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IBM Power4 Design Principles
 SMP optimization

 Designed for high-throughput multitasking environments

 Full system design approach

 Whole system designed together, processor designed with 

full system in mind

 High frequency design

 Important for single-threaded applications

 RAS: Reliability, Availability, and Serviceability

 Balanced scientific vs. commercial performance

 Good performance for both high-performance computing 

scientific applications & commercial server applications

 Binary compatibility with previous IBM processors
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Power4 Chip Features

 Two processors on a chip (Figure 1, die photo in Figure 2)

 Each processor has private L1 caches

 Both processors share an on-chip L2 cache through a core 

interface unit (CIU)

 Crossbar between two processors’ I and D L1 caches and three L2 

controllers

 Each L2 controller can feed 32B per cycle

 Accepts 8B processor stores to L2 controllers

 Each processor has a noncacheable unit (NC)

 Logically part of L2, handles noncacheable operations

 L3 directory and L3 controller on chip

 Actual L3 cache on separate chip

 Fabric controller controls data flow between L2 & L3 controller
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Power4 Processor Features

 On-chip, two identical processors provide two-way SMP to 

software (an example for chip multiprocessing)

 Each processor is a superscalar out-of-order processor

 Issue width: up to 8, retire width: 5

 8 instruction units, each capable of issuing one inst/cycle

 Two floating point execution units, each can start an FP add 

and FP multiply every cycle

 Two load/store units, each can perform address generation 

arithmetic

 Two fixed point execution units

 Branch execution unit

 Condition register logical execution unit

 Core block diagram: paper figure 3
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Power4 Microarchitecture
 Complex branch prediction

 Branch target and direction prediction

 Has a selector table to choose between a Local branch history 

table and global history vector

 Selective pipeline flush on branch misprediction

 Instructions are decoded, cracked into internal instructions 

(IOPs), then grouped into five-instruction groups

 Fifth IOP is always a branch

 Groups dispatched in order, IOPs in a group issued out of 

order

 Whole group committed together (up to 5 IOPs)

 Issue queues: paper table 1, rename resources: table 2

 Pipeline in paper figure 4
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Load/Store Unit Operation
 Main structures

 Load Reorder Queue (LRQ), i.e., load buffer

 Store Reorder Queue (SRQ), i.e., store address buffer

 Store Data Queue (SDQ)

 Hazards avoided by Load/store unit

 Load hit store (RAW1): Younger load executes before older 

store writes data to memory. Load should get data from 

SDQ. Possible flush or reissue

 Store hit load (RAW2): Younger load executes before 

recognizing an older store will write to same location. Store 

checks LRQ and flushes all subsequent groups on hit

 Load hit load (RAR): If younger load got old data, older load 

should not get new data. Older load checks snooping bit in 

LRQ for younger loads, flushes all subsequent groups on hit
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Memory Hierarchy

 Memory hierarchy details in paper table 3

 L2 logical view in paper figure 5

 L3 logical view in paper figure 6

 Memory subsystem logical view in paper figure 7

 Hardware prefetching

 Eight sequential stream prefetchers per processor

 Prefetch data to L1 from L2, to L2 from L3, and to L3 from memory

 Streams initiated when processor misses sequential cache access

 L3 prefetches 512B lines
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Cache Coherence

 Each L2 controller has four coherency processors to 

handle requests from either processor’s caches or store 

queues

 Controls return of data from L2 (hit) or fabric controller (miss) to the 

requesting processor

 Updates L2 directory state

 Issues commands to fabric on L2 misses

 Controls writing to L2

 Initiates invalidates to a processor if a processor’s store hits a 

cache line marked as being resident in another processor’s L1

 L2 controller has four snoop processors to handle coherency 

operations from fabric

 Can source data to another L2 from this L2
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Coherence Protocol
 L2 has enhanced version of MESI (paper table 4)

 I: Invalid

 SL: Shared, can be sourced to local requesters

Entered when processor load or I-fetch misses L2, data is 

sourced from another L2 or from memory

 S: Shared, cannot be sourced

Entered when another processor snoops cache in SL state

 M: Modified, can be sourced

Entered on processor store

 Me: Exclusive

 Mu: Unsolicited modified

Entered when data is sourced from another L2 in M state

 T: Tagged (valid, modified, sourced to another L2)

Entered on a snoop read from M state

 L3 has simpler protocol (paper)
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Connecting into larger SMPs
 Basic building block is Multi-Chip Module (MCM)

 Four Power4 chips form an 8-way SMP (paper figure 9)

 Each chip writes to its own bus (with arbitration among L2, 

I/O controller and L3 contoller)

 Each of the four chips snoops all buses

 1-4 MCMs can be connected to form 8-way, 16-way, 24-

way and 32-way SMPs

 32-way SMP shown in paper figure 10

 Intermodule buses act as repeaters, moving requests and 

responses from one module to another in a ring topology

 Each chip writes to its own bus but snoops all buses
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Reading Assignment

 Monday

 Erik Lindholm et al., “Nvidia Tesla: A Unified Graphics and 

Computing Architecture”, IEEE Micro, 2008 (Read)

 Wednesday

 John Mellor-Crummey and Michael Scott, “Synchronization 

Without Contention,” ACM Transactions on Computer 

Systems,1991 (Read)

 Thomas Anderson, “The Performance of Spin-Lock 

Alternatives,” IEEE Transactions on Parallel and Distributed 

Systems, 1990 (Skim)

 Ravi Rajwar and James Goodman, “Speculative Lock Elision: 

Enabling Highly-concurrent Multithreaded Execution,” Micro 

2001 (Skim) 

 Project progress report due on Monday


