchy.

Sets a value for niceness for the main Ant thread: 1 (lowest) to 10
(highest). 5 is the default.

Tells Ant to run without using JAR files from ${user.home}/.ant/
1ib (see the paragraph that follows this table).

Tells Ant to run without using your classpath.

CHAPTER 3 USING ANT

By default, Ant’s classpath is built from the system classpath, from the path set with -1ib,
from the ${user.home}/.ant/1ib directory, and from the ANT_HOME/1ib directory. The system
classpath, represented by the CLASSPATH environment variable, is passed to Ant as transparent
inputto -1ib. Antlooks through these directories and loads any classes and JARs, which means
you don'’t have to specify each JAR’s name.

${user.home}/.ant/1ib varies depending on your operating system. On Unix it maps to a
user’s “home” directory; on Windows it varies depending on version. Windows 2000, for example,
uses C:\Documents and Settings\username.

You can run Ant without any of these options. In this case, it will look for a build file in the
current directory and run the default target.

Ant has three environment variables that you can use to set its default behavior.

e ANT_ARGS is a list of the arguments described in Table 3-1. Set this variable to include
those options you use frequently.

e ANT_OPTS is a list of arguments that you want to pass to the JVM that will run Ant.

e JAVACMD is the absolute path to the Java executable you want Ant to use.

Introducing Ant’s Build File Syntax

The XML specification allows you to describe data in a structured form. As such, it is an extremely
effective format for build files, which, as you are now aware, describe the structure of the
project build process.

Examining the Project Element

Each XML document must be well formed, meaning it must have a root element that contains
all other elements and each element must be closed by a closing element or must be a stand-
alone, self-closing element. The root element of every Ant build file is the <project> element,
so every Ant build file must contain the lines shown in Listing 3-1 at a bare minimum.

Listing 3-1. The Minimum Requirements for a Build File

<?xml version="1.0"?>
<project>

</project>

If you want to use a DTD, you can generate an incomplete DTD using the <antstructure>
task, or you can find a working example at www. sdv.fr/pages/casa/html/ant-dtd.en.html. The
incomplete DTD may be enough for some purposes, but if you want to use an IDE to edit build
files and add appropriate elements in the appropriate place, you will need to use the more
complete version.

35

36 CHAPTER 3 USING ANT

Note The Eclipse IDE (www.eclipse.org) has a useful Ant build file editor.

Listing 3-2 shows a build file that creates the incomplete DTD.

Listing 3-2. Generating an Incomplete DTD

<?xml version="1.0"?>

<project>
<antstructure output="./project.dtd"/>
</project>

To run Ant and create the DTD, execute the ant command at the command line, as follows:
> ant

Ant will process the build file and create the DTD. You can now add a reference to the DTD
in your build file, as shown in Listing 3-3.

Listing 3-3. A Build File with a DTD Declaration

<?xml version="1.0"?>
<IDOCTYPE project PUBLIC "-//ANT//DTD project//EN" "project.dtd">

<project>

</project>

This is also how you add the complete DTD if you have downloaded it. If you eventually
add new custom tasks or third-party tasks to your build files, you will have to extend this DTD.
All in all, you may find it more straightforward to not work with DTDs, and you'll find that few
source bundles come with DTD declarations. For example, the Ant distribution does not use a
DTD.

Ant will always run any tasks that you set as child elements of <project>, which means
every run of the project will include these tasks. If you want to control which tasks Ant runs, or
you want to group related build steps (and you do), then you need to use targets, as defined by
the <target> element. <target> elements are child elements of <project>, and you place tasks
inside them so that you have more control over your builds. You can set a target as a default so
that Ant will run it if you do not specify a target at the command line. To do so, use the <project>
element’s default attribute.

You set the base directory of the current build with the <project> element’s basedir attribute.
If you do not specify a default directory, the default is the parent directory of the build.xml file.

CHAPTER 3 USING ANT

Lastly, you can give the project a name, which is useful as a description. Listing 3-4 shows
all these attributes.

Listing 3-4. Setting a Project Name, a Base Directory, and a Default Target

<?xml version="1.0"?>
<project name="Apache Ant Book Project"

basedir=".
default="build-dtd">

<target name="build-dtd">
<antstructure output="./project.dtd"/>
</target>

</project>

If you call ant with no arguments, it will run the build-dtd target and create the
project.dtd file.

Examining the Target Element

A target is a collection of Ant tasks that you want to run as a unit. Each target should represent
a discrete step of your build process and no more. It’s possible that a target could be a small
part of a large step, but you should make sure it is a discrete unit and it does not finish another
task’s business or leave unfinished business for another task. For example, an initialization
target usually creates all the scratch directories for the build. You do not want to let the initial-
ization target create some directories and then create some more common directories with the
compilation target. Keeping a build file cohesive is important—for your sanity if nothing else.

The <target> element is the XML representation of a target in the build file. As already
mentioned, it is a child element of <project>. It also can contain as many task elements as are
required. When Ant calls a target, each of these tasks runs in turn until they all complete or one
fails. You can chain targets together so that one target will not execute until another has completed
all its tasks successfully. By setting these dependencies, you can start to build a description of
the build process.

The <target> element’s only mandatory attribute is name. The name allows you to call the
target from the command line (see the “Running Ant from the Command Line” section) or
from within the build file. You can accomplish the latter with the <project> element’s default
attribute or with certain tasks (more on this in Chapter 9).

You can provide the target with a description using the description attribute, and Ant uses
this description when you call it with the -projecthelp option. In this case, Ant will display only
the names and descriptions of targets that have descriptions. Ant is assuming that if it isn’t
important enough to have a description, it isn’t important enough to be shown as a major target
that you would want to run.

If none of the targets has a description, you will see something like this:

37

38

CHAPTER 3 USING ANT

> ant -projecthelp

Buildfile: build.xml
Main targets:
Other targets:

build-dtd

build.path
build.path.unix
path.namespace
properties.built-in
properties.custom
properties.environment
properties.localfile
properties.localfile.env
properties.localfile.prefix
properties.resourcefile
properties.url

If you add a description, such as the one shown in Listing 3-5, then only that target will be
displayed.
Listing 3-5. Adding a Description to a Target

<target name="build-dtd" description="Create an Ant DTD">
<antstructure output="./project.dtd"/>
</target>

Now if you run the -projecthelp command again, Ant will display only this target:

> ant -projecthelp

Buildfile: build.xml
Main targets:

build-dtd Create an Ant DTD

To run this target, execute the following in the same directory as the build file:

> ant build-dtd

CHAPTER 3 USING ANT

The <description> element adds a master description to a build file if you use it as a child
element of <project>.

<description>
Apache Ant book example project. The main targets are listed below.
</description>

You may use more than one <description> element if you want. Each one will print
its message above the target descriptions. Here’s the relevant ant command to display the
descriptions you have added:

> ant -projecthelp

Buildfile: build.xml
Apache Ant book example project. The main targets are listed below.
Main targets:

build-dtd Create an Ant DTD

If you want Ant to always run one target before running another one, such as an initialization
target before a compilation target, then you need to specify the name of the first target you
want to run in the second target’s depends attribute, as shown in Listing 3-6.

Listing 3-6. Setting a Dependency

<?xml version="1.0"?>
<project name="Apache Ant Project" basedir="." default="build-dtd">

<target name="pre-dtd">

</target>

<target name="build-dtd" depends="pre-dtd"
description="Create an Ant DTD">
<antstructure output="./project.dtd"/>
</target>

</project>

In this example, the build-dtd target depends on the pre-dtd target. Once pre-dtd finishes
successfully, build-dtd runs any tasks that it contains. Here’s the result of running Ant with the
default target:

39

40

CHAPTER 3 USING ANT

Buildfile: build.xml
pre-dtd:
build-dtd:

BUILD SUCCESSFUL
Total time: 6 seconds

You can set as many target names in depends as you want by separating each name with a
comma. Ant works through them one at a time until they all succeed or one fails.

The <target> element has more attributes, but these use properties, which I haven’t
covered yet. I'll do so now.

Working with Properties

While you write an Ant build file in XML, Ant has a few tricks up its sleeve to make the build file
as flexible as possible. This is particularly important when working with platform-independent
build files. Hard-coding directory paths and filenames is not a good idea in any area of program-
ming, and you should attempt to avoid it in your source code. If this is the case, you don’t want
to undo all your careful work by hard-coding values into your build files.

Ant has a number of ways for you to make your build files portable and easily maintain-
able. The first three I will describe allow you to specify properties that can easily be changed
from build to build, which allows you to configure the build for the local environment. The
fourth technique allows you to incorporate certain conditions in your build files so that different
results are obtained depending on the local environment.

Note The first three techniques are by far the most common, but you may find conditional processing
useful. You should at this stage, however, form the opinion that you can treat Ant as a scripting tool. It does
not do much more than simple conditions, such as if. . .then constructs, and does not handle errors. Of
course, extensions to Ant have been written to overcome some of these perceived problems, and it is up to
you whether you think you need them. | will provide pointers to extensions at the appropriate stages in this book.

Before learning about the techniques, you will look at the Ant concept of properties. Ant
tasks use Ant properties to set attribute values at run time, which means the values of those
attributes are not hard-coded.

CHAPTER 3 USING ANT

Note The ${} notation used by Ant means “display the value of this property.” Remember this when using
some of the property-checking techniques described in this chapter. It is quite easy to forget that you want to
specify the name of the property rather than its value.

You may want to set the base directory of the build at run time to allow for changes in
directory structure. To do so, you have to place a property marker in the basedir attribute of
the <project> element, as shown in Listing 3-7.

Listing 3-7. A Property Marker in the <project> Element

<?xml version="1.0"?>
<project basedir="¢${base.dir}">

</project>

The ${base.dir} string inserts the value of the base.dir property at run time. If the base.dir
property has not been set, Ant uses the literal string. This may or may not be a problem depending
on the situation. For example, many build files use properties to set the locations of scratch and
distribution directories. Before you run Ant, you are expected to set these properties in one of
the ways described next. If you do not, you may end up with a directory structure like Figure 3-1.

{1 ${build.dir}
{1 ${build.dac}
i | $4build. examples}

Figure 3-1. Directory structure when properties are not set

This is not a problem in the case of a build, because the directory names will remain
constant throughout the build and you will be removing the scratch directory structure once
you have finished the build anyway.

You may have a problem if the name of a JAR or WAR file must be set as a property or if you
are referencing an existing directory in your build file. In the latter case, the build will fail if your
source directory is called src and you are using a property called src.dir, because Ant will look
for a directory called ${src.dir} if the src.dir property is not set.

So, properties provide a standard build file that can be configured easily, removing the
need for hard-coded strings. You should ensure that your properties are logically named so
that other people can quickly and easily get an idea of how your project works when you are not
there. You may even find that you benefit if you return to a project after a long break.

L)

42

CHAPTER 3 USING ANT

Naming properties as you would name Java packages is a good convention to use. For
example, all properties that are associated with the initialization stage of the build could be
prefixed init., while those associated with the compilation stage could be prefixed build..
This separates them into discrete bundles and makes maintaining each build stage that much
easier.

Using Built-in Properties

Ant provides you with certain built-in properties that you may find useful during your build
process. They mainly provide information about the version of Ant and Java you are using and
the current project, the latter of which you can use to set other paths in the project.

Note The built-in properties described in the following two sections have the common naming convention
analogous to Java packages that | advocated previously. As such, you may want to avoid using the prefixes
these properties use when naming your own properties.

Accessing Ant’s Built-in Properties
Table 3-2 describes the five built-in Ant properties.

Table 3-2. Ant’s Built-in Properties

Property Description

ant.file The absolute path to the current build file.

ant.java.version The version of Java that Ant uses.

ant.project.name The name of the project as set in the <project> element’s name

attribute. If you have not set this attribute, Ant will substitute the
literal string ${ant.project.name}.

ant.version The version of this Ant installation. This is not just the version
number and includes information such as the compilation date.

basedir The base directory for this build, as defined in the basedir attribute of
the <project> element. If you do not set this attribute, Ant uses the
current directory.

These properties are unique to Ant and are shown in Listing 3-8. The <echo> task will display
the specified message to standard out and is a good way to demonstrate the substitution that
occurs when you use properties.

CHAPTER 3 USING ANT

Listing 3-8. Displaying Ant’s Built-in Properties
<?xml version="1.0"?>

<project name="Apache Ant Properties Project" basedir=".">

<target name="properties.built-in">
<echo message="The base directory: ${basedir}"/>
<echo message="This file: ${ant.file}"/>
<echo message="Ant version: ${ant.version}"/>
<echo message="Project name: ${ant.project.name}"/>
<echo message="Java version: ${ant.java.version}"/>

</target>

</project>

Run the properties.built-in target, and you should see something like the following:

properties.built-in:
[echo] The base directory: C:\AntBook
echo] This file: C:\AntBook\build.xml
echo] Ant version: Apache Ant version 1.6.3betal compiled on March 31 2005
echo] Project name: Apache Ant Properties Project
echo] Java version: 1.4

[echo]
[echo]
[echo]
[echo]

To see the substitution that Ant uses for the ant.project.name property, remove the name
property from the <project> element. You will see something like the following when you run Ant:

[echo] Project name: ${ant.project.name}

Accessing System Properties

Ant also gives you access to the Java system properties as if you had called java.lang.System.
getProperties(). This can, for example, allow you to build platform-specific paths and directory
hierarchies. Listing 3-9 shows an example of this.

Listing 3-9. Building a Platform-Specific Path

<target name="build.path">
<echo message="File: ${basedir}${file.separator}build.xml"/>
<echo message="Path: ${basedir}${file.separator}build.xml w»
${path.separator}${basedir}${file.separator}build.properties"/>
</target>

43

CHAPTER 3 USING ANT

This is quite a handful, so it should be noted that you don’t always have to work with plat-
form-specific file and path separators. You may have to worry about separators if you build a
path of any kind to pass to a command-line tool, because Ant treats the raw path you build as
a string and does not do any substitutions.

On the other hand, when you build a path with any of Ant’s tasks, Ant is quite happy to
convert the separators into ones appropriate for the operating system on which it is running.
Ant will also do the conversion if you pass the string that you have built to its tasks. Therefore,
you could rewrite the previous listing, as shown in Listing 3-10, if you intend to use the path
only with Ant tasks. The major problem with separators comes when you are using property
files, which are covered in the “Setting Properties in Property Files” section.

Listing 3-10. Building a Platform-Specific Path with Unix-Style File Separators

<target name="build.path.unix">
<echo message="File: ${basedir}/build.xml"/>
<echo message="Path: ${basedir}/build.xml;w
${basedir}/build.properties"/>
</target>

Don’t worry if the display shows a mixture of file separators. Ant is still treating these as
strings. To see how Ant does the conversion, see the discussion of the refid attribute in the
“Using a Reference” section.

Note The Ant manual comes with a complete list of system properties for your reference, along with a
description of each. They may come up in later discussions in this book and will be explained at those times.

Setting Properties in the Build File

The first method of providing custom properties is with <property> elements in an Ant build
file. Unlike the <project> and <target> elements, the <property> element is defined as a task.
This means you can include <property> elements inside a target so that properties can be set
conditionally, depending on certain conditions or depending on which target has been
selected.

You can also set properties at the beginning of a build file so that they apply to the entire
build. This means you can set important constant values in a central location so that they are
easy to find and change, should the project change. You should remember that properties set
inside a target override any properties set at the project level. Naming again comes into this,
and you should consider whether your target-level properties should be identified as such by
using a prefix to avoid confusion and possible namespace clashes.

Note Properties set in a target are available to targets that depend on it, as well as to targets that it calls
(more on this in Chapter 9).

CHAPTER 3 USING ANT

Using a Name-Value Pair

The simplest and most obvious use of the <property> task is to set a property using a name-
value pair, as shown in Listing 3-11.

Listing 3-11. Setting a Property with a Name-Value Pair

<target name="properties.custom">
<property name="build.no" value="1.1"/>
<echo message="Build no. = ${build.no}"/>
</target>

You can set the value of a property to the value of another property. This can be useful if
you will be referencing a verbose built-in property multiple times, much like Listing 3-9 did.
This is as simple as placing a property marker in the value attribute of a <property> task, as
shown in Listing 3-12.

Listing 3-12. Setting a Property to the Value of Another Property

<target name="properties.custom">
<property name="fs" value="${file.separator}"/>
<property name="ps" value="${path.separator}"/>

<echo message="File: ${basedir}${fs}build.xml"/>
<echo message="Path: ${basedir}${fs}build.xml${ps}w
${basedir}${fs}build.properties"/>
</target>

The fs and ps properties are set to the values of the file.separator and path.separator
properties, respectively.

Using a File Location

The name property has two other potential partners you can use to set a property. The first is
location, which you can use to set the value of a property to the location of a file. If you supply
arelative path, Ant will expand the path to make it absolute and then store it as the value of the
property. If you provide an absolute name, Ant will store it as is, though with the path separa-
tors adjusted for the platform as appropriate. Listing 3-13 shows how to set a property to a
filename using a relative path.

Listing 3-13. Setting a Property to a Filename Using a Relative Path

<target name="properties.custom">
<property name="project.dtd" location="project.dtd"/>
<echo message="Location of project.dtd: ${project.dtd}"/>
</target>

This will display something like the following, showing that Ant has expanded the relative
path to an absolute path:

45

CHAPTER 3 USING ANT

[echo] Location of project.dtd: C:\AntBook\project.dtd

You can see how this is an important tool to have if your build file will be working with files
on a number of operating systems, especially when building paths. If you want to ensure that
the files you reference are indeed the files you think they are, you should use this technique.
That way, different setups on different systems will not interfere with your build.

Using a Reference

The second partner to name is refid, which is a reference to an object defined elsewhere in the file.
The reference allows you to reuse chunks of the build file (termed an object in this case) so that
common classpaths and paths can be shared among targets. Many tasks have a refid attribute,
and they all perform similar tasks. In the case of the <property> task, the refid attribute assigns
the value of the referenced object to the property named with the name attribute. There is no
point in assigning anything other than a pathlike structure in this case because you won'’t be
able to use any other kind of reference once it has been stored in the property. The “Using
Pathlike Structures” section covers pathlike structures.

Listing 3-14 shows that a path will be converted into the appropriate path for the current
operating system. In this case, the path is a Unix-style path. If you are working on a Unix
system, substitute the Windows path to see the example in action.

Listing 3-14. Ant Converts a String into the Appropriate Path

<target name="properties.custom">
<!-- Windows users should leave this line uncommented -->
<property name="build.path"
value="${basedir}/build.xml:${basedir}/build.properties”/>

<!-- Unix users should remove the above line
and uncomment the below line -->
<I--
<property name="build.path"
value="${basedir}\build.xml; ${basedir}\build.properties"/>
-->

<path id="build.path.id">
<pathelement path="${build.path}"/>
</path>

<property name="build.path.property" refid="build.path.id"/>

<!-- The converted string that Ant uses as a path -->
<echo message="Converted string: ${build.path.property}"/>

<!-- The unconverted string, which Ant treats as a string -->
<echo message="Path: ${build.path}"/>
</target>

CHAPTER 3 USING ANT 47

The original build.path variable is a string property with Unix-style file and path separators (or
Windows-style ones if you have changed the file on Unix). In this code, you create a path with
areference called build.path.id and pass the value of the build.path property into it. Ant
converts this string to the local operating system format before storing it as a reference. Remember,
this is not the same as a property, so you create a new property called build.path.property so
that you can see the new, converted value of the path. In other words, the <echo> task does not
support the refid property and so cannot display the contents of a reference, which in this case
you want to do.

The result should be like this:

properties.custom:
[echo] Converted string: C:\AntBook\build.xml;
C:\AntBook\1stApp\build.properties
[echo] Path: C:\AntBook\1stApp/build.xml:
C:\AntBook/build.properties

This is proof that Ant does the conversion: the unconverted path still contains the Unix-
style path separator and has a mixture of file separators.

Accessing Environment Variables

The final technique available to you when setting properties in the build file is using the
environment attribute of the <property> element. You should use this attribute by itself only
and not in combination with any of the other techniques supplied. Ant won’t let you use the
environment attribute with any of the attributes described previously and doesn’t guarantee
results when used with any of the attributes described in the next section.

The environment attribute gives you access to the operating system’s environment variables so
that you can use them in your build process. For example, you may want to add a note about
which architecture the build was carried out on or use the system classpath as the classpath
when Ant compiles the Java classes.

The value you set in the environment attribute is the prefix you must use when referencing
an environment variable in the build file. So, if you set the value of environment to env, you
would reference the system classpath using ${env.CLASSPATH}. Ant is case-sensitive in this
case, even if the host operating system is not.

Listing 3-15 shows how to access system environment variables.

Listing 3-15. Gaining Access to the System’s Environment Variables

<target name="properties.environment">
<property environment="env"/>
<echo message="Built on: ${env.0S} ${env.PROCESSOR ARCHITECTURE}"/>
<echo message="ANT HOME: ${env.ant_home}"/>

</target>

If you run this example, you will see something like the following, depending on your
operating system:

CHAPTER 3 USING ANT

properties.environment:
[echo] Built on: Windows NT x86
[echo] ANT HOME: ${env.ant home}

Ant has not read the value of ANT_HOME because it is looking for an environment variable
called ant_home.

The <property> task has other attributes, but you use them to load properties from a file
rather than to set properties in the build file. The next section shows how to deal with these
attributes.

Setting Properties in Property Files

Setting properties in the build file is a useful technique when you are working with common
code repositories or servers. For example, if you have one CVS repository for all your code, you
should set its value in the build file and discourage developers from changing it. In other words,
setting properties in the build file is an excellent way of centralizing common, constant infor-
mation and should be seen as such.

You can use properties for more than that, however. Not every piece of information in a
build process is a constant value on every machine that the build file could possibly be run on.
Users or developers may store third-party JAR files in different places to you and to other people
who are likely to use the build file. Test servers may have different URLs depending on location
because testing tends to occur on a local level, behind firewalls, and so on.

You will still have to use properties in situations like these, but you cannot specify these
values in advance. The best way to work with localized information is to distribute a properties
file with the names of the attributes and example values, which local users can change to suit
their setup. Ant can then load these properties during the build. In addition to separating
constants from local properties, properties files are easier to edit and more compact than their
<property> task equivalents, as you will see next.

The most common technique is for developers and users to make a copy of the master
properties file (build.properties.default), name it build.properties, and place it in the
base directory. You must then make sure you import the build.properties file before the
build.properties.default file. This means that local settings override the defaults (more on
this in the “Examining Property Precedence” section). Another technique is to encourage
developers and users to copy the build.properties file to their “home” directory and use the
${user.home} system property to reference its new location. This file then takes precedence
over the default file.

You can of course set all your properties in a properties file if you want to enforce absolute
centralization.

Note You'll look at the <property> attribute that imports the file after the discussion on property files.
For now, assume that the properties are loaded in any examples.

CHAPTER 3 USING ANT

Writing a Property File

Ant property files must conform to the same format as Java property files, as used by the
java.util.Properties class. This means all characters must be in ISO 8859-1 format, and if
they are not, you can use the native2ascii tool that comes with the Java distribution to convert
the file.

Each property is represented by a name-value pair, separated with an equals sign, and
comments are delimited with a hash character, as shown in Listing 3-16.

Listing 3-16. The Basic Syntax of a Properties File

A comment is indicated by a hash mark
property.name=property.value

You can load a property file and, thus, the properties it contains in three ways: from alocal
file using a filename, from a URL, and from a file located on Ant’s classpath.

One particularly nice feature of Ant property files is in-file property expansion. This
feature means you can use properties set in a file to build the values of other properties set in
that file. You can use this technique to your advantage in a number of situations, including
building classpaths from third-party JARs and setting server names, both of which are shown
in Listing 3-17.

Listing 3-17. In-File Property Expansion in a Property File

server.name=1localhost
server.port=8080
server.scheme=http
server.manager.name=manager

server.url=${server.scheme}://${server.name}:${server.port}/=
${server.manager.name}/

j2ee.jar=${env.J2EE_HOME}/lib/j2ee.jar
jsp.jar=${env.CATALINA HOME}/common/1lib/jsp-api.jar
servlet.jar=${env.CATALINA HOME}/common/1lib/servlet-api.jar
mysql.jar=${env.CATALINA HOME}/common/1ib/mysql.jar

build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar}; ${servlet.jar}

The server.url and build.classpath properties are constructed from other properties in
the properties file. Ant will import the properties and resolve them before running the build, so
order is not important in the property file. However, order is important in the build file. When
Ant imports the properties from the property file, it does so as part of the build sequence as set
by you. Any properties you set before the import are available when the import occurs and so
can be used to resolve property values. Any properties you set after the import are not available
for resolving.

49

50

CHAPTER 3 USING ANT

Caution Windows users cannot use back slashes in path names in property files, though back slashes
are allowed in build files. This is consistent with ISO 8859-1, which uses back slashes as escape characters.
If you use any back slashes, Ant will strip them out, leaving you with a horrible agglutinated mass. You have
two options: you can use forward slashes as described or escape your back slashes with another back slash,
like s0: \\.

This process has implications for the property file shown in Listing 3-17. The four properties
that hold the path to a JAR file depend on environment variables, and these are available only
if you use the following before you import the property file:

<property environment="env"/>

Figure 3-2 shows the process. You can see how no environment variables are available in
the process on the right, so the in-file expansion does not happen.

Import environment variables Import from a file
Import from a file Resolve in-file expansions from file
Resolve in-file expansions from file ${env.J2EE_HOME}
Environment —)> ${env.J2EE_HOME} ${env.J2EE_HOME}
Variables ¢ *
(Previosly Loaded)
C:\j2ee Import environment variables

Figure 3-2. In-file expansion and property loading order

This is really just an extension of the behavior you saw when I discussed the ant.project.
name property in the “Accessing Ant’s Built-in Properties” section. If the property is not set,
then Ant will treat the property marker as a string.

To ensure that you do not rely on outside properties, you can set all the required informa-
tion in the property file, as shown in Listing 3-18.

Listing 3-18. Removing the Need for Environment Variables

j2ee.home=C:/j2ee
catalina.home=C:/jakarta-tomcat

j2ee.jar=${j2ee.home}/1lib/j2ee.jar
jsp.jar=${catalina.home}/common/lib/jsp-api.jar
servlet.jar=${catalina.home}/common/1ib/servlet-api.jar
mysql.jar=${catalina.home}/common/1lib/mysql.jar

build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar}; ${servlet.jar}

CHAPTER 3 USING ANT 51

This keeps the property file internally consistent, which aids any maintenance you may
undertake. However, this does not solve the problem if you still need to use environment variables,
but want to ensure they are always loaded.

As mentioned, Windows users should be careful when specifying paths, such as in the
value for j2ee. home. If you do not take this precaution, Ant will remove the back slash when you
build a path. Here’s what the path would look like after you have built it using in-file expansion:

[echo] Build classpath: C:j2ee/lib/j2ee.jar;

Notice the missing back slash. Now, if you feed this into a <path>, Ant will treat the colon
as a Unix-style path separator followed by a back slash. It will then treat your path as two paths
relative to the current basedir and expand them as follows, accounting for the local operating
system:

[echo] Build classpath converted: C:\AntBook\cho03\C;
C:\AntBook\cho3\j2ee\lib\j2ee.jar

One way to use environment variables and keep the property file internally consistent is to
remove the “home” settings from the property file and use environment variable references in
the build file. Listing 3-19 shows the new property file portion.

Listing 3-19. Removing References to Application “Home” Directories

j2ee.home=C:/j2ee
catalina.home=C:/jakarta-tomcat

j2ee.jar=1ib/j2ee.jar
jsp.jar=common/1lib/jsp-api.jar
servlet.jar=common/lib/servlet-api.jar
mysql.jar=common/lib/mysql.jar

Remove the build.classpath property
build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar};${servlet.jar}

The consequences of this change are that you now can’t build the classpath in the prop-
erty file and must remember to append the environment variables in the build file. Listing 3-20
shows the new build file segment (assuming you have loaded the properties).

Listing 3-20. Building the Classpath in the Build File with Environment Variables

<property environment="env"/>

<path id="build.classpath.id">
<pathelement path="${env.J2EE _HOME}/${j2ee.jar}"/>
<pathelement path="${env.CATALINA HOME}/${jsp.jar}"/>
<pathelement path="${env.CATALINA HOME}/${servlet.jar}"/>
<pathelement path="${env.CATALINA HOME}/${mysql.jar}"/>

</path>

52

CHAPTER 3 USING ANT

Your choice of technique largely depends on whether you need environment variables. If
you do, then you should really use the final technique described. If not, then filling in values, as
shown in Listing 3-18, is the best option. Grouping “home” directories in one section of the
property file adds to the centralization and maintainability of the file.

Loading Properties from a Local File

Itis usual to provide a properties file with any source distribution, and most build projects will
have a local properties file on the file system. If you are providing a local build file, you should
provide a README or some other kind of information pointing to the settings in the properties file.

If you want to use a local property file, then you must specify its location with the file
attribute of the <property> task. Listing 3-21 shows how to load the file from Listing 3-18 (the
one that uses “home” directory properties).

Listing 3-21. Loading a Local Property File

<target name="properties.localfile">
<property file="build.properties"/>

<path id="build.classpath.id">
<pathelement path="${build.classpath}"/>
</path>

<property name="build.classpath.property" refid="build.classpath.id"/>

<echo message="Server URL: ${server.url}"/>

<echo message="Build classpath: ${build.classpath}"/>

<echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

As mentioned previously, Ant properties are subject to namespace rules such as variables
in programming, so there is a chance imported properties listed in a property file may conflict
with properties that have already been set in the build file. To avoid this, you can append a
prefix to the properties that you know come from the property file. To specify the prefix, add a
prefix attribute in conjunction with the file attribute, as shown in Listing 3-22.

Listing 3-22. Adding a Prefix to Imported Properties
<target name="properties.localfile.prefix">
<property file="build.properties" prefix="imported"/>
<path id="build.classpath.id">
<pathelement path="${imported.build.classpath}"/>
</path>

<property name="build.classpath.property" refid="build.classpath.id"/>

CHAPTER 3 USING ANT

<echo message="Server URL: ${imported.server.url}"/>

<echo message="Build classpath: ${imported.build.classpath}"/>

<echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

Ant will add a period after the prefix without you having to specify that it should do so.

You can also load a property file that is located on your classpath (the one you used to run
Ant). The resource attribute has the same function as the file attribute when you use it as you
used the file attribute in the two previous examples, except that Ant searches your classpath
for it and not Ant’s base directory. Therefore, if you substitute the resource attribute for the
file attribute and the current directory is in your classpath, you will not see any change in
functionality. You can also use the prefix attribute with the resource attribute to manage
property names.

resource also allows you to search a custom classpath to find a properties file using the
classpath attribute or the classpathref attribute. classpath accepts a standard classpath and
will convert the string into one that is appropriate for the local operating system. You can also
specify a classpath with a nested <classpath> element, which performs the same operation as
the classpath attribute. Listing 3-23 shows both of these techniques.

Listing 3-23. Setting a Classpath Where a Properties File Is Located

<target name="properties.resourcefile">

<!--
<property resource="build.res.properties" classpath="./1ib"/>
-->

<property resource="build.res.properties">
<classpath path="./1ib"/>
</property>

<path id="build.classpath.id">
<pathelement path="${build.classpath}"/>
</path>

<property name="build.classpath.property" refid="build.classpath.id"/>

<echo message="Server URL: ${server.url}"/>

<echo message="Build classpath: ${build.classpath}"/>

<echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

If you have a project classpath defined in an earlier <path> structure, then you can refer-
ence this by using the classpathref attribute instead of the classpath attribute.

<property resource="build.res.properties"
classpathref="project.classpath"/>

53

54

CHAPTER 3 USING ANT

Using a resource means that you can maintain some control over the property file if you
want. For example, you could set it to read-only before placing it on the classpath. This ensures
that Ant can use the properties it contains, but that users can’t overwrite them.

Note If youload more than one property file, the order of loading determines which properties have precedence.
If a property has already been loaded in a previous file, it is ignored if it is loaded in a subsequent file.

Loading Properties from a Remote File

If you like the sound of maintaining control over your property files or want to distribute them
to various locations where the build will be taking place, then you can store them on a web
server and get Ant to retrieve the properties from there. To retrieve properties from a remote
file, set the value of the url property to the location of the property file. (This always requires a
network connection.) You can also use the prefix attribute if you want. Listing 3-24 shows this
technique.

Listing 3-24. Retrieving Properties from a Remote File

<target name="properties.url">
<property url="http://localhost:8080/antBook/properties/build.properties"/>

<path id="build.classpath.id">
<pathelement path="${build.classpath}"/>
</path>

<property name="build.classpath.property" refid="build.classpath.id"/>

<echo message="Server URL: ${server.url}"/>

<echo message="Build classpath: ${build.classpath}"/>

<echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

Summarizing the Property Task

Table 3-3 summarizes the commands discussed previously and shows which ones are mutually
exclusive. None of these attributes is required, though you must specify one of environment,
file, name, resource, or url.

Table 3-3. The <property> Task’s Attributes

CHAPTER 3 USING ANT

Attribute Description Restrictions
classpath Ant uses this classpath to search Valid only with the resource
for the file named in resource. You attribute. Only one of classpath
can specify a classpath with anested and classpathref may be used.
<classpath> element as well.
classpathref Ant uses this classpath to search for ~ Valid only with the resource
the file named in resource. It refers element. Only one of classpath and
to a path set earlier in the file using classpathref must be used.
a<path> element.
environment The prefix to use when referencing ~ Only one of environment, file,
the operating system’s environ- resource, or url may be used in a
ment variables. particular <property> task. May not
be used if name is used.
file A property file that contains the Only one of environment, file,
properties you want to load. resource, or url may be used in a
particular <property> task. May not
be used if name is used.
location The value of the property is set to Used with name. Only one of
the absolute filename of this file. location, value, or refid may be
You can specify a relative filename, used with name. May not be used
and Ant will expand it and store with any other attributes.
the value.
name The name of the property to set. May not be used with environment,
file, resource, or url.
prefix The prefix to add to imported May be used only with file, resource,
properties. Ant adds a period after orurl.
the prefix.
refid A reference to an object defined Used with name. Only one of location,
earlier in the file. value, or refid may be used with
name. May not be used with any other
attributes.
resource A file that Ant will look for on the Only one of environment, file,
current classpath. The classpath resource, or url may be used in a
can be set with the classpath or particular <property> task. May not
classpathref attributes. be used if name is used.
url A URL where you have placed a Only one of environment, file,
property file that contains the resource, or url may be used in a
properties you want to load. particular <property> task. May not
be used if name is used.
value The value you want to assign to Used with name. Only one of location,

the property.

value, or refid may be used with
name. May not be used with any
other attributes.

55

56

CHAPTER 3 USING ANT

Setting Properties at the Command Line

The final way to set properties is at the command line. You can specify individual properties
using the -Dproperty=value syntax, or you can load the properties from a property file using the
-propertyfile option. As noted at the beginning of the chapter, the -Dproperty=value syntax
takes precedence. In fact, -Dproperty=value takes precedence over all property values in the
build. For example, if you wanted to override the server name because the main development
server is down, you can run the following:

> ant -Dserver.name=remotehost properties.localfile

[echo] Server URL: http://remotehost:8080/manager/

This has overridden the value imported from a property file that was loaded in the build file.

The property to supply at the command line does not have to be set in the build file. In
some cases, you may want to specify a property’s value at the command line only; the best
example of this is when you want to supply a username and password for a server or a database.
A build file is not a very secure location for sensitive information, such as passwords, because
it is written in plain, human-readable text.

Being able to supply passwords at the command line significantly improves your security,
though you should remember that the command may still reside in your shell’s history for
anyone to see. Physical access to your terminal should be just as important as electronic access.

Examining Property Precedence

As mentioned, properties set at the command line override any properties in the build file,
including those imported from a properties file. I've also touched on how loading a property
file overrides properties set in the build file and any properties that are loaded subsequently.
The precedence picture is almost complete, though remember this general rule:

Properties that are defined first take precedence.

Therefore, those defined at the command line have the highest precedence because they
are defined before the build file is read. After this, the order of <property> tags is important. The
first <property> tag has precedence over the second, and so on. Here are the contents of the
build.properties file:

property.example=Local File
property.file.example=build.properties

And here’s the build.properties.default file:

property.example=Default File
property.file.example=build.properties.default

Listing 3-25 shows an example that demonstrates precedence.

CHAPTER 3 USING ANT

Listing 3-25. Targets That Demonstrate Property Precedence

<?xml version="1.0"?>
<project name="Apache Ant Properties Project" basedir="." default="print-file">

<property name="property.example" value="Global"/>
<property file="build.properties"/>
<property file="build.properties.local"/>

<target name="print-global">

<echo message="In print-global"/>

<echo message="The value of property.example is: ${property.example}"/>
</target>

<target name="print-target" depends="print-global">
<property name="property.example" value="Target"/>

<echo message="In print-target"/>
<echo message="The value of property.example is: ${property.example}"/>
</target>

<target name="print-file" depends="print-target">
<property name="property.file.example" value="build.xml"/>

<echo message="In print-file"/>
<echo>
The value of property.file.example is: ${property.file.example}
</echo>
</target>

</project>
If you run this example, here’s what happens:

> ant

Buildfile: build.xml

print-global:
[echo] In print-global
[echo] The value of property.example is: Global

print-target:
[echo] In print-target
[echo] The value of property.example is: Global

57

58

CHAPTER 3 USING ANT

print-file:
[echo] In print-file
[echo]
[echo] The value of property.file.example is: build.properties
[echo]

BUILD SUCCESSFUL
Total time: 1 second

You can see how the property.example value that you set in the first <property> element
overrides the values in the two property files and the value set in the print-target target. This is
because you set it first. Also note how the value of property.file.example from build.properties
overrides the other settings because you define it before any other instances of this property.

Now move the <property> elements around like this:

<property file="build.properties"/>
<property file="build.properties.default"/>
<property name="property.example" value="Global"/>

Here’s the result of running the build again:

Buildfile: build.xml

print-global:
[echo] In print-global
[echo] The value of property.example is: Local File

print-target:
[echo] In print-target
[echo] The value of property.example is: Local File

print-file:
[echo] In print-file
[echo]
[echo] The value of property.file.example is: build.properties
[echo]

BUILD SUCCESSFUL
Total time: 1 second

CHAPTER 3 USING ANT

This time the value from the local properties file is used. Now, run the build with command-
line properties like so:

> ant -Dproperty.file.example=command-line

Buildfile: build.xml

print-global:
[echo] In print-global
[echo] The value of property.example is: Local File

print-target:
[echo] In print-target
[echo] The value of property.example is: Local File

print-file:
[echo] In print-file
[echo]
[echo] The value of property.file.example is: command-line
[echo]

BUILD SUCCESSFUL
Total time: 1 second

Now the command-line property has taken precedence.

Using Properties to Control a Build

Any builds can become complex to match a complex project. However, you might not always
want to execute every part of a build, or you may want to execute only certain parts if a condi-
tion is true (or false for that matter). You can of course create a build sequence using target
dependencies, which means you can chain targets together. Using this mechanism, you can
even integrate conditions that cause the build process to fork and create a different distribution.
For example, the sample application that appears later in the book has a stand-alone Java
client and a web-based interface, though they share database connection code. The build
process for these two sections of the application starts with the common code before splitting,
depending on which one you are building.

Figure 3-3 shows this situation.

59

60

CHAPTER 3 USING ANT

Obtain third-party libraries

Build third-party libraries

Build common code

Build stand-alone code Build web-based code

Figure 3-3. A forking build process

This build process is a simple enough one to model using dependences. In this case, you
would simply set the depends attribute of the stand-alone target to the name of the target that
builds the common code. The same is true of the web application target.

An alternative is to use the final two <target> element attributes: if and unless. These
affect whether a target runs and depend on properties. Setting if to the name of a property
means that if the property is set, then the target should run. Setting unless to the name of a
property means that the target should run unless that property is set. It does not matter what
value the property has, as long as it is set. null doesn’t exist in Ant.

Note The value set in the if and unless attributes should be the name of a property, not the value a
property contains. Do not use the ${} notation unless you really mean to set the name of a property as the
value of another property.

if overrides unless if they have the same property as a value, though you’ll have absolutely
no reason to want to do this. You should also be aware that these settings do not affect the
running of any targets listed in the depends attribute, should it be specified. These are iterated
over as normal, and it is only when they all succeed that Ant checks the if and unless attributes
of this target.

Application builds are not always as simple as this, however. For example, you might want
to obtain and build the third-party libraries only if you do not already have them. This means
Ant will have to check whether a certain file exists in the build directory structure; if the file

CHAPTER 3 USING ANT

exists, Ant will skip the first two steps in Figure 3-3. This brings you to the first of the build
control elements: <available>.

Using the Available Task

The <available> task sets the value of a property if a resource exists when you run the build
process. This allows you to check for libraries and other files so that the build can proceed
without any errors. It also means you can avoid unnecessary steps if the files you need are
already available to Ant.

The default value of the property is true, which is enough for the purposes of the if and
unless attributes, which check to see whether a property is set. In other words, they don’t care
what the value is. If, however, you want to set a different value, you can. For example, you may
want to set the name of the resultant JAR file to a certain value depending on whether it contains
newly built third-party libraries or whether it uses existing, older libraries. The value to append
to the filename could be the value of the property set using the <available> task.

The available element has a number of attributes, each of which is described in Table 3-4.

Table 3-4. The Attributes of the <available> Task

Attribute Description

classname The Java class for which to look. You can set a classpath with the
classpath or classpathref attribute. You must specify one and only
one of the classname, the file, or the resource attribute.

classpath The classpath that Ant will use when working with the classname or
resource attribute. The default is the build’s classpath. Any directo-
ries or JARs that you specify in this attribute are appended to the
build classpath.

classpathref The reference ID of a classpath that you have defined earlier in the
build process.

file The name of a file for which to look. You must specify one and only
one of the classname, the file, or the resource attribute.

filepath The path to use when looking for the file specified in the file
attribute. The default is the base directory of the build.

ignoresystemclasses If you set this to true, the search will ignore Ant’s internal classes and
will use the classpath specified only as part of this <available>
element. The default is false.

property The name of the property you want to set. This attribute is required.

resource The name of a resource for which to look. This resource should be
located within the JVM. You must specify one and only one of the
classname, the file, or the resource attribute.

type Set this attribute to file if you want Ant to search for a file. Set it to
dir if you want Ant to search for a directory. If you do not set this
attribute, Ant will search for both.

value The value that this property will take if Ant finds the searched-for item.
The default is true.

61

62

CHAPTER 3 USING ANT

You can also specify the classpath and filepath elements as nested <classpath> and
<filepath> elements, which means you can use reference IDs should you so want.

Listing 3-26 shows an example where Ant checks whether you already have a version of the
JSTL. If you don’t, Ant retrieves a copy of the source and builds it.

Listing 3-26. Using the <available> Element to Check for the Existence of Third-Party Files
<?xml version="1.0"?>

<project name="Apache Ant Available Project" basedir=".
default="build-jstl">

<property name="jstl.src" value="./src/jstl"/>
<property name="jstl.jar" value="./lib/jstl.jar"/>

<available property="jstl.src.exists" file="${jstl.src}"/>
<available property="jstl.jar.exists" file="${jstl.jar}"/>

<target name="checkout-jstl" unless="jstl.src.exists">
<echo message="Checking out ${jstl.jar}"/>

</target>
<target name="build-jstl" depends="checkout-jstl" unless="jstl.jar.exists">
<echo message="Building ${jstl.jar}"/>

</target>
</project>

The build-jstl target depends on the checkout-jstl target, so the latter will execute first.
This target will execute only if the <available> task has not found the source distribution of the
JSTL. If it has, you have no need to download the source from the server. Even if an existing
source distribution is found and Ant does not run the tasks contained in checkout-jstl, this
counts as a successful target completion, so Ant tries to run build-jstl, safe in the knowledge
that the source code is present.

Here Ant runs the build only if the JSTL binaries are not present, following a check by the
second <available> task. If the binaries are not present, Ant uses the source code found or
downloaded in the earlier step.

The following shows how to use the filepath attribute to replace the paths in the properties:

<property name="jstl.src" value="jstl"/>

<property name="jstl.jar" value="jstl.jar"/>

<available property="jstl.src.exists" file="${jstl.src}" filepath="./src"/>
<available property="jstl.jar.exists" file="${jstl.jar}" filepath="./1ib"/>

CHAPTER 3 USING ANT

This all assumes you want to download the source code of the JSTL in the first place. If you
do not want to use the source code at any point, you won’t have to get involved in this kind of
checking and will just use the binary distribution.

Using the Uptodate Task

The <uptodate> task follows in the same vein as the <available> task in that it checks the status
of files in the build and sets a property as appropriate. In this case, if a set of source files was
modified after the set of files you are interested in working with, the <uptodate> element will set
the property to true. You can then use the if and unless attributes of a target to control compi-
lation and copying tasks, for example. As you can see, this task complements the <available>
task well, which allows you to remove a certain amount of redundancy from your projects.

Ant does these kinds of checks as part of its task functionality. For example, when you are
copying files, Ant will copy only those files that have changed. However, it still must spend time
checking each file before deciding which files to copy. In large projects, this could take a long
time. One way to cut down on this processing time is to use one sample file as the check for
whether it is worth copying the whole project or just a section.

Table 3-5 shows the attributes of this task, though you may specify certain nested elements
if you need to work with sets of files.

Table 3-5. The Attributes of the <uptodate> Task

Attribute Description
property The name of the property you want to set. This attribute is required.
srcfile Ant will compare this file’s timestamp with the timestamp of the file

specified in the targetfile attribute. If this file’s timestamp is earlier
than the timestamp of the file named in targetfile, Ant will set the
property. This attribute is required unless you specify a nested
<srcfiles> element.

targetfile If this file’s timestamp is later than the timestamp of the file specified
in srcfile, Ant will set the property. This attribute is required unless
you specify a nested <mapper> element.

value The value that this property will take if the timestamp of the file speci-
fied in srcfile is later than the timestamp of the file specified in
targetfile. The default is true.

So, the srcfile attribute holds the original file, and you use the <uptodate> task to check
whether the targetfile is more recent (that is, more up-to-date) than the source file. If it is
more recent, the property is set.

The <srcfiles> nested elements are file sets and have the same attributes. Listing 3-27
shows how to set a file set and then use it later as part of an <uptodate> check.

63

CHAPTER 3 USING ANT

Listing 3-27. Using a File Set As Part of an <uptodate> Check

<fileset dir="." id="uptodate.id">
<include name="src/jstl/One.java"/>
</fileset>

<uptodate property="uptodate" targetfile="./One.java">
<srcfiles refid="uptodate.id"/>
</uptodate>

<target name="compile" if="uptodate">
<echo message="File changed: ${uptodate}"/>
</target>

The file that makes up the file set with the uptodate.id ID is the source file you want to
check. If it has changed more recently than the file specified in the targetfile attribute of
<uptodate>, then the property is not set and the compile target will not run. If the targetfile
file is more recent than the source file, then the compile target will run.

Listing 3-28 shows this example using a nested <mapper> element.

Listing 3-28. Using a File Set and Mapper As Part of an <uptodate> Check

<fileset dir="." id="uptodate.id">
<include name="src/jstl/One.java"/>
</fileset>

<uptodate property="uptodate">
<srcfiles refid="uptodate.id"/>
<mapper type="merge" to="./One.java"/>
</uptodate>

<target name="compile" if="uptodate">
<echo message="File changed: ${uptodate}"/>
</target>

Here you've just transferred the value of the targetfile attribute to the to attribute of the
mapper. This is actually what happens behind the scenes in Listing 3-27, because if you specify
nested <srcfiles> elements and a targetfile attribute, Ant uses a merge mapper anyway.

Using the Condition Task

The <condition> task is like the if construct in programming and is described as a generaliza-

tion of the two tasks described previously. This is true, and you can replicate the functionality

of the <available> and <uptodate> tasks using the <condition> task if you want.
Table 3-6 describes the attributes of the <condition> task.

CHAPTER 3 USING ANT

Table 3-6. The Attributes of the <condition> Task

Attribute Description

else If the nested condition is not matched, Ant will set the value of the property
to this value. If you do not specify this attribute, then the property is not set.

property The name of the property you want to set. This attribute is required.

value The value that this property will take if the nested condition is matched. The

default is true.

Using the Condition Task As an Available or Uptodate Task

The first example, shown in Listing 3-29, is a reworking of the <available> and <uptodate>
examples from before, using the nested <available> and <uptodate> elements. These take the
same attributes as before, except for property and value.

Listing 3-29. Using the <condition> Task Instead of the <available> and <uptodate> Tasks

<fileset dir="." id="uptodate.id">
<include name="src/jstl/One.java"/>
</fileset>

<property name="jstl.src" value="jstl"/>
<property name="jstl.jar" value="jstl.jar"/>

<condition property="jstl.src.exists">
<available file="¢${jstl.src}" filepath="./src"/>
</condition>

<condition property="jstl.jar.exists">
<available file="${jstl.jar}" filepath="./1ib"/>
</condition>

<condition property="uptodate">
<uptodate>
<srcfiles refid="uptodate.id"/>
<mapper type="merge" to="./One.java"/>
</uptodate>
</condition>

<target name="checkout-jstl" unless="jstl.src.exists">
<echo message="Checking out ${jstl.jar}"/>
</target>

65

CHAPTER 3 USING ANT

<target name="build-jstl" depends="checkout-jstl" unless="jstl.jar.exists">
<echo message="Building ${jstl.jar}"/>
</target>

<target name="compile" if="uptodate">
<echo message="File changed: ${uptodate}"/>
</target>

Using the <os> Test

If you are working with a project that needs to check the operating system on which it is built
and carry out actions appropriately, then you can use the <os> nested element. Table 3-7 shows
the attributes of the <os> element, which you can combine to create a specific test. As a result,
none of these attributes is required.

Table 3-7. The Attributes of the <os> Element

Attribute Description

arch The architecture of the operating system for which you are testing.

family The operating system’s broad family. The possible values for this are listed after
the table.

name The name of the operating system for which you are testing.

version The version of the operating system for which you are testing.

For arch, name, and version, Ant calls the appropriate line in the following and compares
the value with that specified in the attribute:

System.getProperty("os.arch");
System.getProperty("os.name");
System.getProperty("os.version");

So, for the Windows 2000 machine that this book was written on, here are the appropriate
values:

os.arch = x86
os.name = Windows 2000
os.version = 5.0

The family attribute allows you to be much broader in your scope and test against oper-
ating systems that are pretty similar to each other. You don’t necessarily have to care which
version of Windows or Unix is running and so don’t need to research the exact values that the
previous lines of code would return.

CHAPTER 3 USING ANT

Table 3-8 lists the possible values for the family attribute.

Table 3-8. Possible Values for the family Attribute of the <os> Nested Element

Value Description

dos Matches all Microsoft DOS-based operating systems. This includes all versions
of Windows and OS/2.

mac Matches all Apple Macintosh operating systems.

netware Matches Novell NetWare.

openvms Matches OpenVMS.

0s/2 Matches OS/2.

0s/400 Matches 0S/400.

tandem Matches Hewlett-Packard’s NonStop Kernel. This operating system used to be
called Tandem.

unix Matches all Unix-style operating systems. This includes Linux and the Mac
Unix-style operating systems.

win9gx Matches Windows 95 and Windows 98.

windows Matches all versions of Windows.

z/0s Matches z/0OS and 0S/390.

Listing 3-30 shows the family attribute in action.

Listing 3-30. Using the <os> Element’s family Attribute to Test the Operating System

<condition property="is.windows">
<os family="windows"/>
</condition>

<condition property="is.unix">
<os family="unix"/>
</condition>

<target name="do-windows" if="is.windows">
<echo message="This is Windows"/>
</target>

<target name="do-unix" if="is.unix">
<echo message="This is Unix"/>
</target>

67

CHAPTER 3 USING ANT

Using the <equals> Test

The <equals> nested element tests two strings to see if they are equal. This is a classic example
of if functionality, and you can use it to check the values of properties or filenames. Table 3-9
shows the attributes of the <equals> element.

Table 3-9. The Attributes of the <equals> Element

Attribute Description

argl The first string to test. This attribute is required.

arg2 The second string to test. This attribute is required.

casesensitive Set this to true to make the test case-sensitive. The default is true.

trim .Se; tlllis to true to trim any whitespace from the strings. The default
is false.

Using the <isset> Test

The <isset> element tests whether a property has been set in this project. You may find this

test most useful when used in conjunction with other tests (you'll see how to do this in the

“Using Logical Operators” section). For example, you may want to test to see whether a command-

line property has been set and that a certain file exists and then run a target only if this is the case.
Table 3-10 shows the attribute of the <isset> element.

Table 3-10. The Attribute of the <isset> Element

Attribute Description

property The property to test. If it does not exist, the test fails. This attribute is required.

Using the <istrue> and <isfalse> Tests

The <istrue> and <isfalse> tests are related to and extend the <isset> test, but check that the
value of the property is true or false, respectively. Ant also considers yes and on to equal true
and considers no and off to equal false, so these values also satisfy these tests. <istrue> and
<isfalse> share the attribute shown in Table 3-11, though they produce opposite effects.

Table 3-11. The Common Attribute of the <istrue> and <isfalse> Elements

Attribute Description

value The value to test. You can specify a property value using the usual ${} syntax or a
constant to ensure the test always passes or fails, depending on your requirements.

CHAPTER 3 USING ANT

Using the <isreference> Test

The <isreference> test checks whether the given ID is indeed a valid reference. You can also
check whether this ID refers to a certain type of Ant structure.
Table 3-12 shows the attribute of the <isreference> element.

Table 3-12. The Attributes of the <isreference> Element

Attribute Description
refid The ID of the reference you want to test. This attribute is required.
type The Ant type of the reference. If you do not specify this attribute, any type

is considered.

The value of the type attribute should correspond to the name of the element that represents
the Ant type. Listing 3-31 shows an example that tests for a file set.

Listing 3-31. A File Set Reference Is Tested Using the <isreference> Test

<condition property="is.fileset">
<isreference refid="uptodate.id" type="fileset"/>
</condition>

<target name="fileset-prepare">
<echo message="Value of is.fileset = ${is.fileset}"/>
</target>

The value of the <isreference> element’s type attribute is set to fileset, which corresponds
to the name of the element that represents a file set: <fileset>. So, the is.fileset property is
set only if the uptodate. id reference ID refers to a file set. If you omit the type attribute, the
property will be set if the uptodate. id reference ID is a valid ID. The type does not matter.

Using the <isfileselected> Test

The <isfileselected> test succeeds if a given file matches all the conditions specified as nested
selectors (covered in Chapter 4). Use it as you would a file set. Table 3-13 shows the attributes
of the <isfileselected> element.

Table 3-13. The Attributes of the <isfileselected> Element

Attribute Description

basedir The root of the directory structure to search. The default is the project’s
base directory.

file The file you are checking. This attribute is required.

69

70

CHAPTER 3 USING ANT

Using the <checksum> Test

This is identical to the <checksum> task described in Chapter 6, and I will cover the details then.
You use this test to check that a file matches the checksum supplied as part of a download.
You'll see this process when you examine the <modified> selector in Chapter 4.

Using the <http> Test

The <http> test checks that a web server provides a valid response and sets the property if this
is the case. This allows you to check whether a server is listening to requests before you begin a
download from it.

Table 3-14 shows the attributes of the <http> element.

Table 3-14. The Attributes of the <http> Element

Attribute Description

errorsBeginAt The lowest HTTP response code that indicates there was an error as
far as this test is concerned. The default is 400.

url The URL of the server to query. This attribute is required.

Using the <socket> Test

The <socket> test checks that a process is listening at the specified server and port. Again, you
can use this to check that you can run a target that requires this to be the case.
Table 3-15 shows the attributes of the <socket> element.

Table 3-15. The Attributes of the <socket> Element

Attribute Description
port The port to which you want to connect. This attribute is required.
server The server to which you want to connect. This can be the hostname as

defined under DNS, or it can be an IP address. This attribute is required.

Using the <filesmatch> Test

The <filesmatch> test checks whether two files are identical. The test follows three distinct
steps, and as soon as a file fails one of these steps, the whole test fails. The steps are as follows:

1. Do both files exist? If one does not exist, the test fails.
2. Do both files have the same filename? If not, the test fails.
3. Are the files the same size? If not, the test fails.

4. Do both files have the same number of bytes in the same sequence? If not, the test fails.

Asyou can see, the first three steps are there to stop the test getting as far as a byte-for-byte
check if at all possible, because that can become a costly operation for large files.

CHAPTER 3 USING ANT

Table 3-16 shows the attributes of the <filesmatch> element.

Table 3-16. The Attributes of the <filesmatch> Element

Attribute Description
filel The first file in the test. This attribute is required.
file2 The second file in the test. This attribute is required.

Using the <contains> Test

The <contains> attribute represents another classic if function: checking whether a string
contains another string. Table 3-17 shows the attributes of the <contains> element.

Table 3-17. The Attributes of the <contains> Element

Attribute Description
casesensitive Set this to true to ensure that this check is case-sensitive. The default

is true.
string The larger string in which you want to search. This attribute is required.
substring The substring for which you want to search. This attribute is required.
Using the <length> Test

The <length> test checks the length of a string or a file. It is actually a task in its own right, but
you can place it as a nested element of <condition> to use it as a test. This extends the function-
ality of the task in some ways, but reduces it in others. Table 3-18 shows the attributes of the
<length> element.

Table 3-18. The Attributes of the <length> Element

Attribute Description

file The name of the file to test. You must specify one and only one of the
following: a file attribute, a string attribute, or a nested file set.

length The length you will be using as a comparison. This attribute is required.

string The string to test. You must specify one and only one of the following: a file

attribute, a string attribute, or a nested file set.

trim Set this to true to remove whitespace from the string specified in string. This
attribute is ignored if you specify a file attribute or a nested file set. The
default is false.

when The possible values are equal, greater, and less. The key to this attribute is to
say, “Pass this test when the file/string is equal to/greater than/less than the
length.” The default is equal.

n

72

CHAPTER 3 USING ANT

Using Logical Operators

As befits an implementation of the if programming construct, you can specify logical condi-
tions that apply to all the previous tests. The three logical operators are <not>, <and>, and <or>.

The <not> element does not accept any attributes and takes exactly one child element,
which may be any of the child elements of <condition>. That means this child element can
contain other child elements should you want it to do so. For example, <not> can contain an
<and> element that contains other conditions. The <not> element reverses the evaluation of the
element it contains.

The <and> element does not accept any attributes and c