~ |PHP Cookbook

By David Sklar, Adam Trachtenberg

Publisher : O'Reilly

Pub Date : November 2002

ISBN : 1-56592-681-1
(- —— e e

Pages : 632

The PHP Cookbook is a collection of problems, solutions, and practical examples
for PHP programmers. The book contains a unique and extensive collection of
best practices for everyday PHP programming dilemmas. It contains over 250
recipes, ranging from simple tasks to entire programs that demonstrate complex
tasks, such as printing HTML tables and generating bar charts -- a treasure
trove of useful code for PHP programmers, from novices to advanced

practitioners.

Copyright
Preface

Who This Book Is For

What Is in This Book

Other Resources

Conventions Used in This Book

Comments and Questions

Acknowledgments

Chapter 1. Strings

Section 1.1. Introduction

Recipe 1.2. Accessing Substrings

Recipe 1.3. Replacing Substrings

Recipe 1.4. Processing a String One Character at a Time

Recipe 1.5. Reversing a String by Word or Character

Recipe 1.6. Expanding and Compressing Tabs

Recipe 1.7. Controlling Case

Recipe 1.8. Interpolating Functions and Expressions Within Strings

Recipe 1.9. Trimming Blanks from a String

Recipe 1.10. Parsing Comma-Separated Data

Recipe 1.11. Parsing Fixed-Width Delimited Data

Recipe 1.12. Taking Strings Apart

Recipe 1.13. Wrapping Text at a Certain Line Length

Recipe 1.14. Storing Binary Data in Strings

Chapter 2. Numbers

Section 2.1. Introduction

Recipe 2.2. Checking Whether a String Contains a Valid Number

Recipe 2.3. Comparing Floating-Point Numbers

Recipe 2.4. Rounding Floating-Point Numbers

Recipe 2.5. Operating on a Series of Integers

Recipe 2.6. Generating Random Numbers Within a Range

Recipe 2.7. Generating Biased Random Numbers

Recipe 2.8. Taking Logarithms

Recipe 2.9. Calculating Exponents

Recipe 2.10. Formatting Numbers

Recipe 2.11. Printing Correct Plurals

Recipe 2.12. Calculating Trigonometric Functions

Recipe 2.13. Doing Trigonometry in Degrees, not Radians

Recipe 2.14. Handling Very Large or Very Small Numbers

Recipe 2.15. Converting Between Bases

Recipe 2.16. Calculating Using Numbers in Bases Other Than Decimal

Chapter 3. Dates and Times

Section 3.1. Introduction

Recipe 3.2. Finding the Current Date and Time

Recipe 3.3. Converting Time and Date Parts to an Epoch Timestamp

Recipe 3.4. Converting an Epoch Timestamp to Time and Date Parts

Recipe 3.5. Printing a Date or Time in a Specified Format

Recipe 3.6. Finding the Difference of Two Dates

Recipe 3.7. Finding the Difference of Two Dates with Julian Days

Recipe 3.8. Finding the Day in a Week, Month, Year, or the Week Number in a Year

Recipe 3.9. Validating a Date

Recipe 3.10. Parsing Dates and Times from Strings

Recipe 3.11. Adding to or Subtracting from a Date

Recipe 3.12. Calculating Time with Time Zones

Recipe 3.13. Accounting for Daylight Saving Time

Recipe 3.14. Generating a High-Precision Time

Recipe 3.15. Generating Time Ranges

Recipe 3.16. Using Non-Gregorian Calendars

Recipe 3.17. Program: Calendar

Chapter 4. Arrays

Section 4.1. Introduction

Recipe 4.2. Specifying an Array Not Beginning at Element O

Recipe 4.3. Storing Multiple Elements per Key in an Array

Recipe 4.4. Initializing an Array to a Range of Integers

Recipe 4.5. Iterating Through an Array

Recipe 4.6. Deleting Elements from an Array

Recipe 4.7. Changing Array Size

Recipe 4.8. Appending One Array to Another

Recipe 4.9. Turning an Array into a String

Recipe 4.10. Printing an Array with Commas

Recipe 4.11. Checking if a Key Is in an Array

Recipe 4.12. Checking if an Element Is in an Array

Recipe 4.13. Finding the Position of an Element in an Array

Recipe 4.14. Finding Elements That Pass a Certain Test

Recipe 4.15. Finding the Largest or Smallest Valued Element in an Array

Recipe 4.16. Reversing an Array

Recipe 4.17. Sorting an Array

Recipe 4.18. Sorting an Array by a Computable Field

Recipe 4.19. Sorting Multiple Arrays

Recipe 4.20. Sorting an Array Using a Method Instead of a Function

Recipe 4.21. Randomizing an Array

Recipe 4.22. Shuffling a Deck of Cards

Recipe 4.23. Removing Duplicate Elements from an Array

Recipe 4.24. Finding the Union, Intersection, or Difference of Two Arrays

Recipe 4.25. Finding All Element Combinations of an Array

Recipe 4.26. Finding All Permutations of an Array

Recipe 4.27. Program: Printing an Array in a Horizontally Columned HTML Table

Chapter 5. Variables

Section 5.1. Introduction

Recipe 5.2. Avoiding == Versus = Confusion

Recipe 5.3. Establishing a Default Value

Recipe 5.4. Exchanging Values Without Using Temporary Variables

Recipe 5.5. Creating a Dynamic Variable Name

Recipe 5.6. Using Static Variables

Recipe 5.7. Sharing Variables Between Processes

Recipe 5.8. Encapsulating Complex Data Types as a String

Recipe 5.9. Dumping Variable Contents as Strings

Chapter 6. Functions

Section 6.1. Introduction

Recipe 6.2. Accessing Function Parameters

Recipe 6.3. Setting Default Values for Function Parameters

Recipe 6.4. Passing Values by Reference

Recipe 6.5. Using Named Parameters

Recipe 6.6. Creating Functions That Take a Variable Number of Arguments

Recipe 6.7. Returning Values by Reference

Recipe 6.8. Returning More Than One Value

Recipe 6.9. Skipping Selected Return Values

Recipe 6.10. Returning Failure

Recipe 6.11. Calling Variable Functions

Recipe 6.12. Accessing a Global Variable Inside a Function

Recipe 6.13. Creating Dynamic Functions

Chapter 7. Classes and Objects

Section 7.1. Introduction

Recipe 7.2. Instantiating Objects

Recipe 7.3. Defining Object Constructors

Recipe 7.4. Destroying an Object

Recipe 7.5. Cloning Objects

Recipe 7.6. Assigning Object References

Recipe 7.7. Calling Methods on an Object Returned by Another Method

Recipe 7.8. Accessing Overridden Methods

Recipe 7.9. Using Property Overloading

Recipe 7.10. Using Method Polymorphism

Recipe 7.11. Finding the Methods and Properties of an Object

Recipe 7.12. Adding Properties to a Base Object

Recipe 7.13. Creating a Class Dynamically

Recipe 7.14. Instantiating an Object Dynamically

Chapter 8. Web Basics

Section 8.1. Introduction

Recipe 8.2. Setting Cookies

Recipe 8.3. Reading Cookie Values

Recipe 8.4. Deleting Cookies

Recipe 8.5. Redirecting to a Different Location

Recipe 8.6. Using Session Tracking

Recipe 8.7. Storing Sessions in a Database

Recipe 8.8. Detecting Different Browsers

Recipe 8.9. Building a GET Query String

Recipe 8.10. Using HTTP Basic Authentication

Recipe 8.11. Using Cookie Authentication

Recipe 8.12. Flushing Output to the Browser

Recipe 8.13. Buffering Output to the Browser

Recipe 8.14. Compressing Web Output with gzip

Recipe 8.15. Hiding Error Messages from Users

Recipe 8.16. Tuning Error Handling

Recipe 8.17. Using a Custom Error Handler

Recipe 8.18. Logging Errors

Recipe 8.19. Eliminating "headers already sent" Errors

Recipe 8.20. Logging Debugging Information

Recipe 8.21. Reading Environment Variables

Recipe 8.22. Setting Environment Variables

Recipe 8.23. Reading Configuration Variables

Recipe 8.24. Setting Configuration Variables

Recipe 8.25. Communicating Within Apache
Recipe 8.26. Profiling Code

Recipe 8.27. Program: Website Account (De)activator

Recipe 8.28. Program: Abusive User Checker

Chapter 9. Forms

Section 9.1. Introduction

Recipe 9.2. Processing Form Input

Recipe 9.3. Validating Form Input

Recipe 9.4. Working with Multipage Forms

Recipe 9.5. Redisplaying Forms with Preserved Information and Error Messages

Recipe 9.6. Guarding Against Multiple Submission of the Same Form

Recipe 9.7. Processing Uploaded Files

Recipe 9.8. Securing PHP's Form Processing

Recipe 9.9. Escaping Control Characters from User Data

Recipe 9.10. Handling Remote Variables with Periods in Their Names

Recipe 9.11. Using Form Elements with Multiple Options

Recipe 9.12. Creating Dropdown Menus Based on the Current Date

Chapter 10. Database Access

Section 10.1.

Introduction

Recipe 10.2.

Using Text-File Databases

Recipe 10.3.

Using DBM Databases

Recipe 10.4.

Connecting to a SQL Database

Recipe 10.5.

Querying a SQL Database

Recipe 10.6.

Retrieving Rows Without a Loop

Recipe 10.7.

Modifying Data in a SQL Database

Recipe 10.8.

Repeating Queries Efficiently

Recipe 10.9.

Finding the Number of Rows Returned by a Query

Recipe 10.10.

Escaping Quotes

Recipe 10.11.

Logging Debugging Information and Errors

Recipe 10.12.

Assigning Unique ID Values Automatically

Recipe 10.13.

Building Queries Programmatically

Recipe 10.14.

Making Paginated Links for a Series of Records

Recipe 10.15.

Caching Queries and Results

Recipe 10.16.

Program: Storing a Threaded Message Board

Chapter 11. Web Automation

Section 11.1.

Introduction

Recipe 11.2.

Fetching a URL with the GET Method

Recipe 11.3.

Fetching a URL with the POST Method

Recipe 11.4.

Fetching a URL with Cookies

Recipe 11.5.

Fetching a URL with Headers

Recipe 11.6.

Fetching an HTTPS URL

Recipe 11.7.

Debugging the Raw HTTP Exchange

Recipe 11.8.

Marking Up a Web Page

Recipe 11.9.

Extracting Links from an HTML File

Recipe 11.10.

Converting ASCII to HTML

Recipe 11.11.

Converting HTML to ASCII

Recipe 11.12.

Removing HTML and PHP Tags

Recipe 11.13.

Using Smarty Templates

Recipe 11.14.

Parsing a Web Server Log File

Recipe 11.15.

Program: Finding Stale Links

Recipe 11.16.

Program: Finding Fresh Links

Chapter 12. XML

Section 12.1.

Introduction

Recipe 12.2.

Generating XML Manually

Recipe 12.3.

Generating XML with the DOM

Recipe 12.4.

Parsing XML with the DOM

Recipe 12.5.

Parsing XML with SAX

Recipe 12.6.

Transforming XML with XSLT

Recipe 12.7.

Sending XML-RPC Requests

Recipe 12.8.

Receiving XML-RPC Requests

Recipe 12.9.

Sending SOAP Requests

Recipe 12.10.

Receiving SOAP Requests

Recipe 12.11.

Exchanging Data with WDDX

Recipe 12.12.

Reading RSS Feeds

Chapter 13. Regular Expressions

Section 13.1.

Introduction

Recipe 13.2.

Switching From ereq to preg

Recipe 13.3.

Matching Words

Recipe 13.4.

Finding the nth Occurrence of a Match

Recipe 13.5.

Choosing Greedy or Nongreedy Matches

Recipe 13.6.

Matching a Valid Email Address

Recipe 13.7.

Finding All Lines in a File That Match a Pattern

Recipe 13.8.

Capturing Text Inside HTML Tags

Recipe 13.9.

Escaping Special Characters in a Reqgular Expression

Recipe 13.10.

Reading Records with a Pattern Separator

Chapter 14. Encryption and Security

Section 14.1.

Introduction

Recipe 14.2.

Keeping Passwords Out of Your Site Files

Recipe 14.3.

Obscuring Data with Encoding

Recipe 14.4.

Verifying Data with Hashes

Recipe 14.5.

Storing Passwords

Recipe 14.6.

Checking Password Strength

Recipe 14.7.

Dealing with Lost Passwords

Recipe 14.8.

Encrypting and Decrypting Data

Recipe 14.9.

Storing Encrypted Data in a File or Database

Recipe 14.10.

Sharing Encrypted Data with Another Web Site

Recipe 14.11.

Detecting SSL

Recipe 14.12.

Encrypting Email with GPG

Chapter 15. Graphics

Section 15.1.

Introduction

Recipe 15.2.

Drawing Lines, Rectangles, and Polygons

Recipe 15.3.

Drawing Arcs, Ellipses, and Circles

Recipe 15.4.

Drawing with Patterned Lines

Recipe 15.5. Drawing Text

Recipe 15.6. Drawing Centered Text

Recipe 15.7. Building Dynamic Images

Recipe 15.8. Getting and Setting a Transparent Color

Recipe 15.9. Serving Images Securely

Recipe 15.10. Program: Generating Bar Charts from Poll Results

Chapter 16. Internationalization and Localization

Section 16.1. Introduction

Recipe 16.2. Listing Available Locales

Recipe 16.3. Using a Particular Locale

Recipe 16.4. Setting the Default Locale

Recipe 16.5. Localizing Text Messages

Recipe 16.6. Localizing Dates and Times

Recipe 16.7. Localizing Currency Values

Recipe 16.8. Localizing Images

Recipe 16.9. Localizing Included Files

Recipe 16.10. Managing Localization Resources

Recipe 16.11. Using gettext

Recipe 16.12. Reading or Writing Unicode Characters

Chapter 17. Internet Services

Section 17.1. Introduction

Recipe 17.2. Sending Malil
Recipe 17.3. Sending MIME Mail
Recipe 17.4. Reading Mail with IMAP or POP3

Recipe 17.5. Posting Messages to Usenet Newsgroups

Recipe 17.6. Reading Usenet News Messages

Recipe 17.7. Getting and Putting Files with FTP
Recipe 17.8. Looking Up Addresses with LDAP

Recipe 17.9. Using LDAP for User Authentication

Recipe 17.10. Performing DNS Lookups

Recipe 17.11. Checking if a Host Is Alive

Recipe 17.12. Getting Information About a Domain Name

Chapter 18. Files
Section 18.1. Introduction

Recipe 18.2. Creating or Opening a Local File

Recipe 18.3. Creating a Temporary File

Recipe 18.4. Opening a Remote File

Recipe 18.5. Reading from Standard Input

Recipe 18.6. Reading a File into a String

Recipe 18.7. Counting Lines, Paragraphs, or Records in a File

Recipe 18.8. Processing Every Word in a File

Recipe 18.9. Reading a Particular Line in a File

Recipe 18.10. Processing a File Backward by Line or Paragraph
Recipe 18.11. Picking a Random Line from a File

Recipe 18.12. Randomizing All Lines in a File

Recipe 18.13. Processing Variable Length Text Fields

Recipe 18.14. Reading Configuration Files

Recipe 18.15. Reading from or Writing to a Specific Location in a File
Recipe 18.16. Removing the Last Line of a File

Recipe 18.17. Modifying a File in Place Without a Temporary File
Recipe 18.18. Flushing Output to a File

Recipe 18.19. Writing to Standard Output

Recipe 18.20. Writing to Many Filehandles Simultaneously
Recipe 18.21. Escaping Shell Metacharacters

Recipe 18.22. Passing Input to a Program

Recipe 18.23. Reading Standard Output from a Program

Recipe 18.24. Reading Standard Error from a Program

Recipe 18.25. Locking a File

Recipe 18.26. Reading and Writing Compressed Files

Recipe 18.27. Program: Unzip

Chapter 19. Directories

Section 19.1. Introduction

Recipe 19.2. Getting and Setting File Timestamps

Recipe 19.3. Getting File Information

Recipe 19.4. Changing File Permissions or Ownership
Recipe 19.5. Splitting a Filename into Its Component Parts
Recipe 19.6. Deleting a File

Recipe 19.7. Copying or Moving a File

Recipe 19.8. Processing All Files in a Directory

Recipe 19.9. Getting a List of Filenames Matching a Pattern
Recipe 19.10. Processing All Files in a Directory

Recipe 19.11. Making New Directories

Recipe 19.12. Removing a Directory and Its Contents
Recipe 19.13. Program: Web Server Directory Listing
Recipe 19.14. Program: Site Search

Chapter 20. Client-Side PHP

Section 20.1. Introduction

Recipe 20.2. Parsing Program Arguments

Recipe 20.3. Parsing Program Arguments with getopt
Recipe 20.4. Reading from the Keyboard

Recipe 20.5.

Reading Passwords

Recipe 20.6. Displaying a GUI Widget in a Window

Recipe 20.7. Displaying Multiple GUI Widgets in a Window

Recipe 20.8. Responding to User Actions

Recipe 20.9. Displaying Menus

Recipe 20.10. Program: Command Shell

Recipe 20.11. Program: Displaying Weather Conditions

Chapter 21. PEAR

Section 21.1. Introduction

Recipe 21.2. Using the PEAR Package Manager
Recipe 21.3. Finding PEAR Packages

Recipe 21.4. Finding Information About a Package

Recipe 21.5. Installing PEAR Packages

Recipe 21.6. Installing PECL Packages

Recipe 21.7. Upgrading PEAR Packages

Recipe 21.8. Uninstalling PEAR Packages

Recipe 21.9. Documenting Classes with PHPDoc

Colophon

Index

Preface

PHP is the engine behind millions of dynamic web applications. Its broad feature set,
approachable syntax, and support for different operating systems and web servers have made
it an ideal language for both rapid web development and the methodical construction of
complex systems.

One of the major reasons for PHP's success as a web scripting language is its origins as a tool
to process HTML forms and create web pages. This makes PHP very web-friendly. Additionally,
it is a polyglot. PHP can speak to a multitude of databases, and it knows numerous Internet
protocols. PHP also makes it simple to parse browser data and make HTTP requests. This web-
specific focus carries over to the recipes and examples in the PHP Cookbook.

This book is a collection of solutions to common tasks in PHP. We've tried to include material
that will appeal to everyone from newbies to wizards. If we've succeeded, you'll learn
something (or perhaps many things) from the PHP Cookbook. There are tips in here for
everyday PHP programmers as well as for people coming to PHP with experience in another
language.

PHP, in source-code and binary forms, is available for download for free from
http://www.php.net/. The PHP web site also contains installation instructions, comprehensive

documentation, and pointers to online resources, user groups, mailing lists, and other PHP
resources.

Who This Book Is For

This book is for programmers who need to solve problems with PHP. If you don't know any
PHP, make this your second PHP book. The first should be Programming PHP, also from
O'Reilly & Associates.

If you're already familiar with PHP, this book will help you overcome a specific problem and
get on with your life (or at least your programming activities.) The PHP Cookbook can also
show you how to accomplish a particular task in PHP, like sending email or writing a SOAP
server, that you may already know how to do in another language. Programmers converting
applications from other languages to PHP will find this book a trusty companion.

What Is in This Book

We don't expect that you'll sit down and read this book from cover to cover. (although we'll be
happy if you do!). PHP programmers are constantly faced with a wide variety of challenges on
a wide range of subjects. Turn to the PHP Cookbook when you encounter a problem you need
to solve. Each recipe is a self-contained explanation that gives you a head start towards
finishing your task. When a recipe refers to topics outside its scope, it contains pointers to
related recipes and other online and offline resources.

If you choose to read an entire chapter at once, that's okay. The recipes generally flow from
easy to hard, with example programs that "put it all together" at the end of many chapters.
The chapter introduction provides an overview of the material covered in the chapter,
including relevant background material, and points out a few highlighted recipes of special
interest.

The book begins with four chapters about basic data types. Chapter 1 covers details like
processing substrings, manipulating case, taking strings apart into smaller pieces, and parsing
comma-separated data. Chapter 2 explains operations with floating-point numbers, random
numbers, converting between bases, and number formatting. Chapter 3 shows you how to
manipulate dates and times, format them, handle time zones and daylight saving time, and
find time to microsecond precision. Chapter 4 covers array operations like iterating, merging,
reversing, sorting, and extracting particular elements.

Next are three chapters that discuss program building blocks. Chapter 5 covers notable
features of PHP's variable handling, like default values, static variables, and producing string
representations of complex data types. The recipes in Chapter 6 deal with using functions in
PHP: processing arguments, passing and returning variables by reference, creating functions
at runtime, and scoping variables. Chapter 7 covers PHP's object-oriented capabilities, with
recipes on using overloading and polymorphism, defining constructors, and cloning objects.

The heart of the book is five chapters devoted to topics that are central to web programming.
Chapter 8 covers cookies, headers, authentication, configuration variables, and other
fundamentals of web applications. Chapter 9 covers processing and validating form input,
displaying multi-page forms, showing forms with error messages, and escaping special
characters in user data. Chapter 10 explains the differences between text-file, DBM, and SQL
databases and, using the PEAR DB database abstraction layer, shows how to assign unique ID
values, retrieve rows, change data, escape quotes, and log debugging information. Chapter 11
focuses on retrieving URLs and processing HTML but also touches on using templates and
parsing server access logs. Chapter 12 covers XML and related formats, including the DOM,
SAX, XSLT, XML-RPL, and SOAP.

The next section of the book is a series of chapters on other features and extensions of PHP
that provide a lot of useful functionality. These are recipes that help you build applications that
are more robust, secure, user-friendly, and efficient. Chapter 13 covers regular expressions,
including matching a valid email address, capturing text inside of HTML tags, and using greedy
or non-greedy matching. Chapter 14 discusses encryption, including generating and storing
passwords, sharing encrypted data with others, storing encrypted data in a file or database,
and using SSL. Chapter 15 shows you how to create graphics, with recipes on drawing text,
lines, polygons, and curves. Chapter 16 helps you make your applications globally friendly and
includes recipes on using locales and localizing text, dates and times, currency values, and
images. Chapter 17 discusses network-related tasks, like reading and sending email messages
and newsgroup posts, using FTP and LDAP, and doing DNS and Whois lookups.

Chapter 18 and Chapter 19 cover the filesystem. Chapter 18 focuses on files: opening and

closing them, using temporary files, locking file, sending compressed files, and processing the
contents of files. Chapter 19 deals with directories and file metadata, with recipes on changing
file permissions and ownership, moving or deleting a file, and processing all files in a
directory.

Last, there are two chapters on topics that extend the reach of what PHP can do. Chapter 20
covers using PHP outside of web programming. Its recipes cover command-line topics like
parsing program arguments and reading passwords, as well as topics related to building client-
side GUI applications with PHP-GTK like displaying widgets, responding to user actions, and
displaying menus. Chapter 21 covers PEAR, the PHP Extension and Application Repository.
PEAR is a collection of PHP code that provides various functions and extensions to PHP. We use
PEAR modules throughout the book and Chapter 21 shows you how to install and upgrade
them.

Other Resources
Web Sites

There is a tremendous amount of PHP reference material online. With everything from the
annotated PHP manual to sites with periodic articles and tutorials, a fast Internet connection
rivals a large bookshelf in PHP documentary usefulness. Here are some key sites:

The Annotated PHP Manual: http://www.php.net/manual/

Available in seventeen languages, this includes both official documentation of functions and language features as well as
user-contributed comments.

PHP mailing lists: http://www.php.net/mailing-lists.php

There are many PHP mailing lists covering installation, programming, extending PHP, and various other topics. A read-
only web interface to the mailing lists is at http://news.php.net/.

PHP Presentation archive: http://conf.php.net/

A collection of presentations on PHP given at various conferences.

PEAR: http://pear.php.net/

PEAR calls itself "a framework and distribution system for reuseable PHP components.” You'll find lots of useful PHP
classes and sample code there.

PHP.net: A Tourist's Guide: http://www.php.net/sites.php

This is a guide to the various web sites under the php.net umbrella.

PHP Knowledge Base: http://php.faqts.com/

Many questions and answers from the PHP community, as well as links to other resources.

PHP DevCenter: http://www.onlamp.com/php/

A collection of PHP articles and tutorials with a good mix of introductory and advanced topics.

Books

This section lists books that are helpful references and tutorials for building applications with
PHP. Most are specific to web-related programming; look for books on MySQL, HTML, XML,
and HTTP.

At the end of the section, we've included a few books that are useful for every programmer
regardless of language of choice. These works can make you a better programmer by teaching
you how to think about programming as part of a larger pattern of problem solving.

Programming PHP by Kevin Tatroe and Rasmus Lerdorf (O'Reilly).

HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly).
Dynamic HTML: The Definitive Guide by Danny Goodman (O'Reilly).

Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly).

XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O'Reilly).

MySQL Reference Manual, by Michael "Monty" Widenius, David Axmark, and MySQL AB
(O'Reilly); also available at http://www.mysgl.com/documentation/.

MySQL, by Paul DuBois (New Riders).

Web Security, Privacy, and Commerce by Simson Garfinkel and Gene Spafford
(O'Reilly).

Web Services Essentials, by Ethan Cerami (O'Reilly).

HTTP Pocket Reference, by Clinton Wong (O'Reilly).

The Practice of Programming, by Brian W. Kernighan and Rob Pike (Addison-Wesley).

Programming Pearls by Jon Louis Bentley (Addison-Wesley).
The Mythical Man-Month, by Frederick P. Brooks (Addison-Wesley).

Conventions Used in This Book
Programming Conventions

We've generally omitted from examples in this book the <?php and ?> opening and closing
markers that begin and end a PHP program, except in examples where the body of the code
includes an opening or closing marker. To minimize naming conflicts, function and class names
in the PHP Cookbook begin with pc_.

The examples in this book were written to run under PHP Version 4.2.2. Sample code should
work on both Unix and Windows, except where noted in the text. Some functions, notably the
XML-related ones, were written to run under PHP Version 4.3.0. We've noted in the text when
we depend on a feature not present in PHP Version 4.2.2.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic

Used for file and directory names, email addresses, and URLs, as well as for new terms where they are defined.

Constant wi dth

Used for code listings and for keywords, variables, functions, command options, parameters, class names, and HTML
tags where they appear in the text.

Constant wi dth bold

Used to mark lines of output in code listings and command lines to be typed by the user.

Constant width italic
Used as a general placeholder to indicate items that should be replaced by actual values in your own programs.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/phpckbk

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

Most importantly, thanks to everyone who has contributed their time, creativity, and skills to
making PHP what it is today. This amazing volunteer effort has created not only hundreds of
thousands of lines of source code, but also comprehensive documentation, a QA infrastructure,
lots of add-on applications and libraries, and a thriving user community worldwide. It's a thrill
and an honor to add the PHP Cookbook to the world of PHP.

Thanks also our reviewers: Stig Bakken, Shane Caraveo, lke DeLorenzo, Rasmus Lerdorf,
Adam Morton, Ophir Prusak, Kevin Tatroe, and Nathan Torkington. They caught plenty of bugs
and offered many helpful suggestions for making the book better. We would like to specially
single out Nat Torkington for flooding us with a plethora of useful changes and suggested
additions.

All the folks at Student.Net Publishing, Student.Com, and TVGrid.Com provided a fertile
environment for exploring PHP. Our experiences there in large part made this book possible.
Bret Martin and Miranda Productions provided hosting and infrastructure that let us collaborate
remotely while writing. We're only four miles from each other, but in Manhattan, that's
remote.

Last, but far from least, thanks to our editor Paula Ferguson. From her shockingly quick (to
our friends) acceptance of our modest book proposal to her final handling of our requests for
last-minute revisions, she's guided the PHP Cookbook with a steady hand through the O'Reilly
publishing process. Without her, this book would never have made the transformation from
idea into reality.

David Sklar

Thanks to Adam for writing this book with me (and catching all the places | used too many
parentheses).

Thanks to my parents, who didn't really know what they were getting into when they bought
me that 4K Radio Shack Color Computer 20 years ago.

Thanks to Susannah for unwavering love and support, and for reminding me at crucial
moments that life's not a paragraph.

Adam Trachtenberg

It is hard to express the size of my debt to David for putting up with me over the course of
working together on the PHP Cookbook. His comments drastically improved my writing and his
unwavering punctuality helped keep me close to schedule.

Thanks to Coleco and its Adam computer, for making me the first kid on the block able to own
a computer named after himself.

Thanks to all my friends and business-school classmates who grew tired of hearing me say
"Sorry, I've got to go work on the book tonight” and who still talked to me after | took two
weeks to return their phone calls.

A special thanks to Elizabeth Hondl. Her childlike fascination with web technologies proves that
if you ask often enough, you just might make it in the book.

Thanks to my brother, parents, and entire family. So much of me comes from them. Their
encouragement and love sustains me.

Chapter 1. Strings

Section 1.1. Introduction

Recipe 1.2. Accessing Substrings

Recipe 1.3. Replacing Substrings

Recipe 1.4. Processing a String One Character at a Time

Recipe 1.5. Reversing a String by Word or Character

Recipe 1.6. Expanding and Compressing Tabs

Recipe 1.7. Controlling Case

Recipe 1.8. Interpolating Functions and Expressions Within Strings

Recipe 1.9. Trimming Blanks from a String

Recipe 1.10. Parsing Comma-Separated Data

Recipe 1.11. Parsing Fixed-Width Delimited Data

Recipe 1.12. Taking Strings Apart

Recipe 1.13. Wrapping Text at a Certain Line Length

Recipe 1.14. Storing Binary Data in Strings

1.1 Introduction

Strings in PHP are a sequence of characters, such as "We hold these truths to be self evident,
or "Once upon a time,"” or even "111211211." When you read data from a file or output it to a
web browser, your data is represented as strings.

Individual characters in strings can be referenced with array subscript style notation, as in C.
The first character in the string is at index 0. For example:

$nei ghbor = 'Hilda';
print $nei ghbor[3];
d

However, PHP strings differ from C strings in that they are binary-safe (i.e., they can contain
null bytes) and can grow and shrink on demand. Their size is limited only by the amount of
memory that is available.

You can initialize strings three ways, similar in form and behavior to Perl and the Unix shell:
with single quotes, with double quotes, and with the "here document” (heredoc) format. With
single-quoted strings, the only special characters you need to escape inside a string are
backslash and the single quote itself:

print 'l have gone to the store.';

print "I\'ve gone to the store."';

print 'Wuld you pay $1.75 for 8 ounces of tap water?';

print 'In double-quoted strings, newine is represented by \n';
| have gone to the store.

|'ve gone to the store.

Woul d you pay $1.75 for 8 ounces of tap water?

I n doubl e-quoted strings, newine is represented by \n

Because PHP doesn't check for variable interpolation or almost any escape sequences in
single-quoted strings, defining strings this way is straightforward and fast.

Double-quoted strings don't recognize escaped single quotes, but they do recognize
interpolated variables and the escape sequences shown in Table 1-1.

Table 1-1. Double-quoted string escape sequences

Escape sequence Character
\'n Newline (ASCII 10)
\ r Carriage return (ASCII 13)
\ t Tab (ASCII 9)
\\ Backslash
\ $ Dollar sign
\ " Double quotes
\ { Left brace

\} Right brace

\ [Left bracket
\] Right bracket
\ O through \ 777 Octal value

\ X0 through \ xFF Hex value

For example:

print "lI've gone to the store.";

print "The sauce cost \$10.25.";

$cost = ' $10.25";

print "The sauce cost $cost.";

print "The sauce cost \$\061\060.\x32\x35.";
|'ve gone to the store.

The sauce cost $10. 25.

The sauce cost $10. 25.

The sauce cost $10. 25.

The last line of code prints the price of sauce correctly because the character 1 is ASCII code
49 decimal and 061 octal. Character O is ASCII 48 decimal and 060 octal; 2 is ASCII 50
decimal and 32 hex; and 5 is ASCII 53 decimal and 35 hex.

Heredoc-specified strings recognize all the interpolations and escapes of double- quoted
strings, but they don't require double quotes to be escaped. Heredocs start with <<< and a
token. That token (with no leading or trailing whitespace), followed by a semicolon to end the
statement (if necessary), ends the heredoc. For example:

print <<< END

It's funny when signs say things |ike:
Oiginal "Root" Beer
"Free" Gft
Shoes cl eaned while "you" wait

or have other m squoted words.

END;

It's funny when signs say things |ike:
Original "Root" Beer
"Free" Gft
Shoes cl eaned while "you" wait

or have other m squoted words.

With heredocs, newlines, spacing, and quotes are all preserved. The end-of-string identifier is
usually all caps, by convention, and it is case sensitive. Thus, this is okay:

print <<< PARSLEY

It's easy to grow fresh:
Par sl ey

Chi ves

on your w ndowsill
PARSLEY;

So is this:

print <<< DOGS

If you like pets, yell out:
DOGS AND CATS ARE GREAT!
DOGS;

Heredocs are useful for printing out HTML with interpolated variables:

if ($remmining cards > 0) {

$url = '/deal.php';

$text = 'Deal More Cards';
} else {

$url = '/new gane. php';

$text = "Start a New Gane';

}
print <<< HTM

There are $remai ni ng_cards left.
<p>

$t ext </ a>

HTM.;

In this case, the semicolon needs to go after the end-of-string delimiter, to tell PHP the
statement is ended. In some cases, however, you shouldn't use the semicolon:

$a = <<< END
Once upon a tinme, there was a
END

. boy!";
print $a;
Once upon a tine, there was a boy!

In this case, the expression needs to continue on the next line, so you don't use a semicolon.
Note also that in order for PHP to recognize the end-of-string delimiter, the . string

concatenation operator needs to go on a separate line from the end-of-string delimiter.

Recipe 1.2 Accessing Substrings

You want to extract part of a string, starting at a particular place in the string. For example,
you want the first eight characters of a username entered into a form.

1.2.1 Solution

Use substr() to select your substrings:

$substring = substr($string, $start, $l engt h);
$usernane = substr ($_REQUEST[' usernane'], 0, 8);

1.2.2 Discussion

If $st art and $I engt h are positive, substr () returns $l engt h characters in the string,
starting at $st art . The first character in the string is at position O:

print substr('watch out for that tree',6,5);
out f

If you leave out $I engt h, substr() returns the string from $st art to the end of the

original string:

print substr('watch out for that tree', 17);
t tree

If $st art plus $l engt h goes past the end of the string, substr () returns all of the string
from $st art forward:

print substr('watch out for that tree', 20,5);
ree

If $st art is negative, substr() counts back from the end of the string to determine where

your substring starts:

print substr('watch out for that tree',-6);
print substr('watch out for that tree',-17,5);
t tree

out f

If $| engt h is negative, subst r() counts back from the end of the string to determine

where your substring ends:

print substr('watch out for that tree',15,-2);
print substr('watch out for that tree',-4,-1);
hat tr

tre

1.2.3 See Also

Documentation on substr () at http://www.php.net/substr.

Recipe 1.3 Replacing Substrings
1.3.1 Problem

You want to replace a substring with a different string. For example, you want to obscure all
but the last four digits of a credit card number before printing it.

1.3.2 Solution

Use substr_replace():

/1 Everything fromposition $start to the end of $old_string
/1 becomes $new substring
$new string = substr_replace($ol d_string, $new substring, $start);

/1 $length characters, starting at position $start, becone $new substring
$new string = substr_replace($ol d_string, $new substring, $start, $l engt h);

1.3.3 Discussion

Without the $l engt h argument, substr_repl ace() replaces everything from $start to

the end of the string. If $| engt h is specified, only that many characters are replaced:

print substr_replace('My pet is a blue dog.', 'fish.',12);

print substr_replace(' My pet is a blue dog.','green', 12, 4);
$credit_card = '4111 1111 1111 1111';

print substr_replace($credit_card, ' xxxx ',0,strlen($credit_card)-4);
My pet is a fish.

My pet is a green dog.

xxxx 1111

If $st art is negative, the new substring is placed at $st art characters counting from the
end of $ol d_st ri ng, not from the beginning:

print substr_replace('My pet is a blue dog.', ' fish.',-9);
print substr_replace('My pet is a blue dog.', 'green',-9,4);
My pet is a fish.

My pet is a green dog.

If $st art and $I engt h are 0, the new substring is inserted at the start of $ol d_stri ng:

print substr_replace(' My pet is a blue dog.','Title: ',0,0);
Title: My pet is a blue dog.

The function substr _repl ace() is useful when you've got text that's too big to display all
at once, and you want to display some of the text with a link to the rest. For example, this
displays the first 25 characters of a message with an ellipsis after it as a link to a page that
displays more text:

$r = nysqgl _query("SELECT id, nessage FROM nessages WHERE id = $id") or die(
)
$ob = nysql _fetch_object($r);
printf('%",
$ob->i d, substr_repl ace($ob- >nessage,' ...',25));

The more-text.php page can use the message ID passed in the query string to retrieve the full
message and display it.

1.3.4 See Also

Documentation on subst r_repl ace() at http://www.php.net/substr-replace.

Recipe 1.4 Processing a String One Character at a Time

1.4.1 Problem

You need to process each character in a string individually.

1.4.2 Solution

Loop through each character in the string with f or . This example counts the vowels in a

string:

$string = "This weekend, |'m going shopping for a pet chicken.";
$vowel s = 0;

for ($i =0, $ = strlen($string); $i < $j; $i++) {

if (strstr('aei ouAEIQU ,$string[$i])) {
$vovnel s++;
}

}

1.4.3 Discussion

Processing a string a character at a time is an easy way to calculate the "Look and Say"
sequence:

function | ookandsay($s) {
/1 initialize the return value to the enpty string
$r =",
/1 $m hol ds the character we're counting, initialize to the first
* character in the string

$m = $s[0];
/1 $n is the nunber of $nis we've seen, initialize to 1
$n = 1;

for ($i =1, $ = strlen($s); $i < $j; $i++) {
[/ if this character is the sane as the | ast one
if ($s[Si] == $m {
/1l increnent the count of this character

$n++;
} else {
/'l otherw se, add the count and character to the return val ue
/1
$r .= $n. $m
/'l set the character we're looking for to the current one //
$m = $s[$i];
/1l and reset the count to 1 //
$n = 1,
}
}
/1l return the built up string as well as the last count and character
/1
return $r.$n. $m
}

for ($i =0, $s = 1; $i < 10; $i++) {
$s = | ookandsay($s);
print "$s\n";

1211

111221

312211

13112221

1113213211
31131211131221
13211311123113112211

It's called the "Look and Say" sequence because each element is what you get by looking at
the previous element and saying what's in it. For example, looking at the first element, 1, you
say "one one." So the second element is "11." That's two ones, so the third element is "21."
Similarly, that's one two and one one, so the fourth element is "1211," and so on.

1.4.4 See Also

Documentation on f or at http://www.php.net/for; more about the "Look and Say" sequence

at http://mathworld.wolfram.com/LookandSaySequence.html.

Recipe 1.5 Reversing a String by Word or Character
1.5.1 Problem

You want to reverse the words or the characters in a string.

1.5.2 Solution

Use strrev() to reverse by character:

print strrev('This is not a palindronme.');
.emordnilap a ton si sihT

To reverse by words, explode the string by word boundary, reverse the words, then rejoin:

$s = "Once upon a tine there was a turtle.";
/'l break the string up into words

$words = explode(' ', $s);

/'l reverse the array of words

$words = array_reverse($words);

/1 rebuild the string

$s = join(' ', $words);

print $s;

turtle. a was there tine a upon Once

1.5.3 Discussion
Reversing a string by words can also be done all in one line:
$reversed_s = join(' ',array_reverse(explode(' ',$s)));

1.5.4 See Also

Recipe 18.8 discusses the implications of using something other than a space character as
your word boundary; documentation on strrev() at http://www.php.net/strrev and

array_reverse() at http://www.php.net/array-reverse.

Recipe 1.6 Expanding and Compressing Tabs
1.6.1 Problem

You want to change spaces to tabs (or tabs to spaces) in a string while keeping text aligned
with tab stops. For example, you want to display formatted text to users in a standardized
way.

1.6.2 Solution

Use str_repl ace() to switch spaces to tabs or tabs to spaces:

$r = nysql _query(" SELECT nessage FROM nessages WHERE id = 1") or die();
$ob = nysql _fetch_object($r);

$tabbed = str_replace(’ ',"\t", $ob- >nessage) ;

$spaced = str_replace("\t",' ', $ob->nessage);

print "Wth Tabs: <pre>$tabbed</pre>";
print "Wth Spaces: <pre>$spaced</ pre>";

Using str_repl ace() for conversion, however, doesn't respect tab stops. If you want tab
stops every eight characters, a line beginning with a five-letter word and a tab should have
that tab replaced with three spaces, not one. Use the pc_t ab_expand() function shown in
Example 1-1 to turn tabs to spaces in a way that respects tab stops.

Example 1-1. pc_tab_expand()

function pc_tab_expand($a) {
$tab_stop = 8;
while (strstr($a,"\t")) {
$a = preg replace(' /M([MNt]*)(\t+)/e",
""\\1'.str_repeat(' ',strlen('\\2") *
$tab_stop - strlen('\\1') % $tab_stop)", $a);

return $a;

}

$spaced = pc_t ab_expand($ob- >nessage) ;

You can use the pc_t ab_unexpand() function shown in Example 1-2 to turn spaces back to
tabs.

Example 1-2. pc_tab_unexpand()

function pc_tab_unexpand($x) {
$tab_stop = 8;

$lines = explode("\n", $x);
for ($i =0, $j = count($lines); $i < $; $i++) {
$lines[$i] = pc_tab_expand($lines[$i]);
$e = preg_split("/(.\{$tab_stop})/",$lines[$i], -
1, PREG SPLI T_DELI M CAPTURE)
$lastbit = array_pop($e);
if (lisset($lasthit)) { $lasthit =""; }
if ($lastbit == str_repeat(' ',$tab_stop)) { $lastbit = "\t"; }
for ($m= 0, $n = count($e); $m < $n; $m++) {
$e[$m] = preg_replace('/ +$' ,"\t",$e[$n]);

}
$lines[$i] = join('"', $e).$lasthit;

}
$x = join("\n", $lines);
return $x;

}

$t abbed = pc_t ab_unexpand($ob- >nmessage) ;
Both functions take a string as an argument and return the string appropriately modified.

1.6.3 Discussion

Each function assumes tab stops are every eight spaces, but that can be modified by changing
the setting of the $t ab_st op variable.

The regular expression in pc_t ab_expand() matches both a group of tabs and all the text
in a line before that group of tabs. It needs to match the text before the tabs because the
length of that text affects how many spaces the tabs should be replaced so that subsequent
text is aligned with the next tab stop. The function doesn't just replace each tab with eight
spaces; it adjusts text after tabs to line up with tab stops.

Similarly, pc_t ab_unexpand() doesn't just look for eight consecutive spaces and then
replace them with one tab character. It divides up each line into eight-character chunks and
then substitutes ending whitespace in those chunks (at least two spaces) with tabs. This not
only preserves text alignment with tab stops; it also saves space in the string.

1.6.4 See Also

Documentation on str_repl ace() at http://www.php.net/str-replace.

Recipe 1.7 Controlling Case
1.7.1 Problem

You need to capitalize, lowercase, or otherwise modify the case of letters in a string. For
example, you want to capitalize the initial letters of names but lowercase the rest.

1.7.2 Solution

Use ucfirst() orucwords() to capitalize the first letter of one or more words:

print ucfirst("how do you do today?");
print ucwords("the prince of wales");
How do you do today?

The Prince O \Wales

Use strtol ower() orstrtoupper() to modify the case of entire strings:

print strtoupper("i'mnot yelling!'");

/'l Tags must be | owercase to be XHTM. conpli ant
print strtol ower (' one</ A>');
[M NOT YELLING

one</ a>

1.7.3 Discussion

Use ucfirst() to capitalize the first character in a string:

print ucfirst(' nonkey face');
print ucfirst('1l nonkey face');
Monkey face

1 nonkey face

Note that the second line of output is not "1 Monkey face".

Use ucwor ds() to capitalize the first character of each word in a string:

print ucwords('1l nonkey face');

print ucwords("don't play zone defense against the philadel phia 76-ers");
1 Monkey Face

Don't Play Zone Defense Agai nst The Phil adel phia 76-ers

As expected, ucwor ds() doesn't capitalize the "t" in "don't." But it also doesn't capitalize
the "e" in "76-ers." For ucwor ds(), a word is any sequence of nonwhitespace characters
that follows one or more whitespace characters. Since both' and - aren't whitespace
characters, ucwor ds() doesn't consider the "t" in "don't" or the "e" in "76-ers" to be word-

starting characters.

Both ucfirst() anducwords() don't change the case of nonfirst letters:

print ucfirst(' macWrld says | should get a iBook');
print ucwords('eTunaFi sh.com m ght buy itunaFi sh. Coml");
MacWorl d says | should get a iBook

ETunaFi sh. com M ght Buy |t unaFi sh. Coml

The functions strt ol ower () and strtoupper() work on entire strings, not just
individual characters. All alphabetic characters are changed to lowercase by strt ol ower ()

and st rt oupper () changes all alphabetic characters to uppercase:

print strtolower ("l programed the WOPR and the TRS-80.");
print strtoupper('"since feeling is first" is a poemby e. e. cumings."');

i programred the wopr and the trs-80.
"SINCE FEELING I S FIRST" IS A PCEM BY E. E. CUMM NGS.

When determining upper- and lowercase, these functions respect your locale settings.

1.7.4 See Also

For more information about locale settings, see Chapter 16; documentation on ucfirst()

at http://www.php.net/ucfirst, ucwor ds() at http://www.php.net/ucwords, st rt ol ower (
) at http://www.php.net/strtolower, and st rt oupper () at http://www.php.net/strtoupper.

Recipe 1.8 Interpolating Functions and Expressions Within Strings
1.8.1 Problem

You want to include the results of executing a function or expression within a string.

1.8.2 Solution

Use the string concatenation operator (.) when the value you want to include can't be inside
the string:

print 'You have '.($_REQUEST[' boys'] + $ REQUEST['girls']).' children.";
print "The word '$word' is ".strlen($word).' characters |long.";

print 'You owe '.$anmounts['paynent'].' immediately';

print "My circle's dianeter is ".$circle->getDi aneter().' inches.';

1.8.3 Discussion

You can put variables, object properties, and array elements (if the subscript is unquoted)
directly in double-quoted strings:

print "I have $children children.";
print "You owe $anounts[paynent] inmmediately.";
print "My circle's dianeter is $circle->dianeter inches.";

Direct interpolation or using string concatenation also works with heredocs. Interpolating with
string concatenation in heredocs can look a little strange because the heredoc delimiter and
the string concatenation operator have to be on separate lines:

print <<< END
Ri ght now, the tine is
END
strftime('%') . <<< END
but tomorrow it wll be
END
strftime(' %' ,tine() + 86400);

Also, if you're interpolating with heredocs, make sure to include appropriate spacing for the
whole string to appear properly. In the previous example, "Right now the time" has to include
a trailing space, and "but tomorrow it will be" has to include leading and trailing spaces.

1.8.4 See Also

For the syntax to interpolate variable variables (like ${ " anount _$i "}), see Recipe 5.5;
documentation on the string concatenation operator at
http://www.php.net/language.operators.string.

Recipe 1.9 Trimming Blanks from a String
1.9.1 Problem

You want to remove whitespace from the beginning or end of a string. For example, you want
to clean up user input before validating it.

1.9.2 Solution

Useltrinm() ,rtrim),ortrin().ltrin() removes whitespace from the beginning
of a string, rtrinm() from the end of a string, and tri m() from both the beginning and

end of a string:

$zi pcode = trin($_REQUEST[' zi pcode']);
$no_linefeed = rtrin($_REQUEST['text']);
$name = | trin{$_REQUEST[' nanme']);

1.9.3 Discussion

For these functions, whitespace is defined as the following characters: newline, carriage
return, space, horizontal and vertical tab, and null.

Trimming whitespace off of strings saves storage space and can make for more precise display
of formatted data or text within <pr e> tags, for example. If you are doing comparisons with
user input, you should trim the data first, so that someone who mistakenly enters "98052 " as
their Zip Code isn't forced to fix an error that really isn't. Trimming before exact text
comparisons also ensures that, for example, "salami\n" equals "salami."” It's also a good idea
to normalize string data by trimming it before storing it in a database.

The trin() functions can also remove user-specified characters from strings. Pass the
characters you want to remove as a second argument. You can indicate a range of characters
with two dots between the first and last characters in the range.

/'l Rermove nuneral s and space fromthe beginning of the line
print Itrinm'10 PRINT A$',' 0..9");

/'l Renove semi colon fromthe end of the line

print rtrim ' SELECT * FROMturtles;"',"';");

PRI NT A$

SELECT * FROM turtl es

PHP also provides chop() as an alias forrtri m(). However, you're best off using rt ri n(
) instead, because PHP's chop() behaves differently than Perl's chop() (which is
deprecated in favor of chonp(), anyway) and using it can confuse others when they read

your code.

1.9.4 See Also

Documentation ont ri n() at http://www.php.net/trim, | trin() at

http://www.php.net/Itrim, and rtri n() at http://www.php.net/rtrim.

Recipe 1.10 Parsing Comma-Separated Data
1.10.1 Problem

You have data in comma-separated values (CSV) format, for example a file exported from
Excel or a database, and you want to extract the records and fields into a format you can
manipulate in PHP.

1.10.2 Solution

If the CSV data is in a file (or available via a URL), open the file with f open() and read in
the data with f get csv() . This prints out the data in an HTML table:

$fp = fopen('sanple2.csv','r') or die("can't open file");
print "<table>\n";
whi l e($csv_line = fgetcsv($fp, 1024)) {
print '<tr>';
for ($i =0, $ = count($csv_line); $i < $j; $i++) {
print '<td> .$csv_line[$i]." ' </td>";
}

print "</tr>\n";

}

print '</table>\n";
fclose($fp) or die("can't close file");

1.10.3 Discussion

The second argument to f get csv() must be longer than the maximum length of a line in
your CSV file. (Don't forget to count the end-of-line whitespace.) If you read in CSV lines
longer than 1K, change the 1024 used in this recipe to something that accommodates your
line length.

You can pass f get csv() an optional third argument, a delimiter to use instead of a comma
(,)- Using a different delimiter however, somewhat defeats the purpose of CSV as an easy way
to exchange tabular data.

Don't be tempted to bypass f get csv() and just read a line in and expl ode() on the
commas. CSV is more complicated than that, in order to deal with embedded commas and
double quotes. Using f get csv() protects you and your code from subtle errors.

1.10.4 See Also

Documentation on f get csv() at http://www.php.net/fgetcsv.

Recipe 1.11 Parsing Fixed-Width Delimited Data
1.11.1 Problem

You need to break apart fixed-width records in strings.
1.11.2 Solution

Use substr():

$fp = fopen('fixed-width-records.txt','r") or die ("can't open file");
while ($s = fgets($fp,1024)) {

$fields[1] = substr($s,0,10); // first field: first 10 characters of
the line

$fields[2] = substr($s,10,5); // second field: next 5 characters of
the line

$fields[3] = substr($s,15,12); // third field: next 12 characters of
the line

/1l a function to do sonmething with the fields
process_fiel ds($fields);

fclose($fp) or die("can't close file");

Or unpack():

$fp = fopen('fixed-width-records.txt',"'r') or die ("can't open file");
while ($s = fgets($fp, 1024)) {

/1 an associative array with keys "title", "author", and
“publication_year"

$fi el ds = unpack(' A25titl e/ Ald4aut hor/ Adpublication_year', $s);

/1l a function to do sonmething with the fields

process_fiel ds($fields);

fclose($fp) or die("can't close file");
1.11.3 Discussion

Data in which each field is allotted a fixed number of characters per line may look like this list
of books, titles, and publication dates:

$bookl i st =<<<END

El mer Gantry Sinclair Lew s1927
The Scarl atti |nheritanceRobert Ludl um 1971
The Parsifal Msaic Robert Ludl um 1982

Sophi e' s Choi ce WIlliam Styronl979
END;

In each line, the title occupies the first 25 characters, the author's name the next 14
characters, and the publication year the next 4 characters. Knowing those field widths, it's
straightforward to use substr () to parse the fields into an array:

$books

expl ode("\ n", $bookl i st);

for ($i 0, $j = count($books); $i < $j; $i++) {
$book_array[$i]['title'] = substr($books[$i], 0, 25);
$book _array[$i][' author'] = substr($books[$i], 25, 14);
$book _array[$i][' publication_year'] = substr($books[$i], 39, 4);

}

Exploding $bookl i st into an array of lines makes the looping code the same whether it's

operating over a string or a series of lines read in from a file.

The loop can be made more flexible by specifying the field names and widths in a separate
array that can be passed to a parsing function, as shown in the pc_fi xed_wi dt h_substr (

) function in Example 1-3.

Example 1-3. pc_fixed_width_substr()

function pc_fixed w dth _substr($fields, $data) {
$r = array();
for ($i =0, $ = count($data); $i < $j; $i++) {
$li ne_pos = 0;
foreach($fields as $field_name => $field_length) {
$r{$i][$field_name] =
rtrimsubstr($data[$i], $line_pos,$field_|length));
$line_pos += $field_|length;
}

}

return $r;

}

$book fields = array('title => 25
"aut hor' => 14,
"publication_year' => 4);

$book _array = pc_fixed width_substr($book fields, $books);

The variable $| i ne_pos keeps track of the start of each field, and is advanced by the
previous field's width as the code moves through each line. Use rtri n{) to remove trailing

whitespace from each field.

You can use unpack() as a substitute for substr() to extract fields. Instead of specifying
the field names and widths as an associative array, create a format string for unpack(). A
fixed-width field extractor using unpack() looks like the pc_fi xed_w dt h_unpack()
function shown in Example 1-4.

Example 1-4. pc_fixed_width_unpack()

function pc_fixed_w dt h_unpack($format_string, $data) {
$r = array();
for ($i =0, $ = count($data); $i < $j; $i++) {
$r[$i] = unpack($format_string, $data[$i]);

return $r;

}

$book_array =
pc_fixed_wi dt h_unpack(' A25ti t| e/ Al4aut hor/ Adpubli cation_year',
$books) ;

Because the A format to unpack() means "space padded string," there's no need to rtri n{

) off the trailing spaces.

Once the fields have been parsed into $book_ar r ay by either function, the data can be

printed as an HTML table, for example:

$book_array =
pc_fixed_wi dt h_unpack(' A25ti t| e/ Al4aut hor/ Adpubli cation_year',
$books) ;
print "<table>\n";
/'l print a header row
print '<tr><td>';
print join('</td><td>,array_keys($book_array[0]));
print "</td></tr>\n";
/'l print each data row
foreach ($book_array as $row) {
print '<tr><td>';
print join('</td><td>',array_val ues($row));
print "</td></tr>\n";

}

print '</table>\n";

Joining data on </ t d><t d> produces a table row that is missing its first <t d> and last </ t d>.
We produce a complete table row by printing out <t r ><t d> before the joined data and
</t d></t r > after the joined data.

Both substr() and unpack() have equivalent capabilities when the fixed-width fields are
strings, but unpack() is the better solution when the elements of the fields aren't just

strings.
1.11.4 See Also

For more information about unpack(), see Recipe 1.14 and http://www.php.net/unpack;

Recipe 4.9 discusses j oi n().

Recipe 1.12 Taking Strings Apart

1.12.1 Problem

You need to break a string into pieces. For example, you want to access each line that a user
enters in a <t ext ar ea> form field.

1.12.2 Solution

Use expl ode() if what separates the pieces is a constant string:

$words = explode(' ','My sentence is not very conplicated);

Usesplit() orpreg_split() if you need aPOSIX or Perl regular expression to describe

the separator:

$words = split(' +,'This sentence has sone extra whitespace init.');
$words = preg_split('/\d\. /',"'nmy day: 1. get up 2. get dressed 3. eat
toast');

$lines = preg split('/[\n\r]+/',$ REQUEST['textarea']);

Usespliti() orthe/i flagtopreg_split() for case-insensitive separator matching:

$wor ds
$wor ds

spliti(" x ',"31 inches x 22 inches X 9 inches');
preg_split('/ x /i',"31 inches x 22 inches X 9 inches");

1.12.3 Discussion

The simplest solution of the bunch is expl ode(). Pass it your separator string, the string to

be separated, and an optional limit on how many elements should be returned:

$dwar ves = ' dopey, sl eepy, happy, gr unpy, sneezy, bashf ul , doc';
$dwarf _array = expl ode(',"', $dwarves);

Now $dwar f _arr ay is a seven element array:

print_r($dwarf _array);

Array

(
[0] => dopey
[1] => sl eepy
[2] => happy

[3] => grunpy
[4] => sneezy
[5] => bashful

[6] => doc
)
If the specified limit is less than the number of possible chunks, the last chunk contains the
remainder:
$dwarf _array = explode(',"', $dwarves, 5);
print_r($dwarf _array);
Array

(

[0] => dopey
[1] => sleepy
[2] => happy
[3] => grunpy
[4] => sneezy, bashful, doc

The separator is treated literally by expl ode() . If you specify a comma and a space as a
separator, it breaks the string only on a comma followed by a space — not on a comma or a
space.

With split(), you have more flexibility. Instead of a string literal as a separator, it uses a

POSIX regular expression:

$nore_dwarves = ' cheeky, fatso, wonder boy, chunky, growly, groggy, w nky';
$nore_dwarf_array = split(', ?',$nore_dwarves);

This regular expression splits on a comma followed by an optional space, which treats all the
new dwarves properly. Those with a space in their name aren't broken up, but everyone is
broken apart whether they are separated by "," or ", "

print_r($nmore_dwarf_array);
Array
(

[0] => cheeky

[1] => fatso

[2] => wonder boy

[3] => chunky

[4] => growy

[5] => groggy

[6] => wi nky

Similar tosplit() ispreg_split(), which uses a Perl-compatible regular-expression
engine instead of a POSIX regular-expression engine. With preg_split(), you can take
advantage of various Perlish regular-expression extensions, as well as tricks such as including
the separator text in the returned array of strings:

$math = "3 + 2/ 7 - 9";
$stack = preg_split('/ *([+\-\/*]) */',$math, -1, PREG SPLI T_DELI M CAPTURE)
print_r($stack);

Array

(
[0] == 3
[1] => +
[2] => 2
[3] ==/
[4] => 7
[5] = -
[6] => 9

The separator regular expression looks for the four mathematical operators (+, -, /, *),
surrounded by optional leading or trailing spaces. The PREG _SPLI T_DELI M_CAPTURE flag
tells preg_split() toinclude the matches as part of the separator regular expression in

parentheses in the returned array of strings. Only the mathematical operator character class is
in parentheses, so the returned array doesn't have any spaces in it.

1.12.4 See Also

Regular expressions are discussed in more detail in Chapter 13; documentation on expl ode(

) at http://www.php.net/explode, split() at http://www.php.net/split, and pr eg_spl it (
) at http://www.php.net/preg-split.

Recipe 1.13 Wrapping Text at a Certain Line Length
1.13.1 Problem

You need to wrap lines in a string. For example, you want to display text in <pr e>/</ pr e>

tags but have it stay within a regularly sized browser window.

1.13.2 Solution

Use wor dwr ap() :

$s = "Four score and seven years ago our fathers brought forth on this
continen

t a new nation, conceived in liberty and dedi cated to the proposition that
al |

nen are created equal.";

print "<pre>\n".wordw ap($s)."\n</pre>";

<pre>

Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all nen are created equal .

</ pre>

1.13.3 Discussion

By default, wor dwr ap() wraps text at 75 characters per line. An optional second argument

specifies different line length:

print wordw ap($s, 50);

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all
nmen are created equal .

Other characters besides "\n" can be used for linebreaks. For double spacing, use "\n\n":

print wordw ap($s,50,"\n\n");

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all

nmen are created equal.

There is an optional fourth argument to wor dwr ap() that controls the treatment of words
that are longer than the specified line length. If this argument is 1, these words are wrapped.
Otherwise, they span past the specified line length:

print wordw ap('jabberwocky',5);
print wordw ap('jabberwocky',5,"\n",1);
j abberwocky

j abbe

rwock

y

1.13.4 See Also

Documentation on wor dwr ap() at http://www.php.net/wordwrap.

Recipe 1.14 Storing Binary Data in Strings
1.14.1 Problem

You want to parse a string that contains values encoded as a binary structure or encode
values into a string. For example, you want to store numbers in their binary representation
instead of as sequences of ASCII characters.

1.14.2 Solution

Use pack() to store binary data in a string:
$packed = pack(' S4', 1974, 106, 28225, 32725) ;
Use unpack() to extract binary data from a string:
$nuns = unpack(' S4', $packed);

1.14.3 Discussion

The first argument to pack() is a format string that describes how to encode the data that's
passed in the rest of the arguments. The format string S$4 tells pack() to produce four
unsigned short 16-bit numbers in machine byte order from its input data. Given 1974, 106,
28225, and 32725 as input, this returns eight bytes: 182, 7, 106, 0, 65, 110, 213, and 127.
Each two-byte pair corresponds to one of the input numbers: 7 * 256 + 182 is 1974; 0 * 256
+ 106 is 106; 110 * 256 + 65 = 28225; 127 * 256 + 213 = 32725.

The first argument to unpack() is also a format string, and the second argument is the data
to decode. Passing a format string of S4, the eight-byte sequence that pack() produced

returns a four-element array of the original numbers:

print_r($nuns);

Array

(
[1] => 1974
[2] => 106
[3] => 28225
[4] => 32725

In unpack(), format characters and their count can be followed by a string to be used as an

array key. For example:

$nums = unpack(' S4num , $packed) ;
print_r($nuns);
Array

[numl] => 1974
[nunR] => 106

[nunB] => 28225
[numd] => 32725

Multiple format characters must be separated with / in unpack() :

$nums = unpack(' Sla/ Silb/ Slc/ Sid', $packed);
print_r($nuns);

Array

(
[a] => 1974
[b] => 106
[c] => 28225
[d] => 32725

The format characters that can be used with pack() and unpack() are listed in Table 1-2.

Table 1-2. Format characters for pack() and unpack()

Format character Data type
a NUL-padded string
A Space-padded string
h Hex string, low nibble first
H Hex string, high nibble first
c si gned char
C unsi gned char

S si gned short (16 bit, machine byte order)

unsi gned short (16 bit, machine byte order)

n unsi gned short (16 bit, big endian byte order)

\Y unsi gned short (16 bit, little endian byte order)

i si gned i nt (machine-dependent size and byte order)
I unsi gned i nt (machine-dependent size and byte order)
I si gned | ong (32 bit, machine byte order)

L unsi gned | ong (32 bit, machine byte order)

N unsi gned | ong (32 bit, big endian byte order)

V unsi gned | ong (32 bit, little endian byte order)

f f1 oat (machine dependent size and representation)

d doubl e (machine dependent size and representation)
X NUL byte

X Back up one byte

@ NUL-fill to absolute position

For a, A, h, and H, a number after the format character indicates how long the string is. For

example, A25 means a 25-character space-padded string. For other format characters, a

following number means how many of that type appear consecutively in a string. Use * to

take the rest of the available data.

You can convert between data types with unpack(). This example fills the array $asci i

with the ASCII values of each character in $s:

$s = 'platypus';

$asci i

print_r($ascii);

Array

(

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

unpack(' c*', $s);

=>
=>
=>
=>
=>
=>
=>
=>

112
108
97

116
121
112
117
115

1.14.4 See Also

Documentation on pack() at http://www.php.net/pack and unpack() at

http://www.php.net/unpack .

Chapter 2. Numbers

Section 2.1. Introduction

Recipe 2.2. Checking Whether a String Contains a Valid Number

Recipe 2.3. Comparing Floating-Point Numbers

Recipe 2.4. Rounding Floating-Point Numbers

Recipe 2.5. Operating on a Series of Integers

Recipe 2.6. Generating Random Numbers Within a Range

Recipe 2.7. Generating Biased Random Numbers

Recipe 2.8. Taking Logarithms

Recipe 2.9. Calculating Exponents

Recipe 2.10. Formatting Numbers

Recipe 2.11. Printing Correct Plurals

Recipe 2.12. Calculating Trigonometric Functions

Recipe 2.13. Doing Trigonometry in Degrees, not Radians

Recipe 2.14. Handling Very Large or Very Small Numbers

Recipe 2.15. Converting Between Bases

Recipe 2.16. Calculating Using Numbers in Bases Other Than Decimal

2.1 Introduction

In everyday life, numbers are easy to identify. They're 3:00 P.M., as in the current time, or
$1.29, as in the cost of a pint of milk. Maybe they're like IT, the ratio of the circumference to
the diameter of a circle. They can be pretty large, like Avogadro's number, which is about 6 x
1022, In PHP, numbers can be all these things.

However, PHP doesn't treat all these numbers as "numbers." Instead, it breaks them down
into two groups: integers and floating-point numbers. Integers are whole numbers, such as -
4, 0, 5, and 1,975. Floating-point numbers are decimal numbers, such as -1.23, 0.0, 3.14159,
and 9.9999999999.

Conveniently, most of the time PHP doesn't make you worry about the differences between
the two because it automatically converts integers to floating-point numbers and floating-point
numbers to integers. This conveniently allows you to ignore the underlying details. It also
means 3/ 2 is 1. 5, not 1, as it would be in some programming languages. PHP also

automatically converts from strings to numbers and back. For instance, 1+" 1" is 2.

However, sometimes this blissful ignorance can cause trouble. First, numbers can't be
infinitely large or small; there's a minimum size of 2.2e-308 and a maximum size of about
1.8e308.1! If you need larger (or smaller) numbers, you must use the BCMath or GMP
libraries, which are discussed in Recipe 2.14.

[These numbers are actually platform-specific, but the values are common
because they are from the 64-bit IEEE standard 754.

Next, floating-point numbers aren't guaranteed to be exactly correct but only correct plus or a
minus a small amount. Now, this amount is small enough for most occasions, but you can end
up with problems in certain instances. For instance, humans automatically convert 6 followed
by an endless string of 9s after the decimal point to 7, but PHP thinks it's 6 with a bunch of 9s.
Therefore, if you ask PHP for the integer value of that number, it returns 6, not 7. For similar
reasons, if the digit located in the 200th decimal place is significant, floating-point numbers
aren't useful. Again, the BCMath and GMP libraries ride to the rescue. But, for most occasions,
PHP behaves very nicely when playing with numbers and lets you treat them just as you do in
real life.

Recipe 2.2 Checking Whether a String Contains a Valid Number
2.2.1 Problem

You want to ensure that a string contains a number. For example, you want to validate an age
that the user has typed into a form input field.

2.2.2 Solution

Useis_numeric():

if (is_nunmeric('five')) { /* false */ }

/* true */
/* true */

if (is_numeric(5))
if (is_numeric('5"))

/* true */
/* true */

if (is_numeric(-5))
if (is_numeric('-5"))

- -
(SR —

2.2.3 Discussion

Besides working on numbers, i S_nuneri c() can also be applied to numeric strings. The

distinction here is that the integer 5 and the string 5 technically aren't the same in PHP.1&

21 The most glaring example of this difference came during the transition from
PHP 3 to PHP 4. In PHP 3, enpt y(' 0') returned f al se, but as of PHP 4, it
returns t r ue. On the other hand, enpt y(0) has always returned t r ue and
still does. (Actually, you need to call enpt y() on variables containing '0* and
0.) See the Introduction to Chapter 5 for details.

Helpfully, i s_nuneri c() properly parses decimal numbers, such as 5. 1; however, numbers

with thousands separators, such as 5, 100, cause i s_nuneri c() to returnfal se.

To strip the thousands separators from your number before calling i S_nuneri c() use
str_replace():

i s_nuneric(str_replace($nunber, ',', ''));

To check if your number is a specific type, there are a variety of self-explanatorily named
related functions: i s_bool () ,is_float() (oris_double() oris_real(); they're

all the same), andis_int() (oris_integer() oris_long()).

2.2.4 See Also

Documentation on i S_nuneri c() at http://www.php.net/is-numeric and st r_r epl ace()

at http://www.php.net/str-replace.

Recipe 2.3 Comparing Floating-Point Numbers

2.3.1 Problem

You want to check whether two floating-point numbers are equal.
2.3.2 Solution

Use a small delta value, and check if the numbers are equal within that delta:

$del ta = 0.00001;

$a = 1.00000001;

$b = 1. 00000000;

if (abs($a - $b) < $delta) { /* $a and $b are equal */ }
2.3.3 Discussion

Floating-point numbers are represented in binary form with only a finite number of bits for the
mantissa and the exponent. You get overflows when you exceed those bits. As a result,
sometimes PHP (and other languages, too) don't believe two equal numbers are actually equal
because they may differ toward the very end.

To avoid this problem, instead of checking if $a == $b, make sure the first number is within
a very small amount ($del t a) of the second one. The size of your delta should be the
smallest amount of difference you care about between two numbers. Then use abs() to get

the absolute value of the difference.

2.3.4 See Also

Recipe 2.4 for information on rounding floating-point numbers; documentation on floating-

point numbers in PHP at http://www.php.net/language.types.float.

Recipe 2.4 Rounding Floating-Point Numbers
2.4.1 Problem

You want to round a floating-point number, either to an integer value or to a set number of
decimal places.

2.4.2 Solution

To round a number to the closest integer, use round() :

$nunber = round(2.4); /1 $nunmber = 2
To round up, usecei l () :

$nunber = ceil (2.4); /1 $nunber = 3
To round down, use fl oor ():

$nunber = floor(2.4); /1 $nunmber = 2

2.4.3 Discussion

If a number falls exactly between two integers, its behavior is undefined:

$nunber = round(2.5); /1 $nunber is 2 or 3!

Be careful! As we mention in Recipe 2.3, floating-point numbers don't always work out to
exact values because of how they're stored internally by the computer. This can create
situations in which the obvious answer isn't. A value you expect to have a decimal part of
"0.5" might instead be ".499999...9" (with a whole bunch of 9s) or ".500000...1" (with many
Os and a trailing 1). If you want to ensure that a number is rounded up as you might expect,
add a small delta value to it before rounding:

$delta = 0.0000001;
$nunber = round(2.5 + $delta); /1 $nunber = 3

To keep a set number of digits after the decimal point, r ound() accepts an optional
precision argument. For example, if you are calculating the total price for the items in a user's
shopping cart:

$cart = 54.23;
$tax = $cart * .05;

$total = $cart + S$tax; /1 $total 56. 9415

$fi nal 56. 94

round(S$total, 2); /1 $final
2.4.4 See Also

Recipe 2.3 for information on comparing floating-point numbers; documentation on r ound()

at http://www.php.net/round.

Recipe 2.5 Operating on a Series of Integers

2.5.1 Problem

You want to apply a piece of code over a range of integers.
2.5.2 Solution

Use the range() function, which returns an array populated with integers:

foreach(range($start, $end) as $i) {
pl ot _point ($i);
}

Instead of using r ange(), it can be more efficient to use a f or loop. Also, you can

increment using values other than 1. For example:

for ($i = $start; $i <= $end; $i += S$increnent) {
pl ot _point ($i);

2.5.3 Discussion

Loops like this are common. For instance, you could be plotting a function and need to
calculate the results for multiple points on the graph. Or, you could be NASA counting down
until the launch of the Space Shuttle Columbia.

In the first example, range() returns an array with values from $st art to $end. Then

f or each pulls out each element and assigns it to $i inside of the loop. The advantage of
using r ange() is its brevity, but this technique has a few disadvantages. For one, a large
array can take up unnecessary memory. Also, you're forced to increment the series one
number at a time, so you can't loop through a series of even integers, for example.

As of PHP 4.1, it is valid for $st art to be larger than $end. In this case, the numbers

returned by r ange() are in descending order. Also, you can use iterate over character

sequences:
print_r(range('l', 'p'));
Array
(

[0] =>1

[1] =>m

[2] =>n

[3] =>o0

[4] =>p

The f or loop method just uses a single integer and avoids the array entirely. While it's longer,
you have greater control over the loop, because you can increment and decrement $i more
freely. Also, you can modify $i from inside the loop, something you can't do with range(),
because PHP reads in the entire array when it enters the loop, and changes to the array don't
effect the sequence of elements.

2.5.4 See Also

Recipe 4.4 for details on initializing an array to a range of integers; documentation on r ange(

) at http://www.php.net/range.

Recipe 2.6 Generating Random Numbers Within a Range

2.6.1 Problem

You want to generate a random number within a range of numbers.
2.6.2 Solution

Usenmt _rand():

/1 random nunber between $upper and $l ower, inclusive
$random nunber = nt_rand($l ower, S$upper);

2.6.3 Discussion

Generating random numbers is useful when you want to display a random image on a page,
randomize the starting position of a game, select a random record from a database, or
generate a unique session identifier.

To generate a random number between two end points, pass nt _rand() two arguments:

$random nunber = nt_rand(1, 100);

Calling mt _rand() without any arguments returns a number between 0 and the maximum

random number, which is returned by nt _get randmax().

Generating truly random numbers is hard for computers to do. Computers excel at following
instructions methodically; they're not so good at spontaneity. If you want to instruct a
computer to return random numbers, you need to give it a specific set of repeatable
commands; the very fact that they're repeatable undermines the desired randomness.

PHP has two different random number generators, a classic function called r and() and a
better function called nt _r and(). MT stands for Mersenne Twister, which is named for the
French monk and mathematician Marin Mersenne and the type of prime numbers he's
associated with. The algorithm is based on these prime numbers. Since mt _rand() is more

random and faster than rand(), we preferittorand().

If you're running a version of PHP earlier than 4.2, before using nt _rand() (orrand())
for the first time in a script, you need to seed the generator, by calling nt _srand() (or
srand()). The seed is a number the random function uses as the basis for generating the
random numbers it returns; it's how to solve the repeatable versus random dilemma
mentioned earlier. Use the value returned by mi croti me() , a high-precision time function,
to get a seed that changes very quickly and is unlikely to repeat — qualities desirable in a
good seed. After the initial seed, you don't need to reseed the randomizer. PHP 4.2 and later
automatically handles seeding for you, but if you manually provide a seed before calling

nt _rand() for the first time, PHP doesn't alter it by substituting a new seed of its own.

If you want to select a random record from a database — an easy way is to find the total
number of fields inside the table — select a random number in that range, and then request
that row from the database:

$sth = $dbh->query(' SELECT COUNT(*) AS count FROM quotes');
if ($row = $sth->fetchRow)) {
$count = $rowf 0] ;
} else {
di e ($row >get Message());
}

$random = nt_rand(0, $count - 1);

$sth = $dbh- >query(" SELECT quote FROM quotes LIM T $random 1");
while ($row = $sth->fetchRow()) {

print $rowf0] . "\n";
}

This snippet finds the total number of rows in the table, computes a random number inside
that range, and then uses LI M T $random 1 to SELECT one line from the table starting at
position $r andom

Alternatively, if you're using MySQL 3.23 or above, you can do this:

$sth = $dbh- >quer y(' SELECT quote FROM quotes ORDER BY RAND() LIMT 1');
while ($row = $sth->fetchRow()) {

print $rowf0] . "\n";
}

In this case, MySQL randomizes the lines, and then the first row is returned.

2.6.4 See Also

Recipe 2.7 for how to generate biased random numbers; documentation on nt _rand() at
http://www.php.net/mt-rand and r and() at http://www.php.net/rand; the MySQL Manual
on RAND() at http://www.mysqgl.com/doc/M/a/Mathematical_functions.html.

Recipe 2.7 Generating Biased Random Numbers
2.7.1 Problem

You want to generate random numbers, but you want these numbers to be somewhat biased,
so that numbers in certain ranges appear more frequently than others. For example, you want
to spread out a series of banner ad impressions in proportion to the number of impressions
remaining for each ad campaign.

2.7.2 Solution

Use the pc_r and_wei ght ed() function shown in Example 2-1.

Example 2-1. pc_rand_weighted()

/'l returns the weighted randomy sel ected key
function pc_rand_wei ght ed($nunbers) {
$total = O;
foreach ($nunbers as $nunber => $weight) {
$total += $weight;
$di stribution[$nunber] = $total;

}

$rand = nt_rand(0, $total - 1);

foreach ($distribution as $nunber => $wei ghts)
if ($rand < Sweights) { return $nunber; }

}

2.7.3 Discussion

Imagine if instead of an array in which the values are the number of remaining impressions,
you have an array of ads in which each ad occurs exactly as many times as its remaining
number of impressions. You can simply pick an unweighted random place within the array,
and that'd be the ad that shows.

This technique can consume a lot of memory if you have millions of impressions remaining.
Instead, you can calculate how large that array would be (by totalling the remaining
impressions), pick a random number within the size of the make-believe array, and then go
through the array figuring out which ad corresponds to the number you picked. For instance:

$ads = array('ford" => 12234, // advertiser, renmining inpressions
"att' => 33424,
"ibm => 16823);

$ad = pc_rand_wei ght ed($ads);
2.7.4 See Also

Recipe 2.6 for how to generate random numbers within a range.

Recipe 2.8 Taking Logarithms
2.8.1 Problem

You want to take the logarithm of a number.

2.8.2 Solution

For logs using base e (natural log), use | og() :

$l og = [0g(10); /1 2.30258092994
For logs using base 10, use | 0g10() :

$l 0g10 = | 0g10(10); /11

For logs using other bases, use pc_Il ogn() :

function pc_| ogn($nunber, $base) {
return | og($nunber) / | og($base);
}

$log2 = pc_logn(10, 2); // 3.3219280948874

2.8.3 Discussion

Both | og() and | 0gl0() are defined only for numbers that are greater than zero. The
pc_l ogn() function uses the change of base formula, which says that the log of a number in

base n is equal to the log of that number, divided by the log of n.

2.8.4 See Also

Documentation on | og() at http://www.php.net/log and | 0g10() at

http://www.php.net/log10.

Recipe 2.9 Calculating Exponents

2.9.1 Problem

You want to raise a number to a power.

2.9.2 Solution

To raise e to a power, use exp():

$exp = exp(2); /1 7.3890560989307

To raise it to any power, use pow) :

$exp = pow(2, ME); // 6.5808859910179

$pow = pow(2, 10): // 1024

$pow = pow 2, -2); /1 0.25

$pow = pow(2, 2.5); [/ 5.6568542494924

$pow = pow(-2, 10); // 1024

$pow = pow 2, -2); /1 0.25

$pow = pow(-2, -2.5); // NAN (Error: Not a Nunber)

2.9.3 Discussion

The built-in constant M _E is an approximation of the value of e. It equals
2.7182818284590452354. So exp($n) and pow M_E, $n) are identical.

It's easy to create very large numbers using exp() and pow() ; if you outgrow PHP's
maximum size (almost 1.8e308), see Recipe 2.14 for how to use the arbitrary precision
functions. With these functions, PHP returns | NF, infinity, if the result is too large and NAN,

not-a-number, on an error.

2.9.4 See Also

Documentation on pow() at http://www.php.net/pow, exp() at http://www.php.net/exp,

and information on predefined mathematical constants at http://www.php.net/math.

Recipe 2.10 Formatting Numbers
2.10.1 Problem

You have a number and you want to print it with thousands and decimals separators. For
instance, you want to display prices for items in a shopping cart.

2.10.2 Solution

Use the nunber _format () function to format as an integer:

$nunber = 1234. 56;
print nunber _for mat ($nunber); /1 1,235 because nunber is rounded up

Specify a number of decimal places to format as a decimal:

print nunber _format($nunber, 2); // 1,234.56
2.10.3 Discussion

The nunber _format () function formats a number by inserting the correct decimal and
thousands separators for your locale. If you want to manually specify these values, pass them
as the third and fourth parameters:

$nunber = 1234. 56;
print nunber_format($nunber, 2, '@, '#'); /| 1#234@®6

The third argument is used as the decimal point and the last separates thousands. If you use
these options, you must specify both arguments.

By default, nunber _format() rounds the number to the nearest integer. If you want to
preserve the entire number, but you don't know ahead of time how many digits follow the
decimal point in your number, use this:

$nunber = 1234.56; // your nunber
list($int, $dec) = explode('.', $nunber);
print nunber _format ($nunber, strlen($dec));

2.10.4 See Also

Documentation on nunber _f ormat () at http://www.php.net/number-format.

Recipe 2.11 Printing Correct Plurals
2.11.1 Problem

You want to correctly pluralize words based on the value of a variable. For instance, you are
returning text that depends on the number of matches found by a search.

2.11.2 Solution

Use a conditional expression:

$nunber = 4;

print "Your search returned $nunber " . ($nunber == 1 ? 'hit' : 'hits")

Yﬁu} search returned 4 hits.
2.11.3 Discussion

It's slightly shorter to write the line as:

print "Your search returned $nunber hit" . ($nunber ==

12" 0 'st) oot

However, for odd pluralizations, such as "person” versus "people,” we find it clearer to break

out the entire word rather than just the letter.

Another option is to use one function for all pluralization, as shown in the

pc_may_pluralize() function in Example 2-2.

Example 2-2. pc_may_pluralize()

function pc_may_pluralize($singul ar_word, $anmount_of) {

/'l array of special plurals
$plurals = array(

"fish' => "fish',

' person' => 'people',

)

/'l only one

if (1 == $anmount_of) {
return $singul ar_word;

}

/'l nore than one, special plural

if (isset($plurals[$singular_word])) {
return $plural s[$si ngul ar_word];

}

/'l nore than one, standard plural: add 's' to end of word

return $singular_word . 's';

Here are some examples:

$nunber _of fish = 1;

print "I ate $nunber _of fish " . pc_may_pluralize('fish', $nunber _of fish)

$nunber _of _people = 4;
print 'Soylent Geenis ' . pc_may_pluralize('person',

$nunber _of _peopl e)

| ate 1 fish.
Soyl ent Green is people!

If you plan to have multiple plurals inside your code, using a function such as
pc_may_pluralize() increases readability. To use the function, pass
pc_may_pluralize() the singular form of the word as the first argument and the amount
as the second. Inside the function, there's a large array, $pl ur al s, that holds all the special
cases. If the $anmount is 1, you return the original word. If it's greater, you return the special

pluralized word, if it exists. As a default, just add an "s" to the end of the word.
Recipe 2.12 Calculating Trigonometric Functions

2.12.1 Problem

You want to use trigonometric functions, such as sine, cosine, and tangent.

2.12.2 Solution

PHP supports many trigonometric functions natively: sin() ,cos(),andtan():
$cos = cos(2.1232);

You can also use their inverses: asi n(), acos(),andatan():

$atan = atan(1l.2);

2.12.3 Discussion

These functions assume their arguments are in radians, not degrees. (See Recipe 2.13 if this
is a problem.)

The function at an2() takes two variables $x and $y, and computes at an($x/ $y) .
However, it always returns the correct sign because it uses both parameters when finding the
quadrant of the result.

For secant, cosecant, and cotangent, you should manually calculate the reciprocal values of
sin(),cos(),andtan():

$n = . 707;

$secant =1/ sin($n);
$cosecant = 1/ cos($n);
$cotangent = 1 / tan($n);

Starting in PHP 4.1, you can also use hyperbolic functions: si nh(), cosh(), and tanh(),
plus, of course, asi n(), cosh(), and atanh(). The inverse functions, however, aren't

supported on Windows.

2.12.4 See Also

Recipe 2.13 for how to perform trig operations in degrees, not radians; documentation on
sin() at http://www.php.net/sin, cos() at http://www.php.net/cos, tan() at

http://www.php.net/tan, asi n() at http://www.php.net/asin, acos() at

http://www.php.net/acos, at an() at http://www.php.net/atan, and at an2() at

http://www.php.net/atan2.

Recipe 2.13 Doing Trigonometry in Degrees, not Radians
2.13.1 Problem

You have numbers in degrees but want to use the trigonometric functions.

2.13.2 Solution

Use deg2rad() and rad2deg() on your input and output:

$cosi ne = rad2deg(cos(deg2rad($degree)));
2.13.3 Discussion

By definition, 360 degrees is equal to 2T radians, so it's easy to manually convert between
the two formats. However, these functions use PHP's internal value of T, so you're assured a
high-precision answer. To access this number for other calculations, use the constant M PI ,
which is 3.14159265358979323846.

There is no built-in support for gradians. This is considered a feature, not a bug.

2.13.4 See Also

Recipe 2.13 for trig basics; documentation on deg2r ad() at http://www.php.net/deg2rad
and rad2deg() at http://www.php.net/rad2deg.

Recipe 2.14 Handling Very Large or Very Small Numbers
2.14.1 Problem

You need to use numbers that are too large (or small) for PHP's built-in floating-point
numbers.

2.14.2 Solution

Use either the BCMath or GMP libraries.

Using BCMath:

$sum = bcadd(' 1234567812345678' , ' 8765432187654321");

/1 $sumis now the string '9999999999999999'
print $sum

Using GMP:

$sum = gnp_add(' 1234567812345678' , ' 8765432187654321");

/1 $sumis now a GWP resource, not a string; use gnp_strval() to convert
print gnp_strval ($sum;

2.14.3 Discussion

The BCMath library is easy to use. You pass in your numbers as strings, and the function
return the sum (or difference, product, etc.) as a string. However, the range of actions you
can apply to numbers using BCMath is limited to basic arithmetic.

The GMP library is available as of PHP 4.0.4. While most members of the GMP family of
functions accept integers and strings as arguments, they prefer to pass numbers around as
resources, which are essentially pointers to the numbers. So, unlike BCMath functions, which
return strings, GMP functions return only resources. You then pass the resource to any GMP
function, and it acts as your number.

The only downside is when you want to view or use the resource with a non-GMP function, you
need to explicitly convert it using gnp_strval () orgnp_intval ().

GMP functions are liberal in what they accept. For instance:

$f our = gnp_add(2, 2); /'l You can pass integers
$eight = gnp_add('4', '4'); /1 O strings

$twel ve = gnp_add($four, $eight); // O GW resources
print gnp_strval ($twel ve); /1 Prints 12

However, you can do many more things with GMP numbers than addition, such as raising a
number to a power, computing large factorials very quickly, finding a greatest common divisor
(GCD), and other fancy mathematical stuff:

/'l Raising a nunber to a power
$pow = gnp_pow(2, 10); /1 1024

/'l Conputing large factorials very quickly
$factorial = gnp_fact(20); /1 2432902008176640000

/'l Finding a GCD
$gcd = gnp_gcd (123, 456); /1 3

/1 OQther fancy mathematical stuff
$l egdendre = gnp_l egendre(1, 7); /11

The BCMath and GMP libraries aren't necessarily enabled with all PHP configurations. As of PHP
4.0.4, BCMath is bundled with PHP, so it's likely to be available. However, GMP isn't bundled
with PHP, so you'll need to download, install it, and instruct PHP to use it during the
configuration process. Check the values of f uncti on_defi ned(' bcadd') and
function_defined('gnp_init') to see if you can use BCMath and GMP.

2.14.4 See Also

Documentation on BCMath at http://www.php.net/bc and GMP at http://www.php.net/gamp.

Recipe 2.15 Converting Between Bases
2.15.1 Problem

You need to convert a number from one base to another.

2.15.2 Solution

Use the base_convert () function:

$hex = 'al'; /'l hexadeci mal nunber (base 16)

/'l convert from base 16 to base 10
$deci mal = base_convert ($hex, 16, 10); // $decimal is now 161

2.15.3 Discussion

The base_convert () function changes a string in one base to the correct string in another.
It works for all bases from 2 to 36 inclusive, using the letters a through z as additional
symbols for bases above 10. The first argument is the number to be converted, followed by
the base it is in and the base you want it to become.

There are also a few specialized functions for conversions to and from base 10 and the most
commonly used other bases of 2, 8, and 16. They're bi ndec() and dechi n(), oct dec(
) and decoct (), and hexdec() and dechex():

/1 convert to base 10

print bindec(11011); // 27
print octdec(33); /1 27
print hexdec('1lb'); [/ 27

/'l convert from base 10

print decbin(27); /1 11011
print decoct (27); /'l 33
print dechex(27); /'l 1b

Another alternative is to use sprintf() , which allows you to convert decimal numbers to
binary, octal, and hexadecimal numbers with a wide range of formatting, such as leading Os
and a choice between upper- and lowercase letters for hexadecimal numbers.

For instance, say you want to print out HTML color values:
printf (" #%02X%02X%2X , 0, 102, 204); // #0066CC
2.15.4 See Also

Documentation on base_convert() at http://www.php.net/base-convert and sprintf()

formatting options at http://www.php.net/sprintf.

Recipe 2.16 Calculating Using Numbers in Bases Other Than Decimal
2.16.1 Problem

You want to perform mathematical operations with numbers formatted not in decimal, but in
octal or hexadecimal. For example, you want to calculate web-safe colors in hexadecimal.

2.16.2 Solution

Prefix the number with a leading symbol, so PHP knows it isn't in base 10. The following
values are all equal:

0144 |/ base 8
100 // base 10
0x64 // base 16

Here's how to count from decimal 1 to 15 using hexadecimal notation:
for ($i = Ox1; $i < 0x10; $i++) { print "$i\n"; }
2.16.3 Discussion

Even if you use hexadecimally formatted numbers in a f or loop, by default, all numbers are
printed in decimal. In other words, the code in the Solution doesn't print out "..., 8, 9, a, b,
...". To print in hexadecimal, use one of the methods listed in Recipe 2.15. Here's an example:

for ($i = Ox1; $i < O0x10; $i++) { print dechex($i) . "\n"; }

For most calculations, it's easier to use decimal. Sometimes, however, it's more logical to
switch to another base, for example, when using the 216 web-safe colors. Every web color
code is of the form RRGEBB, where RR is the red color, GGis the green color, and BB is the

blue color. Each color is actually a two-digit hexadecimal number between 0 and FF.

What makes web-safe colors special is that RR, GG, and BB each must be one of the following
six numbers: 00, 33, 66, 99, CC, and FF (in decimal: 0, 51, 102, 153, 204, 255). So, 003366
is web-safe, but 112233 is not. Web-safe colors render without dithering on a 256-color
display.

When creating a list of these numbers, use hexadecimal notation in this triple-loop to reinforce
the list's hexadecimal basis:

for ($rr = 0; $rr <= OxFF, $rr += 0x33)
for ($9g = 0; $gg <= OxFF; $gg += 0x33)
for ($bb = 0; $bb <= OxFF; $bb += 0x33)
printf("%@2X002X%02X\n", $rr, $gg, $bb);

Here the loops compute all possible web-safe colors. However, instead of stepping through
them in decimal, you use hexadecimal notation, because it reinforces the hexadecimal link
between the numbers. Print them out using pri ntf() to format them as uppercase
hexadecimal numbers at least two digits long. One-digit numbers are passed with a leading
zero.

2.16.4 See Also

Recipe 2.15 for details on converting between bases; Chapter 3, "Web Design Principles for
Print Designers," in Web Design in a Nutshell (O'Reilly).

Chapter 3. Dates and Times

Section 3.1. Introduction

Recipe 3.2. Finding the Current Date and Time

Recipe 3.3. Converting Time and Date Parts to an Epoch Timestamp

Recipe 3.4. Converting an Epoch Timestamp to Time and Date Parts

Recipe 3.5. Printing a Date or Time in a Specified Format

Recipe 3.6. Finding the Difference of Two Dates

Recipe 3.7. Finding the Difference of Two Dates with Julian Days

Recipe 3.8. Finding the Day in a Week, Month, Year, or the Week Number in a Year

Recipe 3.9. Validating a Date

Recipe 3.10. Parsing Dates and Times from Strings

Recipe 3.11. Adding to or Subtracting from a Date

Recipe 3.12. Calculating Time with Time Zones

Recipe 3.13. Accounting for Daylight Saving Time

Recipe 3.14. Generating a High-Precision Time

Recipe 3.15. Generating Time Ranges

Recipe 3.16. Using Non-Gregorian Calendars

Recipe 3.17. Program: Calendar

3.1 Introduction

Displaying and manipulating dates and times seems simple at first but gets more difficult
depending on how diverse and complicated your users are. Do your users span more than one
time zone? Probably so, unless you are building an intranet or a site with a very specific
geographical audience. Is your audience frightened away by timestamps that look like "2002-
07-20 14:56:34 EDT" or do they need to be calmed with familiar representations like
"Saturday July 20, 2000 (2:56 P.M.)." Calculating the number of hours between today at 10
A.M. and today at 7 P.M. is pretty easy. How about between today at 3 A.M. and noon on the
first day of next month? Finding the difference between dates is discussed in Recipe 3.6 and

Recipe 3.7.

These calculations and manipulations are made even more hectic by daylight saving (or
summer) time (DST). Thanks to DST, there are times that don't exist (in most of the United
States, 2 A.M. to 3 A.M. on the first Sunday in April) and times that exist twice (in most of the
United States, 1 A.M. to 2 A.M. on the last Sunday in October). Some of your users may live in
places that observe DST, some may not. Recipe 3.12 and Recipe 3.13 provide ways to work

with time zones and DST.

Programmatic time handling is made much easier by two conventions. First, treat time
internally as Coordinated Universal Time (abbreviated UTC and also known as GMT, Greenwich
Mean Time), the patriarch of the time-zone family with no DST or summer time observance.
This is the time zone at O degrees longitude, and all other time zones are expressed as offsets
(either positive or negative) from it. Second, treat time not as an array of different values for
month, day, year, minute, second, etc., but as seconds elapsed since the Unix epoch:
midnight on January 1, 1970 (UTC, of course). This makes calculating intervals much easier,
and PHP has plenty of functions to help you move easily between epoch timestamps and
human-readable time representations.

The function nkti me() produces epoch timestamps from a given set of time parts, while
dat e() , given an epoch timestamp, returns a formatted time string. You can use these

functions, for example, to find on what day of the week New Year's Day 1986 occurred:

$stanmp = nktine(0,0,0,1,1,1986);
print date('l"', $stanp);
Wednesday

This use of mkt i ne() returns the epoch timestamp at midnight on January 1, 1986. The |
format character to dat e() tells it to return the full name of the day of the week that
corresponds to the given epoch timestamp. Recipe 3.5 details the many format characters
available to dat e() .

In this book, the phrase epoch timestamp refers to a count of seconds since the Unix epoch.
Time parts (or date parts or time and date parts) means an array or group of time and date
components such as day, month, year, hour, minute, and second. Formatted time string (or

formatted date string, etc.) means a string that contains some particular grouping of time and
date parts, for example "2002-03-12," "Wednesday, 11:23 A.M.," or "February 25."

If you used epoch timestamps as your internal time representation, you avoided any Y2K
issues, because the difference between 946702799 (1999-12-31 23:59:59 UTC) and
946702800 (2000-01-01 00:00:00 UTC) is treated just like the difference between any other
two timestamps. You may, however, run into a Y2038 problem. January 19, 2038 at 3:14:07
A.M. (UTC) is 2147483647 seconds after midnight January 1, 1970. What's special about
21474836472 It's 23! - 1, which is the largest integer expressible when 32 bits represent a
signed integer. (The 32nd bit is used for the sign.)

The solution? At some point before January 19, 2038, make sure you trade up to hardware
that uses, say, a 64-bit quantity for time storage. This buys you about another 292 billion
years. (Just 39 bits would be enough to last you until about 10680, well after the impact of
the Y10K bug has leveled the Earth's cold fusion factories and faster-than-light travel
stations.) 2038 might seem far off right now, but so did 2000 to COBOL programmers in the
1950s and 1960s. Don't repeat their mistake!

Recipe 3.2 Finding the Current Date and Time
3.2.1 Problem

You want to know what the time or date is.

3.2.2 Solution

Usestrftime() ordate() for a formatted time string:

print strftime('%');

print date('r');

Mon Aug 12 18:23:45 2002

Mon, 12 Aug 2002 18:23:45 -0400

Use getdate() orlocaltinme() if youwant time parts:

$now 1 = getdate();

$now 2 = localtime();

print "$now_1[hours]: $now_1[m nut es]: $now_1[seconds]";
print "$now 2[2]:$now 2[1] : $now 2[0] ";

18: 23: 45

18: 23: 45

3.2.3 Discussion

The functions strftime() and date() can produce a variety of formatted time and date
strings. They are discussed in more detail in Recipe 3.5. Both | ocal ti me() and get dat e(
) , on the other hand, return arrays whose elements are the different pieces of the specified

date and time.

The associative array get dat e() returns has the key/value pairs listed in Table 3-1.

Table 3-1. Return array from getdate()

Key Value
seconds Seconds
m nut es Minutes
hour s Hours
nday Day of the month
wday Day of the week, numeric (Sunday is 0, Saturday is 6)
non Month, numeric
year Year, numeric
yday Day of the year, numeric (e.g., 299)
weekday Day of the week, textual, full (e.g., "Friday")
nmont h Month, textual, full (e.g., "January™)

For example, here's how to use get dat e() to print out the month, day, and year:

$a = getdate();
printf('% 9%l, %',$a['nonth'],$a[' nday'], $a['year']);
August 7, 2002

Pass get dat e() an epoch timestamp as an argument to make the returned array the

appropriate values for local time at that timestamp. For example, the month, day, and year at
epoch timestamp 163727100 is:

$a = getdate(163727100);
printf('% 9%l, %',$a['nonth'],$a[' nday'], $a[' year']);
March 10, 1975

The function | ocal ti me() returns an array of time and date parts. It also takes an epoch
timestamp as an optional first argument, as well as a boolean as an optional second
argument. If that second argumentistrue, | ocal ti me() returns an associative array
instead of a numerically indexed array. The keys of that array are the same as the members
of the t m struct structure that the C function | ocal ti ne() returns, as shown in Table 3-
2.

Table 3-2. Return array from localtime()

Numeric position Key Value
0 tmsec Second
1 tmmn Minutes
2 t m _hour Hour
3 t m_nday Day of the month

4 t m non Month of the year (January is 0)
5 tmyear Years since 1900

6 t m wday Day of the week

7 t m yday Day of the year

8 tm.i sdst Is daylight saving time in effect?

For example, here's how to use | ocal ti ne() to print out today's date in month/day/year
format:

$a = localtinme();

$a[4] += 1;

$a[5] += 1900;

print "$a[4]/%$a[3]/%$a[5]";
8/ 7/ 2002

The month is incremented by 1 before printing since | ocal ti me() starts counting months
with O for January, but we want to display 1 if the current month is January. Similarly, the

year is incremented by 1900 because | ocal ti me() starts counting years with O for 1900.

Like getdate(),localtinme() accepts an epoch timestamp as an optional first argument
to produce time parts for that timestamp:

$a = local ti me(163727100);
$a[4] += 1;

$a[5] += 1900;

print "$a[4]/%$a[3]/%$a[5]";
3/ 10/ 1975

3.2.4 See Also

Documentation on strfti ne() at http://www.php.net/strftime, date() at
http://www.php.net/date, get dat e() at http://www.php.net/getdate, and | ocal ti ne()
at http://www.php.net/localtime.

Recipe 3.3 Converting Time and Date Parts to an Epoch Timestamp

3.3.1 Problem

You want to know what epoch timestamp corresponds to a set of time and date parts.
3.3.2 Solution

Use nkt i ne() if your time and date parts are in the local time zone:

/1l 7:45:03 PMon March 10, 1975, local tine
$t hen = nktine(19, 45, 3, 3, 10, 1975) ;

Use gmkt i me() if your time and date parts are in GMT:

/1l 7:45:03 PM on March 10, 1975, in GVl
$t hen = gnmkti me(19, 45, 3, 3, 10, 1975) ;

Pass no arguments to get the current date and time in the local or UTC time zone:

$now = nktinme();
$now utc = gmktinme();

3.3.3 Discussion

The functions nkti me() and gmmkti me() each take a date and time's parts (hour, minute,
second, month, day, year, DST flag) and return the appropriate Unix epoch timestamp. The
components are treated as local time by nkti ne(), while gnmkti me() treats them as a
date and time in UTC. For both functions, a seventh argument, the DST flag (1 if DST is being
observed, 0 if not), is optional. These functions return sensible results only for times within
the epoch. Most systems store epoch timestamps in a 32-bit signed integer, so "within the
epoch” means between 8:45:51 P.M. December 13, 1901 UTC and 3:14:07 A.M. January 19,
2038 UTC.

In the following example, $st anp_now s the epoch timestamp when nkti ne() is called and
$st anp_f ut ur e is the epoch timestamp for 3:25 P.M. on June 4, 2012:

$stanp_now = nktinme();
$stanmp_future = nktinme(15, 25,0, 6, 4, 2012);

print $stanp_now,
print $stanp_future;
1028782421
1338837900

Both epoch timestamps can be fed back to strfti ne() to produce formatted time strings:

print strftinme(’' %', $stanp_now);
print strftinme(' %', $stanp_future);
Thu Aug 8 00:53:41 2002

Mon Jun 4 15:25:00 2012

Because the previous calls to nkti me() were made on a computer set to EDT (which is four
hours behind GMT), using gnmkt i me() instead produces epoch timestamps that are 14400

seconds (four hours) smaller:

$st anmp_now = gnmktinme();
$stanmp_future = gmmkti me(15, 25,0, 6, 4, 2012);

print $stanp_now,
print $stanp_future;
1028768021
1338823500

Feeding these gnmkt i me() -generated epoch timestamps back to strfti ne() produces

formatting time strings that are also four hours earlier:

print strftime(' %', $stanp_now);
print strftinme(' %', $stanp_future);
Wed Aug 7 20:53:41 2002

Mon Jun 4 11:25:00 2012

3.3.4 See Also

Recipe 3.4 for how to convert an epoch timestamp back to time and date parts;
documentation on nkti me() at http://www.php.net/mktime and gnmkt i ne() at

http://www.php.net/gmmktime.

Recipe 3.4 Converting an Epoch Timestamp to Time and Date Parts
3.4.1 Problem

You want the set of time and date parts that corresponds to an epoch timestamp.
3.4.2 Solution

Pass an epoch timestamp to get date() :

$time_parts = getdate(163727100);

3.4.3 Discussion

The time parts returned by get dat e() are detailed in Table 3-1. These time parts are in
local time. If you want time parts in another time zone corresponding to a particular epoch
timestamp, see Recipe 3.12.

3.4.4 See Also

Recipe 3.3 for how to convert time and date parts back to epoch timestamps; Recipe 3.12 for
how to deal with time zones; documentation on get dat e() at http://www.php.net/getdate.

Recipe 3.5 Printing a Date or Time in a Specified Format
3.5.1 Problem

You need to print out a date or time formatted in a particular way.
3.5.2 Solution

Usedate() orstrftine():

print strftime('%');

print date(' md/Y);
Tue Jul 30 11:31:08 2002
07/ 30/ 2002

3.5.3 Discussion

Both date() andstrftime() are flexible functions that can produce a formatted time
string with a variety of components. The formatting characters for these functions are listed in
Table 3-3. The Windows column indicates whether the formatting character is supported by
strftine() on Windows systems.

Table 3-3. strftime() and date() format characters

strftime(|date(

Type N N Description Range Windows
Hour 9 H Hour, numeric, 24-hour clock 00-23 Yes
Hour % h Hour, numeric, 12-hour clock 01-12 Yes

Hour, numeric, 24-hour clock,
Hour oK) 0-23 No
leading zero as space

Hour, numeric, 12-hour clock,
Hour %) 1-12 No
leading zero as space

AM or PM designation for current

Hour % A Yes
locale
am/pm designation for current

Hour 9% a P 9 No
locale

Hour, numeric, 24-hour clock,
Hour G)] 0-23 No
leading zero trimmed

Hour, numeric, 12-hour clock,
Hour g . i 0-1 No
leading zero trimmed

Minute oM | Minute, numeric 00-59 Yes
Second %S S Second, numeric 00-611! Yes
Day %l d Day of the month, numeric 01-31 Yes

Day of the month, numeric, leading
Day %e 1-31 No
Zero as space

001-366 for
. striftine();
Day % z Day of the year, numeric Yes
0-365 for
date()
Day of the week, numeric (Monda:
Day %) Y (Y 1-7 No
is 1)
Day of the week, numeric (Sunda
Day % W Y (Y 0-6 Yes

is 0)

Day j Day of the month, numeric, leading |1-31 No

zero trimmed

English ordinal suffix for day of the |"st,” "th,"” "nd,"”
Day S No
month, textual "rd"
Abbreviated weekday name, text for
Week % D Yes
current locale
Full weekday name, text for current
Week %A | Y Yes
locale
Week number in the year; numeric;
Week %) first Sunday is the first day of the 00-53 Yes
first week
ISO 8601:1988 week number in the
year; numeric; week 1 is the first
Week w/ W week that has at least 4 days in the |01-53 No
current year; Monday is the first day
of the week
Week number in the year; numeric;
Week %N first Monday is the first day of the |00-53 Yes
first week
Full month name, text for current
Month 8 F Yes
locale
Abbreviated month name, text for
Month % M Yes
current locale
Month % Same as % No
Month %m m Month, numeric 01-12 Yes
Month, numeric, leading zero
Month n . 1-12 No
trimmed
Month t Month length in days, numeric 28, 29, 30, 31 |No
Year vC Century, numeric 00-99 No
Year % Like %5, but without the century 00-99 No
ISO 8601 year with century;
numeric; the four-digit year
corresponding to the 1SO week
Year %5 number; same as % except if the No
1SO week number belongs to the
previous or next year, that year is
used instead
Year %y i Year without century, numeric 00-99 Yes
Year %r Y Year, numeric, including century Yes
Year L Leap year flag (yes is 1) 0,1 No
Timezone |%& (@] Hour offset from GMT, +/-HHMM -1200-+1200 |Yes, but

(e.g., -0400, +0230) acts like

4
. Time zone, name, or abbreviation;
Timezone |% T Yes
textual
Timezone I Daylight saving time flag (yesis 1) |0, 1 No
Seconds offset from GMT; west of
Timezone Z GMT is negative, east of GMT is -43200-43200 [No
positive
Standard date and time format for
Compound (%€ Yes
current locale
Compound | %D Same as %1 %/ %y No
Compound | %~ Same as %y- %m % No

c 1% Time in AM or PM notation for N
ompoun o
P current locale

Time in 24-hour notation for current

Compound (7R No
locale
c dloar Time in 24-hour notation (same as N
ompoun o
P %t 9B US)

o Standard date format for current
Compound (%]) Yes
locale(without time)

o Standard time format for current
Compound (%X] Yes
locale(without date)

RFC 822 formatted date (e.g., "Thu,
Compound r No
22 Aug 2002 16:01:07 +0200")

Other % U Seconds since the epoch No
Other B Swatch Internet time No
Formatting|%8% Literal %character Yes
Formatting|%h Newline character No
Formatting | % Tab character No

[l The range for seconds extends to 61 to account for leap seconds.

The first argument to each function is a format string, and the second argument is an epoch
timestamp. If you leave out the second argument, both functions default to the current date
and time. While date() andstrfti me() operate over local time, they each have UTC-
centric counterparts (gndat e() and gnstrftinme()).

The formatting characters for dat e() are PHP-specific, but strfti me() uses the C-library
strftinme() function. This may make strfti me() more understandable to someone
coming to PHP from another language, but it also makes its behavior slightly different on
various platforms. Windows doesn't support as many strfti me() formatting commands as

most Unix-based systems. Also, strfti me() expects its formatting characters to each be
preceded by a %(think pri ntf()), so it's easier to produce strings with lots of interpolated

time and date values in them.

For example, at 12:49 P.M. on July 15, 2002, the code to print out:
It's after 12 pmon July 15, 2002

with strftine() looks like:

print strftime("It's after % % on %8 %, %");

With dat e() it looks like:

print "It's after ".date('h a').' on '.date('F d, Y');

Non-date-related characters in a format string are fine for strfti ne(), because it looks for
the %character to decide where to interpolate the appropriate time information. However,

dat e() doesn't have such a delimiter, so about the only extras you can tuck into the
formatting string are spaces and punctuation. If you pass st rfti ne()'s formatting string to
date():

print date("It's after %9 % on %B%l, %");
you'd almost certainly not want what you'd get:
131' 44 pnf 31leMon, 15 Jul 2002 12:49:44 -0400 %4 % o7 %429%5, 92002

To generate time parts with dat e() that are easy to interpolate, group all time and date
parts from dat e() into one string, separating the different components with a delimiter that
dat e() won't translate into anything and that isn't itself part of one of your substrings.
Then, using expl ode() with that delimiter character, put each piece of the return value

from dat e() in an array, which is easily interpolated in your output string:

$ar = explode(':',date("h a:F d, Y"));
print "It's after $ar[0] on $ar[1]";

3.5.4 See Also

Documentation on dat e() at http://www.php.net/date and strftine() at

http://www.php.net/strftime; on Unix-based systems, man strftime for your system-specific

strftine() options; on Windows, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vclib/html/_crt_strftime.2c_.wcsftime.asp for st rfti ne() details.

Recipe 3.6 Finding the Difference of Two Dates
3.6.1 Problem

You want to find the elapsed time between two dates. For example, you want to tell a user
how long it's been since she last logged onto your site.

3.6.2 Solution

Convert both dates to epoch timestamps and subtract one from the other. Use this code to
separate the difference into weeks, days, hours, minutes, and seconds:

/1 7:32:56 pmon May 10, 1965
$epoch_1 = nktinme(19, 32, 56, 5, 10, 1965);
/1 4:29:11 am on Novenber 20, 1962
$epoch_2 = nktine(4, 29, 11, 11, 20, 1962);

$di f f _seconds $epoch_1 - $epoch_2;

$di ff _weeks fl oor($di ff_seconds/ 604800);
$di ff_seconds -= $di ff_weeks * 604800;

$di ff _days fl oor ($di ff_seconds/ 86400);
$di ff _seconds -= $diff_days * 86400;

$di ff _hours fl oor ($di ff_seconds/ 3600);

$di ff _seconds -
$di ff _mi nutes
$di f f _seconds

$di ff_hours * 3600;
f1 oor ($di ff_seconds/ 60);
$diff_mnutes * 60;

print "The two dates have $di ff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_m nutes minutes, and $diff_seconds ";
print "seconds el apsed between them";

The two dates have 128 weeks, 6 days, 14 hours, 3 mnutes,

and 45 seconds el apsed between t hem

Note that the difference isn't divided into larger chunks than weeks (i.e., months or years)
because those chunks have variable length and wouldn't give an accurate count of the time
difference calculated.

3.6.3 Discussion

There are a few strange things going on here that you should be aware of. First of all, 1962
and 1965 precede the beginning of the epoch. Fortunately, nkti me() fails gracefully here
and produces negative epoch timestamps for each. This is okay because the absolute time
value of either of these questionable timestamps isn't necessary, just the difference between
the two. As long as epoch timestamps for the dates fall within the range of a signed integer,
their difference is calculated correctly.

Next, a wall clock (or calendar) reflects a slightly different amount of time change between
these two dates, because they are on different sides of a DST switch. The result subtracting
epoch timestamps gives is the correct amount of elapsed time, but the perceived human time
change is an hour off. For example, on the Sunday morning in April when DST is activated,
what's the difference between 1:30 A.M. and 4:30 A.M.? It seems like three hours, but the

epoch timestamps for these two times are only 7,200 seconds apart — two hours. When a
local clock springs forward an hour (or falls back an hour in October), the steady march of
epoch timestamps takes no notice. Truly, only two hours have passed, although our clock
manipulations make it seem like three.

If you want to measure actual elapsed time (and you usually do), this method is fine. If you're
more concerned with the difference in what a clock says at two points in time, use Julian days
to compute the interval, as discussed in Recipe 3.7.

To tell a user the elapsed time since her last login, you need to find the difference between the
login time and her last login time:

$epoch_1 = tine();

$r = nysql _query("SELECT UNI X _TI MESTAMP(| ast | ogin) AS | ogin
FROM user WHERE id = $id") or die();

$ob = nysql _fetch_object($r);

$epoch_2 = $ob->l ogi n;

$di f f _seconds $epoch_1 - $epoch_2;

$di ff _weeks fl oor($di ff_seconds/ 604800);
$di ff_seconds -= $di ff_weeks * 604800;

$di ff _days fl oor ($di ff_seconds/ 86400);
$di ff _seconds -= $diff_days * 86400;

$di ff _hours fl oor($di ff_seconds/ 3600);

$di f f _seconds
$di ff _mi nutes
$di f f _seconds

$di ff_hours * 3600;
fl oor ($di ff_seconds/ 60);
$diff_mnutes * 60;

print "You last |ogged in $di ff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_mi nutes minutes, and $diff_seconds ago.";

3.6.4 See Also

Recipe 3.7 to find the difference between two dates with Julian days; Recipe 3.11 for adding
and subtracting from a date; documentation on MySQL's UNI X_TI MESTAMP() function at
http://www.mysql.com/doc/D/a/Date_and_time_functions.html.

Recipe 3.7 Finding the Difference of Two Dates with Julian Days
3.7.1 Problem

You want to find the difference of two dates measured by what a clock would say, not the
actual elapsed time.

3.7.2 Solution

Use gregori ant oj d() to get the Julian day for a set of date parts, then subtract one Julian
day from the other to find the date difference. Then convert the time parts to seconds and
subtract one from the other to find the time difference. If the time difference is less than O,
decrease the date difference by one and adjust the time difference to apply to the previous
day. Here's the code:

$di ff_date

gregoriantoj d($date_1_no, $date_1_dy, $date_1_yr) -
gregoriantoj d($date_2_no, $date_2_dy, $date_2_yr);
$date_1 hr * 3600 + $date_ 1 mm * 60 + $date_1 sc -
$date_2 hr * 3600 - $date_2_m * 60 - $date_2_sc;
if ($diff _time < 0) {

$diff_date--;

$diff _time = 86400 - $diff _time;

$diff_time

}
3.7.3 Discussion

Finding differences with Julian days lets you operate outside the range of epoch seconds and
also accounts for DST differences.

If you have the components of your two days in arrays:

/1 7:32:56 pmon May 10, 1965
list($date 1 yr, $date_1 no, $date_1 dy, $date_1 hr, $date_1_mm,
$date_1_sc)=

array(1965, 5, 10, 19, 32, 56):
/1 4:29:11 am on Novenber 20, 1962
list($date 2 yr, $date_2 no, $date_2_dy, $date 2 hr, $date_ 2 mm,
$date_2_sc)=

array(1962, 11, 20, 4, 29, 11):

$di ff_date = gregoriantojd($date_1 no, $date_1 dy, $date_ 1 yr) -
gregoriantoj d($date_2_no, $date_2_dy, $date_2_yr);
$diff time = $date_1 _hr * 3600 + $date_1 nm * 60 + $date_1 sc -
$date_2 hr * 3600 - $date_2_m * 60 - $date_2_sc;
if ($diff _time < 0) {
$diff_date--;
$diff _time = 86400 - $diff _time;

floor($diff_date/7); $diff_date -= $diff_weeks * 7;
floor($diff_time/3600); $diff_time -= $diff_hours * 3600;
= floor($diff_tine/60); $diff_time -= $diff_minutes * 60;

}
$di ff_weeks =
$di ff _hours =
$di ff _mi nutes

print "The two dates have $di ff_weeks weeks, $diff_date days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_time ;
print "seconds between them";

The two dates have 128 weeks, 6 days, 15 hours, 3 mnutes,

and 45 seconds between them

This method produces a time difference based on clock time, which is why the result shows an
hour more of difference than in Recipe 3.6. May 10 is during DST, and November 11 is during
standard time.

The function gr egori ant oj d() is part of PHP's calendar extension, and so is available only
if that extension is loaded.

3.7.4 See Also

Recipe 3.6 to find the difference between two dates in elapsed time; Recipe 3.11 for adding
and subtracting from a date; documentation on gr egori antoj d() at

http://www.php.net/gregoriantojd; an overview of the Julian Day system is at

http://tycho.usno.navy.mil/mjd.html.

Recipe 3.8 Finding the Day in a Week, Month, Year, or the Week Number in a Year
3.8.1 Problem

You want to know the day or week of the year, the day of the week, or the day of the month.
For example, you want to print a special message every Monday, or on the first of every
month.

3.8.2 Solution

Use the appropriate arguments to date() orstrftinme():

print strftime("Today is day % of the nonth and % of the year.");
print 'Today is day '.date('d').' of the nmonth and '.date('z')."' of the
year.';

3.8.3 Discussion

The two functions date() andstrfti me() don't behave identically. Days of the year start
with O for dat e(), but with 1 for strfti me(). Table 3-4 contains all the day and week
number format characters date() and strfti me() understand.

Table 3-4. Day and week number format characters

strftime(|date(

Type N N Description Range
Day |% d Day of the month, numeric 01-31
001-366 for
Day |% z Day of the year, numeric strftime();o-
365 for date()
Day |% Day of the week, numeric (Monday is 1) 1-7
Day |%w w Day of the week, numeric (Sunday is 0) 0-6

1SO 8601 day of the week, numeric (Monday is
Day |0V . Y (Y1 oe
the first day of the week)

Week number in the year; numeric; first Sunday
Week|%J))) 00-53
is the first day of the first week

1SO 8601:1988 week number in the year;

numeric; week 1 is the first week that has at
Week | %/ W)) 01-53
least four days in the current year; Monday is

the first day of the week

To print out something only on Mondays, use the w formatting character to dat e() or the %w
string with strftime():

if (1 ==date('wW)) {
print "Wl conme to the begi nning of your work week.";
}

if (1 ==strftime('%Vv)) {
print "Only 4 nore days until the weekend!";
}

There are different ways to calculate week numbers and days in a week, so be careful to
choose the appropriate one. The I1SO standard (ISO 8601), says that weeks begin on Mondays
and that the days in the week are numbered 1 (Monday) through 7 (Sunday). Week 1 in a
year is the first week in a year with a Thursday in that year. This means the first week in a
year is the first week with a majority of its days in that year. These week numbers range from
01 to 53.

Other week number standards range from 00 to 53, with days in a year's week 53 potentially
overlapping with days in the following year's week 00.

As long as you're consistent within your programs, you shouldn't run into any trouble, but be
careful when interfacing with other PHP programs or your database. For example, MySQL's
DAYOFWEEK() function treats Sunday as the first day of the week, but numbers the days 1
to 7, which is the ODBC standard. Its WEEKDAY() function, however, treats Monday as the
first day of the week and numbers the days from 0 to 6. Its WEEK() function lets you choose

whether weeks should start on Sunday or Monday, but it's incompatible with the 1SO standard.

3.8.4 See Also

Documentation on dat e() at http://www.php.net/date and strftine() at
http://www.php.net/strftime; MySQL's DAYOFWEEK(), WEEKDAY(), and VWEEK() functions

are documented at http://www.mysgl.com/doc/D/a/Date_and_time_functions.html.

Recipe 3.9 Validating a Date
3.9.1 Problem

You want to check if a date is valid. For example, you want to make sure a user hasn't
provided a birthdate such as February 30, 1962.

3.9.2 Solution

Use checkdate():

$valid = checkdat e($nont h, $day, $year);

3.9.3 Discussion

The function checkdat e() returnstrue if $nont h is between 1 and 12, $year is between
1 and 32767, and $day is between 1 and the correct maximum number of days for $nont h
and $year . Leap years are correctly handled by checkdat e(), and dates are rendered

using the Gregorian calendar.

Because checkdat e() has such a broad range of valid years, you should do additional
validation on user input if, for example, you're expecting a valid birthdate. The Guinness Book
of World Records says the oldest person ever reached 122. To check that a birthdate indicates
a user between 18 and 122 years old, use the pc_checkbi rt hdat e() function shown in

Example 3-1.

Example 3-1. pc_checkbirthdate()

function pc_checkbi rthdat e($nont h, $day, $year) {
$m n_age = 18;
$nax_age = 122;

if (! checkdate($nonth, $day, $year)) {
return fal se;
}
l'ist($this_year,$this_nonth, $this_day) = explode(',',date('Y,md"));

$mi n_year
$nmax_year

$t hi s_year - $nax_age;
$thi s_year - $nin_age;

print "$m n_year, $max_year, $nont h, $day, $year\ n";

if (($year > $nmin_year) && (Pyear < $max_year)) {
return true;
} elseif (($year == $nmax_year) &&
(($month < $this_nonth) ||
(($nonth == $this_nonth) && ($day <= $this_day)))) {
return true;
} elseif (($year == $min_year) &&
(($nonth > $this_nonth) ||
(($nonth == $this_nmonth && ($day > $this_day))))) {
return true;
} else {
return fal se;
}

}

Here is some sample usage:

/'l check Decenber 3, 1974

if (pc_checkbirthdate(12,3,1974)) {
print "You may use this web site.";

} else {
print "You are too young to proceed.";
exit();

This function first uses checkdat e() to make sure that $nont h, $day, and $year
represent a valid date. Various comparisons then make sure that the supplied date is in the
range set by $nmi n_age and $max_age.

If $year is noninclusively between $ni n_year and $nax_year , the date is definitely within
the range, and the function returns t r ue. If not, some additional checks are required. If
$year equals $max_year (e.g., in 2002, $year is 1984), $nont h must be before the current
month. If $nont h equals the current month, $day must be before or equal to the current day.
If $year equals $m n_year (e.g., in 2002, $year is 1880), $nont h must be after the
current month. If $nont h equals the current month, $day must be after the current day. If
none of these conditions are met, the supplied date is outside the appropriate range, and the
function returns f al se.

The function returns t r ue if the supplied date is exactly $m n_age years before the current
date, but f al se if the supplied date is exactly $nax_age years after the current date. That is,
it would let you through on your 18th birthday, but not on your 123rd.

3.9.4 See Also

Documentation on checkdat e() at http://www.php.net/checkdate; information about The

Guinness Book's oldest person is at http://www.guinnessworldrecords.com (navigate to "The

Human Body," "Age and Youth," and then "Oldest Woman Ever").

Recipe 3.10 Parsing Dates and Times from Strings
3.10.1 Problem

You need to get a date or time in a string into a format you can use in calculations. For
example, you want to convert date expressions such as "last Thursday" into an epoch
timestamp.

3.10.2 Solution

The simplest way to parse a date or time string is with strtoti me() , which turns a variety

of human-readable date and time strings into epoch timestamps:
$a = strtotime('march 10'); // defaults to the current year

3.10.3 Discussion

The grammar st rtoti me() uses is both complicated and comprehensive so the best way to
get comfortable with it is to try out lots of different time expressions. If you're curious about
its nuts and bolts, check out ext/standard/parsedate.y in the PHP source distribution.

The function strtoti me() understands words about the current time:

$a = strtotime(' now);

print strftinme(' %', $a);
$a = strtotinme('today');
print strftinme(' %', $a);
Mon Aug 12 20:35:10 2002
Mon Aug 12 20:35:10 2002

It understands different ways to identify a time and date:

$a = strtotime('5/12/1994");
print strftinme(' %', $a);

$a = strtotinme(' 12 may 1994');
print strftinme(' %', $a);

Thu May 12 00:00: 00 1994

Thu May 12 00:00: 00 1994

It understands relative times and dates:

$a = strtotime('last thursday'); /1 On August 12, 2002
print strftinme(' %', $a);

$a = strtotine('2001-07-12 2pm + 1 nonth');

print strftinme(' %', $a);

Thu Aug 8 00:00: 00 2002

Mon Aug 12 14:00: 00 2002

It understands time zones. When the following is run from a computer in EDT, it prints out the
same time:

$a = strtotine(' 2002-07-12 2pmedt + 1 nonth');
print strftinme(' %', $a);
Mon Aug 12 14:00: 00 2002

However, when the following is run from a computer in EDT, it prints out the time in EDT when
it is 2 P.M. in MDT (two hours before EDT):

$a = strtotine(' 2002-07-12 2pmndt + 1 nonth');
print strftinme(' %', $a);
Mon Aug 12 16:00: 00 2002

If the date and time you want to parse out of a string are in a format you know in advance,
instead of calling strtoti ne(), you can build a regular expression that grabs the different
date and time parts you need. For example, here's how to parse "YYYY-MM-DD HH:MM:SS"
dates, such as a MySQL DATETI ME field:

$date = ' 1974-12-03 05: 12: 56 ;
preg_match(' / (\d{4})-(\d{2})- (\d{2})
(\d{2}):(\d{2}): (\d{2})/", $dat e, $date_parts);

This puts the year, month, day, hour, minute, and second into $dat e_part s[1] through
$dat e_parts[6]. (preg_mat ch() puts the entire matched expression into
$dat e_parts[0].)

You can use regular expressions to pull the date and time out of a larger string that might also
contain other information (from user input, or a file you're reading), but if you're sure about
the position of the date in the string you're parsing, you can use substr() to make it even

faster:

$dat e_part s[0]
$dat e_parts[1]
$dat e_parts[2]
$dat e_part s[3]
$dat e_parts[4]
$dat e_part s[5]

substr($date, 0, 4);
substr($date, 5, 2);
substr($date, 8, 2);
substr($date, 11, 2);
substr ($dat e, 14, 2);
substr($date, 17, 2);

You can alsouse split();

$ar = split('[- :]',$date);
print_r(%ar);

Array

(
[0] => 1974
[1] => 12
[2] => 03
[3] => 05
[4] => 12
[5] => 56

)

Be careful: PHP converts between numbers and strings without any prompting, but numbers
beginning with a 0 are considered to be in octal (base 8). So, 03 and 05 are 3 and 5; but, 08
and 09 are not 8 and 9.

preg_match() andstrtotinme() are equally efficient in parsing a date format such as
"YYYY-MM-DD HH:MM:SS", but er eg() is about four times slower than either. If you need
the individual parts of the date string, pr eg_mat ch() is more convenient, but strt ot i me(

) is obviously much mor