100%

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

Activate this
powerhouse pair
of tools and start
building dynamic,
database-backed
Web pages

Banish installation
and development
problems with expert
troubleshooting
advice

Explore exceptions
and error handling,
debugging, PEAR,
security, PostgreSQl,
and more

WEB SITE

L':‘:::1::£;“d° B o verse and Joyce Park with Clark Morgan

PHP5 and
MySQL Bible

Tim Converse and Joyce Park
with Clark Morgan

WILEY
Wiley Publishing, Inc.

PHP5 and
MySQL Bible

PHP5 and
MySQL Bible

Tim Converse and Joyce Park
with Clark Morgan

WILEY
Wiley Publishing, Inc.

PHP5 and MySQL® Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 0-7645-5746-7

Manufactured in the United States of America

10987654321

1B/SR/QU/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-Mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE
OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED
IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2004103176

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,

Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. MySQL

is a registered trademark of MySQL AB Limited Company. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

About the Authors

Tim Converse has written software to recommend neckties, answer questions about space
stations, pick value stocks, and make simulated breakfast. He has an M.S. in Computer
Science from the University of Chicago, where he taught several programming classes. He is
now an engineering manager in the Web search group at Yahoo!.

Joyce Park has an M.A. in history from the University of Chicago, and has worked for several
Silicon Valley startups including Epinions, KnowNow, and Friendster. She is a co-lead of the
Mod-pubsub Open Source project.

Clark Morgan is a Web application and educational software developer with more than five
years’ experience writing PHP. He works primarily with medical clients and related busi-
nesses. Originally from Boston, he now lives and works in Jacksonville, Florida, with his wife
and two children. Clark spends entirely too much of his free time reading other people’s com-
puter books.

Credits

Acquisitions Editor
Debra Williams Cauley

Development Editor
Sara Shlaer

Production Editor
Eric Newman

Technical Editors
Chris Cornell
David Wall

Copy Editor
C. M. Jones

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
April Farling

Graphics and Production Specialists
Beth Brooks

Sean Decker

Carrie Foster

Lauren Goddard

Quality Control Technician
Laura Albert
Carl William Pierce

Permissions Editor
Carmen Krikorian

Media Development Specialist
Angela Denny

Proofreading and Indexing
TECHBOOKS Production Services

To our parents:

For their love, for their sacrifices,

and for letting us read a lot when we were Rids.
— Tim Converse and Joyce Park

This, my first serious writing effort, is for my lifelong friend Bob, who pointed me in
this direction nearly ten years ago and then had the nerve to suggest I write about it.

—Clark Morgan

Preface

Welcome to PHP5 and MySQL Bible!

Although we're biased, we believe that the PHP Web-scripting language is the hands-down win-
ner in its niche — by far the easiest and most flexible server-side tool for getting great Web
sites up and running in a hurry. Although millions of Web programmers worldwide could be
wrong, in this particular case, they’re not. MySQL is the most popular open-source database
platform, and it is the first choice of many for creating database-backed PHP-driven Web sites

As we write this, PHP5 is in its third beta version, and PHP has continued to grow in reach,
adoption, and features since we wrote the first two versions of this book.

What Is PHP?

PHP is an open-source, server-side, HTML-embedded Web-scripting language that is compati-
ble with all the major Web servers (most notably Apache). PHP enables you to embed code
fragments in normal HTML pages — code that is interpreted as your pages are served up to
users. PHP also serves as a “glue” language, making it easy to connect your Web pages to
server-side databases.

Why PHP?

We devote nearly all of Chapter 1 to this question. The short answer is that it’s free, it’s open
source, it’s full featured, it’s cross-platform, it’s stable, it’s fast, it’s clearly designed, it’s easy
to learn, and it plays well with others.

What's New in This Edition?

Although this book has a new title, it is in some sense a third edition. Previous versions were:
4 PHP 4 Bible. Published in August 2000, covering PHP through version 4.0.

4 PHP Bible, Second Edition. Published in September 2002, a significantly expanded ver-
sion of the first edition, current through PHP 4.2.

Our initial plan for this book was to simply reorganize the second edition and bring it up

to date with PHP5. We realized, however, that although the previous editions covered
PHP/MySQL interaction, we had left readers in the dark about how to create and administer
MySQL databases in the first place, and this led to many reader questions. As a result, we
decided to beef up the coverage of MySQL and change the title.

X

Preface

New PHP5 features

Although much of PHP4’s functionality survives unchanged in PHP5, there have been some
deep changes. Among the ones we cover are:

4 Zend Engine 2 and the new object model, with support for private/protected members,
abstract classes, and interfaces

4+ PHP5’s completely reworked XML support, built around libmxI2

4+ Exceptions and exception handling

MySQL coverage

We now cover MySQL 4.0 installation, database design, and administration, including back-
ups, replication, and recovery. As with previous editions, we devote much of the book to
techniques for writing MySQL-backed PHP applications.

Other new material
In addition to MySQL- and PHP5-specific features, we’'ve added:

4+ Improved coverage of databases other than MySQL (Oracle, PostgreSQL, and the PEAR
database interaction layer)

4+ The PEAR code repository
4+ A chapter on integrating PHP and Java
4+ Separate chapters on error-handling and debugging techniques

Finally, we reorganized the entire book, pushing more advanced topics toward the end, to
give beginners an easier ramp up.

Who wrote the book?

The first two editions were by Converse and Park, with a guest chapter by Dustin Mitchell
and tech editing by Richard Lynch. For this version, Clark Morgan took on much of the revi-
sion work, with help by Converse and Park as well as by David Wall and Chris Cornell, who
also contributed chapters and did technical editing.

Whom This Book Is For

This book is for anyone who wants to build Web sites that exhibit more complex behavior
than is possible with static HTML pages. Within that population, we had the following three
particular audiences in mind:

4+ Web site designers who know HTML and want to move into creating dynamic Web sites

4+ Experienced programmers (in C, Java, Perl, and so on) without Web experience who
want to quickly get up to speed in server-side Web programming

4+ Web programmers who have used other server-side technologies (Active Server Pages,
Java Server Pages, or ColdFusion, for example) and want to upgrade or simply add
another tool to their kit.

Preface

We assume that the reader is familiar with HTML and has a basic knowledge of the workings
of the Web, but we do not assume any programming experience beyond that. To help save
time for more experienced programmers, we include a number of notes and asides that com-
pare PHP with other languages and indicate which chapters and sections may be safely
skipped. Finally, see our appendixes, which offer specific advice for C programmers, ASP
coders, and pure-HTML designers.

This Book Is Not the Manual

The PHP Documentation Group has assembled a great online manual, located at www.php.net
and served up (of course) by PHP. This book is not that manual or even a substitute for it. We
see the book as complementary to the manual and expect that you will want to go back and
forth between them to some extent.

In general, you’ll find the online manual to be very comprehensive, covering all aspects and
functions of the language, but inevitably without a great amount of depth in any one topic. By
contrast, we have the leisure of zeroing in on aspects that are most used or least understood
and give background, explanations, and lengthy examples.

How the Book Is Organized

This book is divided into five parts, as the following sections describe.

Part I: PHP: The Basics

This part is intended to bring the reader up to speed on the most essential aspects of PHP,
with complexities and abstruse features deferred to later Parts.

4+ Chapters 1 through 4 provide an introduction to PHP and tell you what you need to
know to get started.

4 Chapters 5 through 10 are a guide to the most central facets of PHP (with the exception
of database interaction): the syntax, the datatypes, and the most basic built-in functions.

4+ Chapter 11 is a guide to the most common pitfalls of PHP programming.

Part II: PHP and MySQL
Part Il is devoted both to MySQL and to PHP’s interaction with MySQL.

4+ Chapters 12 and 13 provide a general orientation to Web programming with SQL
databases, including advice on how to choose the database system that is right for you.

4+ Chapter 14 covers installation and administration of MySQL databases, and Chapter 15
is devoted to PHP functions for MySQL.

4+ Chapters 16 and 17 are detailed, code-rich case studies of PHP/MySQL interactions.
4+ Chapters 18 and 19 provide tips and gotchas specific to PHP/MySQL work.

Xii

Preface

Part Ill: Advanced Features and Techniques

In this part we cover more advanced and abstruse features of PHP, usually as self-contained
chapters, including object-oriented programming, session handling, exception handling, using
cookies, and regular expressions. Chapter 32 is a tour of debugging techniques, and Chapter
33 discusses programming style.

Part IV: Connections

In this part we cover advanced techniques and features that involve PHP talking to other
services, technologies, or large bodies of code.

4+ Chapters 34 through 36 cover PHP’s interaction with other database technologies
(PostgreSQL, Oracle, and the PEAR database abstraction layer).

4+ Chapters 37 through 42 cover self-contained topics: PHP and e-mail programs, combin-
ing PHP with JavaScript, integrating PHP and Java, PHP and XML, PHP-based Web ser-
vices, and creating graphics with the gd image library.

Part V: Case Studies

Here we present six extended case studies that wrap together techniques from various early
chapters.

4+ Chapter 43 takes you through the design and implementation of a weblog.

4+ Chapter 44 presents a user authentication system in detail.

4+ Chapter 45 shows how to build a rating system that lets users vote on content.

4+ Chapter 46 discusses a soup-to-nuts implementation of a novel trivia quiz game.

4+ Chapter 47 is a study of the process of converting a static HTML site to dynamic PHP.

4+ Chapter 48 uses the gd image library to visualize data from a MySQL database.

Appendixes

At the end, we offer three “quick-start” appendixes, for use by people new to PHP but very
familiar with either C (Appendix A), Perl (Appendix B), or pure HTML (Appendix C). If you are
in any of these three situations, start with the appropriate appendix for an orientation to
important differences and a guide to the book. The final appendix (D) is a guide to important
resources, Web sites, and mailing lists for the PHP community.

Conventions Used in This Book

We use a monospaced font to indicate literal PHP code. Pieces of code embedded in lines of
text look like this, while full code listing lines look as follows:

print("this");

If the appearance of a PHP-created Web page is crucial, we include a screenshot. If it is not,
we show textual output of PHP in monospaced font. If we want to distinguish the PHP output
as seen in your browser from the actual output of PHP (which your browser renders), we call
the former browser output.

Preface

If included in a code context, italics indicate portions that should be filled in appropriately, as
opposed to being taken literally. In normal text, an italicized term means a possibly unfamiliar
word or phrase.

What the Icons Mean

Icons similar to the following example are sprinkled liberally throughout the book. Their pur-
pose is to visually set off certain important kinds of information.

Tip Tip icons indicate PHP tricks or techniques that may not be obvious and that enable you to
.. accomplish something more easily or efficiently.
s
!Note Note icons usually provide additional information or clarification but can be safely ignored if
g you are not already interested. Notes in this book are often audience-specific, targeted to
people who already know a particular programming language or technology.
Caution Caution icons indicate something that does not work as advertised, something that is easily

misunderstood or misused, or anything else that can get programmers into trouble.

~Cross- '} We use this icon whenever related information is in a different chapter or section.
| Reference \&

e

The Web Site and Sample Code

All the sample code from the book, as well as supplementary material we develop after press
time, can be found at our Web site at www.troutworks.com/phpbook. You can also find the
sample code at www.wiley.com/compbooks/converse.

We want to hear from you! Please send us e-mail at phpbook@troutworks.com with com-
ments, errata, kudos, flames, or any other communication that you care to send our way.

X1

Acknowledgments

This project began out of a conversation with Debra Williams Cauley, our acquisitions edi-
tor at Wiley. She managed the project, found additional contributors, and maintained a
sense of humor as she insulated naive first-time authors from the harsh realities of the pub-
lishing business. (For the next two editions, she insulated naive second-time and third-time
authors, respectively.)

Sara Shlaer was the development editor who coordinated everything among the contributors,
stayed on us to make the project not quite as late as it would otherwise have been, and cri-
tiqued our drafts in detail, making some great saves along the way. Clark Morgan did the
majority of the revision of previous material. David Wall and Chris Cornell each wrote novel
chapters, revised previous chapters, and served as technical reviewers.

Thanks to the Webmasters of the PHP team for permission to reproduce a graph of PHP
usage; the folks at Zend for permission to use screenshots of their Zend Studio product;
Amazon.com for data in the Web services chapter; KnowNow, Inc., for permission to excerpt
code originally owned by them; Mimi Yin for her fabo design work; Alex Selkirk for permis-
sion to reproduce material from Opencortex.org; Tim Perdue for inspiration; Hoang Nguyen
for debugging help; and Jeff Barr of Syndic8.com for timely aid.

Our obvious thanks go to everyone who created PHP itself (Rasmus Lerdorf, Zeev Suraski, Andi
Gutmans, Thies Arntzen, Stig Bakken, Sascha Schumann, Andrei Zmievski, Sterling Hughes, Wez
Furlong, George Schlossnagle, Dan Libby, Sam Ruby, and a host of other contributors), the peo-
ple who have documented PHP (Stig Bakken, Alexander Aulbach, Egon Schmid, Lars Torben
Wilson, Jim Winstead, and others), and everyone on the PHP mailing list. Special thanks to
Rasmus, Sascha, and Richard Lynch for mailing-list answers to our own questions. Finally, both
Converse and Park would like thank their spouses for their support while this book was being
written and revised. In a very literal sense, we couldn’t have done it without them.

Contents at a Glance

Preface e ix
Acknowledgments e e XV

Part :PHP:TheBasicScutienrenrennrennenneaal

Chapter 1: Why PHP and MySQL? i 3
Chapter 2: Server-Side Web Scripting, 19
Chapter 3: Getting Started withPHP 35
Chapter 4: Adding PHPtoHTML 53
Chapter 5: Syntax and Variables 61
Chapter 6: Control and Functions 83
Chapter 7: Passing Information betweenPages 119
Chapter 8: Strings e e 137
Chapter 9: Arrays and Array Functions 157
Chapter 10: Numbers e e 191
Chapter 11: BasicPHP Gotchas 209
Partl:PHPand MySQLt iinininnnnnnns 231
Chapter 12: Choosing a DatabaseforPHP 233
Chapter 13: SQL Tutorial e 245
Chapter 14: MySQL Database Administration 259
Chapter 15: PHP/MySQL Functions, 279
Chapter 16: Displaying QueriesinTables 295
Chapter 17: Building Forms from Queries 311
Chapter 18: PHP/MySQL Efficiency 337
Chapter 19: PHP/MySQL Gotchas 351
Part Ill: Advanced Features and Techniques 363
Chapter 20: Object-Oriented Programming withPHP 365
Chapter 21: Advanced Array Functions 409
Chapter 22: String and Regular Expression Functions 421
Chapter 23: Filesystem and System Functions 439
Chapter 24: Sessions, Cookies,and HTTP 455
Chapter 25: Types and Type Conversions, 479
Chapter 26: Advanced Use of Functions 489
Chapter 27: Mathematics e 501

Chapter 28: PEAR e 517

Chapter 29: Security e 531

Chapter 30: Configuration 555
Chapter 31: Exceptions and Error Handling 569
Chapter 32: Debugging e 583
Chapter 33: Style e 599
PartIV:Connections i iirnnnrnnnnnn 621
Chapter 34: PostgreSQL 623
Chapter 35:Oracle 639
Chapter 36: PEAR Database Functions 669
Chapter 37:E-mail e 681
Chapter 38: PHP and JavaScript e 703
Chapter 39: PHP and Java e 719
Chapter 40: PHPand XML e e 731
Chapter 41: Web Services e 757
Chapter 42: Graphics e e 775
PartV:CaseStudiesttt 799
Chapter 43: Weblogs e 801
Chapter 44: User Authentication 819
Chapter 45: A User-Rating System, 857
Chapter 46: A TriviaGame e 871
Chapter 47: Converting Static HTML Sites 913
Chapter 48: Data Visualization with Venn Diagrams 945
Appendix A: PHP for C Programmers 967
Appendix B: PHP for PerlHackers 973
Appendix C: PHP for HTML Coders 979
Appendix D: PHP Resources 987

Contents

Preface e iX

Acknowledgments XV

Part I: PHP: The Basics 1

Chapter 1: WhyPHPandMySQL?c.ovuvu.n.3

What IsPHP? 3
What Is MySQL? 4
TheHistory of PHP 4
The History of MySQL e 5
ReasonstoLove PHPand MySQL 6
Cost . . . L e 6
EaseofUse e 8
HTML-embeddedness 9
Cross-platform compatibility 11
Nottag-based. e 11
Stability 12
Speed e 12
Opensourcelicensing e 13
Many extensions e 14
Fast feature development 14
Popularity e 15
Not proprietary e 16
Strong user communities L L. 17
Summary e e e e e e 17

Chapter 2: Server-Side Web Scripting19

Static HTML 19
Client-Side Technologies 22
Server-Side Scripting 26

What Is Server-Side Scripting Good for? 32
Summary e e e e e e 33
Chapter 3: Getting Started withPHP 35
Hosting versus DIY e 35
ThelSPoption e 35

The self-hosting option: Prosandcons 38

Compromisesolutions, 39

XX

Contents

Installing PHP 39
Beforeyoucanbegin 40
Installation procedures 41
Developmenttools. 47

Summary e e e 50

Chapter 4: Adding PHPtoHTMLo 53

Your HTML Is Already PHP-Compliant! 53

Escaping from HTML e e 53
Canonical PHPtags 54
Short-open (SGML-style)tags 54
HelloWorld 55
Jumpinginand outof PHPmode 56
Including files 57

SUMMATY . . . o o e e e e e e e e e e e e 59

Chapter 5: Syntaxand Variables 61

PHPIs Forgiving e 61

HTMLIsNot PHP e 61

PHP’s SyntaxIs C-Like 62
PHP is whitespace insensitive 62
PHP is sometimes case sensitive 62
Statements are expressions terminated by semicolons 63
Bracesmakeblocks L L L 65

CommMENtS it e e e e e 66
C-style multilinecomments 66
Single-line comments: #and// 66

Variables 67
PHP variables are Perl-like o L. 67
Declaring variables (ornot), 67
Assigning variables 67
Reassigning variables 68
Unassigned variables 68
Variable scope 69
You can switch modes ifyouwant 70
Constants e 70

Types in PHP: Don’t Worry, Be Happy 71
No variable type declarations 71
Automatictypeconversion. oL 71
Types assigned by context, 71

TypeSummary e e e e 72

The Simple Types o e e 72
Integers e e 73
Doubles e 73
Booleans 75
NULL. . . . 76
Strings e e e e 77

Output e e 80
Echoandprint 80
Variables and strings 81

Summary e e e e e e 82

Contents XXi

Chapter 6: Control and Functions83

Boolean Expressions 84
Booleanconstants 84
Logical operators 84
Comparison Operators i e e e e e 86
The ternary operator e 87

Branching e 88
If-else 89
Switch e 92

Looping e e 94
Bounded loops versus unboundedloops 94
While e 94
Do-while e 95
For . o e 95
Loopingexamples 96
Break and continue L. 99
Anoteoninfiniteloops 101

Alternate Control Syntaxes 101

Terminating Execution, 102

Using Functions e 104
Return values versus sideeffects 105

Function Documentation, 105
Headers in documentation, 106
Finding function documentation 106

Defining Your Own Functions 107
Whatisafunction? L 107
Function definitionsyntax 107
Function definitionexample 108
Formal parameters versus actual parameters 109
Argument number mismatches L. 109

Functions and Variable Scope, 110
Globalversuslocal 111
Staticvariables 112
Exceptions. e e 113

Function Scope 115
Include andrequire 115
Recursion 116

Summary e e e e e e e 118

Chapter 7: Passing Information betweenPages 119

HTTP Is Stateless e e e 119
GET Arguments e e e 120
A Better Use for GET-Style URLs 122
POST Arguments e 124
Formatting Form Variables 125

Consolidating forms and formhandlers 128

Using array variables withforms 129
PHP Superglobal Arrays e 132
Extended Example: An Exercise Calculator 134

SUMMATY o o e e e e 136

XX| | Contents

Chapter8:Stringsciiiiinnnnnrnnna.. 137

Strings in PHP 137
Interpolation with curlybraces 138
Characters and stringindexes 138
String Ooperators e 139
Concatenation and assignment 139
The heredocsyntax 140

String Functions L 140
Inspecting strings 141
Finding characters and substrings 141
Comparison and searching, 143
Searching 143
Substring selection 144
String cleanup functions Lo 145
String replacement 146
Casefunctions e 148
Escaping functions 149
Printingandoutput 150

Extended Example: An Exercise Calculator 151

SUMMATY o o e e e e e e e e e e 156

Chapter 9: Arrays and Array Functions 157

TheUses Of Arrays o i it e e e e e e 157
What Are PHP Arrays? e 158
Creating Arrays o i i i e e e e 160
Direct assignment 160

The array() construct 160
Specifying indices usingarray() 161
Functions returning arrays 161
Retrieving Values e 162
Retrieving byindex. 162
Thelist()construct 162
Multidimensional Arrays e 163
Inspecting Arrays 164
Deleting from Arrays e e 165
Iteration e 165
Support foriteration 165

Using iteration functions 167

Our favorite iteration method: foreach 167
Iterating with current() andnext() 168
Starting over withreset() L L L Lo 170
Reverse order withend()andprev() 171
Extracting keys withkey() 171
Empty values and the each() function 172
Walking with array_walk() 173
Extended Example: An Exercise Calculator 175
SUMMATY o o e e e e e e e 189
Chapter 10:Numbers i iiiiiiainnnn 191
Numerical Types o e 191
Mathematical Operators e 192

Arithmetic operators 192

Contents XXII

Arithmetic operators andtypes 192
Incrementing operators 193
Assignment operators 194
Comparison operators e e 194
Precedence and parentheses 195
Simple Mathematical Functions 196
Randomness e 196
Seeding the generator 197
Example: Making a random selection 199
Extended Example: An Exercise Calculator 200
SUMmMAry e e e e e e e 206
Chapter 11:BasicPHP Gotchas 209
Installation-Related Problems 209
Symptom: Text of file displayed in browser window 209
Symptom: PHP blocks showing up as text under HTTP
or browser prompts youtosavefile 210
Symptom: Server or host not found/Page
cannot bedisplayed 210
Rendering Problems 210
Symptom: Totally blank page 210
Symptom: Document containsnodata 211
Symptom: Incomplete or unintended page 212
Symptom: PHP code showing up in Web browser 214
FailurestoLoad Page 215
Symptom: Page cannot befound 215
Symptom: Failed opening [file] for inclusion 216
Parse Errors 216
Symptom: Parse errormessage 216
The missing semicolon 217
Nodollarsigns e 217
Modeissues e 218
Unescaped quotes e 219
Unterminated strings 219
Other parse error Causes v v v v i i v i e e 219
File Permissions e 219
Symptom: HTTPerror403 220
MissingIncludes 220
Symptom: Include warning 220
Unbound Variables 221
Symptom: Variable not showing up in print string 221
Symptom: Numerical variable unexpectedlyzero 221
Causes of unbound variables 221
Overwritten Variables 223
Symptom: The variable has a valid value, just not the one you expected . . 223
FunctionProblems 224
Symptom: Call to undefined function my_function() 224
Symptom: Call to undefined function () 224
Symptom: Call to undefined functionarray() 224
Symptom: Cannot redeclare my_function() 225

Symptom: Wrong parameter count L. 225

XXiV Contents

Math Problems 225
Symptom: Division-by-zerowarning oL .. 225
Symptom: Unexpected arithmeticresult 226
Symptom: NaN (or NAN) 226

Time-outs e e e 227

SUMMATY e e e e e e e e e 227

Part 1l: PHP and MySQL 231

Chapter 12: Choosing a DatabaseforPHP233

WhatIsaDatabase? 233
Why aDatabase? e 233
Maintainability and scalability 234
Portability e 234
Avoiding awkward programming 234
Searching e 234
Security e 235

N-tier architecture 235
Potential downside: Performance 235
ChoosingaDatabase e 236
You may not haveachoice 236
Flat-file, relational, object-relational 236
ODBC/JDBC versus native APl 237
Swappable databases 238
Advanced FeaturestoLookFor 238
AGUL . .o 238
Subquery e e 238
SELECTINTO e e 239
Complex joins o e 239
Threading and locking 239
Transactional databases 239
Procedures and triggers 240
Indexes. e e 240
Foreign keys and integrity constraints 240
Databasereplication 241
PHP-Supported Databases 241
Database Abstraction (orNot) 242
Our Focus: MySQL e 243
SUMMAry e e e e e 244
Chapter 13:SQLTutorial, 245
Relational Databasesand SQL 245
SQL Standards e 246
The Workhorses of SQL 246
SELECT . . . o 247
INSERT o e 251
UPDATE e 251

DELETE 252

Contents XXV

Database Design e 252
Privileges and Security 255
Setting database permissions 255

Keep database passwords outside the Webtree 256

Use two layers of password protection 257
Learntomake backups 258
SUMMArY o o o e e e e e 258
Chapter 14: MySQL Database Administration259
MySQLLicensing 259
Installing MySQL: Moving to Version4 260
Preinstall considerations o .. 260
Downloading MySQL e 262
Installing MySQL on Windows 262
Installing MySQLonUnix 263
Installing MySQLonMac OSX 264
Post-installation housekeeping 264

Basic MySQL client commands 265
MySQL User Administration 265
Localdevelopment 268
Standalone Website L L o 268
Shared-hostingWebsite, 269
PHPMyAdmin e e 269
Backups 272
Replication e 274
Recovery e 276
myisamchk 277
mysqlcheck L 278
SUMMATY e e e e e e e e e e 278
Chapter 15: PHP/MySQL Functionsc..... 279
Connectingto MySQL e 279
Making MySQL Queries e 281
Fetching DataSets e 282
Getting DataaboutData. 284
Multiple Connections 285
Building in Error Checking 287
Creating MySQL DatabaseswithPHP 288
MySQL datatypes e 289
MySQL Functions e 291
SUMMArY e e e e e e e e e e 293
Chapter 16: Displaying QueriesinTables 295
HTML Tables and Database Tables 295
One-to-one mapping o v v v it e e e 296
Example: A single-table displayer 296
Thesampletables 298

Improving thedisplayer 299

XX\/| Contents

Complex Mappings e e 302
Multiple queries versus complex printing 302

A multiple-queryexample oL 303

A complex printingexample o ... 305
Creating the Sample Tables 307
SUMMATY e e e e e e e e e 309
Chapter 17: Building Forms from Queries 311
HTML Forms e e e e e 311
Basic Form SubmissiontoaDatabase 312
Self-Submission 314
Editing Data withan HTMLForm 322
TEXT and TEXTAREA e 322
CHECKBOX e 324
RADIO e 327
SELECT o e e 332
SUMMArY e e e e e e e 335
Chapter 18: PHP/MySQL Efficiency 337
Connections—Reduce, Reuse,Recycle 337
A bad example: One connection per statement 338
Multiple results don’t need multiple connections 338
Persistent connections L L o oL 339
Indexing and Table Design 340
Indexing 340
Everything including the kitchensink 342
Othertypesofindexes 343
Tabledesign 344
Making the Database Workfor You 345
It’s probably faster thanyouare 345

A bad example: Looping, not restricting 345
Creating date and time fields 347
Finding the last insertedrow 348
SUMMAry e e e e e e e 350
Chapter 19: PHP/MySQL Gotchas 351
No Connection 351
Problems with Privileges 353
Unescaped Quotes e 354
Broken SQL Statements 356
Misspellednames 358
Commafaults e 358
Unquoted string arguments 358
Unboundvariables 359

Too Little Data, TooMuchData 359
Specific SQL Functions 360
mysql_affected_rows() versus mysql_num_rows() 360
mysql_result() 361
OCIFetch() o o 361
Debugging and Sanity Checking 361

SUMMArY o o o e e e e e e 362

Contents XXV] |

Part 1ll: Advanced Features and Techniques 363

Chapter 20: Object-Oriented Programming withPHP 365

What Is Object-Oriented Programming? 365
Thesimpleidea 366
Elaboration: Objects as datatypes 367
Elaboration: Inheritance L Lo o 367
Elaboration: Encapsulation 369
Elaboration: Constructors and destructors 369
Terminology e 369

Basic PHP Constructsfor OOP 371
Defining classes e e 371
Accessing member variables L oL 372
Creating instances i 372
Constructor functions 372
Inheritance 373
Overriding functions 375
Chained subclassing 375
Modifying and assigning objects L. 377
Scopingissues e e e 377

Advanced OOP Features 378
Public, Private, and Protected Members 378
Interfaces 380
Constants e e 380
Abstract Classes e 381
Simulating class functions L. 381
Calling parent functions 382
Automatic calls to parent constructors 384
Simulating method overloading 384
Serialization e 385

Introspection Functions 387
Functionoverview 387
Example: Class genealogy 390
Example: Matching variablesand DBcolumns 392
Example: Generalized test methods 395

Extended Example: HTML Forms 398

Gotchas and Troubleshooting 404
Symptom: Member variable has no value in member function 404
Symptom: Parse error, expecting T_VARIABLE 405

OOPStylein PHP e 405
Naming conventions 405
Accessorfunctions L 405
Designing for inheritanceo 0 L. 406

SUMMAry e e e e e e e e 407

Chapter 21: Advanced Array Functions 409

Transformations of Arrays 409
Retrieving keysandvalues 410
Flipping, reversing, and shuffling 410
Merging, padding, slicing, and splicing 412

Stacksand QuUeues e e 415

XXVIIl Contents

Translating between Variables and Arrays 416
Sorting e e 417
Printing Functions for Visualizing Arrays 418
SUMMAry e e e e e e e e e 419

Chapter 22: String and Regular Expression Functions 421

Tokenizing and Parsing Functions 421
Why Regular Expressions? 424
RegexinPHP 424

An example of POSIX-styleregex 425
Regular expression functions, 426
Perl-Compatible Regular Expressions 427
Example: A Simple Link-Scraper 430
The regular expression 430

Using the expressioninafunction 432
Advanced String Functions L L 434
HTML functions 434
Hashingusing MD5 e 435
Strings as character collections 436
String similarity functions L Lo 438
SUMMAry e e e e e e e 438
Chapter 23: Filesystem and System Functions 439
Understanding PHP File Permissions 439
File Reading and Writing Functions 440
Fileopen e e 441
Fileread 443
Constructing file downloads by using fpassthru() 444
Filewrite 445
Fileclose. e 446
Filesystem and Directory Functions 447
feof e 447
file_exists 447
filesize 447
Network Functions 450
Syslog functions 450
DNSfunctions e 450
Socket functions L 450

Date and Time Functions e 451
If you don’t know either dateortime 451

If you've already determined the date/time/timestamp 452
Calendar Conversion Functions 453
SumMmary e e e 454
Chapter 24: Sessions, Cookies,and HTTP 455
What’s a Session? 455
Sowhat’s the problem? 455

Why should youcare? 456
Home-Grown Alternatives 456
[Paddress 456
Hiddenvariables0 .. 457

Cookie-based homegrown sessions 457

Contents XXiX

How Sessions WorkinPHP 458
Making PHP aware of yoursession 459
Propagating session variables, 459
Where is the data really stored? 461

Sample Session Code 462

Session Functions L L 465

ConfigurationIssues e 468

Cookies e 469
The setcookie() function 470
Examples e 471
Deleting cookies 472
Reading cookies 472
register_globals and variable overwriting 473
Cookiepitfalls e 474

Sending HTTP Headers 475
Example: Redirection 476
Example: HTTP authentication 476
Headergotchas 477

Gotchas and Troubleshooting 478

SumMmary e e e e e 478

Chapter 25: Types and Type Conversions 479

TypeRound-up e 479

Resources e 480
What areresources? L L e 480
Howto handleresources 480

TypeTesting e e 481

Assignmentand Coercion. 481
Integer overflow 486
Finding the largestinteger 486

SUMMArY o o e e e e 487

Chapter 26: Advanced Use of Functions 489

Variable Numbers of Arguments 489
Default arguments 489
Arrays as multiple-argument substitutes 0 L. 490
Multiple arguments in PHP4and above 491

Call-by-Value e 493

Call-by-Reference 493

Variable FunctionNames 495

AnExtended Example 495

SUMMAry e e e e e e e e e 499

Chapter 27: Mathematics501

Mathematical Constants 501

TestsonNumbers 502

Base CONVersion 503

Exponents and Logarithms L L L. 506

Trigonometry e e e e e 507

Arbitrary Precision (BC) 511
An arbitrary-precisionexample 512
Converting code to arbitrary-precision 513

SUMMATY . . . o e o e e e e e e e e e e e e e e e e e e 515

XXX Contents

Chapter28:PEAR ' ernernnnnnnnrnnsa.. b7

What IsPEAR? e 517
The PEAR Package System 518
A sampling of PEARpackages 518

How the PEAR databaseworks 519

The Package Manager inennenin. 519
Usingthe Manager 523

PHP Foundation Classes (PFC) 525
PHP Extension Code Library (PECL) 525
The PEAR Coding Style e 525
Indenting, whitespace, and linelength 526
Formatting control structures 526
Formatting functions and functioncalls 528
SUMMArY o o o e e e e e 528
Chapter29:Securityt nnrn... 531
Possible Attacks 532
Sitedefacement 532
Accessing sourcecode 533
Reading arbitraryfiles 535
Running arbitrary programs 537
Viruses and other e-critters 538
E-mailsafety e 539
Register Globals e 540
FileUploads e e 542
Encryption e 545
Publickey encryption 545
Single-key encryption 546
Encrypting cookies 548
Hashing e 549
Digitally signingfiles 550
Secure Sockets Layer 551

FYL: Security Web Sites 552
SUMMATY e o e e e e e e e e e 552

Chapter 30: Configuration555

Viewing Environment Variables 0 L. 555
Understanding PHP Configuration 555
Compile-timeoptions 556

CGI compile-timeoptions 559
Apache configurationfiles 561

The php.nifile 563
Improving PHP Performance 566
SUMmMary e e e e e e e 568
Chapter 31: Exceptions and ErrorHandling 569
Error Handlingin PHP5 569
Errors and exceptions e 569

The Exceptionclass 571

The try/catchblock 572

Throwing an exception 572

Contents

Defining your own Exception subclasses 573
Limitations of ExceptionsinPHP 575
Other Methods of Error Handling 576
Native PHPerrors 576
Defininganerrorhandler 578
Triggering auser error e e e 579
Logging and Debugging 580
SUMmMAry e e e e e e 581
Chapter32:Debugging, 583
General Troubleshooting Strategies 583
Change one thingatatime 583
Trytoisolatetheproblem 584
Simplify, thenbuildup 584
Checktheobvious 584
Document your solution Lo 584

After fixing, retest 584
AMenagerieof Bugs 584
Compile-timebugs L 585
Run-timebugs 585
Logicalbugs e e 585
UsingWeb ServerLogs 585
Apache 585

IS 587

PHP Error Reporting and Logging 587
Error reporting 587
Errorlogging 588
Choosing which errors toreportorlog 588
Error-Reporting Functions 589
Diagnostic print statements Lo L 589
Usingprint_r() 590

Using syslog() e e 590
Loggingtoacustomlocation 592
Usingerror_log() e 592
Visual Debugging Tools e 593
Avoiding errors in the firstplace o Lo L. 594
Finding errors when theyoccur 595
SUMMAry e e e e e e 596
Chapter33:Style 599
TheUsesof Style. e 599
Readability 600
Comments oo e e e e e 602
PHPDoc e 602

File and variablenames0 .. 603
Uniformity of style 605
Maintainability e e 605
Avoid magicnumbers L. 605
Functions 606
Includefiles L 606
Object Wrappers o i i e e e e 607

Consider using versioncontrol 607

XXXI

XXX] | Contents

Robustness e 607
Unavailability of service o 608
Unexpected variabletypes 608

Efficiency and Conciseness 608
Efficiency: Only the algorithm matters 609
Efficiency optimizationtips L L. 609
Conciseness: Thedownside 610
Conciseness tips 611

HTML Mode or PHP Mode? i 613
Minimal PHP 613
Maximal PHP 614
Medium PHP 615
Theheredocstyle 616

Separating Code from Design 618
Functions 618
Cascading style sheetsinPHP 618
Templates and page consistency, 618

SUMMATY e e e e e e e e e e e 620

Part IV: Connections 621

Chapter34:PostgreSQL vvernernrna... 623

Why Choose PostgreSQL? e 623
Why Object-Relational Anyway?, 624
Installing PostgreSQL 624
Linuxinstallation L L 625
Butisitadatabaseyet? 626
DowntoReal Work 627
PHP and PostgreSQL e 629
The Cartoons Database 630
SUMMArY e e e e e e e e 637
Chapter35:Oracleciivueuurne...639
When Do YouNeed Oracle? i.o... 639
MONEY o o e e e 640
Otherrivalrousresources 640
Hugedatasets e 640

Lots of big formulaic writes or datamunging 640
Triggers e 641

Legal liability 641
Bottom line: Two-yearoutlook 641
Oracle and Web Architecture L 641
Specialized teammembers e 642
Shared development databases 642
Limited schemachanges 642

Tools (or lackthereof) 642
Replication and failover 642
Datacaching e 643

Using OCIS Functions it e 643
Escaping strings 644

Parsingand executing 644

Contents XXXIII

Errorreporting e 644
Memory management e 644
Askfornulls 644
Fetching entiredatasets 645
Allcaps e 645
Transactionality 645
Stored procedures and cursors 646
Project: Point Editor 647
Project: Batch Editor 657
SUMMArY e e e e e e e e e 667
Chapter 36: PEAR Database Functions669
The Debatable Virtue of Database Independence 669
Native database connectivity 672
Database abstraction 673

Pear DB Concepts e 673
Data Source Names (DSNS) i 674
Connection i e e 675
QUETY . . . e 676
Rowretrieval e 676
Disconnection. 676
Acompleteexample e 677
PEARDB Functions e 678
Members oftheDBclass 678
Members of the DB_Commonclass 678
Members of the DB_Resultclass 679
SUMMAry e e e e e e e e e 679
Chapter37:E-mailt 681
Understanding E-mail 681
TCP/IP server e e 682

Mail Transfer Agent, aka SMTPserver 682
Mailspool e e e 683

Mail User Agent, akalocal mailclient 684
Mail-retrieval program, aka POP/IMAP server 684
Mailing list manager 685
Receiving E-mail withPHP 686
Implementing from scratch, 686
Modifying other people’s PHP, 686
Cosmeticchanges e 687
Sending E-mail with PHP 687
Windows configuration oL 688

Unix configuration 688
Themail function 688

More FunwithPHP E-mail 690
Sending mail fromaform 690
Sending mail fromadatabase 693
Sending attachments with MIMEmail 694

A custom PHP mail application 696
Sending mail fromacronjob L. 699
E-mail Gotchas e 701

SUMMATY v o e e e e e e e e 701

XXXiV Contents

Chapter 38:PHP andJavaScript 703

Outputting JavaScript withPHP 703
Dueling objects 704

PHP doesn’t care whatitoutputs 704
Wheretouse JavaScript L 705

PHP as a Backup for JavaScript, 705
Static Versus Dynamic JavaScript 707
Dynamically generatedforms 708
Passing data back to PHP from JavaScript 714
SUMMArY e e e e e e e e e e 717
Chapter39:PHPandJavaciiiirnnnnnnns 719
PHP for Java programmers 719
Similarities 719
Differences 720

Java Server PagesandPHP 721
Guidetothisbook L. 722
Integrating PHPand Java, 723
TheJavaSAPL e 723

The Javaextension e 724

The Javaobject e 726
Errors and exceptions e 727
Potential gotchas 728

The sky’sthelimit 729
SUMMAry e e e e e e 729
Chapter 40:PHPand XMLcvuruernnna.. 131
WhatIsXML? e 731
Working with XML e 734
Documents and DTDs e 735
The structureof aDTD 736
Validating and nonvalidating parsers 739
SAXversus DOM e 739
DOM . . . e 740
UsingDOM XML e 740
DOMfunctions e 741

SAX e 743
Using SAX e e e 743
SAXoptions e 745
SAXfunctions e 746
SimpleXML API e 747
Using SimpleXML e 747
SimpleXML functions 748

A Sample XML Application 748
Gotchas and Troubleshooting 755
SUMMATY o o o e e e e e e e e e e 756
Chapter 41: Web Services, 157
The End of Programming as WeKnow It 757
The ugly truth about datamunging 757

Brutal simplicity 758

Contents XXXV

REST, XML-RPC, SOAP, NET 760
REST . . . e 760
XMLRRPC . . . 761
SOAP . . . e 762
NET services oo 763

Current Issues with Web Services 763
Fatandslow. 763
Potentially heavyload 763
Standards e 764
Hideandseek 764
Who paysandhow? 764

Project: AREST Client it e e 765

Project: ASOAP Serverand Client 770

SUMMATY . . . v e e e e e e e e e e 774

Chapter 42:Graphics i, 775

Your Options e 775

HTML Graphics o e e e e e e e e e e e e 775

Creating imagesusing gd e 780
Whatis gd? 780
Image formats and browsers o o 780
Choosingversions 781
Installation 782
gdConcepts e 782
Functions 784
Imagesand HTTP i 786
Example: Fractalimages 788

Gotchas and Troubleshooting 795
Symptom: Completely blankimage 796
Symptom: Headers alreadysent 796
Symptom: Brokenimage o 796

SUMMArY e e e e e e e e 797

Part V: Case Studies 799
Chapter 43:Weblogsuvuo.....801

Why Weblogs? e 801

The Simplest Weblog 801

Adding an HTML Editing Tool 808

Adding Database Connectivity 809

Changes and Additions 817

SUMMArY e e e e e e e e e 817

Chapter 44: User Authentication 819

Designing a User-Authentication System 819

Avoiding Common SecurityIssues L .. 820
Turn off register_globals 821
Check for string lengthandsafety 821

One-way encrypt passwordsot i it 822

XXX\/| Contents

Registration. e 823
Login/Logout e e e e 831
User Tools e 836
Forgotten password 836
Changing sensitiveuserdata 839
Edit non-sensitiveuserdata 846
Administrator Tools 851
Authorization: Basic auth, cookie, database,andIP 851
LOgINas USer i i ittt e e e 852
SUMMATY o o o e e e e e e e 855

Chapter 45: A User-Rating System857

Initial Design L e 857
Domain: A quotationsite, 858
Possibleratings 858
Linking ratings withcontent 859

Collecting Votes e e 859

AggregatingResults 867

Extensions and Alternatives e 869

SUMMATY e e e e e e e e 870

Chapter 46:ATriviaGamecuiuennrnrnrnsnnns 871

Concepts Used in This Chapter 871

TheGame e 872
Ourversion e 872
Sample SCreens o i e e e e e e 872
Therules 874
Playing the gameyourself 875

TheCode e 875
Codefiles 875
Creating thedatabase 906

General Design Considerations 910
Separation of codeand display L. 910
Persistenceofdata 910
Exceptionhandling 911

SUMMAry e e e e e e e 911

Chapter 47: Converting StaticHTML Sites 913

Planning the BigUpgrade 913
The baby and the bathwater 914
Technical assessment 915

Redesigning the User Interface 916

Planning a New Database Schema 918

Dumping DataintoaDatabase 922
Data-massaging 922
Datadumping e e 923

Harvestingdata 928

Contents
Templating 932
Performance and Caching 941
Caching e 942
SUMMAry e e e e e e e e e 943

Chapter 48: Data Visualization with Venn Diagrams 945

Scaled Venn Diagrams L 945
Thetask e 945
OutlineoftheCode 946
Necessary Trigonometry 947
Planning the Display 950
Simplifying assumptions. 950
Determining sizeandscale 951

Display e e 957
Visualizing aDatabase 958
Tryingitout 963

Extensions 965
SUMMATY . . . e o e e e e e e e e e e e e e e e 965
Appendix A: PHP for C Programmersc0u0vun.. 967
Appendix B: PHP forPerlHackers 973
Appendix C:PHP forHTML Coders iivvunnn. 979
Appendix D:PHPResouUrces cvin i nnnnnnnrnsnnn 987

XXXVII

PHP: The Basics

+ 4+ o+
In This Part

Chapter 1
Why PHP and MySQL2

Chapter 2
Server-Side Web
Scripting

Chapter 3
Getting Started with
PHP

Chapter 4
Adding PHP to HTML

Chapter 5
Syntax and Variables

Chapter 6
Control and Functions

Chapter 7
Passing Information
between Pages

Chapter 8
Strings

Chapter 9
Arrays and Array
Functions

Chapter 10

Numbers

Chapter 11
Basic PHP Gotchas

+ o+ e

CHAP E R

Why PHP and
MySQL?

+ 0+ e

In This Chapter

This first chapter is an introduction to PHP, MySQL, and the inter- Understanding PHP and
action of the two. In it, we’ll try to address some of the most com- MySQL

mon questions about these tools, such as “What are they?” and “How

do they compare to similar technologies?” Most of the chapter is A history of PHP

taken up with an enumeration of the many, many reasons to choose

PHP, MySQL, or the two in tandem. If you're a techie looking for some A history of MySQL
ammunition to lob at your PHB (“Pointy-Haired Boss” for those who

don’t know the Dilbert cartoons) or a manager asking yourself what The benefits of using

is this P-whatever thing your geeks keep whining to get, this chapter PHP and MySQL

will provide some preliminary answers.

What Is PHP?

PHP is the Web development language written by and for Web devel-
opers. PHP stands for PHP: Hypertext Preprocessor. The product was
originally named Personal Home Page Tools, and many people still
think that’s what the acronym stands for. But as it expanded in scope,
a new and more appropriate (albeit GNU-ishly recursive) name was
selected by community vote. PHP is currently in its fifth major
rewrite, called PHP5 or just plain PHP.

PHP and MySQL: A
competitive advantage

+ ¢+

PHP is a server-side scripting language, which can be embedded in
HTML or used as a standalone binary (although the former use is
much more common). Proprietary products in this niche are
Microsoft’s Active Server Pages, Macromedia’s ColdFusion, and Sun’s
Java Server Pages. Some tech journalists used to call PHP “the open
source ASP” because its functionality is similar to that of the
Microsoft product — although this formulation was misleading, as
PHP was developed before ASP. Over the past few years, however,
PHP and server-side Java have gained momentum, while ASP has lost
mindshare, so this comparison no longer seems appropriate.

We'll explore server-side scripting more thoroughly in Chapter 2, but
for the moment you can think of it as a collection of super-HTML tags
or small programs that run inside your Web pages — except on the
server side, before they get sent to the browser. For example, you can
use PHP to add common headers and footers to all the pages on a
site or to store form-submitted data in a database.

4

Part | ¢+ PHP: The Basics

Strictly speaking, PHP has little to do with layout, events, on the fly DOM manipulation, or
really anything about what a Web page looks and sounds like. In fact, most of what PHP does
is invisible to the end user. Someone looking at a PHP page will not necessarily be able to tell
that it was not written purely in HTML, because usually the result of PHP is HTML.

PHP is an official module of Apache HTTP Server, the market-leading free Web server that
runs about 67 percent of the World Wide Web (according to the widely quoted Netcraft Web
server survey). This means that the PHP scripting engine can be built into the Web server
itself, leading to faster processing, more efficient memory allocation, and greatly simplified
maintenance. Like Apache Server, PHP is fully cross-platform, meaning it runs native on sev-
eral flavors of Unix, as well as on Windows and now on Mac OS X. All projects under the aegis
of the Apache Software Foundation —including PHP — are open source software.

What Is MySQL?

MySQL (pronounced My Ess Q El) is an open source, SQL Relational Database Management
System (RDBMS) that is free for many uses (more detail on that later). Early in its history,
MySQL occasionally faced opposition due to its lack of support for some core SQL constructs
such as subselects and foreign keys. Ultimately, however, MySQL found a broad, enthusiastic
user base for its liberal licensing terms, perky performance, and ease of use. Its acceptance
was aided in part by the wide variety of other technologies such as PHP, Java, Perl, Python,
and the like that have encouraged its use through stable, well-documented modules and
extensions. MySQL has not failed to reward the loyalty of these users with the addition of
both subselects and foreign keys as of the 4.1 series.

Databases in general are useful, arguably the most consistently useful family of software
products —the “killer product” of modern computing. Like many competing products, both
free and commercial, MySQL isn’t a database until you give it some structure and form. You
might think of this as the difference between a database and an RDBMS (that is, RDBMS plus
user requirements equals a database).

There’s lots more to say about MySQL, but then again, there’s lots more space in which to
say it.

The History of PHP

Rasmus Lerdorf — software engineer, Apache team member, and international man of

mystery —is the creator and original driving force behind PHP. The first part of PHP was devel-
oped for his personal use in late 1994. This was a CGI wrapper that helped him keep track of
people who looked at his personal site. The next year, he put together a package called the
Personal Home Page Tools (a.k.a. the PHP Construction Kif) in response to demand from users
who had stumbled into his work by chance or word of mouth. Version 2 was soon released
under the title PHP/FI and included the Form Interpreter, a tool for parsing SQL queries.

By the middle of 1997, PHP was being used on approximately 50,000 sites worldwide. It was
clearly becoming too big for any single person to handle, even someone as focused and ener-
getic as Rasmus. A small core development team now runs the project on the open source
“benevolent junta” model, with contributions from developers and users around the world.
Zeev Suraski and Andi Gutmans, the two Israeli programmers who developed the PHP3 and
PHP4 parsers, have also generalized and extended their work under the rubric of Zend.com
(Zeev, Andi, Zend, get it?).

Chapter 1 4+ Why PHP and MySQL?

The fourth quarter of 1998 initiated a period of explosive growth for PHP, as all open source
technologies enjoyed massive publicity. In October 1998, according to the best guess, just
over 100,000 unique domains used PHP in some way. Just over a year later, PHP broke the
one-million domain mark. When we wrote the first edition of this book in the first half of 2000,
the number had increased to about two million domains. As we write this, approximately 15
million public Web servers (in the software sense, not the hardware sense) have PHP
installed on them.

Public PHP deployments run the gamut from mass-market sites such as Excite Webmail and
the Indianapolis 500 Web site, which serve up millions of pageviews per day, through “mass-
niche” sites such as Sourceforge.net and Epinions.com, which tend to have higher functional-
ity needs and hundreds of thousands of users, to e-commerce and brochureware sites such
as The Bookstore at Harvard.com and Sade.com (Web home of the British singer), which
must be visually attractive and easy to update. There are also PHP-enabled parts of sites,
such as the forums on the Internet Movie Database (imdb.com); and a large installed base of
nonpublic PHP deployments, such as LDAP directories (MCI WorldCom built one with over
100,000 entries) and trouble-ticket tracking systems.

In its newest incarnation, PHP5 strives to deliver something many users have been clamoring
for over the past few years: much improved object-oriented programming (OOP) functional-
ity. PHP has long nodded to the object programming model with functions that allow object
programmers to pull out results and information in a way familiar to them. These efforts still
fell short of the ideal for many programmers, however, and efforts to force PHP to build in
fully object-oriented systems often yielded unintended results and hurt performance. PHP5’s
newly rebuilt object model brings PHP more in line with other object-oriented languages such
as Java and C++, offering support for features such as overloading, interfaces, private mem-
ber variables and methods, and other standard OOP constructions.

With the crash of the dot-com bubble, PHP is poised to be used on more sites than ever.
Demand for Web-delivered functionality has decreased very little, and emerging technological
standards continue to pop up all the time, but available funding for hardware, licenses, and
especially headcount has drastically decreased. In the post-crash Web world, PHP’s shallow
learning curve, quick implementation of new functionality, and low cost of deployment are
hard arguments to beat.

The History of MySQL

Depending on how much detail you want, the history of MySQL can be traced as far back as
1979, when MySQL’s creator, Monty Widenius, worked for a Swedish IT and data consulting
firm, TcX. While at TcX, Monty authored UNIREG, a terminal interface builder that connected
to raw ISAM data stores. In the intervening 15 years, UNIREG served its makers rather well
through a series of translations and extensions to accommodate increasingly large data sets.

In 1994, when TcX began working on Web data applications, chinks in the UNIREG armor,
primarily having to do with application overhead, began to appear. This sent Monty and his
colleagues off to look for other tools. One they inspected rather closely was Hughes mSQL,
a light and zippy database application developed by David Hughes. mSQL possessed the dis-
tinct advantages of being inexpensive and somewhat entrenched in the market, as well as
featuring a fairly well-developed client API. The 1.0 series of mSQL release lacked indexing,
however, a feature crucial to performance with large data stores. Although the 2.0 series of
mSQL would see the addition of this feature, the particular implementation used was not
compatible with UNIREG’s B+-based features. At this point, MySQL, at least conceptually,
was born.

6

Part | ¢+ PHP: The Basics

Monty and TcX decided to start with the substantial work already done on UNIREG while
developing a new API that was substantially similar to that used by mSQL, with the exception
of the more effective UNIREG indexing scheme. By early 1995, TcX had a 1.0 version of this
new product ready. They gave it the moniker MySQL and later that year released it under a
combination open source and commercial licensing scheme that allowed continued develop-
ment of the product while providing a revenue stream for MySQL AB, the company that
evolved from TcX.

Over the past ten years, MySQL has truly developed into a world class product. MySQL now
competes with even the most feature-rich commercial database applications such as Oracle
and Informix. Additions in the 4.x series have included much-requested features such as
transactions and foreign key support. All this has made MySQL the world’s most used open
source database.

Reasons to Love PHP and MySQL

There are ever so many reasons to love PHP and MySQL. Let us count a few.

Cost

PHP costs you nothing. Zip, zilch, nada, not one red cent. Nothing up front, nothing over the
lifetime of the application, nothing when it’s over. Did we mention that the Apache/PHP/MySQL
combo runs great on cheap, low-end hardware that you couldn’t even think about for
[IS/ASP/SQL Server?

MySQL is a slightly different animal in its licensing terms. Before you groan at the concept of
actually using commercial software, consider that although MySQL is open-source licensed
for many uses, it is not and has never been primarily community-developed software. MySQL
AB is a commercial entity with necessarily commercial interests. Unlike typical open source
projects, where developers often have regular full-time (and paying) day jobs in addition to
their freely given open source efforts, the MySQL developers derive their primary income
from the project. There are still many circumstances in which MySQL can be used for free
(basically anything nonredistributive, which covers most PHP-based projects), but if you
make money developing solutions that use MySQL, consider buying a license or a support
contract. It’s still infinitely more reasonable than just about any software license you will
ever pay for.

For purposes of comparison, Table 1-1 shows some current retail figures for similar products
in the United States. All prices quoted are for a single-processor public Web server with the
most common matching database and development tool; $0 means a no-cost alternative is a
common real-world choice.

Table 1-1: Comparative Out-of-Pocket Costs

ASP/SQL ColdFusion
Item Server MX/SQL Server JSP/Oracle PHP/MySQL
Development tool $0-2499 $599 $0-~2000 $0-249
Server $999 $2298 $0—~35,000 $0

RDBMS $4999 $4999 $15,000 $0-220

Chapter 1 4+ Why PHP and MySQL?

Open source software: don't fear the cheaper

But as the bard so pithily observed, we are living in a material world —where we’ve internal-
ized maxims such as, “You get what you pay for,” “There’s no such thing as a free lunch,” and
“Things that sound too good to be true usually are.” You (or your boss) may, therefore, have
some lingering doubts about the quality and viability of no-cost software. It probably doesn’t
help that until recently software that didn’t cost money — formerly called freeware, shareware,
or free software —was generally thought to fall into one of three categories:

4 Programs filling small, uncommercial niches
4 Programs performing grungy, low-level jobs
4+ Programs for people with bizarre socio-political issues

It’s time to update some stereotypes once and for all. We are clearly in the middle of a sea
change in the business of software. Much (if not most) major consumer software is dis-
tributed without cost today; e-mail clients, Web browsers, games, and even full-service office
suites are all being given away as fast as their makers can whip up Web versions or set up
FTP servers. Consumer software is increasingly seen as a loss-leader, the flower that attracts
the pollinating honeybee —in other words, a way to sell more server hardware, operating
systems, connectivity, advertising, optional widgets, or stock shares. The full retail price of a
piece of software, therefore, is no longer a reliable gauge of its quality or the eccentricity-level
of its user.

On the server side, open source products have come on even stronger. Not only do they
compete with the best commercial stuff; in many cases there’s a feeling that they far exceed
the competition. Don’t take our word for it! Ask IBM, any hardware manufacturer, NASA,
Amazon.com, Rockpointe Broadcasting, Ernie Ball Corporation, the Queen of England, or
the Mexican school system. If your boss still needs to be convinced, further ammunition is
available at www.opensource.org and www.fsf.org.

The PHP license

The freeness of open source and Free software is guaranteed by a gaggle of licensing schemes,
most famously the GPL (Gnu General Public License) or copyleft. PHP used to be released
under both the GPL and its own license, with each user free to choose between them. This has
recently changed. The program as a whole is now released under its own extremely laissez-
faire PHP license on the model of the BSD license, whereas Zend as a standalone product is
released under the Q Public License (this clause applies only if you unbundle Zend from PHP
and try to sell it).

You can read the fine print about the relevant licenses at these Web sites:
4+ www.php.net/Ticense/
4+ www.mysql.com/doc/en/GPL_Ticense.html
4+ www.troll.no/gpl/annotated.html

Most people get PHP or MySQL via download, but you may have paid for it as part of a Linux
distribution, a technical book, or some other product. In that case, you may now be silently

disputing our assertion that PHP costs nothing. Here’s the twist: Although you can’t require a
fee for most open source software, you can charge for delivering that software in a more con-
venient format —such as by putting it on a disk and shipping the disk to the customer. You

can also charge anything the market will bear for being willing to perform certain services or
accept certain risks that the development team may not wish to undertake. For instance, you

7

8

Part | ¢+ PHP: The Basics

are allowed to charge money for guaranteeing that every copy of the software you distribute
will be virus-free or of reasonable quality, taking on the risk of being sued if a bunch of cus-
tomers get bad CD-ROMs that contain hard-drive-erasing viruses.

Usually, open source software users can freely choose the precisely optimal cost-benefit
equation for each particular situation: no cost and no warranties, or expensive but well sup-
ported, or something in between. No organized attempt has been made yet to sell service and
support for PHP (although presumably that will be one of the value-adds of Zend). MySQL AB
does sell support as part some of its licensing packages for the MySQL product. Other open
source products, such as Linux, have companies such as Red Hat standing by to answer your
questions, but the commercialization process is still in the early stages for PHP.

Ease of Use

PHP is easy to learn, compared to the other ways to achieve similar functionality. Unlike Java
Server Pages or C-based CGI, PHP doesn’t require you to gain a deep understanding of a
major programming language before you can make a trivial database or remote-server call.
Unlike Perl, which has been semijokingly called a “write-only language,” PHP has a syntax
that is quite easy to parse and human-friendly. And unlike ASP.NET, PHP is stable and ready
to solve your problems today.

Many of the most useful specific functions (such as those for opening a connection to an
Oracle database or fetching e-mail from an IMAP server) are predefined for you. A lot of
complete scripts are waiting out there for you to look at as you're learning PHP. In fact, it’s
entirely possible to use PHP just by modifying freely available scripts rather than starting
from scratch—you’ll still need to understand the basic principles, but you can avoid many
frustrating and time-consuming minor mistakes.

We must mention one caveat: Easy means different things to different people, and for some
Web developers it has come to connote a graphical, drag-and-drop, What You See Is What You
Get development environment. To become truly proficient at PHP, you need to be comfort-
able editing HTML by hand. You can use WYSIWYG editors to design sites, format pages, and
insert client-side features before you add PHP functionality to the source code. There are
even ways, which we’ll detail in Chapter 3, to add PHP functions to your favorite editing envi-
ronment. It’s not realistic, however, to think you can take full advantage of PHP’s capabilities
without ever looking at source code.

Most advanced PHP users (including most of the development team members) are diehard
hand-coders. They tend to share certain gut-level, subcultural assumptions — for instance,
that hand-written code is beautiful and clean and maximally browser-compatible and there-
fore the only way to go—that they do not hesitate to express in vigorous terms. The PHP
community offers help and trades tips mostly by e-mail, and if you want to participate, you
have to be able to parse plain-text source code with facility. Some WYSIWYG users occasion-
ally ask list members to diagnose their problems by looking at their Web pages instead of
their source code, but this rarely ends well.

That said, let us reiterate that PHP really is easy to learn and write, especially for those with
a little bit of experience in a C-syntaxed programming language. It’s just a little more involved
than HTML but probably simpler than JavaScript and definitely less conceptually complex
than JSP or ASP.NET.

Chapter 1 4+ Why PHP and MySQL?

If you have no relational database experience or are coming from an environment such as
Microsoft Access, MySQL's command line interface and lack of implicit structure may at first
seem a little daunting. Again, the word easy is relative. However, MySQL’s increasingly faithful
adherence to the ANSI SQL-92 standard and a comprehensive suite of external client pro-
grams, coupled with graphical administration tools such as PHPMyAdmin and the new
MySQL Control Center, will get even neophyte users up and running quickly compared to
other databases. None of these will substitute for learning a little theory and employing

good design practices, but that subject is for another chapter.

HTML-embeddedness

PHP is embedded within HTML. In other words, PHP pages are ordinary HTML pages that
escape into PHP mode only when necessary. Here is an example:

<HEAD>

KTITLE>Example.com greeting</TITLE>

</HEAD>

<BODY>

<P>Hello,

<?php

// We have now escaped into PHP mode.

// Instead of static variables, the next three lines
// could easily be database calls or even cookies;
// or they could have been passed from a form.

$firstname = 'Joyce';
$lastname = 'Park’';
$title = 'Ms.';

echo "$title $lastname”;
// 0K, we are going back to HTML now.
7>
We know who you are! Your first name is <?php echo
$firstname; ?2>.</P>

<P>You are visiting our site at <?php echo date('Y-m-d H:--1i:s");
IOLK/P>

<P>Here is a link to your account management page: <A
HREF="http://www.example.com/accounts/<?php echo
"$firstname$lastname”; ?>/"><?php echo $firstname; ?>'s account
management page</P>

</BODY>

</HTML>

When a client requests this page, the Web server preprocesses it. This means it goes through
the page from top to bottom, looking for sections of PHP, which it will try to resolve. For one
thing, the parser will suck up all assigned variables (marked by dollar signs) and try to plug
them into later PHP commands (in this case, the echo function). If everything goes smoothly,
the preprocessor will eventually return a normal HTML page to the client’s browser, as shown
in Figure 1-1.

9

] O Part | ¢+ PHP: The Basics

. Eile Edit \haw Go Bookmarks Tools Window Help Debug OA

o GO Q @ o |"\> http:iflocalhost/sent_code/ch1/greeting.php] [QSearch] CE;O

Hello, Ms. Park . We know who vou are! Your first name is Jovce.

You are visiting our site at 2002-07-29 00:52:42

|| Here 15 a link to your account management page: Joyee's account

Document: Done (0.82 secs) =l

Figure 1-1: A result of preprocessed PHP

If you peek at the source code from the client browser (select Source or Page Source from the
View menu, or right-click if you’re using the AOL browser), it will look like this:

<HEAD>
KTITLE>Example.com greeting</TITLE>
</HEAD>
<BODY>
<P>Hello,
Ms. Park
We know who you are! Your first name is Joyce.</P>

<P>You are visiting our site at 2002-04-21 19-34-24</P>

<P>Here is a link to your account management page: Joyce's account
management page</P>

</BODY>

</HTML>

This code is exactly the same as if you were to write the HTML by hand. So simple!
The HTML-embeddedness of PHP has many helpful consequences:

4 PHP can quickly be added to code produced by WYSIWYG editors.

4+ PHP lends itself to a division of labor between designers and scripters.

4+ Every line of HTML does not need to be rewritten in a programming language.

4 PHP can reduce labor costs and increase efficiency due to its shallow learning curve
and ease of use.

Perhaps the sweetest thing of all about embedded scripting languages is that they don’t need
to be compiled into binary code before they can be tested or used —just write and run. PHP
is interpreted (as are many newish computer languages), although the Zend Engine does

Chapter 1 4+ Why PHP and MySQL?

some behind-the-scenes precompiling into an intermediate form for greater speed with
complex scripts.

But what if you happen to want compilation? This can be desirable if you wish to distribute
nonreversible binaries so others can use the code without being able to look at the source.
The Zend team now offers a precompiler, Zend Encoder, which will deliver the code in a non-
reversible intermediate representation, as well as substantially speed up large complex PHP
scripts.

Cross-platform compatibility

PHP and MySQL run native on every popular flavor of Unix (including Mac OS X) and Windows.
A huge percentage of the world’s HTTP servers run on one of these two classes of operating
systems.

PHP is compatible with the three leading Web servers: Apache HTTP Server for Unix and
Windows, Microsoft Internet Information Server, and Netscape Enterprise Server (a.k.a.
iPlanet Server). It also works with several lesser-known servers, including Alex Belits’ fhttpd,
Microsoft’s Personal Web Server, AOLServer, and Omnicentrix’s Omniserver application
server. Specific Web-server compatibility with MySQL is not required, since PHP will handle
all the dirty work for you.

Table 1-2 shows a brief matrix of the possible OS/Web-server combinations.

Table 1-2: Operating Systems and Web Servers for PHP

Variables UNIX Windows

Flavors AIX, A/UX, BSDI, Digital UNIX/Tru64, Windows 95/98/ME
FreeBSD, HP-UX, IRIX, Linux, Mac OS X, Windows NT/2000/XP/2003
NetBSD, OpenBSD, SCO UnixWare,
Solaris, SunOS, Ultrix, Xenix, and more

Web servers Apache, thttpd, Netscape IIS, PWS, Netscape, Apache, Omni

Now that PHP runs on Macintosh, PHP is almost totally cross-platform. You can develop on
almost any client OS using your favorite tools and then upload your PHP scripts to a server
on almost any OS. We'll discuss the development process in more detail in Chapter 3.

Not tag-based

PHP is a real programming language. ColdFusion, by contrast, is a bunch of predefined tags,
like HTML. In PHP, you can define functions to your heart’s content just by typing a name and
a definition. In ColdFusion, you have to use tags developed by other people or go through the
Custom Tag Extension development process.

As a witty PHP community member once said, “ColdFusion makes easy things easy, and
medium-hard things impossible.” And as every programmer will agree, once you experience
the power of curly brackets and loops, you never go back to tags.

11

12

Part | ¢+ PHP: The Basics

Stability

The word stable means two different things in this context:

4+ The server doesn’t need to be rebooted often.

4+ The software doesn’t change radically and incompatibly from release to release.
To our advantage, both of these connotations apply to both MySQL and PHP.

Apache Server is generally considered the most stable of major Web servers, with a reputation
for enviable uptime percentages. Although it is not the fastest nor the easiest to administer,
once you get it set up, Apache HTTP Server seemingly never crashes. It also doesn’t require
server reboots every time a setting is changed (at least on the Unix side). PHP inherits this
reliability; plus, its own implementation is solid yet lightweight. In a two-and-a-half-month
head-to-head test conducted by the Network Computing labs in October 1999, Apache Server
with PHP handily beat both IIS/Visual Studio and Netscape Enterprise Server/Java for stability
of environment.

PHP and MySQL are also both stable in the sense of feature stability. Their respective develop-
ment teams have thus far enjoyed a clear vision of their project and refused to be distracted
by every new fad and ill-thought-out user demand that comes along. Much of the effort goes
into incremental performance improvements, communicating with more major databases, or
adding better session support. In the case of MySQL, the addition of reasonable and expected
new features has hit a rapid clip. For both PHP and MySQL, such improvements have rarely
come at the expense of compatibility. Applications written in PHP3 will function with little or
no revision for PHP4 and 5. And because of the standards-based SQL support, MySQL 3.x
databases are easily moved to more current versions (and most likely always will be).

Speed

PHP is pleasingly zippy in its execution, especially when compiled as an Apache module on
the Unix side. The MySQL server, once started, executes even very complex queries with
huge result sets in record-setting time.

PHP5 is much faster for almost every use than CGI scripts. There is an unfortunate grain of
truth to the joke that CGI stands for “Can’t Go Instantly.” Although many CGI scripts are writ-
ten in C, one of the lowest-level and therefore speediest of the major programming languages,
they are hindered by the fact that each request must spawn an entirely new process after
being handed off from the http daemon. The time and resources necessary for this handoff
and spawning are considerable, and there can be limits to the number of concurrent pro-
cesses that can be running at any one time. Other CGI scripting languages such as Perl and
Tcl can be quite slow. Most Web sites have moved away from use of CGI for performance and
security reasons.

Although it takes a slight performance hit by being interpreted rather than compiled, this is
far outweighed by the benefits PHP derives from its status as a Web server module. When
compiled this way, PHP becomes part of the http daemon itself. Because there is no transfer
to and from a separate application server (as there is with ColdFusion, for instance) requests
can be filled with maximum efficiency:.

Although no extensive formal benchmarks have compared the two, much anecdotal evidence
and many small benchmarks suggest that PHP is at least as fast as ASP and readily outperforms
ColdFusion or JSP in most applications.

Chapter 1 + Why PHP and MySQL? 13

Open source licensing

We’ve already dealt with the cost advantages of open source software in the “Cost” section of
this chapter. The other major consequence of these licenses is that the complete source code
for the software must be included in any distribution.

In fact, the Unix version of PHP is released only as source code; so far, the development team
has staunchly resisted countless pleas to distribute official binaries for any of the Unixes. At
first, new users (particularly those also new to Unix) tend to feel that source code is about as
useful as a third leg, and most vastly prefer a nice convenient rpm. But there are both prag-
matic and idealistic reasons for including folders full of pesky . c and . h files.

The most immediate pragmatic advantage is that you can compile your PHP installation with
only the stuff you really need for any given situation. This approach has performance and
security advantages. For instance, you can put in hooks to the database(s) of your choice.
You can recompile as often as you want: maybe when an Apache security release comes out,
or when you wish to support a new database application. By compiling a custom application
specifically suited to your system, or any given snapshot of your system, performance and
stability are increased over their already respectable baseline.

What sets open source software apart from its competitors is not just price but control.
Plenty of consumer software is now given away under various conditions. Careful scrutiny of
the relevant licenses, however, will generally reveal limits as to how the software can be used.
Maybe you can run it at home but not at the office. Perhaps you can load it on your laptop,
but you're in violation if you use it for business purposes. Or, most commonly, you can use it
for anything you want but forget about looking at the code —much less changing it. There are
even community licenses that force you to donate your improvements to the codebase but
charge you for use of the product at the end!

Caution Don't even think about coming back with a riposte that involves violating a software
license —we're covering our ears; we're not listening! Especially with the explosion in no-cost
software, there's just no good reason to break the law. Besides, it's bad karma for software
developers. What goes around, comes around, don't ya know?

For all their openness, the licenses for MySQL and PHP are quite different. You should not
assume that you understand the MySQL terms simply because you have read the PHP
license. They have many similarities to be sure but also some radically different provisions,
especially when it comes to when you should pay.

Table 1-3 shows examples of the various source and fee positions in today’s software

marketplace.
Table 1-3: Source/Fee Spectrum
Fee Structure Closed Source Controlled Source Open Source
Fee for all uses Macromedia ColdFusion - -
Fee for some uses Corel WordPerfect Sun Java MySQL

No fee for any use Microsoft IE Sun StarOffice GPLed software

14

Part | ¢+ PHP: The Basics

Genuinely open source software like PHP cannot seek to limit the purposes for which it is
used, the people allowed to use it, or a host of other factors. The most critical of these rights
is the one allowing users to make and distribute any modifications along with the original
software. In the most extreme case, where one or more developers decide to release a sepa-
rate, complete version of a piece of software, this practice is referred to as code forking.

If somewhere down the road you develop irreconcilable differences with the PHP develop-
ment team, you can take every bit of code they’ve labored over for all these years and use it
as the basis of your own product. You couldn’t call it PHP, and you’d have to include stuff in
your documentation that gave due credit to the authors —the rationale is that source code
distributions make it next to impossible for any single person or group to hijack a program to
the detriment of the community as a whole, because every user always has the power to take
the source and walk.

Users new to the open source model should be aware that this right is also enjoyed by the
developers. At any time, Rasmus, Zend, and company can choose to defect from the commu-
nity and put all their future efforts into a commercial or competing product based on PHP. Of
course, the codebase up to this point would still be available to anyone who wanted to pick
up the baton, and for a product as large as PHP that could be a considerable number of vol-
unteer developers.

This leads to one other oft-forgotten advantage of open source software: You can be pretty
sure the software will be around in a few years, no matter what. In these days of products
with the life spans of morning glories, it’s hard to pick a tool with staying power. Fans of OS/2,
Amiga, NeXT, Newton, Firefly, Netscape, BeOS, Napster, and a host of other once-hot technolo-
gies know the pain of abandonment when a company goes belly-up, decides to stop support-
ing a technology, or is sold to a buyer with a new agenda. The open source model reduces the
chances of an ugly emergency port in a couple of years and thus makes long-term planning
more realistic.

Many extensions

PHP makes it easy to communicate with other programs and protocols. The PHP develop-
ment team seems committed to providing maximum flexibility to the largest number of users.

Database connectivity is especially strong, with native-driver support for about 15 of the most
popular databases plus ODBC. In addition, PHP supports a large number of major protocols
such as POP3, IMAP, and LDAP. PHP4 added support for Java and distributed object architec-
tures (COM and CORBA), making n-tier development a possibility for the first time. PHP5
extends this support even further, offering a fully incorporated GD graphics library and
revamped XML support with DOM and simpleXML.

Most things that PHP does not support are ultimately attributable to closed-source shops on
the other end. For instance, Microsoft has not thus far been eager to cooperate with open
source projects like PHP. Potential users who complain about lack of native Mac OS 9 or .NET
support on the PHP mailing list are simply misinformed about where the fault lies.

Fast feature development

Users of proprietary Web development technologies can sometimes be frustrated by the
glacial speed at which new features are added to the official product standard to support
emerging technologies. With PHP, this is not a problem. All it takes is one developer, a C

compiler, and a dream to add important new functionality. This is not to say that the PHP

Chapter 1 + Why PHP and MySQL? 15

team will accept every random contribution into the official distribution without community
buy-in, but independent developers can and do distribute their own extensions which may be
later folded into the main PHP package in more or less unitary form. For instance, Dan Libby’s
elegant xmlrpc-epi extension was adopted as part of the PHP distribution in version 4.1, a few
months after it was first released as an independent package.

PHP development is also constant and ongoing. Although there are clearly major inflection
points, such as the transition between PHP4 and PHP5, these tend to be most important deep
in the guts of the parser — people were actually working on major extensions throughout the
transition period without critical problems. Furthermore, the PHP group subscribes to the
open source philosophy of “release early, release often,” which gives developers many oppor-
tunities to follow along with changes and report bugs. Compare this release scheme to the
.NET transition, which has left developers with almost a year in which Microsoft is not really
improving IIS but has not yet released a prime-time version of .NET server.

It hasn’t always been the case that MySQL added new features in a timely fashion. It would
probably be fair to say that a significant chunk of PostgreSQL users are former MySQL users
frustrated by the lack of transaction support, for example. However, the 4.0 and 4.1 versions
have remedied this and other inequities. Transactions are in the software today, while subse-
lects and foreign keys are experimental but coming along nicely.

Popularity

PHP is fast becoming one of the most popular choices for so-called two-tier development
(Web plus data). Figure 1-2 charts growth since 1999.

; PHP: PHP Usage Stats - Microsoft Internet Explorer

file Edit View Favortes Tools Help
Sfack - = - (D 8 | Dseach [GiFavoites Pmeda F| - S W S & 3@
Address !@J Fittp:f fusais. phip.rietfusage. php | |Jlees »|

Usage Stats for November 2003

PHP 14,528,748 Domains, 1,328,604 1P Addresses
Source: Netoraft

PHP Usage for Nov 2003

16000000 -
14000000 I
12000000 I
10000000 I
SO00000 i
E000000 I

400000

@Me
Figure 1-2: Netcraft survey of PHP use

16

Part | ¢+ PHP: The Basics

Although it’s not evident from this graphic, the period October 1998 through October 1999
showed 800 percent growth in the number of domains. As Web sites become even more ubig-
uitous, and as more of them go beyond simple static HTML pages, PHP is expected to gain
ground quickly in absolute numbers of users.

Although it’s somewhat more difficult to get firm figures, it seems that PHP is also in a strong
position relative to similar products. According to a 2002 Zend report, Microsoft Active
Server Pages technology appears to be utilized on about 24 percent of Web servers, whereas
ColdFusion is implemented on approximately 4 percent of surveyed domains. PHP is used on
over 24 percent of all Web servers, as measured by a larger and more accurate sample, and is
now said to be the most popular server-side scripting language on the Web.

Active Server Pages and ColdFusion used to be highly visible because they tended to be dis-
proportionately selected by large e-commerce sites. However, the realities of the Web finally
caught up with us—and it is the flashy e-commerce sites that were disproportionately
thinned by the dot-bomb crash. It is now becoming clearer that most Web sites are informa-
tional rather than direct revenue centers and, therefore, do not repay high development
expenses in an immediate way. PHP enjoys substantial advantages over its competitors in
this development category, which has turned out to be the majority of the Internet.

Not proprietary

The history of the personal computer industry to date has largely been a chronicle of propri-
etary standards: attempts to establish them, clashes between them, their benefits and draw-
backs for the consumer, and how they are eventually replaced with new standards.

But in the past few years the Internet has demonstrated the great convenience of voluntary,
standards-based, platform-independent compatibility. E-mail, for example, works so well
because it enjoys a clear, firm standard to which every program on every platform must
conform. New developments that break with the standard (for example, HTML-based e-mail
stationery) are generally regarded as deviations, and their users find themselves having to
bear the burdens of early adoption.

Furthermore, customers (especially the big-fish businesses with large systems) are fed up
with spending vast sums to conform to a proprietary standard — only to have the market
uptake not turn out as promised. Much of the current momentum toward XML and Web ser-
vices is driven by years of customer disappointment with Java RMI, CORBA, COM, and even
older proprietary methods and data formats.

Right now, software developers are in a period of experimentation and flux concerning propri-
etary versus open standards. Companies want to be sure they can maintain profitability while
adopting open standards. There have been some major legal conflicts related to proprietary
standards, which are still being resolved. These could eventually result in mandated changes
to the codebase itself or even affect the futures of the companies involved. In the face of all
this uncertainty, a growing number of businesses are attracted to solutions that they know
will not have these problems in the foreseeable future.

PHP is in a position of maximum flexibility because it is, so to speak, antiproprietary. It is not
tied to any one server operating system, unlike Active Server Pages. It is not tied to any pro-
prietary cross-platform standard or middleware, as Java Server Pages or ColdFusion are. It is
not tied to any one browser or implementation of a programming language or database. PHP
isn’t even doctrinaire about working only with other open source software. This independent
but cooperative pragmatism should help PHP ride out the stormy seas that seem to lie ahead.

Chapter 1 + Why PHP and MySQL? 17

Strong user communities

PHP is developed and supported in a collaborative fashion by a worldwide community of
users. Some animals (such as the core developers) are more equal than others —but that’s
hard to argue with, because they put in the most work, had the best ideas, and have managed
to maintain civil relationships with the greatest number of other users.

The main advantage for most new users is technical support without charge, without bound-
aries, and without the runaround. People on the mailing list are available 24/7/365 to answer
your questions, help debug your code, and listen to your gripes. The support is human and
real. PHP community members might tell you to read the manual, take your question over to
the appropriate database mailing list, or just stop your whining— but they’ll never tell you to
wipe your C drive and then charge you for the privilege. Often, they’ll look at your code and
tell you what you're doing wrong or even help you design an application from the ground up.

As you become more comfortable with PHP, you may wish to contribute. Bug tracking, offer-
ing advice to others on the mailing lists, posting scripts to public repositories, editing docu-
mentation, and, of course, writing C code are all ways you can give back to the community.

MySQL, while open-source licensed for nonredistributive uses, is somewhat less community
driven in terms of its development. Nevertheless, it benefits from a growing community of
users who are actively listened to by the development team. Rarely has a software project
responded so vigorously to community demand. And the community of users can be
extremely responsive to other users who need help. It’s a point of pride with a lot of SQL
gurus that they can write the complicated queries that get you the results you are looking for
but had struggled with for days. In many cases, they’ll help you for nothing more than the
enduring, if small, fame that comes with the archived presence of their name on Google
Groups. Try comparing that with $100 per incident support.

Summary

PHP and MySQL, individually or together, aren’t the panacea for every Web development
problem, but they present a lot of advantages. PHP is built by Web developers for Web devel-
opers and supported by a large and enthusiastic community. MySQL is a powerful standards-
compliant RDBMS that comes in at an extremely competitive price point, even more so if you
qualify for free use. Both technologies are clear-cut cases of the community banding together
to address its own needs.

+ o+ 0+

Server-Side Web
Scripting

This chapter is about server-side scripting and its relationship to
both static HTML and common client-side technologies. By the
end, you can expect to gain a clear understanding of what kinds of
things PHP can and cannot do for you, along with a general under-
standing of how it can interact with client-side code (JavaScript, Java
applets, Flash, style sheets, and the like).

Static HTML

The most basic type of Web page is a completely static, text-based
one, written entirely in HTML. Take the simple HTML-only page that
Figure 2-1 shows as an example.

The following example displays the source code for the Web page
shown in Figure 2-1:

<HTML>
<HEAD>

<TITLE>Books about Open Source and Free Software</TITLE>
<META NAME=KEYWORDS CONTENT="Open Source, Free Software,

software development, books">
</HEAD>

<BODY>
<CENTER><H3>Books about Open Source and Free
Software</H3></CENTER>

<H5>History and background</H5>

Hackers: heroes of the

computer revolution by Levy, Steven (1984)
Just for Fun: the
story of an

accidental revolutionary by Torvalds, Linus and David

Diamond (2001)

Free as in
Freedom:

Richard Stallman's crusade for Free Software by
Williams,

—]

¢+ s+
In This Chapter

Understanding static
and dynamic Web

pages

Client-side versus server-
side scripting

An introduction to
server-side scripting

¢+ 0+ o+

20

Part | ¢+ PHP: The Basics

Sam (2002)

<H5>Philosophy and inspiration</H5>

The Cathedral and the
Bazaar by Raymond, Eric S. (1999)

0pen Source: the
unauthorized white papers by Rosenberg, Donald K.
(2000)

<H5>Technical grounding</H5>

Design of the Unix Operating
System by Bach, Maurice J. (1987)

0pen Source Development with CVS,
2nd edition by Bar, Moshe and Karl Franz Fogel (2001)
Red Hat Linux 7.2 Bible by
Negus, Christopher (2001)

</BODY>
</HTML>

2

Search

3

Refrezh

Home: ‘

Books about Open Source and Free Software
History and hackg round
» Hackers: heroes of the computer revolution by Levy, Steven (1284)
o Just for Fun: the story of an accidental revolutionary by Torvalds, Linus and Dawnd Diamoend (2001)
o Free as in Freedor Richard Staliman's crusade for Free Soffware by Wiliams, Sam (2002)
Philosophy and inspiration

o The Cathedral and the Bazaar by Raymond, Eric 5. (1999)
s Open Source: the unauthorized white papers by Rosenberg, Donald E. (2000)

Technical grounding
o Design of the Unoe Operating System by Bach, Maurice T (1987)

o Open Source Development with CV3, 2nd edition by Bar, Moshe and Earl Franz Fogel (2001)
o Eed Hat Linug 7 2 Bible by IMegus, Christopher (2001)

‘&) Done [[| Internet

kS

Figure 2-1: A static HTML example

After a client computer makes an HTTP request for this page from the server machine across
the Web or an intranet, as shown in Figure 2-2, the server simply passes along whatever text

it finds in the file.

Chapter 2 4+ Server-Side Web Scripting

Web server machine
(handling mysite.org)

........................ >

Web server filesystem
/home/httpd/mysite

PP page.html

HTTP request for
www.mysite.org/page.html

HTML document

<HTML><HEAD>

<TITLE><This page's title</TITLE>...

The internet

User's machine

Display on browser

Figure 2-2: A simple HTTP request and response

After this data gets back to the client machine, the browser does its best to render the page
according to its understanding of precisely what kind of code it is, user preferences, monitor
size, and other factors. The contents of the HTML file on the server are exactly the same as

the source code of the page on the client.
Very plain, static HTML, such as the code in this example, offers certain advantages, such as

the following:

4+ Any browser can display it adequately.

4+ Many other kinds of devices can display it adequately.

4+ Each request is fulfilled quickly and uses minimal resources.

4+ HTML is easy to learn or produce automatically.

4+ Web developers can make small changes to individual pages quickly.

21

22 Part | ¢+ PHP: The Basics

"Note

Of course, static HTML has its downsides, including the following limitations:
4+ It makes control of design and layout difficult.
4 It doesn’t scale up to a large number of pages.
4+ It’s not very interactive.
4 It makes including meaningful metadata about the page difficult.
4 It can’t cope with rapidly changing content or personalization.

For all these reasons, static HTML has become a mark of amateurishness or ideological rigor
(as in the home pages of computer science professionals who believe all Web pages should
conform to HTML 3.1 and be readable on all devices).

Numerous additional technologies were developed in response to these limitations, including
JavaScript, VBScript, Cascading Style Sheets, and Java applets on the client side, and server-
side scripting offering features such as database connectivity. Many server-side scripting lan-
guages, such as PHP, also come with full support for XML and XSL, both of which appear as
part of various other specifications (XHTML, XSLT, XPath, ICE, and so on).

You can save yourself a lot of headaches if you take the time to understand exactly what
functionality each of these technologies can and can’t be expected to add to your Web site.
The basic question to ask yourself about any given Web site task: Where is the computation
happening — on the client or on the server?

What does dynamic mean? A basic and often-repeated distinction exists between static and

et dynamic Web pages — but dynamic can mean almost anything beyond plain-vanilla HTML.

Web developers use the term to describe both client- and server-side functions. On the
client, it can mean multimedia presentations, scrolling headlines, pages that update them-
selves automatically, or elements that appear and disappear. On the server, the term gener-
ally denotes content assembled on the fly, at the time the page is requested. If you display
the current date and time on a page, for example, the content will change from one occasion
to another and thus will be dynamic.

Client-Side Technologies

The most common additions to plain HTML are on the client side. These add-ons include for-
matting extensions such as Cascading Style Sheets and Dynamic HTML,; client-side scripting
languages such as JavaScript; VBScript; Java applets; and Flash. Support for all these tech-
nologies is (or is not, as the case may be) built into the Web browser. They perform the tasks
described in Table 2-1, with some overlap.

Table 2-1: Client-Side HTML Extensions

Client-Side Technology Main Use Example Effects
Cascading Style Sheets, Formatting pages: controlling Overlapping, different colored/sized
Dynamic HTML size, color, placement, layout, fonts

timing of elements Layers, exact positioning
Client-side scripting Event handling: controlling Link that changes color on mouseover
(JavaScript, VBScript) consequences of defined

events Mortgage calculator

Chapter 2 4+ Server-Side Web Scripting

Client-Side Technology Main Use Example Effects

Java applets Delivering small standalone Moving logo
applications Crossword puzzle

Flash animations Animation Short cartoon film

The page shown in Figure 2-3 is based on the same content as that in Figure 2-1. As you can
see from the following source code, however, this example adds style sheets and client-side
scripting as well as somewhat more sophisticated HTML.

Al TechBizBookGuide: Open Source and Free Software - Microsoft Interet Explorer

| File Edit View Favorites Tools Help | o |
‘ & .o D 4] A Q 4 = i

 Back Forard Stop Refresh Home | Search Favorites Histoy | |
| Address [htip#127.001 /opensource_css himi =] 6o | | Links

Open Source and Free Software

TechBiz

BookGuide History and background

« Hackers: heroes of the computer revolution by Levy,
HOME Steven (1984)
. f f by
Torvalds, Linus and David Diamond (2001)

[Morwpes B ° Free as in Freedom: Richard Stallman's crusade for Free
Software by Williams, Sam (2002)

Philosophy and inspiration
« The Cathedral and the Bazaar by Raymond, Eric 5. (1999)

« Open Source: the unauthorized white papers by
Rosenberg, Donald K. (20003 —

Technical grounding

« Design of the Unix Operating System by Bach, Maurice 1.
1087

€] hitp://127.0.0.1/bkTorvaldsFun.htmi [[| Internet

&

Figure 2-3: An example of HTML plus client-side scripting

<HTML>

<HEAD>

<TITLE>TechBizBookGuide: Open Source and Free Software</TITLE>
<META NAME=KEYWORDS CONTENT="Open Source, Free Software,
software development, books">

<STYLE TYPE="text/css">

<h--

BODY, P {color: black; font-family: verdana; font-size: 10
pt}

H1 {margin-top: 10; color: white; font-family: arial;

font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family:

25

24 Part| + PHP: The Basics

verdana; font-size: 18 pt}

A:1ink, A:visited {color: #000080; text-decoration: none}
.roll {1

A.roll:hover f{color: #8FBc8F}

-->

</STYLE>

<SCRIPT LANGUAGE="JavaScript">
<h--
function ListVisit(form, i) {
// get the URL from options
var site = form.elements[i].selectedIndex;
// if it's not the first (null) option, go there
if(site >=1) {
top.location = form.elements[i].options[sitel.value;

}
// and then reselect the null (it functions as a label)
form.elements[i].selectedIndex = 0;

}

[1-=>
</SCRIPT>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH=100%>
<TR>
<TD BGCOLOR="4fFOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
{TABLE CELLPADDING=5 WIDTH=100%>
<TR ALIGN=CENTER>
<TD BGCOLOR="4#000080">
<H1>TechBiz
BookGuide</H1>

</TD></TR></TABLE>

HOME<L/B>

<FORM action="">
<SELECT NAME="topics" onChange="ListVisit(this.form, 0)">
<OPTION>More topics
<OPTION VALUE="commercial.html">Commercial software
<OPTION VALUE="hardware.html">Hardware
<OPTION VALUE="telephony.html">Telephony
</SELECT></FORM>

</TD>
<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<CENTER><H3>0pen Source and Free Software</H3></CENTER>

<H5>History and background</H5>

Hackers: heroes
of the computer revolution by Levy, Steven (1984)

Chapter 2 4+ Server-Side Web Scripting

Just for Fun: the
story of an accidental revolutionary by Torvalds, Linus and
David Diamond (2001)

Free as in
Freedom: Richard Stallman's crusade for Free Software

by Williams, Sam (2002)

<H5>Philosophy and inspiration</H5>

The Cathedral
and the Bazaar by Raymond, Eric S. (1999)

0pen Source:
the unauthorized white papers by Rosenberg, Donald K.
(2000)

<UL

<H5>Technical grounding</H5>

Design of the Unix
Operating System by Bach, Maurice J. (1987)

0pen Source Development
with CVS, 2nd edition by Bar, Moshe and Karl Franz Fogel
(2001)

Red Hat Linux 7.2
Bible by Negus, Christopher (2001)

</TD>
</TR></TABLE>
</BODY>
</HTML>

Unfortunately, the best thing about client-side technologies is also the worst thing about
them: They depend entirely on the browser. Wide variations exist in the capabilities of each
browser and even among versions of the same brand of browser. Individuals can also choose
to configure their own browsers in awkward ways: Some people disable JavaScript for secu-
rity reasons, for example, which makes it impossible for them to view sites that overuse
JavaScript for navigation (as we deliberately did in the preceding code sample).

Furthermore, many consumers are very slow to upgrade their browsers for reasons of cost or
technical anxiety or both. The savvy Web developer should also consider the implications of
device-based browsing, universal accessibility, and a global audience. The fact that the huge
mass-market sites trying to reach the widest audiences, such as Yahoo! and Amazon, con-
tinue to resist using style sheets and JavaScript more than seven years after these standards
were adopted is no accident. Against the urging of the World Wide Web Consortium, many
sites continue to stubbornly cling to their FONT tags and BGCOLOR attributes as the only way
to survive in the face of customers who insist on using AOL 3.0 on five-year-old Macintoshes
with 13-inch monitors. The stubborn unwillingness of the public to upgrade is the bane of
client-side developers, causing them to frequently suffer screaming nightmares and/or exis-
tential meltdowns in the dark, vulnerable hours before dawn. The bottom-line irony is that,

25

26

Part | ¢+ PHP: The Basics

"Note

even after almost ten years of explosive Web progress, the only thing that a developer can
absolutely, positively know that the client is going to see is plain text-based HTML (or, rather,
the subset of HTML that’s widely supported and has stood the tests of time and usefulness).

Finally, client-side technologies cannot do anything that requires connecting to a back end
server. JavaScript cannot assemble a customized drop-down list on the fly from user prefer-
ences stored in a database —if a change is needed in the list, the Web developer must go in
and edit the page by hand. (Server-side JavaScript does exist, but no one much uses it.) This
gap is filled by server-side scripting.

In summation, anything to do with layout or browser events happens on the client. Generally
speaking, anything that looks cool or depends on the movements of the mouse is client-side.
The faster you see some event happening, the more likely that the client is handling it,
because high speed indicates that no request to and download from the server is necessary.

Java applets, also known as client-side Java, are considerably less dependent on the

et browser than are other client-side technologies. As the name suggests, applets are complete

little Java applications delivered across the Internet. But instead of interacting directly with
the client's operating system as do applications that written in other programming lan-
guages, Java applets run on a piece of middleware known as a Java Virtual Machine. You can
think of the JVM as an operating system living on top of your real operating system, like the
aliens taking over human bodies in a gazillion cheesy sci-fi movies. Most recent browsers
incorporate a JVM, and you can also download one separately. This division of labor enables
applets to use the rendering capabilities of a browser without being limited to the browser’s
relatively puny functionality.

Applets have suffered under an early reputation for picayune pointlessness because they
were initially used for a category of thing that we might term dancing Chihuahuas —logos
that look as if they're made out of gelatin, scrolling headlines, bouncing links, and other
headache-inducing frivolities. Luckily, applets have since been redeemed by useful, human-
istic purposes such as crossword puzzles, Tower of Hanoi simulations, and virtual ways to try
on ensembles of clothing and accessories.

Server-Side Scripting

Figure 2-4 shows a schematic representation of a server-side scripting data flow.

Client-side scripting is the glamorous, eye-catching part of Web development. In contrast,
server-side scripting is invisible to the user. Pity the poor server-side scripters, toiling away
in utter obscurity, trapped in the no-man’s land between the Web server and the database
while their arty brethren brazenly flash their wares before the public gaze.

Server-side Web scripting is mostly about connecting Web sites to back end servers, such as
databases. This enables the following types of two-way communication:

4+ Server to client: Web pages can be assembled from back end-server output.
4+ Client to server: Customer-entered information can be acted upon.

Common examples of client-to-server interaction are online forms with some drop-down lists
(usually the ones that require you to click a button) that the script assembles dynamically on
the server.

Chapter 2 4+ Server-Side Web Scripting

Web server machine
(handling mysite.org) HTML
Web request Scripting B::rl‘(,;er:d
u .
s server engine (database,
/ mail, etc)
File system (sorver-side
HTML script
page.php
The internet
HTTP request for HTML
www.mysite.org/page.php | page
User's machine

Display on browser

Figure 2-4: Server-side tasks

Server-side scripting products consist of two main parts: the scripting language and the
scripting engine (which may or may not be built into the Web server). The engine parses and
interprets pages written in the language.

Often, the same company or team develops both parts for use only with each other —PHP3
and ColdFusion are both examples of this practice. However, exceptions to this rule do exist.
Java Server Pages (JSP), for example, are written in a standard programming language rather
than in a special-purpose scripting language, and third parties (for example, Macromedia
JRun, Apache Tomcat) have developed several interchangeable scripting engines that can be
used to run JSP code on a Web site.

In theory, Active Server Pages enables you to use almost any scripting language and one of
several matching ActiveX scripting engines (although, in practice, using anything but the
Windows/IIS/VBScript/JScript combination is highly problematic). Since version 4.0, PHP is
also a bikini scripting technology, because the scripting engine (Zend) is theoretically separa-
ble from the PHP programming language.

28

Part | ¢+ PHP: The Basics

Figure 2-5 shows a simple example of server-side scripting— a page assembled on the fly
from a database, followed by the server-side source and the client-side source. We include
database calls (which we don’t get around to explaining until Part II of this book) and leave
out some of the included files, because we intend this example to show the final product of
PHP rather than serve as a piece of working code.

| File Edit View Favorites Tools Help
‘ . (2] ¢ Q £ X i
_ Back Forard Stop FRefrash Home | Search Faworites Histoy | |
_;_iﬂ_c_lress] hites//127.0.011/techbizback pivg Targ=ins j @60 || Links
|
U8 Books About Linux
BookGuide
Qriginally the hobby of a Finnish university student, Linux (aka
HOME GnufLinue) Is now the fastest-growing operating system on
the planet.
More
Groups
L Just for Fun: the story of an Linus Torvalds and
éré“g(accidental revolutionary David Diamond
Apache |Red Hat Linux 7.2 Bible Christopher Megus
B [The Hacker Ethic Pekka Himanen
Wiew by... -| Febel Code: Linux and the Open
Source revolution Glyr: Moocy
- =l
&) | ’_|‘ Internat Y

Figure 2-5: Server-side scripting example

The following PHP code shows the source on the server:

<HTML>
<HEAD>
<TITLE>TechBizBookGuide example from server</TITLE>
<?php include_once("tbbg-style.css"); ?>
<?php include_once("javascript.inc"); ?>
</HEAD>
<BODY>
<?php
include_once("tbbg-navbar.txt");
$org = $_GET['org'];
7>
<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<TABLE CELLPADDING=5 WIDTH=100%><TR><TD ALIGN=LEFT
VALIGN=MIDDLE>
<H2>Books about <?php echo $org;
?></H2>
</TD></TR>
<TR>TD WIDTH=50% ALIGN=LEFT>
<?php
$dbh =

//passed in from URL

mysql_connect('localhost"',
to open database");

'mysqluser') or die("Unable

Chapter 2 4 Server-Side Web Scripting 29

mysql_select_db("techbizbookguide") or die("Unable to access
database");
$query = "SELECT Blurb FROM Org WHERE OrgName = '$org'";
$qresult = mysql_query($query) or die(mysqgl_error());
$blurb = mysql_fetch_array($qresult) or die(mysql_error());
print("$blurb[0]1");
2>
</TD></TR>
<TR>XTD ALIGN=LEFT>
<TABLE BORDER=1 CELLPADDING=3>
<?php
$query2 = "SELECT ID, Title, AuthorFirst, Authorlast
FROM bookinfo
WHERE OrgName="'$org'
ORDER BY AuthorLast";
$qresult2 = mysql_query($query2) or die(mysql_error());
while ($titlelist = mysql_fetch_array($qresult2)) {
$bookID = $titlelist[0];
$title = $titlelist[1];
$authorfirst = $titlelist[2];
$authorlast = $titlelist[3];
print("<TR><TD><A HREF=\"book.php?bn=$bookID\"
class=\"rol1\"> $title</TD><TD>$authorfirst
$authorlast</TD>");
}?>
</TR></TABLE>
</TD></TR></TABLE>
</TD></TR>/TABLE>
</BODY></HTML>

After the preceding PHP source code is parsed by the PHP scripting engine, the following
client-side code will be produced by the Web server and sent to the browser.

<HTML>

<HEAD>

<TITLE>TechBizBookGuide example from client</TITLE>
<STYLE TYPE="text/css">

<l--

BODY {color: black; font-family: verdana; font-size: 10 pt}
H1 {margin-top: 10; color: white; font-family: arial;
font-size: 12 pt}

H2 {margin-bottom: -10; color: black; font-family:

verdana; font-size: 18 pt}
A:Tink, A:visited {color: #000080; text-decoration: none}
.roll { 1
A.roll:hover f{color: 008080}
-
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
<h--
function ListVisit(form, i) {
// get the URL from options
var site = form.elements[i].selectedIndex;

30 Part| 4+ PHP: The Basics

// if it's not the first (null) option, go there
if(site >=1) {
top.location = form.elements[i].options[site].value;
}
// and then reselect the null (it functions as a label)
form.elements[i].selectedIndex = 0;
}
//-->
</SCRIPT>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
<TABLE CELLPADDING=5 WIDTH=100%>
<TR ALIGN=CENTER>
<TD BGCOLOR="4000080">
<H1>TechBiz
BookGuide</H1>
</TD>S/TR>S/TABLED

HOME

More

Groups

<A HREF="techbizbook.php?org=Tinux"
class="rol1">Linux

BSD

<A HREF="techbizbook.php?org=apache"
class="rol1">Apache

PHPL/B>

<FORM action="">
<Select onChange="ListVisit(this.form, 0)">
<OPTION>View by...
<OPTION VALUE="author.php">Author
<OPTION VALUE="people.php">People
<OPTION VALUE="themes.php">Themes
<OPTION VALUE="role.php">Roles
<OPTION VALUE="size.php">Group size
</SELECT></FORM>

</TD>
<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<TABLE WIDTH=100% CELLPADDING=15><TR><TD ALIGN=LEFT
VALIGN=MIDDLE>
<H2>Books About Linux</H2>
</TD></TR>
<TR>XTD WIDTH=50% ALIGN=LEFT>Originally the hobby of a
Finnish university student, Linux (aka Gnu/Linux) is now the
fastest-growing operating system on the planet.</TD></TR>
<TR><TD ALIGN=LEFT>

Chapter 2 4 Server-Side Web Scripting 31

<TABLE BORDER=1 CELLPADDING=3>

<TR><TD>Just for
Fun: the story of an accidental
revolutionary</TD><TD>Linus Torvalds and David Diamond</TD>

<TR><TD>Red Hat
Linux 7.2 Bib1e</TD><TD>Christopher Negus</TD>

<TR><TD>The Hacker
Ethic</TD><TD>Pekka Himanen</TD>

<TR><TD>Rebel Code:
Linux and the Open Source revolution</TD><TD>Glyn
Moody</TD>

</TR></TABLE>

</TD>S/TR>K/TABLED

</TD>S/TR>S/TABLED
</BODY></HTML>

This particular page isn’t significantly more impressive to look at than the plain HTML ver-
sion at the beginning of the chapter. Passing one different variable, however, results in the
automatic generation of any number of unique pages —in this case, pages listing the books
by criteria other than the author’s last name — without any further work. If we add some new
books about another company to the database, these lists automatically get updated to
reflect the new data on each subsequent page load.

As you can see from these two different source-code listings, you cannot view server-side
scripts from the client. All the heavy lifting happens before the code gets shoved down the
pipe to the client. After emerging from the Web server, the code appears on the other end as
normal HTML and JavaScript, which also means that you can’t tell which server-side script-
ing language was used unless something in the header or URL gives it away (which usually is
the case, as the page you are requesting often ends with . jsp or .php). These scripts, inci-
dentally, were written in PHP using the MySQL database as back end; you can learn all about
these techniques in Part II of this book.

Server-side or Client-side?

There are client-side methods and server-side methods to accomplish many tasks. When sending
e-mail, for example, the client-side way is to open up the mail client software with a pread-
dressed blank e-mail message after the user clicks a MAILTO link. The server-side method is to
make the user fill out a form, and the contents are formatted as an e-mail that gets sent via an
SMTP server (which very well could be the same machine as the server-side script is executing
on). You can also choose between client methods and server methods of browser-sniffing,
form-validation, drop-down lists, and arithmetic calculation. Sometimes you see subtle but
meaningful differences in functionality (server-side drop-downs can be assembled dynamically;
client-side cannot) but not always.

How to choose? Know your audience. Server-side methods are generally a bit slower at runtime
because of the extra transits they must make, but they don’t assume anything about your visitor's
browser capabilities and take less developer time to maintain. These qualities make them good
for mass-market and educational sites. If you're one of the lucky few developers who's absolutely
positive that your visitors all have up-to-date browsers and good throughput, you can feel free to
go wild with the scripting and graphics. Finally, remember that you can use PHP to generate both
static HTML and JavaScript — thus enjoying the best of both worlds, as we explain in Chapter 38.

32 Part| 4+ PHP: The Basics

" Note Recent developments in programming languages are increasingly blurring the difference
g between programming and scripting. PHP, for example, definitely uses most of the same
control structures as other programming languages do. Fully interpreted HTML-embedded
languages such as ASP, however, are still considered to be on the scripting side of the line,
whereas separately compiled binaries are a definite mark of programming. But because PHP
since version 4 is dynamically compiled, it’s officially a real programming language —and
don't let anyone tell you otherwise. This change accounts for much of the screaming speed
of PHP nowadays, which moves into the same class as Perl.

What Is Server-Side Scripting Good for?

The client looks good, but the server cooks good. What server-side scripting lacks in eye-
candy sex appeal, it more than makes up for in sheer usefulness. Most Web users probably
interact with the products of server-side scripting on a daily, if not an hourly, basis.

One category of things that server-side scripting just absolutely can’t help you with is real-
time, 3-D shoot-’em-ups. The more immediately responsive and graphics-intensive a project
needs to be, the less suitable (and capable) PHP is for it. At the moment, the Web is simply
too slow a channel for these purposes (although broadband users are changing that).

On the other hand, server-side scripting languages such as PHP perfectly serve most of the
truly useful aspects of the Web, as such as the items in this list:

4+ Content sites (both production and display)

4+ Community features (forums, bulletin boards, and so on)

4 E-mail (Web mail, mail forwarding, and sending mail from a Web application)
4 Customer-support and technical-support systems

4 Advertising networks

4+ Web-delivered business applications

4 Directories and membership rolls

4+ Surveys, polls, and tests

4 Filling out and submitting forms online

4+ Personalization technologies

4+ Groupware

4+ Catalog, brochure, and informational sites

4+ Games (for example, chess) with lots of logic but simple/static graphics

4+ Any other application that needs to connect a backend server (database, LDAP, and so
on) to a Web server

PHP can handle all these essential tasks — and then some.

Chapter 2 4+ Server-Side Web Scripting

But enough rhetoric! Now that you have a firm grasp of the differences between client-side
and server-side technologies, you can get on to the practical stuff. In Chapter 3, we show you
how to get, install, and configure PHP for yourself (or find someone to do it for you).

Summary

To understand what PHP (or any server-side scripting technology) can do for you, having a
firm grasp on the division of labor between client and server is crucial. In this chapter, we
work through examples of plain, static HTML; HTML with client-side additions such as
JavaScript and Cascading Style Sheets; and PHP-generated Web pages as viewed from both
the server and the client.

Client-side scripting can be visually attractive and quickly responsive to user inputs, but any-
thing beyond the most basic HTML is subject to browser variation. Static client-side scripts
also require more developer time to maintain and update, because pages cannot be dynami-
cally generated from a constantly changing datastore. Server-side programming and scripting
languages, such as PHP, can connect databases and other servers to Web pages.

Since version 4, PHP differs architecturally from some other server-side tools and even from
PHP3. PHP is now dynamically compiled, which makes it faster at runtime. Since PHP4, the
scripting engine, Zend, has also been separate from the scripting language (PHP).

+ o+ ¢

33

Getting Started |
with PHP

+ 0+ 0+
In This Chapter

Deciding to outsource

In this chapter, we'll discuss the pros and cons of the various Web
or self-host

hosting options: outsourcing, self-hosting, and various compro-
mises. Then we’ll give detailed directions for installing PHP and finish
with a few tips on finding the right development tool. By the end of Finding the right ISP
the chapter, you should be ready to write your first script.
Avoiding common
hosting pitfalls

Hosting versus DIY

Installing PHP
The first major decision you need to make is: Who will host your PHP-
enabled Web site—you or a Web hosting service? Also, will you need Choosing a PHP
a separate development setup; if so, who will host it? If you’ve already development tool
made these decisions (and knew what you were doing), feel free to
skip right to the installation section of this chapter, “Installing PHP.” + + + +

The ISP option

Remote hosting is a very popular option as a large number of
companies — probably the vast majority of Webhosts today — offer
PHP-enabled Web sites. These are some basic pros and cons to keep
in mind.

The good

Outsourced hosting has a lot of advantages. The ISP will (in theory)
handle many of the crucial technical and administrative details nec-
essary to keep a site running, such as:

4+ Hardware
4+ Software upgrades

4 InterNIC registration, IP addressing, DNS
4+ Mail servers (POP/IMAP and SMTP)

4+ Bandwidth

4+ Power supply

4+ Backups

+

Security

36

Part | ¢+ PHP: The Basics

There’s no cozier feeling than the one you get just before you fall asleep, knowing that some
poor schmo at your ISP will be getting the pager message in the middle of the night if some-
thing goes wrong with your site. Lurking crackers, downed power lines, munged backup
tapes —all that is your host’s headache now. Especially for developers who have little
experience with system-administration issues, outsourcing can be a major time saver.

Web hosting is also extremely cost effective in most situations. PHP on Linux or one of the
BSDs is almost ridiculously inexpensive and widely available. Currently, only a few companies
offer PHP on an NT server platform, and some of them can be pricey. As the Miracles so
eloquently urge, “You better shop around (shop, shop ooh).”

The bad

Of course, there can be some serious disadvantages to Web hosting.

Most of these have to do with control. When you go ISP, you're basically a guest in someone
else’s house and have to play by his rules. Maybe you’re a welcome paying guest, a veritable
parlor boarder — but the fact remains that when you live in someone else’s establishment, you
can’t just strip down to your undies and lipsync your way through a high-volume version of
“Proud Mary” on the dining-room table whenever you feel like it. People are trying to eat, pal.

A few years ago, the most central issue for PHP was module versus CGI. PHP runs best and
fastest as a module (in other words, built into the Web server itself rather than running as a
separate process). Almost everyone prefers to use the module version if possible. Some ISPs
prefer to run the CGI version of PHP, however, because it’s much simpler to administer safely
on a shared Web server. Thankfully, as more Web hosting services set up shop, it’s much
easier to find one that will give you the module.

Currently, the biggest problem with outsourced PHP hosting is the nonavailability of other
programs. Obviously, ISPs have a strong incentive to control the programs you are allowed to
run on their servers. However, a lot of a PHP’s value comes from its job as a glue between
various services and protocols. It can be extremely frustrating to be prevented from running
a common and useful utility, such as ImageMagick or HTML Tidy, because your Web host
won'’t allow you to run unauthorized binaries or link to libraries outside your home directory.

Also, ISPs generally are not going to give you a choice of which version of PHP to use.
Sometimes they can be quite strict in which extensions they’ll build for you, and sometimes
they can be very slow to upgrade to a new major release. Therefore, some PHP packages —
even potentially some of the code in this book, if your host is a late adopter of PHP5 — will
not run for you unaltered.

A good rule of thumb is: The more common your needs are, the more possible and appropri-
ate it is to outsource your hosting. The more oddball and/or bleeding-edge your needs are,
the more you're going to be pushed to host your own whether you want to or not. Of course
the unspoken realpolitik addendum to this is: The bigger you are and the more money you
have to spend, the more weight you have available to throw around.

A few factors will make it considerably more difficult for you to find a hosting service:
4+ Generally objectionable content (hate, porn)
4+ Unsolicited mailings (aka spam)
4+ Content that attracts crackers (security info)
4+ Potentially legally actionable content
4 Need for unusual server-side hardware, OS, or software

4+ Need for super-high bandwidth, especially if unpredictable

Chapter 3 4+ Getting Started with PHP

If you're in one of these categories, you need to mention it up front —you’ll just get the boot
anyway once they find out. Chances are good that you won'’t get to do much shopping
around — if you can find any hosting situation, grab it before they change their minds and
look for a better deal later.

Finally, we must mention the most important negative factor of all: the frustration and anxiety
caused by a bad hosting experience. Words cannot describe the teeth-grinding, stomach-
churning, scream-suppressing state of existence caused by your site crashing just when
you've been featured on Slashdot, thereby making you look like a total technoposer as well

as losing all the good pub you so richly deserve.

That’s not even mentioning more common problems such as lost e-mail, disappearing DNS,
unexplained site outages, deleted databases (this actually happened to us once), lack of back-
ups, suffering through an hour-long telephone wait just to talk to some tech supportie who’s
never been within ten feet of a server, never getting a response to your polite e-mails, and
being overbilled for the privilege (not that we’re bitter, and anyway our lawyer says we can’t
name any names).

Bottom line: If you choose hosting, you do so at your own peril. Always be ready to make a
quick getaway, which might entail eschewing the cheapest or most fully featured deal in favor
of one without long-term contracts and/or prepayments. Conversely, don’t be an utter jerk
when you deal with the employees of your hosting company. If you've never outsourced host-
ing before, take the time to understand the difference between things you can legitimately
blame on the Web host (bad tech support) and things that are basically Acts of Fate (Internet
traffic in your entire metro area goes out).

The details

If you've decided on the hosting option, you will enjoy a plethora of choices in today’s mar-
ketplace. Novice shoppers should be aware, however, that the term ISP (or even Web host)
can mean almost anything these days.

Table 3-1 provides a guide to the specializations and their most appropriate uses. (The com-
panies mentioned are intended as examples only; this does not constitute an endorsement or
recommendation of their services.)

Table 3-1: Varieties of ISPs

Type of ISP Keywords PHP Users

Consumer ISP Home DSL, cable modem Home self-hosting of small sites

(Earthlink, RoadRunner)

Free Web host Free Web hosting under Small sites, often in exchange for
certain circumstances showing ads

Commercial Web hosting Web hosting, virtual hosting, Most outsourced sites
colocation, dedicated server

Site development Design, promotion, custom Sites that want to outsource Web
development, consulting development as well as hosting

Access provider T-1, DS-3, commercial DSL Self-hosters

(UUNet)

37

38

Part | ¢+ PHP: The Basics

Although finding a good Web hosting service sometimes seems as difficult as finding a life-
long mate, there are now listing resources to make it easier:

4+ www.od-site.com/php
4 www.webhostingtalk.com/
4 www.ispcheck.com

Pay special attention to the user comments, good and bad. Ask your friends and colleagues
about their experiences. Search the PHP user list archives — people occasionally make rec-
ommendations and comment on bad experiences they’'ve had.

Probably the single most contentious post-signup issue is throughput. Be wary of the phrase
unlimited traffic/bandwidth/hits. Recall the query of the wise middle-aged baseball manager
when the elderly team owner offered him the job for life: “Whose life are we talking about?”
Analogously, a level of bandwidth that would never be tested by Joe’s Epic Poetry Appreciation
Site is probably not going to feel quite so roomy to a Web site featuring free streaming video of
scantily clad supermodels. Before you sign up for any deal, you need to assess where you're
going to fall on this continuum.

Caution Be extra careful of the amount of disk space that comes with your service plan, especially if

Tip

you have a large or graphics-heavy site. If you exceed the limit, you will generally be charged
exorbitant rates for every fraction of a megabyte of extra space per month. One thing that
contributes to this problem is log files; delete them or download them to some cheaper
form of storage on a regular basis.

How to guesstimate your bandwidth needs: 1GB of traffic per month is equal to 100,000
.. views of files averaging 10K (including graphics, text, ads unless they're third-party served,
everything —measuring from a client, not the server). You do the arithmetic.

The self-hosting option: Pros and cons

Self-hosting is becoming a realistic option for more sites as the price of connectivity goes down.
It’s the ultimate in command and control, and it offers substantial security advantages —if you
have the expertise to take advantage of them. Running your own setup means problems get
solved faster because you don’t have to waste time hanging on a tech support line, and many
just feel it’s more fun. There’s just no substitute for being able to put your hands on the actual
server machine whenever you want. Remember that if you have unusual, objectionable, or
cutting-edge needs, you may be forced to serve your own site whether you want to or not.

On the flip side, self-hosting requires tons more work and can be quite a bit more expensive,
especially for the smallish-to-midsize site. Plus, a self-hosted site is going to be only as good
as your available skill set. So if no one on your team knows much about security, you can
expect to have security problems (although, at least, you’ll be aware of your weaknesses,
unlike the false comfort that comes when your hosting service fails to inform you that their
security expert quit three months ago).

More existentially, you have no one to blame but yourself if things go wrong. If you can look
yourself in the mirror every morning and think “It’s all on me and I feel great,” you have the
necessary self-confidence for self-hosting.

Chapter 3 4+ Getting Started with PHP

Compromise solutions

Of course, outsourcing and self-hosting are actually poles on a continuum. Several compromise
solutions exist that attempt to offer the best of both worlds.

Colocation

Colocation means you crate up your server machine and ship it to the hosting company, who
will hook up your machine to its network and monitor it for you. You are responsible for pur-
chasing, licensing, insuring, installing, configuring, and maintaining all software and hard-
ware, except the uninterruptible power supply. The host does not mess with your box at all,
beyond the occasional reboot — for which it generally charges you extra. If you want any
technical support whatsoever, you must either go to the location yourself or pay hundreds of
dollars an hour for the staff’s gentle ministrations — and if you're in a colocation situation,
chances are good that you're using products for which they have no training.

Dedicated server

A dedicated server is just what it sounds like: The hosting service will buy a server, fit it out
to your tastes (on your dime, of course), and hook it up to its network; then all the processor
cycles belong to you. Generally, you get technical support with your service. This is much
more secure than a shared server environment and relatively cost-effective for a midsize site.
If you have the administrative chops to run your own server remotely, and more than just a
handful of clients, this option is extremely cost-effective.

Caution A lot of the pitfalls of self-hosting still apply, most notably security, which becomes a broader,
more difficult discipline every day. A very wise man once said, “If security is important to you,
unplug your network cable” Not an encouraging maxim to be sure, but this should be a
factor —perhaps even the main factor—in deciding on any option that requires you to
administer your own server.

Outsource production, self-host development

This option involves two complete setups: an outsourced production site and an identical in-
house development server or servers. Dividing things up this way can offer the best of both
worlds, letting someone else take the emergency pager messages in the middle of the night
while still enjoying the intimacy of playing on your very own server. If you're located in an
area with limited connectivity choices, this option can be a lifesaver. It is also one of the
best choices for larger sites with more developers.

Installing PHP

If you've decided to completely outsource PHP hosting and know a competent sysadmin to
perform all workstation installs, feel free to skip the rest of this chapter. We are bound, how-
ever, to recommend that you install your own software at first, even if it’s only on your per-
sonal development machine, so that you have more exposure to and understanding of the
development environment, as well as creating a safe place to test your work without jeopar-
dizing the security and functionality of production systems.

40 Part| + PHP: The Basics

Before you can begin
Before you can install PHP on any platform, you need:
4 A server or workstation with enough RAM for your OS.
4+ A Unix, Mac OS X, or Windows operating system installed.

4+ A working, dedicated Internet connection if you are running a production site; and/or
installation on an intranet for a development site; or neither if you are running a totally
standalone PHP setup (although without an Internet connection, you must find another
source for the necessary software packages).

Help for these prerequisites is beyond the scope of this book. You might want to look at the
following sources for networking information:

4+ World of Windows Networking (www .wown . com)
4 Linux Documentation Project (www. 1inuxdoc.org/HOWTO/HOWTO-INDEX/howtos.html)
If you plan to install PHP on Windows, you’ll also need:

4+ A working PHP-supported Web server. Under previous versions of PHP, IIS/PWS was the
easiest choice because a module version of PHP was available for it; but PHP now has
added a much wider selection of modules for Windows.

4+ A correctly installed PHP-supported database (if you plan to use one)
4 The PHP Windows binary distribution (download it at www.php.net/downloads.php)

4 A utility to unzip files (search http://download.cnet.com for PC file compression
utilities)

Apache is probably the Web server most commonly used with PHP and MySQL—so common
that the acronym LAMP has emerged to describe precisely this combo (Linux Apache MySQL
PHP). At the moment, both Apache and PHP are in the middle of major releases —and unfortu-
nately there are reasons why the two upgrades may be incompatible.

The main change in the huge architectural update of Apache2 is thread-safety. In Apache1, each
server request spawned a separate child process. This has one huge advantage —if one process
fails, it will not crash the whole server. However, it also leads to perceived inefficiencies on some
operating systems, particularly Windows — although in many cases, particularly Linux, Apache2 is
not more efficient than Apache1.

Unfortunately, a lot of PHP extensions cannot easily be made thread-safe and probably never
will. The PHP development team, therefore, has gone on record recommending against an
upgrade to Apache2 in a production environment. This recommendation will, in turn, slow the
adoption of Apache2 by preventing people from finding bugs so they can be fixed. It's unclear if
this recommendation will change.

So here’s the bottom line: Most PHP users do not need to upgrade to Apache2. Users of high-
load production systems may be risking a total httpd crash if one thread goes down. PHP perfor-
mance is unlikely to be improved on Linux, although it may be on Solaris or Windows. If you do
choose to upgrade to Apache2, prefork mode is far safer than multithreaded mode, although it
doesn't offer much performance gain over Apachel.

Tip

Tip

Chapter 3 4+ Getting Started with PHP

If you plan to install PHP on Unix, you’ll also need:
4 The PHP source distribution (www.php.net/downloads.php)

4+ The latest Apache source distribution (www.apache.org/dist/—Ilook for the highest
odd number that ends with the . tar. gz suffix)

4+ A working PHP-supported database, if you plan to use one

4+ Any other supported software to which PHP must connect (mail server, BCMath pack-
age, JDK, and so forth)

4 An ANSI C compiler

4+ Gnu make (starting with PHP4, it can’t be any other make version, which is particularly
relevant for non-GPLed Unices like Solaris and BSD — you can freely download it at
www.gnu.org/software/make)

4 Bison and flex (Enter find . -name bison -print and find . -name flex -print from
the /usr directory to check if you have them already, or just let gcc check for them during
the make process. If not, you can download Bison from www. gnu.org/software/bison
and flex from ftp://ftp.ee.1bl.gov.)

Remember that any extra servers or software libraries to which PHP will connect need to be
installed before you build. A database is the most common type of external server. Other
4 examples are the BCMath package, an IMAP server, the mcrypt library, and the expat XML

parser (unless you use Apache, with which it is bundled).

Now you’re ready to actually install PHP. The difference between building as an Apache
module and building as a CGI executable is very small. In fact, it comes down to leaving off
the --with-apache or --with-apxs flags when configuring. Many users compile both the
module and the CGI versions at the same time for convenience.

In the past, various parties have offered programs (such as PHPTriad, Nusphere MySQL, and
_ Zend Launchpad) that install Apache, PHP, and sometimes MySQL for you in one fell swoop.
As aresult of licensing issues, most of these seem to have gone away.

Installation procedures

Because of PHP’s strong commitment to cross-platform operability, there are far too many spe-
cific installation methods to fully list here. We have tried to cover what we believe to be the
most popular platforms for PHP, but trying to write the installation instructions for every pos-
sible operating system and Web server would have resulted in a prohibitively long chapter.

Furthermore, while PHP installation procedures under Unix have been stable for years,
Windows installs have gone through quite a bit of flux since PHP4 was first released. Part of
this is due to actions on the part of the PHP team; part of this is due to changes in the
Windows product line such as the introduction of Windows XP and planned changes in IIS.
PHP now also runs on Macintosh OS X, and that installation has only fairly recently stabilized.

In response to such rapid change, we can only caution you that for the freshest information
on installation you should visit the PHP Web site (www.php.net/docs.php) on each down-
load. Even if you've installed PHP a gazillion times before, there might be something new and
different on the gazillion-and-first occasion.

41

42

Part | ¢+ PHP: The Basics

Tip

Unix and Apache

In the instructions that follow, we assume you are using Apachel. If you wish to use
_ Apache2, simply change all the references to apache or apxs to apache2 and apxs2, and
change the version numbers of the directories from 1.3.xt0 2.0.x.

The first time you build your own HTTP daemon from source, you might be a little apprehen-
sive. But the process is fairly straightforward, and it’s worth the effort to compile your Web
server yourself instead of being dependent on other people’s packages, which are often
weeks or months out of date. And hey, it’s a genuine rush when it works! Once you do it a
couple of times, it’s a breeze — one of us once had a job where we recompiled the Apache
server at least weekly if not daily, and after that it was totally routine.

For those who have already successfully built an earlier version of PHP, the procedure is
exactly the same — only it takes a lot longer than before.

Caution Your Red Hat, Mandrake, or SuSE Linux installation may have come with RPM versions of

Apache and PHP; or your Debian Linux may have come with an apt package. You must
remove these packages before compiling your new PHP! In addition, you may have RPM or
apt versions of third-party servers, such as MySQL or PostgreSQL, which are generally
installed differently from their source counterparts. If you encounter problems, look in the
documentation for installation locations, or uninstall the packages and reinstall from scratch.

In the following directions, you will type the code fragments into each shell prompt.

Remember to log in as the root user first if you are installing in a root-owned directory.
_ Remember to stop and uninstall your previous Apache server if you had one.
)
To start your build, just follow these steps:

1. If you haven’t already done so, unzip and untar your Apache source distribution.
Unless you have a reason to do otherwise, /usr/local is the standard place.

gunzip -c apache_l.3.x.tar.gz
tar -xvf apache_1.3.x.tar

2. Build the Apache server: If you are installing somewhere other than /usr/local,
this is the time to say so with the - -prefix flag as follows. If you are installing in
/usr/local, don’t worry that the apache directory mentioned in a moment doesn’t
exist —it will by the end of the build process. The --enable-so flag will allow Apache
to load PHP support (and many other things) as a module called a Shared Object. This
is how we’ll build our PHP module later on. After the configuration finishes, the next
two commands will build the binaries and then drop everything in the appropriate
place according the target of our --prefix flag.

cd apache_1.3.x

./configure --prefix=/usr/local/apache --enable-so
make

make install

3. Unzip and untar your PHP source distribution. Unless you have a reason to do other-
wise, /usr/local is the standard place.

cd ..
gunzip -c php-5.x.tar.gz

Chapter 3 4+ Getting Started with PHP

tar -xvf php-5.x.tar
cd php-5.x

. Configure your PHP build. (Configuring PHP is a topic so large and important that it
would not fit into this chapter, so please flip over to Chapter 30 for more information.)
The most common are the options to build as an Apache module, which you almost
certainly want, and with specific database support. The example build here is an
Apache module with MySQL support built using apxs, but your flags may be
completely different.

./configure
--with-apxs=/usr/local/apache/bin/apxs
--with-mysql=/usr/local/mysql

. Make and install the PHP module.

make
make install

. Install the php.ini file. Edit this file to get configuration directives; see the options
listed in Chapter 30. At this point, we highly recommend that new users set error
reporting to E_ALL on their development machines.

cd ../../php-5.x
cp php.ini-dist /usr/local/lib/php.ini

. Tell your Apache server where you want to serve files from, and what extension(s) you
want to identify PHP files (. php is the standard, but you can use .html, .phtml, or
whatever you want). Go to your HTTP configuration files (/usr/local/apache/conf
or whatever your path is), and open httpd.conf with a text editor. Search for the word
DocumentRoot (which should appear twice), and change both paths to the directory
you want to serve files out of (in our case, /home/httpd). We recommend a home
directory rather than the default /usr/local/apache/htdocs because it is more
secure, but it doesn’t have to be in a home directory. Any reasonably protected loca-
tion outside of the Apache tree represents an improvement over the default.

Add at least one PHP extension directive, as shown in the first line of code that follows.
In the second line, we've also added a second handler to have all HTML files parsed as
PHP (which does impose a small performance hit and should not be done if your
architecture uses the . htm1 file extension strictly for HTML-only files). This would
also be a good time for you to ensure that Apache knows what domain alias or I[P
address to listen for. (If you have no idea what this means, search httpd.conf for the
word ServerName, add the word 1ocalhost right after it, and use that as your domain
name until you get a better one.)

AddType application/x-httpd-php .php
AddType application/x-httpd-php .html

. Restart your server. Every time you change your HTTP configuration or php.ini files,
you must stop and start your server again. An HUP signal will not suffice.

cd ../bin
./apachectl start

43

44 Part| + PHP: The Basics

9. Set the document root directory permissions to world-executable. The actual PHP files
in the directory need only be world-readable (644). If necessary, replace /home/httpd
with your document root below.

chmod 755 /home/httpd/html1/php

10. Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your Web server’s
document root as info.php. Start any Web browser and browse the file— you must
always use an HTTP request (http://www.testdomain.com/info.php or
http://localhost/info.phporhttp://127.0.0.1/info.php) rather than a
filename (/home/httpd/info.php) for the file to be parsed correctly. You should
see a long table of information about your new PHP5 installation. Congratulations!

- Cross- ‘\X Many Apache production servers do not use a php . ini file; it can be undesirable to have two

| Reference \ different configuration files in two different locations. You can replicate many of the configu-

|—==="""ration directives of php.ini in your Apache httpd.conf file. At a minimum, you probably
want to set the include path and error reporting levels, because the default settings for these
are often unsatisfactory. See Chapter 30 for more details.

Mac OS X and Apache

One of the most exciting developments in open source recently has been the partial opening
of the Macintosh platform. Most observers view OS X as a super-stylish GUI on top of a full
BSD implementation — possibly the combination that will put a Unix machine in every home.

In keeping with this dual nature, Mac users have the choice of either a binary or a source
installation. In fact, your OS X probably came with Apache and PHP preinstalled. This is likely
to be quite an old build, and it probably lacks many of the less common extensions. However,
if all you want is a quick and dirty Apache + PHP + MySQL/PostgreSQL setup on your laptop,
this is certainly the easiest way to fly. All you need to do is edit your Apache configuration file
and turn on the Web server. So just follow these steps (and again, the code following each
step is what you enter to actually perform the step):

1. Open the Apache config file in a text editor as root.
sudo open -a TextEdit /etc/httpd/httpd.conf
2. Edit the file. Uncomment the following lines:

Load Module php5_module
AddModule mod_php5.c
AddType application/x-httpd-php .php

3. You may also want to uncomment the <Directory /home/*/Sites> block or other-
wise tell Apache which directory to serve out of.

4. Restart the Web server.
sudo apachectl graceful

5. Now open a text editor. Type <?php phpinfo(); ?>. Save this file in your Sites folder
as info.php. Start any Web browser and browse the file— you must always use an
HTTP request (http://www.testdomain.com/~username/info.php or http://
localhost/~username/info.phpor http://127.0.0.1/~username/info.php)
rather than a filename (/home/username/info.php) for the file to be parsed correctly.

Chapter 3 4+ Getting Started with PHP

You should see a long table of information about your new PHP5 installation.
Congratulations!

If you find you don’t have the PHP module, or if you’d like to upgrade your module to a newer
version, you can download it from several locations on the Internet. One such source is Marc
Liyanage in Switzerland, whose URL we are using here:

http://www2.entropy.ch/download/Entropy-PHP-5.0.0.dmg
Double-click the resulting disk image and follow the directions.

Source builds on OS X can be tricky. The directory structure and some of the necessary tools
are different, and Apple’s own included binaries have been nonstandard. At the moment,
compilation from source is not recommended for new PHP users without significant Unix
experience. If you want to try it anyway, a good article is available at Stepwise.com:
www.stepwise.com/Articles/Workbench/2001-10-11.01.html.

The installation situation on OS X is likely to be in flux for the foreseeable future. Always
check the OS X installation page at www.php.net/manual/en/install.macosx.php before
installation of a fresh version of PHP.

Windows NT/2000/XP and IIS

The Windows server installation of PHP5 running IIS is much simpler than on Unix, since it
involves a precompiled binary rather than a source build.

There are currently two choices of binary for Windows: the Installshield self-installer version
and the manual zipfile. The self-installer may seem easier, but it has several limitations: It
works only with IIS and Xitami Web servers; it provides only the CGI version rather than the
module; it lacks automatic setup of extensions; and it is notably insecure. Any serious PHP
installation on Windows will choose the manual installation instead.

To start your installation, follow these steps:
1. Extract the binary archive using your unzip utility; C: \PHP is a common location.

2. Copy some .d11 files from your PHP directory to your systems directory (usually
C:\Winnt\System32). You need php5ts.d11 for every case. You will also probably
need to copy the file corresponding to your Web server module —C: \PHP\Sapi\
phpbisapi.dl11.It’s possible you will also need others from the d11s subfolder —but
start with the two mentioned above and add more if you need them.

3. Copy either php.ini-dist or php.ini-recommended (preferably the latter) to your
Windows directory (C:\Winnt or C:\Winnt40), and rename it php.ini. Open this file
in a text editor (for example, Notepad). Edit this file to get configuration directives; see
the options listed in Chapter 30. We highly recommend new users set error reporting to
E_ALL on their development machines at this point. For now, the most important thing
is the doc_root directive under the Paths and Directories section—make sure
this matches your I1S Inetpub folder (or wherever you plan to serve out of).

4. Stop and restart the WWW service. Go to the Start menu = Settings = Control Panel =
Services. Scroll down the list to IS Admin Service. Select it and click Stop. After it stops
(the status message will inform you), select World Wide Web Publishing Service and
click Start. Stopping and restarting the service from within Internet Service Manager
(by right-clicking the globe icon) will not suffice. Since this is Windows, you may also
wish to reboot.

45

46 Part| + PHP: The Basics

Tip

Caution

5. Open a text editor (for example, Notepad). Type: <?php phpinfo(); ?>. Save this file in
your Web server’s document root as info.php. Start any Web browser and browse the
file—you must always use an HTTP request (http://www.testdomain.com/info.php
or http://1localhost/info.phporhttp://127.0.0.1/info.php) rather than a file-
name (C:\inetpub\wwwroot\info.php) for the file to be parsed correctly. You should
see a long table of information about your new PHP5 installation. Congratulations!

Some Windows users have reported that they must put their php.ini files in the same
directory as their php . exe executables for the CGI version of PHP. This is not ideal for secu-
rity reasons. It would be better to keep this file out of the Web tree entirely. Now that PHP
offers good modules for many common Windows Web servers, use one of these if you can.

Windows and Apache

PHP 4.0 introduced the long-awaited Windows Apache module. Until then, Apache users on
Windows could run only the CGI version of PHP, which was slow and less secure. PHP 4.1
brought significant improvements in performance and stability for this module. The Apache
developers are also putting a special effort into rapidly improving their Windows HTTP
server. For all these reasons, there is really no better time to try Apache — plus it works
great even on those aging 98/Me machines.

As of PHP 4.3, Windows 95 is no longer supported by PHP. Windows 98 and ME will doubt-
less be dropped fairly soon also.

To install Apache with PHP on Windows:

1. Download Apache server from www.apache.org/dist/httpd/binaries/win32. You
want the current stable release version with the no_src.msi extension (You can try
the . exe version if there is one, but it doesn’t work on all systems and isn’t any easier).
Double-click the installer file to install; C: \Program Files is a common location. The
installer will also ask you whether you want to run Apache as a service (takes more
cycles, but it’s available from the taskbar) or from the command line or DOS prompt.
We recommend you do not install as a service, as this may cause problems with startup
and shutdown on some computers.

2. Extract the PHP binary archive using your unzip utility; C: \PHP is a common location.

3. Copy some .d11 files from your PHP directory to your system directory (usually
C:\Windows). You need php5ts.d11 for every case. You will also probably need to copy
the file corresponding to your Web server module—C: \PHP\Sapi\phpb5apache.d11—
to your Apache modules directory. It’s possible that you will also need others from the
d11s subfolder —but start with the two mentioned previously and add more if you
need them.

4. Copy either php.ini-dist or php.ini-recommended (preferably the latter) to your
Windows directory, and rename it php.ini. Open this file in a text editor (for example,
Notepad). Edit this file to get configuration directives; see the options listed in Chapter
30. At this point, we highly recommend that new users set error reporting to £_ALL on
their development machines.

Chapter 3 4+ Getting Started with PHP

5. Tell your Apache server where you want to serve files from and what extension(s) you
want to identify PHP files (. php is the standard, but you can use .html1, .phtml, or
whatever you want). Go to your HTTP configuration files (C: \Program Files\Apache
Group\Apache\conf or whatever your path is), and open httpd.conf with a text edi-
tor. Search for the word DocumentRoot (which should appear twice) and change both
paths to the directory you want to serve files out of. (The default is C: \Program
Files\Apache Group\Apache\htdocs.) Add at least one PHP extension directive as
shown in the first line of the following code:

LoadModule php5_module modules/phpbapache.dl1
AddType application/x-httpd-php .php .phtml

6. You may also need to add the following line:
AddModule mod_php5.c

7. This would also be a good time for you to ensure that Apache knows what domain alias
or IP address to listen for. (If you have no idea what this means, search httpd.conf for
the word ServerName, add the word Tocalhost right after it, and use that as your
domain name until you get a better one.)

8. Stop and restart the WWW service. Go to the Start menu = Programs => Apache HTTP
Server => Control Apache HTTP Server = Stop/Start; or run Apache from the MS-DOS
prompt.

9. Open a text editor (for example, Notepad). Type: <?php phpinfo(); ?>. Save this file in
your Web server’s document root as info.php. Start any Web browser and browse the
file— you must always use an HTTP request (www.testdomain.com/info.php or
http://localhost/info.phporhttp://127.0.0.1/info.php) rather than a file-
name (C:\Program Files\Apache Group\Apache\htdocs\info.php) for the file to
be parsed correctly. You should see a long table of information about your new PHP5
installation. Congratulations!

- Cross- ‘X If you follow these directions and don't get the results you expected, don't panic! Check out
| Reference \ Chapter 11 for common gotchas and quirks. If that doesn’t help, check out the comments on

| =

—

the relevant pages in the PHP online manual — users leave specific tips for specific setups
they've had problems with.

Other Web servers

PHP has been successfully built and run with many other Web servers, such as Netscape
Enterprise Server, Xitami, Zeus, and thttpd. Module support for AOLServer, NSAPI, and fhttpd
is available. See the relevant pages on the PHP online manual’s installation section.

Development tools

When it comes to development tools, PHP used to fall between the cracks —between tools
originally designed for other programming languages and those mainly used to create pretty
HTML. It’s certainly possible to write a complex 2000-line program that touches several other
services and filesystems and outputs the string 1 to the browser on completion. On the other
hand, there are many people whose main use of PHP is to slap common headers and footers
on what amounts to a bunch of static HTML pages. With such a diversity of usages, it’s per-
haps not so amazing that the perfect PHP development environment — user-friendly enough
for the designers, but light and powerful enough for the geeks —has been elusive.

47

48

Part | ¢+ PHP: The Basics

Those coming to PHP from a strictly client-side perspective probably have the hardest adjust-
ment to make. There’s no such thing as a plush development environment with wizards and
drag-and-drop icons and built-in graphics manipulation. If that sort of thing is important to
you, you can use a WYSIWYG editor to format the page and then add PHP functionality later
using a text editor. The downside of this strategy is, of course, that machine-written code is
often not very human-readable —but one must suffer to be pretty.

The last year and a half, however, has seen substantial change in the market. Plenty of editors
for both Windows and Linux now offer at least syntax highlighting for PHP. Several of these
can map drive locations to server names so you can debug in place. Even the WYSIWIG
Dreamweaver now claims some degree of PHP support. It still can’t write the code for you,
and you probably wouldn’t want that if it could — but it won’t change your code either.

Caution Be particularly careful with using Microsoft FrontPage as a PHP editor, as it seems to cause

problems for many users. At a minimum, you will need to enable (by choosing the option in
your php.ini file) and use ASP-style tags; or use JavaScript-style <SCRIPT> tags consis-
tently, which can be a pain.

Old-school programmers will have less of a learning curve, since they can treat PHP like any
other server-side programming language that may or may not happen to output HTML to a
browser. Most PHP users in this category seem to prefer simple text editors. Generally, these
products will afford you a modest amount of help, such as syntax highlighting, brace match-
ing, or tag closing—most of which is about helping you avoid stupid mistakes rather than
actually writing the script for you.

The most exciting development in PHP tools to date has been the release of Zend Studio,
which is in 3.0 release as of this writing. This product combines a powerful debugger with an
attractive (although still non-WYSIWYG) editing environment. The intelligent product design
will clearly help you save time on repetitive tasks such as looking up the exact syntax of PHP
functions and zeroing in on bugs faster — and since developer time is money, the modest cost
of the product should be quickly recouped in increased productivity. You can really tell that
the makers of this IDE know PHP inside and out — Zend Studio is the first development tool
for PHP that isn’t obviously repurposed from some other use. Figure 3-1 is a screenshot of the
main Zend Studio console.

As you can see from Figure 3-1, Zend Studio gives you the ability to “run” a PHP script and
view the HTML output in the window on the right —instead of having to View Source on a
browser, which can be frustrating due to nonstandard results and funky viewers. The debug-
ging functions give you plenty of power —you can step through a script line by line or step
into and out of functions, set breakpoints, perform a stacktrace, track all the global and local
variables used by a page or watch a particular variable—in an easy-to-use GUI, as well as
alerting you to problematic issues such as undeclared variables. Syntax highlighting and code
indentation are lovely and easily customizable —these are notoriously difficult for new users
to handle in emacs or vi —and code completion can save you many, many lookups in the
PHP online manual (“Is it strreplace or str_replace, and what order do the arguments
come in?”). You can also get autocomplete help with your HTML, especially handy for remem-
bering the allowable attributes of each tag. You can even register your own user-defined
functions on the code completion list, making them easy to use without having to constantly
refer to the definition —a godsend if you love to pass tons of variables into your functions.
The bigger and more complex and more heavily functionalized your codebase is, the more

an IDE like this can help you.

I3 Florida Surg

Fie Edt Search Goto

Chapter 3 4+ Getting Started with PHP

ty - Zend Development Environment - [1

Broject View Debug Tocks Help

alxEE

OV e 8 EECE*20ERrUL REEEERDIFEE

Florica Surg :]
- 10 |// class to combine generic and specific information for printing an appropriace
=L buid 11 class pageHeader |
-] anticle_images 12 var §template;:
EH:] TR 13 var §title;
e 14 wvar §keywords;
-] wrages 15 var fdescription;
= ncludes 16 function showlc{) !
| o 17 if(file exists (INC_PATH."/".gfthis->template.” head.php™])) {
| T =n_foct pig 15 include_once (IHC PATH."/".§this->template.” head.php”);
| ﬁilgan_hcad.ph 12 ! - - -
e elae
B3 manage printError ("Could not find header file <ems".§this->template. "< /emns
B news))
o
B services
o™ 26 |// class to combine generic end specific information for p an appropriace
-] tempistes : 3 - ’ RHE
31.10 27 class pageFooter {
G buiklphp 25 var §remplate;
I @crypto.php 29 function showIt() {
| dlisplay pre 30 if(file_exists (INC_PATH."/".sthis->template.” foot.php”)) {
51 include_once (INC_PATH."/".§this->template.”_foot.php”):
] index phe 22 +
a Bl = else |
54 rintErxor("Could not find footer file <ew>".§this->template."< /e
Wb Documents i 35 i v f "
| TBFlesysten Emprect | [0,
Fllasvs_tem & Project =7 |y
5 Fila Inspacior s -
TR Project Inspectar | | 3
__“Feruncins | "0 crypto e] G mdexte. (] varpho |

o |

[I & Breakparts
) Debin Messages W Walches | 4P Vanekes | T2 Cutput Butfer |
| .Ienu Developmert Ervdrorenent | 1:1 | nzer ||

Figure 3-1: Screenshot of Zend Studio IDE

Remember that your development client doesn’t necessarily have to be on the same operat-
ing system as the server —this is the beauty of truly cross-platform development. This is
particularly valuable if you're using a Unix server, where (to paraphrase The Blues Brothers)
“We have both kinds of editor: emacs and vi.” It must be admitted that Macintosh and
Windows have a wider selection of slicker, more user-friendly text editors. Unix, on the other
hand, makes it easy to support multiple client OSes. Many development shops take advan-
tage of this “best of all worlds” situation. emacs, vi, and Zend Studio are editors that come in
all the major client platforms — so if your team standardizes on one of those, you will be able
to accommodate all client OS preferences.

Table 3-2 shows a matrix of the most popular programmer’s editors, with information on the
different operating systems they run on.

Caution If you're going to have developers using multiple OSes, remember that linebreaks and some

other characters are incompatible between Windows and Unix. Unix-style linebreaks show
up as black boxes in Notepad, while Windows linebreaks look like “M in Unix text editors.
Your PHP scripts will probably still work fine (although in some version control situations it
can break code), but you'll drive each other crazy if you have to edit each other's code. The
best way to deal with the incompatible linebreaks issue, and a heck of a good idea for a lot
of other reasons, is to use a version control system such as CVS and set it to strip linebreaks.

49

50

Part | ¢+ PHP: The Basics

In addition to these popular choices, Keith Edmunds maintains a longer list of PHP-suitable text
editors, many available at no or low cost from http://phpeditors.linuxbackup.co.uk/.

Take a deep breath — after all that installing and configuring, you should now be ready to

write your first PHP script, which you’ll do in Chapter 4.

Table 3-2: Popular PHP Editors by Platform

Platform Product Description
Macintosh BBEdit (www.barebones.com) Many Mac developers can't imagine
life without it. Integrated in the Mac
version of WYSIWYG package
Macromedia Dreamweaver. A no-cost
version, BBEdit Lite, is also available.
Unix emacs (Www.gnu.org/software/emacs) Not for the faint of heart. Good PHP
Windows xemacs (Www . Xemacs.org) syntax highlighting is finally available at
Macintosh http://sourceforge.net/
projects/php-mode/. Available
on every OS imaginable.
Unix vim (Www.vim.org) An improved variant of v i, now
Windows standard on many Unices. This is the
Macintosh kinder, gentler Unix hacker's editor,
with a notably friendly community. It
was the first major editor to have PHP
syntax highlighting. Available on almost
every OS.
Linux Zend Studio (www . zend . com) The first development tool specifically
Windows designed for PHP. debugger, code
Macintosh completion, and HTML output viewer.
Windows HomeSite (www.macromedia.com/ Perennially popular Windows
software/homesite/) commercial text editor. Integrated with
the Windows version of WYSIWYG
package Macromedia Dreamweaver.
Windows Notepad (included with all Believe it or not, many people build

Summary

Windows systems)

fine sites using this crudest of tools.

Before you can use PHP, you need to decide whether you will self-host, outsource, or adopt a
compromise solution, such as colocation. Some important factors in the decision are cost,
size and traffic of site, unusual hardware or software needs, type of content, and desire for
control. The best candidates for external Web hosting are small sites without unusual require-
ments or sites large enough to require at least one entire server to themselves.

Chapter 3 4+ Getting Started with PHP

If you decide to self-host or maintain a development environment, detailed installation
instructions are provided in previous sections of this chapter for the most common plat-
forms. PHP5 has SAPI support for many other Web servers, but installation directions for all
of them would have made this chapter unreasonably lengthy.

Finally, before you can start developing, you will want to give some thought to which develop-
ment tools are best adapted to PHP. Although the long-awaited PHP-specific IDE is now avail-
able from Zend, most PHP developers still simply use their favorite text editors. It is possible
to add PHP to the product of a WYSIWYG editor, but it can be messy.

+ o+ 0+

51

Adding PHP
to HTML

After all those preliminary exertions, we finally get to the point of
writing our first PHP scripts. Here you’ll learn about PHP mode,
PHP tags, and how to include other files in your PHP scripts. You'll
also write your very first PHP program.

Your HTML Is Already PHP-Compliant!

PHP is already perfectly at home with HTML —in fact, it is generally
embedded within HTML. As you’ll see in later chapters, PHP rides
piggyback on some of the cleverer parts of the HTML standard, such
as forms and cookies, to do all kinds of useful things.

Anything compatible with HTML on the client side is also compatible
with PHP. PHP could not care less about chunks of JavaScript, calls to
music and animation, applets, or anything else on the client side. PHP
will simply ignore those parts, and the Web server will happily pass
them on to the client.

It should thus be clear that you can use any method of developing
Web pages and simply add PHP to that method. If you’re comfortable
having teams work on each page using huge multimedia graphics
suites, you can keep on doing that. The general point is that you
don’t need to change tools or workflow order —just do what you've
been doing and add the server-side functionality at the end.

Escaping from HTML

By now you're probably wondering: How does the PHP parser recog-
nize PHP code inside your HTML document? The answer is that you
tell the program when to spring into action by using special PHP tags
at the beginning and end of each PHP section. This process is called
escaping from HTML or escaping into PHP.

Caution Not to confuse you, but escape in this sense should not be con-
fused with another common use of the term escape in PHP:
putting a backslash in front of certain special characters (such as
tab and newline) within double-quoted strings. Escaping strings is
explained in Chapter 8.

CHIP E R

=_r

<+

In This Chapter

Escaping into PHP

mode

<+

<+

<+

Choosing PHP tag styles

Writing a Hello World

program in PHP

Including files

+

+

+

+

54 Part| + PHP: The Basics

Everything within these tags is understood by the PHP parser to be PHP code. Everything
outside of these tags does not concern the server and will simply be passed along and left for
the client to sort out whether it’s HTML or JavaScript or something else.

There are four styles of PHP tags and different rationales for using them. Part of the decision,
however, is simply individual preference: what the individual programmer is comfortable with
or what a team has decided upon for reasons of their own.

Canonical PHP tags

The most universally effective PHP tag style is:
<tphp 7>

If you use this style, you can be positive that your tags will always be correctly interpreted.
Unless you have a very, very strong reason to prefer one of the other styles, use this one.
Some or all of the other styles of PHP tag may be phased out in the future —only this one is
certain to be safe.

Short-open (SGML-style) tags
Short or short-open tags look like this:
<D

Short tags are, as one might expect, the shortest option. Those who escape into and out of
HTML frequently in each script will be attracted by the prospect of fewer keystrokes; how-
ever, the price of shorter tags is pretty high. You must do one of two things to enable PHP
to recognize the tags:

4+ Choose the --enable-short-tags configuration option when you're building PHP.

4+ Set the short_open_tag setting in your php.ini file to on. This option must be
disabled to parse XML with PHP because the same syntax is used for XML tags.

Caution There used to be a third way to enable short-open tags: the short_open() function. This
ceased to be supported as of PHP4.

There are several reasons to resist the temptation of the short-open tag. The most compelling
reason now is that this syntax is not compatible with XML — and since XHTML is a type of
XML, this implies that none of your code will be able to validate as XHTML. PHP code written
with short-open tags is less portable because you can’t be sure another machine will have
enabled them. Short-open tags are also harder to pick out visually on the page, and many syn-
tax-highlighting schemes don’t support them. Beginners should be encouraged to start off
with the canonical style tag if at all possible.

The short-open tag was one of many hacky ease-of-use ideas that ended up biting the PHP
community years later. The PHP development team must now struggle to balance desires for
a more standard and consistent syntax with a large installed userbase, which has written a
huge pile of code in the old style. As XML becomes more and more central to Web develop-
ment, and as we move toward XHTML as the standard for Web page development, the short-
open tag faces a shaky future. Do yourself a favor and start moving toward the canonical PHP
tags now.

Tip

Chapter 4 + Adding PHP to HTML

If you've made the virtuous decision to eschew the short-open tag, remember to disable it in
_yourphp.ini file. You want to see an error message when you inadvertently forget to com-
plete your tag correctly.

ASP-style tags

ASP-style tags mimic the tags used by Microsoft Active Server Pages to delineate code blocks.
ASP-style tags look like this:

<% %>

People who use FrontPage as a development tool often choose this style. To use ASP-style
tags, you will need to set the configuration option in your php.ini file. Obviously, if you use
ASP-style tags and the . asp suffix (which you may wish to do if you're converting from an
ASP site or spoofing ASP for some reason), you will need to disable ASP on your IIS server.
Otherwise, two different scripting engines will be trying to parse the same blocks of code
with unpredictable results.

HTML script tags
HTML script tags look like this:

<SCRIPT LANGUAGE="PHP"> </SCRIPT>

Although this is effective and also gets around the FrontPage problems, it can be cumber-
some in certain situations, such as quick pop-in variable replacement. In particular, be careful
if you use lots of JavaScript on your site since the close-script tags are fatally ambiguous. The
HTML script tag is best used for fairly sizable blocks of PHP code.

Hello World

Now we're ready to write our first PHP program. Open a new file in your preferred editor.
Type:

<HTML>
<HEAD>
<TITLE>My first PHP program</TITLE>
</HEAD>

<BODY>

<?php

print("Hello, cruel world

\n");
phpinfo();

7>

</B0ODY>

</HTML>

In most browsers, nothing but the PHP section is strictly necessary. However, it’s a good idea
to get in the habit of always using a well-formed HTML structure in which to embed your PHP.

If you don’t see something pretty close to the output shown in Figure 4-1, you have a problem —
most likely some kind of installation or configuration glitch. Review Chapter 3, and make doubly
sure your installation succeeded.

55

56

Part | ¢+ PHP: The Basics

Bf My first PHP program - Mozilla
File __gt_iit View Go goo_kmalhs Tools ﬂ_indow ﬂe_lp

- @

| ~}Home | fBookmarks o The Mozilla Organiz... 4 Latest Builds

. .4 ® 7 | < .
B B A . o [& http:i7192.168.0.3/hellowaorld.php =] 22 Search e ik

Hello, cruel world

PHP Version 5.0.0b2 {Dfﬁfoz

: Linux dheppe2 2.4.20-6 #1 Thu Feb 27 10:06:59 EST 2003 686
Build Date Mo 28 2003 22:26:20
Configure Command |'fconfigure’ “-with-apxs 2=iustiocaliapache2ibinapxs’
=with-mysgl=luslocalimysgl --with-mml —with-xmirpc’ ~-with-dormsm|*
Server API Apache 2.0 Handler
Virtual Directorny dizabled
Support
Configur ation File fustocalfibiphp.ini
{php.ini) Path
PHP API 20030820
PHP Extension 20020429
Zend E 90021012
Debug Build no
T

4 |

i b ~Z [2) | Done

=]

==

»
== 41

Figure 4-1: Your first PHP script

Refer to Chapter 3 for installation instructions, and forward to Chapter 30 for configuration

options. Chapter 11 diagnoses some common early problems and gives debugging hints.

Jumping in and out of PHP mode

At any given moment in a PHP script, you are either in PHP mode or you’re out of it in HTML.
There’s no middle ground. Anything within the PHP tags is PHP; everything outside is plain

HTML, as far as the server is concerned.

You can escape into PHP mode with giddy abandon, as often and as briefly or lengthily as

necessary. For example:

<?php $id = 1; ?>

<FORM METHOD="POST" ACTION="registration.php"">
<P>First name:

<INPUT TYPE="TEXT" NAME="firstname" SIZE="20">
<P>Last name:

<INPUT TYPE="TEXT" NAME="lastname" SIZE="20">
<P>Rank:

<INPUT TYPE="TEXT" NAME="rank" SIZE="10">
<INPUT TYPE="HIDDEN" NAME="serial number" VALUE="<?php
echo $id; ?2>">

<INPUT TYPE="submit"SUBMIT" VALUE="INPUT"">
</FORM>

Chapter 4 + Adding PHP to HTML

Notice that things that happened in the first PHP mode instance —in this case, a variable
being assigned — are still valid in the second. In Chapter 5, you’ll learn more about what
happens to variables when you skip in and out of PHP mode. In Chapter 33, you’ll also learn
about different styles of using PHP mode.

Including files

Another way you can add PHP to your HTML is by putting it in a separate file and calling it by
using PHP’s include functions. There are four include functions:

4 include('/filepath/filename")
4+ require('/filepath/filename")
4 include_once('/filepath/filename")
4 require_once('/filepath/filename")

In previous versions of PHP, there were significant differences in functionality and speed
between the include functions and the require functions. This is no longer true; the
two sets of functions differ only in the kind of error they throw on failure. Include() and
include_once () will merely generate a warning on failure, while require() and
require_once() will cause a fatal error and termination of the script.

As suggested by the names of the functions, include_once() and require_once() differ
from simple include() and require() in that they will allow a file to be included only once
per PHP script. This is extremely helpful when you are including files that contain PHP func-
tions, because redeclaring functions results in an automatic fatal error. In larger PHP systems,
it’s quite common to include files which include other files which include other files —it can
be difficult to remember whether you've included a particular function before, but with
include_once() or require_once() you don’t have to.

How do you decide on a preferred include function? In essence, you must decide whether
you want to force yourself to write good code on pain of fatal error or whether you want it to
run regardless of certain common errors on your part. The strictest alternative is require(),
which will bring everything grinding to a halt if your code isn’t perfect; the least strict is
include_once(), which will good-naturedly hide the consequences of some of your bad
coding habits.

The most common use of PHP’s include capability is to add common headers and footers to
all the Web pages on a site. For example, a simple header file (cleverly named header.inc)
might look like this:

<HTML>

<HEAD>

<TITLE>A site title</TITLE>
</HEAD>

<BODY>
Similarly, a footer file called footer. inc might consist of:

<P>Copyright 1995 - 2002</P>
</B0ODY>
</HTML>

57

58

Part | ¢+ PHP: The Basics

Tip

They are called from a PHP page this way:

<?php

require_once($_SERVER['DOCUMENT_ROOT'].'/header.inc');
7>

<P>This is some body text for this particular page.</P>
<?php

require_once($_SERVER["DOCUMENT_ROOT']."'/footer.inc');
7>

Obviously, this single move greatly enhances the maintainability and scalability of an entire
site. Now, if you want a different look and feel or if you need to update the copyright notice,
you can alter one file instead of identical lines in dozens of HTML pages.

When including files, remember to set the include_path directive correctly in your
_ php.ini file. Remember that you can include files from above or entirely outside your Web
tree by proper use of this directive. See Chapter 30 for more information.

As you can see from the preceding example, PHP’s include functions simply pass along the
contents of the included file as text. Many people think that because an include function
occurs inside PHP mode, the included file will also be in PHP mode. This is not true! Actually,
the server escapes back into HTML mode at the beginning of each included file and silently
returns to PHP mode at the end, just in time to catch the semicolon.

As always, you need to say when you intend something to be PHP by using PHP opening and
closing tags. Any part of an included file that needs to be executed as PHP should be
enclosed in valid PHP tags. If the entire file is PHP (very common in files of functions), the
entire file must be enclosed within PHP tags.

Take the following file, database.inc:

$db = mysql_connect('localhost', 'db_user', 'db_password');
mysql_select_db('my_database');

Caution We can’t emphasize this enough: If you're having problems including PHP files, particularly if

you're seeing output you don't expect or not seeing output you do expect, be ABSOLUTELY
POSITIVE that you've put PHP tags at the beginning and end of the included file.

If you were to foolishly include this file from a PHP script, your database variables would be
visible to the world in plain text —because you neglected to use PHP tags, the parser assumes
this block of code is HTML. A correct version of the database. inc file would look like this:

<?php
$db = mysqgl_connect('localhost', 'db_user', 'db_password');
mysql_select_db('my_database');
7>
Caution For all PHP files included from other files, you must ensure that there are no empty new lines

at the end of the file. Remember, anything outside a PHP block is considered HTML, even a
blank line. Blank lines, or even blank spaces outside a closing PHP tag, will be interpreted as
output. If you include the file in a situation where you cannot have output —say before using
HTTP headers —your script will fail with a big error message about the output stream having
already been started in your included file. See Chapter 11 for an example.

Chapter 4 + Adding PHP to HTML

Summary

PHP is easy to embed in HTML. You can use whatever HTML-production method you're
already comfortable with and simply add the PHP sections later. PHP additions can range
from simply echoing a single-digit integer to writing long chunks of code.

Every PHP block, short or long, is set off by PHP tags. There are several styles of PHP tags,
but everyone should be encouraged to use the canonical style. You can also include PHP in
files by using the include functions —but remember that the contents of the included files
will not be recognized as PHP unless surrounded by PHP tags.

+ o+ ¢

59

Syntax and
Variables

In this chapter, we cover the basic syntax of PHP —the rules that all
well-formed PHP code must follow. We explain how to use variables
to store and retrieve information as your PHP code executes and the
type system that governs what kinds of values can be stored in the
first place. Finally, we look at the simplest ways to display text that
will show up in your user’s browser window.

PHP Is Forgiving

The first and most important thing to say about the PHP language is
that it tries to be as forgiving as possible. Programming languages
vary quite a bit in terms of how stringently syntax is enforced.
Pickiness can be a good thing because it helps make sure that the
code you’re writing is really what you mean. If you are writing a pro-
gram to control a nuclear reactor and you forget to assign a variable,
it is far better to have the program be rejected than to create behav-
ior different from what you intended. PHP’s design philosophy, how-
ever, is at the other end of the spectrum. Because PHP started life as
a handy utility for making quick-and-dirty Web pages, it emphasizes
convenience for the programmer over correctness; rather than have
a programmer do the extra work of redundantly specifying what is
meant by a piece of code, PHP requires the minimum and then tries
its best to figure out what was meant. Among other things, this
means that certain syntactical features that show up in other lan-
guages, such as variable declarations and function prototypes, are
simply not necessary.

With that said, though, PHP can’t read your mind; it has a minimum
set of syntactical rules that your code must follow. Whenever you see
the words parse error in your browser window instead of the cool
Web page you thought you had just written, it means that you’ve bro-
ken these rules to the point that PHP has given up on your page.

HTML Is Not PHP

The second most important thing to understand about PHP syntax is
that it applies only within PHP. Because PHP is embedded in HTML
documents, every part of such a document is interpreted as either
PHP or HTML, depending on whether that section of the document is
enclosed in PHP tags.

<+

In This Chapter

<+

<+

*

Understanding the basic

rules of PHP

Storing information in

variables

Constants, variables,

and data types

Output to HTML

+

+

+

+

62

Part | ¢+ PHP: The Basics

PHP syntax is relevant only within PHP, so we assume for the rest of this chapter that PHP
mode is in force —that is, most code fragments will be assumed to be embedded in an HTML
page and surrounded with the appropriate tags.

PHP’s Syntax Is C-Like

The third most important thing to know about PHP syntax is that, broadly speaking, it is like
the C programming language. If you happen to be one of the lucky people who already know
C, this is very helpful; if you are uncertain about how a statement should be written, try it
first the way you would do it in C, and if that doesn’t work, look it up in the manual. The rest
of this section is for the other people, the ones who don’t already know C. (C programmers
might want to skim the headers of this section and also see Appendix A, which is specifically
for C programmers.)

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces,
tabs, and carriage returns (end-of-line characters). PHP’s whitespace insensitivity does not
mean that spaces and such never matter. (In fact, they are crucial for separating the words in
the PHP language.) Instead, it means that it almost never matters how many whitespace char-
acters you have in a row —one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the vari-
able $four is equivalent:

$four = 2 + 2; // single spaces

$four <tab>=<tab>2<tab>+<{tab>2 ; // spaces and tabs
$four =

2

4

2; // multiple lines

The fact that end-of-line characters count as whitespace is handy, because it means you
never have to strain to make sure that a statement fits on a single line.

PHP is sometimes case sensitive

Having read that PHP isn’t picky, you may be surprised to learn that it is sometimes case
sensitive (that is, it cares about the distinction between lowercase and capital letters). In
particular, all variables are case sensitive. If you embed the following code in an HTML page:

<?php
$capital = 67;
print("Variable capital is $capital
");
print("Variable CaPiTalL is $CaPiTaL
");
7>

The output you will see is:

Variable capital is 67
Variable CaPiTal is

Chapter 5 4+ Syntax and Variables

The different capitalization schemes make for different variables. (Surprisingly, under the
default settings for error reporting, code like this fragment will not produce a PHP error —see
the section “Unassigned variables,” later in this chapter.)

On the other hand, unlike in C, function names are not case sensitive, and neither are the
basic language constructs (i f, then, else, while, and the like).

Statements are expressions terminated by semicolons

A statement in PHP is any expression that is followed by a semicolon (;). If expressions corre-
spond to phrases, statements correspond to entire sentences, and the semicolon is the full
stop at the end. Any sequence of valid PHP statements that is enclosed by the PHP tags is a
valid PHP program. Here is a typical statement in PHP, which in this case assigns a string of
characters to a variable called $greeting:

$greeting = "Welcome to PHP!";

The rest of this subsection is about how such statements are built from smaller components
and how the PHP interpreter handles the evaluation of statements. (If you already feel com-
fortable with statements and expressions, feel free to skip ahead.)

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible fokens, such as numbers (3.14159),
strings ("two"), variables ($two), constants (TRUE), and the special words that make up the
syntax of PHP itself (i f, e1se, and so forth). These are separated from each other by whites-
pace and by other special characters such as parentheses and braces.

The next most complex building block in PHP is the expression, which is any combination

of tokens that has a value. A single number is an expression, as is a single variable. Simple
expressions can also be combined to make more complicated expressions, usually either

by putting an operator in between (for example, 2 + (2 + 2)), or by using them as input to a
function call (for example, pow(2 * 3, 3 * 2)). Operators that take two inputs go in between
their inputs, whereas functions take their inputs in parentheses immediately after their
names, with the inputs (known as arguments) separated by commas.

Expressions are evaluated

Whenever the PHP interpreter encounters an expression in code, that expression is immedi-
ately evaluated. This means that PHP calculates values for the smallest elements of the
expression and successively combines those values connected by operators or functions,
until it has produced an entire value for the expression. For example, successive steps in an
imaginary evaluation process might look like:

2 *2+3*3+5;
3 +5) //imaginary evaluation steps
5

$result

+ +

with the result that the number 18 is stored in the variable $result.

Precedence, associativity, and evaluation order

There are two kinds of freedom PHP has in expression evaluation: how it groups or associates
subexpressions and the order in which it evaluates them. For example, in the evaluation pro-
cess just shown, multiplications were associated more tightly than additions, which affects
the end result.

63

64

Part | ¢+ PHP: The Basics

The particular ways that operators group expressions are called precedence rules — opera-
tors that have higher precedence win in grabbing the expressions around them. If you want,
you can memorize the rules, such as the fact that * always has higher precedence than +.
Or you can just use the following cardinal rule: When in doubt, use parentheses to group
expressions.

For example:

$resultl
$resulte

2+ 3 *4+5; // is equal to 19
(2 +3) * (4+5); // is equal to 45

Operator precedence rules remove much of the ambiguity about how subexpressions are
associated. But what about when two operators have the same precedence? Consider this
expression:

$how_much = 3.0 / 4.0 / 5.0;

Whether this is equal to 0.15 or 3.75 depends on which division operator gets to grab the
number 4.0 first. There is an exhaustive list of rules of associativity in the online manual, but
the rule to remember is that associativity is usually left-before-right —that is, the preceding
expression would evaluate to 0.15, because the leftmost of the two division operators wins
the dispute over precedence.

The final wrinkle is order of evaluation, which is not quite the same thing as associativity. For
example, look at the arithmetic expression:

3 %4 +5*6

We know that the multiplications will happen before the additions, but that is not the same
as knowing which multiplication PHP will perform first. In general, you need not worry about
evaluation order, because in almost all cases it will not affect the result. You can construct
weird examples where the result does depend on order of evaluation, usually by making
assignments in subexpressions that are used in other parts of the expression. For example:

$huh = ($this = $that + 5) + ($that = $this + 3); // BAD

But don’t do this, okay? PHP may or may not have a predictable order of evaluation of expres-
sions, but you shouldn’t depend on it—so we’re not going to tell you! (The one legitimate use
of relying on left-to-right evaluation order is in short-circuiting Boolean expressions, which
we cover in Chapter 6.)

Expressions and types

Usually, the programmer is careful to match the types of expressions with the operators and
functions that combine them. Common expressions are mathematical (with mathematical
operators combining numbers) or Boolean (combining true-or-false statements with ands and
ors) or string expressions (with operators and functions constructing strings of characters).
As with the rest of PHP, however, the treatment of types is surprisingly forgiving. Consider the
following expression, which deliberately mixes the types of subexpressions in an inappropri-
ate way:

2 + 2 * "nonsense" + TRUE

Rather than produce an error, this evaluates to the number 3. (You can take this as a puzzle
for now, but we will explain how such a thing can happen in the “Types in PHP” section of
this chapter.)

Chapter 5 4+ Syntax and Variables

Assignment expressions

A very common kind of expression is the assignment, where a variable is set to equal the
result of evaluating some expression. These have the form of a variable name (which always
starts with a $), followed by a single equal sign, followed by the expression to be evaluated.
For example:

$eight = 2 * (2 * 2)
assigns the variable $eight the value you would expect.

An important thing to remember is that even assignment expressions are expressions and so
have values themselves! The value of an expression that assigns a variable is the same as the
value assigned. This means that you can use assignment expressions in the middle of more
complicated expressions. If you evaluate the statement:

$ten = ($two = 2) + ($eight = 2 * (2 * 2))

each variable would be assigned a numerical value equal to its name.

Reasons for expressions and statements

There are usually only two reasons to write an expression in PHP: for its value or for a side
effect. The value of an expression is passed on to any more complicated expression that
includes it; side effects are anything else that happens as a result of the evaluation. The most
typical side effects involve assigning or changing a variable, printing something to the user’s
screen, or making some other persistent change to the program’s environment (such as
interacting with a database).

Although statements are expressions, they are not themselves included in more complicated
expressions. This means that the only good reason for a statement is a side effect! It also means
that it is possible to write legal (yet totally useless statements) such as the second of these:

print("Hello"); // side effect is printing to screen
2 * 3+ 4; // useless - no side effect
$value_num = 3 * 4 + 5; // side effect is assignment

store_in_database(49.5); // side effect to DB

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence of
statements anywhere a statement can go by enclosing them in a set of curly braces.

For example, the if construct in PHP has a test (in parentheses) followed by the statement
that should be executed if the test is true. If you want more than one statement to be exe-
cuted when the test is true, you can use a brace-enclosed sequence instead. The following
pieces of code (which simply print a reassuring statement that it is still true that 1 + 2 is
equal to 3) are equivalent:

if (3 ==2+1)
print("Good - I haven't totally Tost my mind.
");

if (3 ==2+1)
{
print("Good - I haven't totally ");
print("Tost my mind.
");

65

66 Part| 4+ PHP: The Basics

You can put any kind of statement in a brace-enclosed block, including, say, an i f statement
that itself has a brace-enclosed block. This means that i f statements can have other i f state-
ments inside them. In fact, this kind of nesting can be done to an arbitrary number of levels.

Comments

A comment is the portion of a program that exists only for the human reader. The very first
thing that a program executor does with program code is to strip out the comments, so they
cannot have any effect on what the program does. Comments are invaluable in helping the
next person who reads your code figure out what you were thinking when you wrote it, even
when that person is yourself a week from now.

PHP drew its inspiration from several different programming languages, most notably C, Perl,
and Unix shell scripts. As a result, PHP supports styles of comments from all those languages,
and those styles can be intermixed freely in PHP code.

C-style multiline comments

The multiline style of commenting is the same as in C: A comment starts with the character
pair /* and terminates with the character pair */. For example:

/* This is
a comment in
PHP */

The most important thing to remember about multiline comments is that they cannot be
nested. You cannot put one comment inside another. If you try, the comment will be closed
off by the first instance of the */ character pair, and the rest of what was intended to be an
enclosing comment will instead be interpreted as code, probably failing horribly. For example:

/* This comment will /* fail horribly on the
last word of this */ sentence
*/

This is an easy thing to do unintentionally, usually when you try to deactivate a block of com-
mented code by “commenting it out.”

Single-line comments: # and //

In addition to the /* ... */ multiple-line comments, PHP supports two different ways of com-
menting to the end of a given line: one inherited from C++ and Java and the other from Perl
and shell scripts. The shell-script-style comment starts with a pound sign, whereas the C++
style comment starts with two forward slashes. Both of them cause the rest of the current
line to be treated as a comment, as in the following:

This is a comment, and

this is the second 1ine of the comment

// This is a comment too. Each style comments only

// one line so the last word of this sentence will fail
horribly.

The very alert reader might argue that single-line comments are incompatible with what we
said earlier about whitespace insensitivity. That would be correct —you will get a very

Chapter 5 4+ Syntax and Variables

different result if you take a single-line comment and replace one of the spaces with an
end-of-line character. A more accurate way of putting it is that, after the comments have been
stripped out of the code, PHP code is whitespace insensitive.

Variables

The main way to store information in the middle of a PHP program is by using a variable—a
way to name and hang on to any value that you want to use later.

Here are the most important things to know about variables in PHP (more detailed explana-
tions will follow):

4 All variables in PHP are denoted with a leading dollar sign ($).
4+ The value of a variable is the value of its most recent assignment.

4 Variables are assigned with the = operator, with the variable on the left-hand side and
the expression to be evaluated on the right.

4 Variables can, but do not need, to be declared before assignment.
4 Variables have no intrinsic type other than the type of their current value.

4 Variables used before they are assigned have default values.

PHP variables are Perl-like

All variables in PHP start with a leading $ sign just like scalar variables in the Perl scripting
language, and in other ways they have similar behavior (need no type declarations, may be
referred to before they are assigned, and so on). (Perl hackers may need to do no more than
skim the headings of this section, which is really for the rest of us.)

After the initial $, variable names must be composed of letters (uppercase or lowercase),
digits (0-9), and underscore characters (_). Furthermore, the first character after the $ may
not be a number.

Declaring variables (or not)

This subheading is here simply because programmers from some other languages might be
looking for it—in languages such as C, C++, and Java, the programmer must declare the name
and type of any variable before making use of it. However in PHP, because types are associ-
ated with values rather than variables, no such declaration is necessary — the first step in
using a variable is to assign it a value.

Assigning variables

Variable assignment is simple — just write the variable name, and add a single equal sign (=);
then add the expression that you want to assign to that variable:

$pi = 3 + 0.14159; // approximately

Note that what is assigned is the result of evaluating the expression, not the expression itself.
After the preceding statement is evaluated, there is no way to tell that the value of $pi was
created by adding two numbers together.

67

68

Part | ¢+ PHP: The Basics

It’s conceivable that you will want to actually print the preceding math expression rather
than evaluate it. You can force PHP to treat a mathematical variable assignment as a string
by quoting the expression:

$pi = "3 + 0.14159";

Reassigning variables

There is no interesting distinction in PHP between assigning a variable for the first time and
changing its value later. This is true even if the assigned values are of different types. For
example, the following is perfectly legal:

$my_num_var = "This should be a number - hope it's reassigned";
$my_num_var = 5;

If the second statement immediately follows the first one, the first statement has essentially
no effect.

Unassigned variables

Many programming languages will object if you try to use a variable before it is assigned;
others will let you use it, but if you do you may find yourself reading the random contents of
some area of memory. In PHP, the default error-reporting setting allows you to use unassigned
variables without errors, and PHP ensures that they have reasonable default values.

- Cross- ‘X If you would like to be warned about variables that have not been assigned, you should change
| Reference \ the error-reporting level to E_ALL (the highest level possible) from the default level of error

=

—

reporting. You can do this either by including the statement error_reporting(E_ALL);
at the top of a script or by changing your php. in1 file to set the default level (see Chapters 30
and 31).

Default values

Variables in PHP do not have intrinsic types —a variable does not know in advance whether
it will be used to store a number or a string of characters. So how does it know what type of
default value to have when it hasn’t yet been assigned?

The answer is that, just as with assigned variables, the type of a variable is interpreted
depending on the context in which it is used. In a situation where a number is expected, a
number will be produced, and this works similarly with character strings. In any context that
treats a variable as a number, an unassigned variable will be evaluated as 0; in any context
that expects a string value, an unassigned variable will be the empty string (the string that

is zero characters long).

Checking assignment with IsSet

Because variables do not have to be assigned before use, in some situations you can actually
convey information by selectively setting or not setting a variable! PHP provides a function
called IsSet that tests a variable to see whether it has been assigned a value.

As the following code illustrates, an unassigned variable is distinguishable even from a vari-
able that has been given the default value:

$set_var = 0; //set_var has a value
//never_set does not
print("set_var print value: $set_var
");

Chapter 5 4+ Syntax and Variables

print("never_set print value: $never_set
");
if ($set_var == $never_set)

print("set_var is equal to never_set!
");
if (IsSet($set_var))

print("set_var is set.
");
else

print("set_var is not set.
");
if (IsSet($never_set))

print("never_set is set.
");
else

print("never_set is not set.");

Oddly enough, this code will produce the following output:

set_var print value: 0
never_set print value:

set_var is equal to never_set!
set_var is set.

never_set is not set.

The variable $never_set has never been assigned, so it produces an empty string when a
string is expected (as in the print statement) and a zero value when a number is expected
(as in the comparison test that concludes that the two variables are the same). Still, [sSet
can tell the difference between $set_var and $never_set.

Assigning a variable is not irrevocable —the function unset () will restore a variable to an
unassigned state (for example, unset($set_var); will make $set_var into an unbound
variable, regardless of its previous assignments).

Variable scope

Scope is the technical term for the rules about when a name (for, say, a variable or function)
has the same meaning in two different places and in what situations two names spelled
exactly the same way can actually refer to different things.

Any PHP variable not inside a function has global scope and extends throughout a given
“thread” of execution. In other words, if you assign a variable near the top of a PHP file, the
variable name has the same meaning for the rest of the file; and if it is not reassigned, it will
have the same value as the rest of your code executes (except inside the body of functions).

The assignment of a variable will not affect the value of variables with the same name in
other PHP files or even in repeated uses of the same file. For example, let’s say that you have
two files, startup.php and next_thing.php, which are typically visited in that order by a
user. Let’s also say that near the top of startup.php, you have the line:

$username = "Jane Q. User";

which is executed only in certain situations. Now, you might hope that, after setting that variable
in startup.php, it would also be preset automatically when the user visited next_thing.php,
but no such luck. Each time a PHP page executes, it assigns and reassigns variables as it goes,
and those variables disappear at the end of a page’s production. Assignments of variables in one
file do not affect variables of the same name in a different file or even in other requests for the
same file.

Obviously, there are many situations in which you would like to hold onto information for
longer than it takes to generate a particular Web page. There are a variety of ways you can

69

70 Part | ¢+ PHP: The Basics

accomplish this, and the different techniques are a lot of what the rest of this book is about.
For example, you can pass information from page to page using GET and POST variables
(Chapter 7), store information persistently in a database (all of Part II of this book), associate
it with a user’s session using PHP’s session mechanism (Chapter 24), or store it on a user’s
hard disk via a cookie (Chapter 24).

Functions and variable scope

Except inside the body of a function, variable scope in PHP is quite simple: Within any given
execution of a PHP file, just assign a variable, and its value will be there for you later. We
haven’t yet covered how to define your own functions, but it’s worth a look-ahead note:
Variables assigned within a function are local to that function, and unless you make a special
declaration in a function, that function won’t have access to the global variables defined
outside the function, even when they are defined in the same file. (We will discuss the scope
of variables in functions in depth when we cover function definitions in Chapter 6.)

You can switch modes if you want

One scoping question that we had the first time we saw PHP code was: Does variable scope
persist across tags? For example, we have a single file that looks like:

<HTML>
<HEAD>
<?php
$username = "Jane Q. User";
7>
</HEAD>
<BODY>
<?php
print("$username
");
7>
</BODY>
</HTML>

Should we expect our assignment to $username to survive through the second of the two
PHP-tagged areas? The answer is yes —variables persist throughout a thread of PHP execu-
tion (in other words, through the whole process of producing a Web page in response to a
user’s request). This is a single manifestation of a general PHP rule, which is that the only
effect of the tags is to let the PHP engine know whether you want your code to be interpreted
as PHP or passed through untouched as HTML. You should feel free to use the tags to switch
back and forth between modes whenever it is convenient.

Constants

In addition to variables, which may be reassigned, PHP offers constants, which have a single
value throughout their lifetime. Constants do not have a $ before their names, and by conven-
tion the names of constants usually are in uppercase letters. Constants can contain only
scalar values (numbers and string). Constants have global scope, so they are accessible
everywhere in your scripts after they have been defined —even inside functions.

For example, the built-in PHP constant E_ALL represents a number that indicates to the
error_reporting() function that all errors and warnings should be reported. A call to
error_reporting() might look like this:

error_reporting(E_ALL);

Chapter 5 4+ Syntax and Variables

This is identical to calling error_reporting() on the integer value of E_ALL, but is better
because the actual value of E_ALL may change from one version of PHP to the next.

It’s also possible to create your own constants using the define () form, although this is
more unusual than referring to built-in constants. The code:

define(MY_ANSWER, 42);

would cause MY_ANSWER to evaluate to 42 everywhere it appears in your code. There is no
way to change this assignment after it has been made, and like variables, constants that are
not part of PHP itself do not persist across pages unless they are explicitly passed to a new
page. Ultimately, you probably will not need to define constants very often, if ever. When cre-
ated constants are used, they are generally most usefully defined in an external include file
and might be used for such information as a sales-tax rate or perhaps an exchange rate.

Types in PHP: Don’t Worry, Be Happy

All programming languages have some kind of type system, which specifies the different kinds
of values that can appear in programs. These different types often correspond to different bit-
level representations in computer memory, although in many cases programmers are insu-

lated from having to think about (or being able to mess with) representations in terms of bits.

PHP’s type system is simple, streamlined, and flexible, and it insulates the programmer from
low-level details. PHP makes it easy not to worry too much about typing of variables and val-
ues, both because it does not require variables to be typed and because it handles a lot of
type conversions for you.

No variable type declarations

As you saw in Chapter 4, the type of a variable does not need to be declared in advance.
Instead, the programmer can jump right ahead to assignment and let PHP take care of
figuring out the type of the expression assigned:

$first_number = 55.5;
$second_number = "Not a number at all";

Automatic type conversion

PHP does a good job of automatically converting types when necessary. Like most other
modern programming languages, PHP will do the right thing when, for example, doing math
with mixed numerical types. The result of the expression

$pi = 3 + 0.14159

is a floating-point (double) number, with the integer 3 implicitly converted into floating point
before the addition is performed.

Types assigned by context

PHP goes further than most languages in performing automatic type conversions. Consider:

$sub = substr(12345, 2, 2);
print("sub is $sub
");

71

712

Part | ¢+ PHP: The Basics

The substr function is designed to take a string of characters as its first input and return a
substring of that string, with the start point and length determined by the next two inputs to
the function. Instead of handing the function a character string, however, we gave it the inte-
ger 12345. What happens? As it turns out, there is no error, and we get the browser output:

sub is 34

Because substr expects a character string rather than an integer, PHP converts the number
12345 to the character string '12345", which substr then slices and dices.

Because of this automatic type conversion, it is very difficult to persuade PHP to give a type
error —in fact, PHP programmers need to exercise a little care sometimes to make sure that
type confusions do not lead to error-free but unintended results.

Type Summary

PHP has a total of eight types: integers, doubles, Booleans, strings, arrays, objects, NULL, and
resources.

4+ Integers are whole numbers, without a decimal point, like 495.

4 Doubles are floating-point numbers, like 3.14159 or 49.0.

4 Booleans have only two possible values: TRUE and FALSE.

4+ NULL is a special type that only has one value: NULL.

4 Strings are sequences of characters, like 'PHP 4.0 supports string operations.’
4 Arrays are named and indexed collections of other values.

4 Objects are instances of programmer-defined classes, which can package up both other
kinds of values and functions that are specific to the class.

4 Resources are special variables that hold references to resources external to PHP (such
as database connections).

Of these, the first five are simple types, and the next two (arrays and objects) are compound —
the compound types can package up other arbitrary values of arbitrary type, whereas the
simple types cannot. We treat only the simple types in this chapter, since arrays (Chapter 9)
and objects (Chapter 20) need chapters all to themselves. Finally, the thorniest details of the
type system, including discussion of the resource type, are deferred to Chapter 25.

The Simple Types

The simple types in PHP (integers, doubles, Booleans, NULL, and strings) should mostly be
familiar to those with programming experience (although we will not assume that experience
and will explain them in detail). The only thing likely to surprise C programmers is how few
types there are in PHP.

Many programming languages have several different sizes of numerical types, with the larger
ones allowing a greater range of values, but also taking up more room in memory. For exam-
ple, the C language has a short type (for relatively small integers), a 1ong type (for possibly
larger integers), and an int type (which might be intermediate, but in practice is sometimes
identical either to the short or Tong type). It also has floating-point types, which vary in
their precision. This kind of typing choice made sense in an era when tradeoffs between

Chapter 5 4+ Syntax and Variables

memory use and functionality were often agonizing. The PHP designers made what we think
is a good decision to simplify this by having only two numerical types, corresponding to the
largest of the integral and floating-point types in C.

Integers

Integers are the simplest type — they correspond to simple whole numbers, both positive and
negative. Integers can be assigned to variables, or they can be used in expressions, like so:

$int_var = 12345;
$another_int = -12345 + 12345; // will equal zero

Read formats

Integers can actually be read in three formats, which correspond to bases: decimal (base 10),
octal (base 8), and hexadecimal (base 16). Decimal format is the default, octal integers are
specified with a leading 0, and hexadecimals have a leading 0x. Any of the formats can be
preceded by a - sign to make the integer negative. For example:

$integer_10 = 1000;

$integer_8 = -01000;

$integer_16 = 0x1000;
print("integer_10: $integer_10
");
print("integer_8: $integer_8
");
print("integer_16: $integer_16
");

yields the browser output:

integer_10: 1000
integer_8: -512
integer_16: 4096

Note that the read format affects only how the integer is converted as it is read —the value
stored in $integer_8 does not remember that it was originally written in base 8. Internally, of
course, these numbers are represented in binary format; we see them in their base 10 conver-
sion in the preceding output because that is the default for printing and incorporating int
variables into strings.

Range

How big (or small) can integers get? Because PHP integers correspond to the C Tong type,
which in turn depends on the word-size of your machine, this is difficult to answer defini-
tively. For most common platforms, however, the largest integer is 23! — 1 (or 2,147,483,647),
and the smallest (most negative) integer is —(23! - 1) (or -2,147,483,647).

As far as we know, there is no PHP constant (like MAXINT in C) that will tell you the largest
integer on your implementation. If you really need integers even larger or smaller than the
preceding, PHP does have some arbitrary-precision functions — see the BC section of the
“Mathematics” chapter (Chapter 27).

Doubles

Doubles are floating-point numbers, such as:

$first_double = 123.456;
$second_double = 0.456
$even_double = 2.0;

75

74

Part | ¢+ PHP: The Basics

Note that the fact that $even_double is a “round” number does not make it an integer.
Integers and doubles are stored in different underlying formats, and the result of:

$five = $even_double + 3;

is a double, not an integer, even if it prints as 5. In almost all situations, however, you should
feel free to mix doubles and integers in mathematical expressions, and let PHP sort out the

typing.

By default, doubles print with the minimum number of decimal places needed — for example,
the code:

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print("$many + $many_2 = $few
");

produces the browser output:

2.28888 + 2.21112 = 4.5

\ If you need finer control of printing, see the printf function in Chapter 8.
ce

_—

Read formats

The typical read format for doubles is -X .Y, where the - optionally specifies a negative num-
ber, and both X and Y are sequences of digits between 0 and 9. The X part may be omitted if
the number is between —1.0 and 1.0, and the Y part can also be omitted. Leading or trailing
zeros have no effect. All the following are legal doubles:

$small_positive = 0.12345;
$small_negative = -.12345
$even_double = 2.00000;
$still_double = 2.;

In addition, doubles can be specified in scientific notation, by adding the letter e and a
desired integral power of 10 to the end of the previous format —for example, 2. 2e-3 would
correspond to 2.2 x 10->. The floating-point part of the number need not be restricted to a
range between 1.0 and 10.0. All the following are legal:

$small_positive = 5.5e-3;

print("small_positive is $small_positive
");
$large_positive = 2.8e+16;
print("large_positive is $large_positive
");
$small_negative = -2222e-10;
print("small_negative is $small_negative
");
$large_negative = -0.00189¢6;
print("large_negative is $large_negative
");

The preceding code produces the following browser output:

small_positive is 0.0055
large_positive is 2.8E+16
small_negative is -2.222E-07
large_negative is -1890

Chapter 5 4+ Syntax and Variables

Notice that, just as with octal and hexadecimal integers, the read format is irrelevant once
PHP has finished reading in the numbers —the preceding variables retain no memory of
whether they were originally specified in scientific notation. In printing the values, PHP is
making its own decisions to print the more extreme values in scientific notation, but this has
nothing to do with the original read format.

Booleans

Booleans are true-or-false values, which are used in control constructs like the testing portion
of an if statement. As we will see in Chapter 6, Boolean truth values can be combined using
logical operators to make more complicated Boolean expressions.

Boolean constants

PHP provides a couple of constants especially for use as Booleans: TRUE and FALSE, which
can be used like so:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Interpreting other types as Booleans
Here are the rules for determine the “truth” of any value not already of the Boolean type:

4 If the value is a number, it is false if exactly equal to zero and true otherwise.

4+ If the value is a string, it is false if the string is empty (has zero characters) or is the
string "0", and is true otherwise.

4 Values of type NULL are always false.

4 If the value is a compound type (an array or an object), it is false if it contains no other
values, and it is true otherwise. For an object, containing a value means having a
member variable that has been assigned a value.

4+ Valid resources are true (although some functions that return resources when they are
successful will return FALSE when unsuccessful).

- Cross- “« For a more complete account of converting values across types, see Chapter 25.

| Reference \
—

Examples

Each of the following variables has the truth value embedded in its name when it is used in a
Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element"; // see next section
$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = ""; // a string zero characters long

76

Part | ¢+ PHP: The Basics

Don’t use doubles as Booleans

Note that, although Rule 1 implies that the double 0.0 converts to a false Boolean value, it is
dangerous to use floating-point expressions as Boolean expressions, due to possible rounding
errors. For example:

$floatbool = sqrt(2.0) * sqrt(2.0) - 2.0;
if ($floatbool)
print("Floating-point Booleans are dangerous!
");
else
print("It worked ... this time.
");
print("The actual value is $floathool
");

The variable $f1oatbool is set to the result of subtracting two from the square of the square
root of two —the result of this calculation should be equal to zero, which means that
$floatbool is false. Instead, the browser output we get is:

Floating-point Booleans are dangerous!
The actual value is 4.4408920985006E-16

The value of $f1oatbool is very close to 0.0, but it is nonzero and, therefore, unexpectedly
true. Integers are much safer in a Boolean role —as long as their arithmetic happens only with
other integers and stays within integral sizes, they should not be subject to rounding errors.

NULL

The world of Booleans may seem small, since the Boolean type has only two possible values.
The NULL type, however, takes this to the logical extreme: The type NULL has only one possi-
ble value, which is the value NULL. To give a variable the NULL value, simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you
could just as well have typed:

$my_var = null;

So what is special about NULL? NULL represents the lack of a value. (You can think of it as the
nonvalue or the unvalue.) A variable that has been assigned the value NULL is nearly indistin-
guishable from a variable that has not been set at all. In particular, a variable that has been
assigned NULL has the following properties:

4 It evaluates to FALSE in a Boolean context.
4 It returns FALSE when tested with IsSet (). (No other type has this property.)

4+ PHP will not print warnings if you pass the variable to functions and back again,
whereas passing a variable that has never been set will sometimes produce warnings.

The NULL value is best used for situations where you want a variable not to have a value, inten-
tionally, and you want to make it clear to both a reader of your code and to PHP that this is
what you want. The latter point is particularly relevant when passing variables to functions.

For example, the following pseudocode may print a warning (depending on your error-reporting
settings) if the variable $authorization has never been assigned before you pass it to your
test_authorization() function.

if (test_authorization($authorization)) {
// code that grants a privilege of some sort
1

Chapter 5 4+ Syntax and Variables

On the other hand, code like this:

$authorization = NULL;
// code that might or might not set $authorization
if (test_authorization($authorization)) {
// code that grants a privilege of some sort
1

does not cause an unbound-variable warning, assuming that you have written test_
authorization() to handle arguments that might be NULL. It also makes clear to a reader
of the code that you intend for the variable to lack a value unless there’s a case where it is
assigned.

Strings

Strings are character sequences, as in the following:

$string_1 = "This is a string in double quotes.";

$string_2 = 'This is a somewhat longer, singly quoted string';
$string_39 = "This string has thirty-nine characters.";
$string_0 = ""; // a string with zero characters

Strings can be enclosed in either single or double quotation marks, with different behavior at
read time. Singly quoted strings are treated almost literally, whereas doubly quoted strings
replace variables with their values as well as specially interpreting certain character
sequences.

Singly quoted strings
Except for a couple of specially interpreted character sequences, singly quoted strings read
in and store their characters literally. The following code:

$literally = "My $variable will not print!\\n';
print($literally);

produces the browser output:
My $variable will not print!\n

Singly quoted strings also respect the general rule that quotes of a different type will not
break a quoted string. This is legal:

$singly_quoted = 'This quote mark: " is no big deal';

To embed a single quote (such as an apostrophe) in a singly quoted string, escape it with a
backslash, as in the following:

$singly_quoted = 'This quote mark\'s no big deal either';

Although in most contexts backslashes are interpreted literally in singly quoted strings, you
may also use two backslashes (\\) as an escape sequence for a single (nonescaping) back-
slash. This is useful when you want a backslash as the final character in a string, as in:

$win_path = '"C:\\InetPub\\PHP\\"';
print("A Windows-style pathname: $win_path
");

which displays as
A Windows-style pathname: C:\InetPub\PHP\

77

78 Part | ¢+ PHP: The Basics

' Note We could have used single backslashes to produce the first two backslashes in the output,
et but the escaping is necessary at the end of the string so that the closing quote will not be
escaped.

These two escape sequences (\\ and \ ") are the only exceptions to the literal-mindedness of
singly quoted strings.

Doubly quoted strings

Strings that are delimited by double quotes (as in "this") are preprocessed in both the
following two ways by PHP:

4+ Certain character sequences beginning with backslash (\) are replaced with special
characters.

4 Variable names (starting with $) are replaced with string representations of their values.
The escape-sequence replacements are:

4+ \n is replaced by the newline character

4+ \r is replaced by the carriage-return character

4+ \t is replaced by the tab character

4+ \$ is replaced by the dollar sign itself (%)

4+ \" is replaced by a single double-quote (")

4+ \\ is replaced by a single backslash (\)

The first three of these replacements make it easy to visibly include certain whitespace
characters in your strings. The \$ sequence lets you include the $ symbol when you want it,
without it being interpreted as the start of a variable. The \ " sequence is there so that you
can include a double-quote symbol without terminating your doubly quoted string. Finally,
because the \ character starts all these sequences, you need a way to include that character
literally, without it starting an escape sequence —to do this, you preface it with itself.

Just as with singly quoted strings, quotes of the opposite type can be freely included without
an escape character:

$has_apostrophe = "There's no problem here";

Single versus double quotation marks

PHP does some preprocessing of doubly quoted strings (strings with quotes like "this")
before constructing the string value itself. For one thing, variables are replaced by their val-
ues (as in the preceding example). To see that this replacement is really about the quoted
string rather than the print construct, consider the following code:

$animal = "antelope"; // first assignment
$saved_string = "The animal is $animal
";
$animal = "zebra"; // reassignment

print("The animal is $animal
"); //first display Tine
print($saved_string); //second display Tine

What output would you expect here? As it turns out, your browser would display:

The animal is zebra
The animal is antelope

Chapter 5 4+ Syntax and Variables

And the browser displays the preceding output in exactly that order. This is because
"antelope" is spliced into the string $saved_string, before the $animal variable is reas-
signed. In addition to splicing variable values into doubly quoted strings, PHP also replaces
some special multiple-character escape sequences with their single-character values. The
most commonly used is the end-of-line sequence ("\n") —in reading a string like:

"The first Tine \n\n\nThe fourth line"

Variable interpolation

Whenever an unescaped $ symbol appears in a doubly quoted string, PHP tries to interpret
what follows as a variable name and splices the current value of that variable into the string.
Exactly what kind of substitution occurs depends on how the variable is set:

4 If the variable is currently set to a string value, that string is interpolated (or spliced)
into the doubly quoted string.

4 If the variable is currently set to a nonstring value, the value is converted to a string,
and then that string value is interpolated.

4 If the variable is not currently set, PHP interpolates nothing (or, equivalently, PHP
splices in the empty string).

An example:

$this = "this";

$that = "that";

$the_other = 2.2000000000;
print("$this,$not_set,$that+$the_other
");

produces the PHP output
this,,that+2.2

which in turn, when seen in a browser, looks like:
this,,that+2.2

If you find any part of this example puzzling, it is worth working through exactly what PHP
does to parse the string in the print statement. First, notice that the string has four $ signs,
each of which is interpreted as starting a variable name. These variable names terminate at
the first occurrence of a character that is not legal in a variable name. Legal characters are
letters, numbers, and underscores; the illegal terminating characters in the preceding print
string are (in order) a comma, another comma, the plus symbol (+), and a left angle bracket
(). The first two variables are bound to strings ('this' and 'that"), so those strings are
spliced in literally. The next variable ($not_set) has never been assigned, so it is omitted
entirely from the string under construction. Finally, the last variable ($the_other) is discov-
ered to be bound to a double —that value is converted to a string ("2.2"), which is then
spliced into our constructed string.

- Cross- ‘\X For more about converting numbers to strings, see the “Assignment and Coercion” section in
| Reference \ Chapter 25.
l g

|

As we said earlier in this chapter, all this interpretation of doubly quoted strings happens
when the string is read, not when it is printed. If we saved the example string in a variable
and printed it out later, it would reflect the variable values in the preceding code even if the
variables had been changed in the meantime.

79

80 Part| 4+ PHP: The Basics

- Cross- ‘\ In addition to single-quotes and double-quotes, there is another way to create strings (called
| Reference \ the heredoc syntax), which in some ways makes it even easier to splice in the values of vari-
=" ables. We cover it in Chapter 8.

Newlines in strings

Although PHP offers an escape sequence (\n) for newline characters, it is good to know that
you can literally include new lines in the middle of strings, which PHP also treats as a newline
characters. This capability turns out to be convenient when creating HTML strings, because
browsers will ignore the line breaks anyway, so we can format our strings with line breaks to
make our PHP code lines short:

print ("<HTML><HEAD></HEAD><BODY>My HTML page is too big
to fit on a single line, but that doesn't mean that I
need multiple print statements!</BODY></HTML>");

We produced this statement in our text editor by literally hitting the Enter key at the end of the
first two lines —these newlines are preserved in the string, so the single print statement will
produce three distinct lines of PHP output. (Your mileage may vary depending on your text
editor —if your editor automatically wraps lines in displaying them, you may see three lines of
code that are actually one long line.) Of course, the browser program will ignore these newlines
and will make its own decisions about whether and where to break the lines in display, but you
will see the linebreaks if you use View Source in your browser to see the HTML itself.

Limits
There are no artificial limits on string length — within the bounds of available memory, you
ought to be able to make arbitrarily long strings.

Output

Most of the constructs in the PHP language execute silently—they don’t print anything to
output. The only way that your embedded PHP code will display anything in a user’s browser
program is either by means of statements that print something to output or by calling func-
tions that, in turn, call print statements.

Echo and print

The two most basic constructs for printing to output are echo and print. Their language
status is somewhat confusing, because they are basic constructs of the PHP language, rather
than being functions. As a result, they can be used either with parentheses or without them.
(Function calls always have the name of the function first, followed by a parenthesized list of
the arguments to the function.)

Echo

The simplest use of echo is to print a string as argument, for example:
echo "This will print in the user's browser window.";
Or equivalently:

echo("This will print in the user's browser window.");

Chapter 5 4 Syntax and Variables 81

Both of these statements will cause the given sentence to be displayed, without displaying
the quote signs. (Note for C programmers: Think of the HTTP connection to the user as the
standard output stream for these functions.)

You can also give multiple arguments to the unparenthesized version of echo, separated by
commas, as in:

echo "This will print in the "user's browser window.";

The parenthesized version, however, will not accept multiple arguments:

echo ("This will produce a ", "PARSE ERROR!");

Print

The command print is very similar to echo, with two important differences:
4 Unlike echo, print can accept only one argument.

4 Unlike echo, print returns a value, which represents whether the print statement
succeeded.

The value returned by print will be 1 if the printing was successful and 0 if unsuccessful.
(It is rare that a syntactically correct print statement will fail, but in theory this return value
provides a means to test, for example, if the user’s browser has closed the connection.)

Both echo and print are usually used with string arguments, but PHP’s type flexibility means
that you can throw pretty much any type of argument at them without causing an error. For
example, the following two lines will print exactly the same thing:

print("3.14159"); // print a string
print(3.14159); // print a number

Technically, what is happening in the second line is that, because print expects a string
argument, the floating-point version of the number is converted to a string value before
print gets hold of it. However, the effect is that both print and echo will reliably print out
numbers as well as string arguments.

For the sake of simplicity and uniformity, we will typically use the parenthesized version of
print in our examples, rather than using echo.

- Cross- ‘\X In addition to the printing functions discussed here, there are two printing functions used

| Reference)\ mostly for debugging: print_r() and var_dump (). The point of these functions is to help

l.,f-"""'. you visualize what's going on with compound data structures like arrays, so we cover them
along with the details of arrays in Chapter 9.

Variables and strings

C programmers are accustomed to using a function called printf, which allows you to splice
values and expressions into a specially formatted printing string. PHP has analogous func-
tions (which we will cover in Chapter 7), but as it turns out we can get much of the same
functionality just by using print (or echo) with quoted strings. For example, the fragment:

$animal = "antelope";

$animal_heads = 1;

$animal_legs = 4;

print("The $animal has $animal_heads head(s).
");
print("The $animal has $animal_legs Tleg(s).
");

82

Part | ¢+ PHP: The Basics

will produce the following output in the browser:

The antelope has 1 head(s).
The antelope has 4 leg(s).

The values for the variables we included in the string have been neatly spliced into the printed
output. This makes it very easy to quickly produce Web pages with content that varies depend-
ing on how variables have been set. It is not the result of any magical properties of print,
however — the magic is really happening in the interpretation of the quoted string itself.

HTML and linebreaks

One mistake often made by new PHP programmers (especially those from a C background) is
to try to break lines of text in their browsers by putting end-of-line characters ("\n") in the
strings they print. To understand why this doesn’t work, you have to distinguish the output of
PHP (which is usually HTML code, ready to be sent over the Internet to a browser program)
from the way that output is rendered by the user’s browser. Most browser programs will
make their own choices about how to split up lines in HTML text, unless you force a line
break with the
 tag. End-of-line characters in strings will put line breaks in the HTML
source that PHP sends to your user’s browser (which can still be useful for creating readable
HTML source), but they will usually have no effect on the way that text looks in a Web page.

Summary

PHP code follows a basic set of syntactical rules, mostly borrowed from programming lan-
guages such as C and Perl. The syntactical requirements of PHP are minimal, and in general
PHP tries to display results when it can rather than generating an error.

PHP has eight types: integer, double, Boolean, NULL, string, array, object, and resource. Five
of these are simple types: Integers are whole numbers, doubles are floating-point numbers,
Booleans are true-or-false values, NULL has just one value (NULL), and strings are sequences
of characters. Arrays are a compound type that holds other PHP values, indexed either by
integers or by strings. Objects are instances of programmer-defined classes, which can con-
tain both member variables and member functions, and which can inherit functions and data
types from other classes. (We address arrays in Chapter 9 and objects in Chapter 20.) Finally,
resources are special references to memory allocated from external programs, which memory
PHP frees automatically when they are no longer needed (we cover resources in Chapter 25).

Only values are typed in PHP —variables have no inherent type other than the value of their
most recent assignment. PHP automatically converts value types as demanded by the context
in which the value is used. The programmer can also explicitly control types by means of
both conversion functions and type casts.

PHP code is whitespace insensitive, and although variable names are case sensitive, basic
language constructs and function names are not. Simple PHP expressions are combined into
larger expressions by operators and function calls, and statements are expressions with a ter-
minating semicolon. Variables are denoted by a leading $ character and are assigned using
the = operator. They need no type declarations and have reasonable default values if used
before they are assigned. Variable scope is global except inside the body of functions, where
it is local to the function unless explicitly declared otherwise.

The simplest way to send output to the user is by using either echo or print, which output
their string arguments. They are particularly useful in combination with doubly quoted
strings, which automatically replace embedded variables with their values.

¢+ ¢

Control and
Functions

/

Note

It‘s difficult to write interesting programs if you can’t make the
course of program execution depend on anything. In a weak sense,
the behavior of code that prints variables depends on the variable
values, but that is as exciting as filling out a template. As program-
mers, we want programs that react to something (the world, the time
of day, user input, or the contents of a database) by doing something
different.

This kind of program reaction requires a control structure, which indi-
cates how different situations should lead to the execution of differ-
ent code. In Chapter 5, we informally used the i f control structure
without really explaining it; in this chapter, we lay out every kind of
control structure offered by PHP and study their workings in detail.

Experienced C programmers: Of all the features in PHP, control is

s probably the most reliably C-like —all the structures you are used

to are here, and they work the same way.

The two broad types of control structures we will talk about are
branches and loops. A branch is a fork in the road for a program’s exe-
cution — depending on some test or other, the program goes either
left or right, possibly following a different path for the rest of the pro-
gram’s execution. A loop is a special kind of branch where one of the
execution paths jumps back to the beginning of the branch, repeating
the test and possibly the body of the loop.

Before we can make interesting use of control structures, however,
we have to be able to construct interesting tests. We'll start from the
very simplest of tests, working our way up from the constants TRUE
and FALSE and then move on to using these tests in more compli-
cated code.

Any real programming language has some kind of capability for proce-
dural abstraction — a way to name pieces of code so that you can use
them as building blocks in writing other pieces of code. Some script-
ing languages lack this capability, and we can tell you from our own
sorrowful experience that complex server-side code can quickly
become unmanageable without it.

PHP’s mechanism for this kind of abstraction is the function. There
are really two kinds of functions in PHP —those that have been built
into the language by the PHP developers and those defined by indi-
vidual PHP programmers.

¢+ s+
In This Chapter

Boolean expressions
Branching

Looping

Terminating execution
Exceptions

Using functions
Function documentation

Defining your own
functions

Functions and variable
scope

Function scope

+ o+ o+

84 Part| + PHP: The Basics

In this chapter, we also look at how to use the large body of functions already provided in
PHP and then, a bit later, how to define your own functions. Luckily, there is no real difference
between using a built-in function and using your own functions. But first, let’s discuss control.

Boolean Expressions

Every control structure in this chapter has two distinct parts: the test (which determines
which part of the rest of the structure executes), and the dependent code itself (whether sepa-
rate branches or the body of a loop). Tests work by evaluating a Boolean expression, an
expression with a result treated as either true or false.

Boolean constants

The simplest kind of expression is a simple value, and the simplest Boolean values are the
constants TRUE and FALSE. We can use these constants anywhere we would use a more com-
plicated Boolean expression, and vice versa. For example, we can embed them in the test part
of an if-else statement:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Or equivalently:

if (FALSE)

print("This will never print
");
else

print("This will always print
");

Logical operators

Logical operators combine other logical (aka Boolean) values to produce new Boolean values.
The standard logical operations (and, or, not, and exclusive-or) are supported by PHP,
which has alternate versions of the first two, as shown in Table 6-1.

Table 6-1: Logical Operators

Operator Behavior
and Is true if and only if both of its arguments are true.
or Is true if either (or both) of its arguments are true.

! Is true if its single argument (to the right) is false and false if its argument is true.
xor Is true if either (but not both) of its arguments are true.

&& Same as and, but binds to its arguments more tightly. (See the discussion of
precedence later in the chapter.)

[Same as or but binds to its arguments more tightly.

Chapter 6 + Control and Functions

The && and | | operators will be familiar to C programmers. The ! operator is usually called
not, since it negates the argument it operates on.

As an example of using logical operators, consider the following expression:

(($statement_1 && $statement_2) ||
($statement_1 && !$statement_2) ||
(!$statement_1 && $statement_2) ||
(!'$statement_1 && !$statement_2))
This is a tautology, meaning that it is always true regardless of the values of the statement
variables. There are four possible combinations of truth values for the two variables, each
of which is represented by one of the && expressions. One of these four must be true, and
because they are linked by the | | operator, the entire expression must be true.

Here’s another, slightly trickier tautology using xor:

(($statement_1 and $statement_2 and
$statement_3) xor

((!($statement_1 and $statement_2)) or
(!($statement_1 and $statement_3)) or
(!($statement_2 and $statement_3))))

In English, this expression says, “Given three statements, one and only one of the following
two things hold —either 1) all three statements are true, or 2) there are two statements that
are not both true.”

Precedence of logical operators

Just as with any operators, some logical operators have higher precedence than others,
although precedence can always be overridden by grouping subexpressions using parenthe-
ses. The logical operators listed in declining order of precedence are: !, &8, | |, and, xor, or.
Actually, and, xor, and or have much lower precedence than the others, so that the assign-
ment operator (=) binds more tightly than and, but less tightly than &&.

- Cross- ‘\X A complete table of operator precedence and associativity can be found in the online manual
| Referernii_\ at www.php.net.

|

Logical operators short-circuit

One very handy feature of Boolean operators is that they associate left to right, and they
short-circuit, meaning that they do not even evaluate their second argument if their truth

value is unambiguous from their first argument. For example, imagine that you wanted to
determine a very approximate ratio of two numbers, but also wanted to avoid a possible
division-by-zero error. You can first test to make sure that the denominator is not zero by
using the ! = (not-equal-to) operator:

if ($denom != 0 && $numer / $denom > 2)
print("More than twice as much!");

In the case where $denom is zero, the && operator should return false regardless of whether
the second expression is true or false. Because of short-circuiting, the second expression is
not evaluated, so an error is avoided. In the case where $denom is not zero, the && operator
does not have enough information to reach a conclusion about its truth value, so the second
expression is evaluated.

85

86 Part| 4+ PHP: The Basics

So far, all we've formally covered are the TRUE and FALSE constants and how to combine
them to make other true-or-false values. Now we’ll move on to operators that actually let you
make meaningful Boolean tests.

Comparison operators

Table 6-2 shows the comparison operators, which can be used for either numbers or strings
(although you should see the cautionary sidebar entitled “Comparing Things That Are Not

Integers”).
Table 6-2: Comparison Operators

Operator Name Behavior

== Equal True if its arguments are equal to each other, false
otherwise

1= Not equal False if its arguments are equal to each other, true
otherwise

< Less than True if the left-hand argument is less than its right-
hand argument, but false otherwise

> Greater than True if the left-hand argument is greater than its
right-hand argument, but false otherwise

<= Less than or equal to True if the left-hand argument is less than its right-
hand argument or equal to it, but false otherwise

>= Greater than or equal to True if the left-hand argument is greater than its right-

hand argument or equal to it, but false otherwise

Identical True if its arguments are equal to each other and of
the same type, but false otherwise

As an example, here are some variable assignments, followed by a compound test that is
always true:

$three = 3;
$four = 4;
$my_pi = 3.14159;
if (($three == $three) and
($four === §$four) and
($three != $four) and
($three < $four) and
($three <= $four) and
($four >= $three) and
($three <= $three) and
($my_pi > $three) and
($my_pi <= $four))
print("My faith in mathematics is restored!
");
else
print("Sure you typed that right?
");

Chapter 6 + Control and Functions 87

Caution Watch out for a very common mistake: confusing the assignment operator (=) with the com-
parison operator (==). The statement if ($three = $four). will (probably unexpectedly)
set the variable $three to be the same as $four; what's more, the test will be true if $four
is a true value!

Operator precedence

Although overreliance on precedence rules can be confusing for the person who reads your
code next, it’s useful to note that comparison operators have higher precedence than Boolean
operators. This means that a test like the following:

if ($small_num > 2 && $small_num < 5)

doesn’t need any parentheses other than those shown.

String comparison

The comparison operators may be used to compare strings as well as numbers (see the
cautionary sidebar). We would expect the following code to print its associated sentence
(with apologies to Billy Bragg):

if (("Marx" < "Mary") and
("Mary" < "Marzipan"))
{
print("Between Marx and Marzipan in the ");
print("dictionary, there was Mary.
");
}

The comparisons are case sensitive, and the only reason that this example will print anything
is because our values are case-consistent. Because of the capitalization of Dennis, the follow-
ing will not print anything:

if (("deep blue sea" < "Dennis") and
("Dennis" < "devil"))
{
print("Between the deep blue sea and ");
print("the devil, that was me.
");
}

The ternary operator

One especially useful construct is the ternary conditional operator, which plays a role some-
where between a Boolean operator and a true branching construct. Its job is to take three
expressions and use the truth value of the first expression to decide which of the other two
expressions to evaluate and return. The syntax looks like:

test-expression ? yes-expression : no-expression

The value of this expression is the result of yes-expressionif test-expression is true;
otherwise, it is the same as no-expression.

For example, the following expression assigns to $max_num either $first_numor
$second_num, whichever is larger:

$max_num = $first_num > $second_num ? $first_num : $second_num;

88 Part| 4+ PHP: The Basics

Comparing Things That Are Not Integers

Although comparison operators work with numbers or strings, a couple of gotchas lurk here.

First of all, although it is always safe to do less-than or greater-than comparisons on doubles
(or even between doubles and integers), it can be dangerous to rely on equality comparisons on
doubles, especially if they are the result of a numerical computation. The problem is that a
rounding error may make two values that are theoretically equal differ slightly.

Second, although comparison operators work for strings as well as numbers, PHP's automatic
type conversions can lead to counterintuitive results when the strings are interpretable as
numbers. For example, the code:

$string_1 = "00008";
$string_2 = "007";
$string_3 = "00008-0K";
if ($string_2 < $string_1)

print("$string_2 is less than $string 1
");
if ($string_3 < $string_2)

print("$string_3 is less than $string_2
");
if ($string_1 < $string_3)

print("$string_1 is less than $string 3
");

gives this output (with comments added):

007 is less than 00008 // numerical comparison
00008-0K is Tless than 007 // string comparison
00008 is less than 00008-0K // string comp. - contradiction!

When it can, PHP will convert string arguments to numbers, and when both sides can be treated
that way, the comparison ends up being numerical, not alphabetic. The PHP designers view this
as a feature, not a bug. Our view is that if you are comparing strings that have any chance of
being interpreted as numbers, you're better off using the strcmp () function (see Chapter 10).

As we will see, this is equivalent to:

if ($first_num > $second_num)
$max_num = $first_num;

else
$max_num = $second_num;

but is somewhat more concise.

Branching

The two main structures for branching are if and switch. If is a workhorse and is usually
the first conditional structure anyone learns. Switch is a useful alternative for certain situa-
tions where you want multiple possible branches based on a single value and where a series
of if statements would be cumbersome.

Chapter 6 + Control and Functions

If-else

The syntax for if is:

if (test)
statement-1

Or with an optional e1se branch:

if (test)
statement-1

else
Statement-2

When an i f statement is processed, the test expression is evaluated, and the result is inter-
preted as a Boolean value. If test is true, statement-1 is executed. If test is not true, and
there is an e1se clause, statement -2 is executed. If test is false, and there is no else clause,
execution simply proceeds with the next statement after the i f construct.

Note that a statement in this syntax can be a single statement that ends with a semicolon, a
brace-enclosed block of statements, or another conditional construct (which itself counts as
a single statement). Conditionals can be nested inside each other to arbitrary depth. Also, the
Boolean expression can be a genuine Boolean (TRUE, FALSE, or the result of a Boolean opera-
tor or function), or it can be a value of another type interpreted as a Boolean.

- Cross- ‘\‘« For the full story on how values of non-Boolean types are treated as Booleans, see Chapter 25.
| Reference \ The short version is that the number 0, the string "0", and the empty string, " ", are false, and
=" almost every other value is true.

The following example, which prints a statement about the absolute difference between
two numbers, shows both the nesting of conditionals and the interpretation of the test as
a Boolean:

if ($first - $second)
if ($first > $second)
{
$difference = $first - $second;
print("The difference is $difference
");

else
{
$difference = $second - $first;
print("The difference is $difference
");
}
else
print("There is no difference
");

This code relies on the fact that the number 0 is interpreted as a false value —if the differ-
ence is zero, then the test fails, and the no difference message is printed. If there is a
difference, a further test is performed. (This example is artificial, because a test like $first
!= $second would accomplish the same thing comprehensibly.)

89

90 Part| 4+ PHP: The Basics

Else attachment

At this point, former Pascal programmers may be warily wondering about e1se attachment —
that is, how does an e1se clause know which i f it belongs to? The rules are simple and are
the same as in most languages other than Pascal. Each else is matched with the nearest
unmatched i f that can be found, while respecting the boundaries of braces. If you want to
make sure that an i f statement stays solo and does not get matched to an else, wrap it

up in braces like so:

if ($num %2 2 == 0) // $num is even?
{
if ($num > 2)
print("num is not prime
");
}
else
print("num is odd
");

This code will print num is not prime if $num happens to be an even number greater than 2,
num is odd if $num is odd, and nothing if $num happens to be 2. If we had omitted the curly
braces, the e1se would attach to the inner i f, and so the code would buggily print num is
odd if $num were equal to 2 and would print nothing if $num were actually odd.

'Note In this chapter’'s examples, we often use the modulus operator (%), which is explained in
g Chapter 10. For the purposes of these examples, all you need to know is that if $x % $y is
zero, $x is evenly divisible by $y.

Elseif

It’s very common to want to do a cascading sequence of tests, as in the following nested if
statements:

if ($day == 5)
print("Five golden rings
");
else
if ($day == 4)
print("Four calling birds
");
else
if ($day == 3)
print("Three French hens
");
else
if ($day == 2)
print("Two turtledoves
");
else
if ($day == 1)
print("A partridge in a pear tree
");

' Note We have indented this code in to show the real syntactic structure of inclusions — although
i this is always a good idea, you will often see code that does not bother with this and where
each else line starts in the first column.

Chapter 6 + Control and Functions

Branching and HTML Mode

As you may have learned from earlier chapters, you should feel free to use the PHP tags to switch
back and forth between HTML mode and PHP mode, whenever it seems convenient. If you need
to include a large chunk of HTML in your page that has no dynamic code or interpolated vari-
ables, it can be simpler and more efficient to escape back into HTML mode and include it literally
than it is to send it using print or echo.

What may not be as obvious is that this strategy works even inside conditional structures. That is,
you can use PHP to decide what HTML to send and then “send” that HTML by temporarily escap-
ing back to HTML mode.

For example, the following cumbersome code uses print statements to construct a complete
HTML page based on the supposed gender of the viewer. (We're assuming a nonexistent
Boolean function called female() that tests for this.)

<HTML><HEAD>
<?php
if (female())
{
print("<TITLE>The women-only site</TITLE>
");
print("</HEAD><BODY>");
print("This site has been specially constructed ");
print("for women only.
 No men allowed here!");

else
{
print("<TITLE>The men-only site</TITLE>
");
print("</HEAD><BODY>");
print("This site has been specially constructed ");
print("for men only.
 No women allowed here!");
}
7>
</BODY></HTML>

Instead of all these print statements, we can duck back into HTML mode within each of the two
branches:

<HTML><HEAD>
<?php
if (female())
{
?>
KTITLE>The women-only site</TITLE>
</HEAD><BODY>
This site has been specially constructed
for women only.
 No men allowed here!
<?php
}
else
{
?>

Continued

o2 Part| 4+ PHP: The Basics

Continued

KTITLE>The men-only site</TITLE>

</HEAD><BODY>
This site has been specially constructed
for men only.
 No women allowed here!
<?php

}
7>
</BODY></HTML>

This version is somewhat more difficult to read, but the only difference is that it replaces each set
of print statements with a block of literal HTML that starts with a closing PHP tag (?>) and ends
with a starting PHP tag (<?php).

In this book’s examples, we mostly avoid this kind of conditional inclusion, simply because we
feel that it may be harder for the novice PHP programmer to decipher. But that shouldn’t stop
you — literal inclusion has advantages, including fast execution. (In HTML mode, all the PHP
engine must do is pass on characters and watch for the next PHP start tag, which is inevitably
faster than parsing and executing print statements, especially if they include doubly quoted
strings.)

A third alternative, when large blocks of HTML are conditionally included, is the heredoc, alluded
to in Chapter 5 and explained fully in Chapter 8. The heredoc will allow you to include large
blocks of HTML code inside a chunk of PHP without several consecutive print statements.

This pattern is common enough that there is a special el1sei f construct to handle it. We can
rewrite the preceding example as:

if ($day == 5)
print("Five golden rings
");
elseif ($day == 4)
print("Four calling birds
");
elseif ($day == 3)
print("Three French hens
");
elseif ($day == 2)
print("Two turtledoves
");
elseif ($day == 1)
print("A partridge in a pear tree
");

The if, elseif construct allows for a sequence of tests that executes only the first branch
that has a successful test. In theory, this is syntactically different from the previous example
(we have a single construct with five branches rather than a nesting of five two-branch con-
structs), but the behavior is identical. Use whichever syntax you find more appealing.

Switch

For a specific kind of multiway branching, the switch construct can be useful. Rather than
branch on arbitrary logical expressions, switch takes different paths according to the value
of a single expression. The syntax is as follows, with the optional parts enclosed in square
brackets ([1):

Chapter 6 4+ Control and Functions 03

switch(expression)
{
case value-1:
statement-1
statement-2
[break;]
case value-2:

Statement-3
statement-4

[break;]
[default:
default-statement]

}

The expression can be a variable or any other kind of expression, as long as it evaluates to a
simple value (that is, an integer, a double, or a string). The construct executes by evaluating
the expression and then testing the result for equality against each case value. As soon as a
matching value is found, subsequent statements are executed in sequence until the special
statement (break;) or until the end of the switch construct. (As we'll see in the “Looping”
section of this chapter, break can also be used to break out of looping constructs.) A special
default tag can be used at the end, which will match the expression if no other case has
matched it so far.

For example, we can rewrite our if-else example as follows

switch($day)
{
case b5:
print("Five golden rings
");
break;
case 4:
print("Four calling birds
");
break;
case 3:
print("Three French hens
");
break;
case 2:
print("Two turtledoves
");
break;
default:
print("A partridge in a pear tree
");
}

This will print a single appropriate line for days 2-5; for any day other than those, it will print
Apartridge in a pear tree. Although switch will accept only a single argument, there’s no
reason why that argument can’t be the value of expressions evaluated previously in your code.

Caution The single most confusing aspect of switch is that all cases after a matching case will exe-
cute, unless there are break statements to stop the execution. In the “partridge” example,
the break statements ensure that we see only one line from the song at a time. If we
remove the break statements, we will see a sequence of lines counting down to the final
line, just as in the song.

o4 Part| + PHP: The Basics

Looping

Congratulations! You just passed the boundary from scripting into real programming. The
branching structures we have looked at so far are useful, but there are limits to what can be
computed with them alone. On the other hand, it’s well established in theoretical computer
science that any language with tests plus unbounded looping can do pretty much anything
that any other language can do. You may not actually want to write a C compiler in PHP, for
example, but it’s nice to know that no inherent language limits are going to stop you.

Bounded loops versus unbounded loops

A bounded loop executes a fixed number of times —you can tell by looking at the code how
many times the loop will iterate, and the language guarantees that it won’t loop more times
than that. An unbounded loop repeats until some condition becomes true (or false), and that
condition is dependent on the action of the code within the loop. Bounded loops are pre-
dictable, whereas unbounded loops can be as tricky as you like.

Unlike some languages, PHP doesn’t actually have any constructs specifically for bounded
loops—while, do-while, and for are all unbounded constructs —but as we will see in this
section, an unbounded loop can do anything a bounded loop can do.

- Cross- “« In addition to the looping constructs in this chapter, PHP provides functions for iterating over
|l ReferT..), the contents of arrays, which are covered in Chapter 9.
P

While

The simplest PHP looping construct is whi1e, which has the following syntax:

while (condition)
Statement

The while loop evaluates the condition expression as a Boolean —if it is true, it executes
statement and then starts again by evaluating condition. If the condition is false, the while
loop terminates. Of course, just as with if, statement may be a single statement or it may
be a brace-enclosed block. The body of a whi1e loop may not execute even once, as in:

while (FALSE)
print("This will never print.
");

Or it may execute forever, as in this code snippet:

while (TRUE)
print("A11 work and no play makes
Jack a dull boy.
");

or it may execute a predictable number of times, as in:

$count = 1;
while ($count <= 10)
{
print("count is $count
");
$count = $count + 1;

}

which will print exactly 10 lines. (For more interesting examples, see the “Looping examples”
section, later in this chapter.)

Chapter 6 + Control and Functions

Do-while

The do-while construct is similar to whi1e, except that the test happens at the end of the
loop. The syntax is:

do statement
while (expression);

The statement is executed once, and then the expression is evaluated. If the expression is
true, the statement is repeated until the expression becomes false. The only practical differ-
ence between while and do-while is that the latter will always execute its statement at least
once. For example:

$count = 45;
do
{
print("count is $count
");
$count = $count + 1;
}
while ($count <= 10)

prints the single line:

count is 45

For
The most complicated looping construct is for, which has the following syntax:

for (initial-expression;
termination-check;
loop-end-expression)
Statement

In executing a for statement, first the initial-expression is evaluated just once, usually to ini-
tialize variables. Then termination-check is evaluated —if it is false, the for statement con-
cludes, and if it is true, the statement executes. Finally, the loop-end-expression is executed
and the cycle begins again with termination-check. As always, by statement we mean a single
(semicolon-terminated) statement, a brace-enclosed block, or a conditional construct.

If we rewrote the preceding for loop as a while loop, it would look like this:

initial-expression;
while (termination-check)
{
statement
loop-end-expression;

}

Actually, although the typical use of for has exactly one initial-expression, one termination-
check, and one loop-end-expression, it is legal to omit any of them. The termination-check is
taken to be always true if omitted, so:

for (;3)
statement

95

96 Part| 4+ PHP: The Basics

is equivalent to:

while (TRUE)
Statement

It is also legal to include more than one of each kind of for clause, separated by commas.
The termination-check will be considered to be true if any of its subclauses are true; it is like
an 'or' test. For example, the following statement:

for ($x =1, $y =1, $z = 1; //initial expressions
$y < 10, $z < 10; // termination checks
$x = $x + 1, $y = $y + 2, // loop-end expressions
$z = $z + 3)

print("$x, $y, $z
");

would give the browser output:

1, 1,1
2, 3, 4
3, 5,7

Although the for syntax is the most complex of the looping constructs, it is often used for
simple bounded loops, using the following idiom:

for ($count = 0; $count < $Timit; $count = $count + 1)
statement

Looping examples

Now let’s look at some examples.

A bounded for loop
Listing 6-1 shows a typical use of bounded for loops. The page produced by Listing 6-1 is
shown in Figure 6-1.

Listing 6-1: A division table

<?php
$start_num = 1;
$end_num = 10;
72>
<HTML>
<HEAD>
CTITLE>A division table</TITLE>
</HEAD>
<BODY>
<H2>A division table</H2>
<TABLE BORDER=1>
<?php
print("<TR>");
print("<TH> </TH>");
for ($count_1 = $start_num;

Chapter 6 + Control and Functions o7

$count_1 <= $end_num;
$count_1++)
print("<TH>$count_1</TH>");
print("</TR>");

for ($count_1 = $start_num;
$count_1 <= $end_num;
$count_1++)
{
print ("<TR><TH>$count_1</TH>");
for ($count_2 = $start_num;
$count_2 <= $end_num;
$count_2++)
{
$result = $count_1 / $count_2;
printf("<TD>%.3f</TD>",
$result); // see Chapter 8

}
print("</TR>\n");
}
7>
</TABLE>
</BODY>
</HTML>

: A division table - Netscape

File Edit View Go Communicator Help
493:&;;@&&:&%%
Back Fonvaid Reload Home Search Metscape Print Security Stap

7w Bockmaks A La:atiun;jhtlp:h’lncahnsucbmian.php jﬁ'\h"hat'sﬂelabed

i BirstantMesssge H Catagories B Maps [B Proto Finder S SecureWeb Shop S Home

A division table

1 [2 [3[4[5]6] 7891
|1 [1.000 [0.500(0.333 0.250/0.200 0.167 0.143 0.1250.111/0.100
[2/2.000 [1.000(0.667 0.5000.400 0.333/0.286/0.250(0.2220.200
|3 3.000 [1.500(1.0000.750/0.600 0.5000.429 0.375(0.333/0.300
|4 4.000 [2.000(1.333/1.000/0.800 0.6670.571 0.5000.4440.400
[55.000 [2.500(1.667/1.250(1.000 0.833 0.714 0.625/0.556(0.500
|6 (6.000 [3.000(2.000 1.500/1.200 1.0000.857 0.7500.667|0.600
[77.000 (3.500[2.333[1.750(1.400 1.1671.000 0.8750.778/0.700
|8 8.000 4.000[2.6672.000(1.600 1.3331.143 1.000/0.889 0.800
[9[9.000 [4.500(3.0002.250(1.800 1.5001.286 1.1251.000(0.900
[10/10.000(5.000(3.333 2.500 2.000 1.667 1.429 1.250(1.111[1.000

== ' |Document: Dene §|,;b[p N R e R

Figure 6-1: A division table

98

Part | ¢+ PHP: The Basics

The main body of this code simply has one for loop nested inside another, with each loop
executing ten times, resulting in a 10 x 10 table. Each iteration of the outer loop prints a row,
whereas each inner iteration prints a cell. The only novel feature is the way we chose to print
the numbers —we used printf (covered in Chapter 8), which allows us to control the num-
ber of decimal places printed.

The $variable_name++ feature used above is called an increment. It's a fairly standard
g shorthand for $variable_name + 1.

An unbounded while loop

Now let’s look at a loop not so obviously bounded. The sole purpose of the code in Listing 6-2
is to approximate the square root of 81 (using Newton’s method). The approximation starts
with a guess of 1 and then “zeros in” on the actual square root of 9 by improving the guesses.
A trace of this approximation is shown in Figure 6-2.

Listing 6-2: Approximating a square root

<HTML>

<HEAD>

KTITLE>Approximating a square root</TITLE>
</HEAD>

<BODY>

<H3>Approximating a square root</H3>

<?php
$target = 81;
$guess = 1.0;
$precision = 0.0000001;
$guess_squared = $guess * $guess;
while (($guess_squared - $target > $precision) or
($guess_squared - $target < - $precision))
{
print("Current guess: $guess is the square
root of $target
");
$guess = ($guess + ($target / $guess)) / 2;
$guess_squared = $guess * $guess;
}
print("$guess squared = $guess_squared
");
7>
</BODY>
</HTML>

Now, although it nicely illustrates a potentially unbounded loop, this approximation example
is very artificial —first, because PHP already has a perfectly good square-root function (sqrt)
and second, because the number 81 is hardcoded into the page. We can’t use this page to find
the square root of any other number.

Chapter 6 4+ Control and Functions 99

pproximating a square root - Netscape
File Edit View Go Communicator | Help
4d » A X » W 3 & F
Back Fonvaid Reload Home Search Nstsca_Pe Prirt Security TIJ:: L
7w Bookmaks A Locah'cm;]htrpzh’lncahnsueq_md.php | @07 what's Related
.ﬁir‘stant Message @ Catagones Mapz Phato Finder @ Secure Web Shop @ Home

e

Approximating a square root

Current guess: 1 is the square root of 81

Current guess: 41 1s the square root of 81

Current guess: 21.487804878049 is the square root of 81
Current guess: 12.628692450375 is the square root of 81
Current guess: 9.521329066772 1s the square root of 81
Current guess: 9.0142723769946 1s the square root of 81
Current guess: 9.0000112987902 is the square root of 81
9.0000000000071 squared = 81.000000000128

(== |Document: Done = %S 92 Em 2 4

Figure 6-2: Approximating a square root

Break and continue

The standard way to get out of a looping structure is for the main test condition to become
false. The special commands break and continue offer an optional side exit from all the
looping constructs, including while, do-while, and for:

4 The break command exits the innermost loop construct that contains it.

4 The continue command skips to the end of the current iteration of the innermost loop
that contains it.

For example, the following code:

for ($x = 1; $x < 10; $x++)
{
// if $x is odd, break out
if ($x %2 2 !'=0)
break;
print("$x ");
}
prints nothing, because 1 is odd, which terminates the for loop immediately. On the other
hand, the code:

for ($x = 1; $x < 10; $x++)

{
// if $x is odd, skip this loop
if ($x %2 2 1= 0)

] OO Part | ¢+ PHP: The Basics

continue;
print("$x ");
}

prints:
2468
because the effect of the continue statement is to skip the printing of any odd numbers.

Using the break command, the programmer can choose to dispense with the main termina-
tion test altogether. Consider the following code, which prints a list of prime numbers (that
is, numbers not divisible by something other than 1 or the number itself):

$1imit = 500;
$to_test = 2;
while(TRUE)

{

$testdiv = 2;
if ($to_test > $1imit)
break;

while (TRUE)
{
if ($testdiv > sart($to_test))
{
print "$to_test ";
break;
}
// test if $to_test is divisible by $testdiv
if ($to_test % $testdiv == 0)
break;
$testdiv = $testdiv + 1;
}
$to_test = $to_test + 1;
}

In the preceding code, we have two whi1e loops —the outer loop works through all the num-
bers between 1 and 500, and the inner loop actually does the testing with each possible divisor.
If the inner loop finds a divisor, the number is not prime, so it breaks out without printing any-
thing. If, on the other hand, the testing gets as high as the square root of the number, we can
safely assume that the number must be prime, and the inner loop is broken without printing.
Finally, the outer loop is broken when we have reached the limit of numbers to test. The result
in this case is a list of primes less than 500:

235711 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257
263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499

Notice that it is crucial to this code that break interrupt the inner whi e loop only.
- Cross- \ There is another iteration construct, called foreach, which is used only for iterating over
ce

‘ Referen arrays. We cover it in Chapter 9.
I—-—""'-..‘.

Chapter 6 4+ Control and Functions] (1]

A note on infinite loops

If you've ever programmed in another language, you've probably had the experience of acci-
dentally creating an infinite loop (a looping construct whose exit test never becomes true and
so never returns). The first thing to do when you realize this has happened is to interrupt the
program, which will otherwise continue “forever” and use up a lot of CPU time. But what does
it mean to interrupt a PHP script? Is it sufficient to click the Stop button on your browser?

As it turns out, the answer is dependent on some PHP configuration settings — you can set
the PHP engine to ignore interruptions from the browser (like the result of clicking Stop) and
also to impose a time limit on script execution (so that “forever” will only be a short time).
The default configuration for PHP is to ignore interruptions, but with a script time limit of 30
seconds — the time limitation means that you can afford to forget about infinite loops that
you may have started.

- Cross- “« For more on the configuration of PHP, see Chapter 30.
| Reference \

—

Alternate Control Syntaxes

PHP offers another way to start and end the bodies of the if, switch, for, and while con-
structs. It amounts to replacing the initial brace of the enclosed block with a colon and the
closing brace with a special ending statement for that construct (endif, endswitch, endfor,
and endwhile). For example, the if syntax becomes:

if (expression):
statementl
Sstatement?

endif;
Or:

if (expression):
statementl
Sstatement?

elseif (expressionZ):
statement3

else:
Statement4

endif;

Note that the e1se and elseif bodies also begin with colons. The corresponding while
syntax is:

while (expression):
statement
endwhile;

Which syntax you use is a matter of taste. The nonstandard syntax is in PHP largely used for
historical reasons and for the comfort of people who are familiar with it from the early ver-
sions of PHP. We will consistently use the standard syntax in the rest of this book.

102

Part | ¢+ PHP: The Basics

Terminating Execution

/

/Note

Sometimes you just have to give up, and PHP offers a construct that helps you do just that.
The exit () construct takes either a string or a number as argument, prints out the argument,
and then terminates execution of the script. Everything that PHP produces up to the point of
invoking exit () is sent to the client browser as usual, and nothing in your script after that
point will even be parsed — execution of the script stops immediately. If the argument given
to exit is a number rather than a string, the number will be the return value for the script’s
execution. Because exit is a construct, not a function, it’s also legal to give no argument and
omit the parentheses.

The die() construct is an alias for exit () and so behaves exactly the same way. (We’ll usu-
ally use the die () version because we find the name more evocative.) So what'’s the point of
exit() and die()? One possible use is to cut off production of a Web page when your script
has determined that there is no more interesting information to send, without bothering to
wrap up the different branches in a conditional construct. This usage can make long scripts
somewhat difficult to read and debug, however.

A better use for die() is to make your crashes informative. It’s good to get into the habit of
testing for unexpected conditions that would crash your script if they were true, and throw
ina die() statement with an informative message. If you're correct in your expectations, the
die() will never be invoked; if you're wrong, you will have an error message of your own
rather than a possibly obscure PHP error. For example, consider the following pseudocode,
which assumes that we have functions to make a database connection and that we then use
that database connection:

$connection = make_database_connection();
if (!$connection)

die("No database connection!");
use_database_connection($connection);

This example assumes that our imaginary function make_database_connection(), like
many PHP functions, returns a useful value if it succeeds, and a false value if it fails. An even
more compact version of the preceding code takes advantage of the fact that or has lower
precedence than the = assignment operator.

$connection = make_database_connection()
or die("No database connection!");
use_database_connection($connection);

This works because the or operator short-circuits, and therefore the die () construct will
only be evaluated if the expression $connection = make_database_connection() hasa
false value. Because the value of an assignment expression is the value assigned, this code
ends up being equivalent to the earlier version. (Note that this would not work the same way
if we used | | instead of or, because | | has higher precedence than assignment, and so
$connection would end up being assigned to the true-or-false result of the | | expression.)

Before PHP5, the control structures we've presented so far were really the only alternatives;

ety control would flow from the first statement in a file to the last (possibly bounced around by

function calls), unless prematurely terminated with die (). With exception-handling, PHP5
introduces an alternate way to deal with problematic conditions, and one that is much more
flexible than die (). We treat exceptions briefly later in this chapter, and more thoroughly in
Chapter 31.

In Table 6-3, we summarize all the control structures we’ve seen thus far.

Chapter 6 + Control and Functions

Table 6-3: PHP Control Structures

Name Syntax Behavior
If
(or if-else) if (test)statement-1 Evaluate test and if it is true,

Ternary operator

Switch

While

“or-

if (test)
statement-1

else
statement-2

“or-

if (test)
statement-1

elseif (test2)
statement-2

else
statement-3

expression-1 ?
expression-2
expression-3

switch(expression)
{
case value-1:
statement-1
statement-2
[break;]
case value-2:

statement-3
statement-4

tbéeak;]

[default:

default-statement]

}

while (condition)
statement

execute statement-1. If test is false
and there is an el se clause,

execute statement-2. The el1seif
construct is a syntactic shortcut for
e1se clauses, where the included
statement is itself an i f construct.

Statements may be single
statements terminated with a
semicolon or brace-enclosed
blocks.

Evaluate expression-1 and
interpret it as a Boolean. If it is
true, evaluate expression-2 and
return it as the value of the entire
expression. Otherwise, evaluate
and return expression-3.

Evaluate expression, and compare
its value to the value in each case
clause. When a matching case is
found, begin executing statements
in sequence (including those from
later cases), until the end of the
switch statement or until a
break statement is encountered.
The optional default case will
execute if no other case has
matched the expression.

Evaluate condition and interpret it
as Boolean. If condition is false, the
while construct terminates. If it

is true, execute statement, and
keep executing it until condition
becomes false. Terminate the
while loop if the special break
command is encountered, and skip
the rest of the current iteration if
continue is encountered.

Continued

103

104

Part | ¢+ PHP: The Basics

Table 6-3 (continued)

Name

Syntax

Behavior

Do-while

For

Exit (or die)

Using Functions

do statement
while (condition);

for (initial-expression;
termination-check;
loop-end-expression)
statement

exit(message-string or
return-value), or
equivalently
die(message-string or
return-value)

The basic syntax for using (or calling) a function is:

function_name(expression_1l, expression_2,

Perform statement once
unconditionally; then keep
repeating statement until
condition becomes false. (The
break and continue
commands are handled as in
while.)

Evaluate initial-expression once
unconditionally. Then if
termination-check is true, evaluate
statement, and then loop-end-
expression, and repeat that loop
until termination-check becomes
false. Clauses may be omitted, or
multiple clauses of the same kind
can be separated with commas —
a missing termination-check is
treated as true. (The break and
continue commands are
handled as in while.)

Terminate script immediately,
without further parsing. The
die() construct is an alias for
exit().

., expression_n)

This includes the name of the function followed by a parenthesized and comma-separated list
of input expressions (which are called the arguments to the function). Functions can be called

with zero or more arguments, depending on their definitions.

When PHP encounters a function call, it first evaluates each argument expression and then
uses these values as inputs to the function. After the function executes, the returned value
(if any) is the result of the entire function expression.

All the following are valid calls to built-in PHP functions:

sqrt(9) // square root function, evaluates to 3
// random number between 10 and 20
// returns the number 22

rand(10, 10 + 10)

strlen("This has 22 characters")

pi() // returns the approximate value of pi

These functions are called with 1, 2, 1, and 0 arguments, respectively.

Chapter 6 + Control and Functions] (05

Return values versus side effects

Every function call is a PHP expression, and (just as with other expressions) there are only
two reasons why you might want to include one in your code: for the return value or for the
side effects.

The return value of a function is the value of the function expression itself. You can do exactly
the same things with this value as with the results of evaluating any other expression. For
example, you can assign it to a variable, as in:

$my_pi = pi();
Or you can embed it in more complicated expressions, as in:
$approx = sqrt($approx) * sqrt($approx)

Functions are also used for a wide variety of side effects, including writing to files, manipulating
databases, and printing things to the browser window. It’s okay to make use of both return val-
ues and side effects at the same time —for example, it is very common to have a side-effecting
function return a value that indicates whether or not the function succeeded.

The result of a function may be of any type, and it is common to use the array type as a way
for functions to return multiple values.

Function Documentation

The architecture of PHP has been cleverly designed to make it easy for other developers to
extend. The basic PHP language itself is very clean and flexible, but there is not a lot there —
most of PHP’s power resides in the large number of built-in functions. This means that devel-
opers can contribute simply by adding new built-in functions, which is nice especially
because it does not change anything that PHP users may be relying on.

Although this book covers many of these built-in functions, explaining some of them in
greater detail than the online manual can, the manual at www.php.net is the authoritative
source for function information. In this book, we get to choose our topics to some extent,
whereas the PHP documentation group has the awesome responsibility of covering every
aspect of PHP in the manual. Also, although we hope to keep updating this book in future
editions, the manual will have the freshest information on new additions to the ever-growing
PHP functionality. It’s worth looking at some of the different resources that the PHP site and
manual offer.

" Note Although the following information is correct at this writing, some details may become dated
i or inapplicable if the online manual is reorganized.

To find the manual, head to www.php.net. A handy search bar at the top offers quick and
easy access to any individual part of the online documentation. Alternatively, find the
Documentation item at the top of the page. The Documentation page that this tab leads to
has links to manual information in a wide variety of formats. Our favorite version is the
default (currently in the View Online row of the Formats table on the Documentation page),
which allows users to post their own clarifying comments to each page. (Please note: The
manual annotation system is not the right place to post questions! For that, see the section
on mailing lists at www.php.net, or see Appendix D. But it is the right place to explain some-
thing in your own words once you understand it. If you offer a better explanation, it might
well show up in a later version of the documentation, which is a cool way to contribute. It’s
also definitely the right place to point out confusing aspects and potential gotchas.)

106

Part | ¢+ PHP: The Basics

The largest section of the manual is the function reference, where each built-in function gets
its own page of documentation. Typically, each group of functions has a page of general expla-
nation, leading to pages for individual functions. Each function page starts off with the name
of the function and a one-line description. This is followed by a C-style header declaration of
the function (explained in the next section), followed by a slightly longer description and
possibly an example or two, and then (in the annotated manual) clarifications and gotcha
reports from users.

Headers in documentation

For those unfamiliar with C function headers, the very beginning of a function documentation
page might be confusing. The format is:

return-type function-name(typel argl, typeZ arg?2, . . .);

This specifies the type of value the function is expected to return, the name of the function,
and the number and expected types of its arguments.

Here is a typical header description:
string substr(string string, int start[, int lengthl);

This says that the function substr () will return a string and expects to be given a string and
two integers as its arguments. Actually, the square brackets around 1ength indicate that this
argument is optional —so substr () should be called either with a string and an int, or a
string and two ints.

Unlike in C, the argument types in these documentary headers are not absolute requirements.
If you call substr() with a number as its first argument, you will not get an error. Instead,
PHP will convert the first argument to a string as it begins to execute the function. However,
the argument types do document the intent of the function’s author, and it is a good idea
either to use the function as documented or to understand the type conversion issues well
enough that you are sure the result will be what you expect.

In general, the type names used in function documentation will be those of the basic types

or of their aliases: integer (or int), double (or float, real), Boolean, string, array, object,
resource, and NULL. In addition, you may see the types void and mixed. The void return
type means that the function does not return a value at all, whereas the mixed argument type
means that the argument might be of any type.

Finding function documentation

What'’s the best way to find information about a function in the manual? That is likely to depend
on what kind of curiosity you have. The most common questions about functions are:

4+ [want to use function X. Now, how does X work again?
4 I'd really like to do task Y. Is there a function that handles that for me?

For the first type of curiosity, the full version of the online manual offers an automatic lookup
by function name. The “Search For” box in the upper-right-hand corner of the manual pages
defaults to a mode where it searches for specific function names and displays the corre-
sponding function page if found. (You can also make other choices, including searching the
mailing list or the entire online documentation — the latter is a good choice when you

don’t know the name of the function you want, but can guess at words that appear on its
manual page.)

Chapter 6 4 Control and Functions |1 Q7

For the second type of curiosity, your best bet is probably to use the hierarchical organiza-
tion of the function reference, which is split (at press time) into about 108 chapters. For
example, the substr function shown in the “Headers in Documentation” section is found in
the “String Functions” section. You can browse the chapter list of the function reference for
the best fit to the task you want to do. Alternatively, if you happen to know the name of a
function that seems to be in the same general area as your task, you can use the Quick Ref
button to jump to that chapter.

Defining Your Own Functions

User-defined functions are not a requirement in PHP. You can produce interesting and useful
Web sites simply with the basic language constructs and the large body of built-in functions.
If you find that your code files are getting longer, harder to understand, and more difficult to
manage, however, it may be an indication that you should start wrapping some of your code
up into functions.

What is a function?

A function is a way of wrapping up a chunk of code and giving that chunk a name, so that you
can use that chunk later in just one line of code. Functions are most useful when you will be
using the code in more than one place, but they can be helpful even in one-use situations,
because they can make your code much more readable.

Function definition syntax
Function definitions have the following form:

function function-name ($argument-1, $argument-2, ..)

{
statement-1;
Sstatement-2;

}
That is, function definitions have four parts:
4 The special word function
4 The name that you want to give your function
4+ The function’s parameter list — dollar-sign variables separated by commas
4 The function body —a brace-enclosed set of statements

Just as with variable names, the name of the function must be made up of letters, numbers,
and underscores, and it must not start with a number. Unlike variable names, function names
are converted to lowercase before they are stored internally by PHP, so a function is the same
regardless of capitalization.

The short version of what happens when a user-defined function is called is:

1. PHP looks up the function by its name (you will get an error if the function has not yet
been defined).

2. PHP substitutes the values of the calling arguments (or the actual parameters) into the
variables in the definition’s parameter list (or the formal parameters).

108

Part | ¢+ PHP: The Basics

/Note

3. The statements in the body of the function are executed. If any of the executed state-
ments are return statements, the function stops and returns the given value. Otherwise,
the function completes after the last statement is executed, without returning a value.

The alert and experienced programmer will have noticed that the preceding description

et implies call-by-value, rather than call-by-reference. In Chapter 26, we explain the difference

and show how to get call-by-reference behavior.

Function definition example

As an example, imagine that we have the following code that helps decide which size of bot-
tled soft drink to buy. (This is sometime next year, when supermarket shoppers routinely use
their wearable wireless Web browsers to get to our handy price-comparison site.)

$liters_1 = 1.0;
$price_1l = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

$per_liter_1 = $price_1 / $liters_1;
$per_liter_2 = $price_ 2 / $liters_2;
if ($per_Titerl < $per_Tliter2)

print("The first deal is better!
");
else

print("The second deal is better!
");

Because this kind of comparison happens in our Web site code all the time, we would like to
make part of this a reusable function. One way to do this would be the following rewrite:

function better_deal ($amount_1, $price_1,
$amount_2, $price_2)
it
$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
return($per_amount_1 < $per_amount_2);

}

$liters_1 = 1.0;
$price_1 = 1.59;
$liters_ 2 = 1.5;
$price_2 = 2.09;

if (better_deal($Titers_1, $price_l,
$liters_2, $price_2))
print("The first deal is better!
");
else
print("The second deal is better!
");

Our better_deal function abstracts out the three lines in the previous code that did the
arithmetic and comparison. It takes four numbers as arguments and returns the value of a
Boolean expression. As with any Boolean value, we can embed it in the test portion of an i f
statement. Although this function is longer than the original code, there are two benefits to
this rewrite: We can use the function in multiple places (saving lines overall), and if we decide
to change the calculation, we have to make the change in only one place.

Chapter 6 + Control and Functions

Alternatively, if the only way we ever use these price comparisons is to print which deal is
preferred, we can include the printing in the function, like this:

function print_better_deal ($amount_1, $price_1,
$amount_2, $price_2)
{
$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
if ($per_amount_1 < $per_amount_2)
print("The first deal is better!
");
else
print("The second deal is better!
");

}

$liters_1 = 1.0;
$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

print_better_deal($liters_1, $price_1,
$1iters_2, $price_2);

Our first function used the return statement to send back a Boolean result, which was used
in an i f test. The second function has no return statement, because it is used for the side
effect of printing text to the user’s browser. When the last statement of this function is exe-
cuted, PHP simply moves on to executing the next statement after a function call.

Formal parameters versus actual parameters

In the preceding examples, the arguments we passed to our functions happened to be vari-
ables, but this is not a requirement. The actual parameters (that is, the arguments in the
function call) may be any expression that evaluates to a value. In our examples, we could
have passed numbers to our function calls rather than variables, as in:

print_better_deal(1.0, 1.59, 1.5, 2.09);

Also, notice that in the examples we had a couple of cases where the actual parameter vari-
able had the same name as the formal parameter (for example, $price_1), and we also had
cases where the actual and formal names were different. ($1iters_1 is not the same as
$amount_1.) As we will see in the next section, this name agreement doesn’t matter either
way — the names of a function’s formal parameters are completely independent of the world
outside the function, including the function call itself.

Argument number mismatches

What happens if you call a function with fewer arguments than appear in the definition, or
with more? As you might have come to expect by now, PHP handles this without anything
crashing, but it may print a warning depending on your settings for error reporting.

Too few arguments

If you supply fewer actual parameters than formal parameters, PHP will treat the unfilled for-
mal parameters as if they were unbound variables. However, under the usual settings for
error reporting in PHP5, you will also see a warning printed to the browser.

109

110

Part | ¢+ PHP: The Basics

Tip

The default error-reporting setting in PHP5 reports on every kind of error except runtime
notices, which are the least serious condition that is detected. The reason you see warnings
about too few arguments to a function is that this is treated as a runtime-warning situation
(the next most serious category). If you really need function calls that sometimes provide too
few arguments and seeing warnings is unacceptable, you have two options for suppressing
the warnings:

4+ You can temporarily change the value of error reporting in your script, with a statement
like error_reporting(E_ALL - (E_NOTICE + E_WARNING)) ;.This will turn off both run-
time notices and runtime warnings from the point where it appears in your script up to
the next error_reporting() statement (if any). (Note that this is dangerous, as lots of
other problems might produce warnings besides the one you're interested in.)

4+ You can suppress errors for any single expression by using the error-control operator
@, which you can put in front of any expression to suppress errors from that expression
only. For example, if the function call my_function() is producing a warning,
@my_function() will not. Note that this is dangerous as well because all types of
errors except for parse errors will be suppressed.

We don’t advise using either of these workarounds, but we provide them because we are such
nonjudgmental people by nature. PHP actually provides ways to write functions that expect vari-
able numbers of arguments (see the “Variable Numbers of Arguments” section in Chapter 26),
and using them is a much better idea than shooting the messenger.

Rather than decreasing PHP's reportage of errors, we advise increasing it to the maximum
level possible when you are developing new code. You can do this globally by changing
4 thephp.ini file (see Chapter 30) or simply by including the statement error_reporting

(E_ALL); at the top of your scripts. Among other things, this increase in reportage will

mean that you will be warned about variables you have forgotten to assign, which is one of

the most frequent causes of time-wasting bugs.

Too many arguments

If you hand too many arguments to a function, the excess arguments will simply be ignored,
even when error reporting is set to E_ALL. As we will see in Chapter 26, this tolerance turns
out to be helpful in defining functions that can take a variable number of arguments.

Functions and Variable Scope

As we said in Chapter 5, outside of functions, the rules about variable scope are simple:
Assign a variable anywhere in the execution of a PHP code file, and the value will be there
for you later in that file’s execution. The rules become somewhat more complicated in the
bodies of function definitions, but not much.

The basic principle governing variables in function bodies is: Each function is its own little
world. That is, barring some special declarations, the meaning of a variable name inside a
function has nothing to do with the meaning of that name elsewhere. (This is a feature, not a
bug — you want functions to be reusable in different contexts, and so having the behavior be
independent of the context is a good thing. If not for this kind of scoping, you would waste a
lot of time chasing down bugs caused by using the same variable name in different parts of
your code.)

/Note

Chapter 6 + Control and Functions

As of PHP 4.1, there is a small set of global variables that are automatically visible from

i within function definitions, in contradiction to the previous paragraph and the following one.

These are the superglobal arrays ($_POST, $_GET, $_SESSION, and so on), which contain
keys and values corresponding to variable bindings from different sources. For more on
these variables and their uses, see Chapter 7.

The only variable values that a function has access to are the formal parameter variables
(which have the values copied from the actual parameters), plus any variables assigned
inside the function. This means that you can use local variables inside a function without
worrying about their effects on the outside world. For example, consider this function and
its subsequent use:

function SayMyABCs ()
{
$count = 0;
while ($count < 10)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count Tetters
");
1
$count = 0;
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");

The intent of SayMyABCs () is to print a sequence of letters. (The functions chr () and ord()
translate between letters and their numeric ASCII codes —we use them here just as a trick to
generate letters in sequence.) The output of this code is:

ABCDEFGHIJ

Now I know 10 Tletters

Now I've made 1 function call(s).
ABCDEFGHIJ

Now I know 10 Tletters

Now I've made 2 function call(s).

Both the function definition and the code outside the function make use of variables called
$count, but they refer to different variables and do not clash.

The default behavior of variables assigned inside functions is that they do not interact with
the outside world; they act as though they are newly created each time the function is called.
Both of these behaviors, however, can be overridden with special declarations.

Global versus local

The scope of a variable defined inside a function is local by default, meaning that (as we
explained in the previous section) it has no connection with the meaning of any variables out-
side the function. Using the g1obal declaration, you can inform PHP that you want a variable

111

112

Part | ¢+ PHP: The Basics

name to mean the same thing as it does in the context outside the function. The syntax of this
declaration is simply the word global, followed by a comma-delimited list of the variables
that should be treated that way, with a terminating semicolon. To see the effect, consider a
new version of the previous example. The only difference is that we have declared $count to
be global, and we have removed its initial assignment to zero inside the function:

function SayMyABCs2 ()
{
global $count;
while ($count < 10)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count letters
");
}
$count = 0;
SayMyABCs2();
$count = $count + 1;
print("Now I've made $count function call(s).
");
SayMyABCs2();
$count = $count + 1;
print("Now I've made $count function call(s).
");

Our revised version prints the following browser output:

ABCDEFGHIJ
Now I know 10 letters
Now I've made 11 function call(s).

Now I know 11 Tletters
Now I've made 12 function call(s).

This is buggy behavior, and the global declaration is to blame. There is now only one $count
variable, and it is being increased both inside and outside the function. When the second call to
SayMyABCs () happens, $count is already 11, so the loop that prints letters is never entered.

Although this example shows global to bad advantage, it can be quite useful, especially
because (as we’ll see in Chapter 7) PHP provides some variable bindings to every page even
before any of your own code is executed. It can be helpful to have a way for functions to see
these variables without the bother of passing them in as arguments with each call.

Static variables

By default, functions retain no memory of their own execution, and with each function call
local variables act as though they have been newly created. The static declaration over-
rides this behavior for particular variables, causing them to retain their values in between
calls to the same function. Using this, we can modify our earlier function SayMyABCs2() to
give it some memory:

function SayMyABCs3 ()

{
static $count = 0; //assignment only if first time called
$1imit = $count + 10;
while ($count < $1imit)

Chapter 6 + Control and Functions

{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count Tetters
");
}
$count = 0;
SayMyABCs3();
$count = $count + 1;
print("Now I've made $count function call(s).
");
SayMyABCs3();
$count = $count + 1;
print("Now I've made $count function call(s).
");

This memory-enhanced version gives us the following output:

ABCDEFGHIJ

Now I know 10 Tetters

Now I've made 1 function call(s).
KLMNOPQRST

Now I know 20 Tetters

Now I've made 2 function call(s).

The static keyword allows for an initial assignment, which has an effect only if the function
has not been called before. The first time SayMyABCs3 () executes, the local version of
$count is set to zero. The second time the function is called, it has the value it had at the
end of the last execution, so we are able to pick up our studies where we left off. Notice that
changes to $count outside the function still have no effect on the local value.

Exceptions

New to PHP5 is the Exception class. We've already seen some fairly primitive error handling
in the form of die (), and you might well imagine the custom error handling possibilities
implied by the combination of control structures and basic use of print () or printf()
commands (more on this in Chapter 26). However, in prior versions of PHP, a chief complaint
was the lack of standardized means for handling errors, and separating that means from the
application code itself. Enter Exceptions.

Exceptions use the try, catch syntax similar to Java or Python, although programmers
using those languages will note the absence of finally.

Let’s start with a simple example that has no error handling at all:

function print_header($title, $keywords, $description) ({
print ("<HTML><HEAD>");
print("<TITLE>$title</TITLE>");
print("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");

}

print_header('My Page',
'"PHP, Programming, Beer',
")

113

114

s

Part | ¢+ PHP: The Basics

/Note

The custom function print_header () is designed to make it easy for us to place a standard-
ized, search engine-friendly header at the top of each page. However, we've left the descrip-
tion variable undefined, which will not yield an error, but will leave us without a meaningful
description for our page. Unfortunately, because the function is essentially called correctly
and PHP is forgiving in nature, we may never know that we’ve left off this important detail.
Some form of error handling is necessary to point this out, and Exceptions provide a handy
way of dong so. Consider this revised code:

function print_header($title, $keywords, $description) ({
if(strlen($description) < 40)
throw new Exception('A reasonable description Tength is
required
');
print ("<HTML><HEAD>");
print("<KTITLE>$title</TITLE>");
print("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");
}

try {
print_header('My Page',
'"PHP, Programming, Beer',
")
} catch (Exception $e) {
echo($e->getMessage());
}

The first new thing in our revised function is a simple test in line 2 suggesting an appropriate
minimum length for the $description variable. The line immediately following initiates an
instance of the Exception class with the message suggested by the quoted value.

A class is one of the recent OOP concepts introduced in PHP4. You can create your own classes

g and extensions of existing classes, including those for Exception handling. PHP gives you

Exception for free. We'll go into much greater depth on the subject of classes in Chapter 20 and
exception handling itself in Chapter 31.

Next, instead of simply calling our function, we’ve enclosed the function in a new control
structure, the try. . .catch block. If we execute the code as written, PHP first tries to exe-
cute the function as described; then it terminates execution almost immediately, because the
$description variable has failed our simple test. At this point, the script can continue exe-
cution after the try. . .catch block, or it can be terminated with die() or exit ().

Multiple exceptions can be defined in a single function. This is good idea because it yields
more specific information about what exactly happened. Because execution stops with the
first exception, only this exception will be caught.

- Cross- |\ Exceptions are a huge topic; they're outlined here so you can start using them immediately.
Reference_ You'll find nods to Exceptions throughout this book, but they are covered in depth in
=~ Chapter 31.

Chapter 6 + Control and Functions

Function Scope

" Note

' Note

Although the rules about the scope of variable names are fairly simple, the scoping rules for
function names are even simpler. There is just one rule in PHP5: Functions must be defined
once (and only once) somewhere in the script that uses them. (See the following note about
differences between this behavior and PHP3.) The scope of function names is implicitly
global, so a function defined in a script is available everywhere in that script. For clarity’s
sake, however, it is often a good idea to define all your functions first before any code that
calls those functions.

In PHP3, functions could be used only after they were defined. This meant that the safest

- practice was to define (or include the definitions of) all functions early in a given script,

before actually using any of them. PHP4 and 5 actually precompile scripts before running
them, and one effect of this precompilation is that it discovers all function definitions before
actually running the code. This means that functions and code can appear in any order in a
script, as long as all functions are defined once (and only once).

Include and require

It’s very common to want to use the same set of functions across a set of Web site pages, and
the usual way to handle this is with either include or require, both of which import the
contents of some other file into the file being executed. Using either one of these forms is
vastly preferable to cloning your function definitions (that is, repeating them at the beginning
of each page that uses them); when you want to modify your functions, you will have to do it
only once. (We covered these forms in Chapter 4, but they are worth reviewing here in the
context of including function definitions.)

For example, at the top of a PHP code file we might have lines like:

include "basic-functions.inc"
include "advanced-function.inc";
(.. code that uses basic and advanced functions ..)

which import two different files of function definitions. (Note that parentheses are optional
with both include() and require().) As long as the only things in these files are function
definitions, the order of their inclusion does not matter.

Both include and require have the effect of splicing in the contents of their file into the
PHP code at the point that they are called. The only difference between them is how they fail
if the file cannot be found. The include construct will cause a warning to be printed, but
processing of the script will continue; require, on the other hand, will cause a fatal error if
the file cannot be found.

Note that include and require are now more similar in their behavior than they used to

— be. Prior to PHP 4.0.2, require had its file contents spliced in statically, before the actual

execution of the page; whereas the contents from include were spliced in dynamically
as the page executed. Among other things, this led to subtle differences in behavior when
the include/require form was in conditional code. Now, however, both include and
require have the same dynamic behavior. This means, for example, that if an
include/require formis in a loop executed 10 times, 10 inclusions will be made.

115

116

Part | ¢+ PHP: The Basics

Including only once

Sometimes you really want a file to be included once, but not more than once. This is true
most often in the case of function definitions. For example, two different function definition
files might, in turn, include the same file of utility functions —if a top-level page includes both
of these files, the utility functions might be included twice, leading to complaints from PHP
that functions are being defined twice.

To the rescue come include_once and require_once, which act just like their counterparts
except that they will not include a file named by a given string if that file has already been
included. It’s usually better to use the _once version, in general, for including function and
class definition files.

The include path

When you include a filename, PHP searches for a file by that name in the directories speci-
fied in the include_path (which is settable in your php.ini file). The default path includes
the same directory as the one the top-level code page is in. See Chapter 30 for details about
how to add locations to your include path.

In situations where a single instance of PHP serves several virtual sites, it’s generally easier
and less confusing to PHP to use the $_SERVER superglobal array to specify the location of an
include file:

include_once($_SERVER['DOCUMENT_ROOT"']."/path/to/include_file");

Caution Remember that included (and required) files are parsed by default in HTML mode rather

than in PHP mode. This means that any included file meant to be interpreted as PHP needs
to have the usual PHP tags at the beginning and end.

Recursion

Some compiled languages, like C and C++, impose somewhat complex ordering constraints on
how functions are defined. To know how to compile a function, the compiler must know about
all the functions that the function calls, which means the called functions must be defined
first. So what do you do if two functions each call the other or if one function calls itself?
Issues like this led the designers of C to a separation of function declarations (or prototypes)
from function definitions (or implementations). The idea is that you use declarations to inform
the compiler in advance about the types of arguments and return types of the functions you
plan to use, which is enough information for the compiler to handle the actual definitions in
any order.

In PHP, this problem goes away, and so there is no need for separate function prototypes. As
long as each function that is called is defined once (and only once) in the current code file or
one that is included in the course of the current script’s execution, PHP will have no problem
resolving function calls, regardless of the interleaving of function calls and definitions.

This means that recursive functions (functions that call themselves) are no problem in PHP4.
For example, we can define a recursive function and then immediately call it:

function countdown ($num_arg)
{
if ($num_arg > 0)
it
print("Counting down from $num_arg
");

Chapter 6 + Control and Functions |17/

countdown($num_arg - 1);
}
}
countdown(10);

This produces the browser output:

=
o

Counting down from
Counting down from
Counting down from
Counting down from
Counting down from
Counting down from
Counting down from
Counting down from
Counting down from
Counting down from

N WP ooy 00O

As with all recursive functions, it’s important to be sure that the function has a base case

(a nonrecursive branch) in addition to the recursive case, and that the base case is certain to
eventually occur. If the base case is never invoked, the situation is much like a while loop
where the test is always true — we will have an infinite loop of function calling. In the case of
the preceding function, we know that the base case will happen, because every invocation of
the recursive case reduces the countdown number, which must eventually become zero. Of
course, this assumes that the input is a positive integer rather than a negative number or a
double. Notice that our “greater than zero” test guards against infinite recursion even in
these cases, whereas a “not equal to zero” test would not.

Similarly, mutually recursive functions (functions that call each other) work without a hitch.
For example, the following definitions plus function call:

function countdown_first ($num_arg)
{
if ($num_arg > 0)
{
print("Counting down (first) from $num_arg
");
countdown_second($num_arg - 1);
1
}
function countdown_second ($num_arg)
{
if ($num_arg > 0)
{
print("Counting down (second) from $num_arg
");
countdown_first($num_arg - 1);
}
}

countdown_first(5);
produce the browser output:

Counting down (first) from 5
Counting down (second) from 4
Counting down (first) from 3
Counting down (second) from 2
Counting down (first) from 1

118

Part | ¢+ PHP: The Basics

Summary

PHP has a C-like set of control structures, which branch or loop depending on the value of
Boolean expressions, which in turn can be combined using Boolean operators (and, or, xor,
!, &&, | |). The structures if and switch are used for simple branching; while, do-whiTe,
and for are used for looping, and exit() or die() terminates script execution.

Most of the power of PHP resides in the large number of built-in functions provided by PHP’s
benevolent army of open source developers. Each of these functions should be documented
(albeit briefly) in the online manual at http://www.php.net.

You can also write your own functions, which are then used in exactly the same way as the
built-in functions. Functions are written in a simple C-style syntax, as in the following:

function my_function ($argl, $arg2, ..)
{

statementl;

statement?Z;

return($value);

}

User-defined functions can use arguments of any PHP type and can also return values of any
type. The types of arguments and return values do not need to be declared.

In PHP, the ordering of function definitions and function calls makes no difference, as long as
every function that is called is defined exactly once. There is no need for separate function
declarations or prototypes. Variables assigned inside a function are local to that function,
unless specified otherwise with the global declaration. Local variables may be declared to
be static, which means that they hold onto their values in between function calls.

Finally, with our brief treatment of exceptions, we’re well on our way to writing thoughtful
friendly code that uses standardized error handling.

+ o+ ¢

Passing Information
between Pages

In this chapter, we’ll briefly discuss some things you need to know
about passing data between Web pages. Some of this information is
not specific to PHP but is a consequence of the PHP/HTML interac-
tion or of the HTTP protocol itself.

HTTP Is Stateless

The most important thing to recall about the way the Web works is
that the HTTP protocol itself is stateless. If you are a poetic soul, you
might say that each HTTP request is on its own, with no direction
home, like a complete unknown . . . you know how the rest goes.

For the less lyrical among us, this means that each HTTP request —
in most cases, this translates to each resource (HTML page, .jpg file,
style sheet, and so on) being asked for and delivered —is indepen-
dent of all the others, knows nothing substantive about the identity
of the client, and has no memory. Each request spawns a discrete
process, which goes about its humble but worthy task of serving up
one single solitary file and then is automatically killed off. (But that
sounds so harsh; maybe we can say “flits back to the pool of avail-
able processes” instead.)

Even if you design your site with very strict one-way navigation (Page
1 leads only to Page 2, which leads only to Page 3, and so on), the
HTTP protocol will never know or care that someone browsing Page 2
must have come from Page 1. You cannot set the value of a variable
on Page 1 and expect it to be imported to Page 2 by the exigencies of
HTML itself. You can use HTML to display a form, and someone can
enter some information using it —but unless you employ some extra
means to pass the information to another page or program, the
variable will simply vanish into the ether as soon as you move to
another page.

This is where a form-handling technology like PHP comes in. PHP will
catch the variable tossed from one page to the next and make it avail-
able for further use. PHP happens to be unusually good at this type of
data-passing function, which makes it fast and easy to employ for a
wide variety of Web site tasks.

CHAP E R

+ 0+ 0+
In This Chapter

HTTP is stateless
GET arguments

A better use for

GET-style URLs
POST arguments

Formatting form
variables

PHP superglobal arrays

Extended example: An
exercise calculator

¢+ 0+ o+

120

Part | ¢+ PHP: The Basics

HTML forms are mostly useful for passing a few values from a given page to one single other
page of a Web site. There are more persistent ways to maintain state over many pageviews,
such as cookies and sessions, which we cover in Chapter 24. This chapter will focus on the
most basic techniques of information-passing between Web pages, which utilize the GET and
POST methods in HTTP to create dynamically generated pages and to handle form data.

This is where old-school ASP developers invariably say, “PHP sucks!” They think ASP session
et variables are magic. Not to burst anyone’s bubble, but Microsoft is just using cookies to store
session variables — thereby opening the door to all kinds of potential problems.

GET Arguments

The GET method passes arguments from one page to the next as part of the Uniform Resource
Indicator (you may be more familiar with the term Uniform Resource Locator or URL) query
string. When used for form handling, GET appends the indicated variable name(s) and
value(s) to the URL designated in the ACTION attribute with a question mark separator and
submits the whole thing to the processing agent (in this case a Web server).

This is an example HTML form using the GET method (save the file under the name
team_select.html):

<HTML>
<HEAD>
KTITLE>A GET method example, part 1</TITLE>
</HEAD>

<BODY>

<FORM ACTION="http://localhost/baseball.php" METHOD="GET">
<P>Root, root, root for the:

<SELECT NAME="Team" SIZE="2">

<!--It's a good idea to use the VALUE attribute even though
it is not mandatory with the SELECT element. In this example,
it's extremely necessary. -->

<OPTION VALUE="Cubbies">Chicago Cubs (National League)</OPTION>
<OPTION VALUE="Pale Hose">Chicago White Sox (American
League)</0OPTION>

</SELECT>

<P>CINPUT TYPE="submit" NAME="Submit" VALUE="Select"></P>
</FORM>

</B0ODY>

</HTML>

When the user makes a selection and clicks the Submit button, the browser agglutinates
these elements in this order, with no spaces between the elements:

4 The URL in quotes after the word ACTION (http://Tocalhost/baseball.php)
4 A question mark (?) denoting that the following characters constitute a GET string.
4+ Avariable NAME, an equal sign, and the matching VALUE (Team=Cubbies)

4+ An ampersand (&) and the next NAME-VALUE pair (Submit=Select); further name-value
pairs separated by ampersands can be added as many times as the server query-
string-length limit allows.

Chapter 7 + Passing Information between Pages |2]

The browser thus constructs the URL string:
http://localhost/baseball.php?Team=Cubbies&Submit=Select

It then forwards this URL into its own address space as a new request. The PHP script to
which the preceding form is submitted (baseball.php) will grab the GET variables from the
end of the request string, stuff them into the $_GET superglobal array (explained in a
moment), and do something useful with them —in this case, plug one of two values into a
text string.

Tip Strictly speaking, the name-value pairs in a GET query are not part of the HTTP or addressing
\ standards. In one of the odd footnotes of Internet history, the W3C allowed for the possibil-
4 ity of extra data to be passed to a resource after a ? in the URI string but never specified pre-
cisely what form that data should take. Usage quickly established the notion of name-value
pairs separated by ampersands, but this is not part of any W3C standard.

The following code sample shows the PHP form handler for the preceding HTML form:

<HTML>

<HEAD>

KTITLE>A GET method example, part 2</TITLE>
<STYLE TYPE="text/css">

<--

BODY {font-size: 24pt;}

-

</STYLE>

</HEAD>

<BODY>

<P>Go,

<?php echo $_GET['Team']; 7>
1</P>

</B0ODY>

</HTML>

Note that the value inputted into the previous page’s HTML form field named “Team” is now
available in a PHP variable called $_GET['Team']. Finally, you should see a page that says
Go, Cubbies! in big type.

-'g\lote At this point, it makes some sense to explain just how to access values submitted from page
et to page. This chapter discusses the two main methods for passing values: GET and POST
(there are others, but they are not covered until Part IIl). Each method has an associated
superglobal array, explained in more depth in Chapter 9, which can be distinguished from
other arrays by the underscore that begins its name. Each item submitted via the GET
method is accessed in the handler via the $_GET array; each item submitted via the POST
method is accessed in the handler via the $_POST array. The syntax for referencing an item

in a superglobal array is simple and 100 percent consistent:

$_ARRAY_NAME["index_name']

where the index_name is the name part of a name-value pair (for the GET method), or the
name of an HTML form field (for the POST method). As in the preceding example,
$_GET['Team'] indicates the value of the form select field called 'Team', sent by the
GET operation in the original file. You must use the array appropriate to the method used to
send data. In this case, $_POST[' Team'] is undefined because no data was POSTed by the
original form.

122

Part | ¢+ PHP: The Basics

The GET method of form handling offers one big advantage over the POST method: It con-
structs an actual new and differentiable URL query string. Users can now bookmark this page
(and thus find the oh-so-necessary encouraging word when their team starts to fade in the
doldrums of August). The result of forms using the POST method is not bookmarkable.

Just because you can achieve the desired functionality with GET arguments doesn’t mean you
should. The disadvantages of GET for most types of form handling are so substantial that the
original HTML 4.0 draft specification deprecated its use in 1997. These flaws include:

4 The GET method is not suitable for logins because the username and password are
fully visible onscreen as well as potentially stored in the client browser’s memory as
a visited page.

4 Every GET submission is recorded in the Web server log, data set included.

4+ Because the GET method assigns data to a server environment variable, the length of
the URL is limited. You may have seen what seem like very long URLs using GET — but
you really wouldn’t want to try passing a 300-word chunk of HTML-formatted prose
using this method.

Caution The original HTML spec called for query strings to be limited to 255 characters. Although this

stricture was later loosened to mere encouragement of a 255-character limit, using a longer
string is asking for trouble.

The GET method of form handling had to be reinstated by the W3C after much outcry, largely
because of the bookmarkability factor. Despite that it’s still implemented as the default
choice for form handling in all browsers, GET now comes with a strong recommendation to
deploy it in idempotent usages only —in other words, those that have no permanent side
effects. Putting two and two together, the single most appropriate form-handling use of GET
is the search box. Unless you have a compelling reason to use GET for non-search-box form
handling, use POST instead.

A Better Use for GET-Style URLs

Although the actual GET method of form handling is deprecated, the style of URL associated
with it turns out to be very useful for site navigation. This is especially true for dynamically
generated sites such as those often constructed with PHP, because the appended-variable
style of URL works particularly smoothly with a template-based content-development system.

As an illustration, imagine you are the proud proprietor of an information-rich Web site about
solar cars. You've toiled long and hard over informative and attractive pages such as these:

suspension_design.html
windtunnel_testing.html
friction_braking.html

But as your site grows, a flat-file site structure like this can take a lot of time to administer, as
even the most trivial changes must be repeated on every page. If the structure of these pages
is very similar, you might want to move to a template-based system with PHP.

You might decide to utilize a single template with separate text files for each topic (containing
information, photos, comments, and so on):

topic.php
suspension_design.inc
windtunnel_testing.inc
friction_braking.inc

Chapter 7 4 Passing Information between Pages |23

Or you might decide you needed a larger, more specialized choice of template files:

vehicle_structure.php
tubular_frames.inc
mechanical_systems.php
friction_braking.inc
electrical_systems.php
solar_array.inc
racing.php
race_strategy.inc

A simple template file might look something like this (because we haven’t included the neces-
sary .inc text files, this example will not actually work):

<HTML>

<HEAD>

KTITLE>Solar-car topics</TITLE>

<STYLE TYPE="text/css">

<--

BODY {font: verdana; font-size: 12pt}
-

</STYLE>

</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH=100%>
<TR>
<!-- Navbar, with Get-style URLs. -->
<TD BGCOLOR="#4282B4" ALIGN=CENTER VALIGN=TOP WIDTH=25%>
<P>

Friction braking

Steering

Suspension

Tires and wheels

</P>
</TD>

<!-- Main body of content -->

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=75%>
<?php include("$_GET['Name']l.inc"); ?>
</TD>S/TR>K/TABLED

</BODY>

</HTML>

Notice that the links on the navbar, when clicked, will be handled by the browser as if they
were the product of a GET submission.

124

Part | ¢+ PHP: The Basics

But even with this solution, you still have to tend part of your garden by hand: making sure
each include file is properly formatted in HTML, adding a new link to the navbar each time you
add a new page to the site, and other such chores. Following the general rule to separate form
and content as much as is feasible, you might choose to go to another level of abstraction with
a database. In that case, a URL such as http://Tocalhost/topic.php?topiclD=2 would
point to a PHP template that makes database calls. (Using a number variable rather than a
word makes for faster database interaction.) This system could also automatically add a link to
the navbar whenever you added new topics to the database, so it could produce Web pages
entirely without ongoing human intervention (all right, maybe entirely is an exaggeration — but
with significantly fewer person-hours of grunt labor).

POST Arguments

POST is the preferred method of form submission today, particularly in nonidempotent usages
(those that will result in permanent changes), such as adding information to a database. The
form data set is included in the body of the form when it is forwarded to the processing agent

(in this case, PHP). No visible change to the URL will result according to the different data
submitted.

The POST method has these advantages:

4 It is more secure than GET because user-entered information is never visible in the URL
query string, in the server logs, or (if precautions, such as always using the password
HTML input type for passwords, are taken) onscreen.

4 There is a much larger limit on the amount of data that can be passed (a couple of kilo-
bytes rather than a couple of hundred characters).

POST has these disadvantages:
4 The results at a given moment cannot be bookmarked.

4+ The results should be expired by the browser, so that an error will result if the user
employs the Back button to revisit the page.

4+ This method can be incompatible with certain firewall setups, which strip the form
data as a security measure.

Get and Post both

Did you know that with PHP you can use both GET and POST variables on the same page? You
might want to do this for a dynamically generated form, for example.

But what if you (deliberately or otherwise) use the same variable name in both the GET and the
POST variable sets? PHP keeps all ENVIRONMENT, GET, POST, COOKIE, and SERVER variables in the
$GLOBALS array if you have set the register_globals configuration directive to “on” in your
php.ini file. If there is a conflict, it is resolved by overwriting the variable values in the order you
set, using the variables_order option in php.ini. Later trumps earlier, so if you use the
default "EGPCS" value, cookies will triumph over POSTs that will themselves obliterate GETs.
You can control the order of overwriting by simply changing the order of the letters on the appro-
priate line of this file, or even better, turning register_globals off and using the new PHP
superglobal arrays instead. See the section on superglobals later in this chapter.

Chapter 7 4+ Passing Information between Pages

We use the POST method consistently in this book for form handling— especially when
putting data into a system via a file write or SQL INSERT. We use GET only for site navigation
and Search boxes —in other words, for pulling data back out of a data store and displaying it.
All the rest of the forms in this chapter use the POST method.

Formatting Form Variables

PHP is so efficient at passing data around because the developers made a very handy but (in
theory) slightly sketchy design decision. PHP automatically, but invisibly, assigns the vari-
ables for you on the new page when you submit a data set using GET or POST. Most of PHP’s
competitors make you explicitly do this assignment yourself on each page; if you forget to do
so or make a mistake, the information will not be available to the processing agent. PHP is
faster, simpler, and mostly more goof-proof.

But because of this automatic variable assignment, you need to always use a good NAME
attribute for each INPUT. NAME attributes are not strictly necessary in HTML proper — your
form will render fine without them — but the data will be of little use because the HTML
form-field NAME attribute will be the variable name in the form handler.

In other words, in this form:

<FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>"
METHOD="POST">

<INPUT TYPE="text" NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

the text field named ema il will cause the creation of a PHP variable called $_POST['email"]
(or $HTTP_POST_VARS["email '] if you use the older style of variable arrays; or just $email
if you have register_globals turned on) when the form is submitted. Similarly, the submit
button will lead to the creation of a variable called $_POST['submit'] on the next page. The
name you use in the HTML form will be the name of your variable in the PHP form handler.

Caution $HTTP_POST_VARS, $HTTP_SERVER_VARS, and the whole family of these long-form pre-

Tip

defined variables are deprecated in PHP5. If you are already an experienced PHP program-
mer, perhaps with a large body of previously written code lying around, you might want to
think about rewriting now for backward compatibility. They are supported for the time being,
but their days are numbered. Use $_P0ST, $_GET, and friends instead.

Remember that you cannot use a variable name beginning with a number —so you should not
name your form field something like 5 (you laugh, but we’ve seen people try to do it)—and
PHP variable names are case sensitive. Also, please try to use informative variable names
rather than a succession of form fields named myvar and e.

It's a good idea to standardize how you name form variables, to make your code more read-
able and so that you spend less time flipping back to the form itself when you are supposed
4 to be writing code to process that form. For example, you might precede all form variables

with frm to indicate their source. You might then consistently use the first few letters of each

identifying word for what a field does, for example, frmNameFirst, frmOfficeAdd,
frmHomeAdd, and so on. The specific standard you set is less important than having a stan-
dard to begin with.

125

126

Part | ¢+ PHP: The Basics

Another thing to keep in mind when creating your HTML forms is that, if you ever want this
form to be displayed with prefilled inputs, you need to set the VALUE attribute. This is particu-
larly relevant to two kinds of forms: those that are used to edit data from a database; and

those that are intended to possibly be submitted more than once. The latter case is very com-
mon in situations where a form should redisplay on error with values already prefilled — for
instance, a registration form that will not work until the user provides a valid e-mail address
or other required data.

For example, the form in Listing 7-1 (which represents a retirement savings calculator) is
designed to be submitted multiple times while the user fiddles around with the values. Every
time you submit the form, the values from the previous go-round will be filled in for you auto-
matically. Note the use of the VALUE attribute in the form fields in this code sample.

Listing 7-1: Form with prefilled values (retirement_calc.php)

<HTML>

<HEAD>

KTITLE>A POST example: retirement savings worksheet</TITLE>
<STYLE TYPE="text/css">

<l--

BODY {font-size: 14pt}

.heading {font-size: 18pt; color: red}

>

</STYLE>

</HEAD>

<?php

// This test, along with the Submit button value in the form
// below, will check to see if the form is being rendered for
// the first time (in which case it will display with only the
// default annual gain filled in).

if (11sSet($_POSTL'Submit'1) || $_POST['Submit'] != 'Calculate’)
{
$_POST['CurrentAge'] = "";
$_POST['RetireAge'] = "";
$_POST['Contrib']l = "";
$Total = 0;
$AnnGain = 7;
} else {
$AnnGain = $_POST['AnnGain']J;
$Years = $_POST['RetireAge'] - $_POST['CurrentAge'];
$YearCount = 0;
$Total = $_POST['Contrib'];

Chapter 7 + Passing Information between Pages |27/

while ($YearCount <= $Years) {
$Total = round($Total * (1.0 + $AnnGain/100) +
$_POST['Contrib'1);
$YearCount = $YearCount + 1;
}
}
7>
<BODY>

<DIV ALIGN="CENTER" ID="Divl" class="heading">
A retirement-savings calculator</DIV>

<P class=blurb>Fill in all the values (except "Nest Egg")
and see how much money you'll have for your retirement

under different scenarios. VYou can change the values and
resubmit the form as many times as you like. You must fill
in the two "Age" variables. The "Annual return" variable has
a default inflation-adjusted value (7% = 8% growth minus 1%
inflation) which you can change to reflect your greater
optimism or pessimism.</P>

<FORM ACTION="<?php echo $_SERVER['PHP_SELF'J]; ?>"
METHOD="POST">

<P>Your age now:

<INPUT TYPE="text" SIZE=5 NAME="CurrentAge"
VALUE="<?php echo $_POST['CurrentAge']; ?>">
<P>The age at which you plan to retire:

<INPUT TYPE="text" SIZE=6 NAME="RetireAge"
VALUE="<?php echo $_POST['RetireAge']; 7>">
<P>Annual contribution:

<INPUT TYPE="text" SIZE=15 NAME="Contrib"
VALUE="<?php echo $_POST['Contrib']; ?>">
<P>Annual return:

<INPUT TYPE="text" SIZE=5 NAME="AnnGain"
VALUE="<?php echo $AnnGain; ?>"> %

<P>NEST EGGK/B>: <?php echo $Total; 7>
<P>CINPUT TYPE="submit" NAME="Submit" VALUE="Calculate">
</FORM>

</B0ODY>

</HTML>

Figure 7-1 shows the result of the Listing 7-1.

128

Reference

Part | ¢+ PHP: The Basics

| Eile Edit View Favorites Tools Help | |
=, s . 9 B A Q G PE) 1
Back EoTiaTd Stop Refresh Haome Search Favorites History

| Address |&] hup./127.0.0.1/ieliremeni_calc.php

=| PG I_Links

A retirement-gavings calculator
Fill in all the values (except "Nest Egg") and see how much money you'll have for your
retirement under different scenarios. You can change the values and resubmit the form as
many times as you like. You must fill m the two "Age" variables. The "Annual refurn”

variable has a default inflation-adjusted value (7% = 8% growth minus 126 mflation) which
you can change to reflect your greater optinism or pessimism.

Your age now: |33

The age at which you plan to retire: |36

Annual contribution: [40000

Annual return; |7 %% L

NEST EGG: 230030
&] Done ’_’_!‘ Internet
Figure 7-1: A form using the POST method with VALUE attributes

{\\I‘_

Consolidating forms and form handlers

As you can see in the preceding example, it is often handy to make the HTML form and the
form handler into one script. This practice has many advantages, such as making it easier to
change the name of the file without harming functionality, making it easier to display error
messages and prefilled form fields, and achieving better control over your variable names-
pace. Suppose you are making a login form that redisplays with an error message if the login
is unsuccessful. If you have separate forms and form handlers, you’ll probably have to do
something yucky with GET vars and redirection. If you consolidate, it’s very simple to control
the display without these machinations. (See Chapter 44 for an example of this very usage in
alogin form.)

To see how these techniques can be used with data from MySQL, see Chapter 17.

When you consolidate, generally the form-handling code should come before the form dis-
play. This order may be something of a shift in thinking for those who are used to writing the
form before the handler, but if you think it through, you will see the logic of the practice. You
have to give yourself an opportunity to set variables and make choices before you can decide
what to show the user. This is especially relevant if you will be redirecting the user to a differ-
ent page under certain circumstances, via the header () function, because this decision point
must come before any HTML output has been displayed to the browser.

Generally there are two ways you can check to see whether you're displaying a form for the
first time or whether it’s already been submitted at least once. Either you can use the Submit
button, as we do in the preceding example, or you can set a hidden variable if you tend to
have all your Submit buttons say the same thing (like “Submit”). The latter method is safer,

Chapter 7 4+ Passing Information between Pages

because some browsers don’t actually submit the Submit value if a user hits Enter instead of
clicking the button.

Using array variables with forms

In all the examples so far, each form field created a variable of the string or integer types.
This implies that there is a one-to-one relationship between a form field and a form-handler
variable. But PHP also allows you to post an array-type variable. (If you don’t yet have a
good grip on arrays, come back to this section after you read Chapter 9).

Listing 7-2 is an example of a script that creates an array from the names of the form fields in
an HTML form.

Listing 7-2: Form passing an array of variables (geek_quiz.php)

<?php

/**

* "How geeky are you?" script, showing with screens. *

* Screen 1: : quiz form. Screen 2: results page. *
**/

// The header which appears in both cases

[/ mmmm e
$header_str = <<< EOHEADER

<HTML>

<HEAD>

<STYLE TYPE="text/css">

<l--

BODY, P, TD {color: black; font-family: verdana;
font-size: 9 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-=>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<table cellspacing=0 cellpadding=20 border=0

width="530"><tr><td valign=top>

EOHEADER;

// The footer which appears in both cases
[/ s

Continued

129

] 30 Part | ¢+ PHP: The Basics

Listing 7-2 (continued)

$footer_str = << EOFOOTER
</td></tr></table>
</TD></TR>/TABLE>

</BODY>
</HTML>
EOFOOTER;

// Screen 1: quiz form

[/ mmmmmm e

$quiz_str = <K< EOQUIZ

<h2>How geeky are you?</h2>

<form action="geek_quiz.php" method="P0OST">

0. Have you ever had a dream in which you were debugging?

Yes <input type="checkbox" name="affirm[0]" value="1"/>

1. Do you know the name of the company founded by Danny
Hillis?

Yes <input type="checkbox" name="affirm[1]" value="1"/>

2. Can you edit a file in both emacs and vi without recourse to
any documentation?

Yes <input type="checkbox" name="affirm[2]" value="1"/>

3. Is the computer you're using at this moment hooked up to a
KVM switch?

Yes <input type="checkbox" name="affirm[3]" value="1"/>

4. Are you wearing a logowear T-shirt?

Yes <input type="checkbox" name="affirm[4]" value="1"/>

<pbr />

5. Have you ever written a chess program?

Yes <input type="checkbox" name="affirm[5]" value="1"/>

<pbr />

6. Have you ever set up an SMTP server?

Yes <input type="checkbox" name="affirm[6]" value="1"/>

<pbr />

7. Have you ever discussed the merits of a commercial LISP
implementation?

Yes <input type="checkbox" name="affirm[7]1" value="1"/>

8. Have you ever used the phrase "I can do that in two Tines of

Chapter 7 4 Passing Information between Pages]3]

code" in public?

Yes <input type="checkbox" name="affirm[8]" value="1"/>

9. Have you ever refused an otherwise welcome sexual advance
because you were debugging?

Yes <input type="checkbox" name="affirm[9]" value="1"/>

<input type="submit" name="submit" value="Evaluate"></form>
EOQUIZ;

/] e
// Now for some Togic
/] e
echo $header_str;
if (1isSet($_POST['submit'])) {
// First time, show the quiz form
echo $quiz_str;
} elseif ($_POST['submit'] == 'Evaluate') f{

// Count up the yes answers
$num_affirm = count($_POST['affirm'1);

// Come up with 4 different blurbs
if ($num_affirm >= 0 && $num_affirm <= 3) {
$result_str = "<P>Why even pretend to be something you're
so clearly not?</P>\n";
} elseif ($num_affirm >= 4 && $num_affirm <= 6) {
$result_str = "<P>Come back when you've learned more craft,
Grasshopper.</P>\n";
} elseif ($num_affirm >= 7 && $num_affirm <= 8) {
$result_str = "<P>Pretty geeky, but not yet a Code

God.</P>\n";
} elseif ($num_affirm >= 9 && $num_affirm <= 10) {
$result_str = "<P>We're not worthy to be in the presence of

your bad geeky self!</P>\n";
}

echo $result_str;
}
echo $footer_str;
7>

Figure 7-2 illustrates the output of the preceding code.

132

Part | ¢+ PHP: The Basics

Mozilla {Build 1D: 2002051006} H[=1 E3
. File Edit View Go Bookmarks Tools Window Help Debug OA

| O Q @ O |°\e hnip:/flocalhost/geek_quiz.php |[Q$earch] Q_;Q m

How geeky are you?

0. Have you ever had a dream in which you were
debugging?
Yes I

1. Do you know the name of the company founded by
|| Danny Hillis? —
Yes T

2. Can you edit a file in both emacs and vi without
recourse to any documentation?
Yeas [T

3. Is the computer you're using at this moment hooked up
to a KVM switch?

Yes [T

4. Are you wearing a logowear T-shirt? |

Yes i~
Document: Done {0.71 secs) = =

Figure 7-2: A form displaying array variables

Because, ultimately, we just want to count how many Yes answers there are, it would be cum-
bersome to set each check box as a separate variable and then count them. As you can see in
the preceding code (line 93), with an array it is a simple matter of calling the count () func-
tion. In many other situations, it takes less code to loop through an array than to separately
test a bunch of strings.

As you can see in the form HTML, the way you create an array variable with an HTML form is
by using a name with a bracket after it. This can be an empty bracket, a bracket with an inte-
ger inside like the one we used above, or a bracket with a string inside. When you understand
arrays better and have an idea of what you want an array to do for you, it will be clearer
which of these alternatives you need in any given instance.

PHP Superglobal Arrays

A change that has been coming for a long time in PHP is the gradual phasing out of automatic
global variables in favor of superglobal arrays, which were introduced in PHP4. Understanding
superglobal arrays before you understand arrays may present difficulties; if so, we recom-
mend you read Chapter 9 and come back to this section later.

In the good old days before PHP4.1, you could write a piece of code like this and expect it
to work:

<?php

if (isSet($submit)) {
echo $email;

} else {

Chapter 7 4 Passing Information between Pages]33

7>

<FORM ACTION="<?php echo $PHP_SELF; ?>" METHOD="POST">
<INPUT TYPE="text" NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

All GET, POST, COOKIE, ENVIRONMENT, and SERVER variables were made global by the
register_globals directive in php.ini and were directly accessible by their names by
default.

This was bad for several reasons. For one thing, every so often a COOKIE variable would acci-
dentally overwrite a POST variable of the same name although the developer didn’t want that
to happen. For another thing, it led to big, messy, undifferentiated global namespaces. Most
important, allowing variables to be set by user input is very insecure. The PHP world had far
too many inexperienced coders writing things like:

<?php

if ($secretpassword == 'opensesame') {
$allaccesspass = 1;

}

if ($allaccesspass == 1) {
include('/admin_index.html');
} else {

include('/doweknowyou.html"');
}
72>

without giving too much thought to the idea that a cracker could easily just call this page with a
GET variable named allaccesspass set to 1 and negate the advantages of any password check.

The PHP team, in its infinite wisdom, decided to phase out the practice of registering globals,
forcing everyone to call his variables as indices in an array (for example, $_POST['secret
password']). This had already been possible in PHP4, via arrays named $HTTP_GET_VARS,
$HTTP_POST_VARS, $HTTP_POST_VARS, and so on, but few developers had used this syntax;
frankly, it was a lot of extra keystrokes for a small increase in security. So the PHP team also
took this opportunity to rename these arrays with shorter names: $_GET, $_POST, $_COOKIE,
$_ENV,and $_SERVER.

These superglobal arrays also have one cool feature that may ameliorate some pain: They are
automatically global everywhere. This means, for instance, that you no longer have to pass
cookie values into a function or declare the $HTTP_COOKIE_VARS array global before you can
access those values in a function. This will help those who functionalize to the max and will
be a small amelioration for everyone else.

As of PHP4.2, register_globals is officially turned off by default, and the old-style variable
array names are deprecated. Sooner or later, the PHP team will make register_globals not
work any more. It will take quite a while to move the entire PHP community over to the new
superglobal arrays, but we feel obligated to try to use them as much as possible in this book
to set a good example. Save yourself a lot of trouble in the future and start using superglobal
arrays.

Caution Although register_globals is still an available option in PHP5's php . ini file, setting it to
on does not, as of this writing, provide access to variables outside of the superglobal arrays.

134 Part] + PHP: The Basics

Extended Example: An Exercise Calculator

Chapters 7 through 10 of this book feature an extended example that will build on itself from
chapter to chapter. Starting with a simple HTML form and form handler, you will add concepts
as you move through string, array, math, and filesystem functions. At the end, you will have
built a simple exercise calculator system that allows you to figure out how many calories were
burned by your daily workouts and to store this information in a file.

In this first episode, shown in Listing 7-3, we are simply going to move a string POST variable
from a form to a form handler using PHP. This HTML form is called workout_calc_var.html.

Listing 7-3: Simple HTML form (workout_calc_var.html)

<HTML>

<HEAD>

{STYLE TYPE="text/css">

<l--

BODY, P {color: black; font-family: verdana;

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-=>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator (passing a variable)</H1>

<P>Enter an exercise, and we'll tell you how long you'd have
to do it
to burn one pound of fat.</P>

<FORM METHOD="post" ACTION="wc_handler_var.php">

<INPUT TYPE="text" SIZE=50 NAME="exercise">

<INPUT TYPE="submit" NAME="submit" VALUE="Burn, baby, burn!">
</FORM>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>

Figure 7-3 represents the output of the preceding HTML.

Chapter 7 4+ Passing Information between Pages

2} hitp:/7127.0.0.1/workout_calc_var.html - Microsoft Internet Explorer

| Eile Edit View Favorites Tools Help E
[& - » . @ B A @a @ I 5
| Back Fanward Stop Refresh Hame Sea[g_h_ Favorites History
| Address [€1 htip.//127.0.01/warkout_calc_var html =] @Ge || Links
|
Workout calculator (passing a variable)
Enter an exercise, and we'll tell you how long you'd have to do it
to burn one pound of fat,
[running
Burn, baby, buml
. |
&) Done | ’_|‘ Internet 7

Figure 7-3: A simple form passing a string variable

The matching form handler is called wc_handler_var.php (Listing 7-4).

Listing 7-4: Form handler (wc_handler_var.php)

<?php
$exercise = $_POST['exercise'];
?>

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<1--

BODY, P {color: black; font-family: verdana;

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-=>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<HI>Workout calculator handler, part 1</H1>

<P>We've successfully passed the contents of the

text input field,

as a variable called "exercise" with a value of
<?php echo $exercise; ?>.

Continued

135

] 36 Part | ¢+ PHP: The Basics

Listing 7-4 (continued)

But before we can do anything interesting with it,
we need to learn about strings.</P>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>

Figure 7-4 represents the output of wc_handler_var.php on success.

| File Edit View Favorites Tools Help -
| & -2 -0 B 4 Ta @& 3| -
L B L 5k iz e O O 5 O e N o1 |
| Address [£1 htip.//127.0.01/we_handier_var pho =] @60 ||Links

Workout calculator handler, part 1

We've successfully passed the contents of the text input field,

as a variable called "exercise” with a value of running.

But before we can do anything interesting with it, we need to learm about

strings.
&] Done |_i_iﬂ Internet 4

Figure 7-4: Data successfully passed from one page to another

In Chapter 8, we will learn to take this string input and do interesting things with it.

Summary

The HTTP protocol is stateless. This means a plain HTML page is incapable of receiving infor-
mation from any other page. It can be used to pass values via a URL or an HTML form, but a
separate program called a form handler must step in to recognize and perform actions on the
passed values. In first-generation Web development, these form handlers were Perl or C CGI
scripts, but nowadays Web developers are more likely to use an HTML-embedded program-
ming language like PHP. PHP makes it particularly easy to write form handlers and even to
combine them with HTML display on a single Web page.

Information is passed between Web pages using one of four main methods: GET, POST, a cookie,
or sessions. GET is mainly used to construct complex URL strings for use with dynamically gen-
erated pages. It is deprecated for use with most HTML forms. POST is the method recommended
for most forms. Forms are the main way to pass information from one Web page to a single other
Web page. We deal with the persistent state methods, cookies, and sessions in Chapter 24.

+ o+ 0+

CHAPTER

Strings

+ 4+ 4+ +
Although images, sound files, videos, animations, and applets
make up an important portion of the World Wide Web, much of .
the Web is still text—one character’s worth after another, like this In This Chapter

sentence. The basic PHP datatype for representing text is the string. Stri in PHP
rings in

In this chapter, we cover almost all PHP’s capabilities for manipulat-

ing strings (although we leave more advanced string functions and String functions

the pattern-matching power of regular expressions for separate treat-

ment in Chapter 22). We start with the basics of strings, move to the Extended example: An
most commonly used operators and functions, and demonstrate exercise calculator

them by continuing the exercise calculator example from Chapter 7.

Strings in PHP

Strings are sequences of characters that can be treated as a unit—
assigned to variables, given as input to functions, returned from func-
tions, or sent as output to appear on your user’s Web page. The sim-
plest way to specify a string in PHP code is to enclose it in quotes,
whether single quotes (') or double quotes ("), like this:

¢+ 0+ o+

$my_string = 'A literal string';
$another_string = "Another string";

The difference between single and double quotes lies in how much
interpretation PHP does of the characters between the quote signs
before creating the string itself. If you enclose a string in single
quotes, almost no interpretation will be performed; if you enclose it
in double quotes, PHP will splice in the values of any variables you
include, as well as make substitutions for certain special character
sequences that begin with the backslash (\) character. For example,
if you evaluate the following code in the middle of a Web page:

$statement = 'everything I say';
$question_1 =

"Do you have to take $statement so Titerally?\n
";
$question_2 =

'Do you have to take $statement so Titerally?\n
';
echo $question_1;
echo $question_2;

you should expect to see the browser output:

Do you have to take everything I say so literally?
Do you have to take $statement so literally?\n

] 38 Part | ¢+ PHP: The Basics

- Cross- ‘\ For the details on exactly how PHP interprets both singly and doubly quoted strings, see the
| Re'e"’l'lc_i_\ “Strings” section of Chapter 5.

| =

Tip

Interpolation with curly braces

In most situations, you can simply include a variable in a doubly quoted string, and the vari-
able’s value will be spliced into the string when it is interpreted. There are two situations
where the string parser might very reasonably get confused and need more guidance from
you. The first situation is when your notion of where the variable name should stop is not the
same as the parser’s, and the other occurs when the expression you want to have interpo-
lated is not a simple variable. In these cases, you can clear things up by enclosing the value
you want interpolated in curly braces: { }.

For example, PHP has no difficulty with the following code:

$sport = 'volleyball"';
$plan = "I will play $sport in the summertime";

The parser in this case encounters the $ symbol, and then begins collecting characters for a
variable name until it runs into the space after $sport. Spaces cannot be part of a variable
name, so it is clear that the variable in question is $sport, and PHP successfully finds a value
for that variable ('volleyball"), and splices the value in.

Sometimes, though, it is not convenient to stop a variable name with a space. Take this example.

$sportl = 'volley';

$sport2 = 'foot';

$sport3 = 'basket';

$planl = "I will play $sportlball in the summertime"; //wrong
$plan2 "T will play $sport2ball in the fall"; //wrong
$plan3 = "I will play $sport3ball in the winter"; //wrong

You will not get the desired effect here, because PHP interprets $sportl as part of the vari-
able name $sportlball, which is probably unbound. Instead, you need something like:

$planl = "I will play {$sportliball in the summertime"; //right
which asks PHP to evaluate only the variable expression within the braces before interpolating.

For similar reasons, PHP has difficulty interpolating complex variable expressions, like multidi-
mensional arrays and object variables, unless curly braces are used. The general rule is that if
you have a { immediately followed by a $, PHP will evaluate the variable expression up until
the closing } and will interpolate the resulting value into the string. (If you need a literal {$ to
appear in your string, you can accomplish it by escaping either character with a backslash (\)).

See the “Concatenation and Assignment” section later in this chapter for ideas on other ways
to address challenges like this.

Characters and string indexes

Unlike some programming languages, PHP has no distinct character type different from the
string type. In general, functions that would take character arguments in other languages
expect strings of length 1 in PHP.

Chapter 8 4 Strings

You can retrieve the individual characters of a string by including the number of the charac-
ter, starting at 0, enclosed in curly braces immediately following a string variable. These
characters will actually be one-character strings. For example, the following code:

$my_string = "Doubled";

for ($index = 0; $index < 7; $index++) |
$string_to_print = $my_string{$index};
print("$string_to_print$string_to_print");

}

gives the browser output:
DDoouubbl1eedd

with each character of the string being printed twice per loop. (The number 7 is hard-coded
in this example only because we haven’t yet covered how to find out the length of a string—
see the function strlen() in the later section “Inspecting strings.”)

Caution In earlier versions of PHP, it was customary to retrieve individual characters of a string using

/Note

square brackets to enclose the index rather than curly braces (for example, $my_string[3]
rather than $my_string{3}). While you can still use the square (array-like) brackets to do
this, this usage is now deprecated, and the curly brace syntax is encouraged.

String operators

PHP offers only one real operator on strings: the dot (.) or concatenation operator. This
operator, when placed between two string arguments, produces a new string that is the result
of putting the two strings together in sequence. For example:

$my_two_cents = "I want to give you a piece of my mind ";
$third_cent = " And another thing";
print($my_two_cents . "..." . $third_cent);

gives the browser output:
I want to give you a piece of my mind ... And another thing

Note that we are not passing multiple string arguments to the print statement — we are hand-
ing it one string argument, which was created by concatenating three strings together. The
first and third strings are variables, but the middle one is a literal string enclosed in double
quotes.

Note that the concatenation operator is not + as in Java, and it does not overload anything

i else. If you forget this and add strings using +, they will be interpreted as numbers, with the

result that 'one' + 'two' equals 0 (because no successful string-to-number conversion can
be made).

Concatenation and assignment

Just as with arithmetic operators, PHP has a shorthand operator (. =) that combines concate-
nation with assignment. The following statement:

$my_string_var .= $new_addition;
is exactly equivalent to:

$my_string_var = $my_string_var . $new_addition;

139

140

Part | ¢+ PHP: The Basics

Note that, unlike commutative addition and multiplication, with this shorthand operator it
matters that the new string is added to the right. If you want the new string tacked on to the
left, there’s no alternative shorter than:

$my_string_var = $new_addition . $my_string_var;

Note also that unassigned variables are treated as empty strings for the purposes of concate-
nation, so $my_string_var will end up unchanged if $new_addition has never been given a
value.

The heredoc syntax

In addition to the single-quote and double-quote syntaxes, PHP offers another way to specify
a string, called the heredoc syntax. This syntax turns out to be extremely useful for specifying
large chunks of variable-interpolated text, because it spares you from the need to escape
internal quotes. It is especially useful in creating pages that contain HTML forms.

The operator in the heredoc syntax is <<<. What is expected immediately after this is a label
(unquoted) that indicates the beginning of a multiline string. PHP will continue including sub-
sequent lines into this string until it sees the same label again, beginning a line. The ending
label may optionally be followed by a semicolon but by nothing else.

An example:

$my_string_var = <LKKEOT

Everything in this rather unnecessarily wordy

ramble of prose will be incorporated into the

string that we are building up inevitably, inexorably,
character by character, line by line, until we reach that
blessed final Tine which is this one.

EOT;

Note that the preceding final EOT must not be indented at all— otherwise it will be taken to
be just more text to be included. The label need not be literally EOT —it can be whatever you
like within the normal rules for variable names in PHP.

Interpolation of variables happens exactly the same way as with double-quoted strings. The
nice thing about heredoc, though, is that quote signs can be included without any escaping
and without prematurely terminating the string. Another example:

echo <<K<ENDOFFORM

<FORM METHOD=POST ACTION="{$_ENV['PHP_SELF']}">
<INPUT TYPE=TEXT NAME=FIRSTNAME VALUE=$firstname>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>

ENDOFFORM;

This has the effect of echoing a very simple form to the browser.

String Functions

PHP gives you a huge variety of functions for the munching and crunching of strings. If you're
ever tempted to roll your own function that reads strings character-by-character to produce a
new string, pause for a moment to think whether the task might be common. If so, there is
probably a built-in function that handles it.

/Note

Chapter 8 4 Strings

In this section, we present the basic functions for inspecting, comparing, modifying, and
printing strings. If you want to be really comfortable with string manipulation in PHP, you
should probably have at least a passing acquaintance with everything in this section. Both
the regular expression functions and the more abstruse string functions can be found in
Chapter 22.

A note for C programmers: Many of the PHP string function names should be familiar to you.

- Just keep in mind that, because PHP takes care of memory management for you, the func-

tions that return strings are allocating the string storage on their own and do not need to be
given a preallocated string to write into.

Inspecting strings

What kinds of questions can you ask strings? First on the list is how long the string is, using
the strlen() function (the name is short for string length).

$short_string = "This string has 29 characters";
print("It does have " . strlen($short_string)
" characters");

This code gives the following output:
It does have 29 characters

Knowing the string’s length is particularly useful in form validation or for situations in which
we’d like to loop through a string character by character. A useless but illustrative example,
using the preceding example string, is:

for ($index = 0; $index < strlen($short_string); $index++)
print($short_string{$index});

This simply prints:
This string has 29 characters

which is the string we started with.

Finding characters and substrings

The next question you can ask your strings is what they contain. For example, the strpos()
function finds the numerical position of a particular character in a string, if it exists.

$twister = "Peter Piper picked a peck of pickled peppers";
print("Location of 'p' is " . strpos($twister, 'p') .'
');
print("Location of 'q' is " . strpos($twister, 'q') .'
");

This gives us the browser output:

Location of 'p' is 8
Location of 'q' is

The 'q' location is apparently blank because strpos () returns false if the character in ques-
tion cannot be found, and a false value prints as the empty string. You should note that the
strpos () function is case-sensitive.

141

142 Part| + PHP: The Basics

Caution The strpos () function is one of those cases where PHP's type-looseness can be problematic.
If no match can be found, the function returns a false value; if the very first character is a match,
the function returns 0 (because the indexing count starts with 0 rather than 1). Both of these
values look false if used in a Boolean test. One way to distinguish them is to use the identity
comparison operator (===, introduced as of PHP4), which is true only if its arguments are the
same and of the same type —you can use it to test if the returned value is 0 (or is FALSE) with-
out risk of confusion with other values that might be the same after type coercion. If you are
using PHP3, you need to do explicit type testing with, for example, is_integer().

The strpos () function can also be used to search for a substring rather than a single charac-
ter, simply by giving it a multicharacter string rather than a single-character string. You can
also supply an extra integer argument specifying the position to begin searching forward from.

Searching in reverse is also possible, using the strrpos () function. (Note the extra r, which
you can think of as standing for reverse.) This function takes a string to search and a single-
character string to locate, and it returns the last position of occurrence of the second argu-
ment in the first argument. (Unlike with strpos (), the string searched for must have only
one character.) If we use this function on our example sentence, we find a different position:

$twister = "Peter Piper picked a peck of pickled peppers";
printf("Location of 'p' is " strrpos($twister, 'p') .'
")

Specifically, we find the third p in peppers:

Location of 'p' is 40

Are strings immutable?

In some programming languages (such as C), it is common to manipulate strings by directly
changing them —that is, storing new characters into the middle of an existing string, replacing
old characters. Other languages (like Java) try to keep the programmer out of certain kinds of
trouble by making string classes that are immutable (or unchangeable) —you can make new
strings by creating modified copies of old ones, but once you have made a string, you are not
allowed to change it by directly changing the characters that make it up.

Where does PHP fit in? As it turns out, PHP strings can be changed, but the most common
practice seems to be to treat strings as immutable.

Strings can be changed by treating them as character arrays and assigning directly into them, like
this:

$my_string = "abcdefg";
$my_string[5] = "X";
print($my_string . "
");

which will give the browser output:
abcdeXg

This modification method seems to be undocumented, however, and shows up nowhere in the
online manual, even though the corresponding extraction method (now updated to use curly
braces) is highlighted. Also, almost all PHP string-manipulation functions return modified copies
of their string arguments rather than making direct changes, which seems to indicate that this is
the style that the PHP designers prefer. Our advice is not to use this direct-modification method
to change strings, unless you know what you are doing and there is some large benefit in terms
of memory savings.

Chapter 8 + Strings 143

Comparison and searching

Is this string the same as that string? It’s a question that your code is likely to have to answer
frequently, especially when dealing with input typed by the end user.
'ﬁ\lote For the == operator, two strings are the same if they contain exactly the same sequence of
g characters. It does not test any stricter notion of being the same, such as being stored at the
same memory address, but it does pay attention to case (or capitalization).

The simplest method to find an answer is to use the basic comparison operator (==), which
does equality testing on strings as well as numbers.

Caution Comparing two strings using == (or the corresponding < and > operators) is trustworthy if
both the arguments are strings and if you know that no type conversion is being performed.
(See Chapter 5 for more on this.) Using strcmp () (described next) is always trustworthy.

The most basic workhorse string-comparison function is strcmp (). It takes two strings as
arguments and compares them byte by byte until it finds a difference. It returns a negative
number if the first string is less than the second and a positive number if the second string is
less. It returns 0 if they are identical.

The strcasecmp () function works the same way, except that the equality comparison is case
insensitive. The function call strcasecmp("hey!", "HEY!") should return 0.

Searching

The comparison functions just described tell you whether one string is equal to another. To
find out if one string is contained within another, use the strpos () function (covered earlier)
or the strstr() function (or one of its relatives).

The strstr() function takes a string to search in and a string to look for (in that order). If it

succeeds, it returns the portion of the string that starts with (and includes) the first instance
of the string it is looking for. If the string is not found, a false value is returned. Here is a suc-

cessful search followed by an unsuccessful search:

$string_to_search = "showsuponceshowsuptwice";

$string_to_find = "up";

print("Result of looking for $string_to_find"
strstr($string_to_search, $string_to_find) . "
");

$string_to_find = "down";

print("Result of looking for $string_to_find"
strstr($string_to_search, $string_to_find));

which gives us:

Result of looking for up: uponceshowsuptwice
Result of Tooking for down:

The blank space after the colon in the second line is the result of trying to print a false value,
which prints as the empty string. The strstr() function also has an alias by the name of
strchr(). Other than the name, the two functions are identical. Just as with strcmp(),
strstr() has a case-insensitive version, by the name of stristr(). (That i in the middle
stands for insensitive.) It is identical to strstr() in every way, except that the comparison
treats lowercase letters as indistinguishable from their uppercase counterparts. The string
functions we have covered so far are summarized in Table 8-1.

144 Part1 + PHP: The Basics

Table 8-1: Simple Inspection, Comparison, and Searching Functions

Function Behavior
strien() Takes a single string argument and returns its length as an integer.
strpos() Takes two string arguments: a string to search, and the string being searched

for. Returns the (0-based) position of the beginning of the first instance of the
string if found, and a false value otherwise. It also takes a third optional
integer argument, specifying the position at which the search should begin.

strrpos() Like strpos (), except that it searches backward from the end of the string,
rather than forward from the beginning. The search string must only be one
character long, and there is no optional position argument.

strcemp () Takes two strings as arguments and returns 0 if the strings are exactly
equivalent. If strcmp () encounters a difference, it returns a negative
number if the first different byte is a smaller ASCII value in the first string, and
a positive number if the smaller byte is found in the second string.

strcasecmp() Identical to strcmp (), except that lowercase and uppercase versions of the
same letter compare as equal.

strstr() Searches its first string argument to see if its second string argument is
contained in it. Returns the substring of the first string that starts with the first
instance of the second argument, if any is found — otherwise, it returns false.

strchr() Identical to strstr().

stristr() Identical to strstr() except that the comparison is case independent.

Substring selection

Many of PHP’s string functions have to do with slicing and dicing your strings. By slicing, we
mean choosing a portion of a string; by dicing, we mean selectively modifying a string. Keep
in mind that (most of the time) even dicing functions do not change the string you started out
with. Usually, such functions return a modified copy, leaving the original argument intact.

The most basic way to choose a portion of a string is the substr () function, which returns a
new string that is a subsequence of the old one. As arguments, it takes a string (that the sub-
string will be selected from), an integer (the position at which the desired substring starts),
and an optional third integer argument that is the length of the desired substring. If no third
argument is given, the substring is assumed to continue until the end. (Remember that, as
with all PHP arguments that deal with numerical string positions, the numbering starts with 0
rather than 1.)

For example, the statement:

echo(substr("Take what you need, and leave the rest behind",
23));

prints the string Teave the rest behind, whereas the statement:

echo(substr("Take what you need, and leave the rest behind",
5, 13));

prints what you need —a 13-character string starting at (0-based) position 5.

Chapter 8 + Strings 145

Both the start-position argument and the length argument can be negative, and in each case
the negativity has a different meaning. If the start-position is negative, it means that the start-
ing character is determined by counting backward from the end of the string, rather than for-
ward from the beginning. (A start position of -1 means start with the last character, -2 means
second-to-last, and so on.)

Now, you might expect that a negative length would similarly imply that the substring should
be determined by counting backward from the start character rather than forward. This is not
the case—it is always true that the character at the start-position is the first character in the
returned string (not the last). Instead, a negative-length argument means that the final character
is determined by counting backward from the end rather than forward from the start position.

Here are some examples, with positive and negative arguments:

$alphabet_test = "abcdefghijklmnop";

print("3: " . substr($alphabet_test, 3) . "
");
print("-3: " . substr($alphabet_test, -3) . "
");
print("3, 5: " . substr($alphabet_test, 3, 5) . "
")
print("3, -5: " . substr($alphabet_test, 3, -5) . "
");
print("-3, -5: " . substr($alphabet_test, -3, -5) . "
")
print("-3, 5: " . substr($alphabet_test, -3, 5) . "
")

This gives us the output:

3: defghijklmnop
-3: nop

3, 5: defgh

3, -5: defghijk
-3, -5:

-3, 5: nop

Caution In the substr () example with a start position of -3 and a length of -5, the ending position
is before the starting position, which in a sense specifies a string with negative length.
The manual at www.php.net/manual currently says that such negative length calls to
substr() will result in returning a string containing the single character at the start position.
Instead, as in the preceding example, PHP5 seems to return empty strings in such cases.
Caveat coder.

Notice that there is an intimate relationship between the functions substr(), strstr(),
and strpos (). The substr() function selects a substring by numerical position, strstr()
selects a substring by its content, and strpos () finds the numerical position of a given sub-
string. In the case where we’re sure in advance that the string $containing has the string
$contained as a substring, the expression:

strstr($containing, $contained)
should be equivalent to the code:

substr($containing, strpos($containing, $contained))

String cleanup functions

Although they are technically substring functions, just like the others in this chapter, the
functions chop (), 1trim(),and trim() are really used for cleaning up untidy strings. They
trim whitespace off of the end, beginning, and beginning-and-end, respectively, of their single
string argument. Some examples:

146 Partl + PHP: The Basics

$original = More than meets the eye
$chopped = chop($original);

$1trimmed = 1trim($original);

$trimmed = trim($original);

print("The original is '$original'
");
print("Its length is " . strlen($original) . "
");
print("The chopped version is '$chopped'
");
print("Its length is " strlen($chopped) . "
");
print("The Ttrimmed version is '$1trimmed'
");
print("Its length is " . strlen($1trimmed) . "
");
print("The trimmed version is '$1trimmed'
");
print("Its Tength is " strien($trimmed) . "
");

The result as viewed by a browser is:

The original 1is

Its length is 28
The chopped version is ' More than meets the eye'
Its length is 25

The 1trimmed version is 'More than meets the eye
Its length is 26

The trimmed version is 'More than meets the eye'

Its length is 23

More than meets the eye

The original string had three spaces at the end (subject to removal by chop() or trim())
and two at the beginning (removed by 1trim() and trim()). We were careful to describe our
result as viewed by a browser because the multiple spaces have apparently been collapsed to
one in the output, as browsers will do. If we viewed the HTML source produced by PHP origi-
nally, we would still see sequences of two and three spaces.

In addition to spaces, these functions remove whitespace like that denoted by the escape
sequences \n, \r, \'t, and \0 (end-of-line characters, tabs, and the null character used to
terminate strings in C programs).

You will hear the name chop () more frequently, but the identical function can also be called
with the more logical name of rtrim(). Finally, notice that although chop () sounds extremely
destructive, it does not harm the $original argument, which retains the same value.

String replacement

The substring functions we’ve seen so far are all about choosing a portion of the argument
rather than building a genuinely new string. Enter the functions str_replace() and
substr_replace().

The str_replace() function enables you to replace all instances of a particular substring
with an alternate string. It takes three arguments: the string to be searched for, the string to
replace it with when it is found, and the string to perform the replacement on. For example:

$first_edition =
"Burma is similar to Rhodesia in at least one way.";

$second_edition = str_replace("Rhodesia", "Zimbabwe",
$first_edition);
$third_edition = str_replace("Burma", "Myanmar",

$second_edition);
print($third_edition);

Chapter 8 4 Strings

gives us:
Myanmar is similar to Zimbabwe in at least one way.

This replacement will happen for all instances found of the search string. If our outdated
encyclopedia could be snarfed into a single PHP string, we could update it in one pass.

One subtlety to be aware of: What happens when multiple instances of the search string over-
lap? For example, with code like:

$tricky_string = "ABA is part of ABABA";
$maybe_tricked = str_replace("ABA", "DEF", $tricky_string);
print("Substitution result is '$maybe_tricked'
");

the behavior we see is:
Substitution result is 'DEF is part of DEFBA'
which is probably as reasonable as any other alternative.

As we've seen, str_replace() picks out portions to replace by matching to a target string;
by contrast, substr_replace() chooses a portion to replace by its absolute position. The
function takes up to four arguments: the string to perform the replacement on, the string to
replace with, the starting position for the replacement, and (optionally) the length of the
section to be replaced. For example:

print(substr_replace("ABCDEFG", "-", 2, 3));
gives us:
AB-FG

The CDE portion of the string has been replaced with the single -. Notice that we are allowed
to replace a substring with a string of a different length. If the length argument is omitted, it is
assumed that you want to replace the entire portion of the string after the start position.

The substr_replace() function also takes negative arguments for starting position and
length, which are treated exactly the same way as in the substr () function (described in the
earlier section “Substring selection”). It is important to remember with both str_replace
and substr_replace that the original string remains unchanged by these operations.

Finally, we have a couple more whimsical functions that produce new strings from old. The
strrev () function simply returns a new string with the characters of its input in reverse
order. The str_repeat() function takes a string argument and an integer argument and
returns a string that is the appropriate number of copies of the string argument tacked
together. For example:

print(str_repeat("cheers ", 3));
gives us:

cheers cheers cheers
for the end of this section at long last.

The substring search and replacement functions are summarized in Table 8-2.

147

148 Part| + PHP: The Basics

Table 8-2: Substring and String Replacement Functions

Function Behavior

substr() Returns a subsequence of its initial string argument, as specified by
the second (position) argument and optional third (length) argument.
The substring starts at the indicated position and continues for as
many characters as specified by the length argument or until the end
of the string, if there is no length argument.

A negative position argument means that the start character is located
by counting backward from the end, whereas a negative length
argument means that the end of the substring is found by counting
back from the end, rather than forward from the start position.

chop(), or rtrim() Returns its string argument with trailing (right-hand side) whitespace
removed. Whitespace is , \n, \r, \'t, and \0.

Ttrim() Returns its string argument with leading (left-hand side) whitespace
removed.

Trim() Returns its string argument with both leading and trailing whitespace
removed.

Str_replace() Used to replace target substrings with another string. Takes three string

arguments: a substring to search for, a string to replace it with, and the
containing string. Returns a copy of the containing string with all
instances of the first argument replaced by the second argument.

Substr_replace() Puts a string argument in place of a position-specified substring. Takes
up to four arguments: the string to operate on, the string to replace
with, the start position of the substring to replace, and the length of
the string segment to be replaced. Returns a copy of the first argument
with the replacement string put in place of the specified substring.

If the length argument is omitted, the entire tail of the first string
argument is replaced. Negative position and length arguments are
treated as in substr().

Case functions

These functions change lowercase to uppercase and vice versa. The first two (de)capitalize
entire strings, whereas the second two operate only on first letters of words.

strtolower()

The strtolower () function returns an all-lowercase string. It doesn’t matter if the original is
all uppercase or mixed. This fragment:

<?php

$original = "They DON'T KnoW they're SHOUTING";
$lower = strtolower($original);

echo $lower;

7>

returns the string "they don't know they're shouting".

Tip

/Note

Chapter 8 4 Strings

If you have been faced with extensive form-validation needs before, you might already have
. noticed that strtolower() is extremely handy for use with those that still think their
4 e-mail addresses contain capital letters. Subsequent functions in this category will prove sim-
ilarly useful.

strtoupper()

The strtoupper() function returns an all-uppercase string, regardless of whether the original
was all lowercase or mixed:

<?php
$original = "make this Tink stand out";
echo("strtoupper($original)");
?>
ucfirst()
The ucfirst() function capitalizes only the first letter of a string:
<?php
$original = "polish is a word for which pronunciation depends on

capitalization";
echo(ucfirst($original));

7>

ucwords()

The ucwords () function capitalizes the first letter of each word in a string:
<?php
$original = "truth or consequences"”;

$capitalized = ucwords($original);

echo "While $original is a parlor game, $capitalized is a town in New
Mexico.";

7>

Neither ucwords () nor ucfirst() converts anything into lowercase. Each makes only the
sy appropriate leading letters into uppercase. If there are inappropriate capital letters in the
middle of words, they will not be corrected.

Escaping functions

One of the virtues of PHP is that it is willing to talk to almost anybody. In its role as a glue lan-
guage, PHP talks to database servers, to LDAP servers, over sockets, and over the HTTP con-
nection itself. Frequently, it accomplishes this communication by first constructing a message
string (like a database query) and then shipping it off to the receiving program. Often, how-
ever, the program attaches special meanings to certain characters, which therefore have to
be escaped, meaning that the receiving program is told to take them as a literal part of the
string rather than treating them specially.

Many users deal with this issue by enabling magic-quotes, which ensures that quotes are
escaped before strings are inserted into databases. If that’s not feasible or desirable, there
are good old-fashioned strip-slashing and add-slashing by hand. The addslashes () function
escapes quotes, double quotes, backslashes, and NULLs with backslashes, because these are
the characters that typically need to be escaped for database queries.

149

150

Part | ¢+ PHP: The Basics

<?php

$escapedstring = addslashes("He said, 'I'm a dog.'");

$query = "INSERT INTO test (quote) values ('$escapedstring')";
$result = mysql_query($query) or die(mysql_error());

7>

This will prevent the SQL statement from thinking it’s finished right before the letter I. When
you pull the data back out, you'll need to use stripslashes() to get rid of the slashes.

<?php

$query = "SELECT quote FROM test WHERE ID=1";
$result = mysql_query($query) or die(mysql_error());
$new_row = mysql_fetch_array($result);

$quote = stripslashes($new_rowl[0]);

echo $quote;
The quotemeta() function escapes a wider variety of characters, all of which usually have a
special meaning in the Unix command line: '. ", "\' "+' ‘"*' "2' ‘[Attt (S,
and ') '. For example, the code:
$literal_string =
'These characters ($, *) are very special to me\n
';

$gm_string = quotemeta($literal_string);
echo $gm_string;

will print:

These characters \(\$, *\) are very special to me\\n

~Cross- |\ For escaping functions specific to HTML, see the “Advanced String Functions” section in
‘ Reference |\ Chapter 22.
a'-'_’..—.

s

/' Note

Printing and output

The workhorse constructs for printing and output are print and echo, which we cover in
detail in Chapter 5. The standard way to print the value of variables to output is to include
them in a doubly quoted string (which will interpolate their values) and then give that string
toprint or echo.

If you need even more tightly formatted output, PHP also offers printf() and sprintf(),
which are modeled on C functions of the same name. The two functions take identical argu-
ments: a special format string (described later in this section) and then any number of other
arguments, which will be spliced into the right places in the format string to make the result.

The only difference between printf() and sprintf() is that printf() sends the resulting
string directly to output, whereas sprintf () returns the result string as its value.

To C programmers: This sprintf () function is slightly different from C's version in that you
i need not supply an allocated string for sprintf() to write into— PHP allocates the result
string for you.

The complicated bit about these functions is the format string. Every character that you put
in the string will show up literally in the result, except the % character and characters that
immediately follow it. The % character signals the beginning of a conversion specification,
which indicates how to print one of the arguments that follow the format string.

Chapter 8 4 Strings

After the %, there are five elements that make up the conversion specification, some of which
are optional: padding, alignment, minimum width, precision, and type.

4+ The single (optional) padding character is either a 0 or a space (). This character is
used to fill any space that would otherwise be unused but that you have insisted (with
the minimum width argument) be filled with something. If this padding character is not
given, the default is to pad with spaces.

4+ The optional alignment character (-) indicates whether the printed value should be
left- or right-justified. If present, the value will be left-justified; if absent, it will be
right-justified.

4 An optional minimum width number that indicates how many spaces this value should
take up, at a minimum. (If more spaces are needed to print the value, it will overflow
beyond its bounds.)

4+ An optional precision specifier is written as a dot (.) followed by a number. It indicates
how many decimal points of precision a double should print with. (This has no effect on
printing things other than doubles.)

4+ A single character indicating how the fype of the value should be interpreted. The
character indicates printing as a double, the s character indicates printing as a string,
and then the rest of the possible characters (b, c, d, o, x, X) mean that the value should
be interpreted as an integer and printed in various formats. Those formats are b for
binary, c for printing the character with the corresponding ASCII values, o for octal, x
for hexadecimal (with lowercase letters) and X for hexadecimal with uppercase letters.

Here’s an example of printing the same double in several different ways:

<pre>
<?php
$value = 3.14159;
printf("%f,%10f,%-010f,%2.2f\n",

$value, $value, $value, $value);
7>
</pre>

gives us:
3.141590, 3.141590,3.141590000000000, 3.14

The <pre></pre> construct is HTML that tells the browser to format the enclosed block liter-
ally, without collapsing many spaces into one, and so on.

Extended Example: An Exercise Calculator

In this section, we continue the exercise calculator example from Chapter 5 by using a
variety of string functions to process strings posted from a user form. In the previous exam-
ple, we had just managed to pass off a string variable from an HTML form to the PHP page
designed to receive it. In this version, we actually do some analysis of the string we receive.
(See the end of this section for reasons why this example will still need to be improved in
later chapters.)

Listing 8-1 shows the HTML form used to prompt the user for an exercise to analyze. This
is largely the same as the corresponding form in Chapter 7, with a different form-handling
target.

151

] 52 Part | ¢+ PHP: The Basics

Listing 8-1: The entry form

<HTML>

<HEAD>

{STYLE TYPE="text/css">

<lh--

BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>

</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator (passing a string)</H1>

<P>Enter an exercise, and we'll tell you how long you'd have to
do it
to burn one pound of fat.</P>

<FORM METHOD="post" ACTION="wc_handler_str.php">

<INPUT TYPE="text" SIZE=50 NAME="exercise">

<INPUT TYPE="submit" NAME="submit" VALUE="Burn, baby, burn!">
</FORM>

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

Listing 8-2 shows a revised form-handling page that displays different exercise stats depend-
ing on the particular exercise entered by the user.

Caution

We very intentionally used the modern $_P0ST superglobal to catch the value of the string
posted by the form. This means, however, that the code in Listing 8-2 will not run in any ver-
sion of PHP earlier than PHP 4.1. To adapt it to an earlier version, replace $_POST with
"$HTTP_POST_VARS' with the understanding that the long variable names are now
officially deprecated and will probably result in broken code at some point.

Listing 8-2: Form handler using string functions
<?php

$exercise = $_POST['exercise']l; // NOTE: only works in PHP 4.1+
// Make sure they aren't trying to do naughty things
if (strlen($exercise) > 50) {

echo "You aren't playing by the rules. Bad dog!";

exit;

Chapter 8 4 Strings

}
// Try to parse the input string

// Make sure there aren't any spaces before or after
$exercise = trim($exercise);

// Convert to all lowercase for better string matching
$exercise = strtolower($exercise);

// Try to standardize on gerund form, if possible
if (strpos($exercise, 'ing') > 0) {

// Already good

$exercise_str = $exercise;

} elseif ($exercise == 'bike' || $exercise == 'cycle') {
$exercise_str = 'cycling';

} elseif ($exercise == 'run' || $exercise == 'jog') f{
$exercise_str = 'running';

} elseif ($exercise == 'soccer' || $exercise == 'football') ({
$exercise_str = 'soccer';

} elseif (strstr($exercise, 'weight') ||
strstr($exercise, 'strength')) f{
$exercise_str = 'weight 1ifting';

// Now assign a number of hours to burn one pound of fat to each
// sport

if ($exercise_str == 'cycling' || $exercise_str == 'biking') {
$hours = '5 hours and 40 minutes';
} elseif ($exercise_str == "running' ||
$exercise_str == 'jogging') {
$hours = "4 hours and 30 minutes';
} elseif ($exercise_str == 'soccer' ||
$exercise_str == 'football') {
$hours = "4 hours and 30 minutes';
} elseif ($exercise_str == 'weight 1ifting') {
$hours = '7 hours and 30 minutes';
} else {

// Nullify all other exercises
$exercise_str = '';
$hours = '"';

}

// Construct a sentence

/] e
if ($exercise_str != "" && $hours != "") {
$message = 'It would take '.$hours.' of ' . $exercise_str
" to burn one pound of fat.';
} elseif ($exercise_str == "" && $hours == "") {

// 1If the exercise isn't in the 1list above, give a
// default message.

Continued

153

154

Part | ¢+ PHP: The Basics

Listing 8-2 (continued)

$message = 'Sorry, we do not have data for that exercise.';
} else {

// There are two other Togical possibilities
// 1. We recognize the exercise but don't have a duration
// for it
// 2. We don't recognize the exercise but somehow have a
// duration
// neither should happen, but just in case...
$message = 'Something has gone horribly wrong!';
}
// Now lay out the page

$page_str = << EOPAGE

<HTML>

<HEAD>

<STYLE TYPE="text/css">

<l--

BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator handler, part 2</H1>

<P>The workout calculator says, "$message"</P>

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

EOPAGE;

echo $page_str;

7>

In order, the code in Listing 8-2:

1. Receives the posted string from the HTML form.

2. Tries to put the received string into a standard form by trimming off whitespace,
converting to lowercase, and translating some known variations.

Chapter 8 4 Strings 155

3. Uses the cleaned-up and translated string to look up data on a given exercise.

4. Uses the heredoc syntax to construct a response page.

Figures 8-1 and 8-2 show what is displayed as the user enters the word bike.

fworkout_calc_str.html - Microsoft Internet Explorer

| File Edit View Favorites Tools Help | @ |
TS < (5] a | Q Gd 4 "l
| Back Forward Stop Refresh Home Search Favorites History
| Address [@] htip./1127.0.0.1/senl_code/ch 0Awaikout_caic_str biml | @G | Links
=
Workout calculator (passing a string)
Enter an exercise, and we'll tell you how long you'd have to do it
to burn one pound of fat,
hike
‘&] Done ’_’_|‘ Internat »

Figure 8-1: The entry form

.php - Microsoft Internet Explorer

| File Edit View Favorites Tools Help | @ |
« .+ .0 @B &4 7@ @ 3 >
| Back Eanard Stop Refresh Home Search Favorites History
| Address [@] htip./127.0.0.1/senl_code/ch 0Awe_handler_str php | @G | Links
=
Workout calculator handler, part 2
The workout calculator says, “It would take S hours and 40 minutes of cycling
to burn one pound of fat."
‘&] Done ’_’_|‘ Internat 7

Figure 8-2: The answer

So, do we like our exercise calculator yet? The main problem is that it is highly likely that
the form will not know how to handle what the user types (other than by printing a generic
message). Also, if you raise error reporting up to E_ALL, you will see some warnings due to
uninitialized variables. The user is also not given any clue as to what kinds of input the form
will be able to handle.

156

Part | ¢+ PHP: The Basics

In general, unless you are building a system (like a search engine) where the whole point is
dealing with free text, it is a bad idea to have the results of your code depend on analysis of
user-entered strings. If you want the user to make choices, you should constrain those choices
so that you know what is coming. User-entered text is fine as long as its ultimate fate is to be
viewed by another human being (after, say, being stored in a database or forwarded by an
e-mail program).

To gracefully constrain the user’s choices, you need HTML user-interface elements other than
the text box, such as check boxes, radio buttons, and pull-down lists. And to make use of
those Ul elements on the receiving side, we really need to exploit the power of arrays more
fully. We will extend this example in Chapter 9 by doing just that.

Summary

Strings are sequences of characters, and the string is one of the eight basic datatypes in PHP.
Unlike in some other languages, there is no distinct character type, since single characters
behave as strings of length 1. Literal strings are specified in code by either single (") or dou-
ble (") quotes. Singly quoted strings are interpreted nearly literally, while doubly quoted
strings interpret a number of escape sequences and automatically interpolate variable values.

The main string operator is ' . ', which concatenates two strings together. In addition, there
is a dizzying array of string functions, which help you inspect, compare, search, extract,
chop, replace, slice, and dice strings to your heart’s content. For the most sophisticated
string-manipulation needs, PHP supports both POSIX and Perl-compatible regular expres-
sions (covered in Chapter 22).

+ 0+ 0+

Arrays and Array
Functions

- Cross-

s

Arrays are definitely one of the coolest and most flexible features of
PHP. Unlike vector arrays from other languages (C, C++, Pascal),
PHP arrays can store data of varied types and automatically organize it
for you in a large variety of ways.

\

\ This chapter treats arrays and array functions in some depth. For a

| Reference \ \ery quick introduction to the syntax and use of arrays, see Chapter 5.

—

L

For a more complete survey of advanced array functions, see
Chapter 21.

The Uses of Arrays

An array is a collection of variables indexed and bundled together
into a single, easily referenced super-variable that offers an easy way
to pass multiple values between lines of code, functions, and even
pages. Throughout much of this chapter, we will be looking at the
inner workings of arrays and exploring all the built-in PHP functions
that manipulate them. Before we get too deep into that, however, it’s
worth listing the common ways that arrays are used in real PHP code.

Many built-in PHP environment variables are in the form of arrays
(for example, $_SESSION, which contains all the variable names and
values being propagated from page to page via PHP’s session mecha-
nism). If you want access to them, you need to understand, at a mini-
mum, how to reference arrays.

Most database functions transport their info via arrays, making a
compact package of an arbitrary chunk of data.

It’s easy to pass entire sets of HTML form arguments from one page
to another in a single array (see Chapter 7).

Arrays make a nice container for doing manipulations (sorting, count-
ing, and so on) of any data you develop while executing a single
page’s script.

Almost any situation that calls for a number of pieces of data to be
packaged and handled as one is appropriate for a PHP array.

CHAPTER
-

+ 0+ 0+
In This Chapter

An all-purpose data
fype

Storing and retrieving
values

Multidimensional arrays
Iteration

+ o+ o+

158

Part | ¢+ PHP: The Basics

What Are PHP Arrays?

/Note

/Note

PHP arrays are associative arrays with a little extra machinery thrown in. The associative part
means that arrays store element values in association with key values rather than in a strict
linear index order. (If you have seen arrays in other programming languages, they are likely
to have been vector arrays rather than associative arrays — see the related sidebar for an
explanation of the difference.) If you store an element in an array, in association with a key,
all you need to retrieve it later from that array is the key value. For example, storage is as
simple as this:

$state_location['San Mateo'] = 'California’;

which stores the element 'California' in the array variable $state_location, in associa-
tion with the lookup key 'San Mateo'. After this has been stored, you can look up the stored
value by using the key, like so:

$state = $state_location['San Mateo']; // equals 'California’
Simple, no?

If all you want arrays for is to store key/value pairs, the preceding information is all you need
to know. Similarly, if you want to associate a numerical ordering with a bunch of values, all
you have to do is use integers as your key values, as in:

$my_array[1] = "The first thing";
$my_array[2] = "The second thing"; // and so on

For Perl programmers: Arrays in PHP are much like hashes in Perl, with some syntactic

g differences. For one thing, all variables in PHP are denoted with a leading $, not just scalar

variables. Second, even though the array is associative, the indices are grouped by square
brackets ([1) rather than curly braces ({ }). Finally, there is no array or list type indexed only
by integers. The convention is to use integers as associative indices, and the array itself main-
tains an internal ordering for iteration purposes.

In addition to the machinery that makes this kind of key/value association possible, arrays
track some other things behind the scenes. Because of this, we sometimes treat them as
other kinds of data structures. As we will see, arrays can be multidimensional. They can store
values in association with a sequence of key values rather than a single key. Also, arrays
automatically maintain an ordered list of the elements that have been inserted in them,
independent of what the key values happen to be. This makes it possible to treat arrays as
linked lists. In general, we will reveal the workings of this extra machinery as we explore the
functions that use it.

A note for C++ programmers: You should be aware that arrays can handle some of the same

g tasks that require the use of template libraries in C++. Much of the reason for having tem-

plates in the first place is to get around restrictions having to do with strict typing of data.
PHP's looser typing system makes it possible, for example, to write general algorithms that
iterate over the contents of arrays without committing to the type of the array elements
themselves.

Chapter 9 + Arrays and Array Functions |59

Associative arrays versus vector arrays

If you have programmed in languages like C, C++, and Pascal, you are probably used to a particu-
lar usage of the word array, one that doesn’t match the PHP usage very well at all. A more specific
term for a C-style array is a vector array, whereas a PHP-style array is an associative array.

In a vector array, the contained elements all need to be of the same type, and usually the lan-
guage compiler needs to know in advance how many such elements there are likely to be. For
example, In C you might declare an array of 100 double-precision floating-point numbers with a
statement like:

double my_array[100]; // This is C, not PHP!

The restriction on types and the advance declaration of size have an associated benefit: Vector
arrays are very fast, both for storage and lookup. The reason is that the compiler will usually lay
out the array in a contiguous block of computer memory, as large as the size of the element type
multiplied by the number of elements. This makes it very easy for the programming language to
locate a particular array slot —all it needs to know is the starting memory address of the array, the
size of the element type, and the index of the element it wants to look up, and it can directly
compute the memory address of that slot.

By contrast, PHP arrays are associative (and so some would call them hashes, rather than arrays).
Rather than having a fixed number of slots, PHP creates array slots as new elements are added
to the array. Rather than requiring elements to be of the same type, PHP arrays have the same
type-looseness that PHP variables have —you can assign arbitrary PHP values to be array ele-
ments. Finally, because vector arrays are all about laying out their elements in numerical order;
the keys used for lookup and storage must be integer numbers. PHP arrays can have keys of arbi-
trary type, instead, including string keys. So, you could have successive array assignments like:

$my_array[1] = 1;
$my_array['orange'] = 2;
$my_array[3] = 3;

without any paradox. The result is that your array has three values (1, 2, 3), each of which is
stored in association with a key (1, 'orange', and 3, respectively).

The extra flexibility of associative arrays comes at a price, because there is a little bit more going
on between your code and the actual computation of a memory address than is true with vector
arrays. For most Web programming purposes, however, this extra access time is not a significant
cost.

The fact that integers are legal keys for PHP arrays means that you can easily imitate the behav-
ior of a vector array, simply by restricting your code to use only integers as keys.

{,Note A general note for programmers familiar with other languages: PHP does not need very
et many different kinds of data structures, in part because of the great flexibility offered by PHP
arrays. By careful choice of a subset of array functions, you can make arrays pretend to act
like vector arrays, structure/record types, linked lists, hash tables, or stacks and queues—
data structures that in other languages either require their own data types or more abstruse

language features such as pointers and explicit memory management.

160

Part | ¢+ PHP: The Basics

Creating Arrays

There are three main ways to create an array in a PHP script: by assigning a value into one
(and thereby implicitly creating it), by using the array () construct, and by calling a function
that happens to return an array as its value.

Direct assignment

The simplest way to create an array is to act as though a variable is already an array and
assign a value into it, like this:

$my_array[1] = "The first thing in my array that I just made";

If $my_array was an unbound variable (or bound to a nonarray variable) before this state-
ment, it will now be a variable bound to an array with one element. If instead $my_array was
already an array, the string will be stored in association with the integer key 1. If no value was
associated with that number before, a new array slot will be created to hold it; if a value was
associated with 1, the previous value will be overwritten. (You can also assign into an array
by omitting the index entirely as in $my_array[], described later in this chapter.)

The array() construct

The other way to create an array is via the array () construct, which creates a new array
from the specification of its elements and associated keys. In its simplest version, array ()
is called with no arguments, which creates a new empty array. In its next simplest version,
array () takes a comma-separated list of elements to be stored, without any specification of
keys. The result is that the elements are stored in the array in the order specified and are
assigned integer keys beginning with zero. For example, the statement:

$fruit_basket = array('apple', 'orange', 'banana', 'pear');

causes the variable $fruit_basket to be assigned to an array with four string elements
("apple', 'banana', 'orange', 'pear"), with the indices 0, 1, 2, and 3, respectively. In
addition (as we’ll see in the “Iteration” section later in this chapter), the array will remember
the order in which the elements were stored.

The assignment to $fruit_basket, then, has exactly the same effect as the following:

$fruit_basket[0] = 'apple';
$fruit_basket[1] = 'orange';
$fruit_basket[2] = 'banana';
$fruit_basket[3] = 'pear';

assuming that the $fruit_basket variable was unbound at the first assignment. The same
effect could also have been accomplished by omitting the indices in the assignment, like so:

$fruit_basket[] = 'apple';
$fruit_basket[] 'orange';
$fruit_basket[] = 'banana';
$fruit_basket[] = 'pear';

In this case, PHP again assumes that you are adding sequential elements that should have
numerical indices counting upward from zero.

/Note

Chapter 9 4 Arrays and Array Functions

Yes, the default numbering for array indices starts at zero, not one. This is the convention for

i arrays in most programming languages. We're not sure why computer scientists start count-

ing at zero (mathematicians, like everyone else in the world, start with one), but it probably
has its origin in the kind of pointer arithmetic that calculates memory addresses for vector
arrays. Addresses for successive elements of such arrays are found by adding successively
larger offsets to the array’s address, but the offset for the first element is zero (because the
first element’s address is the same as the array’s address).

Specifying indices using array()

The simple example of array () in the preceding section assigns indices to our elements, but
those indices will be the integers, counting upward from zero — we’re not getting a lot of
choice in the matter. As it turns out, array () offers us a special syntax for specifying what
the indices should be. Instead of element values separated by commas, you supply key-value
pairs separated by commas, where the key and value are separated by the special symbol =>.

Consider the following statement:

$fruit_basket = array(0 => 'apple', 1 => 'orange',
2 => 'banana', 3 => 'pear');

Evaluating it will have exactly the same effect as our earlier version —each string will be
stored in the array in succession, with the indices 0, 1, 2, 3 in order. Instead, however, we can
use exactly the same syntax to store these elements with different indices:
$fruit_basket = array('red' => 'apple', 'orange' => 'orange',
'yellow' => 'banana', 'green' => 'pear');
This gives us the same four elements, added to our new array in the same order, but indexed

by color names rather than numbers. To recover the name of the yellow fruit, for example, we
just evaluate the expression:

$fruit_basket['yellow'] // will be equal to 'banana'

Finally, as we said earlier, you can create an empty array by calling the array function with
no arguments. For example:

$my_empty_array = array();

creates an array with no elements. This can be handy for passing to a function that expects
an array as argument.

Functions returning arrays

The final way to create an array in a script is to call a function that returns an array. This may
be a user-defined function, or it may be a built-in function that makes an array via methods
internal to PHP.

Many database-interaction functions, for example, return their results in arrays that the func-
tions create on the fly. Other functions exist simply to create arrays that are handy to have as
grist for later array-manipulating functions. One such is range (), which takes two integers as
arguments and returns an array filled with all the integers (inclusive) between the arguments.
In other words:

$my_array = range(1,5);
is equivalent to:

$my_array = array(l, 2, 3, 4, 5);

161

162

Part | ¢+ PHP: The Basics

Retrieving Values

"Note

After we have stored some values in an array, how do we get them out again?

Retrieving by index

The most direct way to retrieve a value is to use its index. If we have stored a value in
$my_array at index 5, $my_array[5] should evaluate to the stored value. If $my_array

has never been assigned, or if nothing has been stored in it with an index of 5, $my_array[5]
will behave like an unbound variable.

The list() construct

There are a number of other ways to recover values from arrays without using keys, most of
which exploit the fact that arrays are silently recording the order in which elements are stored.
We cover this in more detail in this chapter’s “Iteration” section, but one such example is
1ist (), which is used to assign several array elements to variables in succession. Suppose
the following two statements are executed:

$fruit_basket = array('apple', 'orange', 'banana');
list($red_fruit, $orange_fruit) = $fruit_basket;

This will assign the string "apple’ to the variable $red_fruit and the string 'orange' to
the variable $orange_fruit (with no assignment of 'banana', because we didn’t supply
enough variables). The variables in 11st () will be assigned to elements of the array in the
order they were originally stored in the array. Notice the unusual behavior here—the Tist()
construct is on the left-hand side of the assignment operator (=), where we normally find only
variables.

In some sense, 175t () is the opposite or inverse of array () because array () packages its
arguments into an array, and 1ist () takes the array apart again into individual variable
assignments. If we evaluate:

list($first, $second) = array($first, second);

the original values of $first and $second will be assigned to those variables again, after
having been briefly stored in an array.

We have been careful to refer to both array () and 1ist () as constructs, rather than func-

~ tions. This is because they are not in fact functions —like certain other specialized PHP lan-

guage features (if, while, function, and so on) they are interpreted specially by the
language itself and are not run through the usual routine of function-call interpretation.
Remember that the arguments to a function call are evaluated before the function is really
invoked on those arguments, so constructs that need to do other kinds of interpretation on
what they are given cannot be implemented as function calls. It's a useful exercise to look
hard at the example uses of both array () and 1ist() to figure out why treating them as
function calls could not result in the behavior advertised.

Chapter 9 + Arrays and Array Functions] 63

Multidimensional Arrays

So far, the array examples we have looked at have all been one-dimensional, with only one
level of bracketed keys. However, PHP can easily support multiple-dimensional arrays, with
arbitrary numbers of keys. And just as with one-dimensional arrays, there is no need to
declare our intentions in advance — the first reference to an array variable can be an assign-
ment like:

$multi_array[1]1[2]1[3]1[4]1[5] = "deeply buried treasure";

That is a five-dimensional array with successive keys that happen, in this case, to be five
successive integers.

Actually, in our opinion, thinking of arrays as multidimensional makes matters more confusing
than they need to be. Instead, just remember that the values that are stored in arrays can them-
selves be arrays, just as legitimately as they can be strings or numbers. The multiple-index syn-
tax in the preceding example is simply a concise way to refer to a (four-dimensional) array that
is stored with akey of 1 in $multi_array, which in turn has a (three-dimensional) array stored
in it, and so on. Note also that you can have different depths of reference in different parts of
the array, like so:

$multi_level_array[0] = "a simple string";
$multi_level_array[1]['contains'] = "a string stored deeper";

The integer key of 0 stores a string, and the key of 1 stores an array that, in turn, has a string
in it. However, you cannot continue on with this assignment:

$multi_level_array[O]['contains'] = "another deep string";

without the result of losing the first assignment to 'a simple string'. The key of 0 can be
used to store a string or another array, but not both at once.

If we remember that multidimensional arrays are simply arrays that have other arrays stored
in them, it’s easier to see how the array () creation construct generalizes. In fact, even this
seemingly complicated assignment is not that complicated:

$cornucopia = array('fruit' =>
array('red' => 'apple',
'orange' => 'orange',
'yellow' => 'banana',
'green' => 'pear'),
"flower' =>
array('red' => 'rose',
'yellow' => 'sunflower"',
"purple' => "iris'));

It is simply an array with two values stored in association with keys. Each of these values is
an array itself. After we have made the array, we can reference it like this:

$kind_wanted = "flower';

$color_wanted = 'purple';

print("The $color_wanted $kind_wanted is
$cornucopial$kind_wanted][$color_wanted]);

See the browser output:

The purple flower is iris

164

Part | ¢+ PHP: The Basics

' Note There's a reason that we used the string concatenation operator . in the preceding print
-y statement, rather than simply embedding the $cornucopial$kind_wanted][$color_
wanted] in our print string as we do with other variables. PHP3 string parsing can be con-
fused by multiple array indices within a double-quoted string, so it needs to be concatenated
separately. PHP since version 4 handles this in a better way —you are safe embedding array

references in a string as long as you enclose the reference in curly braces, like this:

print("The thing we want is
{$cornucopial$kind_wanted][$color_wanted]}");

Finally, notice that there is no great penalty for misindexing into a multidimensional array
when we are trying to retrieve something; if no such key is found, the expression is treated
like an unbound variable. So, if we try the following instead:

$kind_wanted = 'fruit';

$color_wanted = 'purple'; //uh-oh, we didn't store any plums

print("The $color_wanted $kind_wanted is "
$cornucopial$kind_wanted]l[$color_wanted]);

The worst that happens is the unsatisfying:
The purple fruit is

This is the worst thing that happens, of course, unless you have raised your error_reporting
level to E_ALL, as we advise you to do at some points in this book. In that case, you will get a
warning message about an undefined index ('purple") just as you would if you had an
unbound variable.

Inspecting Arrays

Now we can make arrays, store values in arrays, and then pull the values out again when we
want them. Table 9-1 summarizes a few other functions we can use to ask questions of our

arrays.
Table 9-1: Simple Functions for Inspecting Arrays

Function Behavior

is_array() Takes a single argument of any type and returns a true value if the
argument is an array, and false otherwise.

count () Takes an array as argument and returns the number of nonempty
elements in the array. (This will be 1 for strings and numbers.)

sizeof() Identical to count ().

in_array() Takes two arguments: an element (that might be a value in an
array), and an array (that might contain the element). Returns true
if the element is contained as a value in the array, false otherwise.
(Note that this does not test for the presence of keys in the array.)

IsSet($arrayl[$key]) Takes an array[key] form and returns true if the key portion is a

valid key for the array. (This is a specific use of the more general
function IsSet (), which tests whether a variable is bound.)

Chapter 9 + Arrays and Array Functions |1 65

Note that all of these functions work on only the depth of the array specified, so that testing
for values layers deep in a multidimensional array requires that you specify out that number
of places. In the case of our preceding $cornucopia example, for instance:

count($cornucopia) // what do you expect here? 27 77 97
returns a 2, while
count($cornucopialfruit]

returns 4.

Deleting from Arrays

Deleting an element from an array is simple, exactly analogous to getting rid of an assigned
variable. Just call unset (), as in the following:

$my_array[0] = 'wanted';
$my_array[1] = 'unwanted';
$my_array[2] = 'wanted again';
unset($my_array[1]);

Assuming that $my_array was unbound when we started, at the end it has two values
('wanted', 'wanted again'), in association with two keys (0 and 2, respectively). It is as
though we had skipped the original 'unwanted' assignment (except that the keys are num-
bered differently).

Note that this is not the same as setting the contents to an empty value. If, instead of calling
unset (), we had the following statement:

$my_array[1l] =

at the end we would have three stored values ('wanted"',
with three keys (0, 1, and 2, respectively).

, 'wanted again') in association

Iteration

We’ve seen how to put things into arrays, how to find them once we have put them there, and
how to delete them when we don’t want them anymore. What we need next is a technique for
dealing with array elements in bulk. Iteration constructs help us do this by letting us step or
loop through arrays, element by element or key by key.

We'll first delve briefly into the internal representation of arrays to understand how PHP sup-
ports iteration. (Although important, this subsection is skippable —if you want to use it but
don’t want to know how it works, you can jump down to the section titled “Using iteration
functions.”)

Support for iteration

In addition to storing values in association with their keys, PHP arrays silently build an ordered
list of the key/value pairs that are stored, in the order that they are stored. The reason for this
is to support operations that iterate over the entire contents of an array. (Notice that this is dif-
ficult to do simply by building a loop that increments an index, because array indices are not
necessarily numerical.)

] 66 Part | ¢+ PHP: The Basics

There is, in fact, sort of a hidden pointer system built into arrays. Each stored key/value pair
points to the next one, and one side effect of adding the first element to an array is that a cur-
rent pointer points to the very first element, where it will stay unless disturbed by one of the
iteration functions.

’{NOte Each array remembers a particular stored key/value pair as being the current one, and array

-y iteration functions work in part by shifting that current marker through the internal list of
keys and values. Although we will call this marker the current pointer, PHP does not support
full pointers in the sense that C and C++ programmers may be used to, and this usage of the
word will turn up only in the context of iterating through arrays.

This linked-list pointer system is an alternative way to inspect and manipulate arrays, which
exists alongside the system that allows key-based lookup and storage. Figure 9-1 shows an
abstract view (not necessarily reflecting the real implementation) of how these systems
locate elements in an array.

________ | Linked list
Hashing Index Value : structure
lookup <—:—current
/ |
Index Value I

Index Value

|

Index Value)

1

N I

|
Index-based Iteration
functions functions

Figure 9-1: Internal structure of an array

Chapter 9 4 Arrays and Array Functions

Using iteration functions
To explore the iteration functions, let’s construct a sample array that we can iterate over.

$major_city_info = array();
$major_city_infol[0] = 'Caracas';
$major_city_infol['Caracas'] = 'Venezuela';
$major_city_info[l] = 'Paris’';
$major_city_infol['Paris'] = 'France';
$major_city_infol[2] = 'Tokyo';
$major_city_info['Tokyo'] = 'Japan';

In this example, we created an array and stored some names of cities in it, in association with
numerical indices. We also stored the names of the relevant countries into the array, indexed
by the city names. (We could have accomplished all this with one big call to array (), but the
separate statements make the structure of the array somewhat clearer.)

Now, we can use the array key system to pull out the data we have stored. If we want to rely
on the convention in the preceding example (cities stored with numerical indices, countries
stored with city-name indices), we can write a function that prints the city and the associated
country, like so:

function city_by_number ($number_index, $city_array)
{
if (IsSet($city_arrayl[$number_index]))
{
$the_city = $city_arrayl[$number_index];
$the_country = $city_arrayl[$the_city];
print("$the_city is in $the_country
");
}
}
city_by_number(0, $major_city_info);
city_by_number(1l, $major_city_info);
city_by_number(2, $major_city_info);

If we have set $major_city, as in the previous block of code, the browser output we should
expect is:

Caracas is in Venezuela
Paris is in France
Tokyo is in Japan

Now, this method of retrieval is fine when we know how the array is structured and we know
what all the keys are. But what if you would simply like to print everything that an array
contains?

Our favorite iteration method: foreach

Our favorite construct for looping through an array is foreach. Although it is probably inher-
ited from Perl’s foreach, it has a somewhat odd syntax (which is not the same as Perl’s odd
syntax). It comes in two flavors — which one you decide to use will depend on whether you
care about the array’s keys or just the values.

167

168

Part | ¢+ PHP: The Basics

foreach ($array_variable as $value_variable) {
// .. do something with the value in $value_variable
}// Note that this is an example template, not real PHP code

foreach ($array_variable as $key_var => $value_var) f{
// .. do something with $key_var and/or $value_var

}

Although in the preceding pseudocode we assume that the array of interest is in the variable
$array_variable, you can have any expression that evaluates to an array in that position,
for example:

foreach (function_returning_array() as $value_variable) {
// .. do something with the value in $value_variable

}

Like array() and 1ist (), but unlike the genuine iteration functions in the rest of this sec-
— tion, foreach is a language construct, not a function. (See the earlier note about 1ist ()
for an explanation of the difference.)

As an example, let’s write a function to print all the names from our sample array:

function print_all_foreach ($city_array)
{
foreach ($city_array as $name_value) {
print("$name_value
");
}
}
print_all_foreach($major_city_info);
print_all_foreach($major_city_info);// again, as an experiment

As output, we get all the names, in the order we stored them, twice over:

Caracas
Venezuela
Paris
France
Tokyo
Japan
Caracas
Venezuela
Paris
France
Tokyo
Japan

We printed the contents twice to show that calling the function is repeatable.

Iterating with current() and next()

We like foreach, but it is really only good for situations where you want to simply loop
through an array’s values. For more control, let’s look at current () and next ().

The current () function returns the stored value that the current pointer points to. (Refer
back to Figure 9-1 for a diagram of the array internals.) When an array is newly created with

Chapter 9 4 Arrays and Array Functions

elements, the element pointed to will always be the first element. The next () function first
advances that pointer and then returns the current value pointed to. If the next () function
is called when the current pointer is already pointing to the last stored value and, therefore,
runs off the end of the array, the function returns a false value.

As an example, we can print out an array’s contents with the iteration functions current ()
and next (). (Notice that the final function call is repeated.)

function print_all_next($city_array)
{ // warning--doesn't quite work. See the function each()
$current_item = current($city_array);
if ($current_item)
print("$current_item
");
else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
}
print_all_next($major_city_info);
print_all_next($major_city_info);// again, to see what happens

Caution There is a gotcha lurking in the preceding code example, which doesn't bite us in this partic-

ular example but makes this function untrustworthy as a general method for finding every-
thing in an array. The problem is that we may have stored a false value in the array, which our
while loop won't be able to distinguish from the false value that next () returns when it
has run out of array elements. See the discussion of the each () function later in this chap-
ter under “Empty values and the each () function” for a solution.

When we execute this array-printing code, we get the following again:

Caracas
Venezuela
Paris
France
Tokyo
Japan
Caracas
Venezuela
Paris
France
Tokyo
Japan

Now, how is it that we are seeing the same thing from the second call to print_all_next()?

How did the current pointer get back to the beginning to start all over again the second time?

The answer lies in the fact that PHP function calls are call-by-value, meaning that they copy
their arguments rather than operating directly on them. Both of the function calls, then, are
getting a fresh copy of their array argument, which has never itself been disturbed by a call
to next ().

- Cross- ‘\X For more on under what circumstances functions copy their arguments rather than operating
| Reference \ on them directly, see Chapter 6.
l g

|

169

] 70 Part | ¢+ PHP: The Basics

/Note

/Note

We can test this explanation by passing the arrays by reference rather than by value. If we
define the same function but call it with ampersands (&) like this:

print_all_next(&$major_city_info);
print_all_next(&$major_city_info);// again

We get the following printing behavior:

Caracas

Venezuela

Paris

France

Tokyo

Japan

There's nothing to print

The trick we used to test the array behavior (passing a variable reference to a function) has

et been deprecated, so you may get a warning when running this code, in addition to seeing

the results printed above.

The reason is that this time the current pointer of the global version of the array was moved
by the first function call.

Most of the iteration functions have both a returned value and a side effect. In the case of the

il functions next (), prev(), reset(), and end (), the side effect is to change the position

of the internal pointer, and what is returned is the value from the key/value pair pointed to
after the pointer's position is changed.

Starting over with reset()

In the preceding section, we wrote a function intended to print out all the values in an array,
and we saw how it could fail if the array’s internal pointer did not start off at the beginning of
the list of key/value pairs. The reset () function gives us a way to “rewind” that pointer to
the beginning — it sets the pointer to the first key/value pair and then returns the stored
value. We can use it to make our printing function more robust by replacing the call to
current () with a call to reset ().

function print_all_array_reset($city_array)

{ // warning--still not reliable. See the function each()
$current_item = reset($city_array); //rewind, return value
if ($current_item)

print("$current_item
");
else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
}

This function is somewhat more predictable in that it will always start with the first element,
regardless of the pointer’s location in the array it is handed. (Whether this is a good idea
depends, of course, on what the function is used for and whether its arguments are passed
by value or by reference.)

Chapter 9 4 Arrays and Array Functions

Perhaps confusingly, we use our call to reset () in the preceding example both for its side
effect (rewinding the pointer) and for its return value (the first value stored). Alternatively,
we could replace the first real line of the function body with these two lines:

reset($city_array); // rewind to the first element
$current_item = current($city_array); // the first value

Reverse order with end() and prev()

We have seen the functions next (), which moves the current pointer ahead by one, and
reset (), which rewinds the pointer to the beginning. Analogously, there are also the func-
tions prev (), which moves the pointer back by one, and end (), which jumps the pointer
to the last entry in the list. We can use these, for example, to print our array entries in
reverse order.

function print_all_array_backwards($city_array)

{ // warning--still not reliable. See the function each()
$current_item = end($city_array); //fast-forward to last
if ($current_item)

print("$current_item
");
else
print("There's nothing to print");
while($current_item = prev($city_array))
print("$current_item
");
}
print_all_array_backwards($major_city_info);

If we call this on the same $major_city_info data as in previous examples, we get the same
printout in reverse order:

Japan
Tokyo
France
Paris
Venezuela
Caracas

Extracting keys with key()

So far, we have printed only the values stored in arrays, even though we are storing keys as
well. The keys are also retrievable from the internal linked list of an array by using the key ()
function —this acts just like current () except that it returns the key of a key/value pair,
rather than the value. (Refer to Figure 9-1.) Using the key () function, we can modify one of
our earlier printing functions to print keys as well as values.

function print_keys_and_values($city_array)
{ // warning--See the discussion of each() below
reset($city_array);
$current_value = current($city_array);
$current_key = key($city_array);
if ($current_value)
print("Key: $current_key; Value: $current_value
");

171

] 72 Part | ¢+ PHP: The Basics

else
print("There's nothing to print");
while($current_value = next($city_array))
{
$current_key = key($city_array);
print("Key: $current_key; Value: $current_value
");
}
}
print_keys_and_values($major_city_info);

With the same data as before, this gives us the browser output:

Key: 0; Value: Caracas

Key: Caracas; Value: Venezuela
Key: 1; Value: Paris

Key: Paris; Value: France

Key: 2; Value: Tokyo

Key: Tokyo; Value: Japan

Empty values and the each() function

We have written several functions that print the contents of arrays by iterating through them
and, as we have pointed out, all but the foreach version have the same weakness. Each one
of them tests for completion by seeing whether next () returns a false value. This will reliably
happen when the array runs out of values, but it will also happen if and when we encounter a
false value that we have actually stored. False values include the empty string (" "), the num-
ber 0, and the Boolean value FALSE, any or all of which we might reasonably store as a data
value for some task or other.

To the rescue comes each (), which is somewhat similar to next () but has the virtue of
returning false only after it has run out of array to traverse. Oddly enough, if it has not run
out, each () returns an array itself, which holds both keys and values for the key/value pair
it is pointing at. This characteristic makes each() confusing to talk about because you need
to keep two arrays straight: the array that you are traversing and the array that each()
returns every time that it is called. The array that each () returns has the following four
key/value pairs:

4+ Key: 0; Value: current-key

4+ Key: 1; Value: current-value

4+ Key: 'key'; Value: current-key

4+ Key: 'value'; Value: current-value

The current-key and current-value are the key and value from the array being traversed. In
other words, the returned array packages up the current key/value pair from the traversed
array and offers both numerical and string indices to specify whether you are interested in
the key or the value.

' Note In addition to having a different type of return value, each () differs from next () in that
- each() returns the value that was pointed to before moving the current pointer ahead,
whereas next () returns the value after the pointer is moved. This means if you start with a
current pointer pointing to the first element of an array, successive calls to each () will cover

each array cell, whereas successive calls to next () will skip the first value.

Chapter 9 4 Arrays and Array Functions

We can use each () to write a more robust version of a function to print all keys and values in
an array:

function print_keys and _values_each($city_array)
{ // reliably prints everything in array
reset($city_array);
while ($array_cell = each($city_array))
{
$current_value = $array_cell['value'];
$current_key = $array_cell['key'];
print("Key: $current_key; Value: $current_value
");
}
}
print_keys_and_values_each($major_city_info);

Applying this function to our standard sample array gives the following browser output:

Key: 0; Value: Caracas

Key: Caracas; Value: Venezuela
Key: 1; Value: Paris

Key: Paris; Value: France

Key: 2; Value: Tokyo

Key: Tokyo; Value: Japan

This is exactly the same as was produced by our earlier function print_keys and_values().
The difference is that our new function will not stop prematurely if one of the values is false or
empty.

Walking with array_walk()

Our last iteration function lets you pass an arbitrary function of your own design over an
array, doing whatever your function pleases with each key/value pair. The array_walk()
function takes two arguments: an array to be traversed and the name of a function to apply to
each key/value pair. (It also takes an optional third argument, discussed later in this section.)

The function that is passed in to array_walk() should take two (or three) arguments. The
first argument will be the value of the array cell that is visited, and the second argument will
be the key of that cell. For example, here is a function that prints a descriptive statement
about the string length of an array value:

function print_value_length($array_value, $array_key_ignored)
{

$the_length = strlen($array_value);

print("The length of $array_value is $the_length
");
}

(Notice that this function intentionally does nothing with the second argument.) Now let’s
pass this function over our standard sample array using array_walk():

array_walk($major_city_info, 'print_value_length');
which gives the browser output:

The length of Caracas is 7
The length of Venezuela is 9
The length of Paris is 5

173

174

Part | ¢+ PHP: The Basics

The length of France is 6
The length of Tokyo is 5
The length of Japan is 5

The final flexibility that array_walk() offers is accepting an optional third argument that, if
present, will be passed on, in turn, as a third argument to the function that is applied. This
argument will be the same throughout the array’s traversal, but it offers an extra source of
runtime control for the passed function’s behavior.

Caution You should not alter an array while you are iterating through the array using array_walk().
There is no guarantee how array_walk () will behave if you do this.

Table 9-2 shows a summary of the behavior of the array iteration functions that we covered in
this section. Notice that foreach and 11ist are not included; they are not functions.

Table 9-2: Functions for Iterating over Arrays

Function Arguments Side Effect Return Value
current() One array None. The value from the key/value
argument pair currently pointed to by the
internal “current” pointer (or
false if no such value).
next() One array Advances the pointer The value pointed to after the
argument by one. If already at the pointer has been advanced (or
last element, it will move false if no such value).
the pointer “past the end,”
and subsequent calls to
current () will return
false.
prev() One array Moves the pointer back The value pointed to after the
argument by one. If already at the pointer has been moved back
first element, will move (or false if no such value).
the pointer “before the
beginning”
reset() One array Moves the pointer back to The first value stored in the
argument point to the first key/value array, or false for an empty
pair, or “before the array.
beginning” if the array is
empty.
end() One array Moves the pointer ahead The last value that is currently
argument to the last key/value pair. in the list of key/value pairs.
pos() One array None. (This function is an The value of the key/value pair
argument alias for current().) that is currently pointed to.

Chapter 9 4 Arrays and Array Functions

Function Arguments Side Effect Return Value
each() One array Moves the pointer ahead An array that packages the keys
argument to the next key/value pair. and values of the key/value

pair that was current before
the pointer was moved (or
false if no such pair). The
returned array stores the key
and value under its own keys 0
and 1, respectively, and also
under its own keys 'key ' and

‘value'.

array_walk() 1) An array This function invokes the (Returns 1.)

argument, function named by its

2) the name second argument on each

of a two- key/value pair. Side

(or three-) effects depend on the

argument side effects of the

function to passed function.

call on each

key/value, and
3) an optiona.l
third argument.

Extended Example: An Exercise Calculator

Now we’ll continue our exercise calculator example that we started in Chapters 7 and 8 and
make further improvements using PHP arrays.

When we left this example in Chapter 8, we were allowing the user to type the name of an
exercise into a Web form, and we were hoping to match the submitted string with an exercise
known to the receiving script. Instead, let’s take our advice from late in Chapter 8 and con-
strain inputs from the user to a set we know we can recognize on the receiving end.

Listing 9-1 shows an HTML form that presents a set of exercises that the user can choose
from. This uses a radio-button input, so that the user can choose only one exercise to submit.

Listing 9-1: Entry form with radio buttons

<HTML>

<HEAD>

<STYLE TYPE="text/css">

<l--

BODY, P, TD

{color: black; font-family: verdana; font-size: 10 pt}
H1

Continued

175

176

Part | ¢+ PHP: The Basics

Listing 9-1 (continued)

{color: black; font-family: arial; font-size: 12 pt}
-->

</STYLE>

</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>
<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<HI1>Workout calculator (radio buttons with arrays)</H1>
<P>Select one of the following exercises, and we'll tell
you how Tong

you'd have to do it to burn one pound of fat.</P>

<FORM METHOD="post" ACTION="wc_handler_ckbx.php">
<{table>
<trd>
<td><input type="radio"
name="exercise" value="0"> Biking/cycling</td>
</tr>ltr>
<td><input type="radio"
name="exercise" value="1"> Running</td>
</tr>ltr>
<td><input type="radio"
name="exercise" value="2"> Soccer/foothall</td>
</tr>ltr>
<td><input type="radio"
name="exercise" value="3"> Stairclimber</td>
</tr>ltr>
<td><input type="radio"
name="exercise" value="4"> Weightlifting</td>
</tr>ltr>
<td> </td>
</tr>ltr>
<td><input type="submit"
name="submit" value="Burn, baby, burn!"></td>
</tr>
</table>
</FORM>

</TD>
</TR>
</TABLE>

</BODY>
</HTML>

Chapter 9 4 Arrays and Array Functions

177

Figure 9-2 shows how the entry form looks in a browser.

io.html - Microsoft Internet Explorer

2 http:iflocalhostiworke u___l:aln: T

| File Edit View Favorites Tools Help | @ |
& .+ . @ @ A4 |@ & @ °
Back Fanward Stop Refrazh Home Search Favorites History
| Address [hiip://locahostiwoskout_calc_tadio himl ~| 6o | |Links
= |
Workout calculator (radio buttons with arrays)
Select one of the following exercises, and we'll tell you how long
wou'd have to do it to burm one pound of fat.
C Biking/cycling
T Running
' Soccer/football
© Stairclimber
© weightlifting
Burn, baky: burnl
. oz
€] Done |_| |25 Local intranet 4

Figure 9-2: Entry form with radio buttons

The radio-button entry form passes a particular POST variable named 'exercise', which can
have several different numerical values depending on which button the user clicks on. Listing
9-2 shows some handler code that can catch such a submission; the job of this code is to fig-
ure out which button was clicked and to print some appropriate info, which has been stored
in advance in arrays in the receiving code file.

Listing 9-2: Handler for radio-button selection

<?php
// This is the array where we keep our exercise names
$name_array = array(

0 => 'Biking/cycling',

1 => '"Running"',

2 => 'Soccer/football',

3 => 'Stairclimber’',

4 => 'Weightlifting'

)3

// This is the array where we keep our duration data

$duration_array = array(
0 => '5 hours and 40 minutes',
1 => "4 hours and 30 minutes"',

Continued

] 78 Part | ¢+ PHP: The Basics

Listing 9-2 (continued)

2 => '4 hours and 30 minutes',
3 => '5 hours"',

4 => '7 hours and 30 minutes'
)

// Now pull out the chosen exercise from the submission
if (is_array($_POST) && count($_POST) > 1) {
$exercise_value = $_POST['exercise'];
$exercise_name = $name_arrayl[$exercise_valuel;
$hours = $duration_array[$exercise_valuel;
} //Usually you'd test an array for a count of 0, but here
//there is 1 automatic POST element -- $_POST['submit'].

// Construct a sentence

/] —mmmm e

if (isSet($hours)) {
$message = "It would take '.$hours.' of '.$exercise_name.

' to burn one pound of fat.';

} else {
// Hmmm, they didn't pick one or something odd happened
$message = 'Ummm, did you pick an exercise?';

}

// Now lay out the page

/] e

$page_str = << EQOPAGE

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<l--

BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>

</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator handler (radio buttons with arrays)</H1>
<P>The workout calculator says, "$message"</P>

Chapter 9 + Arrays and Array Functions |79

</TD>

</TR>

</TABLE>
</BODY>

</HTML>

EOPAGE;

echo $page_str;

7>

Figure 9-3 shows the result of catching the user submission and displaying appropriately.

ﬁhﬂp:.‘?lncalhosl."wc_ handler_ckbx.php - Microsoft Internet Explorer

|£|le Edit View Favorites Tools Help -

(e - » . 0 @B A]@a @m 3|

| Back Forward _ Step Refresh Home | Seach Favorites History |

| Address [£] htip:/locabst/we_hardier_ckbs.ohp ~| 6o || Links
=

Workout calculator handler (radie buttons with arrays)

The workout calculator says, "It would take 4 hours and 30 minutes of
Soccer/football to burn one pound of fat.”

=

&] Done |_ |_ |§‘g Local intranet o

Figure 9-3: Displaying the result of radio-button entry

As usual, this is fine as far as it goes, but what if we want to submit more than one choice?
For one thing, the point of the radio-button HTML construct is to allow only one choice, so we
will have to abandon it; for another, the receiving code is only set up to extract one exercise.

To relax this constraint, let’s use HTML check boxes instead of radio buttons for the form
itself. And while we’re doing that, let’s use a nice feature of PHP form processing and give the
choices variable names that look like indexes into a single array variable (exercise[0],
exercise[1], and so on). On the receiving end, we can simply treat exercise as a single
array that has arrived in the $_POST. Listing 9-3 shows the modified HTML form, and Listing
9-4 shows the receiving code.

180

Part | ¢+ PHP: The Basics

Listing 9-3: Entry form with check boxes

<HTML>
<HEAD>
<STYLE TYPE="text/css">
<l--
BODY, P, TD

{color: black; font-family: verdana; font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-=>
</STYLE>
</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>

</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator (multiple checkboxes with arrays)</H1>
<P>Select one or more of the following exercises, and we'll tell
you
 how long you'd have to do each one to burn one pound of
fat.</P>

<FORM METHOD="post" ACTION="wc_handler_array.php">
<table>
<tr>
<td><input type="checkbox" name="exercise[0]"
value="1"> Biking/cycling</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[1]"
value="1"> Running</td>
</trd>
<tr><td><input type="checkbox" name="exercise[2]"
value="1"> Soccer/football1</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[3]"
value="1"> Stairclimber</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[4]"
value="1"> Weightlifting</td>
</trd>
<trd>
<td> </td>
</trd>
<trd>
<td><input type="submit" name="submit"

Chapter 9 4 Arrays and Array Functions

value="Burn, baby, burn!"></td>
</TR>
</TABLE>
</FORM>

</TR></TABLE>

</BODY>
</HTML>

To save space, we'll skip the screenshots for this example; the submitting form looks similar
to the radio-button example except for the prompting language, and the receiving page sim-
ply prints multiple choices rather than a single choice.

Listing 9-4: Handler for check boxes

<?php

// This is the array where we keep our exercise names
$name_array = array(

> 'Biking/cycling',
> 'Running"',

> 'Soccer/footbhall"',
> 'Stairclimber’,

=> '"Weightlifting'

S~ w e O
I

)

// This is the array where we keep our duration data
$duration_array = array(
0 => '5 hours and 40 minutes',
1 => "4 hours and 30 minutes"',
2 => '4 hours and 30 minutes',
3 => '5 hours"',
4 => "7 hours and 30 minutes'
)

// Now step through the exercises and see which ones they chose
if (is_array($_POST) && count($_POST) > 1) {

$message = '';
foreach ($_POST['exercise'] as $key => $val) {
if ($val == 1) {

$exercise_name = $name_array[$key];

$hours = $duration_array[$key];

$message .=
"</P>\n<P>It would take $hours of $exercise_name "
"to burn one pound of fat.";

Continued

181

] 82 Part | ¢+ PHP: The Basics

Listing 9-4 (continued)

}

else {
// Hmmm, they didn't pick one or something strange happened
$message = 'Ummm, did you pick an exercise?';

} //1f you don't have this test, an empty form will cause an
// error.

//Usually you'd test an array for a count of 0, but here
//there is 1 automatic POST array element -- $_POST['submit'].

// Now lay out the page

$page_str = <K< EOQPAGE
<HTML>
<HEAD>
<STYLE TYPE="text/css">
<l--
BODY, P
{color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-
</STYLE>
</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator handler (multiple checkboxes with arrays)</H1>
<P>The workout calculator says:

$message</P>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>
EOPAGE;

echo $page_str;

7>

Chapter 9 4 Arrays and Array Functions

Taking this one step further, we can also submit multidimensional arrays via HTML form. All we
need to do is name our FORM variables with multiple levels of brackets (like exercise[1]1[2]),
and we’ll have a multidimensional array on the receiving end.

Listing 9-5 shows our slightly modified entry form, and Listing 9-6 shows receiving code that
iterates through the submitted multidimensional array, doing the appropriate unpacking.

Listing 9-5: Entry form for multidimensional arrays

<HTML>
<HEAD>
<STYLE TYPE="text/css">
<--
BODY, P, TD
{color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-=>
</STYLE>
</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>

</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator (multidimensional arrays)</H1>

<P>Select one or more of the following exercises, and we'll tell
you

how long you'd have to do each one to burn one pound of fat.</P>

<FORM METHOD="post" ACTION="wc_handler_mult_arr.php">
<table>
<tr>
<td>Aerobic exercise</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[0][0]"
value="1"> Biking/cycling</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[0][1]"
value="1"> Rowing</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[0][2]"
value="1"> Running</td>

Continued

183

184 Part] ¢+ PHP: The Basics

Listing 9-5 (continued)

</trd>
<trd>
<td><input type="checkbox" name="exercise[0][3]"
value="1"> Stairclimber</td>
</trd>
<tr>
<td><dinput type="checkbox" name="exercise[0][4]"
value="1"> Walking</td>
</Erd
<trd>
<td>Sports</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[1][0]"
value="1"> Basketball</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[1][1]"
value="1"> Ice hockey</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[1][2]"
value="1"> Soccer/football</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[1][3]"
value="1"> Table tennis</td>
</trd>
<trd>
<td>Strength training</td>
</trd>
<trd>
<td><input type="checkbox" name="exercise[2][0]"
value="1"> Calisthenics</td>
</trd>
<tr>
<td><input type="checkbox" name="exercise[2][1]"
value="1"> Weightlifting (Tight)</td>
</trd>
<trd>
<td><input type="checkbox" name="exercisel[2][2]"
value="1"> Weightlifting (strenuous)</td>
</trd>
<trd>
<td>Stretching/flexibility</td>
</trd>
<trd>

Chapter 9 4 Arrays and Array Functions

<td><input type="checkbox" name="exercise[3][0]"
value="1"> Pilates</td>
</tr>
<trd>
<td><input type="checkbox" name="exercise[3][1]"
value="1"> Tai chi</td>
</tr>
<tr>
<td><input type="checkbox" name="exercise[3][2]"
value="1"> Yoga</td>
</Erd>
<trd>
<td> </td>
</Erd>
<trd>
<td><input type="submit" name="submit"
value="Burn, baby, burn!"></td>
</td></Er>
</table>
</TR>
</TABLE>
</FORM>

</BODY>
</HTML>

Figure 9-4 shows our new entry form, with check boxes (instead of radio buttons) to handle
multiple entries.

|_ Edit View Favorites T

localhost/'workout calc_mult ml - Microsoft Internet Explorer

T Help
& -2 -8 B A4l @a @ 3|°
E Bad&) _—"-l ward SEDD_ Refrash Home | Seach Faworites Hlaiuw e |
!AﬂdressFE] httpr#locahast/workout_calc_mull_am hirmi j B0 | Links

-

Workout calculator {(multidimensional arrays)

Select one or more of the following exercises, and we'll tell you
how long you'd have to do each one to burn ona pound of fat.

Aerobic exercise
Biking/cycling

r
I Rowing -
" Running

[T Stairclimber

™ walking

Sports

I~ Basketball

™ Ice hockey

= P

&] Done |— |_ |25 Local intranet ’

Figure 9-4: Entry form using a multidimensional array

185

Part | ¢+ PHP: The Basics

186

Listing 9-6: Handler for multidimensional array form

<?php

// Exercise types

$exercise_types = array(0 => 'Aerobic exercise',
1 => 'Sports’,
2 => 'Strength training',
3 => 'Stretching/flexibility'

// This is the multidimensional array where we keep our

// exercises
$exercise_array =

array(0 => array(0 =

1 => array(0 =

1
2

3_
),
2 => array(0 =

1

2 =

)

3 => array(0 =

1

2 =

)
)s

'Biking/cycling',
'Rowing"',
'Running’,
'Stairclimber’',
'"Walking'

'Basketball',
'Ice hockey"',
'Soccer/football",
'Table tennis'

'Calisthenics’',
'"Weightlifting
'"Weightlifting

(Tight) ',
(strenuous)',

'Pilates’',
'Tai chi',
'Yoga',

// This is the array where we keep our duration data

$duration_array =

array(0 => array(0 =

1 => array(0 =

1
2

3_
),

2 => array(0
1

=>
=>

'5 hours and 40 minutes"',
"4 hours and 10 minutes"',
"4 hours and 30 minutes"',
'5 hours"',

'10 hours and 10 minutes'

'5 hours"',
'5 hours',
"4 hours and 30 minutes"',
'10 hours and 10 minutes'

"6 hours and 30 minutes"',
'13 hours and 30 minutes',

Chapter 9 4 Arrays and Array Functions

2 => "'7 hours and 30 minutes',
),

3 => array(0 => '8 hours and 45 minutes"',
1 => "10 hours and 10 minutes',
2 => '16 hours',
)

)3

// Now step through the exercises and see which one they chose
if (is_array($_POST) && count($_POST) > 1
&& is_array($_POST['exercise'])) f{
$message = '';
foreach ($_POST['exercise']l as $key 1 => $val) {
// $val should be an array
if (lis_array($val)) {
$message .= "Something's wrong -- value not array
";
}
else {
// Add heading
$heading = $exercise_types[$key_17;
$message .= "</P>\n<P>$heading";
foreach ($val as $key_2 => $val_2) {
if ($val_2 == 1) {
$exercise_name = $exercise_array[$key 1]1[$key_27;
$hours = $duration_array[$key_1]1[$key 27;
$message .= "</P>\n<P>It would take $hours of ".
"$exercise_name to burn one pound of fat.";

}
}

b oelse {
// Hmmm, they didn't pick one or something wack happened
$message = 'Ummm, did you pick an exercise?';

}
// Now lay out the page

$page_str = << EOPAGE

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<l--

BODY, P

{color: black; font-family: verdana; font-size: 10 pt}
H1

{color: black; font-family: arial; font-size: 12 pt}
>

</STYLE>

</HEAD>

Continued

187

188

Part | ¢+ PHP: The Basics

Listing 9-6 (continued)

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="{#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator handler (multidimensional arrays)</H1>
<P>The workout calculator says:

$message</P>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>
EOPAGE;

echo $page_str;

7>

There are several layers of array packaging that the receiving code in Listing 9-6 pulls apart:
First, it uses the 'exercise' key to find the right value in the $_POST array. The value it finds
is itself an array. It then uses two nested foreach loops to delve down through the two layers
of indexing to the actual exercises submitted. Figure 9-5 shows the result.

< http:/flocalhostiwe_handler mult_arr.php - Microsoft Internet Explorer

| &

e Edit View Favorites Tools Help -

¢« . =+ . D 2] 72} aQ E7| 3 i
Back Fanward Stop Refrash Home | Search Faworites History
| Address [&) g/ /locahostiwe_hardie_mull_an. php x| 6o ||Links

-
Workout calculator handler (multidimensional arrays)

The workout calculator says:

Aerobic exercise

It would take 4 hours and 10 minutes of Rowing to burn one pound of fat

It would take 5 hours of Stairclimber to burn one pound of fat.

Sports

It would take 4 hours and 20 minutes of Soccer/football to burn one pound of
fat,

Strength training

It would take 13 hours and 30 minutes of Weightlifting (light) to burn one
pound of fat,

&] Done |— |_ %5 Local intranet

sl |

Figure 9-5: Displaying a multidimensional array submission

Chapter 9 + Arrays and Array Functions] 89

Summary

The array is a basic PHP datatype and plays the role of both record types and vector array
types in other languages. PHP arrays are associative, meaning that they store their values in
association with unique keys or indices. Indices can be either strings or numbers, and are
denoted as indices by square brackets. (The expression $my_array[4] refers to the value
stored in $my_array in association with the integer index 4, and not necessarily to the 4th
element of $my_array.)

The loose typing of PHP means that any PHP value can be stored as an array. In turn, this
means that arrays can be stored as array elements. Multidimensional arrays are simply arrays
that contain other arrays as elements, with a reference syntax of successive brackets. (The
expression $my_array[3]1[4] refers to the element (indexed by 4) of an array which is an
element (indexed by 3) of $my_array.)

The array is the standard vehicle for PHP functions that return structured data, so PHP
programmers should learn to unpack arrays, even if they are not interested in constructing
them. PHP also offers a huge variety of functions for manipulating data after you have it
stored in an array, including functions for counting, summarizing, and sorting.

+ o+ 0+

Numbers

Ifyou need to do serious numerical, scientific, or statistical compu-
tation, a Web-scripting language is probably not where you want to
be doing it. With that said, however, PHP does offer a generous array
of functions that nicely cover most of the mathematical tasks that
arise in Web scripting. It also offers some more advanced capabilities
such as arbitrary-precision arithmetic and access to hashing and
cryptographic libraries.

The PHP designers have, quite sensibly, not tried to reinvent any
wheels in this department. Instead, they found about eighteen per-
fectly good wheels by the side of the road and built a lightweight
fiberglass chassis to connect them all together. Many of the more
basic math functions in PHP are simple wrappers around their C
counterparts (for more on this, see the sidebar “A Glimpse behind
the Curtain” in Chapter 27, which will cover PHP’s mathematics
capabilities in greater detail).

Numerical Types

- Cross-

PHP has only two numerical types: integer (also known as long), and
double (aka floaf), which correspond to the largest numerical types in
the C language. PHP does automatic conversion of numerical types,
so they can be freely intermixed in numerical expressions and the
“right thing” will typically happen. PHP also converts strings to
numbers where necessary.

In situations where you want a value to be interpreted as a particular
numerical type, you can force a typecast by prepending the type in
parentheses, such as:

(double) $my_var
(integer) $my_var

Or you can use the functions intval () and doubleval (), which
convert their arguments to integers and doubles, respectively.

“-\, For more details on the integer and double types, see Chapter 5.

| Reference ',
\

| P

_——

C HHA P T E R

¢+ s+
In This Chapter

Numerical types
Mathematical operators
Simple math functions
Random numbers

¢+ 0+ o+

192

Part | ¢+ PHP: The Basics

Mathematical Operators

Tip

Most of the mathematical action in PHP is in the form of built-in functions rather than in the
form of operators. In addition to the comparison operators covered in Chapter 6, PHP offers
five operators for simple arithmetic, as well as some shorthand operators that make incre-
menting and assigning statements more concise.

Arithmetic operators

The five basic arithmetic operators are those you would find on a four-function calculator,
plus the modulus operator (%). (If you are unfamiliar with modulus, see the discussion follow-
ing Table 10-1.) The operators are summarized in Table 10-1.

Table 10-1: Arithmetic Operators

Operator Behavior Examples
+ Sum of its two arguments. 4+9.5 evaluatesto 13.5
- If there are two arguments, the 50 - 75 evaluates to -25
right-hand argument is subtracted - 3.9 evaluatesto -3.9
from the left-hand argument. If there
is just a right-hand argument, then
the negative of that argument is
returned.
* Product of its two arguments. 3.14 * 2 evaluates to 6.28
/ Floating-point division of the left-hand 5/ 2 evaluatesto 2.5

argument by the right-hand argument.

Integer remainder from division of
left-hand argument by the absolute
value of the right-hand argument.
(See discussion in the following
section.)

Arithmetic operators and types

With the first three arithmetic operators (+, -, *), you should expect type contagion from
doubles to integers; that is, if both arguments are integers, the result will be an integer, but
if either argument is a double, then the result will be a double. With the division operator,
there is the same sort of contagion, and in addition the result will be a double if the division

is not even.

101 % 50 evaluates to 1
999 % 3 evaluates to 0

43 % 94 evaluates to 43
-12 % 10 evaluates to -2
-12 % -10 evaluates to -2

If you want integer division rather than floating-point division, simply coerce or convert the

division result to an integer. For example, intval(5 / 2) evaluates to the integer 2.

Chapter 10 4+ Numbers

Modular arithmetic is sometimes taught in school as clock arithmetic. The process of taking
one number modulo to another amounts to “wrapping” the first number around the second,
or (equivalently) taking the remainder of the first number after dividing by the second. The
result of such an operation is always less than the second number.

Roughly speaking, a conventional civilian analog clock displays hours elapsed modulo 12,
while military time is modulo 24. (The roughly in the previous sentence is because the real
modulus function converts numbers to the range 0 to n-1, rather than the range 1 to n. If
bell-tower clocks respected this, noontime would be marked by silence, rather than by twelve
chimes.)

The modulus operator in PHP (%) expects integer arguments —if it is given doubles, they will
simply be converted to integers (by truncation) first. The result is always an integer.

Most programming languages have some form of the modulus operator, but they differ in
how they handle negative arguments. In some languages, the result of the operator is always
positive, and -2 % 26 equals 24. In PHP, though, -2 % 26 is -2, and, in general, the statement
$mod = $first_num?% $second_numis exactly equivalent to the expression:

if ($first_num >= 0)
$mod = $first_num % abs($second_num);
else
$mod = - (abs($first_num) % abs($second_num));

where abs () is the absolute value function.

Incrementing operators

PHP inherits a lot of its syntax from C, and C programmers are famously proud of their own
conciseness. The incrementing/decrementing operators taken from C make it possible to
more concisely represent statements like $count = $count + 1, which tend to be typed
frequently.

The increment operator (++) adds one to the variable it is attached to, and the decrement
operator (--) subtracts one from the variable. Each one comes in two flavors, postincrement
(which is placed immediately after the affected variable), and preincrement (which comes
immediately before). Both flavors have the same side effect of changing the variable’s value,
but they have different values as expressions. The postincrement operator acts as if it
changes the variable’s value after the expression’s value is returned, whereas the preincre-
ment operator acts as though it makes the change first and then returns the variable’s new
value. You can see the difference by using the operators in assignment statements, like this:

$count = 0;

$result = $count++;

print("Post ++: count is $count, result is $result
");
$count = 0;

$result = ++$count;

print("Pre ++: count is $count, result is $result
");
$count = 0;

$result = $count--;

print("Post --: count is $count, result is $result
");
$count = 0;
$result = --$count;

print("Pre --: count is $count, result is $result
");

193

194 Part] + PHP: The Basics

which gives the browser output:

Post ++: count is 1, result is O
Pre ++: count is 1, result is 1

Post --: count is -1, result is O
Pre --: count is -1, result is -1

In this example, the statement $result = $count++; is exactly equivalent to

$result = $count;
$count = $count + 1;

while $result =++$count; is equivalent to

$count = $count + 1;
$result = $count;

Assignment operators

Incrementing operators like ++ save keystrokes when adding one to a variable, but they don’t
help when adding another number or performing another kind of arithmetic. Luckily, all five
arithmetic operators have corresponding assignment operators (+=, -=, *=, /=, and %=) that
assign to a variable the result of an arithmetic operation on that variable in one fell swoop.
The statement:

$count = $count * 3;
can be shortened to:

$count *= 3;
and the statement:

$count = $count + 17;
becomes:

$count += 17;

Comparison operators

PHP includes the standard arithmetic comparison operators, which take simple values (num-
bers or strings) as arguments and evaluate to either TRUE or FALSE:

- Cross- ‘\X For examples of using the comparison operators and also some gotcha issues with comparing
| Reference \ doubles and strings, see Chapter 6.
If‘_,_,--'
4 The < (less than) operator is true if its left-hand argument is strictly less than its right-
hand argument but false otherwise.

4+ The > (greater than) operator is true if its left-hand argument is strictly greater than its
right-hand argument but false otherwise.

4+ The <= (less than or equal) operator is true if its left-hand argument is less than or
equal to its right-hand argument but false otherwise.

4+ The >= (greater than or equal) operator is true if its left-hand argument is greater than
or equal to its right-hand argument but false otherwise.

Tip

Chapter 10 4+ Numbers

4+ The == (equal to) operator is true if its arguments are exactly equal but false otherwise.
4+ The != (not equal) operator is false if its arguments are exactly equal and true otherwise.

4+ The === operator (identical to) is true if its two arguments are exactly equal and of the
same type.

The identical to operator (===)can, at times, be a necessary antidote to PHP's auto-
matic type conversions. None of the following expressions will have a true value:

2 === 2.0

0 —= mpw
"2.0" === 2.0
0 === FALSE

This behavior can be invaluable, for example, if you have a function that returns a string
when it succeeds (which might be the empty string) and a FALSE value when it fails. Testing
the truth of the return value would confuse FALSE with the empty string, whereas the iden-
tical operator can distinguish them.

Precedence and parentheses

Operator precedence rules govern the relative stickiness of operators, deciding which opera-
tors in an expression get first claim on the arguments that surround them. You can find a
complete table of all operator precedences in the manual at www.php.net, but the important
precedence rules for arithmetic are:

4+ Arithmetic operators have higher precedence (that is, bind more tightly) than compari-
son operators.

4+ Comparison operators have higher precedence than assignment operators.
4+ The *, /, and % arithmetic operators have the same precedence.

4 The + and - arithmetic operators have the same precedence.

4+ The *, /, and % operators have higher precedence than + and -.

4+ When arithmetic operators are of the same precedence, associativity is left-to-right
(that is, a number will associate with an operator to its left in preference to the opera-
tor on its right).

If you find the precedence rules difficult to remember, the next person who reads your code
may have the same problem, so feel free to parenthesize when in doubt. For example, can you
easily figure out the value of this expression?

1+2*3-4-5/4%3

As it turns out, the value is 2, as we can see more easily when we add parentheses that are
not, strictly speaking, necessary:

((L+(2*3)) -4) -5/ 4)%3)

195

] 96 Part | ¢+ PHP: The Basics

Simple Mathematical Functions

The next step up in sophistication from the arithmetic operators consists of miscellaneous func-
tions that perform tasks like converting between the two numerical types (which we discussed
in Chapter 5) and finding the minimum and maximum of a set of numbers (see Table 10-2).

Table 10-2: Simple Math Functions

Function Behavior

floor() Takes a single argument (typically a double) and returns the largest integer
that is less than or equal to that argument.

ceil() Short for ceiling —takes a single argument (typically a double) and returns the
smallest integer that is greater than or equal to that argument.

round() Takes a single argument (typically a double) and returns the nearest integer.
If the fractional part is exactly 0.5, it returns the nearest even number.

abs() Short for absolute value — if the single numerical argument is negative, the
corresponding positive number is returned; if the argument is positive, the
argument itself is returned.

min() Takes any number of numerical arguments (but at least one) and returns the
smallest of the arguments.

max () Takes any number of numerical arguments (but at least one) and returns the
largest of the arguments.

For example, the result of the following expression:
min(3, abs(-3), max(round(2.7), ceil(2.3), floor(3.9)))

is 3, because the value of every function call is also 3.

Randomness

PHP’s functions for generating pseudo-random numbers are summarized in Table 10-3. (If you
are new to random number generation and are wondering what the pseudo is all about, please
see the accompanying sidebar.)

There are two random number generators (invoked with rand () and mt_rand(), respectively),
each with the same three associated functions: a seeding function, the random-number function
itself, and a function that retrieves the largest integer that might be returned by the generator.

The particular pseudo-random function that is used by rand () may depend on the particular
libraries that PHP was compiled with. By contrast, the mt_rand () generator always uses the

Chapter 10 4+ Numbers 197

same random function (the Mersenne Twister), and the author of mt_rand()’s online documen-
tation argues that it is also faster and “more random” (in a cryptographic sense) than rand().
We have no reason to believe that this is not correct, so we prefer mt_rand() to rand().

Table 10-3: Random Number Functions

Function Behavior

srand() Takes a single positive integer argument and seeds the random number
generator with it.

rand() If called with no arguments, returns a “random” number between 0 and
RAND_MAX (which can be retrieved with the function getrandmax()).
The function can also be called with two integer arguments to restrict the
range of the number returned — the first argument is the minimum and
the second is the maximum (inclusive).

getrandmax() Returns the largest number that may be returned by rand (). This is
limited to 32768 on Windows platforms.
mt_srand() Like srand (), except that it seeds the “better” random number generator.
mt_rand() Like rand (), except that it uses the “better” random number generator.
mt_getrandmax() Returns the largest number that may be returned by mt_rand ().
-'g\lote On some PHP versions and some platforms, you can apparently get seemingly random num-
et bers from rand() and mt_rand() without seeding first—this should not be relied upon,

however, both for reasons of portability and because the unseeded behavior is not guaranteed.

Seeding the generator

The typical way to seed either of the PHP random-number generators (using mt_srand() or
srand()) looks like this:

mt_srand((double)microtime()*1000000);

This sets the seed of the generator to be the number of microseconds that have elapsed since
the last whole second. (Yes, the typecast to double is necessary here, because microtime()
returns a string, which would treated as an integer in the multiplication but for the cast.)
Please use this seeding statement even if you don’t understand it—just place it in any PHP
page, once only, before you use the corresponding mt_rand() or rand() functions, and it will
ensure that you have a varying starting point and therefore random sequences that are differ-
ent every time. This particular seeding technique has been thought through by people who
understand the ins and outs of pseudo-random number generation and is probably better
than any attempt an individual programmer might make to try something trickier.

] 98 Part | ¢+ PHP: The Basics

Pseudo-random Number Generators

As with all programming languages, the “random” number functions offered by PHP are really
implemented by pseudo-random number generators. This is because conventional computer
architectures are deterministic machines that will always produce the same results given the
same starting conditions and inputs and have no good source of randomness. (Here we're talk-
ing about the ideal computer as it is supposed to work, not the actual physically embodied,
power-interruptible, cosmic-ray flippable, seemingly very random machines we all struggle with
daily!) You could imagine connecting a conventional computer to a source of random bits such
as a mechanical coin-flip reader, or a device that observed quantum-level events, but such
peripherals don't seem to be widely available at this time.

So we must make do with pseudo-random generators, which produce a deterministic sequence
of numbers that looks random enough for most purposes. They typically work by running their
initial input number (the seed) through a particular mathematical function to produce the first
number in the sequence; each subsequent number in the sequence is the result of applying that
same function to the previous number in the sequence. The sequence will repeat at some point
(once it generates a particular number for the second time, it is doomed to follow the same
sequence as it did the first time around), but a good iteration function will generate a very long
sequence of numbers that have little apparent pattern before the loop occurs.

How do you choose a seed to start off with? Because of the generator’s determinism, if you hard-
code a PHP page to have a particular seed, that page will always see the same sequence from
the generator. (Although this is not usually what you want, it can be an invaluable trick when you
are trying to debug behavior that depends on the particular numbers that are generated.) The
typical seeding technique is to use a fast-changing digit from the system clock as the initial
seed —although those numbers are not exactly random, they are likely to vary quickly enough
that subsequent page executions will start with a different seed every time.

Here’s some representative code that uses the pseudo-random functions:

print("Seeding the generator
");
mt_srand((double)microtime() * 1000000)
print("With no arguments: " . mt_rand() "
");
print("With no arguments: " . mt_rand() . "
")
print("With no arguments: " . mt_rand() "
")
print("With two arguments: "
mt_rand(27, 31) . "
");
print("With two arguments: "
mt_rand(27, 31) . "
");
print("With two arguments: .
mt_rand(27, 31) . "
");

with the browser output:

Seeding the generator
With no arguments: 992873415
With no arguments: 656237128
With no arguments: 1239053221
With two arguments: 28
With two arguments: 31
With two arguments: 29

Tip

Chapter 10 4+ Numbers

Although the random-number functions only return integers, it is easy to convert a random
integer in a given range to a corresponding floating-point number (say, one between 0.0 and
4 1.0 inclusive) with an expression like rand() / getrandmax(). You can then scale and

shift the range as desired (to, say, a number between 100.0 and 120.0) with an expression

like 100.0+20.0 * (rand() / getrandmax()).

Obviously, if you run exactly this code, you will get numbers that differ from those in the
output shown here, because the point of seeding the generator this way is to ensure that
different executions produce different sequences of numbers.

Caution In some old versions of PHP3, the rand () function buggily ignored its arguments, returning

numbers between 0 and getrandmax() regardless of restrictions. We have also heard
some reports of that behavior under more recent Windows implementations. If you suspect
that you are suffering from such a bug, you can define your own restricted version of rand ()
like so:

function my_rand ($min, $max)
{
return(rand() % (($max - $min) + 1)
+ $min);
}

Unlike rand (), this version requires the min and max arguments.

Example: Making a random selection

Now let’s use the random functions for something useful (or, at least, something that could be
used for something useful). The following two functions let you construct a random string of
letters, which could, in turn, be used as a random login or password string:

function random_char($string)
{
$length = strlen($string);
$position = mt_rand(0, $length - 1);
return($stringl[$position]);
}
function random_string ($charset_string, $length)
{
$return_string = ""; // the empty string
for ($x = 0; $x < $length; $x++)
$return_string .= random_char($charset_string);
return($return_string);

}

The random_char () function chooses a character (or, actually, a substring of length 1) from
its input string. It does this by restricting the mt_rand() function to positions within the
length of the string (with chars numbered starting at zero), and then returning the character
that is at that random position. The random_string() function calls random_char() a
number of times on a string representing the universe of characters to be chosen from and
concatenates a string of the desired length.

199

200 Part | ¢+ PHP: The Basics

Now, to demonstrate this code, we first seed the generator, define our universe of allowable
characters, and then call random_string() afew times in a row:

mt_srand((double)microtime() * 1000000);
$charset = "abcdefghijklmnopgrstuvwxyz";

$random_string = random_string($charset, 8);
print("random_string: $random_string
");
$random_string = random_string($charset, 8);
print("random_string: $random_string
");
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

with the result:

random_string: eisexkio
random_string: mkvflwfy
random_string: gpulbwth

In this example, we seed the generator only once, and we draw that seed value from the sys-
tem clock. Notice what happens if we make the mistake of repeatedly seeding the generator
with the same value:

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

Because the sequence that is generated depends deterministically on the seed, we get the
same behavior each time:

random_string: qgkxvurw
random_string: qgkxvurw
random_string: qgkxvurw

In these examples, we chose to draw random characters from strings, but this kind of selec-
tion process is generalizable to draw items from arrays or to be used in any situation that
requires choosing random members from a set. All you need is the universe of items, a way to
put them in numerical order, and a way to retrieve them by order number, and you can then
use the rand() or mt_rand() function to choose a random order number for the retrieval.

Extended Example: An Exercise Calculator

Now let’s return to the exercise-calculator example that we’ve been developing since
Chapter 7. In addition to mixing in a little bit of arithmetic calculation, we’ll reorganize the
code a bit.

One problem with the code as we left it was that we had our data in two different code files
and in more than one array. Changes to the data require updating more than one file and take
some care to make sure that everything stays in sync.

Chapter 10 4+ Numbers

We could always keep this data in a text file or in a database. For this chapter, however, let’s
just make a single PHP code file where we define a single array with everything we need:
types of exercises, names of exercises, and the calories per minute that each exercise con-
sumes, assuming a person of average weight. Such an array is shown in Listing 10-1; we’ll
call this file exercise_include.php.

Listing 10-1: exercise_include.php

<?php
// categories of exercise with associated calories per minute
// (not medically trustworthy because we made them up)
$exercise_info =
array('Aerobic exercise' =>
array('biking/cycling' => 9,
'rowing' => 8,
'running' => 14,
'stairclimber' => 6,
'walking' => 5),
'Sports' =>
array('basketball' => 12,
'ice hockey' => 9,
'soccer/football' => 11,
"table tennis' => 7),
'Strength training' =>
array('calisthenics' => 11,
'weightlifting (light)' => 9,
'weightlifting (strenuous)' => 13),
'Stretching/flexibility' =>
array('pilates' =
'tai chi' =
'yoga' => b

7>

Although we'll stick to having separate form submission and form handler pages, let’s make
the form submission page a PHP file too, rather than using straight HTML. This will let us
generate the form elements from the data we defined in exercise_include.php.

Listing 10-2: Form submission code for fitness calculator

<?php include_once("exercise_include.php");
?>

<htm1>

<head>

<{style TYPE="text/css">

<L --

BODY, P, TD

Continued

201

202 Part | ¢+ PHP: The Basics

Listing 10-2 (continued)

{color: black; font-family: verdana; font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-
</STYLE>
</head>

<{xbody>

<table BORDER=0 CELLPADDING=10 WIDTH=100%>

<tr>

<td BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</td>

<td BGCOLOR="{#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<hl>Workout calculator (math)</hl>

<p>For one or more of the following exercises, enter

the duration in minutes and your current weight

and we'll tell you how many calories you burned.</p>

<form METHOD="post" ACTION="wc_handler_math.php">
{table>
<tr>

<td><input type="text" size=5

name="weight">Weight (kilos)</td>

</tr>
<tr>

<td> </td>
</tr>

<?php
$type_counter = 0;
foreach ($exercise_info
as $exercise_type => $per_exercise_info) {
print("<tr><td>$exercise_type/b></td></tr>");
$exercise_counter = 0;
foreach ($per_exercise_info
as $exercise_name => $exercise_intensity) {
print("<tr><td>
<input type = \"text\" size =5
name=\"exercise[$type_counter][$exercise_counter]\"
> $exercise_name</td></tr>");
$exercise_counter++;
}
$type_counter++;
}
72>
<tr>
<td> </td>
</tr>
<tr>

Although mostly a static HTML page, the hierarchy of exercises specified in exercise_
include.php can be used to print out the data-entry portion of the form. Notice that we print
the names and types of exercises but do not propagate them as form variables; we plan to
use the very same array from exercise_include.php on the other end to distinguish the

<td><input type="submit" name="submit"
value="Burn, baby, burn!"></td>
</td></Erd>
</table>
</tr>
</table>

</form>

</body>
</htm1>

meaning of the submitted variables.

Chapter 10 4+ Numbers

The submission form itself is shown in Figure 10-1.

Mozilla {Build 1D: 2002051006}
. File Edit View Go Bookmarks Tools Window Help Debug GOA

=1 E3

i OO O @ O |<.>Imp:.fﬂocalhnwwolkout_calc_m |[QSeal:hJ C‘:go m

[WUntitled) | % ntitied)

%]

Workout calculator (math)

For one or more of the following exercises, enter
the duration in minutes and your current weight
and we'll tell you how many calories you burmed.

” 60 Weight (kilos)

Aerobic exercise
r biking/cycling
’30— rowing

[running
[— stairclimber
l— walking

Sports

D Done (1.04 secs)

0[]

Figure 10-1: The calculator entry form

Now the job of the receiving page is more complex than in previous chapters. We will be
receiving an array in $_POST['exercise'] that has a hierarchical structure similar to the

one defined in exercise_include.php.

203

204

Part | ¢+ PHP: The Basics

The difference is that the former includes the minutes spent at each exercise, while the latter
includes the rate at which that exercise burns calories. The receiving page’s job is to use both
arrays to produce a report for the user about calories actually burned.

The handler code is shown in Listing 10-3. First of all, we receive the submitted weight. Then
we move on to iterating through the data array defined in exercise_include.php and
querying the $_POST['exercise'] array for nonzero minutes submitted for each exercise.

We're relying on the fact that the iteration uses the same data array and does the same count-
ing in both the sending and receiving pages; this means that if we find nonzero minutes in a
given position, we can correlate that with the name, type, and calories/minute drawn from
the data file.

Whenever we find a “hit” (some positive minutes entered for an exercise we know about), we
simply calculate the calories burned (calories/minute x minutes) and then adjust that value
for the user’s weight. We round each value before adding it into a total, largely so that the
individual entries will agree with the rounded sum.

Listing 10-3: Handler code for the fitness calculator
(wc_handler_math.php)

<?php
include_once("exercise_include.php");
$weight = $_POST["weight"71;

// scale linearly assuming 65-kilo norm
$weight_factor = $weight / 65.0;

$exercise_accumulator = array();
$type_counter = 0;
if (is_array($_POST) && count($_POST) > 1
&& is_array($_POST['exercise'])) {
foreach ($exercise_info
as $exercise_type => $per_exercise_info) {
$exercise_counter = 0;
foreach ($per_exercise_info
as $exercise_name => $exercise_intensity) {
$minutes =
$_POST['exercise'][$type_counter][$exercise_counter];
if ($minutes > 0) {
$exercise_accumulator[$exercise_typel[$exercise_name]
= round($minutes * $exercise_intensity *
$weight_factor);
1
$exercise_counter++;
}
$type_counter++;
}
}

// now we use $exercise_accumulator to build a display string
$total_calories = 0;

$message = "";

foreach ($exercise_accumulator

Chapter 10 4+ Numbers

as $exercise_type => $per_exercise_info) {
fmessage .= "<P>$exercise_type/P>";
foreach ($per_exercise_info
as $exercise_name => $calories_burned) {
$message .= "<P>".
ucfirst("$exercise_name: $calories_burned calories</P>");
$total_calories += $calories_burned;
}
}
if ($message == "" || $weight == 0) {
$message =
"<P>Did you enter your weight and at least one exercise?";
}
else {
$message .=
"<P>Total calories burned: $total_calories</P>";

// Now lay out the page

$page_str = <K EOPAGE

<HTML>

<HEAD>

<STYLE TYPE="text/css">

<l--

BODY, P

{color: black; font-family: verdana; font-size: 10 pt}
H1

{color: black; font-family: arial; font-size: 12 pt}
-=>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#fFOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=150>
</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Workout calculator handler (Math)</H1>

<P>The workout calculator says:

$message</P>

</TD>

</TR>

</TABLE>

</B0ODY>
</HTML>
EOPAGE;

echo $page_str;
7>

205

206 Part | ¢+ PHP: The Basics

The resulting handler page is shown in Figure 10-2.

Mozilla {Build ID: 2002051006} [_[o]x]
. File Edit View Go Bookmarks Tools Window Help Debug GOA

OO 0 O O |’\.‘ http:/flocalhostiwe_handler_mar | {Q Sear:hj Q;o m
[Untitled) | 5 (Untitled) %]

Workout calculator handler
(Math)

The workout calculator says:

” Aerobic exercise

Rowing: 222 calories

Strength training

Weightlifting (strenuous): 360 calories

Total calories burned: 582

Document: Done (1.05 secs) - e

Figure 10-2: Result page for the fitness calculator

In addition to doing more numeric calculation than our calculator from previous chapters,
this version does a better job of splitting up data and code, at the cost of some extra
complexity.

Summary

The highlights of PHP math are summarized in Table 10-4. Refer to Chapter 27 for more
advanced mathematical concepts as they are handled by PHP.

Table 10-4: Summary of PHP Math Operators and Functions

Category Description

Arithmetic operators Operators +, -, *, /, % perform basic arithmetic on integers and
doubles.

Incrementing operators The ++ and - - operators change the values of numerical variables,

increasing them by one or decreasing them by one (respectively). The
value of the postincrement form ($var++) is the same as the
variable’s value before the change; the value of the preincrement form
(++$var) is the variable’s value after the change.

Chapter 10 4+ Numbers

Category

Description

Assignment operators

Comparison operators

Basic math functions

Each arithmetic operator (like +) has a corresponding assignment
operator (+=). The expression $count += b5 is equivalent to
$count = $count + 5.

These operators (£, <=, >, >=, ==, | =) compare two numbers and
return either true or false. The === operator is true if and only if
its arguments are equal and of the same type.

floor(),ceil(),and round() convert doubles to integers,
min() and max () take the minimum and maximum of their
numerical arguments, and abs () is the absolute value function.

+ o+ ¢

207

Basic PHP Gotchas

- Cross-

Even though we'’ve tried to give clear instructions, and you've no
doubt followed them to the letter, there are still many potential
glitches that can arise. This chapter will lay out some of the most

common problems by symptom and suggest some frequent causes.

-

\ There is a whole other universe of gotchas involving database con-

| Reference I:"ab nectivity. This chapter deals with PHP-only problems. You may

| s

s

want to skip ahead to Chapter 19 if you're having problems with
PHP and a database. Also, problems specific to certain more-
advanced features (including sessions, cookies, building graphics,
e-mail, and XML) are dealt with in their individual chapters in Parts
Il and IV.

Installation-Related Problems

Tip

Instead of getting moralistic about people who rush through their
installs without understanding the documentation, we’ll point out a
few common symptoms that characteristically appear when you've
just installed PHP for the first time.

If you are seeing similar errors but are confident that your installa-
_ tion is stable, follow the cross-references to later parts of this
chapter.

Symptom: Text of file displayed
in browser window

If you are seeing the text of your PHP script instead of the resulting
HTML, the PHP engine is clearly not being invoked. Check that you
are accessing the site by invoking the httpd, not via the filesystem.
Do this:

http://localhost/mysite/mypage.php
rather than this:
file:/home/httpd/html/mysite/mypage.php

C

<+

In This Chapter

Installation-related

H

<+

problems

Rendering problems

Failures to load page

PTEIR

<+

Parse errors

File permissions

Missing includes

Unbound variables

Function problems

Math problems

Time-outs

<+

<+

<+

*

*

210

Part | ¢+ PHP: The Basics

- Cross-

Symptom: PHP blocks showing up as text under

HTTP or browser prompts you to save file

The PHP engine is not being invoked properly. If you're properly requesting the file via HTTP
as explained previously, the most common reason for this error is that you haven’t specified
all the filename extensions you want PHP to recognize, at least not for this directory. Go back
to Chapter 3 and review how to configure your Web server to recognize PHP file extensions.
The second most common reason is that your php.ini file is in the wrong place or has a bad
configuration directive.

\} If you see PHP code in your Web browser and you have a stable installation, your problem is

| Befe"‘i'lir_el\; probably due to missing PHP tags. See the “Rendering Problems” section later in this chapter.

| P

Symptom: Server or host not found/
Page cannot be displayed

If your browser can’t find your server, you may have a DNS (Domain Name Service) or
Web-server configuration issue.

If you can get to the site via IP address rather than domain name, your problem is probably
DNS-related. Maybe your DNS alias hasn’t propagated throughout the Internet yet. This
problem does occur occasionally even after the site has been up for awhile, either because
your DNS server goes down without a valid secondary server or because of local Internet
conditions.

If you cannot get to the site via IP address for a new installation, it’s likely you haven’t success-
fully bound the IP address to your network interface or configured httpd to handle requests
for a particular domain (see Chapter 3). If you can’t get to the site via IP address for a previ-
ously working installation, most likely your Web server is down for a non-PHP related reason.
This can happen even on stable installations if, for instance, the server rebooted unexpect-
edly and the Web service is not included properly in startup scripts.

Rendering Problems

This section covers problems where PHP does not report an error per se, but what you see is
not what you thought you would get.

Symptom: Totally blank page

A blank page is very frequently an HTML problem rather than PHP per se (except insofar as
you use PHP to produce HTML). If you do not use the maximal style of PHP (in other words, if
there is any part of your script that should be renderable without first being preprocessed),
the problem is almost sure to be in the HTML. So you should first try doing whatever you
usually do to debug HTML.

In general, one of your best debugging tools when faced with puzzling browser output is
simply to view the HTML source that the browser is trying to render. All browsers have some
command for viewing such a source. For example, in Internet Explorer, it is the Source selec-
tion under the View menu.

Tip

Chapter 11 4 Basic PHP Gotchas

If you wrote the file using a plain text editor, quickly check to make sure you haven't left out
something crucial, such as a closing </TABLE> or </FORM> tag. If you used a WYSIWYG editor
at some stage, the problem is more likely to be an extra element of some kind.

You may get edifying results by viewing the HTML source from a client (especially if you use a
maximal PHP style) or from a different browser. Internet Explorer is supposedly the most for-
giving of mistakes, whereas Opera and Amaya are the strictest at enforcing HTML style.

Although client rendering of a page occurs independently of anything you might do with
. PHP, it's a good idea to preview output for all of the reasons mentioned previously, and
4 many of the reasons to follow, in a variety of browsers. Opera is increasingly popular, since it
is now available in a free version, and the masochist in you will have lots of fun trying to
write a page that Amaya feels is acceptable AND renders the way you want.

Sometimes a page that appears blank in your browser is blank because there is simply no
HTML to display. See the next symptom for possible causes of this.

Symptom: Document contains no data

In some situations your Web server may return no HTML whatsoever in response to a request.
The exact symptom that presents when this happens varies by browser. In some versions of
Netscape, for example, you will see a pop-up dialog that informs you that This document
contained no data and urges you to get professional help. IE5, on the other hand, will
cheerfully display an empty page. If you view the HTML source, you may see nothing or you
may see an autogenerated minimal set of HTML headers (an empty head or an empty body).
But any way you slice it, if PHP isn’t sending back any HTML, you’re not going to see anything
interesting in your browser.

One possible answer in this case is that the PHP module is not working at all. Test by browsing
a different page in the same directory that you've previously verified is being correctly han-
dled by PHP. If you are a developer who does not maintain your own site, you may need to
talk to your system administrator. If other pages work, and this one doesn’t, the problem is
likely to be with your code.

Another possible answer is that your code really is not generating any output. For example,
loading a PHP code file that contains nothing but function definitions in PHP mode would give
you this kind of problem. Make sure you have an output directive in the file you're trying to
look at (echo, print, printf, print_r, or var_dump).

A third possibility is that your code is actually making the PHP invocation crash before it can
deliver any output. For example, if you define a recursive function that doesn’t have a base
case, like so:

function recurse_forever() { // don't do this!
recurse_forever();

t

recurse_forever();

PHP will try to execute the function until it runs out of memory, will crash in short order, and
will return nothing. A diagnostic for this kind of problem is to put some kind of print statement
at the beginning of your PHP code (at least, if you do not have access to a debugger). If the
print statement executes, and PHP is not blowing up, you should be able to see your printed
string, regardless of what happens later —if not in the browser, then in the HTML source. If

211

212

Part | ¢+ PHP: The Basics

the string does not appear at all, it probably means that PHP died after encountering the
print statement, but before actually shipping off any output. (In addition to infinitely recurs-
ing functions, we’ve seen this kind of behavior when using early versions of object serializa-
tion.) Strategically placed print statements are probably one of the best debugging tools at
your disposal. Remember this for your later efforts.

Also see the “Time-outs” section near the end of this chapter for more information on what
happens when you write code that runs “forever.”

Finally, you might be seeing a blank screen if your PHP hits a more or less fatal error but you
have error reporting turned off. Error reporting should probably be turned off for production
servers for security reasons, but error reporting to the browser is actually a huge help for
development servers. Check your php.ini file’s error reporting section and make sure the
settings are what you expected. If you really dislike error reporting to the browser, you need
to make heavy use of the error_1og function in exception handling. See Chapters 31 and 32
for more debugging tips.

Symptom: Incomplete or unintended page

These problems are usually in the HTML parts of the script. Figure 11-1 shows an interesting
example, which is highly browser-dependent; this is the IE5 product.

| . 5.0 3 & Qa @ 3@ ‘
Back iard Stop Refresh Home Seaich Fawoites Histosy Channels | Fullscresn
| Address |§_1, hitlpflocalbost/php/php. exelenol_messages.php _ﬂ
|Links @]MyPressin @ Mpbkavista @]MyCily &]Seach &]Service and Suppait & JShapping
T |
Is the glitch in position 17
a failure to communicate. Or
position 3?
Pogition 2?7 What we have here is
- -l
&) Done | |_| |28 Local intranet zone i

Figure 11-1: An incomplete or unintended HTML result

Chapter 11 4+ Basic PHP Gotchas

View the HTML source from a client. Sometimes the source will break off at the problematic
point. If the source doesn’t conveniently break off, try putting temporary error messages (in
HTML mode) in different parts of the script to narrow down the location of the breakdown
point, like this:

<HTML>

<HEAD></HEAD>

<BODY>Is the glitch in position 17

<TABLE><TR><TD>Position 2? What we have here is </TD></TR>

<?php

$Problem = "a failure to communicate";
echo $Problem; ?>. Or position 37
</B0ODY>

</HTML>

This test would show the result seen in Figure 11-2, indicating that the temporary error mes-
sages in positions 1 and 3 are showing up in the right places relative to the other elements. It’s
position 2 that’s out of place, indicating a likely problem (lack of a </TABLE> tag) with this line.

_I_EIIe Edit View Go Communicator Help

i 2 A A 2 w3 & H
Bach Fonvad Reload Home Search Nstscafe Prirt Security TIJ:: L
: .“ T Bockmarks A Locali;\n;]htrp:f’a’Incahnst.'ecrnr_mes'sages.php ;I @II'What's Felated

' .ﬁirstant Message @ Catagones Mapz Phato Finder @ Secure Web Shop @ Home

Is the glitch in position 17 a failure to conmmmicate. Or position 37

== |Document: Done S0 R I 2 I o e

Figure 11-2: Using temporary HTML error messages

213

214 Partl + PHP: The Basics

Your page may be incomplete because of a complete lack of PHP preprocessing, as in a script
like this:

<HTML>

<HEAD></HEAD>

<BODY>

<P>What we have here is

<?php

$Problem = "a failure to communicate";
echo $Problem; ?>.

</BODY>

</HTML>

This script will show up as seen in Figure 11-3.

File Edit View Go Communicator Help
" W < . 3 i
< ¥ A X » @ S & @
| Back Forward Reload Home Search Ns!scn_pe Prirt Security '!-.5.
v ‘_t'ﬁunkmalks V.3 LDcah'un:|htrp:f’.l’|r.|cahnst."nnt_preprncessed.php ;I @'th's Related
v ﬁimtant Message @ Catagones @ Maps Photo Findes §J Secure Web Shop EJ Home

“What we have here is

== |Document: Done Slaip % 0P BB N s

Figure 11-3: Failure to be preprocessed

In other words, all HTML-mode stuff will show up, but no PHP-mode stuff or error messages
will appear. This is indicative of the PHP module not working at all or of the page residing on
a computer without a PHP-enabled Web server. (Don’t laugh. It happens a lot when you forget
that you've been working on a particular version of a page on your client.)

Symptom: PHP code showing up in Web browser

If you are seeing literal PHP code in your browser, rather than a rendering of the HTML it
should be producing, probably you have omitted a PHP start tag somewhere. (This assumes
that you have had PHP running successfully and that you are using the correct tags for your
installation. If not, see the “Installation-Related Problems” section near the beginning of this
chapter.)

It’s easy to forget that PHP treats included files as HTML, not as PHP, unless you tell it other-
wise with a start tag at the beginning of the file. For example, assume that we load the follow-
ing PHP file:

<HTML><HEAD></HEAD><BODY>
<?php include("secret.php");
secret_function(); ?>
</BODY></HTML>

Chapter 11 + BasicPHP Gotchas 215

which includes the file secret.php, which in turn looks like this:

function secret_function ()
{
echo "Open sesame!";

}

The result is shown in Figure 11-4.

efscape

Edit View Go Communicator Help

™ T d . e i
2 A X . @ 3 & F
Back Foiwad Reload Home Seach Metscape ot Sacurty Stap
v ‘_t'ﬁunkmalks V.3 LDcah'un:|htrp:f’.l’Iucahnst.”s'ecret_functinnph;\ ;I @'th's Related
v ﬁimtant Message @ Catagones @ Maps Photo Findes §J Secure Web Shop EJ Home

finction secret_finction () { print("Cpen sesame!"™; }
Fatal error: Call to undefined function: secret_function() in
c:'php'\phpdocsisecret_function.php online 3

== |Document: Done Sl aip % 9P R N2
Figure 11-4: A PHP include appearing as HTML

o

This can be fixed by adding PHP tags to the included file like so:

<?php
function secret_function ()
{
echo "Open sesame!";
}
7>

Failures to Load Page

A couple of different kinds of errors are seen when PHP is unable to find a file that you have
asked it to load.

Symptom: Page cannot be found

If your browser can’t find a PHP page you've created, and you have recently installed PHP,
please see the section “Installation-Related Problems” earlier in this chapter. If you get this
message when you have been loading other PHP files without incident, it’s quite likely you are
just misspelling the filename or path. Alternatively, you may be confused about where the Web
server document root is located.

216

Part | ¢+ PHP: The Basics

Symptom: Failed opening [file] for inclusion

When including files from PHP files, we sometimes see errors like this (on a Unix platform, the
file paths would be slightly different):

Warning Failed opening 'C:\InetPub\wwwroot\asdf.php' for
inclusion (include_path=""') in [no active filel on line 0

It turns out that this is the included-file version of Page cannot be found —that is, PHP hasn’t
even gotten to loading the first line of the active file. There is no active file because no file by
that name could be found.

It’s also possible that you will see this message as a result of incorrect permissions on the file
you are trying to load.

Parse Errors

The most common category of error arises from mistyped or syntactically incorrect PHP code,
which confuses the PHP parsing engine.

Symptom: Parse error message

Although the causes of parsing problems are many, the symptom is almost always the same: a
parse error message like that in Figure 11-5.

E_dh View Go Communicator ue_lp

i Y 3 a4 . a3 @& B N

Back Fonsaid Reload Hnms Search Ns!scn_pe Prirt Security

,.t'ﬁnnkmanks V. LDchiun:|htrp:f’.l’|ucahnsu\c\eblng.php ;I '@U’What's Related
.{%ImtantMessage @ Catagones @ Maps @ Photo Findes @ Secure Web Shop §J Home

TR R

Parse ervor: parse error in c:'\php'phpdocsiweblog php on line 30

== |Document: Done Slp 0 49 B N s

Figure 11-5: A parse error message

These errors occur in PHP mode by definition. This is actually good, because PHP returns
more informative error messages than HTML — notably the line number of the problematic
parsable.

The most common causes of parse errors, detailed in the subsections that follow, are all quite
minor and easy to fix, especially with PHP lighting the way for you. However, every parse error
returns the identical message (except for filenames and line numbers) regardless of cause.
Any HTML that may be in the file, even if it appears before the error-causing PHP fragment,
will not be displayed or appear in the source code.

Chapter 11 4+ Basic PHP Gotchas

The missing semicolon

If each PHP instruction is not duly finished off with a semicolon, a parse error will result. In
this sample fragment, the first line lacks a semicolon and, therefore, the variable assignment
is never completed.

What we have here is

<?php

$Problem = "a silly misunderstanding”
echo $Problem; ?7>.

No dollar signs

Another very common problem is that a dollar sign prepending a variable name is missing.
If the dollar sign is missing during the initial variable assignment, like so:

What we have here is

<?php

Problem = "a big ball of earwax";
echo $Problem; ?>.

a parse error message will result. However, if instead the dollar sign is missing from a later
output of the variable, like this:

What we have here is

<?php

$Problem = "a big ball of earwax";
print("Problem"); ?>.

PHP will not indicate a parse error. Instead, you will get the screen shown in Figure 11-6.

|_=_Ile Edh _“_fl_ew Go go_mmunicatnl ﬂe_l;_u

< Y A A . @ S &

Back Fonsaid Reload Horme Search Ndwn_pe Prirt Sacurty

J'Bunkmanks V.3 LD‘:ah'un:|htrp:f’.l’|ucahnst.”eama:.p|’d ;I '@’What's Felated
.{%ImtantMessage @ Catagones @ Maps @ Photo Findes @ Secure Web Shop §J Home

T e

“What we have here is Problem

o (== |Document: Done Slaip % 0P BB N s

Figure 11-6: A missing dollar sign on variable output

This is an excellent example of why you should not rely on PHP to tell you something is
wrong. Although PHP’s error messages are more informative than most, errors such as this
are easily missed if your proofreading efforts aren’t up to par.

217

218

Part | ¢+ PHP: The Basics

Tip

If you spend any significant portion of your time debugging PHP code, an editor that can
jump to specific line numbers can be invaluable. Note that the actual mistake that caused

y , the error may be on the line that PHP complains about, or before it, but never after it. For

example, because there’s nothing wrong with commands that span several lines, a missed
semicolon won't cause a parse error until PHP tries to interpret subsequent lines as part of
the same statement.

Mode issues
Another family of glitches arises from faulty transitions in and out of PHP mode.
A parse error will result if you fail to close off a PHP block properly, as in:

What we have here is

<?php

$Problem = "an awful kerfuffle";
echo $Problem;

This particular mode issue is very common with short PHP blocks. Conversely, if you fail to
begin the PHP block properly, the rest of the intended block will simply appear as HTML.

A slightly more tricky issue is engendered by the use of the minimal PHP style, which entails
weaving in and out of HTML mode frequently. (See the discussion of minimal versus maximal
style in Chapter 33.) For instance, this fragment (which omits the ?> after the first curly brace,
when we intend to return to HTML mode) will return a parse error:

<?php if(!IsSet($stage))

{

What we have here is

<?php

$Problem = "an awful kerfuffle ";
print("$Problem"); ?>.

<?php

} else {

print("$Stage"); }

72>

Another instance of a very common problem is this one, which combines the short block and
weaving-in-and-out-of-HTML issues neatly:

<FORM>

<INPUT TYPE="TEXT" SIZE=15 NAME="FirstName"
VALUE="<?php print("$FirstName"); ?>">

<INPUT TYPE="TEXT" SIZE=15 NAME="LastName"
VALUE="<?php print("$LastName"); ?>">

<INPUT TYPE="TEXT" SIZE=10 NAME="PhoneNumber"
VALUE="<?php print($PhoneNumber"); ?>"

<INPUT TYPE="SUBMIT" NAME="Submit">

</FORM>

A PHP double-quote and the HTML closing bracket have been forgotten on the PhoneNumber
input line here. This will both cause a parse error and prevent the Submit button from dis-
playing on a client browser.

Chapter 11 + Basic PHP Gotchas 219

The sample code is meant to demonstrate how easy it can be to forget an element on a crowded
page with lots of small but important symbols. You can reduce this type of error by either using
a good programmer’s text editor or by completing and testing the HTML first and adding the
PHP later (or both).

Unescaped quotes

Another type of parse error is characteristic of maximal PHP: the unescaped quote.

<?php
print("She said, /"What we have here is ");
$Problem = "a difference of opinion\"";

print("$Problem"); ?>.

In this case, the double-quote just before the word What is incorrectly, and therefore ineffec-
tively, escaped by a forward slash rather than a backslash. If you simply forgot the backslash,
the effect would be the same.

Unterminated strings

Failing to close off a quoted string can cause parse errors that refer to line numbers far away
from the source of the problem. For example, a code file like this:

print("I am a guilty print statement!); // line 5
// 47 lines of PHP code omitted ...
print("I am an innocent print statement!"); // line 53

might well produce a parse error that complains about line 53. This is because PHP is happy
to include any text you might want in a quoted string, including many lines of your own code.
This inclusion finishes happily with the first double-quote in line 53, and then the parser finds
the symbol I, which it can’t figure out how to interpret as PHP code.

If the quote symbol that begins the unterminated string happens to be the last one in the file,
the line number in the complaint will be the last line in the file—again, probably far away
from the scene of the crime.

Other parse error causes

The problems we have named are not an exhaustive list of the sources of parse errors.
Anything that makes a PHP statement malformed will confuse the parser, including unclosed
parentheses, unclosed brackets, operators without arguments, control structure tests without
parentheses, and so on. Sometimes the parse error will include a statement about what PHP
was expecting and didn’t find, which can be a helpful clue. If the line of the parse error is the
very last line of the file, it usually means that some kind of enclosure (quotes, parentheses,
braces) was opened and never closed, and PHP kept on hoping until the very end.

File Permissions

Most operating systems have some scheme of file and directory permissions that specifies
which users have what kind of access to which files. The Web server runs as some user under
this system and must have read permission for any files it looks at, including HTML and PHP
source files.

220

Part | ¢+ PHP: The Basics

Symptom: HTTP error 403

When a browser page presents you with error 403, it means that your file permissions are
incorrect. Some browsers will not mention the error number but will complain that you do
not have access to the given Web page.

The most common reason for this is that you haven’t made this directory world-executable
(Unix) or enabled script execution (Windows). Remember that PHP scripts may run under a
user ID different than your own. Under Unix, PHP usually inherits the “nobody” UID, which
(we hope) is pretty much restricted to the HTTP service. Under some Windows installations,
each HTTP request is logged as the anonymous guest user.

Missing Includes

In addition to loading top-level source files, PHP needs to be able to load any files you bring
invia include() or require().

Symptom: Include warning

This kind of error is shown in Figure 11-7.

Eile E_dh View Go Communicator ue_lp

3 (3 A 2 @ 3 & @

Back Fonsaid | Reload Home Search Metscape Prnt Sacurty

i 1t'3unkmanks V.3 Lwabicm:|htrp:f’.l’lucahnst."bad_lmude.pl’p ;I '@’What's Related
.{%IrstantMessage @ Catagones @ Mapz @ Photo Findes @ Secure Web Shop §J Home

e [

Warning: Failed openng 'somefile inc' for mchision (include_path=") in
c:'php'phpdocsibad_mclude.php on line 2

== |Document: Done Slaip % 0P BB N s

Figure 11-7: Include warning

The problem is that you call somewhere in the script for a file to be included, but PHP can’t
find it. Check to see that the path is correct. You might also have a case sensitivity or other
typographic issue.

You will also get this message if your script tries to include a file that is in another directory
with incorrect permissions for the PHP user. Generally, the directory must be specifically
readable and executable by the Web-server user (often ‘nobody’ under Unix) or generally
world-readable (for example, 755 under Unix systems); and of course the file must be world-
readable (at least 444). It’s useful to reference the path of your included files with the
$_SERVER array. This will help to insure your included file is found and also that the script
which calls it is portable — especially important if you use a test server or special staging
area to develop your pages:

include_once ($_SERVER[DOCUMENT_ROOT] . "include_file.php");

Chapter 11 + Basic PHP Gotchas 272]

Unbound Variables

PHP is different from many programming languages in that variables do not have to be
declared before being assigned, and (under its default settings) PHP will not complain if they
are used before being assigned (or bound) either. As a result, forgetting to assign a variable
will not result in direct errors — either you will see puzzling, but error-free output, or you will
see a downstream error that is a result of variables not having the values you expected. (If
you would rather be warned, you can set the error-reporting level in php.ini or by evaluat-
ing error_reporting(E_ALL).) Some symptoms of this kind of problem follow.

Symptom: Variable not showing up in print string

If you embed a variable in a double-quoted string (“1ike $this”) and then print the string
using print or echo, the variable’s value should show up in the string. If it seems to not be
there at all in the output (“11ke “), the variable has probably never been assigned.

Symptom: Numerical variable unexpectedly zero

Although it’s possible to have a math error or misunderstanding result in this symptom, it’s
much more likely that you believe that the variable has been assigned when it actually hasn’t
been.

Causes of unbound variables

PHP automatically converts the types of variables depending on the context in which they
are used, and this is also true of unbound variables. In general, unbound variables are inter-
preted as 0 in a numerical context, "" in a string context, FALSE in a Boolean context, and as
an empty array in an array context. The following code shows the effect of forgetting to bind
two variables ($two_string and $three); the resulting display appears in Figure 11-8:

<?php

$one_string = "one";
$three_string = "three";
$one = 1;

$two = 2;

print("This math is as easy as $one_string, $two_string,
$three_string!
");
print("$one_string is equal to $one
");
print("$two_string is equal to $two
");
print("$three_string is equal to $three
");
print("$one_string divided by $two_string is "
($one / $two) . "
");
print("$one_string divided by $three_string is
($one / $three) . "
");

7>

222 Part | ¢+ PHP: The Basics

p
_I_EI_Ie Edh _‘g_fl_gw _5_0 gqmmunicatnl _ﬂe_lg

< 5 A B} o & 5 & B

Back Foiwad Reload Home Search Ns!scn_pe Prirt Sacurty "-.-5.
T wlf " Bookmarks M Losation: [t locahost/maith_unbound phel =] &7 whak's Related
.{%Imtant Message @ Catagones @ Maps @ Photo Findes @ Secure Web Shop @ Home

T e

This math 1z as easy as one, |, three!
one i equal to 1

is equalto 2

three is equal to

one divided by 13 0.5

Warning: Division by zero in ¢:'php'phpdocsimath_unbound php on line 13
one dimded by three 12

o (== |Document: Done Sl %S 9P E N 2

Figure 11-8: The effect of unbound variables

Case problems

Variables in PHP are case sensitive, so the same name with different capitalization results in
a different variable. Even after a value is assigned to the variable $Mississippi, the variable
$mississippi will still be unbound. (Capitalization aside, variables that are this difficult to
spell are probably to be avoided for the same reason.)

Scoping problems

As long as no function definitions are involved, PHP variable scoping is simple: Assign a vari-
able, and its value will be there for you from that point on in that script’s execution (until the
variable is reassigned). However, the only variables that are available inside a function body
are the function’s formal parameters and variables that have been declared to be global —if
you have a puzzling, unbound variable inside a function, this is probably something you've
forgotten. In the following code, for example, the variable $serial_no is neither passed in to
the function nor declared to be global:

$name = "Bond, James Bond";
$rank = "Spy";
$serial_no = "007";

function Answer($name)

{

global $rank;

print("Name: $name; Rank: $rank;
serial no: $serial_no
");

}
Answer($name);

The resulting browser output looks like:
Name: Bond, James Bond, Rank: Spy, serial no:

because the variable is unbound inside the function.

Chapter 11 + Basic PHP Gotchas 223

Overwritten Variables

PHP will allow you to use variables that have never had values assigned, but it also allows
variable values to be changed and does not typically warn you when this is happening.

Symptom: The variable has a valid value,
just not the one you expected

Say you echo out a variable for debugging, and the result turns out to be something totally
different from the one you expected. This is almost certainly caused by PHP’s free and easy
way of assigning new values to variable names, exacerbated by poor coding style. There are
two types of issues: global scope and local scope.

Global overwritten variables

If youuse register_globals, and especially if you also rely on short variable names,

you can sometimes run into a situation where a global you weren’t expecting pops out of
nowhere and overwrites a variable. For instance, you might have a form with a field named
“username”, which on submit will create a variable called $_POST['username']—which,
if you use register_globals, will be automagically copied to a global variable called
$username. But let’s say you then initiate a session to get some unrelated session variable,
in the course of which you have inadvertently also set $_SESSION['username']—which,
guess what, is also copied to a global called $username. Depending on how the variables_
order setting in your php.ini file is set, the session value may overwrite the form value. If
you’re maintaining a large and complex PHP system, this kind of error can be a nightmare
to track.

Variable Naming Conventions

One way to avoid a lot of the gotchas in PHP is to decide on, and to rigorously use, a set of vari-
able naming conventions for all of your code. In the frequent cases where variables will be
assigned and used in widely separated places in the same script and even across scripts, such a
set of standards will save lots of time referring back and forth. What conventions you decide on
are less important than that you have some standard in the first place. That said, here are a few
tips to help you decide what to do:

4+ A common mistake many new programmers make is that variables must somehow be
an abbreviation of the thing they represent. Remember, a variable is not an abbreviation;
but rather a stand-in for some value that may change depending on circumstances or as
a script executes. A longer, meaningful and easy to remember variable name is better
than a shorter variable name that is anybody’s guess.

4+ Variable names that consist of multiple words strung together can be made more
readable by using underscores (for example, $office_address) or initial capitalization
($0fficeAddress). There is some sense to the notion that the underscore solution can
create confusion with function naming conventions. Use what works best for you.

4+ In a more general sense, remember that you may not be the only person that has to read
this code. You may get really excited about PHP and get involved in one of the many
open source projects that use PHP. You may even start your own project (we'd be
delighted to see that happen)! In either case, readable code will be a must; and good
variable names are a foundation of producing readable code.

224

Part | ¢+ PHP: The Basics

The answer, of course, is to eschew register_globals and use better variable names. It can
really help to have a good text editor with autocomplete, a useful feature if you are motivated
by wanting to type fewer characters.

Local overwritten variables

Similar issues can happen within a single script, but should be easier to track. Say you assign
a value to a variable, and then 2,000 lines of code later you use the same variable name by
mistake — you’ve just erased your first variable assignment. This is especially easy to do
when you're including big library files from all over the place.

Solution? If you suspect this is happening, you need to do a search through your PHP file and
all included files for the questionable variable name. Don’t forget to check the included files!
Just hope you catch these things early, because they’re a big pain if allowed to grow.

Function Problems

Many problems having to do with function calls result in fatal errors, which means that PHP
gives up on processing the rest of the script.

Symptom: Call to undefined function my_function()

PHP is trying to call the function my_function(), which has not been defined. This could be
because you misspelled the name of a function (built-in or user-defined) or because you have
simply omitted the function definition. If you use include/require files to load user-defined
functions, make sure that you are loading the appropriate files.

If the problem involves a fairly specialized, built-in function (for instance, it is related to XML
or arbitrary-precision math), it may be that you did not enable the relevant function family
when you included PHP. If, for example, all the BC functions seem to be undefined, they prob-
ably were not included at compile time. To fix this (under Unix systems), you would need to
reconfigure PHP and recompile. Under Windows systems, you just need to make sure that the
correct .d11 files are loaded in php.ini.

Symptom: Call to undefined function ()

In this case, PHP is trying to call a function and doesn’t even know the function’s name.
This is invariably because you have code of the form $my_function(), where the name of
the function is itself a variable. Unless you are intentionally trying to exploit the variable-
function-name feature of PHP, you probably accidentally put a $ in front of a sensible call to
my_function().Because $my_function is an unbound variable, PHP interprets it as the
empty string— which is not the name of a defined function —and gives this uninformative
error message.

Symptom: Call to undefined function array()

This problem has a cause that is similar to the cause of the previous problem, although it
still baffled us completely the first time we ran into it. It can arise when you have code like
the following:

$my_amendments = array();
$my_amendments(5) = "the fifth";

Chapter 11 + Basic PHP Gotchas 225

Unless you look closely, this looks like an innocent pair of statements to create an array and
then store something in that array, with the number 5 as a key. And yet PHP is telling us that
array () is an unbound function, even though we know that it is a very standard built-in func-
tion. What'’s going on?

The fault is actually with Line 2 above, rather than with Line 1. If we want to access an ele-
ment of $my_amendments, the correct syntax is $my_amendments[5], with square brackets.
Instead, we used parentheses, which the parser interprets as an attempted function call. It
takes what is immediately before the left parenthesis to be a function. Instead, what comes
before the parenthesis is an array, which is not a function; PHP gives up on us, with this
obscure complaint.

Symptom: Cannot redeclare my_function()

This is a simple one —somewhere in your code you have two definitions of my_function(),
which PHP will not stand for. Make sure that you are not using include to pull in the same
file of function definitions more than once. Use include_once or require_once to avoid
seeing this error, with the caveat that, well, you won’t see this error. Why might that be bad?
It’s conceivable that you could define two distinctly different functions and inadvertently give
them the same name. This runs the risk of exposing your mistake at a somewhat inconvenient
moment.

Symptom: Wrong parameter count

The function named in the error message is being called with either fewer or more arguments
than it is supposed to handle.

Math Problems

The problems that follow are specific to math and the numerical data types.

Symptom: Division-by-zero warning

Somewhere in your code, you have a division operator where the denominator is zero. The
most common cause of this is an unbound variable, as in:

$numerator = 5;
$ratio = $numerator / $denominator;

where $denominator is unbound. It’s also possible, of course, that the legitimate result of
a computation is producing a zero denominator. In this case, the only thing to do is catch it
with a test and do something reasonable if the test applies. See the following example:

$numerator = 5;

if ($denominator != 0)
$ratio = $numerator / $denominator;
else

print("I'm sorry, Dave, I cannot do that
");

226

Part | ¢+ PHP: The Basics

Symptom: Unexpected arithmetic result

Sometimes things just don’t add up (or multiply up, or subtract up). If you are having this
experience, check any complex arithmetic expressions for unbound variables (which would
act as zeros) and for precedence confusions. If you have any doubt about the precedence of
operators, add (possibly redundant) parentheses to make sure the grouping is as you intend.

Symptom: NaN (or NAN)

If you ever see this dreaded acronym, it means that some mathematical function you used
has gone out of range or given up on its inputs. The value NAN stands for “Not a Number,” and
it has some special properties. Here’s what happens if we try to take the arccosine of 45, even
though arccosine is defined only when applied to numbers between -1.0 and 1.0:

$value = acos(45);

print("acos result is $value
");

print("The type is " . gettype($value) . "
");
$value_2 = $value + 5;

print("Derived result is $value
");

print("The type is " . gettype($value_2) . "
")
if ($value == $value)

print("At Teast that much makes sense
");
else

print("Hey, value isn't even equal to itself!
");
The browser output looks like:

acos result is NAN

The type is double

Derived result is NAN

The type is double

Hey, value isn't even equal to itself!

Oddly enough, NAN is a number, at least in the sense that its PHP type in this example turns
out to be double rather than string. It also infects other values with not-a-numberness when
used in math expressions. (This behavior is a feature, not a bug, when used in very complex
calculations that must be correct. It’s better to have the whole value be tagged as untrust-
worthy than have one subexpression be silently bogus.) Finally, any equality comparison that
involves NAN will be false — NAN is neither less than, nor greater than, nor equal to any other
number, including itself. It is always unequal (! =) to all numbers, including itself. (The NAN
value is not a PHP-specific feature — it is part of the IEEE standard for floating-point arith-
metic, which is implemented by the C functions that underlie PHP.)

Because of the contagion of NAN values, this kind of problem can be difficult to debug. The
best way to try to find the original offending NAN is with diagnostic print statements, espe-
cially because comparison tests will give counterintuitive results. You can explicitly test for
NAN values using the built-in is_nan() function, implemented in PHP4.2.0, which returns
TRUE if the number submitted is not a number or FALSE otherwise. In earlier versions (you
aren’t using an earlier version, are you?), you can cobble together your own function for NAN
testing like so:

function is_nan($value)

{
return($value != $value);

}

It uses the weird comparison properties of NAN as a type checker.

Chapter 11 4 Basic PHP Gotchas

227

Time-outs

Of course any download can occasionally time out before a complete page can be delivered.
However, this shouldn’t be happening frequently on your local development server! If it does,
you may have an issue that has nothing to do with slow Internet channels or server overload.

The most interesting reason for a time-out is an infinite loop. These can be difficult to track
down quickly, as in this example:

//compute the factorial of 10

$Fact = 1;

for ($Index = 1; $Index <= 10; $index++)
$Fact *= $Index;

This code shows a nasty little collaboration between a loop and a case confusion —the lower-
case $index that is incremented has nothing to do with the $ Index that is being tested, so
the test will never become false.

Also see the discussion of infinite recursion in the “Document contains no data” section earlier
in this chapter. Whether due to a loop or a recursive loop, any PHP code that runs “forever”
is not going to give you a happy result. The exact symptom you see is likely to depend on
whether PHP runs out of memory first (and crashes, returning no HTML) or runs out of time
first (and your browser informs you of a time-out).

Summary

In Table 11-1, we summarize the gotchas in this chapter by mapping symptoms to possible
causes. We also offer some suggestions on how to fix the most common problems.

Table 11-1: From Symptoms to Causes

Symptom Possible Causes Advice

(New installation) Text of file The PHP engine is not being Make sure that your request

displayed in browser window

(New installation) PHP blocks
showing up as text under HTTP,
or browser prompts you to
save file or visit an external

file repository

invoked, possibly because you are
opening it via the local filesystem
rather than as a request to your
server.

PHP is not being invoked
properly. Your Web server may
not be set up to map the right
suffixes (for example, . php) to
the PHP engine, or there may be
a problem with the location or
contents of php.ini.

is to the Web server, either

via localhost (http://
lTocalhost/[path]) if testing
on the server machine, or by the
full URL (www.site.com/
[pathl).

Check your Web server
configuration, and the PHP init
file (php.ini).

Continued

228

Part | ¢+ PHP: The Basics

Table 11-1 (continued)

Symptom

Possible Causes

Advice

(New installation) Server or
host not found/Page cannot
be displayed

Totally blank page

Document contains no data
(or blank page with no HTML
to look at)

Incomplete or unintended page

PHP code showing up in
browser window

Page cannot be found

Failed opening [file] for inclusion

Parse error message

Often due to Internet/DNS/
Web-server configuration
problems, rather than PHP.

Usually due to malformed
HTML (whether produced by
PHP or not).

PHP engine may not be working
at all, or your code simply does
not output anything. Also you
may actually be crashing PHP,

or you may be hitting a fatal error
with error reporting turned off.

Usually due to malformed
HTML (whether produced
by PHP or not).

If the PHP engine is installed
and functioning properly, this
is usually due to a missing PHP
start tag.

Usually means that the filename

or path of the PHP file is incorrect.

Same as the preceding error,
as reported under some
NT configurations.

A variety of causes, including
missing semicolons, variables
without a $, unescaped quotes,
unclosed quotes, brackets, or
parentheses, and HTML being
interpreted as PHP.

Try loading a pure HTML file
with a suffix you have not set
up for PHP (for example, .htm1)
tzo rule out PHP problems. Try
getting to the same file using an
IP address rather than a domain
name —if that works, the
problem is DNS-related.

View the HTML source from a
browser. Look especially for
unclosed <TABLE>, <FORM>,
or <SELECT> forms.

If other PHP pages work fine
from the same server, then the
problem is your code. Force your
code to output something at the
beginning, and try to find it in
HTML source. If no joy, you
probably have crashed PHP,
possibly by calling a recursive
function forever. Also, make
sure error reporting is on.

View the HTML source from a
browser. Try to narrow down the
source of the problem with
diagnostic printing statements
(in either HTML or PHP).

Check start and end tags and
make sure that any include
files of PHP code have correct
tags at beginning and end.

Double-check the name and
directory path.

Double-check the name and
directory path.

Locate the line of the parse error
in the PHP file and look for one
of the causes in that line or the
lines immediately preceding. If
the “error” is on the final line of
the file, look for an unclosed
quote, parenthesis, or bracket,
possibly much earlier in the file.

Chapter 11 4 Basic PHP Gotchas

Symptom

Possible Causes

Advice

HTTP error 403

Include warning

Variable value not showing
up in print string

Numerical variable
unexpectedly zero

Variable value is valid,
but unexpected.

Call to undefined function
my_function()

Call to undefined function ()

The file permissions are incorrect.

For one reason or another,
PHP was not able to load a file
named in an include statement.

The variable has not been
assigned, and so its value in a
printed string is the empty string.

Often due to the variable never
having been assigned.

Often due to variable having
been unexpectedly overwritten.

Function my_function() is
being called without having
been defined first.

An expression of the form
$my_function() is being
evaluated, and $my_function
is not bound to the name of a
defined function.

Check the permissions of the file
itself and the directories (or
folders) in the path to that file.

Check that the file actually
exists, the spelling of the
filename, the pathname, and
(on Unix systems) the case of
the name. Also make sure that
the file permissions allow the
file to be read.

Check that you are assigning the
variable before the print
statement and compare spelling
and case (capitalization). Make
sure that you are not embedding
any objects or multidimensional
arrays in quoted strings. You

can also use the statement
error-reporting(15) to

tell PHP to warn about any
unbound variables.

(See preceding.)

Don't use register_globals;
use good variable names; search
through all included files for
variable name.

If you are trying to call a function
of your own, check that the
definition (or inclusion of the
file containing the definition) is
before the use. If you are trying
to call a built-in function, check
the spelling. If it is correct,
investigate whether that “family”
of functions was included when
you configured PHP (for
example, either all the XML
functions will work, or none will).

If you intend to use the
variable-function feature, then
add (or correct) the assignment
of $my_function. If you are
just trying to call
my_function(), remove the $.

Continued

229

2350

Part | ¢+ PHP: The Basics

Table 11-1 (continued)

Symptom

Possible Causes

Advice

Call to undefined function
array()

Cannot redeclare
my_function()

Wrong parameter count

Division-by-zero warning

Unexpected arithmetic result

NAN value

Page takes forever to load,
or browser times out

You probably have an expression

of the form $array_var_name(3),

when what you want is
$array_var_name[3]

The function my_function()
is being defined twice in a
page’s execution.

The named function (usually

a built-in function) is being
called with an incorrect number
of arguments.

A / operator has a right-hand
argument of zero. Can be due
to an unbound variable in the
denominator.

Frequently due to an unbound
variable in an arithmetic
expression.

A built-in math function is

being given inputs outside its
acceptable range. If that function’s
results are used in arithmetic, the
results are also NAN.

Internet congestion, heavy load
on your server machine,
computationally intensive

PHP code, or an infinite loop.

Decide whether you want an
array expression or a function
call —if the former, then change
parentheses to square brackets.

Look for double definitions of

my_function in the PHP file,

or double-inclusions of the file
that defines it.

Compare the function call to the
definition in the online PHP
manual (www.php.net)

Assign the unbound variable if
that's the cause. If the desired
logic could actually result in zero
denominators, install a test to
catch that case.

Check for unbound variables
(see preceding), and make sure
that arithmetic expressions are
parenthesized appropriately.

Trace backward from the NAN
value to function calls that
contribute to its computation.
Test with print statements, or
test for values that fail to be self-
equal (a diagnostic for NAN).

Check if Web sites other than
your own are giving you the
same trouble. Check all
looping constructs in your
code for errors that could
cause them to never terminate.

PHP and MySQL

1]

+ 4+ o+
In This Part

Chapter 12
Choosing a Database
for PHP

Chapter 13
SQL Tutorial

Chapter 14
MySQL Database
Administration

Chapter 15
PHP/MySQL Functions

Chapter 16
Displaying Queries in
Tables

Chapter 17
Building Forms from
Queries

Chapter 18
PHP/MySQL Efficiency

Chapter 19
PHP/MySQL Gotchas

+ o+ e

1 -

CHAPTER

Choosing a 1
Database for PHP

+ 0+ e

In This Chapter

Databases and PHP go together like cake and ice cream, Trinidad What is a database?
and Tobago, green eggs and ham — you get the picture.

After all, what’s the Web about? Making vast stores of information Choosing a database

available to a more or less wide public, that’s what. Not that there
aren’t small brochureware sites galore, but the bigger and more
frequently updated the data source, the more comparative value
is provided by the Web over other media.

Advanced features
to look for

PHP supported

Perhaps the single greatest advantage of PHP over similar products databases

is the unsurpassed choice and ease of database connectivity it offers.

As detailed in the “Choosing a Database” section of this chapter, Database abstraction
PHP supports native connections to a number of the most popular (or not)

databases, open source and commercial alike. Almost any database
that will open its API to the public seems to be included eventually.
For any unsupported databases, there’s generic ODBC support.

What Is a Database?

A database is a separate application that stores a collection of data.
Each database has one or more distinct APIs for creating, accessing,
managing, searching, and replicating the data it holds. Other kinds of
data stores can be used, such as files on the filesystem or large hash
tables in memory, but when professionals talk about databases they
mean a standalone application such as Oracle or SQL Server or
Sleepycat.

Why a Database?

If you're going to the trouble to use PHP at all, you're likely to need
a database sooner or later — probably sooner. Even for something
small, like a personal Weblog, you want to think hard about the
advantages of using a database instead of static pages or included
text files.

Our focus: MySQL
+ + + +

234

Part Il + PHP and MySQL

Maintainability and scalability

Having PHP assemble your pages on the fly from a template and a database is an addictive
experience. Once you enjoy it, you'll never go back to managing a static HTML site of any
size. For the effort of programming one page, you can produce an infinite number of uniform
pages. Change one, and you've changed them all.

There are now Web sites with hundreds of thousands of separate pages — you can rest
assured that no one is maintaining them all by hand. If you have a Web concept that may
eventually grow to more than a few dozen pages, you should think about moving to a
database sooner rather than later.

Portability

Because a database is an application rather than a part of the operating system, you can
easily transfer its structure and contents from one machine to another or (in certain cases)
even from one platform to another. This is especially valuable for contractors, who may
develop a project without being able to control the environment in which it will eventually be
deployed —they can deliver a package of PHP plus a MySQL database schema dump in one
tarball or zipfile. There are even well-known PHP programs, such as vBulletin, that keep most
of their code in a database to make it easier to distribute.

Avoiding awkward programming

Certain things can be done with PHP but probably shouldn’t, because they entail ugly or risky
programming moves.

Say you happen to be the commander of the starship Enterprise and are keeping a Captain’s
log. Each episode is contained in a text file identified by its unique stardate, which is plugged
into a template by PHP — but hey, you're a busy spaceman with whole galaxies to explore; you
don’t always have time to write in your log every day. You want to put automatically generated
Next and Previous links on each page for those who wish to read in straight chronological
order. It’s pretty easy to use PHP to find the previous stardated entry, but any attempt to
locate the next entry can quickly become an infinite loop — because it’s easier to prove some-
thing does exist than that it doesn’t. On the other hand, if you put your log data in a database,
the whole job becomes trivial. The database will tell you which is the latest entry at any given
moment.

There are other types of programming tasks that a database is highly optimized to do, and
given the option, you should take advantage of these chores. For instance, you should never
sort data sets on the PHP side —you should learn to write your queries so they come back
pre-sorted. We discuss these efficiency issues in greater detail in Chapter 18.

Searching

Although it’s possible to search multiple text files for strings (especially on Unix platforms)
it’s not something most Web developers will want to do often. After you search a few hundred
files, the task becomes slow and hard to manage. Databases exist to make searching easy.
With a single command, you can find anything from one ID number to a large text block to a
JPEG-format image.

Chapter 12 4+ Choosing a Database for PHP

In some cases, information attains value only when put into a searchable database. For
instance, relatively few people would want to read a long text list of movie directors and their
films, but many might occasionally want to search a database of that information. You could
argue that it’s the searchability, as much as the information itself, that creates the value here.

Security

A database adds another layer of security if used with its own password or passwords.

Say you use PHP to maintain a company’s customer files, filled with information about the
prices each customer paid for your product and complaints that customers made. This infor-
mation would be gold for your competitors, and embarrassing if it leaked to anyone — but you
need to put it on the Internet so it can be accessed by your worldwide army of salespeople. If
you have PHP write each new customer record to a text file, you must give the HTTP daemon
user (usually Nobody or Everybody) write access to your most sensitive directory. This is not
a good idea. By having PHP write to a database instead, you can maintain read-only directory
permissions and also ask for a second password before the database can be altered.

Or take the case of a content site with a large number of visitors, a smaller number of writers,
and a handful of editors. You can easily set database permission levels for each group so that
visitors can just look at the database content (as formatted in Web pages), writers can browse
and change only their own entries, and editors can browse/change/delete anything in the site.

N-tier architecture

So far, we’'ve been considering only so-called two-tier sites: PHP takes raw data from some
kind of storage system and turns it into HTML. However, one of the intentions of PHP is to
become the “glue” in three-tier or n-tier development. If you have anything more complex
than the simplest two-tier architecture, you really need a database.

An n-tier architecture is an arbitrary number of software subsystems linked by a Web site

on the front end and one or more databases on the back end. One fairly common n-tier archi-
tecture is that of a big e-commerce site, which has shopping carts linking up to order-taking
systems linking up to supply-chain management routines — plus product databases, customer
databases, credit-card debiting, FAQ-o-matics, recommendation engines, Web-log analysis
tools, caching proxies, phone-center knowledge bases, and who knows what else lurking behind
the scenes. Under these conditions, you need the advanced database capabilities that we’ll
describe in the “Advanced Features to Look For” section of this chapter.

Potential downside: Performance

You may be concerned about performance. It’s true that a database-driven site on the same
hardware and software will always be slower than a static site. It’s true that some databases
are faster than others. However, the real question is whether the performance hit will even be
detectable by you. If we're talking about adding milliseconds to your latency (and we usually
are), who cares? Some of the concerns about performance you read on the Internet are so
overblown that they verge on the absurd. It’s also true that the minute you need to search
any large volume of text in a database versus flat files, you've gained back any performance
hit a thousand times over.

235

236 Partll + PHP and MySQL

Once you need to go into the database for even one piece of information per page, it’s almost
always cost-effective to put all your data in the database. Most of the overhead of a database
query is front-loaded in establishing a connection. If you have to do that to get a name or
title, downloading a couple thousand words of text is almost free.

In the end, only performance testing will establish whether a database is too slow for your
particular setup and task— everything else is just talk. Many totally database-driven Web
sites easily achieve subseconds of latency, which should be good enough for most purposes.

Choosing a Database

Although databases (even relational ones) have been around for a long time, they were quite
expensive or limited in functionality until very recently. Therefore, even a lot of experienced
programmers never had to learn much about choosing a database for a particular need. For
that reason, we feel it’s worthwhile to review the basic factors that go into making such a
decision.

You may not have a choice

Realistically, you may not have much of a choice. Many people are specifically looking for the
fastest way to put their legacy database online rather than enjoying the luxury of deciding on
a scripting language first and choosing a database later.

Furthermore, decisions about OS, Web server, and programming languages can make some

of your decision for you. A custom Java application on a “Big Iron” Unix platform is just not
going to mesh very smoothly with Microsoft SQL Server. (In theory it’s possible, but in prac-
tice you’d have to be a glutton for punishment — although the other way around isn’t so bad.)
The bigger the system gets, the more constrained one’s choices are likely to be by previous
decisions.

The good news is that PHP is committed to supporting many databases and other back end
servers. It can help you knit up the loose ends of an architecture that has grown organically
over time, as so many have. Some functions in PHP exist solely to aid in porting your data
over to a more modern database.

Flat-file, relational, object-relational

Databases are kind of like kitchen equipment: The simpler the tool, the more skilled the oper-
ator needs to be to achieve a great result. Expert chefs can produce gourmet fare using noth-
ing but a very sharp knife and a few old pots and pans, whereas amateurs must whip out the
Cuisinart and the Calphalon to produce similar results.

So it is with databases. It can get almost laughable to read people’s arguments about the pur-
ported failings of this or that database, knowing that the skill of the individual user is reflected
by this piece of software more than by almost any other. Suffice it to say that many technical
masterpieces live in the simplest hash tables, while untold botched messes are simmering
along on the latest and greatest object-oriented Java-enabled DBMS.

You can use three main types of databases with PHP: flat-file, relational, and object-relational.

Chapter 12 4+ Choosing a Database for PHP

Flat-file or hashing databases, such as Gnu DBM and Berkeley DB (aka Sleepycat DB2), are
mostly used by or within other programs such as e-mail servers. They provide the lightest-
weight and fastest means of storing and searching for data such as username/password pairs
or dated e-mail messages. Old-school C programmers usually have the most experience with
this type of database.

These databases do not themselves create a representation of more complex relationships
between data points. Instead, this is done by the accessing client program. Although the
results can be extremely impressive, it all depends on your skill as a programmer.

The relational variety is now the most common type of database. People have different ideas
of what constitutes a relational database, and we don’t want to get pulled down into that par-
ticular definitional tar pit. Therefore, we're going to arbitrarily say that databases that speak
fluent SQL are relational. Most of the popular databases commonly used with PHP are rela-
tional. See Chapter 13 for a longer discussion of relational databases.

But there’s relational, and then there’s relational. Certain very popular commercial databases,
such as Filemaker Pro and Microsoft Access, were not designed to be used on the back end of
a production Web site. Although they have a certain level of ODBC support, and therefore PHP
can get data from them, they were mostly designed for ease of use rather than speed. Even
worse, most users of these products refuse to avail themselves of what relational features
there are, preferring to repeat text information in each entry rather than creating a separate
table representing a relationship. Finally, these databases generally lack threading, locking,
and other production features. People out there must be trying to use Microsoft Access with
PHP, because they post to PHP mailing lists and forums, but evidently not for public sites with
significant traffic. (We do, however, know developers who use Access or FileMaker Pro as
development tools on their laptops so they can program on the airplane, and there are always
porting and other projects using legacy data from these semi-relational databases.) You may
well find that the best use of these types databases will be to prototype their eventual Web
counterparts. For all the failings of Access, many developers claim it has nice data/relationship
visualization features.

Finally, there are object-oriented and object-relational databases, new and still developing
models of data access. The object-oriented database is intended to work more smoothly with
object-oriented programming languages, whereas the object-relational is a hybrid used for data
types (such as astronomical and genetic data) that are not well served by ordinary relational
databases. However, PHP itself does not require an object programming style of its users or
the programs with which it communicates. And despite a slew of new object features in PHP5,
the developers still recognize the fundamental strength of the language lies in its simpler pro-
cedural roots. That’s not to say that you can’t use PHP with some of these, but the absolute
necessity of doing so is questionable.

ODBC/JDBC versus native API

There are two generic standard APIs for database access: Open Database Connectivity (ODBC),
and Java Database Connectivity (JDBC). ODBC is closely associated with Microsoft, and JDBC
is even more closely associated with Sun Microsystems. Nevertheless, other companies have
implemented these standards in their own products, with the addition of specific drivers for
each client program.

237

238

Part Il + PHP and MySQL

ODBC and JDBC are more or less mutually exclusive. Something called the ODBC-JDBC bridge
is used to allow Java programs to access ODBC databases, but it is very slow. There are also
proprietary drivers that do the same job more quickly.

There are also databases that clients can access through their own APIs rather than ODBC or
JDBC. This is invariably faster because there are fewer layers in the stack. Most open source
databases fall into this category. Some of these also have ODBC or JDBC drivers. So for instance,
PHP can access MySQL with a native API, whereas a Java subsystem can use the same database
via JDBC. Before you commit to any multiple-access scheme, be very sure the drivers you need
are available, affordable, and maintainable.

Swappable databases

Although ODBC is slower than native APIs, it has the advantage of being an open standard.
Therefore, PHP code written with the ODBC commands will mostly work with any ODBC-
compliant database. This feature is very handy if you must start a project with a database
that you know will not scale, such as Microsoft Access, and later switch to a more industrial-
strength database. Although both are good products in their niches, it can be a lot of work to
switch from a lightweight database like Mini SQL (aka mSQL) to an enterprise-ready server
suite like IBM’s DB2. (Again, a good programmer who is given the time and resources can
make any application relatively easy to port, while an inexperienced or rushed developer
may not be able to do so.)

Advanced Features to Look For

This section mentions specific SQL database features with which you may not yet be familiar.
We’re hoping you will instantly have a gut feeling, even from so brief a description, if you
truly need one or more of these features.

A GUI

Databases vary enormously in their user interface tools. Choices range from the starkest
command-line interactions to massive Java-powered development toolkits. You pay for what
you get, both in cash and in performance. Look for the lightest interface that meets your
needs, because a GUI can add substantially to overhead costs.

One lower-cost alternative to the built-in GUI is a Web interface. These are often custom devel-
oped, but there are also third-party products that may meet your needs. For instance, MySQL
has several freely available Web-based interfaces, which can be found by searching at Freshmeat
(www.freshmeat.net) or SourceForge (http://sf.net). The most popular of these is proba-
bly PHPMyAdmin, which is available at the PHPMyAdmin Web site (www.phpmyadmin.org).

Subquery
A subquery or subselect is an embedded SELECT statement, like this:
SELECT * FROM tablel WHERE id IN (SELECT id FROM table?2);

There are ways to work around a lack of subselects, and not everyone needs them. However,
they can save some time if you consistently need to make large selects, inserts, and deletes.

Chapter 12 4+ Choosing a Database for PHP

SELECT INTO

SELECT INTO is a handy feature if you need to move data from one table to another frequently.
The syntax can vary a little. One method is:

SELECT INTO table2(col2, col3, col7) lastname, firstname, state FROM
tablel WHERE colb = NULL;

Another way to get the same result is:

INSERT INTO table2(col2, col3, col7) SELECT lastname, firstname, state
FROM tablel WHERE colb = NULL;

Complex joins

A join is a way of searching for something across tables by using shared values to match up
the tables. The simplest form is:

SELECT * FROM tablel,table2 WHERE tablel.id=table2.id;

This yields the complete contents of whichever rows in the two tables share ID numbers. More
specific and extensive types of joins exist, including left or right, straight or cross, inner and
outer, and self, but you may not need them.

Joins are very handy and timesaving, sometimes well-nigh essential, but in practice few need
the more esoteric forms, so don’t reject a database out of hand for lacking a right outer join.

Threading and locking

Threading and locking are very important for multiple-tier sites and two-tier sites that have
many contributors. They prevent two database calls from bumping into each other, so to
speak, by giving editorial control to only a single transaction at a time.

An example that clearly illustrates the value of threading and locking is a Web site that sells
tickets to popular rock concerts (assigned rather than “festival” seating). Obviously, you
would not want two people to be able to purchase the same seat at the same event due to a
database error. The database needs some way to recognize unique requests and let only one
user (or thread) make changes at any given moment, while others are locked out until the
first transaction is complete.

Unless you’re sure your project (a Web log, for instance) will have only one user at a time, be
careful of committing to a nonthreaded database.

Transactional databases

This term refers to a database design that seeks to maximize data integrity. The transactional
paradigm relies on commits and rollbacks. Transactions that are concluded successfully will
be committed to the database. Those that are not successfully concluded will not be saved,
or the database will be rolled back to its previous condition.

Generally, transactions become more useful in situations where you want an all-or-nothing
commit on a group of inserts. An e-commerce system might use rollbacks in situations where
a customer’s credit card is declined, choosing not to record the customer information, the
purchase order, the inventory change, and so on. Rollbacks are also useful in the case of data
corruption, as when a database server experiences a hardware failure incident.

239

240

Part Il + PHP and MySQL

An alternative data-integrity design is called atomic. Proponents of the atomic paradigm claim
it is much faster and just as safe, but transactions can be easier for a large number of pro-
grammers to work with because it puts more of the logic in the database layer.

Procedures and triggers

Procedures are stored, precompiled queries or routines on the database server. A common
procedure would be one that selects out all the e-mail addresses of customers who made pur-
chases on a particular day. If you use the same select statements over and over, procedures
can package them in a handy and fast way for you.

Triggers are procedures that occur when some tripwire event is registered by the database.
Depending on the database, you could write a trigger to send an account-statement e-mail to
customers or associates of your site, and set it to go off at midnight every Sunday. Another
handy use would be to send an e-mail to the database administrator every time an error is
registered. Relatively few databases use triggers because they take a good deal of program-
matic power and lots of extra cycles to track potential events.

Indexes

Indexes are a way to speed up searches of large data sets. You can think of it like this: Say you
need to find a particular customer’s file in a large stack of files tossed haphazardly on your
desk (not that you would ever do this in real life, of course). Or you could look for the file in a
set of filing cabinets sorted by some alphabetical scheme. Obviously the filing-cabinet system
would be faster, because it would presort the documents into smaller buckets. In a nutshell,
that is what indexes do.

If you have a million users, it will be very slow for a database to find one by last name because
the program will have to look at each entry in the Lastname field and compare it to the string
you're searching for. An index placed on that column will make it possible for the database to
search only part of the data set, and this will result in a faster search.

However, indexes should not be used by everyone. For one thing, they typically slow down
writes while speeding up reads. They don’t necessarily speed up every type of query, and
your data set may not be big enough to show an appreciable speed difference. Indexes are a
scalability feature —they’ll help you a lot if you have half a billion entries, but they very well
may not help you at all if you have 500.

Foreign keys and integrity constraints

The relational structure of a database is often implicit in the ways fields of one table refer to
row IDs of another, but your database won’t necessarily do anything helpful to make sure that
structure is respected as changes are made. One way your database can help is via cascading
deletes — automatically deleting rows that depend on other rows being deleted (this is some-
times implemented as a trigger). For example, if you delete a hospital patient record, you might
want all the orphaned rows in the corresponding table of patient visits to automatically be
deleted too. Alternatively, a database system can simply not permit the deletion of parent rows
unless potential orphans are deleted first. Whether this kind of a constraint is a lifesaver or
just an annoying restriction depends on how crucial it is that the relational structure be com-
pletely reliable and consistent, and how frequently you need to do these kinds of dangerous
operations. Most of these features can be implemented, although less cleanly and efficiently,
with a combination of traditional keys and the client code you use to manipulate the data.

Chapter 12 4+ Choosing a Database for PHP

Database replication

As your data store expands, you will need to think about scaling up. For a certain amount of
time, one can just move the database server to faster machines with more processors and
bigger disks —but sooner or later a growing database will need to be replicated on more than
one server.

To do this, there must be some means of automatically keeping the different servers synched
up. This usually involves a journaling system, and often a master-slave relationship between
database servers. One database is designated the master, and all new data is inserted into it.
A journal keeps track of these changes in chronological order. All the other servers are slaves,
which serve up data rather than taking it in. They periodically read the master journal and
make the same changes in themselves.

The next step up is some kind of failover mechanism, by which a slave can become the mas-
ter database server if the master goes down. Think carefully about how bombproof your data
needs to be, as this type of safety is expensive.

PHP-Supported Databases

If you've never chosen a database before, the large choice of PHP-supported products can be
dizzying at first. Table 12-1 will give you a first-glance introduction to the various databases
most easily available to PHP users, with notes on drivers and licensing.

Table 12-1: PHP-Supported Databases

Database Type Support Platform License Notes

Adabas D R ODBC (deprecated) u w C German, distributed with
SuSE Linux

DBA/DBM FF Abstraction layer u 0s, C Sleepycat, Gnu DBM, cdb

dBase P Import only w C No SQL

Empress R ODBC U w C Enterprise, JDBC driver
available

filepro P Import only U w C Not for production

IBM DB2 R ODBC U, w C Enterprise, JDBC driver
available

Informix R Native U, w C Enterprise

Interbase R Native U, w C Enterprise, JDBC driver
available

MS Access R ODBC w C Not for production

MS SQL Server R Native w C Enterprise

mSQL R Native u Sh Very small

Continued

241

242

Part Il + PHP and MySQL

Table 12-1 (continued)

Database Type Support Platform License Notes

MySQL R Native u,w C, 0S Several licenses

Oracle R Native U, w C Enterprise

Oracle8 R Native uw C Enterprise, Java integration

PostgreSQL O-R Native u oS Commercial support
available

Solid R ODBC (deprecated) u w C Embedded db, Finnish
company

SQLite FF Native U, w oS Embedded db

Sybase R Native u w C Enterprise

FF=Flat-file; R = Relational; O-R = Object-relational; U = Unix; W = Windows, C = Commercial; OS = Open
Source; Sh = Shareware

Database Abstraction (or Not)

Database abstraction —writing wrapper functions or classes instead of using the bare PHP
commands —is one of those quasireligious topics in programming. Some excellent program-
mers swear by it and make good arguments for it. Others, just as experienced and articulate,
think it sounds better than it usually works out to be. We know of top PHP teams that have
members in both camps.

The truth of the matter is that it’s more of an issue with PHP than with almost any other pro-
gramming language because PHP is so strong in multiple database connectivity. Enterprise
Java installations are often all about choosing between two or three very similar database
products with JDBC connectivity, so Java developers don’t argue nearly as much about the
merits of database portability. Similarly, ODBC is the standard option for ASP developers. The
issue of database abstraction basically arises just because PHP hooks up to so many database
products with fast native APIs.

The arguments for database abstraction basically boil down to this: You can swap databases
without changing a lot of code, and sometimes it saves you some keystrokes. The arguments
against database abstraction basically boil down to this: If you have to swap databases, you've
probably already screwed up big-time, and the practice limits you to the most basic, common
SQL functions used in a fixed pattern instead of letting you code in the way which takes maxi-
mal advantage of your particular database’s feature set.

For instance, one of Oracle’s coolest features is the capability to take an entire result set and
dump it into a single-dimensional numerical PHP array. None of the other major databases
used with PHP have this feature — they can fetch only a single row at once. To implement it
yourself in a portable way could add considerable overhead to your query, because you’d
have to fetch each row and rewrite it to a value in some second array. Of course, you can do
this kind of thing— the question is, should you?

Chapter 12 4+ Choosing a Database for PHP 043

Not to say that database switching doesn’t happen — we’ve personally had to do it more
than once. However, the experienced mind quails at the contention that you should be able
to plug in different databases whenever the spirit moves you. Not to belabor the obvious, but
it’s a non-trivial task to change databases! It’s not something most developers will want to con-
template unless the situation is absolutely dire. In every case in which we were personally
involved, the database change was part of a complete site rewrite and involved a tremendous
amount of pain for everyone involved —all-nighters, frantic attempts to flip through 1200-page
database manuals, endless data transfer attempts which choked countless numbers of times.
All of which is to suggest that database portability might be a good idea in theory, but in prac-
tice it usually means a bad, bad architectural mistake was made at some prior point. In the
early days of the Web, bad architectural decisions were a matter of course because no one
could predict which technologies and products would last. As the rate of change has slowed
somewhat, and clear leaders in various product categories have emerged, this type of rescue
operation should become less necessary.

As always, our advice is to put your own needs first and be skeptical of unsolicited advice.
Remember that many commercial and open source PHP packages that incorporate database
abstraction may have a mission different from yours — often they are focused on getting the
largest installed userbase and are willing to accept some non-optimal database code to achieve
it. You might just need to focus on how to keep one particular site running most smoothly.
Heavily discount any advice from those who have not actually had to switch databases. When
people talk about their experiences swapping databases, find out how big the change was in
programming terms — migrating from MS SQL Server to MySQL is less of a stretch than switch-
ing from MySQL to Oracle. Then make a decision about what'’s right for you in your particular
situation.

Tip There's one particular situation in which you may have to accept database abstraction even
. if it's not the right technical decision. Our experience has been that many inexperienced
4 clients or bosses want the option of switching from some perfectly functional database to
Oracle or DB2 in the undefined future. This is a delicate social-engineering concern, because
they have an investment in the idea that their online business will grow massively and
become a real enterprise. It is pointless to tell them that by the time they need Oracle or
DB2, the sun will have consumed all its fuel and the Himalayas will be eroded into a flat
plain. Smile and implement database wrapper functions.

Our Focus: MySQL

We, like most every other team who has ever written a book about PHP, love MySQL and use
it in all the upcoming examples in Part Il MySQL is quite likely the fastest, cheapest, simplest,
most reliable database that also has most of the features you’d want and — this is the real
differentiator — comes in more or less equally good Unix and Windows implementations.

Despite our love of, and faith in, MySQL, we do recognize that it will occasionally fall short of
your needs. Later on in this book, we cover, admittedly in somewhat less depth, two alterna-
tives. In Chapter 34, we’ll spend some time with PostgreSQL — an open source database that
aspires to the object-relational design described above. For most purposes, using PostgreSQL
is akin to driving in a thumbtack with a sledgehammer, but if you simply must have some of
these features, it is a strong (and free) implementation that gets the job done for a lot of people.

244

Part Il + PHP and MySQL

Chapter 35 will spend some time with Oracle. You are probably already aware that Oracle is a
commercial product, and you may wonder why PHP has such substantial support for such

a philosophically different product. Whether by technical merit, sheer marketing genius, or
mass hypnosis — Oracle is ubiquitous in the commercial setting; and PHP’s excellent support
for it has opened the door for open source in a lot of organizations that might not otherwise
have seen the light.

Summary

The great advantage of the Web is its capability to make large quantities of information pub-
licly available quickly and cheaply. This functionality has been tremendously enhanced by
the recent increase in availability of inexpensive, reliable databases.

Since many experienced programmers may never have had to choose a database before, we
describe some of the basic points that should be taken into account in the decision-making
process. These include the basic database design (flat-file, relational, or object-relational),
the API or driver, and the ease of future porting. Optional features, such as transactions or a
graphical interface, may also figure into the choice of database. PHP supports many databases of
a variety of types, so you have an excellent chance of finding exactly the feature set you need.

¢+ ¢

SQL Tutorial '

+ + + +
This chapter is a basic introduction to SQL databases in which we
disc.usfs.standards, database design, datq manipulation language, In This Chapter
data definition language, and database security procedures common
to all SQL databases. X
Relational databases
This chapter is in no way a comprehensive guide to SQL or to any and SQL
particular SQL database. To go beyond the simplest common features,
you will need to consult your particular manufacturer’s documentation SQL standards
and/or specific books. A couple of popular guides to SQL in general are:
The workhorses of SQL
4 SQL For Dummies, Fifth Edition by Allen G. Taylor (Wiley, 2003)
+ SQL Bible by Alex Kriegel and Boris Trukhnov (Wiley, 2003) Database design
You will also want to look at documentation and books relating to Privileges and security

your specific SQL database.

Relational Databases and SQL

SQL is the language of relational databases. It is the lingua franca, the
Medieval Latin, the Chinese characters of the relational database
world —a common idiom that makes it possible for everyone to make
themselves understood across a wide range of differences. A simple
query like a one-table SELECT will be more or less the same whether
you're using a tiny database like mSQL or an expensive behemoth like
Oracle 9i Enterprise.

The big advantage for you, the Web developer, is that, after you learn
SQL, you will be able to interact with numerous databases across all
platforms without a steep retraining curve. Just imagine how horrible
life would be if Oracle, MySQL, and SQL Server all had entirely differ-
ent sets of commands for putting data in and getting data out of their
stores —as if Oracle used SELECT to ask for data sets, MySQL used
VALJ (the developers are Swedish, you know), and SQL Server used
FIND IT IN THIS TABLE (to better match the vocabulary of Windows).
SQL is the common vocabulary and syntax that will save you from
this nightmare. There will be some differences between products, but
it’s better to have 80 percent in common and 20 percent different
than the other way around.

246

Part Il + PHP and MySQL

SQL Standards

According to Andrew Taylor, original inventor of SQL, SQL does not stand for Structured Query
Language (or anything else for that matter). But for the rest of the world, it does now. As you
would expect from the (non-) title, SQL represents a stricter and more general method of data
storage than the previous standard of flat-file DBM-style databases.

SQL is a standard under both ANSI and ECMA (international standards-maintenance organiza-
tions). You can read the standards on payment of a fee to these organizations:

4 www.ansi.org
4 www.ecma.org

However, within the general guidelines of the standard there are considerable differences
among the products of individual companies and open source database development organi-
zations. The past few years, for instance, have seen the rapid growth of so-called object-
relational databases, as well as of SQL products specifically slanted toward the Web market.

The key to choosing a database is to be selfish, or at least supremely self-centered. You will
see plenty of unusually virulent postings out there opining that a certain advanced database
feature (like triggers or cross joins) is a “must,” and any SQL installation without this feature
hardly deserves the name. Take this stuff with a grain of salt. It’s far better to make a blind
shopping list of functions you need in order of importance and then go out looking for the
product that best meets your requirements.

That said, a good deal of SQL really is pretty standardized. You will be using a few SQL state-
ments over and over and over, no matter which specific product you choose to deploy.

The Workhorses of SQL

The basic logical structure of a SQL database is very simple. A given SQL installation can
usually contain multiple databases — for instance, one for customer data and one for product
data. (It’s problematic that both the SQL server itself and the collections of tables within it
are commonly referred to by the term database —but what can you do?) Each database con-
tains a number of tables. Each table is made up of carefully defined columns, and every entry
can be thought of as an added record or row. (It’s not really a row, but this is a concept so
stuck in our visualization that we may as well go with it.)

Four so-called data manipulation statements are supported by every SQL server and will
constitute an extremely high percentage of all the things you’ll want to do with a relational
database. These four horsemen of the database are SELECT, INSERT, UPDATE, and DELETE.
These commands are your friends and helpmates; get comfy with them, and they will serve
you well.

The thing to remember about these four SQL statements is that they manipulate only database
values, not the structure of the database itself. In other words, you can use these commands
to add data but not to make a database; you can get rid of every piece of data in a database,
but the shell will still be there — so, for instance, you wouldn’t be able to name another
database on the same server with the same name. If you want to add or get rid of columns,
blow away entire databases as if they never existed, or make up new databases, you need to
use other commands such as DROP, ALTER, and CREATE. We discuss these in the “Database
Design” section later in this chapter.

Tip

Chapter 13 4 SQL Tutorial 247/

A note on SQL style: Many SQL queries that you see are written in one long line of code —
.. which becomes totally illegible once you're dealing with more than four or five fields. A very
accomplished PL/SQL programmer of our acquaintance recommends that you break up
every SQL statement into as many lines as you need for maximum legibility. He also does not
shy away from using indentation in a SQL query with many variables. (SQL queries are usu-
ally quite whitespace insensitive.) He has years of experience working on big Oracle installa-
tions, and his recommendations actually are very helpful —so that is the style we try to use in
this book.
SELECT is the main command you need to get information out of a SQL database. The basic
syntax is extremely simple:
SELECT fieldl, field2, field3
FROM table
WHERE condition;
That’s no harder than asking your coworker to get you last month’s sales records from the file
cabinet in the hallway.
In some cases, you'll want to ask for entire records instead of picking out individual pieces
of information. This practice is deprecated for very good reasons (it may be slower than
requesting just the data you need, and it can lead to problems if you redesign the table), but
it is still widely used and, therefore, we need to mention it. A whole record is called for by
using the wildcard (asterisk) symbol:
SELECT *
FROM my_table
WHERE ID <= 100;
Joins

Only one thing about SELECT statements is even slightly taxing: joins. Because joins are one
of the main useful features of SQL, we should explain them in some detail here.

A SELECT statement on a single table without joins is easily imagined as being something like
arow in a spreadsheet. This is not really how the data is stored or arranged in a SQL database,
but for this purpose it’s a handy visualization device.

But a SQL database is by definition relational. To understand the philosophy behind the rela-
tional database concept, you have to think back to some occasion on which you were forced
to fill out a whole bunch of forms —such as applying for a loan, visiting a doctor’s office for
the first time, or dealing with some kind of governmental formality. (If you've never had this
experience, it’s because you're young enough to have lived entirely in a world of relational
databases.) As you were writing down your name, address, phone, and Social Security number
for the fifteenth time, you probably thought, “Why can’t I just write my address down once,
and then they could just look it up on a need-to-know basis?” That’s exactly the concept
behind a relational database.

The way a relational database differs from paper forms is the main identifier. Humans do well
with text and prefer to categorize by textual identifiers such as names. If a dentist’s office or
auto body shop stored its paper files in numerical order, it would be difficult for anyone to lay
his hands on John Johnson’s forms when John next required service. Frankly, most paper file

248 Partll + PHP and MySQL

users these days ask for your Social Security number as a backup —it works solely to differ-
entiate you from other people in their files with exactly the same first, last, and middle names.

Databases, on the other hand, work fastest with integers. Because integers are unique by
nature, a database needs only one to identify a person, place, or thing uniquely —no matter
how many tables refer to that piece of information.

So instead of needing to repeat information several times, like this:

Name: John Johnson
SS#: 123-45-6789

Name: John Johnson
Fears: Cats, Friday the 13th, Flying

Name: Jane Jones
SS#: 987-65-4321

Name: Jane Jones
Fears: Heights, Flying

with a relational database you can write down each piece of information just once and then
relate it to each other piece using integers, as shown in Tables 13-1 to 13-3.

Table 13-1: People

PersoniD Name SS#

1 John Johnson 123-45-6789
2 Jane Jones 987-65-4321
3 Aloysius Snuffleupagus 564-73-8291

Table 13-2: Fears

FearID Fear

1 Black cats

2 Friday the 13th

3 Peanut butter sticking to the roof of your mouth
4 Heights

5 Flying

Chapter 13 4+ SQL Tutorial 249

Table 13-3: Person_Fear

ID PersoniD FearlD
1 1 1
2 1 2
3 1 5
4 2 4
5 2 5

This is clearly a neater and faster (for a database) way to store this information. But when
you need to pull out the data into a human-readable form, there’s a problem: You have to get
and correlate information from more than one database. That’s the job of a join.

To find out what phobias were suffered by Ms. Jones, you could first look up her personal
unique ID:

SELECT PersonID
FROM People
WHERE Name = 'Jane Jdones';

that returns the unique integer 2. Then you can define another SELECT statement using that
information:

SELECT FearlID
FROM Person_Fear
WHERE PersonlID = 2;

You get the values 4 and 5 back, which you can use in a third query:

SELECT Fear
FROM Fears
WHERE FearID = 4 OR FearID = 5;

This returns the values Heights and F1ying. We should make it clear that there is nothing
inherently incorrect about doing it this way, as long as any performance loss is within param-
eters acceptable to you.

Alternatively, you can perform a join, which returns the same information in a single SELECT
statement:

SELECT Fears.Fear

FROM Fears, Person_Fear, People

WHERE Fears.FearID = Person_Fear.FearlID
AND Person_Fear.PersonID = People.PersonlID
AND People.Name = 'Jane Jones';

250

Part Il + PHP and MySQL

An alternate syntax for this join is:

SELECT Fears.Fear

FROM (Fears INNER JOIN Person_Fear ON FearID INNER JOIN People on
PersonlID)

WHERE People.Name = 'Jane Jones';

As you can see, you need only know one single piece of information to be able to get all the
data in the database about that subject using joins. In effect, a join makes two or more tables
into one for purposes of searching for a particular piece of information.

Joins come in several different flavors. The one in the preceding example is called an inner
join, which is the most common and restrictive type. Another common type is the outer join.
This is used to return a list of all fears even if they do not have people attached to them. In
this example, we are using a left outer join (also known as a natural join):

SELECT Fear
FROM Fears LEFT JOIN People ON PersonlID;

Fears that have people attached to them would appear in the data set multiple times, but
fears without people would each appear once.

You can also get a list of all people even if they do not have fears attached to them, using a
right outer join:

SELECT Name
FROM Fears RIGHT JOIN People ON PersonlID;

Again, the fears that are actually attached to people appear multiple times, whereas the fears
that are not suffered by any people still show up once in the data set. As you can see, left and
right outer joins differ in which of the two tables you want the actual data set from: the first
(left) or the second (right). Because you can switch them around at will, many people consis-
tently use the left outer join for all outer joins.

Caution Ask yourself whether you really need to be using outer joins. Because outer joins require less

precision to format, inexperienced SQL users often perform an outer join and then filter the
results in the code layer. This is wasteful and slow. Outer joins are all about the NULL values,
which are not easily returned by inner joins. An example of a good use for an outer join is a
report where you want to see which of your registered users had and had not downloaded
your latest software product and how many times they had downloaded. If you are not in
this situation, learn to use inner joins instead.

Finally, there is something known as the selfjoin, which is a more advanced technique and
won'’t really make a lot of sense with the example data set. It’s often used with denormalized
data, which means data that deliberately bends the rules of good SQL design (for example,
never repeating any data point) for performance reasons (for example, to reduce the number
of complex multitable joins).

If you need to make complex and frequent joins, this may constrain the brand of SQL database
you can use, because not all of them support every type of join.

Chapter 13 4+ SQL Tutorial

Subselects

Before we leave the realm of SELECT statements, we should mention the subselect. This is a
statement such as:

SELECT phone_number
FROM table
WHERE name = 'SELECT name FROM table2 WHERE ID = 1';

Subselects are more of a convenience than a necessity. They can be very handy if you're
working with enormous batches of data; but you can get the same result with two simpler
SELECTs. The subselect is faster if the subselect clause returns a large data set, but there are
cases where two selects will not appreciably affect performance.

INSERT

Of course, no matter how many SELECT queries you write, all is for naught if you haven’t put
any information in the database to begin with. The command you need to put new data into a
database is INSERT. The basic syntax is:

INSERT INTO table (coll, col2, col3) VALUES(vall, val2, val3);

Obviously, the columns and their values need to match up; if you mix up your array items,
nothing good will happen. If some of the rows will not have values for some of the fields, you
will need to use an empty, null, or auto-incremented value —and, at a deeper level, you may
need to have ensured beforehand that fields can be nullable or auto-incrementable. If this is
not possible, you should simply leave out any columns you wish to default to an empty value
in an INSERT statement.

A twist on the basic INSERT is the INSERT INTO...SELECT. This just means you can INSERT
the results of a SELECT statement:

INSERT INTO customer(birthmonth, birthflower, birthstone) SELECT * FROM
birthday_info WHERE birthmonth = $birthmonth;

Not every SQL database has this capability. Also, you need to be careful with this command
because you can cause problems for yourself quite easily — for instance you can overwrite
data or experience locking issues. In general, it’s not a good idea to select from the same
database you're inserting into.

UPDATE

UPDATE is used to edit information already in the database, without deleting any rows. In other
words, you can selectively change some information without having to delete an entire old
record and insert a new one. The syntax is:

UPDATE table
SET fieldl='vall', field2='val2', field3='val3'
WHERE condition;

The conditional statement is just like a SELECT condition, such as WHERE ID>15 AND ID<21
or WHERE gender="F".

251

252

Part Il + PHP and MySQL

DELETE

DELETE is pretty self-explanatory: You use it to delete the contents of one or more fields
permanently from the database. The syntax is:

DELETE datapoint
FROM table
WHERE condition;

The most important thing to remember is the condition —if you don’t set one, you will delete
every entry in the specified columns from the database, without a confirmation or a second
chance in many cases!

Caution Let us re-emphasize: you must remember to use a condition every single time you UPDATE or

DELETE! If you do not, every single row in the table will experience the same alteration or
deletion. Even very experienced programmers have forgotten to include the condition, to their
vast professional embarrassment. You should also give a good deal of thought to restricting
database permissions so the minimum number of people can perform these potentially dan-
gerous operations.

Database Design

As should be obvious from the previous section, learning to use a SQL database isn’t exactly
rocket science —you can get a lot done with just a few simple commands. The hard part is
designing the database in the first place and, of course, operating it in the real world over
time. Not every Web developer will be asked to design a schema in a professional context,
but it never hurts to know how.

At the most fundamental level, database design can be broken down into the following
mantra cum children’s jingle:

One to one,

One to many,

Many to many,

Many to one;

And always use a unique ID.

An example of one-to-one data for Americans is the Social Security number (other nations
probably have similar identification cards with unique numbers). Each U.S. citizen has only
one unique identifier; it is, in fact, a crime to use the Social Security number of another indi-
vidual or apply for more than one number. Database designers seize upon truly unique identi-
fiers such as this because almost every other piece of personal information is subject to
change — which accounts for the large number of businesses who inappropriately use the
Social Security number for identification purposes.

One-to-many data and many-to-one are the same, differing only in how the columns are placed
in a database. An example of one-to-many data comes from the medical realm: patients to vis-
its. Each patient will always be a discrete individual but may have any number of visits to the
doctor. If you designed the table to represent visits to patients, it would instantly become
many-to-one data.

Chapter 13 4+ SQL Tutorial

Finally, many-to-many data is well represented by the relationship of authors to books. Not
only can a given book have multiple authors, but each author may have written or co-authored
many books. This is not a matrix of relationships that would be easy to represent efficiently
in a spreadsheet, but it is precisely this category of data at which relational databases most
excel.

Every data relationship falls into one of these categories. As a database designer, it’s your
job to decide which one of these represents what you need to know in the way you need to
know it.

This is not as trivial as it sounds. Imagine you want to develop a database of movie information.
One decision you might have to make is whether movie and title are in a one-to-one relationship
with each other, or whether enough films have alternate titles to merit an alternate title field
or even a one-to-many representation. There’s no right answer here —the decision depends on
exactly how the information will be used, how large the database will be, if the extra resources
required to maintain a more precise data structure are worth the cost, and whether there’s a
better-than-even chance that today’s tangential trivia will become tomorrow’s crucial discov-
ery. Some people may be surprised to learn that archiving information can be as much about
ruthless excluding as about careful hoarding. As historians say, history is about forgetting as
much as it is about remembering.

The simplest relationship is the one-to-one because you can group all these fields into a single
table that can be searched more quickly. For instance, a table holding customer information
might contain the following fields:

Customer ID

Customer name
Administrative contact
Technical contact

The hardest thing about the one-to-one relationship is definitively deciding that you will never
need to make it into a one-to-many relationship. For instance, what if your biggest customer
decides it wants to designate two technical contacts?

As soon as you have a one-to-many, many-to-one, or many-to-many relationship, you're look-
ing at going from a single table to multiple tables: one each for the main variables and one
stating the relationship. Tables 13-4 through 13-6 show a common example of a many-to-many
relationship:

Table 13-4: Customer

Customer_id Name
1 Acme Bread
2 Baker Construction

3 Coolee Dam

253

254

Part Il + PHP and MySQL

Table 13-5: Interactions

Interaction_id Type

1 Phone-support incident
2 On-site incident

3 Written complaint

4 Phone complaint

5 Kudo

Table 13-6: Customer-Interaction

Customer-interaction_id Customer_id Interaction_id
1 1 1
2 3 5
3 2 4
4 2 3
5 1 2

After you've decided on a database design, the mechanical details of constructing the
database are minimal. The main data structure statements of SQL are CREATE, ALTER, and
DROP.

CREATE is used to make a completely new table. All the work is in defining the columns of
each table. First you declare the name of the table, and then you must detail the specific data
types of that table’s columns in what is called a create definition. A CREATE statement will take
this form:

CREATE TABLE tablename (

id_col INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
coll TEXT NULL INDEX,

col2 DATE NOT NULL

)

Different SQL servers have slightly different data types and definition options, so the syntax of
one may not transfer exactly to another. For instance, Oracle databases do not auto-increment;
to get a new value, you must generally call a function.

DROP can be used to completely delete a table and all its associated data. It’s not the most
subtle command:

DROP TABLE tablename;

Obviously, you need to be very careful with this statement.

Chapter 13 + SQL Tutorial 255

ALTER is the way to change a table’s structure. You simply indicate which table you’re changing
and redefine its specs. Again, SQL products differ in functionality here. The ALTER statement
usually takes this form:

ALTER TABLE table RENAME AS new_table;
ALTER TABLE new_table ADD COLUMN col3 VARCHAR(50);
ALTER TABLE new_table DROP COLUMN col2;

Privileges and Security

As we state in Chapter 29, security online is analogous to security in the real world. Any cop
will tell you that you cannot make your home absolutely crime-proof. A more realistic goal is
to increase the difficulty and risk to a level where a large percentage of intruders will choose
to go to an easier target down the block.

Using a database with PHP can be similar to using two locks on your front door, substantially
enhancing the safety of your site by reducing super-risky operations like system file writes —
but only if you follow a few elementary rules of database hygiene. PHP makes many of these
techniques a little easier to implement, which means you have fewer reasons to skimp on
security.

Setting database permissions

The most fundamental rule of database use is to give each user or group only the minimum
permissions necessary to do what needs to be done. You wouldn’t let strangers walk into
your house and kick back in your bedroom and read your diary — so why should you give
them the option to do analogous things on your site? It’s a little more work to manage multiple
users and make sure all the permissions are set to the right levels at all times; but if that tiny
pinprick of pain can prevent a massive infection later, you’d be extremely foolish to refuse
this simple but effective prophylaxis.

Besides the threat of malicious/experimental outsiders, setting the correct permissions can
protect you from your coworkers and yourself. Insiders have been known to cause massive

problems through disgruntlement, ignorance, momentary brain freeze, or a combination of

motives. You do not want to have to cope with the consequences of a fired employee’s part-
ing shot or a new intern trying out the DROP database command just to see what happens.

A typical database permissions package might be something like:
4+ Web visitor: SELECT only
4 Contributor: SELECT, INSERT, and maybe UPDATE
4+ Editor: SELECT, INSERT, UPDATE, and maybe DELETE and maybe GRANT
4 Root: SELECT, INSERT, UPDATE, DELETE, GRANT, and DROP

DROP in particular is the nuclear bomb of SQL because it allows you to blow away an entire
table or database with a single command. Someone’s got to have the ability, but heavy lies
the tiara of responsibility on the head of the root database user. Use the power wisely,
grasshopper.

256

Part Il + PHP and MySQL

In many databases, including MySQL, passwords are encrypted using a different algorithm
from system passwords (and, of course, they are typically stored in entirely different loca-
tions). Even if one is cracked, the other is not necessarily vulnerable. This assumes you take
the time to set permissions correctly, pick good passwords, and usually employ a special
command to insert usernames and passwords correctly into the grant table (as opposed to
inserting them like other data).

Caution Database usernames and passwords should not be identical to system usernames and pass-

words. Never, ever, ever set any database password to the root system-user’'s password! If
crackers should happen to get into your database via Web scripts, you don't want to offer
them the key to the whole system.

- Cross- ‘X Chapter 14 covers permissions for MySQL specifically.
| Reference \

=

—

Keep database passwords outside the Web tree

It’s a good idea to separate passwords from the Web pages that use them. With PHP’s include()/
include_once() and require()/require_once() functions, it’s very easy to drop in text (such
as database passwords) from another file at runtime. Remember that these included files do not
have to be in a PHP or Web server—enabled directory! Whenever possible, keep them somewhere
outside your Web tree, such as in the directory above your Web document root or in a home
directory.

Taking the database variables out of PHP files is also good for other reasons. If you have
many PHP scripts using the same database, they can all use the same password file. When
you suspect the password has been compromised, or when you change the password on a
regular schedule, you need only alter one script for all the files to be updated.

The unavoidable downside of this technique is that the file must be readable by the Apache
user. Because the Apache user and the database user are seldom the same, that means in
practice the file must be world-readable. This should still be safer than keeping the database
variables inside a public Web root directory.

If you have a set of database variables you use infrequently —a configuration script or the
like —you can keep it in a non-Apache-readable directory and change the permissions only
on the rare occasions necessary. We infrequently have to go to the trouble to delete postings
from our sites’ forums. So it’s not that much more work (and much more secure) to keep this
file in a non-Apache-user-owned directory, once in awhile change the permissions just long
enough to delete the offending post, and then immediately change everything back.

If for whatever reason, you decide to put your database username, password, hostname, and
database name into a PHP script in plaintext, this is what you can expect. If the httpd is func-
tioning normally, the database passwords should be as safe as any file on that server — which
is to say, not extremely. But if the daemon goes down, there is some chance your raw PHP
(including plaintext database variables) will be delivered in a human-readable form. You can
reduce this risk by avoiding the use of the .htm1 suffix for PHP files.

In PHP3, if database connectivity went down and you hadn’t specified silent mode, you would
see something like the following:

Warning: MySQL Connection Failed: Access denied for user:
'someuser@localhost' (Using password: NO) in
/home/web/html/mysqltest.php3

on line 2

Chapter 13 4+ SQL Tutorial

This constitutes a security breach, because it reveals your MySQL username and whether or
not you use a password. From PHP4 forward, MySQL error messages are no longer displayed
by default. Two functions, mysql_errno() and mysql_error(), allow you to opt for error
codes or text warnings —but now you have to deliberately choose to ask for the information.
Because, in most cases, you can opt for the more configurable die() instead or remove error
messages after debugging, it’s still not a good idea to use mysq1_error on a public production
server unless you scrupulously send messages to error logs using the error_log() function
rather than to standard output.

Use two layers of password protection

Belt-and-suspenders types can apply even another layer of protection to their most sensitive
PHP scripts by means of another round of usernames and passwords stored in the database
itself, which you can check directly from the PHP script. So you would have your system login/
password, plus database user permissions stored in a non-Web-accessible directory, plus a
PHP name/passphrase testing script with values entered by hand just before the script is run.

This is a typical login form that checks a password against the database:

<HTML>

<BODY>

<FORM METHOD=POST ACTION="form_check.php">

<P>Username: <INPUT TYPE="TEXT" SIZE=20 NAME="try_user"></P>
<P>Password: <INPUT TYPE="PASSWORD" SIZE=10
NAME="try_pass"></P>

<P>Date: <INPUT TYPE="TEXT" SIZE=10 NAME="try_date"></P>
<P>Entry:

<TEXTAREA COLS=50 ROWS=10 NAME="try entry"></TEXTAREA></P>
<P><INPUT TYPE="SUBMIT"></P>

</BODY>

</HTML>

This file is the form handler mentioned in the ACTION attribute of the preceding form, named
form_check.php.

<?php

// Check Unix user

if ($REMOTE_ADDR != '127.0.0.1") {
die;

}

// Check database user

// Webvars.inc is a file with $host, $db_user, and $password
// values in it

include("/home/phpuser/Webvars.inc");
mysqgl_connect($hostname, $db_user, $password)

or die("You are not the database user I'm looking for");
mysql_select_db("captainslog");

// Check form user

$post_try_user = $_POST['try_user'];
$post_try_date = $_POST['try_date'];
$post_try_entry = $_POST['try_entry'];
$query = "SELECT password

257

258

Part Il + PHP and MySQL

FROM finalcheck

WHERE user='$post_try_user'";
$result = mysql_query($query);
$passcheck = mysql_fetch_array($result);

if($passcheck[0] == $_POST['try_pass']) {

// Enter new entry.

$query = ("INSERT INTO captainslog (ID, date, entry)
VALUES(NULL, '$post_try_date', '$post_try_entry')");

$result = mysql_query($query);

print("New entry result is $result.");
} else {

mail("security@localhost", "Database alert", "Someone from
$REMOTE_ADDR is trying to get into your captain's 10g.");
>

As you can see from this example, this script will not insert anything into the database if a
valid username and password are not provided or the user isn’t logged into the localhost.
You will also get an e-mail message warning you of a possible breach attempt.

Learn to make backups

And finally, the biggest part of database security may be backing up. Take an hour to learn
the best way to back up data in your particular database (for example, via the mysqgldump
command in MySQL), and then schedule regular backups right away. Even better, with a little
foresight you can also set up an automatic database backup schedule.

Summary

SQL is not rocket science. The four basic data-manipulation statements supported by essen-
tially all SQL databases are SELECT, INSERT, UPDATE, and DELETE. SELECT gets data out of the
database, INSERT puts in a new entry, UPDATE edits pieces of the entry in place, and DELETE
gets rid of an entry.

Designing databases is where most of the difficulty lies. Not all Web developers will be asked
to do this. The designer must think long and hard about the best way to represent each piece
of data and relationship for the intended use. Well-designed databases are a pleasure to pro-

gram with, while poorly designed ones can leave you pulling your hair out while contemplat-
ing numerous connections and icky joins.

SQL databases are created by so-called data structure statements. The most important of
these are CREATE, ALTER, and DROP. As one would expect, CREATE TABLE defines a new table
within a database. ALTER changes the structure of a table. DROP is the nuclear bomb of SQL
commands because it deletes entire tables or sometimes even whole databases.

Good database design is also a security issue. By employing reasonable prophylactic measures,
a SQL database can enhance the security of your site. The best defense against intrusion, of
course, is maintaining a strict backup schedule —so every new SQL maintainer should learn
the most efficient way to make backups.

+ s+

e
MySQL Database |

Administration

+ 0+ e

In This Chapter

MySQL is one of the ez?siest d'atabas.es to.administer on all plat- MySQL licensing
forms; and because it’s so lightweight, it can run on even low-

powered PCs. Thus, PHP developers have long found it convenient to Installing MySQL
throw a copy of MySQL on client machines —even on laptops —for

a complete local Web development environment. Many developers Administering MySQL
learn to run their own MySQL installations so they can work at home

or on the road, using the OS of their choice. Work teams also some- PHPMyAdmin
times prefer developers to each use a separate local MySQL installa-

tion, so that there is no single point of failure that could affect an Backups

entire development group. And many PHP-based Open Source pro-

jects assume complete familiarity with MySQL database administra- Replication

tion for all developers.
Recovery

Unlike some other databases, it should be well within the capability

of any PHP developer to self-administer a MySQL database. There are <+ <+ <+ <+
a plethora of tools, both in MySQL itself and available from third par-

ties, to make this job even easier. Many PHP-based application pack-

ages, both commercial and Open Source, also require familiarity with

a MySQL database to install, run, and debug the Web app. So even if

you don’t plan to write all your own PHP code yourself, getting com-

fortable with MySQL administration will pay many dividends.

MySQL Licensing

Before installing any piece of Open Source software, you should
clearly understand all the associated licensing issues. This is espe-
cially true of products like MySQL that have dual commercial and
Open Source licenses.

Unfortunately, MySQL licensing at the time of this writing is in flux
and has caused momentary incompatibilities with PHP’s license. Until
this situation gets definitively ironed out, PHP developers need to be
extra careful to ensure that they are in compliance. This goes double
for anyone who distributes (rather than simply uses) MySQL in either
a commercial or open source context.

For some of the later releases of PHP4, MySQL client libraries were
bundled with PHP. In the summer of 2003, MySQL AB — creators of
the MySQL database — decided to adopt the General Public License
(GPL) for noncommercial use. In many ways, this is a simpler and

260

Part Il + PHP and MySQL

less restrictive licensing scheme than before, but it happened to be incompatible with PHP’s
Apache-style license, and therefore the PHP Group no longer felt able to distribute the database
libraries. At press time this issue was in the process of being amicably worked out to allow
Open Source “combined works” to be distributed without charge —but you should still check
to be absolutely positive that this is the case. The definitive location for MySQL licensing
information is www.mysql.com/doc/en/Licensing_and_Support.html.

There are separate sections for commercial use and for use under the GPL—which is probably
the use most relevant to most PHP developers.

You should read the license carefully, but here are some common use cases that will be
affected by MySQL'’s new licensing scheme:

4+ Web site only: If you use MySQL solely as part of a commercial or noncommercial Web
site, you may use it without worrying about licensing issues. MySQL AB suggests you
purchase a support contract to further development work.

4 Open Source project under GPL: If you distribute MySQL server or client libraries as
part of an Open Source project properly released under the GNU General Public License,
you can (and must) redistribute MySQL and its source code freely.

4+ Commercial redistribution: If you bundle MySQL server or client libraries as part of a
commercial product, you must purchase a commercial license from MySQL AB.

4 Open Source project under non-GPL license: This is the potentially problematic situa-
tion at the moment, because if you bundle MySQL server or client libraries with your
non-GPLed Open Source project, your code could be infected by the GPL. Check the
MySQL licensing page to determine the most current status of MySQL in relation to
your project.

Remember that in many cases you can evade these licensing strictures simply by not redis-
tributing the database yourself but rather requiring your users to procure and install MySQL
separately.

Installing MySQL: Moving to Version 4

Remember to install the MySQL server and client libraries before installing PHP! Although it’s
not strictly necessary in every circumstance, especially on Windows, it’s always a good habit
with PHP to make sure that all third-party servers and libraries are properly installed before
telling PHP to link to them.

Preinstall considerations

MySQL was in version 3 for a long time, and many PHP developers got used to working with
it during this period. However, MySQL 4 has introduced some innovations and changes, both
on the database side and the PHP side. Both new and experienced webdevs should take the
time to familiarize themselves with these changes. Even if you have a lot of experience with
MySQL 3, you shouldn’t necessarily expect to be able to install and use MySQL 4 with exactly
the same procedures.

There are three main MySQL-specific issues to consider before you install new versions of
MySQL and PHP: incompatible new client libraries, the new PHP mysqli extension, and new
table types that support transactionality.

"Note

Chapter 14 + MySQL Database Administration 6]

Transactionality basically means the ability to treat a group of database operations as a single

g unit for the purposes of accepting or rejecting the data. So for instance, an e-commerce trans-

action might have several steps touching numerous different tables — registering you as a new
user, collecting your payment and shipping information, debiting the product from inventory,
and so forth —but you don't want any of these changes to be made unless the credit card
charge goes through successfully, even though that step comes at the end of the purchasing
process. In this case, you need a transactional database that will keep track of changes
throughout the process and either commit them all as a unit or roll them all back as a unit.
Until version 4, MySQL was not a transactional database, but now it supports transactionality.

New client libraries

The client libraries for MySQL 3 and 4.0 are forwards-incompatible with the MySQL server
from version 4.1 and up. Therefore, if you want to use MySQL 4.1+, you will have to rebuild
PHP with the new libraries. The reverse is not true: MySQL 4.1 client libraries can still be
used with older versions of MySQL server. You may also have to update your permissions
table and any columns containing password hashes calculated by MySQL that you have
created in any tables.

The main difference between the client libraries has to do with authentication. The MySQL
PASSWORD () function used to result in a 16-byte hash. From version 4.1.1 onward, it now
results in a 41-byte hash. Since MySQL uses the PASSWORD () function to set its own user
permissions schemes, you will need to update pre-4.1.1 MySQL grant tables using the
mysql_fix_privilege_tables script. You will also potentially need to alter by hand any
columns in other tables that take input from MySQL’s PASSWORD () function, making them
41-bytes long. The actual contents of these columns do not need to change —MySQL 4.1
will continue to accept hashes shorter than 41 bytes — but the column sizes need to be
increased to accommodate new values.

mysqli

The i in mysqli stands for improved. The new mysqli extension to PHP was designed to let you
access the new functionality of MySQL 4.1 and above — especially transactionality, which is
the biggest new feature of MySQL 4.

Caution The mysql extension works only with versions of MySQL below 4.1; the mysqli extension

works only with versions 4.1 and above of MySQL.

Unfortunately, this extension is not easily compatible with the old mysql extension and its
associated functions. Therefore, it’s best to choose one or the other at compile time. At the
time of this writing, the mysqli extension is considered experimental and should probably not
be used in production.

It’s theoretically possible to compile PHP with both mysql and mysqli extensions — if for
instance you want to use both a 3.x and a 4.1+ version of MySQL on the same machine — but
you’ll have to be very careful to avoid conflicts between client libraries. In practice, it’s better
to simply choose one or the other.

Caution Comp Svcs: Note two successive hyphens in the following paragraph. Do not change to an

em dash.

If you choose to try mysqli, remember to disable the mysql extension, which is usually
enabled by default. (In Unix builds, use the without-mysql flag; in Windows, comment out
the mysql.d11 extension in php.ini.)

262

Part Il + PHP and MySQL

Tip

Transaction-safe tables

For most of its existence, MySQL used tables of a proprietary type called MyISAM. Late in the
3.xx release cycle, it introduced two new types, ISAM and heap, but they have not become
hugely popular. To this day, MyISAM is the default and by far the most common type.

However, to support transactions in MySQL 4.1+ the MySQL team created two new types of
transaction-safe tables: InnoDB and BDB. If you want to use commits and rollbacks, you must
compile MySQL with the ability to recognize one of these types and define each table as
InnoDB. You can mix different table types in the same database, and also convert a MyISAM
table to an InnoDB table. You might also consider mixing types by using InnoDB tables on

a master database that accepts writes, while sticking with MyISAM for slave databases that
provide only reads.

Think hard about whether you really need transaction-safe tables. They impose quite a bit of
extra overhead and are thus slower, take up more room on disk, and require different tools
and procedures. Some things, such as recovering from database corruption, are consider-
ably different and possibly harder (although also potentially less common) if you're using
transaction-safe tables. On the other hand, if you wish to use MySQL in enterprise situations
with transactions, row-level locking, foreign keys, and hot backup, you’ll want to research the
InnoDB alternative.

The other type of transaction-safe table, BDB, is based on Sleepycat Software’s BerkeleyDB
storage engine. BDB does not offer some of the other features of InnoDB, such as foreign keys
and row-level locking, and it’s a bit unclear which company will provide support for this setup.

Because transaction-safe tables are still so uncommon, and presumably used mostly in situa-
tions where resources are available for specialized database administrators and tools, the bulk
of this chapter will concentrate on MyISAM tables. For more information on InnoDB tables,
refer to www. innodb.com or www.mysql.com/doc/en/InnoDB.html.

The Windows binary version of the MySQL server is built with InnoDB enabled by default.
_ However, your tables will not actually be of the InnoDB type unless you define them to be.
s

Downloading MySQL

All downloads for MySQL are located at www.mysql.com/downloads/index.html. Pick the
version number you want and, as exactly as possible, the platform you want.

One peculiarity of MySQL is that, unlike most other Open Source servers, the producers pre-
fer installation from binary rather than source. There may be situations where you have to
build yourself, but in general it should be avoided if at all possible.

MySQL is now sometimes distributed in Linux distros or as part of other packages; for the
freshest builds, however, it’s better to uninstall these versions using whatever tools are pro-
vided by your platform and then reinstall a new version.

Installing MySQL on Windows

Default installation on any version of Windows is now much easier than it used to be, as MySQL
now comes neatly packaged with an installer. Simply download the installer package, unzip it
anywhere, and run setup.exe. This will walk you through the trivial process and by default
will install everything under C:\mysql, which is probably as good a place as any.

Chapter 14 + MySQL Database Administration

Test the server by firing it up from the command prompt the first time. Go to the location of
the mysqld server, which is probably C:\mysq1\bin, and type:

mysqld --console

If all went well, you will see some messages about startup and InnoDB. If not, you may have a
permissions issue. Make sure that the directory that holds your data is accessible to whatever
user (probably mysq1) the database processes run under.

However, despite the nifty new install, MySQL AB has not gone all the way with the Windows
Ul paradigm. The preferred way to run the MySQL server, client, and tools is still from the
command prompt. MySQL will not add itself to the start menu, and there is no particularly
nice GUI way to stop the server either. Therefore, if you tend to start the server by double-
clicking the mysq1d executable, you should remember to halt the process by hand (using
mysqladmin, Task List, Task Manager, or other Windows-specific means) before you shut
down the computer.

Another rather odd way in which Windows users have it much harder than Unix users is that
the MySQL manual currently comes distributed in one huge HTML or text file for Windows
users, both in the Windows build and for download as a zip file. This file is so big that you
may find it unusable if your Windows machine is not new and fast. If possible, grab the tarball
version with one HTML file per chapter. You can extract it on a Unix machine and then copy
the files over to your Windows box. Or you can always use the online documentation if you
have reliable Internet access.

The Windows version of PHP comes with MySQL enabled by default, so you should now be
good to go (modulo user management stuff, which we will describe in a later section). If you
wish to turn off the mysql extension in favor of the mysqli extension, you need to comment
out the mysql line and uncomment the mysqli line in the modules section of php.ini.

Installing MySQL on Unix

If possible, use one of the binary versions of MySQL, preferably one with an installer. On
some platforms (notably Linux), you will need to download the server and clients separately;
on others, they are conveniently bundled. There is now a good selection of binaries, so it will
not be necessary for most people to build MySQL by hand. Some packages are distributed by
third parties, such as Debian, rather than by MySQL AB. Look around your usual source for
binary packages specifically built for your platform if you don’t see a binary build on
mysql.com.

There can be very wide variation in where MySQL programs and data files are located, based
on precisely which package you’re using and where you got it. The mysql.com manual contains
a section on installation layouts, but it’s often inapplicable or inaccurate. The most common

locations are /usr, /usr/local, and /var.

If you have to use a generic binary instead of a cushy installer-based version, installation will
require a few extra steps. Type the following lines at the prompt to create a new mysql user
and install MySQL to run as that user (you’ll have to be the root user):

groupadd mysql

useradd -g mysgl mysql

cd /usr/local

gunzip < /path/to/mysql-VERSION-0S.tar.gz | tar xvf -
In -s full-path-to-mysql-VERSION-0S mysq]l

263

264 Partll + PHP and MySQL

cd mysql
scripts/mysqgl_install_db

chown -R root

chown -R mysql data

chgrp -R mysql

bin/mysqld_safe --user=mysql &

Users of MySQL 3.x should note that the new startup script for MySQL is now called
mysqld_safe rather than safe_mysqld. However, the latter will still exist as a symbolic link
during some transition period for backward compatibility.

Now you are ready to build PHP with the MySQL client libraries. Use the --with-mysql=/
path/to/mysql flag for older versions of MySQL or the --without-mysql --with-mysqli=/
path/to/mysql_config flags for 4.1+ versions of MySQL. Note that in MySQL 4, you should
link to the actual location of mysq1_config rather than just to the MySQL directory. The
mysql_config script is a tool that helps provide information about compiling MySQL clients,
such as library location.

Installing MySQL on Mac OS X

MySQL AB now maintains an OS X-specific binary installer distribution that delivers a disk
image rather than a tarball. Simply download the . dmg file, and double-click the resulting
icon. The installer will walk you through the process, and suggest a default installation path.

Mac Internet Explorer users may find that the MySQL file downloads under the name
download.php rather than as mysql-standard-4.x.x.dmg. In this case, simply allow the
download to complete and then change the name of the file.

Post-installation housekeeping

MySQL ships with a blank password for the root MySQL user. As soon as you have success-
fully installed the database and clients — preferably even before you build PHP with MySQL
support —you need to set a root password:

mysqladmin -u root password 'new_password';
Obviously, you will replace the preceding word new_password with an actual password.
Caution Under no circumstances whatsoever should you even think about using your server machine’s
root user's password as the root password here! The server root user and the database root

user have no relationship to each other. Also, don't use your normal user password as the
database root password. Come on, don't be lame — make up a fresh password.

Unix users will also want to put your MySQL directory in your PATH, so you won’t have to
keep typing out the full path every time you want to use the command-line client. For bash,
it would be something like:

export PATH=$PATH:/usr/local/mysql

Adjust this to suit your own shell. If you add an entry for this location to the PATH line in your
shell’s startup file (for example, .bashrc), you won’t have to do this step every time you log in
to the machine.

Your MySQL server is now ready to use.

Chapter 14 + MySQL Database Administration 265

Basic MySQL client commands

It may surprise you to know that the binary named mysq1l in your mysql1/bin directory is not
the server, but the client (the server is mysqld). When you type mysq1 into a shell, you are
using the MySQL command-line client to access some MySQL server.

To connect to the MySQL server using the command-line client, the basic command is:
mysqgl [-h hostname] [-P portnumber] -u username -p

You almost certainly need to pass the username; if you don’t, the client will try the name of
your shell user. If you don’t pass the password flag, mysql will check whether a password is
needed for the user you claim to be —and if so, it will reject you. If you're connecting to a
local host, you don’t need the hostname flag; if you're connecting to the default port (3306),
you don’t need the port number flag. There are a bunch of other options, but usually this is
all you need the first time. Assuming you use the username root, you will be prompted for
the root password that you just set in the previous step.

At this point, you will need to select a database to use. The command for that is:
USE databasename;

The semicolon is optional for this command, but you need one for every other SQL command
so you might as well get used to using it. Until you create new databases, there are only two
databases in a fresh install: mysq1 and test. If you just connected to MySQL as the root user,
you have access to both; if you are connected as any other user, you have access only to test.

The command SHOW TABLES; will dump a list of all the tables in this database.

To quickly see the structure of a database table, use SHOW COLUMNS FROM tablename;. This
displays all the columns with their types, sizes, default values, and other helpful information.

To see all the values in a table, just do a SELECT with unrestrictive conditions:
SELECT * FROM tablename;

Be careful though, since in live databases this kind of query can be huge and take up a lot of
resources. If you have reason to suspect that the data set is more than a few rows, you should
take steps to limit the query.

- Cross- ‘X See Chapter 13 for more information on how to write SQL statements like SELECT, INSERT,
| Re“”i‘l‘f_ﬁ_\ and so forth. Remember that one of the best ways of debugging problems with SQL state-

|

ments in your PHP code is to try them out (with suitable fake data plugged into the vari-
ables) using the MySQL command-line client rather than the PHP client. See Chapter 19 for
more information on debugging SQL in your PHP.

Finally, to get out of the MySQL client session, use the command qui t ;. Again, the semicolon
is optional for this command. This should drop you back into your normal shell.

MySQL User Administration

A big part of using MySQL safely and effectively is understanding its privilege system, and
learning how to use the tools provided for controlling user privileges.

266

Part Il + PHP and MySQL

MySQL allows you to grant quite fine-grained permissions to different users from different
client locations. There are four descending levels of privileges: global, database, table, and
column. So in theory, you could allow a particular user to write data only to certain columns
of certain tables of certain databases on your MySQL server. Or you could just as easily give
any database user connecting from anywhere the same powers as the root database user
(although this is totally not recommended).

Of course, for security reasons it’s generally a good rule of thumb to grant each user only the
minimal permissions necessary to perform his or her function. But here’s the tradeoff: the
more fine-grained your permissions scheme, the slower each and every INSERT, SELECT,
UPDATE, and DELETE will be. This makes sense, because MySQL is checking more grant tables
for more fine-grained permissions. Realistically, not everyone really needs to worry about the
performance hit— but if you do, you’ll have to make some tradeoffs between security and
performance.

The heart of the MySQL permission system is a table that every database administrator
should become very familiar with: the user table of the mysql database (which, along with
a database called test, ships with every installation of MySQL). Let’s look at a simplified
version of this table (apologies for the line-wraps, but that’s how you’ll see it in many shell
windows too).

mysql> select * from user;

RREEEEE R oo L EEE T L EEE LR L EEE LR +
————————————— e ittt
| Host | User | Password | Select_priv | Insert_priv
Update_priv | Delete_priv |
TR +o----- LT e e it +
————————————— o4
| Tocalhost | root | | Y | Y
Y | Y | Y | Y \
| dhcppc? | root | | Y | Y
Y | Y | Y | Y
| Tocalhost | | | N | N
N | N | N | N \
| dheppe2 | | | N | N \
N | N | N | N \
LR R oo REEEEE T L EEEEEEE L EEE LR +
————————————— o4

4 rows in set (0.00 sec)

As you can see, there are several specific global permissions, which are represented in the
table by a Y or an N. A 'Y in the user table stands for a global privilege affecting all tables in all
databases on this MySQL server. If the MySQL server gets a request from a user who has an

N in the field corresponding to that action, it will start going down the hierarchy of privilege
scope —first to the db table for database-level privileges; then if it finds all Ns in that table
too, to the tables_priv table for table-level privileges; and finally to the columns_priv table
for column-level privileges. Only after exhaustively checking all the grant tables will it report
an authentication error to the client.

Caution If you grant column or table level privileges to even a single user among many, MySQL will

check these grant tables for all users. Therefore, giving column or table privileges to even one
user could significantly slow down all your SQL statements for all users.

Chapter 14 + MySQL Database Administration 267/

Caution There is no way to grant a user the ability to create or drop any table of a database without
also giving that user the ability to drop the database entirely. However, you can prevent the
user from creating or dropping other databases on the same server. You also cannot use the
MySQL grant tables to block connections from certain IP addresses or hostnames.

There are two different ways to add or edit user permissions in MySQL (assuming you're the
root database user): by direct SQL statements (for example, putting a Y by hand into every
relevant field of every relevant grant table) or by use of the GRANT and REVOKE syntax. The
latter is easier, and less dangerous if you make a small mistake, since in most cases your query
will choke with a SQL error instead of just leaving a gaping security hole.

To add a new MySQL user:

GRANT priv_type [(columnl, column2, column3)]
ON database.[table]
TO user@host IDENTIFIED BY 'new_password';

where columns and tables are optional and additional priv_types can be appended in a
comma-separated list.

The types of privileges and their scope are shown in Table 14-1.

Table 14-1: MySQL Privilege Scope

Privilege Global Database Table Column

ALL

ALTER

CREATE

CREATE TEMPORARY TABLE
DELETE

DROP

EXECUTE

FILE

INDEX

INSERT

LOCK TABLES
PROCESS
REFERENCES

RELOAD
REPLICATION CLIENT
REPLICATION SLAVE
SELECT

D N N N

A N N Y N N T N N U N N N D N NN
AN N Y N N N N N W N N N N

v v v

Continued

268

Part Il + PHP and MySQL

Table 14-1 (continued)

Privilege Global Database Table Column

SHOW DATABASES
SHUTDOWN
SUPER

UPDATE

USAGE

GRANT OPTION

D Y N N N NN

A N NI NN

Obviously, there’s no point in trying to give anyone the SHUTDOWN privilege at the table level.
You will merely get an error message telling you to RTFM. If you grant ALL to a column, table,
or database, the user will get only the basket of privileges appropriate to that level.

You should be extra-careful about giving users the following privileges, which are all dangerous:
GRANT, ALTER, CREATE, DROP, FILE, SHUTDOWN, PROCESS. No normal database user, especially
a PHP user, should need these permissions in production.

The syntax for revoking privileges is very similar, although simpler:

REVOKE priv_type [(columnl, column2, column3)]
ON database[.tablel]
FROM user@host;

After you grant or revoke privileges to any user, you need to force the database to reload the
new privilege data into memory. You do this by issuing the FLUSH PRIVILEGES command. You
could also start and stop the server, but that’s impractical in many circumstances.

This is all well and good, but by now you’re probably thinking: But what actual permissions
should I actually grant to my actual PHP user? Let’s look at some common cases from the real
world.

Local development

For purely local stuff, especially on a machine that isn’t connected to the Internet all the time
or is tucked securely behind a good firewall, almost anything goes. If you need to experiment
with your schema, this is the place to do it— so it’s appropriate to have permissions like
ALTER, CREATE, DELETE, and DROP in addition to the normal SELECT, INSERT, UPDATE. A lot of
people will find it convenient to just grant ALL PRIVILEGES on a certain database to a local
user, like this:

GRANT ALL PRIVILEGES on database.*
TO username@localhost
IDENTIFIED BY 'password';

Standalone Web site

A self-hosted database probably needs to accept connections from numerous Web servers in
the same domain. In production, all machines should be limited to SELECT, INSERT, UPDATE,
and possibly DELETE —although many systems never actually delete data, and it’s a little
safer not to do so. Since there probably won’t be multiple databases on a standalone Web

Chapter 14 + MySQL Database Administration 269

site’s production database, global permissions are faster with not much more real security
risk. So a possible grant statement might be:

GRANT SELECT, INSERT, UPDATE ON *.*
TO phpdbuser@%.example.com
IDENTIFIED BY 'password';

However, this is the situation that is most likely to use master-slave replication. Often, these
MySQL clusters are configured so that all writes go to the master, while the slaves do nothing
but serve up very fast reads. In that case, you would give only SELECT privileges on each slave
and only INSERT and UPDATE privileges on the master — possibly to two different database
users.

Shared-hosting Web site

If you are an ISP that offers shared hosting, or a customer hosting your Web site on one, your
primary concern should be security over performance. Under no circumstances do you want
one user to be able to tamper with or delete data belonging to another user.

Unless each user has her own MySQL instance running on her own port, the ISP administrator
should not allow users to create or drop globally. Obviously, though, there is no good way to
deny table creates or drops, which (as we explained previously) implies that each user will
also be able to drop his own database if he so desires. Yes, that’s right: If your users can define
new tables, as they almost certainly will have to in this situation, there’s no good way to pre-
vent them from blowing away all their data with a single command! That’s part of the easy-
come easy-go thrill of MySQL. The database administrator can and should, however, prevent
users from being able to do this to other users on the same server.

ISPs should not use wildcarding for usernames or hostnames. Each user account should be
connecting from one and only one server in your own domain space. There’s no good reason
to accept MySQL client connections from outside the firewall — your users should be com-
fortable ssh-ing into their shared hosting space to tinker with their database, or they will want
to use a GUI tool. So a common grant for this situation might be:

GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER
ON database.*

TO user@servername.example.com

IDENTIFIED BY 'password';

One deplorable practice often used by shared hosts is allowing or even requiring a user to
reuse his domain username and password for a MySQL username and password. This is low-
rent and could cause untold problems: If your ISP allows this, we recommend you switch Web
hosts now.

PHPMyAdmin

Although we recommend that you familiarize yourself with the MySQL command-line client
and use it as much as possible, the truth is that many PHP users dislike the command line
and find it difficult to visualize their structured data when they see it in a tiny shell window
with awful line wraps. Some Web hosts also do not grant full shell access and therefore allow
users to administer and view their databases only through a Web interface. So although it
presents many security problems, the demand for Web-based GUI front ends to MySQL was
overwhelming. If you're going to use one of these clients — PHPMyAdmin is the most popular,
but there are several similar packages — you should at least know how to use it in the least
harmful way.

270

Part Il + PHP and MySQL

The major problem with PHPMyAdmin is that it doesn’t make MySQL'’s security issues any
easier to understand —and then it adds some security issues of its own. In addition to MySQL'’s
privilege system, discussed previously, there is a Web security layer to handle appropriately.
Unfortunately, PHPMyAdmin doesn’t necessarily make it easy to get good Web security.

Say you have a Web hosting account with shell access on a computer at a data center some-
where. In a well-run network, you would have to log in to that computer over an encrypted
connection like ssh. Then you would have to enter a separate database username and pass-
word, and possibly a hostname and port number on another machine, to connect to the MySQL
database server — which would only accept connections from you that originated on the spe-
cific computer that you have a user account on. It’s not a perfect system — when it comes to
security, there are no perfect systems — but it’s pretty good.

In contrast, PHPMyAdmin doesn’t necessarily require even one username or password. Anyone
who knows about the existence of your PHPMyAdmin installation can try to access it using a
browser from anywhere —and in the default configuration, they would get right in without
ever hitting an authorization subsystem. Furthermore, the pipe between your browser and
the Web server will not be encrypted unless you go to the trouble to configure your Web
server to accept only HTTPS connections, so all data will pass back and forth over an ordi-
nary HTTP connection.

So how do you get the convenience of PHPMyAdmin while minimizing the risks? First, assess
your needs. A lot of people turn out to use PHPMyAdmin only very occasionally, for instance
to set up an initial database schema. If that describes your needs, then you don’t need to
install PHPMyAdmin on your production server at all. Install it locally, tweak your schema to
your heart’s content, and then dump a copy of your local database as SQL that can be applied
to your production server. It’s very easy, much safer, and minimizes downtime on your pro-
duction servers. See the “Backups” section later in this chapter for more information on mak-
ing copies of database structure and data using mysqldump.

The only drawback of this method is that it becomes quite difficult to make the occasional
small schema change on a database that already has data in it. However, in this case you
could consider disabling PHPMyAdmin when it’s not in use. You would simply set the direc-
tory and file permissions of the PHPMyAdmin directory to disallow connections from the Web
server user (that is, nobody). The next time you need to use PHPMyAdmin, you’d only have
to take a second to reset the permissions so the Web server user could once again read the
files. You'd also want to use http or cookie auth when the Web client was enabled, however.

Another security measure would be to use SSL encryption on your PHPMyAdmin directory.
This will provide a solution to the problem of unencrypted sensitive data being passed
between your Web server and browser. See the following Web sites for more information:

4+ www.modss1.org (Apache httpd)

4+ www.microsoft.com/technet/treeview/default.asp?url=/technet/
prodtechnol/windowsserver2003/proddocs/deployguide/iisdg_mea_nfmd.

asp (IS 6)

The most common method of enhancing security is to use PHPMyAdmin’s http or cookie auth
schemes. These require the creation of a special PHPMyAdmin user who can read the MySQL
grant tables, as well as your normal database administrator user. The http method works only
with Apache. The cookie method encrypts your password before writing it to a cookie, works
on Web servers other than Apache, and is the only method that allows for a complete logout.

Chapter 14 4 MySQL Database Administration 7/ |

To use either http or cookie-based authorization, create the PHPMyAdmin user this way (after
unzipping or untarring the PHPMyAdmin package under your Web server’s document root):

GRANT USAGE ON mysqgl.* TO 'pmauser'@'localhost'
IDENTIFIED BY 'pmapassword';

GRANT SELECT (
Host, User, Select_priv, Insert_priv, Update_priv,
Delete_priv, Create_priv, Drop_priv, Reload_priv,
Shutdown_priv, Process_priv, File_priv, Grant_priv,
References_priv, Index_priv, Alter_priv, Show_db_priv,
Super_priv, Create_tmp_table_priv, Lock_tables_priv,
Execute_priv, Repl_slave_priv, Repl_client_priv
) ON mysqgl.user TO 'pmauser'@'localhost';

GRANT SELECT ON mysqgl.db TO 'pmauser'@'localhost';

GRANT SELECT ON mysqgl.host TO 'pmauser'@'localhost';

GRANT SELECT (Host, Db, User, Table_name, Table_priv,
Column_priv)

ON mysql.tables_priv TO 'pmauser'@'localhost';

For both schemes, you also need to set the following fields in the PHPMyAdmin
config.inc.php file:

$cfgl "PmaAbsoluteUri'] = "http://lTocalhost/phpMyAdmin';
$cfgl'Servers'J[$iJ['host'] = "localhost';
$cfgl'Servers'J[$i]["auth_type'] = 'http or cookie';
$cfgl'Servers'J[$il1['user'] = 'pmauser';

For cookie-based auth, you also need to set the following field:
$cfgl'blowfish_secret'] = 'Supersecret passphrase’;

Now when you try to connect, you will either get an Apache basic-auth popup box or a Web
form. Enter your database administrator’s username and password —don’t use the root
database user, please!l —and you will now have exactly the same MySQL privileges you would
have when using the MySQL command-line client.

Finally, there is one PHPMyAdmin “authentication” method you should not use: the so-called
config method. This simply means you put your database administrator username and pass-
word in the config.inc.php file, and then anyone with a browser will be able to see your
database. The only circumstance in which you should even consider using this method is on
a local machine that does not accept HTTP connections from the outside world.

Now that you've set up PHPMyAdmin, you have easy access to a wealth of information about
your MySQL databases. Once you select a database from the list available to you, you will see
the main database screen, which will resemble Figure 14-1.

From here, GUI users will probably find it easy to navigate PHPMyAdmin. Unfortunately,
PHPMyAdmin uses somewhat different terminology for operations than the MySQL client:
“structure” rather than “show columns”, “browse” rather than “select”, and “export” rather
than “dump” — but a little bit of experimenting should make things clearer.

Caution You may have a few scares with PHPMyAdmin if you happen to be color-blind, because all
the dangerous operations are represented by red icons or links. Luckily, you will be asked to
confirm every drop or mass-delete operation before it happens, which will minimize acci-
dents as long as you don't hit Enter at the wrong time.

272 Partil + PHP and MySQL

B mysql running on localhost - phpMyAdmin 2.5.5-pI1 - Mozilla
f File Edit View Go Bookmarks Tools Window Help
<. =2 . 3a # inii T | & . .
Back i Reload Stap |\J& Imp...192.168.0.3.phpmyadmm.lndex.php.Ia:__! &»_Search Bt m
+| 4% Home | kBookmarks # The Mozilla Organiz... # Latest Builds
Q Database mysql running on localhost i
Home 1 |
Structure | SOL | Export Search Query Drop
lﬁvsm (&) | SRS |~ e] s
Table Action Records Type Size Owverhead
mysql " columns_priv QB & » @ 0 MylSAM 10KB I
gw'wns\.mw [db e B & v o 3 MylSAM 36 KE 153 Bytes
@ db
. Fane I func SO = - 0 MylSAM 1.0KB
0 hast I~ host QLB s R W 0 MylSAM 10KB -
o I tables_priv =N - B 0 MylSAM 1.0KE
T user o R B F 2 o B MylSAM 23KB -
6 table(s) Sum 9 9.9KB 153 Bytes
T Check All / Uncheck All / Check overheaded iWith selected: =
* Print view
» [Data Dictionary
Query window * Create new table on database mysqgl:
Narme : "
i b +Z (2 | Done -

Figure 14-1: PHPMyAdmin’s main database screen

Backups

Database backups can be made in two ways: by copying the data directory directly (either
manually or by means of the mysglhotcopy script on Unix) or by using the mysq1dump tool to
write out a SQL file that will replicate your database. The former is a little faster, but the latter
is more flexible. With mysq1dump you can choose to copy just the structure of the database,
just the data, or both.

The most basic usage of mysqldump is:
mysqldump -u username -p databasename > dumpfilename.sql

This command will dump a text file that can be read into another database server, like this:
mysql -u root -p databasename < dumpfilename.sql

Instead of directing the output of mysqgldump to a file, you can also pipe it directly to another
server, like so:

mysqldump -u username -p databasename |
mysql -h remote-host -u remoteuser -p -C databasename

However, this can be less secure in some cases, since you have to tell the remote host to
accept database-modifying connections from external clients.

Chapter 14 + MySQL Database Administration

This basic command is fine as far as it goes —meaning it will result in a nice SQL file contain-
ing both the structure and data of the named database. But sometimes you will want some-
thing more specific than that: maybe just the structure, or just the data, or all the databases
on that server, or just some tables from your chosen database. MySQL allows you to both
specify different combinations of databases and/or tables and to add option flags to your
command.

If you want to select specific tables to dump from your chosen database, just list them after
the database name:

mysqldump -u username -p databasename tablel table?2
> dumpfilename.sql

If you want to dump some but not all databases on your server, use the --databases flag and
then list the databases. However, in this case, you will not be able to specify tables.

mysqgldump -u username -p --databases databasel database?2 >
dumpfilename.sql

If you want to dump all databases, use the --all-databases flag:
mysqgldump -u username -p --all-databases > dumpfilename.sql

You can specify any of these options before specifying the databases and tables. There are
many mysqldump options, but Table 14-2 lists the most commonly used options.

Table 14-2: mysqldump Options

Option Explanation

--add-Tocks Adds table locking to SQL file for faster inserts on the target
table. See also - -opt.

--add-drop-table Will overwrite each table definition. Be careful with this option,
as you could delete data! If you don't use this option but a
table of the same name already exists, you will get an error on
the target database.

-a, --all All options. Be careful!

-c, --complete-insert Use more complete insert statements with column names,
instead of simply reading in values.

--help Displays help message with options.

-1, --Tock-tables Locks tables on the source machine before the dump.

-n, --no-create-db Will not create databases of the specified names if they

don't exist already. Default with the - -databases and
--all-databases options.

-t, --no-create-info Will not create tables of the specified names if they don't exist
already.
-d, --no-data Just the structure of the specified database(s) or tables.

Continued

273

274 Partll + PHP and MySQL

Table 14-2 (continued)

Option Explanation

--opt Equal to --quick --add-drop-table --add-locks
--extended-insert --lock-tables. Fastest possible
dump. Make sure you want to drop existing tables if there's
a conflict.

-q, --quick No buffering.

-r, --result-file=filename Dump result to file. In DOS, creates Unix-style line breaks.

-w, --where="condition’ Select results by the WHERE clause in single quotes.

Because mysqldump is so easy to use, you should have no excuse for not adhering to a regular
backup schedule. This is why cronjobs were invented! If your data changes relatively infre-
quently, you might be able to get away with weekly or fortnightly backups; if you have a fairly
high-traffic site, you’ll want to schedule one every night.

Users of PHPMyAdmin have access to mysqldump through the Export tab. However,
PHPMyAdmin currently offers only the most common options for your data dump. If you need
more control over the format of your SQL file, you’ll have to use mysqldump as previously
described instead.

Replication

MySQL replication is based on a one-way single-master, single-or-multiple-slave model. The
master database will handle all writes—meaning all INSERTs, UPDATEs, and DELETEs, as well as
all schema changes. The slaves will periodically get these changes from the master and in the
meantime will be available for highly optimized read-only data serving (meaning all SELECTSs).
The master does not know anything about slave databases. It simply makes its binary logs
available, and the slaves do all the rest: scheduling updates, connecting to the master, getting
the changes, applying the changes, and so on. Thus, slaves are aware of the identity of the
master, but masters are not aware of the identities of slaves.

If the master database goes down for any reason, no replacement will be automatically elected.
The entire system is likely to become unperformative, as the slaves spend many resources
trying in vain to connect to the master for updates, while PHP tries to perform writes without
success. The database administrator will have to manually break the existing master-slave
relationships and designate a new master by hand. Luckily, if something goes wrong with the
master, there’s no way the slaves will have gotten out of sync —so modulo a database admin-
istrator noticing the problem and being available to deal with it, changing to a new master
database should be relatively quick.

Because there have been many changes and upgrades to replication in recent versions of
MySQL, many recent versions are incompatible with other recent versions in a replication
setup. If you want to try replication, we recommend you make sure all the database servers
involved are using the same version of MySQL, and furthermore, that this version be 4.0.3+.
If you are trying to replicate with disparate versions of MySQL between 3.23 and 4.0.3, things
are very likely to not work properly.

Chapter 14 + MySQL Database Administration

In a nutshell, the operations that must be performed to establish MySQL replication are these:
1. Grant permissions to slave user on master.
2. Take snapshot of master data; copy to slave machines.
3. Shut down MySQL servers.
4. Restart MySQL servers with correct server-ids.
5. Establish master-slave relationship from each slave.
Now we’ll explain the process in more detail.

You will need to create an account on the master database for slaves to use, with the
REPLICATE SLAVE privilege. You do not need to grant any other privileges to this account.

GRANT REPLICATE SLAVE ON *.*
TO replicant@'%"' IDENTIFIED BY 'replpwd';

Next, lock the master server and take a snapshot of its state immediately before the replica-
tion. On the master server, log in to a MySQL client session as the root user and issue the
commands:

FLUSH TABLES WITH READ LOCK;
SHOW MASTER STATUS;

This will prevent any changes from being made to the database until you are ready to bring
up the cluster. You may also (depending on whether this server has been run with binary
logging) see some data about the location of the binary log file and offset. If so, write it down;
if not, use the default values ' ' (empty string) and 4, respectively.

Next, copy the master database structure and data. There are two ways to do this. The first
is to simply copy the mysql/data directory into a tarball or zip file by using one of these
commands or a GUI procedure:

tar -cvf master_snapshot.tar data/
zip master_snapshot.zip data/

Alternatively, you can use mysqgldump to make a backup as described in the next section. Copy
this snapshot file to each slave server.

Now shut down all the master and slave servers. Quit out of any mysql client shell sessions,
and issue the command:

mysqgladmin -u root -p shutdown

on each server. The reason you are shutting the servers down is to give them unique server-
id values. They will use these values to find each other when they establish the master-slave
relationship. This value is set in each server’s my.cnf file and will be read in on startup. On
Windows, the my . cnf file is located in one of two places: C: \my.cnf or C: \[Windows
directory]\my.ini. On Unix systems, the global my . cnf file is found in /etc/my.cnf and
the server-specific file (which is probably the one you want to use) is found in /path/to/
mysql/data/my.cnf.

First, set the server-1id on the master machine. Find or create a file called my . cnf in the
proper location for your platform, and make sure it contains the lines:

[mysqgld]
log-bin
server-id=1

275

276

Part Il + PHP and MySQL

Restart the master server:
bin/mysqld_safe --user=mysql

In each slave server’s my . cnf files, you need only the server-id, not the 1og-bin line. The
most important thing is that you are absolutely positive that all the server-id values in your
cluster are unique! If they are not, bad things will happen. So the first slave’s my . cnf file
would contain this line:

[mysqgld]
server-id=2

The second slave would set server-id=3, and so forth.

Now, before you bring up each slave server, you may need to do a little bit of housekeeping.
If this MySQL server has been used as a slave before, you may want to delete the files data/
master.infoand data/relay-1og.info. You may also want to delete the .err and .pid
files in the data directory. Also, if you copied the master’s data snapshot into a tarball or
zipfile, now is the time to copy it to the slave with a command like one of these (from the
mysql directory):

tar -xvf master_snapshot.tar
unzip master_snapshot.zip

If you used mysqldump instead, you have to wait until the server is back up.
Now bring up the slave:
bin/mysqld_safe --user=mysql --skip-slave-start --log-warnings

If you took your master data snapshot with mysqldump, now is the time to apply the SQL file
to the slave:

mysql -u root -p databasename < master_snapshot.sql

Finally, you will establish the master-slave relationship. Log in to a mysql shell and then
enter the following commands, substituting the values you wrote down at the beginning of
the process:

CHANGE MASTER TO
MASTER_HOST="'masterhostname',
MASTER_USER="replicant',
MASTER_PASSWORD="replpwd",
MASTER_LOG_FILE="",
MASTER_LOG_P0S=4;

START SLAVE;

If there are problems, they will appear in the slave machine’s error log.

Recovery

Normally, MySQL does not require much attention. MySQL servers have happily puttered
away for months if not years with minimal administration. However, bad things do happen

to data: Hard disks melt down, hosting centers lose power suddenly, and human error is a
constant and awful probability. If you have insufficient memory for all the applications you're

Chapter 14 4 MySQL Database Administration 77/

running on a server, or insufficient disk space on a partition, you may also get an error that
requires a recovery process. It must be admitted that MySQL seems to have minor database
corruption events with greater frequency than heavier-weight databases — or perhaps it’s
just easier for the administrator to notice these events.

Luckily, MySQL is designed to make it amazingly easy to repair small flaws in your data and
get back up quickly. Only once have we had to actually scrap an entire database after repeated
attempts at recovery, and that disaster was caused by a total hard disk failure, which is some-
thing a developer can do nothing to plan for or recover gracefully from — except make frequent
backups.

MySQL has long shipped with a command-line tool called myisamchk for checking and repair-
ing tables. This was a fine script but it suffered from one flaw: It could be run effectively only
when the database was shut down. That’s fine when you’re actually recovering from a disaster,
since you're unlikely to be able to start your database anyway, but it’s a significant barrier to
trying to head off problems by regularly checking your data tables. Luckily, there is now a new
tool that can be used during operation—mysqlcheck. You can continue to use myisamchk
when the server is not running.

Both these tools basically can do three things: check a MyISAM table for errors, repair prob-
lems, and optimize the database. The syntax by which you use the scripts is different, however.

myisamchk
The myisamchk utility is invoked like this:
myisamchk [options] table_name
or
myisamchk [options] /path/to/mysql/data/database/table.MYI

You can wildcard both database directories and table names with an asterisk, which is more
common than specifying a table, since you usually don’t know exactly which table is causing
the problems. Use the following commands to check all the tables of all the databases on a
server:

myisamchk [options] /path/to/mysql/data/*/*.MYI
myisamchk [options] /path/to/mysql/data/*/*.MYD

.MYI extensions designate index files, and .MYD extensions designate data files—you need to
check both.

With no option flags, myisamchk will simply check the designated table. If you pass the -r
option flag, myisamchk will repair the designated tables. You can also check and repair any
corrupted tables in a single operation:

myisamchk --silent --force --fast --update-state -0
key_buffer=64M -0 sort_buffer=64M -0 read_buffer=1 -0
write_buffer=1M /path/to/mysql/data/*/*.MYI

The command myisamchk -r tablename will also optimize a table that has been fragmented
by deletes and updates.

278

Part Il + PHP and MySQL

mysqlcheck

The new mysqlcheck tool has several handy advantages over myisamchk. As previously men-
tioned, it can be used while the server is running— even while serving up queries. It works
on databases rather than tables, using the same syntax as the mysqldump tool. And instead of
having to remember the meaning of a bunch of option flags, you can copy and rename the
executable to get different behaviors.

The mysqlcheck tool is invoked in one of these ways:

mysqglcheck [options] databasename tablel table2 table3
mysqglcheck [options] --databases databasel database?
mysqlcheck [options] --all-databases

To repair, analyze, or optimize databases, you simply copy the mysqlcheck file and change
its name tomysqlrepair, mysqlanalyze,or mysqloptimize—and then invoke it the same
way. So, for instance, to repair all the databases on your server, you might give this command:

mysqglrepair -u root -p --all-databases

MySQL AB recommends that you set up a regular schedule of data file checking via cronjob,
plus run one of these utilities every time you start up your MySQL server. This should help
keep your data written out compactly for fast reads, head off problems while they’re still tiny,
and minimize your chances of a database problem that is visible to your users.

Summary

MySQL is one of the easiest databases to administer, and learning to do so will offer many
benefits to PHP developers. MySQL installations have become easier of late on many platforms,
and there are GUI as well as command-line tools available to help you view the structure of
your database, manage database users, and make backups. More advanced MySQL adminis-
tration tasks include disaster recovery and replication —both of which are probably as easy
to accomplish on MySQL as they could possibly be made. However, even long-time MySQL
users should consider the impact of recent changes to the MySQL-PHP relationship: licensing
issues, client-version incompatibility, the new mysqli extension, and transactions.

+ 0+ ¢

PHP/MySQL
Functions

After you’ve installed and set up your MySQL database, you can
begin to write PHP scripts that interact with it. Here we will try
to explain all the basic functions that enable you to pass data back
and forth from Web site to database.

'Note Information related to creating a MySQL database is at the end of
o this chapter, because it is a more advanced skill that builds on the
fundamental MySQL skills discussed in the earlier parts of the

chapter.

The development version of MySQL, the 4.1.x series, introduces sev-
eral new features that require some rewriting of the existing MySQL
support in PHP. This new extension to PHP is called MySQL Improved.
It must be built into PHP at install time using the --with-mysqli
configuration directive, and the functions it offers are exposed with
the mysqli_ prefix rather than the older mysql_ prefix. The produc-
tion quality versions of both the MySQL 4.1 series and the new PHP
extension for it are some way off yet, so our focus is on the current
support, which should cover the bulk of the existing MySQL/PHP
installations. The functions are, for the most part, analogous. We will,
however, point out the corresponding mysq1i functions where appro-
priate and highlight any differences so you’ll have an idea what to
expect if and when you decide to make the switch.

Connecting to MySQL

The basic command to initiate a MySQL connection is
mysql_connect($hostname, $user, $password);
if you're using variables, or
mysql_connect('lTocalhost', 'root', 'sesame');
if you're using literal strings.

The password is optional, depending on whether this particular
database user requires one (it’s a good idea). If not, just leave that
variable off. You can also specify a port and socket for the server
($hostname:port:socket), but unless you've specifically chosen
a nonstandard port and socket, there’s little to gain by doing so.

C HIA P LE R

<+

In This Chapter

Connecting o MySQL

<+

<+

MySQlL queries

Fetching data

Metadata

Using multiple
connections

Error checking

Creating MySQL

databases with PHP

MySQlL functions

+

+

+

*

+

280

Part Il + PHP and MySQL

Tip

The corresponding mysqli function is mysqli_connect, which adds a fourth parameter
allowing you to select a database in the same function you use to connect. The function
mysqli_select_db exists, but you'll need it only if you want to use multiple databases on
the same connection.

You do not need to establish a new connection each time you want to query the database in
the same script. You will need to run this function again, however, for each script that inter-
acts with the database in some fashion.

Next, you’ll want to choose a database to work on:
mysql_select_db($database);

if you're using variables; or
mysql_select_db('phpbook');

if you're using a literal string.

You will sometimes see these two functions used with an @ prepended, such as @nysql_
select_db($database). This symbol denotes silent mode, meaning the function will not

4 return any message on failure, as a security precaution. You should have display errors

set to off on production servers anyway.

You must select a database each time you make a connection, which means at least once per

page or every time you change databases. Otherwise, you'll get a Database not selected error.
Even if you've created only one database per daemon, you must do this, because MySQL also
comes with default databases (called mysql and test) you might not be taking into account.

You may find it convenient to group all your connection information into a custom connect
function and put it someplace where you can access it from all your scripts, such as the php
includes directory, or in the case of a virtual server, a site-specific include file. This function
might look like the following:

// Connect to a single db
function qdbconn() {

$dbUser = "myuser";
$dbPass = "mypassword";
$dbName = "mydatabase";
$dbHost = "myhost";

if (1($1ink=mysql_connect($dbHost, $dbUser, $dbPass))) {
error_log(mysqgl_error(), 3, "/tmp/phplog.err");
}
if (Imysql_select_db($dbName, $1ink)) {
error_log(mysql_error(), 3, "/tmp/phplog.err");
}
}

If you like, you could extend this function by creating links (for example, $1ink1, $1ink2) to
multiple databases on the same server. This code also records a MySQL error message to the
PHP error log.

Now that you've established a connection to a specific database, you're ready to make a
query.

Chapter 15 4 PHP/MySQL Functions 281

Making MySQL Queries

A database query from PHP is basically a MySQL command wrapped up in a tiny PHP function
called mysql_query (). This is where you use the basic SQL workhorses of SELECT, INSERT,
UPDATE, and DELETE that we discussed in Chapter 13. The MySQL commands to CREATE or
DROP a table (but not, thankfully, those to create or drop an entire database) can also be used
with this PHP function if you do not wish to make your databases using the MySQL client.

You could write a query in the simplest possible way, as follows:
mysql_query("SELECT Surname FROM personal_info WHERE ID<10");

PHP would dutifully try to execute it. However, there are very good reasons to split up this
and similar commands into two lines with extra variables, like this:

$query = "SELECT Surname FROM personal_info WHERE ID<10";
$result = mysql_query($query);

The main rationale is that the extra variable gives you a handle on an extremely valuable
piece of information. Every MySQL query gives you a receipt whether you succeed or not —
sort of like a cash machine when you try to withdraw money. If things go well, you hardly need
or notice the receipt —you can throw it away without a qualm. But if a problem occurs, the
receipt will give you a clue as to what might have gone wrong, similar to the “Is the machine
not dispensing or is your account overdrawn?” type of message that might be printed on your
ATM receipt.

Another advantage of assigning the query string to a variable is that you can more easily view
the query if you run into an error. Of course, you would accomplish this by writing the variable
out to an error log—never by dumping it out to the browser in production!

The function mysql_query takes as arguments the query string (which should not have a
semicolon within the double quotes) and optionally a link identifier. Unless you have multiple
connections, you don’t need the link identifier. It returns a TRUE (nonzero) integer value if the
query was executed successfully even if no rows were affected. It returns a FALSE integer if
the query was illegal or not properly executed for some other reason.

For purposes of this chapter, we’ve left the link identifier off; however, if you need to use mul-
tiple databases in your script, you can use code like the following:

$query = "SELECT Surname FROM personal_info WHERE ID<10"
$result = mysqgl_query($query, $1ink_1);

$query = "SELECT * FROM orders WHERE date>20030702"
$result = mysql_query($query, $1ink_2);

As expected, the MySQL Improved analog for this function is mysq1i_query. It is very similar
to its counterpart, however the 1ink and query parameters change places and a third param-
eter allows you to specify a result flag indicating how PHP should handle the result.

If your query was an INSERT, UPDATE, DELETE, CREATE TABLE, or DROP TABLE and returned
TRUE, you can now use mysql_affected_rows to see how many rows were changed by the
query. This function optionally takes a link identifier, only necessary if you are using multiple
connections. It does not take the result handle as an argument! You call the function like this,
without a result handle:

$affected_rows = mysql_affected_rows();

282

Part Il + PHP and MySQL

Tip

If your query was a SELECT statement, you can use mysql_num_rows($result) to find out
how many rows were returned by a successful SELECT.

The mysqli_affected_rows and mysqli_num_rows behave exactly the same as their
mysql_ counterparts.

The mysql_num_rows function can be useful in paginating large data sets returned by MySQL
~ queries.
)

Fetching Data Sets

One thing that often seems to temporarily stymie new PHP users is the whole concept of fetch-
ing data from PHP. It would be logical to assume the result of a query would be the desired
data, but that is not correct. As we discussed in the previous section, the result of a PHP query
is an integer representing the success or failure or identity of the query.

What actually happens is that amysql_query () command pulls the data out of the database
and sends a receipt back to PHP reporting on the status of the operation. At this point, the
data exists in a purgatory that is immediately accessible from neither MySQL nor PHP — you
can think of it as a staging area of sorts. The data is there, but it’s waiting for the commanding
officer to give the order to deploy. It requires one of the mysq1_fetch functions to make the
data fully available to PHP.

The fetching functions are as follows:
4+ mysql_fetch_row: Returns row as an enumerated array
4+ mysql_fetch_object: Returns row as an object
4+ mysql_fetch_array: Returns row as an associative array

4+ mysql_result: Returns one cell of data

Caution In our humble opinion, the functions mysq1_fetch_field and mysql_fetch_lengths

are misleadingly named. They both provide information about database entries rather than
the entry values themselves. For instance, one might expect a function named mysql_
fetch_field to be a quick way to fetch a single-field result set (the ID associated with a
particular username, for instance), but that is not the case at all. The actual purpose of these
functions is explained in Table 15-2 at the end of the chapter — but for the moment, the point
is not to be misled into thinking these functions will return database values.

The difference between the three main fetching functions is small. The most general one is
mysql_fetch_row, which can be used something like this:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($name_row = mysql_fetch_row($result)) {
print("$name_row[0] $name_row[1l] $name_row[2]
\n");
}

This code will output the specified rows from the database, each line containing one row or
the information associated with a unique ID (if any).

Chapter 15 4+ PHP/MySQL Functions 2873

Caution In an enumerated array, the integers in brackets are called field offsets. Remember that they
always begin with the integer zero. If you start counting at 1, you will miss the value of your
first column.

The function mysql_fetch_object performs much the same task, except the row is returned
as an object rather than an array. Obviously, this is helpful for those among the PHP brethren
who utilize the object-oriented notation:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($row = mysql_fetch_object($result)) {
echo "$row->ID, $row->LastName, $row->FirstName
\n";
1

The most useful fetching function, mysql_fetch_array, offers the choice of results as an
associative or an enumerated array — or both, which is the default. This means you can refer
to outputs by database field name rather than number:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($row = mysql_fetch_array($result)) {
echo "$row['ID"], $row['LastName'], $row['FirstName']
\n";
1

Remember that mysql_fetch_array can also be used exactly the same way as
mysql_fetch_row—with numerical identifiers rather than field names. By using this func-
tion, you leave yourself the option. If you want to specify offset or field name rather than
making both available, you can do it like this:

$offset_row = mysql_fetch_array($result, MYSQL_NUM);
or
$associative_row = mysql_fetch_array($result, MYSQL_ASSOC);

It’s also possible to use MYSQL_BOTH as the second value, but because that’s the default, it’s
redundant.

In early versions of PHP, mysql_fetch_row was considered to be significantly faster than
mysql_fetch_object and mysql_fetch_array, but this is no longer an issue, as the
speed differences have become imperceptible. The PHP junta now recommends use of
mysql_fetch_array over mysql_fetch_row because it offers increased functionality and
choice at little cost in terms of programming difficulty, performance loss, or maintainability.

Last and least of the fetching functions is mysql_result (). You should only even consider
using this function in situations where you are positive you need only one piece of data to be
returned from MySQL. An example of its usage follows:

$query = "SELECT count(*) FROM personal_info";
$db_result = mysql_query($query);
$datapoint = mysql_result($db_result, 0, 0);

The mysql_result function takes three arguments: result identifier, row identifier, and
(optionally) field. Field can take the value of the field offset as above, or its name as in an
associative array ("Surname™"), or its MySQL field-dot-table name ("personal_info.Surname").

284 Partll + PHP and MySQL

Use the offset if at all possible, as it is substantially faster than the other two. Even better,
don’t use this function with any frequency. A well-formed query will almost always return a
specific result more efficiently.

Caution You should never use mysql_result() to return information that is available to you
through a predefined PHP-MySQL function. The classic no-no is inserting a row and then
selecting out its ID number (extra demerits if you select on MAX (ID)!). Wicked bad style —
use mysql_insert_id() instead.

All of the PHP functions for fetching MySQL data have identical mysqli counterparts. They
take the same parameters and return comparable results.

A special MySQL function can be used with any of the fetching functions to more specifically
designate the row number desired. This is mysql_data_seek, which takes as arguments the
result identifier and a row number and moves the internal row pointer to that row of the data
set. The most common use of this function is to reiterate through a result set from the begin-
ning by re-setting the row number to zero, similar to an array reset. This obviates another
expensive database call to get data you already have sitting around on the PHP side. Here’s
an example of using mysql_data_seek():

<?php

echo ("<TABLE>\NKTR><TH>Tit1es</TH></TR>\n<TR>");

$query = "SELECT title, publisher FROM books";

$result = mysql_query($query);

while ($book_row = mysql_fetch_array($result)) {
echo("<TD>$book_row[01</TD>\n");

1

echo("</TR></TABLE>
\n");

echo("<TABLE>\nN<KTR><TH>PubTishers</TH></TR>\n<TR>");

mysql_data_seek($result, 0);

while ($book_row = mysql_fetch_array($result)) {
echo("<TD>$book_row[1]1</TD>\n");

1

echo("</TR></TABLE>
\n");

?>

Without using mysql_data_seek, the second usage of the result set would turn back no 0
rows because it has already iterated through to the end of the dataset and the pointer stays
there until you explicitly move it. This handy function helps greatly when you are formatting
data in a way that does not place fields in columns and records in rows.

Getting Data about Data

You only need four PHP functions to put data into or get data out of a preexisting MySQL
database: mysql_connect, mysql_select_db, mysql_query,and mysql_fetch_array. Most
of the rest of the functions in this section are about getting information about the data you put
into or took out of the database or about the construction of the database itself. PHP offers
extensive built-in functions to help you learn the name of the table in which your data resides,
the data type handled by a particular column, or the number of the row into which you just
inserted data. With these functions, you can effectively work with a database about which
you know very little.

Chapter 15 4 PHP/MySQL Functions 285

Caution Obviously, you don’t want J. Random Cracker to be able to find out everything about the
structure and contents of your database for the asking. If you have scripts that use these
functions extensively —for instance, some kind of Web database-administration tool —you
need a higher level of security. Make sure only the root MySQL user can use these tools, and
preferably use forms to pass in a password every time, or use one of the methods to limit
usage to certain IP addresses.

The MySQL metadata functions fall into two major categories:
4+ Functions that return information about the previous operation only.
4 Functions that return information about the database structure in general.

A very commonly used example of the first type is mysql_insert_id (), which returns the
autoincremented ID assigned to a row of data you just inserted. A commonly used example of
the second type is mysql_field_type(), which reveals whether a particular database field’s
data must be an integer, a varchar, text, or what have you. Observe however, that this function
is also deceptively named. Rather than returning the MySQL type, it returns the PHP data type.
For example, an ENUM-type field will return ‘string’. Use mysql_field_flags to return more
specialized field information. This should be apparent when you consider that it works on a
result rather than on an actual MySQL field. It would be useful to have a function that got the
possible values for an ENUM field; but there isn’t a canned version at this point. Instead, use a
“describe table” query and parse the result using PHP’s regex functions.

Most of the data-about-data functions are pretty self-explanatory. There are a couple of things
to keep in mind when using them, though. First, most of these functions are only effective if
used in the proper combination —don’t try to use amysql_affected_rows aftera SELECT
query and then wonder what went wrong. Second, be careful about security with the functions
that return information about your database structure. Knowing the name and structure of
each table is very valuable to a cracker. And finally, be aware that some of these functions are
shopping baskets full of simpler functions. If you need several pieces of information about a
particular result set or database, it could be faster to use mysql_fetch_field than all the
mysql_field functions one after the other.

All of the MySQL metadata functions are fairly easy to use. However, their efficacy is directly
related to intelligent database design rather than a mere marker of the PHP’s strengths. Good
database practices will make these functions useful over the long haul. The mysqli equivalent
functions are perfect analogues in each of these cases.

Multiple Connections

Unless you have a specific reason to require multiple connections, you only need to make one
database connection per PHP page. Even if you escape into HTML many times within the page,
your connection is still good (assuming it was good in the first place). You do not want to
make multiple connections if you don’t have to, because that is one of the most costly and
time-consuming parts of most database queries.

Conversely, there’s no easy way to keep your connection open from page to page —because
PHP and MySQL would never know for sure when to close it after visitors wander off. Therefore,
your connection is closed at the end of each script unless you use persistent connections.

286

Part Il + PHP and MySQL

The main reason you would need to use different connections is if you're querying two or
more completely separate databases. The most common situation in which you might do this
is when you’re using MySQL in a replicated situation. MySQL replication is accomplished
through a master-slave setup, where you typically get reads from a slave and make writes to
the master.

To use multiple connections, you simply open connections to each database as needed, and
make sure to hang on to the right result sets. PHP will help you do this by utilizing the result
identifiers discussed in the “Making MySQL Queries” section earlier in the chapter. You pass
the identifiers along with each MySQL function as an optional argument. If you’re completing
all your queries on one connection before moving on to the next, you don’t even need to do
this; PHP will automatically use the last link opened.

In this example, we are using connections from three different databases on different servers:

<?php
$1inkl = mysqgl_connect('hostl', 'me’,
mysql_select_db('userdb', $1inkl);
$queryl = "SELECT ID FROM usertable
WHERE username = '$username
$resultl = mysal_query($queryl, $1inkl);
$arrayl = mysql_fetch_array($resultl);
$usercount = mysql_num_rows($resultl);
mysql_close($Tinkl);

'sesame’');

$today '2002-05-01";
$1ink2 mysql_connect('host2', 'myself', 'benne');
mysql_select_db('inventorydb', $1ink2);
$query2 = "SELECT sku FROM widgets
WHERE ship_date = '$today'";
$result2 = mysql_query($query2, $1ink2);
$array?2 = mysql_fetch_array($result2);
$widgetcount = mysqgl_num_rows($result?2);
mysqgl_close($1ink2);

if ($usercount > 0 && $widgetcount > 0) {
$1ink3 = mysql_connect('host3"', 'I', 'seed');
mysql_select_db('salesdb', $1ink3);
$query3 = "INSERT INTO saleslog (ID, date, userID, sku)
VALUES (NULL, '$today', '$arrayl[0]', '$array2[0]')";
$result3 = mysql_query($query3, $1ink3);
$insertID = mysql_insert_id($1ink3);
mysqgl_close($1ink3);
if ($insertID >= 1) {
print("Perfect entry");
}
else |
print("Danger, danger, Will Robinson!");
}
} else {
print("Not enough information");

Chapter 15 4 PHP/MySQL Functions 287/

In this example, we have deliberately kept the connections as discrete as possible for clarity’s
sake, even going to the trouble to close each link after we use it. Without the mysql_close()
commands, we would be running multiple concurrent connections — which you may want to
do. There’s nothing stopping you from doing so. Just remember to pass the link value carefully
from one function to the next, and you should be fine.

Building in Error Checking

This section could have been titled “Die, die, die!” because the main error-checking function
is actually called die (). There was something about that title that failed to reinforce the warm,
hospitable learning environment we cherish, so we went with the more prosaic subheading.

die() is not a MySQL-specific function — the PHP manual lists it in “Miscellaneous Functions.”
It simply terminates the script (or a delimited portion thereof) and returns a string of your
choice.

mysql_query("SELECT * FROM mutual_funds
WHERE code = '$searchstring'")
or die("Please check your query and try again.");

Notice the syntax: the word or (you could alternatively use | |, but that isn’t as much fun as
saying or die) and only one semicolon per pair of alternatives.

Until quite recently, MySQL via PHP returned very insecure and unenlightening (except to
crackers) error messages upon encountering a problem with a database query. die() was
often used as a way to exert control over what the public would see on failure. Now that no
error messages are returned at all, die() may be even more necessary — unless you want
your visitors to be left wondering what happened.

Other built-in means of error-checking are error messages. These are particularly helpful
during the development and debugging phase, and they can be easily commented out in the
final edit before going live on a production server. As mentioned, MySQL error messages no
longer appear by default. If you want them, you have to ask for them by using the functions
mysql_errno() (which returns a code number for each error type) or mysql_error()
(which returns the text message). Then you can send them to a custom error log by using
the error_log() function:

if (Imysql_select_db($bad_db)) {
print(mysql_error());

}

There’s more to database error-handling than judicious use of die (), however. Servers
become unavailable, data sets get corrupted, and so forth. We’ve been fairly liberal in setting
up connections and executing queries; but ideally, every interaction with the database should
be nested inside a conditional that returns the desired result on success and a nice clean
error page on failure. This is where die() drops the ball. Execution immediately stops for the
entire script, leaving off, if nothing else, closing tags for your HTML page if they are defined in
PHP. Additionally, there may be plenty more perfectly good scripting or html left to go on the
page —code that is unaffected by a dropped database connection or a failed query. Finally,
die() doesn’t let you know anything went wrong. Do you really think your users will tell you?
Probably not. It’s much more realistic that they will leave your site in disgust and never
return. An example of good error checking is shown as follows.

288

Part Il + PHP and MySQL

function printError($errorMesg) ({
printf("%s
\n", $errorMesg);
}
function notify($errorMesg) {
mail(webmaster@site.com, "An Error has occurred at
example.com", $errorMesg)

}

if ($1ink = mysqgl_connect("host", "user", "pass") {
// Things to do if the connection is successful
} else {

printError("Sorry for the inconvenience; but we are unable
to process your request at this time. Please check back
later");
notify("Problem connecting to database in $SCRIPT_NAME at
line 12 on date('Y-m-D')");
}
Even better, if you really want to get your feet wet with PHP5’s new OOP features, try using

exceptions, which we covered briefly in Chapter 6 and which get a more complete treatment
in Chapter 31.

Creating MySQL Databases with PHP

You can, if you wish, actually create your databases with PHP rather than using the MySQL
client tool. This practice has potential advantages — you can use an attractive front end that
may appeal to those who find the MySQL command-line client horribly plain or finicky to
use — counterbalanced by one big disadvantage, which is security.

- Cross- ‘X See Chapter 14 for more information on how to minimize security issues when defining
| Reference \ \jySQL databases with PHP.

|

‘_'_.-"'—

To create a database from PHP, the user of your scripts will need to have full CREATE/DROP
privileges on MySQL. That means anyone who can get hold of your scripts can potentially
blow away all your databases and their contents with the greatest of ease. This is not such a
great idea from a security standpoint. Furthermore, most external Web hosts very sensibly
won'’t let you do it on their servers anyway.

If you're even considering creating databases with PHP, do yourself a big favor and at least
don’t store the database username and password in a text file. Make yourself type your
database username and password into a form and pass the variables to the inserting handler
each and every time you use this script. This is one case where keeping the variables in an
include file outside your Web tree is not sufficient precaution.

For those who like to live dangerously, the relevant functions are:

4+ mysql_create_db(): Creates a database on the designated host, with name specified
in arguments.

4+ mysql_drop_db(): Deletes the specified database.

4+ mysql_query(): Pass table definitions and drops in this function.

Chapter 15 4 PHP/MySQL Functions 289

A bare-bones database-generation script might look like this:

<?php
$1inkID = mysqgl_connect('localhost', 'root', 'sesame');
mysql_create_db('new_db', $TinkID);
mysql_select_db('new_db');
$query = "CREATE TABLE new_table (

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

new_col VARCHAR(25)

)"

$result = mysql_query($query);
$axe = mysql_drop_db('new_db');
7>

There are also prefab tools like phpMyAdmin that do much of this for you in a pretty way
(see Chapter 14 for information about using phpMyAdmin). You simply fill out a Web form,
and the PHP script on the back end will create the database according to your specifications.
In many cases, the tool will also enable you to perform other administrative tasks, such as
checking the sizes of your databases or backing them up. This is even less secure than doing
it yourself (insofar as you probably won’t check over every line of the code with an eye to
security), but apparently people do use these tools without incident.

Several other GUI tools are available that are not database-specific but will probably work
with MySQL. As MySQL has become more and more popular, a number of applications for
both Windows and Linux have come into play that allow you to administer MySQL databases
in the graphical fashion you may have become accustomed to. Like their Web counterparts,
these applications offer full administrative control, but without the headache of exposing
yourself to the security risk of a Web-based interface. The list changes often as software
comes and goes, so a listing here would probably very quickly go out of date. However, the
MySQL Web site keeps a pretty comprehensive list at www.mysql.com/portal/software/
index.html.

Caution If you insist on using a Web GUI tool to design your databases, at least minimize the security
hazards by only using it on a development machine inside the firewall. After you've fiddled
with the database design to your heart's content, you can initiate a database dump and then
move the entire structure and code over to a production database server. Do not use
PHPMyAdmin or any other Web GUI in production unless it is absolutely necessary.

MySQL data types

The actual PHP functions used to create MySQL databases are trivial compared to the MySQL
data structure statements that are passed in those functions. The “Database Design” section
of Chapter13 has general rules on how to conceptualize a database schema and use the
CREATE, DROP, and ALTER statements. To implement your abstract schema in MySQL, how-
ever, you also need to understand MySQL data types and how to use them.

The general rule is to use the smallest and most specific data type that will adequately meet
the needs of this particular column in your database. MySQL is known for having compact
types, such as TINYINT and TINYTEXT, that are good for things like 0/1 values or firstnames.
It also has very large types that can store up to 4GB of data in one field.

290

Part Il + PHP and MySQL

There are three buckets of MySQL data types: numeric types, date and time types, and string
(or character) types. For the most part, their use can be fairly straightforward —in the sense
that the average user is not going to know or care whether you used an INT or a MEDIUMINT.
However, if you're the type of programmer who cares about doing everything in the abso-
lutely tightest and fastest way possible, the MySQL manual gives subtle tips on maximizing
efficiency — for instance, always use the DECIMAL type with money, or it takes 8 bytes to
store a DATETIME but only 4 bytes to store a Unix TIMESTAMP, which PHP can convert to any
date-time format you desire. Careful perusal of the “Column Types” section of the MySQL
manual (at wew.mysql.com/doc/en/Column_types.html) may yield hidden treasures of
insight.

Table 15-1 shows the current MySQL data types and their possible values. M stands for the
maximum number of digits displayed, and D stands for the maximum number of decimal
places in a floating-point number. Both are optional.

Table 15-1: MySQL Data Types

Name and Aliases Storage size Usage

TINYINT(M)

BIT, BOOL, BOOLEAN are 1 byte If unsigned, stores values from 0 to 255;
synonyms for TINYINT(1) otherwise, from -128 to 127. A new

Boolean type will appear in future, but
until now has been implemented as a

TINYINT(1).

SMALLINT (M) 2 bytes If unsigned, stores values from 0 to 65535;
otherwise, from -32768 to 32767.

MEDIUMINT (M) 3 bytes If unsigned, stores values from 0 to
16777215; otherwise, from -8388608 to
8388607.

INT(M)

INTEGER(M) 4 bytes If unsigned, stores values from 0 to

4294967295; otherwise, from -2147483648
to 2147483647.

BIGINT(M) 8 bytes If unsigned, stores values from 0 to
18446744073709551615; otherwise,
from -9223372036854775808 to
9223372036854775807. You may experience
strangeness when performing arithmetic
with unsigned integers of this size.

FLOAT (precision) 4 or 8 bytes Where precision is an integer up to 53. If
precision <= 24, converted to a FLOAT; if
precision > 24 and <= 53, converted to a
DOUBLE. Provided for ODBC compatibility;
in general, use the normal MySQL FLOAT
and DOUBLE types.

FLOAT(M, D) 4 bytes Single-precision floating-point number.

Chapter 15 4 PHP/MySQL Functions 291

Name and Aliases Storage size Usage

DOUBLE(M, D)

DOUBLE PRECISION, REAL 8 bytes Double-precision floating-point number.
DECIMAL(M,D)
DEC, NUMERIC, FIXED M+1 or M+2 bytes An unpacked floating-point number that is

stored like a CHAR. Used for small
decimals, such as money.

DATE 3 bytes Displayed in the format YYYY -MM-DD.

DATETIME 8 bytes Displayed in the format YYYY-MM-DD.

HH:MM:SS.

TIMESTAMP 4 bytes Since MySQL 4.1, can no longer set display
size. Displayed in the same format as
DATETIME.

TIME 3 bytes Displayed in the format HHH:MM: SS where

HHH is a value from -838 to 838. This
allows a TIME value to represent an
elapsed time between two events.

YEAR 1 byte Displayed in the format YYYY, which is a
value from 1901 to 2155. To use an earlier
date, you should use a TINYINT type.

CHAR(M) M bytes Fixed in length. If your string is not long
enough, it will be padded with spaces at
the end. M must be <= 255.

VARCHAR (M) Up to M bytes Variable in length. M must be <= 255.
TINYBLOB or TINYTEXT Up to 255 bytes TINYBLOB is case-sensitive for sorting and
comparison; TINYTEXT is case-insensitive.
BLOB or TEXT Up to 64KB BLOB is case-sensitive for sorting and
comparison; TEXT is case-insensitive.
MEDIUMBLOB or MEDIUMTEXT Up to 16MB MEDIUMBLOB is case-sensitive for sorting
and comparison; MEDIUMTEXT is case-
insensitive.
LONGBLOB or LONGTEXT Up to 4GB LONGBLOB is case-sensitive for sorting and
comparison; LONGTEXT is case-insensitive.
ENUM(valuel, ...valueN) 1 or 2 bytes Up to 65535 distinct values.
SET(valuel,... valueN) Up to 8 bytes Up to 64 distinct values.

MySQL Functions

Table 15-2 includes a recap of the MySQL functions. All arguments in brackets are optional.

292 Partll + PHP and MySQL

Table 15-2: PHP-MySQL Functions

Function Name

Usage

mysql_affected_rows([/7ink_id])

mysql_change_user(user, password[,
databasell, 1ink_id])
mysql_close([17ink_id]1)

mysql_connect([host]l:portll:socket]
[, usernamell, password])

mysql_create_db(db_namel, Tink_id1)

mysql_data_seek(result_id, row_num)

mysql_drop_db(db_namel, Tink_id])

mysql_errno([77nk_id])

mysql_error([1ink_id]1)

mysql_fetch_array(result_id[, result_typel)

mysql_fetch_field(result_id[, field_offset])

mysql_fetch_lengths(result_id)

mysql_fetch_object(result_id[, result_typel)

mysql_fetch_row(result_id)
mysql_field_name(result_id, field_index)

mysql_field_seek(result_id, field_offset)

mysql_field_table(result_id, field_offset)
mysql_field_type(result_id, field_offset)

mysql_field_flags(result_id, field_offset)

Use after a nonzero INSERT, UPDATE, or
DELETE query to check number of rows
changed.

Changes MySQL user on an open link.

Closes the identified link (usually
unnecessary).

Opens a link on the specified host, port,
socket; as specified user with password.
All arguments are optional.

Creates a new MySQL database on the
host associated with the nearest open link.

Moves internal row pointer to specified
row number. Use a fetching function to
return data from that row.

Drops specified MySQL database.
Returns ID of error.
Returns text error message.

Fetches result set as associative array.
Result type can be MYSQL_ASSOC,
MYSQL_NUM, or MYSQL_BOTH (default).

Returns information about a field as an
object.

Returns length of each field in a result
set.

Fetches result set as an object. See
mysql_fetch_array for result types.

Fetches result set as an enumerated array.
Returns name of enumerated field.

Moves result pointer to specified field
offset. Used with mysq1_fetch_field.

Returns name of specified field's table.

Returns type of offset field (for example,
TINYINT, BLOB, VARCHAR).

Returns flags associated with
enumerated field (for example, NOT
NULL, AUTO_INCREMENT, BINARY).

Chapter 15 ¢ PHP/MySQL Functions

Function Name

Usage

mysql_field_len(result_id, field_offset)

mysql_free_result(result_id)

mysql_insert_id([77nk_7id])
mysql_list_fields(database, tablel, 1ink_id])

mysql_list_dbs([Tink_id])
mysql_list_tables(databasel, 1ink_id])

mysql_num_fields(result_id)
mysql_num_rows(result_id)

mysql_pconnect([host][:portll:socket]
[, usernamell, password])

mysql_query(query_stringl, link_id])

mysql_result(result_id, row_id,
field _identifier)

mysql_select_db(databasel, Tink_id])
mysql_tablename(result_id, table_id)

Summary

Returns length of enumerated field.

Frees memory used by result set (usually
unnecessary).

Returns AUTO_INCREMENTED ID of
INSERT; or FALSE if insert failed or last
query was not an insert.

Returns result ID for use in
mysql_field functions, without
performing an actual query.

Returns result pointer of databases on
mysqld. Used with mysql_tablename.

Returns result pointer of tables in
database. Used with mysq1_tablename.

Returns number of fields in a result set.
Returns number of rows in a result set.

Opens persistent connection to database.
All arguments are optional. Be careful —
mysql_close and script termination
will not close the connection.

Sends query to database. Remember to
put the semicolon outside the double-
quoted query string.

Returns single-field result. Field identifier
can be field offset (0), field name
(FirstName) or table-dot name
(myfield.mytable).

Selects database for queries.

Used with any of the mysqgl_1ist
functions to return the value referenced
by a result pointer.

PHP’s MySQL and MySQL Improved functions are easy to use, if sometimes named confus-
ingly. Each instance of a PHP/MySQL interaction must have a connection, a database select,
and a query or command that returns a result identifier. The result identifier is like an ATM
receipt that reports on the success or failure of an operation.

293

294

Part Il + PHP and MySQL

If data is returned after a SELECT statement, one of the PHP/MySQL fetching functions must
also be employed. Data pulled from a MySQL database exists in a kind of limbo until one of

the fetching functions is applied to the result set. If you wish to loop through the result set

again, you can use mysql_data_seek() to reset the row pointer to zero.

PHP also has a large number of functions that return data about the database itself or about
a particular operation. Two of the most common are mysql_num_rows (), which returns the
number of rows in a result set; and mysql_insert_id(), which returns the ID of the proxi-
mate INSERT operation.

PHP handles much of the MySQL connectivity for you without requiring specific link identi-
fiers or result pointers. The exception comes when you need multiple database connections
on the same Web page. In this case, you use exactly the same functions and syntax but simply
pass the correct link identifier with most commands.

We do not personally recommend creating MySQL databases with PHP front ends, but the
practice has become common. If you need to do so, you should follow a few specific rules.

+ o+ ¢

Displaying Queries
in Tables

Note

Much of the point of PHP is to help you translate between a
back end database and its front end presentation on the Web.
Data can be viewed, added, removed, and tweaked as a result of your
Web user’s keystrokes and mouse clicks.

For most of this chapter, we restrict ourselves to ways to use PHP

to look at the contents of a database without altering it, using only
the SELECT statement from SQL and displaying the results in HTML
tables. We use a single database example to show different strategies,
including some handy reusable functions. Finally, we look at code to
create the sample data shown in the display examples, using the
INSERT statement.

The two big productivity points from this chapter are:

4 Reuse functions in simple cases. The problem of database table
display shows up over and over in database-enabled site
design. If the display is not complicated, you should be able to
throw the same simple function at the problem rather than
reinventing the wheel with each PHP page you write.

4+ Choose between techniques in complex cases. You may find
yourself wanting to pull out a complex combination of informa-
tion from different tables (which, of course, is part of the point
of using a relational database to begin with). You may not be
able to map this onto a simple reusable function, but there
aren’t that many novel solutions either — get to know the alter-
natives, and you can decide how to trade off efficiency, read-
ability, and your own effort.

This chapter uses the MySQL database and functions exclusively,

- but the display strategies should be directly transferable to almost

any SQL-compliant database supported by PHP.

HTML Tables and Database Tables

First of all, some terminology — unfortunately, both relational
databases and HTML scripting use the term table, but the term means
very different things in the two cases. A database table persistently
stores information in columns, which have predefined names and

<+

In This Chapter

<+

<+

HTML tables and

MySQL tables
Complex mappings

Creating the sample

tables

+

+

+

*

+

296

Part Il + PHP and MySQL

types so that the information in them can be recovered later. An HTML table is a construct
that tells the browser to lay out the table’s arbitrary HTML contents in a rectangular array
in the browser window. We'll try to always make it clear which kind of table we are talking
about.

One-to-one mapping

HTML tables are really constructed out of rows (the <TR></TR> construct), and columns
have no independent existence — each row has some number of table datum items (the
<TD></TD> construct), which will produce a nice rectangular array only if there are the same
number of TDs for every TR. (There is no corresponding <TC> construct that lets you display
by column first.) By contrast, fields (aka columns) in database tables are the more primary
entity — defining a table means defining the fields, and then you can add as many rows as you
like. In this chapter, we will focus on printing out tables and queries in such a way that each
database field prints in its own HTML column, simply because there are usually more database
rows than database fields, and people are more used to up-and-down scrolling than left-to-
right scrolling. If you find yourself wanting to map database fields to HTML rows, it is a simple
inversion exercise.

The simplest case of display is where the structure of a database table or query does corre-
spond to the structure of the HTML table we want to display —the database entity has m
columns and n rows, and we’d like to display an m-by-n rectangular grid in the user’s browser
window, with all the cells filled in appropriately.

Example: A single-table displayer

So let’s write a simple translator that queries the database for the contents of a single table
and displays the results on screen. Here’s the top-down outline of how the code will get the
job done:

1. Establish a database connection.

. Construct a query to send to the database.

. Send the query and hold on to the result identifier that is returned.

. Using the result identifier, find out how many columns (fields) there are in each row.

. Start an HTML table.

S U1 e W N

. Loop through the database result rows, printing a <TR></TR> pair to make a corre-
sponding HTML table row.

7. In each row, retrieve the successive fields and display them wrapped in a <TD></TD> pair.
8. Close off the HTML table.
9. Close the database connection.

Finally, we’d like to wrap all the preceding steps up into a handy function that we can use
whenever we want to. Also, for reasons of efficiency, we don’t want to include the first and
last steps of creating and closing the database connection in the function —we may want to
use such a function more than once per page, and it wouldn’t make sense to open and close
the connection each time. Instead, we’ll assume we have a connection already and pass the
connection to the function along with the table name.

Chapter 16 + Displaying Queries in Tables 297/

Such a function is shown in Listing 16-1, embedded in a complete PHP page that uses the
function to display the contents of a couple of tables.

Listing 16-1: A table displayer

<?php

include("/home/phpbook/phpbook-vars.inc");

$global_dbh = mysql_connect($hostname, $username, $password);
mysql_select_db($db, $global_dbh);

function display_db_table($tablename, $connection)

{
$query_string = "SELECT * FROM $tablename";
$result_id = mysql_query($query_string, $connection);
$column_count = mysql_num_fields($result_id);

print("<TABLE BORDER=1>\n");
while ($row = mysql_fetch_row($result_id))
{
print("<TR ALIGN=LEFT VALIGN=TOP>");
for ($column_num = 0;
$column_num < $column_count;
$column_num++)
print("<TD>$rowl[$column_numI</TD>\n");
print("</TR>\n");
}
print("</TABLE>\n");
}
7>

<HTML>
<HEAD>
<TITLE>Cities and countries</TITLE>
</HEAD>
<BODY>

<TABLE><TR>TD>

<?php display_db_table("country", $global_dbh); ?>
</TD>KTD>

<?php display_db_table("city", $global_dbh); ?>
</TD>S/TR>S/TABLE></BODY></HTML>

Some things to notice about this script:

4+ Although the script refers to specific database tables, the display_db_table() func-
tion itself is general. You could put the function definition in an include file and then
use it anywhere on your site.

4 The first thing the script does is load in an include file that contains variable assign-
ments for the database name, database username, and database password. It then uses

298

Part Il + PHP and MySQL

those variables to connect to MySQL and then to choose the desired database. (The
fact that this file is located outside the publicly available Web hierarchy makes it
slightly more secure than just including that information in your code.)

4 In the function itself, we chose to use a whi 1e loop for printing rows and a for loop to
print the individual items. We could as easily have used a bounded for loop for both
and recovered the number of rows with mysql_num_rows ().

4 The main while loop reflects a very common idiom, which exploits the fact that the
value of a PHP assignment statement is the value assigned. The variable $row is
assigned to the result of the function mysql_fetch_row(), which will be either an
array of values from that row or a false value if there are no more rows. If we'’re out
of rows, $row is false, which means the value of the whole expression is false, which
means that the whi1e loop terminates.

4+ We put line breaks (\n) at the end of selected lines, so that the HTML source would
have a readable structure when printed or viewed as source from the browser. Notice
that these breaks are not HTML line breaks (
) and do not affect the look of the
resulting Web page. (In fact, if you want to make it annoying for someone else to scruti-
nize the HTML you generate, don’t put breaks in at all!)

The sample tables

To see the Listing 16-1 script in action, see Figure 16-1, which shows the displayed contents of
the Country and City sample tables. These tables have the following structure:

Country:
ID int (auto-incremented primary key)
continent varchar(50)
countryname varchar(50)

City:
ID int (auto-incremented primary key)
countryID int
cityname varchar(50)

Think of these tables as a rough draft of the database for an eventual online almanac. They
employ our usual convention of always having one field per table called 1D, which is a primary
key and has successive integers assigned to it automatically for each new row. Although you
can’t tell for sure from the preceding description, the tables have one “relation” embodied in
their structure—the countryID field of the City table is matched up with the 1D field of the
Country table, representing which country the city belongs to. (If you were designing a real
almanac database, you would want to take this one step further and break the Country table
into a relational pair of Country and Continent tables.)

- Cross- ‘\X To see how we created these tables and populated them with sample data, see the “Creating
| Rﬂe"ﬂ'ﬂ’_\ the Sample Tables” section at the end of this chapter.

- Cross-

Chapter 16 + Displaying Queries in Tables

ies and countries - Netscape
le Edit View Go Communicator Help
= - : =
4 ¢ A A} 2 ©wW F & @
Back Fonvaid Reload Home Seach Metscape Print Security Stop
‘t'euokl'nal‘ks .3 Locatbn;|hlfp'f'."|ucahnstr’9rrplerah|e php j t—-jl]'\#"hat's Felated
ﬁimtant Message @ Catagones @ Mapz Photo Findes I @ Secure Web Shou! @ Home:

gl

[1[1 1airobi
i2 !I IMombasa
[3 [1 e
54 |2 Rio de Janeiro
i5_ |2 SaoPaile
1 Africa Eenya i Ig_ IP2 Salvador
[2/South America Brazl | i?_E Eelo Honzonte
(3 North America USA | [2 [3[Chicage
{4 Morth America Canada | (9 |3 Mew York
[10[3 Houston
[11[3 iz
[12]4 Montreal
Windsor
|14 4 TWinmipeg

Reference

e == |Document: Done Sl %NS G2 (@ N 2

Figure 16-1: A simple database table display

Improving the displayer

Our first version of this function has some limitations: It works with a single table only, does
no error-checking, and is very bare-bones in its presentation. We’ll address these problems
one by one and then fix them in one fell revision. (If you want to look ahead, the new-and-
improved version of the function is in Listing 16-2.)

Displaying column headers

Our first version of a database table displayer simply displays all the table cells, without any
labeling of what the different fields are. It’s conventional in HTML to use the <TH> element for
column and/or row headers —in most browsers and styles, this displays as a bold table cell.
One improvement we can make is to optionally display column headers that are based on the
names of the table fields themselves. To actually retrieve those names, we can use the function
mysql_field_name().

Error-checking

Our original version of the code assumes that we have written it correctly and also that our
database server is up and functioning normally — if either of these is not the case, we will run
into puzzling errors. We can partially address this by appending a call to die () to the actual
database queries —if they fail, an informative message will be printed. This is a reasonable
approach for such a small example, but as projects get larger it is better to use the exception-
handling capability introduced in PHP5.

For an introduction to exception handling in PHP5, see Chapter 31.

299

300

Part Il + PHP and MySQL

Cosmetic issues

Another source of dissatisfaction with our simple table-displayer is that it always has the
same look. It would be nice, at a minimum, to control whether table borders are displayed.
The simple solution we will use in our new function is just to permit passing in a string of
arguments that will be spliced into the HTML table definition. This is a pretty crude form of
style control that style-sheet proponents would discourage, but it will permit us to directly
specify some elements of the table’s look without writing an entirely new function.

Displaying arbitrary queries

Finally, it would be nice to be able to exploit our relational database and display the results of
complex queries rather than just single tables. Actually, our single-table displayer has an arbi-
trary query embedded in it —it just happens that it is hard-coded as select * from table,
where table is the supplied table name. So let us transform our simple table-displayer into a
query-displayer and then recreate the table displayer as a simple wrapper around the query
displayer. These two functions, complete with the cosmetic improvements and better error-
checking, are shown in Listing 16-2.

Listing 16-2: A query displayer

<?php

include("/home/phpbook/phpbook-vars.inc");

$global_dbh = mysqgl_connect($hostname, $username, $password)
or die("Could not connect to database");

mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display_db_query($query_string, $connection,
$header_bool, $table_params)
{

// perform the database query
$result_id = mysql_query($query_string, $connection)
or die("display_db_query:" . mysql_error());

// find out the number of columns in result
$column_count = mysqgl_num_fields($result_id)
or die("display_db_query:" . mysql_error());

// TABLE form includes optional HTML arguments passed
// into function
print("<TABLE $table_params >\n");

// optionally print a bold header at top of table
if ($header_bool)
{

print("<TR>");

Chapter 16 + Displaying Queries in Tables

for ($column_num = 0;
$column_num < $column_count;
$column_num++)
{
$field_name =
mysql_field_name($result_id, $column_num);
print("<TH>$field_name</TH>");
}
print("</TR>\n");
}
// print the body of the table
while ($row = mysql_fetch_row($result_id))
{
print("<TR ALIGN=LEFT VALIGN=TOP>");
for ($column_num = 0;
$column_num < $column_count;
$column_num++)
{
print("<TD>$rowl[$column_numI</TD>\n");
}
print("</TR>\n");
}
print("</TABLE>\n"); }

function display_db_table($tablename, $connection,
$header_bool, $table_params)
{
$query_string = "SELECT * FROM $tablename”;
display_db_query($query_string, $connection,
$header_bool, $table_params);
}
7>

<HTML><HEAD><TITLE>Countries and cities</TITLE></HEAD>
<BODY>
<TABLE><TR><TD>
<?php display_db_table("country", $global_dbh,
TRUE, "BORDER=2"); 2>
</TD>LTD>
<?php display_db_table("city", $global_dbh,
TRUE, "BORDER=2"); 2>
</TD></TR>K/TABLE></BODY></HTML>

The result of using this code on the same database contents is shown in Figure 16-2. The only
visible difference is the column header. Splitting the functions apart means that we also have
a new function in our bag of tricks —we could do the same kind of display with an arbitrary
query string that joins data from different tables.

301

302 Partll + PHP and MySQL

ountries and cities - Netscape

e S RVicw S S0 S Grmmin (catorBHelp !
I ¥ 3 4 2 a9 & B
Back Fonvaid Reload Home Seach Metscape Prnt Security Stop

" Bookmarks & Locatian [t /flocahost/nceniable phyl =] &7 wihat's Related
ﬁlmtantMessaue @ Catagones @ Mapz Photo Findes @ Secure Web Shop @ Home:

ID comntryID | cityname

11 Mairobi

2 |1 Mombasa

31 Meru

4 |2 Rio de Janewo

E contment |countryname 5 2 Sao Paule

1_ |Affica Eenya 6 |2 Selvador

.2 .fSouth America | Brazl hk [Belo Horizonte

[3 [Morth America[USA g 3 (Chicago

|4 Morth America| Canada 9 |3 Wew York

103 Houston
11)3 MMiarni
12/4 Montreal
13 4 “Windsor
14 4 Winmpeg
e == |Document: Done Sl %NS G2 (@ N 2

Figure 16-2: Using the query displayer

Complex Mappings

So far in this chapter, we've enjoyed a very nice and simple-minded correspondence between
query result sets and HTML tables —every row in the result set corresponds to a row in the
table, and the structure of the code is simply two nested loops. Unfortunately, life isn’t often
this simple, and sometimes the structure of the HTML table we want to display has a complex
relationship to the relational structure of the database tables.

Multiple queries versus complex printing

Let’s say that, rather than displaying our sample City and Country tables individually, we
want to match them up in a tabular display.

We can easily write a SELECT statement that joins these tables appropriately:

SELECT country.continent, country.countryname,
city.cityname

FROM country, city

WHERE city.countryID = country.ID

ORDER BY continent, countryname, cityname

Now, this would be a handy place to use our query-displayer function —all we have to do is
send it the preceding statement as a string, and it will print out a table of cities matched up
with their continents and countries. However, if we do this, we will see an individual HTML
table row for each city, and the continent and country will print each time —for example,
we'll see North America printed several times. Instead, what if we want one name matched
with many titles? This is a case where the structure of what we print differs from the struc-
ture of the most convenient query.

Chapter 16 + Displaying Queries in Tables 3(03

Views and Stored Procedures

Our query-displayer assumes a particular division of labor between the PHP code and the
database system itself —the PHP code sends off an arbitrary query string, which the database
responds to by setting up a result set. In particular, this means that the database system has to
parse that query and then figure out the best way to go about retrieving the results. This is part
of what can make querying a database a mildly expensive operation.

In cases where your code may construct novel queries on the fly, this is the best you can hope
for. However, some databases offer ways to set up queries in advance, which gives the database
system a chance to preoptimize how it handles the query. One such construct is called a view
under MS SQL Server and some other RDMSs — after you have set up a query as a named view, it
can be treated just like a real table. A related idea is the stored procedure, which is like a view
that also accepts runtime arguments that are spliced into the query. In general, if you realize that
you are suffering from slow query performance, you may want to investigate what optimizations
like this your particular RDBMS makes available.

If we want to do a more complex mapping, we have a choice: We can throw database queries
at the problem, or we can write more complex display code. Let’s look at each option in turn.
(For each of these examples, we’ll be moving away from the reusable generality of the func-
tions we wrote earlier toward functions that address a particular display problem.)

A multiple-query example

If we want to print just one HTML row per country, we can make a query for the countries
and then make another query for the relevant cities in each trip through a country row. A
function written using this strategy is shown in Listing 16-3.

Listing 16-3: A display with multiple queries

<?php
include("/home/phpbook/phpbook-vars.inc");
/* open database connection */
$global_dbh = mysqgl_connect($hostname, $username, $password)
or die("Could not connect to database");
mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display_cities($db_connection)
{
/* Displays table of cities and countries */
$country_query = "SELECT id, continent, countryname
FROM country
ORDER BY continent, countryname";
$country_result =
mysql_query($country_query, $db_connection);

/* begin table, print hard-coded table header */
print("<TABLE BORDER=1>\n");

Continued

304 Partll + PHP and MysSQL

Listing 16-3 (continued)

print ("<TR><TH>Continent</TH><TH>Country</TH>
KTH>Cities</TH></TR>");

/* Toop through countries */
while ($country_row = mysql_fetch_row($country result))
it
/* set up country info */
$country_id = $country_row[0];
$continent = $country_row[1];
$country_name = $country_row[2];

print("<TR ALIGN=LEFT VALIGN=TOP>");
print("<TD>$continent</TD>");
print("<TD>$country_name</TD>");

/* begin table cell for city list */
print("<TD>");
$city_query = "select cityname from city
where countryID = $country_id
order by cityname";
$city_result =
mysql_query($city_query, $db_connection)
OR die(mysqgl_error());
/* Toop through cities */
while ($city_row = mysql_fetch_row($city_result))
{
$city_name = $city_row[0];
print("$city_name
");
}
/* close city cell and country row */
print("</TD></TR>");
}
print("</TABLE>\n");
}
7>

<HTML>

<HEAD>

KTITLE>Cities by Country</TITLE>

</HEAD>

<BODY>

<?php
display_cities($global_dbh);

?>

</BODY>

</HTML>

Chapter 16 + Displaying Queries in Tables

The strategy is appealingly simple: There is an outer loop that uses one query to proceed
through all the countries, saving the country’s name and the primary 1D field of each country
row. Then for each country, the 1D field is used to look up all the cities belonging to that
country. Notice the trick of embedding the $countryid variable in the inner query —the
query string sent is actually different on each iteration through the country loop.

Simple? Yes. Efficient? Probably not. This code makes a separate city query for each country.
If there are 500 countries in the database, this function will make 501 separate database
queries (the extra one being the enclosing country query).

Your mileage will vary according to how efficient your particular database is in parsing
queries and planning query retrieval, but the sum of these queries will certainly take more
time than the simple query we started this section with.

A complex printing example

Now let’s solve exactly the same problem, but using a different strategy. Instead of making
multiple queries, we will make a single query and print the resulting rows selectively, so that
each HTML table row corresponds to more than one database row (see Listing 16-4). The
resulting browser display is exactly the same as in the previous example.

Listing 16-4: A complex display with a single query

<?php
include("/home/phpbook/phpbook-vars.inc");
/* open a single DB connection for this page */
$global_dbh = mysql_connect($hostname, $username, $password)
or die("Could not connect to database");
mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display_cities($db_connection)
{

/* print table of countries and their cities,
selectively printing only one HTML table row
per country */

$query = "SELECT country.id,

country.continent, country.countryname,

city.cityname

FROM country, city

WHERE country.