
Performance Evaluation of the PowerPC 620 Microarchitecture

Christopher P, Nelson

Department of Electrical and Computer Engineering

Carnegie Mellol~ University

Pittsburgh, PA 15213

Abstract

The PowerPC 620 superscalar microprocessor is the most recent and performance leading member
of the PowerPC family, which is being jointly developed by IBM and Motorola. The 64-bit 620
represents the most aggressive microarchitecture for superscalar processors to date. It employs a
two-level branch prediction scheme, dynamic renaming for all the register files, distributed multi-
entry reservation stations, true out-of-order execution by six pipelined execution units, emd a com-
pletion buffer for ensuring precise interrupts°

This paper presents an instruction-level performance evaluation of the PowerPC 620 micro,archi-
tecture. A performance simulator for the 620 is developed using the VMW (Visualization-based
Microarchitecmre Workbench) remrgetable framework. The VMW-based simulator accurately
models the 620 microarchitecture down to the machine cycle level. Extensive trace-driven simula-
tion is performed using the SPEC92 benchmarks. The experimental results indicate that the 620 is a
well balanced design m~d achieves a maximum IPC rating of 1.94 on one of the benchmarks.
Detailed quantitative analyses of the effectiveness of all the key microarchitecture features are pre-
sented. A brief philosophical comparison with the Alpha AXP 21164 is also include&

Keywords: Superscalar processors, Out-of-order execution, Performance evaluation, Instruction-
level parallelism,.

Performance Evaluation of the PowerPC 620 Microarchitecture

Abstract

The PowerPC 620 superscalar microprocessor is the most recent ,’rod performance ~eading mcm~)er
of the PowerPC fmnily, which is being jointly developed by IBM ~d Motorola. The 64-bit 620
represents the most aggressive microarchitecture for superscalar processors to date. It employs a
two-level branch prediction scheme, dynamic renaming for all the register files, distributed multi-
entry reservation stations, true out-of-order execution by six pipelined execution units, ,’rod a com-
pletion buffer for ensuring precise interrupts.

This paper presents an instruction-level performance evaluation of the PowerPC 620 microarchi-
tecture. A performance simulator for the 620 is developed using the VMW (Visualization-based
Microarchitecture Workbench) retargetable framework° The VMW-based simulator accurately
models the 620 microarchitecture down to the machine cycle ~evelo Extensive trace-driven simula-
tion is performed using the SPEC92 benchmarks. The experimental results indicate that the 620 is a
well balanced design and achieves a maximum IPC rating of 1.94 on one of the benchmarks.
Detailed quantitative analyses of the effectiveness of all the key micro~chitecmre features are pre-
sented. A brief philosophical coinparison with the Alpha AXP 211(,-4 ~s also included.

1 Introduction

The latest announcement by the IBM-Motorola-Apple alliance is the PowerPC 620, the first 64-bit mem-

ber and performance leader of the PowerPC family. While ~he latest Alpha AXP 21164 {8] (@ 300MHz)

from DEC may edge out the 620 (@ 150MHz) as the industry performance leader~ the 620 employs the

most aggressive microarchitecture and achieves the highest level of instruction-level parallelism of any

microprocessor currently on the market. The 620 is the first 64-hit superscalar microprocessor to employ

true out-of-order execution, aggressive branch prediction, distributed multi-entry reservation stations,

dynamic renaming for all register files~ six pipelined execution units, and a completion bufter to ensure

precise interrupts. Most of these features have not been previously implemented in a single-chip micropro-

cessor. Their actual effectiveness is of great interest to both academic researchers as well as industry

designers. This paper presents an instruction-level, or machine-cycle level, performance evaluation of the

PowerPC 620 microarchitecture.

Section 2 presents an overview of the PowerPC architecture and the details of the 620 microarchitecture.

Section 3 describes the software tools and the framework used in our experimental evaluation. Sections 4

through 7 present the experimental results that characterize the effectiveness of the 620 microarchitecture

in instruction fetching, instruction dispatching, instruction execution, and instruction completion, respec-

tively. Section 8 contains some concluding remarks and a brief philosophical comparison between the

PowerPC 620 and the Alpha AXP 21164o

2 The PowerPC 620

2.1 The PowerPC Architecture

The PowerPC architecture [18] is the result of the PowerPC alliance among Apple, IBM, and Motorola. It

is based on IBM’s RS/6000 POWER architecture [17], designed to facilitate parallel instruction execution

and be able to scale well with advancing technology. Motorola and IBM are the chief designers of the

PowerPC architecture and the family of PowerPC chips, while Apple is focussing on PowerPC systems

and software.

As of this writing, the PowerPC alliance has released three ctfips and announced a fourth. The first, which

provided a transition from the POWER architecture to PowerPC, is the PowerPC 601 [101. The second,

low-power chip, is the PowerPC 603 [13]. Recently, a more advanced chip for desktop systems has begun

production, the PowerPC 604 [14]. The I’ourth chip, the last one that will be designed by the alliance, is a

high-performance chip. This chip, the PowerPC 620 [15], was only recently announced.

The PowerPC architecture contains 32 integer registers (GPRs) and 32 floating point registers (FPRs).

also contains 32 condition register bits which can be addressed as one 32-bit register (CR), as a register

with 8 four-bit fields (CRFs), or as 32 single-bit fields (CRBs). It also contains a count register (CTR)

a link register (LR), both primarily used for branch insu-uctions, and an integer exception register (XER)

and a floating point status and control register (FPSCR), which is used to control the operation and record

the exception status of the appropriate instruction types. PowerPC instructions are typical RISC, with the

addition of floating point multiply-add fused (FMA) instructions and instructions to set, manipulate, and

branch off of the condition register bits.

The most dominant architecture today, in terms of installed base, is the Intel x86. However, the PowerPC

appears to be making a serious challenge to this dominance. IBM is looking to the PowerPC as the new

ISA for the entire company. Motorola has an agreement to supply Ford with PowerPC-based processors

for future automotive electronics. Motorola is also planning on employing PowerPC processors in their

products ranging from hand-held devices to multiprocessor servers. Future systems from Apple will

employ PowerPC processors. In addition, Apple, IBM and Motorola have recently announced their agree-

ment on developing common/compatible hardware platforms based on the PowerPC processors.

2.2 The PowerPC 620
\

The 620 is a 4-wide superscalar machine. It uses aggressive branch prediction [7] to fetch instructions as

soon as possible and a generalized dispatch scheme to get those instructions to the execution units~

2

hlstrllCi~Ol~

Buffer (8 entries)
Completion Unit

(16 entries)

LResd~atio,~ ~ ~ ,~ ,

~ ~|Station (2)| |Station (2)| |Station }.Station (4)_

] Rename I [Renmne [

/

I
GPR File

(_32)

Rename
Buffers (8)

Figure 1: PowerPC 620 Microarchitecture Diagram

The PowerPC 620 uses six parallel execution units. It has two simple (single-cycle) integer units, one com-

plex (multi-cycle) integer unit, one floating-point unit (3 stages), one load/store unit (2 stages),

branch unit. The branch unit accepts condition register logical instructions as well as branches. To keep

these execution units as full as possible, the 620 uses distributed reservation stations [9] and register

renaming to implement an aggressive out-of-order execution scheme.

The 620 processes instructions in five major stages, some of which are separated by buffers to take up

slack in dynamic variations of available parallelism. Major stages can require multiple cycles, while minor

stages are one cycle each. The pipeline stages are Fetch, Dispatch, Execute, Complete, and Writeback.

The first three stages are followed by the Instruction Buffer, R6servation Stations, and the Completion

Buffer, respectively. See Figure 2.

Fetch Stage

Instruction Buffer
Dispatch Stage

Reservation Stations
XSU0

Execute Stages [~

Completion Buffer

Complete Stage
Writeback Stage

XSU1 MC-FXU

l I I I I I I I i

FPU LSU BRU

I I I I I I I I

Figure 2: PowerPC 620 Instruction Pipeline

Fetch Stage: The fetch unit accesses the instruction cache to retrieve up to four instructions per cycle into

the instruction buffer. The end of a cache line or a taken branch can prevent the fetch unit from getting four

useful instructions in a cycle, and a mispredicted branch can waste fetch cycles while fetching down the

wrong path. Also during the fetch stage a preliminary branch prediction is made via the Branch Target

Address Cache (BTAC), and the predicted next address is used Ibr fetching in the next cycle.

Instruction Buffer: The instruction buffer holds instructions between the fetch and dispatch stages. If the

dispatch unit cannot keep up with the fetch unit, instructions will stay here for multiple cycles until the dis-

patch unit can get to them. A maximum of eight instructions can be buffered at a time. Instructions are

buffered and shifted in groups of two to simplify the logic.

Dispatch Stage: The dispatch unit decodes instructions in the instruction buffer and checks if they can be

dispatched to reservation stations. If all dispatch conditions are fulfilled for an instruction, the dispatch

stage will allocate a reservation station entry, a completion buffer entry, and any needed destination

rename registers for it. If these resources are aw~ilable and each instruction goes to a different execution

unit and all special serialization constraints are met, up to four instructions may be dispatched in order per

cycle.

There are eight general-purpose register rename buffers, eight floating-point register rename buffers, and

sixteen condition register field rename buffers. During dispatch, the necessary number of these buffers is

allocated for the results of the instruction. Also during dispatch, any source operands which have been

renamed by previous instructions are marked with the tags of the associated rename buffers. The reserva-

tion stations will then watch the appropriate result buses for forwarded results.

Ilia branch is being dispatched, resolulion of the branch is attempted immediately~ If the branch depends on

an opcrand ~hat is not yet available, it is predicted via the Branch HisIory Table (BHT). If the predic~:ed

~esolved address does no~ match lhat made by the BTAC during the le~ch stage, lhe speculatively fetched

mstruc~oions are canceled and fetching restarts at ~he new address.

Reservation Stations: Each execulion uni~ contains a reservation station to hold those instructions waiting

to execute there, Each reservation station can hold two to four instruction entries, depending on the execu-

tion unit. Each dispatched instruction waits in a reservation station until all of its source operands have

been read or forwarded and the function unit is ready for execution. An instruction may then leave the res-

ervation station anc~ enter its function unit out of order. Each execution unit contains one reservation sta-

tion and one Nnction unit.

Execute Stage: A function unit computes the results of an instruction. This major stage can require multi-

ple minor stages (cycles) to produce its results, depending on the type of instruction being executed. At the

end of execution, the instruction results are sent to the destination rename buffers and forwarded to any

waiting instructions, and the instruction is marked finished in the completion buffer.

Completion Buffer: The completion buffer holds the states of the in-flight instructions until they are

architecturally complete. The completion buffer has sixteen entries with which to hold instruction informa-

tion. An entry is allocated for each instruction during the dispatch stage. The execute stage then marks it as

finished when the unit is done executing the instruction. Once an instruction is finished, it is eligible for

completion.

Complete Stage: During the completion stage, finished instructions are removed from the completion

buffer in order, up to four at a time, and passed to the writeback stage. Fewer instructions will complete in

a cycle if there are an insufficient number of write ports or if fewer than four instructions are finished and

ready to complete in order. By holding instructions in the completion buffer until writeback, the 620 guar-

antees that the architected registers hold the correct state up to the most recently completed instruction,

thus allowing precise interrupts even with aggressive out-of-order techniques [3].

Writebaek Stage: During this stage, the writeback logic moves the results of those instructions completed

by the completion unit in the last cycle from the rename buffers to the architected register files.

3 Experimental Framework

To analyze the PowerPC 620 microarchitecture, we used the Visualization-based Microarchitecture Work-

bench (VMW) [201, a retargetable performance simulator, The targeting of VMW for a specific processor

is perlbrmed by specifying a set of machine description files. Once the files are specilied, VMW provides

lhe generic simulation and visualization engines and automatically compiles the files into a performance

simulator lk)r the specilied machine.

3.1 Trace Generation

Each instruction trace is a record of the dynamic path that a particular execution of a program took through

that program’s static code. This record depends solely on the machine architecture, not on its implementa-

lion or timing. Instruction traces are generated on an existing PowerPC 601 machine via sofIware instru-

mentation.

For this paper, traces for eight SPEC 92 benchmarks are used, four integer and four floating point. Small

data sizes are used. The benchmarks and their dynamic instruction mixes are given below.

SPEC 92
Benchmarks

Imeger Arithmetic
(single cycle)

Integer Benchm~ks (SPECint 92) Floating-Point Benchmarks (SPECfp 92)

026.
compress

023.
eqntott

008.
espresso

022.
li

41.4% 48.6% 47.7% 29.5%

Integer Arithmetic 0.9%
1.5% 1.4% 5.1%

(multi-cycle)

Integer Load 26.1% 23.4% 24.2% 28.5%

17.9% 6.9% 8.8% 18.6%Integer S tore

Floating-Point Load

FP Arithmetic
(non-pipelined)

0.0% 0.0% 0.0% 0.0%

FP Store 0.0% 0.0% 0.0% 0.0%

FP Arithmetic
0.0% 0.0% 0.0% 0.0%

(pipelined)

0.0% 0.0% 0.0% 0.0%

13.7%B ranch 19.6%

1,815,098Total Instructions

17.9%

1,506,8711,652,555

18.2%

3,375,006

052. 094.
alvinn fpppp

37.5% 4.6%

0.3% 0.3%

0.3% 3.0%

0.2% 0.0%

26.8% 33.3%

12.0% 18.0%

12.2% 38.4%

0.1% 0,3%

10.6% 2.1%

2,920,877 5,520,737

090. 047.
hydro2d lomcatv

26.2% 19.9%

1.2% 0.0%

0.5% 0.3%

0.2% 0.2%

22.5% 27.8%

7.7% 9.1%

27.0% 37.8%

1.9% 0.7%

12.8% 3.9%

4,114,602 6,858,618

Table 1: Dynamic Instruction Mixes for All Benchmarks

Most of the integer benchmarks are fairly similar to each other in terms of instruction mix, though li con-

rains more instructions that use the multi-cycle integer unit. Most of these instructions move values to and

from special purpose registers°

The lloating-point benchmarks differ not only in their use of floating-poinl instructions, but they also con-

lain sigmiicant!y iewer branches, especially,/))p[)p and ~omca~v. Fpppl~ is most floating poin~ intensive,

i~ uses few mlcge~ instructions. Finally, note that hydro2d uses more non-pipelined floaling-point inslruc-

titus. Although the number is small, these instructions are all FP divides, which take 35 cycles each to exe-

cute th the PowerPC 620.

3.2 Machine Specification

VMW is configurable to a specific machine implementation through tkmr template tiles and a fifth C++

behavior tile. Two of the template files specify the syntax and semantics of the architected instructions,

while the other two specify the organization and timing of the micro~chitecture. The C++ behavior file

uses the specifications in the template files along w~th special-case routines that cannot be coded in the

template files to model the execution of each instruction through the machine°

To compare the microarchitecmral complexity of the PowerPC 620 with that of various other machines,

we show a comparison with other simulators targeted using VMWo

Microprocessor

Instruction Syntax (Templates)

Instruction Semantics (Templates)

Instruction Timing (Templates)

Machine Organization (Templates)

Machine Behavior (Lines of Code)

Alpha 21064 RS/6000 PowerPC 601 PowerPC 620

487 405 383 383

37 125 205 205

24 87 112 113

39

668

60

1132

51

1,086

75

3,093

Table 2: Comparison of Sizes of Machine Description FiLes

The five machine description files for the PowerPC 620 are generated based on internal confidential design

documents [15] provided and periodically updated by the PowerPC 620 design team. Correct interpreta-

tion of the design documents is checked by a member of the design team through a series of refinement

cycles as the 620 design is finalized. Through this process, even late changes to the 620 design were incor-

porated into our machine description files and modeled by our performance simulator. Validation of the

simulation model includes syntactic checking of the description files using tools provided by VMW, and

timing checking by comparing timing results on small benchmarks with lower-level hardware models.

3.3 Trace-Driven Simulation

Trace-driven, or performance, simulation is much faster than functional simulation. However, with perfor-

mance simulation, instructions with variable latency such as integer multiply/divide and floating-point

divide cannot be simulated accurately. For these, we assumed the minimum latency, The frequency of

these operations and the amount of variance in lhe latencies are both quite low.

Furthermore, the trace only contains ll~ose instructions that are actually executed. For this reason, no spec-

ulative instruc{ions that are later discarded can be included in the performance analysis. This is helplhl

because it prevents those useless instructions from showing up and influencing the design analysis. Cer-

tainly, speeding up the processing of instructions that will ultimately be cancelled will not increase perfor-

mance any. In this paper, I-cache and D-cache activity are not simulated. By assuming perfect caches,

simulation time is reduced, and the results are more indicative of the core CPU performance and not a

function of the external cache size or memory speed. Library code linked into the benchmarks was not

included in the instruction traces.

To collect the data on all the benchmarks, we ran our 620 simulator on a variety of workstations, including

DECstation 3100s, SparcStation 5’s & 20’s, and an HP 715, These workstations could simulate the traces

at a rate of between 750-3000 simulated cycles per minute, with a total silnulation time of about 170 hours

for all the benchmarks.

Table 3 presents the total number of instructions simulated for each benchmark and the total number of

620 machine cycles required. The IPC achieved by the 620 for each benchmark is also shown. The IPC rat-

ing provides an overall assessment of the effectiveness of the 620 microarchitecture, the detailed analysis

of which is presented in Sections 4 through 7.

Bend~marks compress eqntott espresso li alvinn fpppp hydro2d tomcatv

Dynamic Instructions 1,652,5551,815,0981,506,8713,375,006 2,920,8775,520,7374,114,602 6,858,618

Cycles toExecute 987,5601,124,1071,002,9562,363,456 1,507,9784,239,0874,211,441 5,120,970
IPC 1.67 1.61 1.50 1.43 1.94 1.30 0.98 1.34

Table 3: Summary of Benchmark Performances

It is surprising to see a lower IPC for the floating-point benchmarks than for the integer benchmarks, as the

more even distribution of instruction types ought to help boost performance. Although the poor perfor-

mance of hydro2d can be anticipated due to the large number of floating-point divides it contains, a closer

inspection is necessary to find the sources of bottlenecks in the other benchmarks.

4 PowerPC 620 Instruction Fetching

Provided that there is enough room in the instruction buffer, the 620’s fetch unit is capable of fetching four

instructions every cycle. That is, up until it encounters a branch. If the fetch unit were to wait for branch

resolution before continuing to t:etch non-speculatively, or if it were to bias naively fear branch not-taken.,

machine executiox~ would be drastically slowed by the bottleneck i~a fetching dow~ taken branches.

Because of this, accurale branch prediction in a superscalar machine as wide as the PowerPC 620 is

extremely important.

To demonstrate the branch prediction and speculation characteristics of the 620, we chose one of the inte-

ger benchmarks as an example case. We chose espresso because it has ~fle most interesting characteristics,

but summary information on all benchmarks can be found at the end of this section.

4ol Branch Prediction

Branch prediction takes place in two phases° The first prediction, done during the fetch stage via the

BTAC, provides a preliminary target guess given very little information. The second, more accurate, pre-

diclior~ is done during the dispatch stage via the BHT, using additional information available after instruc-

tion decoding. We first show the distribution of architecture-related branch characteristics in the traces,

then examine the implementation-dependent branch prediction statisl~ics.

4.1.1 Branch statistics

Branch instructions are separated into four categories based on mnemonic: branch (b), branch conditional

(bc), branch conditional to count register (bcctr), and branch conditional to link register (bclr).

branches are by far ~he most common, and their resolutions are fairly evenly split between not taken and

taken. Table 4 shows a sample breakdown for the espresso benchmark as percentages of all branches.

Branch Type Not Taken Taken Total

b 0.0% 9.4% 9.4%i

bc 37.6% 45.8% 83.4%!

bcctr 0.0% 0.9% 0.9%
bclr 0.0% 6.3% 6.3%

Total 37.6% 62.4% 100~0%

Table 4: Branch Resolution for Espresso

4.1.2 BHT effectiveness

During branch dispatch, the 620 attempts to immediately resolve the branch based on available informa-

tion. If the branch is unconditional, or if the condition register has the appropriate bits ready, then no

branch prediction is necessary; the branch is effectively executed immediately, without speculation. If, on

the other hand, the source condition bits are unavailable (the instruction creating them is still executing),

9

then the branch is predicted. The Branch History Table contains two history bits per entry that are accessed

during branch dispatch Io predict whether the branch will be taken or untaken. Upon resolution of the pre-

dicted branch, the BHT is updated according to the actual direction of the branch.

The 2048-entry BHT is not accessed as a cache, but as a simple table look up. There is no concept of a hit

or miss. If two branches that update the BHT are an exact multiple of 2048 instructions aparl, i.e. aliased,

they will alter each other’s predictions.

The following table shows the relative frequency of immediate resolution and the two outcomes of pre-

dicted branches. Note that unconditional branches never need to be predicted. Note also that the percent of

predicted branches that are predicted correctly is about 85%. Adding in the immediately resolved

branches, you find that 88% of all branches in espresso can get a correct fetch address at dispatch without

waiting until resolution. These percentages are even ltigher for the other benchmarks; see Table 8

Brmach Type
Iminediately Predicted Predicted

Resolved Correctly Incorrectly

b 9.4% 0.0% 0.0%

bc 2.7% 69.0% 11.7%

bcctr 0.9% 0.0% 0.0%

bclr 5.6% 0.6% 0.0%

Total 18.6% 69.6% 11.8%

Table ~: BHT Effectiveness in Espresso

4.1.3 BTAC effectiveness

The 620 can resolve or predict the branch at the dispatch stage, but even that will incur at least a cycle of

delay until the new target of the branch can be fetched. For that reason, the 620 makes a preliminary pre-

diction during the fetch stage, based solely on the addresses of the instructions it is currently fetching. If

one of these addresses hits in the Branch Target Address Cache, the target address stored in the BTAC is

used as the fetch address in the next cycle. The BTAC is smaller than the BHT, with 512 entries, but it only

needs to hold the targets of those branches that are predicted taken. Branches that are predicted not taken

(fall through) are not included in the BTAC.

Unconditional and PC-relative conditional branches use the BTAC. Branches to the count register or the

link register have unpredictable target addresses, so are never put in the BTAC. This has the effect of caus-

ing these branches to always be predicted not taken. This lowers the BTAC’s prediction accuracy, but is
\

largely unavoidable.

10

There are four possible branch prediction cases in the BTAC: a BTAC miss for whicl~ fhe branch is not

taken (correct), a BTAC miss for which the branch is taken (incorrect), a B2AC ~i~ li)r a taken branch

rect), and a BTAC hit for an untaken branch (incorrect). Note that the BTAC can never hit on a taken

branch bu{ get the wrong target address, as only PC-relative branches can hit in the BTAC and thereli~re

must always use the same target address.

A verbose table of BTAC behavior is given below for the espresso benchmark.

BTAC ~niss (predict ~mt taken) BTAC hit (predict taken)
Bremcl~ Type

Correct Incorrect Correct Incorrect

b 0.0% 0.8% 8.7% 0.0%

bc 31.1% 5.7% 40.1% 6.5%

bcctr 0.0% 0.9% 0.0%~

bclr

Total

0.0%

31.1%

6.3%

13.6%

0.0% ~

48.8%

Table 6: BTAC Effectiveness ~n Espresso

1. Bcctr and bclr can never hit in the BTAC.

0.0%~

0~0%~

6.5%

4.1.4 BHT and BTAC interaction

Branch prediction is done twice for each branch, once by the BTAC and again later by the BHT. If the

BHT prediction disagrees with the BTAC prediction, the BTAC prediction is lhrown away and the BHT

prediction is used. However, if the predictions agree and are correct, then there is no interruption in fetch-

ing whatsoever. In combining the possible predictions and resolutions of the BHT and BTAC, there are six

major categories. The frequency of these cases are shown in Table 7.

BHT prediction

Resolved Immediately

BTAC prediction

Correct

9.2%

Predicted Correctly 68.3%

Predicted Incorrectly

Total

0.6%

78.1%

Incorrect

9.4%

Total

18.6%

1.3% 69.6%

11.2%

21.9%

Table 7: Branch Prediction Interaction in Espresso

11.8%

100.0%

Notice that for this example benchmark, few of these branches can be resolved in the dispatch stage. Of

those that are guessed, however, 85% are guessed correctly by each of the BTAC and the BHT. Notice also

that although the BHT attempts to keep the BTAC correlated, there are a very few cases where they make

11

dif-ferent predictions. A few of those are even cases in which the BTAC predicts correctly, but the BHT

predicts incorrectly and throws away the BTAC prediction! This is quite rare, however.

The question could be asked, why have the BHT at all if the BTAC gets ahnost equivalent prediction accu-

racy? The answer is that it is the responsibility of the BHT to update the BTAC with what to predict next.

Without the BHT to save history, the BTAC’s prediction accuracy would probably be much lower. Another

question is why aren’t the two merged, so that the BTAC contains multiple bits of branch history and can

make accurate predictions on its own?

4.2 Speculation

The PowerPC 620 predicts branch outcomes in order to keep its pipeline full. This means that the 620 must

keep track of those instructions speculatively fetched and executed and be able to cancel them if a predic-

tion turns out to have been made incorrectly. The 620 has enough hardware to speculate past four predicted

branches before stalling the fifth at the dispatch stage. We analyze what performance increase is gained

from this.

4.2.1 Distribution of number of branches bypassed

Although none of the FP benchmarks bypass many branches, most of the integer benchmarks do, Figure 3

shows the distribution of the number of branches bypassed in the espresso benchmark. Notice that the 620

is speculatively executing beyond one or more branches in over 50% of the cycles.

50%
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%

0 1 2 3 4
Number of Branches Bypassed

Figure 3: Distribution of Number of Branches Bypassed in Espresso

Also note the rarity of 4 bypassed branches. What is not shown is the frequency of use of the fourth branch

reservation station entry for non-speculative (immediately resolved) branches or condition register logical

instructions. Although the frequency of branch RS saturation is low, decreasing the number of reservation

station entries to three or fewer would probably be a bad idea.

12

4.2.2 Total number of fetch penalty cycles due to misprediction by the BHT

The number of instructions that the BHT mispredicts and the average length of time required to resolve

and correct these mispredictions determine how many fetch cycles are wasted speculating down the wrong

path. Despite the 620’s branch accuracy, it still loses 137,424 fetch cycles in the espresso benchmark due

to branch mispredictions. This is ! 3.7% of the total fetch cycles. Because an accurate stream of fetching is

so vitally important to a wide superscalar machine, branch prediction is obviously still an area that has

room for improvement.

4.3 Instruction Fetch Summary

The following table summarizes the branch prediction statistics for all eight benchmarks. Most percent-

ages are out of the total number of branches in the benchmark. The percentage of fetch cycles lost to

misprediction is out of the total number of cycles in the simulated trace.

Benchmarks compress eqntott espresso

Not Taken 40.0% 29.4% 37.6% 32.7%

alvinn fpppp hydro2d tomcatv

5.3% 42.4% 16.8% 5.8%

Taken 60.0% 70.6% 62°4% 67.3% 94.7% 57.6% 83.2% 94.2%

Immediately 22.6%
19.4% 18~6% 27.2% 8.1% 61.0% 27.7% 45.4%

Resolved

Correct 66.9% 72.0% 69.6% 64.1% 90.9% 37.1% 66.7% 52.6%

Incorrect 10.5% 8.6% 11.8% 8.7% 0.9% 1.8% 5.6% 2.0%

Correct 83.5% 83.0% 79.9% 74.7% 94.5% 87.9% 88.4% 93.3%

~ Incorrect

Average Number of
Branches Bypassed

Fetch Cycles Lost
to Misprediction

16.5% 17.0%

0.539 0.802

7.8% 11.5%

20.1%

0.744

13.7%

25.3%

0.804

13.2%

5.5%

0.197

0.4%

12.1%

0.087

0.5%

11.6%

0.501

5.0%

6.7%

0.174

0.8%

Table 8: Branch Prediction Summary

The floating-p0int benchmarks tend to have fewer branch instructions, and those branches tend to be taken

much more often than in the integer benchmarks. For this reason, the BHT and BTAC can predict much

more successfully for the FP benchmarks and lose fewer cycles to"misprediction.

13

5 PowerPC 620 Instruction Dispatching

The PowerPC 620 dispatches instructions in order. This causes t.he dispatching unit to be a potential bottle-

neck. To begin with, however, the dispatch unit must be suitably supplied with instructions by the fetch

unit. The rest of the examples in Sections 5 through 7 are from the alvinn benchmark in order to display the

use of the floating-point l~anctional units. Summary information for all the benchmarks are shown at the

end of each section.

5.1 Fetching Bandwidth

For maximum effectiveness, the fetch unit should make four instructions available to the dispatch unit at

all times. As can be seen in Figure 3, four or more instructions are in the instruction buffer about 85% of

35%

30%

25%

=~ 20%
15%

10%

5%

O%
0 1 2 3 4 5 6 7 8

Nmnber of Instructions in Instruction Buffer

Figure 4: Distribution of Utilization of Instruction Buffer in Alvinn

the time for alvinn. What is available in the instruction buffer is not necessarily what ~s available to the dis-

patch unit, however. The dispatch buffer subset contains only the first four entries of the instruction buffer°

Figure 3 shows that only about 55% of the time are there four instructions available in the dispatch buffer.

60%

50%

40%

30%

20%

10%

0%
0 1 2 3 4

Number of Instructions in Dispatch Buffer

Figure 5: Distribution of Utilization of Dispatch Buffer in Alvinn

14

The reason for the discrepancy is that the instruction buffer is arranged in groups of two. These groupings

allow holes to appear in the dispatch buffer, thus ~ntroducing inefficiency.

5.2 Dispatch Stalls

The 620 checks the entire dispatch buffer in parallel for any condition that could cause dispatch to stall for

a particular instruction, and thus for all subsequent instructions due to in-order dispatching° The 620 simu-

lator checks the dispatcher in order, one hazard at a time° As such, it will identify exactly zero or one haz-

ard types as stalling dispatch in each cycle. The order of hazard checking and the frequency of occurrence

are shown in the following table. Each hazard is explained in detail in the following paragraphs.

Dispatch Hazard Types Frequency

Serialization constraints 0.0%
Branch wait for mtspr (CTR) 0.0%

Register read port saturation 0.8%

Reservation station saturation 4.2%

Rename buffer saturation 1.2%

Completion buffer saturation 9.3%

Already dispatched to unit 51.8%

No hazards 32.6%

Table 9: Frequency of Dispatch Hazards in Alvinn

Serialization constraints: Certain instructions cause "Single Instruction Serialization." That is when all

previously dispatched instructions must complete before the serializing instruction can begin execution,

and all following instructions must wait until it is finished before they can dispatch. This condition, though

extremely disruptive to performance, is fortunately quite rare.

Branch wait for mtspr (CTR): Because branch instructions access the count register during the dispatch

phase, a Move To Special Purpose Register (mtspr) instruction that writes to the count register will cause

subsequent branch instructions to delay dispatching until it is finished. This condition is also rare.

Register read port saturation: The number of read ports of the GPR and FPR register files, though large,

is finite. There are seven GPR and four FPR read ports available. Occasionally, they can be exhausted dur-

ing dispatch. Note that there are enough condition register field read ports (three) that those are never

exhausted.

Reservation station saturation: As instructions are dispatched, ~ey are placed into reservation stations,

where they are held until they can execute. There is one reservation station per execution unit, each of

which contains multiple entries. The table below shows the maximum number of instructions that can be

15

held in each unit’s reservation station, and the average utilization of those entries. Although the utilization

of each RS seems low, note that the number of reservation station entries for each unit cannot be reduced

below two without effectively disabling out-of-order execution for that unit. Also, by having more reserva-

tion station entries than each unit needs, the level of reservation station saturation is kept low, even given

the "bursty" nature of instruction types. It is interesting that the two execution units which get some degree

of saturation in this benchmark are the FPU and LSU. Each of these units had its number of reservation

station entries decreased in the final stages of design.

Units XSU0 XSU1 MC-FXU FPU LSU BRU

Number of RS Entries 2 2 2 2 3 4

Average Number of RS Entries Utilized 0153 0.26 0.01 0.80 1.04 0.21

Frequency of RS Saturation 0.0% 0.2% 0.0% 1.5% 2.5% 0.0%

Table 10: Reservation Station Utilization and Saturation in Alvinn

Rename buffer saturation: As each instruction is dispatched, any registers it uses as destinations are

renamed into the appropriate rename buffer files. There are three rename buffer files, for general purpose

registers, floating-point registers, and condition register fields. Because they are a centralized resource

with relatively long-term usage, they can handle the bursty nature of instructions more effectively than the

reservation stations. For this reason, their utilization can be a higher percentage of total without saturating

often. For the condition register fields, however, a large number of rename buffers were allocated by the

620 design team. Although sixteen condition field rename buffers are hardly necessary, they are quite

small, and the assurance of never running out of them can simplify other logic.

Register Types GPR FPR CR

Number of Rename Buffers 8 8 16

Average Number of Rename Buffers Utilized 3.32 4.35 0.99

Frequency of Rename Buffer Saturation 0.4% 0.8% 0.0%

Table 11: Rename Buffer Utilization and Saturation in Alvinn

Completion buffer saturation: Completion buffer entries are also allocated from dispatch until write-

back. Since the PowerPC 620 has sixteen completion buffer entries, no more than sixteen instructions may

be in flight at once. Attempted dispatch beyond sixteen will stall.

A related statistic, the distribution of utilization of the completion buffer entries, is presented

below for the alvinn benchmark. Note that for this benchmark there are almost always nine or more

instructions in flight or waiting to write back°

16

25%

20%

~ 15%

~ 10%

5%

O%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Instructions in Completion Buffer

Figure 6: Distribution of Completion Buffer Utilization in Alvinn

Already dispatched to unit: Although each reservation station has multiple entries, each RS can still only

receive one instruction per cycle. If an earlier instruction is being dispatched to a urfit in a cycle~ no more

instructions of that type may dispatch until the next cycle even though multiple entries might be available

in that RS. Even though this hazard is the last one checked by our simulated dispatch unit, it is recorded as

causing by far the largest number of dispatch hazards, and perhaps unnecessarily so. This restriction is for

logic simplicity only, avoiding multiple write ports to each RS, and is not required for program correct-

ness. Without this restriction, many more instructions could enter the reservation stations in each cycle,

and thus the chance of finding a large number of instructions to issue in subsequent cycles would also be

increased.

5.3 Dispatching Bandwidth

As Figure 3 shows, alvinn does fairly well at avoiding crippling dispatch hazards, having very few cycles

in which no instructions are dispatched. This is, in fact, a highly unusual distribution. Most traces saw a

much higher instance of zero instructions dispatched. These traces also had a lower IPC, of course. The

40% [

35%

3O%

= 25%

20%

15%

10%

5%
0 1 2 3 4

Number of Instructions Dispatched

Figure 7: Distribution of Instruction Dispatch Parallelism in Alvinn

17

distribution from one to four tends to look about the same for all traces, however, as the 620 encounters

fewer constraints when dispatching three instructions than when dispatching four, two are easier than

three, and one is easier than two.

5.4 Instruction Dispatch Summary

Table 12 summarizes the dispatch resource usage for the eight benchmarks. Each number is the average

number of entries or buffers that a benchmark uses per cycle. Distribution data for all benchmarks are

obtained in our experiments. However, due to space limitation, only average values are shown here.

B enclunarks

Instruction Buffers

Dispatch Buffers

XSU0 RS Entries

XSU1 RS Entries

compress

5.16

3.09

0.51

0.67

eqntott

4.48

2.76

0.76

0.58

espresso

4.40

2,76

0.78

0.70

li

4.06

2.63

0.53

0.48

MC-FXU RS Entries 0.05 0.09 0.08 0.29

’FPU RS Entries 0.00 0.00 0.00 0,00

LSU RS Entries 0.85 0.59 0.78 1.19

0.90

3.73

0.00

1.19

7.48

0.61

3.17

0.79

7.21

0.83

3.44

0.00

1.12

7.39

, BRU RS Entries

GPR Rename Buffers

FPR Rename Buffers

CR Rename B uffers

Completion Buffers

0.93

3.39

1.03

7,93

alvinn

5.18

3.37

0.53

0.26

0.01

fPPPP

6.34

3.43

0.05

0.05

0.01

hydro2d

5.48

3.07

0.23

0.18

0.10

lomcalv

6.48

3.52

0,14

0.13

0.00

0.80 1.04 1.23 0.69

1.04 0.72 0.34 0.51

0.10

0.47

0.54

1.43

0.21

3.32

0.20

1.51

4.35 3.21 3.13 3.35

0.99 0,18 1.01 0.52

11.61 7.50 8.21 9.44

Table 12: Summary of Average Dispatch Resource Usage

Table 13 summarizes the frequency of dispatch stalls for the eight benchmarks, The percentages are out of

the total number of simulated cycles per benchmark. Any cycle in which the entire dispatch buffer can be

emptied is marked as having no hazards.

Benchma/ks

Serialization

Move to CTR

Read port saturation

compress

0.0%

0.0%

eqntott

0.0%

4.3%

espresso

0.0%

1.2%

li

0.0%

3.5%

alvinn

0.0%

0.0%

fPPPP

0.0%

0.9%

hydro2d

0.0%

0.9%

tomcatv

0.0%

0.2%

9.4%0.4% 0.0% 0.0% 0.0% 0.8% 16.9% 2.9%

RS saturation 9.8% 13.8% 14.6% 8.6% 4.2% 12.0% 44.1% 3.7%

Rename buffer sat. 8.5% 2.3% 7.4% 2.9% 1.2% 18.5% 7.7% 28.3%

Completion bur, sat. 0.0% 0.0% 0.1% 1.1% 9.3% 0.4% 2.1% 1.7%

41.4’°70Already one to unit

No hazards

47.9%

3.4%42.6%

46.1%

35.2%

25.0%

17.2%

37.8%

38.9%

36,1%

43,5%

48.9%

7.8%

Table 13: Summary of Dispatch Stall Cycles

18

There are no big surprises on the integer side of the table, but some of the floating-point results are quite

interesting. Hydro2d lived up to its instruction mix and stalled a very large number of instructions in the

floating-point reservation station as it executed FP divide instructions. Fpppp artd tomcatv exhibited a high

degree of FP read port and rename buffer saturation. Although it ~s understandable for tiffs ~o be the case

forfpppp, as it has t~wer integer instructions in its trlix with which to balance its resource utilization, torn-

catv is a bit more surprising. Since tomcatv does not have a high utilization of rename buffers, it can only

be assumed that tomcatv gets its floating-point instructions in bursts, rather than interspersed with integer

instructions, thus causing temporary resource hot spots. Finally, notice that the extremely disruptive dis-

patch serialization constraints are also extremely rare, which is good,

6 PowerPC 620 Instruction Execution

This section covers instruction flow from the reservation stations, through issuing to the function units, and

within the execution stages° Because execution is a distributed process, inter-instruction constraints and

major bottlenecks are far fewer here than they were in dispatch.

6.1 Issue Stalls

Once instructions have been dispatched to reservation stations, they usually must simply wait for their

source operands to become available, then begin execution. There are a few other constraints, however.

The full list of issuing hazards is described below.

Out of order disallowed: Although out-of-order execution is usually allowed from reservation stations, it

is sometimes the case that certain instructions may not proceed past a prior instruction in the RS. This is

usually the case in the branch unit, where all instructions must execute m order. It occasionally happens in

the floating-point unit as well, if the prior instruction changes the FP execution mode.

Serialization constraints: Instructions which read or write non-renamed registers (such as the CTR or

LR), or which read or write renamed registers in a non-renamed fashion (such as L/S multiple instruc-

tions), or which change or synchronize machine state (such as the eieio instruction, which enforces in-

order execution of I/O) must often wait for all prior instructions to complete before executing. These

instructions stall in the reservation stations until their serialization constraints are satisfied.

Waiting for source: The primary purpose of reservation stations is to hold instructions until all of their

sources are ready. If an instruction requires a source that is not available, it must stall here until the data is

forwarded to it. ’

19

Waiting for functional unit: Occasionally, two or more instructions will be ready to begin execution in

the same cycle. In this case, the first will be issued, but the second must wait, as the lhnctional unit is no

longer available. This condition also applies when an instruction is executing in the MC-FXU (a non-pipe-

lined unit) or when a floating-point divide instruction puts the FPU into non-pipelined mode.

Issue hazard frequencies: The following table shows the number of issue hazards of each type that occur

per cycle in the aIvinn benchmark. Because issuing is allowed to proceed out-of-order, each instruction in

the reservation stations must checked for hazards. The complement of these numbers yields the IPC. For

this benchmark it is 1.94.

Issue Hazard Type Number

’Out of order disallowed 0.001

~ Serialization constraints 0.000

’Waiting for source 0.696

~ Waiting for functional unit 0.220

Table 14: Average Number of Issue Hazards per Cycle in Alvinn

By converting these numbers into percentages of total reservation station entry usage, we can get a more

telling picture of issuing for all benchmarks in the following table. We also drop brauch instructions from

this table, as most of them have already been resolved or correctly predicted, so issue problems here will

not hurt performance. And, since branches account for almost all occurrences of disallowed out-of-order

issuing, that category has also been dropped from the table.

Benchmarks compress eqntott espresso li alvinn fpppp hydro2d tomcatv

Serialization 1.0% 1.6% 2.1% 6.0% 0.0% 0.3% 4.1% 0.0%

Waiting for Source 2611%" ’30.9% 38.6% 36.3% 26.0% 24.5% 35.2% 9.6%

Waiting for FU 3.2% 3.3% 6.7% 10.8% 8.3% 6.7% 19.8% 3.6%
Issued 69.6% 64.3% 52.6% 46.9% 65.6% 68.5% 41.0% 86.8%

Table 15: Percentage of Stall Types for All Issuable Instructions

The frequency of issue stalls is reasonably consistent across all of the benchmarks, though once again

hydro2d shows up as blocking a lot of instructions waiting for the FP function unit. Note also that the num-

ber of issue serialization stalls is roughly proportional to the number of multi-cycle integer instructions in

the benchmark’s instruction mix. This is because most of these multi-cycle instructions access the special

purpose registers or the condition register as a non-renamed unit, which requires serialization.

2O

6.2 Execution Units

Once an instruction is issued, it will execute to finish without further interruption. The fl)llowing subsec-

tions show the propagation of instructions through issuing, execution, and finish.

6.2.1 Distribution of issuing parallelism

The following graph shows the distribution of issuing parallelism (the number of instructions issued per

cycle). Though the issuing parallelism and the dispatch parallelism distributions must necessarily have the

same average value, issuing is less centralized and has fewer constraints, and can therefore achieve a more

consistent distribution. In most cycles, the number of issued instructions approximates the overall IPC,

while dispatch has more extremes in its distribution°

70%

60%

5O%

= 40%

~ 30%

20%

10%

0%
0 1 2 3 4 5 6

Number of Instructions Issued

Figure 8: Distribution of Instruction Issuing Parallelism in Alvinn

6.2.2 Utilization of execution stages

Each function unit has a certain number of stages which determine the maximum number of instructions in

flight in that unit in each cycle. The following table shows the number of execution stages in each function

unit, and their average utilization. Not surprisingly, for alvinn the L/S unit is the most heavily utilized of

the six units, being on average approximately 75% utilized.

Unit XSU0 XSU1 MC-FXU FPU LSU BRU

Number of Execution Stages 1 1 1 3 2 1

Average Number of Stages Utilized 0.50 0.23 0.02 0.74 1.52 0.20

Table 16: Execution Stage Utilization in Alvinn

6.2.3 Distribution of finishing parallelism
\

We expected the distribution of finishing parallelism to look exactly like the distribution of issuing paral-

lelism because once an instruction issues, it cannot be delayed and must finish a certain number of cycles

21

later. Yet the following graph of finishing parallelism in alvinn is plainly not identical to the issuing paral-

lelism graph shown earlier.

45%
40%

35%
30%
25%
20%

15%
10%

5%
0%

0 1 2 3 4 5 6

Number of Instructions Finished

Figure 9: Distribution of Instruction Finishing Parallelism in Alvinn

The difference comes from the high frequency of L/S and FP instructions. Since these instructions do not

take the same amount of time to finish after issuing as the integer instructions, they tend to randomize, and

thus smooth, the issuing parallelism curve. The integer benchmarks, with their more consistent instruction

execution latencies, have much more similar issuing and finishing parallelism distributions.

6.3 Distribution of Execution Times

The following table shows the distribution of the number of cycles instructions taken from dispatch to fin-

ish in each unit for the alvinn benchmark. Because each instruction spends a minimum of one cycle in a

reservation station and one cycle being executed, two cycles is the minimum latency recorded. Notice that

the FPU and the LSU, with their multiple stage pipelines, have a higher minimum latency. Although this

Latency

cycle

2 cycles

XSU0

i9 cycles

25.2%

0.0%

XSU1

11.0%

0.2%

MC-FXU

0.0%

0.0%

FPU BRULSU

29.0%

0.1% 7.8%

0.6% 1.6%

9 °0% 0.0%

1.8% 0.8%

0.1% 0.0%

0.6% 0.0%

10.2%

0.3%cycles

4 cycles 0.0% 0.0% 0.2% 0.1%

5 cycles 0.5% 0.5% 0.1% 0.0%

6 cycles 0.0% 0.0% 0.0% 0.0%

7 cycles 0.0% 0.0% 0.0% 0.0%

8 cycles 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0%

Total % in Unit 25.7% 11.8% 0.3% 12.3% 39.3% 10.6%

Table 17: Distribution of Execution Times (Dispatch t~ Finish) per Unit in Alvinn

22

table only stretches as far as nine cycles, a very few instructions in the floating-point unit took as many as

26 cycles to finish° Each percentage in the table is out of the total number of dynamic instmclions~

The distribution of execution times ir~ the other benchmarks varies considerably. To impart a feel for this

variation, the following table shows the average execution time (in cycles) within each unit /’or each

benchinark.

Functional Units compress eqntott espresso li alvinn fpppp hydro2d tomcatv

XSU0 2.52 2.66 2.93 3.35 2.06 2.47 2.48 2.01

2.87 2.75 3.23 2.16 2.56 2.78 2.03XSUI

FPU

LSU

4.33

3.15

5.78

3.21

BRU 3.65 3.83

5.65

3.58

4.10

5.11

3.77

4.59!

4.48

6.46

3.36

2.05

5.18

3.01

4.80

10.45

8.42

3.11

5.35

5.21

3.02

4.71

TabLe 18: Average Execution Time per Unit for All Benchmarks

Very few instructions are executed in this unit for these benchmarks.

7 PowerPC 620 Instruction Completion

Once instruction execution is finished, the 620 simply has to complete the instructions and write back the

results in order.

7.1 Distribution of completion parallelism

The average completion parallelism is equal to the average dispatching, issuing, and finishing parallelisms

which are all equal to the IPC of the benchmark° However° the actual distribution of the parallelism is

determined by the method used to process instructions. In the case of instruction completion, instructions

are allowed to finish out of order, but can only complete in order. This means that the 620 will occasionally

have to wait for one slow instruction to finish, but then will be able to complete its maximum of four at

once. The distributions of completion parallelism for all benchmarks are shown in Figure 3. ¯

Note that the distribution for alvinn looks markedly different from the distribution for any other bench-

mark, as it has a good mix of instructions with various latencies. Thus, many of these instructions finish

out of order, causing the sporadic completion described above. The integer benchmarks, with their more

consistent execution latencies, most often have one instruction completed per cycle. Hydro2d completes

zero instructions in a large percentage of cycles because it must wait for a FP divide to finish.

23

50%
40%
3o%
~0%
10%
0%

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
compress eqntott espresso li

50%
40%

20%
10%
0%

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
alvinn fpppp hydro 2d tomcatv

Number of Instructions Written Back

Figure 10: Distribution of Instruction Completion (Writeback) Parallelism for all Benchmarks

7.2 Completion stalls

Most often instructions cannot complete simply because they, or instructions preceding them, are not fin-

ished yet. Occasionally, though, they must wait to complete for other reasons. Although there are always

enough condition register field writeback ports, occasionally too many instructions will need to write back

to too many integer or floating-point registers. The 620 has four integer and two floating-point writeback

ports. Note that integer load with update instructions write back two integer registers per instruction. There

is also a restriction that only one instruction that reads or writes the link register can complete per cycle.

Neither of these restrictions takes place very often.

B enchmark

GPR Write Port
Saturation
FPR write Port

compress

0.0%

LR Involved
Serialization

eqntott

0.0%

espresso

0.0%

li

0.0%

alvinn

0.0%

fPPPP

0.0%

hydro2d

0.0%

tomcatv

0.0%

0.0% 0.0% 0.0% 0.0% 1.1% 7.8% 4.6% 4.6%
Saturation

0.0% 0.0% 0.1% 0.3% 0.0% 0.0% 0.0% 0.0%

Table 19: Frequency of Completion Hazards

It is very rare to run out of GPR write ports, and LR involved serialization is almost as rare. FPR write port

saturation occurs occasionally, however. It occurs most frequently ~in the benchmark with the highest per-

centage of floating point instructions, fpppp.

24

8 Conclusion

A summary of key observations, ideas for further study, and an informal comparison (}f the PowerPC and

the Alpha AXP are included in this section.

8.1 Summary

The PowerPC 620 does very well at branch prediction, often having zero delay cycles even for a taken

branch. And even though precise interrupt is implemented, there is still a high degree of parallelism and

out-of-order execution, especially with a well mixed stream of instructions, such as that in the alvinn

benchmark. If the instruction mix is more bursty, it tends to create a bottleneck in the dispatch unit. Even

so, the integer benchmarks do quite well, and even the hydro2d benchmark, with its high number of float-

ing point divide instructions, still manages to achieve an IPC that RISC designers of a few years ago could

only dream about.

One hot spot is the load/store unit. Although the difficulties of designing a two load/store unit system are

myriad, the load/store bottleneck in the 620 is evident, and future, wider, processors will need that second

unit. Having only one floating-point unit for four integer units is also a source of bottlenecks. The integer

benchmarks rarely stall on the integer units, but the floating-point benchmarks stick waiting for FP

resources often. The single dispatch to each reservation station in a cycle is also a serious source of dis-

patch stalls which can reduce the number of instructions considered for out-of-order execution.

8.2 Further Study

The results of this paper suggest multiple avenues for additional inquiry. At the time of the writing of this

paper, the only compilers we had available were targeted for the PowerPC 601. Retesting the benchmarks

with a compiler that optimizes for the 620, or even the 604, could reveal interesting results. Changes to the

simulator can also be made. A cache analysis would be useful. Even more intriguing is to expand on the

620 and analyze the potential results of a 620+ system.

8.3 PowerPC vs. Alpha

The PowerPC and the Alpha AXP clearly represent two different approaches to achieving high perfor-

mance in superscalar machines. The two approaches have been dubbed "brainiacs vs. speed demons" [I].

The PowerPC brainiacs attempt to achieve the highest level of IPC without overly compromising the clock

speed. On the other hand, the Alpha AXP speed demons go for .the highest possible clock speed while

achieving a reasonable level of instruction-level parallelism. Which is the better approach in getting more

25

performance? Although the current versions of the PowerPC 620 and the Alpha AXP 21164 seem to indi-

cate that the speed demons are winning, there is no strong consensus on the answer for the future. In an

interesting way, the two rivaling approaches resemble, and perhaps is a reincarnation of, the CISC vs.

RISC debate of a decade earlier.

An infor~nal comparison of the two machines is of some interest. It appears that the 21164 is achieving 300

MHz clocking speed without any problem. Assume that the fastest 620 can be clocked at 150 MHz, which

is half that of the 21164. Based on our results, the 620 is achieving an average IPC of about 1.53 (1.39) for

integer (floating-point) benchmarks. There is a difference between the granularities of the two instruction

sets, The more RISC-ish Alpha requires a higher number of instructions for the same benchmark. Table 20

below shows the number of dynamic instructions executed by an Alpha machine for the same set of bench-

marks. The instruction counts are 3%-48% higher than that, of the PowerPC, with an average of 24%.

Scaled by this factor of 1.24, the [PC of 1.53 (1.39) achieved by the PowerPC 620 for integer (floating-

poin0 benchmarks is effectively 1.90 (1.72) in terms of Alpha instructions. There is still no published IPC

number for the 21164. Extrapolating from the reported SPEC ratings, it should be 1.1 for integer bench-

marks and 1.7 for floating-point benchmarks. As compared to 1.90/2, the IPC of 1.1 gives the 21164 a

slight edge over the 620 for integer benchmarks. For floating-point benchmarks, the 21164 is a clear win

over the 620. Of course, there are many other issues involved such as scalability of IPC vs. MHz, compila-

tion support for IPC enhancement, power, cooling and other system design issues, fabrication yield, and

most importantly profitability. The debate continues.

~ Benchmarks compress eqntott espresso li alvinn fpppp hydro2d tomcatv

iPowerPC 1,652,5561,815,0991,506,872 3,375,007 2,920,878 5,520,738 4,114,6036,858,618

’Alpha 2,172,3622,680,0471,593,372 3,600,169 3,721,1577,631,144 5,330,2927,064,977

Alpha / PowerPC 1.31 1.48 1.06 1.07 1.27 1.38 1.30 1.03

Table 20: Comparison of Instruction Counts

9 References

[1] Linley Gwennap. "Comparing RISC Microprocessors." Proceedings of the Microprocessor Forum,
October 1994.

[2] John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufinann Publishers, Inc., 1990

[3] Wen-Mei Hwu and Yale Part. "Checkpoint Repair for High-Performance Out-of-Order Execution
Machines." IEEE Transactions on Computers, December 191~7.

[4] Raj Jain. The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.

26

[5l Miko Johnson. Su#~scalar Microproce,~sor Desi~l, Pronlico-Hall, 1990.

Norman Jouppi. "Th~ Nonu~ifo~n~ Dis~ibu~ion of Inst~c~on-Levcl ~nd Machine Parallelism and

[~s El~ct on Performance." IEEE Transactions on Computers, December 1989.

[71 Johnny K. E Lee and Alan Jay Smith. "Branch Prediclion Strategies and Branch Targel Bufl~r

Design." Comt)u~e~ January 1984.

[8] Paul Rubinfeld. "An Overview of lhe Alpha AXP 21164 MicroarcNt~ture." Proceedings of the Hot

Chips VI Symposium, October I994.

[9] R.M. Tomasulo. "An Efficient Algori~m for Exploi~ng Mul~ple Arithmetic Units." 1BM Journal

of Research and Devdopment, Janu~ 1967.

[101 IBM Assembler ~nguage R@rence Manual, 1990.

[11] Motorola Optimizing C and Fortran Compilation System User ~ Manual, 1992.

[12] PowerPC 601 RISC Microprocessor User ~ Manual, 1993.

[13] PowerPC 603 Microprocessor Implementation Definition, Book I~ 1992.

[14] PowerPC 604 Microprocessor Implementation Features Book lg 1993.

[15] PowerPC 620 Microprocessor Implementation Definition, 1992.

{ 16] PowerPC Implementation Definition for the 601 Processoz Book Ig May, 1992

[I7] RS/6000 Special Issue of the IBM Journal of Reseamh and Development, January 1990

[18] PowerPC User b~stmction Set Architecture, Book L November 1993

[19] SPEC Newslette~ Systems Perfo~ce Evalua~on Coopera~ve, 1992.

[20] V~’A Visualization-based Microarchitecture Wor~ench. Internal Tech~cal Repot, August 1994.

27

