
Portland State University

1

ECE 588/688 – Fall 2010

Alaa R. Alameldeen

© Copyright by Alaa Alameldeen 2010

IBM Power4 System 

Microarchitecture

Portland State University

ECE 588/688

Portland State University – ECE 588/688 – Fall 2010 2

IBM Power4 Design Principles
 SMP optimization

 Designed for high-throughput multitasking environments

 Full system design approach

 Whole system designed together, processor designed with 

full system in mind

 High frequency design

 Important for single-threaded applications

 RAS: Reliability, Availability, and Serviceability

 Balanced scientific vs. commercial performance

 Good performance for both high-performance computing 

scientific applications & commercial server applications

 Binary compatibility with previous IBM processors

Portland State University – ECE 588/688 – Fall 2010 3

Power4 Chip Features

 Two processors on a chip (Figure 1, die photo in Figure 2)

 Each processor has private L1 caches

 Both processors share an on-chip L2 cache through a core 

interface unit (CIU)

 Crossbar between two processors’ I and D L1 caches and three L2 

controllers

 Each L2 controller can feed 32B per cycle

 Accepts 8B processor stores to L2 controllers

 Each processor has a noncacheable unit (NC)

 Logically part of L2, handles noncacheable operations

 L3 directory and L3 controller on chip

 Actual L3 cache on separate chip

 Fabric controller controls data flow between L2 & L3 controller

Portland State University – ECE 588/688 – Fall 2010 4

Power4 Processor Features

 On-chip, two identical processors provide two-way SMP to 

software (an example for chip multiprocessing)

 Each processor is a superscalar out-of-order processor

 Issue width: up to 8, retire width: 5

 8 instruction units, each capable of issuing one inst/cycle

 Two floating point execution units, each can start an FP add 

and FP multiply every cycle

 Two load/store units, each can perform address generation 

arithmetic

 Two fixed point execution units

 Branch execution unit

 Condition register logical execution unit

 Core block diagram: paper figure 3

Portland State University – ECE 588/688 – Fall 2010 5

Power4 Microarchitecture
 Complex branch prediction

 Branch target and direction prediction

 Has a selector table to choose between a Local branch history 

table and global history vector

 Selective pipeline flush on branch misprediction

 Instructions are decoded, cracked into internal instructions 

(IOPs), then grouped into five-instruction groups

 Fifth IOP is always a branch

 Groups dispatched in order, IOPs in a group issued out of 

order

 Whole group committed together (up to 5 IOPs)

 Issue queues: paper table 1, rename resources: table 2

 Pipeline in paper figure 4

Portland State University – ECE 588/688 – Fall 2010 6

Load/Store Unit Operation
 Main structures

 Load Reorder Queue (LRQ), i.e., load buffer

 Store Reorder Queue (SRQ), i.e., store address buffer

 Store Data Queue (SDQ)

 Hazards avoided by Load/store unit

 Load hit store (RAW1): Younger load executes before older 

store writes data to memory. Load should get data from 

SDQ. Possible flush or reissue

 Store hit load (RAW2): Younger load executes before 

recognizing an older store will write to same location. Store 

checks LRQ and flushes all subsequent groups on hit

 Load hit load (RAR): If younger load got old data, older load 

should not get new data. Older load checks snooping bit in 

LRQ for younger loads, flushes all subsequent groups on hit



Portland State University

2

ECE 588/688 – Fall 2010

Alaa R. Alameldeen

Portland State University – ECE 588/688 – Fall 2010 7

Memory Hierarchy

 Memory hierarchy details in paper table 3

 L2 logical view in paper figure 5

 L3 logical view in paper figure 6

 Memory subsystem logical view in paper figure 7

 Hardware prefetching

 Eight sequential stream prefetchers per processor

 Prefetch data to L1 from L2, to L2 from L3, and to L3 from memory

 Streams initiated when processor misses sequential cache access

 L3 prefetches 512B lines

Portland State University – ECE 588/688 – Fall 2010 8

Cache Coherence

 Each L2 controller has four coherency processors to 

handle requests from either processor’s caches or store 

queues

 Controls return of data from L2 (hit) or fabric controller (miss) to the 

requesting processor

 Updates L2 directory state

 Issues commands to fabric on L2 misses

 Controls writing to L2

 Initiates invalidates to a processor if a processor’s store hits a 

cache line marked as being resident in another processor’s L1

 L2 controller has four snoop processors to handle coherency 

operations from fabric

 Can source data to another L2 from this L2

Portland State University – ECE 588/688 – Fall 2010 9

Coherence Protocol
 L2 has enhanced version of MESI (paper table 4)

 I: Invalid

 SL: Shared, can be sourced to local requesters

Entered when processor load or I-fetch misses L2, data is 

sourced from another L2 or from memory

 S: Shared, cannot be sourced

Entered when another processor snoops cache in SL state

 M: Modified, can be sourced

Entered on processor store

 Me: Exclusive

 Mu: Unsolicited modified

Entered when data is sourced from another L2 in M state

 T: Tagged (valid, modified, sourced to another L2)

Entered on a snoop read from M state

 L3 has simpler protocol (paper)

Portland State University – ECE 588/688 – Fall 2010 10

Connecting into larger SMPs
 Basic building block is Multi-Chip Module (MCM)

 Four Power4 chips form an 8-way SMP (paper figure 9)

 Each chip writes to its own bus (with arbitration among L2, 

I/O controller and L3 contoller)

 Each of the four chips snoops all buses

 1-4 MCMs can be connected to form 8-way, 16-way, 24-

way and 32-way SMPs

 32-way SMP shown in paper figure 10

 Intermodule buses act as repeaters, moving requests and 

responses from one module to another in a ring topology

 Each chip writes to its own bus but snoops all buses

Portland State University – ECE 588/688 – Fall 2010 11

Reading Assignment

 Monday

 Erik Lindholm et al., “Nvidia Tesla: A Unified Graphics and 

Computing Architecture”, IEEE Micro, 2008 (Read)

 Wednesday

 John Mellor-Crummey and Michael Scott, “Synchronization 

Without Contention,” ACM Transactions on Computer 

Systems,1991 (Read)

 Thomas Anderson, “The Performance of Spin-Lock 

Alternatives,” IEEE Transactions on Parallel and Distributed 

Systems, 1990 (Skim)

 Ravi Rajwar and James Goodman, “Speculative Lock Elision: 

Enabling Highly-concurrent Multithreaded Execution,” Micro 

2001 (Skim) 

 Project progress report due on Monday


