
Portland State University

1

ECE 588/688 – Fall 2010

Alaa R. Alameldeen

© Copyright by Alaa Alameldeen 2010

IBM Power4 System 

Microarchitecture

Portland State University

ECE 588/688

Portland State University – ECE 588/688 – Fall 2010 2

IBM Power4 Design Principles
 SMP optimization

 Designed for high-throughput multitasking environments

 Full system design approach

 Whole system designed together, processor designed with 

full system in mind

 High frequency design

 Important for single-threaded applications

 RAS: Reliability, Availability, and Serviceability

 Balanced scientific vs. commercial performance

 Good performance for both high-performance computing 

scientific applications & commercial server applications

 Binary compatibility with previous IBM processors

Portland State University – ECE 588/688 – Fall 2010 3

Power4 Chip Features

 Two processors on a chip (Figure 1, die photo in Figure 2)

 Each processor has private L1 caches

 Both processors share an on-chip L2 cache through a core 

interface unit (CIU)

 Crossbar between two processors’ I and D L1 caches and three L2 

controllers

 Each L2 controller can feed 32B per cycle

 Accepts 8B processor stores to L2 controllers

 Each processor has a noncacheable unit (NC)

 Logically part of L2, handles noncacheable operations

 L3 directory and L3 controller on chip

 Actual L3 cache on separate chip

 Fabric controller controls data flow between L2 & L3 controller

Portland State University – ECE 588/688 – Fall 2010 4

Power4 Processor Features

 On-chip, two identical processors provide two-way SMP to 

software (an example for chip multiprocessing)

 Each processor is a superscalar out-of-order processor

 Issue width: up to 8, retire width: 5

 8 instruction units, each capable of issuing one inst/cycle

 Two floating point execution units, each can start an FP add 

and FP multiply every cycle

 Two load/store units, each can perform address generation 

arithmetic

 Two fixed point execution units

 Branch execution unit

 Condition register logical execution unit

 Core block diagram: paper figure 3

Portland State University – ECE 588/688 – Fall 2010 5

Power4 Microarchitecture
 Complex branch prediction

 Branch target and direction prediction

 Has a selector table to choose between a Local branch history 

table and global history vector

 Selective pipeline flush on branch misprediction

 Instructions are decoded, cracked into internal instructions 

(IOPs), then grouped into five-instruction groups

 Fifth IOP is always a branch

 Groups dispatched in order, IOPs in a group issued out of 

order

 Whole group committed together (up to 5 IOPs)

 Issue queues: paper table 1, rename resources: table 2

 Pipeline in paper figure 4

Portland State University – ECE 588/688 – Fall 2010 6

Load/Store Unit Operation
 Main structures

 Load Reorder Queue (LRQ), i.e., load buffer

 Store Reorder Queue (SRQ), i.e., store address buffer

 Store Data Queue (SDQ)

 Hazards avoided by Load/store unit

 Load hit store (RAW1): Younger load executes before older 

store writes data to memory. Load should get data from 

SDQ. Possible flush or reissue

 Store hit load (RAW2): Younger load executes before 

recognizing an older store will write to same location. Store 

checks LRQ and flushes all subsequent groups on hit

 Load hit load (RAR): If younger load got old data, older load 

should not get new data. Older load checks snooping bit in 

LRQ for younger loads, flushes all subsequent groups on hit



Portland State University

2

ECE 588/688 – Fall 2010

Alaa R. Alameldeen

Portland State University – ECE 588/688 – Fall 2010 7

Memory Hierarchy

 Memory hierarchy details in paper table 3

 L2 logical view in paper figure 5

 L3 logical view in paper figure 6

 Memory subsystem logical view in paper figure 7

 Hardware prefetching

 Eight sequential stream prefetchers per processor

 Prefetch data to L1 from L2, to L2 from L3, and to L3 from memory

 Streams initiated when processor misses sequential cache access

 L3 prefetches 512B lines

Portland State University – ECE 588/688 – Fall 2010 8

Cache Coherence

 Each L2 controller has four coherency processors to 

handle requests from either processor’s caches or store 

queues

 Controls return of data from L2 (hit) or fabric controller (miss) to the 

requesting processor

 Updates L2 directory state

 Issues commands to fabric on L2 misses

 Controls writing to L2

 Initiates invalidates to a processor if a processor’s store hits a 

cache line marked as being resident in another processor’s L1

 L2 controller has four snoop processors to handle coherency 

operations from fabric

 Can source data to another L2 from this L2

Portland State University – ECE 588/688 – Fall 2010 9

Coherence Protocol
 L2 has enhanced version of MESI (paper table 4)

 I: Invalid

 SL: Shared, can be sourced to local requesters

Entered when processor load or I-fetch misses L2, data is 

sourced from another L2 or from memory

 S: Shared, cannot be sourced

Entered when another processor snoops cache in SL state

 M: Modified, can be sourced

Entered on processor store

 Me: Exclusive

 Mu: Unsolicited modified

Entered when data is sourced from another L2 in M state

 T: Tagged (valid, modified, sourced to another L2)

Entered on a snoop read from M state

 L3 has simpler protocol (paper)

Portland State University – ECE 588/688 – Fall 2010 10

Connecting into larger SMPs
 Basic building block is Multi-Chip Module (MCM)

 Four Power4 chips form an 8-way SMP (paper figure 9)

 Each chip writes to its own bus (with arbitration among L2, 

I/O controller and L3 contoller)

 Each of the four chips snoops all buses

 1-4 MCMs can be connected to form 8-way, 16-way, 24-

way and 32-way SMPs

 32-way SMP shown in paper figure 10

 Intermodule buses act as repeaters, moving requests and 

responses from one module to another in a ring topology

 Each chip writes to its own bus but snoops all buses

Portland State University – ECE 588/688 – Fall 2010 11

Reading Assignment

 Monday

 Erik Lindholm et al., “Nvidia Tesla: A Unified Graphics and 

Computing Architecture”, IEEE Micro, 2008 (Read)

 Wednesday

 John Mellor-Crummey and Michael Scott, “Synchronization 

Without Contention,” ACM Transactions on Computer 

Systems,1991 (Read)

 Thomas Anderson, “The Performance of Spin-Lock 

Alternatives,” IEEE Transactions on Parallel and Distributed 

Systems, 1990 (Skim)

 Ravi Rajwar and James Goodman, “Speculative Lock Elision: 

Enabling Highly-concurrent Multithreaded Execution,” Micro 

2001 (Skim) 

 Project progress report due on Monday


