
by F. P. O’Connell
S. W. WhitePOWER3:

The next
generation
of PowerPC
processors

The POWER3 processor is a high-performance
microprocessor which excels at technical
computing. Designed by IBM and deployed
in various IBM RS/6000® systems, the
superscalar RISC POWER3 processor boasts
many advanced features which give it
exceptional performance on challenging
applications from the workstation to the
supercomputer level. In this paper, we
describe the microarchitectural features of the
POWER3 processor, particularly those which
are unique or significant to the performance
of the chip, such as the data prefetch engine,
nonblocking and interleaved data cache,
and dual multiply–add-fused floating-point
execution units. Additionally, the performance
of specific instruction sequences and kernels
is described to quantify and further illuminate
the performance attributes of the POWER3
processor.

Introduction
The IBM POWER3 processor is a 64-bit symmetric-
multiprocessing-enabled superscalar RISC microprocessor
which is the heart of a new line of RS/6000* workstations
and server products. Designed to run at frequencies up to

one-half gigahertz, the POWER3 processor supports even
the most challenging technical computing applications.
This paper describes the motivation for the creation of the
POWER3 processor, the challenges that it addresses, the
highlights of its microarchitecture that are significant to
performance, and its key performance traits.

Product motivation and technological
challenges
The POWER3 processor is the successor to the POWER2
processor; it was designed primarily to meet the demands
for technical computing which come from a wide variety of
customers in nearly every major sector of the marketplace:
automotive, aerospace, pharmaceutical, weather
prediction, energy, defense, electronics, chemical
processing, bioengineering, environmental, and many areas
of research. As with most modern microprocessor design
efforts, the POWER3 processor required an enormous
investment involving many highly skilled and talented
professionals. Such an investment is prudent if and only
if it addresses a large and growing market need, as is
the case with modern technical computing.

● Demand for faster processors
There is an insatiable demand for faster computing from
practitioners in engineering and scientific fields. This

rCopyright 2000 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/00/$5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

873

demand arises from two facts: The universe in which we
live is dauntingly complex, and humans are constantly
seeking to understand and master that complexity. Often
the individual human drive to discover is heightened
by national security pressures as well as corporate
competition.

It is fascinating to note that the preparation for the
digital computing revolution actually began thousands
of years ago. Archimedes first proposed a successive
approximation to the calculation of the constant p around
330 B.C., almost 2300 years before his mathematics would
find its true utility with the aid of a digital computer.
Building upon the mathematical foundations laid by
mathematicians over millennia, the field of numerical
methods quickly flourished with the advent of the digital
computer.

Just since the 1960s, when digital computers began to
become generally available, there has been an amazing
amount of progress in engineering and scientific
computation. Beginning with relatively simple linear, one-
dimensional differential equations, the push began to add
more and more realism to analyses, causing the amount
of knowledge and insight gained from digital computer
simulations, as well as the demand for higher-speed
computing, to grow commensurately. At the same time,
advances in computer technology spurred the development
of new mathematical and algorithmic approaches to
problems which were previously unsolvable, further
increasing the demand for high-speed computing.

Contemporary computing challenges often involve the
solution of partial differential equations involving three
spatial dimensions (i.e., the dimensions of physical space)
as well as time, and often one or more mathematical
nonlinearities. Modeling three dimensions with sufficiently
fine resolution requires large amounts of high-speed
storage (i.e., main memory), usually one or several
orders of magnitude more than the corresponding two-
dimensional approximation. The finer spatial resolution
often imposes shorter time steps, resulting in a greater
number of time-step iterations for a given solution. The
mathematical nonlinearities that are introduced cause the
computation to iterate as it searches for an acceptable
solution.

Examples of such challenging, three-dimensional,
nonlinear analysis can be found in such diverse areas
as airplane and automobile design, weather modeling,
molecular simulation, and nuclear weapon stewardship. An
interesting example of the successful application of high-
performance computing, which in turn promotes heavy
demand, is car crashworthiness. Although automobiles
are useful machines, they are also the leading cause of
accidental death in modern society. Hence, there is
significant social and regulatory pressure to design
safer cars. The finite-element software for performing

simulations of automobiles during collisions was born in
part from the field of nuclear weapon design. Today, car
designs can be tested computationally for occupant safety
with significant advantages over physical testing in terms
of time, cost, and knowledge gained. But the computation
involves many complexities, including the detailed three-
dimensional model of the car design, models of the
materials involved, models of the bending, rotating, and
crushing behavior of structural components of the car,
accounting for the contact between different parts of the
car as it deforms, and models of the human occupants and
their interaction with the car itself, including seat belts,
the steering wheel, and airbags. All of these complexities
produce a large, highly nonlinear computational mechanics
simulation, which in turn requires many calculations and
many computer cycles to complete. And although there
are often many approximations in these simulations,
computations such as these still require days of computing
time to complete; simulations on the order of a few hours
would greatly increase productivity and time to market.

● Major design constraints and challenges
The success of the personal computer has profoundly
influenced the market for high-performance systems, with
the main effect being an extreme sensitivity to price.
Since much of the cost of a system is often associated
with memory, a decision to use anything other than
commodity DRAM—which enjoys the benefits of large-
scale manufacturing due to the personal computer
boom—would drastically increase the price of adequately
configured systems. But DRAM-based memories present a
difficult challenge to designers attempting to build systems
in which performance scales with increasing processor
frequency. As processor frequencies have soared, memory
latency has decreased only modestly, with the result being
that memory latency, in processor cycles, has grown. At
the same time, the demand for large parallel machines has
increased physical bus length, protocol, and contention.
The burden for overcoming these problems falls mainly
on the microprocessor.

Technical computing applications present computer
designers with additional formidable challenges which
center on floating-point and fixed-point computational
speed, scalability, load/store bandwidth, and cache
capacity. The POWER3 processor was designed to meet
the rigors of technical computing applications, as well as
the more general requirements of the high-performance
computing marketplace, including reliability, ease of
programming, addressability, and power and space
restrictions.

Overview of the POWER3 processor
The POWER3 processor is a CMOS-based superscalar
RISC microprocessor which conforms to the PowerPC

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

874

Architecture*1 [1]. Its two most fundamental architectural
features—symmetric multiprocessing (SMP) systems and
64-bit effective addressing—provide the basics necessary
for the contemporary challenges of technical computing.
Multiprocessor systems not only increase the computing
capacity of the system under a single image; they also
allow applications to improve performance by exploiting
shared-memory parallelism. The high level of performance
that multiple POWER3 processors can produce, along
with 64-bit program addressability, allows customers to
solve larger three-dimensional simulations that were
previously impractical. Because the POWER3 processor
is a 64-bit implementation, it supports both the 32-bit
and 64-bit modes provided by PowerPC*.

The POWER3 processor has also been designed to span
several advances in CMOS technology, allowing it to more
than double its initial product frequency of 200 MHz over
its product lifetime. To date, POWER3 processors have
been shipped in RS/6000 products at frequencies ranging
up to 450 MHz. Applications which are optimized to the
POWER3 platform can immediately take advantage of
upgrades to faster POWER3 processors. A die photograph
of the POWER3 processor is shown in Figure 1.

The POWER3 processor is partitioned into seven
functional blocks (Figure 2):

● Instruction processing unit (IPU).
● Instruction flow unit (IFU).
● Fixed-point unit (FXU).
● Floating-point unit (FPU).
● Load/store unit (LSU).
● Data cache unit (DCU).
● Bus interface unit (BIU).

These functional units are discussed in the following
sections.

● Instruction processing unit and instruction flow unit
Processor performance begins with the task of fetching the
instructions for an application, partially decoding them,
and dispatching them to the proper execution unit. The
IPU and IFU are responsible for fetching, caching, and
managing the flow of instructions during their tenure in
the microprocessor (the tenure of a given instruction
begins when it is dispatched to an execution unit and
ends when it is completed).

Logically, instructions are fetched from memory;
however, for performance reasons, the IPU implements a
32-kilobyte (KB) instruction cache and a cache reload
buffer (CRB). The instruction cache holds 256 cache lines,
each of which is 128 bytes in length, and is organized as two 128-way set-associative arrays. The instruction cache

provides single-cycle access. The CRB holds the most
recent cache line transferred from memory. To provide
support for virtual storage, a 256-entry two-way set-

1 In this paper, the term architecture refers to the instruction set architecture
specification defined in [1], whereas microarchitecture refers to the implementation
details of a specific design, e.g., the POWER3 processor.

POWER3 processor die photo.

Figure 1

POWER3 processor functional unit block diagram.

Figure 2

Fixed-point unit Load/store unit

Data cache unit
(DCU)

FXU0 FXU1

GP registers FP registers

FXU2 LSU0 LSU1

Floating-point unit

FPU0 FPU1

Instruction flow unit
(IFU)

Instruction processing unit
(IPU)

L2 cache
1–16 MB

Bus interface unit

32 bytes

6XX bus16 bytes32 bytes

32 bytes

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

875

associative instruction translation lookaside buffer (ITLB)
and a 16-entry instruction segment lookaside buffer
(ISLB) are also implemented.

The IFU attempts to keep as many instructions as
possible executing in parallel in the machine, maximizing
instruction throughput. Up to eight instructions are
fetched per cycle, up to four are dispatched per cycle, and
up to four instructions per cycle can be completed. To
improve throughput, instructions are dispatched in order,
most are allowed to execute and finish out of order, and
then all instructions complete in order. (Architectural
registers are updated only when an instruction targeting
them completes.) Executing and finishing instructions
out of order increases the degree of instruction-level
parallelism by allowing subsequent operations to execute
both in parallel with logically prior long-running
operations and ahead of operations which are delayed
because of cache misses.

Instructions are dispatched to the various functional
unit instruction queues and are tracked with an entry in
the 32-entry completion queue. These unit instruction
queues ensure each functional unit an adequate supply of
instructions from which to select for execution; they also
provide a place for the instruction flow unit to place
instructions so that a stalled instruction does not block
dispatching of subsequent instructions. In many designs,
dispatch bandwidth is a frequent bottleneck. The robust
implementation of the POWER3 processor greatly reduces
the likelihood that performance will be affected by
dispatch restrictions. Since operand availability is not a
requirement for dispatch, availability of space in the
instruction queues and in the completion queue are the
two primary restrictions on dispatch. The completion
block ensures that the architectural state of the processor
is always correct, enforcing in-order completion
of committed instructions and ensuring that
exceptions and interrupts are handled properly
and in order.

The POWER3 processor uses two mechanisms to
improve branch-prediction accuracy. First, by tracking all
outstanding condition-code-setting instructions, the CPU
can determine when the branch outcome is known at
dispatch, obviating the need to guess the direction of a
branch. For branches that are unresolved at dispatch,
the outcome is guessed and instructions are dispatched
speculatively. If it is found that the branch was guessed
incorrectly when the condition-code-setting instruction
finishes, all instructions beyond the associated branch are
canceled, and the correct instructions are then dispatched.

The primary method for branch prediction for
unresolved branches uses a branch-history table (BHT)
containing 2048 prediction fields, each with a two-bit
branch-history entry. The two-bit prediction field is a
saturating up– down counter with 0 corresponding to

strongly not-taken and 3 corresponding to strongly taken.
When branches are resolved, the prediction field for that
entry is incremented or decremented depending upon
whether the branch was taken or not taken, respectively,
except when the field is already saturated.

● Fixed-point execution units
The POWER3 processor contains three fixed-point
execution units: two single-cycle units and one multicycle
unit. The single-cycle units execute all single-cycle
instructions (arithmetic, shift, logical, compare, trap, and
count leading zero) with a single-cycle latency (this means
that instructions dependent upon the result can execute in
the next cycle). All other fixed-point instructions, such as
multiply and divide, are handled by the multicycle unit.
Since the POWER3 processor is a 64-bit microprocessor,
this includes 64-bit as well as 32-bit integer operands.
The two single-cycle fixed-point units share a six-entry
instruction queue, while the multicycle unit includes a
three-entry instruction queue.

In contrast to the POWER2 processor [2], which
included two symmetric units that executed both fixed-
point and load/store instructions, the POWER3 design
includes two dedicated load/store units in addition to the
three fixed-point units. The independence of the fixed-
point execution units and the load/store execution units is
obviously a large performance benefit for calculations that
are predominately integer in nature, such as Monte Carlo
simulations. But even in floating-point calculations, this
separation can be important. An example of this occurs in
a sparse-matrix-vector multiply, which involves address
indirection, whereby an integer index must be converted
to byte-offset by a fixed-point instruction before it is used
by a subsequent floating-point load operation.

● Floating-point execution units
The floating-point unit (FPU) contains two symmetrical
floating-point execution units which implement a fused
multiply–add pipeline conforming to the PowerPC
Architecture. All floating-point instructions pass through
both the multiply stage and the add stage. For floating-
point multiplies, 0 is used as the add operand, and for
floating-point adds, 1 is used as the multiplicand.

Each floating-point execution unit supports three-
cycle data forwarding for dependent instructions within
the same execution unit when the target of the first
instruction feeds either the FRB or the FRC operand
of the dependent instruction, where the operation is
FRT 4 [(FRA) 3 (FRC)] 1 (FRB). In the case of data
forwarding between execution units, or when, on the same
execution unit, the first instruction is feeding the FRA
operand of the dependent instruction, the latency is four
cycles. It is worth noting that, for achieving frequency
targets, the pipeline of floating-point register-to-register

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

876

instructions is broken up into ten stages (Fetch,
Dispatch/Decode, Register Access, Execute 1, 2, 3, and 4,
Finish, Complete, and Writeback), but only the first three
Execute stages are exposed for dependent instructions.

Most floating-point instructions have single-cycle
throughput. Since the POWER3 processor can execute
two floating-point multiply–add instructions per cycle, the
peak floating-point rate of the machine is four floating-
point operations per processor cycle. The floating-point
arithmetic operations that are not pipelined are square
root (fsqrt and fsqrts) and divide (fdiv and fdivs). These
operations can use either of the execution units and are
assisted by additional logic to handle their numerical
algorithms.

The POWER3 processor implements the optional
PowerPC instructions fres (single-precision floating-point
reciprocal estimate) and frsqrte (floating-point reciprocal
square-root estimate). These are often useful for boosting
performance in applications that do not need the full
accuracy provided by the divide and square-root
instructions (e.g., some graphic routines). These fast-
estimate instructions also provide the seed values for
iterative divide and square-root routines. The sPPM
example in this paper describes software vector versions
of these routines, which perform significantly faster than
the hardware divide and square-root instructions.

The optional floating-point select instruction, fsel, is also
implemented to provide for a floating-point conditional
instruction with no branching. While this eliminates the
chance of incurring the penalty for a mispredicted branch,
the more significant advantage in eliminating the branch
is the increased flexibility provided to the compiler in
scheduling a group of instructions that includes an fsel.

The FPU also includes 32 64-bit floating-point registers
and 24 64-bit physical rename registers or “buffers.” All
target results of floating-point load and arithmetic
instructions are placed in rename registers until the
instruction completes (i.e., until the completion stage of
the instruction). This method of using rename registers is
vital to executing out of order, executing speculatively,
and breaking false register dependencies. However,
stalls may occur at some point if all rename registers are
allocated. The POWER3 processor optimizes the use of its
floating-point rename registers, which consume a large
piece of premium silicon area on the chip. Typically, for
microprocessors which implement register renaming,
rename registers are allocated when instructions are
dispatched. While the POWER3 processor does allocate
from its pool of 32 “virtual” rename registers during the
dispatch cycle, it delays allocation of the physical rename
registers until the cycle for which they are needed,
typically the execute or finish stages. This technique makes
better use of the physical rename registers and prevents
them from becoming the source of a performance

bottleneck. The result is that the POWER3 processor is
able to sustain near-peak performance on key application
kernels such as rank-n update and matrix–matrix multiply,
which press the execution and completion rate of floating-
point instructions to the maximum.

A central FPU instruction queue above the twin
floating-point units can hold up to eight floating-point
instructions, helping to maintain a steady flow of work for
the FPU. The execution units can pull instructions from
the queue in an out-of-order fashion, allowing logically
later instructions whose operands are available to bypass
other instructions which are waiting for operands.
This flexibility provides a performance advantage
when executing legacy code scheduled for other
microarchitectures, or for variable delays such as stalls
resulting from cache misses. In addition to out-of-order
issue, out-of-order finish capability allows faster but
independent instructions to bypass slower ones. A
common example is an instruction stream containing a
floating-point divide followed by a series of FMAs which
are independent of the divide; while one execution unit
is executing the divide, the other instructions execute
and finish in parallel in the other execution unit.

● Load/store execution units
All loading and storing of data is handled by two
load/store execution units. Load instructions transfer data
from memory to a fixed- or floating-point rename register;
store instructions do just the opposite, transferring data
from a register to memory. (Since the POWER3 processor
is cache-based, data from a load may be found in the L1
or L2 cache, or a cache-line transfer from memory may be
initiated as a result of the load.) The performance of store
instructions is enhanced by the presence of a store buffer,
which is 16 entries deep. Store instructions can finish
executing if they have obtained their data; they do
not have to wait until the data is written into the
data cache.

The POWER3 processor also implements load and
store update form instructions, which update the general-
purpose register containing the load or store address as
part of the instruction, eliminating the need for a separate
add instruction. Using load update forms allows the
compiler to generate concise code which maximizes the
computational work performed within the four-instruction
completion rate per cycle. A common example is a matrix-
vector multiplication, which primarily consists of two
lfdu instructions and two fma instructions per cycle;
this sequence will run at the peak flop rate of the
processor when its data operands are contained in
the L1 cache.

The two load/store execution units share a six-entry
instruction queue. The out-of-order LSU also permits load
instructions to bypass store instructions while keeping

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

877

track of any data dependencies that might exist, further
enhancing performance and instruction scheduling
flexibility. Order among store instructions is always
maintained in both the execute stage and the store queue.

● Data cache unit
The data cache unit (DCU) consists primarily of the data
memory management unit (MMU), the primary (L1) data
cache, and the data prefetch unit.

Memory management unit
The MMU is primarily responsible for address translation
of data requests. It includes a 16-entry segment lookaside
buffer (SLB) and two mirrored 256-entry two-way set-
associative data translation lookaside buffers (DTLB)
in support of the dual load/store execution units. For
translation misses, the instruction and data share hardware
to search the page table for the correct translation. The
MMU supports one terabyte (240 bytes) of physical
memory, 64-bit effective addressing, and 80-bit virtual
addressing.

L1 data cache
The L1 data cache is 64 KB in size and is designed to
provide single-cycle access to the load/store units. The
data cache consists of 512 128-byte cache lines organized
into four banks. Each bank is 128-way set-associative; that
is, any line with the two address bits (A55/A56) set to
select a particular bank may reside in any of the 128 cache
slots in that bank. Within each bank, there are two sub-
banks, one for all even doublewords and one for all odd
doublewords (selected by address bit A60). The data cache
can return the operands for two loads in the same cycle
provided they are not both in the same bank and they are
also not in the same even or odd doubleword sub-bank
(i.e., if A55, A56, and A60 all match for two loads, a
conflict exists). While 128-way set associativity provides
performance advantages, it makes a least-recently-used
(LRU) replacement algorithm impractical to implement.
Hence, the POWER3 processor implements a round-robin
replacement scheme for both the L1 instruction cache and
the L1 data cache.

As data is transferred between memory and the
processor, buses of various widths and frequencies are
used. To provide a place to reconstruct a cache line, and
to accommodate differences in frequencies and bus widths,
linewidth buffers are often inserted in the transfer paths.
Between the L1 data cache and the BIU, four cache-
reload buffers (CRBs) are used to stage data into the L1
data cache (each data cache bank has a dedicated CRB).
Outgoing data from the data cache is staged through four
cache-storeback buffers (CSBs), one per bank. Load hits
to data in the CRB are satisfied directly, rather than
delayed until the cache line is reloaded into the L1 cache

array. The CSB provides a 64-byte interface to the BIU
that also facilitates a highly parallel and efficient DCU.

The data unit can support up to four outstanding cache
misses, providing the basis for reducing the effective
latency to memory. When a load misses the L1 data cache,
the instruction is placed in a six-entry load-miss queue
while the BIU fetches the data. Subsequent loads can
continue to execute. If a subsequent load hits the cache,
its data is returned immediately. If a subsequent load
misses the cache, it is also placed in the load-miss queue.
Since the BIU and memory subsystem can overlap the
requests to memory for the missed cache lines, the
average latency of memory per miss is reduced when there
is more than one cache miss outstanding. Only after there
are four outstanding misses in the load-miss queue and a
fifth miss is encountered does load execution stall until
one of the load instructions in the LMQ is serviced. Loads
that hit the cache while there are four outstanding cache
misses will continue to execute.

Data prefetching
One of the most effective and innovative features of
the POWER3 processor is its hardware data prefetch
capability. The POWER3 processor prefetches data by
monitoring data cache-line misses and detecting patterns.
When a pattern, herein called a stream, is detected, the
POWER3 processor speculatively prefetches cache lines in
anticipation of their use. With memory latency improving
at a slower pace than processor cycle time, data
prefetching is extremely advantageous in hiding the
memory latency in order to achieve adequate bandwidth
for data-hungry applications.

Prefetched streams have data storage patterns that
reference consecutive cache lines, either in order of
increasing addresses or decreasing addresses. It has
been observed by the authors and by others [3]
that a high percentage of data reference patterns in
engineering/scientific applications conform to this pattern.
Because of the economies of cache-based processors,
new and rewritten applications give preference to such
consecutive data access patterns. Even many so-called
sparse data structures store the bulk of data in a stride-1
fashion, while the indirect addressing associated with the
sparsity is contained within a cacheable region. Cache-miss
patterns that are random or at a stride (in cache lines)
greater than one (e.g., every fourth line) will not cause
hardware prefetches, and attempting to prefetch the
latter case would greatly increase the complexity of the
hardware; such patterns are already handled adequately by
the multiple outstanding miss capability of the POWER3
processor (since each access would be a distinct cache
line).

The POWER3 processor prefetch engine includes a ten-
entry stream filter and a stream prefetcher (Figure 3). The

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

878

purpose of the stream filter is to observe all data cache-
line misses, in the form of real addresses (RA in Figure 3)
and to detect possible streams to prefetch. The stream
filter records data cache-line miss information; the real
address of the cache line is incremented or decremented
(depending upon the offset within the line corresponding
to load operand), and this “guess” is placed in the FIFO
filter. As new cache misses occur, if the real address of a
new cache miss matches one of the guessed addresses in
the filter queue, a stream has been detected. If the stream
prefetcher has fewer than four streams active, the stream
is installed, and a prefetch to the line anticipated next in
the stream is sent out via the BIU. Once placed in the
stream prefetcher, a stream remains active until it is aged
out. Normally a stream is aged out when the stream
reaches its end and other cache misses displace its entry
in the stream filter.

When a stream is being prefetched, the prefetcher tries
to stay two cache lines ahead of the current line (i.e., the
line whose elements are currently being accessed by a load).
The cache line that is one line ahead of the current line is
prefetched into the L1 cache, and the line which is two
ahead of the current line is prefetched into a special
prefetch buffer in the BIU. Hence, the prefetch engine
can concurrently prefetch four streams, each of which may
be up to two lines ahead of the current line, for a total of
eight prefetches per processor. The prefetch engine
monitors all load addresses from the LSU (EA0 and EA1
in Figure 3). When the LSU finishes with the current line
and advances to the next line (which is already in the L1
cache because of prefetching), the prefetch hardware
transfers the line which is in the prefetch buffer to the L1
and prefetches the next line into the buffer. In this way,
the prefetching of lines is automatically paced by the
rate at which elements in the stream are consumed.

Bus interface unit
The bus interface unit (BIU) provides the interface
between the processor bus and the other processor units:
the instruction processing unit, the data cache unit, the
prefetch engine, and the L2 cache. Its memory bus
interface is 128 bits (16 bytes) wide and supports a variety
of processor-to-bus clock ratios.

L2 cache
The POWER3 processor supports a private, either direct-
mapped or set-associative, unified instruction and data
secondary (L2) cache with sizes from 1 MB to 16 MB. The
private bus to the L2 is 32 bytes wide, and cache-line
transfers of the supported 128-byte line are performed
in a burst operation of four cycles. For the 375-MHz
RS/6000 44P Model 270, which runs the L2 interface at a
ratio of 3:2 with the processor, this produces a burst rate
of 8 GB/s. The 43P Model 270 also has a load-use latency

(L1 miss, L2 hit instance) of approximately twelve cycles.
The wide high-speed L2 cache interface provides ample
bandwidth for processor requests as well as for snoop
traffic from other processors or node controllers in the
system.

Performance
While a complete characterization of the performance of
the POWER3 processor is well beyond the scope of this
paper, a good understanding of its performance can be
gained by examining a set of basic loops and kernels, since
even complicated applications can often be broken down
into or related to more simple loops and kernels. In this
section, this building block approach is taken, beginning
with very basic loops and proceeding to some fundamental
kernels. Finally, the sPPM application from the Accelerated
Strategic Computing Initiative (ASCI) project is examined.

● Fundamental loop-level performance
Table 1 shows the measured performance for a set of
fundamental loops. In all cases, the data is contained
within the L1 data cache, and an outer repetition loop is
used to obtain an accurate timing. The inner loop is often
unrolled by the compiler to minimize branch instructions
and to allow more latitude in scheduling instructions for
maximum performance. To illustrate: Loop 2 before
unrolling would be simply lfd, stfd, bct, and after unrolling
four times would be lfd, stfd, lfd, stfd, lfd, stfd, lfd, stfd, bct.

The prefetch engine.

Figure 3

Stream filter

Stream
allocation control

Prefetch guess
logic

Stream prefetcher

Stream
prefetch control

Load miss queue

Bus interface unit

RA

6XX
bus

L2 bus

EA0

EA1

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

879

Of course, unrolling requires that the compiler account
for any iterations that are not a multiple of the level of
unrolling.

Discussion of loops

1. Two stores per cycle can complete in bursts, allowing
leeway in the scheduling of stores within a loop.
However, for a solid stream of store operations, such
as this loop, the 16-entry store queue will fill up, and
the performance will be limited by the single store
port into the L1 cache.

2. The copy loop contains one load and one store per
element, which the POWER3 processor can execute in
one cycle per iteration provided the data is in the L1
cache and there are no bank conflicts in the L1 cache.

3. This loop, commonly known as DAXPY, is load/store-
bound like the first two loops, and again achieves
the maximum rate possible for the POWER3
microarchitecture: (2 loads 1 1 store)/2 (load/stores
per cycle) 5 1.5 cycles per iteration.

4. Loop 4 is identical to DAXPY, but without the
multiply. Performance is still determined by the
load/store rate.

5. This loop is the sum reduction of a vector. The
compiler unrolls the loop by eight and produces eight
partial sums. This breaks the interdependence among
add operations and allows the computation to proceed
at maximum rate until the partial sums have to be
added to complete the loop. The final partial sum
operations, plus the constraint on the instruction
completion rate, add to the per-iteration timing.

6. This loop, commonly known as DDOT, is load-bound
(there are two loads for every compound floating-
point instruction). Since two loads per cycle can be
completed, the loop executes in an average of one
cycle per iteration.

7. Loop 7 shows the average performance of floating-
point double-precision square root. Since both floating-
point execution units can work in parallel, and a
floating-point double-precision square root normally
takes 22 cycles, the average time is 11 cycles. The
loads are essentially free because they are entirely
overlapped with the arithmetic instructions.

8. Loop 8 shows the average performance of floating-
point double-precision divide. Again, two divides
execute in parallel, halving the average time to
approximately nine cycles.

9. Loop 9 is an indirect DDOT in which one of the
vectors is indirectly addressed using a vector of integer
indices. This is the crux of the sparse-matrix-vector
multiply, often used in iterative equation solvers.
The maximum possible rate for three loads and two
load/store units with cache-contained data is 1.5 cycles
per iteration. One additional cycle is required nearly
every unrolled iteration, where the loop is unrolled by
four (i.e., 0.2 cycles per original iteration), most likely
due to a cache access interleave conflict.

10. Loop 10 shows the compare and branch performance
of the POWER3 processor in selecting the maximum
element of an array. Each floating-point compare and
conditional store takes only slightly more than one
cycle because of the branch-prediction capabilities
of the processor.

11. This loop exposes the three-cycle dependent operation
latency in the floating-point execution unit. Since each
operation requires the result from the previous
operation, the execution time is limited by the
effective pipeline depth of three. Note that even
though the actual pipeline depth is much longer than
three, the data-forwarding capabilities within the
floating-point execution unit keep the dependent
operation latency to just the three essential arithmetic
stages.

Table 1 Performance of various fundamental loops.

ID Kernel Floating-point
operations

Loads Stores Average no. of cycles
per iteration

1 x(i)5s 0 0 1 1.0
2 x(i)5y(i) 0 1 1 1.0
3 x(i)5x(i)1s*y(i) 2 2 1 1.5
4 x(i)5x(i)1y(i) 1 2 1 1.5
5 s5s1x(i) 1 1 0 0.6
6 s5s1x(i)*y(i) 2 2 0 1.0
7 x(i)5sqrt(y(i)) 1 1 1 11.0
8 x(i)51/y(i) 1 1 1 9.2
9 s5s1y(i)*a(ix(i)) 2 3 0 1.7

10 if(a(i).gt.s) s5a(i) 1 1 0 1.3
11 x(i)5a(i)1x(i21) 1 2 1 3.0

All floating-point data is double precision (8 bytes). Inner loop count is 512.

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

880

● Memory performance and the STREAM benchmark
The fundamental loops discussed in the previous section
are such that all data required for the steady-state
execution of the loops is contained in the L1 cache, thus
demonstrating the core performance of the processor. The
memory performance of the system is also important in
judging the overall performance of a system. To reveal the
memory performance of the system, the working set of
data loaded and stored must exceed the size of the largest
cache.

STREAM [4] is a standard benchmark which was
designed to demonstrate sustained memory performance.
It consists of four very simple loops in which all data is
retrieved from memory. The loops are listed along with
their results for an RS/6000 43P Model 260 (200 MHz)
in Table 2. The bandwidth as reported by the STREAM
benchmark credits doubleword stores as eight-byte
transfers; however, this understates the actual memory
traffic for a typical cache-based system. Stores cause a
read–modify–write transaction, meaning that the cache
line must be fetched from memory before the modified
data can be written back to memory. As a result, for each
doubleword store, eight bytes are fetched from memory
and eight bytes are stored to memory. The actual memory
traffic accounting for this is shown in the last column of
Table 2. The performance level achieved on the STREAM
benchmark is primarily a demonstration of the prefetching
engine of the POWER3 processor. In the above
measurements, the prefetch by load compiler directive,
available in Version 6.1.0.3 of the XL Fortran Compiler,
is used in the source code to improve the performance
(which requires that the results be placed in the
Experimental/Nonstandard Results section of the STREAM
repository). The directive inserts a dummy load (with the
same address as the store) in the instruction stream prior
to the store. This allows the prefetch engine, which
monitors load misses, to detect the miss and prefetch the
cache line, thus improving performance. XL Fortran
Version 7.1 automatically generates these dummy loads
at optimization level O4. Less than 40% of the stated
performance could be attained without prefetching.

● Matrix–matrix multiply
One of the most ubiquitous application kernels is the
matrix–matrix multiply, or, more generally, the rank-n
update. Mathematically this is, in matrix notation,

C4 C 1 AB ~rank-n update!;

or, using indicinal notation,

cij 5 cij 1 aikbkj ,

where a repeated index implies summation. If
implemented in source code in the most straightforward
manner, this kernel consists of a three-nested loop

structure, with a DAXPY as the innermost loop. When
optimized for cache-based superscalar processors,
however, the code often becomes a six-level nested loop
structure with the innermost loop consisting of multiple
DDOTs [5]. Two key optimizations are gained in this
transformation. First, unrolling the loops associated with
the product indices i and j four times (so called 4 3 4
unrolling), and making the loop associated with the index
k the innermost loop, produces an inner kernel consisting
of 16 fma instructions, eight lfd instructions, and one bct
instruction. This transformed code reduces the average
storage reference ratio to just one half lfd per fma,
compared with the standard DAXPY implementation of
one stfd and two lfd instructions per fma. The maximum
execution rate on a POWER3 processor for the
transformed code is thus limited by the 16 fma
instructions. Hence, with two floating-point execution
units, it would take a minimum of eight processor cycles
to execute, achieving the peak rate of the machine of
four floating-point operations per cycle. In fact, for a
completely L1-cache-contained case, the POWER3
processor takes 8.06 cycles per iteration to perform this
loop, coming as close as is practically possible to achieving
the peak rate (that is, one extra cycle for every 16
iterations, or 129 cycles instead of a perfect 128 cycles,
probably due to an L1 interleave conflict). Achieving this
rate uses all of the physical rename registers and fully
exploits the allocation/deallocation optimizations of
rename registers discussed in the FPU section.

The second important optimization is cache blocking,
which reduces the number of times the data must be
brought into the caches to complete the computation,
allowing even very large arrays to be computed at close to
the peak core rate. Cache blocking effectively breaks up
the matrix–matrix multiply into multiple matrix–matrix
multiplies on subregions of the original matrices. Each of
these smaller products has one matrix operand that fits
effectively into the cache. This type of cache blocking
also lends itself easily to parallel implementations.

Cache blocking and loop unrolling are implemented in
DGEMM, an optimized general matrix multiply routine in

Table 2 STREAM benchmark performance.

Name Kernel RS/6000 43P Model
260 Results (MB/s)

Reported* Actual

COPY c(j)5a(j) 942 1,413
SCALE b(j)5s*c(j) 985 1,477
SUM c(j)5a(j)1b(j) 1,096 1,461
TRIAD a(j)5b(j)1s*c(j) 1,103 1,470

*Listed in the Experimental/Nonstandard Results section of the STREAM
repository, since the code was compiled with a compiler directive.

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

881

the IBM Engineering Scientific Subroutine Library [6].
Table 3 shows the performance on the RS/6000 44P
Model 270 for various sizes of arrays. Note that actual
performance achieves a high percentage of the peak
performance, the latter being 1.5 GFLOPS for a 375-MHz
POWER3 processor on matrices ranging from small
(20 KB) to large (200 MB), demonstrating the total
effectiveness of the microarchitecture.

The rank-n update is computationally the largest piece
of work required to factorize a matrix, a task often
employed in technical computing applications. Again,
unrolling and blocking are important in achieving optimal
performance on the POWER3 processor. Table 3 also
shows the performance of DGEF and DGES (factor then
solve) for a variety of matrix sizes. The performance of
a 1000 3 1000 matrix (reported on the Performance
Database Server site [7] for the “n 5 1000” column of
Linpack Performance), is often used as an indication of
the technical computing performance of a system. Table 4
lists the published performance of the RS/6000 SP 375-
MHz SMP Thin Node parallel processor. Note that the
efficiency, defined as the ratio of actual performance to
theoretical peak performance, falls off as more processors
are employed in the solution. This is because, for a given
problem size (n 5 1000), the percentage of the solution
that runs in parallel remains fixed. The parallel piece
speeds up when more processors take part in the
computation, but the serial piece of the computation still
requires the same amount of computing time. Hence, the
efficiency declines; this is often referred to as Amdahl’s
law [5].

Another variant of the Linpack benchmark reported on
the Performance Database Server site is the Linpack-Parallel
benchmark. The rules of this benchmark differ from the
“n 5 1000” benchmark in that the matrix size to be
factored and solved can be any size; thus, the ratio of
parallel to serial computation can be kept large. On the
ASCI White system (further described below), IBM
measured 4.938 teraflops per second (TF) on a matrix of
size 430 000 3 430 000 and a 464-node partition to set a
new world record for this benchmark.

● Example application: sPPM
ASCI includes several milestone projects, including a
three-teraflop-per-second (TF) ASCI Blue system in 1998,
a 10-TF ASCI White system in 2000, and 30-TF and 100-
TF systems in the near future. The ASCI White system
uses the sixteen-way 375-MHz POWER3 SMP High
Node as a building block for the 512-node IBM SP
supercomputer that includes six trillion bytes (TB) of
memory and 160 TB of IBM disk storage. The key
performance benchmark for ASCI White is the sPPM
(simplified Piecewise Parabolic Method) code of
Woodward et al. [8]. IBM began early POWER3-targeted
tuning of sPPM in 1997. The information gained from this
tuning effort was invaluable to IBM’s software developers
seeking to optimize the code produced by IBM compilers
for POWER-based systems.

Most of the POWER3 processor tuning falls into two categories:
exploitation of new instructions and exploitation of the
hardware prefetch mechanism. The new instructions
important to sPPM are the estimate instructions and
the select instruction.

The key routines in the sPPM application include a
sufficient number of divides and square-root operations to
produce a significant impact on the overall execution time.
The first optimization step involved the hand distribution
of loops to allow separation of these slow operations into
dedicated loops, and then replacement of these loops with
calls to IBM MASS [9] routines which accept “vector”
arguments and length counts. While not advantageous
for a single divide or square-root operation, software
emulation of the steps performed by the divide/square-
root hardware often provides a performance opportunity
when ten or more operations are involved. Interleaving
operations to exploit the inherent independence between
distinct divide operations provides parallelism which is not
present between the steps of a given divide operation.

The POWER3 implementation of the fres and frsqrte
instructions allows an efficient seed guess for the start of
an iterative algorithm. Using POWER3-specific “vector”
routines, for lengths of 256 single-precision elements,
when the arrays are cache-resident and outer loops are
used for timing purposes, the per-element timing for a
divide operation becomes 2.7 cycles (versus 9 cycles in

Table 3 Kernel performance for the RS/6000 44P Model
270 (375 MHz).

Kernel Size
(rows 3
columns)

Size
(KB)

No. of
gigaFLOPS

DGEMM 50 3 50 20 1.22
DGEMM 100 3 100 78 1.31
DGEMM 500 3 500 1,953 1.27
DGEF/DGES 500 3 500 1,953 1.17
DGEF/DGES 2000 3 2000 31,250 1.11
DGEF/DGES 5000 3 5000 195,313 1.15

Table 4 Linpack n 5 1000 performance for the RS/6000
SP 375-MHz SMP Thin Node parallel processor.

No. of
gigaFLOPS

Theoretical peak
(GFLOPS)

Single-threaded 1.2 1.5
Two-way parallel 2.2 3.0
Four-way parallel 3.7 6.0

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

882

hardware). The per-element timing for square root
becomes 4.9 cycles (versus 11 cycles in hardware).
(Since the frsqrte instruction is double-precision, it is
not used in generating the estimate for the vector
single-precision square-root routine.) The XL Fortran
Version 7.1 compiler automatically generates vector code
at optimization level O4 for the following operations:
divide, square root, log, exponent, reciprocal square
root, sin, cos, and tan.

The POWER3 implementation of the select instruction
fsel provides a significant performance advantage on
sPPM, particularly on the large number of max¼ and
min¼ operations. The select instruction takes three input
operands, and depending on the sign of the first input
operand, assigns either the second or third input operand
to the result register. As a result, the compiler can replace
the generic COMPARE/BRANCH/ASSIGN sequence for
min/max with a SUBTRACT/SELECT pair, reducing the
instruction count and often increasing performance as a
result. [In the case of “if(a.gt.b*c)”, the compiler fuses the
multiply instruction and the new subtract instruction into a
compound instruction, so the subtract operation is free.]
However, the more obvious performance advantage of
using fsel instructions comes from the elimination of a
potential mispredicted branch and the resulting pipeline
stalls. In many cases, the random relationship among
floating-point values causes branch-prediction mechanisms
(such as a branch history table) to be defeated, resulting
in a high branch-misprediction average. Furthermore,
the delay between floating-point compares and branch
resolution is often greater than in the fixed-point case
(because of relatively longer floating-point pipelines);
hence, branch-misprediction penalties are higher. The use
of a SELECT operation eliminates the possibility of a
mispredicted branch for MIN/MAX operations. A more
subtle, but significant, advantage which results from the
replacement of the conditional branch by the select
instruction is that a greater degree of instruction
scheduling flexibility often results, leading to additional
performance gains.

An opportunity identified in the sPPM application
occurs in low-reuse cache-blocking efforts. In this case,
the algorithm was a 2D out-of-place transpose written in
Fortran (which stores arrays column-wise). The transpose
operation, in indicinal notation, is simply

cij 5 bji .

In the straightforward coding of a transpose operation,
one array is accessed stride-1 (handled well by the
prefetch mechanism), while the other array is stride-n
(the leading dimension of the array). In typical blocking
attempts, the array is partitioned into cache-resident sub-
blocks, so that misses occur along the top of the stride-n
array sub-block during the initial row access, with the

blocking advantage coming from cache hits for subsequent
rows. The blocking is performed to reduce the number of
columns in the sub-block in order to reduce thrashing, so
that the subsequent rows are accessed while they are still
in cache. Often, using the processor’s registers, a mini-
transform on an even smaller sub-block is used to allow
all loads and stores to be part of short stride-1 strings of
accesses.

However, this last step is not optimal for the POWER3
processor. Arranging the accesses for a 4 3 4 mini sub-
block (to fill 16 registers) as four sets of four-element
stride-1 accesses often results in a miss followed by three
more misses to the same cache line. On the POWER3
processor, these redundant misses fill the load miss queue,
inhibiting further load processing. As a result, the misses
for adjacent columns are never overlapped. The optimal
approach for the POWER3 processor uses less aggressive
blocking and exploits the hardware prefetch mechanism to
fetch the predominately stride-1 array while purposely
clustering the misses in the stride-n direction. This
particular arrangement of the accesses in the transposed
direction results in four misses which are sent to memory
almost in parallel, thereby decreasing the average miss
penalty. Cache hits then result for the remaining elements
upon return of the four cache lines.

Several other compiler improvements center around the
POWER3 mechanisms for handling cache misses, either
natural overlap (exploiting multiple outstanding misses)
or hardware-initiated prefetch. Current work includes
consideration of the hardware stream mechanism during
loop distribution and fusion. For example, a two-statement
loop with seven streams can often be split, resulting in two
loops, each with four streams or fewer. In the original
loop, four streams will be prefetched and three streams
will not be prefetched. Once split, operands in each loop
may be prefetched. For loops with more than ten streams,
loop distribution can prevent the thrashing of the stream
filter.

As a result of the tuning described above, the sPPM
application increased its average performance by
approximately 25% to achieve 3.8 TF on 495 nodes of the
ASCI White system. This remarkable performance is a
significant milestone in the Department of Energy’s goal
to simulate the aging and operation of a nuclear weapon.

Conclusion
The POWER3 processor is a complex but efficient
superscalar microprocessor which excels at the varied
demands of technical computing. It provides excellent
performance using advanced features that maximize
instruction-level parallelism and minimize delays due
to memory latency. Designed with the demands of
challenging engineering/scientific applications in mind,
the POWER3 processor proves itself on key application

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. P. O’CONNELL AND S. W. WHITE

883

benchmarks, exhibiting high data bandwidth and sustained
floating-point performance as well as flexibility required to
handle the varied demands of modern computing. The
POWER3 processor provides a solid, high-frequency
building block for SMP system products, both as stand-
alone and as IBM SP nodes in switch-connected massively
parallel supercomputers.

Acknowledgments
The authors wish to thank Mike Mayfield, Steve Tung, and
Dwain Hicks for helping us to understand the details of
the POWER3 implementation. We also thank Frank
Johnston for his assistance in measuring the Linpack
performance, Bruce Curtis of the Lawrence Livermore
National Laboratory for his work on sPPM optimization,
and Roch Archambault for his compiler enhancements in
the area of vector-intrinsic code generation.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. The PowerPC Architecture: A Specification for a New Family

of RISC Processors, Second Edition, C. May, E. Silha,
R. Simpson, and H. Warren, Eds., Morgan Kaufmann
Publishers, Inc., San Francisco, 1994.

2. Steve White and John Reysa, PowerPC and Power2:
Technical Aspects of the New IBM RISC System/6000, First
Edition, IBM Order No. SA23-2737-00, 1994, available
through IBM branch offices.

3. T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching,”
Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1992.

4. STREAM: Sustainable Memory Bandwidth in High
Performance Computers, http://www.cs.virginia.edu/stream/.

5. Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and
Henk A. van der Vorst, Solving Linear Systems on Vector
and Shared Memory Computers, Society for Industrial and
Applied Mathematics, Philadelphia, 1991.

6. Engineering and Scientific Subroutine Library for AIX, Guide
and Reference, IBM Order No. SA22-7272, 1998; available
online at http:
//www.rs6000.ibm.com/resource/aix resource/sp books/essl/.

7. LINPACK, http:
//performance.netlib.org/performance/html/PDSbrowse.html.

8. The sPPM benchmark code README file, http:
//www.lcse.umn.edu/research/sppm.

9. IBM Mathematical Acceleration SubSystem, http:
//www.austin.ibm.com/resource/technology/MASS/.

Received February 5, 2000; accepted for publication
October 11, 2000

Frank P. O’Connell IBM Enterprise Server Group, 11400
Burnet Road, Austin, Texas 78758 (oconnell@us.ibm.com).
Mr. O’Connell is a Senior Technical Staff Member in the
Future Processor Performance Department, where he has
been a member of the RS/6000 high-performance processor
development effort since 1992. For the past 15 years, he has
focused on scientific and technical computing performance
within IBM, including microprocessor and systems design,
operating system and compiler performance, algorithm
development, and application tuning, in the capacity of both
product development and customer support. Mr. O’Connell
received a B.S.M.E. degree from the University of
Connecticut and an M.S. degree in engineering– economic
systems from Stanford University.

Steven W. White IBM Enterprise Server Group, 11400
Burnet Road, Austin, Texas 78758 (white@austin.ibm.com).
Dr. White is a Distinguished Engineer in the IBM Enterprise
Server Group. He received B.S., M.S., and Ph.D. degrees
from Texas A&M University, where he also taught for the
Electrical Engineering Department for three years. In
1982, he joined IBM to work on mainframe scientific and
engineering processor development, architecture, and system
design. He had a two-year assignment with the computational
physics group at the Lawrence Livermore National
Laboratory. Dr. White has authored or co-authored more
than two dozen papers in a variety of areas including VLSI
design, parallel processing, numerical algorithms, code
optimization, system design, performance analysis, human
genome research, and compilers. He was the primary editor
for PowerPC and POWER2: Technical Aspects of the New IBM
RISC System/6000. He has been granted twenty-two U.S.
patents and has six pending applications. Dr. White was a
recipient of the 1999 Gordon Bell Award for “highest
sustained performance.” He has also received an IBM
Corporate Award, an IBM Outstanding Technical
Achievement Award, two IBM Division Awards, an IBM
Outstanding Innovation Award, seven IBM Invention Awards,
three IBM supplemental patent awards, and several informal
awards. He is a registered professional engineer.

F. P. O’CONNELL AND S. W. WHITE IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

884

