




Advance Praise for Head First HTML5 Programming

“HTML5 is the “future of  the web”. How many times have you heard that? If  you really want to understand the 
family of  technologies that make up HTML5, read this book! Head First HTML5 Programming is the definitive book on 
HTML5 for everyone from beginners to experienced developers.”

—  Aaron LaBerge, CEO, Fanzter Inc.

“This book is a rollicking ride through the wild new territory of  HTML5, where we are all bound to be battling 
scorpions for years. It takes you through basic concepts so you understand the purposes of  the HTML5 design, and 
then into each area so you know your way around. Like all Head First books, it replaces dry recitation with lively, 
memorable, fact-laden bursts of  information. I will always have the formal HTML5 spec web site for reference 
purposes, but I’d rather *learn* it lively.”

—  Ken Arnold, Design/Build Hub, Peak Impact, Inc.

“A must have book on HTML5 which continues on the Head First tradition of  being witty, fun, chocked-full of  
examples and wickedly smart!”

—  Danny Mavromatis, Sr Software Architect, ABC Television Group

“Head First HTML5 Programming does a great job of  making sense of  many of  the key aspects of  HTML5 in a fun, 
easy-to-digest manner.  With its highly-visual style and numerous code samples, complex concepts like canvas and 
asynchronous programming are simplified and illustrated making them straightforward and engaging.”

—  Michael S. Scherotter, Principal Architect Evangelist, Microsoft Corporation

“HTML5 is a cake with many layers of  technologies. Head First HTML5 Programming bakes that cake, and then throws it 
at your face. You will consume deliciousness and rejoice.”

—  Josh Rhoades, co-founder of  BrightHalf

With Head First HTML5 Programming, the multiplicity of  HTML5 is approached with a multiplicity in the medium that 
makes the hard work of  learning fun.

—  Ward Cunningham, wiki inventor

“HTML5 is the hottest new technology for website development. Developers far and wide can’t wait to put it to use to 
build flexible, rich media websites that also work great on tablets and smart phones. Head First HTML5 Programming is 
the best and funnest way to feed this exciting new technology to your brain. I highly recommend it!”

—  Marianne Marck, SVP Technology, Blue Nile Inc.



Advance Praise for Head First HTML5 Programming

“Straightforward, informative and entertaining, Head First HTML5 Programming is a must for anyone wanting to get 
started with HTML5 or just to refresh their skills. The Head First series helps me to keep my technical skills up to date 
allowing me to better support my developers and projects.”

—  Todd Guill, Project Manager, AllRecipes.com

“This ain’t your grandpa’s DHTML! Head First HTML5 Programming paints a hopeful and confident picture of  the 
future of  the Web through HTML5, while empowering you to code your own ticket there. If  you’re seeking a definitive, 
accessible, and at times pretty funny guidebook to this standard, look no further.”

—  Manny Otto, Web Producer and Creative

“The authors have hit the nail on the head—JavaScript skills are the key to HTML5. Even if  you’ve never written a 
JavaScript program before, they’ll quickly get you up and running through a series of  fun and practical projects.”

—  David Powers, author of PHP Solutions: Dynamic Web Design Made Easy



Praise for other books from Eric Freeman & Elisabeth Robson

“This book’s admirable clarity, humor and substantial doses of  clever make it the sort of  book that helps even 
non-programmers think well about problem-solving.”

    — Cory Doctorow, co-editor of  Boing Boing 
         and author of  Down and Out in the Magic Kingdom 
         and Someone Comes to Town, Someone Leaves Town

“I feel like a thousand pounds of  books have just been lifted off  of  my head.”

    — Ward Cunningham, inventor of  the Wiki 
         and founder of  the Hillside Group

“This book is close to perfect, because of  the way it combines expertise and readability. It speaks with authority and it 
reads beautifully. It’s one of  the very few software books I’ve ever read that strikes me as indispensable. (I’d put maybe 
10 books in this category, at the outside.)”

    — David Gelernter, Professor of  Computer Science, Yale University
                     and author of  Mirror Worlds and Machine Beauty

“I literally love this book. In fact, I kissed this book in front of  my wife.”

 —  Satish Kumar

“Beware. If  you’re someone who reads at night before falling asleep, you’ll have to restrict Head First HTML with CSS & 
XHTML to daytime reading. This book wakes up your brain.”

    — Pauline McNamara, Center for New Technologies and Education, 
                     Fribourg University, Switzerland

“Head First HTML with CSS & XHTML is a thoroughly modern introduction to forward-looking practices in Web page 
markup and presentation. It correctly anticipates readers’ puzzlements and handles them just in time. The highly 
graphic and incremental approach precisely mimics the best way to learn this stuff: make a small change and see it in 
the browser to understand what each new item means.”

    — Danny Goodman, author of  Dynamic HTML: The Definitive Guide

“The Web would be a much better place if  every HTML author started off  by reading this book.”

    — L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation
                     http://dbaron.org/ 

“Head First HTML with CSS & XHTML teaches you how to do things right from the beginning without making the whole 
process seem overwhelming. HTML, when properly explained, is no more complicated than plain English, and they do 
an excellent job of  keeping every concept at eye-level.”

        — Mike Davidson, President & CEO, Newsvine, Inc.



Other related books from O’Reilly

HTML5 Up and Running

HTML5 Canvas

HTML5: The Missing Manual

HTML5 Geolocation

HTML5 Graphics with SVG and CSS3

HTML5 Forms

HTML5 Media

Other books in O’Reilly’s Head First series

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Rails

Head First PHP & MySQL

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Other O’Reilly books by Eric Freeman and Elisabeth Robson

Head First Design Patterns

Head First HTML with CSS and XHTML



Beijing  •  Cambridge  •  K�ln  •  Sebastopol  •  Tokyo

Eric Freeman 
Elisabeth Robson

Head First 
HTML5 Programming

Wouldn’t it be dreamy if there 
was an HTML5 book that didn’t 
assume you knew what the DOM, 

events, and APIs were, all by page 
three? It’s probably just a fantasy...

building web apps with javascript



Head First HTML5 Programming
by Eric Freeman and Elisabeth Robson

Copyright © 2011 Eric Freeman and Elisabeth Robson. All rights reserved.

Printed in the United States of  America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions 
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:  Kathy Sierra, Bert Bates

Editor:   Courtney Nash

Design Editor:  Louise Barr

Cover Designer:  Karen Montgomery

Production Editor:  Kristen Borg

Indexer:   Ellen Troutman

Proofreader:   Nancy Reinhardt

Printing History:
October 2011: First Edition.

The O’Reilly logo is a registered trademark of  O’Reilly Media, Inc. The Head First series designations, 
Head First HTML5 Programming, and related trade dress are trademarks of  O’Reilly Media, Inc.

Many of  the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of  a trademark 
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of  this book, the publisher and the authors assume no 
responsibility for errors or omissions, or for damages resulting from the use of  the information contained herein.

No gumballs were harmed in the making of  this book. 

ISBN: 978-1-449-39054-9

[M]            
        



To Steve Jobs, who hyped HTML5 to the point where this 
book should sell a zillion copies...

And to Steve Jobs, because he’s our hero.



viii

the authors

Authors of Head First HTML5 Programming

Elisabeth is a software engineer, writer, and trainer. 
She has been passionate about technology since her 
days as a student at Yale University, where she earned a 
Masters of  Science in Computer Science and designed 
a concurrent, visual programming language and 
software architecture. 

Elisabeth’s been involved with the Internet since the 
early days; she co-created the award-winning Web site, 
The Ada Project, one of  the first Web sites designed 
to help women in computer science find career and 
mentorship information online. 

She’s currently co-founder of  WickedlySmart, an online 
education experience centered on web technologies, 
where she creates books, articles, videos and more. 
Previously, as Director of  Special Projects at O’Reilly 
Media, Elisabeth produced in-person workshops and 
online courses on a variety of  technical topics and 
developed her passion for creating learning experiences 
to help people understand technology. Prior to her work 
with O’Reilly, Elisabeth spent time spreading fairy dust 
at The Walt Disney Company, where she led research 
and development efforts in digital media. 

When not in front of  her computer, you’ll find Elisabeth 
hiking, cycling or kayaking in the great outdoors, with 
her camera nearby, or cooking vegetarian meals. 

You can send her email at beth@wickedlysmart.com 
or visit her blog at http://elisabethrobson.com.

Eric Freeman

Eric is described by Head First series co-creator Kathy 
Sierra as “one of  those rare individuals fluent in the 
language, practice, and culture of  multiple domains from 
hipster hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a 
media company executive—having held the position of  
CTO of  Disney Online & Disney.com at The Walt Disney 
Company. Eric is now devoting his time to WickedlySmart, 
a startup he co-created with Elisabeth.

By training, Eric is a computer scientist, having studied 
with industry luminary David Gelernter during his Ph.D. 
work at Yale University. His dissertation is credited as 
the seminal work in alternatives to the desktop metaphor, 
and also as the first implementation of  activity streams, a 
concept he and Dr. Gelernter developed. 

In his spare time, Eric is deeply involved with music; you’ll 
find Eric’s latest project, a collaboration with ambient 
music pioneer Steve Roach, available on the iPhone app 
store under the name Immersion Station. 

Eric lives with his wife and young daughter on Bainbridge 
Island. His daughter is a frequent vistor to Eric’s studio, 
where she loves to turn the knobs of  his synths and audio 
effects. Eric’s also passionate about kids education and 
nutrition, and looking for ways to improve them. 

Write to Eric at eric@wickedlysmart.com or visit his 
site at http://ericfreeman.com.

Elisabeth Robson



ix

table of contents

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on HTML5 Programming.  Here you are trying to learn 

something, while here your brain is doing you a favor by making sure the learning 

doesn’t stick.  Your brain’s thinking, “Better leave room for more important things, 

like which wild animals to avoid and whether naked snowboarding is a bad idea.” So 

how do you trick your brain into thinking that your life depends on knowing HTML5 

and JavaScript? 

Intro

Who is this book for? xxii

We know what you’re thinking xxiii

And we know what your brain is thinking xxiii

Metacognition: thinking about thinking xxv

The technical review team xxx

Acknowledgments xxxi

 Intro ix

1 Getting to know HTML5: Welcome to Webville  1

2 Introducing JavaScript and the DOM: A Little Code 35

3 Events, Handlers and All That Jazz: A Little Interactivity 85

4 JavaScript Functions and Objects: Serious JavaScript 113

5 Making Your HTML Location Aware: Geolocation 165

6 Talking to The Web: Extroverted Apps 213

7 Bringing Out Your Inner Artist: Canvas 281

8 Not Your Father’s TV: Video... With Special Guest Star “Canvas” 349

9 Storing Things Locally: Web Storage 413

10 Putting JavaScript to Work: Web Workers 473

 Appendix: Top Ten Topics (We Didn’t Cover) 531

 Index 549



x

table of contents

1 Welcome to Webville 
getting to know HTML5

Upgrade to HTML5 TODAY! 2

Introducing the HTML5-o-Matic, update your HTML now! 4

You’re closer to HTML5 markup than you think 7

HTML5 Exposed: Confessions of  the newest version of  HTML 11

Would the REAL HTML5 please stand up... 12

How HTML5 really works... 14

Who Does What? 16

Your First Mission: Browser Reconnaisance 17

What can you do with JavaScript? 22

Writing Serious JavaScript  25

Writing Serious JavaScript Revisited... 26

Bullet Points 31

Exercise Solution 33

HTML has been on a wild ride. Sure, HTML started as a mere 

markup language, but more recently HTML’s put on some major muscle. 

Now we’ve got a language tuned for building true web applications with local 

storage, 2D drawing, offline support, sockets and threads, and more. The 

story of HTML wasn’t always pretty, and it’s full of drama (we’ll get to all that), 

but in this chapter, we’re first going to go on a quick joyride through Webville 

to get sense for everything that goes into “HTML5.” Come on, hop in, we’re 

headed to Webville, and we’re going to start by going from zero to HTML5 in 

3.8 pages (flat).

Drag &
  Drop

Offline
Caching

Geolocation

VideoCanvas

Forms

Web 
Workers

Sockets

html

head

title script

body

h1 ph2

em

Audio
Local

Storage



xi

table of contents

2 A Little Code
introducing JavaScript and the DOM

The Way JavaScript Works 36

What can you do with JavaScript? 37

Declaring a variable 38

How to name your variables 40

Getting Expressive 43

Doing things over and over... 46

Make decisions with JavaScript 49

Making more decisions... and, adding a catch all 50

How and where to add JavaScript to your pages 53

How JavaScript interacts with your page 54

How to bake your very own DOM 55

A first taste of  the DOM 56

HTML5 is From Mars, JavaScript is from Venus 58

You can’t mess with the DOM until the page has fully loaded. 64

So, what else is a DOM good for anyway? 66

Can we talk about JavaScript again? 
Or, how to store multiple values in JavaScript 67

The Phrase-o-Matic 71

Bullet Points 75

Exercise Solutions 77

JavaScript is going to take you to new places. You already 

know all about HTML markup (otherwise known as structure) and you know 

all about CSS style (otherwise known as presentation), but what you’ve been 

missing is JavaScript (otherwise known as behavior). If all you know about are 

structure and presentation, sure,  you can create some great-looking pages, 

but they’re still just pages. When you add behavior with JavaScript, you can 

create an interactive experience; or, even better, you can create full blown web 

applications. Get ready to add the most interesting and versatile skill in your 

web toolkit: JavaScript and programming! 



xii

table of contents

3 A Little Interactivity
events, handlers and all that jazz

Get ready for Webville Tunes 86

Getting started... 87

But nothing happens when I click “Add Song” 88

Handling Events 89

Making a Plan... 90

Getting access to the “Add Song” button 90

Giving the button a click handler 91

A closer look at what just happened... 92

Getting the song name 94

How do we add a song to the page? 97

How to create a new element 99

Adding an element to the DOM 100

Put it all together... 101

... and take it for a test drive 101

Review—what we just did 102

How to add the Ready Bake Code... 105

Integrating your Ready Bake Code 106

Bullet Points 108

Exercise Solutions 110

You still haven’t reached out to touch your user. 
You’ve learned the basics of JavaScript but can you get interactive with 

your users? When pages respond to user input, they aren’t just documents 

anymore, they’re living, reacting applications. In this chapter you’re going 

to learn how to handle one form of user input (excuse the pun), and wire 

up an old-fashioned HTML <form> element to actual code. It might sound 

dangerous, but it’s also powerful. Strap yourself in, this is a fast moving 

to-the-point-chapter where we go from zero to interactive app in no time.

“

“

“

“



xiii

table of contents

Expanding your vocabulary 114

How to add your own functions 115

How a function works 116

Anatomy of  a Function 121

Local and Global Variables 123

Knowing the scope of  your local and global variables 124

Oh, did we mention functions are also values? 128

Did someone say “Objects”?! 131

How to create an object in JavaScript 132

Some things you can do with objects 133

Let’s talk about passing objects to functions 136

Objects can have behavior too... 142

Meanwhile back at Webville Cinema... 143

Adding the “this” keyword 145

How to create a constructor 147

How does this really work? 149

Test drive your constructor right off  the factory floor 153

What is the window object anyway? 155

A closer look at window.onload 156

Another look at the document object 157

A closer look at document.getElementById 157

One more object to think about: your element objects 158

Bullet Points 160

4 Serious JavaScript
javascript functions and objects

Can you call yourself  a scripter yet?� Probably—you already 

know your way around a lot of JavaScript, but who wants to be a scripter when 

you can be a programmer? It’s time to get serious and take it up a notch—it’s 

time you learn about functions and objects. They’re the key to writing code 

that is more powerful, better organized and more maintainable. They’re also 

heavily used across HTML5 JavaScript APIs, so the better you understand 

them the faster you can jump into a new API and start ruling with it. Strap in, 

this chapter is going to require your undivided attention...



xiv

table of contents

5 Geolocation
making your html location aware

Location, Location, Location 166

The Lat and Long of  it... 167

How the Geolocation API determines your location 168

Just where are you anyway? 172

How it all fits together 176

Revealing our secret location... 179

Writing the code to find the distance 181

How to add a Map to your Page 183

Sticking a Pin in it... 186

The other cool things you can do with the Google Maps API 188

Can we talk about your accuracy? 191

“Wherever you go, there you are” 192

Getting the app started 193

Reworking our old code... 194

Time to get moving! 196

You’ve got some Options... 198

The world of  timeouts and maximum age... 199

Don’t Try This at Home (Pushing Geo to the Limit) 202

Let’s finish this app! 204

Integrating our new function 205

Bullet Points 207

Exercise Solutions 209

Wherever you go, there you are. And sometimes knowing where you are 

makes all the difference (especially to a web app). In this chapter we’re going to show 

you how to create web pages that are location aware—sometimes you’ll be able to 

pin point your users down to the corner they’re standing on, and sometimes you’ll only 

be able to determine the area of town they’re in (but you’ll still know the town!).  Heck, 

sometimes you won’t be able to determine anything about their location, which could be 

for technical reasons, or just because they don’t want you being so nosy. Go figure. In 

any case, in this chapter we’re going to explore a JavaScript API: Geolocation. Grab the 

best location-aware device you have (even if it’s your desktop PC), and let’s get started. 



xv

table of contents

6 Extroverted Apps
talking to the web

Mighty Gumball wants a Web app 214

A little more background on Mighty Gumball 216

So how do we make requests to web services? 219

How to make a request from JavaScript 220

Move over XML, meet JSON 226

Writing an onload handler function 229

Displaying the gumball sales data 230

How to set up your own Web Server 231

Reworking our code to make use of  JSON  236

Moving to the Live Server 237

It’s a cliffhanger! 239

Remember, we left you with a cliffhanger? A bug. 242

What Browser Security Policy? 244

So, what are our options? 247

Meet JSONP 252

But what is the “P” in JSONP for? 253

Let’s update the Mighty Gumball web app 256

Step 1: Taking care of  the script element... 264

Step 2: Now, it’s time for the timer 265

Step 3: Reimplementing JSONP 267

We almost forgot: watch out fot the dreaded browser cache 272

How to remove duplicate sales reports 273

Updating the JSON URL to include the lastreporttime 275

Bullet Points 277

You’ve been sitting in your page for too long. It’s time to get 

out a little, to talk to web services, to gather data and to bring it all back so you 

can build better experiences mixing all that great data together. That's a big part of 

writing modern HTML5 applications, but to do that you’ve got to know how to talk to 

web services. In this chapter we're going to do just that, and incorporate some data 

from a real web service right in your page. And, after you've learned how to do that 

you'll be able to reach out and touch any web service you want. We’ll even fill you 

in on the hippest new lingo you should use when talking to web services. So, come 

on, you’re going to use some more APIs, the communications APIs.

Watch out for the 
cliffhanger in this chapter!



xvi

table of contents

Our new startup: TweetShirt 282

Checking out the “comps” 283

How to get a canvas into your web page 286

How to see your canvas 288

Drawing on the Canvas 290

Failing gracefully 295

TweetShirt: the Big Picture 297

First, let’s get the HTML in place 300

Now, let’s add the <form> 301

Time to get computational, with JavaScript 302

Writing the drawSquare function 304

Add the call to fillBackgroundColor 307

Meanwhile, back at TweetShirt.com... 309

Drawing with Geeks 311

Breaking down the arc method 314

A little taste of  using the arc 316

I say degree, you say radian 317

Back to writing the TweetShirt circle code 318

Writing the drawCircle function... 319

Getting your tweets 323

Canvas Text Up Close 328

Giving drawText a spin 330

Completing the drawText function 331

Bullet Points 338

Exercise Solutions 341

7 The Canvas

bringing out your inner artist

HTML’s been liberated from being just a “markup” language. With 

HTML5’s new canvas element you’ve got the power to create, manipulate and destroy pixels, 

right in your own hands. In this chapter we'll use the canvas element to bring out your inner 

artist—no more talk about HTML being all semantics and no presentation; with canvas we're 

going to paint and draw with color. Now it's all about presentation. We’ll tackle how to place a 

canvas in your pages, how to draw text and graphics (using JavaScript of course), and even 

how to handle browsers that don't support the canvas element. And canvas isn't just a one-hit 

wonder; you're going to be seeing a lot more of canvas in other chapters in this book.

A new HTML5 startup is just waiting 

for you to get it off the gro
und!



xvii

table of contents

Meet Webville TV 350

Plug that set in and test it out... 351

How does the video element work? 353

Closely inspecting the video attributes... 354

What you need to know about video formats 356

How to juggle all those formats... 358

I was told there would be APIs? 363

A little content “programming” on Webville TV 364

How to write the “end of  video” handler 367

How the canPlayType method works 369

Unpacking the Demo Unit 375

Inspecting the rest of  the factory code 376

The setEffect and setVideo handlers 378

Implementing the video controls 384

Switching test videos 387

It’s time for special effects 389

How video processing works 392

How to process video using a scratch buffer 393

Implementing a scratch buffer with Canvas 395

Now we need to write some effects 399

How to use error events 406

Bullet Points 408

Exercise Solutions 410

8 Video... with special guest star “Canvas”

not your father’s tv

We don’t need no plug-in.  After all, video is now a first-class member of the HTML 

family—just throw a <video> element in your page and you’ve got instant video, even across 

most devices. But video is far more than just an element, it’s also a JavaScript API that allows 

us to control playback, create our own custom video interfaces and integrate video with the 

rest of HTML in totally new ways. Speaking of integration... remember there’s that video and 

canvas connection we’ve been talking about—you’re going to see that putting video and 

canvas together gives us a powerful new way to process video in real time. In this chapter 

we’re going to start by getting video up and running in a page and then we’ll put the JavaScript 

API through its paces. Come on, you’re going to be amazed what you can do with a little 

markup, JavaScript and video & canvas.

Tune in to Webville TV...



xviii

table of contents

How browser storage works (1995 - 2010) 414

How HTML5 Web storage works 417

Note to self... 418

Were Local Storage and the Array separated at birth? 424

Creating the interface 429

Now let’s add the JavaScript 430

Completing the user interface 431

We need to stop for a little scheduled service 434

Do-It-Yourself  maintenance 435

We have the technology 439

Reworking our app to use an array 440

Converting createSticky to use an array 441

Deleting sticky notes 446

The deleteSticky function 449

How do you select a sticky to delete? 450

How to get the sticky to delete from the event 451

Delete the sticky from the DOM, too 452

Update the user interface so we can specify a color 453

JSON.stringify, it’s not just for Arrays 454

Using the new stickyObj 455

Don’t Try This at Home (or Blowing Up Your 5 Megabytes) 458

Now that you know localStorage, how are you going to use it? 462

Bullet Points 464

Exercise Solutions 466

9 Web Storage
storing things locally

Tired of  stuffing your client data into that tiny closet 
cookie?� That was fun in the 90s, but we’ve got much bigger needs today 

with web apps. What if we said we could get you five megabytes on every user’s 

browser? You’d probably look at us like we were trying to sell you a bridge in 

Brooklyn. Well, there’s no need to be skeptical—the HTML5 Web storage API 

does just that! In this chapter we’re going to take you through everything you 

need to store any object locally on your user’s device and to make use of it in 

your web experience.

It’s hard to manage my 
busy life if I can’t get rid 

of these stickies after I’m done 
with them. Can you add a delete 

function?



xix

table of contents

Web Workers
putting javascript to work

10 Slow script—do you want to continue running it?  If you’ve spent 

enough time with JavaScript or browsing the web you’ve probably seen the “slow script” 

message. And, with all those multicore processors sitting in your new machine how could 

a script be running too slow? It's because JavaScript can only do one thing at a time. But, 

with HTML5 and Web Workers, all that changes. You’ve now got the ability to spawn your 

own JavaScript workers to get more work done.  Whether you’re just trying to design a 

more responsive app, or you just want to max out your machine’s CPU, Web Workers are 

here to help. Put your JavaScript manager’s hat on, let’s get some workers cracking!

The Dreaded Slow Script 474

How JavaScript spends its time 474

When single-threaded goes BAD 475

Adding another thread of  control to help 476

How Web Workers work 478

Your first Web Worker... 483

Writing Manager.js 484

Receiving messages from the worker 485

Now let’s write the worker 486

Virtual Land Grab 494

How to compute a Mandelbrot Set 496

How to use multiple workers 497

Let’s build the Fractal Explorer app 503

Ready Bake Code 504

Creating workers, and giving them tasks... 508

Writing the code... 509

Getting the workers started 510

Implementing the worker 511

Back to the code: how to process the worker’s results 514

Fitting the canvas to the browser window 517

The anal-retentive chef  coder 518

In the Laboratory 520

Bullet Points 524

Exercise Solutions 526



xx

table of contents

#1 Modernizr 532

#2 Audio 533

#3 jQuery 534

#4 XHTML is dead, long live XHTML 536

#5 SVG 537

#6 Offline web apps 538

#7 Web sockets 539

#8 More canvas API 540

#9 Selectors API 542

#10 But, there’s even more! 543

The HTML5 Guide to New Construction 545

Webville Guide to HTML5 Semantic Elements 546

Webville Guide to CSS3 Properties 548

 549

appendix: leftovers

We covered a lot of  ground, and 
you’re almost finished with this book. 
We’ll miss you, but before we let you go, we wouldn’t 

feel right about sending you out into the world 

without a little more preparation.  We can’t possibly fit 

everything you’ll need to know into this relatively small 

chapter.  Actually, we did originally include everything 

you need to know about HTML5 (not already covered 

by the other chapters), by reducing the type point size 

to .00004.  It all fit, but nobody could read it.  So, we 

threw most of it away, and kept the best bits for this 

Top Ten appendix.

i Index



you are here 4  xxi

the intro

how to use this book

Intro
I can’t believe they 

put that in an HTML5 
programming book!

In this section, we answer the burning question:  

“So why DID they put that in an HTML5 book?”



xxii  intro

how to use this book

1

2

Who is this book for?

Who should probably back away from this book?

If  you can answer “yes” to all of  these:

If  you can answer “yes” to any of  these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card. Cash is nice, too - Ed]

Do you have a computer with a web browser and a 
test editor?

Do you want to learn, understand, remember, and 
create web applications using the best techniques and 
most recent standards?

Do you prefer stimulating dinner party conversation 
to dry, dull, academic lectures?

Are you completely new to writing web pages?

Are you already developing web apps and looking for a 
reference book on HTML5?

Are you afraid to try something different? Would 
you rather have a root canal than mix stripes with 
plaid? Do you believe that a technical book can’t 
be serious if cheesy 50’s educational films and 
anthropomorphized JavaScript APIs are in it?

Check out Head First HTML with CSS and XHTML for an excellent introduction to web development, and then come back and join us.

3

1

2

3



you are here 4  xxiii

the intro

Great. Only 
640 more dull, 

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious HTML5 programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something 
unusual. It was built that way, and it helps you stay alive. 

So what does your brain do with all the routine, ordinary, normal things 
you encounter? Everything it can to stop them from interfering with the 
brain’s real job—recording things that matter. It doesn’t bother saving 
the boring things; they never make it past the “this is obviously not 
important” filter.

How does your brain know what’s important? Suppose you’re out for 
a day hike and a tiger jumps in front of  you. What happens inside your 
head and body? 

Neurons fire. Emotions crank up. Chemicals surge. 

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. 
You’re studying. Getting ready for an exam. Or trying to learn some tough 
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to 
make sure that this obviously non-important content doesn’t clutter up scarce 
resources. Resources that are better spent storing the really big things. Like 
tigers. Like the danger of  fire. Like how you should never again 
snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you 
very much, but no matter how dull this book is, and how little I’m 
registering on the emotional Richter scale right now, I really do want 
you to keep this stuff  around.”

Your brain thinks THIS is important.

Your brain t
hinks 

THIS isn’t worth 
saving.



xxiv  intro

how to use this book

So what does it take to learn something?� First, you have to get it, then make sure 

you don’t forget it. It’s not about pushing facts into your head. Based on the latest 

research in cognitive science, neurobiology, and educational psychology, learning 

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words 

alone, and make learning much more effective (up to 89% 

improvement in recall and transfer studies). It also makes things 

more understandable. Put the words within or near 

the graphics they relate to, rather than on the bottom or on 

another page, and learners will be up to twice as likely to solve 

problems related to the content.

Use a conversational and personalized style. In 

recent studies, students performed up to 40% better on post-

learning tests if the content spoke directly to the reader, using a first-

person, conversational style rather than taking a formal tone. Tell stories instead of 

lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay more 

attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, 

unless you actively flex your neurons, nothing much happens in 

your head. A reader has to be motivated, engaged, curious, and 

inspired to solve problems, draw conclusions, and generate new 

knowledge. And for that, you need challenges, exercises, and 

thought-provoking questions, and activities that involve both 

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn 

this but I can’t stay awake past page one” experience. Your brain pays attention to things 

that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, 

tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if 

it’s not.

Touch their emotions. We now know that your ability to remember something is 

largely dependent on its emotional content. You remember what you care about.  You 

remember when you feel something. No, we’re not talking heart-wrenching stories about a 

boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the 

feeling of “I Rule!” that comes when you solve a puzzle, learn something everybody else 

thinks is hard, or realize you know something that “I’m more technical than thou” Bob from 

engineering doesn’t.

We think of a “Head First” reader as a learner.



you are here 4  xxv

the intro

If  you really want to learn, and you want to learn more quickly and more deeply, 
pay attention to how you pay attention. Think about how you think. Learn how you 
learn.

Most of  us did not take courses on metacognition or learning theory when we were 
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if  you’re holding this book, you really want to learn about 
iPhone development. And you probably don’t want to spend a lot of  time. And since 
you’re going to build more apps in the future, you need to remember what you read. 
And for that, you’ve got to understand it. To get the most from this book, or any book 
or learning experience, take responsibility for your brain. Your brain on this content. 

The trick is to get your brain to see the new material you’re learning as 
Really Important. Crucial to your well-being. As important as a tiger. 
Otherwise, you’re in for a constant battle, with your brain doing its best to 
keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I 
can trick my brain 
into remembering 

this stuff...

So just how DO you get your brain to think that 
HTML5 (and JavaScript) is a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow 
way is about sheer repetition. You obviously know that you are able to learn and 
remember even the dullest of  topics if  you keep pounding the same thing into your brain. 
With enough repetition, your brain says, “This doesn’t feel important to him, but he keeps 
looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different 
types of  brain activity. The things on the previous page are a big part of  the solution, 
and they’re all things that have been proven to help your brain work in your favor. For 
example, studies show that putting words within the pictures they describe (as opposed to 
somewhere else in the page, like a caption or in the body text) causes your brain to try to 
makes sense of  how the words and picture relate, and this causes more neurons to fire. 
More neurons firing = more chances for your brain to get that this is something worth 
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they 
perceive that they’re in a conversation, since they’re expected to follow along and hold up 
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation” 
is between you and a book! On the other hand, if  the writing style is formal and dry, your 
brain perceives it the same way you experience being lectured to while sitting in a roomful 
of  passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.



xxvi  intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s 
concerned, a picture really is worth a thousand words. And when text and pictures work 
together, we embedded the text in the pictures because your brain works more effectively 
when the text is within the thing the text refers to, as opposed to in a caption or buried in 
the text somewhere.

We used redundancy, saying the same thing in different ways and with different media 
types, and multiple senses, to increase the chance that the content gets coded into more than 
one area of  your brain. 

We used concepts and pictures in unexpected ways because your brain is tuned for 
novelty, and we used pictures and ideas with at least some emotional content, because your 
brain is tuned to pay attention to the biochemistry of  emotions. That which causes you to 
feel something is more likely to be remembered, even if  that feeling is nothing more than a 
little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more 
attention when it believes you’re in a conversation than if  it thinks you’re passively listening 
to a presentation. Your brain does this even when you’re reading.

We included loads of  activities, because your brain is tuned to learn and remember 
more when you do things than when you read about things. And we made the exercises 
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, 
while someone else wants to understand the big picture first, and someone else just wants 
to see an example. But regardless of  your own learning preference, everyone benefits from 
seeing the same content represented in multiple ways.

We include content for both sides of  your brain, because the more of  your brain 
you engage, the more likely you are to learn and remember, and the longer you can stay 
focused. Since working one side of  the brain often means giving the other side a chance to 
rest, you can be more productive at learning for a longer period of  time. 

And we included stories and exercises that present more than one point of  view, 
because your brain is tuned to learn more deeply when it’s forced to make evaluations and 
judgments. 

We included challenges, with exercises, and by asking questions that don’t always have 
a straight answer, because your brain is tuned to learn and remember when it has to work 
at something. Think about it—you can’t get your body in shape just by watching people at 
the gym. But we did our best to make sure that when you’re working hard, it’s on the right 
things. That you’re not spending one extra dendrite processing a hard-to-understand 
example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. 
And your brain pays more attention to people than it does to things. 

Puzzles

body

html

h1 h2p p

img a em a

p

BE the Browser



you are here 4  xxvii

the intro

So, we did our part. The rest is up to you. These tips are a 
starting point; listen to your brain and figure out what works 
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of  fluid. 
Dehydration (which can happen before you ever 
feel thirsty) decreases cognitive function. 

Make this the last thing you read before 
bed. Or at least the last challenging thing.

6

7

9 Create something!
Apply this to your daily work; use what you are 
learning to make decisions on your projects. Just 
do something to get some experience beyond the 
exercises and activities in this book. All you need is 
a pencil and a problem to solve… a problem that 
might benefit from using the tools and techniques 
you’re studying for the exam.

Listen to your brain.

8 Feel something!
Your brain needs to know that this matters. Get 
involved with the stories. Make up your own 
captions for the photos. Groaning over a bad joke 
is still better than feeling nothing at all.

Pay attention to whether your brain is getting 
overloaded. If  you find yourself  starting to skim 
the surface or forget what you just read, it’s time 
for a break. Once you go past a certain point, you 
won’t learn faster by trying to shove more in, and 
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of  the brain. 
If  you’re trying to understand something, or 
increase your chance of  remembering it later, say 
it out loud. Better still, try to explain it out loud 
to someone else. You’ll learn more quickly, and 
you might uncover ideas you hadn’t known were 
there when you were reading about it.

Part of  the learning (especially the transfer to 
long-term memory) happens after you put the 
book down. Your brain needs time on its own, to 
do more processing. If  you put in something new 
during that processing time, some of  what you 
just learned will be lost. 

Read the “There are No Dumb Questions”
That means all of  them. They’re not optional 
sidebars—they’re part of  the core content! 
Don’t skip them.

Do the exercises. Write your own notes.
We put them in, but if  we did them for you, 
that would be like having someone else do 
your workouts for you. And don’t just look at 
the exercises. Use a pencil. There’s plenty of  
evidence that physical activity while learning 
can increase the learning. 

Slow down. The more you understand, 
the less you have to memorize.
Don’t just read. Stop and think. When the 
book asks you a question, don’t just skip to the 
answer. Imagine that someone really is asking 
the question. The more deeply you force your 
brain to think, the better chance you have of  
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend 
your brain into submission



xxviii  intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything that 
might get in the way of  learning whatever it is we’re working on at that point in the book. And 
the first time through, you need to begin at the beginning, because the book makes assumptions 
about what you’ve already seen and learned.

We expect you to know HTML and CSS.

If  you don’t know HTML markup (that is, all about HTML documents including elements, 
attributes, property structure, structure versus presentation), then pick up a copy of  Head First 
HTML with CSS & XHTML before starting this book. Otherwise, you should be good to go.

Some experience helps, but we don’t expect you to know JavaScript.

If  you’ve got any programming or scripting in your background (even if  it isn’t JavaScript), it’s 
going to help you. But, we don’t expect you to know JavaScript going into this book; in fact, this 
book is designed to follow Head First HTML with CSS & XHTML, which has no scripting in it.

We encourage you to use more than one browser with this book.

We encourage you to test the pages and web applications in this book with several browsers. 
This will give you experience in seeing the differences among browsers and in creating pages 
that work well in a variety of  browsers. We most highly recommend Google Chrome and 
Apple Safari for use with this book as they are, in general, the most up-to-date with the current 
standards. But we do recommend you also try the most recent versions of  the other major 
browsers including Internet Explorer, Firefox and Opera, as well as mobile browsers on devices 
with iOS and Android.

The activities are NOT optional. 

The exercises and activities are not add-ons; they’re part of  the core content of  the book. Some 
of  them are to help with memory, some are for understanding, and some will help you apply 
what you’ve learned. Don’t skip the exercises. Even crossword puzzles are important—
they’ll help get concepts into your brain. But more importantly, they’re good for giving your 
brain a chance to think about the words and terms you’ve been learning in a different context.

The redundancy is intentional and important. 

One distinct difference in a Head First book is that we want you to really get it. And we want 
you to finish the book remembering what you’ve learned. Most reference books don’t have 
retention and recall as a goal, but this book is about learning, so you’ll see some of  the same 
concepts come up more than once.

The Brain Power exercises don’t have answers.

For some of  them, there is no right answer, and for others, part of  the learning experience of  
the Brain Power activities is for you to decide if  and when your answers are right. In some of  
the Brain Power exercises, you will find hints to point you in the right direction.



you are here 4  xxix

the intro

To write HTML5 and JavaScript code, you need a text editor, a browser, and, 
sometimes, a web server (it can be locally hosted on your personal desktop). 

The text editors we recommend for Windows are PSPad, TextPad or EditPlus (but 
you can use Notepad if  you have to). The text editors we recommend for Mac are 
TextWrangler, TextMate or TextEdit. If  you’re on a Linux system, you’ve got plenty of  
text editors built in, and we trust you don’t need us to tell you about them.

We hope you’ve got the browser bit covered and have installed at least two browsers 
(see the previous page). If  not, do it now. It’s also worth your time to learn how to use 
the browser developer tools; each of  the major browsers has built-in tools you can use 
to inspect the JavaScript console (you can see errors as well as output you display using 
console.log, a handy alternative to alert), web storage usage, the DOM, CSS 
style that’s been applied to elements, and much much more. Some browsers even 
have plug-ins for additional developer tools. You don’t need the developer tools to 
get through the book, but if  you’re willing to spend the time to investigate how to use 
these, it will make development easier.

Some HTML5 features and JavaScript APIs require that you serve files from a real 
web server rather than by loading a file (i.e., your URL will start with http:// 
rather than file://). We’ve identified which examples you’ll need a server for in the 
appropriate places in the book, but if  you’re motivated, we recommend you go ahead 
and install a server on your computer now. For Mac and Linux, Apache comes built-in, 
so you’ll just need to make sure you know how to access it and where to put your 
files so you can serve them using your local server. For Windows, you’ll need to install 
Apache or IIS; if  you go the Apache route, there are plenty of  open source tools like 
WAMP and XAMPP that are fairly easy to install.

That’s it! Have fun...

Software requirements



xxx  intro

The technical review team

the review team

Paul Barry

David Powers

Rebeca Duhn-Kahn Trevor FarlowLou Barr

Bert Bates

No simple reviewer here, he’s 
also the series creator! Man, 
talk about pressure...

Our Master Technical Reviewer.

Our 110% effort reviewer. He even 
ran around in the middle of the 
night in his PJs testing our geo code.

We tried to tell her she only 
needed to help us with graphics, 
but she couldn’t help herself and 
was also a stellar tech reviewer.

Not just a reviewer, Paul’s an 

experienced Head First author 

having written Head First Python 

and Head First Programming !

Rebeca acted as our second pair of eyes; she saved our butts on code details no else saw (including us!).
Our reviewers:

We’re extremely grateful for our technical review team. The whole team proved how much we 
needed their technical expertise and attention to detail. David Powers, Rebeca Dunn-Krahn, 
Trevor Farlow, Paul Barry, Louise Barr, and Bert Bates left no stone unturned in their 
review and the book is a much much better book for it. You guys rock! 



you are here 4  xxxi

the intro

Acknowledgments

At O’Reilly:

Courtney Nash was given the difficult task managing not only the book 
Head First HTML5 Programming, but also managing, well, us. Courtney not 
only cleared all paths for us, but also applied the delicate pressure every 
editor needs to, to get a book out the door. Most of  all, though, Courtney 
provided extremely valuable feedback on the book and its content, which 
resulted in a few significant reworks of  the book. This is a much better 
book because of  Courtney’s efforts. Thank you. 
 

Even more technical review:

This is becoming a recurring theme in our books, but we wanted to 
give another shout out to David Powers, our esteemed technical 
reviewer, and author of  many books including PHP Solutions: 
Dynamic Web Development Made Easy. David’s comments always result 
in signficant improvements to the text, and we sleep better at night 
knowing that if  it’s been through David, then we’ve hit the technical 
mark. Thanks again, David.

Note to Editor: can we see 
if we can lock this guy in 
for our next three books? 
And see if we can make it 
an exclusive!

Lou Barr, again! (And Toby).

Courtney Nash

Lou Barr was also an integral part 
of  this book and contributed in many 
ways—from reviewer, graphic designer, 
production designer, web designer, to 
Photoshop wrangler. Thank you Lou, 
we could not have done it without you!

And thanks to a few other folks that helped make this happen:

From there we’d like to thank the rest of  the O’Reilly crew for support 
in a hundred different ways. That team includes Mike Hendrickson, 
Mike Loukides, Laurel Ruma, Karen Shaner, Sanders Kleinfeld, 
Kristen Borg, Karen Montgomery, Rachel Monaghan, Julie 
Hawks and Nancy Reinhardt.



xxxii  intro

acknowledgments

Even more Acknowledgments!

And finally, thanks to Kathy and Bert

Last, and anything but least, to Kathy 
Sierra and Bert Bates, our partners 
in crime and the BRAINS who created the 
series. We hope, once again, we’ve done the 
series justice. 

Kathy Sierra

Hard at work researching 
Head First Parelli.

Bert Bates

*The large number of acknowledgments is because we’re testing the theory that everyone mentioned in a 
book acknowledgment will buy at least one copy, probably more, what with relatives and everything. If you’d 
like to be in the acknowledgment of our next book, and you have a large family, write to us.

*

And thanks to a bunch of  other folks:

James Henstridge wrote the original code that became the fractal viewer in 
Chapter 10, which we shaped to our purposes for use in the book.  Apologies for 
any code we introduced that may not have been as elegant as his original version. 
Actor and artist Laurence Zankowski, forever type-cast as the Starbuzz CEO, 
generously reappeared in this book and helped to test the video application in 
Chapter 8 (a must see). The Bainbridge Island Downtown Association 
kindly allowed us to use their excellent logo, designed by Denise Harris, for 
the WickedlySmart Headquarters.  Thank you to Anthony Vizzari and A&A 
Studios for allowing us to use a photo of  their fabulous photo booth. 
Our TweetShirt startup example uses some fine looking icons from 
ChethStudios.Net.  We appreciate the dedicated work of  the Internet 
Archive, home of  the films we used for Webville TV. And thank you to Daniel 
Steinberg for always being there to bounce things off.

He’s baaaaack!



you are here 4  xxxiii

the intro

Safari® Books Online
Safari® Books Online is an on-demand digital library that lets you easily 
search over 7,500 technology and creative reference books and videos to 
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. 
Read books on your cell phone and mobile devices. Access new titles before they are available 
for print, and get exclusive access to manuscripts in development and post feedback for the 
authors. Copy and paste code samples, organize your favorites, download chapters, bookmark 
key sections, create notes, print out pages, and benefit from tons of  other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital 
access to this book and others on similar topics from O’Reilly and other publishers, sign up for 
free at http://my.safaribooksonline.com.





this is a new chapter  1

We’re going to Webville! There’s 
so much great HTML5 construction going 

on, we’d be crazy to live anywhere else. 
Come on, follow us, and we’ll point out all 

the new sights on the way. 

getting to know html51

Welcome to Webville

HTML has been on a wild ride. Sure, HTML started 

as a mere markup language, but more recently HTML’s put 

on some major muscle. Now we’ve got a language tuned for 

building true web applications with local storage, 2D drawing, 

offline support, sockets and threads, and more. The story of 

HTML wasn’t always pretty, and it’s full of drama (we’ll get to all 

that), but in this chapter, we’re first going to go on a quick joyride 

through Webville to get sense for everything that goes into 

“HTML5.” Come on, hop in, we’re headed to Webville, and we’re 

going to start by going from zero to HTML5 in 3.8 pages (flat).

Heads up: XHTML received a “Dear John” letter in 2009 and we’ll be visiting XHTML later in the “Where are they now” segment.



<!DOCTYPE html PUBLIC "-//W3C//DTD HTML
 4.01//EN" 

   "http://www.w3.org/TR/html4/strict.d
td">

<html>
  <head>
    <meta http-equiv="content-type" con

tent="text/html; charset=UTF-8">

    <title>Head First Lounge</title>

    <link type="text/css" rel="styleshe
et" href="lounge.css">

    <script type="text/javascript" src=
"lounge.js"></script>

  </head>
  <body>
    <h1>Welcome to Head First Lounge</h

1>

    <p>
      <img src="drinks.gif" alt="Drinks

">

    </p>
    <p>
      Join us any evening for refreshin

g <a href="elixirs.html">elixirs</a>, 

      conversation and maybe a game or 
two of Tap Tap Revolution.  

      Wireless access is always provide
d; BYOWS (Bring Your Own Web Server).

    </p>
  </body>
</html>

Step right up! For a limited time we’ll take that grungy old HTML page 

of yours and in JUST THREE EASY STEPS upgrade it to HTML5. 

Could it really be that easy? 

You betcha; in fact we’ve got a demonstration already prepared for you.

Check out this tired, worn out, seen-better-days HTML; 

we’re going to turn it into HTML5 right before your very eyes:

This is all just normal HTML 4.01 from 
the Head First Lounge, which you might 
remember from Head First HTML (and 
if not, don’t worry, you don’t need to).

Upgrade to HTML5 TODAY! Why wait? Use my

HTML5-o-Matic
and do it in only THREE EASY STEPS

Look how easy it is to write HTML5

Get your feet wet by reviewing this HTML, which is written in HTML 4.01 (the previous version), not 

HTML5. Carefully look at each line and refresh your memory of what each part does. Feel free to 

make notes right on the page. We’ll look at how to transition this to HTML5 over the next few pages.



you are here 4  3

getting to know HTML5

After taking a careful look at the HTML on the page 2, can you see any markup that 
might change with HTML5? Or that you’d want to change? We’ll point out one for you: 
the doctype definition:

Remember, the doctype definition belongs at the top of your HTML file and tells the 
browser the type of your document, in this case, HTML 4.01. By using a doctype the browser 
is able to be more precise in the way it interprets and renders your pages. Using a doctype is 
highly recommended.

So, using your deductive powers, what do you think the doctype definition for HTML5 will 
look like? Write it here (you can refer back to your answer when we cover this in a bit):

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
       "http://www.w3.org/TR/html4/strict.dtd">

Your answer goes here.

This part says we’re using HTML 
version 4.01 and that this 
markup is written in ENglish.

This just means 
this standard is 
publicly available.

This points to a file that 
identifies this standard.

This is the doctype for
 “html”, 

we’re in the right plac
e!



4  Chapter 1

update your html

Step 1 is going to amaze you: follow along, we’re going to start at the top of 
the Head First Lounge HTML and update the doctype to give it that new 
HTML5 shine. 

Here’s the old HTML 4.01 version of the doctype:

<!doctype html>

No more Googling to remember what the doctype looks like, or copying and 
pasting from another file, this doctype is so simple you can just remember it.

But, wait, there’s more...

Not only is this the doctype for HTML5, it’s the doctype for every future 
version of HTML. In other words, it’s never going to change again. Not only 
that, it will work in your older browsers too.

The W3C HTML Standards guys have
 

promised us they really mean it this time.

If you’re a fan of the Extreme Makeovers or The Biggest Loser television 
shows, you’re going to love Step 2. In this step we have the content meta 
tag... here, check out the before/after pictures:

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<meta charset="utf-8">
BEFORE (HTML 4)

AFTER (HTML5)

Yes, the new meta tag has lost a lot of weight is much simpler. When you 
specify the meta tag in HTML5, just supply the tag along with a character 
encoding. Believe it or not, all browsers (old and new) already understand this 
meta description, so you can use it on any page and it just works.

Now you might have guessed that we’re going to replace every mention of 
“4” with “5” in the doctype, right? Oh, no. Here’s the amazing part: the new 
doctype for HTML5 is simply:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
       "http://www.w3.org/TR/html4/strict.dtd">

Apologies to 
the crew that 
got the 4.01 
doctype tattoo 
to remember it.

STEP 1

STEP 2

Introducing the HTML5-o-Matic, update your HTML now!



you are here 4  5

getting to know HTML5

Congratulations, you’re now certified 
to upgrade any HTML to HTML5 !

As a trained HTML5-o-Matic user, you’ve got 
the tools you need to take any valid HTML page 

and to update it to HTML5. Now it’s time to put your 
certification into practice!

And, because you acted fast, we’ve got a special bonus for you. We’re going 
to make your life even easier by simplifying the script tag. With HTML5, 
JavaScript is now the standard and default scripting language, so you can 
remove the type attribute from your script tags too. Here’s what the new 
script tag looks like without the type attribute:

And now for Step 3, the step that brings it all home. Here we’re also going 
to focus on the <head> element and upgrade the link tag. Here’s what we 
have now: a link of type text/css that points to a stylesheet:

<link type="text/css" rel="stylesheet" href="lounge.css">

To upgrade this for HTML5, we just need to remove the type attribute. Why? 
Because CSS has been declared the standard, and default, style for HTML5.  So, 
after we remove the type attribute, the new link looks like this:

<link rel="stylesheet" href="lounge.css">

Old skool

HTML5

<script src="lounge.js"></script>

Or if you have some inline code, you can just write your script like this:

<script>

   var youRock = true;

</script>
All your JavaScript 
goes here. We’ll talk more 

about JavaScript 
in a bit.

STEP 3

Bonus

00%

HTM
L5

CERT
IFIED

Don’t worry if you don’t know 
a lot about the script tag yet, 
we’ll get there...



6  Chapter 1

beyond markup

Wait a sec, all 
this fuss about HTML5 
and this is all I needed to 
do? What is the rest of 
this book about?

Okay, okay, you got us. So far, we’ve been talking 
about updating your older HTML pages so that they’re 
ready to take advantage of  everything HTML5 has to 
offer.  And as you can see, if  you’re familiar with HTML 
4.01, then you’re in great shape because HTML5 is a 
superset of  HTML 4.01 (meaning practically everything 
in it is still supported in HTML5) and all you need to do 
is know how to specify your doctype and the rest of  the 
tags in the <head> element to get started with HTML5.

But, you’re right, we were being silly, of  course there 
is more to HTML5 than just updating a few elements. 
In fact, what everyone is excited about is the ability to 
build rich, interactive pages (or even sophisticated web 
applications), and to support that HTML5 provides a 
whole family of  technologies that works hand in hand 
with the HTML5 markup language.

But hang on; before we get there we’ve got just a bit more 
work to do to make sure we’re ready with our markup.



you are here 4  7

getting to know HTML5

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" 

   "http://www.w3.org/TR/html4/strict.dtd">

<html>

  <head>

    <title>Head First Lounge</title>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">

    <link type="text/css" rel="stylesheet" href="lounge.css">

    <script type="text/javascript" src="lounge.js"></script>

  </head>

  <body>

    <h1>Welcome to Head First Lounge</h1>

    <p>

      <img src="drinks.gif" alt="Drinks">

    </p>

    <p>

      Join us any evening for refreshing <a href="elixirs.html">elixirs</a>, 

      conversation and maybe a game or two of Tap Tap Revolution.  

      Wireless access is always provided;  BYOWS (Bring Your Own Web Server).

    </p>

  </body>

</html>

You’re closer to HTML5 markup than you think!
Here’s some old skool HTML that needs updating. Work through the HTML5-o-Matic 
process and update this HTML to HTML5. Go ahead and scribble in the book, scratch 
out the existing markup code, and add any new markup code you need to. We’ve 
helped a little by highlighting the areas that need to change.

When you’re done, type it in (or grab the exercise files and make your changes if you 
prefer), load this in your browser, sit back and enjoy your first HTML5. Oh, and you’ll 
find our answers on the next page.

To download all the code and sample files for this book, 
please visit http://wickedlysmart.com/hfhtml5.



8  Chapter 1

exercise solution

Here’s the updated code:

<!doctype html>
<html>
  <head>
    <title>Head First Lounge</title>

    <meta charset=“utf-8">
    <link rel=“stylesheet" href=“lounge.css">
    <script src=“lounge.js"></script>
  </head>
  <body>
    <h1>Welcome to Head First Lounge</h1>
    <p>
      <img src="drinks.gif" alt="Drinks">
    </p>
    <p>
      Join us any evening for refreshing <a href="elixirs.html">elixirs</a>, 
      conversation and maybe a game or two of Tap Tap Revolution.  
      Wireless access is always provided;  BYOWS (Bring Your Own Web Server).
    </p>
  </body>
</html>

You’re closer to HTML5 markup than you think!
Here’s some old skool HTML that needs updating. Work through the 
HTML5-o-Matic process and update this HTML to HTML5. Go ahead and 
scribble in the book, scratch out the existing markup code, and add any 
new markup code you need to. We’ve helped a little by highlighting the 
areas that need to change.

Here’s our solution.

Here are the four 
lines we changed to 
make our Head First 
Lounge web page 
officially HTML5. 

The doctype...

... the meta tag...
... the link tag...

... and the script tag.

Don’t believe us? Try  http://validator.w3.org/  and you’ll see - it validates as HTML5. For real!



you are here 4  9

getting to know HTML5

Q: How does this work on the old browsers? Like the new 
doctype, meta, and so on... somehow the older browsers work 
with this new syntax?

A: Yes, through a bit of cleverness and luck. Take the type 
attributes on the link and script tags; now, it makes sense to get rid 
of this attribute with HTML5 because CSS and JavaScript are now 
the standards (and certainly are the default technologies for style 
and scripting). But as it turns out, the browsers already assumed 
the defaults of CSS and JavaScript. So the stars aligned and the 
new markup standard just happens to have been supported in the 
browser for years. The same is true of the doctype and the meta 
tag.

Q: What about the new doctype, it seems too simple now; it 
doesn’t even have a version or DTD. 

A: Yes, it does seem a little magical that after years of using 
complex doctypes we can now just simplify it to “we’re using HTML.” 
Here’s what happened: HTML used to be based on a standard 
called SGML, and that standard required both the complex form 
of the doctype and the DTD. The new standard has moved away 
from SGML as a way to simplify HTML language and make it more 
flexible. So, we don’t need the complex form anymore. Further, as 
we said above, there is some luck here in that almost all browsers 
just look for HTML in the doctype to ensure they are parsing an 
HTML document.

Q: Were you joking about it never changing again? I 
thought the versioning was really important for browsers. Why 
not use <!doctype html5>? It’s not like there isn’t going to 
be an HTML6 too. Right?

A: The use of the doctype evolved with browser makers using 
the doctype to tell their browsers to render things in their own 

“standards mode.” Now that we have much more of a true standard, 
the HTML5 doctype tells any browser that this document is 
standard HTML, be that version 5, 6 or whatever.

Q: Well, I assume different browsers are going to have 
different capabilities at any one time. How do I handle that?

A: True, especially until HTML5 is 100 percent supported. We’ll 
cover both of these points in the chapter and throughout the book.

Q: Why does this even matter? I just typed a page in 
without a doctype and meta tag and it worked just fine. Why do 
I need to worry if this stuff is totally correct?

A: Yes, browsers are great at overlooking small errors in HTML 
files. But by including the correct doctype and meta tags, you’ll 
make sure browsers know exactly what you want, rather than 
having to guess. Plus, for people using older browsers, the new 
doctype means they’ll use standards mode, which is what you want. 
Remember, standards mode is a mode where the browser assumes 
you’re writing HTML that conforms to a standard, so it uses those 
rules to interpret your page. If you don’t specify a doctype, some 
browsers may go into “quirks mode” and assume your web page 
is written for older browsers, when the standard wasn’t quite up to 
snuff, and may interpret your page incorrectly (or assume it’s just 
written incorrectly).

Q: Whatever happened to XHTML? It seems like a few years 
ago that was the future.

A: Yeah it was. Then flexibility won out over strict syntax, and in 
the process XHTML (XHTML 2, to be precise) died and HTML5 was 
born to be more accepting of the way people write web pages (and 
the way browsers render them). That said, don’t worry, because 
knowing about XHTML is only going to make you a stronger author 
of HTML5 content (and you’re going to appreciate HTML5 a whole 
lot more).  And by the way, if you really love XML, there’s still a way 
to write your HTML5 in strict form. More on that later...

Q: What is UTF-8? 

A: UTF-8 is a character coding that has support for many 
alphabets, including non-western ones. You’ve probably seen other 
character sets used in the past, but UTF-8 is being promoted as the 
new standard. And it’s way shorter and easier to remember than 
previous character encodings.



10  Chapter 1

what you should know

We don’t expect you to know HTML5, yet.

If  you’ve never had exposure to HTML5 before, 
that’s okay, but you should have worked with HTML, 
and there are some basics you should know about 
like elements, tags, attributes, nesting, the difference 
between semantic markup and adding style, and so on.

If  you aren’t familiar with all these, we’re going to 
make a small suggestion (and a shameless plug): there’s 
another book that proceeds this one, Head First HTML 
with CSS & XHTML, and you should read it. And if  
you’re somewhat familar with markup languages, you 
might want to skim it or use it as a reference while 
reading this book.

We’ve also put a small guide to 
HTML5 markup & CSS3 in the 
appendix. If you just want a quick 
overview of the new additions, 
have a quick read over them at 
the end of the book.



you are here 4  11

getting to know HTML5

Head First: Welcome, HTML5. All the Web is buzzing about you. To us, you look a lot like HTML 
4. Why is everyone so excited?

HTML5: Everyone’s excited because I’m enabling a whole new generation of  web applications and 
experiences.

Head First: Right, but again, why didn’t HTML 4 or even the promise of  “XHTML” do that?

HTML5: XHTML 2 was a dead-end. Everyone who wrote real web pages hated it. XHTML 
reinvented the way we write markup for a web page, and would have made all the pages already out 
there obsolete. I said, “Hey, wait a sec, I can do new things and embrace everything that is already out 
there.” I mean, if  something works, why reinvent the wheel? That’s my philosophy.

Head First: It seems to be working. But you know, some of  the standards guys are still saying that the 
Web would be better off  following their “pure” standards.

HTML5: You know, I don’t really care. I listen to the people out there writing real web pages—how are 
they using me, and how can I help? Second on my list are the developers creating the web browsers. 
And last on my list are the standards guys. I’ll listen to them, but not if  it disagrees with what real users 
are doing.

Head First: Why not?

HTML5: Because if  the users and the browser-makers disagree with the standards guys, it is a moot 
point. Luckily the people working on the HTML5 spec totally agree with me, and that’s our philosophy.

Head First: Back to the previous version of  HTML, you’ve said you are a superset of  HTML 4.01. 
That means you’re backward-compatible, right? Does that mean you’re going to have to keep handling 
all the bad designs of  the past?

HTML5: I promise I’ll do my best to handle anything from the past that is thrown at me. That said, 
it doesn’t mean that is the way to treat me. I do want web page authors to be educated on the latest 
standard and use me in the best way possible. That way, they can really push me to my limits. But 
again, I won’t totally fail, and I will display an old page to the best of  my ability if  it’s not updated.

Head First: My next question is ...

HTML5: Hold on, hold on!!! All these questions about the past. We aren’t talking about what is 
important here. As far as my markup is concerned, my personal mission is to embrace the Web as 
it is, add some new structured elements that make web author’s lives easier, and to help all browser 
implementors support consistent semantics around my markup. But I’m really here to pitch my new 
purpose: web applica...

Head First: ...So sorry HTML5, that’s all we have time for. Thanks, and we’ll be sure to talk about 
anything you want in an upcoming interview.

HTML5: Argh, I hate when that happens!!!

HTML5 Exposed
This week’s interview:
Confessions of  the newest version of  HTML



12  Chapter 1

the html5 landscape

Would the REAL HTML5 please stand up...

HTML5 is all about 
multimedia, getting rid of 
plug-ins and using the new 
native support for audio 

and video.

No, it’s all about more 
descriptive markup.

Actually, it’s about rich Internet clients. Instead 
of building clients with plug-ins like Flash, now 

I can use canvas, transforms and JavaScript to 
make cool interfaces and animations.

Okay, you’ve patiently humored us by sitting through our “HTML5-o-Matic” skit, and 
we’re sure you’ve already guessed there’s a lot more to HTML5 than that. The word on the 
street is that HTML5 removes the need for plug-ins, can be used for everything from simple 
pages to Quake-style games and is a whipped topping for desserts. HTML5 seems to be 
something different to everyone...



you are here 4  13

getting to know HTML5

The great thing about 
HTML5 is the client-side storage 

and caching functionality. Can you 
say offline access to the Web?

I’m excited because 
I can use web workers 

to make my JavaScript more 
efficient and my page feel more 

responsive.

There’s also a 
ton of new stuff in 

CSS we can use with HTML5. 
Advanced selectors, animations, 

and yeah—drop shadows! 

Don’t forget mobile. I 
want to be able to write 

web pages that know where 
I am.

The good news is, HTML5 is all these things. When people talk about 
HTML5 they mean a family of  technologies that, when combined, gives 
you a whole new palette for building web pages and applications.



14  Chapter 1

how html5 works

How HTML5 really works...
So we’ve said HTML5 is made up of  a family of  technologies, but what 
does that mean? Well you already know there’s the HTML markup itself, 
which has been expanded to include some new elements; there are also 
lots of  additions to CSS with CSS3 that give you even more power to 
style your pages. And then there’s the turbo charger: JavaScript, and a 
whole new set of  JavaScript APIs that are available to you.

Let’s take a look behind the scenes and see how this all fits together:

...we call this tree the   
Document Object Model or 
the DOM for short. You’ll 
be seeing a lot more of the 
DOM in this book because it 
plays a vital role in how we 
add behavior to pages with 
JavaScript (we’ll get to that 
shortly, in Chapter 2).

With HTML5 the markup has some improvements, as you’ve 
seen with the tags in the <head> element, and there are some 
additional elements you can use (we’ll see a few in this book).

The page’s style (if it has any) comes from 
CSS3, which has been expanded from CSS2 
to include many common idioms that are in 
use across the Web (like drop shadows and 
rounded corner borders).

html

head

title script

body

h1 ph2

em

The browser loads a document, which 
includes markup written in HTML and 
style written in CSS.

As the browser loads your page, it also creates 
an internal  model of your document that 
contains all the elements of your HTML markup.

1 2

You’ll find a nice Webville guide to 
the new HTML5 markup & CSS3 
properties in the appendix.

This is where it gets interesting; 
for each element in your HTML, 
the browser creates an object 
that represents it and places it 
in a tree-like structure with all 
the other elements... 



you are here 4  15

getting to know HTML5

Drag &
  Drop

Offline
Caching

Geolocation

VideoCanvas

Forms

Web 
Workers

Sockets

Using JavaScript, you can interact with your page by manipulating the DOM, react to user or browser-generated events, or make use of all the new APIs.

APIs, otherwise known as Application Programming Interfaces, expose a set of objects, methods, and properties that we can use to access all the functionality of these technologies. We’ll be covering many of these APIs in this book.

Behind 
the ScenesWhile the browser is loading your page 

it’s also loading your JavaScript code, 
which typically begins executing just 
after the page loads.

3

4 The APIs give you access to audio, 
video, 2D drawing with the canvas, 
local storage and a bunch of other 
great technologies needed to build 
apps. And remember, to make use of 
all these APIs, we need JavaScript.

JavaScript interacts with your 
page through the DOM.

Audio
Local

StorageMeet the 
JavaScript APIs



16  Chapter 1

html5 family members

Canvas

Local Storage

Geolocation

Offline Web Apps

New Markup

CSS3

We’re here to help with the structure and semantic meaning 
of  your page, including new ways of  making sections, headers, 
footers and navigation in your pages.

Forms

You might have used me in HTML 4 to enter information, but 
I’m even better in HTML5. I can require that you fill out fields, 
and I can more easily verify that you’ve typed an email, URL or 
phone number where you’re supposed to. 

Audio & Video

You used to need a plug-in for us, but now we’re first class 
members of  the HTML family of  elements. Wanna watch or 
listen to something?  You need us.

Using me, you can draw right on your web page. With me, you can 
draw text, images, lines, circles, rectangles, patterns and gradients. 
I’ll bring out your inner artist.

I’m the most stylish one in the family. You’ve probably used me 
before, but did you know I can now animate your elements, give 
them great rounded corners and even drop shadows?

Use me as a bit of  local storage in every user’s browser.  Need 
to store a few preferences, some shopping cart items, or maybe 
even stash a huge cache for efficiency? I’m your API.

Need applications that work even when you aren’t connected to 
the network? I can help.

I’m the API that can tell you where you are, and I play nice with 
Google maps. 

Web Workers

You’ll want me whenever you need several scripts running 
concurrently and in the background, so your user interface 
remains responsive.

We’ve already talked about the “family of technologies” so much we feel like they’re, well, family. But then again we 
really haven’t gotten to know them yet, so isn’t it about time? You’ll find most of the family below, so go ahead mingle, 
see if you can figure out who is who. We’ve gone ahead and figured one out for you. And don’t worry, we know this is 
your first time meeting the HTML5 family members, so the answers are at the end of the chapter.



you are here 4  17

getting to know HTML5

Your mission...

...should you choose to accept it, is to do some reconnaissance on all the HTML 
browsers. We’re sure you’ve heard some browsers are ready for HTML5, and some 
aren’t.  We need for you to get in close, because the truth is out there...

YOUR FIRST
 MISSION: 

BROWSER RE
CONNaISSaN

CE

GO OUT aND
 DETERMINE

 *THIS TEx
T 

WILL BE CU
T* THE CUR

RENT LEvEL
 OF SUPPOR

T FOR EaCH
 BROWSER B

ELOW 

(HINT, GO 
HERE TO FI

ND SOME RE
SOURCES TH

aT kEEP UP
 WITH SUCH

 THINGS: 

HTTP://WWW
.WICkEDLYS

MaRT.COM/H
FHTML5/BRO

WSERSUPPOR
T.HTML, *R

EDaCT 

**********
***. aSSUM

E THE LaTE
ST vERSION

 OF THE BR
OWSER. FOR

 EaCH BROW
SER/

FEaTURE PU
T a CHECkM

aRk IF IT 
IS SUPPORT

ED, aND TH
EN GIvE TH

E BROWSER 

YOUR OWN S
UBJECTIvE 

SCORE OF H
OW MUCH IT

 SUPPORTS 
HTML5    *

*999999999
***. 

UPON YOUR 
RETURN, RE

PORT BaCk 
FOR YOUR N

ExT aSSIGN
MENT!

Browser

vi
de
o

au
di
o

Ca
nv
as

We
b 
St
or
ag
e

Ge
ol
oc
at
oi
n

We
b 
Wo
rk
er
s

Of
fl
in
e 
We
b 
ap
ps

Firefox

Safari

Chrome

Mobile 

Webkit

Opera

IE 6, 7

IE 8

IE 9

Fe
at
ur
e

iOS and 
Android 
devices  
(among  
others)



18  Chapter 1

browser reconnaissance

YOUR FIRST
 MISSION: 

BROWSER RE
CONNaISSaN

CE 

SOLUTION

Browser

vi
de
o

au
di
o

Ca
nv
as

We
b 
St
or
ag
e

Ge
ol
oc
at
io
n

We
b 
Wo
rk
er
s

Of
fl
in
e 
We
b 
ap
ps

Firefox

Safari

Chrome

Mobile 

Webkit

Opera

IE 6, 7

IE 8

IE 9

Fe
at
ur
e

We’ve cheated on our answers and filled them in for 

2015. Yours should reflect the time you’re reading the 

book. But we thought you’d like to look into t
he future.

Even though it will be a while before the standard gets signed, sealed and delivered, 
you’ll be using browsers that fully support HTML5 long before then. In fact, on 
modern browsers many features are already supported across the board. That’s why 
it’s a great idea to get started using HTML5 now. Plus if  you start now, you’ll be 
able to impress your friends and coworkers with all your cutting edge knowledge.

And get that raise sooner!



you are here 4  19

getting to know HTML5

Wait a sec, if I start using HTML5 now, 
aren’t all those users of old browsers going to be 

alienated? Or, am I going to have to write two versions 
of my web page, one for browsers that support HTML5 

and one for older browsers?

Hold on, take a deep breath.
First of  all HTML5 is a superset of  HTML, and so 
your goal should be to write only one HTML page. 
You’re right in that the features supported by any 
one browser may differ, depending on how current 
the browser is, and how aggressive your users are in 
upgrading. So, we need to keep in mind that some 
of  the newer features of  HTML5 might not be 
supported, which leads back to your question of  how 
to handle that.

Now, one of  the design principles behind HTML5 
is to allow your pages to degrade gracefully—that 
means if  your user’s browser doesn’t provide a 
new feature, then you should provide a meaningful 
alternative. In this book we’re going to show you how 
to write your pages to do that. 

But the good news is that all browsers are moving 
towards the HTML5 standard and related 
technologies (even the mobile browsers) and so over 
time graceful degradation will be more the exception 
than the rule (although you’ll always want to do what 
you can to give your users a meaningful experience no 
matter what browser they’re on).



20  Chapter 1

html5 common questions

Q: I heard that the HTML5 Standard isn’t going to be a final 
recommendation until 2022! Is that true? And, if so, why are we 
bothering?

A: The W3C is the standards body that formally recommends the 
HTML5 standard, and what you need to know about the W3C is that 
they are a conservative bunch, so conservative that they’d prefer 
to wait until a few generations of HTML5 browsers have come and 
gone before they give their signoff. That’s okay; the standard should 
be wrapped up in the next couple years and the browser makers 
are well on to their way to implementing it. So, yes, it may be quite 
a while before HTML5 is a “final recommendation,” but it’s expected 
to be a stable standard by 2014, and for all practical purposes you 
should get going now on HTML5.

Q: What happens after HTML5 is final?

A: HTML6? We have no idea, but maybe whatever it is it will come 
with flying cars, rocket suits and dinner in a pill. Remember that even 
if we do adopt HTML6, the doctype won’t change. Assuming the W3C 
keeps their promise and future versions of HTML remain backward-
compatible, we’ll be in good shape to take whatever comes next. 

Q: Chrome, Safari, Firefox, a zillion mobile browsers...isn’t 
the world just getting worse? How will we ever make sure our 
pages work on all these browsers?

A: While there is plenty of healthy competition in the marketplace 
for browsers (desktop and mobile), in reality many of these browsers 
are based on a few common HTML engines. For instance Chrome, 
Safari and the mobile browsers in the Android and iPhone are all 
based on WebKit, an open source browser engine. So, for the most 
part, your pages will work out of the gate on multiple browsers 
without a lot of effort on your part.

Q: Why not just use Flash to solve cross-browser issues?

A: Flash is a great tool for many applications and certainly on 
the desktop it is pervasive across operating systems and browsers. 
HTML5 and its family of technologies is trying to allow you to do 
with open standards many of the same things that Flash can do. So 
which way should you go? One thing to think about is the amount 
of investment going into HTML5 technologies within Google, Apple, 
Microsoft, and others. Over the long term, HTML5 is going to be 
a huge player, and in the mobile space it already is. So, while the 
choice is yours, and we’re sure both are going to be around for a long 
time, the industry is heading towards open standards.

<script>
    var walksLike = "duck";
    var soundsLike = document.getElementById("soundslike");
    if (walksLike == "dog") {
        soundsLike.innerHTML = "Woof! Woof!";
    } else if (walksLike == "duck") {
        soundsLike.innerHTML = "Quack, Quack";
    } else {
        soundsLike.innerHTML = "Crickets...";
    }
</script>

We did some digging and found some code embedded in an HTML page. We’re hoping you can 
help us crack the code to figure out what it means. Don’t worry; we don’t expect you to understand this 
code, we’re just trying to get your brain warmed up with a little deductive reasoning...

HTML  
Archaeology

A hint: document 
represents the entire 
HTML page, and 
getElementById 
probably has something 
to do with HTML 
elements and ids.



you are here 4  21

getting to know HTML5

I’m just sayin’, if you’re going 
to get serious about building web 
apps and using HTML5, you’ve got 
to have JavaScript chops.

We’ve gotta talk.
If  you’ve been with us since Head First HTML & CSS (or, you’ve read this far into 
the book without repurposing it as firewood) we know you probably have a good 
understanding of  using markup languages and stylesheets to create great looking web 
pages. Knowing those two technologies can you get a long way...

But, with HTML5 things are changing: web pages are becoming rich experiences 
(and full blown applications) that have behavior, are updated on the fly, and interact 
with the user. Building these kinds of  pages requires a fair bit of  programming and if  
you’re going to write code for the browser, there’s only one game in town: JavaScript.

Now, if  you’ve programmed or written simple scripts before, you’re going to be in 
good shape: JavaScript (despite some rumors) is a fantastic language and we’ll take 
you through everything you need to know to write the applications in this book. If  you 
haven’t programmed before, we’re going to do everything we can to take you along for 
the ride.  In either case, one of  the huge benefits of  JavaScript is how accessible it is to 
new programmers.

So, what now? Let’s just briefly get introduced to a little JavaScript and then we’ll 
really dive in deep in Chapter 2. In fact, for now, don’t worry too much about getting 
every detail over the next few pages—we just want you to get a feel for JavaScript.

We can’t 
think of a 
better or 
more fun 
way to learn 
to program!



22  Chapter 1

what javascript can do

What can you do with JavaScript?
JavaScript opens up a whole new universe of  
expression and functionality to your web pages.  
Let’s look at just a few things you might do with 
JavaScript and HTML5...

With HTML5 & JavaScript you can create a 2D drawable 

surface right in your page, no plug-ins required.

No need for special 
plug-ins to play video. 

Make your pages location 

aware to know where 

your users are, show 

them what’s nearby, take 

them on a scavenger 

hunt, give them directions, 

or to bring people 

with common interests 

together in the same area.

Integrate your pages with 

Google Maps and even 

let your users track their 

movement in real time.

Access any web service and 
bring that data back to your 
app, in near real time.

Cache data locally using 
browser storage to speed up mobile apps.

Use web workers to turbo-charge your JavaScript 
code and do some serious computation or make your 
app more responsive. You can even make better use of 
your user's multicore processor!

Interact with your pages in new ways that 
work for the desktop and mobile devices.

Create your own video 
playback controls 
using HTML and 
JavaScript.



you are here 4  23

getting to know HTML5

You probably think we searched 
the Web far and wide to find the 
most exciting examples we could, 
right?� Nope. All we did was take 
screenshots of  the examples in 
the rest of  this book.  How’s that 
for cool?� So now that you’re in 
Webville, it’s time to learn the local 
lingo: JavaScript. Come on, let’s 
get started.

The browser’s clearly not just for 

boring documents anymore. With 

JavaScript you can draw pixels 

directly into the browser. 

Build complete video 
experiences that incorporate 
video in new ways.

Use the power of JavaScript to 
do full blown video processing 
in your browser. Create special 
effects and even directly 
manipulate video pixels.

Say goodbye to browser 

cookies and make use of 

browser-based local storage.

Using JavaScript you can store lots of 
preferences and data for your users 
locally, in the browser, and even make 
it available for offline access.

Super-charge your 

forms with JavaScript 

to provide real 

interactivity.



24  Chapter 1

getting to know javascript

Head First: Welcome, JavaScript. We’re glad you could work us into your busy schedule. Let me just 
put it out there: HTML5 is becoming quite a celebrity—what’s your take on this?

JavaScript: I’m not someone who seeks the limelight, I’m a behind the scenes kinda guy. That said, 
a lot of  the credit going to HTML5 should be going to me.

Head First: Why do you say that?

JavaScript: There’s a whole family of  technologies that makes “HTML5” work, like the 2D canvas, 
local storage, web workers, that kind of  thing. And the truth is, it takes me, JavaScript, to really make 
use of  them. Sure, HTML5 gives you a place to hold the whole experience together and present 
it, but without me, you wouldn’t have an interesting experience at all. That’s okay, more power to 
HTML5; I’m just going to keep on doing my job.

Head First: What’s your advice for new HTML5 authors?

JavaScript: That’s easy. If  you want to really master HTML5, spend your time on JavaScript and 
all the libraries that work with HTML5.

Head First: You know, you haven’t always had the best reputation. I’ll quote a review from 1998:
“JavaScript is at best a half-baked, wimpy scripting language.”

JavaScript: That hurts. I may not have started life in the clean, academic environment of  many 
programming languages, but I’ve become one of  the most widely used programming languages of  all 
time, so I wouldn’t discount me so quickly. Not only that, but enormous resources have been poured 
into making me robust and extremely fast. I’m at least 100 times faster than I was a decade ago.

Head First: That’s impressive. 

JavaScript: Oh, and if  you haven’t heard, the standards guys also just told me I’m now the default 
scripting language for HTML5. So, I’m here to stay. In fact, you don’t even have to say “JavaScript” 
in your <script> tag anymore. So they may have called me wimpy in ’98, but where are JScript, 
VBScript, Java Applets and all those failed attempts at browser languages now?

Head First: Well it certainly sounds like you are the key to creating great HTML5 experiences. You 
do have a reputation for being a confusing language.

JavaScript: I’m a very powerful language, despite some rumors, so you should really spend some 
time learning to use me well. On the other hand, I’m popular because I’m so easy to get up and 
running with. The best of  both worlds, don’t you think?

Head First: It sounds that way! Thanks, JavaScript, for joining us.

JavaScript: My pleasure, anytime.

JavaScript Exposed
This week’s interview:
Confessions of  a Scripting Language



you are here 4  25

getting to know HTML5

Writing Serious JavaScript 
With all this talk about JavaScript, we bet you’re ready to 
jump in and see what it’s all about. They don’t call this 
Head First for nothing, we’ve got a super serious business 
application below that we’re going to throw at you.  For 
now, get started by going through the code to get a feel 
for it. Write down what you think each line does. Don’t 
worry, we don’t expect you to understand everything yet, 
but we bet you can make some really good guesses about 
what this code does. And, when you’re done, turn the 
page and see how close you were...

var drink = "Energy Drink";

var lyrics = "";

var cans = 99;

while (cans > 0) {

    lyrics = lyrics + cans + " cans of " 

            + drink + " on the wall <br>";

    lyrics = lyrics + cans + " cans of " 

            + drink + "<br>";

    lyrics = lyrics + "Take one down, pass it around,<br>";

    if (cans > 1) {

        lyrics = lyrics + (cans-1) + " cans of " 

            + drink + " on the wall <br>";

    }

    else {

        lyrics = lyrics +  "No more cans of " 

            + drink + " on the wall <br>";

    }

    cans = cans - 1;

}

document.write(lyrics);

Write your answers here.

Substitute your 
favorite drink here.



26  Chapter 1

your first javascript

var drink = "Energy Drink"; Declare a variable, and assign it a 
value of “Energy Drink”.

var lyrics = ""; Declare another variable and assign 
it empty string value.

var cans = 99; Declare another variable and assign 
it a number value, 99.

while (cans > 0) {

This is a while loop. It says, while 
the number of cans is greater than 
0, do everything between the curly 
brackets. Stop when there are no 
cans left. 

    lyrics = lyrics + cans + " cans of " 
Add the next line of the song to 
the variable lyrics, using the string 
concatenation operator “+”. 

               + drink + " on the wall <br>"; End the line with a HTML line break.
    lyrics = lyrics + cans + " cans of " Do it again—after all that’s how the 

song goes, right?
               + drink + "<br>";

    lyrics = lyrics + "Take one down, pass it around,<br>"; Add the next verse, again using 
concatentation.

    if (cans > 1) { If there’s still a can left (that is, 
the value of cans is greater than 1)...

        lyrics = lyrics + (cans-1) + " cans of " ... add the last line.
                    + drink + " on the wall <br>";

    }

    else { otherwise, there are no cans left...
        lyrics = lyrics +  "No more cans of " ... so add “No more cans” to the end 

of lyrics.
                    + drink + " on the wall <br>";

    }

    cans = cans - 1; Reduce the number of cans left by 1
}

document.write(lyrics);

We’ve stored all the lines to the song 
in the variable lyrics, so now we tell 
the web page to write it, which just 
means the string is added to the 
page so you can see the song.

Writing Serious JavaScript Revisited...
Walk through the code again and see if  you were on the mark. At 
this point you just want to get a feel for the code; we’ll be stepping 
through everything in detail soon enough.



you are here 4  27

getting to know HTML5

You didn’t think you’d do all that hard work on the exercise without giving 
JavaScript a try for real, did you? What you’ll need to do is take the code from 
the previous page and type it (along with the HTML below) into a file (like 
index.html), and then load it in your browser.  You’ll see our results below:

<!doctype html>

<html>

  <head>

    <meta charset="utf-8">

    <title>My First JavaScript</title>

  </head>

  <body>

    <script>

    </script>

  </body>

</html>

Type this in.

And type the JavaScript code from the previous page in here.

Here’s our test run of this code. The 
code creates the entire lyrics for the 
99 bottles cans of beer energy drink 
on the wall and writes the text into 
the browser document. 

The <script> and </script> tags surround the 
JavaScript code. They tell the page that what’s 
in them is JavaScript, not HTML.

A Test Drive

Remember, to download all the code and sample files for 
this book, please visit http://wickedlysmart.com/hfhtml5.



28  Chapter 1

more html5 fine points

Q: Why was there nothing in the body of that 
HTML except the script?

A: We chose to start with an empty body because 
we created all the content for this page using 
JavaScript code. Now, sure, we could have just typed 
the song lyrics directly into the body element (and that 
would have taken a lot of typing), or we can have code 
do all the hard work for us (which we did), and then 
just have the code insert the lyrics into the page with 
document.write.  
Keep in mind we’re just getting our feet wet here; we’re 
going to spend a lot more time in this book seeing how 
we can take a page and dynamically fill in its content 
with code. 

Q: I get that we built up the entire lyrics to the 
song, but what exactly did the document.write do 
and how did the text get in the document?

A: Well, document.write takes a string of text and 
inserts it into the document; in fact, it outputs the string 
precisely where the script tag is located.  So, in this 
case document.write outputs the string right into the 
body of the page. 
You’re soon going to see more sophisticated ways to 
alter the text of a live document with JavaScript, but 
this example should give you a flavor of how code can 
dynamically change a page.

Q: You’ve been using the terms web page and 
web application; are they two different things? 
What makes something a web application?

A: That’s a great question because we’re using the 
terms loosely. There’s no technical difference between 
the two; in other words, there’s nothing special you do 
to turn a page written with HTML, JavaScript and/or 
CSS into a web application. The distinction is more one 
of perspective.  
When we have a page that is acting more like an 
application than just a static document, then we start 
thinking of it as a web application and less as a web 
page. We think of applications as having a number of 
qualities such as holding lots of state, managing more 
complex interactions with the user, displaying dynamic 
and constantly updated data without a page refresh, or 
even doing more complex tasks or calculations.

Q: Hey, all this JavaScript is great, but what 
about CSS? I’m really itching to take advantage of 
some of the new CSS3 stuff I’ve been hearing about 
to make my pages look better.

A: Yes, CSS has come a long way and we’re thrilled 
it works so well with HTML5. Now, while this book 
isn’t about CSS3, you can be sure we’re going to take 
full advantage of some of its new capabilities.  As you 
might know, many of the tricks we used to do to add 
rounded corners and shadows with images in HTML, 
and simple animation with JavaScript, can now be 
easily done with CSS3. 
So, yes, we’re going to make use of the power of CSS3 
in this book, and we’ll point out when we’re doing so. 



you are here 4  29

getting to know HTML5

We’ve talked about 
a bunch of things including HTML 

markup, JavaScript APIs, a “family of 
technologies” and CSS3. What exactly 
is HTML5? It can’t just be the markup 
everyone is so excited about...

We’ll give you our unofficial answer:

You see, when most people are talking about the 
promise of  HTML5, what they mean is all of  these 
technologies combined. That is, we have markup 
to build the core structure of  our pages, we have 
JavaScript along with all its APIs to add behavior 
and new functionality, and we have CSS to style our 
pages—and together, these are the technologies we’re 
all going to use to build tomorrow’s web apps.

Now, why did we say unofficial? Well, there are people 
who like to make hard distinctions among these 
technologies and which standard each belongs to. 
And that is fine and has its place. But, what we care 
about is this: what technologies are available in the 
browser, and are they ready for us to use to craft our 
pages and applications? So, we say HTML5 is markup 
+ JavaScript APIs + CSS, and we think that is what 
people generally mean when talking about HTML5 as 
a technology. 

Markup + JavaScript APIs + CSS = Crazy Delicious
HTML5

If you’re really interested in how these 
technologies fit together as a set of standards 
(and we all should be) then we encourage you to 
visit w3.org for more information.



30  Chapter 1

what is html5, really

+ + =

          Congratulations, you’ve 
finished Chapter 1 and 
written your first HTML5!
Before you run off  to the next chapter, we’ve 
got one more task for you to drive it all home. 
Use the magnets below to fill in the formula 
that solves the equation of  “what is HTML5?” 
Careful now, there are some distractions 

thrown in with that pile of  magnets. Once you’ve solved it, get some 
rest and refresh yourself  before moving on to Chapter 2.

HTML5

Geolocation

JavaScript
CSS

Local Storage

Markup

audio

xML Canvas

video

CSS3

xHTML

And your first 
JavaSript code!

Web Workers

document

Offline access

Forms

<script>

Mr. Pibb

Crazy Delicious

Red vines

JavaScript aPIs



you are here 4  31

getting to know HTML5

 � HTML5 is the newest version of HTML. It 
introduces simplified tags, new semantic 
and media elements, and relies on a set 
of JavaScript libraries that enable web 
applications.

 � XHTML is no longer the standard for web 
pages. Developers and the W3C decided to 
keep extending and improving HTML instead. 

 � The new, simpler HTML5 doctype is 
supported by older browsers—they use 
standards mode when they see this doctype.

 � The type attribute is no longer needed in the 
<script> tag or in a stylesheet link to CSS.  
JavaScript and CSS are now the defaults. 

 � The <meta> tag used for specifying the 
character set has been simplified to include 
only the character encoding.

 � UTF-8 is now the standard charset in use on 
the Web.  

 � Making changes to the doctype and <meta> 
tag won’t break your pages in older browsers.

 � HTML5’s new elements are a superset of 
HTML 4 elements, which means older pages 
will continue to work in modern browsers.

 � The HTML5 standard won’t be officially 
complete until 2014, but most modern 
browsers will support it long before then 
(many support it now!).

 � HTML5 introduces elements that add new 
semantics to your pages, giving you more 
options for creating web page structure than 
we had with HTML 4.01. We aren’t covering 
these in this book, but we have a small guide 
to them in the appendix.

 � Many of the new features in HTML5 require 
JavaScript to make the most of them.

 � Using JavaScript, you can interact with the 
DOM—the Document Object Model.

 � The DOM is the browser’s internal 
representation of a web page. Using 
JavaScript, you can access elements, change 
elements, and add new elements to the DOM.

 � A JavaScript API is an “Application 
Programming Interface.” APIs make it 
possible to control all aspects of HTML5, like 
2D drawing, video playback, and more.

 � JavaScript is one of the most popular 
languages in the world. JavaScript 
implementations have improved dramatically 
in recent years.

 � You’ll be able to detect whether a new feature 
is supported in a browser and gracefully 
degrade the experience if not.

 � CSS is the style standard for HTML5; 
many people include CSS when they use 
the term “HTML5” to describe the family of 
technologies used to create web applications.



32  Chapter 1

exercise solutions

HTML5cross
It’s time to give the right side of your brain a break 
and put that left side to work. All these words are 
HTML‑related and from this chapter. 

1 2 3 4 5

6 7

8 9 10 11 12

13

14

15

16

Across
2. __________ plug could also be called spam.
8. Product that cleans up your HTML5 is three steps.
11. Your mission was browser __________.
13. The real power of HTML5 is the Javascript ____.
14. JavaScript is ______ times faster than a decade ago.
15. Use a ______ loop to print verses of a song.
16. Got the dear john letter.

Down
1. The ________ is an internal representation of a web page.
3. The version of HTML before HTML5.
4. The <_______> tag tells the browser what follows is 
JavaScript, not HTML.
5. We want our web experiences to degrade ______.
6. Much simpler than the HTML 4.01 version.
7. The standard scripting language of HTML5.
9. This attribute of the link and script tags is no longer needed 
in HTML5.
10. The official style standard for HTML5.
12. New ______ in HTML add semantics and structure.

Across
2. __________ plug could also be called spam.
8. Product that cleans up your HTML5 in three steps.
11. Your mission was browser __________.
13. The real power of HTML5 is the JavaScript ____.
14. JavaScript is ______ times faster than a decade ago.
15. Use a ______ loop to print verses of a song.
16. Got the Dear John letter.

Down
1. The ________ is an internal representation of a web page.
3. The version of HTML before HTML5.
4.  The <_______> tag tells the browser what follows is 

JavaScript, not HTML.
5. We want our web experiences to degrade ______.
6. Much simpler than the HTML 4.01 version.
7. The standard scripting language of HTML5.
9.  This attribute of the link and script tags is no longer 

needed in HTML5.
10. The official style standard for HTML5.
12. New ______ in HTML add semantics and structure.



you are here 4  33

getting to know HTML5

Canvas

Local Storage

Geolocation

Offline Web Apps

New Elements

CSS3

Forms

Audio & Video

Web Workers

SOlUTion

We’re here to help with the structure and semantic meaning 
of  your page, including new ways of  making sections, headers, 
footers and navigation in your pages.

You might have used me in HTML 4 to enter information, but 
I’m even better in HTML5. I can require that you fill out fields, 
and I can more easily verify that you’ve typed an email, URL or 
phone number where you’re supposed to. 

You used to need a plug-in for us, but now we’re first class 
members of  the HTML family of  elements. Wanna watch or 
listen to something?  You need us.

Using me, you can draw right into your web page. With me, you 
can draw text, images, lines, circles, rectangles, patterns and 
gradients. I’ll bring out your inner artist.

I’m the most stylish one in the family. You’ve probably used me 
before, but did you know I can now animate your elements, give 
them great rounded corners and even drop shadows?

Use me as a bit of  local storage in every user’s browser.  Need 
to store a few preferences, some shopping cart items, or maybe 
even stash a huge cache for efficiency? I’m your API.

Need applications that work even when you aren’t connected to 
the network? I can help.

I’m the API that can tell you where you are, and I play nice with 
Google maps. 

You’ll want me whenever you need several scripts running 
concurrently and in the background, so your user interface 
remains responsive.

We’ve already talked about the “family of technologies” so much we feel like they’re, well, family. But then again we 
really haven’t gotten to know them yet, so isn’t it about time? You’ll find the whole family below. Go ahead, mingle, 
see if you can figure out who is who. We’ve gone ahead and figured one out for you. And don’t worry, we know this is 
your first time meeting the HTML5 family members, so here is the solution.



34  Chapter 1

exercise solutions

HTML5cross Solution

D
1

S
2

H
3

A M E L E S
4

S G
5

O T C D
6

R J
7

H
8

T
9

M L O M A T I C
10

R
11

E C O N N A I S S A N C E
12

Y L S I C C V L

A
13

P I S 4 S P T E A E

E 1
14

0 0 T Y F S M

1 P U C E

W
15

H I L E L R N

L I T

Y P S

X
16

H T M L

Across
2. __________ plug could also be called spam. 
[SHAMELESS] 
8. Product that cleans up your HTML5 is three steps. 
[HTMLOMATIC] 
11. Your mission was browser __________. 
[RECONNAISSANCE] 
13. The real power of HTML5 is the Javascript ____. [APIS] 
14. JavaScript is ______ times faster than a decade ago. 
[100] 
15. Use a ______ loop to print verses of a song. [WHILE] 
16. Got the dear john letter. [XHTML] 

Down
1. The ________ is an internal representation of a web page. 
[DOM] 
3. The version of HTML before HTML5. [HTML401] 
4. The <_______> tag tells the browser what follows is 
JavaScript, not HTML. [SCRIPT] 
5. We want our web experiences to degrade ______. 
[GRACEFULLY] 
6. Much simpler than the HTML 4.01 version. [DOCTYPE] 
7. The standard scripting language of HTML5. [JAVASCRIPT] 
9. This attribute of the link and script tags is no longer needed 
in HTML5. [TYPE] 
10. The official style standard for HTML5. [CSS] 
12. New ______ in HTML add semantics and structure. 
[ELEMENTS] 



this is a new chapter  35

Introducing JavaScript and the DOM2

A Little Code

JavaScript is going to take you to new places. You 

already know all about HTML markup (otherwise known as structure) 

and you know all about CSS style (otherwise known as presentation), 

but what you’ve been missing is JavaScript (otherwise known as 

behavior). If all you know about are structure and presentation, sure,  

you can create some great-looking pages, but they’re still just pages. 

When you add behavior with JavaScript, you can create an interactive 

experience; or, even better, you can create full blown web applications. 

Get ready to add the most interesting and versatile skill in your web 

toolkit: JavaScript and programming! 
And if you need 
more motivation, 
the most lucrative!



36  Chapter 2

how javascript works

The Way JavaScript Works
Our goal is to write JavaScript code that runs in the 
browser when your web page is loaded—that code might 
respond to user actions, update or change the page, 
communicate with web services, and in general make 
your page feel more like an application than a document. 
Let’s look at how all that works:

html

head

title script

body

h1 ph2

em

You create your HTML 
markup and your 
JavaScript code and put 
them in files, say  
index.html and index.js 
(or they both can go in 
the HTML file).  

Writing

<html>
<head>
<script>
 var x = 49;
</script>
<body>
<h1>My first JavaScript</h1>
<p></p>
<script>
 x = x + 2;
</script>
</body>
</html>

1

JavaScript continues 
executing, using the 
DOM to  examine the 
page, change it, receive 
events from it, or ask 
the browser to retrieve 
other data from the 
web server.

3

Running

The browser retrieves and 
loads your page, parsing 
its contents from top to 
bottom.

As it encounters JavaScript, 
the browser parses the 
code and checks it for 
correctness, and then 
executes the code. 

The browser also builds an 
internal model of the HTML 
page, called the DOM.

Browser

2

Loading

html

head

title script

body

h1 ph2

em



you are here 4  37

javascript and the dom

What can you do with JavaScript?

var temp = 98.6;

var beanCounter = 4;

var reallyCool = true;

var motto = "I Rule";

temp = (temp - 32) * 5 / 9;

motto = motto + " and so do you!";

var pos = Math.random();

statements

looping

conditionals

Once you’ve got a page with a <script> element (or a 
reference to a separate JavaScript file), you’re ready to 
start coding. JavaScript is a full-fledged programming 
language and you can do pretty much anything with it you 
can with other languages, and even more because we’re 
programming inside a web page!

You can tell JavaScript to:

1 make a statement

2 do things more than once, or twice

3 make decisions

Create a variable and assign values, add things together, 
calculate things, use built-in functionality from a 
JavaScript library.

while (beanCounter > 0) {

   processBeans();

   beanCounter = beanCounter - 1;

}

Perform statements over and over, as many times as you need to.

if (isReallyCool) {

   invite = "You're invited!";

}  else {

   invite = "Sorry, we're at capacity.";

}

Write code that is conditional, depending on the state of your app.



38  Chapter 2

declaring variables

Declaring a variable
Variables hold things. With JavaScript they can hold lots of  
different things. Let’s declare a few variables that hold things:

var winners = 2;

var boilingPt = 212.0;

var name = "Dr. Evil";

var isEligible = false;

Integer numeric values.
Or floating point numeric values.

Or, strings of characters (we 
call those “strings,” for short).

Or a boolean value, 
which is true or false.

winners

2

name

“D
r. E

vil”

isEligible

fal
se

boilingPt

21
2.0

Variables are 
containers for 
holding values. 
JavaScript 
variables don’t 
have strict types, 
so any variable 
can hold a 
number, a string 
or a boolean.

The first step is to declare your variable, in this case 
scoops. Notice that JavaScript, unlike some languages, 
doesn’t need a type for the variable, it just creates a 
generic container that can hold lots of  things:

Three steps of creating a variable

var scoops = 10;

1

1

23

scoops

I’m a variable all ready 
to hold something.

Next we need a value to put in the variable. We can 
specify a value in a few ways:

2

var scoops = 10;

var scoops = totalScoops / people;

var scoops = Math.random() * 10;

Your value can be a literal value, 
like a number or a string.

Or, the value can be the 
result of an expression.

Or use one of JavaScript's internal library functions, like a random number generator, to create a value. More on this and your own functions later.



you are here 4  39

javascript and the dom

Q: What is the value of my variable when I just write:

       var winner;

A: After this statement is executed, the variable winner will be 
assigned the value undefined, which is another JavaScript value 
and type.  We’ll see where and how to use this later in the book.

Q: I’ve seen other programming languages where variables 
are declared with a type. Like int x or String y. Does 
JavaScript not have types?

A: JavaScript does have types, but unlike languages you might 
have used before, JavaScript has dynamic typing, which means that 
you don’t have to specify a type, and the JavaScript interpreter will 
figure out what type to use as your code is running.

 � Each statement ends in a semicolon.
x = x + 1;

 � A single line comment begins with two 
forward slashes. Comments are just 
notes to you or other developers about 
the code.They aren’t evaluated. 
// I'm a comment

 � White space doesn’t matter (almost 
everywhere). 
x        =        2233;

 � Surround strings of characters with 
double quotes. 
"You rule!"

 � Variables are declared using var and 
a name. No types are required, unlike 
some other languages. 
var width;

 � Don't use quotes around the boolean 
values true and false.
rockin = true;

 � Variables don’t have to be given a value 
when they are declared: 
var width; 

Finally, we have a variable and we have a value (a literal 
value, like 10, or the result of  evaluating an expression 
(like totalScoops / people)), and all we need to do is 
assign the value to the variable:

3

scoops

Ahh, I’m no longer 
undefined, I now have 
a value of my very own.10

Of  course, once you have a variable created, you can 
change its value at any time, or even change it to a value 
that has a different type. Here are some examples:

scoops = 5;

scoops = scoops * 10;

scoops = "Tired of being an integer";

scoops = null;

We can reset scoops to another 
integer value.

Or even use scoops itself in an 
expression that changes its value.  
In this case scoops will be 50.

Or, we can change the value and type 
of scoops, in this case to a string. 
Careful, this could cause big issues in 
your code if you’re expecting scoops to 
be a number. More on this in a bit..

Or, there’s even a value in JavaScript that means “no value”. It’s called null. We’ll see how this is used later.

Syntax Fun

var dog = “fido”;

dog = “good” + dog;



40  Chapter 2

naming variables

How to name your variables
You might be wondering how you pick names for 
your variables? If  you’re used to naming ids in your 
HTML elements, you’ll find variables very similar. 
There are only a few rules for creating names:

var thisIsNotaJoke;

var _myvariable;

var $importantvar;

var 3zip;

var %entage;

var ~approx;

Rule#1: Start your variables with a letter, 
an underscore or a dollar sign.

Rule #2: Then you can use any number of letters, 
numeric digits, underscores or dollar signs.

You want to get off  to a good start with naming 
your variables, not just by making them meaningful, 
but also by using a letter (small or uppercase), an 
underscore character or a dollar sign. Here are some 
examples:

Do this... ...not this.

Begins with number, not good.
Begin with symbols (% and ~) 
that aren’t allowed.

Keep using letters, dollar signs, and underscores to create 
your variable name. After the first character you can also 
thrown in numbers if  you like:

var my3sons;

var cost$;

var vitaminB12;

var zip code;

var first-name;

var to+do;

Do this... ...not this.

Got a space, not allowed

Got -, + signs. Not 
allowed and will 
seriously confuse 
JavaScript.

Serious 
Coding

Numbers, strings and booleans are all 
known as primitive types in JavaScript. 
There is one other thing you can 
store in a variable, an object. We’ll be 
talking about objects soon enough, 
but for now you can think of an object 
as a collection of things, whereas a 
primitive is just one thing that can’t 
be broken up into anything else.



you are here 4  41

javascript and the dom

Rule #3: Make sure you avoid all of JavaScript’s reserved words.

JavaScript contains a number of  words that are reserved, such as if, else, while,  and for (to 
name just a few), and JavaScript doesn’t take too kindly to you trying to use those reserved 
words for your variable names. Here’s a list of  JavaScript’s reserved words. Now, you don’t 
need to memorize them, and you’ll develop a sense of  what they are as you learn JavaScript, 
but if  you’re ever perplexed by JavaScript complaining about how you’ve declared your 
variables, think, “Hmm, is that a reserved word I’m trying to use?” 

Avoid these as variable names!

abstract
as
boolean
break
byte
case
catch
char
class
continue
const
debugger
default

delete
do
double
else
enum
export
extends
false
final
finally
float
for
function

goto
if
implements
import
in
instanceof
int
interface
is
long
namespace
native
new

null
package
private
protected
public
return
short
static
super
switch
synchronized
this
throw

throws 
transient 
true
try
typeof
use
var
void
volatile
while
with

Q: What if I used a reserved word as 
part of my variable name? Like, can I 
have a variable named ifOnly (that is, a 
variable that contains the reserved word 
if)?

A: You sure can, just don’t match the 
reserved word exactly.  It’s also good to 
write clear code, so you wouldn’t in general 
want to use something like elze, which 
might be confused with else.

Q: Is JavaScript case sensitive? 
In other words are myvariable and 
MyVariable the same thing?

A: If you’re used to HTML markup you 
may be used to case insentitive languages, 
after all <head> and <HEAD> are treated 
the same by the browser. With JavaScript 
however, case matters and myvariable and 
MyVariable are two different variables.

Q: I get that JavaScript can assign a 
value at any time (number, string, and so 
on) to a variable. But what happens when 
I add two variables together and one 
is a number and the other is a string of 
characters?

A: JavaScript tries to be smart about 
converting types for you as needed. For 
instance if you add a string and a number, 
it usually tries to convert the number to a 
string and concatenate the two together. 
Now in some cases that is great, and in 
some cases it isn’t what you wanted. Hang 
on to that thought and we’ll come back to it 
in just a sec.



42  Chapter 2

naming variables

Webville Guide to Better Naming

Choose names that mean something. 

Variable names like _m, r and foo might mean something to you but they are 
generally frowned upon in Webville. Not only are you likely to forget them over time, 
your code will be much more readable with names like angle, currentPressure and 
passed.

Use “camel case” when creating multiword variable names. 

At some point you’re going to have to decide how you name a variable that 
represents, say, a two-headed dragon with fire. How? Just use camel case, 
in which you capitalize the first letter of each word (other than the first): 
twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville 
and gives you enough flexibility to create as specific a variable name as you need. 
There are other schemes too, but this is one of the more commonly used (even 
beyond JavaScript).

You’ve got a lot of flexibility in choosing your variable names, so we 
wanted to give you a few tips to make your naming easier:

Use variables that begin with _ and $ only with very good reason. 

Variables that begin with $ are usually reserved for JavaScript libraries and while 
some authors use variables beginning with _ for various conventions, they aren’t 
widely used and we recommend you stay away from both unless you have very good 
reason (you’ll know if you do).

Be safe. 

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in 
the book, but for now be clear in your naming, avoid reserved words, and always use 
var when declaring a variable.



you are here 4  43

javascript and the dom

Getting Expressive
We’ve already seen some JavaScript statements that look like:

But let’s take a closer look at expressions, like the one in 
this statement. It turns out expressions are everywhere in 
JavaScript, so it’s important to know the kinds of  things you can 
express. Here are a few...

scoops = scoops - 1;

A JavaScript statement

ExpressionVariable Assignment

You can write 
expressions that 
result in the 
boolean values true 
or false (these are, 
obviously, boolean 
expressions).

2 > 3

tempF < 75

pet == "Duck"

Boolean expressions

startTime > now

level == 4
(9 / 5) * tempC + 32

Numeric expressions

You can write expressions that result in numbers...

Math.random()
 * 10

2.123 + 3.2

x - 1

Other expressions

new array(10)

document.getElementById("pink")

function () {...}

There are other types of 
expressions too; we’ll be 
getting to these later.

Keep an eye on expressions over the next few 
pages (not to mention the rest of  the book), and 
you’re going to see how they are used to compute 
things, do things multiple times and to make 
decisions in your code.

...and you can write expressions that 
result in strings.

"super" + "cali" + youknowTheRest

String expressions

p.innerHTML
"March" + "21" + "st"

phoneNumber.substring(0, 3)



44  Chapter 2

variable exercises

Not this kind of expression!

Express Yourself!

Based on what you know so 
far about JavaScript variables, 
expressions and statements, see 
if you can figure out which of 
these are legal and which might 
cause an error.  

From the following list, circle the 
statements that are legal.

var x = 1138;

var y = 3/8;

var s = "3-8";

x = y;

var n = 3 - "one";

var t = "one" + "two";

var 3po = true;

var level_ = 11;

var highNoon = false;

var $ = 21.30;

var z = 2000;

var isBig = y > z; 

z = z + 1;

z--;

z y;

x = z * t;

while (highNoon) {

   z--;

}

(9 / 5) * tempC + 32

What’s the result when tempC is 10?  __________

"Number" + " " + "2"

What’s the resulting string? __________________

level >= 5

What’s the result when level is 10? ____________
How about when level is 5? __________________

color != "pink"

What’s the result if color is “blue”? _____________
Hint: ! means not.

(2 * Math.PI) * r

What’s the result if r is 3? ____________________

Hint: Math.PI gives you the value of pi (you know, 3.14....)

You’ve seen the different types of expressions you can 
use in JavaScript; now it’s time to put that knowledge 
to work by evaluating some expressions yourself. 
Check your answers at the end of the chapter.



you are here 4  45

javascript and the dom

Everything seems to work 
well if I add numbers to numbers or 
strings to strings, but what if I add a 
number to a string? Or an integer to a 

floating point number?

Remember when we said JavaScript makes 
programming easy to get into? One of  the ways it 
does that is by taking care of  converting types to other types as 
needed to make expressions make sense.  

As an example, say you have the expression:

message = 2 + " if by sea";

Now, we know that + could be for adding numbers together, 
and it’s also the operator used to concatenate strings together. 
So which is it?  Well, JavaScript knows that the string “ if  by 
sea” is never going to look like a number, so it decides this 
is a string expression, converts the 2 to a string “2”, and the 
variable message is assigned to “2 if  by sea”.

Or, if  we have the statement:

value = 2 * 3.1;

JavaScript converts the integer 2 into a floating point number 
and the result is 6.2.

As you might guess, however, JavaScript doesn’t always do what 
you want, and in some cases it needs a little help in conversions. 
We’ll be coming back to that topic a little later.

numORString1 = "3" + "4"

numORString2 = "3" * "4"

What does JavaScript evaluate the following statements to?

And why?



46  Chapter 2

javascript iteration

Doing things over and over...
If  we did everything just once in a JavaScript program it would probably be a 
pretty boring program. You do a lot of  things multiple times—you rinse, lather, 
repeat, until hair is clean, or, keep driving until you reach your destination, or 
keep scooping your ice cream until it’s all gone—and to handle these situations,  
JavaScript gives you a few ways to loop over blocks of  code.  

You can use JavaScript’s while loop to do something until a condition is met:

while (juggling) {

    keepBallsInair(); 

}

var scoops = 10;

while (scoops > 0) {

   alert("More icecream!");

   scoops = scoops - 1;

}

alert("life without ice cream isn't the same");

We’ve got a tub of ice cream, and its got ten scoops left 
in it.  Here’s a variable declared and initalized to ten.

While there are more than zero scoops left, we’re 
going to keep doing everything in this code block.

Each time through the while loop, we alert the user there is more ice cream, and then we take one scoop away by subtracting one from the number of scoops.

When the condition (scoops > 0) is false, the loop is done, and the code execution continues here, with whatever the next line of your program is.

While uses a boolean expression that evaluates to true or 
false.  If true, the code after it is executed.



you are here 4  47

javascript and the dom

So if  you think about the while loop, we’re initializing some values, say, the 
number of  ice cream scoops left, which the while loop tests, and if  true, we execute 
a block of  code. And, the block of  code does some work that at some point updates 
the value involved in the conditional test so that the condition fails and the loop ends. 

for (scoops = 10; scoops > 0; scoops--) {

   alert("There's more ice cream!");

}

alert("life without ice cream isn't the same");

var scoops = 10;

while (scoops > 0) {

   alert("More icecream!");

   scoops = scoops - 1;

}

alert("life without ice cream isn't the same");

INITIALIZE

DO CONDITIONAL TEST

EXECUTE CODE BLOCK WHILE 
CONDITIONAL TEST IS TRUE

CONTINUE AFTER LOOP CONDITION FAILS

UPDATE

JavaScript also provides a for loop, which formalizes this structure a little more. 
Here’s our ice cream code written with a for loop instead:

INITIALIZE
DO CONDITIONAL TEST

EXECUTE CODE BLOCK WHILE 
CONDITIONAL TEST IS TRUE

CONTINUE AFTER LOOP 
CONDITION FAILS

UPDATE

Q: The while and for loops seem the same to me.  When do I use which?

A: In general you can do the same things with a for or a while; however, as you can see with the ice cream example, the for loop 
is a little more compact, and you might argue the while loop is more readable. So, it really is a matter of which fits best given your 
situation.  In general, for loops get used more for iterating over a fixed number of values (say, over the items in a shopping cart), 
and while loops are used more to loop until a condition is met (say, giving the user a test until he gets it right).



48  Chapter 2

variable and iteration exercise

BE the Browser
Each of the JavaScript snippets on 
this page is a separate piece of code. 
Your job is to play browser, and 

evaluate each snippet 
of code and answer a 
question about the result. 
Write your answer to the 
question below the code.

var tops = 5;

while (tops > 0) {

    for (var spins = 0; spins < 3; spins++) {

        alert("Top is spinning!");

    }

    tops = tops - 1;

}

var count = 0;

for (var i = 0; i < 5; i++) {

    count = count + i;

}

alert("count is " + count);

for (var berries = 5; berries > 0; berries--) {

    alert("Eating a berry");

}

Snippet 1

Snippet 3

Snippet 2

What count does the alert show?

How many times do you see 
the alert, “Top is spinning!”?

How many berries did you eat?

for (scoops = 0; scoops < 10; scoop++) {

   alert("There's more ice cream!");

}

alert("life without ice cream isn't the same");

Snippet 4

How many scoops of ice cream did you eat?

Check your answers at the 
end of the chapter.



you are here 4  49

javascript and the dom

We’ve been using boolean expressions in for and while statements as 
a conditional test to decide whether to continue looping. You can also 
use them to make decisions in JavaScript. Here’s an example:

if (scoops < 3) {

   alert("Ice cream is running low!");

} 

Here’s our boolean expression, testing to see how many scoops are left. 

Make decisions with JavaScript

if (cashInWallet > 5)  {
   order = “I’ll take the works: cheeseburger, fries and a coke”;
} else {
   order = “I’ll just have a glass of water”;
}

If there are < 3 scoops left we then execute the code block.

We can string together more than one test too:

if (scoops < 3) {

   alert("Ice cream is running low!");

} else if (scoops > 9) {

   alert("Eat faster, the ice cream is going to melt!");

}

Add as many tests with “else if” as you need, each with its own associated code block that will be executed when the condition is true. 



50  Chapter 2

javascript conditionals

You can provide a catchall for your if statements as well—a final else that is run if  
all the other conditions fail. Let’s add a few more if/elses and also a catchall:

Making more decisions... and, adding a catchall

if (scoops == 3) {

   alert("Ice cream is running low!");

} else if (scoops > 9) {

   alert("Eat faster, the ice cream is going to melt!");

} else if (scoops == 2) {

   alert("Going once!");

} else if (scoops == 1) {

   alert("Going twice!");

} else if (scoops == 0) {

   alert("Gone!");

} else {

   alert("Still lots of ice cream left, come and get it.");

}

Notice we changed this to only happen when scoops is precisely 3.

Here’s our catchall; if none of the conditions above are true, then this block is guaranteed to execute.

var scoops = 10;

while (scoops >= 0) {

   scoops = scoops - 1;

}

alert("life without ice cream isn't the same");

Insert the code above here...

Write the output here.

We’ve added additional conditions to have a countdown to zero scoops.

Take the code above and insert it into the while loop below. Walk through the 
while loop and write down the alerts in the sequence they occur. Check your 
answer at the end of the chapter.



you are here 4  51

javascript and the dom

var word1 = "a";

var word2 = "nam";

var word3 = "nal p";

var word4 = "lan a c";

var word5 = "a man a p";

var phrase = "";

for (var i = 0; ______; _____) {

    if (i == 0) {

        phrase = ________________;

    }

    else if (i == 1) {

        phrase = ________________ + word4;

    }

    _________ (i == 2) {

        _______________ = phrase + word1 + word3;

    }   

    _________ (________) {

        phrase = phrase + ________ + word2 + word1;

    }

}

alert(phrase);

phrase i < 3 i < 4

i++

i--

word5

word4

word3

word2
word1

word0

else if
i == 3

i == 4

i = 3

else if (i == 0)

i = 0
+

else

A palindrome is a sentence that can 
be read the same way backwards 
and forwards! Here’s the 
palindrome you should see if the 
magnets are all in the right places.

Code Magnets
This code prints out a well-known palindrome in an alert. The problem is that some of the 
code was on fridge magnets and fell on the floor. It’s your job to put the code back together 
again to make the palindrome work. Watch out; there were a few magnets already on the 
floor that don’t belong here, and you’ll have to use some of the magnets more than once! 
Check your answer at the end of the chapter before you go on.



52  Chapter 2

how to put javascript in a page

I was told we’d 
be putting JavaScript in 

our web pages. When are we going 
to get there, or are we just going to 
keep playing around with JavaScript?

Yes, that is the point. First, you 
needed to know a few basics.  Here’s what 
we’ve done so far: you know how to declare 
and use JavaScript variables, and you 
know how to build basic statements and 
expressions.  You also know how to use all 
those together to write conditional code with 
if/else statements, not to mention do things 
iteratively with while and for statements. 

With that under your belt, now we’re going to 
see how to place JavaScript in your page, and 
more importantly, how JavaScript interacts 
with your page. That is, how you determine 
what’s in your page, how you change your 
page, and, a bit more down the road, how 
you write code to react to things happening in 
your pages.

So, while we’re not done with JavaScript yet, 
your wait is over; it’s time to see how markup 
and behavior work together...



you are here 4  53

javascript and the dom

HTML file

<head>

<body>

<script>
  statement 
  statement 
</script>

<script>
  statement 
</script>

<script src=”mycode.js”>
</script>

How and where to add JavaScript to your pages

Place your script inline,  
in the <head> element. 

The most common way to add code to 
your pages is to put a <script> element 
in the head of  your page. When you add 
JavaScript in the <head> element, it is 
executed as soon as the browser parses 
the head (which it does first!), before it has 
parsed the rest of  the page. 

Add your script by referencing 
a separate JavaScript file.

You can also link to a separate file 
containing JavaScript code. Put the URL 
of  the file in the src attribute of  the 
opening <script> tag and make sure 
you close the script element with  
</script>. If  you’re linking to a file in 
the same directory, you can just use the 
name of  the file.

Add your code in the body  
of the document, either inline  
or as a link to a separate file.

Or, you can put your code right in the 
body of  your HTML. Again, enclose your 
JavaScript code in the <script> element 
(or reference a separate file in the src 
attribute). JavaScript in the body of  your 
page is executed when the browser parses 
the body (which it does, typically, top 
down).

To use JavaScript you’ve got to add it to a web page. But where and how? You 
already know there is a <script> element, so let’s see where we can use it and how 
that affects the way JavaScript executes within your pages. Here are three different 
ways you might add code to your page:

Most of the time code is added to the 
head of the page. There are some slight 
performance advantages to adding your 
code at the end of body, but only if 
you really need to super-optimize your 
page’s performance.

You can type 
your code 
right into 
your web page, 
or reference 
a separate 
JavaScript file 
using the src 
attribute of 
the script tag.

Or you can 
place your code 
(or a reference 
to your code) 
in the body. 
This code gets 
executed as the 
body is loaded.

Place <script> elements in the 
<head> of your HTML to have them 
executed before the page loads.



54  Chapter 2

interaction with a page

JavaScript and HTML are two different things. HTML is 
markup and JavaScript is code. So how do you get JavaScript 
to interact with the markup in your page?�  You use the 
Document Object Model. 

How JavaScript interacts with your page

It’s through reading, reacting to, and changing the DOM that JavaScript can be used to write interactive web pages/apps. This book will show you how.

We call this the 
Document Object 
Model, which you 
can ask to tell you 
anything about the 
structure or content 
of your page.

html

head

title script

body

h1 ph2

em

Your browser When you load a page into the 
browser, the browser parses the 
HTML and creates an internal  model 
of your document, that contains all 
the elements of your HTML markup.

Your JavaScript can interact 
with the DOM to get access 
to the elements and the 
content in them. JavaScript 
can also use the DOM to 
create or remove elements 
(among a number of other 
things we’ll be getting to).

We call this the DOM, for short.

1

2

When JavaScript modifies 
the DOM, the browser 
updates the page 
dynamically, so you see new 
content on your page.

3



you are here 4  55

javascript and the dom

Ingredients

One well‑formed HTML5 page
One or more web browsers

Instructions

1.  Start by creating a document node at the top.

2.  Next, take the top level element of your HTML 
page, in our case the <html> element, call it 
the current element and add it as a child of the 
document.

3.  For each element nested in the current element, 
add that element as a child of the current 
element in the DOM.

4.  Return to (3) for each element you just added, 
and repeat until you are out of elements.

How to bake your very own DOM
Let’s take some markup and create a DOM for it. Here’s a simple 
recipe for doing that:

<!doctype html>
<html lang="en">
<head>
  <title>My blog</title>
  <meta charset="utf-8">
  <script src="blog.js"></script></head>
<body>
  <h1>My blog</h1>
  <div id="entry1">
    <h2>Great day bird watching</h2>    <p>
      Today I saw three ducks!
      I named them
      Huey, Louie, and Dewey.
    </p>
    <p>
      I took a couple of photos...    </p>
  </div>
</body>
</html> 

document

document

html

document

head body

html

We’ve already fully 

baked this DOM for you. 

Turn the page to see the 

finished DOM.



56  Chapter 2

introducing the document object model

document is always at the top. 

document is a special part of 

the tree that you can use
 in 

JavaScript to get access to
 the 

entire DOM. These are like the 
branches of the tree.

These are like the leaves 
of the tree (because there 
are no elements inside them, 
just text).

document

head

title script

body

h1meta div id=”entry1”

h2 p p

document is also like the root 
of an upside down tree.

My blog

Great 
day bird 
watching

Today 
I saw 
three...

I took a 
couple of 
photos...

The DOM includes the content of the page as well as the 
elements. (We don’t always show all the text content when 
we draw the DOM, but it’s there).

My blog

html

A first taste of the DOM
The beauty of  the Document Object Model is that it gives us a consistent way, 
across all browsers, to gain access to the structure and content of  the HTML 
from code. That’s huge. And we’re going to see how all that works in a sec... 

Back to our example; if  you follow the recipe for creating a DOM you’ll end 
up with a structure like the one below. Every DOM has a document object at 
the top and then a tree complete with branches and leaf  nodes for each of  the 
elements in the HTML markup.  Let’s take a closer look.

Now that we have 
a DOM we can examine 
or alter it in any way we 

want.

We compare this structure to 
a tree because a “tree” is a 
data structure that comes 
from computer science.



you are here 4  57

javascript and the dom

<!doctype html>

<html lang="en">

  <head>

    <title>Movies</title>

  </head>

  <body>

    <h1>Movie Showtimes</h1>

    <h2 id="movie1" >Plan 9 from Outer Space</h2>

    <p>Playing at 3:00pm, 7:00pm. 

      <span>

        Special showing tonight at <em>midnight</em>!

      </span>

    </p>

    <h2 id="movie2">Forbidden Planet</h2>

    <p>Playing at 5:00pm, 9:00pm.</p>

  </body>

</html>

Your job is the act like 
you’re the browser.  You 
need to parse the HTML 
and build your very own 
DOM from it.  Go ahead 
and parse the HTML to 
the right, and draw your 
DOM below.  We’ve already 
started it for you.

BE the Browser

Draw your DOM here.document

html

Check your answer with 
our solution at the end 
of the chapter before 
you go on.



58  Chapter 2

relationship between javascript and the dom

Or, how two totally different technologies hooked up.
HTML and JavaScript are from different planets for sure. 
The proof? HTML’s DNA is made of declarative markup 
that allows you to describe a set of nested elements that 
make up your pages. JavaScript, on the other hand, is 
made of pure algorithmic genetic material, meant for 
describing computations.
Are they so far apart they can’t even communicate? Of 
course not, because they have something in common: the 
DOM. Through the DOM, JavaScript can communicate 
with your page, and vice versa. There are a few ways to 
make this happen, but for now lets concentrate on one—
it’s a little wormhole of sorts that allows JavaScript to get 
access to any element, and it’s called getElementById.
Let’s see how it works...



you are here 4  59

javascript and the dom

Let’s start with a DOM.  Here’s a simple DOM; it’s got a few HTML paragraphs, each with 
an id identifying it as the green, red or blue planet. Each paragraph has some text as well. Of 
course there’s a <head> element too, but we’ve left the details out to keep things simpler.

Now let’s use JavaScript to make things more interesting.  Let’s say we want to change 
the greenplanet’s text from “All is well” to “Red Alert: hit by phaser fire!’  Down the road you 
might want to do something like this based on a user’s actions or even based on data from a 
web service.  But we’ll get to all that; for now let’s just get the greenplanet text updated. To do 
that we need the element with an id of greenplanet.  Here’s some code that does that:

document.getElementById("greenplanet");

Here we’re asking the document to 
get us an element by finding the 
element that matches the given id.

Remember the document 
represents the entire page in 
your browser and contains the 
complete DOM, so we can ask it 
to do things like find an element 
with a specific id.

p

getElementById(“greenplanet”) returns 
the paragraph element corresponding 
to “greenplanet”...

...and then the 
JavaScript code 
can do all sorts 
of interesting 
things with it..

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is 
well

Nothing to 
report

All systems 
A-OK

head

html

document



60  Chapter 2

using getelementbyid

Once getElementById gives you an element, you’re ready do something with it  
(like change its text to “Red Alert: hit by phaser fire!”). To do that, we typically assign the 
element to a variable so we can refer to the element thoughout our code;  let’s do that 
and then change the text:

var planet = document.getElementById("greenplanet");  

   

planet.innerHTML = "Red alert: hit by phaser fire!";

Here’s our call to getElementById, 
which seeks out the “greenplanet” 
element and returns it.

We’re assigning the element to a 
variable named planet.

And in our code we can now just 
use the variable planet to refer 
to our element.

We change the content of the greenplanet 
element to our new text... which results in 
the DOM (and your page) being updated 
with the new text.

Red Alert: hit by 
phaser fire!

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

Nothing to 
report

All systems 
A-OK

head

html

document

We can use the 
innerHTML property of our planet element to change the content of the element.

We’ll talk more about 
properties of elements 
shortly...

Any changes to the DOM are reflected in the 
browser’s rendering of the page, so you’ll see the 
paragraph change to contain the new content!



you are here 4  61

javascript and the dom

Here’s a DOM with a secret message 
hidden in it. Evaluate the code below to 
reveal the secret! The answer is upside 
down on this page.

document.getElementById("e7")

document.getElementById("e8")

document.getElementById("e16")

document.getElementById("e9")

document.getElementById("e18")

document.getElementById("e13")

document.getElementById("e12")

document.getElementById("e2")

Write the element each line of code 
selects, as well as the content of the 
element to reveal the secret message!

bu
t

st
ro

ng
 id

=”
e1

3”

Th
e

It
 a

in
’t

do
cu

m
en

t

ht
m

l

ha
s 

co
m

e

h1
 id

=”
e1

”

p

h2
 id

=”
e3

”

di
v 

id
=”

e4
”

p 
id

=”
e5

”
p 

id
=”

e1
0”

br
ag

gi
n’

ba
ck

it
 u

p!I’
m

no
t

fu
nn

y
I 

do

ul

li 
id

=”
e1

5”

li 
id

=”
e1

6”

li 
id

=”
e1

7”

li 
id

=”
e1

8”

li 
id

=”
e1

9”

Pl
ea

se

tu
rn

th
e

pa
ge

s

on
e 

at
 a

 t
im

e!

a 
lo

t

em
 id

=”
e1

2”
st

ro
ng

 id
=”

e1
4”

la
ug

h

sp
an

 id
=”

e6
”

if

sp
an

 id
=”

e7
”

yo
u

sp
an

 id
=”

e8
”

ca
n

p

ti
m

e

ti
m

e 
id

=”
e2

”

di
v 

id
=”

e1
1”

p 
id

=”
e9

”

Se
cr

et
 M

es
sa

ge

ti
tl

e
m

et
a

sc
ri

pt

bo
dy

he
ad

Answer: “You can turn back pages but not time”



62  Chapter 2

testing the dom code

<!doctype html>
<html lang="en">
<head>
  <title>Planets</title>
  <meta charset="utf-8">
  <script>
    var planet = document.getElementById("greenplanet");
    planet.innerHTML = "Red alert: hit by phaser fire!";
  </script>
</head>
<body>
  <h1>Green Planet</h1>
  <p id="greenplanet">all is well</p>
  <h1>Red Planet</h1>
  <p id="redplanet">Nothing to report</p>
  <h1>Blue Planet</h1>
  <p id="blueplanet">all systems a-Ok</p>
</body>
</html>

Test drive the planets
You’ve seen how to use document.getElementById to get access to 
an element, and how to use innerHTML to change the content of  that 
element. Let’s do it for real, now.

Here’s the HTML for the planets; we’ve got a <script> element in the 
head where we’ll put the code, and three paragraphs for the green, red, 
and blue planets. If  you haven’t already, go ahead and type in the HTML 
and the JavaScript to update the DOM:

We’ve added the 
JavaScript to the head 
of the page.

Here’s the <p> element 
you’re going to change 
with JavaScript.

After you’ve got it typed in, go ahead and load the page 
into your browser and see the DOM magic happen on the 
green planet.

UH OH! Houston, we’ve got a 
problem, the green planet still 
shows “All is well”. What’s wrong?

Just like you saw before, we’re 
getting the <p> element with 
the id “greenplanet” and 
changing its content. 



you are here 4  63

javascript and the dom

Oh yeah, we forgot to mention one thing.
Most of  the time it makes sense to start executing your 
JavaScript code after the page is fully loaded. The reason? 
Well, if  you don’t wait until the page has loaded, then the 
DOM won’t be fully created when your code executes.  In 
our case, the JavaScript is executing when the browser first 
loads the head of  the page, and before the rest of  the page has 
loaded, and so the DOM hasn’t been fully created yet. And, if  
the DOM isn’t created, then the <p id="greenplanet"> 
element doesn’t exist yet! 

So what happens? The call to get the element with an id of  
greenplanet isn’t going to return anything because there is 
no matching element, and so the browser just keeps moving on 
and renders the page anyway after your code has run. So you’ll 
see the page rendered, but the text in the green planet won’t be 
altered by the code.

What we need is a way to tell the browser “run my code after 
you’ve fully loaded in the page and created the DOM.” Let’s 
see how to do that next.

I’ve triple-checked my 
markup and code, and this just 
isn’t working for me either. I’m not 
seeing any changes to my page.



64  Chapter 2

waiting for the page to load

<script>

function init() {

    var planet = document.getElementById("greenplanet");

    planet.innerHTML = "Red alert: hit by phaser fire!";

}

window.onload = init;

</script>

You can’t mess with the DOM until the 
page has fully loaded.
But how do you tell the browser to execute your code only after it’s loaded?

To tell the browser to wait before executing code we’re going to use two parts 
of  JavaScript you haven’t seen much of  yet: the window object, and a function. 
We’ll get to the details of  both these later; for now, just go with it so you can get 
the code to work.

Update your JavaScript code like this:

First, create a function named 
init and put your existing code 
in the function. Notice that your code goes 

between an opening { and a 
closing }.

Here, we’re setting the value of 
the window.onload property to 
the function name.

Reload the page

Go ahead and reload the page and see if  you have the answer:

Yes! Now we see the new 
content in the green planet 
<p> element. Isn’t it great?

Well, what IS great is that now you 
know how to tell the browser to 
wait until the DOM has completely 
loaded before running code that 
accesses elements.

This says when the page is 
fully loaded, execute the 
code that is in init.



you are here 4  65

javascript and the dom

<!doctype html>

<html lang="en">

<head>

  <title>My Playlist</title>

  <meta charset="utf-8">

  <script>

  ____________ addSongs() {

    var song1 = document.______________("________");

    var _____ = _______________________("________");

    var _____ = ________.getElementById("________");

    ________.innerHTML = "Blue Suede Strings, by Elvis Pagely";

    __________________ = "Great Objects on Fire, by Jerry JSON Lewis";

    song3.____________ = "I Code the Line, by Johnny JavaScript";

  }

  window.___________ = ____________;

  </script>

</head>

<body>

  <h1>My awesome playlist</h1>

  <ul id="playlist">

    <li id="song1"></li>

    <li id="song2"></li>

    <li id="song3"></li>

  </ul>

</body>

</html>

Here’s some HTML for a playlist of songs, except that the list is 
empty. It’s your job to complete the JavaScript below to add the 
songs to the list.  Fill in the blank with the JavaScript that will do 
the job.  Check your answer with our solution and the end of the 
chapter before you go on.

When you get the 
JavaScript working, this is 
what the web page will look 
like after you load the page.

Fill in the blanks with the missing 
code to get the playlist filled out.

Here’s the HTML 
for the page. 

Here’s our script. This code should fill in 
the list of songs below, in the <ul>.

Here’s the empty list of songs. The 
code above should add content to 
each <li> in the playlist.



66  Chapter 2

more dom functionality

Look up and 
retrieve one or 
more elements 
from the DOM.

So, what else is a DOM good for anyway?
The DOM can do a fair bit more than we’ve seen so far and we’ll be using 
a lot of  its other functionality as we move forward in the book, but for now 
let’s just take a quick look so you’ve got it in the back of  your mind:

form

label input input

Of course you already know this because 
we’ve been using document.getElementById, 
but there are other ways to get elements 
as well; in fact, you can use tag names, class 
names and attributes to retrieve not just 
one element, but a whole set of elements 
(say all elements in the class “on_sale”). 
And you can get form values the user has 
typed in, like the text of an input element.

Get elements from the DOM.

li

Create or add elements to the DOM.
You can create new elements and you 
can also add those elements to the DOM. 
Of course, any changes you make to the 
DOM will show up immediately as the 
DOM is rendered by the browser (which 
is a good thing!).

Remove elements from the DOM.
You can also remove elements from the 
DOM by taking a parent element and 
removing any of its children. Again, 
you’ll see the element removed in your 
browser window as soon as it is deleted 
from the DOM.

ul

li li

Get and set the attributes of elements.
So far you’ve accessed only the text content 
of an element, but you can access attributes 
as well.  For instance, you might want to know 
what an element’s class is, and then change 
the class it belongs to on the fly. 

ul id=”list”

li

Create new 
elements...

... and add them 
to the DOM 
by attaching 
them to another 
element in the 
tree.

Access or 
create an 
attribute of 
an element, 
like id or class.

Remove 
existing 
elements.

ul

li li



you are here 4  67

javascript and the dom

Can we talk about JavaScript again? Or, 
how to store multiple values in JavaScript
You’ve been hanging right in there with JavaScript and the DOM, and before we let you 
get some rest and relaxation, we wanted to tell you about one more JavaScript type that 
you’ll use all the time—the Array. Let’s say you wanted to store the names of  thirty-two 
ice cream flavors or the item numbers of  all the items in your user’s shopping cart or 
maybe the outside temperature by the hour. To do that with variables would get awkward 
fast, especially if  we need to store tens, hundreds or thousands of  values. Luckily, we’ve 
got the Array to help out.  

0 1 2 3 4

And for every index 
in the array, there’s a 
corresponding value.

Each value has a index 
number, starting with zero.

60.1 63 65 6259.2

An array holds a collection of values.
You can add more 
values to the array 
as needed.

We need to create an array before we use it, and we need to assign the array 
itself  to a variable so we have something to refer to it by in our code. Let’s 
create the array above with hourly temperatures:

How to create an array

var tempByHour = new array();

tempByHour[0] = 59.2;

tempByHour[1] = 60.1;

tempByHour[2] = 63;

tempByHour[3] = 65;

tempByHour[4] = 62;

Here’s our variable 
for the array...

...and here’s how we actually create a new empty array.

We’ll come back to this syntax in 
Chapter 4, but for now, just know 
that it creates a new array.

To add new values to the array, we just 
reference the index number of the array 
item, and give it a value.
Just like a variable in JavaScript you can assign any value 
(or type of value) to an array index.The index.

Or, if  you’re really in a hurry, JavaScript gives you a shortcut to type in an 
array (what we call a “literal array”) to create and intialize it with values:

var tempByHour = [59.2, 60.1, 63, 65, 62];
This creates the same array as 
above, just with a lot less code.



68  Chapter 2

using an array

Adding another item to the array

At any time you can keep adding new items to your array simply by using 
the next, unused index, like this:

tempByHour[5] = 61;

0 1 2 3 4 5

And now that we know how to get length of  an array, let’s see if  we 
can combine what you know about loops with arrays...

var numItems = tempByHour.length;
We’ll talk more about properties in the 
next chapter; for now, just know that 
every array has this length property that 
tells you the number of items in the array.

60.1 63 65 6259.2

61

By using a new index, we get 
a new item in the array.

Using your array items

You can get the value of  an array item just by referencing the array 
variable with an index, like this:

var message = "The temperature at 5 was " + tempByHour[5];

alert(message);

To access the value of the 
temperature at index 5, we just 
reference the array at index 5.

Know the size of your array, or else

You can easily get the size of  your array by referring to a property of  the 
array called length:



you are here 4  69

javascript and the dom

<!doctype html>
<html lang="en">
<head>
<title>Temperatures</title>
<meta charset="utf-8">
<script>
function showTemps() {

    var tempByHour = new ____________;

    tempByHour[0] = 59.2;

    tempByHour[1] = 60.1;

    tempByHour[2] = 63;

    tempByHour[3] = 65;

    tempByHour[4] = 62;

    for (var i = 0; i < ___________________; _____) {

        var theTemp = _____________[i];

        var id = "__________" + i;

        var li = document.__________________(id);

        if (i == ____) {

            li.______________ = "The temperature at noon was " + theTemp;

        } else {

            li.innerHTML = "The temperature at " + ______ + " was " + _________;

        }

    }

}

window.onload = showTemps;

</script>
</head>
<body>
<h1>Temperatures</h1>
<ul>
    <li id="temp0"></li>
    <li id="temp1"></li>
    <li id="temp2"></li>
    <li id="temp3"></li>
    <li id="temp4"></li>
</ul>
</body>
</html>

Below you’ll find a web page with a list of empty items ready for your JavaScript to fill in 
with temperatures. We’ve given you most of the code; it’s your job to finish it up so that 
it sets the content of each list item to the corresponding temperature from the array (e.g., 
the list item with id = “temp0” will get the temperature at index 0 in the array, and so on). 
So, list item with id = “temp3” will read, “The temperature at 3 was 65”. For extra credit, 
see if you can figure out how to get the temperature at 0 to read “noon” instead of 0.

Here’s the HTML.

The code above will 
fill in each list item 
with a phrase with 
the temperature.

Here’s where we’re combining loops 
and arrays. Can you see how we’re 
accessing each item in the array 
using a variable index? 



70  Chapter 2

phrase-o-matic example

<!doctype html>

<html lang="en">

<head>

    <title>Phrase-o-matic</title>

<meta charset="utf-8">

<style>

body {

    font-family: verdana, Helvetica, sans-serif;

}

</style>

<script>

function makePhrases() {

    var words1 = ["24/7", "multi-Tier", "30,000 foot", "B-to-B", "win-win"];

    var words2 = ["empowered", "value-added", "oriented", "focused", "aligned"];

    var words3 = ["process", "solution", "tipping-point", "strategy", "vision"];

    var rand1 = Math.floor(Math.random() * words1.length);

    var rand2 = Math.floor(Math.random() * words2.length);

    var rand3 = Math.floor(Math.random() * words3.length);

    var phrase = words1[rand1] + " " + words2[rand2] + " " + words3[rand3];

    var phraseElement = document.getElementById("phrase");

    phraseElement.innerHTML = phrase;

}

window.onload = makePhrases;

</script>

</head>

<body>

    <h1>Phrase-o-Matic says:</h1>

    <p id="phrase"></p>

</body>

</html>

Try my new 
Phrase-o-Matic and 

you’ll be a slick talker 
just like the boss or those 

guys in marketing.

You didn’t think our serious business 
application from Chapter 1 was serious 
enough? Fine. Try this one, if you need 
something to show the boss.

Check out this code for the 
hot new Phrase-o-Matic app 
and see if you can figure out 
what it does before you go on...



you are here 4  71

javascript and the dom

function makePhrases() {

}

window.onload = makePhrases;

The Phrase-O-Matic
We hope you figured out this code is the perfect tool 
for creating your next start-up marketing slogan.  It has 
created winners like “Win-win value-added solution” 
and “24/7 empowered process” in the past and we have 
high hopes for more winners in the future. Let’s see how 
this thing really works:

First, we define the makePhrases function, which we run after the page has fully 
loaded so we know we can safely access the DOM:

We run makePhrases as soon 
as the page is done loading.

With that out of  the way we can write the code for the makePhrases function.  Let’s start 
by setting up three arrays. Each will hold words that we’ll use to create the phrases. We’ll 
use the short cut for creating these arrays:

var words1 = ["24/7", "multi-Tier", "30,000 foot", "B-to-B", "win-win"];

var words2 = ["empowered", "value-added", "oriented", "focused", "aligned"];

var words3 = ["process", "solution", "tipping-point", "strategy", "vision"];

We create a variable named words1, that we 
can use to reference the first array.

1

2

All the code for makePhrases goes here, we’ll get to it in a sec...

We’re defining a function named 
makePhrases, that we can call later.

We’re putting five strings in the array. Feel free to 
change these to the latest buzzwords out there.

And here are two more arrays of words, assigned 
to two new variables, words2 and words3.



72  Chapter 2

how phrase-o-matic works

We’re almost done, we have the phrase, now we just have to display it. By now you 
already know the drill: we’re going to use getElementById to locate our paragraph 
element and then use its innerHTML to put the new phrase there.

var phraseElement = document.getElementById("phrase");

phraseElement.innerHTML = phrase;

5

Then we set the content of 
the <p> element to the phrase.

Okay, we’ve got three new arrays of  nice buzzwords; now, what we’re going to do is 
randomly choose one word from each, and then put them together to create a phrase.

Here’s how we choose one word from each array:

var rand1 = Math.floor(Math.random() * words1.length);

var rand2 = Math.floor(Math.random() * words2.length);

var rand3 = Math.floor(Math.random() * words3.length);

var phrase = words1[rand1] + " " + words2[rand2] + " " + words3[rand3];

We create one random number for each array and assign it to a 
new variable (rand1, rand2, and rand3 respectively).

3

This code generates a random number based on the number of items in each array 
(in our case five, but feel free to add more to any array, it will still work).

Now we create the slick marketing phrase by taking each randomly choosen word 
and concatenating them all together, with a nice space in between for readability:

4

We define another variable to hold the phrase.
We use each random number to 
index into the word arrays...

We get the <p> element with 
the id “phrase”.



you are here 4  73

javascript and the dom

Okay, finish that last line of  code, have one more look over it all 
and feel that sense of  accomplishment before you load it into your 
browser. Give it a test drive and enjoy the phrases.

6

Just reload the page for endless start-up possibilities (okay, not endless, but work with us here, we’re trying to make this simple code exciting!).

Here’s what ours 
looks like!

Q: What exactly is Math, and what do 
Math.random and Math.floor do?

A: Math is a built-in JavaScript library that 
has a bunch of math-related functions in it. 
Math.random generates a random number 
between 0 and 1. We multiply that by the 
number of items in the array (which we get 
using the length property of the array) to 
get a number between 0 and the length of 
the array. The result is likely to be a floating 
point number, like 3.2, so we use Math.floor 
to make sure we get an integer number that 
we can use as an index into the array to 
pick the random word. All Math.floor does is 
drop the numbers after the decimal point in 
a floating point number. For example, Math.
floor(3.2) is 3.

Q: Where can I find documentation on 
things like Math?

A: A great reference for JavaScript is 
JavaScript: The Definitive Guide by David 
Flanagan (O'Reilly).

Q: Earlier you said that you can 
store primitives (like number, string and 
boolean) in variables or objects. But 
we’re storing arrays in variables. So what 
is an array, a primitive or an object?

A: Good catch! An array is a special 
kind of object that’s built into JavaScript. 
It’s special because you can use numerical 
indexes to access the values stored in the 
array, something you can’t do with other 
(non-array) objects, or objects that you 
create yourself. You’ll learn how to create 
your own objects in Chapter 4.  

Q: What happens if I try to access an 
array index that doesn’t exist? Like if I 
have 5 words stored in myWords and I 
tried to access myWords[10]. 

A: You get undefined, which, if you recall, 
is the value of a variable that hasn’t been 
assigned a value yet.

Q: Can I remove an item from an 
Array? If so, what happens to the index of 
the other elements?

A: You can remove an item from an Array, 
and you can do it a couple of different ways. 
You could set the value of the array at the 
index to null; for example, myArray[2] = null. 
But that would mean the length of the Array 
stays the same. Or you can remove the 
item altogether (using the function splice). 
In that case, the indexes of the items that 
come after the one you remove will all shift 
down by 1.  So if myArray[2] = “dog” and 
myArray[3] = “cat”, and you remove “dog”, 
then myArray[2] = “cat” and the length of 
your array is 1 shorter than it was.



74  Chapter 2

Learning a language is hard 
work and it requires you not only 

work your brain, but that you also rest 
your brain. So after this chapter take 

some well needed downtime, have a treat 
on us, but before you go, check out the 

bullet points and do the crossword to 
make things really stick.

We haven’t figured 
out the digital to 
analog conversion 
yet, so you’ll need 
to supply your own 
real treats.



you are here 4  75

javascript and the dom

 � Declare a JavaScript variable using var.

 � Number, boolean and string are primitive 
types. 

 � Boolean values are true and false.

 � Numbers can be integers or floating point 
numbers.

 � An unassigned variable has the value 
undefined.

 � Undefined and null are two different values. 
Undefined means a variable hasn’t been 
assigned a value; null means the variable has 
the no value.

 � Numerical, boolean and string expressions 
result in a number, a boolean, or a string 
value respectively.

 � To repeat blocks of code, use a for or a while 
loop.

 � For loops and while loops can do the same 
thing; use whichever one works best for the 
situation.

 � To end a for or while loop, the conditional test 
must be false at some point. 

 � Use if/else statements to make a decision 
based on a conditional test.

 � Conditional tests are boolean expressions.

 � You can add JavaScript to the head or body 
of your web page, or put it in a separate file 
and link to it from your web page.

 � Enclose your JavaScript (or link to it) using 
the <script> element.

 � When the browser loads a web page, it 
creates a Document Object Model (DOM), 
which is an internal representation of the web 
page.

 � You make your web pages interactive by 
examining and changing the DOM using 
JavaScript.

 � Get access to an element in your web page 
using document.getElementById.

 � document.getElementById uses the id of an 
element to find the element in the DOM.

 � Use the innerHTML property of an element to 
change the element’s content.

 � If you try to access or change elements 
before the web page has completely loaded, 
you’ll get a JavaScript error and your code 
won’t work.

 � Assign a function to the window.onload 
property to run the code in that function after 
the browser has finished loading the web 
page.

 � Use an array to store more than one value.

 � To access a value in an array, use an index. 
An index is an integer number that is the 
position of the item in the array (starting at 0).

 � The length property of an array tells you how 
many items are in the array.

 � By combining loops and arrays, you can 
access each item of an array sequentially.

 � Math is a JavaScript library with several math-
related functions in it.

 � Math.random returns a floating point number 
between 0 and 1 (but never 1 precisely).

 � Math.floor converts a floating point number to 
an integer by dropping all the digits after the 
decimal point. 



76  Chapter 2

crossword exercise

HTML5Cross
Time to work a different part of your brain with a 
crossword. Have fun!

1 2 3 4

5 6

7 8

9

10 11

12 13

14 15

16

17

18 19

Across
2. 5 < 10 is a _________ expression.
7. You can add your JavaScript to the ________ or body of 
your HTML.
8. ____________  is the root of the DOM tree.
9. Variables start with a ________ , $ or _.
10. The DOM is an internal representation of ________.
11. Use an ________ to get a value from an array.
12. Pick good names and use _______ case for long names.
13. If you write 3 + “Stooges”, JavaScript will ________ 3 into 
a string.
15. Store all your icecream flavors together in one _______.
16. Do things again and again with a _________ loop.
17. You know how many items are in an array if you check the 
___________.
18. document._____________ is how you get an element 
from the DOM in JavaScript.

Down
1. While and for loops use a __________ expression as a 
conditional test.
3. The browser builds a Document _______  _______ when it 
loads a page.
4. The id of the planet hit by phaser fire.
5. Add this to make your Web pages interactive.
6. Enclose your JavaScript with a <_________> tag if it’s in an 
HTML page.
14. If you’re almost done, drink tea, ________ not even close, 
keep working!
19. Don’t mess with the _______ until the page has fully 
loaded.

Across
2. 5 < 10 is a _________ expression.
7.  You can add your JavaScript to the ________ or body of 

your HTML.
8. ____________ is the root of the DOM tree.
9. Variables start with a ________ , $ or _.
10. The DOM is an internal representation of ________.
11. Use an ________ to get a value from an array.
12. Pick good names and use _______ case for long names.
13.  If you write 3 + “Stooges”, JavaScript will ________ 3 

into a string.
15. Store all your ice cream flavors together in one _______.
16. Do things again and again with a _________ loop.
17.  You know how many items are in an array if you check 

the ___________.
18.  document._____________ is how you get an element 

from the DOM in JavaScript.

Down
1.  While and for loops use a __________ expression as a 

conditional test.
3.  The browser builds a Document _______ _______ when it 

loads a page.
4. The id of the planet hit by phaser fire.
5. Add this to make your web pages interactive.
6.  Enclose your JavaScript with a <_________> tag if it’s in 

an HTML page.
14.  If you’re almost done, drink tea, ________ not even 

close, keep working!
19.  Don’t mess with the _______ until the page has fully 

loaded.



you are here 4  77

javascript and the dom

Based on what you know so 
far about JavaScript variables, 
expressions and statements, see 
if you can figure out which of 
these are legal and which might 
cause an error.  

From the following list, circle the 
statements that are legal.

var x = 1138;

var y = 3/8;

var s = "3-8";

x = y;

var n = 3 - "one";

var t = "one" + "two";

var 3po = true;

var level_ = 11;

var highNoon = false;

var $ = 21.30;

var z = 2000;

var isBig = y > z; 

z = z + 1;

z--;

z y;

x = z * t;

while (highNoon) {

   z--;

}

(9 / 5) * tempC + 32

What’s the result when tempC is 10?  __________

"Number" + " " + "2"

What’s the resulting string? __________________

level >= 5

What’s the result when level is 10? ____________
How about when level is 5? __________________

color != "pink"

What’s the result if color is “blue”? _____________
color “is not 
equal” to pink

(2 * Math.PI) * r

What’s the result if r is 3? ____________________

Math.PI gives you the value of pi (you know, 3.14....)

50

Number 2

true
true

>= is “greater 
than or equal to”

true

18.84 approximately!

Not this kind of expression!

Express Yourself!
You’ve seen the different types of 
expressions you can use in JavaScript, 
now it’s time to put that knowledge to work 
by evaluating some expressions yourself. 
Here’s our solution.

Technically, this one is legal, 
but results in a value you 
can't use.

illegal!

illegal!



78  Chapter 2

exercise solutions

10

15

5

10

BE the Browser Solution
Each of the JavaScript snippets on 
this page is a separate piece of code. 
Your job is to play browser, and 

evaluate each snippet 
of code and answer a 
question about the result. 
Write your answer to the 
question below the code.

var tops = 5;

while (tops > 0) {

    for (var spins = 0; spins < 3; spins++) {

        alert("Top is spinning!");

    }

    tops = tops - 1;

}

var count = 0;

for (var i = 0; i < 5; i++) {

    count = count + i;

}

alert("count is " + count);

for (var berries = 5; berries > 0; berries--) {

    alert("Eating a berry");

}

Snippet 1

Snippet 3

Snippet 2

What count does the alert show?

How many times do you see 
the alert, “Top is spinning!”?

How many berries did you eat?

for (scoops = 0; scoops < 10; scoop++) {

   alert("There's more ice cream!");

}

alert("life without ice cream isn't the same");

Snippet 4

How many scoops of icecream did you eat?

Each time through the loop, we’re 
adding the value of i to count, 
and i is increasing, so we’re not 
just adding 1 to count each time 
through, but 0, 1, 2, 3, and 4. 

The outer while loop runs 5 times, 
and the inner for loop runs 3 
times each time through the outer 
loop, so the total is 5 * 3, or 15!

Here, we’re starting at 5 and looping until berries is 0, counting down each time (instead of up).

An easy one; we just loop 10 
times so we eat 10 scoops!



you are here 4  79

javascript and the dom

var scoops = 10;

while (scoops >= 0) {

    if (scoops == 3) {

        alert("Ice cream is running low!");

    } else if (scoops > 9) {

        alert("Eat faster, the ice cream is going to melt!");

    } else if (scoops == 2) {

        alert("Going once!");

    } else if (scoops == 1) {

        alert("Going twice!");

    } else if (scoops == 0) {

        alert("Gone!");

    } else {

        alert("Still lots of ice cream left, come and get it.");

    }

   scoops = scoops - 1;

}

alert("Life without ice cream isn't the same.");

Inserted code

Eat faster, the ice cream is going to melt!
Still lots of ice cream left, come and get it.
Still lots of ice cream left, come and get it.
Still lots of ice cream left, come and get it.
Still lots of ice cream left, come and get it.
Still lots of ice cream left, come and get it.
Still lots of ice cream left, come and get it.
Ice cream is running low!
Going once!
Going twice!
Gone! 
Life without ice cream isn't the same.

The alerts:

Take the code above and insert it into the code below. Walk through the while 
loop and write down the alerts in the sequence they occur. Here’s our solution.

This happens once, when scoops is 3.

This also happens once, 
when scoops is 10.

Each of these happen once, 
when scoops is 2, 1, and 0.

And this happens whenever none of the other conditions 
is true, that is, when scoops is 9, 8, 7, 6, 5, and 4.

We subtract 1 scoop each time through the loop.

This is run after the loop is done.



80  Chapter 2

exercise solutions

var word1 = "a";

var word2 = "nam";

var word3 = "nal p";

var word4 = "lan a c";

var word5 = "a man a p";

var phrase = "";

for (var i = 0; __________; __________) {

    if (i == 0) {

        phrase = ________________;

    }

    else if (i == 1) {

        phrase = ________________ + word4;

    }

    _________ (i == 2) {

        _______________ = phrase + word1 + word3;

    }   

    _________ (___________) {

        phrase = phrase + _____________ + word2 + word1;

    }

}

alert(phrase);

phrase

i < 3

i < 4 i++

i--

word5

word4

word3

word2

word1

word0

else if

i == 3

i == 4

i = 3

else if (i == 0)

i = 0
+

else

A palindrome is a sentence that can 
be read the same way backwards 
and forwards! Here’s the palindrome 
you should see if the magnets are all 
in the right places.

phrase

else if

Leftover magnets.

Code Magnets Solution
This code prints out a well-known palindrome in an alert. The problem is that some of 
the code was on fridge magnets and fell on the floor. It’s your job to put the code back 
together again to make the palindrome work. Watch out; we put a few extra in, and 
you’ll have to use some of the magnets more than once! Here’s our solution.



you are here 4  81

javascript and the dom

Your job is the act like 
you’re the browser.  You 
need to parse the HTML 
and build your very own 
DOM from it.  Go ahead 
and parse the HTML to 
the right, and draw your 
DOM below.  We’ve already 
started it for you.

Here’s our DOMdocument

html

head

title

body

h1 h2 id=”movie1” h2 id=”movie2”p p

span

<!doctype html>

<html lang="en">

  <head>

    <title>Movies</title>

  </head>

  <body>

    <h1>Movie Showtimes</h1>

    <h2 id="movie1" >Plan 9 from Outer Space</h2>

    <p>Playing at 3:00pm, 7:00pm. 

      <span>

        Special showing tonight at <em>midnight</em>!

      </span>

    </p>

    <h2 id="movie2">Forbidden Planet</h2>

    <p>Playing at 5:00pm, 9:00pm.</p>

  </body>

</html>

BE the Browser 
Solution

em



82  Chapter 2

exercise solutions

<!doctype html>

<html lang="en">

<head>

  <title>My Playlist</title>

  <meta charset="utf-8">

  <script>

  ____________ addSongs() {

    var song1 = document.______________("________");

    var _____ = _______________________("________");

    var _____ = ________.getElementById("________");

    ________.innerHTML = "Blue Suede Strings, by Elvis Pagely";

    __________________ = "Great Objects on Fire, by Jerry JSON Lewis";

    song3.____________ = "I Code the Line, by Johnny JavaScript";

  }

  window.___________ = ____________;

  </script>

</head>

<body>

  <h1>My awesome playlist</h1>

  <ul id="playlist">

    <li id="song1"></li>

    <li id="song2"></li>

    <li id="song3"></li>

  </ul>

</body>

</html>

Here’s some HTML for a playlist of songs, except 
that the list is empty. It was your job to complete the 
JavaScript below to add the songs to the list.  Our 
solution is below.  

If you get the JavaScript working, this is what the 
web page will look like after you load the page.

Here’s the code that will 
make the playlist work.

function
getElementById

document.getElementById
document

song1
song2
song3

song2
song3

song1
song2.innerHTML

innerHTML

onload addSongs
Feel free to substitute 
your favorite songs!

The code above sets the 
content of these <li> elements 
by grabbing each element from 
the DOM and setting the 
innerHTML to the song name.



you are here 4  83

javascript and the dom

<!doctype html>
<html lang="en">
<head>
<title>Temperatures</title>
<meta charset="utf-8">
<script>
function showTemps() {

    var tempByHour = new ____________;

    tempByHour[0] = 59.2;

    tempByHour[1] = 60.1;

    tempByHour[2] = 63;

    tempByHour[3] = 65;

    tempByHour[4] = 62;

    for (var i = 0; i < ___________________; _____) {

        var theTemp = _____________[i];

        var id = "__________" + i;

        var li = document.__________________(id);

        if (i == ____) {

            li.______________ = "The temperature at noon was " + theTemp;

        } else {

            li.innerHTML = "The temperature at " + ______ + " was " + _________;

        }

    }

}

window.onload = showTemps;

</script>
</head>
<body>
<h1>Temperatures</h1>
<ul>
    <li id="temp0"></li>
    <li id="temp1"></li>
    <li id="temp2"></li>
    <li id="temp3"></li>
    <li id="temp4"></li>
</ul>
</body>
</html>

Below you’ll find a web page with a list of empty items ready for your 
JavaScript to fill in with temperatures. We gave you most of the code; 
it was your job to finish it up so that it set the content of each list item 
to the corresponding temperature from the array. Did you get the extra 
credit? Our solution is below. 

Here’s where we’re combining loops and 
arrays. Notice how we’re using i as the 
index into the array, so we’ll access 
each item as i increases in each loop.

Array()

tempByHour.length i++
tempByHour

temp

And here we’re creating the string to 
use, using the variables i and theTemp.

getElementById
0

innerHTML

theTempi

And our results!

Here, we’re creating a new Array 
to hold the temperatures.



84  Chapter 2

exercise solutions

HTML5Cross Solution

B
1

B
2

O O
3

L E A N G
4

O B J
5

S
6

R

O J H
7

E A D D
8

O C U M E N T

L
9

E T T E R V R E

E C M
10

A R K U P I I
11

N D E X

A T S P P

N C
12

A M E L C
13

O N V E R T L

E
14

O R A
15

R R A Y

L D W
16

H I L E N

S E P L
17

E N G T H

G
18

E T E L E M E N T B Y I D
19

T

I O

F M

Across
2. 5 < 10 is a _________ expression. [BOOLEAN] 
7. You can add your JavaScript to the ________ or body of 
your HTML. [HEAD] 
8. ____________  is the root of the DOM tree. [DOCUMENT] 
9. Variables start with a ________ , $ or _. [LETTER] 
10. The DOM is an internal representation of ________. 
[MARKUP] 
11. Use an ________ to get a value from an array. [INDEX] 
12. Pick good names and use _______ case for long names. 
[CAMEL] 
13. If you write 3 + “Stooges”, JavaScript will ________ 3 into 
a string. [CONVERT] 
15. Store all your icecream flavors together in one _______. 
[ARRAY] 
16. Do things again and again with a _________ loop. 
[WHILE] 
17. You know how many items are in an array if you check the 
___________. [LENGTH] 
18. document._____________ is how you get an element 
from the DOM in JavaScript. [GETELEMENTBYID] 

Down
1. While and for loops use a __________ expression as a 
conditional test. [BOOLEAN] 
3. The browser builds a Document _______  _______ when it 
loads a page. [OBJECTMODEL] 
4. The id of the planet hit by phaser fire. [GREENPLANET] 
5. Add this to make your Web pages interactive. 
[JAVASCRIPT] 
6. Enclose your JavaScript with a <_________> tag if it’s in an 
HTML page. [SCRIPT] 
14. If you’re almost done, drink tea, ________ not even close, 
keep working! [ELSEIF] 
19. Don’t mess with the _______ until the page has fully 
loaded. [DOM] 



this is a new chapter  85

events, handlers and all that jazz3

A Little Interaction
Sure, he looks great, but 

this relationship would be so 
much more fun if he’d actually 
do something now and then.

You still haven’t reached out to touch your user. 
You’ve learned the basics of JavaScript but can you get interactive with 

your users? When pages respond to user input, they aren’t just documents 

anymore, they’re living, reacting applications. In this chapter you’re going 

to learn how to handle one form of user input (excuse the pun), and wire 

up an old-fashioned HTML <form> element to actual code. It might sound 

dangerous, but it’s also powerful. Strap yourself in, this is a fast moving 

to-the-point-chapter where we go from zero to interactive app in no time.

Man or mannequin? 
You decide.



86  Chapter 3

introducing webville tunes

Get ready for Webville Tunes
Okay, we’ve dragged you through a lot of  JavaScript fundamentals 
so far in this book, and while we’ve talked a good game on building 
web apps, we don’t have a lot to show for it, yet. So, now we’re 
going to get serious (no really! we mean it this time!) and build 
something real world. 

How about a playlist manager. We’ll call it something original, 
like... hmm, say Webville Tunes.

Add new songs anytime.

Displays all your 
favorite Webville tunes, 
right in the browser.

Completely browser-based.  
No server-side code 
needed or required.

What we’re going to build.

Given what you know about this code: 

Can you guess what this code might do?

window.onload = init;

button.onclick = handleButtonClick;



you are here 4  87

events and handlers

<!doctype html>

<html lang="en">

<head>

  <title>Webville Tunes</title>

  <meta charset="utf-8">

  <script src="playlist.js"></script>

  <link rel="stylesheet" href="playlist.css">

</head>

<body>

  <form>

    <input type="text" id="songTextInput" size="40" placeholder="Song name">

    <input type="button" id="addButton" value="add Song">

  </form>

  <ul id="playlist">

  </ul>

</body>

</html>

We don’t need to create a big, complex web page to get this started. In fact we 
can start very simply.  Let’s just create an HTML5 document with a form and 
a list element to hold the playlist:

Getting started...

Just your standard HTML5 head and body.

All we need is a simple form. Here it is with a 
text field to type in your songs. We’re using the 
HTML5 placeholder attribute that shows an 
example of what to type in the input field.

And we’ve got a button 
with an id of “addButton” 
to submit your new 
additions to the playlist.We’re going to use a list for the 

songs. For now it’s empty, but 
we’ll change that with JavaScript 
code in a sec...

Give it a test drive

Go ahead and type in the code above, load it into your favorite 
browser and give it a spin before moving on to the next page.

Here’s what you should see.

We’ve included a stylesheet to give our 
playlist app a nice look & feel.*

* Remember you can download the stylesheet (and all the code) from http://wickedlysmart.com/hfhtml5

We’re going to be putting all our 
JavaScript in the playlist.js file.



88  Chapter 3

about button click events

“

“

Well, yes and no.  Nothing appears to happen, but your browser knows you clicked on 
the button (depending on your browser, you will also see the button depress). 

The real question is how do we get the button to do something when you click on it? 
And what that question really means is, how do we get some JavaScript code invoked 
when you click on a button?

But nothing happens when I click “Add Song”

We need a bit of JavaScript code that 
will get evaluated when the user clicks 
on the “Add Song” button. This code 
will (once we’ve written it) add a song to 
your playlist.

We need two things:

We need a way to hook up that bit of code so 
that when the button is clicked, JavaScript 
knows to run your “add song” code.

When the user clicks (or touches 
on a gesture-based device) a 
button, we want to know about it. 
We’re interested in the  
“button was just clicked event”.

“

“
1

2



you are here 4  89

events and handlers

Great, you’ll be the first to know 
in the event that happens.

You’re going to see that many things are happening in the browser 
while your page is being displayed—buttons are being clicked, 
additional data your code requested from the network may be 
arriving, timers may be going off  (we’ll get to all that). All these 
things cause events to happen, a button click event, a data available 
event, a time expired event, and so on (there are many more).  

Whenever there is an event, there is an opportunity for your code 
to handle it; that is, to supply some code that will be invoked when 
the event occurs. Now, you’re not required to handle any of  these 
events, but you’ll need to handle them if  you want interesting things 
to happen when they occur—like, say, when the button click event 
happens, you might want to add a new song to the playlist; when 
new data arrives you might want to process it and display it on your 
page; when a timer fires you might want to tell the user their hold 
on front row tickets is going to expire, and so on. 

So, we know we want to handle the button click event, let’s see how 
we do that.

Handling Events

Your code.

Your button.

Hey, I’m really interested 
in you, button... could you 
let me know if anyone 
clicks on you?



90  Chapter 3

coding the button handler

function handleButtonClick() {

    alert("Button was clicked!");

}

Making a Plan...

Getting access to the “Add Song” button

1. Set up a handler to handle the user’s click on the “Add Song” button.

2. Write the handler to get the song name the user typed in, and then...

3. Create a new element to hold the new song, and...

4. Add the element to the page’s DOM.

var button = document.getElementById("addButton");

A function gives you a way to 
package up code into a chunk. You 
can give it a name, and reuse the 
chunk of code wherever you want.

The function is named 
handleButtonClick; we’ll 
get to the specifics of 
the syntax in a bit.

We put all the code we want 
to execute when the function 
is called within the braces.

Right now we’re just going 
to display an alert when this 
function is called.

Let’s step back for a second before we lose ourselves in handlers and events. 
The goal here is to click on “Add Song” and have a song added to a playlist on 
the page. Let’s attack the task like this:

If  these steps aren’t clear to you, don’t worry, we’ll explain it as we go... for now, 
just get a feel for the steps and follow along as we get that handler written. Go 
ahead an open up a new file, playlist.js for all your JavaScript code.

To ask the button to let us know when a click event occurs, we first need to get 
access to the button. Luckily we created the button using HTML markup and 
that means...you guessed it, it is represented in the DOM, and you already 
know how to get elements in the DOM. If  you look back at the HTML you’ll 
see we gave the button an id of  addButton. So, we’ll use getElementById 
to get a reference to the button:

Now we just need to give the button some code to call when a click occurs. 
To do that we’re going to create a function, named handleButtonClick, 
that will handle the event. We’ll get into functions in a bit; for now, here’s the 
function:



you are here 4  91

events and handlers

Giving the button a click handler

window.onload = init;

function init() {

    var button = document.getElementById("addButton");

    button.onclick = handleButtonClick;

}

function handleButtonClick() {

    alert("Button was clicked!");

}

Okay, we’ve got a button and we’ve got a function that will act as a handler, 
handleButtonClick, so let’s put them together. To do that we’re going to use a 
property of  the button, onclick. We set the onclick property like this:

var button = document.getElementById("addButton");

button.onclick = handleButtonClick;

With a button in hand, after calling getElementById, we set the onclick 
property to the function we want called when a click event occurs.

You might remember that we did something similar when we used the  
window.onload property to call a function after the window was loaded. In this 
case though, we’ll call the function when the button is clicked. Now let’s put all of  
this together: Just like we did in the last chapter, we’re 

using an init function that won’t be called 
and executed until the page is fully loaded.

After the page loads we’ll 
grab the button and set up 
its onclick handler.

And the click handler will display an alert when we click on the button.

Putting it to a test...

Go ahead and type in the code above (in your playlist.js file), 
load the page, click on that button as much as you want and you’ll 
see an alert each time.

After you’re finished testing your new button 
click handler, sit back and study the code and 
think through how all this works.

When you think you’ve got it in your head, 
turn the page and we’ll step through the 
details to make sure it really sticks.

1. Set up a handler to handle the user’s click

2. Write the handler to get the song name

3. Create a new element to hold the new song

4. Add the element to the page’s DOM



92  Chapter 3

how add song works

function init() {
    var button = document.getElementById("addButton");
    button.onclick = handleButtonClick;
}

function handleButtonClick() {
    alert("Button was clicked!");
}

Don’t worry, if and when 
I’m clicked on, you’ll literally 
be the first to know.

We set up the button 
click event handler in 
the init function (that 
is, after the page has 
finished loading).

When the user clicks on the button, 
the “click” event is triggered, and the 
handleButtonClick function is called.

The button object 
has an onclick 
property that 
we set to the 
handleButtonClick 
function.

We just introduced a lot of  new ideas over the last few pages, let’s step through 
the code again and make sure we’ve got it clear in our heads.  Here we go:

A closer look at what just happened...

The handler 
with your code

1 The first thing you did was throw a button in your HTML form. 
And with that in place, you needed a way to capture a user’s click 
on that button so that you could have some code executed. To do 
that we created a handler and assigned it to the onclick property 
of our button.

2 You also wrote a simple handler that just alerts the user that the 
button was clicked.  We’ll be writing the real code for the handler 
in a sec, but this one works well for testing.



you are here 4  93

events and handlers

function handleButtonClick() {

    alert("Button was clicked!");

}

Yes! Somone clicked on the 
button. I get to run the 
handleButtonClick function.

Come on... click the 
button... just do it...

3 With the code written, the page is loaded 
and displayed by the browser, the handler 
is installed...it’s all up to the user now...

4 Finally, the user clicks on your button, the 
button springs into action, notices it has a 
handler, and calls it...

Time to 
wake up, there’s 

a click from the user.
I see I have a 
handler for this, 

better let him know.

I was asked 
to alert you that the 
button was clicked... I 

know, for an alert dialog 
that’s a little underwhelming, 

but anyway, just doing my 
job.



94  Chapter 3

getting the song from the dom

Getting the song name

Here’s the body part 
of the DOM.

Using the getElementById method, we can get a handle to the songTextInput input element in the form.

body

ul id=”playlist”form

input id=”addButton”input id=”songTextInput”  
value=”Blue Suede Strings, by Elvis Pagely”

We’re ready to move on to the second step of  our task: getting the song name that 
the user has typed in. Once we have that, we can think about how we’re going to 
display the playlist in the browser.  

But how are we going to get the song name? That’s something the user has typed 
in, right? Ah, but anything that happens in the web page gets reflected in the 
DOM, so the text the user typed must be there too.

To get the text from a form text input element, you first have to get the input 
element from the DOM, and you know how to do that: getElementById. And, 
once you’ve done that you can use the value property of  the text input element to 
access the text the user types into the form field, here’s how:

This is the element we 
want to get from the 
DOM. We’ll use its id, 
“songTextInput”, to 
get it.

Then we can use the value property of the input 
element to get the text the user typed into 
the input field.

function handleButtonClick() {

    var textInput = document.getElementById("                ");

    var songName =                  .value;  

    alert("adding " +                   );

}

Rework the handleButtonClick function below to obtain the name of 
the song the user has typed into the form input element. Check your 
answer with the solution on page 96. 

1. Set up a handler to handle the user’s click

2. Write the handler to get the song name

3. Create a new element to hold the new song

4. Add the element to the page’s DOM



you are here 4  95

events and handlers

BONUS
What if you wanted to test to make sure the user actually entered some 
text before clicking the button? How might you do that? (Again, find the 
solution on page 96.)

Q: What is the value of the value property of the text 
input if the user didn’t type anything? Is the value null? 
Or does the “Add Song” button not invoke the handler if 
the user hasn’t entered anything?

A: The “Add Song” button isn’t that smart. If you want to 
determine if the user typed something, that’s up to your code. 
And, to know if the text input is empty (that is, the user didn’t 
type anything), you can check to see if its value is equal to a 
string with nothing in it, otherwise known as the empty string, 
which is written as “”, or two double quotes with nothing in 
between. We see why you’d think it might be null, because we 
said that is the value of a variable that has no value, but from 
the text input field’s perspective, it isn’t holding nothing, it’s 
holding on to a string with nothing in it yet.  Go figure. ;-)

Q: I thought that the text input “value” was an attribute. 
You’re calling it a property, why?

A: You’re right, value is an attribute of the HTML text input 
element. You can initialize the value of a text input element 
using the value attribute. But in JavaScript, to access the 
value that a user has typed in, you need to use the value 
property of the input element we get from the DOM. 

Q: What other kinds of events can I handle in 
JavaScript other than button clicks?

A: There are a whole slew of other mouse events you 
can handle. For instance, you can detect and handle a key 
press, a mouse moving over or out of an element, the mouse 
dragging, even a mouse press and hold (different from a 
mouse click). And then there are many other types of events 
we’ve mentioned in passing, like events when new data is 
available, timer events, events related to the browser window, 
and so on. You’ll see quite a few other kinds of event handling 
in the rest of the book; once you know how to do one, you can 
pretty much do them all!

Q: What is JavaScript doing while it’s waiting for 
events?

A: Unless you’ve programmed your JavaScript to do 
something, it sits idle until something happens (the user 
interacts with the interface, data comes in from the Web, a 
timer goes off, and so on). This is a good thing; it means the 
processing power of your computer is going to other things, 
like making your browser responsive. Later in the book, you’ll 
learn how to create tasks that run in the background so your 
browser can run the task code and respond to events at the 
same time.



96  Chapter 3

exercise solutions

function handleButtonClick() {

    var textInput = document.getElementById("songTextInput");

    var songName = textInput.value;  

    alert("adding " + songName);

}

Rework the handleButtonClick function below to obtain the name 
of the song the user has typed into the form input element. Here’s 
our solution:

First we need to get a reference to the text 
input element in the form.  We’ve given this 
element an id of “songTextInput” so we can use 
that with getElementById to get a reference.

 The value property of the text input element holds whatever 
is typed into the text input, 
which is just a string. Here we’re 
assigning that text to the 
variable songName.And now let’s just pop up an alert, which should 

display “Adding” and the song name.

function handleButtonClick() {

    var textInput = document.getElementById("songTextInput");

    var songName = textInput.value;  

    if (songName == "") {

        alert("Please enter a song");

    } else {

        alert("adding " + songName);

    }

}

We can use an if statement and compare 
the songName string to an empty string 
to make sure the user typed something. 
If they didn’t type anything we’ll alert 
them and ask them to enter a song.

BONUS
What if you wanted to test to make sure the user actually entered some text 
before clicking the button? How might you do that? Here’s our solution:



you are here 4  97

events and handlers

We’ve already got a lot working! You can type a song name into a 
form, click the Add Song button and get the text you typed into the 
form, all within your code. Now we’re going to display the playlist on 
the page itself. Here’s what it’s going to look like:

How do we add a song to the page?

You might have noticed that we already 
put an empty list in the HTML markup 
(an empty <ul> element to be exact) back 
when we first typed it in. Given that, 
here’s what the DOM looks like right now.

Here’s what we need to do:

Every time we enter a new song,  we want 
to add a new item to the unordered list. 
To do that, we’ll create a new <li> element 
that will hold the song name. Then we’ll 
take the new <li> element and add it to 
the <ul> in the DOM. Once we do that, the 
browser will do its thing and you’ll see the 
page update, just like the <li> was there 
all along. And of course, we’ll do all this in 
code. Check out the DOM one more time 
and make sure you understand what we 
need to do.

When you click “Add Song”, 
your JavaScript will add 
the song to a list of songs 
on the page.

When you enter a 
song, we’ll create 
a new list item 
(<li> element) 
and add it to 
the <ul> list.

Here’s the list in 
the DOM. Right 
now it’s empty.

body

ul id=”playlist”

body

ul id=”playlist”

li

1

2

1. Set up a handler to handle the user’s click

2. Write the handler to get the song name

3. Create a new element to hold the new song

4. Add the element to the page’s DOM



98  Chapter 3

creating new elements

For the playlist shown here, draw the DOM as it looks 
after you’ve added all these songs. Notice the order in 
which the songs are added to the page, and make sure 
the elements are in the right places in the DOM too. 
We’ve gone ahead and done one for you. Check the 
solution at the end of the chapter before you go on.

Draw the rest of the DOM here for the playlist above.
Did you have to make any assumptions about the order in which the 
<li> elements are added to the parent?

li

Blue Suede Strings, 
by Elvis Pagely

document

head

html

title script

body

form

input input

ul id=”playlist”



you are here 4  99

events and handlers

How to create a new element
You’ve already seen how to get access to existing elements through the 
DOM. But you can also use the DOM to create new elements (and then 
as a second step, add them to the DOM, which we’ll get to in a sec).

Let’s say we want to create a <li> element.  Here’s how we do that:

We better get 
to work building these 

elements, Betty. They’re 
updating the DOM again.

var li = document.createElement("li");

So now we have a new <li> element with nothing in it. You 
already know one way to get text into an element:

Pass the kind of element 
you want to create as a 
string to createElement.

Use document.createElement to create new elements. A 
reference to the new element is returned.

li

Here we’re assigning 
the new element to 
the variable li.

createElement creates a brand new element. Note that it isn’t inserted into the DOM just yet. 
Right now it is just a free-floating element in 
need of a place in the DOM.

li.innerHTML = songName; 

li

Blue Suede Strings, 
by Elvis Pagely

This sets the content of 
the <li> to the song title.

Here’s our new li element 
object ready to go. But 
it’s not part of the 
DOM yet!

Our li variable.



100  Chapter 3

adding new elements

Adding an element to the DOM
To add a new element to the DOM you have to know where you 
want to put it. Well, we do know where to put it: we’re going to 
put the <li> element in the <ul> element. But how do we do 
that? Let’s take another look at the DOM. Remember how we 
said it was like a tree? Think family tree:

document is like the grand 
matriarch of the family, at 
the top of the tree. html is the only child in 

this generation. html’s 
parent is document.

html has two children, 
head and body. body’s 
parent is html.

And here’s our ul. ul’s parent is body, and ul doesn’t have any children, yet...

So, to add our <li> element, we need to make it a child of  the 
<ul> element. To do that, we first need to find the <ul> element 
in the tree (we gave it an id of  “playlist” to make that easy) and 
then to add the <li>, we tell the <ul> element to add a new 
child to itself.  Here’s how we do that:

li

Blue Suede Strings, 
by Elvis Pagely

...we want to make 
our new <li> element 
the child of <ul>.

var ul = document.getElementById("playlist");

ul.appendChild(li);

Use getElementById to get a reference to the 
<ul> element with id=“playlist”.

Ask the <ul> element to add the <li> element as a child. Once 
this completes, the DOM will have <li> as a child of <ul> and 
the browser will update the display to reflect the new <li>.

document

head

html

title script

body

form

input input

ul id=”playlist”

1. Set up a handler to handle the user’s click

2. Write the handler to get the song name

3. Create a new element to hold the new song

4. Add the element to the page’s DOM

Each time you call 
appendChild, the new 
<li> element is added 
to the <ul> element 
after any other <li> 
elements that are 
already there.



you are here 4  101

events and handlers

function handleButtonClick() {

    var textInput = document.getElementById("songTextInput");

    var songName = textInput.value;

    var li = document.createElement("li");

    li.innerHTML = songName;

    var ul = document.getElementById("playlist");

    ul.appendChild(li);

} Notice that we ask the parent element, ul, 
to add li as a new child.

Put it all together...

... and take it for a test drive

Now when we type in a song name and 
click add, the song is added to the 
DOM, so we see the page change and 
the new song in the list.

Let’s put all that code together and add it to the handleButtonClick 
function. Go ahead and type it in if  you haven’t already so you can test it.

The <ul> with the id “playlist” is the 
parent element for our new <li>. So we 
get that next.

Then we add the li object to the ul using appendChild. 

First, create the new <li> element where 
the song name is going to go.

Then, set the content of that element to 
the song name.

body

ul id=”playlist”

li li li li li

And here’s how the DOM looks now that 
we’ve added all those new <li> elements.

Put Webville Tunes through its paces, add a few songs. 
Here are our results.



102  Chapter 3

review of the playlist app

1 The first thing you did was set up an event handler 
to handle the user’s click on the “Add Song” button. 
You created a function, handleButtonClick, and set 
the onclick property of the “Add Song” button to 
this function.

You did a lot in this chapter (and in a short amount of  time!). You built 
a playlist app that you can use to enter a song, click a button and add 
that song to a list on the page, all using JavaScript code. 

Review—what we just did

When the user clicks the “Add Song” button, 
your handleButtonClick handler will be called.

body

ul id=”playlist”form

input id=”addButton”input id=”songTextInput”  
value=”Blue Suede Strings by Elvis Pagely”

In handleButtonClick, you’re getting the song name the user typed in, by using the input.value property to get the text from the DOM.

2 Next, you wrote code for the button click handler 
to get the song name from the input text field. You 
used the input.value property to get the text, and 
you even added a check to make sure the user had 
typed in a song. If they didn’t, you alerted them.

li

Blue Suede Strings, 
by Elvis PagelyYou create a new <li> element 

and set the content of the <li> 
element to the song name.

3 To add the song to the playlist, you then created 
a <li> element using document.createElement, and 
set the content of the element to the song name 
using innerHTML.

4 Finally, you added the new <li> element to the DOM 
by adding it as a child of the parent <ul> element. 
You did this using appendChild, telling the <ul> 
element to “append the <li> element as a child”, 
which added it to the DOM. When the element is 
added to the DOM, the browser updates the page 
the user sees, and the playlist contains the song.

Adding a new 
child to the DOM 
updates the page.

body

ul id=”playlist”

li li



you are here 4  103

events and handlers

Wait a sec, I get we’re interacting with the 
DOM and all, but how is this a real web App? If I close 
my browser, all my songs are gone. Shouldn’t my playlist 

items stick around if this is really an application?

We agree, the playlist should be persistent;
after all, what’s the point of  entering all those songs if  they 
don’t stick around? And there’s a lot of  other functionality 
you might want to add as well. You might, for instance, want 
to add an audio interface using the audio/video API so you 
can actually listen to the songs, share songs out to friends 
using a web service (like Facebook and Twitter), find other 
people in the local area that like the same artists (using the 
geolocation APIs), and we’re sure you can come up with more.

But back to the playlist...we wanted to get you up and running 
by building a small interactive app, and the playlist does a 
good job of  that. Plus, storing the songs requires the HTML5 
Web Storage API, which is a few chapters away.

Hmm, on the other hand we really don’t want to 
under-deliver here... 

Turn page



104  Chapter 3

Ready Bake 
Code

We’ve gone ahead and baked a little code for 
you to save your playlists. For now you just 
need to type it in and make two tiny changes 
to your existing code and you’ll have an 
HTML5-stored playlist.

We’ll be covering all the specifics of  storing 
things locally in your browser in the Web 
Storage chapter, but for now you can get 
your playlist up and running. 

Of  course, it never hurts to look over the 
Ready Bake code. You might be surprised 
how much you already know, not to mention 
how much of  it you can figure out if  you 
don’t know it. 

We pre-baked some 
code so you don’t have to 

make it yourself.

        The Ready Bake Code 
won’t work in IE 6 or 7.

IE versions 6 and 7 don’t 

support localStorage.  So if 

you’re using IE, make sure 

you’re using version 8 or above.

        The Ready Bake Code 
won’t work in some 
browsers if you’re 
serving your pages 
from file:// instead of a server like localhost:// or an online hosted server.

We’ll deal with this situation more in future chapters (it pops up fairly often with new HTML5 features). For now, if you don’t want to run a server or copy the files to a hosted server online, try using Safari or Chrome.



you are here 4  105

events and handlers

function save(item) {

    var playlistarray = getStorearray("pla
ylist");

    playlistarray.push(item);

    localStorage.setItem("playlist", JSON.
stringify(playlistarray));

}

function loadPlaylist() {

    var playlistarray = getSavedSongs();

    var ul = document.getElementById("play
list");

    if (playlistarray != null) {

        for (var i = 0; i < playlistarray.
length; i++) {

            var li = document.createElemen
t("li");

            li.innerHTML = playlistarray[i
];

            ul.appendChild(li);

        }
    }
}

function getSavedSongs() {

    return getStorearray("playlist");

}

function getStorearray(key) {

    var playlistarray = localStorage.getIt
em(key);

    if (playlistarray == null || playlista
rray == "”) {

        playlistarray = new array();

    }
    else {
        playlistarray = JSON.parse(playlis

tarray);

    }
    return playlistarray;

}

Here’s the Ready Bake code for you to add to your Webville Tunes app 
so you can save that fabulous playlist you’ve created. All you have to do is 
make a new file, playlist_store.js, type in the code below, and then 
make a couple of  changes to your existing code (on the next page).

How to add the Ready Bake Code...

Type this into “playlist_store.js”.

Ready Bake 
Code



106  Chapter 3

storing the playlist

function init() {

    var button = document.getElementById("addButton");

    button.onclick = handleButtonClick;

    loadPlaylist();

} 

function handleButtonClick() {

    var textInput = document.getElementById("songTextInput");

    var songName = textInput.value;

    var li = document.createElement("li");

    li.innerHTML = songName;

    var ul = document.getElementById("list");

    ul.appendChild(li);

    save(songName);

}

This loads the saved songs from localStorage when 
you load your page, so you see your saved songs.

<script src="playlist_store.js"></script>

<script src="playlist.js"></script>

Add this just above your 
link to playlist.js. It loads 
the Ready Bake code.

Test drive the saved songs
We added all these 
songs, closed the 
browser, reopened 
the browser, loaded 
the page, and there 
they were. 

Okay, reload the page and type in some songs. 
Quit the browser. Open the browser and load 
the page again. You should see all the songs 
stored safely in your playlist.

Integrating your Ready Bake Code
We need to make a few little tweaks to integrate the storage code. First, 
add a reference to playlist_store.js in your <head> element in 
playlist.html:

Now you just need to add two lines to your code, in playlist.js, 
that will load and save the playlist:

And this saves your song each time 
you add one to the playlist.

Ready Bake 
Code

Okay, are you tired of your playlist 
and want to delete it? You’ll have to 
check out the Web Storage chapter!



you are here 4  107

events and handlers

This is cool, we’re really starting to 
make the code and the page interact 

with each other. I’m curious though 
about functions, objects, and things like 
element.appendChild().  Do I need to learn 

more about those things?

Perfect timing.

We really wanted to take you through a complete 
interactive example of  HTML markup and 
JavaScript working together to build the first part 
of  a web applications. If  you think about it, you’ve 
already done a lot:

1) Inserted code into your page.

2) Set up a button click event and written the code 
to capture and handle the button click.

3) Asked the DOM for information.

4) Created and added new elements to the DOM.

Not bad! And now that you have a bit of  an 
intuitive sense of  how this all works together, let’s 
take a little detour down JavaScript Avenue to see 
how things like functions and objects really work. 

This isn’t going to be the regular tour, oh no, we’re 
going to pull up the manhole covers and get a rare 
look at how Webville functions. 

Interested? Come on, join us in Chapter 4...



108  Chapter 3

review of event handlers and the dom

 � There are lots of events happening in your 
browser all the time. If you want to respond to 
these events, you need to handle the events 
with event handlers.

 � A button click event is triggered when you click 
on a button in a web page. 

 � You handle a button click event by registering 
a function to handle the event. You do this 
by writing a function, and setting the button’s 
onclick property to the function name.

 � If a button click event handler is registered, 
that function will be called when you click on 
the button. 

 � You write code in the handler function to 
respond to the button click event. You can alert 
the user or update the page or something else.

 � To get the text a user has typed into a form 
input text field, you use the input’s value 
property.  

 � If a user has not entered anything into a form 
input text field, the value of the field will be the 
empty string (“”).

 � You can compare a variable to the empty string 
using an if test and ==. 

 � To add a new element to the DOM, you first 
need to create the element and then add it as 
a child of an element.

 � Use document.createElement to create a new 
element. Pass the tag name (e.g., “li”) into the 
function call to indicate what element to create.

 � To add an element as a child of a parent 
element in the DOM, get a reference to the 
parent, and call appendChild on the parent, 
passing in the child element you’re adding. 

 � If you add multiple children to a parent 
by using appendChild, each new child is 
appended after the other children, so they 
appear after or below the other children in the 
page (assuming you’re not changing the layout 
with CSS).

 � You can use the Web Storage API 
(localStorage) to store data in a user’s 
browser.

 � We used localStorage to save playlist songs, 
using Ready Bake Code. You’ll learn more 
about localStorage in Chapter 9.

 � You’ll learn more about the DOM and 
JavaScript features like functions and objects 
in the next chapter.



you are here 4  109

events and handlers

HTML5cross
Give yourself some time to understand the 
interactions between HTML and JavaScript. Think 
through how it all works together. While you’re 
doing that mix it up a little by doing this crossword. 
All the words are from this chapter. 

1

2

3 4

5 6

7 8

9

10

Across
2. DOM’s method for creating new elements.
3. DOM’s method for adding new elements.
5. Happens when the user clicks on a button.
6. The DOM is like a family _______.
7. The grand matriarch of the DOM tree.
9. The default value of a form input element if the user doesn’t 
type anything is the ______ string.
10. Used in Ready Bake to enable storage.

Down
1. Code that takes care of events.
2. Insert new elements as a ________.
4. Artist used in our example song.
8. What’s ahead? Functions and ________.
9. A button click is an __________.

Across
2. DOM’s method for creating new elements.
3. DOM’s method for adding new elements.
5. Happens when the user clicks on a button.
6. The DOM is like a family _______.
7. The grand matriarch of the DOM tree.
9.  The default value of a form input element if the user 

doesn’t type anything is the ______ string.
10. Used in Ready Bake to enable storage.

Down
1. Code that takes care of events.
2. Insert new elements as a ________.
4. Artist used in our example song.
8. What’s ahead? Functions and ________.
9. A button click is an __________.



110  Chapter 3

exercise solutions

For the playlist shown here, draw the DOM as it 
looks after you’ve added all these songs. Notice the 
order in which the songs are added to the page, and 
make sure the elements are in the right places in the 
DOM too. Here’s our solution.

Here’s the rest of the DOM.

Did you have to make any assumptions about the order in 
which the <li> elements are added to the parent?

document

head

html

title script

body

form

input input

li

Blue Suede Strings, 
by Elvis Pagely

Great Objects 
on Fire, by Jerry 

JSON Lewis
I Code the Line, by 
Johnny JavaScript

That’ll be the Data, by 
Buddy Bitly and the 

Variables

Your Random Heart, by 
Hank “Math” Williams

ul id=”playlist”

li li li li

Yes, because it affects the display order of the 
songs on the page. appendChild always appends the 
new element after the existing children. 



you are here 4  111

events and handlers

H
1

A

C
2

R E A T E E L E M E N T

H D

I A
3

P P E
4

N D C H I L D

L L E

D E
5

V E N T T
6

R E E

I

S D
7

O
8

C U M E N T

E
9

M P T Y B

V A J

E G E

N E C

T L
10

O C A L S T O R A G E

Y S

Across
2. DOM’s method for creating new elements. 
[CREATEELEMENT] 
3. DOM’s method for adding new elements. [APPENDCHILD] 
5. Happens when the user clicks on a button. [EVENT] 
6. The DOM is like a family _______. [TREE] 
7. The grand matriarch of the DOM tree. [DOCUMENT] 
9. The default value of a form input element if the user doesn’t 
type anything is the ______ string. [EMPTY] 
10. Used in Ready Bake to enable storage. 
[LOCALSTORAGE] 

Down
1. Code that takes care of events. [HANDLER] 
2. Insert new elements as a ________. [CHILD] 
4. Artist used in our example song. [ELVISPAGELY] 
8. What’s ahead? Functions and ________. [OBJECTS] 
9. A button click is an __________. [EVENT] 

HTML5cross Solution





this is a new chapter  113

javascript functions and objects4

Serious JavaScript

Can you call yourself  a scripter yet?� Probably—you already 

know your way around a lot of JavaScript. But who wants to be a scripter 

when you can be a programmer? It’s time to get serious and take it up a 

notch—it’s time you learn about functions and objects. They’re the key to 

writing code that is more powerful, better organized and more maintainable. 

They’re also heavily used across HTML5 JavaScript APIs, so the better you 

understand them the faster you can jump into a new API and start ruling with it. 

Strap in, this chapter is going to require your undivided attention...



114  Chapter 4

defining your own functions

<script>

  var guessInput = document.getElementById("guess");

  var guess = guessInput.value;

  var answer = null;

  var answers = [ "red", 

                  "green", 

                  "blue"];

  var index = Math.floor(Math.random() * answers.length);

  if (guess == answers[index]) {

      answer = "You're right! I was thinking of " + answers[index];

  } else {

      answer = "Sorry, I was thinking of " + answers[index];

  }

  alert(answer);

</script>

Expanding your vocabulary
You can already do a lot with JavaScript, let’s take a look at some 
of  the things you know how to do:

Grab an element from the 
document object model.

Create a new array 
filled with strings.

Make decisions based 
on conditionals.

Get a property of an 
array, like length.

Get the value of a form 
input text field.

So far, though, a lot of  your knowledge is informal—sure, you can get an 
element out of  the DOM and assign some new HTML to it, but if  we asked 
you to explain exactly what document.getElementById is technically, 
well, that might be a little more challenging. No worries; by the time you 
leave this chapter you’re going to have it down.

Now to get you there, we’re not going to start with a deep, technical analysis                     
of  getElementById, no no, we’re going to do something a little more 
interesting: We’re going to extend JavaScript’s vocabulary and make it do 
some new things.

Use libraries of 
functions.

Use browser 
functions, like alert.

Use the elements 
of an array.



you are here 4  115

javascript functions and objects

How to add your own functions

var guessInput = document.getElementById("guess");

var guess = guessInput.value;

var answer = checkGuess(guess);

alert(answer);

You’ve been using built-in functions, like alert, or even Math.random, but what if  
you wanted to add your own? Let’s say we wanted to write some code like this:

We’re grabbing the user’s 
guess just like we were on 
the previous page...

...but rather than having all the rest of the code on the previous page as part of the main code, we’d rather just have a nice “checkGuess” function we can call that does the same thing.
Create a checkGuess function

function checkGuess(guess) {

      var answers = [ "red", 

                      "green", 

                      "blue"];

      var index = Math.floor(Math.random() * answers.length);

      if (guess == answers[index]) {

          answer = "You're right! I was thinking of " + answers[index];

      } else {

          answer = "Sorry, I was thinking of " + answers[index];

      }

      return answer;

}

To create a function, use the function keyword and 
then follow it with a name, like “checkGuess”.

Give your function zero or more 
parameters. Use parameters to 
pass values to your function. We 
need just one parameter here: 
the user’s guess.

Write a body for your function, which 
goes between the curly braces. The body 
contains all the code that does the work of 
the function. For the body here, we’ll reuse 
our code from the previous page.

Optionally, return a value 
as the result of calling the 
function. Here we’re returning 
a string with a message.

2

4 3

1



116  Chapter 4

how functions work

How a function works

function bark(dogName, dogWeight) {

    if (dogWeight <= 10) {

      return dogName + " says Yip";

    } else {

      return dogName + " says Woof";

    }

}

Okay, first we need a function.
Let’s say you’ve just written your new bark 
function, which has two parameters, dogName 
and dogWeight, and also a very impressive bit 
of  code that returns a dog’s bark, depending 
on its weight of  course.  

Now let’s invoke it!
You know how to call a function already: just use 
its name and give it any arguments it needs. In 
this case we need two: a string with the dog’s 
name, and the dog’s weight, which is an integer.

Let’s make that call and see how this works:

So how does this all work? What happens when we actually invoke a 
function? Here’s the 10,000-foot view: 

Here’s our handy 
bark function.

bark("Fido", 50);

"Fido" 50

Here we’re passing 
two arguments, the 
name and the weight.

When we call bark, the arguments 
are assigned to the parameter 
names in the bark function.

And any time the parameters 
appear in the function, the 
values we passed in are used.

Our function name.

function bark(dogName, dogWeight) {

    if (dogWeight <= 10) {

      return dogName + " says Yip";

    } else {

      return dogName + " says Woof";

    }

}



you are here 4  117

javascript functions and objects

Optionally, we can have return 
statements in the body...
... and that’s where we return a value back to the 
code that makes the call. Let’s see how that works:

var sound = bark("Fido", 50);

alert(sound);

function bark(dogName, dogWeight) {

    if (dogWeight <= 10) {

      return dogName + " says Yip";

    } else {

      return dogName + " says Woof";

    }

}

And, let the body of the 
function do its work.
After we’ve assigned the value of  each 
argument to its corresponding parameter in 
the function—like “Fido” to dogName and the 
integer 50 to dogWeight—then we’re ready 
to evaluate all the statements in the function 
body.

Statements are evaluated from top to bottom, 
just like all the other code you’ve been writing. 
What’s different is that we’re doing it in an 
environment where the parameter names 
dogName and dogWeight are assigned to the 
arguments you passed into the function.

Here we evaluate all the code in the body.

function bark(dogName, dogWeight) {

    if (dogWeight <= 10) {

      return dogName + " says Yip";

    } else {

      return dogName + " says Woof";

    }

}

"Fido says Woof"

Tracing through the function, do
gWeight is not 

less than or equal to 10 so we use the else clause 

and return “Fido says Woof” as a string value.

The string “Fido says Woof” is returned to the calling code (that’s the code that invoked the bark function).
And when the string is 
returned, it is assigned to 
the variable sound, which 
is then passed to alert, 
resulting in the dialog.

Remember, functions aren’t required 
to return a value. But in this case, 
the bark function does return a value.



118  Chapter 4

importance of  functions and objects

I keep tellin’ you, all of the 
HTML5 APIs are chock-full of 
functions, objects and all that 
advanced JavaScript stuff...

If we could have another moment to talk...
We know, we know, by Chapter 4 you thought you’d be flying in an 
HTML5 jetpack by now, and we’ll get there. But before we do, you 
really need to understand the underpinnings of  the HTML5 JavaScript 
APIs, and we’re going to do that in this chapter. 

So what are these underpinnings? Think of  the HTML5 JavaScript 
APIs as made up of  objects, methods (otherwise known as functions) 
and properties. And so to really get in and master these APIs, you 
need to understand those things pretty well. Sure, you could try to 
get by without knowing them, but you’ll always be guessing your 
way around the APIs while failing to use them fully (not to mention 
making lots of  mistakes and writing buggy code).

So we just wanted to drop you a note before you got too far into this 
chapter to tell you what we are up to. Here’s the great thing: by the 
end of  this chapter you’re going to understand objects, functions, 
methods and a lot of  other related things better than about 98% of  
JavaScript scripters out there. Seriously.



you are here 4  119

javascript functions and objects

Head First: Welcome Function! We’re looking 
forward to digging in and finding out what you’re 
all about.

Function: Glad to be here.

Head First:  Now we’ve noticed many people 
who are new to JavaScript don’t tend to use you a 
lot. They just get in and write their code, line by 
line, top to bottom. Why should they take a look at 
you?

Function: Yes, and that is unfortunate, because 
I’m powerful. Think about me like this: I give you 
a way to take code, write it once, and then reuse it 
over and over.

Head First: Well, excuse me for saying this, but 
if  you’re just giving them the ability to do the same 
thing, over and over...that’s a little boring isn’t it?

Function: No no, functions are parameterized—
in other words, each time you use the function, you 
pass it arguments so that you can get back results 
that vary, depending on what you pass in.

Head First: Err, example?

Function: Let’s say you need to tell your 
users how much the items in their shopping 
cart are going to cost, so you write a function 
computeShoppingCartTotal. Then you 
can pass that function different shopping carts 
belonging to different users and each time you get 
the appropriate cost of  the shopping cart. 
 
...By the way, back to your comment about 
new coders not using functions; that’s simply 
not true, they use them all the time: alert, 
document.getElementById, Math.random. 
They just aren’t defining their own functions.

Head First: Well, right, alert, that makes sense, 
but the other two don’t look quite like functions.

Function: Oh they’re functions, you see... hold on 
just a sec... 
 
...oh, I was just told the readers haven’t learned 
about those kinds of  functions yet, but they’re 
getting there in a few pages. Anyway, functions are 
everywhere.

Head First: So, one thing a function has to do is 
return a value, right? I mean, what if  I don’t have 
a value I want to return?

Function: Many functions return values, but a 
function doesn’t have to.  Lots of  functions just do 
something like update the DOM and then return 
without any value, and that’s just fine.

Head First: So in those functions I just don’t 
have a return statement?

Function: You got it.

Head First: Well, what about naming your 
functions, I’ve heard you don’t have to do that 
either, if  you don’t want to.

Function: Okay, let’s not freak the audience out 
too much. How about we come back to that topic 
after they know a bit more about me?

Head First: As long as you give me an exclusive?

Function: We’ll talk...

The Function Exposed
This week’s interview: a few 
things you didn’t know...



120  Chapter 4

parameters and arguments

I’m not sure I get the 
difference between a parameter 
and an argument—are they just two 

names for the same thing?

No, they’re different.
When you define a function you can define it with one or 
more parameters. 

function cook(degrees, mode, duration) {

   // your code here

}

Here we’re defining three 
parameters: degrees, mode 
and duration.

When you call a function, you call it with arguments:

cook(425.0, "bake", 45);

These are arguments. There are three 
arguments, a floating point number, a 
string and an integer.

cook(350.0, "broil", 10);

So you’ll only define your parameters once, but you’ll probably call 
your functions with a lot of  different arguments.

You define a function with parameters, 
you call a function with arguments.

You’d be amazed how many people get this 
wrong—even books get it wrong, so if you read 
it differently elsewhere, now you know better....



you are here 4  121

javascript functions and objects

Now that you know how to define and call a function, let’s make sure we’ve got 
the syntax down cold. Here are all the parts of  a function’s anatomy:

Anatomy of a Function

function  addScore ( level , score ) {

   var bonus = level * score * .1;

   return score + bonus;

}

Always start with the 
keyword “function”. 

Follow the function keyword with 
the name of your function.

Even if your function has no 
parameters, you still need 
an opening and closing set of 
parens, like ().

And then zero or more 
comma separated parameters 
between parentheses.

The body sits between two 
curly braces and contains a set 
of statements (just like the 
statements you’re used to).

A function can include a 
statement with the return 
keyword, but it doesn’t have to.

The return statement includes an 
expression, which is returned as a 
result of calling the function.Here’s the closing 

brace of the body.

Q: Why don’t the parameter names 
have var in front of them? A parameter is 
a new variable right?

A: Efffectively yes. The function does all 
the work of instantiating the variable for you, 
so you don’t need to supply the var keyword 
in front of your parameter names. 

Q: What are the rules for function 
names?

A: The rules for naming a function are the 
same as the rules for naming a variable.

Q: I’m passing a variable to my 
function—if I change the value of the 
corresponding parameter in my function 
does it also change my original variable?

A: No. When you pass a primitive value 
it is copied into the parameter. We call this 

“passing by value.” So if you change the 
value of the parameter in your function body 
it has no affect on our original argument’s 
value. The exception to this is passing an 
array or object, and we’ll get to that in a bit. 

Q: So how can I change values in a 
function?

A: You can only change the values of 
global variables (those defined outside of 
functions), or variables you’ve explictly 
defined in your function. We’re going to talk 
about that in a little more detail shortly.

Q: What does a function return if it 
doesn’t have a return statement?

A: A function without a return statement 
returns undefined.



122  Chapter 4

exercise on parameters

Use your knowledge of functions and passing arguments to parameters 
to evaluate the code below. After you’ve traced through the code, write 
the value of each variable below. Check your answers with the solution 
at the end of the chapter before you go on.

function dogsage(age) {

    return age * 7;

}

var myDogsage = dogsage(4);

function rectanglearea(width, height) {

    var area = width * height;

    return area;

}

function addUp(numarray) {

    var total = 0;

    for (var i = 0; i < numarray.length; i++) {

        total += numarray[i];

    }

    return total;

}

function getavatar(points) {

    var avatar;

    if (points < 100) {

        avatar = "Mouse";

    } else if (points > 100 && points < 1000) {

        avatar = "Cat";

    } else {

        avatar = "ape";

    }

    return avatar;

}

var myavatar = getavatar(335);

myDogsage = 

rectarea = 

theTotal = 

myavatar = 

Write the 
value of each 
variable here...

var rectarea = rectanglearea(3, 4);

var theTotal = addUp([1, 5, 3, 9]);



you are here 4  123

javascript functions and objects

Local and Global Variables

You already know that you can declare a variable by using 
the var keyword and a name anywhere in your script:

function getScore(points) {

    var score;

    for (var i = 0; i < levelThreshold; i++) {

       //code here

    }

    return score;

}

The points, score and i 
variables are all declared 
within a function.

var avatar;

var levelThreshold = 1000;

And you’ve seen that you can also declare 
variables inside a function:

But what does it matter? Variables are variables, right? 
Well, where you declare your variables determines how 
visible they are to other part of  your code, and, later, 
understanding how these two kinds of  variables operate 
will help you write more maintainable code (not to 
mention, help you understand the code of  others).

These are global variables; 
they’re accessible everywhere 
in your JavaScript code.

Know the difference or risk humiliation 

If a variable is 

declared outside 

a function, it’s 

GLOBAL. If it’s 

declared inside a 

function, it’s LOCAL.

We call them local variables 
because they are only 
known locally within the 
function itself.

We need to talk about 
your variable usage...

Even if we use levelThreshold inside 
the function, it’s global because it’s 
declared outside the function.



124  Chapter 4

local and global scope

var avatar = "generic";

var skill = 1.0;

var pointsPerLevel = 1000;

var userPoints = 2008;

function getavatar(points) {

    var level = points / pointsPerLevel;

    if (level == 0) {

       return "Teddy bear";

    } else if (level == 1) {

       return "Cat";

    } else if (level >= 2) {

       return "Gorilla";

    }

}

function updatePoints(bonus, newPoints) {

    for (var i = 0; i < bonus; i++) {

        newPoints += skill * bonus;

    }

    return newPoints + userPoints;

}

userPoints = updatePoints(2, 100);

avatar = getavatar(2112);

Knowing the scope of your local and global variables
Where you define your variables determines their scope; that is, where they are defined and 
where they aren’t, where they’re visible to your code and where they aren’t. Let’s look at 
an example of  both locally and globally scoped variables—remember, the variables you 
define outside a function are globally scoped, and the function variables are locally scoped:

These four variables are 
globally scoped. That means 
they are defined and visible 
in all the code below.

Note that if you link to 
additional scripts in your 
page, they will see these 
global variables too!

The level variable here is 
local and is visible only 
to the code within the 
getAvatar function. That 
means only this function can 
access the level variable.

Note that getAvatar makes 
use of the pointsPerLevel 
global variable too.

And let’s not forget the 
points parameter, which 
also has local scope in the 
getAvatar function.

In updatePoints we have a local 
variable i. i is visible to all of 
the code in updatePoints. 

And here in our code we can use only the global variables, we have no access to any variables inside the functions because they’re not visible in the global scope.

bonus and newPoints are also 
local to updatePoints, while 
userPoints is global.



you are here 4  125

javascript functions and objects

The short lives of variables

I could have sworn the 
variable was right behind me, 
but when I turned around he 

was just...gone...

When you’re a variable, you work hard and 
life can be short. That is, unless you’re a global 
variable, but even with globals, life has its limits.  
But what determines the life of  a variable? Think 
about it like this:

Globals live as long as the page. A global 
variable begins life when its JavaScript is loaded 
into the page. But, your global variable’s life ends 
when the page goes away. Even if  you reload the 
same page, all your global variables are destroyed 
and then recreated in the newly loaded page.

Local variables typically disappear 
when your function ends. Local variables 
are created when your function is first called and 
live until the function returns (with a value or 
not).  That said, you can take the values of  your 
local variables and return them from the function 
before the variables meet their digital maker.

So, there really is NO escape from the page is 
there? If  you’re a local variable, your life comes 
and goes quickly, and if  you’re lucky enough to 
be a global, you’re good as long as that browser 
doesn’t reload the page. 

But there just has to be a way to escape the page! 
We can find a way! Can’t we?

Join us in the Web Storage 
chapter where we’ll help 
our data escape the 
dreaded page refresh!

We say “typically” because there are some 
advanced ways to retain locals a little longer, 
but we’re not going to worry about them now.



126  Chapter 4

shadowing variables

You “shadow” your global.

Here’s what that means: say you have a global variable 
beanCounter and you then declare a function, like this:

When you do this, any references to beanCounter within 
the function refer to the local variable and not the global. 
So we say the global variable is in the shadow of  the local 
variable (in other words we can’t see it because the local 
version is in our way).

What happens when I 
name a local variable the 
same thing as an existing 
global variable?

var beanCounter = 10; 

function getNumberOfItems(ordertype) {

    var beanCounter = 0;

    if (ordertype == "order") {

       // do some stuff with beanCounter...

    } 

    return beanCounter;

}

Note that the local and global variables have no effect on each other: if you change one, it has no effect on the other. They are independent variables.

We’ve got a global 
and a local!



you are here 4  127

javascript functions and objects

If this were a 
book on in-depth 
JavaScript 
programming 
we’d take you 
further into this 
topic, but given 
that this is Head 
First HTML5 
Programming, we’ll 
just suggest you 
explore this topic 
further to improve 
the quality of 
your code! 

Q: Keeping track of the scope of all these 
locals and globals is confusing, so why not just 
stick to globals? That’s what I’ve always done.

A: If you’re writing code that is complex or that 
needs to be maintained over a long period of time, 
then you really have to watch how you manage your 
variables. When you’re overzealous in creating global 
variables, it becomes difficult to track where your 
variables are being used (and where you’re making 
changes to your variables’ values), and that can lead 
to buggy code. All this becomes even more important 
when you’re writing code with coworkers or you’re 
using third-party libraries (although if those libraries 
are written well, they should be structured to avoid 
these issues).  
 

So, use globals where it makes sense, but use them 
in moderation, and whenever possible, make your 
variables local.  As you get more experience with 
JavaScript, you can investigate additional techniques 
to structure code so that it’s more maintainable.

Q: I have global variables in my page, but I’m 
loading in other JavaScript files as well. Do those 
files have separate sets of global variables?

A: There is only one global scope so every file 
you load sees the same set of variables (and creates 
globals in the same space).  That’s why it is so 
important you be careful with your use of variables 
to avoid clashes (and reduce or eliminate global 
variables when you can).

Q: I’ve seen code where people don’t use the 
var keyword when assigning a value to a new 
variable name. How does that work?

A: Yes, that can be done; when you assign a 
value to a variable name that hasn’t been previously 
declared, it is treated as a new, global variable. 
So be careful, if you do this within a function you 
are creating a global variable. Note that we don’t 
recommend this coding practice; not only is it 
potentially confusing when reading code, some 
 

 
 

people think this behavior may change some day 
in the JavaScript implementations (which would 
probably break your code).

Q: Do I need to define a function before I use 
it, or can it appear anywhere in my script?

A: Function declarations can appear anywhere 
in your script. You can declare a function below 
where you use it if you want. This works because 
when you first load your page, the browser parses 
all the JavaScript in the page (or in the external 
file) and sees the function declaration before it 
starts executing the code. You can also put your 
global variable declarations anywhere in your script, 
although we recommend declaring all your global 
variables at the top of your files so they’re easy to 
locate.
 

One thing to keep in mind when using more than 
one external JavaScript file is that if you have two 
functions in different files named the same thing, the 
function that the browser sees last will be the one 
that is used.  

Q: Everyone seems to complain about the 
overuse of global variables in JavaScript. Why 
is this? Was the language badly designed or do 
people not know what they’re doing, or what? 
And what do we do about it?

A: Globals are often overused in JavaScript. 
Some of this is because the language makes it easy 
to just jump in and start coding—and that’s a good 
thing—because JavaScript doesn’t enforce a lot of 
structure or overhead on you. The downside is when 
people write serious code this way and it has to be 
changed and maintained over the long term (and 
that pretty much describes all web pages). All that 
said, JavaScript is a powerful langauge and includes 
features like objects that you can use to organize 
your code in a modular way. Many books have been 
written on that topic alone, and we’re going to give 
you just a taste of objects in the second half of this 
chapter (which is only a few pages away).



128  Chapter 4

functions as values

function addOne(num) {

    return num + 1;

}

var plusOne = addOne;

var result = plusOne(1);

Oh, did we mention functions are also values?
OK, you’ve used variables to store numbers, boolean values, strings, arrays, 
all kinds of  things, but did we mention you can also assign a function to a 
variable? Check this out:

After this call 
result is equal to 2.

Let’s define a simple function that adds 
one to its argument.

Now let’s do something new. We’ll use the 
name of the function addOne and assign 
addOne to a new variable, plusOne.

plusOne is assigned to a function, so we can call it with an integer argument of 1.

Well, not only did we fail to mention this little detail about functions before 
now, but we also weren’t totally honest when we told you about the anatomy 
of  a function—as it turns out, you don’t even have to give your function a 
name. That’s right: your function can be anonymous. What the heck does that 
mean, and why would you want to do such a thing? First let’s see how you 
create a function without a name:

function(num) {

    return num + 1;

}

var f = function(num) {

    return num + 1;

}

var result = f(1);

alert(result);

After this call 
result is equal to 2.

Here we’re creating a function and not using a 
name... hmm... but how do we do anything with it?

Let’s do it again and this time 
assign it to a variable.

And then we can use that 
variable to call the function.

Notice we’re not calling the function with 
addOne(), we’re just using the function name.



you are here 4  129

javascript functions and objects

Take a look at this code: what do you think is going on?

function init() {

   alert("you rule!");

}

window.onload = init;

var element = document.getElementById("button");

element.onclick = function () {

   alert("clicked!");

}

What you can do with functions as values?
So what’s the big deal?  Why is this useful? Well, the important thing isn’t so much that 
we can assign a function to a variable, that’s just our way of  showing you that a function 
actually is a value. And you know you can store values in variables or arrays, you can pass 
them as arguments to functions, or as we’ll soon see, you can assign them to the properties 
of  objects. But, rather than talking you through how anonymous functions are useful, let’s 
just look at one of  the many ways using functions as values starts to get interesting:

Hey look, we were already using 
functions as values!

window.onload = function() {

   alert("you rule!");

}

Or we could get even fancier:

Here we’re assigning the function we 
defined to the onload handler.

Here’s a simple init function.

Wow, isn’t that simpler 
and more readable?

So here we’re creating a function, without an 
explicit name, and then assigning its value to 
the window.onload property directly.

Don’t worry if window.onload 
is still a little unclear, we’re 
just about to cover all that.

This should start to 
look a little more 
understandable with 
what we just covered...

Don’t worry if you’re still not 
getting 100% of it, we’ll get there...

You might be starting to see that functions can do some useful things beyond just 
packaging up code for reuse; to give you a better idea of  how to fully take advantage 
of  functions, we’re going to take a look at objects and see how they fit into JavaScript, 
and then we’ll put it all together.



130  Chapter 4

pep talk before introducing objects

Authors? Hello? 
Hello? I'm the girl who bought 

the HTML5 book, remember me? 
What does all this have to do with 

HTML5???

Well we thought we’d covered that 
already... but if  it looks like we’ve picked 
you up and have driven you halfway around 
the city with the meter running (when we could 
have driven you straight downtown), well, then 
remember we’re about to start diving into the 
APIs that work with HTML5 in the next chapter. 
And, doing that is going to require that you really 
understand functions, objects and a few other 
related topics.

So hang in there—in fact you’re halfway there! 
And don’t forget, this is the chapter where you’re 
going from scripter to programmer, from an 
HTML/CSS jockey to someone who is capable 
of  building real apps.  

Did we already mention that is 
probably going to make you a lot 
more money too?



you are here 4  131

javascript functions and objects

With objects, the future’s 
so bright we really DO 
have to wear shades...

Did someone say “Objects”?!
Ah, our favorite topic! Objects are going to take your JavaScript programming 
skills to the next level—they’re the key to managing complex code, to 
understanding the DOM, to organizing your data, and they’re even the 
fundamental way HTML5 JavaScript APIs are packaged up (and that’s just 
our short list!). That said, objects are a difficult topic, right? Hah! We’re going 
to just jump in head first and you’ll be using them in no time.

Here’s the secret to JavaScript objects: they’re just a collection of  properties. Let’s 
take an example, say, a dog. A dog’s got properties:

Most dogs have names, like Fido here.

All dogs have a weight.

And a breed. In this case we’d 
call Fido a mixed breed.

All dogs have a list of activities 
they enjoy, like walking and 
fetching balls.

Dog



132  Chapter 4

objects and properties

var fido = { 

    name: "Fido",

    weight: 40, 

    breed: "Mixed",

    loves: ["walks", "fetching balls"]

};

Dog

name: “Fido”

weight: 40

breed: “Mixed”

loves: [“walks”, “fetching balls”]

And a set of properties... We’ve got some strings 
representing the dog’s 
name and breed.

And we’ll collect the dog's 
“loves” in an array of strings, 
zero or more; here we’ve got 
Fido’s two interests.

As you probably 
guessed, we’re going 
to have an object 
representing a dog.

Thinking about properties...
Of  course Fido would be the first to admit there’s a lot more to him than 
just a few properties, but for this example, those are going to be the ones we 
need to capture in software. Let’s think about those properties in terms of  
JavaScript data types:

And we’ve got an integer 
for the weight .

How to create an object in JavaScript
So we’ve got a object with some properties; how do we create this using 
JavaScript?  Here’s how:

Start an object with just the left 
curly brace, then all the properties 
are going to go inside.

This object has four properties, 
name, weight, breed and loves.

Notice that the value of weight is a number, 40, and the values of breed and name are strings.

We’re going to assign our 
object to the variable fido.

And of course we have an array to hold the dog’s loves.

Notice that each property 
is separated by a comma. 
NOT a semicolon!



you are here 4  133

javascript functions and objects

Some things you can do with objects

if (fido.weight > 25) {

   alert("WOOF");

} else {

   alert("yip");

}

Access object properties with “dot” notation:

Access properties using a string with [] notation:

Enumerate all an object’s properties:

var prop;

for (prop in fido) {

    alert("Fido has a " + prop + " property ");

    if (prop == "name") {

       alert("This is " + fido[prop]);

    }

}

var breed = fido["breed"];

if (breed == "mixed") {

    alert("Best in show");

}

Change a property’s value:

fido.weight = 27;

fido.breed = "Chawalla/Great Dane mix";

fido.loves.push("chewing bones");

Use the object along with a “.” 
and a property name to access 
the value of that property.

fido.weight

Here’s the object...

Use a “.”

... and then the 
property name.

fido["weight"]

Here’s the object...

Now we use [ ] around 
the property name.

... and the property 
name in quotes.

Use the object along 
with the property name 
wrapped in quotes and in 
brackets to access the 
value of that property.

We're changing Fido's weight...

... his breed...
... and adding a new item to his loves array.

push simply adds a new item 
to the end of an array.

To enumerate the properties we use a for-in loop.

Each time through the loop, the 
variable prop gets the string 
value of the next property name.

And we use the [ ] notation to 
access the value of that property.

We find dot notation the  
more readable of the two.

To enumerate is to go through all the 
properties of the object. 

Note the order of the properties is arbitrary, 
so don’t count on a particular ordering.

1

2

3

4



134  Chapter 4

what objects can do

The Dot Operator  .

The dot operator (.) gives you access to an object’s properties. 
In general it’s easier to read than the [“string”] notation:

 ● fido.weight is the size of fido.

 ● fido.breed is the breed of fido.

 ● fido.name is the name of fido.

 ● fido.loves is an array containing fido’s interests.

Have fun with an object’s array:

var likes = fido.loves;

var likesString = "Fido likes";

for (var i = 0; i < likes.length; i++) {

    likesString += " " + likes[i];

}

alert(likesString);

Pass an object to a function:

function bark(dog) {

   if (dog.weight > 25) {

       alert("WOOF");

   } else {

       alert("yip");

   }

}

bark(fido);

Here, we’re assigning the value of fido’s 
loves array to the variable likes.

We can loop through the likes array and 
create a likesString of all fido’s interests.

And we can alert the string.

We can pass an object to 
a function just like any 
other variable.

And in the function, we 
can access the object’s 
properties like normal, using 
the parameter name for the 
object, of course.

We’re passing fido as our argument 
to the function bark, which expects 
a dog object.

5

6



you are here 4  135

javascript functions and objects

Can we add properties 
to objects after we’ve 

defined them? 

Yes, you can add or delete properties at any time.

To add a property to an object you simply assign a new property a 
value, like this:

and from that point on fido will have a new property: age. 

Likewise, you can delete any property with the delete keyword, 
like this:

When you delete a property, you’re not just deleting the value of  
the property, you’re deleting the property itself. In fact, if  you use 
fido.age after deleting it, it will evaluate to undefined. 

The delete expression returns true if  the property was deleted 
successfully (or if  you delete a property that doesn’t exist or if  what 
you’re trying to delete isn’t a property of  an object).

fido.age = 5;

delete fido.age;



136  Chapter 4

objects as arguments

Let’s talk about passing objects to functions
We’ve already talked a bit about how arguments are passed to functions—arguments 
are passed by value, so if  we pass an integer, the corresponding function parameter 
gets a copy of  the value of  that integer for its use in the function. The same rules hold 
true for objects, however we’ve got to look a little more closely at what a variable holds 
when it is assigned to an object to know what this means.

When an object is assigned to a variable, that variable holds a reference to the object, 
not the object itself. Think of  a reference as a pointer to the object. 

So, when you call a function and pass it an object, you’re passing the object 
reference—not the object itself, just a “pointer” to it. A copy of  the reference is 
passed into the parameter, which then points to the original object.

Dog

name: “Fido”

weight: 40

breed: “Mixed”

loves: [“walks”, “fetching balls”]

fido

re
f

When an object is assigned to 
a variable, the variable is given 
a reference to the object. It 
doesn’t “hold” the object itself.

So, what does this all mean? Well, when you change a property of  the object, 
you’re changing the property in the original object, not a copy, and so, you’ll 
see all the changes you make to an object within and outside of  your function. 
Let’s step through an example using a loseWeight function for dogs...

function bark(dog) {

 ... code here ...

}

re
fWhen we call bark and pass it 

fido as an argument, we get a 
copy of the reference to the 
dog object. 



you are here 4  137

javascript functions and objects

fido.weight = 48;

 ...

loseWeight(fido);

Dog

name: “Fido”

weight: 48

breed: “Mixed”

loves: [“walks”, “fetching balls”]

fido is a reference to an 
object, which means the 
object doesn’t live in the fido 
variable, but is pointed to by 
the fido variable.

Putting Fido on a diet....

Let’s take a look at what’s going on when we pass fido to loseWeight 
and change the dog.weight property.

Behind
the Scenes

function loseWeight(dog) {

  dog.weight = dog.weight - 10;

}

alert(fido.name + " now weighs " + fido.weight);

So, when we subtract 10 pounds 
from dog.weight, we’re changing 
the value of fido.weight.

When we pass fido into loseWeight, what gets 
assigned to the dog parameter is a copy of 
the reference, not a copy of the object. So 
fido and dog point to the same object.

When we pass fido 
to a function, we are 
passing the reference 
to the object.

1 We’ve defined an object, fido, and we are passing 
that object into a function, loseWeight.

2 The dog parameter of the loseWeight function 
gets a copy of the reference to fido. And so, any 
changes to the properties of the parameter affect 
the object that was passed in.

The dog reference 
is a copy of the 
fido reference.

re
f

re
f



138  Chapter 4

introducing webville cinema app

The Webville Cinema has come to us for help with their 
JavaScript API; let’s start simple and design the movie 
object for them. What we need is a couple of movie 
objects that each include a title, a genre, a movie rating 
(1-5 stars) and a set of showtimes. Go ahead and 
sketch out your movie object design here (you can use 
our dog object as a model).  Here’s some sample data 
you can use to populate your objects:
Plan 9 from Outer Space, which shows at 3:00pm, 
7:00pm and 11:00pm; it’s in the genre “cult classic”; and 
has a 2-star rating.
Forbidden Planet, which shows at 5:00pm and 9:00pm; 
is in the genre “classic sci-fi”; and has a 5-star rating.

Feel free to add your 
own favorites instead.

Design your objects here.

The solution's right on the next page, 
but don't look until you've done the 
exercise. Really. We mean it.



you are here 4  139

javascript functions and objects

var movie1 = {

    title: "Plan 9 from Outer Space",

    genre: "Cult Classic",

    rating: 5,

    showtimes: ["3:00pm", "7:00pm", "11:00pm"]

};

var movie2 = {

    title: "Forbidden Planet",

    genre: "Classic Sci-fi",

    rating: 5,

    showtimes: ["5:00pm", "9:00pm"]

};

How did it go creating your movie object? 
Here’s our solution:

We created two 
objects, movie1 and 
movie2 for the 
two movies.

movie1 has four properties, title, genre, 
rating and showtimes.

title and genre are strings.

rating is a number.

And showtimes is an array containing the show times of the movie as strings.

Remember to separate your 
properties with commas.

movie2 also has four properties, title, 
genre, rating and showtimes.

We use the same property names but different property values as movie1.



140  Chapter 4

implementing next showing

function getNextShowing(movie) {

    var now = new Date().getTime();

    for (var i = 0; i < movie.showtimes.length; i++) {

        var showtime = getTimeFromString(movie.showtimes[i]);

        if ((showtime - now) > 0) {

            return "Next showing of " + movie.title + " is " + movie.showtimes[i];

        }

    }

    return null;

}

function getTimeFromString(timeString) {

    var theTime = new Date();

    var time = timeString.match(/(\d+)(?::(\d\d))?\s*(p?)/);

    theTime.setHours( parseInt(time[1]) + (time[3] ? 12 : 0) );

    theTime.setMinutes( parseInt(time[2]) || 0 );

    return theTime.getTime();

}

var nextShowing = getNextShowing(movie1);

alert(nextShowing);

nextShowing = getNextShowing(movie2);

alert(nextShowing);

We’ve already had a small taste of  mixing objects and functions. Let’s take 
this further by writing some code to tell us when the next showing of  a 
movie is. Our function’s going to take a movie as an argument, and return a 
string containing the next time it plays, based on your current time.

Ready Bake Code

Here's our new function, which 
takes a movie object.

We're grabbing the current time using 
JavaScript's Date object. We’re not going 
to worry about the details of this one yet, 
but just know that it returns the current 
time in milliseconds.

Now use the movie's array, showtimes, and 
iterate over the showtimes.

For each showtime we get 
its time in milliseconds and 
then compare.

If the time hasn't happened yet, then it's 
the next showing, so return it.

If there are no more shows, we 
just return null;

Here's some ready bake 
code that just takes a 
string with the format 
like 1am or 3pm and 
converts it to a time 
in milliseconds.

Now we use the function by calling getNextShowing 
and use the string it returns in an alert.

And let's do it again with movie2.

Our next showing is at....

Don’t worry about this code; it uses regular 
expressions, which you’ll learn later in your 
JavaScript education. For now, just go with it!



you are here 4  141

javascript functions and objects

Get the code on the previous page typed in and let’s give it a test run.  You’ll see 
that the getNextShowing function takes whatever movie it is handed and figures 
out the next showing time. Feel free to create some new movie objects of  your own 
and give them a test drive too.  We did, at our own local time of  12:30pm:

Testing at the drive-in

var banzaiMovie = {

    title: "Buckaroo Banzai",

    genre: "Cult classic",

    rating: 5,

    showtimes: ["1:00pm", "5:00pm", "7:00pm"]

}

var nextShowing = getNextShowing(banzaiMovie);

alert(nextShowing);

How "Chaining" works...
Did you catch this in the previous code?

movie.showtimes.length

Which has 
a property 
named length.

That doesn’t look like anything we’ve seen before. This is really just a shorthand for a 
series of  steps we could have taken to get the length of  the showtimes array from the 
movies object. We could have written this instead:

var showtimesarray = movie.showtimes;

var len = showtimesarray.length;

But we can do all this in one shot by chaining together the expressions. 
Let’s step through how this works:

movie.showtimes.length

Which has 
a showtimes 
property, 
that is an 
array.

First we grab the 
showtimes array.
Then we use it to access the 
length property.

Evaluates 
to the 
movie 
object.

1 2 3

Note: our code isn’t quite “production 
code” quality; if you run it after the 
last movie showing you’ll get null. Try 
again the next day.



142  Chapter 4

objects and methods

Objects can have behavior too...
You didn’t think objects were just for storing numbers, strings and 
arrays did you? Objects are active, they can do things. Dogs don’t 
just sit there: they bark, run, play catch and a dog object should too! 
Given everything you’ve learned in this chapter, you’re all set to add 
behavior to your objects. Here’s how we do that:

var fido = { 

    name: "Fido",

    weight: 40, 

    breed: "Mixed",

    loves: ["walks", "fetching balls"]

    bark: function() {

       alert("Woof woof!");

    }

};

fido.bark();

We tell an object to do something 
by calling methods on it. In this case 
we’re calling fido’s bark method.

When an 
object has a 
function in it, 
we say that 
object has a 
method.We can add a function  

directly to our object 
like this.

Notice we’re making 
use of an anonymous 
function and assigning it 
to the bark property of 
the object.

Rather than saying this 
is a “function in the 
object,” we just say this 
is a method. They’re 
the same thing, but 
everyone refers to object 
functions as methods.

To call a method on a object we use the object name along with the 
method using our dot notation, and supply any arguments needed.



you are here 4  143

javascript functions and objects

var movie1 = {

    title: "Plan 9 from Outer Space",

    genre: "Cult Classic",

    rating: 5,

    showtimes: ["3:00pm", "7:00pm", "11:00pm"],

    getNextShowing: function(movie) {

       var now = new Date().getTime();

       for (var i = 0; i < movie.showtimes.length; i++) {

          var showtime = getTimeFromString(movie.showtimes[i]);

          if ((showtime - now) > 0) {

              return "Next showing of " + movie.title + " is " + movie.showtimes[i];

          }

       }

       return null;

    }

};

Now that your knowledge of  objects is expanding we can go back and 
improve the cinema code. We’ve already written a getNextShowing 
function that takes a movie as an argument, but we could instead make this 
part of  the movie object by making it a method. Let’s do that:

Meanwhile back at Webville Cinema...

No argument should be needed here, it’s clear which movie 
we want the next showing of, that is, we want movie1.

We actually can’t just throw the function in this object because 
getNextShowing takes a movie argument, and what we really want is to call 
getNextShowing like this:

But we know that can’t be quite right...

var nextShowing = movie1.getNextShowing();

Alright, so how do we fix this? We’ve got to remove the parameter from the 
getNextShowing method definition, but then we need to do something with all 
the references to movie.showtimes in the code because, once we remove the 
parameter, movie will no longer exist as a variable. Let’s take a look...

We’ve taken our code and placed it in a 
method of the movie1 object with the 
property name getNextShowing.



144  Chapter 4

reworking a function as a method

We’ve taken the liberty of  removing the movie parameter, and all the references 
to it. Which leaves us with this code:

Let’s get the movie parameter out of there...

var movie1 = {

    title: "Plan 9 from Outer Space",

    genre: "Cult Classic",

    rating: 5,

    showtimes: ["3:00pm", "7:00pm", "11:00pm"],

    getNextShowing: function() {

       var now = new Date().getTime();

       for (var i = 0; i < showtimes.length; i++) {

          var showtime = getTimeFromString(showtimes[i]);

          if ((showtime - now) > 0) {

              return "Next showing of " + title + " is " + showtimes[i];

          }

       }

       return null;

   }

};

We’ve highlighted the changes below...

This all looks pretty reasonable, but we need 
to think through how the getNextShowing 
method will use the showtimes property...

...we’re used to either local variables 
(which showtimes isn’t) and global 
variables (which showtimes isn’t). 
Hmmmm....

Alright, here’s the conundrum: we’ve got these references to the properties showtimes and 
title. Normally in a function we’re referencing a local variable, a global variable, or a parameter 
of  the function, but showtimes and title are properties of  the movie1 object. Well maybe this 
just works... it seems like JavaScript might be smart enough to figure this out? 

Nope. It doesn’t work. Feel free to give it a test drive; JavaScript will tell you the showtimes and 
title variables are undefined. How can that be? 

Okay, here’s the deal: these variables are properties of  an object, but we aren’t telling JavaScript 
which object. You might say to yourself, “Well, obviously we mean THIS object, this one right 
here! How could there be any confusion about that?” And, yes, we want the properties of  this 
very object. In fact, there’s a keyword in JavaScript named this, and that is exactly how you tell 
JavaScript you mean this object we’re in.

Now, the situation is actually a little more complicated than it appears here, and we’re going to get 
to that in a second, but for now we’re going to add the this keyword and get this code working.

Now what? 

Oh, and here’s another 
one, the title property.



you are here 4  145

javascript functions and objects

Let’s add this each place we specify a property, so that we’re telling JavaScript 
we want the property in this object:

Adding the “this” keyword

var movie1 = {

    title: "Plan 9 from Outer Space",

    genre: "Cult Classic",

    rating: 5,

    showtimes: ["3:00pm", "7:00pm", "11:00pm"],

    getNextShowing: function() {

       var now = new Date().getTime();

       for (var i = 0; i < this.showtimes.length; i++) {

          var showtime = getTimeFromString(this.showtimes[i]);

          if ((showtime - now) > 0) {

              return "Next showing of " + this.title + " is " + this.showtimes[i];

          }

       }

       return null;

   }

};

Here we’ve added a this keyword 
before every property to signify we 
want the movie1 object reference.

var nextShowing = movie1.getNextShowing();

alert(nextShowing);

nextShowing = movie2.getNextShowing();

alert(nextShowing);

Go ahead and type in the code above and also add the getNextShowing function to 
your movie2 object (just copy and paste it in). Then make the changes below to your 
previous test code. After that give it a spin! Here’s what we got:

A test drive with “this”

Note that we’re now calling getNextShowing ON the 
object. Makes more sense, doesn’t it?



146  Chapter 4

code reuse and methods

Ah, good eye.

You have great instincts if  you recognized 
that we are duplicating code when we copy 
getNextShowing into more than one movie 
object. One of  the aims of  “object-oriented” 
programming is to maximize code reuse—here 
we’re not reusing any code, in fact we’re creating 
every object as a one-off, and our movie objects 
just happen to be the same by convention (and 
copying and pasting!). Not only is that a waste, it 
can be error prone. 

There’s a much better way to do this using a 
constructor. What’s a constructor? It’s just a special 
function we’re going to write that can create 
objects for us, and make them all the same. Think 
of  it like a little factory that takes the property 
values you want to set in your object, and then 
hands you back a nice new object with all the 
right properties and methods.

Let’s create a constructor...

It seems like we’re duplicating 
code with all the copying and 

pasting of the getNextShowing 
method. Isn’t there a better way?



you are here 4  147

javascript functions and objects

How to create a constructor
Let’s make a constructor for dogs. We already know what we want our 
dog objects to look like: they have name, breed and weight properties, 
and they have a bark method. So what our constructor needs to do is 
take the property values as parameters and then hand us back a dog 
object all ready to bark. Here’s the code:

function Dog(name, breed, weight) {

    this.name = name;

    this.breed = breed;

    this.weight = weight;

    this.bark = function() {

        if (this.weight > 25) {

            alert(this.name + " says Woof!");

        } else {

            alert(this.name + " says Yip!");

        }

    };

}

A constructor function looks 
a lot like a regular function. 
But by convention, we give 
the name of the function a 
capital letter.

The parameters of the constructor take values for the properties we want our object to have. 

Here, we’re initializing the properties 
of the object to the values that were 
passed to the constructor. 

We can include the bark method in the object we’re constructing by initializing the bark property to a function value, just like we’ve been doing.

Notice how the syntax differs from 
object syntax. These are statements, so we 
need to end each one with a “;” just like 
we normally do in a function.

So let’s walk though this again to make sure we’ve got it. Dog is a 
constructor function and it takes a set of  arguments, which just happen to 
be the initial values for the properties we want: name, breed and weight. 
Once it has those values, it assigns properties using the this keyword.  It 
also defines our bark method. The result of  all this? The Dog constructor 
returns an new object. Let’s see how to actually use the constructor.

We need to use “this.weight” and 
“this.name” in the method to refer 
to the properties in the object, 
just as we have before.

The property 
names and 
parameter names 
don’t have to be 
the same, but they 
often are—again, 
by convention.



148  Chapter 4

using a constructor

Don’t worry about 
building all those objects 
yourself; we’ll construct 
them for you.

Now let’s use our constructor
Now that we’ve got our factory built, we can use it to create some dogs.  
There’s only one thing we haven’t told you, which is that you need to call 
a constructor function in a special way by putting the keyword new before 
the call. Here are some examples:

var fido = new Dog("Fido", "Mixed", 38);

var tiny = new Dog("Tiny", "Chawalla", 8);

var clifford = new Dog("Clifford", "Bloodhound", 65);

fido.bark();

tiny.bark();

clifford.bark();

Let’s review what’s going on here one more time: we’re creating 
three different dog objects, each with its own properties, using 
the new keyword with the Dog constructor that we created. 
The constructor returns a Dog object customized with the 
arguments we passed in. 

Next, we call the bark method on each one—notice that we’re 
sharing the same bark method across all dogs, and when each 
dog barks, this points to the dog object that made the call.  So 
if  we call the bark method on fido, then, in the bark method, 
this is set to the fido object. Let’s look a little closer at how 
that happens.

To create a dog, we use the new 
keyword with the constructor.

We’re creating three different Dog objects by passing in different arguments to 
customize each dog.Once we’ve got the objects, we 

can call their bark methods to 
make each Dog bark.

And then call it just 
like any function.



you are here 4  149

javascript functions and objects

How does this really work?
Anytime we put this in the code of  a method it will be interpreted as a 
reference to the object the method was called on. So, if  we call fido.bark, then 
this is going to reference fido. Or, if  we call it on our dog object tiny then 
this is going to reference tiny within that method call. How does this know 
which object it is representing? Let’s see:

Behind
the Scenes

2 And we call bark() on fido:

Dog

name: “Fido”

weight: 38

breed: “Mixed”

bark: function() { ... }

fido.bark()

3 So “this” always refers to the object the method was invoked 
on, no matter how many dogs we create to bark:

Dog

name: “Fido”

weight: 38

breed: “Mixed”

bark: function() { ... }

Dog

name: “Tiny”

weight: 8

breed: “Chawalla”

bark: function() { ... }

Dog

name: “Clifford”

weight: 65

breed: “Bloodhound”

bark: function() { ... }

fido.bark() tiny.bark() clifford.bark()

1 Let’s say we’ve got a dog object assigned to fido:

Dog

name: “Fido”

weight: 38

breed: “Mixed”

bark: function() { ... }

fido = new Dog("Fido", "Mixed", 38);

this

Here’s our new dog object all 
instantiated with the property 
values we want.

Whenever we invoke a method on an object, JavaScript sets up this to point to the object itself. So here, this points to fido.

thisthisthis

And so when we refer to this.name, 
we know the name is “Fido”.

You can call bark on any dog object 
and this will be assigned to the 
specific dog before your body code 
is executed.



150  Chapter 4

a movie constructor

function _____________(_________, __________, rating, showtimes) {

    this.title = _________;

    this.genre = genre;

    this.________________ = rating;

    this.showtimes = ________________;

    this.getNextShowing = function() {

        var now = new Date().getTime();

        for (var i = 0; i < ____________________.length; i++) {

            var showtime = getTimeFromString(this.__________________[i]);

            if ((showtime - now) > 0) {

                return "Next showing of " + ___________ + " is " + this.showtimes[i];

            }

        }

    } ______

}

title

Movie

genre

rating

showtimes
this.showtimes

this.title this

Woof

bark()

function

;

,

Use these magnets to 
complete the code.

Code Magnets
A working Movie constructor function was on the fridge, but some of 
the magnets fell on the floor.  Can you help get it back together?  Be 
careful, some extra magnets may have already been on the ground 
and might distract you.



you are here 4  151

javascript functions and objects

 Q: What’s the real difference between a function and 
a method? After all, if they’re the same thing why call them 
something different?

A: By convention, if an object has a function we call that a 
method. They both work the same way, except that you invoke 
an object’s method using the dot operator, and a method can use 
this to access the object on which the method is invoked. Think 
of a function as a standalone piece of code you can invoke, and a 
method as behavior that is attached to a specific object.

Q: So when I create objects with a constructor and those 
objects have a method, then all of those objects share the 
same code for that method?

A: That’s right, and that’s one of the advantages of object-
oriented programming: you can create the code for that class of 
objects (say all your dog objects) in one place and all the dogs 
share it. Now the way you make it specific to each dog is with 
your properties and using this to access those properties.

Q: Can I set this to a value of my choosing, and if I do, 
will that mess things up?

A: No, you can’t set this to anything. Remember, this is 
a keyword, not a variable! It looks and acts a bit like one, but it’s 
not a variable.

Q: Does this have a value outside of an object method?

A: No, if you’re not invoking an object method, then this is 
undefined.

Q: So the way to think about this is when I invoke a 
method on an object, the value of this is set to that object 
the entire time the method is being evaluated?

A: Within the body of the object, yes, this will always be the 
object itself. There are some advanced cases where it may not 
be true; for instance, things get more complicated when you have 
objects within objects, and if you start doing that, you’ll need to 
look up the semantics, but this is a good general rule.

Q: I’ve heard that in object-oriented programming I can 
have classes of objects and they can inherit from each other. 
Like, I could have a mammals class that both dog and cat 
inherit from. Can I do that in JavaScript?

A: You can. JavaScript uses something called prototypal 
inheritance, which is an even more powerful model than strictly 
class-based models. Getting into prototypal inheritance is a little 
beyond the scope of this book, but who knows, we could be 
convinced to write more on JavaScript.

Q: So when we say new Date(), we’re using a constructor, 
right? 

A: Yes, good catch! Date is a built-in constructor in JavaScript. 
When you say new Date(), you get a Date object with a 
bunch of useful methods you can use to manipulate the date.

Q: What's the difference between objects we write out 
ourselves and ones we create with a constructor? 

A: The main difference is how you create them. Objects you 
write out yourself using curly braces and comma separated 
properties are known as “object literals.” You literally type them 
into your code! If you want another one like it, you have to 
type it in yourself and make sure it’s got the same properties. 
Objects created by a constructor are created by using new and 
a constructor function, which returns the object. You can use the 
constructor function to create many objects that have the same 
properties, but different property values if you want.



152  Chapter 4

exercise solution

function ____________(___________, ____________, rating, showtimes) {

    this.title = ___________;

    this.genre = genre;

    this.________________ = rating;

    this.showtimes = ________________;

    this.getNextShowing = function() {

        var now = new Date().getTime();

        for (var i = 0; i < ____________________.length; i++) {

            var showtime = getTimeFromString(this._________________[i]);

            if ((showtime - now) > 0) {

                return "Next showing of " + _____________ + " is " + this.showtimes[i];

            }

        }

    } ______

}

titleMovie genre

rating

showtimes

this.showtimes

this.title

this

Woof

bark()

function

;

,

title

this.showtimes

Leftover magnets.

Code Magnets
A working Movie constructor function was on the fridge, but some of 
the magnets fell on the floor.  Can you help get it back together?  Be 
careful, some extra magnets may have already been on the ground 
and might distract you.

showtimes

This is a constructor so we’re 
using “Movie” for the name. 

We pass in values for the properties we 
want to customize: title, genre, rating 
and showtimes...

... and initialize the properties.

To refer to properties in the object, 
we need to use the this keyword.

Don’t forget to end this 
statement with a semicolon!



you are here 4  153

javascript functions and objects

var banzaiMovie = new Movie("Buckaroo Banzai",

                            "Cult Classic",

                            5,

                            ["1:00pm", "5:00pm", "7:00pm", "11:00pm"]);    

var plan9Movie = new Movie("Plan 9 from Outer Space",

                           "Cult Classic",

                           2,

                           ["3:00pm", "7:00pm", "11:00pm"]);

var forbiddenPlanetMovie = new Movie("Forbidden Planet",

                                     "Classic Sci-fi",

                                     5,

                                     ["5:00pm", "9:00pm"]);

alert(banzaiMovie.getNextShowing());

alert(plan9Movie.getNextShowing());

alert(forbiddenPlanetMovie.getNextShowing());

Now that you’ve got a Movie constructor, it’s time to make some Movie objects! 
Go ahead and type in the Movie constructor function and then add the code 
below and take your constructor for a spin.  We think you’ll agree this a much 
easier way to create objects.

Test drive your constructor right off the factory floor

First we’ll create a movie object for the movie Buckaroo Banzai (one of our cult classic favorites). We pass in the values for the parameters.

And next, Plan 9 from Outer Space...

And of course, Forbidden Planet.

Once we’ve got all our objects created, we 
can call the getNextShowing method and 
alert the user for the next showing times.

Notice we can put the array 
value for showtimes right in 
the function call.



154  Chapter 4

tour of common objects

movie

title 
genre 
rating 
showtimes 
 
getNextShowing

Congrats, you’ve made it 
through functions and objects! Now that 

you know all about them, and before we end the 
chapter, let’s take a few moments to check out 
JavaScript objects in the wild; that is, in their 

native habitat, the browser!

document
domain 
title 
URL

getElementById 
getElementsByTagName getElementsByClassName
createElement button

onclickwindow

document 
location 
onload 
status

alert 
prompt 
open 
close 
setTimeout 

setInterval

Now, you might have started to notice...

...that objects are all around you. For instance, 
document and window are objects, as are the elements 
we get back from document.getElementById. 
And, these are just a few of  many objects we’ll be 
encountering—when we get to the HTML5 APIs, we’ll 
be seeing objects everywhere!

Let’s take a second look at some of  the objects you’ve 
been using all along in this book:

input

value

ul

innerHTML 
childElementCount firstChild

appendChild 
insertBefore

We draw objects like this to 
show properties at the top...

...and methods at the 
bottom, so you get a quick summary of the object, its properties and methods at one glance. 

Here’s our 
own object 
movie.

Some of the 
objects we've 
already run into.



you are here 4  155

javascript functions and objects

When you’re writing code for the browser, the window 
object is always going to be part of  your life. The window 
object represents both the global environment for your 
JavaScript programs and the main window of  your 
app, and as such, it contains many core properties and 
methods.  Let’s take a look at it:

What is the window object anyway?

Here’s our window object with a few notable 
properties and methods you’ll want to know 
about. There are many more...

Location holds the URL 
of the page. If you ch

ange 

it the browser retrieves 
the new URL!

Status holds the string 
that is displayed in the 
status area of your browser. 

You’ve certainly seen this before: onload is a property that holds the function to call when the page is fully loaded.

You’ve seen the alert 
method, it displays 
an alert. Prompt is like alert, 

except it gets information 
from the user.Opens a new browser window.

Closes the window. Invokes a handler after a 
specified time interval.

Invokes a handler on a specified time interval, over and over.

window

location 

status 

onload 

document

alert 

prompt 

open 

close 

setTimeout 

setInterval

The document property holds 
the DOM!



156  Chapter 4

how window.onload works

We’ve been writing 
“alert”, not “window.alert”... 

how does the browser know we 
want the window alert method?

Window is the global object.
It may seem a little weird, but the window object 
acts as your global environment, so the names of  any 
properties or methods from window are resolved even 
if  you don’t prepend them with window.

In addition, any global variables you define are also 
put into the window namespace, so you can reference 
them as  window.myvariable.

One thing we’ve used often so far in this book is a window.onload event handler. 
By assigning a function to the window.onload property, we can ensure our code 
isn’t run until the page is loaded and the DOM is completely set up. Now, there’s a 
lot going on in the window.onload statement, so let’s have another look and it will 
all start to come together for you:

window.onload = function() {
    // code here
};

Here’s our global 
window object.

onload is a property of 
the window object. This is an anonymous function, which is 

assigned to the onload property.

And of course the body of the function is executed once the window fully loads the page and invokes our anonymous function!

A closer look at window.onload



you are here 4  157

javascript functions and objects

Another look at the document object
The document object is another familar face; it’s the object we’ve been using 
to access the DOM. And, as you’ve just seen, it is actually a property of  the 
window object. Of  course we haven’t used it like window.document because we 
don’t need to. Let’s take a quick peek under the covers to see its more interesting 
properties and methods:

document

domain 
title 
URL

getElementById 
getElementsByTagName 
getElementsByClassName

createElement

We can use the title property to get the title of the document using document.title.properties

methods
As you know, this method grabs an element by its id.

We used this method in Chapter 3 to create new playlist items. As you know it creates elements suitable for inclusion in the DOM.

We promised in the begining of  this chapter that you'd understand 
document.getElementById by the end of  the chapter. Well, you 
made it through functions, objects, and methods, and now you’re ready! 
Check it out:

What was a confusing looking string of  syntax now has a lot more meaning, 
right? Now, that div variable is also an object: an element object. Let’s take a 
closer look at that too.

var div = document.getElementById("myDiv");

document is the document object, a built-in 
JavaScript object that gives you access to the DOM.

getElementById is a 
method that...

... takes one argument, the 
id of a <div> element, and 
returns an element object.

These two are similar to getElementById, except they retrieve elements using tags and classes.

The domain property is the domain of the 
server the document is being served from, 
like wickedlysmart.com.

The URL is just the URL of the document.

A closer look at document.getElementById



158  Chapter 4

the element object

One more object to think about: your element objects
We shouldn’t forget when we’re working with methods like getElementById that the 
elements they return are also objects! Okay, you might not have realized this, but now that 
you know, you might be starting to think everything in JavaScript is an object, and, well, 
you’re pretty much right.

You’ve already seen some evidence of  element properties, like the innerHTML property; 
let’s look at some of  the more notable properties and methods:

p

innerHTML 
childElementCount firstChild

appendChild 
insertBefore 
setAttribute 
getAttribute

You know about innerHTML; two other 
properties are childElementCount (how 
many children the element has) and 
firstChild (the first child, if there is one).

You can use the methods appendChild and 
insertBefore to insert new elements into the 
DOM as children of this element.

We’ll use setAttribute and getAttribute to set and 
get attributes, like “src”, “class” and “id”, in elements. 

Here are the 
properties and 
methods for 
the <p> element, 
but all elements 
support these.

Q: Since window is the global object, that means I can use 
its properties and all of its methods without specifying window 
first right?

A: That’s right. And whether you prepend the window object’s 
properties and methods with window is up to you. For things like 
alert, everyone knows what that is, and no one uses window with 
it. On the other hand, if you’re using the lesser known properties 
or methods you might want to to make your code more easily 
understandable, and use window.

Q: So, technically, I could write  onload = init 
instead of  window.onload = init, right?

A: Yes. But we don’t recommend it in this particular case, because 
there are a lot of objects that have onload properties, so your code is 
going to be much clearer if you use window. in front of onload.

Q: The reason we don’t say  window.onload = init() 
is because that would call the function, instead of using its 
value?

A: That’s right. When you use parentheses after the function name, 
like init(), you saying you want to call the function init. If you use its 
name without parentheses, then you’re assigning the function value 
to the onload property. It’s a subtle difference when you’re typing it 
in, but the ramifications are large, so pay careful attention.



you are here 4  159

javascript functions and objects

Q: Which of the two ways of creating a window.onload 
handler is better, using a function name or an anonymous 
function?

A: One isn’t better than the other, they both do basically the same 
thing: set the value of window.onload to a function that will run 
when the page has loaded. If you need to call init from another 
function later in your program for some reason, then you’ll need to 
define an init function. Otherwise, it doesn’t matter which way 
you do it.

Q: What’s the difference between built-in objects like window 
and document, and the ones we make?

A: One difference is that built-in objects follow the guidelines 
set by specifications, so you can refer to the W3C specifications to 
understand all their properties and methods. In addition, many of the 
built-in objects, like String, may have properties that are immutable 
and can not be changed. Other than that, objects are objects. The 
nice thing about built-in objects is they’re already built for you.

So take a little R&R after 
this chapter, but before you 

go please take a quick look at the 
bullet points, and do the crossword 

to make it all stick.

Yes, String is an object! Check out a good 
JavaScript reference to get all the details 
of its properties and methods.

Congrats! You’ve completed our tour 
of objects, and made it through several 

chapters of JavaScript bootcamp. Now it’s 
time to use all that knowledge to program with 

HTML5 and all the new JavaScript APIs, 
starting in the very next chapter!

You’re leaving this 
chapter knowing more about objects 
and functions than many people out 
there. Of course, you can always learn 

more and we encourage you to explore 
(after you finish this book)!



160  Chapter 4

review of functions and objects

 � To create a function, use the function keyword with 
parentheses to hold parameters, if there are any.

 � Functions can be named, or be anonymous.

 � Naming rules for functions are the same as naming 
rules for variables.

 � The body of a function goes between curly braces, 
and contains statements that do the work of the 
function.

 � A function can return a value with the return 
statement. 

 � To invoke (or call) a function, use its name and pass 
any arguments it needs.

 � JavaScript uses pass-by-value parameter passing.

 � When you pass an object, like a dog, as an 
argument to a function, the parameter gets a copy of 
the reference to the object.

 � Variables defined in functions, including parameters, 
are known as local variables.

 � Variables defined outside of functions are known as 
global variables.

 � Local variables are not visible outside the function in 
which they are defined. This is known as the scope 
of a variable.

 � If you declare a local variable with the same name 
as a global variable, the local variable shadows the 
global variable.

 � When you link to multiple JavaScript files from your 
page, all the global variables are defined in the same 
global space.

 � If you assign a new variable without using the var 
keyword, that variable will be global, even if you are 
first assigning it in a function.

 � Functions are values that can be assigned to 
variables, passed to other functions, stored in 
arrays, and assigned to object properties.

 � Objects are collections of properties.

 � You access an object’s properties using dot notation 
or the [ ] notation.

 � If you use [ ] notation, enclose the property’s name 
as a string; for example, myObject[“name”].

 � You can change a property’s value, delete 
properties, or add new properties to an object.

 � You can enumerate an object’s properties using a 
for-in loop.

 � A function assigned to an object property is referred 
to as a method.

 � A method can use a special keyword, this, to refer 
to the object on which it was invoked. 

 � A constructor is a function that makes objects. 

 � The job of a constructor is to create a new object 
and initialize its properties. 

 � To invoke a constructor to create an object, use the 
new keyword. For example, new Dog().

 � We’ve already been using several objects in this 
book, including document, window, and various 
element objects.

 � The window object is the global object.

 � The document object is one of window’s properties.

 � The document.getElementById method returns an 
element object.



you are here 4  161

javascript functions and objects

HTML5cross
It’s been a whirlwind chapter of functions, objects, 
properties and methods—so there’s lots to make stick. 
Sit back, relax, and work the rest of your brain a little. 
Here’s your Chapter 4 crossword puzzle.

1 2

3

4 5

6 7

8 9

10 11

12 13

14

15 16

17

18

Across
1. These variables are only available in functions.
4. The true global object.
6. The _________ object represents the DOM.
11. Arguments are passed by ______________.
12. Use this keyword to start a function definition.
14. Functions without return statements return this.
15. A function in an object.
17. Functions without a name.
18. What you supply in your function definition.

Down
2. This kind of function makes objects.
3. Functions might or might not include this kind of statement.
5. Stringing together properties and function calls with the dot 
operator.
7. A property in window that we assign to a handler function.
8. What you supply in your function call.
9. The ______ operator lets you access an object’s properties 
and methods.
10. By convention, constructors have a name with an 
_________ first letter.
13. Refers to the current object in an object method.
16. Variable scope that is visible everywhere.

Across
1. These variables are only available in functions.
4. The true global object.
6. The _________ object represents the DOM.
11. Arguments are passed by ______________.
12. Use this keyword to start a function definition.
14. Functions without return statements return this.
15. A function in an object.
17. Functions without a name.
18. What you supply in your function definition.

Down
2. This kind of function makes objects.
3. Functions might or might not include this kind of statement.
5.  Stringing together properties and function calls with the 

dot operator.
7. A property in window that we assign to a handler function.
8. What you supply in your function call.
9.  The ______ operator lets you access an object’s 

properties and methods.
10.  By convention, constructors have a name with 

an _________ first letter.
13. Refers to the current object in an object method.
16. Variable scope that is visible everywhere.



162  Chapter 4

exercise solutions

Use your knowledge of functions and passing arguments to parameters to 
evaluate the code below. After you’ve traced through the code, write the 
value of each variable below. Here’s our solution.

function dogsage(age) {

    return age * 7;

}

function rectanglearea(width, height) {

    var area = width * height;

    return area;

}

function addUp(numarray) {

    var total = 0;

    for (var i = 0; i < numarray.length; i++) {

        total += numarray[i];

    }

    return total;

}

function getavatar(points) {

    var avatar;

    if (points < 100) {

        avatar = "Mouse";

    } else if (points > 100 && points < 1000) {

        avatar = "Cat";

    } else {

        avatar = "ape";

    }

    return avatar;

}

var myavatar = getavatar(335);

myDogsage = 

rectarea = 

theTotal = 

myavatar = 

Write the value 
of each variable 
here...

var myDogsage = dogsage(4);

var rectarea = rectanglearea(3, 4);

var theTotal = addUp([1, 5, 3, 9]);

28
12
18
Cat



you are here 4  163

javascript functions and objects

HTML5cross Solution

L
1

O C
2

A L

O R
3

W
4

I N D O W C
5

E

S H D
6

O
7

C U M E N T

A
8

T D
9

A N U

R R O I U
10

V
11

A L U E R

G F
12

U N C T I O N P T
13

O N

U C I P H A

M T U
14

N D E F I N E D

M
15

E T H O D G
16

G R S

N R L C

T O A
17

N O N Y M O U S

S B S

P
18

A R A M E T E R S

L

Across
1. These variables are only available in functions. [LOCAL] 
4. The true global object. [WINDOW] 
6. The _________ object represents the DOM. [DOCUMENT] 
11. Arguments are passed by ______________. [VALUE] 
12. Use this keyword to start a function definition. 
[FUNCTION] 
14. Functions without return statements return this. 
[UNDEFINED] 
15. A function in an object. [METHOD] 
17. Functions without a name. [ANONYMOUS] 
18. What you supply in your function definition. 
[PARAMETERS] 

Down
2. This kind of function makes objects. [CONSTRUCTOR] 
3. Functions might or might not include this kind of statement. 
[RETURN] 
5. Stringing together properties and function calls with the dot 
operator. [CHAINING] 
7. A property in window that we assign to a handler function. 
[ONLOAD] 
8. What you supply in your function call. [ARGUMENTS] 
9. The ______ operator lets you access an object’s properties 
and methods. [DOT] 
10. By convention, constructors have a name with an 
_________ first letter. [UPPERCASE] 
13. Refers to the current object in an object method. [THIS] 
16. Variable scope that is visible everywhere. [GLOBAL] 





this is a new chapter  165

Wherever you go, there you are. And sometimes knowing where you are 

makes all the difference (especially to a web app). In this chapter we’re going to show 

you how to create web pages that are location aware—sometimes you’ll be able to 

pinpoint your users down to the corner they’re standing on, and sometimes you’ll only 

be able to determine the area of town they’re in (but you’ll still know the town!).  Heck, 

sometimes you won’t be able to determine anything about their location, which could 

be for technical reasons, or just because they don’t want you being so nosy. Go figure. 

In any case, in this chapter we’re going to explore a JavaScript API: Geolocation. Grab 

the best location-aware device you have (even if it’s your desktop PC), and let’s get 

started. 

making your html location aware5

Geolocation
Isn’t it amazing how 
all this new technology 
is bringing everyone 

closer together?



166  Chapter 5

the geolocation api

Q: I heard Geolocation isn’t a real API?

A: Geolocation is not considered a first-class member of the 
existing HTML5 standard, but that said, it is a standard of the W3C, 
widely supported and pretty much everyone includes Geolocation 
in the list of important HTML5 APIs. And it most certainly is a real 
JavaScript API!

Q: Is the Geolocation API the same as the Google Maps 
API?

A: No. They are completely different APIs. The Geolocation API 
is solely focused on getting you information about your position on 
the Earth. The Google Maps API is a JavaScript library offered by 
Google that gives you access to all their Google Maps functionality. 
So, if you need to display your users location in a map, Google’s 
API gives you a convenient way to implement that functionality.

Q: Isn’t it a privacy concern to have my device reveal my 
location?

A: The Geolocation specification specifies that any browser 
must have the express permission of the user to make use of their 
location. So, if your code makes use of the Geolocation API, the 
first thing the browser will do is make sure it is okay with the user 
to share her location.

Q: How well supported is Geolocation?

A: Very well supported; in fact, it’s available in almost every 
modern browser including desktop and mobile. You’ll want to be 
sure you’re using the latest version of your browser; if you are, 
then you’re probably good to go.

Location, Location, Location
Knowing where your users are can add a lot to a 
web experience: you can give them directions, make 
suggestions about where they might go, you can know 
it’s raining and suggest indoor activities, you can let your 
users know who else in their area might be interested in 
some activity. There’s really no end to the ways you can 
use location information.

With HTML5 (and the Geolocation JavaScript-based 
API) you can easily access location information in your 
pages. That’s said, there are a few things to know about 
location before we get started. Let’s check it out...

Your users are now on 
the move with mobile devices 
that are location aware. The best 
apps are going to be the ones that 
can enhance users’ experiences 

using their location.



you are here 4  167

making your html location aware

The Lat and Long of it...
To know where you are, you need a coordinate system, and you need one on the 
Earth’s surface. Luckily we have such a thing, and it uses latitude and longitude 
together as a coordinate system. Latitude specifies a north/sourth point on the Earth, 
and longitude, an east/west point. Latitude is measured from the equator, and 
longitude is measured from Greenwich, England. The job of  the geolocation API is 
to give us the coordinates of  where we are at any time, using these coordinates:

Latitude is a distance north or 
south of the equator.

Longitude is a distance 
east or west of 
Greenwich, England.

The Royal Observatory in 
Greenwich, to be precise.

New York City is 
40.77, -73.98

Silicon Valley is 
37.37, -121.92 Greenwich, England 

is 51.47, 0

Lima, Peru is 
-12.05, -77.04

Porto-Novo, Benin 
is 6.49, 2.61

You’ve probably seen latitude and longitude specfied in both degrees/minutes/seconds, 
such as (47˚38’34’’, 122˚32’32’’), and in decimal values, such as (47.64, -122.54). With 
the Geolocation API we always use decimal values. If you need to convert degrees/
minutes/seconds to decimal, you can use this function: 
  function degreesToDecimal(degrees, minutes, seconds) {

    return degrees + (minutes / 60.0) + (seconds / 3600.0);

  }

Latitude/Longitude Closeup

Also notice that 
longitude West and 
latitude South are 
represented by 
negative values.



168  Chapter 5

determining location

How the Geolocation API determines your location
You don’t have to have the newest smartphone to be location aware. Even desktop 
browsers are joining the game. You might ask, how would a desktop browser 
determine its location if  it doesn’t have GPS or any other fancy location technologies?  
Well, all browsers (in devices and on your desktop) are using a few different ways to 
determine where you are, some more accurate than others. Let’s take a look:

I scored the newest 
smartphone and I’ve got 
GPS built right into the 
phone. Talk about accuracy!

Nothing fancy here in the 
office... we just have our desktop 

browsers. But my IP address can 
be mapped to a location, which is 

sometimes quite accurate.

GPS
Global Positioning System, 
supported by many newer mobile 
devices, provides extremely 
accurate location information based 
on satellites. Location data may 
include altitude, speed and heading 
information. To use it, though, your 
device has to be able to see the sky, 
and it can take a long time to get a 
location. GPS can also be hard on 
your batteries.

IP Address
Location information based 
on your IP address uses an 
external database to map 
the IP address to a physical 
location. The advantage of this 
approach is that it can work 
anywhere; however, often 
IP addresses are resolved to 
locations such as your ISP’s 
local office. Think of this 

method as being reliable 
to the city or sometimes 
neighborhood level.



you are here 4  169

making your html location aware

My phone is old school. No GPS on 
this baby. But through cell tower 

triangulation, my phone’s got a pretty 
good idea of where I am, and the 

browser can make use of this.

WiFi
WiFi positioning uses one or more 
WiFi access points to triangulate 

your location. This method 
can be very accurate, works 
indoors and is fast. Obviously 

it requires you are somewhat 
stationary (perhaps drinking a 
venti iced tea at a coffee house).

Cell Phone
Cell phone triangulation 
figures out your location 
based on your distance from 
one or more cell phone towers 
(obviously the more towers, the 
more accurate your location 
will be). This method can be 
fairly accurate and works indoors 
(unlike GPS); it also can be much 
quicker than GPS. Then again, if 
you’re in the middle of nowhere 
with only one cell tower, your 
accuracy is going to suffer.

I’m on the move from coffee shop 
to coffee shop with my laptop and 
wireless subscriptions. You know where 
I am by triangulating all those wireless 
carriers.  Seems to work pretty well.



170  Chapter 5

method of determining location

It’s cool we’ve got so many 
ways to know where we are. How 
am I going to know which method 
my device is using?

You’re not.
The short answer is “you’re not,” as 
the browser implementation is going to 
determine how location is determined. But 
the good news is the browser can use any 
of  these means to determine your location. 
In fact, a smart browser might first use cell 
phone triangulation, if  it is available, to 
give you a rough idea of  location, and then 
later give you a more accurate location with 
WiFi or GPS.

We’ll see that you don’t need to worry 
about how the location is being determined, 
and we’ll focus more on the accuracy 
of  your location instead. Based on the 
accuracy, you can determine how useful the 
location is going to be for you. Stay tuned—
we’ll get back to accuracy a little bit later.



you are here 4  171

making your html location aware

Think about your existing HTML pages and applications (or ones 
that you want to create); how might you incorporate location 
information into them? 

Allow my users to share with others that are nearby.

Let my users more easily find local resources or services.

Keep track of where my user does something.

Give my users directions from where they are.

Use location to determine other demographics of my users.

 

 

 

 

Your ideas here!



172  Chapter 5

using the geolocation api

Just where are you anyway?

<!doctype html>
<html>
<head>
  <meta charset="utf-8">
  <title>Where am I?</title>
  <script src="myLoc.js"></script>
  <link rel="stylesheet" href="myLoc.css">
</head>
<body>
  <div id="location">
    Your location will go here.
  </div>
</body>
</html>

Well, of  course you know where you are, but let’s see 
where your browser thinks you are. To do that we’ll just 
create a little HTML:

window.onload =  getMyLocation;

function getMyLocation() {

    if (navigator.geolocation) {

        navigator.geolocation.getCurrentPosition(displayLocation);

    } else {

        alert("Oops, no geolocation support");

    }

}

All the usual stuff at the top, including a link to the 
file where we’ll put our JavaScript, myLoc.js, and a 
stylesheet, myLoc.css to make it all look pretty.

And you’re going to use 
this <div> to output 
your location.

We’re calling the function getMyLocation as soon as 
the browser loads the page.

This is how we check to make sure the browser supports 
the Geolocation API; if the navigator.geolocation object 
exists, then we have it!

If it does, then we call the getCurrentPosition method and pass in a 
handler function, displayLocation. We’ll implement this in just a sec.

If the browser does NOT support geolocation, then 
we’ll just pop up an alert to the user. 

We’re going to write our 
geolocation code in myLoc.js.

Now let’s create myLoc.js and write a little code; 
we’re going to do this quickly and then come back and 
dissect it all.  Add this to your myLoc.js file:

The displayLocation function is 
the handler that’s going to get 
its hands on the location.

Put all this HTML in a 
file named myLoc.html.



you are here 4  173

making your html location aware

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

}

getCurrentPosition’s handler is passed a position, 
which contains the latitude and longitude of 
your location (along with some accuracy info we’ll 
get to in a bit).

We grab the latitude and longitude of your 
location from the position.coords object. 

... and for now, we’ll just set the content of the 
location <div> to your location using innerHTML.

Then we grab our <div> 
from the HTML...

Here’s our handler, which is going to get called 
when the browser has a location.

Test drive your location
Get this code typed in and take your new location-aware page 
for a test drive.

When you run a Geolocation web app for the first time, you’ll 
notice a request in the browser asking for your permission to 
use your location. This is a browser security check, and you’re 
free to tell the browser no. But assuming you want to test this 
web app, you’ll want to click Allow or Yes. When you do, the 
app should show you your location, like this: The request for permission 

may look a little different 
depending on the browser 
you’re using, but will look 
something like this.

Here’s your location! Your 
location will obviously be 
different from ours (if it’s 
not we’re going to get really 
worried about you).

If you’re not getting your location, and assuming 
you’ve double checked for typos and that kind of 
thing, hold on for a few pages and we’ll give you 
some code to debug this...Keep in mind getting a location isn’t always 

instantateous, it might take a little while...



174  Chapter 5

reviewing geolocation code

What we just did...
Now that we’ve got some geolocation code up and running (and, again, if  
you’re not seeing a location yet, hold on, we’re getting to some debugging 
techniques in just a sec), let’s walk through the code in a little more detail:

if (navigator.geolocation) {

     ...

} else {

    alert("Oops, no geolocation support");

}

The first thing you need to know if you’re going to write geolocation 
code is “does this browser support it?” To do that we make use 
of the fact that browsers have a geolocation property in their 
navigation object only if geolocation is supported.

So we can test to see if the geolocation property exists, and if so 
make use of it; otherwise, we’ll let the user know:

1

We can use a simple test to see if geolocation is 
there (if it’s not then navigator.geolocation evaluates 
to null and the condition will fail).

Now, if there is a navigator.geolocation property, we’re going to make 
some more use of it. In fact, the navigator.geolocation property is an 
object that contains the entire geolocation API. The main method the 
API supports is getCurrentPosition, which does the work of getting the 
browser’s location. Let’s take a closer look at this method, which has 
three parameters, the second two of which are optional:

2

If your browser supports 
the Geolocation API, you’ll find 
a geolocation property in the 

navigator object.

If it is there, we can make use of it, and if not, 
we’ll let the user know.

The successHandler is a function that 
is called if the browser is able to 
successfully determine your location.

These two parameters are 
optional, which is why we 
didn’t need them before.

The errorHandler is another function, 
that is called if something goes wrong and 
the browser can’t determine your location.

The options parameter 
allows you to customize the 
way geolocation works.

getCurrentPosition(successHandler, errorHandler, options)

Remember, APIs are just 
objects with properties 
and methods! Now aren’t 
you glad you did all the 
JavaScript training up 
front!



you are here 4  175

making your html location aware

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

}

if (navigator.geolocation) {

    navigator.geolocation.getCurrentPosition(displayLocation);

}

Remember chaining from Chapter 4? We’re using the navigator object to get access to the geolocation object, which is just a property of navigator.

Now let’s take a look at our call to the getCurrentPosition method. 
For now, we’re supplying just the successHandler argument to handle 
a successful attempt to get the browser location. We’ll look at the 
case when the browser fails to find a location in a bit.

3

If and when geolocation 
determines your location, 
it will call displayLocation.

And we’re calling the geolocation object’s 
getCurrentPosition method with one 
argument, the success callback.

Now let’s look at the success handler, displayLocation. When 
displayLocation is called, the geolocation API passes it a position 
object that contains information about the browser’s location, 
including a coordinates object that holds the latitude and longitude 
(as well as a few other values we’ll talk about later).

4

position is an object that’s 
passed into your success handler 
by the geolocation API. 

The position object has a coords property that 
holds a reference to the coordinates object...

... and the coordinates object 
holds your latitude and longitude.

And this part we’re sure you can do in your sleep by 
now: we’re just taking the coordinate information, 
and displaying it in a <div> in the page.

Did you notice we're 
passing a function to 
another function here? 
Remember from Chapter 
4 that functions are 
values, so we can do that, 
no problem. 



176  Chapter 5

how get current position works

How it all fits together

Browser

geolocation 
APIBrowser

Browser calls 
getCurrentPosition

geolocation then 
asks the user for 
permission.

If the user gives permission, then 
geolocation uses the best means it 
can to get the browser’s location 
(GPS, triangulation, and so on).

geolocation 
API

Browser

position.coords.latitude

position.coords.longitude

And if geolocation can determine the 
browser’s location, it calls the success 
handler and passes it an object with 
the coordinates.

Now that we’ve gone through the code, let’s see 
how it all works at runtime:



you are here 4  177

making your html location aware

When it comes to Geolocation, not every test drive is going to be successful, and even if 
your first test was successful, down the road something is going to go wrong.  To help, we’ve 
created a little diagnostic test for you that you can add right into your code. So, if you’re 
having trouble, here’s your answer, and even if you’re not, one of your users is going to have 
an issue and you’re going to want to know how to handle that in your code. So, add the code 
below, and if you’re having issues, kindly fill out the diagnostic form at the end once you’ve 
diagnosed the problem:

To create the diagnostic test we’re going to add an error handler to the getCurrentPosition 
method call. This handler is going to get called anytime the Geolocation API encounters a 
problem in determining your location. Here’s how we add it:

Test Drive Diagnostics

navigator.geolocation.getCurrentPosition(displayLocation, displayError);

Add a second argument to your getCurrentPosition call 
named displayError. This is a function that is going to be 
called when geolocation fails to find a location.

Now we need to write the error handler. To do that you need to know that geolocation passes 
an error object to your handler that contains a numeric code describing the reason it couldn’t 
determine the location of your browser. Depending on the code, it might also provide a 
message giving further information about the error. Here’s how we can use the error object in 
the handler:

function displayError(error) {

    var errorTypes = {

        0: "Unknown error",

        1: "Permission denied by user",

        2: "Position is not available",

        3: "Request timed out"

    };

    var errorMessage = errorTypes[error.code];

    if (error.code == 0 || error.code == 2) {

       errorMessage = errorMessage + " " + error.message;

    }

    var div = document.getElementById("location");

    div.innerHTML = errorMessage;

}

Here’s our new handler, which is passed 
an error by the Geolocation API.

The error object contains a code property that has a 
number from 0 to 3. Here’s a nice way to associate an 
error message with each code in JavaScript:

We create an object with three properties 
named zero to three. These properties are 
strings with an error message we want to 
associate with each code.

And using the error.code property, 
we assign one of those strings to a 
new variable, errorMessage.

In the case of errors zero and 
two, there is sometimes additional 
information in the error.message 
property, so we add that to our 
errorMessage string.And then we add the message to the page to let 

the user know.



178  Chapter 5

I did not give permission for my location to be used.

My position wasn’t available.

After a few seconds, I got a message indicating there was a request timeout.

Nothing happened at all, no location and no error alert.

Your Diagnostic Results Here

Something else _____________________________________

When you’ve got the diagnostic test typed in, go 
ahead and give it a try. Obviously if you receive a 
location then everything is working and you won’t 
see any of the errors. You can force an error by 
denying the browser’s request to use your location. 
Or you might get creative and, say, move indoors 
with your GPS phone while turning off your network. 
In the worst case, if you wait for a long time without 
getting a location or an error message, most likely 
you’re waiting on a long timeout value to, well, time 
out. We’ll see how to shorten that timeout duration a 
little later in the chapter.

Unknown error

Timed out

Permission denied by user

    var errorTypes = {

        0: "Unknown error",

        1: "Permission denied by user",

        2: "Position is not available",

        3: "Request timed out"

    };

Before we run the test, let’s take a closer look at the types of errors we can get.

This is the catchall error that is used when none of 
the others make sense. Look to the error.message 
property for more information.

This means the user denied the request to make use of location information.

This means the browser tried, but failed to 
get your location. Again, look to error.message 
for more information.

Finally, geolocation has an internal timeout 
setting, which, if exceeded before a location 
is determined, causes this error.

We’ll see how to change geolocation’s default 
timeout a little later in the chapter.



you are here 4  179

making your html location aware

...
<body>
  <div id="location">
    Your location will go here.
  </div>
  <div id="distance">
   Distance from WickedlySmart HQ will go here.
  </div>
</body>
</html>

Revealing our secret location...
Now that you’ve got the basics out of  the way, let’s do something 
more interesting with location. How about we see how far you are 
from our secret writing location at Wickedly Smart HQ? To do that 
we need the HQ coordinates and we need to know how to calculate 
distance between two coordinates. First, let’s add another <div> to 
use in the HTML:

WS HQ

Wickedly Smart Head Quarters is 
at 47.62485, -122.52099.

Add this new <div> to your HTML.

To test your geolocation code on 
a mobile device, you’re going to 
want a server.

Unless you have a means of loading your 
HTML, JavaScript and CSS files directly 

onto your mobile device, the easiest way to test them is to 
place them on a server (take a peek at the next chapter to 
see how to set up your own server if you want) and access 
them there. If you’ve got a server and you want to do that, we 
encourage you to do so. On the other hand, if that doesn’t 
work for you, we’ve made sure the code is available on the 
Wickedly Smart servers so that you can test on your mobile 
devices. That said, we encourage you to follow along with the 
code on your desktop, and once you have it working there, 
then test on your mobile device using the server (your own or 
Wickedly Smart).

For the first Test Drive (including the error diagnostic), point 
your device to http://wickedlysmart.com/hfhtml5/chapter5/
latlong/myLoc.html.

Q: The latitude and longitude returned 
by the app for my location aren’t quite 
right, why is that?

A: There are a variety of ways that your 
device and the location service provider 
calculate your position, and some are more 
accurate than others. GPS is often the most 
accurate. We’re going to look at a way to 
determine the accuracy estimate that the 
location service gives back as part of the 
position object so you can see how accurate 
to expect the location data to be.



180  Chapter 5

ready bake code to compute distance

function degreesToRadians(degrees) {

    var radians = (degrees * Math.PI)/180;

    return radians;

}

We’ll see more of this function in 
the Canvas chapter.

Ever wanted to know how to compute the distance between two points on 
a sphere? You’ll find the details fascinating, but they’re a little outside 
the scope of this chapter. So, we’re going to give you some Ready Bake Code 
that does just that. To compute the distance between two coordinates 
most everyone uses the Haversine equation; you’ll find it implemented 
below. Feel free to use it anywhere you need to know the distance 
between two coordinates:

Some Ready Bake Code: computing distance

function computeDistance(startCoords, destCoords) {

    var startLatRads = degreesToRadians(startCoords.latitude);

    var startLongRads = degreesToRadians(startCoords.longitude);

    var destLatRads = degreesToRadians(destCoords.latitude);

    var destLongRads = degreesToRadians(destCoords.longitude);

    var Radius = 6371; // radius of the Earth in km

    var distance = Math.acos(Math.sin(startLatRads) * Math.sin(destLatRads) +

                    Math.cos(startLatRads) * Math.cos(destLatRads) *

                    Math.cos(startLongRads - destLongRads)) * Radius;

    return distance;

}

This function takes two coordinates, a start 
coodinate and a destination coordinate, and 
returns the distance in kilometers between them.

Add this to your myLoc.js file.



you are here 4  181

making your html location aware

We want to compute the 
distance from you to us, 
as the crow flies.

Writing the code to find the distance

var ourCoords =  {

        latitude: 47.624851,

        longitude: -122.52099

};

Now that we’ve got a function to compute the distance between 
two coordinates, let’s define our (that is, the authors’) location 
here at the WickedlySmart HQ (go ahead and type this in too):

Here we’re going to define 
a literal object for the 
coordinates of our location at 
the Wickedly Smart HQ. Add 
this as a global variable at the 
top of your myLoc.js file.

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

    var km = computeDistance(position.coords, ourCoords);

    var distance = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

}

And now let’s write the code: all we need to do is pass the coordinates of  
your location and our location to the computeDistance function:

Here we’re passing the coordinates 
of your position and also our 
coordinates to computeDistance.

And then we take the results and update the 
contents of the distance <div>.

Location-enabled test drive
Now let’s give this new code a test drive.  Go ahead and finish adding 
the code to myLoc.js and then reload myLoc.html in your browser. 
You should see your location and also your distance from us. 

Your location and distance 
will obviously be different 
depending on where you are 
in the world. 

Try online: http://wickedlysmart.com/hfhtml5/chapter5/distance/myLoc.html



182  Chapter 5

adding google maps

You know, seeing 
my location as 34.20472, 

-90.57528 is great, but a map 
would really come in handy 

right now!

<script src="http://maps.google.com/maps/api/js?sensor=true"></script>

This is the location of the 
Google Maps JavaScript API.

Make sure you type this exactly as is, including the sensor 
query parameter (the API won’t work without this). We’re 
using sensor=true because our code is using your location. 
If we were just using the map without your location, we’d 
type sensor=false. 

Mapping your position
As we told you up front, the Geolocation API is pretty simple—it gives you a way to 
find (and as you’ll see, track, as well) where you are, but it doesn’t provide you with 
any tools to visualize your location. To do that we need to rely on a third-party tool, 
and as you might guess, Google Maps is by far the most popular tool for doing that. 
Obviously Google Maps isn’t part of  the HTML5 spec, but it does interoperate well 
with HTML5, and so we don’t mind a little diversion here and there to show you 
how to integrate it with the Geolocation API.  If  you want to be diverted, you can 
start by adding this to the head of  your HTML document and then we’ll work on 
adding a map to your page:



you are here 4  183

making your html location aware

Now that you’ve linked to the Google Map API, all the functionality of  Google Maps 
is available to you through JavaScript. But, we need a place to put our Google Map, 
and to do that we need to define an element that is going to hold it.

Here’s the <div>. Note we’ve defined some style 
in myLoc.css that sets the map <div> to 400px 
by 400px with a black border.

var googleLatandLong = new google.maps.LatLng(latitude, longitude);

var mapOptions = {

    zoom: 10,

    center: googleLatandLong,

    mapTypeId: google.maps.MapTypeId.ROaDMaP

};

The zoom option can be specified 0 to 21. Experiment with the zoom: bigger numbers 
correspond to being zoomed in more (so you see more detail). 10 is about “city” sized.

Here’s our new object we just created. We want the 
map to be centered on this location.

You can also try SATELLITE and 
HYBRID as options here.

Here’s the constructor, which takes our lat and long 
and returns a new object that holds them both.

How to add a Map to your Page

...
<body>
  <div id="location">
    Your location will go here.
  </div>
  <div id="distance">
   Distance from WickedlySmart HQ will go here.
  </div>
  <div id="map">

  </div>

</body>
</html>

Getting ready to create a map...

Google gives us some options we can set to control how the map is created. For 
instance, we can control how far zoomed in or out the initial map view is, where 
the map is centered, and the type of  map, like a road-style map, a satellite view, 
or both. Here’s how we create the options:

To create the map we need two things: a latitude and longitude (and we know how to 
get those), and we need a set of  options that describe how we want the map created. 
Let’s start with the latitude and longitude. We already know how to get them with 
the Geolocation API, but the Google API likes them bundled up in its own object. 
To create one of  those objects we can use a constructor supplied by Google:

google.maps precedes all the methods of the Google Maps API.

OffRoad    
Diversion

Don’t forget, 
constructors start with 
an uppercase letter.



184  Chapter 5

page goal header

var map;

function showMap(coords) {

    var googleLatandLong = 

              new google.maps.LatLng(coords.latitude,    

                                     coords.longitude);

    var mapOptions = {

        zoom: 10,

        center: googleLatandLong,

        mapTypeId: google.maps.MapTypeId.ROaDMaP

    };

    var mapDiv = document.getElementById("map");

    map = new google.maps.Map(mapDiv, mapOptions);

}

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

    var km = computeDistance(position.coords, ourCoords);

    var div = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

    showMap(position.coords);

}

We use our latitude and longitude 
from the coords object...

...and use them to create a 
google.maps.LatLng object.

We create the mapOptions 
object with the options we 
want to set for our map.
And finally, we grab the map <div> 
from the DOM and pass it and the 
mapOptions to the Map constructor 
to create the google.maps.Map object. 
This displays the map in our page.

We’ll call showMap from displayLocation after we’ve 
updated the other <div>s on the page.

Displaying the Map
Let’s put all this together in a new function, showMap, that takes a set of  
coordinates and displays a map on your page:

Here’s another constructor from Google’s 
API, which takes an element and our 
options and creates and returns a map 
object.

We’re assigning the 
new Map object to our 
global variable map.

We’re declaring a global variable map, that is going to hold the Google map after we create it. You’ll see how this gets used in a bit.

Go ahead and add this code to your JavaScript file at the bottom. And now we just need 
to tie it into our existing code. Let’s do that by editing the displayLocation function:

OffRoad    
Diversion

code to display map



you are here 4  185

making your html location aware
OffRoad    
Diversion

Make sure you’ve added all the new 
code on the previous page and also 
added the new map <div> to your 
HTML; then reload your page and, 
if  the browser can determine your 
location, you’ll see a map.

We’re showing the biker’s 
location at 34.20472, 
-90.57528; of course you’re 
probably somewhere else.

Here’s our new 
Google Map!

Test drive your new 
heads-up display

Try online: http://wickedlysmart.com/hfhtml5/chapter5/map/myLoc.html

Nice! Is there a 
way to see our exact 

location on the map? Like 
with one of those push 

pin thingys?

You really want 
that near your 
bike?



186  Chapter 5

page goal header

It would be more useful if  you could see exactly where you’re 
located on the map. If  you’ve used Google Maps, then you’re 
probably familiar with the push pins used to mark the location 
of  items you search for. For example, if  you search for Space 
Needle in Seattle, WA, you’ll get a map with a pin near the 
Space Needle area in the city, and if  you click on the pin, you’ll 
see an information window with more details about the item. 
Well, push pins are called markers, and they are one of  the 
many things offered in the Google Maps API.

Adding a marker with a pop-up information window requires 
a little code because you have to create the marker, the 
information window, and a handler for the click event on the 
marker (which opens the information window). Given we’re on 
a diversion, we’re going to cover this fairly quickly, but at this 
point in the book, you’ve got everything you need to keep up!

When you search for an item in Google 
Maps, you’ll see a red pin marking the 
spot of the search result.

Sticking a Pin in it...

function addMarker(map, latlong, title, content) {

    var markerOptions = {

        position: latlong,

        map: map,

        title: title,

        clickable: true

    };

    var marker = new google.maps.Marker(markerOptions);

}

We’re going to start by creating a new function, addMarker, and then 
use the Google API to create a marker:

1

The addMarker function takes a map, a google-style 
latitude and longitude, a title for the marker, and 
also some content for the info window.

We create an options object with the latitude and longitude, the map, the title, and whether or not we want the marker to be clickable...

...we set it to true here bceause we want to be able 
to display an info window when it is clicked.

Then we create the marker object by using yet 
another constructor from Google’s API, and pass it 
the markerOptions object we created.

OffRoad    
Diversion

adding a google marker



you are here 4  187

making your html location aware

function addMarker(map, latlong, title, content) {
  .  .  .

    var infoWindowOptions = {

        content: content,

        position: latlong

    };

    var infoWindow = new google.maps.InfoWindow(infoWindowOptions);

    google.maps.event.addListener(marker, "click", function() {

        infoWindow.open(map);

    });

}

Now we’re going to define some options for 
the info window.

We need the content...

... and the latitude and longitude.

And with that we create the info window.

When the marker is clicked, 
this function is called and the 
infoWindow opens on the map.

Our other code is still here, we’re just saving some trees...

Now all that’s left to do is call the addMarker function from showMap, making 
sure we pass in all the right arguments for the four parameters. Add this to 
the bottom of your showMap function:

3

var title = "Your Location";

var content = "You are here: " + coords.latitude + ", " + coords.longitude;

addMarker(map, googleLatandLong, title, content);

We pass in the map and 
googleLatAndLong objects we 
created using the Google maps API...

... and a title string, and a content string for the marker. 

Next we’re going to create the info window by defining some options specific 
to it, and then create a new InfoWindow object with the Google API. Add the 
code below to your addMarker function:

2

OffRoad    
Diversion

Next we’ll use the Google Maps 
addListener method to add a “listener” 
for the click event. A listener is just like 
a handler, like onload and onclick, that 
you’ve already seen.

We pass the listener a 
function that gets called 
when the user clicks on 
the marker.



188  Chapter 5

page goal header
OffRoad    
Diversion

Get all the code for addMarker added, update showMap to call 
addMarker and reload the page. You’ll see a map with a marker with 
your location on it. 

Try clicking on the marker. You’ll get a pop-up window with your 
latitude and longitude. 

This is great, because now you know exactly where you are (just in 
case you were lost or something...)

Here’s what our map with 
the marker and info 
window pop-up looks like.

Testing the marker

We’ve only scratched the surface of  what you can do with the Google Maps API, and 
although this API is way beyond the scope of  this book, you’re well on your way to 
being able to tackle it on your own. Here are some things you can consider using it for, 
and some pointers to where to start.

The other cool things you can do with 
the Google Maps API

All this is available through the Google Maps JavaScript API. To take your experiments further, 
check out the documentation at: 

Controls: By default, your Google map includes several controls, like the zoom control, 
the pan control, a control to switch between Map and Satellite view, and even the Street 
View control (the little pegman above the zoom control). You can access these controls 
programmatically from JavaScript to make use of them in your applications.

Overlays: Overlays provide another view on top of a Google map; say, a heat map overlay. 
If you’re commuting, you can check traffic congestion with the traffic overlay. You can create 
custom overlays, like custom markers, your photos, and pretty much anything else you can 
imagine, using the Google Maps overlay APIs.

Services: Ever looked up directions in Google Maps? If so, then you’ve used the Directions 
service. You have access to directions, as well as other services, like distance and street view 
through the Google Maps services APIs. 

Try online: http://wickedlysmart.com/hfhtml5/chapter5/marker/myLoc.html

http://code.google.com/apis/maps/documentation/javascript/

more google maps



you are here 4  189

making your html location aware

Head First: Welcome Geolocation. I gotta say right 
up front, I’m a bit surprised to see you here.

Geolocation: Why’s that?

Head First: You’re not even “officially” part of  the 
HTML5 spec and here you are, you’re the first API 
that’s been given a chapter! What’s up with that?

Geolocation: Well, you’re right that I’m defined 
in a specification that’s separate from the HTML5 
specification, but I am an official specification of  the 
W3C. And, just look around, any mobile device worth 
its salt has me already implemented in its browser. I 
mean what good is a mobile web app without me? 

Head First: So what kind of  web apps are making 
use of  you?

Geolocation: Really, it’s most of  the apps people are 
using on the move; from apps that let you update your 
status and include geo information, to camera apps 
that record where pictures are taken, to social apps that 
find local friends or allow you to “check in” at various 
locations. Heck, people are even using me to record 
where they cycle or run or eat or to get where they’re 
going.

Head First: Your API seems a bit simplistic, I mean 
you’ve got, what, a couple of  methods and properties 
total?

Geolocation: Small and simple is powerful. Do you 
see many complaints about me out there? Nope.  I’ve 
got what every developer needs and location-aware 
apps are getting cranked out by the dozen a day. Plus, 
small equals quick and easy to learn, right? Maybe 
that’s why I’m the first API with his very own chapter?

Head First: Let’s talk about support. 

Geolocation: That’s a short topic because I’m 
supported in almost every browser, on desktop and 
mobile. 

Head First: Okay, so one thing I’ve always wanted 
to ask you: what good are you on a device that doesn’t 
have GPS?

Geolocation: There’s a big misconception that I’m 
somehow dependent on GPS.  There are other great 
ways to determine location today through cell phone 
triangulation, using IP addresses, and so on. If  you 
have GPS, great, and in fact I can help you even more; 
but if  not, there are lots of  ways to get location.

Head First: Help even more?

Geolocation: If  you’ve got a good enough mobile 
device I can give you altitude, direction, speed, all 
kinds of  things.

Head First:  Say none of  those methods work, that 
is, GPS, IP address, triangulation, then what good are 
you?

Geolocation: Well, I can’t always guarantee you’re 
going to get a location, but that’s okay because I do 
give you a nice way to handle failures gracefully. All 
you have to do is give me an error handler and I’ll call 
it if  I have a problem.  

Head First: Good to know. Well, that’s all we have 
time for. Thank you, Geolocation, for being here and 
congrats for getting promoted to a real W3C standard.

Geolocation Exposed
This week’s interview:
A conversation with a wannabe HTML5 API



190  Chapter 5

geolocation api details

Meanwhile back at the Geolocation API...
We’ve already travelled a fair distance with the Geolocation API: we’ve 
determined our location, computed distances to other locations, handled 
the error states of  the API and even added a map using the Google Maps 
API.  But it’s not time to rest yet, we’re just to the point of  getting into the 
interesting parts of  the API. We’re also at that point between knowing 
about the API, and having mastery over it, so let’s keep moving!

One thing we need to do before going on is to take a closer look at the 
API itself. We’ve talked about it enough, but we’ve never actually looked 
at it. As we’ve been saying, the API is actually really simple, having just 
three methods: getCurrentPosition (which you know 
something about), watchPosition 
(which you’ll find out about soon enough), 
and clearWatch (which, you guessed 
it, is related to watchPosition). Before 
getting to these two new methods, let’s take 
another look at getCurrentPosition 
and at some related objects, like the 
Position and Coordinates objects.  
You’re going to find a few new things there 
you didn’t know about.

Geolocation

getCurrentPosition 
watchPosition 
clearWatch

Remember, the success handler (or callback) is 
called when a location is determined, and it is 
passed a position object.

The error handler is called when the browser 
can’t determine its location.  As we’ve seen 
there are many possible reasons for that.

And we have another parameter we 
haven’t used yet that allows us to 
fine-tune the behavior of geolocation.

getCurrentPosition(successHandler, errorHandler, positionOptions)

The methods that 
are part of the 
Geolocation API.

Position

coords 
timestamp

Coordinates

latitude 
longitude 
accuracy

altitude 
altitudeAccuracy 
heading 
speed

We know about the coords property, but there’s also a timestamp property in position that contains the time the position object was created. This can be useful for knowing how old the location is.

We know about 
latitude and longitude, 
but there are other 
properties in the 
coordinates object.
Three are guaranteed 
to be there: lat, long 
and accuracy.

The rest may 
or may not 
be supported, 
depending on 
your device.



you are here 4  191

making your html location aware

Can we talk about your accuracy?
Finding your location isn’t an exact science. Depending on the method 
the browser uses, you may know only the state, city, or city block you’re on.  
Then again, with more advanced devices you might know your location to 
within 10 meters, complete with your speed, heading and altitude. 

So how do we write code, given this situation? The designers of  the 
Geolocation API have made a nice little contract with us: every time they 
give us a location they’ll also give us the accuracy, in meters, of  the location, 
to within a 95% confidence level. So, for instance, we might know our 
location with 500 meters accuracy, which means that we can be pretty 
darn sure we can count on the location as long as we factor in a radius of  
500 meters.  And for 500 meters, we’d be safe, for instance, giving city or 
neighborhood recommendations, but we might not want to provide street 
by street driving directions.  In any case, it is obviously up to your app to 
figure out how it wants to make use of  the accuracy data.

Enough talk, let’s find out what your accuracy looks like in your current 
location. As you’ve just seen, the accuracy information is part of  the 
coordinates object. Let’s pull it out and use it in the displayLocation function.

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

    div.innerHTML += " (with " + position.coords.accuracy + " meters accuracy)";

    var km = computeDistance(position.coords, ourCoords);

    var div = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

    showMap(position.coords);

}

Here we use the accuracy property 
of position, and append onto the end 
of the <div>’s innerHTML.

Accuracy Test
Make sure you’ve got this one liner added to your code, and load the 
page. Now you can see how accurate your location is. Be sure to try this 
on any device you have.

Try online: http://wickedlysmart.com/hfhtml5/chapter5/accuracy/myLoc.html



192  Chapter 5

tracking movement

“Wherever you go, there you are”
The orgin of  this phrase has been hotly debated.  Some claim the 
first real mention of  it was in the film Buckaroo Banzai, others draw 
its origin from Zen Buddhist text, still others cite various books, 
movies and popular songs. No matter the source, it’s here to stay, 
and even more so after this chapter because we’re going to turn it 
into a little web app named “Wherever you go, there you are.”  Yes, 
there is an app for that! But, we’re going to need a little participation 
from you, the reader, because for this one you’ll have to (excuse us 
for saying this) get off  your butt and move around a little.

What we’re going to do is extend our current code so that it tracks 
your movements in real time. To do that we’re going to bring 
everything together, including last two methods in the Geolocation 
API, and create an app that tracks you, in near real time.

Where do you come in on the 
debate? Is the saying a product of the Banzai Institute, or are the 
origins in Zen literature?

Your app calls 
watchPosition, 

passing in a success 
handler function. 

1 watchPosition sits 
in the background 

and constantly 
monitors your position.

2

When your 
position changes, 

watchPosition calls 
your success handler 
function to report 
your new position.

3watchPosition 
continues to 

monitor your position 
(and report it to your 
success handler) until 
you clear it by calling 
clearWatch.

4

How we’re going to track your movements
You’ve already received a heads up that the Geolocation API has a watchPosition 
method. This method does what it says: it watches your movements and reports your 
location back as your location changes. The watchPosition method actually looks just 
like the getCurrentPosition method, but behaves a little differently: it repeatedly 
calls your success handler each time your position changes. Let’s see how it works.

Browser position.coords.latitude

position.coords.longitude



you are here 4  193

making your html location aware

Getting the app started
We’re going to use our previous code as a starting point; first we’re going 
to add a couple of  buttons to the HTML so that we can start and stop 
the tracking of  your location.  Why do we need the buttons?  Well, first 
of  all, users don’t want to be tracked all the time and they usually want 
some control over that. But there’s another reason: constantly checking 
your position is an energy-intensive operation on a mobile device and 
if  it’s left on all the time, it will cause your battery life to suffer. So, first, 
we’ll update the HTML to add a form and two buttons: one to start 
watching your position and one to stop.

<!doctype html>

<html>

<head>

  <meta charset="utf-8">

  <title>Wherever you go, there you are</title>

  <script src="myLoc.js"></script>

  <link rel="stylesheet" href="myLoc.css">

</head>

<body>

  <form>

    <input type="button" id="watch" value="Watch me">

    <input type="button" id="clearWatch" value="Clear watch">

  </form>

  <div id="location">

    Your location will go here.

  </div>

  <div id="distance">

    Distance from WickedlySmart HQ will go here.

  </div>

  <div id="map">

  </div>

</body>

</html>

We’re adding a form 
element with two 
buttons, one to start 
the watch, with an 
id of “watch”, and 
one to clear the 
watch, with an id of 
“clearWatch”.

We’re going to reuse our old <div>s to report 
on the real-time location information.

Tracking a user in real time can be a 
real battery drainer.  Make sure you 
give the user information about their 
tracking, and some control over it, too.

We’ll come back and worry about 
the Google map in a bit...



194  Chapter 5

using watchposition

So now we need to add button click handlers for the two buttons. We’ll add them to 
the getMyLocation function only if  there is geolocation support.  And, since we’re 
going to control all the geolocation tracking using the two buttons, we’ll remove the 
existing call to getCurrentPosition from getMyLocation. Let’s go ahead and 
remove that code, and add two handlers: watchLocation for the watch button, and 
clearWatch for the clear button:

Reworking our old code...

If the browser supports geolocation, we’ll add our button click handlers. No point in adding them if geolocation isn’t supported.

At this point, here’s what we’re trying to do: when the user clicks on the watch button, they 
want to start tracking their position. So, we’ll use the the geolocation.watchPosition 
method to start watching their position.  The geolocation.watchPosition method has 
two parameters, a success handler and an error handler, so we’ll reuse the ones we already 
have.  It also returns a watchId, which can be used at any time to cancel the watching 
behavior.  We’re going to stash the watchId in a global variable, which we’ll use when 
we write the click handler for the clear button.  Here’s the code for the watchLocation 
function and the watchId, go ahead and add this code to myLoc.js:

function getMyLocation() {

    if (navigator.geolocation) {

        navigator.geolocation.getCurrentPosition(displayLocation,displayError);

        var watchButton = document.getElementById("watch");

        watchButton.onclick = watchLocation;

        var clearWatchButton = document.getElementById("clearWatch");

        clearWatchButton.onclick = clearWatch;

    }

    else {

        alert("Oops, no geolocation support");

    }

}

We’re going to call 
watchLocation to start the 
watch, and clearWatch to stop it.

Writing the watchLocation handler

var watchId = null; 

function watchLocation() {

    watchId = navigator.geolocation.watchPosition(displayLocation, 

                                                  displayError);

}

Add watchId at the top of your file as a global variable. We’re 
initializing it to null. We’ll need this later to clear the watch.

We’re calling the watchPosition method, passing the success handler we’ve already written, displayLocation and our existing error handler, displayError.



you are here 4  195

making your html location aware

function clearWatch() {

    if (watchId) {

       navigator.geolocation.clearWatch(watchId);

       watchId = null;

    }

}

...call the geolocation.clearWatch 
method, passing in the watchId. 
This stops the watching.

Writing the clearWatch handler

Now let’s write the handler to clear the watching activity. To do that we need to take the 
watchId and pass it to the geolocation.clearWatch method.

We still need to make a small update to displayLocation...

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

    div.innerHTML += " (with " + position.coords.accuracy + " meters accuracy)";

    var km = computeDistance(position.coords, ourCoords);

    var distance = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

    if (map == null) {

        showMap(position.coords);

    }

}

There’s one small change we need to make and it involves the Google Maps code 
we previously wrote.  In this code we call showMap to display the Google Map.  
Now, showMap creates a new map in your page, and that is something you only 
want to do one time.  But remember, when you start watching your location with 
watchPosition, displayLocation is going to get called every time there is an 
update to your position. 

To make sure we only call showMap once, we’ll first test to see if  the map exists and 
if  it doesn’t, we’ll call showMap.  Otherwise, showMap has already been called (and 
has already created the map) and we don’t need to call it again.

If we haven’t called showMap already, then 
call it, otherwise we don’t need to call it 
every time displayLocation is called.

Make sure there’s a watchId and then...



196  Chapter 5

testing user tracking

Time to get moving!
Make sure you’ve got all the new code typed in and reload your page, myLoc.html. 
Now, to truly test this page you’re going to need to “relocate” to have your position 
updated. So take a walk, jump on your bike, get in the car, or use whatever your 
favorite mode of  transportation might be. 

It almost goes without saying that if  you’re running this on your desktop, this app is 
going to be pretty boring (since you can’t take it with you), so you really need to use 
a mobile device for this test. And, if  you need help getting to a hosted version with 
your mobile device, we’ve placed a copy of  this code at:  
http://wickedlysmart.com/hfhtml5/chapter5/watchme/myLoc.html. 

Here’s our test run...

These numbers 
will update as 
you move around.

Try online: http://wickedlysmart.com/hfhtml5/chapter5/watchme/myLoc.html

Note the map is just going 
to center on your initial 
location, for now...



you are here 4  197

making your html location aware

Q: How can I control the rate at which the browser is 
providing updates of my location when using watchPosition?

A: You can’t. The browser determines what the optimal update 
rate is and decides when you’ve changed positions.

Q: Why does my location change a few times when I first 
load the page, even though I’m sitting still?

A: Remember we said the browser may use a few methods to 
determine your location? Depending on the method (or methods) 
the browser is using to determine your location, the accuracy of the 
location may change over time. In general the accuracy gets better, 
but sometimes (say, you’ve just driven into a rural area with only one 
cell tower) it may get worse.  And you can always use the accuracy 
property in the position.coords object to keep an eye on accuracy.

Q: Can I use the altitude and altitudeAccuracy properties of 
the coordinates object? 

A: These properties are not guranteed to be supported (and 
obviously are going to be supported on only high-end mobile devices), 
so you’ll have to make sure your code handles the case where they 
aren’t. 

Q: What are heading and speed?

A: Heading is the direction you’re traveling in and speed is how 
fast you’re going. Think about if you’re in a car heading north on 
Interstate 5 at 55mph. Your heading is north, and your speed is 
55mph. If you are in your car in the parking lot at Starbuzz Coffee, 
then your speed is 0 and you have no heading (because you’re not 
moving). 

Q: When I map the distance from my location to your location, 
it’s a lot longer than is being reported in the app, why?

A: Remember, our distance function is computing the distance “as 
the crow flies.” Your mapping tool is most likely giving you the driving 
distance. 

distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

if (km < 0.1) {

  distance.innerHTML = "You're on fire!";

} else {

  if (prevkm < km) {

    distance.innerHTML = "You're getting hotter!";

  } else {

    distance.innerHTML = "You're getting colder...";

  }

}

prevkm = km;

Below you’ll find an alternative implementation for 
displayLocation. Can you guess what it does? Take a look and write 
your answer below. If you’re feeling adventurous, try it out!

Write what you 
think this does here.



198  Chapter 5

overview of  geolocation objects

You’ve got some Options...
So far we’ve stayed away from the third parameter of  getCurrentPosition (and 
watchPosition): the positionOptions parameter. With this parameter we can 
control how geolocation computes its values. Let’s look at the three parameters along 
with their default values:

    var positionOptions = {

        enableHighaccuracy: false,

        timeout: Infinity,

        maximumage: 0

    }

First we have a property that enables high accuracy, 
we’ll talk about what that means in a sec...

The timeout option controls how long the browser 
gets to determine its location. By default this is 
set to infinity meaning the browser gets all the 
time it needs).  

You can reset this to a value in milliseconds, say 10000, this gives the browser ten seconds to find a location, otherwise the error handler is called.Finally, the maximumAge option sets the 
oldest age a location can be before the 
browser needs to recalculate the location. By 
default this is zero, which means the browser 
will always have to recalculate its location 
(every time getCurrentPosition is called).

Can we talk about your accuracy, again?
We’ve already seen that each position handed to us by the Geolocation API has an 
accuracy property. But, we can also tell the Geolocation API that we’d like only the 
most accurate result it can get. Now, this is only meant as a hint to the browser, and 
in fact, different implementations may do different things with the hint. And, while 
this option doesn’t sound like a big deal, it has lots of  implications. For instance, 
if  you don’t care that your results are super accurate—you might be just fine 
knowing that your user is in Baltimore—the API might be able to tell you that 
very quickly and very cheaply (in terms of  power consumption). If, on the other 
hand, you need to know the street your user is on, that’s fine, but the API might 
then have to fire up GPS, and use lots of  power to get that information. With the 
enableHighAccuracy option, you’re telling the API you need the most accurate 
location it can get, even if  it is costly. Just keep in mind, using this option doesn’t 
guarantee the browser can give you a more accurate location.



you are here 4  199

making your html location aware

The world of timeouts and maximum age...
Let’s review once again what the timeout and maximumAge options are:

timeout: this option tells the browser how long it gets to determine the 
user’s location. Note that if  the user is prompted to approve the location 
request, the timeout doesn’t start until they’ve accepted. If  the browser can’t 
determine a new location within the number of  milliseconds specified in the 
timeout, the error handler is called. By default, this option is set to Infinity.

maximumAge: this option tells the browser how old the location 
can be. So, if  the browser has a location that was determined sixty 
seconds go, and maximumAge is set to 90000 (90 seconds), then a call to 
getCurrentPosition would return the existing, cached position (the 
browser would not try to get a new one). But if  the maximumAge was set to 30 
seconds, the browser would be forced to determine a new position.

You’re right on with your thinking on maximumAge. 
For timeout, think about it like this: when you’re using 
maximumAge so you get an old (cached) result, as long as 
that result is younger than the maximumAge you specified, 
this works really well to optimize the performance of  your 
app.  But what happens when the position’s age exceeds the 
maximumAge? Well, the browser goes off  and tries to get a 
new one.  But, what if  you don’t care that much—say you’ll 
take a new location if  it has it, but otherwise, you don’t need 
it right now. Well, you could set timeout to 0, and if  there 
is a result that passes the maximumAge test, great, here it 
is, otherwise the call will fail immedately and call your error 
handler (with an error code of  TIMEOUT). That’s just one 
example of  the creative ways you can use timeout and 
maximumAge to tune the behavior of  your application.

So by using 
maximumAge I can 

really tune how often my browser 
recalculates or determines my position. 
I can see how using that can make my 
app faster and more power efficient. 
What about timeout? How can I use it 

to improve things?



200  Chapter 5

exercise on using geolocation options

I’ll use a cached position if  the 
browser has one that’s less than 10 
minutes old, otherwise, I want a fresh 
position.

Below you’ll see a few options for the geolocation API. 
For each option, match it to its behavior.

{maximumage:600000}

{timeout:1000, maximumage:600000}

{timeout:0, maximumage:Infinity}

{timeout:Infinity, maximumage:0}

I want only cached positions less than 
10 minutes old. If  there aren’t any 
cached positions less than 10 minutes 
old, I ask for a new position, but only 
if  I can get one in 1 second or less.

I want only cached positions. I’ll take 
one of  any age. If  there is no cached 
position at all, then I call the error 
handler. No new positions for me! I’m 
for offline use.

I want only fresh positions. The 
browser can take as long it wants to 
get me one. 



you are here 4  201

making your html location aware

How to specify options
One of  the nice things about JavaScript is that if  we want to specify a set of  options in an 
object, we can just type in a literal object, right into the middle of  our method call. Here’s 
how you do that: let’s say we want to enable high accuracy and also set the maximum age of  
the location to be 60 seconds (or 60,000 milliseconds).  We could create options like this:

navigator.geolocation.getCurrentPosition(

                    displayLocation,

                    displayError,

                    options);

Here are the options, 
written as a literal 
object right in the 
function call! Some would 
argue this is easier and 
more readable as code.

var options = {enableHighaccuracy: true, maximumage: 60000};

And then pass options to either getCurrentPosition or watchPosition, 
like this:

Or, we could just write the options object inline, like this:

navigator.geolocation.getCurrentPosition(

                    displayLocation,

                    displayError,

                    {enableHighaccuracy: true, maximumage: 60000});

Here, we’re just passing our options 
along using the options variable.

You’ll see this 
technique used a lot 
in JavaScript code.

Now that you know the options, what they do, and how to specify them, we should use them. 
We’re going to do that, but remember, these are meant to tune your application, which will 
have its own unique requirements.  These options are also affected by your device, browser 
implementation and network, so you’ll need to play on your own to fully explore them.

   
When you ran the diagnostics before, did you get the test case where you waited and waited and nothing 
happened? That’s most likely because of the infinite timeout. In other words the browser will wait forever to get 
a location as long as it doesn’t encounter some error condition.  Well, now you know how to fix that, because we 
can force the Geolocation API to be a little more expedient by setting its timeout value. Here’s how:

Test Drive Diagnostics Checkup

function watchLocation() {

    watchId = navigator.geolocation.watchPosition(

                    displayLocation,

                    displayError,

                    {timeout:5000});

}

By setting timeout to 5000 milliseconds (5 
seconds) you’re making sure the browser doesn’t 
sit there forever trying to get a location.

Give it a try and feel free to 
adjust the option values.

Are you starting to see 
that JavaScript really 
rocks? Well, at least we 
think it does. 



202  Chapter 5

Wouldn’t it be fun to see how fast your browser can find your location? 
We could make it as hard for your browser as we can: 

�   let’s ask it to enable high accuracy, 

�   let’s not allow it to use a cache (by setting maximumAge to 0) 

�    let’s time it by setting the timeout option to 100, and then increase 
the timeout every time it fails. 

Warning: we don’t know if all devices and their batteries are up to this, 
so use at your own risk!

Here’s what the intial options are going to look like:

Don’t Try this at Home 
(PUSHING GEO TO THE LIMIT )

{enableHighaccuracy: true, timeout:100, maximumage:0}

{enableHighaccuracy: true, timeout:200, maximumage:0}

{enableHighaccuracy: true, timeout:300, maximumage:0}

We’ll start here...

and if that fails give 
it more time...

and so on...

Now check out the code on the next page, you’ll find it quite interesting. Go 
ahead and type it in—you can just add it to your JavaScript in myLoc.js. Try 
it on your various devices and record your results here:

ON _________ FOUND IN _______________ milliseconds

Try online: http://wickedlysmart.com/hfhtml5/chapter5/speedtest/speedtest.html

ON _________ FOUND IN _______________ milliseconds

ON _________ FOUND IN _______________ milliseconds

ON _________ FOUND IN _______________ milliseconds

device here time here



you are here 4  203

making your html location aware

var options = { enableHighaccuracy: true, timeout:100, maximumage: 0 };

window.onload = getMyLocation;
function getMyLocation() {
    if (navigator.geolocation) {
        navigator.geolocation.getCurrentPosition(
            displayLocation,
            displayError,
            options);
    }  else {
        alert("Oops, no geolocation support");
    }
}
function displayError(error) {
    var errorTypes = {
        0: "Unknown error",
        1: "Permission denied",
        2: "Position is not available",
        3: "Request timeout"
    };
    var errorMessage = errorTypes[error.code];
    if (error.code == 0 || error.code == 2) {
        errorMessage = errorMessage + " " + error.message;
    }
    var div = document.getElementById("location");
    div.innerHTML = errorMessage;
    options.timeout += 100;
    navigator.geolocation.getCurrentPosition(
        displayLocation,
        displayError,
        options);
    div.innerHTML += " ... checking again with timeout=" + options.timeout;
}
function displayLocation(position) {
    var latitude = position.coords.latitude;
    var longitude = position.coords.longitude;
    var div = document.getElementById("location");
    div.innerHTML = "You are at Latitude: " + latitude + 
                    ", Longitude: " + longitude;
    div.innerHTML += " (found in " + options.timeout + " milliseconds)";
}

Start by initializing our options with a 
timeout of 100, and a maximumAge of 0.

Do the usual here, with displayLocation 
and displayError as our success and 
error handlers, and passing in options as 
the third paramter.

This code here is the same...

We’ll do the error handler first.

But in the case of a failure, 
we’re going to increase the 
timeout option by 100ms and 
try again. We’ll let the user know 
we’re re-trying as well.

When the browser successfully gets your position, we’ll let the user know how long it took.



204  Chapter 5

adding a path to the map

Let’s finish this app!
When you sit back and think about it, with just a little 
HTML and JavaScript you’ve created a web app that not 
only can determine your location, but it can also track 
and display it in near real time.  Wow, HTML sure has 
grown up (and so have your skills!).

But, speaking of  this app, don’t you think it needs just a 
little bit of  polish to finish it off ?  For instance, we could 
show your position on the map as you move around, and 
we could even go further and show where you’ve been 
too, to create a path through the map.

Let’s write a function to keep the map centered on your 
location as you move around, and drop a new marker 
each time we get a new position:

Okay, we’re going to call this 
function scrollMapToPosition 
and we’re going to pass it a 
position’s coordinates.

First let’s grab the new lat and 
long, and create a google.maps.
LatLng object for them.

The panTo method of the map takes the LatLng object and scrolls 
the map so your new location is at the center of the map.

Finally, we’ll add a marker for your new location using the addMarker function we wrote earlier, passing in the map, the LatLng object, a title and some content for the new marker.

function scrollMapToPosition(coords) {

    var latitude = coords.latitude;

    var longitude = coords.longitude;

    var latlong = new google.maps.LatLng(latitude, longitude);

    map.panTo(latlong);

    addMarker(map, latlong, "Your new location", "You moved to: " +

                                latitude + ", " + longitude);

}

What we’re going to do 
to finish this app!

The coordinates are going to be your latest new 
position, so we’re going to center the map on that 
location, and drop a marker there too.



you are here 4  205

making your html location aware

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude  

                    + ", Longitude: " + longitude;

    div.innerHTML += " (with " + position.coords.accuracy + " meters accuracy)";

    var km = computeDistance(position.coords, ourCoords);

    var distance = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

    if (map == null) {

        showMap(position.coords);

    } else {

        scrollMapToPosition(position.coords);

    }

}

After that, all we need to do is add a new 
marker to the existing map.

Now, all we need to do is update the displayLocation function 
to call scrollMapToPosition each time your position changes.  
Remember that the first time displayLocation is called, we’re 
calling showMap to create the map and display a marker for 
your initial location. Each time after that we just need to call 
scrollMapToPosition to add a new marker and re-center the 
map.  Here’s the code change:

Reload your page and start moving around... is your 
map following you? You should see a trail of  markers 
being added to your map as you move (unless you’re 
sitting at your desktop!).

So, we submit this application as solid proof  that  
“wherever you go, there you are.”  

The first time displayLocation is called, we need 
to draw the map and add the first marker.

And one more time...
Our trail of markers 
on a recent trip 
from Wickedly 
Smart HQ to the 
secret underground 
lair...oh wait, we 
shouldn’t have said 
that...

Try online: http://wickedlysmart.com/hfhtml5/chapter5/watchmepan/myLoc.html

Integrating our new function



206  Chapter 5

optimizing marker usage

var ___________________;
function displayLocation(position) {
    var latitude = position.coords.latitude;
    var longitude = position.coords.longitude;
    var div = document.getElementById("location");
    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;
    div.innerHTML += " (with " + position.coords.accuracy + " meters accuracy)";
    var km = computeDistance(position.coords, ourCoords);
    var distance = document.getElementById("distance");
    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";
    if (map == null) {
        showMap(position.coords);
        prevCoords = ________________;
    } else {
        var meters = ________________(position.coords, prevCoords) * 1000;
        if (___________ > ______) {
            scrollMapToPosition(position.coords);
            ______________ = _______________;
        }
    }   
}

prevCoords

prevCoords =  null;

position.coords

computeDistance

20

meters

Whoa, can you say marker explosion?

Code Magnets
Before we conclude this chapter, we thought you might want 
to really polish up this app.  You might have noticed (under 
some circumstances) that there are just a few too many 
markers being added to the map when you’re watching your 
position? 

What’s happening is that watchPosition is detecting 
movement frequently, so it’s calling the displayLocation 
success handler every few steps or so.  One way to fix that 
is to add some code so we have to move some significant 
distance, say 20 meters for testing purposes, before we create 
a new marker. 

We already have a function that will compute the distance 
between two coordinates (computeDistance), so all we 
need to do is save our position each time displayLocation is 
called, and check to see if the distance between the previous 
position and the new position is greater than 20 meters 
before calling scrollMapToPosition. You’ll find some of the 
code below to do that; it’s your job to finish it. Watch out, 
you’ll have to use some magnets more than once!



you are here 4  207

making your html location aware

 � Geolocation is not “officially” part of the 
HTML5 specification, but it’s considered 
part of the “family” of HTML5 specs.

 � There are a variety of ways to determine 
your location, depending on the device you 
have.

 � GPS is a more accurate method of getting 
your location than cell tower triangulation or 
network IP.

 � Mobile devices without GPS can use cell 
tower triangulation to determine location.

 � The Geolocation API has three methods 
and a few properties.

 � The primary method in the Geolocation 
API is getCurrentPosition, a method of the 
navigator.geolocation object.

 � getCurrentPosition has one required 
parameter, the success handler, and two 
optional parameters, the error handler, and 
the options.

 � A position object is passed to the success 
handler with information about your 
location, including your latitude and 
longitude.

 � The position object contains a coords 
property, which is a coordinates object.

 � The coordinates object has properties 
including latitude, longitude and accuracy.

 � Some devices may support the other 
coordinates properties: altitude, 
altitudeAccuracy, heading, and speed.

 � Use the accuracy property to determine 
how accurate your location is in meters. 

 � When getCurrentPosition is called, your 
browser must verify that you have given 
permission to share your location.

 � watchPosition is a method of the 
geolocation object that monitors your 
location and calls a success handler when 
your location changes.

 � Like getCurrentPosition, watchPosition has 
one required parameter, a success handler, 
and two optional parameters, an error 
handler and options.

 � Use clearWatch to stop monitoring your 
location.

 � When watchPosition is used, your device 
will require more energy, so your battery life 
may be shortened.

 � The third parameter, options, for 
getCurrentPosition and watchPosition, is an 
object with properties you set to control the 
behavior of the Geolocation API.

 � The maximumAge property determines 
whether getCurrentPosition will use a 
cached position, and if so, how old that 
position can be before a fresh position is 
required.

 � The timeout property determines how much 
time getCurrentPosition has to get a fresh 
position before the error handler is called. 

 � The enableHighAccuracy property gives a 
hint to devices to spend more effort getting 
a highly accurate location if possible.  

 � You can use the Geolocation API with the 
Google Maps API to place your location on 
a map.



208  Chapter 5

exercise solutions

HTML5cross
You’ve traveled quite far in this chapter 
with your first JavaScript API. Make it 
stick with this crossword.

1 2

3

4

5

6 7

8

9 10

11

Across
4. Longitude is measured from _____________, England.
7. Accuracy has implications for your app because it can affect 
_________ life.
8. If you say no when your browser asks you to share your 
location, your error handler will be called with an _________ 
code of 1.
9. “Wherever you go, there you are” was mentioned in the 
movie _______________________. 
10. Don’t give driving directions to someone if your 
coordinates don’t have a good ________________.
11. The secret location of the __________________ HQ is 
47.62485, -122.52099.

Down
1. Re-center your map using the___________ method.
2. Old Skool devices without GPS use cell tower 
_______________ to determine your location.
3. The latitude, longitude of ___________ is 40.77, -73.98.
5. You’ll never get a cached location if you set 
_____________ to 0.
6. You can use the _______________ equation to find the 
distance between two coordinates.

Across
4. Longitude is measured from _____________, England.
7.  Accuracy has implications for your app because it can 

affect _________ life.
8.  If you say no when your browser asks you to share your 

location, your error handler will be called with 
an _________ code of 1.

9.  “Wherever you go, there you are” was mentioned in the 
movie _______________________.

10.  Don’t give driving directions to someone if your 
coordinates don’t have a good ________________.

11.  The secret location of the __________________ HQ is 
47.62485, -122.52099.

Down
1. Re-center your map using the___________ method.
2.  Old Skool devices without GPS use cell tower  

 _______________ to determine your location.
3. The latitude, longitude of ___________ is 40.77, -73.98.
5.  You’ll never get a cached location if you set  

 _____________ to 0.
6.  You can use the _______________ equation to find the 

distance between two coordinates.



you are here 4  209

making your html location aware

var ________________________

function displayLocation(position) {

    var latitude = position.coords.latitude;

    var longitude = position.coords.longitude;

    var div = document.getElementById("location");

    div.innerHTML = "You are at Latitude: " + latitude + ", Longitude: " + longitude;

    div.innerHTML += " (with " + position.coords.accuracy + " meters accuracy)";

    var km = computeDistance(position.coords, ourCoords);

    var distance = document.getElementById("distance");

    distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

    if (map == null) {

        showMap(position.coords);

        prevCoords = _____________________;

    }

    else {

        var meters = _____________________(position.coords, prevCoords) * 1000;

        if (___________ > _______) {

            scrollMapToPosition(position.coords);

            _________________ = _____________________;

        }

    }   

}

prevCoords

prevCoords = null;

position.coords

computeDistance

20meters

position.coords

Much better!

Try online: http://wickedlysmart.com/hfhtml5/chapter6/final/myLoc.html

Code Magnets
It’s your job to finish the code below, so we only display a new 
marker if we’ve traveled more than 20 meters since the last marker 
was added. Use the fridge magnets to complete the code. Watch out, 
you’ll have to use some of them more than once! Here’s our solution.



210  Chapter 5

exercise solutions

Write what you 
think this does here.

This code turns our app into a Hot/Cold game. It displays 
a “getting hotter” message if you’re moving closer to the 
WickedlySmart HQ, or “getting colder” if you’re moving 
farther away. If you’re within 0.1 km of the  HQ, then the 
message is, “You’re on fire!”

We tried it out, here’s our result!

distance.innerHTML = "You are " + km + " km from the WickedlySmart HQ";

if (km < 0.1) {

  distance.innerHTML = "You're on fire!";

} else {

  if (prevkm < km) {

    distance.innerHTML = "You're getting hotter!";

  } else {

    distance.innerHTML = "You're getting colder...";

  }

}

prevkm = km;

Below you’ll find an alternative implementation for displayLocation. Can 
you guess what it does? Take a look and write your answer below. If you’re 
feeling adventurous, try it out! Here’s our solution.



you are here 4  211

making your html location aware

I’ll use a cached position if  the 
browser has one that’s less than 10 
minutes old, otherwise, I want a 
fresh position.

Below you’ll see a few options for the geolocation API. 
For each option, match it to its behavior.

{maximumage:600000}

{timeout:1000, maximumage:600000}

{timeout:0, maximumage:Infinity}

{timeout:Infinity, maximumage:0}

I want only cached positions less than 
10 minutes old. If  there aren’t any 
cached positions less than 10 minutes 
old, I ask for a new position, but only 
if  I can get one in 1 second or less.

I want only cached positions. I’ll take 
one of  any age. If  there is no cached 
position at all, then I call the error 
handler. No new positions for me! I’m 
for offline use.

I want only fresh positions. The 
browser can take as long it wants to 
get me one. 

SOLUTION



212  Chapter 5

exercise solutions

HTML5cross Solution

P
1

T
2

N
3

A R

G
4

R E E N W I C H

M
5

W T A

A H
6

B
7

A T T E R Y O N

X A O G

I V E
8

R R O R U

M E K L

B
9

U C K A R O O B A N Z A I A
10

C C U R A C Y

M S I T

A W
11

I C K E D L Y S M A R T I

G N Y O

E E N

Across
4. Longitude is measured from _____________, England. 
[GREENWICH] 
7. Accuracy has implications for your app because it can affect 
_________ life. [BATTERY] 
8. If you say no when your browser asks you to share your 
location, your error handler will be called with an _________ 
code of 1. [ERROR] 
9. “Wherever you go, there you are” was mentioned in the 
movie _______________________.  [BUCKAROOBANZAI] 
10. Don’t give driving directions to someone if your 
coordinates don’t have a good ________________. 
[ACCURACY] 
11. The secret location of the __________________ HQ is 
47.62485, -122.52099. [WICKEDLYSMART] 

Down
1. Re-center your map using the___________ method. 
[PANTO] 
2. Old Skool devices without GPS use cell tower 
_______________ to determine your location. 
[TRIANGULATION] 
3. The latitude, longitude of ___________ is 40.77, -73.98. 
[NEWYORKCITY] 
5. You’ll never get a cached location if you set 
_____________ to 0. [MAXIMUMAGE] 
6. You can use the _______________ equation to find the 
distance between two coordinates. [HAVERSINE] 



this is a new chapter  213

talking to the web6

Extroverted Apps

You’ve been sitting in your page for too long. It’s time 

to get out a little, to talk to web services, to gather data and to bring it all 

back so you can build better experiences mixing all that great data together. 

That's a big part of writing modern HTML5 applications, but to do that you’ve 

got to know how to talk to web services. In this chapter we're going to do 

just that, and incorporate some data from a real web service right in your 

page. And, after you've learned how to do that you'll be able to reach out 

and touch any web service you want. We’ll even fill you in on the hippest 

new lingo you should use when talking to web services. So, come on, 

you’re going to use some more APIs, the communications APIs.

If only I’d known 
reaching out and touching a web 
service could be so much fun...



214  Chapter 6

the mighty gumball app

This just in: Mighty Gumball, Inc., an innovative 
company that builds and deploys real gumball 
machines, has contacted us for some help. If  you’re 
not up on them, they’ve recently network-enabled 
their gumball machines to track sales in near real 
time.

Now it almost goes without saying that Mighty 
Gumball are gumball experts, not software 
developers, and so they’d like our help building an 
app to help them monitor gumball sales. 

Here’s what they sent over:

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Thanks for helping! Here’s the way we think the gumball machine 

realtime sales tool should work and we’re hoping you can implement this 

for us!  Let us know if you have any questions!

Oh, we’ll send over some specs for the web service soon.

       - Mighty Gumball Engineers

You might remember 
them from our book 
Head First Design 
Patterns, when we 
helped them design 
their server-side code.

CEO, MightyGumball

Check out the 
new Web-enabled MG2200 

gumball machine. It’s going to 
revolutionize the biz.

Our server on 
the Web All our gumball 

machines reporting into 
the central server.

Mobile and desktop 
devices get sales from 
a real-time server 
through a web service.

We want you to 
write this part, 
using HTML5 of 
course!

Mighty Gumball wants a 
Web app



you are here 4  215

talking to the web

Engineering Notes

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Before we get started, take a little time to think through how you might design an app that retrieves data from a web service and then keeps a web page updated based on the data.  Don’t worry that you don’t know how to retrieve the data yet, just think through the high level design.  Draw a pic, label it, write out pseudo-code for any code you might need. Think of this as a warm-up, just to get your brain going...

How do we get the data 
from the web service to 
our web page?

Once we’ve got the data, how do we update the page?

What kinds of problems 
might we have with 
getting data from a 
remote server?



216  Chapter 6

overview of mighty gumball

You probably need a little background beyond Mighty Gumball’s short note.  Here’s what we’ve 
got: first, they’ve got gumball machines all over the country sending sales reports to a Mighty 
Gumball server, which combines all those reports and makes them available through a web 
service. And, second, they’re asking us to build a web app that displays the sales in a browser for 
the Gumball Sales team. And, most likely they want this report to be updated as the sales change 
over time. Here’s the view from 10,000 feet:

A little more background on Mighty Gumball

I’m from 
Fresno and I just 
sold 3 gumballs.

Gumball Server

Mighty Gumball machines are 
deployed throughout the country 
and sending sales information to 
the central Gumball servers. The 
server aggregates them together 
and makes them available 
through a web service.

Murphysboro
here,  I just sold 

2 gumballs.

1

Thanks everyone, I’m taking 
all the sales and combining 

them all together.

data



you are here 4  217

talking to the web

document

head

html

title script

body

h1 ul

The browser loads the 
Mighty Gumball web app, 
including the HTML markup, 
CSS and JavaScript.

2

The app makes a Web request to 
retrieve the aggregated sales 
from the Gumball server.

3
request

The app receives data back from 
the Gumball server.4

The app takes a look at the data 
and then updates the page’s DOM 
to reflect any new sales data.

5

The browser updates the 
page based on the DOM 
and your users see the 
results.

6

The app goes back 
to step 3, and 
continually asks for 
new data. As a result, 
the page appears to 
be updated in near 
real time.

7



218  Chapter 6

preparing the markup

While we’re waiting on those specs from Mighty Gumball, let’s get some HTML going.

You’re probably getting the idea we don’t need a lot of  HTML markup to get a web app 
off  the ground, and you’re right. All we need is a place to put our sales reports as they 
come in, and we’ll let JavaScript do the rest.  Go ahead and get this typed in, and then 
we’ll take a look at how to retrieve things via the Web.

Just a quick start...

<!doctype html>

<html lang="en">

<head>

<title>Mighty Gumball (JSON)</title>

<meta charset="utf-8">

<script src="mightygumball.js"></script>

<link rel="stylesheet" href="mightygumball.css">

</head>

<body>

<h1>Mighty Gumball Sales</h1>

<div id="sales">

</div>

</body>

</html>

Just your standard 
HTML5 head and body. 

Here’s a placeholder for where we’re 
going to put the sales data. Each sale 
item will be added as a <div> here.

Turn the engine over...

Go ahead and type in the code above, load it into your favorite 
browser and give it a try it before proceeding. And remember, 
you can download the CSS (and the other code for this chapter) 
from http://wickedlysmart.com/hfhtml5.

And we set up our CSS to style the Mighty Gumball sales report so it looks good for the CEO.

We’ve gone ahead and linked to a JS file 
knowing we’ll be writing some JavaScript soon!



you are here 4  219

talking to the web

So how do we make requests to web services?
Let’s step back for a sec... you already know how a browser requests a page from 
a web server—it makes an HTTP request to the server, which returns the page 
along with other metadata that (typically) only the browser sees. What you might 
not know is that the browser can also retrieve data with HTTP from a web server 
in the same way.  Here’s how that works:

Browsers can request data from applications on the server, like the Mighty Gumball application that aggregates all the sales data.

The server returns its data.

“I

 ne
ed t

he agg
regated gumball data”

“Sure here you go”

Here’s a server just 
waiting on requests 
from browsers.

request

data

It helps to look a little more closely at the request we make to the server and the 
response that comes back.  The request takes care of  telling the server what data we’re 
after (which we sometimes refer to as the “resource” we’re after), while the response 
contains metadata and, if  all goes well, the data we requested:

request

GET /gumbal
lsales HTTP

/1.1

Host: gumba
ll.wickedly

smart.com

User-Agent:
 Mozilla/5.

0

THE REQUEST: uses HTTP1.1 protocol 
to get the resource at “/gumballsales” 
(our application on the server).

...and the request is coming 
from a Mozilla 5.0 
compatible browser (Safari, 
Chrome and others use 
this user-agent).

The metadata: we’re 
making the request 
to the host gumball.
wickedlysmart.com...

data

HTTP/1.1 200 OK 
Content-length 756
Content-type: application/json

[{"name":"CAMPBELL",
 "time": 1302212903099,
 "sales": "3"},

 {"name": "FRESNO",
  "time": 1302212903100,
  "sales": 2},

.
.

THE RESPONSE: the HTTP1.1 protocol header is 
first; it’s just saying this response makes use of the 
HTTP protocol and also provides a response code.

200 is  the server 
code that means 
things went OK.

The metadata: we’ve 
got content that is 
756 bytes long and of 
type application/json...

 ...and here’s that data!

Web Server

Note: This pattern of retrieving data using XMLHttpRequest is commonly referred to as “Ajax” or XHR.



220  Chapter 6

using xmlhttprequest

How to make a request from JavaScript
Okay, so we know we can retrieve data with HTTP, but how? We’re going to write 
a little code to create an actual HTTP request and then ask the browser to make 
the request on our behalf. After it’s made the request, the browser will then hand 
us back the data it receives. Let’s step through making an HTTP request:

To kick things off, we’ll start with a URL. After all, we need to tell 
the browser where to get the data we’re after:

1

var url = "http://someserver.com/data.json";

And let’s stash the URL in a  variable, 
url, which will use in a sec.

Next we’ll create a request object, like this:2

var request = new xMLHttpRequest();

We’re assigning the request object to the variable request.

Next we need to tell the request object which URL we want it to 
retrieve along with the kind of request it should use (we’ll use the 
standard HTTP GET request like we saw on the previous page). To do 
this, we’ll use the request object’s open method. Now "open" sounds 
like a method that not only sets these values in the request object, 
but also opens the connection and retrieves the data. It doesn't. 
Despite the name, open just sets up the request with a URL and tells 
the request object the kind of request to use so that XMLHttpRequest 
can verify the connection.  Here's how we call the open method:

3

XMLHttpRequest

request.open("GET", url); XMLHttpRequest

method: GET
URL: “http://...”This sets up a request for us, using an HTTP GET request, which is the standard means of retrieving HTTP data.

And also sets up the 
request to use the URL 
stored in our url variable.

A brand new 
XMLHttpRequest object.

The updated 
XMLHttpRequest object 
that knows where it’s going

And we use the XMLHttpRequest constructor 
to create a new request object. We'll talk 
about the “XML" part of that in a bit

Here’s our URL at someserver.com.

The “.json” signifies a 
format for exchanging 
data, we’ll come back to 
this in a bit



you are here 4  221

talking to the web

Okay here’s the important part, and the trick of how XMLHttpRequest works: when 
we finally ask our XMLHttpRequest object to retrieve data, it’s going to go off 
on its own and get the data. It might take a 90 milliseconds (quite a while in 
compute time), or, on a slow day, it might take ten seconds (an eternity in 
compute time). So rather than just waiting around for the data, we're going 
to provide a handler that is called when the data arrives.  Here's how you set 
up the handler (this should look somewhat familiar):

4

When the browser gets 
an answer from the 
remote web service, it 
calls this function.

request.onload = function() {

    if (request.status == 200) {

       alert("Data received!");

    }

};

XMLHttpRequest
method: GET
URL: “http://...”

request.onload = function() {
       if (request.status == 200) {
          alert("Data received!");
       }
};

onload:

The handler first needs to check if the return code is 200, or “OK”, 
and then it can do something with the data. For now we’ll just alert the 
user the data is here. We’ll fill this in with more meaningful code soon.

Just one last step: we still need to tell the request to go out and get the data, and 
to do that we use the send method:

5

request.send(null);
This sends the request to the server. We pass null if we’re not sending 
any data to the remote service (which we’re not).

Web Service

request.onload = function() {
       if (request.status == 200) {
           alert("Data received!");
       }
 };

XMLHttpRequest
method: GET
URL: “http://...”
onload: ...

XMLHttpRequest
method: GET
URL: “http://...”
onload: ...

So, to review: we create an XMLHttpRequest object, load it with a URL and HTTP 
request type, along with a handler.  Then we send the request and wait for  
the data to arrive. When it does, the handler is called.

request data
data

Great, here’s 
your data.

Server, 
I’ve got a request 

for you...

Glad to see things went well 
with the 200 success code. 
Better call my handler now and 
give it this data...

Our request object



222  Chapter 6

how to access an http response

One thing I didn’t notice is how 
we get the data from the HTTP call. I 

see the onload function, but no code to 
access the data? Did I miss something?

We just hadn’t quite got there yet. The data from 
the HTTP GET retrieval can be found in the 
responseText property of  the request object. So 
we can write code like this:

request.onload = function() {

       if (request.status == 200) {

            alert(request.responseText);

        }

};

But hang on, we’re just about to the point of  writing 
some real code that uses request.responseText.

This function is called 
when the request has 
received a response.

We can get the response from the responseText property of the request object.



you are here 4  223

talking to the web

Your magnets go here!

Code Magnets
A new web service at http://wickedlysmart.com/ifeelluckytoday returns either “unlucky” or “lucky” each 
time you hit it. The logic is based on a secret and ancient algorithm we can’t reveal, but it’s a great 
service to let users know if they are lucky or not on a given day.

We need your help to create a reference implementation to show others how they might include it in 
their site. You’ll find the skeleton code below; help us fill in the details using the magnets. Be careful, 
you may not need all the magnets. We’ve already done one for you.

Feel lucky today? 
Wanna be sure? 
Use the service!

var i = 0;

new TextHttpReques
t();

myLuckyText new xMLHttpRequest();
request.onload = function()

request.responseText

request.open("GET", url);request.send(null);

getElementById
request.status == 200

request.create("GET", url);

window.onload = function () {

    var url = "http://wickedlysmart.com/ifeelluckytoday";

    var request = ______________________

    ____________________________ {

        if (_____________________) {

            displayLuck(____________________);

        }

    };

    ______________________________

    ________________________

}

function displayLuck(luck) {

    var p = document.____________________("luck");

    p.________________ = "Today you are " + luck;

}

innerHTML



224  Chapter 6

exercise solution

window.onload = function () {

    var url = "http://wickedlysmart.com/ifeelluckytoday";

    var request = ______________________

    ____________________________ {

        if (________________________) {

            displayLuck(_______________________);

        }

    };

    ___________________________

    _____________________

}

function displayLuck(luck) {

    var p = document.__________________("luck");

    p.____________ = "Today you are " + luck;

}

Your magnets go here!

Code Magnets Solution
A new web service at http://wickedlysmart.com/ifeelluckytoday returns either “unlucky” or “lucky” each 
time you hit it. The logic is based on a secret and ancient algorithm we can’t reveal, but it’s a great 
service to let users know if they are lucky or not on a given day.

We need your help to create a reference implementation to show others how they might include it in 
their site. You’ll find the code skeleton below; help us fill in the details using the magnets. Be careful, 
you may not need all the magnets. Here's our solution.

Leftover magnets

Feel lucky today? 
Wanna be sure? 
Use the service!

var i = 0;

new TextHttpReques
t();myLuckyText

new xMLHttpRequest();

request.onload = function()

request.responseText

request.open("GET", url);

request.send(null);

getElementById

request.status == 200

request.create("GET", url);

innerHTML



you are here 4  225

talking to the web

Head First: Welcome XMLHttpRequest, we’re glad you could fit us into your busy schedule. Tell us about how you 
fit into building web apps.

XMLHttpRequest: I started this whole trend for bringing outside data into your web page. Heard of  Google 
Maps? GMail? That was all me. In fact, it wouldn’t have been possible without me.

Head First: How so?

XMLHttpRequest: Until I arrived, people were building a web page on the server side and baking everything into 
the page as they created it.  I allow you to go out and get data after the page is built. Think about Google Maps: it 
updates what’s on the page every time you adjust your location on the map, without having to reload the whole page.

Head First: So, you’ve been a successful guy. What’s your secret?

XMLHttpRequest: I’m humble, oh, and simple.  Give me a URL and I’ll go get the data for you. Not much more 
to me than that.

Head First: That’s all there is to it?

XMLHttpRequest: Well, you do have to tell me what to do with the data after I’ve retrieved it. You can just give 
me a handler function—a callback of  sorts—and when I get the data, I’ll throw it at your handler to do whatever it 
wants with the data.

Head First: What kinds of  data are we talking about here?

XMLHttpRequest: The Web is full of  data these days; weather, maps, social data about people and friends, 
geolocation data about what’s nearby... really, just about any data set you can think of  is making its way onto the 
Web in a form that works with me.

Head First: And this is all XML data, right? I mean your first name is XML.  

XMLHttpRequest: Really? You’re a professional and that’s where you wanna take this interview?  You did your 
homework and all you can say is “you’re all about XML, right?” Let me set you straight.  Sure, there was a time I 
mostly retrieved XML, but the world is moving on. Nowadays, I retrieve all kinds of  data. Sure, some XML, but 
more and more I’m getting requests for JSON.

Head First: Really? What’s JSON and why is it getting so popular?

XMLHttpRequest: JSON is JavaScript Object Notation and it has a number of  advantages—size, readability, the 
fact that it is native to the most popular programming language on the Web: my friend JavaScript, of  course.

Head First: But isn’t it the case that the format really shouldn’t matter to you?  Users should be able to request 
XML or JSON or teletype for all you care. No?

XMLHttpRequest: <silence>

Head First: Well, it seems I’ve hit on a sore spot. That’s okay, we’ve got to go to break... So, XMLHttpRequest, I 
think we’ve got more time with you later in this chapter?

XMLHttpRequest: Yes, unfortunately I see that in my schedule...

XMLHttpRequest Exposed
This week’s interview:
Confessions of  an HTTP Request Object



226  Chapter 6

introducing json

You might (or might not) remember that XML was going to save us all—a data 
format that was human readable and machine parseable, a data format that was 
going to support all the data needs of  the world. And when XMLHttpRequest 
was first developed, XML was indeed the way we all exchanged data (thus, the 
name XMLHttpRequest). 

Well, along the way XML apparently slipped on a banana peel thrown by JSON. 
Who’s JSON? Just the latest and greatest data format, born out of  JavaScript, and 
being adopted across the Web in the browser and on the server side. And might 
we add, it’s quickly become the format of  choice for HTML5 apps? 

So, what’s so great about JSON? Well, it’s pretty darn human-readable, and it can 
be parsed quickly and easily straight into JavaScript values and objects. Unlike 
XML, it’s so cute and cuddly... anyway, can you tell we like it just a little? You’ll 
be seeing a lot of  JSON in this book. We’re going to use it to exchange JavaScript 
data over the network, to store data in a local store with the Web Storage API, 
and as part of  another way to access web data (more on that shortly).

But wait a sec, network data exchange formats... storage formats... that’s complex 
stuff, right? No worries, over the next ten pages we’re going to make you an expert 
you already know practically everything about JSON you need to. To use JSON 
you just need to understand JavaScript objects (which you do, big time) and two 
simple method calls.  Here’s how it all works:

Move over XML, meet JSON

{"title":"Plan 9 from Outer 
Space","genre":"Cult Classic"

,"rating":5,"showtimes":["3:0
0pm","7:00pm","11:00pm"]}

Movie

JSON Object
String

JSON.stringi
fy(movie)

JSON.parse(j
sonString)

We have a JavaScript object we want 
to exchange or store, so we call the 
JSON.stringify method, passing the 
object as the argument.

The result is a string that 
represents the object. We 
can store this string, pass it 
to a function, send it over the 
network, etc.

The result is a copy of 
our original object.

1 2

4 When we're ready to turn the string 
back into an object, we pass it to the 
JSON.parse method.

3



you are here 4  227

talking to the web

Let’s run through a quick example that converts an object into its JSON 
string format. We’ll start with an object you already understand, the Movie 
object from Chapter 4. Not everything can be converted into a JSON 
string—for instance, methods—but all the basic types, like numbers, strings, 
and arrays, are supported. Let’s create an object and then stringify it:

1

var plan9Movie = new Movie("Plan 9 from Outer Space","Cult Classic", 2,  
                            ["3:00pm", "7:00pm", "11:00pm"]);

var jsonMovieObject = JSON.parse(jsonString);

alert("JSON Movie is " + jsonMovieObject.title);

Once you’ve got an object, you can convert it into the JSON string 
format with the JSON.stringify method. Let’s see how this works... 
(feel free to try this by opening your Chapter 4 movie code back up and 
adding the following code to the bottom of  your script):

2

var jsonString = JSON.stringify(plan9Movie);

alert(jsonString);

Now we’ve got a JSON string that represents our movie object. At this 
point we could take this string and do any number of  things with it, like 
send it over HTTP to a server. We can also receive a JSON string from 
another server. Let’s say a server gave us this string; how would we turn 
it back into an object we can do something with? Just use 
JSON.stringify’s sister method: JSON.parse.  Like this:

3

There are actually a few 
other restrictions, but 
we won't worry about 
those now.

A quick example using JSON

Here's a nice movie object complete 
with strings, numbers and an array.

Here's the result, a string 
version of the object 
displayed in the alert. 

Ah, and now we use this as a real 
object, accessing its properties.

Try this URL. What do you see?

http://search.twitter.com/search.json?q=hfhtml5

Note: Firefox will ask you to open or save a file. You can open 
with TextEdit, Notepad, or any basic text editor.

Hey! The specs 
just arrived!! Turn 

the page!



228  Chapter 6

reviewing the mightygumball specifications

http://gumball.wickedlysmar
t.com/

Thanks for taking this on!!!
We’ve got all the sales from the Gumball machines aggregated 
and being served from our central server at:

We’ve chosen JSON as our data format and if you hit the above URL, you’ll get 
back an array of JSON objects that look like this:

Go ahead and type this URL into your browser to see the values 
coming back. You should see one or more of these objects in an array.

[{"name":"CaMPBELL",

 "time": 1302212903099,

 "sales": 3},

 {"name": "FRESNO",

  "time": 1302212903100,

  "sales": 2},

  . . .
 ]

http://gumball.wickedlysmar
t.com/?lastreporttime=13022

12903099

The name of the city; we’re just 

testing California right now.

The time in milliseconds 
when this report came in.

# of gumballs sold since last report.

You can also add a lastreporttime parameter to the end of the URL 
and you’ll get only the reports since that time.  Use it like this:

Just specify a time 
in milliseconds.

We’ve got hundreds of gumball machines reporting in right now, in fact you should 
see reports about every 5-8 seconds on average. That said, this is our production 
server so test your code locally first!
Thanks again for your help!!  And remember “the gumball machine is never half 
empty,” as our CEO says.

- Mighty Gumball Engineers

Gumball Server Specs
The specs just arr

ived!

A second city, FRESNO.

And more cities will be here...

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Make sure 
you do this!



you are here 4  229

talking to the web

           
If you're using Opera or IE 8 or older, we recommend 
you test with another browser. We'll talk about how 
to support Opera and older IE browsers later.

window.onload = function() {

    var url = "http://localhost/sales.json";

    var request = new xMLHttpRequest();

    request.open("GET", url);

    request.onload = function() {

        if (request.status == 200) {

            updateSales(request.responseText);

        }

    };

    request.send(null);

}

Let’s get to work!
We’ve got our specs from Mighty Gumball and you’ve done your 
training on XMLHttpRequest and JSON.  You should be all ready 
to get some code written and to get a first cut of  the Gumball App 
running. 

Now, remember we’ve already laid out some HTML to work from, 
which links to a file called mightygumball.js. That’s what we’re 
going to start writing our code now. Remember too that we’ve 
already left a spot in the HTML where we’re going to put the 
gumball sales data, right into the <div> we labeled with an id of  

“sales.” So let’s put everything together and write some code.

We’re going to test on a local 
file first (like the Mighty 
Gumball engineers suggested!) 
to make sure everything’s 
working. We’ll talk more 
about this in one sec...

We set up the XMLHttpRequest by creating the 
object, calling the open method with our URL and 
then setting the onload property to a function.

Finally, we send the request.

<!doctype html>
<html lang="en">
   <head>
      <title>Mighty Gumball (JSON)</title>      <meta charset="utf-8">      <script src="mightygumball.js"></script>      <link rel="stylesheet" href="mightygumball.css">
   </head>
   <body>
      <h1>Mighty Gumball Sales</h1>      <div id="sales">

      </div>
   </body>
</html>

Writing an onload handler function
We’re sure this is old hat for you now, but we’re going to write an 
onload handler that gets invoked when the HTML is fully loaded; 
we’re also going to go ahead and fire off  an HTTP request to get the 
sales data.  When the data comes back we’ll ask the XMLHttpRequest 
to call the function updateSales (which we’ll write in just a sec):

... when the data has completed 
loading, this function is called.

We check to make sure everything 
is OK, and then...



230  Chapter 6

how to test locally

It’s time for another test drive, but we have a little detour to take care of  first.  The 
Mighty Gumball engineers asked us to test locally before hitting their production 
server, which is a good idea. But to do that we need the data to live on a server so 
that XMLHttpRequest can use the HTTP protocol to retrieve it.

In terms of  servers you’ve got a few choices: 

 � If  your company has servers that are available for  
testing, use those.

 � Or, you can use a third-party hosting service like GoDaddy, 
Dreamhost or one of  many other hosting companies.

 � Finally, you can set up a server right on your own machine. In 
that case your URLs are going to look something like:

  http://localhost/mightygumball.html

Check out the next page for tips and pointers. Keep in mind, hosting 
environments differ a fair bit, so we can’t write a general guide to these. So, may 
the force be with you, and if  you don’t have easy access to a server already, setting 
up a server on your local machine may be your best choice!

We’ll grab the <div> already put in the 
HTML and use it as a place for the data.

And set the div’s content 
to the whole chunk of data. 
We’ll deal with parsing it in a 
minute... Let’s test this first.

Displaying the gumball sales data
Now we need to write the handler, updateSales. Let’s make this easy 
and just go with the simplest implementation possible, we can always 
make it better later:

function updateSales(responseText) {

    var salesDiv = document.getElementById("sales");

    salesDiv.innerHTML = responseText;

}

Watch Out, Detour Ahead!

The files can also be placed in a subdirectory, like 
http://localhost/gumball/mightygumball.html



you are here 4  231

talking to the web

I’m a Mac

Setting up a web server on the Mac is easy. 
Go to       > System Preferences, and then 
choose Sharing. In the panel on the left, 
make sure Web Sharing is checked:

Once you’ve turned Web Sharing on (or 
if  you already have it on), you’ll see some 
information about how to access your local 
server. You should be able to use localhost 
instead of  the IP address (which tends to 
change if  you’re using a DHCP router, 
so localhost will work better for you). By 
default, your files are served from http://
localhost/~YOUR_USERNAME/, which 
serves files from your YOUR_USERNAME/
Sites/ folder, so you’ll probably want to set 
up a subfolder there for Mighty Gumball.

How to set up your own Web Server
Detour

I’m a PC

Installing your own web server on Windows is 
easier than it used to be thanks to the Microsoft 
Web Platform Installer (also known as Web PI). 
The current version is available for Windows 7, 
Windows Vista SP2, Windows XP SP3+, Windows 
Server 2003 SP2+, Windows Server 2008, and 
Windows Server 2008 R2, and you can download 
it from here: http://www.microsoft.com/web/
downloads/platform.aspx. 

Another option is to install the open source  
WampServer, which comes with Apache, PHP and 
MySQL for web application development. It’s easy 
to install and manage. 

You can download WampServer from:  
http://www.wampserver.com/en/.

There are a few other open source solutions out 
there if  you look, so you’ve got lots of  options.

I’m a total geek Linux Distribution

Let’s face it, you already know what you’re doing. Right? Apache is usually installed by default, 
so check your distribution documentation. 

How you set up your local hosting really depends on what kind of  operating 
system you’re using. Check out the tips below for OS X (otherwise known 
as the Mac), the PC and Linux. You’ll find other options on the next page.



232  Chapter 6

If  you don’t want to set up your own server, you can always use a remote server, 
but you’ll need to host your HTML, JavaScript and CSS, as well as the JSON file, 
all on the same server (we’ll talk later about why this is crucial) in order to follow 
along with this example. 

Most hosting services will give you FTP access to a folder where you can put all 
these files. If  you have access to a server like this, upload all the files and substitute 
your server name wherever you see localhost in the following pages.

We’ve put together a list of  hosting providers in case you need a recommendation, 
but they’re easy to find; just search for “web hosting” and you’ll find lots to 
choose from. Our list is at http://wickedlysmart.com/hfhtml5/hosting/
hosting.html. And let us know if  you get an HTML5 web site up online; we’d 
love to see it!

3rd Party Hosting...

You can use an 
FTP program 
like Transit, 
Cyberduck or 
WinSCP to 
get your files 
uploaded if you 
don't want to 
use command line 
FTP.

setting up your own server

How to set up your own Web Server, continued
DetourAh, you want to really host your pages? Excellent, there’s no substitute for having your 

pages hosted on the real Web. Check out the tips below and have fun!



you are here 4  233

talking to the web

Back to the code
At this point we’re expecting you’ve got your own server up and running—that 
could be a server running on your local machine (what we’re doing) or a server 
somewhere else you have access to. In either case you’re going to place your HTML 
and JavaScript files on the server and then point your browser to the HTML file. 
You’re also going to need the Mighty Gumball sales data test file there too, so we’re 
going to give you a simple data file to place on your server. To your application it 
will look just like it’s being generated from Mighty Gumball’s near-real-time server, 
and it gives you a way to test your code without hitting the Mighty Gumball server.  
Here’s what the file looks like; it’s named sales.json and it’s included with the 
code for the book (or you can type it in if  you enjoy that kind of  thing):

[{"name":"aRTESIa","time":1308774240669,"sales":8},

 {"name":"LOS aNGELES","time":1308774240669,"sales":2},

 {"name":"PaSaDENa","time":1308774240669,"sales":8},

 {"name":"STOCkTON","time":1308774240669,"sales":2},

 {"name":"FRESNO","time":1308774240669,"sales":2},

 {"name":"SPRING vaLLEY","time":1308774240669,"sales":9},

 {"name":"ELvERTa","time":1308774240669,"sales":5},

 {"name":"SaCRaMENTO","time":1308774240669,"sales":7},

 {"name":"SaN MaTEO","time":1308774240669,"sales":1}]

Go ahead and put this file on your server and then make sure you 
update your JavaScript to the URL for this file. Ours is 
http://localhost/gumball/sales.json:

We’re going to use “sales.json” 
for testing before we hit the 
real production server with 
the real-time sales data.

It helps to first test this 
URL in your browser to 
make sure it works.

window.onload = function() {

    var url = "http://localhost/gumball/sales.json";

    var request = new xMLHttpRequest();

    request.open("GET", url);

    request.onload = function() {

        if (request.status == 200) {

            updateSales(request.responseText);

        }

    };

    request.send(null);

}

Make sure this is pointing 
to the right URL.



234  Chapter 6

testing mighty gumball version one

Remember we’re sending an HTTP request to get 
the data in sales.json, which we’re just dumping 
into the <div> for now. Looks like it worked! 

If you’re having trouble, check each 
file independently through your 
browser and make sure it is accessible. 
Then double-check your URLs.

It’s been a long road but we’re finally ready to test 
this code! 

Just make sure you’ve got the HTML, JavaScript, 
JSON—and don’t forget your CSS—files on the 
server. Go ahead and enter the URL of  your HTML 
file into your browser (ours is http://localhost/
gumball/mightygumball.html), press return...

Not pretty, but the data is there.

Let’s test this already!

Nice!  That took a 
lot of work. We had to understand 
how to do HTTP requests and also 

set up the server, but it works!  I’m 
already thinking of all the great 

apps I can build to make use of all the 
web services out there, now that I 

know how to talk to them.



you are here 4  235

talking to the web

Impressing the client...
We’ve done a lot of  heavy lifting to get this app working, and that’s great, 
but Mighty Gumball is going to be a lot more impressed if  it looks good too. 
Here’s what we’re going for...

What we have

At the moment we’re just dumping a 
JSON array right into the browser. 
Somewhat effective but ugly. And what 
a waste, there is a whole data structure 
just waiting to be used more effectively!

Here we’ve used the JSON array and 
created a nice display from it. It’s that last 
10% that can make the difference between 
amateur and professional, don’t ya think?

First we need to take the data we got back from our 
XMLHttpRequest object (which is just a JSON string) and 
convert it into a true JavaScript object.

Here’s what we need to do to improve our display:

Then we can walk through the resulting array and add new 
elements to the DOM, one per sales item in the array.

1

2

What we want



236  Chapter 6

adding json support

function updateSales(responseText) {

    var salesDiv = document.getElementById("sales");

    var sales = JSON.parse(responseText);

    for (var i = 0; i < sales.length; i++) {

        var sale = sales[i];

        var div = document.createElement("div");

        div.setattribute("class", "saleItem");

        div.innerHTML = sale.name + " sold " + sale.sales + " gumballs";

        salesDiv.appendChild(div);

    }

}

First we need to take the data we got from the XMLttpRequest object 
(which is just a JSON string) and convert it into a true JavaScript object.
To do that, let’s update the updateSales function by first deleting the line 
that sets the <div> content to the responseText string, and convert the 
responseText from a string to its equivalent JavaScript using JSON.parse.

Now let’s walk through the resulting array and add new elements to the 
DOM, one per sales item in the array. In this case we are going to create 
a new <div> for each item:

1

2

Reworking our code to make use of JSON 
Let’s follow those two steps and get this code in shape:

function updateSales(responseText) {

    var salesDiv = document.getElementById("sales");

    salesDiv.innerHTML = responseText;

    var sales = JSON.parse(responseText);

}

We don’t need this line anymore.

Take the response and use JSON.parse to convert it into a JavaScript object (in this case it will be an array), and assign it to the variable sales.

Iterate through each item in the array.

For each item create a <div>, and give it 
the “saleItem” class (used by CSS).

Set the <div>’s contents with innerHTML, 
and then add it as a child of the sales <div>.



you are here 4  237

talking to the web

The Home Stretch...
You already know what this one is going to look like, but go ahead and 
make these changes.  Take one more careful look at the code on the 
previous page and make sure you’ve got it all down.  Then go ahead, 
reload that page.

See, we told you it 
would look like this!

Moving to the Live Server
Mighty Gumball asked us to test locally, and we have. Now we’re 
ready to move on to testing against the real server. This time, rather 
than retrieving a static JSON data file, we’ll be retrieving JSON that is 
generated dynamically from the Mighty Gumball servers. We do need 
to update the URL that XMLHttpRequest is using and change it to 
point to Mighty Gumball. Let’s do that:

Ajay, the Quality 
Assurance Guy

Testing has gone well, you guys 
are ready to use Mighty Gumball’s live 
production servers now. Good luck!

window.onload = function() {

    var url = "http://gumball.wickedlysmart.com";

    var request = new xMLHttpRequest();

    request.open("GET", url);

    request.onload = function() {

        if (request.status == 200) {

            updateSales(request.responseText);

        }

    };

    request.send(null);

}

Here’s their server URL. Change 
this and make sure it’s saved.



238  Chapter 6

a problem with mighty gumball

A Live Test Drive...
Make sure your URL change is saved in your mightygumball.js 
file on your server, if  you want to keep retrieving your HTML from 
there, or to your local hard drive if  you are using localhost. From 
there you know what to do: point your browser to your HTML file 
and watch the live, beautiful, real data from all those people around 
the world buying Mighty Gumballs!

Houston, we have a problem! 
Come quick, we’re getting no 
sales data since we changed 
to the live servers!

Yikes!
And everything was looking so 
good; we figured by this time we’d 
be sipping Perrier and celebrating 
another successful project with 
Mighty Gumball. Now the whole 
thing could go down in flames. 
Okay, we’re getting a little overly 
dramatic, but what the heck? This 
should have worked!

Deep breath.  Okay, there’s a 
logical explanation...

Note to Editor: actually 
we thought we’d be 
cashing a fat advance 
check and shipping this 
book! Now we’ve got to 
write our way out of 
another fine mess!

Ajay, the Upset Quality Assurance Guy

What?! We’re not 
seeing any data!



you are here 4  239

talking to the web

We’re not seeing any data in our page. It was all 
working fine until we moved to the live server...

Will we find the problem?

Will we fix it?

Stay tuned... we’ll answer these questions, and more...

And in the meantime, see if you can come up with 
ideas for what went wrong and how we can fix it.

It’s a cliffhanger!

 � To get HTML files or data from a server, the 
browser sends an HTTP request.

 � An HTTP response includes a response code 
that indicates if there was an error with the 
request.

 � The HTTP response code 200 means the 
request had no errors.

 � To send an HTTP request from JavaScript, use 
the XMLHttpRequest object.

 � The XMLHttpRequest object's onload handler 
handles getting the response from the server.

 � The JSON response to an XMLHttpRequest is 
placed in the request's responseText property.

 � To convert the responseText string to JSON, use 
the JSON.parse method.

 � XMLHttpRequest is used in applications to 
update content, such as maps and email, without 
requiring a page reload.

 � XMLHttpRequest can be used to retrieve any 
kind of text content, such as XML, JSON, and 
more.

 � XMLHttpRequest Level 2 is the most recent 
version of XMLHttpRequest, but the standard is 
still in development.

 � To use XMLHttpRequest, you must serve files 
and request data from a server.  You can set up 
a local server on your own machine for testing, 
or use a hosting solution.

 � The XMLHttpRequest onload property isn’t 
supported by older browsers, like IE8 and lower, 
and Opera 10 and lower. You can write code to 
check for the browser version and provide an 
alternative for older browsers.



240  Chapter 6

interviewing xmlhttprequest

Head First: Welcome back to the second part of  the interview, XMLHttpRequest. I wanted to ask you about browser 
support—are you available in only the newer browsers only?

XMLHttpRequest: The guys don’t call me “old man” for nothing; I’ve been supported by browsers since 2004. In 
Internet years I’m a senior citizen.  

Head First: Well, what about obsolescence, do you worry about that?

XMLHttpRequest: I’m someone who reinvents himself  every decade or so. Right now, we’re all working on the 
second version of  XMLHttpRequest, known as Level 2. In fact, most modern browsers already support Level 2.

Head First: Impressive.  What is different with Level 2?

XMLHttpRequest: Well, for one thing, support for more event types, so you can do things like track the progress of  a 
request, and write more elegant code (in my opinion).

Head First: Speaking of  browser support...

XMLHttpRequest: Okay, here it comes....wait for it...

Head First: We’ve heard through the grapevine that you and IE don’t really get along...

XMLHttpRequest: ...and there it is...if  you want the answer to that, all you have to do is read every interview I’ve 
ever given.  But apparently, you missed it. Are you kidding me?  This whole XMLHttpRequest business started with IE.  

Head First: Yeah, but what about ActiveXObject and XDomainRequest? Have you heard those names before?

XMLHttpRequest: Those are my nicknames! That’s what they call me at Microsoft! Okay, I agree it is a pain that we 
have different names for me, but they all do the same thing. It’s easily handled with a little more code, and in terms of  
the recent Microsoft browsers, version 9 and later, everything is good. If  this is news to your readers, I’m happy to stay 
after the interview to make sure their code works on older versions of  IE.

Head First: That’s very kind, we’ll make sure that makes it into this chapter somewhere.

XMLHttpRequest: Hey, I’m a nice guy, I wouldn’t leave your readers hanging on this.

Head First: We’ll take your word for it. Another question: you mentioned JSON and that you are a big fan of  it. Do 
you worry at all about, well, JSONP?

XMLHttpRequest: What me? Worry?

Head First: Word on the street is a lot people are using it in place of  you.

XMLHttpRequest: Okay, sure, with JSONP you can retrieve data, but it’s just a clever hack.  I mean, think of  the 
convoluted code you have to write, and what about security?

Head First: Hey, I’m not overly technical, all I know is a lot of  people say it gets them around problems you can’t 
solve. Anyway, that’s all we have time for.

XMLHttpRequest: Heh, well at least you got the “not overly technical” part right.

XMLHttpRequest Exposed Part 2
This week’s interview:
Internet Explorer, and “Did you say JSON?�”

XMLHttpRequest Exposed Part 2
This week’s interview:
Internet Explorer, and “Did you say JSON?�”



you are here 4  241

talking to the web

function init() {

    var url = "http://localhost/gumball/sales.json";

    var request = new xMLHttpRequest();

    request.onreadystatechange = function() {

        if (request.readyState == 4 && request.status == 200) {

            updateSales(request.responseText);

        }

    };

    request.open("GET", url);

    request.send(null);

}

... But there is no request.
onload property in Level 
2, so you’ll need to use 
the onreadystatechange 
property instead.

Most of the code to use 
XMLHttpRequest Level 1 is the same...

And then check the 
readyState to make sure 
the data has completed 
loading. If readyState is 4, 
you know it’s done. 

You could also check for 
other readyState and 
status values if you want 
to check for various errors.

Everything else is 
basically the same.

We’ve been using request.onload to define a function that is called when the 
request finishes getting the data from the server. This a feature of XMLHttpRequest 
Level 2 (think of it as “version 2”).  XMLHttpRequest Level 2 is still pretty new, so 
many users may still be using browsers that don’t support it.  In particular, IE 8 
(and lower), and Opera 10 (and lower) support only XMLHttpRequest Level 1.  The 
good news is that the new features of XMLHttpRequest Level 2 are enhancements, 
so you can continue to use only the features of version 1 in all browsers without 
any problems; it just means your code isn’t quite as elegant.  Here's the code to 
use XMLHttpRequest Level 1:

The XMLHttpRequest onload property isn’t supported by older 
versions of browsers, but there’s an easy workaround.



242  Chapter 6

reviewing what went wrong

Remember, we left you with a 
cliffhanger? A bug.
We had all the code working just fine using our local server, but as soon 
as we moved to the live server on the Web, it failed!

What we expected: What we got:

Ajay, the Quality 
Assurance Guy, got 
pretty upset.

Here’s what our page looks like when 
we run the code using our local 
server to serve the sales data from 
http://localhost/gumball/sales.json.

Here’s what our page looks like when 
we run the code using the live Mighty 
Gumball server to serve the sales data from 
http://gumball.wickedlysmart.com.

So, what do we do now?!
Why, let’s do what we always do, pull the crew 
together for a quick cubicle conversation. We’re 
sure that together, all of  us (including a few 
fictional characters) can figure this out! Frank? 
Jim? Joe? Where are you? Oh, there you are on 
the next page...



you are here 4  243

talking to the web

Jim: Do you have the correct URL?

Frank: Yep, and in fact, I typed it into the browser 
to make sure I see the sales data we’re expecting, 
and it worked fine. I don’t get it...

Joe: I peeked at the JavaScript console in Chrome 
and I see something about access control and 
origins or domains.

Frank: Errrrr?

I don’t know what’s going 
on with this code, Jim, but 
it just isn’t working for me.

Guys, where were you on 
the Starbuzz Coffee project? Remember 
we had a problem with the same behavior. I 
bet you’ve got cross-domain issues because you’re 
requesting data from a server that is different 
than where your page came from. The browser 

thinks that is a security issue.

Hmmmm, maybe you could 
refresh our memory on the 
browser security issues?

Jim Frank Joe

Judy



244  Chapter 6

browser security overview

First the user (through the browser) makes a request for an HTML page 
(and, of course, any associated JavaScript and CSS):

The page needs some data from GoodDomain.com so it makes a 
XMLHttpRequest for the data:

2

1

Server happily 
serves you 
your page.

Your browser 
makes a request 
for a page from 
GoodDomain.com.

This request to get data from GoodDomain.com succeeds 

because the page and the data are at the same domain.

Browser GoodDomain.com

What Browser Security Policy?
Okay, it’s embarassing to hit this kind of  snag—just think of  the position 
we’re putting you readers in—but Judy’s right, the browser does enforce 
some security around your XMLHttpRequest  HTTP requests and that can 
cause some issues.

So what is this policy? Well, it’s a browser policy, and it says you can’t 
retrieve data from a domain that is different from the domain the page itself  
was served from.  Say you’re running the site for DaddyWarBucksBank.com 
and someone has hacked into your systems and inserted a bit of  JavaScript 
that takes the user’s personal information and does all kinds of  interesting 
things with it by communicating with the server HackersNeedMoreMoney.
com. Sounds bad right? Well, to stop that sort of  thing, browsers prevent 
you from making XMLHttpRequests to domains other than the original 
domain the page was served from. 

Let’s take a look at what is okay, and what isn’t:

Acceptable Behavior for JavaScript code:

HTML

request

Server happily 
serves you 
your data.

Browser GoodDomain.com
DATA

request



you are here 4  245

talking to the web

Unacceptable Behavior for JavaScript code:

Just like before, the browser makes a request for a page on GoodDomain.com. This may 
include JavaScript and CSS files that are also hosted at GoodDomain.com.

But now we have code that wants data from another source, that is, BadDomain.com. 
Let’ s see what happens when the page requests that data using XMLHttpRequest:

2

1

Now let’s see what happens when your page hosted at GoodDomain.com tries to 
make a request for data using XMLHttpRequest to BadDomain.com instead.

Server happily 
serves you 
your page.

Your browser 
makes a request 
for a page from 
GoodDomain.com.

Browser GoodDomain.com
HTML

request

Your page uses 
XMLHttpRequest 
to request data on 
BadDomain.com.

Browser GoodDomain.com

BadDomain.com

request

The browser sees this 
request is to a different 
domain than the page, 
and shuts it down. 
Request denied.

The BadDomain.com server never sees a 
request; your browser’s security policy 
stops it before it ever happens.



246  Chapter 6

reviewing our options

Nice job, all this code and this won’t 
even work? Can’t we just copy our files 

to the Mighty Gumball servers?

Usually the answer is yes.  
Say you were a developer working on code 
for Mighty Gumball, then you’d typically 
have access to their servers (or to people 
who could deploy files to the servers for 
you), and you could place all your files 
there and avoid any cross-domain issues.  
In this case, however (and we do hate 
to break your suspension of  disbelief), 
you’re not actually working for Mighty 
Gumball, you’re readers of  this book, and 
we can’t think of  a way to have a couple 
hundred-thousand people copy their files 
to the Mighty Gumball servers. 

So where does that leave us? Have we 
reached a dead end? No, we’ve still got a 
few options. Let’s step through them...

At least not on the budget 
the editor has given us!



you are here 4  247

talking to the web

So, what are our options?
We gotta be honest with you, we knew all along that the XMLHttpRequest cross-origin 
request would fail. But, as we just said, when you’re building apps you’ve often got access to 
the server and so this isn’t an issue (and if  you’re building apps largely dependent on your own 
data, using  XMLHttpRequest is usually the best way to do it).

But at this point we can hear you saying “that’s great, but how can we get this code working 
already?” Well, we’ve got a couple ways to make that happen:

Plan 1: Use our hosted files.1

We’ve already put files on our server for you and placed the files at: 

Go ahead and give it a try by pointing your browser to this URL and you’ll be 
able to see the same code you typed in so far in action and working.

Plan 2: Use another way to get the data.2

So, XMLHttpRequest is a great way to get data into your apps when that data is 
hosted at the same domain as your app, but what if  you need to really get data from a 
third party? Say you need data from Google or Twitter for instance? In those cases we 
really do have to break through this problem and find another approach.

As it turns out there is another way, based on JSON, known as JSONP (if  you’re 
curious it stands for “JSON with Padding”; we agree that sounds weird, but we’ll walk 
through it in just a sec). Get your jetpack on because the way it works is a little “from 
another planet” if  you know what we mean.

http://gumball.wickedlysmart.com/gumball/gumball.html

Sorry, 
Ma’am, I can’t allow 
that, you’re from a 
different domain.

Same domain? You’re 
good to go then. Have a 

nice day.

XMLHttpRequest 
Police.



248  Chapter 6

introducing jsonp

Joe: Totally! But, what is it?

Jim: Sounds like it is another way to get data from web services into 
our apps.

Frank: I’m useless here, I’m just the creative guy.

Jim: Frank, I don’t think this is that bad. I quickly google’d JSONP 
and basically it is a way of  getting the <script> tag to do the work 
of  retrieving the data.

Joe: Huh, is that legit?

Jim: Totally legit—a lot of  big services are supporting it, like Twitter.

Frank: Sounds like a hack.

Joe: Well yeah, that’s what I was getting at. I mean, how can using 
the <script> tag be a kosher way of  getting data? I don’t even get 
how that would work.

Jim: I’m only a little way into understanding it myself. But think 
about it this way: when you use a <script> element, it is retrieving 
code for you right?

Joe: Right...

Jim: Well, what if  you put data in that code?

Joe: Okay, wheels are turning...

Frank: Yeah, you mean hamster wheels...

JSONP, guys, this is 
our chance to get ahead 
of Judy, for once.



you are here 4  249

talking to the web

HTML5 Guru: ...and this 
is one of those times.  
Grasshopper, look at the this code: 
 

What does it do?

Web Developer: When you evaluate it, assuming it is 
running in a browser, it will display an alert saying “woof”.

Guru: Ah, yes. Create your own simple HTML file and put a 
<script> element in it, in the body, like this:

Guru: What does it do?

Web Developer: It loads the page, which loads the 
JavaScript from dog.js from wickedlysmart.com, which calls 
the alert function, and I see an alert with “woof” displayed by 
the browser.

Guru: So a JavaScript file, served from another domain, can 
call a function within your browser?

Web Developer: Well, now that you put it that way, yes 
Guru, I guess that is what is happening. The dog.js file at 
wickedlysmart.com, once retrieved, calls alert in my browser.

Guru: You’ll find another file at:
http://wickedlysmart.com/hfhtml5/chapter5/dog2.js with 
the JavaScript:

Guru: What does it do?

Grasshopper, sit. 
Often what I teach, 

you already inherently 
know...

<script src="http://wickedlysmart.com/hfhtml5/chapter6/dog.js">
</script>

animalSays("dog", "woof");

alert("woof");

 
This code is 
located at 
this URL.



250  Chapter 6

the guru teaches jsonp

Web Developer: It’s similar to dog.js, but it calls a function animalSays. It 
also has two arguments not one: the animal type, and the animal sound.

Guru: Write the function animalSays and add it in a <script> element in 
the head of your HTML file, above the <script> element that points to 
wickedlysmart.

Web Developer: How’s this?

Guru: Very good, you’re progressing well. Now, change your other <script> 
reference, the one that points to dog.js, to point to dog2.js and reload the page 
in your browser.

Web Developer: I get an alert that says “dog says woof”.

Guru: Take a look at http://wickedlysmart.com/hfhtml6/chapter5/cat2.js, 
change your <script> reference to point to cat2.js and try that.

Web Developer: I get an alert that says “cat says meow”.

Guru: So not only can a JavaScript file that was served from another domain 
call any function it wants in your code, but it can also pass us any data it wants?

Web Developer: I don’t see any data really, just two arguments.

Guru: And arguments aren’t data? What if we change the arguments to look 
like this:

Web Developer: Now the function animalSays is passing one argument that 
happens to be an object.  Hmm, I can certainly see how that object starts to 
look like data.

Guru: Can you rewrite animalSays so it uses the new object?

Web Developer: I’ll give it a try...

animalSays("cat", "meow");

function animalSays(type, sound) {
   alert(type + " says " + sound);
}

var animal = {"type": "cat", "sound": "meow"};
animalSays(animal);

cat3.js



you are here 4  251

talking to the web

Web Developer: How’s this?

Guru: Very good. Change your reference to http://wickedlysmart.com/hfhtml5/chapter6/
dog3.js and try it. Try http://wickedlysmart.com/hfhtml5/chapter6/cat3.js too.

Web Developer: Yes, both work as you would expect with my new function.

Guru: What if you change the name of animalSays to updateSales?

Web Developer: Guru, I don’t see how animals are related to gumball sales?

Guru: Work with me here. What if we rename dog3.js to sales.js, and rewrite it like this:

Web Developer: I think I’m starting to get it.  We are passing data through the JavaScript 
file we’re referencing, rather than using XMLHttpRequest to retrieve it ourselves.

Guru: Yes, Grasshopper. But don’t miss the forest for the trees. Are we not also getting it 
from another domain? Something that is forbidden by XMLHttpRequest.

Web Developer: Yes, it appears that way. This seems truly like magic.

Guru: There is no magic, the <script> element has always worked like this. The answer was 
within you all along. Now please go meditate on how this works to make it stick.

Web Developer: Yes master. “Make it stick”... you know that phrase sounds so familiar but
I can’t quite place it.

ZEN 
MOMENT

Using JavaScript to retrieve data is something you have to become one 
with. Grab a sheet of paper or use the inside cover of this book. Draw a 
server that hosts your HTML & JavaScript files.  Also draw a server at 
another domain that has the files dog3.js and cat3.js. Now go through 
the steps the browser uses to get and use the object in each file. When 
you think you’ve got it, we’ll go through it all again together.

var sales = [{"name":"ARTESIA","time":1308774240669,"sales":8},
             {"name":"LOS ANGELES","time":1308774240669,"sales":2}];

updateSales(sales);

function animalSays(animal) {
   alert(animal.type + " says " + animal.sound);
}



252  Chapter 6

jsonp overview

Meet JSONP
You’ve probably figured out that JSONP is a way to retrieve JSON objects 
by using the <script> tag. It’s also a way of  retrieving data (again, in the 
form of  JSON objects) that avoids the same-origin security issues we saw 
with XMLHttpRequest. 

Let’s step through how JSONP works over the next few pages:

<!doctype html>

<html lang="en">

  ...

<body>

  <h1>Mighty Gumb
all Sales</h1>

  <div id="sales"
>

  </div>

  <script src="ht
tp://gumball.wick

edlysmart.com/"><
/script>

</body>

</html>

JSON 

The Browser

request

In our HTML we 
include a <script> 

element. The source for 
this script is actually 
the URL of a web 
service that is going to 
supply us with JSON for 
our data, like our Mighty 
Gumball sales data.

1

When the browser 
encounters the 

<script> element in the 
page, it then sends an 
HTTP request to the 
src URL.

2

The server treats the request like 
any HTTP request, and sends back 

JSON in its response.

3

The JSON response 
is in the form of a 

string, which is parsed and 
interpreted by the browser.  
Any data types are turned 
into real JavaScript object 
and values, and any code will 
be executed.

4

Web Service

Remember this is just a string 
representation of the object 
at this point!



you are here 4  253

talking to the web

But what is the “P” in JSONP for?
OK, the first thing you need to know about JSONP is it has a dumb and 
non-obvious name: “JSON with Padding.”  If  we had to name it, we’d call it 
something like “JSON with a Callback” or “get me some JSON and execute 
it when you get it back” or, well, really just about anything other than JSON 
with Padding.

But, all the padding amounts to is wrapping a function around the JSON 
before it comes back in the request. Here’s how that works:

<!doctype html>

<html lang="en">

  ...

<body>

  <h1>Mighty Gumb
all Sales</h1>

  <div id="sales"
>

  </div>

  <script src="ht
tp://gumball.wick

edlysmart.com/"><
/script>

</body>

</html>

Web Service

request

JSONupdateSales( )
And as before the server treats the 
request as normal and sends back JSON, 

but...this part is a little different.
 
Before the server sends back the JSON 
string, it first wraps it in a function call, like a 
call to updateSales.

3

The Browser

Same as before, we 
include a <script> 

element. The source for 
this script is the URL 
of a web service that is 
going to supply us with 
JSON data.

1

Same as before, 
the browser 

encounters the 
<script> element in 
the page and sends an 
HTTP request to the 
src URL.

2

This time when the JSON 
response is parsed and 

interpreted, it is wrapped in 
a function call. And so that 
function is called, and the 
object created from the 
JSON string is passed to it. 

4

This time the JSON is 
wrapped in a function call.



254  Chapter 6

dealing with callbacks

http://gumball.wickedlysmart.com/?callback=updateSales

I see how to use the <script> 
tag to make the browser go retrieve JavaScript, 

and how the server can put its data in that JavaScript. 
What about the function name though? How does the 

web service know the right function name is? Like, how does 
the Mighty Gumball web service know to call updateSales? 

What if I have another service and I want it to call, say, 
updateScore, or alert, or whatever?

Web services let you specify a callback function.

In general, web services allow you to specify what you want the 
function to be named. Although we didn’t tell you, Mighty Gumball 
is already supporting a way to do this. Here’s how it works: when you 
specify your URL, add a parameter on the end, like this:

Here’s the usual URL 
we’ve been using.

And here we’ve added a URL 
parameter, callback, that says to use 
the function updateSales when the 
JavaScript is generated.

MightyGumball will then use updateSales to wrap the JSON 
formatted object before sending it back to you. Typically, web services 
name this parameter callback, but check with your web service 
documentation to make sure that’s what they’re using.

Try these URLs: what do you see in the response?

http://search.twitter.com/search.json?q=hfhtml5&callback=myCallback

Note: Firefox will ask you to open or save a file. You can open 
with TextEdit, Notepad, or any basic text editor.

http://search.twitter.com/search.json?q=hfhtml5&callback=justDoIt

http://search.twitter.com/search.json?q=hfhtml5&callback=updateTweets



you are here 4  255

talking to the web

Guys, we’ve got this. It took us a while to 
wrap our heads around using a <script> element to 
hit a web service, but now it almost seems easier 

than using XMLHttpRequest.

Jim: Well, almost.

Joe: I think this actually allows us to delete some code.

Frank: And I'm ready to make it all look good when you’re done.

Jim: So Joe, code-wise, what do you have in mind?

Joe: With XMLHttpRequest we were retrieving a string. Using JSONP, 
the script tag is going to parse and evaluate the code coming back, so 
by the time we get our hands on the data it will be a JavaScript object.  

Jim: Right, and with XMLHttpRequest we were using JSON.parse to 
convert the string into an object.  We can just get rid of  that?

Joe: Yup. That’s my story and I’m sticking to it.

Jim: What else?

Joe: Well obviously we need to insert the <script> element.

Jim: I was wondering about that. Where do we put it?

Joe: Well, the browser is going to control when it loads, and we 
want the page to be loaded first, so we can update the DOM when 
updateSales is called.  The only way I can think of  dealing with that 
is to put the <script> at the bottom of  the page in the body of  the 
HTML.

Jim: Yeah, sounds like a good guess.  We should look into that a little 
more. But for starters let’s try it.

Joe: Okay, I want to get this code working!  Let’s get this code in!

Frank: You guys better hurry, I bet Judy’s already got her own version 
in the works.



256  Chapter 6

reimplementation plan

Let’s update the Mighty Gumball web app
It’s time to update your Mighty Gumball code with JSONP.  Other than removing 
the existing code that deals with the XMLHttpRequest call, all the changes are 
minor. Let’s make those changes now:

Remove our XMLHttpRequest code.

What we need to do:

Make sure the updateSales function is ready 
to receive an object, not a string (as it was 
with the XMLHttpRequest).

1

2

Add the <script> element to do the actual 
data retrieval.

3

window.onload = function() {

    var url = "http://gumball.wickedlysmart.com";

    var request = new xMLHttpRequest();

    request.open("GET", url);

    request.onload = function() {

        if (request.status == 200) {

            updateSales(request.responseText);

        }

    };

    request.send(null);

}

All the code in our onload function was code involved in the XMLHttpRequest, 
so we can just delete it. We’ll keep the onload function around in case we need 
it a little later. For now it will do nothing. Open up your mightygumball.js file 
and make these changes:

1

For now, just delete all the 
code in this function.



you are here 4  257

talking to the web

<!doctype html>

<html lang="en">

<head>

  <title>Mighty Gumball</title>

  <meta charset="utf-8">

  <script src="mightygumball.js"></script>

  <link rel="stylesheet" href="mightygumball.css">

</head>

<body>

  <h1>Mighty Gumball Sales</h1>

  <div id="sales">

  </div>

  <script src="http://gumball.wickedlysmart.com/?callback=updateSales"></script>

</body>

</html>

This is the link to the Mighty 
Gumball web service. We’re 
using the callback parameter 
and specifying our function, 
updateSales, so the web 
service wraps the JSON in a 
function call to updateSales.

Next, remember that when we use the <script> element, we’re telling the 
browser that it needs to retrieve JavaScript, and so the browser retrieves it, 
parses it and evaluates it. That means by the time it gets to your updateSales 
function, the JSON is no longer in string form, but is a first-class JavaScript 
object. When we used XMLHttpRequest, the data came back in the form of a 
string. Right now, updateSales assumes it is getting a string, so let’s change 
that so that it handles an object, not a string:

2

function updateSales(responseText) {

function updateSales(sales) {

    var salesDiv = document.getElementById("sales");

    var sales = JSON.parse(responseText);

    for (var i = 0; i < sales.length; i++) {

        var sale = sales[i];

        var div = document.createElement("div");

        div.setattribute("class", "saleItem");

        div.innerHTML = sale.name + " sold " + sale.sales + " gumballs";

        salesDiv.appendChild(div);

    }

}

Remove responseText and rewrite the 
line with a parameter named sales.

And we can delete the 
JSON.parse call too.

And that’s it: we’ve now got a function ready 
to handle our data.

And finally, let’s add the <script> element to do the actual data retrieval.3



258  Chapter 6

testing jsonp

Test drive your new JSONP-charged code
If  you’ve made all your changes, it’s time for a test drive. Reload 
mightygumball.html into your browser. You’re now loading 
Mighty Gumball sales data using your web app and JSONP. The 
page should look the same as when you were getting the sales data 
from the local file, but you know that it’s 
using a whole different method of  getting 
the data. 

Here’s what we see when we 
reload the Mighty Gumball 
page. You’ll get different 
cities and sales because this 
is real data.

Yes! The Mighty Gumball 
CEO should be happy with 

this.  Time to par-tay. Nice work, boys. 



you are here 4  259

talking to the web

It’s not any more or less secure than 
using <script> to load JavaScript.

It’s true: if  you make a JSONP request to a 
malicious web service, the response could include 
JavaScript code you’re not expecting and the 
browser will execute it. 

But it’s no different than including JavaScript by 
linking to libraries hosted on other servers. Any 
time you link to JavaScript, whether it’s to a library 
in the <head> of  your document, or using JSONP, 
you need to be sure you trust that service. And if  
you’re writing a web app that uses authentication to 
give the user access to sensitive data, it’s probably 
best not to use third party libraries or JSON data 
hosted on other servers at all.  

So choose the web services you link to carefully. If  
you’re using an API like Google, Twitter, Facebook 
or one of  the many other well-known web services 
out there, you’re safe. Otherwise, caution is advised.

In our case, we know the Mighty Gumball 
engineers personally and we know they’d never put 
anything malicious in their JSON data, so you’re 
safe to proceed.

JSONP seems like one big 
security hole to me!



260  Chapter 6

a chat with xmlhttprequest and jsonp

Tonight, we have two popular methods of retrieving 
data from your browser.

Tonight’s talk: XMLHttpRequest and JSONP

XMLHttpRequest:
No offense meant, but aren’t you kind of  a hack? I mean 
your purpose is to retrieve code, and people are using 
you to do requests for data.

But all you’re doing is throwing some data in with 
code. And there’s no way for you to make your requests 
directly from JavaScript code; you’ve got to use an 
HTML <script> element. Seems very confusing for 
your users.

 
 
 

Hey XML is still in wide use, don’t knock it. And you 
can retrieve JSON just fine with me.

At least with me you’re in control of  what data gets 
parsed into JavaScript. With you it just happens.

 
 
 
 
 

Well you can go ahead and use a hack, like 
JSON-With-Padding—heh, dumb name—or, you can 
use the right thing, XMLHttpRequest and grow with it 
as it evolves. After all, people are working on making me 
more flexible while still secure.

JSONP:
 

Hack? I’d call it elegance. We can use the same means of  
retrieving code and data. Why have two ways of  doing it? 

 
 
 

Hey, it works, and it allows people to write code that 
retrieves JSON from services like Twitter and Google 
and a lot of  others. How are you going to do that with 
XMLHttpRequest given your security restrictions. I mean 
you’re still stuck on the old days, “XML,” heh.

 

Sure, if  you want to always JSON.parse the result.

 

That’s an advantage—by the time my users get their 
data, it’s all nicely parsed for them. Look, I have a lot of  
respect for you, you made this whole way of  writing apps 
happen, but the problem is you’re too restrictive. Today, 
in this world of  web services, we need to be able to make 
requests to other domains.

 
 
 

Sure people are working on new ways, but my users have 
real needs today—they can’t wait for you to figure out all 
your cross-domain issues.



you are here 4  261

talking to the web

XMLHttpRequest:
 
 

I had nothing to do with the name Ajax, so don’t ask 
me! By the way, you never said how you are secure?

 
 
 

All I can say is if  you don’t need to go get someone else’s 
data, like Twitter or Google, and you’re writing your 
own web service and client, stick with me.  I’ve got more 
security and I’m more straightforward to use.

 
 
Yeah yeah, mishmash. 

 
 

Come on, it doesn’t take that much code to support me 
going all the way back to IE5.

 

Yeah, well there’s more to it than that, and have you 
ever tried to do something iterative, where you need 
to retrieve something over and over? Like that Mighty 
Gumball thing they’ve been working on. How are they 
going to make that work?

 

Here’s my impression of  your readers having just heard 
the sentence you just said: “Say what?”

JSONP: 
And there’s nothing dumb about “padding,” it just 
means that when a user makes a web service request it 
also asks it to add a little prefix, like “updateSales()”, on 
to the result. And what were they calling you for a while? 
Ajax? Isn’t that a bathroom cleaner?

Coders have always needed to be careful. If  you’re 
retrieving code from another server, yeah you need to 
know what you’re doing. But the answer isn’t to just say 

“don’t do it.”   
 
 
 
 

Hello? No one is writing services that don’t use outside 
data. Ever heard the name “mashup?”

Hey, at least I’m consistently supported everywhere, 
I’d hate to have to write XMLHttpRequest code that 
worked across old browsers.

 

Haha, for me it takes ZERO code.  Just a simple 
HTML tag.

 
 
 

Hey, it’s not that bad. You just need to use write a new 
<script> element into the DOM to do another request.

 
 

 
HEAD FIRST:
Thanks guys! I’m afraid we’re out of  time!



262  Chapter 6

exercising your brain with jsonp

You came up a little short.  I 
thought I was going to see a constantly 

updated stream of sales from my gumball 
machines.  Sure, I could hit refresh on my 
browser, but then I see only the newest 

reports, and only when I manually refresh. 
That’s not what I want!

He’s right, we need to change our app so that it is updating the display with new sales 
at some regular interval (say, every ten seconds). Right now we’re just putting a <script> 
element into the page that initiates the request to the server only one time. Can you 
think of any way to use JSONP to continually retrieve new sales reports?

Hint: using the DOM we can insert a new <script> 
element into the page. Could that work?



you are here 4  263

talking to the web

Jim: Yeah, he wants the data to be continually updated in the display.

Judy: That does make sense. I mean one big advantage of  a web 
app is you don’t have to refresh it like a web page.

Joe: Fair enough, and obviously we know how to replace old sales 
data with new sales data in the page using the DOM. But we’re not 
sure yet how to handle the JSONP part.

Judy: Remember, you can use the DOM with the <script> 
element too. In other words, you can create a new <script> 
element in the DOM any time you want to retrieve more data.

Jim: Okay, right over my head. Can you say that again?

Joe: I think I sort of  get it. Right now, we’re putting the <script> 
element statically in the HTML markup by just typing it in.  We 
could instead create a new <script> element with JavaScript code, 
and add it to the DOM.  The only part I’m not sure of  is, will the 
browser do another retrieval when we create the new <script> 
element?

Judy: It sure will.

Jim: I see, so we’re creating a new <script> element any time we 
want the browser to do a JSONP-type operation for us.

Judy: Right! Sounds like you’re getting it. And you know how to do 
it over and over?

Jim: Well, uh, we’re not there yet, we were still thinking about the 
JSONP.

Judy: You know all about handler functions by now, you know 
like onload or onclick. You can set up a timer to call a function 
handler at a specified interval using the setInterval method in 
JavaScript.

Joe: So, let’s get that set up and get the dynamic JSONP working 
ASAP for the Gumball CEO.

Jim: Oh, is that all you want? We better get on it!

Guys, I just heard the 
Mighty Gumball CEO isn’t exactly 
happy with your first version?



264  Chapter 6

making jsonp dynamic

Then we need to implement our JSONP code in the handler, so 
that each time it is called it makes a request to get the latest 
Mighty Gumball sales reports.  

Here’s what we need to do:

We're going to remove the JSONP <script> element from the 
Mighty Gumball HTML, because we won’t be using that any more.

1

3

We need to set up a handler to handle making the JSONP 
request every few seconds. We’ll take Judy’s advice and use 
JavaScript’s setInterval method.

2

<!doctype html>
<html lang="en">
<head>
  <title>Mighty Gumball</title>
  <meta charset="utf-8">
  <script src="mightygumball.js"></script>
  <link rel="stylesheet" href="mightygumball.css">
</head>
<body>
  <h1>Mighty Gumball Sales</h1>
  <div id="sales">
  </div>
  <script src="http://gumball.wickedlysmart.com/?callback=updateSales"></script>
</body>
</html>

Step 1: Taking care of the script element...
We’re going to be using a new way to invoke our JSONP requests, and so let’s go 
ahead and remove the <script> element from our HTML.

Improving Mighty Gumball 
As you can see we have a little more work to do, but it’s not going to be too bad. 
Basically, we wrote our first version so that it grabs the latest sales reports from 
Mighty Gumball and displays them, once. Our bad, because almost any web app 
these days should continuously monitor data and update the app in (near) real time.

You can go ahead and delete this element 
from your HTML file.



you are here 4  265

talking to the web

Okay, we’re progressing from retrieving the sales reports once, to retrieving them 
every so often, say every three seconds. That might be too fast or slow depending on 
the application, but for Mighty Gumball we’re going to start with three seconds.

Now, to do something every three seconds we need to have a function we can call 
every three seconds. And, as Judy mentioned, we can use the setInterval method 
in the window object to do this; here’s what it looks like:

setInterval(handleRefresh, 3000);

The setInterval 
method takes a 
handler and a 
time interval.

Here’s our handler function, 
which we’ll define in a sec.

And here’s our time interval, 
expressed in milliseconds.  
3000 milliseconds = 3 seconds.

Step 2: Now it’s time for the timer

Let’s give this a try and then when we know it’s working—that is, when we see our 
our handler being invoked every three seconds—we’ll implement the JSONP code.

window.onload = function() {

    setInterval(handleRefresh, 3000);

}

And all we need to do is add our call to setInterval, which, when the init function is run, will start a timer that fires every three seconds and calls our function handleRefresh. 

So every 3,000 milliseconds JavaScript will invoke your handler, in this case the 
handleRefresh function. Let’s write a simple handler and give it a try:

function handleRefresh() {

   alert("I'm alive");

}

Every time this is called (which will 
be every three seconds), we’ll throw 
up the alert “I’m alive.”

Now we just need some code to set up the setInterval call, which we’ll add to the 
onload function so it gets set up right after the entire page is loaded:

This is our old onload function, 
which had nothing in it after we 
deleted the XMLHttpRequest code.



266  Chapter 6

testing an interval timer

A time-driven test drive
This should be fun. Make sure you’ve typed in the handleRefresh 
function and also made the changes to the onload handler. Save 
everything and load it into your browser. You’ll see a stream of  alerts, and 
you’ll have to close your browser window to stop it!

Here’s what we get!

Now that you know about setInterval (not to mention 
XMLHttpRequest and JSONP), think of ways you could use them 
in other web applications. List those here:

Check and update progress on a task and display it.
See if any new comments have been posted on a topic.
Update a map if any friends have shown up nearby.



you are here 4  267

talking to the web

Step 3: Reimplementing JSONP

Here, we’re setting up the JSONP URL 
and assigning it to the variable url.

... and set the src attribute of 
the element to our JSONP URL.

function handleRefresh() {

    var url = "http://gumball.wickedlysmart.com?callback=updateSales";

}

We still want to use JSONP to retrieve our data, but we need a way to do it 
whenever our refresh handler is called, not just at page load time.  That’s where the 
DOM comes in—the great thing about the DOM is that we can insert new elements 
into the DOM at any time, even <script> elements.  So, we should be able to insert 
a new <script> element any time we want to make a JSONP call.  Let’s work up 
some code using everything we know about the DOM and JSONP to do this.

We’re back in our 
handleRefresh function.

First, let’s set up the JSONP URL
This is the same URL we used with our previous script element. Here 
we’ll assign it to a variable for later use. Delete the alert out of your 
handler and add this code:

function handleRefresh() {

    var url = "http://gumball.wickedlysmart.com?callback=updateSales";

    var newScriptElement = document.createElement("script");

    newScriptElement.setattribute("src", url);

    newScriptElement.setattribute("id", "jsonp");

}

Next, let’s create a new script element
Now, instead of having the <script> element in our HTML, we’re going 
to build a <script> element using JavaScript. We need to create the 
element, and then set its src and id attributes:

First, we create a new 
script element...

And we'll give this script an id so 
we can easily get it again, which 
we'll need to, as you'll see.

The setAttribute method might look new to you (we’ve only 
mentioned it in passing so far), but it’s pretty easy to see what it 
does. The setAttribute method allows you to set the attributes of 
an HTML element, like the src and id attributes or a number of 
others including class, href and so on.



268  Chapter 6

jsonp dom insertion

How do we insert the script into the DOM?
We’re almost there, we just need to insert our newly created script element. Once we 
do that the browser will see it and do its thing, causing the JSONP request to be made. 
Now, to insert the script requires a little bit of  planning and forethought; let’s see how 
this is going to work:

We start with out with 
a DOM, with no "jsonp" 

<script> (at this point, we just 
have the <script> that links to 
our JavaScript code).

1

head

title meta script link

In our code we’re going to 
need to get a reference to 

the <head> element.

2

And then we’re going to insert 
the new <script> element into 

the <head> element.

3

script id=”jsonp” src=”http://gumball.wicked...”

Now except for the first time 
handleRefresh is called, there’s 

already going to be a "jsonp" <script> 
element in the DOM.

1

head

title meta script link

In that case we’ll, again, 
grab a reference to the 

head element.

2

Once we've inserted the script, the browser will see the new script in the DOM and go retrieve 
what's at the URL in the src attribute. Now, we’ve also got a second use case. Let’s look at it.

script id=”jsonp” src=”http://gumball.wicked...”

script id=”jsonp” src=”http://gumball.wicked...”

And this time we’ll replace the existing element with our 
new one, rather than appending the new script to the DOM. 

It would work to append the new script—that is, the browser 
would invoke the JSONP call—but, over time, we’d build up a 
huge collection of <script> elements in the DOM, which can have 
performance implications.  So replacing the element is better.

3



you are here 4  269

talking to the web

Now let’s write the code to insert the script into the DOM

Now that we know the steps, let’s check out the code. We’ll do this in two 
steps too: first we’ll show the code to add a new script, then the code to 
replace a script:

function handleRefresh() {

    var url = "http://gumball.wickedlysmart.com?callback=updateSales";

    var newScriptElement = document.createElement("script");

    newScriptElement.setattribute("src", url);

    newScriptElement.setattribute("id", "jsonp");

    var oldScriptElement = document.getElementById("jsonp");

    var head = document.getElementsByTagName("head")[0];

    if (oldScriptElement == null) {

        head.appendChild(newScriptElement);

    }

}

We’re first going to get the 
reference to the <script> element. 
If doesn’t exist, we’ll get back null. 
Notice we’re counting on it having 
the id “jsonp.”

Now that we have a reference to the <head> element, we check to see if there 
is already a <script> element, and if there isn’t (if its reference is null) then 
we go ahead and append the new <script> element to the head. 

Next we’re going to get a 
reference to the <head> element using a new document method. 
We’ll come back to how this works. but for now just know it gets a 
reference to the <head> element.

Okay, let’s check out the code that replaces the script element if it 
already exists. We’ll just show the conditional if statement, which is 
where all the new code is:

if (oldScriptElement == null) {

    head.appendChild(newScriptElement);

} else {

    head.replaceChild(newScriptElement, oldScriptElement);

}

If there is already a <script> element in the head, then we just 
replace it. You can use the replaceChild method on the <head> 
element and pass it the old and new scripts to do that. We’ll 
look a little more closely at this new method in a sec.

Here’s our conditional again, remember it is just checking to see 
if a <script> element already exists in the DOM.



270  Chapter 6

closeup of more dom methods

The replaceChild method tells the <head> 
element to replace one of its children, 
oldScriptElement, with a new child, 
newScriptElement.

Our new 
<script> 
element

The <script> 
that’s already 
in the page.

head.replaceChild(newScriptElement, oldScriptElement);

replaceChild Up Close

Let’s also look at the replaceChild method because you haven’t seen that before. 
Call the replaceChild method on the element in which you want to replace a child, 
passing in the references to both the new and old children. The method simply replaces 
the old child with the new one.

getElementsByTagName Up Close

This is the first time you’ve seen the getElementsByTagName method, so let’s take a 
quick up close look. It’s similar to getDocumentById, except that it returns an array 
of  elements that match a given tag name.

var head = document.getElementsByTagName("head")[0];

var arrayOfHeadElements = document.getElementsByTagName("head");

getElementsByTagName returns all the elements in the DOM with this tag.

In this case it returns an array 
of head elements.

var head = arrayOfHeadElements[0];

Once you have the array, you can get the first item in it using index 0:

Returns the first head element 
in the array (and there should 
be only one, right?).

Now we can combine these two lines, like this:

We get the array and then index into the 
array to get the first item in one step.

In our code example, we’re always using the first <head> element but you can use this 
method on any tag, like <p>, <div> and so on. And usually you’ll get more than one of  
those back on the array.



you are here 4  271

talking to the web

Q: Why can’t I just replace the data in the src 
attribute instead of replacing the whole <script> 
element?

A: If you replace just the src attribute with the new 
URL, the browser doesn’t see it as a new script, and 
so it doesn’t make the request to retrieve the JSONP. 
To force the browser to make the request, we have to 
create this whole new script. This is a technique known 
as “script injection.”

Q: What happens to the old child when I replace 
it?

A: It’s removed from the DOM. What happens from 
there depends on you: if you’ve still got a reference to 
it stored in a variable somewhere you can continue to 
use it (in whatever way might make sense). However 
if you don’t, the JavaScript runtime might eventually 
reclaim the memory the element is taking up in your 
browser.

Q: What if there is more than one <head> 
element? Your code seems to depend on there 
being only one head when you index by zero in the 
array returned by getElementsByTag?

A: By definition, an HTML file has only one <head> 
element. That said, sure, someone could type two into 
an HTML file. In that case your results may vary (and 
that’s what you get for not validating your HTML!), but 
as usual, the browser will do its very best to do the right 
thing (what that is, just may depend on the browser). 

Q: Can I stop the interval timer after I start it?

A: You sure can. The setInterval method actually 
returns an id that identifies the timer. By storing the id 
in a variable you can then pass it to the clearInterval 
method at any time to stop the timer. Closing your 
browser also stops the timer.

Q: How can I know the parameters a web service 
uses? And if it supports JSON and JSONP?

A: Most web services publish a public API that 
includes the ways you can access the service as well 
as all the things you can do with the service. If you’re 
using a commercial API you might need to get this 
documentation directly from the provider. For many 
public APIs you’ll most likely find the information you 
need through a web search or on the organization’s 
developer section of their web site. You can also visit 
sites like programtheweb.com, which documents the 
growing list of APIs out there.

Q: XMLHttpRequest is obviously older than 
HTML5, but what about JSON and JSONP? Are they 
part of HTML5? Do I need HTML5 to use them?

A: We’d call JSON and JSONP contemporaries of 
HTML5. While neither one is defined by an HTML5 
specification, they are in heavy use by HTML5 
applications and are a core part of building web 
apps. So, when we say HTML = Markup + JavaScript 
APIs + CSS, well, JSON and JSONP are very much 
part of that picture (as are requests using HTTP with 
XMLHttpRequest).

Q: Do people still use XML? Or is everything 
JSON now?

A: One truism in the computer industry is that 
nothing ever dies, and so we’re sure we’ll have XML 
for a long time to come. That said, we’d also say JSON 
has momentum right now and so lots of new services 
are being created using JSON. You’ll often find that 
many web services support a variety of data formats 
including XML, JSON and many others (like RSS). 
JSON has the advantage that it is based directly on 
JavaScript and JSONP gets us around cross domain 
issues.



272  Chapter 6

handling the browser cache

We almost forgot: watch out for 
the dreaded browser cache

We’re almost ready to go here, but there’s a small detail we need to 
take care of, and it’s one of  those “if  you’ve never done it before, how 
would you know you need to address it” kind of  issues.

Most browsers have an interesting property in that if  you retrieve the 
same URL over and over (like our JSONP request will), the browser 
ends up caching it for efficiency, and so you just get the same cached 
file (or data) back over and over. Not what we want.

Luckily there is an easy and old-as-the-Web cure for this. All we do 
is add a random number onto the end of  the URL, and then the 
browser is tricked into thinking it’s a new URL the browser’s never 
seen before. Let’s fix our code by changing the URL line above to:

var url = "http://gumball.wickedlysmart.com/?callback=updateSales" +

          "&random=" + (new Date()).getTime();

http://gumball.wickedlysmart.com?callback=updateSales&random=1309217501707

We create a new Date object, use the 
getTime method of the Date object to 
get the time in milliseconds, and then add 
the time to the end of the URL.

This part will change each time to defeat caching.

Change your URL 
declaration above to 
look like this.

We’re adding a new, “dummy” parameter 
on the end of the URL. The web 
server will just ignore it, but it’s 
enough to fake out the browser.

With this new code, the generated URL will look something like this:

This part should look familiar... And here’s the random parameter.

You’ll find this code at the top 
of your handleRefresh function.

Go ahead and replace the url variable declaration in your 
handleRefresh function with the code and then we’ll be ready 
for a test drive!



you are here 4  273

talking to the web

[{"name":"LOS aNGELES","time":1309208126092,"sales":2},

 {"name":"PaSaDENa","time":1309208128219,"sales":8},

 {"name":"DavIS CREEk","time":1309214414505,"sales":8}

 ...]

How to remove duplicate sales reports
If  you take a quick look back at the Gumball Specs on page 228, you’ll see that 
you can specify a last report time parameter in the request URL, like this:

That’s a great, but how do we know the time of  the last report we’ve retrieved? 
Let’s look at the format of  the sales reports again:

Each sales report 
has the time it 
was reported.

http://gumball.wickedlysmar
t.com/?lastreporttime=13022

12903099

You can also add a lastreporttime parameter to the end of the URL 
and you’ll get only the reports since that time.  Use it like this:

Just specify a time 
in milliseconds.

One more TIME test drive
Alright, surely we’ve thought of  everything this time.  We should be all 
ready.  Make sure you’ve got all the code in since the last test drive, and 
reload the page. Wow, we’re seeing continuous updates!

Wait a sec... are you seeing what 
we’re seeing? What are these 
duplicates? That’s not good. 
Hmmm. Maybe we’re retrieving too 
fast and getting reports we’ve 
already retrieved? 

Duplicates!



274  Chapter 6

using a web service parameter

You got it.

And to keep track of  the last sales report received we’re going to need 
to make some additions to the updateSales function, where all the 
processing of  the sales data happens. First, though, we should declare 
a variable to hold the time of  the most recent report:

 
And let’s grab the time of  the most recent sale in updateSales:

function updateSales(sales) {

    var salesDiv = document.getElementById("sales");

    for (var i = 0; i < sales.length; i++) {

        var sale = sales[i];

        var div = document.createElement("div");

        div.setattribute("class", "saleItem");

        div.innerHTML = sale.name + " sold " + sale.sales + 

           " gumballs";

        salesDiv.appendChild(div);

    }

    if (sales.length > 0) {

        lastReportTime = sales[sales.length-1].time;

    }

}

If you look at the sales array, you’ll see 
that the most recent sale is the last one in 
the array. So here we’re assigning that to 
our variable lastReportTime.

var lastReportTime = 0;
The time can’t be less 
then zero, so let’s just 
set it to 0 for starters.

We need to make sure there IS an array 
though; if there are no new sales, then 
we’d get back an empty array and our 
code here would cause an exception.

Put this at the top of 
your JavaScript file, 
outside any function.

I see where you’re going with this; we can 
keep track of the time of the last report, and 
then use that when we make the next request 
so that the server doesn’t give us reports 

we’ve already received?



you are here 4  275

talking to the web

function handleRefresh() {

    var url = "http://gumball.wickedlysmart.com" +

                "?callback=updateSales" +

                "&lastreporttime=" + lastReportTime +

                "&random=" + (new Date()).getTime();

    var newScriptElement = document.createElement("script");

    newScriptElement.setattribute("src", url);

    newScriptElement.setattribute("id", "jsonp");

    var oldScriptElement = document.getElementById("jsonp");

    var head = document.getElementsByTagName("head")[0];

    if (oldScriptElement == null) {

        head.appendChild(newScriptElement);

    }

    else {

        head.replaceChild(newScriptElement, oldScriptElement);

    }

}

Now that we’re keeping track of  the last reported sales time, we need to make 
sure we’re sending it to Mighty Gumball as part of  the JSON request.  To do 
that, we’ll edit the handleRefresh function, and add the lastreporttime 
query parameter like this:

Updating the JSON URL to include the lastreporttime

We’ve split up the URL into 
several strings that we’re 
concatenating together...
... and here’s the lastreporttime 
parameter with its new value.

Test drive lastReportTime
Let’s take the lastreporttime query parameter for a test run and see if  it 
solves our duplicate sales reports problem. Make sure you type in the new code, 
reload the page, and click that refresh button.

Nice! Now we get only new 
sales reports, so all the 
duplicates are gone!

We did it! And 
Mighty Gumball is super 

happy with their new web app.



276  Chapter 6

You’ve outdone yourselves! This works 
great and now I can totally keep up with 
sales at my desk or when I’m mobile. I’m 

starting to really think there is something 
to these web apps. Just think what we’re 

going to be able to do with gumball machines, 
JSON, and all those HTML5 APIs!



you are here 4  277

talking to the web

 � XMLHttpRequest does not allow you to request 
data from a different server than the one from 
which your HTML and JavaScript are being served. 
This is a browser security policy designed to 
prevent malicious JavaScript from getting access 
to your web pages and a user’s cookies.

 � An alternative to XMLHttpRequest for accessing 
data hosted by web services is JSONP.

 � Use XMLHttpRequest when your HTML and 
JavaScript are hosted on the same machine as 
your data.

 � Use JSONP when you need to access data hosted 
by a web service on a remote server (assuming 
that web service supports JSONP). A web service 
is a web API that is accessed by HTTP. 

 � JSONP is a method of retrieving data by using the 
<script> element.

 � JSONP is JSON data wrapped in JavaScript; 
typically, a function call.

 � The function call that wraps the JSON data in 
JSONP is referred to as a “callback.”

 � Specify the callback function as a URL query 
parameter in a JSONP request.

 � JSONP is no more (or less) secure than linking to 
JavaScript libraries using the <script> element. Use 
caution whenever you link to third-party JavaScript.

 � Specify the <script> element to make the JSONP 
request by adding it directly to your HTML, or by 
writing the <script> element to the DOM using 
JavaScript.

 � Use a random number on the end of your JSONP 
request URL if you are making the request multiple 
times so the browser doesn't cache the response.

 � The method replaceChild replaces an element in 
the DOM with another element.

 � setInterval is a timer that calls a function at a 
specified interval. You can use setInterval to make 
repeated JSONP requests to a server to retrieve 
new data.



278  Chapter 6

giving your brain some exercise

HTML5cross
Wow, you got your apps talking to the Web in this chapter! 
Time for some left‑brain activity to help it all sink in.

1

2 3 4

5 6

7 8

9

10 11

12 13

14

15

16

Across
2. The pattern of using XMLHttpRequest to get data from 
servers is sometimes called ______.
5. ______ is the latest Mighty Gumball Web-enabled gumball 
machine.
8. XMLHttpRequest made fun of JSONP’s ___________.
10. The Guru teaches Grasshopper that function arguments 
are also _______.
12. We were ___________ to get twenty-five pages into the 
chapter before discovering the browser security policy.
15. One of XMLHttpRequest's nicknames at Microsoft.
16. JSONP stands for “JSON with _______”.

Down
1. JSON P uses a ____________.
3. JSONP uses these types of objects.
4. Format we all thought would save the world.
6. _______ has a JSONP Web service.
7. This chapter had one of these in the middle.
9. Mighty Gumball is testing the MG2200 in ___________.
11. ______ reminded Frank, Jim, and Joe about the cross-
domain security issues with XMLHttpRequest.
13. It’s easy to set up a local server on a ______.
14. ______, the QA guy, was upset when the request to the 
production Gumball server failed.

Across
2. The pattern of using XMLHttpRequest to get data
from servers is sometimes called ______.
5. ______ is the latest Mighty Gumball Web-enabled gumball 
machine.
8. XMLHttpRequest made fun of JSONP’s ___________.
10. The Guru teaches Grasshopper that function arguments 
are also _______.
12. We were ___________ to get twenty-five pages into the
chapter before discovering the browser security policy.
15. One of XMLHttpRequest’s nicknames at Microsoft.
16.JSONP stands for “JSON with _______”.
 

Down
1. JSONP uses a ____________
3. JSONP uses these types of objects.
4. Format we all thought would save the world.
6. _______ has a JSONP Web service.
7. This chapter had one of these in the middle.
9. Mighty Gumball is testing the MG2200 in ___________
11. ______ reminded Frank, Jim, and Joe about the
cross-domain security issues with XMLHttpRequest.
13. It’s easy to set up a local server on a ______.
14. ______, the QA guy, was upset when the request to the 
production Gumball server failed.



you are here 4  279

talking to the web

Help us build tweetshirt.com

While we’ve got you thinking 
about JSONP, we’d love to 

have your help in the Canvas 
chapter.

We’re working with Twitter’s JSONP 
API and building out a service that 

allows you to put any tweet on a t-shirt.

TweetShirt.com 
founder

We like to say “if it’s 
worth tweeting, it’s worth 
printing on a t-shirt.”

A Special Message 
from Chapter 7...



280  Chapter 6

exercise solutions

HTML5cross Solution

C1

A

A2 J3 A X4 L

A M5 G 2 2 0 0 L T6

V L B W

C7 A P8 A D D I N G

L S C9 C T

I C D10 A T A K T J11

F R L E U

F I I E12 M13 B A R R A S S E D

H P F A14 A Y

A15 C T I V E X O B J E C T

N R A

G N Y

E I

R P16 A D D I N G

Across
2. The pattern of using XMLHttpRequest to get data from 
servers is sometimes called ______. [AJAX] 
5. ______ is the latest Mighty Gumball Web-enabled gumball 
machine. [MG2200] 
8. XMLHttpRequest made fun of JSONP’s ___________. 
[PADDING] 
10. The Guru teaches Grasshopper that function arguments 
are also _______. [DATA] 
12. We were ___________ to get twenty-five pages into the 
chapter before discovering the browser security policy. 
[EMBARRASSED] 
15. One of XMLHttpRequest's nicknames at Microsoft. 
[ACTIVEXOBJECT] 
16. JSONP stands for “JSON with _______”. [PADDING] 

Down
1. JSON P uses a ____________. [CALLBACK] 
3. JSONP uses these types of objects. [JAVASCRIPT] 
4. Format we all thought would save the world. [XML] 
6. _______ has a JSONP Web service. [TWITTER] 
7. This chapter had one of these in the middle. 
[CLIFFHANGER] 
9. Mighty Gumball is testing the MG2200 in ___________. 
[CALIFORNIA] 
11. ______ reminded Frank, Jim, and Joe about the cross-
domain security issues with XMLHttpRequest. [JUDY] 
13. It’s easy to set up a local server on a ______. [MAC] 
14. ______, the QA guy, was upset when the request to the 
production Gumball server failed. [AJAY] 



this is a new chapter  281

HTML’s been liberated from being just a “markup” language. 
With HTML5’s new canvas element, you’ve got the power to create, manipulate and destroy 

pixels, right in your own hands. In this chapter we'll use the canvas element to bring out 

your inner artist—no more talk about HTML being all semantics and no presentation; with 

canvas we're going to paint and draw with color. Now it's all about presentation. We’ll tackle 

how to place a canvas in your pages, how to draw text and graphics (using JavaScript, 

of course), and even how to handle browsers that don't support the canvas element. And 

canvas isn't just a one-hit wonder; you're going to be seeing a lot more of canvas in other 

chapters in this book.

bringing out your inner artist7

The Canvas

Okay, 
“destroy” 
might be a 
little overly 
dramatic.

Yeah, sure, markup is nice 
and all, but there’s nothing 

like getting your hands in and 
painting with fresh, pure pixels.

In fact we hear <canvas> and <video> have been sharing more 
than just web pages... we'll get into the juicy details later.



282  Chapter 7

the new start-up tweetshirt

Our new start-up: TweetShirt
Our motto is “if  it’s worth tweeting on Twitter, it’s worth 
wearing on a t-shirt.” 

After all, half  the battle of  calling yourself  a journalist is 
being willing to put your words in print, so what better 

place than printing on your or someone else’s chest? At 
least that’s our start-up pitch, and we’re sticking to it. 

Now, there’s only one thing that stands in the way of  getting 
this start-up off  the ground: we need a nice web app that lets 
customers create a custom t-shirt design, featuring one of  
their recent tweets. 

Your Tweet 

Here

We like to say “if it’s 
worth tweeting, it’s worth 
printing on a t-shirt.”

What we need is a t-shirt 
web app that lets our users 
create a hip presentation of 
their favorite tweet.

Let’s also make sure this works on 
devices. Just like they use Twitter while 
mobile, our customers will be ordering 

this on the move, in real time!

TweetShirt.com 
founder

You're probably thinking to yourself “you know what? That's not a bad idea". Well, come on then, we'll get this start-up off the ground by the end of this chapter. Oh, and if you actually go out and do this and make money, we're not claiming any intellectual property or anything, but at least send us a free t-shirt!



you are here 4  283

bringing out your inner artist

TweetShirt.com, Strictly Confidential

Checking out the “comps”
After exhaustive iterative design and 
extensive focus group testing we’ve 
got a comp (otherwise known as an 
initial visual design) ready for you to 
review, let’s take a look:

Here’s the tweet the user chose 

nicely displayed on the shirt. Allow user to choose background color. Here they’ve chosen white.

User can also choose circles, squares, or nothing in the background. No two shirts are alike, so these need to be randomly placed!

Notice the 
different styles 
of text too.

Here's the 
t-shirt design.

And the web app should look just 
like this page, if possible!  In other 
words we want to display the 
shirt design and allow the user to 
interactively change it with the 
user controls.

Yeah right, come on we're a start-up, we 
did this on a napkin at Starbuzz Coffee.

The user can select 
the background color, 
circles or squares, 
the text color and 
the tweet.

And here’s what the 
user interface should 
look like.



284  Chapter 7

reviewing requirements

Take another look at the requirements on the previous page. How do you think you 
can accomplish this using HTML5? Remember, one requirement is making sure 
your site works across as many device formats and sizes as possible?

Check all the possibilities below (and then circle the best answer):

Q: Well seriously, why not Flash, or a custom 
application for that matter?

A: Flash is a great technology, and you certainly could use 
it. Right now, though, the industry is heading toward HTML5, 
and as we write this, you’d have trouble running your Flash 
app on all devices, including some very popular ones. 
An app may be a great choice if you really need an 
experience that is totally customized to the device. Keep in 
mind that developing a custom application for a variety of 
devices is expensive. 
With HTML5 you get great support across mobile devices and 
the desktop, and you can often create an application by using 
a single technology solution. 

Q: I like the idea of creating the image on the server. 
That way I can write one piece of code and images work 
on all devices. I know a little PHP so I should be able to 
pull this off.

A: That’s another way you could go, but the disadvantages 
are that if you have a zillion users, you are going to have 
to worry about scaling those servers to meet the demand 
(versus each user’s client dealing with generating the 
preview of the t-shirt). You’re also going to have a much more 
interactive and seamless experience if you write it for the 
browser instead. 
How? Well, we’re glad you asked...

Just use Flash, it works on most browsers.

Take a look at HTML5 and see if there are any new technologies that 
might help (hint: there might be one named canvas).

Write a custom application for every device, that way you know the 
exact experience you’re going to get.

Just compute the image on the server side and deliver a custom 
image back to the browser.



you are here 4  285

bringing out your inner artist

Joe: I thought this was going to be simple until I saw those circles in the 
background.

Frank: What do you mean, that’s just an image...

Judy: No no, the founder wants those circles to be random; so the circles on 
my shirt will be different from yours.  Same with the squares.

Frank: That’s okay, in the past we’ve done it by generating an image on the 
server side.

Joe: Yeah, I know, but that didn’t work out so well; remember having to pay all 
those server fees to Amazon?

Frank: Uh, yeah. Nevermind.

Joe: And in any case, we want this thing to be instant gratification, you know, 
no long trips back to the server. So, let’s do it all on the client-side if  we can.

Judy: Guys, I think we can, I’ve been looking at the canvas stuff  in HTML5.

Frank: Canvas? Remember I’m just the design guy, fill me in.

Judy: You must have heard of  the canvas, Frank—it’s a new element in 
HTML5 that creates an drawable region for 2D shapes, text and bitmap 
images.

Frank: It sounds like an <img> tag. We just place it on the page with a width 
and height and the browser does the rest.

Judy: Not a bad comparison, we do define a width and height for the canvas, 
but in this case what gets drawn on the canvas is specified with JavaScript code. 

Joe: Well, where does markup come into that? Can we tell the canvas in 
JavaScript to “put this <h1> element here”?

Judy: Nope, after you place the canvas in the page you leave the markup world 
behind; in JavaScript we’re placing points, lines, paths, images and text. It’s 
really a low level API. 

Joe: Well, as long as it can pull off  those random circles I’m good. Okay, 
enough talking, let’s have a look at it!

You've heard the requirements and you’ve got a basic design for 
the user experience, so now comes the tough part, making it work. 
Let’s listen in and see where this is all going...

Let’s drop in on the TweetShirt crew...

Frank, Judy and Joe



286  Chapter 7

adding a canvas to your page

How to get a canvas into your web page
Frank was right, in some ways a canvas is like an <img> element.You 
add a canvas like this:

<canvas id="lookwhatIdrew" width="600" height="200"></canvas>

And the browser allocates some space in the page for the canvas, with the width 
and height you specified.

In this case, a width of 
600 and a height of 200.

This is the canvas height 
(200 in our case).

The canvas element is a 
normal HTML element 
that starts with an 
opening <canvas> tag.

The width attribute defines 
how many horizontal pixels it 
occupies in a web page.

Here the width is set 
to 600 pixels wide.

Likewise, the height defines 
the vertical area of the page it 
occupies, here 200 pixels.

We’ve added an id so we 
can identify the canvas, 
you’ll see how to use this 
in a bit...

And there’s the 
closing tag.

Here's the top, left 
position of the 
canvas. We'll use this 
point to measure 
everything else in the 
canvas (as you'll see 
in a bit).

The canvas 
has a bit of 
space around 
it - that's 
the default 
margin of 
the body 
element.

This is the canvas width (600).
Your everyday HTML can flow around the canvas. The canvas is just like any other element (like an image, etc.).



you are here 4  287

bringing out your inner artist

<!doctype html>

<html lang="en">

<head>

    <title>Look What I Drew</title>

    <meta charset="utf-8">

</head>

<body>

<canvas id="lookwhatIdrew" width="600" height="200"></canvas>

</body>

</html>

Test drive your new canvas
Time for you to get this working in your own web page. Go ahead and 
type in the code below into a new file and then load it in your browser:

What gives? My 
page is blank!

What she sees...

...and what you 
probably see too!

We drew these lines to 
explain how the canvas fits 
in a page, for illustration 
purposes only. They aren't 
really there (unless you draw 
them yourself).

Type this in and 
give it a try.

Turn the page to find out more...



288  Chapter 7

adding css for your canvas

<!doctype html>

<html lang="en">

<head>

    <title>Look What I Drew</title>

    <meta charset="utf-8">

    <style>

      canvas {

        border: 1px solid black;

      }

    </style>

</head>

<body>

<canvas id="lookwhatIdrew" width="600" height="200"></canvas>

</body>

</html>

We've added a style for the 
canvas that just puts a 1px 
black border on it, so we 
can see it in the page.

How to see your canvas
Unless you draw something in the canvas, you’re not going to see it. It is simply a space in 
the browser window for you to draw in. We’re going to draw in the canvas very soon, but 
for now, what we really want is evidence that the canvas is actually in our page.

There is another way we can see the canvas... if  we use CSS to style the <canvas> 
element so we can see the border, we’ll be able to see it in the page. Let’s add a simple 
style that adds a 1-pixel-wide black border to the canvas.

Much better! Now we can see the canvas. Next, we need to do something interesting with it...



you are here 4  289

bringing out your inner artist

You might have noticed that the canvas element didn’t have any content 
inside it. If you were to place text between the tags, what do you think the 
browser would do when the page is loaded?

?<canvas> </canvas>

Q: Can I only have one canvas per page?

A: No, you can have as many as you like (or that the browser 
or your users can handle). Just give each a unique id and you can 
draw on each as a separate canvas. You’ll see how to use the 
canvas id in a moment.

Q: Is the canvas transparent?

A: By default, yes, the canvas is transparent. You can draw in 
the canvas to fill it with colored pixels; you’ll see how to do that 
later in the chapter.

Q: If it’s transparent, that means I could position it on top 
of another element to, say, draw something over an image or 
anything else on the page, right?

A: That’s right! That’s one of the cool things about canvas. It 
gives you the ability to add graphics anywhere on your page.

Q: Can I use CSS to set the width and height of the canvas 
instead of the width and height attributes on the element?

A: You can, but it works a little differently from how you might 
expect. By default, a canvas element is 300px wide and 150px 
high. If you don’t specify the width and height attributes in the 
canvas tag, that’s what you get. If you then specify a size in CSS, 
say 600px by 200px, the 300 x 150 canvas is scaled to fit that 
size, and so is everything that’s drawn in the canvas. It’s just like 
scaling an image by specifying a new width and height that is 
larger or smaller than the real width and height of the image. If 
you scale it up, you’ll get some pixelation in the image, right? 
The same thing happens with the canvas. A 300px wide canvas 
that becomes 600px wide has the same number of pixels 
stretched into twice the size, so it’ll look kind of chunky. However, 
if you use the width and height attributes in the element, you’re 
setting the dimensions of the canvas to be bigger (or smaller) 
than 300 x 150 and everything drawn in that canvas will be drawn 
normally. So, we recommend specifying the width and height in 
the tag attributes, and not setting those properties in CSS unless 
you really mean to scale the canvas. 



290  Chapter 7

drawing on a canvas

<!doctype html>

<html lang="en">

<head>

    <title>Look What I Drew</title>

    <meta charset="utf-8" />

    <style>

        canvas { border: 1px solid black; }

    </style>

    <script>

        window.onload = function() {

            var canvas = document.getElementById("tshirtCanvas");

            var context = canvas.getContext("2d");

            context.fillRect(10, 10, 100, 100);

       };

    </script>

</head>

<body>

    <canvas width="600" height="200" id="tshirtCanvas"></canvas>

</body>

</html>

Here’s our onload handler; 
we’ll start drawing after the 
page is fully loaded.

Hmm, this is interesting, we apparently need a 
“2d" context from the canvas to actually draw....

We're using the 2d context to draw a 
filled rectangle on the canvas.

These numbers are the x, y position 
of the rectangle on the canvas.

Drawing on the Canvas
Right now we’ve got a blank canvas staring us in the face. Rather 
than sit here with a case of  JavaScript-writers-block, we’re just going 
to go for it and put a nice black-filled rectangle on our canvas. To 
do that we’ve got to decide where it goes and how big to make it. 
How about we put it at the location x=10 pixels and y=10 pixels and 
make it 100 pixels high and wide? Works for us.

Now let’s check out some code that does this:

Let's start with just our 
standard HTML5.

Ah, and we can't forget our canvas element.  We're specifying a canvas that is 
600 pixels wide and 200 pixels high, and has an id of “tshirtCanvas".

We'll keep our CSS 
border in for now.

To draw on the canvas we need a reference to it. Let's use 
getElementById to 
get it from the DOM.

And we've also got the width 
and height (in pixels).

Also interesting that a rectangle fill method 
doesn't take a fill color... more on that in a sec.



you are here 4  291

bringing out your inner artist

Here's our 100 x 100 rectangle, 
positioned at 10, 10 in the canvas. 

And our canvas, which is 600 wide, 200 high and has a 1 pixel black border around it.

A closer look at the code
That was a great little test run, but let’s dive in a little deeper:

In our markup, we define a canvas and give it an id, using the <canvas> tag. The first thing 
you need to do to draw into that canvas is to get a handle on the canvas object in the DOM. 
As usual we do this with the getElementById method:

1

var canvas = document.getElementById("tshirtCanvas");

A little Canvas test drive...
Go ahead and type this code in (or grab it from http://wickedlysmart.
com/hfhtml5) and load it into your browser. Assuming you’re using a 
modern browser you should see something like we do:



292  Chapter 7

reviewing how canvas code works

var context = canvas.getContext("2d");

context.fillRect(10, 10, 100, 100);

This is a bit of protocol we have to follow 
before we can start drawing on the canvas.

Try this out and you should see a black rectangle appear. Try changing the values for x, y, width, and height and see what happens.

With a reference to the canvas element assigned to the canvas variable, we now have to go 
through a bit of  “protocol” before we draw on the canvas. We need to ask the canvas to give 
us a context to draw on. And in this case, we specifically want a 2D context. The context 
returned by the canvas is assigned to the context variable:

2

Now, with the context in hand, we can use it to draw onto the canvas, which we do by calling 
the fillRect method. This method creates a rectangle starting at the x, y position of  10, 
10 and that is 100 pixels wide and high.

3

Can you think of a way to use a canvas element if your 
browser supports it and if not, to just display a message 
like “Hey, you, yes you, upgrade your browser!!”?

Note, we’re calling the fillRect method on 
the context, not the canvas itself.



you are here 4  293

bringing out your inner artist

Q: How does the canvas know to make the 
rectangle black?

A: Black is the default fill color for a canvas.
Of course, you can change this using the fillStyle 
property, as we’ll show you shortly.

Q: What if I wanted a rectangle outline, not a 
filled rectangle?

A: To get just the outline of a rectangle, you’d 
use the strokeRect function instead of fillRect. You’ll 
learn more about stroking later in the chapter.

Q:What is a 2d context, and why can’t I just 
draw right on the canvas?

A: The canvas is the graphical area displayed in 
the web page. The context is an object associated 
with the canvas that defines a set of properties and 
methods you can use to draw on the canvas. You 
can even save the state of the context and then 
restore it later, which comes in handy at times. You’ll 
see many of these context properties and methods 
in the rest of this chapter. 
The canvas was designed to support more than 
one interface; 2d, 3d, and others we haven’t even 
thought of yet. By using a context, we can work 
with different interfaces within the same element, 
canvas. You can’t draw right on the canvas because 
you need to specify which interface you’re using by 
choosing a context. 

Q: Does that mean there is a “3d” context 
too?

A: Not yet. There are a few competing and 
emerging standards for this, but nothing that looks 
like a frontrunner yet. Stay tuned on this one; in the 
mean time take a look at WebGL and the libraries 
that use it, like SpiderGL, SceneJS and three.js. 

var canvas =  
   document.getElementById(“tshirtCanvas”); 
if (canvas.getContext) { 
    // you have canvas 
} else { 
    // sorry no canvas aPI support 
}

Wondering how you can detect whether your 
browser supports canvas or not, in code? 
 
Well of course you can, and we should point out 
that so far we’ve just been assuming our browser 
supports canvas. But in any production code you 
should test to make sure you have support.  
 
All you have to do is test to see if the getContext 
method exists in your canvas object (the one you 
get back from getElementById):

First we grab a reference to a canvas element in the page.

Then we check for the existance of the 
getContext method. Note, we’re not 
calling it, we’re just seeing if it has a value.

If you want to test for canvas support without 
having to have a canvas already in your markup, 
you can create a canvas element on the fly, using 
all the techniques you already know. Like this:
var canvas =  
    document.createElement(“canvas”);

Be sure to check out the appendix for information 
about an open source library you can use to test for 
all the functionality in HTML5 in a consistent way.

Serious 
Coding



294  Chapter 7

canvas and internet explorer

IE supports canvas only in versions 9 and 
later, so you should code your page to let 
your users know.
Here’s the deal: if  you really really need to support canvas 
functionality in Internet Explorer (again, pre-version 9), 
then you can check out the Explorer Canvas Project and 
other similar efforts as a way to use a plug-in to get this 
functionality.

For now though, let’s just assume you’d like to let your 
users know they are missing out on your great canvas 
content. Let’s take a look at how to do this ...

And perhaps you can suggest that they upgrade to IE9!

When I try this in Internet 
Explorer, I’m seeing nothing where 

the canvas element should be. 
What’s the story?



you are here 4  295

bringing out your inner artist

So, the truth is, out there somewhere, in another place and time, a user is going to 
visit your site and not have support for the canvas element. Would you like to send 
them a kind message saying that they really should upgrade? Here’s how:

Failing gracefully

<canvas id="awesomecontent">

  Hey you, yes YOU, upgrade your browser!!

</canvas>

Just your typical, everyday canvas element.

Put the message you want displayed 
to your users who don’t have a 
canvas-capable browser.

How does this work? Well, any time a browser sees an element it doesn’t recognize 
it displays any text contained within it as a default behavior. So, when non-capable 
browsers see the <canvas> element, they just display “Hey you, yes YOU, upgrade 
your browser!!” Capable browsers, on the other hand, conveniently ignore any text 
between the canvas tags and so won’t display the text.

Hey you, yes 
YOU, upgrade 
your browser!!

Thank you HTML5 
standards guys 
(and girls) for 
making this easy!

And, as you already know, another way to handle browsers that don’t support canvas 
is to use JavaScript to detect if  the browser knows about the element. This gives you 
a bit more flexibility to give your users a different experience in case their browsers 
don’t support it; for instance, you could redirect them to a different page or display 
an image instead. 



296  Chapter 7

reviewing the implementation plan

Frank: Sure, but also we need the user interface for the user 
to specify all this. I mean we’ve got the mock-up, but we need 
to implement it.

Judy: You’re right Frank. Not much point in going further 
without the interface.

Joe: Isn’t that just HTML?

Frank: Yeah, I guess so. But, given we’re trying to do this 
all on the client-side, how is this going to work?  For instance, 
where does the form get submitted? I’m just not sure I 
understand how this all fits together.

Joe: Frank, we can just call a JavaScript function when the 
user clicks the preview button, and then we can display the 
shirt design in the canvas.

Frank: That makes sense, but how do we access the values 
in the form if  it is all client side?

Judy: The same way we always access the DOM; we can use 
document.getElementById to grab the form values. 
You’ve done that before.

Frank: You guys lost me way back.

Joe: That’s okay, let’s step through this together. We’ll start 
with the big picture.

Now that we know how to 
make rectangles, we can use that 

to make squares on the canvas, right? 
We need to figure out how to get them 
randomly placed on the t-shirt, and in 

the user-chosen color.



you are here 4  297

bringing out your inner artist

TweetShirt: the Big Picture
Before we jump into a big implementation job, let’s step back and look at the 
big picture. We’re going to build this web app out of  a canvas element along 
with some form elements that act as the user interface, and behind the scenes 
we’re going to make everything happen with JavaScript and the canvas API.

Here’s what it looks like:

The preview button will 
invoke JavaScript to do 
its thing and create the 
t-shirt preview.

Our HTML will provide the canvas 

element and a simple form.
JavaScript will do the heavy lifting of getting the user input from the form and drawing with the canvas API.

We'll use JavaScript 
to draw the canvas 
graphic for the 
t-shirt.

Here's the user interface, 
which is basically a form 
element.

This is the 
canvas for the 
t-shirt design.

At some point we're going to need some server-side 
support for ecommerce and fulfilling the t-shirts, but 
hey, we have to leave some work for your start-up! 
Don’t forget to send us a free t-shirt. A few founder’s 
shares would be even better.



298  Chapter 7

BE the Browser
Below, you’ll find the form for the t-shirt 
interface. Your job is to play like you’re the 
browser and to render the interface. After you’re 

done, compare your interface to the 
one on the previous page to see if 
you did it correctly.

<form>
<p>
    <label for="backgroundColor">Select background color:</label>
    <select id="backgroundColor">
        <option value="white" selected="selected">White</option>
        <option value="black">Black</option>
    </select>
</p>
<p>
    <label for="shape">Circles or squares?</label>
    <select id="shape">
        <option value="none" selected="selected">Neither</option>
        <option value="circles">Circles</option>
        <option value="squares">Squares</option>
    </select>
</p>
<p>
    <label for="foregroundColor">Select text color:</label>
    <select id="foregroundColor">
        <option value="black" selected="selected">Black</option>
        <option value="white">White</option>
    </select>
</p>
<p>
    <label for="tweets">Pick a tweet:</label>
    <select id="tweets">
    </select>
</p>
<p>
    <input type="button" id="previewButton" value="Preview">
</p>
</form>



you are here 4  299

bringing out your inner artist

Render your interface here. 
Draw the web page as it will 
look with the form elements 
on the left.

BE the Browser, again
Now that you have an interface, 
execute these JavaScript statements 
and write in the value for each 
interface element. 
Check your answer 
with our solution at 
the end of the chapter.

var selectObj = document.getElementById("backgroundColor");

var index = selectObj.selectedIndex;

var bgColor = selectObj[index].value; 

var selectObj = document.getElementById("shape");

var index = selectObj.selectedIndex;

var shape = selectObj[index].value;

var selectObj = document.getElementById("foregroundColor");

var index = selectObj.selectedIndex;

var fgColor = selectObj[index].value;

Assume you've used the 
interface to pick the 
values for your t-shirt.



300  Chapter 7

creating the html

First, let’s get the HTML in place
Enough talk! Let’s build this thing. Before we do anything else, we just need 
a simple HTML page.  Update your index.html file so it looks like this:

<!doctype html>

<html lang="en">

<head>

    <title>TweetShirt</title>

    <meta charset="utf-8" />

    <style>

        canvas {border: 1px solid black;}

    </style>

    <script src="tweetshirt.js"></script>

</head>

<body>

    <h1>TweetShirt</h1>

    <canvas width="600" height="200" id="tshirtCanvas">

        <p>Please upgrade your browser to use TweetShirt!</p>

    </canvas>

    <form>

    </form>

</body>

</html>

Notice, we changed the 
title to “TweetShirt”

Let's put all our JavaScript 
code in a separate file so it's 
a little easier to manage.

Here’s the canvas!

And this is the form that will hold all 
the controls for the tweetshirt app. 
We’ll get to this on the next page...

A nice HTML5-
compliant file, yeah!

And we've left 
a little message 
for users on old 
browsers.

What else do you need to know to replace the CSS border on your canvas 
with a border drawn on the canvas using JavaScript? And, if you could, which 
method would you prefer (CSS versus JavaScript), and why?



you are here 4  301

bringing out your inner artist

<form>
<p>
    <label for="backgroundColor">Select background color:</label>
    <select id="backgroundColor">
        <option value="white" selected="selected">White</option>
        <option value="black">Black</option>
    </select>
</p>
<p>
    <label for="shape">Circles or squares?</label>
    <select id="shape">
        <option value="none" selected="selected">Neither</option>
        <option value="circles">Circles</option>
        <option value="squares">Squares</option>
    </select>
</p>
<p>
    <label for="foregroundColor">Select text color:</label>
    <select id="foregroundColor">
        <option value="black" selected="selected">Black</option>
        <option value="white">White</option>
    </select>
</p>
<p>
    <label for="tweets">Pick a tweet:</label>
    <select id="tweets">
    </select>
</p>
<p>
    <input type="button" id="previewButton" value="Preview">
</p>
</form>

Now, let’s add the <form>
Okay, let’s now add the user interface so we can start writing some code to create t-shirts. 
You’ve seen this code before, but we added some annotations just to make everything clear; 
as you type in the code, make sure you check out our annotations:

All this code goes in between the <form> tags you set up on the previous page.

Here’s where the user selects the background color 
for the tweet shirt design. The choices are black 
or white.  Feel free to add your own colors.

We’re using another selection control here for choosing circles or squares to customize the design. The user can also choose neither (which should result in a plain background).

Another selection for choosing 
the color of the text. Again, 
just black or white.

Here's where all the tweets go. So why's it empty?  Ah, we'll be filling in that detail later (hint: we need to get them live from Twitter, after all this is a web app, right?!).

And last, a button to preview the shirt.
If you're used to forms, you might have noticed that 
this form doesn’t have an action attribute (which 
means the button won't do anything when it's clicked). 
We’re going to handle all that in just a bit...



302  Chapter 7

adding the javascript

Time to get computational, with JavaScript
Markup is great, but it’s the JavaScript that brings the TweetShirt web application together. We’re 
going to put some code into tweetshirt.js. Right now, we want to take the baby step of  just 
putting random squares on the shirt. But before we even get to that, we need to enable our preview 
button, so it calls a JavaScript function when you click it.

function previewHandler() {

    var canvas = document.getElementById("tshirtCanvas");

    var context = canvas.getContext("2d");

    var selectObj = document.getElementById("shape");

    var index = selectObj.selectedIndex;

    var shape = selectObj[index].value;

    if (shape == "squares") {

        for (var squares = 0; squares < 20; squares++) {

            drawSquare(canvas, context);

        }

    }

}

Start by getting the 
canvas element and asking 
for its 2d drawing context.

Now we need to see what shape you 
chose in the interface. First we get 
the element with the id of “shape”.

Then we find out which item is selected (squares or circles) by getting the index of the selected item, and assigning its value to the variable shape.

And if the value of shape is 
“squares”, then we need to draw some 
squares. How about 20 of them?

To draw each square we’re relying on a new function named drawSquare, which we’re going to have to write. Notice that we’re passing both the canvas and the context to drawSquare. You’ll see in a bit how we make use of those.

Create a tweetshirt .js 
file and add this.
window.onload = function() {

 var button = document.getElementById("previewButton");

 button.onclick = previewHandler;

};

So now when the preview button is clicked, the previewHandler function is going to be 
called, and that’s our chance to update the canvas to represent the shirt the user is designing. 
Let’s begin writing previewHandler:

Start by getting the 
previewButton element. 

Add a click handler to this button so that when 
it is clicked (or touched on a mobile device), the 
function previewHandler is called.



you are here 4  303

bringing out your inner artist

set the fillStyle to "lightblue"

function drawSquare (         ,          ){

}

calculate a random width 
for the square

calculate a random x position for the 

square inside the canvas

calculate a random y position
 for the 

square inside the canvas

draw a square at position x, 
y with width wcanvas

context

Your magnets go here!

We did this one for you.

Pseudo-code Magnets
Use your pseudo-magical coding powers to arrange the pseudo code below. We need to write the 
pseudo-code for the drawSquare function. This function takes a canvas and context and draws one 
randomly sized square on the canvas. Check your answer at the end of the chapter before you go on.

"lightblue” is the color of the 
squares on our design comp.

Q: How does the selectedIndex work?

A: The selectedIndex property of a selection form control returns 
the number of the option you have chosen from the pulldown menu. 
Every list of options is turned into an array and each option is in the 
array in order. So, say you have an selection list with these options: 

“pizza”, “doughnut”, “granola bar”. If you selected “doughnut”, the 
selectedIndex would be 1 (remember, JavaScript arrays start at 0). 

    
 
Now, you probably don’t want just the index; you want the value 
of the option at that index (in our case, “doughnut”). To get the 
value of the option, you first use the index to get the element of the 
array; this returns an option object. To get the value of that object, 
you use the value property, which returns the string in the value 
attribute of the option.



304  Chapter 7

implementing the squares

function drawSquare(canvas, context) {

    var w = Math.floor(Math.random() * 40);

    var x = Math.floor(Math.random() * canvas.width);

    var y = Math.floor(Math.random() * canvas.height);

    context.fillStyle = "lightblue";

    context.fillRect(x, y, w, w);

}

Writing the drawSquare function
Now that you’ve done all the hard work of  figuring out the pseudo-code, 
let’s use what we already know to write drawSquare:

The width of the canvas.

The height of 
the canvas.

The width and 
height of the 
square (remember, 
on a square, those 
values are the same).

We’re going to make the squares a nice 
light blue using the fillStyle method, we'll 
look at this method more closely in a sec...

Head First HTML with CSS & 

XHTML has a good chapter on 

color if you need a refres
her.

We’re using Math.random() to create random numbers for the width and the x,y position of the square. More on this in a moment....

We chose 40 as the largest square 
size so the squares don’t get too big.

And finally, we draw the actual square with fillRect.

How did we figure out what numbers to multiply each Math.random value by to get our 
square width and x, y position?  In the case of  the width of  the rectangle, we chose 40 
because it’s a nice small size with respect to the canvas size. Because this is a square, we used 
the same value for the height. And, we chose the width and height of  the canvas as the basis 
for choosing x and y values so our square stays within the boundaries of  the canvas.

Here’s our function, which has two parameters: 
the canvas and the context.

Here we need 
a random 
width, and x 
and y position 
for the 
square.

The x & y coordinates are based on the width and height of the canvas. We choose a random number between 0 and the width and height respectively.

Feel free to specify a 
value other than 40 
in your own code!

The x, y coordinate 
is for the top left 
corner of the square.



you are here 4  305

bringing out your inner artist

Time for a test drive!
Okay, after all that typing, let’s give all this code a test 
run. Go ahead and open your TweetShirt index.html 
file in your browser. Press preview and you should see 
random blue squares.  

Here’s what we see:

Uh, wait a sec, if you keep 
pressing the preview button 
you get a LOT of squares. 
That’s not right!

Nice that’s just the look we want!

He’s right, we’ve 
got a slight problem. 
Press your preview 
button a bunch of 
times and you’ll see 
something like this.



306  Chapter 7

fixing the squares code

Why are we seeing the old squares and 
the new squares when we preview?

This is actually kind of  a cool effect... but it’s not what we 
wanted. We want the new squares to replace the old squares each 
time we press preview (just like we’ll also want the new tweet to 
replace the old tweet when we get the tweets working, too).

The key here is to remember that we’re painting pixels on the 
canvas. When you press preview, you’re getting the canvas and 
drawing squares on it. Whatever is already on the canvas just 
gets painted right over with the new pixels!

But no worries. You already know everything you need to know 
to fix this right now. Here’s what we’re going to do:

Get the selected background color from the 
“backgroundColor” select object.

Fill the background color of the canvas using 
fillStyle and fillRect, each time before we 
start drawing squares.

1

2

function fillBackgroundColor(canvas, context) {

    var selectObj = document.getElementById("_______________");

    var index = selectObj.selectedIndex;

    var bgColor = selectObj.options[index].value;

    context.fillStyle = ______________;

    context.fillRect(0, 0, _____________, ______________);

}

To make sure we see only new squares in the canvas each time we 
click preview, we need to fill the background of the canvas with the 
background color the user has selected from the “backgroundColor” 
select menu.  First, let’s implement a function to fill the canvas with 
that color. Fill in the blanks below to complete the code. Check your 
answer with our solution at the end of the chapter before you go on.

Hint: we want to fill the 
WHOLE canvas with the color!

Hint: What you get out of the 
selected option will be a string 
color you can use just like you 
used “lightblue” for the squares.



you are here 4  307

bringing out your inner artist

Count the squares in a few different previews. Do 
you ever see less than 20 squares? You might.

Why would this happen? What could you do to fix 
this problem? (After all, you don’t want customers 
cheated out of their 20 squares, do you?)

Another quick test drive to make sure our 
new fillBackgroundColor function works...

Add the new code to your tweetshirt.js file, reload your 
browser, select a background color, select squares, and click 
preview. Click it again. This time you should see only new 
squares each time you preview.

Now we get only the new 
squares for each preview. 

function previewHandler() {
    var canvas = document.getElementById("tshirtCanvas");
    var context = canvas.getContext("2d");
    fillBackgroundColor(canvas, context);

    var selectObj = document.getElementById("shape");
    var index = selectObj.selectedIndex;
    var shape = selectObj[index].value;

    if (shape == "squares") {
        for (var squares = 0; squares < 20; squares++) {
            drawSquare(canvas, context);
        }
    }
}

Add the call to fillBackgroundColor
You have the fillBackgroundColor function ready to go; now we just need 
to make sure we call it from previewHandler. We’re going to add that as the 
very first thing we do so we get a nice, clean background before we start adding 
anything else to the canvas.  

We're adding the call to 
fillBackgroundColor before we draw 
our squares so it covers up the 
previous drawing, and gives us a clean 
background for our new drawing.



308  Chapter 7

reviewing fill style

Q: I was expecting we’d set the 
background color of the squares and 
the canvas by passing in a color value 
to fillRect. I don’t really get how fillStyle 
works. How does it affect what fillRect 
does?

A: Great question. This is a little different 
from how you might be used to thinking of 
things. Remember, the context is an object 
that controls access to the canvas. What 
you’re doing with fillStyle and fillRect is 
first setting a property that tells the canvas, 

“Whatever you draw next should be in this 
color”.  So anything you fill with color (like 
with fillRect) after setting the fillStyle will use 
that color, until you change the color again by 
setting fillStyle to a different color.

Q: Why does the color need quotes 
around it, when the property values in CSS 
don’t? I don’t use quotes when I’m setting 
the background-color of an element, for 
instance.

A: Well, CSS is a different language from 
JavaScript, and CSS doesn’t expect quotes. 
But if you don’t use quotes around the color, 
JavaScript will think that the color name is a 
variable instead of a string, and will try to use 
the value of the variable for the color. 
Say you have a variable 
fgColor = "black". You could write 
context.fillstyle = fgColor, 
and it would work because the value of 
fgColor is “black”. 
But context.fillStyle = black 
won’t work because black isn’t a variable 
(unless you set it up that way, which might be 
a bit confusing). You’ll know you’ve made this 
mistake because you’ll get a JavaScript error 
that says something like “Can’t find variable: 
black”. (Don’t worry, we all make that mistake 
at least once.)

Q: Okay, I give up. Why were we seeing 
less than 20 squares sometimes?

A: The x, y and width of the squares are 
all random. Some squares might obscure 
other squares. A square might have an x, y 
position of 599, 199 so you’d only be able to 
see one pixel of that square (because the rest 
of the square would be off the canvas). Some 
squares might be 1 pixel wide, and some 
squares might even be 0 pixels wide because 
the Math.random method can return 0. Or you 
might generate two squares of exactly the 
same size and location. 
 
But for this application it’s all part of the 
randomness, so we think it’s fine. For another 
application we might need to ensure this 
doesn’t happen.

context.fillStyle = "lightblue";

A JavaScript CloseUp
Let’s take a closer look at fillStyle since this is the first time you’ve seen it. fillStyle 
is a property of  the context that holds the color for any drawing you do to the canvas.

Just like fillRect, fillStyle 
is something we control 
through the context.

But unlike fillRect, fillStyle is a 
property, not a method. So we 
set it, rather than call it.

And what we set it to is a color. You can use the same color formats you use in CSS. So you can use color names, like lightblue, or values like #ccccff or rgb(0, 173, 239). Try it!

Note that unlike in CSS, you must 
put quotes around the value if 
you’re not using a variable. 



you are here 4  309

bringing out your inner artist

Jim: I know, and I’m impressed with how little code 
this took.  Just think if  we did this the old, server-side 
way, we’d still be getting our server up.

Frank: And it seems like we’re in a good position to 
knock out the circles in the design too; after all, they 
are just like the squares.

Jim: I agree, where’s Judy? She probably knows the 
API for the circles already. Then again, it’s probably 
just a matter of  calling the fillCircle method.

Frank: Sounds right to me! Who needs Judy, we’ve 
got this!

Meanwhile, back at TweetShirt.com...

Not bad, you know this is 
already starting to look 
like the boss’s design.

Jim Frank



310  Chapter 7

introducing paths and arcs

And, a couple of hours later...

Frank: I don’t know what’s going on, I’ve double checked everything, but, no 
matter what I do, when I call fillCircle, I get nothing on the canvas.

Judy: Well, show me your fillCircle method.

Frank: What do you mean by my method? I don’t have one, I’m using the 
method in the canvas’s API directly.

Judy: The canvas API doesn’t have a fillCircle method.

Frank: Er, I assumed it did because we have a fillRect...

Judy: Yeah, well you know what that ass-u-me stuff  gets us. Come on, pull up a 
browser—you can always find the API at: 
http://dev.w3.org/html5/2dcontext/.
 
...Anyway, drawing a circle is a little more complex than calling a single method. 
You need to learn about paths and arcs first.

Jim, entering: Judy, did Frank tell you about how we nailed the circle?

Frank: Uh yeah, Jim, enoughway ithway ethay irclecay!

We recommend the translation 
services of piglatin.bavetta.com.



you are here 4  311

bringing out your inner artist

Before digging into circles, we need to talk about paths 
and arcs. Let’s start with paths, and draw some triangles. 
If  we want to draw a triangle on the canvas, there’s no 
fillTriangle method, but we can create a triangle 
anyway by first creating a path in the shape of  a triangle, 
and then stroking over it to draw a triangle on the canvas.

What does that mean? Well, say you wanted to be really 
careful drawing on the canvas, you might take a pencil and 
trace a light shape (let’s just call it a path) on the canvas. 
You trace it so lightly that only you can see it. Then, after 
you’re satisfied with your path, you take a pen (with a 
thickness and color of  your choosing) and you use that to 
stroke over the path so everyone can see your triangle (or 
whatever shape you traced with the pencil).

That’s just how drawing arbitary shapes with lines works on 
the canvas. Let’s draw a triangle and see how this works:

Draw a line from the 
starting point to this 
new point, 250, 75. 

context.beginPath();

context.moveTo(100, 150);

context.lineTo(250, 75);

We use the beginPath method to tell 
the canvas we’re starting a new path.

The lineTo method traces a path 
from the pencil’s current location to 
another point on the canvas.

Drawing with Geeks

We use the moveTo method 
to move the “pencil” to a 
specific point on the canvas. 
You can think of the pencil as 
being put down at this point.

Here we’re putting the 

pencil down at x = 100 

and y = 150. This is the 

first point on the 
path.

The canvas.

The pencil was at 100, 150, and here 
we’re extending the path from there 
to the point x=250, y=75.

I can create any 
paths you want.

The pencil that 
traces a path.



312  Chapter 7

how to draw with paths

So you have a path! Now what?
You use the path to draw lines and fill in your shape with color, of course! Go ahead and create a 
simple HTML5 page with a canvas element and type in all the code so far. Give it a test run, too.

Trace another 
line from the 
previous point to 
125, 30.

context.beginPath();
context.moveTo(100, 150);
context.lineTo(250, 75);
context.lineTo(125, 30);
context.closePath();

context.lineWidth = 5;

context.stroke();

context.fillStyle = "red";

context.fill();

context.lineTo(125, 30);

context.closePath();

Here we’re tracing from the current pencil position (250, 75) to a new position, x = 125, y = 30. That completes our second line.

The closePath method connects the starting point of the path (100, 150) to the last point in the current path (125, 30). 

We’ve got the first side of the triangle, now we need 
two more. Let’s use lineTo again for the second side:

We’re almost there! All we need to do now is to trace one more line to finish the triangle. And to do that, we’re just going to close the path with the closePath method.
There’s our triangle! 
But remember, it is 
still only a path, so 
it’s not visible to the 
user, yet.

Here’s the code so far.

And here’s some new code. Go ahead and annotate this 
with what you think it does. Load the page. Were you 
right? Check your answers at the end of the chapter.



you are here 4  313

bringing out your inner artist

Do you happen to 
remember from 
geometry class that 
the circumference 
of a circle = 2 R? 
Just put that in the 
back of your mind 
for a sec...

Just to keep us on track here, 
I thought we were trying to draw 

circles? What does all this path stuff 
have to do with drawing circles?

context.beginPath();

context.arc(150, 150, 50, 0, 2 * Math.PI, true);

To create a circle, we first create a path.
We’re about to show you how to trace a circle as a path. And, 
once you know how to do that, you can make any kind of  
circle you like.

Here’s a bit more detail for you. You know how to start a path, 
right? Like we’ve been doing, you use this code:

Now, what we haven’t told you yet is there is another method 
in the context object named arc:

What does that do? Ah, we’ll spend the next page or so 
finding out the details. But, as you might expect, it traces a 
path along a circle. 



314  Chapter 7

looking at the arc method

Breaking down the arc method

context.arc(x, y, radius, startangle, endangle, direction)

x,y    The x and y parameters 
determine where the 
center of  the circle will be 
located in your canvas.

radius    This parameter is used to specify 
1/2 the width of  the circle.

This is the x, y 
position of the center 
of your circle.

The radius.

The canvas.

Let’s dive right into the arc method and check out its parameters. 

The whole point of  the arc method is to specify how we want to trace a path along a circle. 
Let’s see how each parameter contributes to that:

(x, y)

context.arc(x, y, radius,       startangle, endangle, direction)



you are here 4  315

bringing out your inner artist

The start angle is the 
angle between the x 
axis and the starting 
point of the arc.

context.arc(x, y, radius,       startangle, endangle, direction)

startangle, endangle    The start angle and 
end angle of  the arc 
determine where your 
arc path starts and stops 
on the circle.

The starting 
point of our arc.

The end angle is the 
angle between the 
x-axis and the stopping 
point of our arc.

direction    determines if  we are creating the arc path in 
a counterclockwise or clockwise direction. If  
direction is true, we go counterclockwise; if  
it’s false, we go clockwise.

If direction is true, we 
trace the arc going 
counter-clockwise. If 
it is false we trace 
clockwise.

x axis

The stopping point of our arc.

The arc we 
want to trace.

true

false

An angle measured going 
counterclockwise from 
the x-axis is negative. 
Like -35 degrees.

An angle measured going 
clockwise from the 
x-axis is positive. Like 
45 degrees.

Important Point Below!
Don’t skip this. Angles can be measured 
in the negative direction (counterclockwise 
from the x-axis) or in the positive direction 
(clockwise from the x-axis). This is not the 
same as the direction parameter for the arc 
path! (You’ll see on the next page.)



316  Chapter 7

getting experience with arc

What we need right now is a good example. Let’s say that you want to trace an arc 
over a circle that is centered at x=100, and y=100 and you want the circle to be 
150 pixels wide (or, a radius of  75). And, the path you want to trace is just 1/4 of  
the circle, like this:

A little taste of using the arc

The center:  
x=100, y=100

The radius is 75.

270º

90º
0º

The start angle is 0º and 
the end angle is 270º.

The direction we're tracing 
the arc is counterclockwise.

We'll come back 
to this in a sec. 
It just converts 
degrees (which 
we’re used to), 
into radians (which 
the context seems 
to prefer).

Yum, apple pie!

Now let’s create an arc method call that traces this path:

context.arc(100, 100, __, __, _____________________, ____ );

context.arc(100, 100, 75, __, _____________________, ____ );

context.arc(100, 100, 75, 0, degreesToRadians(270), ____ );

context.arc(100, 100, 75, 0, degreesToRadians(270), true );

We start with the x, y point of  the center of  the circle: 100, 100.1

Next, we need the radius of  the circle, 75.2

Finally, we’re tracing the arc in a counterclockwise direction, so we use true.4

What about our start and end angles? Well, the start angle is 0 because the starting point 
is at 0 degrees from the x axis. The end angle is the angle between the x-axis and the 
stopping point of  our arc. Since our arc is a 90 degree arc, our end angle is 270 degrees 
(90+270 = 360). (Note that if  we’d measured in the negative, or counterclockwise 
direction instead, our end angle would be -90 degrees.)

3

Notice we're measuring the 
end angle going clockwise 
from the x-axis, so the 
end angle is positive.

This is our arc path.



you are here 4  317

bringing out your inner artist

We all talk about circle angles every day: “nice 360 dude,” or 
“I was heading down that path and I did a complete 180,” or, 
...well, you get the picture. The only problem is, we think in 
degrees, but the canvas context thinks in radians. 

Now, we could tell you that:

I say degree, you say radian

function degreesToRadians(degrees) {

    return (degrees * Math.PI)/180;

}

To get radians from 
degrees, you multiply by 

 and divide by 180.

Use this function whenever 
you want to think in 
degrees, but get radians 
for drawing an arc.

Nice 360 dude!
Oh, I mean Nice 2  

Radians dude!

360 degrees = 2Pi radians

and you’re good to go if  you want to compute radians in your 
head from now on. Or, if  for some reason you’d rather not 
do that in your head, here’s a handy function that will do the 
work for you:

context.arc(100, 100, 75, degreesToRadians(270), 0, true);

Annotate this circle 
with all the arguments 
and then draw the path 
this method call creates.

A radian is just another measure 
of an angle. One radian equals 
180/3.14159265... (or 180 
divided by ).

Hint: what is left 
in the pie after 
eating this?

On page 313, you saw us use 2*Math.PI to specify the end angle of a circle. You could do that... or just use degreesToRadians(360).

BE the Browser
Interpret the call to the arc method and sketch out all the values on 
the circle, including the path the method creates.

You might remember 
seeing this briefly in the Geolocation chapter.



318  Chapter 7

adding the circles

Back to writing the TweetShirt circle code

function previewHandler() {

    var canvas = document.getElementById("tshirtCanvas");

    var context = canvas.getContext("2d");

    fillBackgroundColor(canvas, context);

    var selectObj = document.getElementById("shape");

    var index = selectObj.selectedIndex;

    var shape = selectObj[index].value;

    if (shape == "squares") {

        for (var squares = 0; squares < 20; squares++) {

            drawSquare(canvas, context);

        }

    } else if (shape == "circles") {

        for (var circles = 0; circles < 20; circles++) {

            drawCircle(canvas, context);

        }

    }

}

Now that you know how to draw circles, it’s time to get back to TweetShirt and add a new 
function, drawCircle. We want to draw 20 random circles, just like we did for squares. To 
draw those circles we need to first determine that the user has selected circles from the shape 
menu. Let’s add that to the previewHandler function.

Edit your tweetshirt.js file and add the new code below.

This code looks almost 
identical to the code to 
test for squares. If the 
user has chosen circles 
rather than squares then we 
draw 20 circles with the 
drawCircle function (which 
we now need to write).

We’re passing the 
canvas and context 
to the drawCircle 
function, just like we 
did with drawSquares.

A: You draw a circle with a start angle of 0˚ and an end angle of 360˚. It 
doesn’t matter what direction you use since you’re drawing a complete circle.

What start angle and end angle do you use to draw a complete circle?

What direction do you use: counterclockwise or clockwise? Does it matter?



you are here 4  319

bringing out your inner artist

function drawCircle(canvas, context) {

    var radius = Math.floor(Math.random() * 40);

    var x = Math.floor(Math.random() * canvas.width);

    var y = Math.floor(Math.random() * canvas.height);

    context.beginPath();

    context.arc(x, y, radius, 0, degreesToRadians(360), true);

    context.fillStyle = "lightblue";

    context.fill();

}

Writing the drawCircle function...
Now let’s write the drawCircle function. Remember, here we just need 
to draw one random circle. The other code is already handling calling this 
function 20 times.

... and test drive!

So go ahead and type this in (and don’t forget to add the degreesToRadians 
function too), save, and load it in your browser. Here’s what we see (given 
these are random circles—yours will look a little different):

Just like we did for squares, we’re using 
40 for the maximum radius size to keep 
our circles from getting too big.

And, again, the x & y coordinates of 
the center of the circle are based on 
the width and height of the canvas. 
We choose random numbers between 0 
and the width and height respectively.

We use an end angle of 360º to get a full circle. We draw counterclockwise around the circle, but for a circle, it doesn’t matter which direction we use.

We’re using “lightblue” as 
our fillStyle again, and 
then filling the path with 
context.fill().



320  Chapter 7

Whew! That was a fun set of pages we just went 
through. We don’t know about you, but we’re ready 
for some cookies. How about taking a short cookie 
break? But, don’t think we aren’t going to give you 
something fun to do while you’re having them (check 
on the exercise to the right).

So, sit back, have a little break, and nibble on this 
while you give your brain and stomach something 
else to do for a bit. Then come on back and we’ll 
finish off the TweetShirt code!

A Little Cookie Break

Intermission



you are here 4  321

bringing out your inner artist

function drawSmileyFace() {

    var canvas = document.getElementById("smiley");

    var context = canvas.getContext("2d");

    context.beginPath();

    context.arc(300, 300, 200, 0, degreesToRadians(360), true);

    context.fillStyle = "#ffffcc";

    context.fill();

    context.stroke();

    context.beginPath();

    context.arc(____, ____, 25, ____, _________, true);

    context.stroke();

    context.beginPath();

    context.arc(400, ____, ____, ____, ________, _____);

    context.stroke();

    context.beginPath();

    context._______(____, ____);

    context._______(____, ____);

    context.________();

    context.beginPath();

    context.____(300, 350, ____, degreesToRadians(____), degreesToRadians(____), _____);

    context.stroke();

}

The face circle. We did 
this one for you. Notice we 
filled it with yellow.

This is the left eye. 

This is the right eye. 

This is the nose. 

And here’s the mouth. This 
is the tricky one!

x,y = 200, 250 
radius = 25 x,y = 400, 250

x,y = 300, 350 radius = 75

x,y = 300, 300 nose length=50

Here’s what we’re looking for. You might want to make some real chocolate chip cookie smiley faces while you’re at it...

To the right you’ll find a smiley face (or a chocolate chip cookie smiley 
face if you prefer). The code below to draw the smiley face is almost 
done; we just need your help to finish it up. With all the work you’ve 
done in this chapter, you’ve got all you need to complete this. You 
can always check your answer at the end of the chapter when you’re 
finished.

angle=20º



322  Chapter 7

adding the jsonp for twitter

You’re back, you’re rested, refreshed, and we’re 
on the home stretch to getting this start-up off  the 
ground. When you look at all the work we’ve done, 
all we really have left is to display the tweets and 
the other text in the canvas preview.

Now, to get a get a tweet on the canvas we first 
need some of  your recent tweets to choose from, 
and we’re going to use JSONP to do it. If  you 
remember Chapter 6, you already know how to 
do this. If  you need to, go back to Chapter 6 for a 
quick refresher. All we’re going to do is:

<html>

...

<body>

    <form>

    ...

    </form>

    <script src="http://twitter.com/statuses/user_timeline/wickedsmartly.json? 
callback=updateTweets">

    </script>

</body>

</html>

Type this all on one line in your 
text file (it’s too long to fit 
on one line in the book).

Here's the Twitter API call. 
We’re asking for a user timeline 
which will give us recent statuses.

Speaking of goodies, 
remember that JSONP code 
we baked in Chapter 6? It’s 

time to pull it out of the oven.

Welcome back...

Here's our HTML file for TweetShirt.
Imagine your head element here, and your form here (we wanted to save a few trees).

Here's our JSONP call; this works by retrieving the JSON created by calling 
the Twitter URL, and then passing that JSON to the callback function 
(which we'll define in just a sec).

Change this to your 
username, or someone 
else's if you like.

There's a lot going on here. If this is only vaguely familiar, 
please do have a look back at how JSONP works, in Chapter 6.

Add a <script> at the bottom of  the tweetshirt.
html file to make a call to the Twitter JSONP API. 
We’re going to ask for the most recent status 
updates of  a specified user.

Implement a callback to get the tweets that 
Twitter sends back. We’ll use the name of  this 
callback in the URL for the <script> in Step 1.

1

2

And here’s the callback function where 
the JSON will be passed back.



you are here 4  323

bringing out your inner artist

function updateTweets(tweets) {

    var tweetsSelection = document.getElementById("tweets");

    for (var i = 0; i < tweets.length; i++) {

        tweet = tweets[i];

        var option = document.createElement("option");

        option.text = tweet.text;

        option.value = tweet.text.replace("\"", "'");

        tweetsSelection.options.add(option);

    }

    tweetsSelection.selectedIndex = 0;

}

Getting your tweets
We’ve already done the hard work, which is getting the 
tweets from Twitter. Now we need to add them to the tweets 
<select> element in the <form> of  our page. Just to review 
again: when the callback function is called (in our case, the 
function updateTweets), Twitter hands it a response that 
contains JSON formatted tweets. 

Edit your tweetshirt.js file and add the updateTweets 
function at the bottom. Here’s the code:

Here's our callback. Which is passed a response 
containing the tweets from 
the user timeline as an array of tweets.

We grab a reference to the tweets 
selection from the form.

For each tweet in the array of tweets, we:

Create a new option element.
Set its text to the tweet.

And set its value to the same text, only we've processed the string a little to replace double quotes with single quotes (so we can avoid formatting issues in the HTML).We then take the 
new option, and 
add it to the 
tweet selection in 
the form.And, finally, we make sure the first tweet is the selected tweet by setting the selectedIndex of the <select> to 0 (the first option element contained within it).

After we've done this for 
each tweet, we have a <select> 
element that contains an option 
for each tweet.

Twitter’s response is an array of tweets. Each 
tweet has a ton of data in it; the piece we’re 
going to use is the text of the tweet. 

Get a tweet from the array.



324  Chapter 7

testing tweetshirt with twitter

Test driving Tweets
Let’s do a quick test drive. Make sure you’ve got all 
the code added to tweetshirt.js and index.html. 
Also make sure you’re using a Twitter username that 
has recent tweets in your script src URL (so you’ll be 
sure you see some tweets!). Load the page and click on 
the tweets selection. Here’s what we see:

Here’s the tweets menu with 
REAL tweets in it. Cool!

Jim: We’re almost there. We need to nail down all the text we 
need to display. We’ve got the two messages: the “I saw this 
tweet” and “and all I got was this lousy t-shirt!” and also the 
tweet the user has chosen to display. Now we’ve got to figure out 
how to display it, not to mention apply some styling to the text.

Frank: I’m assuming we can throw some text in the canvas and 
then apply some CSS to it? 

Joe: I don’t think it works like that.  The canvas is a drawing 
area, I don’t think we can place text and style it, we have to 
draw text onto the canvas.

Jim: Well, this time I learned my lesson and I’ve already 
checked out the API for text.

Joe: Good, I haven’t looked yet; how does it look?

Jim: Remember that arc method? We have to custom draw all 
our text using that.

Guys, this is great. 
We have squares and circles 

and Jim’s got us hooked up to 
Twitter!  What’s next?

Frank's tablet.



you are here 4  325

bringing out your inner artist

Frank: Are you kidding me? I guess I’ll be working all weekend now.

Jim: Gotcha! No seriously, there is a fillText method that takes the text to draw on 
the canvas along with the x, y position of  where to draw it.

Joe: That sounds pretty straightforward. What about the differences in style? If  I 
remember the comp, the tweet text is italic, and the rest of  the text is bold.

Jim: We need to look a bit more, there are various methods for setting alignment and 
fonts and fill styles, but I’m not not quite sure how to use them. 

Frank:  And to think maybe I could have helped, but no CSS?

Jim: Sorry, like Joe said, this is an API for drawing onto a canvas, it doesn’t make use of  
HTML or CSS styling in any way.

Joe: Well, lets pull up the API and take a look and then we can try getting the “I saw a 
tweet” text on the canvas. Come on Frank, join us, this can’t be too bad and I’m sure we 
can use your knowledge of  fonts, styles and all that.

Frank:  Sure thing, I’m here for you!

We’ll draw the tweet 
in the middle, here. 

And then we draw “and all I 
got was this lousy t-shirt” at 
the bottom right below the 
text of the tweet.

We need to draw the text “I saw this tweet” above the 
actual tweet, up at the top-left corner.

I saw this tweet

and all I got was this lousy t-shirt

We've already got the 
tweets in the tweet menu.

We’ll grab the foreground color selection 
to use as the color of the text.



326  Chapter 7

structure and presentation discussion

That’s a really good point.
Now let’s work through why it’s set up this way. Remember 
that canvas is designed to give you a way to present graphics 
within the browser. Everything in the canvas is considered 
presentation, not content. So while you usually think of  
text—and certainly tweets—as content, in this case, you’ve 
got to think of  it as presentation. It’s part of  the design. Like 
an artist who uses letterforms as part of  her artwork, you’re 
using tweets as part of  the artwork of  your t-shirt design.  

One of  the main reasons that separating presentation and 
content is a good idea is so that the browser can be smart 
about how it presents the content in different situations: for 
example, an article from a news web site is presented one 
way on a big screen and a different way on your phone. 

For our t-shirt design, we want what’s in the canvas to be 
more like an image: it should be displayed the same way no 
matter how you are viewing it.

So, let’s get the text on the canvas and get this start-up 
rolling!

One thing that confuses me about drawing 
text in canvas is that we’ve always stressed 
that content is separate from presentation. With 

canvas it seems like they are the same thing. 
What I mean is, they don’t seem to be separate.



you are here 4  327

bringing out your inner artist

function drawText(canvas, context) {

    var selectObj = document.getElementById("__________________");

    var index = selectObj.selectedIndex;

    var fgColor = selectObj[index].value;

    context._____________ = fgColor;

    context.__________ = "bold 1em sans-serif";

    context._______________ = "left";

    context.__________(_"___________________, 20, 40);

    // Get the selected tweet from the tweets menu 
    // Draw the tweet

    context.font = "______________________"; 

    context._____________ = "__________";

    context.____________("and all I got was this lousy t-shirt!",

            ______________________, _____________________);

}

righttextalign

fillText

canvas.width-20
canvas.height-40

bold 1em sans-serif

foregroundColor

fillStyle font

textalign

fillText

"I saw this tweet"
left

fillRectfillCircle

We want to draw this text at 20 from the right side of the canvas, and 40 from the bottom of the canvas, so it balances the top line of text.

Hint: we want to position the text 
in the bottom-right corner.

Hint: We’ll be using an italic serif 
font for the tweet, but we want 
this one to be bold sans-serif.

For right 
now, we're 
just putting 
comments 
in where 
the code to 
draw the 
tweet text 
will be.

Hint: This is the x, y 
position for the “I saw 
this tweet” text.

Code Magnets
It’s time for your first experiment with canvas text. Below we’ve started the code for drawText, the 
method we’re going to call to draw all the text onto the preview canvas. See if you can finish up 
the code to draw “I saw this tweet” and “and all I got was this lousy t-shirt!” on the canvas, we’ll 
save drawing the actual tweet for later. Make sure you check your answer with the solution at the 
end of the chapter before you go on.



328  Chapter 7

closer look at text in the canvas

Canvas Text Up Close
Now that you’ve had a chance to draw your first text in the canvas, it’s time to take a closer 
look at the text methods and properties available in the canvas API. As you found out in the 
exercise this is a fairly low-level API—you have to tell the context what text to draw, what 
position to use, and what font to use.

In this Up Close segment we’ll examine the alignment, font, and baseline properties, and the fill 
and stroke methods in detail so you’ll be a canvas text expert by the time you turn the page!

context.textalign = "left";

Possible values are: start, end, left, right, and center. 

Start and end mean the same as left and right in left-

to-right languages, like English, and are reversed in 

right-to-left languages, like Hebrew.

alignment

The textAlign property specifies where the anchor 

point for the text is. “start” is the default.

context.fillText("Dog", 100, 100, 200);

context.strokeText("Cat", 100, 150, 200);

fill and stroke

Just like for rectangles, we can stroke and fill text. We 
provide the text to draw, the x, y position and an 
optional parameter, maxwidth, that causes the text to 
scale if  it is wider than maxwidth.

If the text gets wider than 200, 
it is automatically scaled to fit.

filled text.

stroked text.

Center align Right alignLeft align



you are here 4  329

bringing out your inner artist

Alphabet

Alphabet

Alphabet

Alphabet

context.beginPath();

context.moveTo(100, 100);

context.lineTo(250, 100);

context.stroke();

context.textBaseline = "middle";
context.fillText("alphabet", 100, 100);

baseline

The textBaseline property sets the alignment points in the font 
and determines the line your letters sit on. To see how the line affects 
the text, try drawing a line at the same x, y point you draw a text.

Possible values are: top, hanging, middle, alphabetic, ideographic, 
and bottom. The default is alphabetic. Experiment with the different 
values to find what you need (and check out the spec for more details).

alphabetic

bottom

middle
top

context.font = "2em Lucida Grande";

context.fillText("Tea", 100, 100);

context.font = "italic bold 1.5em Times, serif";

context.fillText("Coffee", 100, 150);

font

To set the font properties, you can use the same format you’re used 

to using in CSS, which is handy. If  you specify every property value, 

you’ll include: font style, weight, size, and family, in that order.

The spec recommends that you use vector fonts only (bitmap fonts 

may not display very well). 

See! I 
KNEW CSS had 
to come into this 

somehow!!!



330  Chapter 7

drawing text

Giving drawText a spin
Now that you’ve got more of  the API in your head, go ahead and get the code you created 
in the Magnet Code exercise typed in— here it is with the magnets nicely translated to code:

Take a shot at completing the drawText 
function.  You need to get the selected 
tweet, set the font to an italic serif font 
that’s slightly (1.2em) bigger than than the 
default, make sure the text is aligned left, 
and position it at x = 30, y = 100. This is the 
last step before we see the TweetShirt!

Write your code above, 
and don't peek at the 
next page! (Really!)

Here’s the text. We’ve got sans-serif 
text in bold at the correct location.

And we’ve got 
right-aligned text 
down here.

function drawText(canvas, context) {
    var selectObj = document.getElementById("foregroundColor");
    var index = selectObj.selectedIndex;
    var fgColor = selectObj[index].value;

    context.fillStyle = fgColor;
    context.font = "bold 1em sans-serif";
    context.textalign = "left";
    context.fillText("I saw this tweet", 20, 40);

    context.font = "bold 1em sans-serif";    
    context.textalign = "right";
    context.fillText("and all I got was this lousy t-shirt!",
        canvas.width-20, canvas.height-40);
}

We're going to put the code that draws 
the tweet text here in a sec...

After you’ve got it typed in, update your previewHandler 
function to call the drawText function, and give it a test drive by 
loading it in your browser. You should see something like we do:



you are here 4  331

bringing out your inner artist

function drawText(canvas, context) {

    var selectObj = document.getElementById("foregroundColor");

    var index = selectObj.selectedIndex;

    var fgColor = selectObj[index].value;

    context.fillStyle = fgColor;

    context.font = "bold 1em sans-serif";

    context.textalign = "left";

    context.fillText("I saw this tweet", 20, 40);

    

    selectObj = document.getElementById("tweets");

    index = selectObj.selectedIndex;

    var tweet = selectObj[index].value;

    context.font = "italic 1.2em serif";

    context.fillText(tweet, 30, 100);

    context.font = "bold 1em sans-serif";    

    context.textalign = "right";

    context.fillText("and all I got was this lousy t-shirt!",

        canvas.width-20, canvas.height-40);

}

Completing the drawText function
Here’s our solution code.  How does it compare to yours? If  you haven’t already typed your 
code in, go ahead and type in the code below (or your version if  you prefer), and reload your 
index.html. We’ll show you our test drive on the next page.

Hurry up and press 
preview, Frank. I want 
to see this TweetShirt!

We grab the selected option 
from the tweet menu.

Set the font to italic serif, 
just a tad bigger...

... and draw it at position 30, 100.

We don’t need to align the tweet 
text to the left; the alignment is 
still set from up here.



332  Chapter 7

launching tweetshirt

Yes! It 
works. We’re 

ready to launch!!

Guys, I hate to burst 
your bubble, but you’re not 
done yet. You’re supposed to 
put an image of the Twitter 
bird on the t-shirt too!

There’s the 
tweet on the 
t-shirt preview. 
Nice!

Remember the 
TweetShirt founder?

A quick test drive and 
then LUNCH LAUNCH!
We hope you’re seeing what 
we’re seeing! Nice huh?� Give 
the interface a real bit of  quality 
assurance testing: try all the 
combinations of  colors and 
shapes, or swap out the username 
for another you like.

Feel like you’re ready to launch 
this for real?� Let’s do it!



you are here 4  333

bringing out your inner artist

The first thing we need is an image.  We’ve put an image named twitterBird.png in the 
TweetShirt folder. To get that into the canvas we first need a JavaScript image object. Here’s 
how we get one:

1

var twitterBird = new Image(); 

twitterBird.src = "twitterBird.png";

Create a new image object.

And set its source to be the 
image of the Twitter bird.

The next part should feel pretty natural by now; we need to draw the image on the canvas 
using a context method named, you guessed it, drawImage.

2

context.drawImage(twitterBird, 20, 120, 70, 70);

Using the drawImage method Here's our 
image object.

And we specify the x, y location, width and height.

Uh guys, I sorta did a little 
work on my own and I have 
the image code already for 

the Twitter bird...

Here, let 
me walk you 
through it...

There’s one other thing to know about images: they don’t always load immediately, so you 
need to make sure that the image has fully loaded beford you draw it. How do we wait until 
something is loaded before we take action? We implement an onload handler:

3

twitterBird.onload = function() {

    context.drawImage(twitterBird, 20, 120, 70, 70);

};

Here, we’re saying: when the image has 
loaded, then execute this function.

We draw the image to the 
canvas using the context’s 
drawImage method. 



334  Chapter 7

adding the image

Yet another test drive
Double check your code and get in 
another test drive! Wow, this is really 
looking polished now. 

Give it a few tries; try it with circles or 
squares. You’ll notice that we used a png 
with a transparent background so that 
the circles and squares work if  they’re 
behind the bird.

This rocks and we’re well 
on our way to developing a 
cool app. But like we said, 
we’re counting on you to 
implement the ecommerce 
and fulfillment and all that. 

See if you can put together the drawBird function from all the pieces Judy gave us. The 
drawBird function takes a canvas and context, and draws the bird onto the canvas. You 
can assume that with this function we’re placing “twitterBird.png” at the location x=20, 
y=120, with a width and height of 70. We’ve written the method declaration and the first 
line for you. You’ll find our solution at the end of the chapter.

function drawBird(canvas, context) {
    var twitterBird = new Image();
    

}

Your code here.

Make sure you add a call to 
the drawBird function in the previewHandler function.



you are here 4  335

bringing out your inner artist

Q: We haven’t seen the Image object before. You used it 
when you added an image to the canvas. What is this? Why 
didn’t we create it with document.createElement(“img”)?

A: Good catch. Both methods you mention create image 
objects. The JavaScript Image constructor is arguably a more 
direct way to create images from JavaScript and gives us a little 
more control over the loading process (like giving us the ability to 
easily use a handler to be notified when the image is loaded).  
So, our goal here is to create an image, and to make sure it’s 
loaded before we draw it on the canvas. The Image object gives 
us the best path to doing that.

Q: Canvas is cool... but also kind of a pain compared to 
HTML. Anything more complicated than basic shapes must 
be really difficult to do.

A: There’s no doubt about it, you’re writing graphics code when 
you’re programming canvas. Unlike the browser, which takes care 
of a lot of details for you, like flowing elements onto the page so 
you don’t have to worry about drawing everything yourself, you 
have to tell canvas where to put everything.  
Canvas gives you a lot of power to do almost any kind of graphics 
(currently, 2D) you can imagine, however. And we’re in early days 
of canvas; it’s likely that libraries of JavaScript code will make it 
easier to write graphics for canvas in the future. 

Q: I noticed that for very long tweets, the tweet just 
disappears off the edge of the canvas. How can I fix that?

A: One way to fix it is to check to see how many characters 
the tweet contains and if it’s greater than a certain number, split 
it into multiple lines and draw each line separately onto the 
canvas. We’ve included a function, splitIntoLines, in the code on 
wickedlysmart.com that you can use to do just that. 

Q: I also noticed that some tweets have HTML entities in 
them, like &quot; and &amp;. What’s that all about?

A: The Twitter API that we’re using to get tweets as JSON 
converts characters that people post in their tweets to HTML  
entities. It’s actually a good thing because any special characters, 

  
or even quotes, that would mess up our ability to get the tweets 
properly from the JSON are represented as entities. If we were 
displaying the tweets in HTML, those entities would be displayed 
in the browser as the characters you’re meant to see, just like 
entities you add to your own page are displayed correctly in the 
browser. However, as you saw, in the canvas they don’t look so 
great. Unfortunately, right now there is no function in the canvas 
API that will convert those entities back to their characters, so 
you’d have to do that yourself. 

Q: Can you do anything fancy in canvas, like put 
dropshadows on text or shapes?

A: Yes! There are lots of fancy things you can do with 
canvas and dropshadows is certainly one of them. As you’d 
expect, you create a shadow by setting properties on the 
context.  For instance, to set the blur size of the shadow, you set 
context.shadowBlur. You can set the position of the shadow with 
context.shadowOffsetX and context.shadowOffsetY, and the color 
with context.shadowColor.  
Other things you can do with canvas you might want to check into 
are things like drawing gradients, rotating shapes, and putting 
rounded corners on rectangles. 

Q: What other interesting things can I do with canvas?

A: A lot! We’ll cover a couple more ways to use canvas in later 
chapters, and you’ll definitely want to check out the canvas API 
for more: http://dev.w3.org/html5/2dcontext/.

Q: Is all this canvas stuff going to work on my mobile 
device too? Or am I going to have to rewrite it for mobile 
users?

A: If your mobile device has a modern browser (devices like 
Android, iPhone and iPad all do), then this will work just fine 
(the sizing of the page might be off, but the functionality will 
work. The nice thing about canvas is, because you’re drawing 
with raw pixels, what you draw will look the same everywhere 
(or, everywhere on browsers that support canvas).  Fortunately, 
modern smart devices like Android, iPhone and iPad all have 
sophisticated browsers that have most of the functionality of 
desktop browsers.



336  Chapter 7

canvas metadata

No, that requires a little extra work.
The canvas is really meant to be a simple drawing 
surface. When you draw a shape, the canvas just sees 
it as pixels. The canvas isn’t aware of  the specifics 
of  what you’re drawing, and it doesn’t keep track of  
any shapes. It simply creates the pixels you ask it to 
create. (If  you’re familiar with the graphics terms 

“bitmap” and “vector” drawing, you’ll recognize what 
canvas is doing as “bitmap” drawing).

If  you’d like to treat the rectangles in your canvas 
as a set of  objects that you can save and maybe 
even move or manipulate, you need to maintain 
the information about the shapes and paths as 
you create them on the canvas. You can store this 
data in JavaScript objects. For instance, if  you’re 
keeping track of  the random circles we’ve drawn on 
the TweetShirt canvas, you’d need to save the x, y 
location, the circle radius and color in order to be 
able to recreate that circle.

This sounds like a good project for you.. ;)

I was thinking it would be great to be 
able to save a t-shirt and the location 

and position of all its squares. Is there a 
canvas save method for that?



you are here 4  337

bringing out your inner artist

Congrats team, you did it! And 
it even works on my iPad, so this 
is perfect for customers on the 
go. I’m thrilled. We’re throwing 
a TweetShirt launch party, so 

come join us. 

The TweetShirt founder also 
wanted to pass along that she’s 
happy to see the web app works 
on her iPad and iPhone too! If 
she’s happy, we’re happy.



338  Chapter 7

review of canvas

 � Canvas is an element you place in your page to 
create a drawing space.

 � The canvas has no default style or content until you 
provide it (so you won’t see it on the page until you 
draw something in it or add a border with CSS).

 � You can have more than one canvas on your page. 
Of course, you’ll need to give each one a unique id 
to access each using JavaScript.

 � To specify the size of the canvas element, use the 
width and height attributes on the element.

 � Everything you put in canvas is drawn using 
JavaScript.

 � To draw on the canvas, you first need to create a 
context. Currently, a 2D context is your only option, 
although other context types may exist in the future. 

 � A context is needed to draw in the canvas because 
it provides a specific kind of interface (e.g., 2D 
versus 3D). You’ll be able to choose from more than 
one kind of interface to draw on a canvas.

 � You access the canvas by using context properties 
and methods.

 � To draw a rectangle in the canvas, use the context.
fillRect method. This creates a rectangle filled with 
color.

 � To create a rectangle outline, use strokeRect 
instead of fillRect.

 � Use fillStyle and strokeStyle to change the default fill 
and stroke color, which is black.

 � You can specify colors using the same format as 
you use with CSS (e.g., “black”, “#000000”, “rgb(0, 
0, 0)”. Remember to put quotes around the value of 
the fillStyle.

 � There is no fillCircle method. To draw a circle in 
canvas, you need to draw an arc.

 � To create arbitrary shapes or arcs, you first need to 
create a path.

 � A path is a invisible line or shape you create that 
defines a line or area on the canvas. You can’t see 
the path until you stroke or fill it.

 � To create a triangle, create a path using beginPath, 
then use moveTo and lineTo to draw the path. Use 
closePath to join two points on the path.

 � To draw a circle, create an arc that is 360 degrees. 
Your start angle is 0, and your end angle is 360 
degrees.

 � Angles are specified in canvas using radians, not 
degrees, so you need to convert from degrees to 
radians to specify your start and end angles.

 � 360 degrees = 2Pi radians.

 � To draw text in canvas, use the fillText method.

 � When you draw text in canvas, you need to specify 
the position, style, and other properties using 
context  properties.

 � When you set a context property, it applies to all the 
drawing that follows until you change the property 
again. For example, changing the fillStyle will affect 
the color of shapes and text you draw after setting 
the fillStyle.

 � Add an image to your canvas with the drawImage 
method.

 � To add an image, you first need to create an image 
object and make sure it’s completely loaded.

 � Drawing on canvas is like doing “bitmap” drawing in 
graphics programs.



you are here 4  339

bringing out your inner artist

THE WEBVILLEINQUiRERWe have the scoop, <canvas> and <video> are an item after all!
Webville—You’ll hear it here firstAfter an exclusive interview we can report that <canvas> and <video> have been doing more than just sharing the same web pages. Yeah, you got it... let’s just say they’ve been mixing their content together.

By Troy Armstrong
INQUIRER STAFF WRITER

<Video> says, “It’s true, we’ve formed a tight relationship. You see, I’m a pretty simple guy; I know how to display video, and I do that very well. But that’s pretty much all I do. With <canvas>, everything has changed. I’m dressing up in custom controls, I’m filtering my video content, I’m displaying multiple videos at once.”We asked <canvas> to comment. Is she the woman behind the <video> tag? <Canvas> told us, “Well, <video> does very well on his own, you know decoding all those video codecs, maintaining his frames-per-second, all that, it’s a very big job, and I could never do it. But with me he has a way to escape his normal, dare I say, “boring” way of  playing back video. I give him a means to explore all kinds of  creative possibilities of  mixing video into the Web experience.”

Well, who would have guessed? I guess we’ve got some interesting things in store ahead from the partnership that is <canvas>+<video>!
The fallout from this revelation can be expected to continue well into the video chapter, when the budding relationship will be exposed to public scrutiny.

Local resident Heidi Musgrove was shocked to learn the truth about the two elements.



340  Chapter 7

some fun for your brain

HTML5cross
We’re looking forward to checking out the <canvas> 
and <video> scoop in the next chapter. In the meantime, 
cement your new canvas knowledge with a quick 
crossword and perhaps a cup of tea.

1

2

3 4

5

6

7 8

9 10

11

12 13

14

15

16

Across
4. Everything on the canvas is _________ .
5. We _______ aligned the “and all I got was this lousy t-shirt!” 
text.
6. The property we set to fill a shape with a color.
7. You can tell when something has finished loading using an 
________ handler.
9. The non-existent context method Jim tried to use to create 
circles.
12. Draw a circle with an _____ .
14. How we make the path of a shape visible.
15. Want to know which option is selected? You might need 
this property.
16. An invisible line you create to draw a shape.

Down
1. Best place for a good tweet.
2. This context method creates a rectangle.
3. canvas and _______ go well together.
8. There are 360 _____ in a circle.
9. Use this method to draw text on the canvas.
10. We think in degrees, canvas thinks in _________ .
11. An object with methods and properties to draw on a 
canvas.
13. To move your path pencil to point 100, 100, use ________ 
(100, 100);

Across
4. Everything on the canvas is _________ .
5.  We _______ aligned the “and all I got was this lousy 

t-shirt!” text.
6. The property we set to fill a shape with a color.
7.  You can tell when something has finished loading using 

an ________ handler.
9.  The non-existent context method Jim tried to use to create 

circles.
12. Draw a circle with an _____ .
14. How we make the path of a shape visible.
15.  Want to know which option is selected? You might need 

this property.
16. An invisible line you create to draw a shape.

Down
1. Best place for a good tweet.
2. This context method creates a rectangle.
3. Canvas and _______ go well together.
8. There are 360 _____ in a circle.
9. Use this method to draw text on the canvas.
10. We think in degrees, canvas thinks in _________ .
11.  An object with methods and properties to draw on a 

canvas.
13.  To move your path pencil to point 100, 100, use ________ 

(100, 100);



you are here 4  341

bringing out your inner artist

BE the Browser 
Solution
Now that you have an interface, 
execute these JavaScript statements 
and write in the value for 
each interface element.

var selectObj = document.getElementById("backgroundColor");

var index = selectObj.selectedIndex;

var bgColor = selectObj[index].value; 

var selectObj = document.getElementById("shape");

var index = selectObj.selectedIndex;

var shape = selectObj[index].value;

var selectObj = document.getElementById("foregroundColor");

var index = selectObj.selectedIndex;

var fgColor = selectObj[index].value;

Here are the values we 
picked in the TweetShirt 

interface to create t
he 

answers above.

white

circles

Notice that for each menu option value, we get the select element the option is contained in, find the selected option 
with the selectedIndex property, and the get the value of the selected option. 

Remember that the value of the option 
may be different than the text you see 
in the controls; in our case, it's just the 
case of the first letters of the text.

black

Look at the HTML 
again to see the values 
of the options if you 
need to.

Assume you've used the 
interface to pick the 
values for your t-shirt.



342  Chapter 7

exercise solutions

Pseudo-code Magnets Solution
Use your pseudo-magical coding powers to arrange the pseudo code below. We need to write the 
pseudo-code for the drawSquare function. This function takes a canvas and context and draws one 
randomly sized square on the canvas. Here’s our solution.

function drawSquare (         ,          ){

}

set the fillStyle to "lightblue"

calculate a random width 
for the square

calculate a random x position for the 

square inside the canvas

calculate a random y position
 for the 

square inside the canvas

draw a square at position x, 
y with width w

canvas context

Your magnets go here!

We did this one for you.

function fillBackgroundColor(canvas, context) {

    var selectObj = document.getElementById("backgroundColor");
    var index = selectObj.selectedIndex;

    var bgColor = selectObj.options[index].value;

    context.fillStyle = bgColor;
    context.fillRect(0, 0, canvas.width, canvas.height);
}

All we’re doing to create a background 
color is drawing a rectangle that fills 
the entire canvas with a color.

To make sure we see only new squares in the canvas each time we 
click preview, we need to fill the background of the canvas with the 
background color the user has selected from the “backgroundColor” 
select menu.  First, let’s implement a function to fill the canvas with that 
color. Fill in the blanks below to complete the code. Here's our solution.



you are here 4  343

bringing out your inner artist

radius = 75º

start angle = 270º

end angle = 0º

start hereand draw 
counterclockwise

arc path

context.arc(100, 100, 75, degreesToRadians(270), 0, true);

BE the Browser Solution
Interpret the call to the arc method and sketch out all the values on the 
circle, including the path the method creates.

So you have a path! Now what?
You use the path to draw lines and fill in your shape with color, of course! Go ahead and create a 
simple HTML5 page with a canvas element and type in all the code so far. Give it a test run, too.

Set the width of line to draw over the path.
Draw over the path with the line.
Set the color to fill the triangle with to red.
Fill the triangle with red.

When we load our triangle page, 
here's what we get (we made a 
300 x 300 canvas to draw in).

context.beginPath();
context.moveTo(100, 150);
context.lineTo(250, 75);
context.lineTo(125, 30);
context.closePath();

context.lineWidth = 5;

context.stroke();

context.fillStyle = "red";

context.fill();

Here’s the code so far.



344  Chapter 7

exercise solutions

function drawSmileyFace() {

    var canvas = document.getElementById("smiley");

    var context = canvas.getContext("2d");

    context.beginPath();

    context.arc(300, 300, 200, 0, degreesToRadians(360), true);

    context.fillStyle = "#ffffcc";

    context.fill();

    context.stroke();

    context.beginPath();

    context.arc(200, 250, 25, 0, degreesToRadians(360), true);
    context.stroke();

    context.beginPath();

    context.arc(400, 250, 25, 0, degreesToRadians(360), true);
    context.stroke();

    context.beginPath();

    context.moveTo(300, 300);
    context.lineTo(300, 350);
    context.stroke();

    context.beginPath();

    context.arc(300, 350, 75, degreesToRadians(20), degreesToRadians(160), false);
    context.stroke();

}

Time to practice your new arc and path drawing skills 
to create a smiley face.  Fill in the blanks below with 
the code you need to complete the smiley face. We’ve 
given you some hints about where the eyes, nose and 
mouth should go in the diagram. 

Here’s our solution:

The face circle. We did this one for you. Notice we filled it with yellow.

This is the left eye. The center of the circle is at x=200, y=250, the radius is 25, the starting angle is 0, and the ending angle is Math.PI * 2 radians (360 degrees). We stroke the path so we get the outline of the circle (but no fill).

This is the right eye. Just like the 
left eye, except it’s at x=400. 
We use counterclockwise (true) for 
the direction (it doesn’t matter 
for a complete circle).

This is the nose. We use moveTo(300,300) to move the pen to x=300, y=300 to start the line. Then we use lineTo(300,350) because the nose is 50 long. Then we stroke the path.
To get a more realistic smile, we start and end the edge of 
the mouth at 20 degrees below the x-axis. That means the 
starting angle is 20º, and the ending angle is 160º. 

The direction is clockwise (false) because we want 
the mouth in a smile. (Remember, the starting 
point is to the right of the mouth center. 

Intermission Solution
x,y = 200, 250 
radius = 25 x,y = 400, 250

x,y = 300, 350 radius = 75

x,y = 300, 300
nose length=50 angle=20º



you are here 4  345

bringing out your inner artist

Leftover magnets

function drawText(canvas, context) {

    var selectObj = document.getElementById("__________________");

    var index = selectObj.selectedIndex;

    var fgColor = selectObj[index].value;

    context.___________ = fgColor;

    context._______ = "bold 1em sans-serif";

    context.____________ = "left";

    context.__________(_"____________________, 20, 40);

    // Get the selected tweet from the tweets menu 

    // Draw the tweet

    context.font = "______________________"; 

    context.____________ = "________";

    context.__________("and all I got was this lousy t-shirt!",

            __________________, ___________________);

}

Hint: This is the x, y 
position for the “I saw 
this tweet” text.

We want to draw this text at 20 from the right side of the canvas, and 40 from the bottom of the canvas, so it balances the top line of text.

Hint: we want to position the text 
in the bottom-right corner.

Hint: We’ll be using an italic serif 
font for the tweet, but we want 
this one to be bold Helvetica.

For right 
now, we're 
just putting 
comments 
in where 
the code to 
draw the 
tweet text 
will be.

Code Magnets Solution
It’s time for your first experiment with canvas text. Below we’ve started the code for drawText, the 
method we’re going to call to draw all the text onto the preview canvas. See if you can finish up 
the code to draw “I saw this tweet” and “and all I got was this lousy t-shirt!” on the canvas, we’ll 
save drawing the actual tweet for later. Here’s our solution.

right

textalign

fillText

canvas.width-20 canvas.height-40

bold 1em sans-serif

foregroundColor

fillStyle

font

textalign

fillText

"I saw this tweet"

left
fillRectfillCircle



346  Chapter 7

exercise solutions

See if you can piece together the drawBird function from all the pieces Judy gave us.  
The drawBird function takes a canvas and context, and draws the bird onto the canvas.  
You can assume that with this function we’re placing “twitterBird.png” at the location 
x=20, y=120, with a width and height of 70. We’ve written the method declaration and 
the first line for you. Here’s our solution.

function drawBird(canvas, context) {
    var twitterBird = new Image();

    twitterBird.src = “twitterBird.png”;
       twitterBird.onload = function() {
            context.drawImage(twitterBird, 20, 120, 70, 70);
       };
}

Don’t forget to add a 
call to drawBird in your 
previewHandler!

HTML5cross Solution
C
1

F
2

H

V
3

P
4

I X E L S

R
5

I G H T L S

D F
6

I L L S T Y L E

E R

O
7

N L O A D
8

E

E F
9

I L L C I R
10

C L E

C
11

G I T A

O A
12

R C L M
13

D

N E L O I

S
14

T R O K E T V A

E S
15

E L E C T E D I N D E X

X X T S

T P
16

A T H O

Across
4. Everything on the canvas is _________ . [PIXELS] 
5. We _______ aligned the “and all I got was this lousy t-shirt!” 
text. [RIGHT] 
6. The property we set to fill a shape with a color. 
[FILLSTYLE] 
7. You can tell when something has finished loading using an 
________ handler. [ONLOAD] 
9. The non-existent context method Jim tried to use to create 
circles. [FILLCIRCLE] 
12. Draw a circle with an _____ . [ARC] 
14. How we make the path of a shape visible. [STROKE] 
15. Want to know which option is selected? You might need 
this property. [SELECTEDINDEX] 
16. An invisible line you create to draw a shape. [PATH] 

Down
1. Best place for a good tweet. [CHEST] 
2. This context method creates a rectangle. [FILLRECT] 
3. canvas and _______ go well together. [VIDEO] 
8. There are 360 _____ in a circle. [DEGREES] 
9. Use this method to draw text on the canvas. [FILLTEXT] 
10. We think in degrees, canvas thinks in _________ . 
[RADIANS] 
11. An object with methods and properties to draw on a 
canvas. [CONTEXT] 
13. To move your path pencil to point 100, 100, use ________ 
(100, 100); [MOVETO] 

Your code here



you are here 4  347

bringing out your inner artist

TweetShirt Easter egg

function makeImage() {
    var canvas = document.getElementById("tshirtCanvas");
    canvas.onclick = function () {
        window.location = canvas.toDataURL("image/png");
    };
}

window.onload = function() {

    var button = document.getElementById("previewButton");

    button.onclick = previewHandler;

    makeImage();

}

So, you’ve made the perfect TweetShirt preview—now 
what? Well, if  you really want to make a t-shirt out of  your 
design, you can! How? Here’s a little extra bonus to add 
to your code—a TweetShirt “easter egg” if  you will—that 
will make an image out of  your design, all ready for you to 
upload to a site that will print an image on a t-shirt for you 
(there are plenty of  them on the Web).

How can we do this? It’s simple! We can use the 
toDataURL method of  the canvas object. Check it out:

We’ve made a new function, makeImage, to add this functionality.
We grab the canvas object...

And add an event 
handler so that 
when you click on the 
canvas, it creates 
the image.We set the browser window 

location to the image that’s 
generated, so you’ll see a browser page with just the image in it.

We’re asking canvas to 
create a png image of the 
pixels drawn on the canvas. Note that png is the 

only format that must be 
supported by browsers, so we 
recommend you use it.Now, just add a call to makeImage in the window onload function and your 

canvas is now enabled to make an image when you click on it. Give it a try. 
And let us know if  you make a tshirt!

Call makeImage to add the click 
event handler to the canvas, and 
your easter egg is complete.

Some browsers won’t let you grab an image from 
the canvas if you’re running the code from file://. 

Run this code from localhost:// or a hosted server if you want 
it to work across all browsers.





this is a new chapter  349

not your father’s tv8

Video
...with special guest star “Canvas”

We don’t need no plug-in.  After all, video is now a first-class 

member of the HTML family—just throw a <video> element in your page 

and you’ve got instant video, even across most devices. But video is far 

more than just an element, it’s also a JavaScript API that allows us to control 

playback, create our own custom video interfaces and integrate video with 

the rest of HTML in totally new ways. Speaking of integration... remember 

there’s that video and canvas connection we’ve been talking about—you’re 

going to see that putting video and canvas together gives us a powerful 

new way to process video in real time. In this chapter we’re going to start by 

getting video up and running in a page and then we’ll put the JavaScript API 

through its paces. Come on, you’re going to be amazed what you can do with 

a little markup, JavaScript and video & canvas.

Today in “As Webville 
Turns” we’d better find out 

what’s going on between 
<video> and <canvas>...



350  Chapter 8

announcing webville television

Webville TV—all the content you’ve been 
waiting for, like Destination Earth, The Attack of  the 
50’ Woman, The Thing, The Blob, and it wouldn’t 
be beyond us to throw in a few ’50s educational 
films. What else would you expect in Webville? 
But that’s just the content, on the technology 
side would you expect anything less than 
HTML5 video?

Of  course, that’s just the vision, we have 
to build Webville TV if  we want it to be a 
reality. Over the next few pages we’re going to 
build Webville TV from the ground up using 
HTML5 markup, the video element and a little 
JavaScript here and there.

Meet Webville TV

Webville TV 
built with 100% 
HTML5 technology.

Coming to a 
browser near 
you soon!



you are here 4  351

not your father’s tv

The HTML, let’s get it done...

<!doctype html>

<html lang="en">

<head>

  <title>Webville Tv</title>

  <meta charset="utf-8">

  <link rel="stylesheet" href="webvilletv.css">

</head>

<body>

<div id="tv">

   <div id="tvConsole">

      <div id="highlight">

          <img src="images/highlight.png" alt="highlight for tv">

      </div>

      <div id="videoDiv">

          <video controls autoplay src="video/preroll.mp4" width="480" height="360"

                 poster="images/prerollposter.jpg" id="video">

          </video>

      </div>

   </div>

</div>

</body>

</html>

Hey this is Chapter 8, no lollygagging around! Let’s jump right in and create some HTML:

Pretty standard HTML5.

Don't forget the CSS file 
to make it all look nice.

Just a little image  
to help make it look 
like a television set.

And here's our <video> element 
for playing our video. We'll take a 
closer look in a sec...

You need to make sure of  a few things here: first, 
make sure you’ve got the code above typed into a file 
named webvilletv.html; second, make sure you’ve 
downloaded the CSS file, and finally, make sure you’ve 
also downloaded the video files and placed them in a 
directory named video. After all that, load the page 
and sit back and watch. 

Plug that set in and test it out...

If you’re having issues, 
turn the page!

Download everything from http://wickedlysmart.com/hfhtml5

Here's what we see. 
Notice if you hover 
your mouse over the 
screen you get a set 
of controls, which you 
can use to pause, play, 
set the audio or seek 
around in the video.



352  Chapter 8

video formats can cause issues

Yes, it’s probably the video format.

While the browser makers have agreed on what the 
<video> element and API look like in HTML5, not 
everyone can agree on the actual format of  the video files 
themselves. For instance if  you are on Safari, H.264 
format is favored, if  you’re on Chrome, WebM is favored, 
and so on. 

In the code we just wrote, we’re assuming H.264 as a 
format, which works in Safari, Mobile Safari and IE9+.  
If  you’re using another browser then look in your video 
directory and you’ll see three different types of  video, 
with three different file extensions: “.mp4”, “.ogv”, and 

“.webm” (we’ll talk more about what these mean in a bit).

For Safari you should already be using .mp4 (which 
contains H.264). 

For Google Chrome, use the .webm format by replacing 
your src attribute with: 

If  you’re using Firefox or Opera, then replace your src 
attribute with:

And if  you’re using IE8 or earlier, you’re out of  luck—
wait a sec, this is Chapter 8! How could you still be using 
IE8 or earlier? Upgrade! But if  you need to know how to 
supply fallback content for your IE8 users, hang on, we’re 
getting to that.

I’m not seeing any video. I’ve 
triple checked the code and 
I have the video in the right 

directory. Any ideas? 

src="video/preroll.webm"

src="video/preroll.ogv" Give this a try to get you going, and we’re coming back to all this in a bit.

By the time you 
read this, these 
formats could 
be more widely 
supported across 
all browsers. So 
if your video’s 
working, great. 
Always check the 
Web to see the 
latest on this 
unfolding topic. 
And we’ll come 
back for more on 
this topic shortly.



you are here 4  353

not your father’s tv

At this point you’ve got a video up and playing on your page, but before we move on, 
let’s step back and look at that video element we used in our markup:

How does the video element work?

<video controls  

       autoplay 

       src="video/preroll.mp4" 

       width="480" height="360"

       poster="images/prerollposter.jpg"  

       id="video">

</video>

Good Video Etiquette: 
The autoplay property
While autoplay may be the best thing 
for sites like YouTube and Vimeo (or 
WebvilleTV for that matter), think twice 
before setting it in your <video> tag. 
Often, users want to participate in the 
decision of whether or not video is 
played when they load your page.

Another handy tip from the HTML5 
Guide from the City of Webville.

If present, the controls attribute causes 
the player to supply controls for controlling 
the video and audio playback.

The autoplay attribute causes the 
video to start playback upon page load.

The source location of the video.
The width and height of 
the video in the page.

A poster image to show when the 
movie is not playing.

An id for the video element so 
that we can access it later from 
JavaScript.



354  Chapter 8

overview of video attributes

Closely inspecting the video attributes...

The src attribute is just like the <img> element’s src—it is a URL that tells the video element where to find the source file. In this case, the source is video/preroll.mp4. (If  you downloaded the code for this chapter, you’ll find this video and two others in the video directory).

src

The width and height attributes set the width and height of  the 
video display area (also known as the “viewport”). If  you specify 
a poster, the poster image will be scaled to the width and height 
you specify. The video will also be scaled, but will maintain its 
aspect ratio (e.g., 4:3 or 16:9) so if  there’s extra room on the 
sides, or the top and bottom, the video will be letter-boxed or 
pillar-boxed to fit into the display area size. You should try to 
match the native dimensions of  the video if  you want the best 
performance (so the browser doesn’t have to scale in real time).

width, height

Pillar-boxing Letter-boxing

The controls attribute is a 

boolean attribute. It’s either 

there or it’s not. If  it is there, 

then the browser will add its 

built-in controls to the video 

display. This varies by browser, 

so check out each browser to 

see what they look like. Here’s 

what they look like in Safari.

controls

The autoplay boolean attribute tells the 
browser to start playing the video as soon 
as it has enough data. For the videos we’re 
demoing with, you’ll probably see them 
start to play almost immediately.

autoplay

The boolean attribute preload is typically 
used for fine-grained control over how 
video loads for optimization purposes. 
Most of  the time, the browser chooses 
how much video to load, based on 
things like whether autoplay is set and 
the user’s bandwidth. You can override 
this by setting preload to none (none of  
the video is downloaded until the user 

“plays”), metadata (the video metadata is 
downloaded, but no video content), and 
auto to let the browser make the decision.

preload

The browser will typically display one frame 
of  the video as a “poster” image to represent 
the video. If  you remove the autoplay 
attribute you’ll see this image displayed 
before you click play. It’s up to the browser to 
pick which frame to show; often, the browser 
will just show the first frame of  the video... 
which is often black. If  you want to show a 
specific image, then it’s up to you to create an 
image to display, and specify it by using the 
poster attribute.

poster

Another boolean attribute, loop automatically 
restarts the video after it finishes playing.

loop

src is what video 
file is used here.

width

height

The video player

Let’s look more closely at some of  the more important 
video attributes:



you are here 4  355

not your father’s tv

The controls look 
different on every browser; 

at least with solutions like 
Flash I had consistent 

looking controls.

Yes, the controls in each 
browser are different with 
HTML video.

The look and feel of  your controls is 
dictated by those who implement the 
browsers. They do tend to look different in 
different browsers and operating systems. 
In some cases, for instance, on a tablet, they 
have to look and behave differently because 
the device just works differently (and it’s 
a good thing that’s already taken care of  
for you). That said, we understand; across, 
say, desktop browsers, it would be nice to 
have consistent controls, but that isn’t a 
formal part of  the HTML5 spec, and in 
some cases, a method that works on one 
OS might clash with another operating 
system’s UI guidelines.  So, just know that 
the controls may differ, and if  you really 
feel motivated, you can implement custom 
controls for your apps.

We’ll do this later...



356  Chapter 8

video format overview

We wish everything was as neat and tidy as the video 
element and its attributes, but as it turns out, video 
formats are a bit of  a mess on the Web. What’s a video 
format? Think about it this way: a video file contains 
two parts, a video part and an audio part, and each part 
is encoded (to reduce size and to allow it to be played 
back more efficiently) using a specific encoding type. 
That encoding, for the most part, is what no one can 
agree on—some browser makers are enamored with 
H.264 encodings, others really like VP8, and yet others 
like the open source alternative, Theora. And to make 
all this even more complicated, the file that holds the video 
and audio encoding (which is known as a container) has 
its own format with its own name. So we’re really talking 
buzzword soup here.

Anyway, while it might be a big, happy world if  all 
browser makers agreed on a single format to use across 
the Web, well, that just doesn’t seem to be in the cards 
for a number of  technical, political, and philosophical 
reasons. But rather than open that debate here, we’re 
just going to make sure you’re reasonably educated on 
the topic so you can make your own decisions about 
how to support your audience.

Let’s take a look at the popular encodings out there; 
right now there are three contenders trying to rule the 
(Web) world...

What you need to know about 
video formats

The HTML5 specification allows for any video format. 
It is the browser implementation that determines what 
formats are actually supported.

Your mileage may vary by the 
time you read this book, as 
favored encodings tend to 
change over time.

WebM Container

Vp8 Video 
Encoding

Vorbis Audio 
Encoding

MP4 Container

H.264 Video 
Encoding

AAC Audio 
Encoding

Ogg Container

Theora Video 
Encoding

Vorbis Audio 
Encoding

Three different video 
formats in use across 
the major browsers.

Each format consists of a 
container type (like WebM, 
MP4 and Ogg) and a video 
and audio encoding (like VP8 
and Vorbis).

This is a 
container...

...that 
contains a 
video and 
an audio 
encoding 
of the 
video data.



you are here 4  357

not your father’s tv

VP8, the contender, 
backed by Google, 
supported by others 
and coming on strong...

MP4 container with 
H.264 Video and AAC Audio

H.264 is licensed by the MPEG-LA 
group.

There is more than one kind of  
H.264; each is known as a “profile.”

 MP4/H.264 is supported by Safari 
and IE9+. You may find support in 
some versions of  Chrome.

WebM was designed by Google to 
work with VP8 encoded videos. 

WebM/VP8 is supported by Firefox, 
Chrome and Opera.

You’ll find WebM formatted videos 
with the .webm extension.

Theora is an open source codec.

Video encoded with Theora is 
usually contained in an Ogg file, 
with the .ogv file extension.

Ogg/Theora is supported by 
Firefox, Chrome and Opera.

H.264 the 
industry darling, 
but not the 
reigning champ...

Theora. The open 
source alternative.

The reality is, if  you’re going to be serving content to a wide spectrum of  users 
you’re going to have to supply more than one format. On the other hand, if  all 
you care about is, say, the Apple iPad, you may be able to get away with just one. 
Today we have three main contenders—let’s have a look at them:

The contenders

Ogg container with 
Theora Video and Vorbis Audio

WebM container with 
VP8 Video and Vorbis Audio



358  Chapter 8

managing video formats

How to juggle all those formats...
So we know it’s a messy world with respect to video format, but what to do? Depending 
on your audience you may decide to provide just one format of  your video, or several. In 
either case, you can use one <source> element (not to be confused with the src attribute) 
per format inside a <video> element, to provide a set of  videos, each with its own format, 
and let the browser pick the first one it supports. Like this:

<video src="video/preroll.mp4" id="video"

       poster="video/prerollposter.jpg" controls 

       width="480" height="360">

    <source src="video/preroll.mp4">

    <source src="video/preroll.webm">

    <source src="video/preroll.ogv">

    <p>Sorry, your browser doesn’t support the video element</p>

</video>

 � The container is the file format that’s used to package up the video, audio 
and metadata information. Common container formats include: MP4, 
WebM, Ogg and Flash Video. 

 � The codec is the software used to encode and decode a specific encoding 
of video or audio. Popular web codecs include: H.264, VP8, Theora, AAC, 
and Vorbis.

 � The browser decides what video it can decode and not all browser makers 
agree, so if you want to support everyone, you need multiple encodings.

This is what the 
browser shows if it 
doesn’t support video.

Notice we’re removing the src 
attribute from the <video> tag...

... and adding three source tags each with their own src attribute, each with a version of the video in a different format.

The browser starts at the top and 

work its way down until it finds a 

format it can play.

For each source the browser loads the 
metadata of the video file to see if it 
can play it (which can be a lengthy process, 
although we can make it easier on the 
browser... see the next page).



you are here 4  359

not your father’s tv

Telling the browser the location of  your source files gives it a selection of  
different versions to choose from, however the browser has to do some 
detective work before it can truly determine if  a file is playable. You can help 
your browser even more by giving it more information about the MIME type 
and (optionally) codecs of  your video files:

<source src="video/preroll.ogv" type='video/ogg; codecs="theora, vorbis"'>

If  and when you do your own video encoding, you’ll need to know more 
about the various options for the type parameters to use in your source 
element. You can get a lot more information on type parameters at 
http://wiki.whatwg.org/wiki/Video_type_parameters.

This is the MIME type 
of the video file. It 
specifies the container 
format.

The file you use in the src is actually 
a container for the actual video 
(and audio and some metadata).

The codecs parameter specifies which codecs were used for 
encoding the video and audio to create the encoded video file. 

If you don’t know the codecs parameters, then 
you can leave them off and just use the MIME 
type. It will be a little less efficient, but most 
of the time, that's okay.

Type is an optional attribute that is a hint to the browser to help it figure out if it can play this kind of file. 

The video codec.

The audio codec.

How to be even more specific with 
your video formats

We can update our <source> elements to include the type information for all 
three types of  video we have, like this:

<video id="video" poster="video/prerollposter.jpg" controls width="480" height="360"> 

    <source src="video/preroll.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

    <source src="video/preroll.webm" type='video/webm; codecs="vp8, vorbis"'>

    <source src="video/preroll.ogv" type='video/ogg; codecs="theora, vorbis"'>

    <p>Sorry, your browser doesn't support the video element</p>

</video>

The codecs for mp4 are more complicated than the 
other two because h.264 supports various “profiles,” 
different encodings for different uses (like high 
bandwidth vs. low bandwidth). So, to get those right, 
you’ll need to know more details about how your 
video was encoded.

Notice the double quotes on the codecs 
parameter. This means we need to use 
single quotes around the type attribute. 



360  Chapter 8

questions about video encoding and playback

Q: Is there any hope of getting to one 
container format or codec type in the 
next few years? Isn’t this why we have 
standards?

A: There probably won’t be one encoding 
to rule them all anytime soon—as we said 
earlier, this topic intersects with a whole host 
of issues including companies wanting to 
control their own destiny in the video space to 
a complex set of intellectual property issues. 
The HTML5 standards committee recognized 
this and decided not to specify the video 
format in the HTML5 specification. So, while 
in principle HTML5 supports (or is at least 
agnostic to) all of these formats, it is really up 
to the browser makers to decide what they do 
and don't support.  
 
Keep an eye on this topic if video is important 
to you; it will surely be an interesting one to 
watch over the next few years as this is all 
sorted out. And, as always, keep in mind what 
your audience needs and make sure you’re 
doing what you can to support them.

Q: If I want to encode my own video, 
where do I start?

A: There are a variety of video capture 
and encoding programs out there, and which 
one you choose is really going to depend 
on what kind of video you’re capturing and 
how you want to use the end result. Entire 
books have been written on video encoding, 
so be prepared to enter a world of all new 
acronyms and technology. You can start  

 
simple with programs like iMovie or Adobe 
Premiere Elements, which include the ability 
to encode your video for the Web. If you’re 
getting into serious video work with Final 
Cut Pro or Adobe Premiere, these software 
programs include their own production tools.  
And, finally, if you are delivering your videos 
from a Content Delivery Network (CDN), 
many CDN companies also offer encoding 
services. So you’ve got a wide variety of 
choices depending on your needs.

Q: Can I play my video back 
fullscreen? I am surprised there isn't a 
property for this in the API.

A: That functionality hasn’t yet been 
standardized, although you’ll find ways to do 
it with some of the browsers if you search 
the Web. Some of the browsers supply a 
fullscreen control (for instance, on tablets) 
that give the video element this capability. 
Also note that once you’ve got a way to go 
fullscreen, what you can do with the video, 
other than basic playback, may be limited 
for security reasons (just as it is with plug-in 
video solutions today).

Q: What about the volume of my 
video? Can I use the API to control the 
volume level?

A: You sure can.  The volume property can 
be set to an floating point value between 0.0 
(sound off) to 1.0 (sound the loudest). Just 
use your video object to set this at any time:
    video.volume = 0.9; 



you are here 4  361

not your father’s tv

YOUR NExT 
MISSION:  

vIDEO RECO
NNaISSaNCE

GO OUT aND
 DETERMINE

 *THIS TEx
T 

WILL BE CU
T* THE CUR

RENT LEvEL
 OF SUPPOR

T FOR vIDE
O IN EaCH 

BROWSER 

BELOW (HIN
T, HERE aR

E a FEW SI
TES THaT k

EEP UP WIT
H SUCH THI

NGS: 

HTTP://EN.
WIkIPEDIa.

ORG/WIkI/H
TML5_vIDEO

, *REDaCT 
a HTTP://*

******* 

HTTP://CaN
IUSE.COM/#

SEaRCH=vID
EO). aSSUM

E THE LaTE
ST vERSION

 OF THE 

BROWSER. F
OR EaCH BR

OWSER/FEaT
URE PUT a 

CHECkMaRk 
IF IT IS S

UPPORTED. 

UPON YOUR 
RETURN, RE

PORT BaCk 
FOR YOUR N

ExT aSSIGN
MENT!

video

Sa
fa
ri

Ch
ro
me

Fi
re
fo
x

Mo
bi
le
 W
eb
ki
t

Op
er
a

IE
9+

IE
8

IE
7 
or
 <

H.264

WebM

Ogg 

Theora

Br
ow
se
r

iOS and Android devices (among others)



362  Chapter 8

supporting flash video

I think Flash video is still 
important and I want to 
make sure I have a fallback 
if my users’ browsers don’t 

support HTML5 video.

No problem.

There are techniques for falling back to another 
video player if  your preferred one (whether that 
be HTML5 or Flash or another) isn’t supported.

Below you’ll find an example of  how to insert 
your Flash video as a fallback for HTML5 video, 
assuming the browser doesn’t know how to play 
HTML5 video. Obviously this is an area that is 
changing fast, so please take a look on the Web 
(which is updated a lot more often than a book) 
to make sure you’re using the latest and greatest 
techniques. You’ll also find ways to make 
HTML5 the fallback rather than Flash if  you 
prefer to give Flash video priority.

<video poster="video.jpg" controls> 

        <source src="video.mp4">

        <source src="video.webm">

        <source src="video.ogv">

        <object>...</object>

</video>

Insert your <object> element inside the 
<video> element. If the browser doesn't 
know about the <video> element, the 
<object> will be used. 



you are here 4  363

not your father’s tv

I was told there would be APIs?

play
pause
progress
error
timeupdate
ended

abort
waiting
loadeddata
loadedmetadata
volumechange

As you can see, you can do a lot using markup and the 
<video> element. But the <video> element also exposes 
a rich API that you can use to implement all kinds of  
interesting video behaviors and experiences. Here’s a quick 
summary of  some of  the methods, properties and events 
of  the <video> element you might be interested in (and 
check the spec for a comprehensive list):

Use these Properties

Call these Methods

Catch these Events

play
pause
load
canPlayType

videoWidth
videoHeight
currentTime
duration
ended
error

loop
muted
paused
readyState
seeking
volume

plays your video

pauses your video

loads your video

helps you 
determine which 
video types 
you can play, 
programmatically

These are all properties of 
the <video> element object. 
Some you can set (like loop and 
muted); some are read only 
(like currentTime and error).

And these are all events you 
can handle if you want by 
adding event handlers that are 
called when the event you’re 
listening for occurs. 



364  Chapter 8

how a playlist works

A little content “programming” on Webville TV
So far we’ve got one single video up and running on Webville TV. What we’d really 
like is a programming schedule that serves up a playlist of  videos. Let’s say we want 
to do this on Webville TV:

1

2

3

Show a little preshow to the audience, 
you know, the Coke and popcorn ads, 
the audience etiquette, and so on...

Show our first feature, titled Are you 
Popular? Trust us, you'll enjoy it.

And then show our featured 
presentation, Destination Earth, 
presented in full technicolor. Created 
by the American Petroleum Institute, 
what on earth could be their 
message? Watch and find out.

Now you might be tempted to look at the <video> markup specs to see how you specify a playlist, 
but for this you're going to need code because the <video> element allows you to specify only one 
video.  If you were on a desert island and had to implement a playlist with only the browser, the 
<video> element, the src property, the load and play methods, and the ended event, how would 
you do it (you can use any JavaScript data types you like):

No peeking at 
the answer!!

Just a hint: the ended event happens when a video 
reaches the end and stops playing. Like any event, you 
can have a handler called when this happens.



you are here 4  365

not your father’s tv

Ended 
Event

Playlist Array
"p
re
ro
ll
.m
p4
"

"a
re
yo
up
op
ul
ar
.m
p4
"

"d
es
ti
na
ti
on
ea
rt
h.
mp
4"

Now you might be tempted to look at the <video> markup specs to see how 
you specify a playlist, but for this you’re going to need code because the <video> 
element allows you to specify only one video.  If you were on a desert island and 
had to implement a playlist with only the browser, the <video> element, the src 
property, the load and play methods, and the ended event, how would you do it 
(you can use any JavaScript data types you like)?  Here’s our solution:

Increment position by one

Set video to next playlist position

Play the next video

Ended Event Handler Pseudo-code

Create array of  playlist videos

Get video from DOM

Set event handler on video for 
“ended” event

Create variable position = 0

Set video source to playlist position 0

Play the video

Every time a video 
finishes playing 
the ended event 
occurs...

When the page loads we set up 
a playlist array, start the first 
video playing, and set up an event 
handler for when it stops.

... which calls the 
ended event handler.

When we get to the 
end of our playlist 
we can either stop, or 
loop around to the 
first video.

Playlist Pseudo-code

Here’s how we’re going to store 
the playlist, as an array. Each 
item is a video to play.

Here’s our handler to deal with 
video ending.



366  Chapter 8

implementing a playlist

Implementing Webville TV’s playlist

<script src="webvilletv.js"></script>

Now we’re going to use JavaScript and the video API to implement the Webville TV 
playlist. Let’s start by adding a link to a JavaScript file in webvilletv.html; just 
add this into the <head> element:

Now, create a new file webvilletv.js, and let’s define a few global variables 
and a function that will be called when the page is fully loaded:

var position = 0;

var playlist;

var video;

window.onload = function() {

    playlist = ["video/preroll.mp4",

                "video/areyoupopular.mp4",

                "video/destinationearth.mp4"];

    video = document.getElementById("video");

    video.addEventListener("ended", nextvideo, false);

    video.src = playlist[position];

    video.load();

    video.play();

}

First let’s define a variable to keep track of which video 
we’re playing; we’ll name this position.

And we need a variable to hold the video playlist array.

We’ll set up our playlist with three videos.

And also a variable to hold a reference to the video element.

And add a handler for the video ended event. Yes, this looks different than 
what we’re used to—hold on one sec, we’ll talk about this on the next page.

Now let’s set the src for the first video.

And load the video and play it!

<video controls autoplay src="video/preroll.mp4" width="480" height="360"

       poster="images/prerollposter.jpg" id="video">

</video>

And delete this from your existing <video> element:

We’re removing the autoplay and src 
attributes from the <video> tag.

Grab the video element.

Also remove any <source> elements you 
might have been experimenting with.



you are here 4  367

not your father’s tv

Now we just need to write the handler for the video’s ended event. This handler is 
going to be called whenever the video player hits the end of  the current video file. 
Here’s how we write the nextVideo function (add it to webvilletv.js):

How to write the “end of video” handler

function nextvideo() {

    position++;

    if (position >= playlist.length) {

        position = 0;

    }

    video.src = playlist[position];

    video.load();

    video.play();

}

First, increment the position 
in the playlist array.

And if we hit the end of the 
list, we’ll just loop back around by 
setting the position to zero again.

Now let’s set the source of 
the player to the next video.

And finally, let’s load and start 
the new video playing.

So what’s up with that event handler code?
In the past we’ve always just assigned a handler function to be called when an event 
occurs to a property (like onload or onclick) like this:

         video.onended = nextvideo;

However, this time we’re going to do things a little differently. Why? Because at the time 
we’re writing this, support for all the event properties on the video object are a little 
spotty. That’s okay; that deficiency is also going to allow us to show you another way of  
registering for events: addEventListener, which is a general method supported by 
many objects for registering for various events. Here’s how it works:

video.addEventListener("ended", nextvideo, false);

You can use the addEventListener method 
to add an event handler.

This is the event we’re listening for. 
Notice we don’t put an “on” before the 
event name like we do with handlers that 
we set with properties (like onload).

This is the function we’re going 
to call when the event happens.

The third parameter controls some advanced methods 
of getting events if it is set to true. Unless you’re 
writing advanced code you’ll always set this to false.

Other than the fact the addEventListener method is a little more complicated 
than just adding a handler by setting the property to a function, it works pretty much 
the same way.  So let’s get back to our code!

This is the object 
on which we’re 
listening for the 
event.

Note the handler won’t 
be called if the user 
pauses the video or if 
the video is looping (which 
you can do by setting the 
loop property).



368  Chapter 8

testing the playlist

Good question.

When we were using multiple source tags we could count 
on the browser to sort through one or more video formats 
and decide if  it could play any of  them. Now that we’re 
using code we’re just giving the video element a single 
option. So how do we test to see what the browser supports 
to make sure we supply the best format?

We do that using the canPlayType method of  the video 
object. canPlayType takes a video format and returns a 
string that represents how confident the browser is that it 
can play that type of  video. There are three confidence 
levels: probably, maybe or no confidence. Let’s take a closer 
look and then rework the playlist code to use this.

It works! But how do we 
decide which video format 

to play when we’re using code to 
load the video source?

Are you scratching your head saying “probably? maybe? 
why doesn’t it return true or false?” Us too, but we’ll go 
through what this means in a sec...

Can you believe we’re ready for a test drive? All we 
did was use the API to set up a video to play, then we 
made sure we had an event listener ready to handle the 
situation when the video ends, which it does by starting 
the next video in the playlist. Make sure you’ve got the 
changes made to your HTML file, type in your new 
JavaScript code and give it a test drive.

Another test drive...

Here’s what we see, feel free to scrub 

ahead in the video to see
 the video 

change from one to another without 

watching the whole show.



you are here 4  369

not your father’s tv

function getFormatExtension() {

    if (video.canPlayType("video/mp4") != "") {

        return ".mp4";

    } else if (video.canPlayType("video/webm") != "") {

        return ".webm";

    } else if (video.canPlayType("video/ogg") != "") {

        return ".ogv";

    }

}

video.canPlayType("video/ogg")

video.canPlayType('video/ogg; codecs="theora, vorbis"')

The video object provides a method canPlayType that can determine how likely 
you are to be able to play a video format. The canPlayType method takes the same 
format description you used with the <source> tag and returns one of  three values: 
the empty string, “maybe” or “probably”.  Here’s how you call canPlayType:

Notice that the browser is only confident beyond “maybe” if  you include the codec 
parameter in the type. Also notice that there’s no “I’m absolutely sure” return value. 
Even if  the browser knows it can play a type of  video, there’s still no guarantee it can 
play the actual video; for instance, if  the bitrate of  the video is too high, then the 
browser won’t be able to decode it.

How the canPlayType method works

We’re going to use canPlayType to determine which video format to use for Webville TV 
videos—you already know that we have three versions of  each file: MP4, WebM and Ogg, and 
depending on which browser you’re using, some will work and some won’t.  Let’s create a new 
function that returns the file extension (“.mp4”, “.webm” or “.ogv”) that is appropriate for 
your browser. We’re going to use only the MIME types ("video/mp4", "video/webm" and 
"video/ogg") and not the codecs, so the only possible returns values are “maybe” and the 
empty string. Here’s the code: We know we’ll only get “maybe” and 

empty string as answers, so we’ll just 
make sure our matching type doesn’t 
result in an empty string.

We try each of the types, and 
return the corresponding file 
extension if the browser says, 

“Maybe I can support that.”
For most use cases, if you don’t know the codecs, it’s good enough to be “maybe” confident.

Putting canPlayType to use

Empty string if the 
browser knows it can’t 
play the video.

The string “maybe” if the 
browser thinks it can 
possibly play the video.

The string “probably” if 
the browser is confident 
it can play the video.

If we pass just the short form of a format then 
we can only get “” or “maybe” as a result.

But if we pass the specific type with a codec, we might 
then get “”, “maybe” or “probably” as an answer.

Bitrate is the number of bits 
the browser has to process per 
unit of time to decode the 
video and display it correctly.



370  Chapter 8

dealing with formats again

window.onload = function() {

    playlist = ["video/preroll",    

                "video/areyoupopular",    

                "video/destinationearth"];

    video = document.getElementById("video");

    video.addEventListener("ended", nextvideo,false);

    video.src = playlist[position] + getFormatExtension();

    video.load();

    video.play();

}

Now, we need to make some changes to the window.onload and 
nextVideo functions to use getFormatExtension. First, we’ll remove 
the file extensions from the filenames in the playlist (because we’re going to 
figure those out using getFormatExtension instead), and then we’ll call 
getFormatExtension where we set the video.src property:

Remove the file extensions. 
We’re figuring these out 
programmatically now.

And concatenate the result 
of getFormatExtension to the 
filename for the new video src.

And test drive...
Add the canPlayType function and make the changes above, then reload 
your webvilletv.html file. Work? Now your code is figuring out the 
best format. If  you want to know which video the browser chose, try 
adding an alert to the window.onload and nextVideo functions; add it 
at the bottom of  each function, after video.play():

Integrating the getFormatExtension function

function nextvideo() {

    position++;

    if (position >= playlist.length) {

        position = 0;

    }

    video.src = playlist[position] + getFormatExtension();

    video.load();

    video.play();

}

And do the same thing in nextVideo:

Same thing here; we 
concatenate the result of 
getFormatExtension to the 
video src.

alert("Playing " + video.currentSrc);

Which file did your browser play?



you are here 4  371

not your father’s tv

        You may need to install 

Quicktime to play mp4 

video in Safari.

Quicktime often comes 

installed by default, but 

if it’s not, you can download it from 

http://www.apple.com/quicktime/download/.

        Google Chrome has extra security restrictions.
These security restrictions will prevent you from doing some video+canvas operations if you loaded the web page as a file (i.e., your URL will show file:// rather than http://), like we’ll be doing in the rest of this chapter. If you try, the app won't work and you'll get no indication of why.So, for this chapter, we recommend either using a different browser, or running your own server and running the examples from http://localhost. 

        Make sure your server is serving video files with the correct 

MIME type.

Whether you're using your own local server, or running an app using video 

from a hosted server, you need to make sure that the videos are being served 

correctly. If they're not, they might not work properly. 

If you're on a Mac or Linux using a local server, you're most likely using Apache. You can 

modify the httpd.conf file (if you have root access) or create a .htaccess file in the directory 

where your video files are stored, and add the following lines:

addType video/ogg  .ogv

addType video/mp4  .mp4

addType video/webm  .webm

This tells the server how to serve files with those file extensions.

You can install Apache on Windows, and do the same thing. For IIS servers, we recommend 

looking in the Microsoft online documentation for "Configuring MIME types in IIS."

Q: If I’m programmatically setting the source of my video, 
and canPlayType says its a “maybe”, but yet the playback fails, 
how can I deal with that?

A: There are a couple of ways to approach this. One is to catch 
the error and give the video object another source (we’ll talk about 
catching errors at the end of this chapter). The other is to use the 

 
DOM to write multiple source tags into the video object at once (just 
as if you’d typed them into your markup). That way your video object 
has several choices and you don’t have to write more complex error 
handling code). We’re not going to do that in this chapter, but it’s a 
way of giving your video object multiple choices and doing it through 
code, not markup, if you have advanced needs. 



372  Chapter 8

our message to you

I keep tellin’ you, it’s not just about 
JavaScript... you’ve gotta see the big 
picture. Building web apps is about markup, 
CSS, and JavaScript and its APIs. 

At some point we have to treat you like a real developer.

In this book we’ve (hopefully) helped you every step of  the way—we’ve been 
there to catch you before you fall and to make sure that, in your code, your i’s 
were dotted and your t’s were crossed. But, part of  being a real developer is 
jumping in, reading other peoples’ code, making out the forest despite all the 
trees, and working through the complexity of  how it all fits together.

Over the rest of  this chapter we’re going to start to let you do that. Up next 
we’ve got an example that is the closet thing to a real web app we’ve seen so 
far, and its got lots of  pieces, lots of  API use and code that handles lots of  real 
details. Now, we can’t step you through every single piece, explaining every 
nuance like we usually do (or this book will be 1200 pages); nor do we want 
to, because you also need to acquire the skill of  putting all the pieces together, 
without us.

Don’t worry, we’re still here and we’re going to tell you what everything does, but 
we want you to start to learn how to take code, read it, figure it out, and then 
augment it and alter it to do what you want it to do. So, over the next three chapters, 
we want you to dig into these examples, study them, and get the code in your 
head. Really... you’re ready!



you are here 4  373

not your father’s tv

This just in... we just got the contract to build the Starring You Video 
software for their new video booth. What on earth is that? Oh, just the latest 
HTML5-enabled video messaging booth—a customer enters an enclosed video 
booth and shoots their own video message.  They can then enhance their video 
using real movie effects; there’s an old-time western sepia filter, a black & white 
film noir filter, and even an otherwordly sci-fi alien filter. Then the customer 
can send their message to a friend. We went ahead and commited us all to 
building the video interface and effects processing system for it.

There’s a problem though. The video booths won’t be available for another  
six weeks, and when they arrive the code has to be done. So, in the meantime, 
we’re going to get a partly functional demo unit and a few test video files, and 
we’ll write all our code using those.  Then when we’re done, the Starring You 
folks can just point the code to the just-captured real video.  And of  course, 
remember that all this has to be done using HTML5. 

So, we hope you’re in, because we signed the contract!

We need your help!

Step in, cut a video, give it a style, 
and send it to your friends!



374  Chapter 8

checking out the starring you video booth

Below you’ll see our demo unit complete with a user interface. What we’ve got is a video screen 
where users will see their video played back. They’ll be able to apply a filter like “old-time 
western” or “sci-fi,” see how it looks, and when they’re happy, send it off  to a friend. We don’t have 
record capability yet, so we’ve got the test videos to play with. Our first job is going to be to wire 
everything up so the buttons work, and then write the video filters. Before we get into all that, check 
out the interface:

Step inside the booth, let’s take a look...

Choose a test video. Our demo 
unit has two to choose from.The play, pause, loop 

and mute controls.
Apply your favorite effect: old-time 
western (sepia), film noir (extra 
dark) or sci-fi (inverted video).

Here’s the interface of the demo unit. It’s got a video player 
right in the middle for viewing videos.



you are here 4  375

not your father’s tv

<!doctype html>
<html lang="en">
<head>
   <title>Starring YOU video Booth</title>
   <meta charset="utf-8">
   <link rel="stylesheet" href="videobooth.css">
   <script src="videobooth.js"></script>
</head>
<body>
<div id="booth">
   <div id="console">
      <div id="videoDiv">
         <video id="video" width="720" height="480"></video>
      </div>
      <div id="dashboard">
         <div id="effects">
            <a class="effect" id="normal"></a>
            <a class="effect" id="western"></a>
            <a class="effect" id="noir"></a>
            <a class="effect" id="scifi"></a>
         </div>
         <div id="controls">
            <a class="control" id="play"></a>
            <a class="control" id="pause"></a>
            <a class="control" id="loop"></a>
            <a class="control" id="mute"></a>
         </div>
         <div id="videoSelection">
            <a class="videoSelection" id="video1"></a>
            <a class="videoSelection" id="video2"></a>
         </div>
   </div>
</div> 
</body>
</html>

Unpacking the Demo Unit
The demo unit just arrived via next day air and it’s time to unpack it. It looks like 
we’ve got a functioning unit with some simple HTML markup & JavaScript written 
so far. Let’s have a look at the HTML first (videobooth.html). By the way, sit 
back; we’ve got a few pages of  factory code to look through, and then we’ll get 
cracking on the real code.

HTML5, of course. And all the styling is 
done for us! Here’s 
the CSS file.

And here’s the JavaScript file, we’re going to 
need to write most of this. We’ll take an in-depth 
look, but it looks they’ve just written the code to 
control the buttons on the interface so far...

They’ve already got a video player 
installed...good, we’re going to need that.

Here are all the effects.

Here’s the main interface, we’ve got the console itself, which looks like it is divided into the video display and a dashboard, with three sets of buttons grouped into “effects”, “controls” and “videoSelection”.

And the player controls.

These are all just HTML 
anchors. We’ll see how we 
tie into these in a sec...

And the two demo videos 
to test with.



376  Chapter 8

looking at the existing code

So let’s crack open the JavaScript (videobooth.js). It looks like all the interface 
buttons work, they just don’t do anything interesting, yet. But it’s important that 
we understand how these are set up because the buttons are going to invoke the 
code we have to write (like, to play a video or to view a video with an effect filter).

Below you’ll find the function that is invoked when the page is loaded. For each 
set of  buttons (effects, controls, and the video selection), the code steps through 
the buttons and assigns click handlers to the anchor links. Let’s take a look:

And now the JavaScript...

Now let’s take a look at all the JavaScript code that shipped from the factory, 
including the code that sets up the buttons (which we just looked at in the HTML) 
and the code for each button handler (which, right now, just makes sure the right 
buttons are depressed). We’ll review it all before we start adding our own code.

window.onload = function() {
    var controlLinks = document.querySelectorall("a.control");
    for (var i = 0; i < controlLinks.length; i++) {
         controlLinks[i].onclick = handleControl;
    }

    var effectLinks = document.querySelectorall("a.effect");
    for (var i = 0; i < effectLinks.length; i++) {
        effectLinks[i].onclick = setEffect;
    }

    var videoLinks = document.querySelectorall("a.videoSelection");
    for (var i = 0; i < videoLinks.length; i++) {
        videoLinks[i].onclick = setvideo;
    }

    pushUnpushButtons("video1", []);
    pushUnpushButtons("normal", []);
}

Here’s the function that 
is invoked when the page is 
fully loaded.

Each for statement loops 
over the elements of one 
group of buttons.

The onclick handler for 
each button in the player 
controls is set to the 
handleControl handler.

And the handler for effects is set to setEffect.

And finally the handler 
for video selection is set 
to setVideo.

Once we’ve done all the ground work we use a helper function to visually depress the “video1” button, and the “normal” (no filter) button in the interface.

Inspecting the rest of the factory code

var elementarray = document.querySelectorall("selector");

You haven’t seen document.querySelectorAll before; it’s similar to document.
getElementsByTagName except that you’re selecting elements that match a CSS selector. 
The method returns an array of  element objects that match the CSS selector argument.

FACTORY CODE



you are here 4  377

not your father’s tv

function handleControl(e) {
    var id = e.target.getattribute("id");

    if (id == "play") {
        pushUnpushButtons("play", ["pause"]);

    } else if (id == "pause") {
        pushUnpushButtons("pause", ["play"]);

    } else if (id == "loop") {
        if (isButtonPushed("loop")) {
            pushUnpushButtons("", ["loop"]);
        } else {
            pushUnpushButtons("loop", []);
        }
    } else if (id == "mute") {
        if (isButtonPushed("mute")) {
            pushUnpushButtons("", ["mute"]);
        } else {
            pushUnpushButtons("mute", []);
        }
    }
}

OK, so far the JavaScript code takes care of  setting up all the buttons so that if  
they are clicked on, the appropriate handler is called. Next, let’s take a look at the 
actual handlers, starting with the handler for the player buttons (play, pause, loop 
and mute), to see what they are doing:

Looking at the button handlers

The first thing we do in this handler is see who called us by retrieving the id of the element that invoked the handler.

Once we know the id, we know if the element was play, pause, loop or mute.

Depending on which button it was, we 
alter the interface to reflect the 
button that was pushed. For instance if 
pause was pushed then play shouldn’t be.

We’re using a helper function to 
make sure the onscreen button 
states are taken care of, it’s called 
pushUnpushButtons, and it takes a 
pushed button along with an array 
of unpushed buttons and updates the 
interface to reflect that state.

Various buttons have different 
semantics. For instance play and pause 
are like true radio buttons (pushing one 
in pops the other one out), while mute 
and loop are like toggle buttons. 

Now that’s great and all, but where does our code come in? Let’s think through this: when 
a button, like play, is pushed, not only are we going to update the interface (which the 
code already does), we’re also going to add some code that actually does something, like 
make the video start playing.  Let’s go ahead and look at the other two handlers (for 
setting the video effects and for setting the test video), and it should be pretty obvious (if  
it isn’t already) where our code is going to go...

All this code so far is cosmetic, it just changes the 
look of the buttons from pressed to depressed. 
There is no code to do anything real, like play a 
video. That’s what we have to write.

FACTORY CODE



378  Chapter 8

setting up button handlers

function setvideo(e) {
    var id = e.target.getattribute("id");
    if (id == "video1") {
        pushUnpushButtons("video1", ["video2"]);
    } else if (id == "video2") {
        pushUnpushButtons("video2", ["video1"]);
    }

}

function setEffect(e) {
    var id = e.target.getattribute("id");

    if (id == "normal") {
        pushUnpushButtons("normal", ["western", "noir", "scifi"]);

    } else if (id == "western") {
        pushUnpushButtons("western", ["normal", "noir", "scifi"]);

    } else if (id == "noir") {
        pushUnpushButtons("noir", ["normal", "western", "scifi"]);

    } else if (id == "scifi") {
        pushUnpushButtons("scifi", ["normal", "western", "noir"]);

    }
}

Let’s look at the other two handlers. The setEffect handler handles your 
choice of  effect, like no effect (normal), western, film noir or sci-fi. Likewise the 
setVideo handler handles your choice of  test video one or two. Here they are:

The setEffect and setVideo handlers

This works the same as the handleControl 
handler: we grab the id of the element that 
called us (the button that was clicked on) and 
then update the interface accordingly.

And here’s where our 
code is going to go.

We’ll be adding code to each case to handle implementing the appropriate special effect filter.

The same is true of setVideo; we see which button 
was pressed and update the interface.

We’ll also be adding code here to implement 
switching between the two test videos.

FACTORY CODE



you are here 4  379

not your father’s tv

And for the sake of  completeness (or if  you’re on a 11-hour flight to Fiji 
without Internet access and you really want to type all this in):

And here are the helper functions

function pushUnpushButtons(idToPush, idarrayToUnpush) {

    if (idToPush != "") {

        var anchor = document.getElementById(idToPush);

        var theClass = anchor.getattribute("class");

        if (!theClass.indexOf("selected") >= 0) {

            theClass = theClass + " selected";

            anchor.setattribute("class", theClass);

            var newImage = "url(images/" + idToPush + "pressed.png)";

            anchor.style.backgroundImage = newImage;

        }

    }

    for (var i = 0; i < idarrayToUnpush.length; i++) {

        anchor = document.getElementById(idarrayToUnpush[i]);

        theClass = anchor.getattribute("class");

        if (theClass.indexOf("selected") >= 0) {

            theClass = theClass.replace("selected", "");

            anchor.setattribute("class", theClass);

            anchor.style.backgroundImage = "";

        }

    }

}

function isButtonPushed(id) {

    var anchor = document.getElementById(id);

    var theClass = anchor.getattribute("class");

    return (theClass.indexOf("selected") >= 0);

}

And remember, if you 
don’t want to type 
it in, you can get all 
the code from http://
wickedlysmart.com/
hfhtml5.pushUnpushButtons takes care of button states. The arguments are the ids 

of a button to push in, and one or more buttons to unpush in an array.
First, check to make sure the id of 
the button to push is not empty.

Grab the anchor element using that id...
... and get the class attribute.

We “press” the button by adding the 
“selected” class to the anchor, and ...

... update the background image of the anchor element so it covers up that button with a “button pressed” image. So “pause” uses the “pausepressed.png” image.

To unpush buttons, we loop 
through the array of ids to 
unpush, grabbing each anchor...

... remove “selected” from the class...

... make sure the button is really pushed 
(if it is, it will have a “selected” class)...

... and remove the background image so we see the unpushed button.

isButtonPushed simply checks to see if a button 
is pushed. It takes the id of an anchor...

... grabs the anchor... 
... gets the class of that anchor... 

... and returns true if the anchor has the “selected” class.

FACTORY CODE



380  Chapter 8

an early test

We haven’t done much writing code, but we are reading and 
understanding code, and that can be just as good. So load the 
videobooth.html file into your browser and check out the 
buttons. Give them a good testing. For extra credit, add some 
alerts into the handler functions. Get a good feel for how this 
is working. When you come back, we’ll start writing some 
code to make the buttons work for real.

That new demo machine 
smell...test drive time!

Give all those buttons a try, notice some are 
like radio buttons, some are like toggle buttons.

Radio buttons, play and pause can’t 
be selected at the same time.

Loop and Mute are toggle buttons, they can 
be used independently of any other buttons.

All the player controls use 
the handleControl handler.

Mark the buttons below with whether they are like toggle 
buttons (independent) or like radio buttons (pushing one in 
pops the other ones out). Also annotate each button with its 
corresponding click handler. We’ve done a couple for you:

You’ll find the solution just 
a couple of pages on...



you are here 4  381

not your father’s tv

I think I missed something... 
how did you get from <div>s with 

anchor tags to having buttons in the 
interface?

That would be the power of CSS.

It’s a shame this book isn’t Head First HTML5 Programming with 
JavaScript & CSS, but then it would be 1,400 pages, wouldn’t it? 
Of  course, we could be talked into writing an advanced CSS 
book...

But seriously, this is the power of  markup for structure and CSS 
for presentation (and if  that is a new topic to you, check out Head 
First HTML with CSS & XHTML). What we’re doing isn’t that 
complex; here it is in a nutshell for the curious:

We set the background image of the console 
<div> to the booth console (no buttons).

We position the dashboard <div> 
relative to the console and then 
position the <div>s for each group of 
buttons relative to the dashboard.

Each button group <div> gets 
a background image for all 
the unpushed buttons.

Each “button” anchor is positioned 
within the <div> for the group, and 
given a width and height to match the 
button it corresponds to. When you click 
on a “button”, we give that anchor a 
background image of a pushed in button 
to cover up the unpushed button.

The <video> element 
is in a <div> which is 
positioned relative to the 
console. Then, the <video> 
element is absolute 
positioned so it sits in 
the middle of the console.

Check out the CSS in detail if you want: videobooth.css.



382  Chapter 8

exercise solution

All the player controls use 
the handleControl handler.

Radio buttons, play 
and pause can’t be 
selected at the 
same time.

Loop and Mute 
are toggle buttons, 
they can be used 
independently of 
any other buttons.

All these are radio buttons; 
we allow just one effect to be 
applied to video at a time.

The video selectors are 
radio buttons too, we 
can be watching only one 
video at a time.

All effect buttons use the 
setEffect handler.

All the video selection 
buttons use the 
setVideo handler.

Mark the buttons below with whether they are like toggle 
buttons (independent) or like radio buttons (pushing one in 
pops the other ones out). Also annotate each button with its 
corresponding click handler. Here’s our solution:



you are here 4  383

not your father’s tv

var videos = {video1: "video/demovideo1", video2: "video/demovideo2"};

window.onload = function() {

    var video = document.getElementById("video");

    video.src = videos.video1 + getFormatExtension();

    video.load();

    var controlLinks = document.querySelectorall("a.control");

    for (var i = 0; i < controlLinks.length; i++) {

        controlLinks[i].onclick = handleControl;

    }

    var effectLinks = document.querySelectorall("a.effect");

    for (var i = 0; i < effectLinks.length; i++) {

        effectLinks[i].onclick = setEffect;

    }

    var videoLinks = document.querySelectorall("a.videoSelection");

    for (var i = 0; i < videoLinks.length; i++) {

        videoLinks[i].onclick = setvideo;

    }

    pushUnpushButtons("video1", []);

    pushUnpushButtons("normal", []);

}

Getting our demo videos ready...
Before we implement the button controls, we need video to test them with, and 
as you can see from the buttons, Starring You Video has sent us two demo 
videos. Let’s go ahead and create an object to hold the two videos and then add 
some code for our onload handler to set up the source of  the video object (just 
like we did for Webville TV).

var video = document.getElementById("video");

Now before we get sloppy, remember the getFormatExtension function is 
in Webville TV, not this code! So open up  webvilletv.js and copy and 
paste the function into your video booth code. One other small thing: in the 
video booth code we aren’t keeping a global video object, so add this line to 
the top of  your getFormatExtension function to make up for that: Add this line to your 

getFormatExtension 
function at the top.

We'll create this object to 
hold the two demo videos. 
We'll come back and explain 
more about this shortly.

Here, we're getting the video 
element, and setting its source 
to the first video in the array 
with a playable extension.

Then we go ahead and load the 
video so if the user clicks play, 
it's ready to go.

READ THIS CAREFULLY!



384  Chapter 8

supporting the custom video controls

Implementing the video controls
Alright, time to get to those buttons!  Now, it’s important to point out that for 
this project, we’re going to implement our own video controls. That is, rather 
than use the built-in video controls, we’re going to control the experience 
ourselves—so when the user needs to play, pause or mute the video, or even 
to loop the playback, they’re going to use our custom buttons, not the built-in 
controls. It also means we’re going to do all this programmatically through the 
API. Now, we’re not going to go all the way, which would mean implementing 
our own video scrubber, or perhaps next and previous buttons, because those 
don’t make sense in this application, but we could if  we needed to. You’ll find that 
just by implementing our small control panel you’ll get the idea and be in 
perfect shape to take it further if  you want to.

So, let’s get started. How about if  we start with the play button and then move 
to the right (to pause and then to loop and then to mute) from there? So find 
the handleControl handler and add this code:

function handleControl(e) {
    var id = e.target.getattribute("id");
    var video = document.getElementById("video");

    if (id == "play") {
        pushUnpushButtons("play", ["pause"]);
        if (video.ended) {
            video.load();
        }
        video.play();
    } else if (id == "pause") {
        pushUnpushButtons("pause", ["play"]);

    } else if (id == "loop") {
        if (isButtonPushed("loop")) {
            pushUnpushButtons("", ["loop"]);
        } else {
            pushUnpushButtons("loop", []);
        }
    } else if (id == "mute") {
        if (isButtonPushed("mute")) {
            pushUnpushButtons("", ["mute"]);
        } else {
            pushUnpushButtons("mute", []);
        }
    }
}

We need a reference to the 
video object.

This should be pretty simple. If 
the user has pressed play, then 
call the play method on the 
video object.

Now we’re going to implement 
all these buttons.

But we’ll warn you, there’s one 
edge case here about to bite 
us, so let’s go ahead and take 
care of it: If we've played a 
video, and let that video play 
through to the end, then to 
start it playing again, we have 
to load it again first. We check 
to make sure the video ran 
through to the end (and wasn't 
just paused), because we only 
want to load again in that case. 
If it's paused, we can just play 
without loading.



you are here 4  385

not your father’s tv

Implementing the rest of the video controls
Let’s knock out the rest of  the controls—they’re so straightforward they’re 
almost going to write themselves:

function handleControl(e) {
    var id = e.target.getattribute("id");
    var video = document.getElementById("video");

    if (id == "play") {
        pushUnpushButtons("play", ["pause"]);
        video.load();
        video.play();
    } else if (id == "pause") {
        pushUnpushButtons("pause", ["play"]);
        video.pause();

    } else if (id == "loop") {
        if (isButtonPushed("loop")) {
            pushUnpushButtons("", ["loop"]);
        } else {
            pushUnpushButtons("loop", []);
        } 
        video.loop = !video.loop;

    } else if (id == "mute") {
        if (isButtonPushed("mute")) {
            pushUnpushButtons("", ["mute"]);
        } else {
            pushUnpushButtons("mute", []);
        }
        video.muted = !video.muted;

    }
}

For looping we’ve got a 
boolean property named loop 
in the video object. We just 
set it appropriately...

If the user pauses the video, 
then use the video object’s 
pause method.

And mute works the same way: 
we just flip the current value 
of the mute property when the 
button is pressed.

Make sure you’ve got all the code changes typed in. Load 
videobooth.html into your browser and give your control buttons 
a test. You should see video start playing, be able to pause it, mute it, 
or even put it in a loop. Of  course, you can’t select the other demo 
video yet or add an effect, but we’re getting there!

Another test drive!

...and to do that we’ll keep 
you on your toes by using the 
boolean “!” (not) operator, 
which just flips the boolean 
value for us.



386  Chapter 8

dealing with video ended event

Taking care of a loose end...
There’s a little loose end we need to take care of  to really make these buttons 
work like they should. Here’s the use case: let’s say you’re playing a video 
and you don’t have loop selected, and the video plays to completion and 
stops. As we have things implemented now, the play button will remain in 
the pressed position. Wouldn’t it be better if  it popped back up, ready to be 
pressed again?

Using events we can easily do this. Let’s start by adding a listener for the 
ended event. Add this code to the bottom of  your onload handler:

video.addEventListener("ended", endedHandler, false);

Now let’s write the handler, which will be called any time the video 
playback stops by coming to the end of  the video:

function endedHandler() {

    pushUnpushButtons("", ["play"]);

}

All we need to do 
is “unpush” the play 
button. That’s it!

Set a handler for the 
“ended” event, which is 
called when the video 
playback ends (but NOT 
when you pause!).

Our play button isn’t 
100% right yet...

Okay, make the changes, save the code and reload. Now start a video and let it play to its conclusion without 
the loop button pressed, and at the end you should see the play button pop back out on its own.

And another...

The play button should pop right back 
out after the video finishes playing.



you are here 4  387

not your father’s tv

function setvideo(e) {

    var id = e.target.getattribute("id");

    var video = document.getElementById("video");

    if (id == "video1") {

        pushUnpushButtons("video1", ["video2"]);

    } else if (id == "video2") {

        pushUnpushButtons("video2", ["video1"]);

    }

    video.src = videos[id] + getFormatExtension();

    video.load();

    video.play();

    pushUnpushButtons("play", ["pause"]);

}

Switching test videos
We already added an object to hold our two test videos, and we’ve even 
got two buttons for selecting between them. Each button is assigned the 
setVideo handler. Let’s work through writing that now so we can switch 
between our videos:

Again, we need a reference to 
the video object.

Then we still update the 
buttons in the same way we were, no changes there.

Then we use the source id of the button (the id attribute of the anchor) to grab the correct video filename, and add on our browser-aware extension. Notice we're using the [ ] notation with our videos object, using the id string as the property name.
Once we have the correct video path and filename, we load and play the video.

And we make sure the play button is pushed in 
because we start the video playing when the 
user clicks on a new video selection.

Make these changes to your setVideo function 
and then load your page again.  You should now 
be able to easily switch between video sources.

Switch drivers and test drive!

var videos = {video1: "video/demovideo1", video2: "video/demovideo2"};

Here's our object with the two videos, we're showing this again 
as a reminder, so you can see how we're going to use it...

And here’s the handler again.



388  Chapter 8

video element interview

Head First: Welcome, Video. I’m going to 
jump right to the topic on everyone’s minds, 
and that would be YOU and the Canvas 
element.

Video: Meaning?

Head First: Allegedly nights out on the 
town, early morning breakfasts together. 
Need I say more?

Video: What is there to say, Canvas and I 
have a great relationship. She displays her 
content in a very, let’s say, visually appealing 
manner, and I’m a video workhorse.  I 
crunch through codecs and get that video 
content to the browser.

Head First:  Well, that’s not what I 
was getting at, but I’ll go with it. Okay, 
she’s great at 2D display, you’re great at 
video display. So what? What’s the real 
connection?

Video: Like any relationship, when you put 
two things together and get out more than 
the sum of  the parts, that’s when you have 
something special.

Head First: Okay, well, can you put that 
in more concrete terms?

Video: It’s a simple concept. If  you 
want to do anything other than just basic 
video playback—that is, if  you want to do 
any processing on your video, or custom 
overlays or display mulitple videos at once—
then you want to use Canvas.

Head First: That all sounds great, but 
video requires heavy-duty processing, I 
mean that’s a lot of  data coming through. 
How is JavaScript, a scripting language, 
going to do anything real? Writing 
JavaScript code isn’t like writing in a native 
language.

Video: Oh you’d be surprised... have 
you looked at the latest benchmarks on 
JavaScript? It’s already fast, and getting 
faster every day. The industry’s brightest 
virtual machine jockeys are working the 
problem and kicking butt.

Head First:  Yeah, but video? Really?

Video: Really.

Head First: Can you give us some 
examples of  things you can do with 
JavaScript, canvas and video?

Video: Sure, you can process video in real 
time, inspect the video’s characteristics, grab 
data from video frames, and alter the video 
data by, say... rotating it, scaling it or even 
changing the pixels.

Head First: Can you walk us through how 
you might do that in code?

Video: Uh, I’ll have to get back to you on 
that, just got a call from Canvas... gotta 
run...

HTML5 Confidential
This week’s interview:
Confessions of  the Video Element



you are here 4  389

not your father’s tv

It’s time for special effects
Isn’t it about time we add those movie effects? What we want to do 
is take our original video and be able to apply effects, like film noir, 
western, and even an otherworldly sci-fi effect. But if  you look at the 
video API, you won’t find any effects methods there, or any way to 
add them directly. So how are we going to add those effects?

Take a little time to think through how we might add effects to our 
video. Don’t worry that you don’t know how to process video yet, 
just think through the high level design. 

Starring You Video 
Engineering Notes...

Use this engineering note to draw a picture, label it, or write 
out pseudo-code for any code for your video effects. Think 
of this as a warm up, just to get your brain going...

How will you get your hands on 
the pixels that make up each 
frame of the video?

Once you’ve got the pixels, how do you process them to apply the effect?

Say you were to write a function 
to implement each effect, what 
would it look like?

How can you display the video once you’ve processed all its pixels to apply the effect?

Your ideas here.

We want to take our 
original video and be 
able to apply film noir, 
western, and sci-fi 
effects.



390  Chapter 8

plan for implementing video effects

1 We know we’ve still got to hook up those 
buttons that control the effects. So we’re 
going to do that first.

2 We’re going to learn a little about video 
processing and check out the “scratch 
buffer” technique for adding our effects.

3 We’re going to implement the scratch 
buffer, which is going to give us 
a chance to see video and canvas 
together in action.

The FX plan
We don’t know exactly how to implement the effects yet, 
but here’s a high level plan of  attack:

We’re going to implement one 
function for each effect: western, film 
noir, and sci-fi.

4

Finally, we’re going to put it all together 
and test!

5

Implement the 
scratch buffer, 
using canvas 
(believe it or not)!

function noir(pos, r, g, b, data) {
  ...
}

We’ll display the 
altered pixels in a, 
you guessed it, canvas.

Now you know we’re going to implement a function that will handle each effect. Let’s 
take film noir, for example. How are you going to take a color pixel from the video and 
make it black and white? Hint: every pixel has three components: red, green, and 
blue. If we could get our hands on those pieces, what could we do?

1
2

3

The buttons 
still need to 
be wired up.

The scratch 
buffer, that 
looks interesting...



you are here 4  391

not your father’s tv

function setEffect(e) {

    var id = e.target.getattribute("id");

    if (id == "normal") {

        pushUnpushButtons("normal", ["western", "noir", "scifi"]);

        effectFunction = null;

    } else if (id == "western") {

        pushUnpushButtons("western", ["normal", "noir", "scifi"]);

        effectFunction = western;

    } else if (id == "noir") {

        pushUnpushButtons("noir", ["normal", "western", "scifi"]);

        effectFunction = noir;

    } else if (id == "scifi") {

        pushUnpushButtons("scifi", ["normal", "western", "noir"]);

        effectFunction = scifi;

    }

}

Time to get those effects buttons working
Alright, the easy part first: we’re going to get those effects buttons 
wired up and working. We’ll start by creating a global variable named 
effectFunction. This variable is going to hold a function that can take 
data from the video, and apply a filter to it. That is, depending on which 
effect we want, the effectFunction variable will hold a function that 
knows how to process the video data and make it black and white, or sepia, 
or inverted for sci-fi. So add this global variable to the top of  your file:

var effectFunction = null;

Now we’re going to set this variable anytime an effects button is clicked on. For 
now, we’ll use function names like western, noir and scifi, and we’ll write 
these functions in just a bit.

For each button 
press we set the 
effectFunction variable 
to the appropriate 
function (all of which 
we still need to write).

If the effect is no 
effect, or normal, 
we just use null as 
the value.

Otherwise we set 
effectFunction to 
an appropriately 
named function 
that will do the 
work of applying 
the effect.

We still need to write these effects 
functions. So, let’s see how we process 
video so we can apply effects to it!

Here’s our setEffect handler again. Remember this is called 
whenever the user clicks on a effect button.

Okay, with that out of  the way, we’re going to learn about that “scratch buffer” and 
then come back and see how these functions fit in, as well as how to write them!



392  Chapter 8

overview of video processing

How video processing works
What we’ve done so far is given ourselves a way to assign a function to the effectsFunction 
global variable as a result of  clicking on the effects buttons in the interface. For now, just take 
that knowledge and tuck it in the back of  your brain for a little while, because we’ve got to work 
through how we’re actually going to take video and process it in real time to add an effect. To 
do that we need to get our hands on the video’s pixels, alter those pixels to achieve our desired 
effect, and then somehow get them back on the screen.

Now, does the video API offer some special way to process video before it is displayed? Nope. 
But it does give us a way to get the pixels, so we just need a way to process and display them. 
Wait, pixels? Display? Remember Chapter 7?  The canvas! Ah, that’s right, we did mention 
something about the “special relationship” that the video element and canvas have. So, let’s 
walk through one of  the ways the video and canvas elements can work together:

The video player 
decodes and plays 
the video behind 
the scenes.

1
2 Video is copied frame 

by frame into a 
(hidden) buffer canvas 
and processed.

1
2

3

In a nutshell, we’re 
taking each frame 
of video and 
changing it from 
color to B&W, and 
then displaying it. 

Color in the original video.
Processing color to, say, B&W, 
in a buffer canvas.

Then we copy the 
processed frame from 
the buffer to the 
display canvas.

3 After a frame is 
processed, it is copied 
to another display 
canvas to be viewed.

The details of 
the scoop, finally 
revealed!



you are here 4  393

not your father’s tv

How to process video using a scratch buffer
Behind
the Scenes

1 The browser decodes the video into a series of 
frames. Each frame is a rectangle of pixels with 
a snapshot of the video at a given point in time. 

Now, you might ask why we’re using two canvases to process and display the 
video. Why not just find a way to process the video as it is decoded? 

The method we’re using here is a proven technique for minimizing visual glitches 
during intensive video and image processing: it’s known as using a “scratch 
buffer.” By processing a frame of  video in a buffer and then copying it all in one 
fell swoop to the display canvas, we minimize visual issues. 

Let’s step through how our scratch buffer implementation is going to work.

One frame of video.

2 As each frame is decoded we copy it into the 
canvas that is acting as a scratch buffer.

We copy the whole frame into the canvas. This is the 
scratch buffer.



394  Chapter 8

using a scratch buffer

effectFunction(     )

3 We iterate over scratch buffer, 
pixel by pixel, passing each pixel to 
our effects function for processing.

4 After all the pixels in the scratch buffer are 
processed, we copy them from the scratch 
buffer canvas to the display canvas.

5 And then we repeat the process on every 
frame as it is decoded by the video object.

After getting the pixel data from 
the canvas, we access it one pixel at 
a time, and process it by manipulating 
the RGB values in each pixel.

Once the data in the scratch 
buffer is processed...

... we grab the image from the 
scratch buffer canvas and copy the 
whole thing to the display canvas.

And of course, this 
is the canvas you 
actually see!

1 pixel



you are here 4  395

not your father’s tv

Implementing a scratch buffer with Canvas
As you already know, to implement a scratch buffer in canvas we need two 
canvases: one to do our computation in, and one to display our results. To 
create those canvases, we’ll start back in our HTML file videobooth.html. 
Open this file and find the <div> with the id “videoDiv” and add two canvas 
elements below the <video>:

<div id="videoDiv">

   <video id="video" width="720" height="480"></video>

   <canvas id="buffer" width="720" height="480"></canvas>

   <canvas id="display" width="720" height="480"></canvas>

</div>

We’re adding two canvas elements, one for the buffer and one to display. Notice they’re exactly the same 
size as the video element.

Now you might be wondering about positioning these elements; we’re going to position them 
right on top of  each other. So at the bottom will be the video element, on top of  that is the 
buffer, and on top of  that, the display canvas element. We’re using CSS to do it, and although 
we don’t talk much about CSS in this book, if  you open videobooth.css you’ll see the 
positioning for the three elements:

div#videoDiv {

    position: relative;

    width: 720px;

    height: 480px;

    top: 180px;

    left: 190px;

}

video {

    background-color: black;

}

div#videoDiv canvas {

    position: absolute;

    top: 0px;

    left: 0px;

}

The videoDiv <div> is positioned relative to the element it’s 
in (the console <div>), at 180px from the top and 190px 
from the left, which places it in the center of the console. 
We set the width and height equal to the width and height 
of the <video> and the two <canvas> elements.

The two <canvas> elements in the videoDiv <div> are 
positioned absolutely with respect to the videoDiv (their 
parent), so by placing the <canvas> elements at 0px from 
the top, and 0px from the left, they are in exactly the 
same position as the <video> and the videoDiv.

The <video> is the first element in the videoDiv <div> so 
it’s automatically positioned at the top left of the <div>. 
We set the background to black so that if we have 
letter-boxing or pillar-boxing, the space is black.

How to position the video and canvases



396  Chapter 8

implementing frame processing

Writing the code to process the video
We’ve got a video element, a buffer that’s a canvas, and a canvas that is going to display the 
final video frames. And we’ve also got them stacked on one another so we see only the top 
display canvas, which will contain the video with the effect applied. To process the video 
we’re going to use the video element’s play event, which is called as soon as a video begins 
playing. Add this to the end of  the onload handler:

video.addEventListener("play", processFrame, false);

When the video begins 
playing it will call the 
function processFrame.

The processFrame function is where we’ll process the video pixels and get them into the 
canvas for display. We’ll start by making sure we have access to all our DOM objects:

function processFrame() {

    var video = document.getElementById("video");
    if (video.paused || video.ended) {
        return;
    }

    var bufferCanvas = document.getElementById("buffer");

    var displayCanvas = document.getElementById("display");

    var buffer = bufferCanvas.getContext("2d");

    var display = displayCanvas.getContext("2d");
}

First grab the video object...

... and check to see if the video is 
still playing. If it isn’t then we’ve 
got no work to do, just return.

Then grab a reference to 
both canvas elements and 
also to their contexts, 
we’re going to need those.

How to create the buffer
To create the buffer, we need to take the current video frame, and copy it to the buffer canvas. 
Once we have it on the canvas, we can process the data in the frame. So, to create that buffer 
we do this (add this to the bottom of  processFrame):

buffer.drawImage(video, 0, 0, bufferCanvas.width, bufferCanvas.height);

var frame = buffer.getImageData(0, 0, bufferCanvas.width, bufferCanvas.height);

Remember the context 
drawImage method from 
Chapter 7?

It takes an image and draws that image onto the 
canvas, at an x,y position for a given width and height.

This time, we’re getting an image from the video. 
By specifying the video as the source, drawImage 
gets one frame of the video as image data.

Then we grab the image data from 
the canvas context and store it in a 
variable, frame, so we can process it.

Here, we’re just saying we want all the 
image data in the canvas.



you are here 4  397

not your father’s tv

buffer.drawImage(video, 0, 0, bufferCanvas.width, displayCanvas.height);

var frame = buffer.getImageData(0, 0, bufferCanvas.width, displayCanvas.height);

var length = frame.data.length / 4;

for (var i = 0; i < length; i++) {

    var r = frame.data[i * 4 + 0];

    var g = frame.data[i * 4 + 1];

    var b = frame.data[i * 4 + 2];

    if (effectFunction) {

       effectFunction(i, r, g, b, frame.data);

    }

}

display.putImageData(frame, 0, 0);

How to process the buffer
We’ve got our hands on a frame of  video data, so let’s do some processing on it!  To process 
the frame, we’re going to loop over every single pixel in the frame data and pull out the RGB 
color values that are stored in each pixel. Actually, each pixel has 4 values, RGB and Alpha 
(the opacity), but we’re not going to use the Alpha. Once we’ve got the RGB values, we’ll call 
the effectFunction (remember, that’s the function we set back on page 392 and asked you 
to tuck in the back of  your brain!) with the RGB information and the frame. 

Add this code to the bottom of  your processFrame function:

setTimeout(processFrame, 0);

We’ve processed one frame, what next?
Yes, that’s one single frame we just processed, and we want to keep processing them all as the 
video continues to play.  We can use setTimeout and pass it a value of  zero milliseconds 
to ask JavaScript to run processFrame again as soon as it possibly can.  JavaScript won’t 
actually run the function in zero milliseconds, but it will give us the next soonest time slot we 
can get. To do that, just add this to the bottom of  your processFrame function:

First, we find out the length of the frame data. Notice 
that the data is in a property of frame, frame.data, and 
length is a property of frame.data. The length is actually 
four times longer than the size of the canvas because each 
pixel has four values: RGBA.

Now we loop over the data and get the RGB values 
for each pixel. Each pixel takes up four spaces in the 
array, so we grab r from the first position, g from 
the second, and b from the third.

Then, we call the effectFunction (if it’s not null, which it will be if the “Normal” button is pressed), passing in the position of the pixel, the RGB values, and the frame.data array. The effect function will update the frame.data array with new pixel values, processed according to the filter function assigned to effectFunction.
At this point the frame data has been processed, so we use 
the context putImageData method to put the data into 
the display canvas. This method takes the data in frame 
and writes it into the canvas at the specified x, y position.

Tells JavaScript to run processFrame 
again as soon as possible!

setTimeout is just like 
setInterval, except 
that it runs only once 
after a specified time 
in milliseconds.



398  Chapter 8

frame rates and timers

We wish we could.

You’re absolutely right: what we’d love to do is have our 
handler called once for every frame, but the video API 
doesn’t give us a way to do that.  It does give us an event 
named timeupdate that can be used to update a running 
time display of  your video, but it doesn’t tend to update at a 
granularity that you can use for processing frames (in other 
words, it runs at a slower rate than the video).

So instead we use setTimeout. When you pass zero to 
setTimeout, you’re asking JavaScript to run your timeout 
handler as soon as it possibly can—and this leads to your 
handler running as frequently as it possibly can. 

But might that be faster than the frame rate? Wouldn’t it 
be better to calculate a timeout close to what is needed for 
the frame rate? Well, you could, but it’s unlikely that the 
handler is going to actually get to run in lockstep with the 
frames of  your video, so zero is a good approximation. Of  
course, if  you are looking to enhance the performance 
characteristics of  your app, you can always do some 
profiling and figure out what the optimal values are. But 
until we have a more specific API, that’s our story.

It’s interesting you are using 
setTimeout with a time of zero. 

What’s going on there? Shouldn’t we 
be doing something that’s tied to a 

video’s frame rate or something?



you are here 4  399

not your father’s tv

Now we need to write some effects
Finally, we’ve got everything we need to write the video effects: we’re grabbing 
each frame as it comes in, accessing the frame data pixel by pixel and sending 
the pixels to our effect filter function. Let’s look at the Film Noir filter (which, in 
our version, is just a fancy name for black and white):

function noir(pos, r, g, b, data) {

    var brightness = (3*r + 4*g + b) >>> 3;

    if (brightness < 0) brightness = 0;

    data[pos * 4 + 0] = brightness;

    data[pos * 4 + 1] = brightness;

    data[pos * 4 + 2] = brightness;

}

The filter function is passed 
the position of the pixel...

... the red, green, and 
blue pixel values ... ... and a reference to 

the frame data array 
in the canvas.

So the first thing we do is 
compute a brightness value 
for this pixel based on all its 
components (r, b and g).

And then we assign each 
component in the canvas 
image to that brightness.

This has the affect of setting 
the pixel to a grey scale value 
that corresponds to the pixel’s 
overall brightness.

Add this function to videobooth.js and then reload 
your page. As soon as the video starts rolling press the 
Film Noir button and you’ll see a brooding black & white 
film look. Now choose Normal again. Not bad, eh? And 
all in JavaScript, in real time!

A film noir test drive

Remember this 
function is called 
once per pixel in the 
video frame!

Kind of amazing when you think about it.

>>> is a bitwise 
operator that 
shifts the bits in 
the number value 
over to modify 
the number. 
Explore further 
in a JavaScript 
reference book.



400  Chapter 8

exercise in implementing video effects

This book isn’t really about video processing and effects, but 
it sure is fun. Below we’ve got the western and sci-fi effects. 
Look through the code and make notes on the right as to how 
each works. Oh, and we added an extra one—what does it do?

function western(pos, r, g, b, data) {

    var brightness = (3*r + 4*g + b) >>> 3;

    data[pos * 4 + 0] = brightness+40;

    data[pos * 4 + 1] = brightness+20;

    data[pos * 4 + 2] = brightness-20;

}

function scifi(pos, r, g, b, data) {

    var offset =  pos * 4;

    data[offset] = Math.round(255 - r) ;

    data[offset+1] = Math.round(255 - g) ;

    data[offset+2] = Math.round(255 - b) ;

}

function bwcartoon(pos, r, g, b, outputData) {

    var offset =  pos * 4;

    if( outputData[offset] < 120 ) {

        outputData[offset] = 80;

        outputData[++offset] = 80;

        outputData[++offset] = 80;

    } else {

        outputData[offset] = 255;

        outputData[++offset] = 255;

        outputData[++offset] = 255;

    }

    outputData[++offset] = 255;

    ++offset;

}



you are here 4  401

not your father’s tv

This is it! We have this code wrapped up and ready to ship off  to 
Starring You Video. Go ahead and double check that you’ve 
got all the code typed in, save, and load videobooth.html. 
Then have fun playing around with your new app!

The Big Test Drive

Normal mode

Western mode

Sci-fi mode

Film Noir mode



402  Chapter 8

IN THE LABORATORY
Obviously we’ve only scratched the surface in 
terms of video processing, and we’re sure you 
can think of more creative effects than those 
we came up with. Go ahead and think up a few, 
implement them, and document them here. 

Have you invented something really cool 
and implemented it? Tell us about it at 
wickedlysmart.com and we’ll feature it for 
other readers!

Your ideas here!

B&W Cartoon is just 
one of many other 
fun things you can do 
with effects.



you are here 4  403

not your father’s tv

Hey I know its almost the end 
of the chapter, but I keep meaning 

to ask this: we’ve been loading video from 
a local file, what changes if my video is 

hosted on the Web?

Sure, just use a web URL.

You can substitute a web URL for any of  the sources we been 
defining locally. For instance:

Keep in mind there is more room for bad things to happen when 
you are delivering on the Web (and we’ll talk about how to handle 
those things in a moment). Also, the bitrate of  your videos starts to 
matter a lot more when delivering to a browser or a mobile device 
over the network. Like with video formats, if  you’re going down 
this road, seek out experts and educate yourself.

<video src="http://wickedlysmart.com/myvideo.mp4">

Yes, a big difference.

The term streaming often gets used like the term xerox or 
kleenex—as a generic term for getting video from the Web to 
your browser. But “progressive video” and “streaming video” are 
actually technical terms. In this book we’ve been using progressive 
video, which means when we retrieve the video (either locally or 
over the network) we’re retrieving a file using HTTP, just like an 
HTML file or an image, and we try to decode and play it back as 
we retrieve it. Streaming video is delivered using a protocol that is 
highly tuned to delivering video in an optimal way (perhaps even 
altering the bitrate of  the video over time as bandwidth becomes 
more or less available).

Streaming video probably sounds like it would provide your user 
with a better experience (it does), and is perhaps more efficient in 
terms of  your user’s connection and your bandwidth charges (it is). 
On top of  all that, streaming video makes it easier to do things like 
protect the content of  your video if  you need that kind of  security. 

Great, and one 
more question, is there a 

difference between what we’re 
doing and streaming video?



404  Chapter 8

video streaming

No.

There is no standard for streaming video 
with HTML5. As a matter of  fact the 
problem isn’t HTML5, there isn’t really 
a supported standard for streaming 
video anywhere—but there are plenty of  
proprietary ones. Why? There are a number 
of  reasons ranging from the money to be 
made with streaming video to the fact that 
many people in open source don’t want to 
work on a protocol that could be used for 
DRM or other protection technologies. Like 
the situation with video formats, we’re in a 
complex world with streaming video.

So, is there a standard 
for HTML5 streaming?

There are solutions out there.

There are lots of  legitimate uses for streaming 
video technologies, and if  you have a large 
audience, or you have content you think needs 
to be protected, you should check them out: 
Apple’s HTTP Live Streaming, Microsoft’s 
Smooth Streaming and Adobe’s HTTP 
Dynamic Streaming are good places to start.

There’s good news on the horizon too: the 
standards bodies are starting to look closely at 
HTTP-based video streaming, so keep an eye 
out for developments in this area.

So what do I do if 
I need to stream?



you are here 4  405

not your father’s tv

But it’s not: we have all those nasty network issues, 
incompatible devices and operating systems, and an 
increasing chance of  asteroids hitting the earth. That 
last one we can’t help with, but for the first two actually 
knowing you have an error is half  the battle, then you 
can at least do something about it.

The video object has an error event, which can be 
thrown for a number of  reasons that can be found in 
the video.error property, or more specifically in the 
video.error.code property.  Let’s take a look at what 
kinds of  errors we can detect:

If only it were a perfect world...

MEDIA ERR NETWORK=2

Used whenever a network 
retrieval of  the video is 
interrupted by a network error.

Errors
MEDIA ERR ABORTED=1

Used any time the process of  
getting the video over the network 
is aborted by the browser 
(possibly at a user’s request).

MEDIA ERR DECODE=3

Used whenever the decoding of  
a video fails. This could happen 
because the encoding uses 
features the browser can’t support 
or because the file is corrupt.

MEDIA ERR SRC NOT SUPPORTED=4

Used when the specified video source 
cannot be supported because of  a 
bad URL or because the source type 
isn’t decodable by the browser.

Each error type also has an 
associated number that is the 
error code produced by the error 
event, we’ll see this in just a sec...



406  Chapter 8

handling video errors

Dealing with errors is complex business and how you deal with errors depends a lot on your 
application, and what would be appropriate for the app and your users. That said, we can at 
least get you started and point you in the right direction. Let’s take Webville TV and give it the 
ability to know it has encountered an error—and if  it does encounter one, give the audience a 
PLEASE STAND BY message.

We want to be notified when there’s an error message, so we need to add a listener for the error 
event. Here’s how we do that (add this to the onload handler in webville.js):

How to use error events

video.addEventListener("error", errorHandler, false);

Now we need to write the function errorHandler, which 
will check if  there is an error, and if  so, place our “please 
stand by” image on the video display by making it the 
poster image:

When an error occurs, the 
errorHandler function is called.

function errorHandler() {

    var video = document.getElementById("video");

    if (video.error) {

        video.poster = "images/technicaldifficulties.jpg";

        alert(video.error.code);

    }

}

If the handler is called, we make sure there is 
an error by checking video.error and then we 
place a poster up on the video display.

Optionally add this line to be able to see the error 
code (see the previous page for the integer stored 
in the code property).

There are many ways for the playback of  the video to fail, and to test this 
code you’re going to make it fail. Here are a few suggestions:

Test Crash!

 � Disconnect your network at different points in playback.

 � Give the player a bad URL.

 � Give the player a video you know it can’t decode.

 � Give the player a URL that isn’t even a video.

 � Use software to reduce your bandwidth (it’s out there, just look for it).

So get this code typed in and get testing. Remember you can map the integer in 
the alert dialog back to a real code by looking at the codes on page 407.



you are here 4  407

not your father’s tv

This is where it gets exciting, because think of  all you know how 
to do with HTML markup, with the video element and, of  course, 
the canvas...not to mention web services, geolocation... wow. Sure, 
we did some cool video processing with canvas, but you can apply 
everything you know how to do with canvas to video. Here are 
just a few ideas we had, please add your own. And give yourself  a 
pat on the back from us, you’ve earned it!

Where can you go from here?

Create your own 
on-screen controls or 
programming guide.

Create picture-
within-picture 

viewing.

Use all those 
graphics and text 

APIs you know 
how to use from 
canvas, right on 
top of the video.

Create time-based 
content that 

displays only during 
specific time ranges 

of playback.

Use JSONP 
and make it 
interactive!

Use web-services to 
provide context-relevent 
information to your video.

Use your 
location to 

deliver relevant 
advertising.



408  Chapter 8

review of the video api

 � You can play video by using the <video> element 
with a few simple attributes.

 � The autoplay attribute starts playback on page load, 
but use only when appropriate.

 � The controls attribute causes the browser to expose 
a set of playback controls.

 � The look and feel of controls differs among browsers.

 � You can supply your own poster image with the 
poster attribute.

 � The src attribute holds a URL to the video to be 
played.

 � There are many “standards” for video and audio 
formats.

 � Three formats are in common usage, WebM, 
MP4/H.264 and Ogg/Theora.

 � Know your audience to know what formats you need 
to supply.

 � Use the <source> tag to specify alternative video 
formats.

 � Use fully specified types in your <source> tag to 
save the browser work and time.

 � You can continue to support other video frameworks, 
like Flash, by adding a fallback <object> tag in the 
video element.

 � The video object provides a rich set of properties, 
methods and events.

 � Video supports play, pause, load, loop and mute 
methods and properties to directly control the 
playback of the video.

 � The ended event can be used to know when video 
playback has ended (for instance, to implement a 
playlist).

 � You can programmatically ask the video object if it 
can play a format with canPlayType.

 � The canPlayType method returns empty string (no 
support for format), maybe (if it might be able to play 
the format) or probably (if it confidently thinks it can 
play the format).

 � Canvas can be used as a display surface for video 
to implement custom controls or other effects with 
video.

 � You can use a scratch buffer to process video before 
copying it to the display.

 � You can use a setTimeout handler to process video 
frames; while it isn’t linked directly to every frame of 
the video, it is the best method we have right now.

 � You can use a URL as a video source to play 
network-based videos.

 � Some browsers enforce a same origin policy on 
video so that you need to serve the video from the 
same origin as your source page.

 � Errors are always possible, if not probable, with 
video, especilly when a network is involved.

 � The error event can be used to notify a handler when 
video retrieval, decoding or playback errors occur.

 � The video element relies on progressively 
downloaded video. Currently there is no HTML5 
standard for streaming, although the standards 
bodies are looking at HTTP-based streaming 
solutions.

 � There is currently no standard way of protecting 
video delivered through the video element.



you are here 4  409

not your father’s tv

HTML5cross
Before you sit back and watch some more Webville 
TV, do a quick crossword to make it all stick. Here’s 
your Chapter 8 crossword puzzle.

1

2 3

4

5 6

7 8

9

10

11 12

13

14

15

Across
2. Type of delivery the video element uses for video.
4. To provide several video options, use _____ source 
elements.
5. Kind of buffer we used canvas for.
7. Property to play your video over and over
8. Starts a video as soon as it can.
11. The open source audio codec.
12. Used to display processed video.
13. When the show is over, this event is thrown.
14. I can play this type, can you?
15. Look and feel of browser controls _____.

Down
1. Use __________ if you want a built-in way to control video.
3. We saw 50s ______ films.
5. What you should do if an asteroid is going to hit the earth.
6. The Starbuzz CEO spills his ___________.
9. What we processed on every setTimeout call.
10. Clint Eastwood would like this effects style.

Across
2. Type of delivery the video element uses for video.
4.  To provide several video options, use _____ source 

elements.
5. Kind of buffer we used canvas for.
7. Property to play your video over and over.
8. Starts a video as soon as it can.
11. The open source audio codec.
12. Used to display processed video.
13. When the show is over, this event is thrown.
14. I can play this type, can you?
15. Look and feel of browser controls _____.

Down
1. Use __________ if you want a built-in way to control video.
3. We saw ’50s ______ films.
5. What you should do if an asteroid is going to hit the earth.
6. The Starbuzz CEO spills his ___________.
9. What we processed on every setTimeout call.
10. Clint Eastwood would like this effects style.



410  Chapter 8

exercise solutions

This book isn’t really about video processing and effects, but 
it sure is fun. Below we’ve got the western and sci-fi effects. 
Look through the code and make notes on the right as to how 
each works. Oh, and we added an extra one—what does it do? 
Here’s our solution.

The Western filter emphasizes the red 
and green components of the pixel while 
de-emphasizing the blue component, to 
give the video a brownish tinge. 

The scifi filter reverses the amounts of 
RGB components of each pixel. So if a pixel 
had a lot of red, it now has a little. If a 
pixel had a little green, it now has a lot. 

The bwcartoon filter turns every pixel 
with a red component of less than 120 
(out of 255) into black, and turns all 
other pixels into white, giving the video 
a weird cartoony-like B&W appearance.

function western(pos, r, g, b, data) {

    var brightness = (3*r + 4*g + b) >>> 3;

    data[pos * 4 + 0] = brightness+40;

    data[pos * 4 + 1] = brightness+20;

    data[pos * 4 + 2] = brightness-20;

}

function scifi(pos, r, g, b, data) {

    var offset =  pos * 4;

    data[offset] = Math.round(255 - r) ;

    data[offset+1] = Math.round(255 - g) ;

    data[offset+2] = Math.round(255 - b) ;

}

function bwcartoon(pos, r, g, b, outputData) {

    var offset =  pos * 4;

    if( outputData[offset] < 120 ) {

        outputData[offset] = 80;

        outputData[++offset] = 80;

        outputData[++offset] = 80;

    } else {

        outputData[offset] = 255;

        outputData[++offset] = 255;

        outputData[++offset] = 255;

    }

    outputData[++offset] = 255;

    ++offset;

}



you are here 4  411

not your father’s tv

vIDEO RECO
NNaISSaNCE

 

SOLUTION

video

Sa
fa
ri

Ch
ro
me

Fi
re
fo
x

Mo
bi
le
 W
eb
ki
t

Op
er
a

IE
9+

IE
8

IE
7 
or
 <

H.264

WebM

Ogg 

Theora

Br
ow
se
r

iOS and Android devices (among others)

some

HTML5cross Solution
C1

P2 R O G R E3 S S I V E

N D

T M4 U L T I P L E

R C S5 C R A T C6 H

L7 O O P A8 U T O P L A Y C O

L T F9 R F

S I W10 R E F

V11 O R B I S E C12 A N V A S E

N S M M E13 N D E D

C14 A N P L A Y T Y P E

L E

D15 I F F E R

N

Across
2. Type of delivery the video element uses for video. 
[PROGRESSIVE] 
4. To provide several video options, use _____ source 
elements. [MULTIPLE] 
5. Kind of buffer we used canvas for. [SCRATCH] 
7. Property to play your video over and over [LOOP] 
8. Starts a video as soon as it can. [AUTOPLAY] 
11. The open source audio codec. [VORBIS] 
12. Used to display processed video. [CANVAS] 
13. When the show is over, this event is thrown. [ENDED] 
14. I can play this type, can you? [CANPLAYTYPE] 
15. Look and feel of browser controls _____. [DIFFER] 

Down
1. Use __________ if you want a built-in way to control video. 
[CONTROLS] 
3. We saw 50s ______ films. [EDUCATIONAL] 
5. What you should do if an asteroid is going to hit the earth. 
[SCREAM] 
6. The Starbuzz CEO spills his ___________. [COFFEE] 
9. What we processed on every setTimeout call. [FRAME] 
10. Clint Eastwood would like this effects style. [WESTERN] 

        

This will 
change 
fast! So 
check 
the latest 
support on 
the Web.



412  Chapter 8



this is a new chapter  413

Web Storage

storing things locally9

Tired of  stuffing your client data into that tiny 
closet cookie?� That was fun in the ’90s, but we’ve got much 

bigger needs today with web apps. What if we said we could get you 

five megabytes on every user’s browser? You’d probably look at us 

like we were trying to sell you a bridge in Brooklyn. Well, there’s no 

need to be skeptical—the HTML5 Web Storage API does just that! In 

this chapter we’re going to take you through everything you need to 

store any object locally on your user’s device and to make use of it in 

your web experience.

I’m done with this small closet and 
wearing the same pantsuit over and 

over. With HTML5 I’ve got enough local 
storage to wear a new suit every day!



414  Chapter 9

history of browser storage

How browser storage works (1995 - 2010)
Building a shopping cart? Need to store some user preferences for your site? 
Or just need to stash some data that you need to be associated with each 
user? That’s where browser storage comes in. Browser storage gives us a way 
to persistently store data that we can use in building a web experience.

Up until now there’s been one game in town—the browser cookie—for 
storing information on the browser. Let’s see how cookies work:

Cookie: pet=dog; age=5; color=black

Here are some key and value pairs. We’ve got a key of “pet” with 
a value of “dog”, and a key of “age” with a “5”, and so on...

The browser saves the cookie locally and will send it back to the server the next time it makes a request.

The cookie.

Behind 
the Scenes

Web Server

While I’m serving a web page 
to you, I’m also going to give you some 
key/value pairs to store for me. Next 
time you contact me, send them along 

with your request.

<html>
  <head>
    <title>Head 
First Lounge 
Elixirs</title>
  </head>
  <body>
    <h1>Our 
Elixirs</h1>

...
</html>

When your browser retrieves a web page, say from “pets-R-us.com,” 
the server can send a cookie along with its response. Cookies contain 
one or more key and value pairs:

1

Browser



you are here 4  415

storing things locally

Browser Web Server

Cookies are sent back and forth in each HTTP request and response.

Cookies are associated with a domain, 
like “pets-R-us.com” and are only 
sent to that domain. So, there is no 
way for “PetsEmporium.com” to get 
its hands on this cookie.

Cookies can be used for all kinds of purposes, 
like customizing the 
user’s exerience, storing data, say in a shopping 
cart, or maintaining the state of game.

Cookies are limited 
to 4k of data.

The next time the browser makes a request to “pets-R-us.com,” it 
sends along any cookies that were sent previously:

2

The server can then use the cookie to personalize the experience, in 
this case promoting relevant items to the user, but there are many 
other ways cookies can be used too.

3

Web Server

<html>
  <head>
    <title>Head 
First Lounge 
Elixirs</title>
  </head>
  <body>
    <h1>Our 
Elixirs</h1>

...
</html>

You gave me this cookie 
the last time I talked to 
you. I’m sending it back.

Why thank you. Just wanted 
to let you know we have a big 
sale on products for middle-aged 
dogs that go great with black.

<html>
  <head>
    <title>Head 
First Lounge 
Elixirs</title>
  </head>
  <body>
    <h1>Our 
Elixirs</h1>

...
</html>

Browser



416  Chapter 9

how web storage works

Cookies have been with us a long time, but you might be able to think of some ways 
they could be improved on.

Check all the items below that you think make cookies problematic:

There’s only 4k to work with, my app needs more storage than that.

Sending the cookie back and forth every time seems really inefficient, 
especially if I’m on a mobile device with not a lot of bandwidth.

They sound like a good way to transmit viruses and other malware to 
my browser.

I’ve heard the way the key/value pairs are done as part of the HTTP 
request is a pain to deal with in code.

Aren’t we potentially sending personal data back and forth every time 
we make a request?

They don’t seem well matched to all the client-side development 
we’ve been doing. They seem to assume everything in happening in 
the server.

For the record, and despite news reports to the contrary, cookies are quite safe and not a haven for virus writers.

I’m hoping that HTML5 provides a 
simple, client-side API to storage that is 

persistent, stored on the browser, offers 
more storage capacity, and is transmitted 
to a server only if I want it to be.



you are here 4  417

storing things locally

Browser Browser

localStorage localStorage

How HTML5 Web Storage works
HTML5 gives us a nice, simple JavaScript API in the browser for storing key/value 
pairs that are persistent. You’re not limited to four stingy kilobytes of  storage either; 
all browsers today will gladly offer you five to ten megabytes of  storage in every 
user’s browser. HTML5’s local storage was also created with web apps (and mobile 
apps!) in mind—local storage means your app can store data in the browser to 
reduce the communication needed with the server. Let’s check out how it works (and 
then we’ll jump head first into the API):

Every modern browser provides a 5 megabyte (or more!) local storage bucket for each domain.

Using the API we can 

write a key/value pa
ir 

into the local store
.

Given a key, we can 
also retrieve a valu

e 
from the local store.

Storage is persistent, even 
if you close your browser 
window or quit the browser.

A key/value pair.

Like cookies, your page can store and 
retreive only items that were created 
by pages served from the same domain. 
More on this in a bit.

NOTE: The server still serves your pages, and you may even send a bit of the data in your local store to the server for some server-side computation, but the client is dealing with the details of local storage, not the server (as is common with cookies).

Behind 
the Scenes

A page can store one or more key/value 
pairs in the browser’s local storage.

1 And then later use a key to retrieve its 
corresponding value.

2

Can I have the value 
for the key “pet”?

Sure you can, 
it’s “dog”.

key: “pet”
value: “dog”

key: “pet”
value: “dog”



418  Chapter 9

using web storage

Note to self...

Pick up dry 
cleaning

Need a system for getting things done? It’s hard to improve on 
the old Post-it note system (more commonly known as stickies). 
You know how it works: you jot down your “to do” item, stick it 
somewhere, and once you’ve done the task, you throw the sticky in 
the trash (or recycle it). 

How about we build one using HTML? Let’s see, we need a way 
to store all those stickies, so we’re going to need a server, and some 
cookies... oh, wait a second, back up the bus, we can do this with 
the HTML5 Web Storage API!  

No fooling around, we’re going to jump right in and start using the local store. To do that 
you should create a simple html page with all the basics: a head, a body, and a script (or 
just use the starter file notetoself.html in the code examples). Follow along by typing 
the code into your <script> element (typing it in helps it stick):

localStorage.setItem("sticky_0", "Pick up dry cleaning");

The Web Storage API is available to 
you through the localStorage object. 
You’ll find this already defined for 
you by the browser. When you use it 
you’re making use of the underlying 
local storage system.

To store something, we use 
the setItem method.

The setItem method 
takes two strings as 
arguments that act as 
the key/value pair.

The first string argument is a key that the item is stored under. Name it whatever you want as long as it is a string.

The second string 
is the value you’d 
like to store in local 
storage.

The Web Storage API is 
simple, fun and instantly 
gratifying.  We promise! 

We’re starting simple, but before you know it, we’ll have a whole Stickies app up and running.
You can only store items of 
type String. You can’t directly 
store numbers or objects (but 
we’ll find a way to overcome 
this limitation soon).

High-tech 
productivity tool.

There’s not much more to a sticky than the text you write on it, right? 
So, let’s start by storing a sticky for “Pick up dry cleaning”:

1



you are here 4  419

storing things locally

localStorage.setItem("sticky_1", "Cancel cable tv, who needs it now?");

Another key. Like we said already, 
you can use any key you like as long as 
it is a string, but you can only store 
one value per key.

A value to go with 
our new key. 

var sticky = localStorage.getItem("sticky_0");

alert(sticky);

...and assigning it to the 
variable named sticky.

We’re getting the value associated with the key “sticky_0” from the local store...

And to make this a little more interesting, let’s use the alert function to pop the sticky note’s value up on the screen.

Time for a test drive!
Make sure you’ve got all this code into your script element and load it into your browser.

Here’s the result of  our test drive:

There’s our JavaScript alert, with the 
value of sticky_0 as the alert message. 

What’s cool about this is that this value was stored in and retrieved from the browser’s localStorage! You could quit your browser, go on vacation to Fiji for a month, come back, and it will still be there waiting on you.
Okay, okay, we agree the example 
could have been a little more 
exciting, but work with us here, 
we’re getting there...

That was easy enough; let’s add a second item to the local store:2

Now that we have two values stored safely in our browser’s local storage, you can now 
use one of the keys to retrieve its corresponding value from localStorage. Like this:

3



420  Chapter 9

how the local storage api works

Sure. Here it is in a nutshell: your browser 
provides you with a local store—space on your 
own computer, in your browser—that a page can 
make use of  to store key/value pairs. You created 
a few key/value pairs, stored them away using 
the local storage API, and then you retrieved 
one of  them for use in your app. Now, while that 
might not be the most exciting example, there 
are lots of  interesting things you can do with a bit 
of  storage in every user’s browser (and we’re sure 
you can think of  at least a few).

So now that you’ve got an answer in a nutshell, 
let’s step through in detail what just happened:

That was cool, but 
can we walk through it? 
I’m not 100% sure what 

happened.

Every modern 
browser has local 
storage behind 
the scenes ready 
for you to use to 
store key/value 
pairs.

First, remember every browser has a bit of local 
storage that you can use to store key/value pairs.

1

localStorage

Browser



you are here 4  421

storing things locally

localStorage

localStorage

key:  
“sticky_0”

value: 
“Pick up dry 

cleaning”

key:  
“sticky_0”

value: 
“Pick up dry 

cleaning”Once you’ve placed the key/
value pair in localStorage, it 
is persistently stored for you, 
even if you close the browser 
window, quit your browser or 
reboot your computer.

We use the setItem method to 
store a key/value pair. The key is 
“sticky_0” and the value is “Pick up 
dry cleaning”.

Key/value pair created 
by calling setItem.

key:  
“sticky_1”

value: “Cancel 
cable, who 

needs it now?” key:  
“sticky_0”

value: 
“Pick up dry 

cleaning”

key:  
“sticky_1”

value: 
“Cancel cable, 
who needs it 

now?”

Now there are two values 
stored under two unique keys.

getItem finds an item with a key equal to “sticky_0” 
(if it exists) and returns its value.

Note that by getting an item we don’t remove it from the store, 
it’s still there. We’re just getting the value for the given key.

returns

“Pick up dry 
cleaning”

With that local storage you can take a key and a value (both in 
the form of strings) and you can store them.

2

We then called setItem again and stored a second key/value pair, 
this time with a key of “sticky_1” and a value of “Cancel cable tv, 
who needs it now?”.

3

And when we call getItem with a key of “sticky_0”, it returns 
the value of the key/value pair.

4

localStorage.setItem("sticky_0", "Pick up dry cleaning");

localStorage.setItem("sticky_1", "Cancel cable tv, who needs it now?");

localStorage.getItem("sticky_0");



422  Chapter 9

questions about local storage

Q: First you said “Web Storage” and then you started talking 
about “local storage.” Are they the same?

A: The Web standard is named “Web Storage” but most people 
just call it local storage (in fact, the browsers even expose the API 
through the localStorage object). Web Storage is actually not the best 
name for the standard (because items are stored in your browser, 
rather than on the Web). But that said, we’re stuck with it. You’ll see 
us use the term local storage more than the standard name of “Web 
Storage.”

Q: How widely supported is the Web Storage API? Can I 
count on it being there?

A: Yes; in fact it is one of the better supported APIs, even all the 
way back to IE8 and is now in most modern mobile browsers. There 
are a few caveats here and there, but we’ll point them out as we 
go. In terms of counting on Web Storage, as always you should test 
before using APIs. Here’s how you test for localStorage: 
    if (window["localStorage"]) { 
     // your localStorage code here...  
  }
Notice that we test by checking to see if the window global object has 
the localStorage property. If it’s there, we know the browser supports 
localStorage.

Q: At the very beginning of the chapter you mentioned 5MB 
of storage on each browser. Is that five megabytes total across 
all apps?

A: No, that is actually five megabytes per domain.

Q: You said the server didn’t need to be involved, but then 
you started talking about domains.

A: Right, all the storage is managed in the client. The domain 
comes in because five megabytes is allocated to all the pages from 
the same domain for storage. Pet-R-Us.com gets five, PetEmporium.
com gets five more, and so on, all on your machines.

Q: How does this compare to Google Gears [or insert your 
favorite proprietary local storage technology here]? 

A: There’s nothing wrong with other browser storage technology, 
but HTML5’s local storage is now the standard (and Google, Apple, 
Microsoft and others now recognize Web Storage as the standard 
way to store content locally in the browser).

Q: What happens if I perform a setItem on the same key 
multiple times. Say I called setItem twice on "sticky_1", 
what happens? Do I get two sticky_1’s in the local store?

A: No. Keys are unique in localStorage, so setItem will overwrite 
the first value with the second value.  Here’s an example; if you ran 
this code:  
localStorage.setItem("sticky_1", "Get Milk"); 
localStorage.setItem("sticky_1", "Get Almond Milk"); 
var sticky = localStorage.getItem("sticky_1");
 
The value of sticky would be “Get Almond Milk”.

Q: Who can see the data in my local store?

A: Local storage is managed according to the origin (you can just 
think of the origin as your domain) of the data. So, for instance, every 
page on wickedlysmart.com can see the items stored by other pages 
on that site, but code from other sites, say, google.com, can’t access 
that storage (they can access only their own local storage items). 

Q: When I’m loading a page from my computer, like we are in 
these exercises, what is my origin?

A: Good question.  In that case your origin is known as the “Local 
Files” origin, which is great to use for testing.  If you have access to 
server you could test your files there too, and then you’ll be in your 
domain’s origin.

        Local Storage may not work 
properly in all browsers if  

you're using file://.

This is another case where some 
browsers require that you serve pages 

using localhost:// or a hosted server, rather than 
loading from a file. So if your stickies aren't working, 
try running from a server or try a different browser.



you are here 4  423

storing things locally

You’ve got the right technology.
It’s true, with localStorage you can only use strings as keys and values. But, that’s 
not as restricting as it sounds. Let’s say you need to store the integer 5. You can store 
the string “5” instead, and then convert it back to an integer when you retrieve it from 
the local store. Let’s take a look at how you’d do this for integers and floats.

Say you want to store an integer with the key “numitems”. You’d write:

var numItems = parseInt(localStorage.getItem("numitems"));

numItems = numItems + 1;

localStorage.setItem("numitems", numItems);

localStorage.setItem("numitems", 1);

Okay, it might look like you’re storing an integer here, but JavaScript knows this 
needs to be a string, so it coerces the integer value into a string for you. What 
setItem actually sees is the string “1”, not an integer. JavaScript isn’t as smart when 
you retrieve a value with getItem:

var numItems = localStorage.getItem("numitems");

In this code, numItems is assigned the string “1”, not an integer as we’d like. To make 
sure numItems is a number, you need to use the JavaScript function parseInt to 
convert a string to an integer:

If  you’re storing floating point values, you’ll want to use the parseFloat function 
when you get the price items from localStorage instead:

localStorage.setItem("price", 9.99);

var price = parseFloat(localStorage.getItem("price"));

What? Didn’t we just say we 
couldn’t store integers?

We can 
add 1 to it 
because it’s 
a number.

Same thing here, we store a float 
value which is coerced into a string.

Joel

We wrap the value in a parseInt call, which 
converts the string to an integer.

Then we store it 
again, with JavaScript 
taking care of the 
conversion again.

And we convert it back to 
a float with parseFloat.

So, I can store strings in localStorage, but what if I want 
to store a number? I was thinking I might use localStorage 
to store integer item counts and floating point prices for a 

shopping cart app I want to write, is this the wrong technology?



424  Chapter 9

how local storage  is like an array

Local storage has another side you haven’t seen yet.  Not only does localStorage 
provide the getter and setter methods (that is, getItem and setItem), it also 
allows you to treat the localStorage object as an associative array. What does that 
mean? Well instead of  using the setItem method, you can assign a key to a value 
in the store like this:

Were Local Storage and the Array separated at birth?

localStorage["sticky_0"] = "Pick up dry cleaning";

Here, the key looks like an 
index for the storage array.

And here’s our value sitting 
over here on the righthand 
side of an assignment 
statement.

var sticky = localStorage["sticky_0"];
This works exactly like using the call 
to the getItem method.

We can also retrieve the value stored in a key this way too. Here’s the syntax:

Not bad, huh? So, use either syntax, they are both valid. But if  you are used to using 
associative arrays in JavaScript, this syntax may be more concise and readable for you.

Here we assign our variable sticky to... ...the value of the key 
“sticky_0” in the local store.

But wait, there’s more!

The localStorage API also provides two other interesting things: a property, length, 
and a method, key.  The length property holds the number of  items in the local 
store. You’ll see what the key method does below:

for (var i = 0; i < localStorage.length; i++) {

 var key = localStorage.key(i);

 var value = localStorage[key];

 alert(value);

}

Big picture: we’re using the length to 
iterate over the contents of localStorage 
(just like an array), and accessing each key 
(like “sticky_0”) as we go. We can then use 
that key to extract its corresponding value.

The length property tells us how many items are in localStorage.
Here we’re iterating 
over each item.

For each item in the localStorage, the 
key method gives us the key (like 

“sticky_0”, “sticky_1” and so on).
Then with the 
key name we can 
retrieve the value.

Go ahead give it a 
try…do you get an 
alert for each item?



you are here 4  425

storing things locally

function shellGame() {

    localStorage.setItem("shell1", "pea");

    localStorage.setItem("shell2", "empty");

    localStorage.setItem("shell3", "empty");

    localStorage["shell1"] = "empty";

    localStorage["shell2"] = "pea";

    localStorage["shell3"] = "empty";

    var value = localStorage.getItem("shell2");

    localStorage.setItem("shell1", value);

    value = localStorage.getItem("shell3");

    localStorage["shell2"] = value;

    var key = "shell2";

    localStorage[key] = "pea";

    key = "shell1";

    localStorage[key] = "empty";

    key = "shell3";

    localStorage[key] = "empty";

    for (var i = 0; i < localStorage.length; i++) {

        var key = localStorage.key(i);

        var value = localStorage.getItem(key);

        alert(key + ": " + value);

    }

}

Key Value
shell1
shell2
shell3

Which shell has the pea? Write your answer here:

Ready to try your luck? Or should we say skill? We’ve got a game for you 
to test your command of localStorage, but you’ll need to be on your toes.  
Use your knowledge of getting and setting key/value pairs in localStorage 
to keep track of the pea as it shifts from shell to shell.

The Shell Game

You can type it in to check your answer and see which shell the pea is in.

Feel free to use this space to keep track of the state of 
localStorage.

Q: When I iterate through localStorage using 
localStorage.length and localStorage.key, what order 

are the items in? The same as the order I wrote 
them into the store?

A: Actually the order of the items isn’t defined. What 
does that mean? It means you’ll see every key/value 
in the store by iterating, but you shouldn’t count on any 
specific order in your code. In fact, different browers may 
give you different ordering for the same code and items.



426  Chapter 9

storage technologies chat

Tonight we have the incumbent browser storage technology, 
the “Cookie” along with the new front runner, Local Storage.

Tonight’s talk: Cookie and Local Storage

Cookie:
There he is, the golden boy, Local Storage. I’ve been 
in this business for over a decade and you think you 
can come along like you know something. A little 
wet behind the ears, aren’t you?

 
 

Do you have any idea how many pages I’m used on? 
Ever looked at your stats?

 
 
 

Hey, I’m ubiquitous, pervasive, everywhere! I don’t 
think there is a browser on a desktop, device or 
mobile browser no matter how old, where you won’t 
find me.

 

We’ll see. Just what exactly do you think you offer 
over me?  My storage works just fine.

 

I have no idea what you’re talking about.

Local Storage:
 
 
 

Sure, you could look at it that way, or, you could say 
I was built from all the experience gained from your 
mistakes.

 

Give it a few years and take another look. The 
reality is I’m helping to enable a whole new 
generation of  web applications in the browser. A lot 
of  those pages you mention, are just pages.

 
 
 

I’m catching up fast. Of  all the HTML5 
technologies, I’m one of  the best supported.

 

Well, I’m not sure I want to mention this in public, 
but you do have a size issue.

Hey, you started all this, not me. You know very well 
that you are limited to 4K of  storage, I have over 
1,200 times that!



you are here 4  427

storing things locally

Cookie:
Yeah, I’m light, nimble, we might even say agile.

 
 
 
 

Come on, I’m an open book, just pure storage to 
put whatever you want in.

 
 

Oh, and key/value pairs are some great innovation?

 
 

<Snicker> Oh yeah, and you store everything as a 
string! Nice work! </Snicker>

 

Yeah yeah, call me in ten years, we’ll see if  you’ve 
stood the test of  time.

 
 

You’ll see, you’ll be calling me crying when they say 
“Haha, 5 megabytes, is that all you got?”

Local Storage:

Ha, that’s rich. Have you ever talked to a web 
developer? You’re anything but agile. Given you are 
Mr. Statistics, do you have the stats on the number 
of  developer hours lost to stupid mistakes and 
misconceptions using cookies?

 

What you really mean is you essentially have no 
data format at all, so developers have to reinvent a 
new scheme for storing data in cookies.

We don’t need great innovation on storage; key/
value pairs work great, are straightforward and fit 
many computing applications.

 

You can get a lot of  mileage out of  strings, and if  
you need something more complex there are ways. 

 

Oh you can bet on it. Face it, you were doomed 
from the start. I mean come on, who names their 
kid Cookie?



428  Chapter 9

the stickies app

Now that you’ve had a little time to play with Web Storage, let’s take this 
implementation further.  We’re going to create a Sticky Notes application 
so you can see your stickies and add new ones. Let’s take a peek at what 
we’re going to build before we build it.

Getting serious about stickies

If we have existing stickies in storage, we want to see them when we load the page. Like the two stickies we already have.

We need a way to add new 
stickies. So we’ll create a form 
with an input and a button.

We’ll style the stickies using 
CSS so they look like real 
sticky notes!

We’ll also see the 
display updated 
with any new 
stickies, and we’ll 
accomplish that 
by adding a new 
element to the 
DOM for each 
sticky.

The Sticky Notes app will 
show us notes in localStorage 
and let us add new ones.

Remember, the keys for these two stickies are “sticky_0” and “sticky_1”. We’re going to keep following our convention and create keys for stickies with incrementing integers, like sticky_2, sticky_3, and so on.

To display 
stickies, we’ll 
iterate through 
all the stickies 
in localStorage, 
and add them 
to the DOM.

localStorage

key:  
“sticky_0”

value: 
“Pick up dry 

cleaning”

key:  
“sticky_1”

value: 
“Cancel cable, 
who needs it 

now?”

When you click 
Add Sticky 
Note to Self, a 
new sticky will 
be added to 
localStorage.



you are here 4  429

storing things locally

To start, we need a way to enter the text of  our sticky notes. 
And it would be great if  we could see them in the page, so 
we need an element to hold all the notes in the page. 

Let’s work on some code to do that, starting with the 
HTML markup—take your existing HTML file and add a 
<form> element, the <ul> element and the CSS link to it, 
like below:

Creating the interface

<!doctype html>

<html>

<head>

<title>Note to Self</title>

<meta charset=”utf-8”>

<link rel="stylesheet" href="notetoself.css">

<script src="notetoself.js"></script>

</head>

<body>

    <form>

        <input type="text" id="note_text">

        <input type="button" id="add_button" value="add Sticky Note to Self">

    </form>

    <ul id="stickies">

    </ul>

</body>

</html>

We’ve added a form as a user interface to enter new stickies.

And we’ve got to have somewhere to 
place our stickies in the interface, 
so we’re going to put them in a 
unordered list. 

The CSS handles making each list item look a little more like a Post-it note.

We’re going to move all our JavaScript 
to the file “notetoself.js”. 

We’ve thrown in a little CSS to make 
things look a little more like real 
stickies. This book isn’t about CSS, but 
feel free to check out the source!

Here’s our main HTML file.



430  Chapter 9

writing the stickies javascript

window.onload = init;

function init() {

    for (var i = 0; i < localStorage.length; i++) {

        var key = localStorage.key(i);

        if (key.substring(0, 6) == "sticky") {

            var value = localStorage.getItem(key);

            addStickyToDOM(value);

        }

    }

}

function addStickyToDOM(value) {

    var stickies = document.getElementById("stickies");

    var sticky = document.createElement("li");

    var span = document.createElement("span");

    span.setattribute("class", "sticky");

    span.innerHTML = value;

    sticky.appendChild(span);

    stickies.appendChild(sticky);

}

We’ve got everything we need in the page now, and we’ve got a couple sticky 
notes in localStorage waiting to be displayed.  Let’s get them on the page 
by first reading them from localStorage and then placing them inside the 
unordered list element we just created. Here’s how we do that:

Now let’s add the JavaScript

So now we need to write the addStickyToDOM function, which is going to insert 
the notes into the <ul> element:

...which reads all the existing 
stickies from localStorage 
and adds them to the <ul> 
through the DOM.

When the page is loaded we’re 
going to call the init function...

To do that we iterate over all items in the store.

Grab each key.
And then we make sure this 
item is a sticky by testing 
to see if its key begins with 
“sticky”. Why do we do that? 
Well, there might be other 
items stored in localStorage 
other than our stickies (more 
on this in a bit).

We’re being passed the text of the sticky 
note. We need to create a list item for the 
unordered list and then insert it.

So, let’s get the “stickies” list element.

Create a list element, and give it a class name of “sticky” (so we can style it).

And add the span to the 
“sticky” li, and the li to the 
“stickies” list.

Set the content of the span holding the 
text of the sticky note.

If it’s a sticky, then grab 
its value and add it to 
our page (via the DOM).



you are here 4  431

storing things locally

Time for another test drive!
Go ahead and get this code into your script element and load it into your browser.

Here’s what we got when we loaded the page in our browser:

Now all we need to do is enable the form so we have a way to add new notes. 
To do that we need to add a handler for when the “Add Sticky Note to Self ” 
button is clicked, and also write some code to create a new sticky. Here’s our 
code to add a handler:

function init() {

    var button = document.getElementById("add_button");

    button.onclick = createSticky;

    // for loop goes here

} 

Add this new code to your init function: Let’s grab a 
reference to the 

“Add Sticky Note to 
Self” button.

And add a handler 
for when it is clicked. 
Let’s call the handler 
createSticky.

The rest of the code 
in init stays the same, 
we’re saving a few trees 
by not repeating it here.

Completing the user interface



432  Chapter 9

creating stickies with code

function createSticky() {

    var value = document.getElementById("note_text").value;

    var key = "sticky_" + localStorage.length;

    localStorage.setItem(key, value);

    addStickyToDOM(value);

}

And the code to create a new sticky note:
When the button is clicked, 
this handler is invoked. It first retrieves the text in 

the form text box.

Then we add a new sticky to 
localStorage using our key.

And finally, we add the 
new text to the DOM to 
represent the sticky.

Then we need to create a unique key 
for the sticky. Let’s use “sticky_” 
concatenated with the length of the 
entire store; it will keep increasing, right?

Yet another test drive!
Now we’re truly interactive! Load this new code in your browser, 
enter a new “sticky note to self ” and click or tap the “Add Sticky 
Note to Self ” button. You should see the new sticky note appear 
in your list of  stickies. Here’s what we see:

Here’s our test 
run! Looks 
good!

Make sure you try closing your 
browser window and then opening 
the file again. Still see the stickies?

The key for this sticky is 
“sticky_2”, the length of the store 
(before we added it) concatenated 
with “sticky_”.

You can take that trip to Fiji now, and 
when you come back, your stickies will 
still be there waiting for you!



you are here 4  433

storing things locally

Q: Why do we test to see if each item’s key begins with the 
string “sticky”?

A: Remember that all the pages from one domain (like apple.com) 
can see every item stored from other pages in that domain. That 
means if we aren’t careful about naming our keys, we could clash with 
another page that is using the same keys in a different way. So, this 
is our way of checking to make sure an item is a sticky (as opposed 
to say an order number or a game level) before we use its value for a 
sticky note to self.

Q: What if there are lots of items in localStorage, including 
lots of items that aren’t stickies?  Wouldn’t it be inefficient to 
iterate through the entire set of items?

A: Well, unless you are talking about a very large number of items 
we doubt you’d notice a difference. That said, you’re right, it isn’t 
efficient and there may be better ways to approach managing our 
keys (we’ll talk about some of them shortly).

Q: I’m wondering about using localStorage.length as the 
sticky number in the key. As in 
       "sticky_" + localStorage.length 
Why did we do that?

A: We need some way to create new keys that are unique. We 
could use something like the time or generate an integer that we 
increase each time. Or, as we did, we can use the length of the store 
(which increases each time we add an item). If you are thinking this 
might be problematic, we’ll come back to that. And if you hadn’t 
thought about it being problematic, no worries, we’ll still come back 
to it.

Q: I created a bunch of stickies in Safari and then switched to 
Chrome, and I don’t see any of my stickies in Chrome. Why not?

A: Each browser maintains its own local storage. So if you create 
stickies in Safari, you will only see them in Safari.

Q: I just reloaded my page and now my stickies are in a 
different order!

A: When you add a new sticky note, we add the new sticky note 
item by appending it to the notes list, so it always goes at the end of 
the list. When you reload the page, the notes are added in the order 
they’re found in localStorage (which, remember, isn’t guaranteed to 
be in any particular order).   You might think that the order would be 
the same order that the items were added to the store, or some other 
reasonable ordering, however, you can’t count on that. Why? Well one 
reason is the spec doesn’t specify an ordering, so different browsers 
may implement this in different ways. If your browser does appear to 
return items in an order that makes sense to you, consider yourself 
lucky, but don’t count on that ordering because your user’s browser 
may order your items another way.

Q: I often use the “for in” form of the for loop. Will that work 
here?

A: Sure will. It looks like this:
 
    for (var key in localStorage) {
        var value = localStorage[key];
    }

Q: What if I don’t want a sticky any more? Can I delete 
stickies?

A: Yes, we can delete items from localStorage using localStorage.
removeItem method. You can also remove items from localStorage 
directly using the browser console. We’re going to show you both in 
this chapter. 

This will iterate through each 
key in localStorage. Very handy.

Given the way stickies are implemented, there would be a problem with our naming 
scheme if a user could delete a sticky at will. Can you think of what the problem is? 



434  Chapter 9

diagnosing browser storage

Wouldn’t it be great if  there were a tool to directly view the items in 
your localStorage? Or a tool to delete items or even clear the whole 
thing out and start over when you are debugging? 

Well, all the major browsers ship with built-in developer tools that 
allow you to directly examine your local store. As you might expect, 
these tools  differ between browsers, so rather than covering them 
all here, we’re going to point you in the right direction, and then 
you can dig in and figure out the specifics of  your own browser. As 
an example though, let’s see what Safari offers:

We’ve clicked on the Resources tab to inspect localStorage. 

The origin of the storage. Here we’re using local files served from http://localhost, but this might also be a domain name if you are testing on a hosted server.

The key/value pair 
for each item in the 
store is here.

By right-clicking on one 
of the storage items you 
can edit or delete the 
item right in the tool.

In Safari, we can use these tools to reload the 
Storage view, and delete a selected item.

Today’s Special, 
Flush your 
browser’s 
localStorage

We need to stop for a little scheduled service

Developer tools as they appear 
in the Safari browser.

Clicking will show you 
the storage associated 
with this origin.

We’ll talk about this later.
Old skool cookies if you want them.

To enable or access the developer tools, as we said, you’ll need to do different things for different 
browsers. Point your browser to http://wickedlysmart.com/hfhtml5/devtools.html 
to see how to do this on your specific browser. 

Not to mention new 
versions of the browsers 
are popping up faster 
than we can write pages!



you are here 4  435

storing things locally

<!doctype html>
<html>
<head>
<title>Maintenance</title>
<meta charset="utf-8">
<script>
window.onload = function() {
    var clearButton = document.getElementById("clear_button");
    clearButton.onclick = clearStorage;
}

function clearStorage() {
    localStorage.clear();
}
</script>
</head>
<body>
    <form>
        <input type="button" id="clear_button" value="Clear storage" />
    </form>
</body>
</html>

Do-It-Yourself maintenance
There’s another way to clear out your items (and as we we’ll see in a bit, to 
delete them one by one), which requires doing a little maintenance on your 
own, right from JavaScript. The localStorage API includes a handy method, 
clear, that deletes all items from your local store (at least, the ones from your 
domain). Let’s take a look at how we can use this call in JavaScript by creating 
a new file named maintenance.html. Once you’ve done that, add the code 
below, and we’ll step through how it works.

We’ve added one button to 
the page, and this code adds 
a click handler for the button.

When you click the button, the 
clearStorage function is called.

All this function does is call the 
localStorage.clear method. Use with caution 
as it will delete all the items associated 
with the origin of this maintenance page!

And here’s our button. Use this file 
whenever you need to erase everything 
in localStorage (good for testing).

This is a good tool 
for your toolbox.

After you’ve typed in the code, go ahead and load it in your browser. 
It’s safe (with regards to our Sticky Notes app) to go ahead and clear 
your localStorage now, so give it a try! Make sure you’ve figured out 
your developer tools first so you can observe the changes.

        This 
deletes all 
items in 
your 
domain!

If you’ve got a super 
valuable local store related 
to another project in the 
same domain, you’ll lose 
all your items by running 
this code. Just sayin’...



436  Chapter 9

a problem with stickies

Ah, you’ve discovered a major design flaw.
Alright, it’s time to come clean: we’ve built a great little 
app so far, and it should work perfectly for years to come as 
long as you don’t introduce any other items into the localStorage 
(like Joel did with his shopping cart). Once you do that, our 
whole scheme of  tracking stickies no longer works, or, at 
least, no longer works well. Here’s why:

First of all, our sticky notes are numbered from zero to 
the number of stickies (minus one):

To add a new sticky, we count the number of items in the 
local store and create our new key from that number:

  var key = "sticky_" + localStorage.length;

And to display all the stickies, we iterate from zero to 
the length of the local store (minus one):

Five notes, labeled from zero to four.

Length is now six, so iterate zero to five, displaying 
each note from “sticky_0” to “sticky_5”.

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4”

“sticky_5”

I’ve got an issue. While I’ve been doing the exercises 
in the book, I’ve also been using my knowledge to create 

our company’s new shopping cart. My Sticky Notes app stopped working. 
When I look at localStorage with the Safari dev tools, I see that my 

sticky counts are all messed up, I have “sticky_0”, “sticky_1”, “sticky_4”, 
“sticky_8”, “sticky_15”, “sticky_16”, “sticky_23”, “sticky_42”. 

I have a feeling this is happening because I’m creating other items in 
localStorage at the same time as the stickies.

What the heck is going on?!

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5”

If you’re willing 
to live with that, 
cool; otherwise 
you better keep 
reading.



you are here 4  437

storing things locally

Put a check next to the ways our current implementation could cause problems:

Displaying stickies is inefficient if there are a lot of items in localStorage 
that aren’t stickies.

It’s hard to quickly tell how many stickies there are; you have to iterate 
through every item in localStorage to get all the stickies.

A sticky could be overwritten by setItem if the size of the localStorage 
gets smaller when another app deletes its own items.

Use a cookie, it has to be easier than all this!

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5”

Now let’s add Joel’s items from his shopping cart to localStorage:

And let’s create a new sticky:

    var key = "sticky_" + localStorage.length;

When we need to iterate through the stickies to display them, we’re in trouble:

Now we have nine total items in localStorage.

“shopping 
cart item 1”

“shopping 
cart item 2”

“shopping 
cart item 3”

Here are Joel’s items that he’s 
using in his shopping cart code.

When we create our new sticky, the local store’s length is now nine, so we create a note named “sticky_9”. Hmm, that doesn’t seem right.

Length is now ten (we just added a new sticky), so iterate zero 
to nine, displaying each sticky from “sticky_0” to “sticky_9”. Uh oh, there’s no 

“sticky_6”, “sticky_7” 
or “sticky_8”.

“sticky_9”

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5”

“sticky_9”



438  Chapter 9

storing arrays

If only I could store an array in 
localStorage. We could use it to hold all 

the keys of the stickies and we could also always 
easily know the number of stickies we’re storing. 
But we all know localStorage stores only strings, 

so even though an array would be dreamy, 
I know it’s just a fantasy...



you are here 4  439

storing things locally

We haven’t been lying, it is true that you can store only strings as the values of  
localStorage items, however that isn’t the whole truth because we can always convert an 
array (or an object) into a string before we store it. Sure, it seems like cheating, but it’s a 
totally legit way to store your non-String data types in localStorage.

We know you’re dying to jump into the nitty-gritty of  how to store arrays, but before we 
do, let’s first step through how an array would actually solve our (and Joel’s) problems. 

We have the technology...

Let’s rewind and say we’ve got six stickies in localStorage:

and we’ve got an array in localStorage named “stickiesArray”:

Now let’s add a new sticky. Let’s call the sticky “sticky_815”. Why such a crazy 
number? Because we’re not going to care what it is called anymore as long as it 
is unique. So, to add the sticky, we just add “sticky_815” to the array and then 
store an item for the sticky, just like we have been. Like this:

Six stickies, labeled from zero to five.

Seven stickies: their keys no longer matter, they just need to be unique.

The stickies and the 
stickies array are both 
stored in localStorage.

We’ve got an 
extra sticky in 
localStorage.

Each element of 
the stickies array is 
a key to a sticky in 
localStorage.

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5”

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5” “sticky_815”

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5”

“stickiesArray”

“sticky_0” “sticky_1” “sticky_2” “sticky_3” “sticky_4” “sticky_5” “sticky_815”

“stickiesArray”

And we’ve extended 
the stickies array 
by one value.



440  Chapter 9

rewriting stickies using an array 

Okay, we know roughly how we’re going to keep track of  our stickies using an array, but let’s 
take this a little further and make sure we can iterate through and display all the stickies. In the 
current code we display all the stickies in the init function. Can we rewrite that using an array?  
We’ll look at the existing code first, and then see how it changes (hopefully for the better) with an 
array. Don’t type in this code yet; we’re focusing on the changes we need to make for now and not 
making this code bulletproof. We’ll bring on the bulletproof  stuff  in just a bit.

Reworking our app to use an array

function init() {

    // button code here...

    for (var i = 0; i < localStorage.length; i++) {

        var key = localStorage.key(i);

        if (key.substr(0, 6) == "sticky") {

            var value = localStorage.getItem(key);

            addStickyToDOM(value);

      }

   }

}

function init() {

    // button code here...

    var stickiesarray = localStorage["stickiesarray"];

    if (!stickiesarray) {

        stickiesarray = [];

        localStorage.setItem("stickiesarray", stickiesarray);

    } 

    for (var i = 0; i < stickiesarray.length; i++) {

        var key = stickiesarray[i];

        var value = localStorage[key];

        addStickyToDOM(value);

    }

}

Before...

New and improved

Here’s our old code that relies on 
the stickies having specific names, 
sticky_0, sticky_1, and so on..

Wow, this was messy, 
come to think of it.

As we now know, this might break because we can’t depend on all stickies to be there if we’re naming them based on the count of the items in localStorage.

We’re starting by grabbing the 
stickiesArray out of localStorage.

NOTE: you still don’t 
know how to store 
and retrieve arrays in 
localStorage, so treat 
this as pseudo-code 
until we show you. 
We’ll have to make a 
very small addition 
for this to work.

We’re iterating here 
through the array.

Each element of the array 
is the key of a sticky, so 
we’re using that to retrieve 
the corresponding item from 
localStorage.

We need to make sure there is an array in localStorage. 
If there isn’t one, then let’s create an empty one.

And then we add that value to 
the DOM just like we have been.



you are here 4  441

storing things locally

function init() {

    // button code here...

    var stickiesarray = localStorage["stickiesarray"];

    if (!stickiesarray) {

        stickiesarray = [];

        localStorage.setItem("stickiesarray",                (stickiesarray));

    } else {

        stickiesarray =            (stickiesarray);

    }

    for (var i = 0; i < stickiesarray.length; i++) {

        var key = stickiesarray[i];

        var value = localStorage[key];

        addStickyToDOM(value);

    }

}

We’ve almost got this app covered. All we need to do is to rework the createSticky method, 
which, as you’ll remember, just gets the text for the sticky from the form, stores it locally, and then 
displays it. Let’s look at the curent implementation before changing it:

Converting createSticky to use an array

function createSticky() {

    var value = document.getElementById("note_text").value;

    var key = "sticky_" + localStorage.length;

    localStorage.setItem(key, value);

    addStickyToDOM(value);

}

Rather than using the localStorage 
length to create a key, which we’ve 
seen can cause problems, we’re going to 
need to create a more unique key.

We’re also going to need to add the sticky to our stickies array and save the array in localStorage.

We still need to figure out how to actually store an array in localStorage.
You might have already guessed that we can use JSON to create a string representation 
of an array and if so, you’re right. And once you have that you can store it in localStorage.
Recall that there are only two methods in the JSON API: stringify and parse. Let’s put 
these methods to work by finishing the init function (check the solution at the end of the 
chapter before moving on):

We added this else clause because 
you’ll need to do something if you 
get the array from localStorage 
(because it’s a string not an array).



442  Chapter 9

adding a unique id

What needs to change?
We have two things that need to change in createSticky. 
First, we need a new way to generate a key for each sticky that 
is unique. We also need to alter the code so that it stores the 
sticky in the stickiesArray in localStorage.

Q: What are milliseconds since 1970?

A: You might already know a millisecond 
is a 1000th of a second, and the getTime 
method returns a count of milliseconds that 
have occurred since 1970. Why 1970? That 
behavior is inherited from the Unix operating 
system, which defined time that way. While 
it isn’t perfect (for instance, it represents 
times before 1970 with negative numbers), it 
does come in handy when you need a unique 
number or to track time in JavaScript code.

Q: Isn’t all this parsing and stringifying 
of JSON types rather inefficient? And if my 
array gets really large isn’t that also going 
to be inefficient to store?

A: Theorectially yes on both counts. But 
for typical web page programming tasks it 
usually isn’t an issue.  That said, if you’re 
implementing a serious application with very 
large storage requirements, you could see 
issues using JSON to convert items to and 
from strings.

var stickiesarray = getStickiesarray();

localStorage.setItem(key, value);

stickiesarray.push(key);

localStorage.setItem("stickiesarray", 

                     JSON.stringify(stickiesarray));

var currentDate = new Date();

var time = currentDate.getTime();

var key = "sticky_" + time;

Create a Date object, then get 
the current time in milliseconds.

And then create the key by 
appending the milliseconds to 
the string “sticky_”.

Our new 
code to 
create a 
unique key.

Let’s first grab the stickies array.

Rather than repeat all that code to get 
and check the stickiesArray, just like we did 
in init (on the previous page), we’re going to 
create a new function to do it. We’ll get to 
this in just a sec.

We then store the key with its value like we always did (only with our new key).
We then use the array method 
push, which appends the key onto 
the end of the stickies array.

And store the array back in 
localStorage, stringifying it first.

We need to create a unique key for the sticky
There are lots of  ways to create unique keys. We could use the 
date and time, or create fancy random 64-bit numbers, or hook 
our app up to an atomic-clock API. Hmm, the date and time 
sounds like a nice, easy way to do this. JavaScript supports a 
date object that returns the number of  milliseconds since 1970; 
that should be unique enough (unless you’re going to create 
your stickies at a really fast rate):

1

We need to store the new sticky in the array
Now that we have a way to create a unique key, we need to 
store the text of  the sticky with that key, and add the key to the 
stickiesArray. Let’s work through how to do that, and then 
we’ll put all this code together.

2



you are here 4  443

storing things locally

Putting it all together
It’s time to integrate all this new array-based code, including 
the init and createSticky functions. To do that we’re 
first going to abstract a small bit of  code that’s needed in 
both functions—it’s the code that retrieves the stickies array 
from localStorage. You’ve seen it in init, and we need it 
again in createSticky. Let’s take that code and put it in a 
method called getStickiesArray—it should look familar 
to you given the code we’ve already walked through:

function getStickiesarray() {

    var stickiesarray = localStorage.getItem("stickiesarray");

    if (!stickiesarray) {

        stickiesarray = [];

        localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

    } else {

        stickiesarray = JSON.parse(stickiesarray);

    }

    return stickiesarray;

}

First we get the item 
“stickiesArray” out of 
localStorage.

If this is the first time we’ve 
loaded this app, there might 
not be a “stickiesArray” item.

And if there isn’t an array yet we 
create an empty array, and then 
store it back in localStorage.

Don’t forget to stringify it first!

Otherwise, we found the array in 
localStorage, and we need to parse it 
to convert it to a JavaScript array.

In either case, we end 
up with an array, and 
we return it.

Excellent, once I’ve got this working 
I’m going to rework my shopping cart the same 
way and these two apps are going to be able to work 

from the same origin without any problems. 
I also love using an array; it makes everything much 

simpler to keep track of!



444  Chapter 9

integrating all the code

function init() {

    var button = document.getElementById("add_button");

    button.onclick = createSticky;

    var stickiesarray = getStickiesarray();

    for (var i = 0; i < stickiesarray.length; i++) {

        var key = stickiesarray[i];

        var value = localStorage[key];

        addStickyToDOM(value);

    }

}

Putting it all together continued...
With getStickiesArray written, let’s look at the simplified, final versions 
of  the init and createSticky functions. Go ahead and type these in:

Remember we also set up 
the button events here in 
the init method.

Next we grab the array with the 
stickies’ keys in it.

Now we’re going to iterate 
through the stickies array (not 
the localStorage items!).

function createSticky() {

    var stickiesarray = getStickiesarray();

    var currentDate = new Date();

    var key = "sticky_" + currentDate.getTime();

    var value = document.getElementById("note_text").value;

    localStorage.setItem(key, value);

    stickiesarray.push(key);

    localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

    addStickyToDOM(value);

}

Each item in the array is a key to a sticky. Let’s grab each one.
And grab its value 
from localStorage.

And add it to the 
DOM just like we’ve 
been doing.

With init finished, we just have createSticky left:

We start by grabbing the stickies array.
Then let’s create that unique key 
for our new sticky.

We add sticky key/value 
to localStorage.

And add the new key to the stickies array...

And then we stringify the array 
and write back to localStorage.Finally, we update the page with the new sticky by adding the sticky to the DOM.



you are here 4  445

storing things locally

Test Drive!
Get all this code in and clear out your localStorage to make a 
nice clean start. Load this code, and you should see exactly the 
same behavior as last time. Joel, you’ll see your code working 
correctly now!

Q: We’re using “sticky_” as the 
prefix for our localStorage item 
names. Is there a convention for 
localStorage naming schemes?

A: There is no convention for 
naming localStorage items. If 
your web app is on a small site at 
a domain that you have control 
over, then naming shouldn’t be an 
issue since you’ll be aware of all 
the names being used by all the 
different pages at the site. We think 
it’s probably a good idea to use a 
name that indicates the page or web 
app relying on that item. So “sticky_” 
helps us remember that those items 
are related to the Sticky Notes app.

Q: So if my sticky notes app is 
just one of many apps at a domain, 
I have to worry about potential 
conflicts right?

A: Yes. In that case, it would be 
a good idea for you (or someone 
who manages the web sites at the 
domain) to put together a plan for 
how to name items.

Q: If I have a lot of stickies, my 
stickiesArray is going to get very 
long. Is that a problem?

A: Unless you create thousands 
of stickies, it shouldn’t be (and if 
you do create thousands of stickies, 
we want to know how you are so 
productive!). JavaScript is pretty fast 
these days.

Q: So just to be clear, we can 
store any object in localStorage, 
just by stringifying it first with 
JSON?

A: Right. JSON strings are 
simplified versions of JavaScript 
objects, and most simple JavaScript 
objects can be turned into a 
string using JSON and stored in 
localStorage. That includes arrays 
(as you’ve seen) as well as objects 
containing property names and 
values, as you’ll see shortly.

Pick a naming scheme 
for your localStorage 
items that won’t 
conflict with those of 
other applications at 
the same domain.

If you need to store 
arrays or objects 
in localStorage, use 
JSON.stringify to 
create the value to 
store, and JSON.parse 
after you retrieve it.



446  Chapter 9

another feature request: delete

It’s hard to manage my busy 
life if I can’t get rid of these 
stickies after I’m done with them. 
Can you add a delete function?

Deleting sticky notes
She’s right, this app isn’t going to be very successful if  we can’t remove 
stickies. We’ve already mentioned the localStorage.removeItem method 
in this chapter, but we haven’t really talked about it. The removeItem 
method takes the key of  an item, and removes that item from localStorage:

localStorage.removeItem(key);

That sounds easy enough, doesn’t it? Ah, but if  you think about it, there is 
more to removing an sticky note than calling the removeItem method—we 
also need to deal with stickiesArray...

This method removes 
the item in localStorage 
with the given key. 

Be careful around 
the sharp objects!

removeItem has one 
parameter: the key of the 
item to be removed.



you are here 4  447

storing things locally

Your pseudo-code here

Let’s delete a sticky!
Below you’ll see the contents of localStorage. You’ve got all the JavaScript 
you want along with the removeItem method. Using a pencil, sketch 
out what you need to do to remove sticky_1304220006342 from 
localStorage. After you’ve sketched it out, go ahead and write some 
pseudo-code below to show how you’re going to write your code.

“shopping 
cart item 1”

“shopping 
cart item 2”

“sticky_1304294652202” “sticky_1304220006342” “sticky_1304221683892” “sticky_1304221742310”

“sticky_1304294652202” “sticky_1304220006342” “sticky_1304221742310” “sticky_1304221683892”

“stickiesArray”



448  Chapter 9

exercise solution

(1)  Remove the sticky with the key “sticky_1304220006342” from localStorage 
using the localStorage.removeItem method.

(2) Get the stickiesArray.
(3) Remove element with key=“sticky_1304220006342” from the stickiesArray.
(4) Write stickiesArray back into localStorage (stringifying it first).
(5) Find “sticky_1304220006342” in the DOM and remove it.

Let’s delete a sticky!
Below you’ll see the contents of localStorage. You’ve got all the JavaScript 
you want along with the removeItem method. Using a pencil, sketch 
out what you need to do to remove sticky_1304220006342 from 
localStorage. After you’ve sketched it out, go ahead and write some 
pseudo-code below to show how you’re going to write your code. Here’s 
our solution.

“shopping 
cart item 1”

“shopping 
cart item 2”

“sticky_1304294652202” “sticky_1304220006342” “sticky_1304221683892” “sticky_1304221742310”

“sticky_1304294652202” “sticky_1304220006342” “sticky_1304221742310” “sticky_1304221683892”

“stickiesArray”

localStorage.removeItem(“sticky_1304220006342”);



you are here 4  449

storing things locally

The deleteSticky function
You made a plan for how to delete the sticky notes, so let’s take a look at the 
deleteSticky function:

I get the code, but I don’t see 
how we’re getting the key to pass to 

deleteSticky.  Come to think of it, how 
is the user choosing the note to delete 

in the first place?

function deleteSticky(key) {

    localStorage.removeItem(key);

    var stickiesarray = getStickiesarray();

    if (stickiesarray) {

        for (var i = 0; i < stickiesarray.length; i++) {

            if (key == stickiesarray[i]) {

                stickiesarray.splice(i,1);

            }

        }

        localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

    }

}

We’re using the getStickiesArray function to get 
the stickiesArray from localStorage.

We make sure we have a stickiesArray 
(just in case), and then iterate 
through the array looking for the key 
we want to delete.

When we find the right key, we delete 
it from the array using splice.

First, we remove the sticky note from localStorage using 
removeItem, passing in the key of the sticky to delete.

Finally, we save the 
stickiesArray (with the key 
removed) back to localStorage.

splice removes elements from an array starting at the location given by the first argument (i), for as many elements as are specified in the second argument (1). 



450  Chapter 9

selecting stickies with html and javascript

How do you select a sticky to delete?

function addStickyToDOM(key, value) {

    var stickies = document.getElementById("stickies");

    var sticky = document.createElement("li");

    sticky.setattribute("id", key);

    var span = document.createElement("span");

    span.setattribute("class", "sticky");

    span.innerHTML = stickyObj.value;

    sticky.appendChild(span);

    stickies.appendChild(sticky);

    sticky.onclick = deleteSticky;

}

We need a way for the user to select a sticky note to delete. We 
could get all fancy and add a little delete icon to each note, but 
for our Sticky Notes app, we’re going to do something much 
simpler: we’re going to just delete the sticky note if  the user 
clicks on it. That may not be the best implementation in terms 
of  usability, but it’s straightforward.

To implement this, we first need to change the stickies so that 
we can detect when a sticky is clicked on, and then we’ll pass that 
along to the deleteSticky function.

A lot of  this needs to happen in the addStickyToDOM function, 
let’s see how:

When we click on a sticky 
note, it will get deleted. 

We’re adding a unique id to the <li> 
element that represents the sticky 
in the DOM. We’re doing this so 
deleteSticky will know which sticky 
you clicked on. Since we already know 
the sticky’s key is unique, we’re just 
using that as the id.

We’re also adding click handler to every sticky. When you click on a 
sticky, deleteSticky will be called.

Big picture: we’re going to use the key of the sticky note, which, remember, is “sticky_” + 
time, to uniquely identify the note. We’ll pass in this key whenever we call addStickyToDOM.

Your job now is to update all the code so that everywhere we’re calling addStickyToDOM, we’re 
passing in the key as well as the value. You should be able to easily find these places. But after 
you’ve finished , check the solution at the end of the chapter to make sure.

Don’t skip this, 
or the upcoming 
test drive 
won’t work!



you are here 4  451

storing things locally

<click>

<click>

How to get the sticky to delete from the event

function deleteSticky(e) {

    var key = e.target.id;

    if (e.target.tagName.toLowerCase() == "span") {

        key = e.target.parentNode.id;

    }

    localStorage.removeItem(key);

    var stickiesarray = getStickiesarray();

    if (stickiesarray) {

        for (var i = 0; i < stickiesarray.length; i++) {

            if (key == stickiesarray[i]) {

                stickiesarray.splice(i,1);

            }

        }

        localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

        removeStickyFromDOM(key);

    }

}

We’ve now got an event handler on each sticky note listening for clicks. When you 
click on a sticky, deleteSticky will be called and an event object will be passed into 
deleteSticky with information about the event, like which element was clicked on.  
We can look at the event.target to tell which sticky was clicked on. Let’s take a closer 
look at what happens when you click on a sticky note.

Either way, the event generated by 
your click gets passed into deleteSticky. The target is the element you clicked on that generated the event, 

and we can get the id of that element from the target property. 
If the target is <li>, we’re set.

<li id="sticky_1304270008375">

     <span class="sticky">Pick up dry cleaning</span>

</li>

If you click on 
the text, the 
event target is 
the <span> inside the <li>, which is not what we want.

If the target is the <span>, 
then we need to get the id of 
the parent element, the <li>. 
The <li> is the element with the 
id that is the key we need.

If you click on the yellow 
part of a sticky, the 
event target is the <li> 
element. This is what we 
want, because the <li> 
now has an id with the 
key of the sticky note.

This is the 
HTML for the 
sticky note that 
we create in 
addStickyToDOM.

Now we can use the key 
to remove the item from 
localStorage, and from 
the stickiesArray.

We also need to remove the <li> holding the sticky from the page, so it disappears when you click it. We’ll do that next...



452  Chapter 9

deleting stickies from the dom

Nice work! Now, can you give me 
a way to color code my stickies? 
You know yellow for urgent, blue 
for ideas, pink for backburner, 

that kind of thing?

Okay, test it...
Get all that code in, load the page, add and delete some stickies. Quit 
your browser, load it again, and give it a real run through!

But of course we can!
Come on, given your level of  experience with this we’re going to be able to 
knock this out. How do we do it? Well, we’re going to create an object to store 
the text of  the note and its color, and then we’re going to store that as the 
value of  the sticky item, using JSON.stringify to convert it to a string first.

function removeStickyFromDOM(key) {

    var sticky = document.getElementById(key);

    sticky.parentNode.removeChild(sticky);

}

To finish up the delete, we need to implement the removeStickyFromDOM function.  
You updated the addStickyToDOM function earlier to add the key of  the sticky as 
the id of  the <li> element holding the sticky in the DOM, so we can use document.
getElementById to find the sticky in the DOM. We get the parent node of  the 
sticky, and use the removeChild method to delete the sticky:

We grab the <li> element 
from the DOM...
... and remove it by first getting its parentNode and then using removeChild to remove it.<li> <ul> remove the child node <li>

Delete the sticky from the DOM, too

We can delete 
stickies now! 

Pass in the key (also the id) of the 
sticky element we’re looking for.



you are here 4  453

storing things locally

Right now, all our notes are yellow. Wouldn’t it be nicer if  we could have a 
whole range of  sticky note colors? 

This is way 
better, don’t 
you think?

We could add 
a selection 
menu up here 
so you can 
choose the 
color you 
want for your 
note.

Update the user interface so we can specify a color

Let’s tackle the easy part first: updating the HTML so we have a selection 
menu of  colors to choose from. Edit your notetoself.html file and 
update your form to add the colors like this:

<html>

...

    <form>

        <label for="note_color">Color: </label>

        <select id="note_color">

            <option value="LightGoldenRodYellow">yellow</option>

            <option value="PaleGreen">green</option> 

            <option value="LightPink">pink</option>

            <option value="LightBlue">blue</option>

        </select>

        <label for="note_text">Text:</label> <input type="text" id="note_text">

        <input type="button" id="add_button" value="add Sticky Note to Self">

    </form>

...

</html>

We’re only changing the 
form, the rest stays 
the same.

We’ve added four sticky 
colors to choose from.

Notice the id of the <select>; we’ll 
need that to grab the value of the 
selected option in the JavaScript.

We’ll add a 
label for the 
sticky text so 
the user knows 
what that 
field is for.

And the rest of the form is the same.

We’ve been using CSS to define the default color for the notes. Now we 
want to store a note’s color with the note itself. So, now the question is: 
how are we going to store the color for the sticky note in localStorage?

The value of each 
option is the name of 
a color we can just 
plug right into the 
style for our stickies.



454  Chapter 9

using json to store color

localStorage

key:  
“sticky_1304391836840”

value: 
{“value”:”Cancel 

cable tv, who needs it 
now?”,”color”:”LightPink”}

function createSticky() {

    var stickiesarray = getStickiesarray();

    var currentDate = new Date();

    var colorSelectObj = document.getElementById("note_color");

    var index = colorSelectObj.selectedIndex;

    var color = colorSelectObj[index].value;

    var key = "sticky_" + currentDate.getTime();

    var value = document.getElementById(“note_text”).value;

    var stickyObj = {

            "value": value,

            "color": color

    };

    localStorage.setItem(key, JSON.stringify(stickyObj));

    stickiesarray.push(key);

    localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

    addStickyToDOM(key, stickyObj);

}

JSON.stringify, it’s not just for Arrays
To store the color of  the sticky with the text of  the sticky, we can use the same 
technique we used for stickiesArray: we can store an object that contains the 
text and the color as the value for the sticky in localStorage.

We’re going to take the values the user enters 
for the color and the sticky note text and 
package them up into a simple object.

And we’ll 
store that in 
localStorage 
with the 
sticky’s key.

Just like stickiesArray, we’ll 
have to call JSON.stringify 
on the sticky value before 
we call localStorage.setItem 
to save the value.

We do the usual thing to 
grab the value of the 
selected color option.

Let’s rewrite the createSticky function to store the color with the sticky note text. To 
represent the text and the color, we’ll use our handy object:

Then we use that color to 
create stickyObj: an object 
that contains two properties, 
the text of the sticky, and 
the color the user selected. 

And, we JSON.stringify 
the stickyObj before we 
put it in localStorage.

Now, we’re passing the object instead of a text string to addStickyToDOM. Which means you’ll need to update addStickyToDOM too, right?

var stickyObj = {
    "value": "Cancel cable tv, who needs it now?",
    "color": "LightPink"
};



you are here 4  455

storing things locally

function addStickyToDOM(key, stickyObj) {

    var stickies = document.getElementById("stickies");

    var sticky = document.createElement("li");

    sticky.setattribute("id", key);

    sticky.style.backgroundColor = stickyObj.color;

    var span = document.createElement("span");

    span.setattribute("class", "sticky");

    span.innerHTML = stickyObj.value;

    sticky.appendChild(span);

    stickies.appendChild(sticky);

    sticky.onclick = deleteSticky;

}

function init() {

    var button = document.getElementById("add_button");

    button.onclick = createSticky;

    var stickiesaray = getStickiesarray();

    for (var i = 0; i < stickiesarray.length; i++) {

        var key = stickiesarray[i];

        var value = JSON.parse(localStorage[key]);

        addStickyToDOM(key, value);

    }

}

We need to change the parameter 
here to be the stickyObj rather 
than the text value of the sticky.

Using the new stickyObj
Now that we’re passing stickyObj to addStickyToDOM, we need to update the 
function to use the object instead of  the string we were passing in before, and to set 
the background color of  the sticky.  It’s a fairly easy change though; let’s take a look:

And then we need to get the 
text value we’re going to use in 
the sticky note from the object. 

There is one other place we need to update the code, and that is in init, where 
we are getting the stickies from localStorage and passing to addStickyToDOM 
when we first load the page. 

Now when we get the value 
of the sticky note from 
localStorage, we need to 
JSON.parse it, because it’s an 
object, not a string anymore.

And we pass that object to 
addStickyToDOM instead of the 
string (the code looks the same, but 
the thing we’re passing is different).

Notice that when we set the 
background color property 
in JavaScript, we specify 
it as backgroundColor, NOT 
background-color, like in CSS.

We get the color from the stickyObj 
we’re passing into addStickyToDOM.

HTML element 
objects have a 
style property 
you can use 
to access the 
style of that 
element.



456  Chapter 9

testing color stickies

Test drive sticky note colors
Before running the Note to Self  app again, you’ll need to clear out your localStorage 
first because the previous version of  our stickies didn’t have any color stored in them, 
and now we’re using a different format for our sticky values. Before we were using 
strings, now we’re using objects. So empty out your localStorage, reload the page, and 
add some stickies, selecting a different color for each one.  Here are our stickies (and 
we’ll also check out localStorage too):

We picked yellow, pink, and blue for our 
sticky notes when we added them. 

Each sticky note’s value is now a (JSON 
stringified) object containing the text value 
of the sticky and the color of the sticky. 

You can use your 
maintenance.html file to 
clear out your localStorage, 
or use the console.



you are here 4  457

storing things locally

I was thinking, if we can store 
objects and arrays, why don’t we just 
store all the notes in the array itself, 
why do we need all these other items? 

It seems to make it all complicated when 
it could just be embedded in one item in 

localStorage.

For some uses, that makes a lot of sense.
Knowing what we know now, we certainly could design the 
stickies so that they were objects embedded in an array. And 
going forward you might decide to do just that. It might also 
make sense for your shopping cart. The only downside is that 
the JSON.stringify and JSON.parse methods have to do a 
lot more work anytime you make a change, for instance to add 
a note we have to parse the entire set of  notes, add the note, 
and then stringify all the notes again before writing them back 
in to the store. But, for the amount of  data in Stickies, that 
shouldn’t be a problem in general (although do think about 
mobile devices with limited CPUs and the effect of  the CPU 
usage on battery life).

So whether you want to pack everything into one object or 
array in localStorage, really depends on how many data items 
you need to store, how big each one is, and what type of  
processing you’re going to do on them.

While our implementation here may be a bit of  overkill for 
a limited number of  Stickies, we hope you agree it gave us a 
great way to think about the localStorage API and how to deal 
with items in it.



458  Chapter 9

We’ve told you that you have five whole megabytes of storage on every 
user’s browser, but while five megabytes sounds like a lot, remember that 
all your data is stored in the form of a string rather than in a byte-efficient 
data format. Take a long number, say, the national debt—when expressed in 
floating point form it takes up very little storage, but when expressed in the 
form of a string, it takes up many times that amount of memory. So, given 
that, the five megabytes might not hold as much as you think.

So what happens when you use all 5MBs? Well, unfortunately this is one 
of those behaviors that isn’t well defined by the HTML5 specification, 
and browsers may do different things when you exceed your limit—the 
browser may ask if you want to allow more storage, or it may throw a 
QUOTA_EXCEEDED_ERR exception, which you can catch like this:

try { 
   localStorage.setItem(mykey, myvalue);
} catch(e) {
   if (e == QUOTa_ExCEEDED_ERR) {
      alert("Out of storage!");
   }
}

A try/catch 
captures any 
exceptions that 
are thrown within 
the try block.

Here’s a setItem call in the 
middle of the try block; 
if anything goes wrong and 
setItem throws an exception, 
the catch block will be invoked.

We’re testing to see if this is a storage quota error (as opposed to 
some other type of exception). If so, we alert the user. You’ll most 
likely want to do something more meaningful than just an alert.

Don’t Try this at Home 
(or blowing up your 5 megabytes)

Not all browsers are currently throwing 
the QUOTA_EXCEEDED_ERR exception. 
But they still throw a exception when 
you exceed your limit, so you may want to 
handle the general case of an exception 
occuring when you set an item.

This is one JavaScript 
area we haven’t 
covered, you might 
want to add it to 
your list of things to 
look into.



you are here 4  459

storing things locally

We don’t see any reason not to push your browser to the limit, see what it’s made 
of, see how far it can go, see what its behavior is under pressure. Let’s write a little 
code to push your browser over its storage limit:

<html>

<head>

<script>

localStorage.setItem("fuse", "-");

while(true) {

    var fuse = localStorage.getItem("fuse");

    try {

        localStorage.setItem("fuse", fuse + fuse);

    } catch(e) {

        alert("Your browser blew up at" + fuse.length + " with exception: " + e);

        break;

    }

}

localStorage.removeItem("fuse");

</script>

</head>

<body>

</body>

</html>

Let start with a one-character 
string, with the key “fuse”.

And just keep 
increasing its size...

...by doubling the string (by 
concatenating it with itself).

Then we’ll try to write it 
back to localStorage.

If it blows up, we’re done! We’ll alert the user and get out of this loop.And let’s not leave a 
mess, so remove the item 
from localStorage.

Go ahead and type this in, light the fuse by loading it, and have 
fun!  Try this on a few different browsers. If you have 

the nerve 
to run this, 
put your 
results here.

        Use at your 
own risk!

Seriously, this 
code could 

crash your browser, which 
might lead to your operating 
system being unhappy, which 
could lead to you losing work. 
Use at your own risk!!!



460  Chapter 9

info about session storage

I’ve been beta testing my shopping 
cart app and users don’t want their 
shopping cart sticking around in the browser. 
How can I remove all the shopping cart 
items when the user closes the browser? 

Did I choose the wrong technology?

No Luke, there is another Skywalker.
It turns out that localStorage has a sister, named 
sessionStorage. If  you substitute the global variable 
sessionStorage everywhere you’ve used 
localStorage then your items are stored only during 
the browser session.  So, as soon as that session is over 
(in other words, the user closes the browser window), 
the items in storage are removed.

The sessionStorage object supports exactly the 
same API as localStorage, so you already know 
everything about it you need to.

Give it a try!



you are here 4  461

storing things locally

getItem

length

QUOTA_EXCEEDED_ERR

setItem

removeItem

key

I take keys and values and write them into the localStorage. 
Now keep in mind if  there’s an item with that key already in 
the localStorage, I’m not going to warn you, I’m just going to 
overwrite it so you better know what you’re asking for.

If  you overstay your welcome in localStorage and use too much 
space you’ll get an exception and you’ll be hearing from me.

Need to knock off  an item?  I’ll get the job done discreetly.

Just give me a key and I’ll go out and find the item with that key 
and hand its value to you.

When you’ve had it with all the items in your localStorage, I 
clean up all those items and throw them away, leaving you with 
a nice fresh and empty localStorage (keep in mind I can only 
clean up my own origin).

Need to know how many items are in your localStorage? That’s me.

clear

Give me an index, and I’ll give you a key from that index in 
localStorage.

At this point you’ve been through the localStorage API. Below you’ll find all the main characters 
of the API sitting with their masks on. See if you can determine who does what. We’ve gone 
ahead and done one for you to get you started.

sessionStorage

localStorage

Use me to store items for the long term.

I’m a short term kinda guy, I’ll store your stuff  just as long as 
you have the browser open.  Close your browser, and poof, all 
your stuff  is gone.



462  Chapter 9

ways to use web storage

Now that you know localStorage, 
how are you going to use it?

I’m going to store playlists with 
metadata for my users. They’ll 
be able to store their favorite 
clips along with the timecode 
where they left off viewing.

I’m using sessionStorage 
for my new ecommerce library’s 
shopping cart. If the user closes 
the browser, I want the shopping 

cart to go away.

There are many ways to make use of  localStorage—the Stickies app used 
them so we didn’t need a server, but even with a server, localStorage can 
be quite helpful. Here’s a few other ways developers are using them:

In my new Twitter client, I’m going to 
cache Twitter search results for efficiency 

with localStorage. When my users search, 
I’m going to check the local results first. That 

could really help my mobile users.



you are here 4  463

storing things locally

This gives me a new way to store user state. 
I used to need some kind of server-side based 
session and backend storage. Now I can just 
store my users’ state locally, and bring in the 

server-side code only when I have to.

I’ve got a really 
cool game that works in two 
different browser windows, 
and I’m using localStorage to 

synchronize state.

I’m storing lots of local 
data to make my clients’ 
apps fast on their mobile 

devices. Having a large store 
on the client side is a huge 

win for me.



464  Chapter 9

review of web storage

 � Web Storage is a store in your browser and an 
API you can use to save and retrieve items from 
the store.

 � Most browsers provide at least 5 megabytes of 
storage per origin.

 � Web Storage consists of local storage and 
session storage.

 � Local storage is persistent, even if you close 
your browser window or quit the browser.

 � Items in session storage are removed when you 
close your browser window or quit the browser. 
Session storage is good for temporary items, 
not longer term storage.

 � Both local storage and session storage use 
exactly the same API.

 � Web Storage is organized by origin (think 
domain). An origin is the location of the 
document on the Web (e.g., wickedlysmart.com 
or headfirstlabs.com).

 � Each domain has a separate storage, so items 
stored in one origin are not visible to web pages 
in another origin.

 � Use localStorage.setItem(key) to add a value to 
the store.

 � Use localStorage.getItem(key) to retrieve a 
value from the store.

 � You can use the same syntax as associative 
arrays to set and retrieve items to and from the 
store. Use localStorage[key] to do this.

 � Use the localStorage.key() method to 
enumerate the keys in localStorage.

 � localStorage.length is the number of items in 
localStorage at a given origin.

 � Use the console in your browser to see and 
delete items in localStorage.

 � You can delete items directly from localStorage 
by right-clicking on an item and choosing delete 
(note: may not work in all browsers).

 � You can delete items from localStorage in code 
using the removeItem(key) method and the clear 
method. Note that the clear method deletes 
everything in localStorage at the origin where 
you do the clear.

 � The keys for each localStorage item must be 
unique. If you use the same key as an existing 
item, you’ll overwrite the value of that item.

 � One way to generate a unique key is to use the 
current time in milliseconds since 1970, using 
the Date object’s getTime() method.

 � It is important to create a naming scheme for 
your web app that will still work if items are 
removed from the store, or if another app 
creates items in the store.

 � Web Storage currently supports storing strings 
as values for keys.

 � You can convert numbers stored in localStorage 
as strings back to numbers using parseInt or 
parseFloat.

 � If you need to store more complex data, you 
can use JavaScript objects and convert them 
to strings before storing using JSON.stringify, 
and back to objects after retrieving using JSON.
parse.

 � Local storage may be particularly useful 
on mobile devices to reduce bandwidth 
requirements.

 � Session storage is just like local storage, except 
that what’s saved in the browser’s store doesn’t 
persist if you close the tab, the window, or exit 
the browser. Session storage is useful for short 
term storage, such as for a shopping session.



you are here 4  465

storing things locally

HTML5cross
Take some time to test your own local storage.

1 2

3 4

5 6

7

8 9

10

11

12

13

Across
3. When we used the _________ of localStorage to create key 
names, we ran into a problem: gaps in the names of our sticky 
notes.
4. Luke Skywalker’s sister.
7. We have to _________ an object before we store it in 
localStorage.
8. Most browsers offer ________ megabytes of storage per 
origin.
9. We can detect which sticky note the user clicks on by 
looking at the event _________.
10. We store an item in localStorage with this method.
11. localStorage can store only _________________.
12. We thought it would be just a fantasy to store an _______ 
in localStorage but it turns out you can, with JSON.
13. Use a try/_______ to detect quota exceeded errors in 
localStorage.

Down
1. We used the _____________ to hold the keys of all our 
stickies so we could easily find them in localStorage.
2. sessionStorage is just like localStorage except its not 
__________ if you close your browser window.
5. We create an _______ to store the sticky note text and its 
color in one localStorage item.
6. Use _________ to convert a string to an integer.
7. Cookie has a _________ issue.
8. If you store something in your browser and fly to 
________ , it will still be there when you come back.

Across
3.  When we used the _________ of localStorage to create 

key names, we ran into a problem: gaps in the names of 
our sticky notes.

4. Luke Skywalker’s sister.
7.  We have to _________ an object before we store it in 

localStorage.
8.  Most browsers offer ________ megabytes of storage per 

origin.
9.  We can detect which sticky note the user clicks on by 

looking at the event _________.
10. We store an item in localStorage with this method.
11. localStorage can store only _________________.
12.  We thought it would be just a fantasy to store an _______ 

in localStorage but it turns out you can, with JSON.
13.  Use a try/_______ to detect quota-exceeded errors in 

localStorage.

Down
1.  We used the _____________ to hold the keys of all our 

stickies so we could easily find them in localStorage.
2.  sessionStorage is just like localStorage except its not 

 __________ if you close your browser window.
5.  We create an _______ to store the sticky note text and its 

color in one localStorage item.
6. Use _________ to convert a string to an integer.
7. Cookie has a _________ issue.
8.  If you store something in your browser and fly to 

 ________ , it will still be there when you come back.



466  Chapter 9

exercise solutions

function shellGame() {
    localStorage.setItem("shell1", "pea");
    localStorage.setItem("shell2", "empty");
    localStorage.setItem("shell3", "empty");
    localStorage["shell1"] = "empty";
    localStorage["shell2"] = "pea";
    localStorage["shell3"] = "empty";
    var value = localStorage.getItem("shell2");
    localStorage.setItem("shell1", value);
    value = localStorage.getItem("shell3");
    localStorage["shell2"] = value;
    var key = "shell2";
    localStorage[key] = "pea";
    key = "shell1";
    localStorage[key] = "empty";
    key = "shell3";
    localStorage[key] = "empty";

    for (var i = 0; i < localStorage.length; i++) {
        var key = localStorage.key(i);
        var value = localStorage.getItem(key);
        alert(key + ": " + value);
    }
}

Key Value
shell1 empty
shell2 pea
shell3 empty

Which shell had the pea?

Ready to try your luck? Or should we say skill? We’ve got a game for you 
to test your command of localStorage, but you’ll need to be on your toes.  
Use your knowledge of getting and setting key/value pairs in localStore to 
keep track of the pea as it shifts from shell to shell. Here’s our solution.

The Shell Game Solution

The pea is under shell2.

Your job was to update all the code so that everywhere we’re calling 
addStickyToDOM, we’re passing in the key as well as the value. 

You should have updated all the calls to addStickyToDom in init and  
createSticky, to look like this:

addStickyToDOM(key, value);



you are here 4  467

storing things locally

function init() {

    // button code here...

    var stickiesarray = localStorage["stickiesarray"];

    if (!stickiesarray) {

        stickiesarray = [];

        localStorage.setItem("stickiesarray", JSON.stringify(stickiesarray));

    } else {

        stickiesarray = JSON.parse(stickiesarray);

    }

    for (var i = 0; i < stickiesarray.length; i++) {

        var key = stickiesarray[i];

        var value = localStorage[key];

        addStickyToDOM(value);

    }

}

If there isn’t an array in localStorage, then we create an 
empty array and assign it to the variable stickiesArray. 
At this point, the variable stickiesArray is a string.

If we had to create a 
new array, we use JSON.
stringify to create a string 
representation of the array, 
and then we store it..

If the stickies array is already stored 
in localStorage (as a string), then we 
need to parse it using JSON.  After 
this we’ll have an array of keys 
assigned to the stickiesArray variable.

Just to be clear, we’re taking the string pointed to by stickiesArray, parsing it into an array, and then assigning that array back to the stickiesArray variable.

Grab the array from localStorage.

We still need to figure out how to actually store an array in localStorage
You might have already guessed that we can use JSON to create a string representation 
of an array and if so, you’re right. And once you have that you can store it in localStorage.
Recall that there are only two methods in the JSON API, stringify and parse. Let’s put 
those methods to work by finishing the init function:

Put a check next to the ways our current implementation could cause problems:

Displaying stickies is inefficient if there are a lot of items in localStorage 
that aren’t stickies.

It’s hard to quickly tell how many stickies there are; you have to iterate 
through every item in localStorage to get all the stickies.

A sticky could be overwritten by setItem if the size of the localStorage 
gets smaller when another app deletes its own items.

Use a cookie, it has to be easier than all this!



468  Chapter 9

exercise solutions

We’ve told you that you have five whole megabytes of storage on every 
user’s browser, but while five megabytes sounds like a lot, remember that 
all your data is stored in the form of a string rather than in a byte-efficient 
data format. Take a long number, say, the national debt—when expressed in 
floating point form it takes up very little storage, but when expressed in the 
form of a string, it takes up many times that amount of memory. So, given 
that, the five megabytes might not hold as much as you think.

So what happens when you use all 5MBs? Well, unfortunately this is one 
of those behaviors that isn’t well defined by the HTML5 specification, 
and browsers may do different things when you exceed your limit—the 
browser may ask if you want to allow more storage, or it may throw a 
QUOTA_EXCEEDED_ERR exception, which you can catch like this:

try { 

   localStorage.setItem(mykey, myvalue);

} catch(e) {

   if (e == QUOTa_ExCEEDED_ERR) {

      alert("Out of storage!");

   }

}

A try/catch 
captures any 
exceptions that 
are thrown within 
the try block.

Here’s a setItem call in the 
middle of the try block; 
if anything goes wrong and 
setItem throws an exception, 
the catch block will be invoked.

We’re testing to see if this is a storage quota error (as opposed to 
some other type of exception). If so, we alert the user. You’ll most 
likely want to do something more meaningful than just an alert.

Don’t Try this at Home
(or blowing up your 5 megabytes)

Not all browsers are currently throwing 
the QUOTA_EXCEEDED_ERR exception. 
But they still throw a exception when 
you exceed your limit, so you may want to 
handle the general case of an exception 
occuring when you set an item.



you are here 4  469

storing things locally

We don’t see any reason not to push your browser to the limit, see what it’s made 
of, see how far it can go, see what its behavior is under pressure. Let’s write a little 
code to push your browser over its storage limit:

<html>

<head>

<script>

localStorage.setItem("fuse", "-");

while(true) {

    var fuse = localStorage.getItem("fuse");

    try {

        localStorage.setItem("fuse", fuse + fuse);

    } catch(e) {

        alert("Your browser blew up at" + fuse.length + " with exception: " + e);

        break;

    }

}

localStorage.removeItem("fuse");

</script>

</head>

<body>

</body>

</html>

Let start with a one-character 
string, with the key “fuse”.

And just keep 
increasing its size...

...by doubling the string (by 
concatenating it with itself).

Then we’ll try to write it 
back to localStorage.

If it blows up, we’re done! We’ll alert the user and get out of this loop.And let’s not leave a 
mess, so remove the item 
from localStorage.

Go ahead and type this in, light the fuse by loading it, and have 
fun!  Try this on a few different browsers.

Our results 
from Safari 
and Chrome.



470  Chapter 9

exercise solutions

getItem

length

QUOTA_EXCEEDED_ERR

setItem

removeItem

key

I take keys and values and write them into the localStorage. 
Now keep in mind if  there’s an item with that key already in 
the localStorage, I’m not going to warn you, I’m just going to 
overwrite it so you better know what you’re asking for.

If  you overstay your welcome in localStorage and use too much 
space you’ll get an exception and you’ll be hearing from me.

Need to knock off  an item?  I’ll get the job done discreetly.

Just give me a key and I’ll go out and find the item with that key 
and hand its value to you.

When you’ve had it with all the items in your localStorage, I 
clean up all those items and throw them away, leaving you with 
a nice fresh and empty localStorage (keep in mind I can only 
clean up my own origin).

Need to know how many items are in your localStorage?  
That’s me.

clear

Give me an index, and I’ll give you a key from that index in 
localStorage.

At this point you’ve been through the localStorage API. Below you’ll find all the main characters of 
the API sitting with their masks on. See if you can determine who does what. Here’s our solution.

sessionStorage

localStorage

Use me to store items for the long term.

I’m a short term kinda guy, I’ll store your stuff  just as long as 
you have the browser open.  Close your browser and, poof, all 
your stuff  is gone.

SOlUTion



you are here 4  471

storing things locally

HTML5cross Solution

S
1

P
2

L
3

E N G T H L
4

E I A

I O
5

R P
6

C B S A

K J S
7

T R I N G I F Y R

I E I S S

F
8

I V E C Z T
9

A R G E T

I S
10

E T I T E M E I

J A S
11

T R I N G S N

I A
12

R R A Y T T

R

C
13

A T C H

Y

Across
3. When we used the _________ of localStorage to create key 
names, we ran into a problem: gaps in the names of our sticky 
notes. [LENGTH] 
4. Luke Skywalker’s sister. [LEIA] 
7. We have to _________ an object before we store it in 
localStorage. [STRINGIFY] 
8. Most browsers offer ________ megabytes of storage per 
origin. [FIVE] 
9. We can detect which sticky note the user clicks on by 
looking at the event _________. [TARGET] 
10. We store an item in localStorage with this method. 
[SETITEM] 
11. localStorage can store only _________________. 
[STRINGS] 
12. We thought it would be just a fantasy to store an _______ 
in localStorage but it turns out you can, with JSON. [ARRAY] 
13. Use a try/_______ to detect quota exceeded errors in 
localStorage. [CATCH] 

Down
1. We used the _____________ to hold the keys of all our 
stickies so we could easily find them in localStorage. 
[STICKIESARRAY] 
2. sessionStorage is just like localStorage except its not 
__________ if you close your browser window. 
[PERSISTENT] 
5. We create an _______ to store the sticky note text and its 
color in one localStorage item. [OBJECT] 
6. Use _________ to convert a string to an integer. 
[PARSEINT] 
7. Cookie has a _________ issue. [SIZE] 
8. If you store something in your browser and fly to 
________ , it will still be there when you come back. [FIJI] 





this is a new chapter  473

putting javascript to work10

Web Workers

Slow script—do you want to continue running it?�  
If you’ve spent enough time with JavaScript or browsing the Web you’ve 

probably seen the “slow script” message. And, with all those multicore 

processors sitting in your new machine how could a script be running too 

slow? It's because JavaScript can only do one thing at a time. But, with 

HTML5 and Web Workers, all that changes. You’ve now got the ability to 

spawn your own JavaScript workers to get more work done.  Whether you’re 

just trying to design a more responsive app, or you just want to max out 

your machine’s CPU, Web Workers are here to help. Put your JavaScript 

manager’s hat on, let’s get some workers cracking!

Okay I can't do 
EVERYTHING around 
here, this is going to 

require a little help. How about 
some help into the 

elevator shaft?



474  Chapter 10

javascript threads

The Dreaded Slow Script
One of  the great things about JavaScript is it does only one 
thing at a time. It’s what we like to call “single-threaded.” Why’s 
that great? Because it makes programming straightforward. 
When you have lots of  threads of  execution happening at the 
same time, writing a program that works correctly can become 
quite a challenge.

The downside of  being single-threaded is that if  you 
give a JavaScript program too much to do, it can get 
overwhelmed, and we end up with “slow script” dialogs. The 
other ramification of  having only one thread is if  you have 
JavaScript code that is working really hard, it doesn’t leave 
a lot of  computational power for your user interface or your 
user’s interactions, and your application can appear to be 
sluggish, or unresponsive.

How JavaScript spends its time
Let’s see what this all means by taking a look at how JavaScript 
handles the tasks of  a typical page:

Running an init function

Handling a user click

A timer just went off

Handling a submit

Process an array of data

Handling another user click

Updating the DOM

Fetching form data

Validating user input

There’s only one of 
me, but look at everything 

I get done by just handling all 
of this one thing at a time. 

This is what 
we mean by 
single-threaded. 
JavaScript 
steps through 
everything it 
has to do, one 
after the 
other. There’s no 
parallel execution 
going here.

For a lot of web apps 
this works really well. 
Everything gets done and 
the user interface seems 
fast and responsive.

JavaScript 
Thread



you are here 4  475

putting javascript to work

Process an array of data

Updating the DOM

Fetching form data

Yikes, processing a big array 
is taking a lot of time!

Handling another user click

Validating user input

What’s going on up there? 
Things aren’t getting done!

Who’s hogging all 
the processing time?

Users are bailing! The 
UI isn’t being updated!

We give up, throw in the towel, 
bring up the slow script dialog.

chug

chug

chug

chug

chug

whirrr

whirrr

whirrr

Running an init function

Handling a user click

A timer just went off

Handling a submit

When single-threaded goes BAD
It’s true, for a lot of  uses, this single-threaded mode of  computing by JavaScript works great, 
and as we’ve said, it makes programming straightforward. But, when you’ve written code 
that is so “computationally intensive” it starts to impact JavaScript’s ability to get everything 
done, the single-threaded model starts to break down.

Everything works 
great until a bit 
of JavaScript 
code starts 
requiring a lot of 
processing time, 
which takes away 
from JavaScript’s 
job of interacting 
with the user in 
the user interface.

JavaScript 
Thread



476  Chapter 10

javascript web workers

Adding another thread of control to help
Before HTML5, we were stuck with one thread of  control in our pages and apps, 
but with Web Workers we’ve now got a way to create another thread of  control to 
help out. So, if  you’ve got code that takes a long time to compute, you can create 
a Web Worker that will handle that task while the main JavaScript thread of  
control is making sure everything is good with the browser and the user.

Running and init function

Handling a user click

A timer just went off

Handling an onsubmit

Updating the DOM

Fetching form data

This time 
everything 
keeps moving 
smoothly, the 
Web Worker 
is taking 
care of the 
long running 
computation...

Handling another user click

Validating user input

Create a web worker

JavaScript 
Thread

Use array

Fetching form data

Validating user input

Now, we’ve made a big deal out of  the fact that one thread of  control keeps things 
simple and easy to program, and that is true. But, as you’re going to see, Web 
Workers have been carefully crafted to make sure things stay simple, easy and safe 
for the programmer. We’ll see how in just a moment...

Process an array of data

chug

chug
chug

chug

chug

whirrr

whirrr

whirrr

Web Worker 
Thread

Rather than slowing things down with 
our compute-intensive JavaScript, 
we can instead create a Web Worker, 
which runs in a separate thread, and 
have it do all the hard work.

And when it’s done, the worker 
can even send us the data it’s been 
working on and we can incorporate 
that in our app.

You guys keep 
the user happy, 
I’ve got this one!



you are here 4  477

putting javascript to work

JavaScript Exposed (Again)
This week’s interview:
Where JavaScript spends his time.

Head First: Welcome back JavaScript, great to have you.

JavaScript: Glad to be here, as long as we stick to my schedule, lots to do.

Head First: That is actually where I thought we might focus our time today. You’re a super 
successful guy, you have so much going on—how do you get it all done?

JavaScript: Well, I have a philosophy: I do one thing at a time, and I do it really well.

Head First: How do you do only one thing at a time? To us it looks like you’re retrieving 
data, displaying pages, interacting with the user, managing timers and alerts, and on and on...

JavaScript: Yes, I do all that, but whatever I’m doing, I do only that. So if  I’m dealing with 
the user, that’s all I do until I’m done with that.  

Head First: How can that be true? What if  a timer goes off, or network data arrives, or 
whatever, don’t you stop and do that?

JavaScript: When an event occurs, like the ones you’ve mentioned, that event is added to 
a queue. I don’t even look at it until I’ve finished whatever I’m working on. That way I do 
everything correctly and safely and efficiently.

Head First: Are you ever late getting to one of  those tasks on the queue?

JavaScript: Oh it happens. Luckily I’m the technology behind browser web pages, so how 
bad can it be if  I get a little behind? You should talk to the guys that have to run code for 
spacecraft thrusters or nuclear power plant controllers, those guys have to live by different 
rules—that’s why they make the big bucks.

Head First: I’ve always wondered what’s going on when I get the “Slow script, do you want 
to continue” dialog on my browser.  Is that you taking a break?

JavaScript: Taking a break! Hah. That’s when someone has structured their page such that 
I’ve got so much work to do, I can’t do it all! If  you write a bit of  JavaScript that hogs all my 
time, then your interaction with your user  is going to suffer.  I can only do so much.

Head First: Sounds like you need some help.

JavaScript: Well thanks to HTML5, I have help now because that’s where Web Workers 
come in.  If  you really need to write compute-intensive code, use Web Workers to offload some 
of  the work—that way I can keep my focus, and workers can do some of  the heavy lifting for 
me (without getting in my way).

Head First: Interesting, we’ll look into that. Now, next question... Oh, wait, he’s gone, looks 
like he’s off  to his next task. Serious guy, huh?



478  Chapter 10

how web workers work

How Web Workers work

Browser

Let’s take a look at a day in the life of  a Web Worker: how workers are created, how they 
know what to do, and how they get results back to your main browser code.

To use Web Workers, the browser first has to create one or more workers to 
help compute tasks. Each worker is defined with its own JavaScript file that 
contains all the code (or references to code) it needs to do its job.

Worker

Browser

Worker

Now, workers live in a very restricted world; they don’t have access 
to many of  the runtime objects your main browser code does, like 
the DOM or any of  the variables or functions in your main code.

Geez, I can’t access 
the DOM or anything in 
the main browser code.

Good, I feel a lot 
safer that way, you don’t 

need to be changing the 
DOM, that’s my job.

I could really use 
some help... creating 

one worker to give me 
a hand.

Workers are defined 
by a separate 
JavaScript file.



you are here 4  479

putting javascript to work

Browser

To get a worker to start working, the browser typically 
sends it a message. The worker code receives the 
message, takes a look at it to see if  there are any 
special instructions, and starts working.

Worker

When the worker completes its work, it then sends a message 
back, with the final results of  what it’s been working on. The 
main browser code then takes these results and incorporates 
them into the page in some way.

Your message says you need 
me to compute a 200x200 pixel 
section of a ray traced image. I 

can do that for you.

message

Browser

Worker

Thanks for taking that 
on. Looks good. I may send 
you more work in a bit....

message

I’ve got some work for you.

Here’s the work 
you wanted done.



480  Chapter 10

dom access

Why not allow 
workers to access the DOM?  
I mean this seems like a lot of 
trouble to pass messages back and 

forth when all of these workers are 
running in the same browser.

To keep things efficient. 

One reason the DOM and JavaScript 
have been so successful is that we’re able 
to highly optimize DOM operations 
because we have only one thread with 
access to the DOM. If  we let multiple 
threads of  computation concurrently 
change the DOM, then we’ll seriously 
impact its performance (and browser 
implementors would have to go to great 
effort to make sure making changes to 
the DOM is safe). The truth is, allowing 
a bunch of  changes to the DOM at the 
same time can easily lead to situations 
where the DOM is in an inconsistent 
state, which would be bad. Very bad.

Worker
Worker

Worker

document

head

html

title script

body

h1 ul

I want to 
update the h1.

No, I’m 
updating it.

Wait, I thought 
I was updating it!

Whoa! Hold 
on everyone...

What we want to avoid!



you are here 4  481

putting javascript to work

Take a look at all the potential uses for workers below. Which ones might improve the 
design and the performance of an app?

Caching data for use in your pages. Spell checking the page as 
the user types.

Processing large amounts of data 
in arrays or large JSON responses 
from web services.

Polling web services and 
alerting the main page when 
something happens.

Managing a database 
connection along with 
adding and removing 
records for the main page.

Image processing of data in 
a canvas.

Code syntax or other 
language highlighting. 

Automated race track 
betting agent.

Pre-fetching data based on 
what your user is doing.

Managing advertising for 
your page.

Analyzing video.

 
 

  

  

Your ideas here!

All answers are good uses, although you could debate a couple: spell checking & syntax checking may be better done in 
the main page code; race track betting may be better not done at all. ;-)



482  Chapter 10

watch out for browser support

         Almost all the modern browsers support Web Workers, but there is one exception: Internet Explorer 9. The good news is that for IE10 and later,  you can count on Web Workers, but with IE9 and all the IE versions before it, you’ll have to supply an alternative experience.  
But rather than worrying about IE specifically, here’s how you can easily check to see if any browser supports Web Workers:

if (window["Worker"]) {
    var status = document.getElementById("status");
    status.innerHTML = "Bummer, no Web Workers";
}

If workers are supported, the property Worker 
will be defined in the global scope, window. And if Worker isn’t defined, then we’ve got no support in the browser.

You’ll want to handle that condition in a way that is appropriate for your app. Here, we’re just letting the user know by putting a message in an element with id=“status”.

You can also use the Chrome runtime 
switch --allow-file-access-from-files, 
but we don’t recommend this switch 
beyond just testing your code.

         Google’s Chrome browser has some extra 
security restrictions that will prevent you from 
running Web Workers directly from a file.  If 
you try, your page won’t run and you’ll get no 
indication of why (including no error messages 
telling you what’s wrong!). 
 
So, for these examples, we recommend either 
using a different browser, or running your own 
server and running the examples from http://
localhost. Or you can upload them to a hosted 
server if you have access to one.



you are here 4  483

putting javascript to work

Your first Web Worker...
Let’s get down to the business of  creating a worker to see how 
this all works. To do that we need a page to put everything in. 
We’ll go with the simplest HTML5 markup we can get away 
with; type this into pingpong.html:

Have hard hat, will 
travel. Just point me to 
a JavaScript file with what 

you want me to do.

Web Worker

<!doctype html>

<html lang="en">

   <head>

      <title>Ping Pong</title>

      <meta charset="utf-8">

      <script src="manager.js"></script>

   </head>

<body>

   <p id="output"></p>

</body>

</html>

This JavaScript code is going to 
create and manage all the workers.

How to create a Web Worker
Before we start implementing manager.js, let’s look at how 
you actually create a Web Worker:

var worker = new Worker("worker.js");

... the “worker.js” JavaScript file 
contains the code for the worker.

And we’re assigning the new 
worker to a JavaScript 
variable named worker. 
So that’s how you create one worker, but of  course you don’t 
have to stop there; you can create as many workers as you like:

var worker2 = new Worker("worker.js");

var worker3 = new Worker("worker.js");

var another_worker = new Worker("another_worker.js");

We can easily create two 
more workers that make 
use of the same code as our 
first worker.

Or we can create other workers based a 
different JavaScript file.

We’ll see how to use 
multiple workers 
together in a bit...

To create a new worker, we create a 
new Worker object...

And we’ll be putting some 
output from the worker here.



484  Chapter 10

writing a worker manager

Now that you know how to create a worker (and how easy it is), let’s start 
working on our manager.js code. We’ll keep this code simple and create 
just one worker for now. Create a file named manager.js and add this code:

Writing Manager.js

And we’re using the 
worker's postMessage 
method to send it a 
message. Our message is 
the simple string “ping”.

The postMessage method is defined for 
you in the Web Worker API.

window.onload = function() {

    var worker = new Worker("worker.js");

}

We'll wait for the 
page to fully load.

And then create a 
new worker.

That’s a great start, but now we want to get the worker to actually do 
some work. As we’ve already discussed, one way we tell a worker to do 
some work is by sending it a message.  To send a message we use the 
worker object’s postMessage method. Here’s how you use it:

window.onload = function() {

    var worker = new Worker("worker.js");

    

    worker.postMessage("ping");

}

postMessage Up Close

You can send more than just strings in postMessage. Let’s look at 
everything you can send in a message:

worker.postMessage("ping");

worker.postMessage([1, 2, 3, 5, 11]);

worker.postMessage({"message": "ping", "count": 5});

You can’t send functions:

worker.postMessage(updateTheDOM);

You can send a string...
... an array...

... or even a JSON object.

You can’t send a function... it might contain 
a reference to the DOM allowing the worker 
to change the DOM!

Want to send more 
complex messages? 
Here’s how...



you are here 4  485

putting javascript to work

Receiving messages from the worker
We’re not quite done with our manager.js code yet—we still need to be able 
to receive a message from the worker if  we’re going to make use of  all its hard 
work. To receive a worker’s message we need to define a handler for the worker’s 
onmessage property so that anytime a message comes in from that worker, our 
handler will be called (and handed the message). Here’s how we do that:

window.onload = function() {

    var worker = new Worker("worker.js");

    

    worker.postMessage("ping");

    worker.onmessage = function (event) {

       var message = "Worker says " + event.data;

       document.getElementById("output").innerHTML = message;

    };

}

Here we’re defining a function that will 
get called whenever we receive a message 
from this worker. The message from the 
worker is wrapped in an event object.

When we get a 
message from the 
worker we’ll stuff it 
in a <p> element in 
the HTML page.

The event object 
passed to our handler 
has a data property 
that contains the 
message data (what 
we’re after) that the 
worker posted.

onMessage Up Close

Let’s take a quick look at the message our onmessage handler is receiving from the 
worker. As we’ve said, this message is wrapped in an Event object, which has two 
properties we’re interested in: data and target:

worker.onmessage = function (event) {

    var message = event.data;

    var worker = event.target;

};

This is the object that is sent from 
the worker to the code in your page 
when the worker posts a message.

The data property contains the message the 
worker sent (e.g., a string, like “pong”).

And the target is a reference to the worker that sent the message. This can come in handy if you need to know which worker it’s from. We’ll be using this later in the chapter.



486  Chapter 10

your first worker

Writing the worker’s message handler

onmessage = pingPong;

function pingPong(event) {

    if (event.data == "ping") {

        postMessage("pong");

    }

}

When the worker receives a 
message from the main code, the 
pingPong function will be called, 
and the message will be passed in.

And if the message contains a 
string that says “ping”, we’ll send 
back a message that says “pong”. 
The worker's message goes back to 
the code that created the worker.

Let’s write the worker’s message handler, pingPong, and we’re going to start simple. 
Here’s what it’s going to do (you might have already guessed from the name pingPong): 
the worker’s going to check any message it gets to make sure it contains the string “ping”, 
and if  it does, we’re going to send a message back that says “pong”. So, in effect, the work 
of  the worker is just to get a “ping” and to answer with a “pong”—we’re not going to do 
any heavy computation here, we’re just going to make sure the manager and worker are 
communicating. Oh, and if  the message doesn’t say “ping”, we’re just going to ignore it. 

So the function pingPong takes a message and responds with “pong”. Go ahead and add 
this code to worker.js:

Notice the worker uses 
postMessage to send messages, too.

To get started on the worker, the first thing we need to do is to make sure the worker can 
receive messages that are sent from manager.js—that’s how the worker gets its work 
orders. For that we’re also going to make use of  another onmessage handler, the one in 
the worker itself. Every worker is ready to receive messages, you just need to give the worker 
a handler to process them. Here’s how we do that (go ahead and create a file worker.js 
and add this code):

Now let’s write the worker

onmessage = pingPong;

We’re going to write the 
function pingPong to handle 
any messages that come in.

We’re assigning the onmessage 
property in the worker to 
the pingPong function.



you are here 4  487

putting javascript to work

Make sure you’ve got pingpong.html, manager.js and 
worker.js typed in and saved. Now keep those files open so 
you can review them and let’s think through how this works. 
First, manager.js creates a new worker, assigns a 
message handler to it, and then sends the worker 
a “ping” message. The worker, in turn, makes sure 
pingPong is set up as its message handler, and then 
it waits. At some point, the worker receives a message 
from the manager, and when it does it checks to see 
that it contains “ping”, which it does, and then the 
worker does a lot of  very little hard work and sends 
a “pong” message back.

At this point the main browser code receives a 
message from the worker, which it hands to the 
message handler. The handler then simply prepends “Worker 
says ” to the front of  the message, and displays it.

Now, our calculations here say the page should display 
“Worker says pong”...okay okay, we know, you can’t take the 
suspense any more... go ahead and load the page already!

Serving up a test drive 

Wait a sec, just thinking ahead... 
if we ever create more than one 

pong worker I may actually have 
to break a sweat.



488  Chapter 10

BE the Browser
It’s time to pretend you’re the browser evaluating 
JavaScript. For each bit of code below, act like 
you’re the browser and write its output in the 

lines provided. You can assume this 
code is using the same worker.js we 
just wrote:

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

    }

    for (var i = 0; i < 5; i++) {

        worker.postMessage("ping");

    }

}

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.ommessage = function(event) {

        alert("Worker says " + event.data);

    }

    for(var i = 5; i > 0; i--) {

        worker.postMessage("pong");

    }

}

You can check the solutions 
at the end of the chapter.



you are here 4  489

putting javascript to work

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

    }

    setInterval(pinger, 1000);

    

    function pinger() {

        worker.postMessage("ping");

    }

}

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

        worker.postMessage("ping");

    }

    worker.postMessage("ping");

}

Careful if you try these; 
you might have to kill your 
browser to escape...



490  Chapter 10

exercise to use compact worker

quote.html<!doctype html>

<html lang="en">

   <head>

      <title>Quote</title>

      <meta charset="utf-8">

   </head>

<body>

   <p id="quote"></p>

   <script>

       var worker = new Worker("quote.js");

       worker.onmessage = function(event) {

           document.getElementById("quote").innerHTML = event.data;

       }

   </script>

</body>

</html>

var quotes = ["I hope life isn’t a joke, because I don’t get it.",

              "There is a light at the end of every tunnel... just pray it’s not a train!",

              "Do you believe in love at first sight or should I walk by again?"];

var index = Math.floor(Math.random() * quotes.length);

postMessage(quotes[index]);

quote.js

Your description here:

While workers typically get their work orders through a message, they don’t 
have to. Check out this nice, compact way to get work done with workers and 
HTML. When you know what it does, describe it below. You can check your 
solution with ours at the end of the chapter.

Try typing in the 
code and running it!



you are here 4  491

putting javascript to work

window.onload = function() {

    var numWorkers = 3;

    var workers = [];

    for (var i = 0; i < ; i++) {

        var worker = new ("worker.js");

        worker.  = function(event) {

            alert(event.target + " says "                 
                                 + event. );

        };

        workers.push(worker);

    }

    for (var i = 0; i < ; i++) {

        workers[i]. ("ping");

    }

}

Q: Can I just pass a function instead of a JavaScript file 
when I create the worker? That would seem easier and more 
consistent with how JavaScript usually does things.

A: No, you can’t. Here’s why: as you know, one of the 
requirements of a worker is that it not have access to the DOM 
(or to any state of the main browser thread for that matter). If you 
could pass a function to the Worker constructor, then your function 
could also contain reference to the DOM or other parts of your main 
JavaScript code, which would violate that requirement. So, the 
designers of Web Workers chose instead to have you just pass a 
JavaScript URL to avoid that issue.

Q: When I send a worker an object in a message, does it 
become a shared object between my main page and the worker?

A: No, when you send an object the worker gets a copy of it. Any 
changes the worker makes will not affect the object in your main 
page. The worker is executing in a different environment than your 
main page, so you have no access to objects there. The same is true 
of objects the worker sends you: you get a copy of them.

Q: Can workers access localStorage or make 
XMLHttpRequests?

A: Yes, workers can access localStorage and make 
XMLHttpRequests.

We’re creating three workers, and 
storing them in an array, workers.

Here, we’re adding the new worker to the workers array.

Let’s add a couple of workers to our pingPong game. Your job is to fill in the blanks to complete 
the code so we have three pings sent to the workers, and three pongs back from the workers.

Write your code in 
the blanks.



492  Chapter 10

including javascript code in a worker

window.onload = function() {

    var numWorkers = 3;

    var workers = [];

    for (var i = 0; i < numWorkers; i++) {

        var worker = new Worker("worker.js");

        worker.onmessage = function(event) {

                 alert(event.target + " says "                 
                                 + event.data);        

        };

        workers.push(worker);

    }

    for (var i = 0; i < workers.length; i++) {

        workers[i].postMessage("ping");

    }

}

Let’s add a couple of workers to our pingPong game. Your job was to fill 
in the blanks to complete the code so we have three pings sent to the 
workers and three pongs back from the workers. Here’s our solution.

You could also use 
numWorkers here if you like.

Notice that no changes are needed to
 the 

worker code. Each worker is happy to do 

its thing independently.

We ping the worker 
with postMessage.

We use the data property to get 
the contents of the message.

We set up the 
message handler 
in our main page 
code by using the 
onmessage property 
of the worker.

We use numWorkers to iterate three times 
and create three workers (feel free to 
change this variable to add more!)

You’ll see this alert 3 times.



you are here 4  493

putting javascript to work

Take a look at importScripts.

Web Workers have a global function named 
importScripts that you can use to import one or more 
JavaScript files into your worker. To use importScripts 
just give it a comma separated list of  files or URLs you’d 
like to import, like this:

Then when importScripts is invoked, each JavaScript 
URL is retrieved and evaluated in order.

Notice that importScripts is a full-fledged function, so 
(unlike import statements in a lot of  languages) you can 
make runtime decisions about importing, like this:

I’ve been wondering how 
to include additional JavaScript files in 

my worker. I’ve got some financial libraries 
I’d like to make use of and copying and pasting 
them into my worker would result in a huge file 
that’s not very maintainable.

Place zero or more comma-separated 
JavaScript URLs in importScripts.

importScripts("http://bigscience.org/nuclear.js", 

              "http://nasa.gov/rocket.js", 

              "mylibs/atomsmasher.js");

if (taskType == "songdetection") {

   importScripts("audio.js");

}

Because importScripts is a function, you 
can import code as the task demands.



494  Chapter 10

the mandelbrot set

Virtual Land Grab
Explorers of  the Mandelbrot Set have already grabbed areas of  the virtual countryside and 
given them names like the lovely “Seahorse Valley,”  “Rainbow Islands,” and the dreaded 

“Black Hole.” And given the value of  physical real estate these days, the only play left seems to 
be in the virtual spaces. So, we’re going to build an explorer for the Mandelbrot Set to get in 
on the action. Actually, we have to confess, we already have built it, but it’s slow—navigating 
around in the entire Mandelbrot Set could take a very long time —so we’re hoping together 
we can speed it up, and we have a hunch Web Workers may be the answer.

Take a look around
Go ahead and fire up http://wickedlysmart.com/hfhtml5/chapter10/
singlethread/fractal.html and you’ll see a visualization of  the Mandelbrot Set 
in the distance.  Just click anywhere and you’ll zoom into an area of  the map. Keep 
clicking to explore different areas, or reload to start over. Watch out for areas with black 
holes, they tend to suck you in.  We don’t know about you, but while the scenery is 
beautiful, our viewer could be a little faster... ya think?  It would be great to have enough 
performance to maximize the view to the entire browser window as well! Let’s fix all that 
by adding Web Workers to the Fractal Explorer.

Like some beach front 
property right on the edge 
of the Azure Vortex?

http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html
http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html


you are here 4  495

putting javascript to work

Well, if you happen to be a mathematician 
then you know the Mandelbrot Set is the equation:

and that it was discovered and studied by Benoit 
Mandelbrot. You also know that it’s simply a set of  
complex numbers (numbers with a real part, and an 
imaginary part) generated by this equation. 

If, on the other hand, you’re not a mathematician, the best 
way to think about the Mandelbrot Set is as an infinitely 
complex fractal image—meaning an image that you 
can zoom into, to any level of  magnification, and find 
interesting structures. Just look at some of  the things you 
can find by navigating into the set:

And why are we so interested in it? Well, the set has a few 
interesting properties. First, it’s generated by a very simple 
equation (the one above) that can be expressed in just a few 
lines of  code; second, generating the Mandelbrot Set takes 
a fair number of  computing cycles, which makes it a great 
example for using Web Workers. And finally, hey, it’s cool 
and a trip to work with, and what a great app to end the 
book with, don’t you think? RIP Benoit Mandelbrot, who 

passed during the writing of 
this book. We were lucky to 
have known you.

Mandel what?

zn+1 = zn2 + c



496  Chapter 10

computing fractals

for (i = 0; i < numberOfRows; i++) {

    var row = computeRow(i);

    drawRow(row);

}

How to compute a Mandelbrot Set
Let’s take a look at how you’d typically structure your code to compute 
a Mandelbrot Set before we get workers involved.  We don’t want to 
focus much on the nitty-gritty of  computing Mandelbrot pixel values; 
we’ve already got all that code taken care of, and we’re going to give 
it to you in a sec. For now, we just want you to get sense of  the big 
picture view of  how to compute the set:

To compute the Mandelbrot Set we 
loop over each row of the image.

And for each 
row we compute 
the pixels for 
that row.And then we draw each row on the screen. You can probably see the row-by-row display when you run the test code in your browser.

Now this code is just meant to be simple pseudo-code—when it 
comes to writing the code for real, there are a few more details 
we need to get into: for instance, to compute a row we need 
to know the width of  the row, the zoom factor, the numerical 
resolution to which we want to compute it, and a few other small 
details. We can capture all those details in a task object like this:

for (i = 0; i < numberOfRows; i++) {

    var taskForRow = createTaskForRow(i);

    var row = computeRow(taskForRow);

    drawRow(row);

}

width

The zoom 
factor

Level of 
precision to 
compute

The taskForRow 
object holds all 
the data needed 
to compute a row.

And we pass taskForRow 
into computeRow, which 
returns the computed row.

Now the trick is going to be taking this and reworking it to divide 
up the computation among a number of  workers, and then adding 
the code that handles giving tasks to workers, and handles dealing 
with the results when the workers complete the tasks.

Note, our aim here isn’t to teach you to be a numerical analyst (who can code equations with complex numbers); it’s to adapt a compute intensive application to use Web Workers. If you are interested in the numerical aspects of the Mandelbrot Set, Wikipedia is a great place to start.



you are here 4  497

putting javascript to work

How to use multiple workers
You already know how to create new workers, but how do you use them to do 
something a little more complicated, like computing the rows of  the Mandelbrot Set?� 
Or applying a Photoshop-like effect over an image?� Or ray tracing a movie scene?� In 
all these cases, we can break up the job into small tasks that each worker can work 
on independently.  For now, let’s stick with computing the Mandelbrot Set (but the 
pattern we’re going to use can be applied to any of  these examples).

To get started, the browser first creates a bunch of  workers to help (but not too 
many—workers can be expensive if  we create too many of  them—more on this later). 
We’ll use just five workers for this example:

New workers 
reporting for duty, 
How can we help?

Worker

Worker

Worker

Worker

Worker

Here’s what we want to 
compute. The browser code 
needs to break up the job 
of computing this image into 
a number of small tasks for 
the workers to compute. Our workers ready to 

start computing!

Here, the image 
broken into little 
regions. We’re 
going to dole out 
regions to workers 
to compute.

Browser

The browser JavaScript code 
creates a bunch of workers to 
perform some work.



498  Chapter 10

how to compute with workers

Next, the browser code doles out a different part of  
the image for each worker to compute: The first 

region of the 
image is mine!

The browser hands out pieces of the 
image to be computed by each worker.

Worker

Worker

Worker

Worker

Worker

1

2

3

4

5

I’ve got 2!

3 here!

I’ve got the 
fifth region.

Workers send back the the pieces 
of the image they’ve computed 
when they’re done.

Worker

Worker

Worker

Worker

Worker

Each worker works on its own piece of  the image independently. As a 
worker finishes its task, it packages up the result and sends it back.

I’m done!

Hang on, we’re 
still working

I’m done too!

Still working...

You guys are slow, I’m 
already working on 4.



you are here 4  499

putting javascript to work

All the pieces of the image 
created by the workers are 
aggregated into the final image.

Worker

Worker

Worker

Worker

Worker

As pieces of  the image come back from the workers they are aggregated 
into the image in the browser, and if  there are more pieces to compute, new 
tasks are handed out to the workers that are idle.

Yes! 
More regions!7

8

6

Finally done 
with region 4! 
Here ya go!

Yes, I know, 
I’m still working 
on region five!

The image is complete, and 
the workers can rest until 
there is more work.

Worker

Worker

Worker

Worker

Worker

With the last piece of  the image computed, the image is complete 
and the workers sit idle, until the user clicks to zoom in, and then it 
all starts again...

We’re 
all done and 
sitting idle.

ditto!

Thanks for the 
work, here’s more...

Finally 
done with the 
last region!

Nice job 
workers!



500  Chapter 10

how workers improve applications

What does it 
matter if I break up the task 
and distribute it to workers? I 

mean, my computer still has the same 
CPU, how could the computation get 

any faster?

It can be faster in two ways... 

First consider an application that has a lot of  “computing” going 
on that also has to be responsive to the user. If  your application 
is hogging a lot of  JavaScript time, your users are going to 
experience a sluggish interface that feels slow (again, because 
JavaScript is single-threaded). By adding workers to such an 
app you can immediately improve the feel of  the app for your 
users.  Why? Because JavaScript has a chance to respond to 
user interaction in between getting results from the workers, 
something it doesn’t have a chance to do if  everything’s being 
computed on the main thread.  So the UI is more responsive—
and your app’s just going to feel faster (even if  it isn’t running any 
faster under the hood). Don’t believe us? Give it a try and put 
some real users in front of  your app. Ask them what they think.

The second way really is faster. Almost all modern desktops 
and devices today are shipping with multicore processors (and 
perhaps even multiple processors). Multicore just means that 
the processor can do multiple things concurrently. With just a 
single thread of  control, JavaScript in the browser doesn’t make 
use of  your extra cores or your extra processors, they’re just 
wasted. However, if  you use Web Workers, the workers can take 
advantage of  running on your different cores and you’ll see a real 
speedup in your app because you’ve got more processor power 
being thrown at it. If  you’ve got a multicore machine, just wait, 
you’re going to see the difference soon.



you are here 4  501

putting javascript to work

In theory, not in practice. 

Web Workers aren’t intended to be used in large 
numbers—while creating a worker looks simple in code, 
it requires extra memory and an operating system thread, 
which can be costly in start-up time and resources. So, in 
general you’ll want to create a limited number of  workers 
that you reuse over time.

Take our Mandelbrot example: in theory you could assign 
a worker to compute every single pixel, which would 
probably be much simpler from a code design perspective, 
but given that workers are heavy-weight resources, we 
would never design our app that way. Instead, we’ll use a 
handful of  workers and structure our computation to take 
advantage of  them.

Let’s get a little further into the design of  the Fractal 
Explorer and then we’ll come back and play with the 
number of  workers we’re using to understand the 
performance implications.

Can I have as many 
workers as I want? 



502  Chapter 10

exercise your brain doing some code design

for (i = 0; i < numberOfRows; i++) {

    var taskForRow = createTaskForRow(i);

    var row = computeRow(taskForRow);

    drawRow(row);

} Here’s our pseudo-code now, 
what do you need to do to 
add Web Workers?

You’ve certainly got a lot of background now on building Web Worker apps, how to create and use 
workers, a bit about how you can solve big computations by breaking them down into small tasks 
that can be computed by your workers, and you even know a little about how Mandelbrot sets 
are computed.  Try to put it all together and think through how you’d take the pseudo-code below 
and rewrite it to use workers.  You might first assume you have as many workers as you need 
(say a worker for every single row), and then add the constraint that you have a limited number of 
workers (fewer workers than the number of rows):

Your notes go here:



you are here 4  503

putting javascript to work

Let’s build the Fractal Explorer app

Here’s what we need to do:

Creating the Fractal Viewer HTML Markup

First we need to set up an HTML page to hold our app. You’ll want to create an HTML 
file named fractal.html and add the following markup. Let’s check it out:

<!doctype html>

<html lang="en">

   <head>

      <title>Fractal Explorer</title>

      <meta charset="utf-8">

      <link rel="stylesheet" href="fractal.css">

      <script src="mandellib.js"></script>

      <script src="mandel.js"></script>

   </head>

   <body>

      <canvas id="fractal" width="800" height="600"></canvas>

   </body>

</html> And the <body> has a canvas element. We set it to an initial size of 800 x 600 pixels, but we’ll see how to resize it to the width and height of the window using JavaScript. After all we want as large a Mandelbrot as we can get!

If you’re wondering where the worker code is 
going to go, remember, we don’t link directly to a 

worker JavaScript file, we reference that file when 
we create the worker in code.

As usual, a standard 
HTML5 file.

Here’s all the                     
we’ve got for you, this contains all 
the numerical code as well as some 
code for handling graphics.

Ready Bake Code

And here’s the JavaScript code 
we’re going to be writing...

Get all the entered (or downloaded).Ready Bake Code

Set up our HTML page to hold the Mandelbrot App.

Create some workers and get them set up to compute.

Start the workers on their tasks.

Implement the worker code.

Process the worker results as the workers complete 
their tasks.

Handle click and resize events in the user interface.

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

This code goes in 
fractal.html

Look! Our friend the 
<canvas> is back!!



504  Chapter 10

ready bake fractal code

We have to tell you we were planning on an entire chapter on the wonders of 
computing the Mandelbrot Set... we planned to explain it to you in detail, including a 
history of Benoit Mandelbrot, how he discovered it, all its amazing properties, pixel 
optimizations, color maps, and so on, but then we got the call from our editor—you 
know, THE CALL. I guess we were running a bit late on this book, so our apologies, 
but we’re going to have to give you some Ready Bake Code code to do the low-level 
computation of the Mandelbrot graphics. Here’s the good side though: we can focus 
on how to use Web Workers without spending the next couple of days on math and 
graphics. That said, we encourage you to explore those topics on your own!

Anyway, first we’ve got the code used to manage tasks and draw the rows for the 
fractal images.  Start by typing this code into a file called “mandellib.js”:

function createTask(row) {

    var task = {

        row: row,

        width: rowData.width,

        generation: generation,

        r_min: r_min,

        r_max: r_max,

        i: i_max + (i_min - i_max) * row / canvas.height,

        max_iter: max_iter,

        escape: escape

    };

    return task;

}

var canvas;

var ctx;

var i_max = 1.5;

var i_min = -1.5;

var r_min = -2.5;

var r_max = 1.5;

var max_iter = 1024;

var escape = 1025;

var palette = [];

These are the global variables the 
Mandelbrot graphics code uses to 
compute the set and display it.

This function packages up all 
the data needed for the worker 
to compute a row of pixels, 
into an object. You’ll see later 
how we pass this object to the 
worker to use. 

Notice our canvas and context are here. 

Ready Bake Code
Reminder: you can download all the code 
from http://wickedlysmart.com/hfhtml5

This code goes in 
mandellib.js.



you are here 4  505

putting javascript to work

function makePalette() {

    function wrap(x) {

       x = ((x + 256) & 0x1ff) - 256;

       if (x < 0) x = -x;

        return x;

    }

    for (i = 0; i <= this.max_iter; i++) {

        palette.push([wrap(7*i), wrap(5*i), wrap(11*i)]);

    }

}

function drawRow(workerResults) {

    var values = workerResults.values;  

    var pixelData = rowData.data; 

    for (var i = 0; i < rowData.width; i++) {  

        var red = i * 4;

        var green = i * 4 + 1;

        var blue = i * 4 + 2;

        var alpha = i * 4 + 3;

        pixelData[alpha] = 255; // set alpha to opaque

        if (values[i] < 0) {

            pixelData[red] = pixelData[green] = pixelData[blue] = 0;

        } else {

            var color = this.palette[values[i]];

            pixelData[red] = color[0];

            pixelData[green] = color[1];

            pixelData[blue] = color[2];

        }

    }

    ctx.putImageData(this.rowData, 0, workerResults.row);

}

makePalette maps a large set of numbers into an array of rgb colors. We’ll use this palette in drawRow (below) to convert the value we get back from a worker to a color for the graphic display of the set (the fractal image).

drawRow takes the results from the 
worker and draws them into the canvas.

It uses this rowData 
variable to do it; rowData 
is a one-row ImageData 
object that holds the 
actual pixels for that row 
of the canvas.

Here’s where we use the palette to 
map the result from the worker 
(just a number) to a color.

And here’s where we write the pixels 
to the ImageData object in the 
context of the canvas!

This code should be 
familiar; it’s similar to 
what we did in Chapter 
8 with video and canvas. 

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

Ready Bake Code Continued...

This code goes in 
mandellib.js.



506  Chapter 10

ready bake fractal code

Ready Bake Code Continued...

function setupGraphics() {

    canvas = document.getElementById("fractal");

    ctx = canvas.getContext("2d");

    canvas.width = window.innerWidth;

    canvas.height = window.innerHeight;

    var width = ((i_max - i_min) * canvas.width / canvas.height);

    var r_mid = (r_max + r_min) / 2;

    r_min = r_mid - width/2;

    r_max = r_mid + width/2;

    rowData = ctx.createImageData(canvas.width, 1);

    makePalette();

}

setUpGraphics sets up the global variables used 
by all the graphics drawing code as well as the 
Mandelbrot computation.

Here’s where we grab the canvas and the context and set the initial width and height of the canvas.

These are variables used to 
compute the Mandelbrot Set.

Here, we’re initializing the 
rowData variable (used to write 
the pixels to the canvas).

And here we’re initializing the 
palette of colors we’re using to 
draw the the set as a fractal image.

This code goes in 
mandellib.js.



you are here 4  507

putting javascript to work

function computeRow(task) {

    var iter = 0;

    var c_i = task.i;

    var max_iter = task.max_iter;

    var escape = task.escape * task.escape;

    task.values = [];

    for (var i = 0; i < task.width; i++) {

        var c_r = task.r_min + (task.r_max - task.r_min) * i / task.width;

        var z_r = 0, z_i = 0;

        for (iter = 0; z_r*z_r + z_i*z_i < escape && iter < max_iter; iter++) {

            // z -> z^2 + c

            var tmp = z_r*z_r - z_i*z_i + c_r;

            z_i = 2 * z_r * z_i + c_i;

            z_r = tmp;

        }

        if (iter == max_iter) {

            iter = -1;

        }

        task.values.push(iter);

    }

    return task;

}

This Ready Bake Code is what the worker will use to do its mathematical 
computation of the Mandelbrot Set. This is really where the magic of the 
computation happens (and if you explore the Mandelbrot Set more deeply, 
this is where you’ll want to focus). Type this code into “workerlib.js”:

computeRow computes one row of data of the 
Mandelbrot Set. It’s given an object with all the 
packaged up values it needs to compute that row. 

Notice that for each row 
of the display, we’re doing 
two loops, one for each 
pixel in the row...

... and another loop to find the right value for that pixel. This inner loop is where the computational complexity is, and this is why the code runs so much faster when you have multiple cores on your computer!

The end result of all that computation is 
a value that gets added to an array of 
named values, which is put back into the 
task object so the worker can send the 
result back to the main code.

We’ll take a closer look at 
this part in a bit.

Ready Bake Code Continued...

This code goes in 
workerlib.js.

That's a lot of 
computation. 
Good!



508  Chapter 10

how to manage workers and tasks

I’m idleI’m idleI’m idleI’m idleI’m idleI’m idleI’m idle

Worker Worker Worker Worker Worker Worker Worker Worker

I’m idle

With the Ready Bake Code out of  the way, let’s now turn our attention to writing the code 
that is going to create and hand tasks to the workers. Here’s how it’s going to work:

Worker

We create an array of workers, initially all idle. And an image 
with nothing computed (nextRow = 0).

1

Creating workers, and giving them tasks...

We iterate through the array, and create a task for each 
idle worker:

2

Worker 
0, your task is to 

compute row 0...

We continue to iterate, looking for the next idle worker to 
give a task to. The next one is nextRow = 1. And so on...

3

I’m idleI’m idleI’m idleI’m idleI’m idleI’m idleI’m idle

Worker Worker Worker Worker Worker Worker Worker Worker

I’m BUSY

nextRow = 0

nextRow = 1

task

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code



you are here 4  509

putting javascript to work

Writing the code
Now that we know how we’re going to create and manage our workers, let’s 
write the code. We really need an initial function for this, so let’s create a 
function in mandel.js named init—we’ll place a few other things in it as 
well, to get the app up and running (like making sure we have the graphics 
intialization out of  the way):

var numberOfWorkers = 8;
var workers = []; 

window.onload = init;

function init() {
    setupGraphics();

    for (var i = 0; i < numberOfWorkers; i++) {

        var worker = new Worker("worker.js");

        worker.onmessage = function(event) {
            processWork(event.target, event.data);
        }

        worker.idle = true;

        workers.push(worker);
    }

   startWorkers();

}

First let’s define a variable that holds the number 
of workers we want. We’re choosing 8, feel free to 
play with this when you’ve got the app working.

Let’s set up an onload handler that calls init 
when the page is fully loaded.

Why 8? Well, we happen to 
have a computer with 8 
cores so it matches well 
with our compute power. 
But even if you don’t have 
8 cores, 8’s a good number 
to try first. 

This function is defined in the Ready Bake Code and handles getting the canvas 
context, resizing the canvas to your browser’s size, and a few other graphic details.

Now, iterate over the number of workers...

We then set each worker’s message handler to a function that calls the processWork function, and we’ll pass it the event.target (the worker that just finished), and the event.data (the results from the worker).
One more thing... remember we are going to want to know which 
workers are working and which are idle. To do that we’ll add an “idle” 
property to the worker. This is our own property, not part of the 
Web Worker API. Right now we’re setting it to true since we haven’t 
given the workers anything to do.

And we add the worker we just 
created to the array of workers.

And finally, at some point we need to start these workers working.  We’ll put that code in a function named startWorkers, which we need to write.

And here’s an empty array to 
hold our workers.

...and create a new worker from “worker.js”, 
which we haven’t written yet.

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

This code goes 
in mandel.js.



510  Chapter 10

starting your fractal workers

Getting the workers started
Okay we’ve got a few things to knock out: we need to start the workers, we need to 
write the function that can process the work that comes back from the workers and, 
well, we need to write the code for the worker too. Let’s start by writing the code to 
start the workers:

var nextRow = 0;

var generation = 0;

function startWorkers() {

    generation++;

    nextRow = 0;

    for (var i = 0; i < workers.length; i++) {

        var worker = workers[i];

        if (worker.idle) {

            var task = createTask(nextRow);

            worker.idle = false;

            worker.postMessage(task);

            nextRow++;

        }

    }

}

We’re adding two more global 
variables to mandel.js. The first is nextRow, which keeps track of which row we’re 

on as we work our way through the image.

Every time the user zooms into the Mandelbrot image we start 
a new image computation. The generation variable keeps track 
of how many times we’ve done this. More on this later.

Now, we loop over all the workers in the 
workers array...

... and check to see if the worker is idle.

If it is, we make a task for the worker to 
do. This task is to compute a row of the 
Mandelbrot Set. createTask is defined in 
mandellib.js, and it returns a task object with all the data the worker needs to compute that row.

Now, we’re about to give the worker 
something to do, so we set the idle property 
to false (meaning, it’s busy).

And here’s where we tell the worker to start work, by posting a message containing the task. The worker is listening for a message, so when it gets this message, it will start working on the task.
And finally, we increment the row, so 
the next worker gets the next row.

The startWorkers function is going to start the workers, 
and also restart them if the user zooms into the image. So, 
each tme we start the workers we reset nextRow to zero 
and increment generation.

How both of these are used will 
become clearer in a bit...

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

This code goes 
in mandel.js.



you are here 4  511

putting javascript to work

importScripts("workerlib.js");

onmessage = function (task) {

    var workerResult = computeRow(task.data);

    postMessage(workerResult);

}

We’re using importScripts to import the workerlib.js 
Ready Bake Code so the worker can call the computeRow 
function defined in that library file.

All the worker does is set up the onmessage 
handler. It doesn’t need to do anything else, 
because all it does is wait for messages from 
mandel.js to start working!

It gets the data from the task, and passes 
that to the computeRow function, which does 
the hard work of the Mandelbrot computation.

The result of the computation, saved in the 
workerResult variable, is posted back to the 
main JavaScript using postMessage.

Implementing the worker
Now that we’ve got the code to get our workers started by passing each a task, let’s 
write the worker code. Then all we need to do is come back and process the results 
from the worker, once the worker has computed its part of  the fractal image. Before 
we write the code for the worker though, let’s quickly review how it should work:

Worker
computeRow(     );task

Worker is handed a task with 
postMessage.

Result is sent back from worker with 
another postMessage.

The worker takes the task and passes it to a 
Ready Bake function to compute the row.

The computed row is 
completed and we need to 
send it back to the main 
page code.

1

2

3

4

So let’s implement this: go head and type the following code into your worker.js file.

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

task

result

result

This code goes 
in worker.js



512  Chapter 10

close up on fractal tasks

A little pit stop...
That was a lot of  code in just a few pages. Let’s take a 
quick pit stop, and refuel our tanks and stomachs. 

We also thought you might want to get a quick peek 
behind the scenes and see what the worker tasks and 
results look like (they look remarkably similar as we’ll 
see). So, grab a bottle of  sarsaparilla and let’s take a 
look while you’re resting...

task = {

    row: 1,

    width: 1024,

    generation: 1,

    r_min: 2.074,

    r_max: -3.074,

    i: -0.252336,

    max_iter: 1024,

    escape: 1025

};

The task contains 
all the values the 
worker needs to do 
its computation.

var task = createTask(nextRow);

worker.postMessage(task);

So you’ve looked at the call to createTask and postMessage, which uses the task:

And you might be wondering what that task looks like.  Well, it’s an object made 
up of propeties and values, let’s take a look:

Identifies the row we’re creating the 
pixels value for.
Identifies width of the row.
Identifies how many times we’ve zoomed in.  
We’ll see how this is used in a bit...
These define the area of the 
Mandelbrot we’re computing.
And these control the precision of 
what we’re computing.

Close up on Tasks



you are here 4  513

putting javascript to work

var workerResult = computeRow(task.data);

postMessage(workerResult);

And what about the results we get from computing the row in the worker?

What does this look like? Remarkably similar to the task:

workerResult = {

    row: 1,

    width: 1024,

    generation: 1,

    r_min: 2.074,

    r_max: -3.074,

    i: -0.252336,

    max_iter: 1024,

    escape: 1025,

    values: [3, 9, 56, ... -1, 22]

};

This is all the same as the task. That’s great because when we get it back from the worker we know everything about the task.

Ah, but this is new. These 
are the values of each 
pixel, which still need to 
be mapped to colors (which 
happens in drawRow).

The worker takes the task 
passed to it and then adds 
a values property to it that 
contains the data needed to 
draw the row on the canvas.

Time to get back on the road...
Thanks for taking some time with us to check out the 
tasks and results. You better take a last swig of  that 
sarsaparilla—we’re hitting the road again!

...

Close up on Results



514  Chapter 10

processing worker results

function processWork(worker, workerResults) {

    drawRow(workerResults);

    reassignWorker(worker);

}

We hand the results to drawRow 
to draw the pixels to the canvas.
And our worker is all free, so we can 
reassign it to another task. To do that 
let’s write a function reassignWorker.

var worker = new Worker("worker.js");

worker.onmessage = function(event) {
   processWork(event.target, event.data);
}

Back to the code: how to process 
the worker’s results
Now that you’ve seen how the worker’s results work, let’s see what happens 
when we get them back from the worker. Recall that when we created our 
workers, we assigned a message handler named processWork: 

Our message handler calls processWork, 
passing it the data from the worker, and 
also the target, which is just a reference 
to the worker that sent the data.

When a worker posts a message back to us with its results, it’s the 
processWork function that’s going to handle it. As you can see, it is passed 
two things: the target of  the message, which is just a reference to the worker 
that sent it, and the data of  the message (that’s the task object with the 
values for a row of  the image). So our job now is to write processWork 
(enter this code in mandel.js):

function reassignWorker(worker) {

    var row = nextRow++;

    if (row >= canvas.height) {

        worker.idle = true;

    } else {

        var task = createTask(row);

        worker.idle = false;

        worker.postMessage(task);

    }

}

We’re almost there, so let’s just knock out reassignWorker while we’re at it. 
Here’s how it works: we check the row we’re computing by using our nextRow 
global variable, and as long as there’s more to compute (which we can determine 
by looking at how many rows are in our canvas), we give the worker a new 
assignment. Otherwise, if  there’s no more work to do, then we just set the 
worker’s idle property to true. Go ahead and enter this code in mandel.js too:

We’re going to give this worker the next row that needs 

computing, so we get the row number from nextRow, and 

increment nextRow (so the next worker gets the next one).

If the row is greater than or equal to the height of the 
canvas, we’re done! We’ve filled the entire canvas with 
results from the Mandelbrot Set workers.

But if we’ve still got rows to do, we create a new task for the next row to do, make sure our worker’s idle property is false, and post a message with the new task to the worker.

Canvas is a global variable that was assigned when we called 
setupGraphics in our init function.

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code

This code goes 
in mandel.js.



you are here 4  515

putting javascript to work

Enough code already! Let’s road test this thing. 
Load the fractal.html file into your browser 
and see your workers going to work. Depending 
on your machine, your Fractal Explorer should 
run a little faster than before.

We haven’t written any code to handle resizing 
your browser window, or clicking to zoom into 
the fractal for that matter.  So, for right now, all 
you’ll be able to see is the image on the right. 

But, hey, so far so good, huh?

Psychedelic test drive

Handling a click event
We’ve got our workers busy working to compute the Mandelbrot Set and 
returning results to us so we can draw them on the canvas, but what happens if  
you click to zoom in? Fortunately, because we’re using workers to do the intense 
computation in the background, the UI should be snappy in dealing with your 
click.  That said, we need to write a little code to actually handle the click. 
Here’s how we do that:

canvas.onclick = function(event) {

   handleClick(event.clientx, event.clientY);

};

1

Add this code below the call to setUpGraphics in the init function of “mandel.js”.

If the canvas is clicked on, we call 
the function handleClick with the 
x and y position of the click.

The first thing we need to do is add a handler to take care of mouse clicks, and 
remember, the clicks are happening on our canvas element. To do that we just 
add a handler for the canvas’s onclick property, like this:

Now we just need to write the handleClick function. Before we do let’s think about this a 
second: when a user clicks on the canvas it means they want to zoom into the area they’re 
clicking on (you can go back to the single-threaded version at 
http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html 
to see this behavior). So when the user clicks, we need to get the coordinates of where 
they want to zoom, and then get all the workers working on creating a new image.  
Remember too, we’ve already got a function to assign new work to any idle workers: 
startWorkers. Let’s give it a try...

2

There it is! Too bad we can’t 
zoom, and too bad it doesn’t 
fill the whole window yet, 
but we’ll get to that...

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code



516  Chapter 10

testing and improvements

function handleClick(x, y) {

    var width = r_max - r_min;

    var height = i_min - i_max;

    var click_r = r_min + width * x / canvas.width;

    var click_i = i_max + height * y / canvas.height;

    var zoom = 8;

    r_min = click_r - width/zoom;

    r_max = click_r + width/zoom;

    i_max = click_i - height/zoom;

    i_min = click_i + height/zoom;

    startWorkers();

}

handleClick is called when the 
user clicks on the canvas to 
zoom into the fractal.

We pass in the x, y position of 
the click so we know where they 
clicked on the screen.

This code resizes the area of the 
fractal we are computing, with the 
x, y position at the center of the 
new area. It also makes sure the 
new area has the same aspect ratio 
of the existing one.

This is where we set the global variables that 
are used to create tasks for workers: the zoom 
level determines how far zoomed in we are into 
the fractal, which determines which values of 
the Mandelbrot Set are being computed.

Now, we’re ready to restart the workers. 

Let’s give those code changes a try.  Reload 
fractal.html in your browser and this time 
click somewhere in the canvas.  When you 
do you’ll see the workers start working on the 
zoomed-in view. 

Hey, you should be able to start exploring now! 
After you’ve played around a bit, let’s make a 
few final changes to get this implementation all 
the way there.

Another test drive

Nice! We can zoom, but 
we still need to resize 
the canvas to fit our 
window fully.

This code goes 
in mandel.js.



you are here 4  517

putting javascript to work

function resizeToWindow() {

    canvas.width = window.innerWidth;

    canvas.height = window.innerHeight;

    var width = ((i_max - i_min) * canvas.width / canvas.height);

    var r_mid = (r_max + r_min) / 2;

    r_min = r_mid - width/2;

    r_max = r_mid + width/2;

    rowData = ctx.createImageData(canvas.width, 1);

    startWorkers();

}

Fitting the canvas to the browser window

There’s one administrative detail that uses a global variable we haven’t told you about: rowData. rowData is the ImageData object that we’re using to draw pixels into a row of the canvas. So, when we resize the canvas, we need to recreate the rowData object so that it is the same width as the new width of the canvas. Check the function drawRow in mandellib.js to see how we use rowData to draw pixels into the canvas. 

resizeToWindow makes sure the canvas 
width and height are set to match the 
new width and height of the window.

It also updates the values that the worker 
will use to do its computation based on 
the new width and height (we make sure 
the fractal will always fit the canvas and 
maintain the aspect ratio of the window).

And once again, we restart the workers.

We said we wanted the fractal image to fill the browser window, which means 
we need to resize the canvas if  the window size changes. Not only that, but if  we 
change the canvas size we should also fire off  a new set of  tasks to the workers 
so they can redraw the fractal to fill up the new canvas size. Let’s write the code 
to resize the canvas to the size of  the browser window, and we’ll also restart the 
workers while we’re at it. 

Now we need to do one more thing: install resizeToWindow as a handler for 
the browser window’s resize event.  Here’s how we do that:

window.onresize = function() {

   resizeToWindow();

};

You’ll want to place this code in the init function of  mandel.js, just below the 
call to setUpGraphics.

Create HTML
Ready Bake Code

Create workers
Start the workers
Process the results

Process the results
User interaction code

This code goes 
in mandel.js.



518  Chapter 10

managing fractal generations

The anal-retentive chef coder
There’s just one more thing, and we could let this one go, but the code just 
doesn’t seem correct without it. Think through this with us: you’ve got a bunch 
of  workers happily working on their rows and all of  the sudden the user has to 
go and click on the screen to zoom. Well isn’t that great, because the workers 
have been working hard on their rows, and now the user wants to go and change 
the entire image, making all that work useless. Even worse, the workers have no 
knowledge that the user has clicked, and they’re going to send back their results 
anyway. And far worse, the code in the main page is gladly going to receive and 
display that row! And not to get all doomsday and everything, but we’ve got 
exactly the same problem if  the user resizes the window. 

Now, you’d probably never notice any of  this because there aren’t that many 
workers, and the workers very quickly compute the same rows for the new image, 
overwriting the previous, incorrect rows. But hey, it just feels wrong. Not only 
that, it’s so easy to fix we just have to.

Of  course we have a little confession to make: we knew this was coming, and you 
might remember a little variable we stuck in named generation. Remember, 
every time we restart our workers we increase the value of  generation. Also 
remember the results object that comes back from the worker: every result has its 

“generation” as a property. So we can use generation to know if  we’ve got a result 
from the current or the previous visualization.

Let’s look at the code fix, and then we can talk about how it works; edit your 
processWork function in mandel.js and add these two lines:

Note to Editor: Apologies for 
the little rant here, but, hey, 
after this many pages, well, 
it can get to you...

function processWork(worker, workerResults) {

    if (workerResults.generation == generation) {

       drawRow(workerResults);

    }

    reassignWorker(worker);

}

We’re checking the 
worker’s result to see if 
its generation matches the current one.

If it does match we draw the row, otherwise 
it must be old and we ignore it.

In either case we get the worker 
reassigned to new work!

So all we’re doing here is checking to make sure the current generation we’re 
working on matches the generation of  the result that comes back from the 
worker.  If  it does, great, then we need to draw the row. If  it doesn’t, well that 
means it must be old, and so we just ignore it—it’s too bad our worker wasted 
its time on it, but we don’t want to draw an old row from the previous image on 
the screen.

So, really, that’s it, we promise, it’s time to make sure you have the changes 
above typed in, and get ready for...



you are here 4  519

putting javascript to work

That’s it! You should be ready to go with all your code. 
Load the fractal.html file into your browser and see 
your workers going to work. This version should be faster 
and more responsive than the original, single-threaded 
version; if  you’ve got more than one core on your 
computer, then it will be a lot faster. 

Have fun... zoom in... explore. Let us know if  you find 
any undiscovered “country” in the Mandelbrot Set (tweet 
your screenshots to #hfhtml5 if  you want!). 

Time for the final test drive!

Resize your screen to any 
shape or size now!

Click, zoom, 
explore!

Create HTML
Ready Bake Code

Create workers
Start the workers
Implement the workers

Process the results
User interaction code



520  Chapter 10

IN THE LABORATORY

Our machine with eight cores. One core is maxed out and can’t compute any harder. The other seven are doing nothing to help.

Now our eight 
cores are really 
working hard, 
and our fractal 
computation is 
WAY faster.

We have eight cores in our machine, and so 
in the Fractal Explorer with Web Workers, 
we’re setting the number of workers to match 
that, with numberOfWorkers = 8. And you 
can see in our activity monitor, all 8 cores are 
being used to the max.

What do you think will happen if we set the 
number of workers to 2, or 4, or 16, or 32? Or 
something in between?

Give it a try on your machine and see what 
values work best for you.

If you’re writing high performance code you’ll 
want to check out how the number of workers 
can impact your app’s runtime.

To do that, you can use the task monitor on 
either OS X or Windows. If we go back to our 
original version (the single-threaded one at 
http://wickedlysmart.com/hfhtml5/
chapter10/singlethread/fractal.html ) our 
performance looks like the graph on the right.

http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html
http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html


you are here 4  521

putting javascript to work

PASTE YOUR NEW LOCATION IN 
THE MANDELBROT SET HERE

You’ve done it!  You’ve got a fully functional Fractal Explorer that’s all ready for exploring the Mandbelbrot territory. So what are you waiting for—dig in and find your little slice of  the virtual universe. Once you’ve found it, print it, paste it in here, and give your new little homestead a name.

Stake your claim!

Name your new territory: __________________________________



522  Chapter 10

more worker api functionality

Handle errors in workers

worker.onerror = function(error) {

    document.getElementById("output").innerHTML =

        "There was an error in " + error.filename + 

        " at line number " + error.lineno +

        ": " + error.message;

}

What happens if  something goes terribly wrong in a worker? How can 

you debug it? Use the onerror handler to catch any errors and also get 

debugging information, like this:

Terminate a worker
You’ve created workers to do a task, the task is done, and you want to get rid of  all the workers (they do take up valuable memory in the browser). You can terminate a worker from the code in your main page like this:
worker.terminate();

If  the worker happens to still be running, the worker script will abort, so use with caution.   And once you’ve terminated a worker you can’t reuse it; you’ll have to create a new one.
You can also have a worker stop itself  by calling close(); (from inside the worker).

Now before you take off, would 
you believe there’s even more to 
know about Web Workers? Check out 
the next couple of pages to see everything 
we didn’t cover in this chapter.



you are here 4  523

putting javascript to work

Use importScripts to make a JSONP request

function makeServerRequest() {

        importScripts("http://SomeServer.com?callback=hand
leRequest");

} 

function handleRequest(response) {

        postMessage(response);

} 

makeServerRequest();

You can’t insert new <script> elements to make JSONP requests from workers, 

but you can use importScripts to make JSONP requests, like this:

Remember your JSONP? Include your callback function in the URL query, and it will be called with the JSON results passed into the response parameter. 

var quotes = ["I hope life isn’t a joke, because I don’t get it.",

              "There is a light at the end of every tunnel...just pray it’s not a train!",

              "Do you believe in love at first sight or should I walk by again?"];

function postaQuote() {

    var index = Math.floor(Math.random() * quotes.length);

    postMessage(quotes[index]);

}

postaQuote();

setInterval(postaQuote, 3000);

Use setInterval in your workers
You might have missed this (it went by fast, we used it in only one example), but you can use 
setInterval (and setTimeout) in your workers to do the same task repeatedly. For instance you 
could update the quotes worker (quote.js) to post a random quote every 3 seconds, like this:

Move these two lines into a 
postAQuote function...

... call postAQuote to send a quote right away, and then set an interval to send more quotes, every 3 seconds.

var worker = new Worker("subworker.js");

Subworkers
If  your worker needs help with its task, it can create its own workers. Say you’re giving your 

worker regions of  an image to work on, the worker could decide that if  a region is bigger 

than some size, it will split it up among its own subworkers. 

A worker creates subworkers just like the code in your page creates a worker, with:

Remember that subworkers, just like workers, are fairly heavy-weight: they take up memory 

and are run as separate threads. So, be cautious about how many subworkers you create.



524  Chapter 10

review of web workers

 � Without Web Workers, JavaScript is single-
threaded, meaning it can do only one thing at a 
time.

 � If you give a JavaScript program too much to do, 
you might get the slow script dialog.

 � Web Workers handle tasks on a separate thread so 
your main JavaScript code can continue to run and 
your UI remains responsive.

 � The code for a Web Worker is in a separate file from 
your page’s code.

 � Web Workers don’t have access to any of the 
functions in the code in your page or the DOM.

 � The code in your page and the Web Worker 
communicate via messages. 

 � To send a message to a worker, use postMessage. 

 � You can send strings and objects to a worker via 
postMessage. You can’t send functions to a worker.

 � Receive messages back from workers by setting the 
worker’s onmessage property to a handler function.

 � A worker receives messages from the code in your 
page by setting its onmessage property to a handler 
function.

 � When a worker is ready to send back a result, it 
calls postMessage and passes the result as the 
argument.

 � Worker results are encapsulated in an event object 
and placed in the data property.

 � You can find out which worker sent the message 
using the event.target property.

 � Messages are copied, not shared, between your 
main page code and the worker.

 � You can use multiple workers for large computations 
that can be split into multiple tasks, such as 
computing a fractal visualization or ray tracing an 
image.

 � Each worker runs in its own thread, so if your 
computer has a multicore processor, the workers 
are run in parallel, which increases the speed of the 
computation.

 � You can terminate a worker by calling worker.
terminate() from the code in your page. This will 
abort the worker script. A worker can also stop itself 
by calling close().

 � Workers also have an onerror property. You can set 
this to an error handling function that will be called if 
your worker has a script error.

 � To include and use JavaScript libraries in your 
worker file, use importScripts.

 � You can also use importScripts with JSONP. 
Implement the callback you pass in the URL query 
in the worker file.

 � While workers do not have access to the DOM 
or functions in your main code, they can use 
XMLHttpRequest and Local Storage.



you are here 4  525

putting javascript to work

HTML5cross
Wow, Chapter 10; you’ve done it. Sit back, relax and 
make it stick by working the rest of your brain a 
little. Here’s your Chapter 10 crossword puzzle.

1

2 3

4

5 6 7

8 9

10 11 12

13

14

15

16

Across
4. You can pass ______ to workers using postMessage.
8. Capability of a processor to do more than one thing at a 
time.
9. The property used to register a handler to receive 
messages.
11. Workers can’t access the _______.
12. Our first example used this game.
13. The most famous fractal.
14. ______/worker.
15. A lovely area of the Mandelbrot countryside is _________ 
Valley.
16. The guy who wrote the original version of Fractal Viewer.

Down
1. Workers can use XMLHttpRequest and access 
___________.
2. How to import additional code into a worker.
3. _____ of execution.
5. How to abort a worker.
6. Mandelbrot uses __________ numbers.
7. How to create a Worker.
10. The manager and workers communicate with these.

Okay we never told you this, 
it’s James Henstridge.

Across
4. You can pass _______ to workers using postMessage.
8.  Capability of a processor to do more than one thing at a 

time.
9.  The property used to register a handler to receive 

messages.
11. Workers can’t access the _______.
12. Our first example used this game.
13. The most famous fractal.
14. ______/worker.
15.  A lovely area of the Mandelbrot countryside is _________ 

Valley.
16. The guy who wrote the original version of Fractal Viewer.

Down
1.  Workers can use XMLHttpRequest and access 

 ___________.
2. How to import additional code into a worker.
3. _____ of execution.
5. How to abort a worker.
6. Mandelbrot uses __________ numbers.
7. How to create a Worker.
10. The manager and workers communicate with these.



526  Chapter 10

exercise solutions

BE the Browser Solution
It’s time to pretend you’re the browser 

evaluating JavaScript. 

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

    }

    for (var i = 0; i < 5; i++) {

        worker.postMessage("ping");

    }

}

This sends five ping messages 
to the worker, which responds 
with five pongs, so we get five 
“Worker says pong” alerts.

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.ommessage = function(event) {

        alert("Worker says " + event.data);

    }

    for(var i = 5; i > 0; i--) {

        worker.postMessage("pong");

    }

}

This sends five pong messages 
to the worker, which ignores 
them since they aren’t pings.  
No output.

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

        worker.postMessage("ping");

    }

    worker.postMessage("ping");

}

This sends a ping and then each 
time a pong comes back, sends 
another, so we get an infinite 
loop of pong alerts.

window.onload = function() {

    var worker = new Worker("worker.js");

    worker.onmessage = function(event) {

        alert("Worker says " + event.data);

    }

    setInterval(pinger, 1000);

    

    function pinger() {

        worker.postMessage("ping");

    }

}

This sends a ping every 
second, so we get a pong 
back each time it sends 
a ping.



you are here 4  527

putting javascript to work

In our HTML, we have a script that creates a worker, which executes immediately. The worker chooses 
a quote randomly from the quotes array, and sends the quote to the main code using postMessage. 
The main code gets the quote from event.data and adds it to the page in the “quote” <p> element.

quote.html<!doctype html>

<html lang="en">

   <head>

      <title>Quote</title>

      <meta charset="utf-8">

   </head>

<body>

   <p id="quote"></p>

   <script>

       var worker = new Worker("quote.js");

       worker.onmessage = function(event) {

           document.getElementById("quote").innerHTML = event.data;

       }

   </script>

</body>

</html>

var quotes = ["I hope life isn’t a joke, because I don’t get it.",

              "There is a light at the end of every tunnel….just pray it’s not a train!",

              "Do you believe in love at first sight or should I walk by again?"];

var index = Math.floor(Math.random() * quotes.length);

postMessage(quotes[index]);

quote.js

Your description here:

While workers typically get their work orders through a message, they don’t 
have to. Check out this nice, compact way to get work done with workers and 
HTML. When you know what it does, describe it below:



528  Chapter 10

exercise solutions

HTML5cross Solution

L1

O I2 T3

O4 B J E C T S M H

A P R T5 C6 N7

M8 U L T I C O R E E O9 N M E S S A G E

S R A R M W

M10 T T D11 O M P12 I N G P O N G

E O S I L

S R C M13 A N D E L B R O T

S A R A X

M14 A N A G E R I T

G E P S15 E A H O R S E

E T

S J16 A M E S H E N S T R I D G E

Across
4. You can pass ______ to workers using postMessage. 
[OBJECTS] 
8. Capability of a processor to do more than one thing at a 
time. [MULTICORE] 
9. The property used to register a handler to receive 
messages. [ONMESSAGE] 
11. Workers can’t access the _______. [DOM] 
12. Our first example used this game. [PINGPONG] 
13. The most famous fractal. [MANDELBROT] 
14. ______/worker. [MANAGER] 
15. A lovely area of the Mandelbrot countryside is _________ 
Valley. [SEAHORSE] 
16. The guy who wrote the original version of Fractal Viewer. 
[JAMESHENSTRIDGE] 

Down
1. Workers can use XMLHttpRequest and access 
___________. [LOCALSTORAGE] 
2. How to import additional code into a worker. 
[IMPORTSCRIPTS] 
3. _____ of execution. [THREAD] 
5. How to abort a worker. [TERMINATE] 
6. Mandelbrot uses __________ numbers. [COMPLEX] 
7. How to create a Worker. [NEW] 
10. The manager and workers communicate with these. 
[MESSAGES] 



you are here 4  529

putting javascript to work

Wouldn’t it be dreamy if this 
were the end of the book? If 
there were no bullet points or 

puzzles or JavaScript listings or 
anything else? But that’s probably 

just a fantasy...

Congratulations!
You made it to the end.

Of course, there’s still an appendix.

And the index.

And the colophon.

And then there’s the web site...

There’s no escape, really.





this is a new chapter  531

Appendix: leftovers

The Top Ten Topics       
        (we didn’t cover)

We’ve covered a lot of  ground, and you’re almost 
finished with this book.  We’ll miss you, but before we let you go, we 

wouldn’t feel right about sending you out into the world without a little more 

preparation.  We can’t possibly fit everything you’ll need to know into this 

relatively small chapter.  Actually, we did originally include everything you need to 

know about HTML5 (not already covered by the other chapters), by reducing the 

type point size to .00004.  It all fit, but nobody could read it.  So, we threw most of 

it away, and kept the best bits for this Top Ten appendix.

This really is the end of the book.  Except for the index, of course (a must-read!).



532  Appendix

modernizr and audio

#1 Modernizr
One thing you’ve probably noticed in this book, is that when you want to detect 
browser support for an API, there is no uniform way of  doing so; in fact, almost 
every API is detected in a different way. For geolocation, for instance, we look 
for the geolocation object as a property of  the navigator object, while for web 
storage we check to see if  localStorage is defined in the window object, and 
for video we check to see if  we can create a video element in DOM, and so on. 
Surely there’s a better way?

Modernizr is an open source JavaScript library that provides a uniform 
interface for detecting browser support. Modernizer takes care of  all the 
details of  the different means of  detection, even factoring in all the edge 
cases around older browsers. You’ll find the Modernizr home page at 
http://www.modernizr.com/

Modernizr has gained a lot of  developer support so you’ll see it used widely 
around the Web. We highly recommend it.

Here’s an example of detecting 
for geolocation, web storage and 
video, all in a consistent manner.

Including Modernizr in your page

To use Modernizr, you need to load the JavaScript library into 
your page. To do that you first visit the Modernizer site at 
http://www.modernizr.com/download/, which allows you to custom 
configure a library that contains just the detection code you need (or you 
can always grab everything while you’re there). After you’ve done that, 
stash the library in a file of  your choice and load it into your page (visit 
Modernizr’s web site for addition tutorials and documentation on best 
practices for doing this).

How to detect support

Once you’ve got Modernizr installed, detecting HTML5 elements and 
JavaScript APIs gets a lot easier and more straightforward:

if (Modernizr.geolocation) {

    console.log("You have geo!");

}

if (Modernizr.localstorage) {

    console.log("You have web storage!");

}

if (Modernizr.video) {

    console.log("You have video!");

}

Note: Modernizr goes far beyond 
simple API detection and can also 
detect support for CSS features, 
video codecs and many other 
things. So, check it out!



you are here 4  533

leftovers

#2 Audio
HTML5 gives you a standard way to play audio in your pages, 
without a plug-in, with the <audio> element:

In addition to the <audio> element, there is also a corresponding 
Audio API that supports the methods you’d expect, like play, pause 
and load. If  this sounds familiar, it should, because the audio API 
mirrors (where appropriate) the video API. Audio also supports many 
of  the properties you saw in the video API, like src, currentTime 
and volume. Here’s a bit of  audio code to get a feel for using the API 
with an element in the page:

Also like video, each browser implements its own look and feel for 
player controls (which typically consist of  a progress bar with play, 
pause and volume controls).

Despite its simple functionality, the audio element and API give you 
lots of  control. Just like we did with video, you can create interesting 
web experiences by hiding the controls and managing the audio 
playback in your code. And with HTML5, you can now do this 
without the overhead of  having to use (and learn) a plug-in.

A Standard for Audio Encodings
Sadly, like video, there is no standard encoding for audio. Three 
formats are popular: mp3, wav and Ogg Vorbis. You’ll find that 
support for these formats varies across the browser landscape with 
different levels of  support for the various formats in each browser 
(as of  this writing, as of  this writing, Chrome is the only browser 
that supports all three formats).

<audio src="song.mp3" id="boombox" controls>
  Sorry but audio is not supported in your browser.
</audio>

Look familiar? Yes, audio  supports similar functionality as video (minus video, obviously).

var audioElement =  
    document.getElementById("boombox");

audioElement.volume = .5;

audioElement.play();

Get a reference to the audio 
element, then lower its volume 
to 1/2 and start playing.



534  Appendix

jQuery

#3 jQuery
jQuery is a JavaScript library that is aimed at reducing and simplifying much of  the 
JavaScript code and syntax that is needed to work with the DOM, use Ajax and add 
visual effects to your pages. jQuery is an enormously popular library that is widely 
used and expandable through its plug-in model. 

Now, there’s nothing you can do in jQuery that you can’t do with JavaScript (as we 
said, jQuery is just a JavaScript library), however it does have the power to reduce 
the amount of  code you need to write. 

jQuery’s popularity speaks for itself, although it can take some getting used to if  you 
are new to it. Let’s check out a few things you can do in jQuery and we encourage 
you to take a closer look if  you think it might be for you.

For starters, remember all the window onload functions we wrote in this book? Like:

Remember, Ajax is 
just a name for using 
XMLHttpRequest, like 
we did in Chapter 6.

A working knowledge of 
jQuery is a good skill these 
days on the job front and for 
understanding others’ code.

    window.onload = function() {

        alert("the page is loaded!");

    }

Here’s the same thing using jQuery:

    $(document).ready(function() {

        alert("the page is loaded!");

    }); 

Or you can shorten this even more, to:

    $(function() {

        alert("the page is loaded!");

    });

Just like our version, when the document 
is ready, invoke my function.

This is cool, but as you can see 
it takes a little getting used to 
at first. No worries, it becomes 
second-nature fast.

So what about getting elements from the DOM? That’s where jQuery shines. 
Let’s say you have an anchor in your page with an id of  “buynow” and you 
want to assign a click handler to the click event on that element (like we’ve done 
a few times in this book). Here’s how you do that:

    $(function() {

       $("#buynow").click(function() {

           alert("I want to buy now!");

       });

    });

So what's going on here? First we're setting up a function 
that is called when the page is loaded.

Next we're grabbing the anchor with 
a “buynow” id (notice jQuery uses 
CSS syntax for selecting elements).

And then we're calling a jQuery method, click, 
on the result to set the onclick handler.



you are here 4  535

leftovers

That’s really just the beginning; we can just as easily set the click handler on 
every anchor on the page:

    $(function() {

       $("a").click(function() {

           alert("I want to buy now!");

       });

    });

To do that, all we need to do is 
use the tag name. 

Compare this to the code you’d 
write to do this if we were using 
JavaScript without jQUery.

Or, we can do things that are much more complex:

     $(function() {

        $("#playlist > li").addClass("favorite");

     });

Like find all the <li> elements 
that are children of the element 
with an id of playlist.

And then add them to the class "favorite".

Actually this is jQuery just getting warmed up; jQuery can do things much much more sophisticated than this.

There’s a whole ’nother side of  jQuery that allows you to do interesting interface 
transfomations on your elements, like this:

       $(function() {

           $("#specialoffer").toggle(function() {

               $(this).animate({ backgroundColor: "yellow" }, 800);

           },function() {

               $(this).animate({ backgroundColor: "white" }, 300);

           });

      }); This toggles the element with an id of specialoffer between 
being yellow and 800 pixels wide, and white and 300 pixels 
wide, and animates the transition between the two states.

As you can see, there’s a lot you can do with jQuery, and we haven’t even talked 
about how we can use jQuery to talk to web services, or all the plug-ins that work 
with jQuery. If  you’re interested, the best thing you can do is point your browser to 
http://jquery.com/ and check out the tutorials and documentation there.

And, check out Head First jQuery too!



536  Appendix

XHTML and SVG

#4 XHTML is dead, long live XHTML
We were pretty tough on XHTML in this book, first with the “XHTML 
is dead” discussion, and then later with “JSON versus XML”. The truth 
is, when it comes to XHTML, it is only XHTML 2 and later that has 
died, and in fact, you can write your HTML5 using XHTML-style if  you 
want to. Why would you want to?  Well, you might need to validate or 
transform your documents as XML, or you might want to support XML 
technologies, like SVG (see #5), that work with HTML.

Let’s look at a simple XHTML document and then step through the high 
points (we couldn’t possibly cover everything you need to know on this 
topic, as with all things XML; it gets complicated, fast).

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

   <head>

      <title>You Rock!</title>

      <meta charset="UTF-8" />

   </head>

   <body>

      <p>I’m kinda liking this xHTML!</p>

      <svg xmlns="http://www.w3.org/2000/svg">

         <rect stroke="black" fill="blue" x="45px" y="45px"  
               width="200px" height="100px" stroke-width="2" />

      </svg>

   </body>

</html>

Same doctype!
This is XML, we need 
a namespace!

All elements have to be well formed; note the 
trailing /> here to close this empty element.

We can embed XML right in the 
page! Kinda cool.

Now here’s a few things you need to consider for your XHTML pages:

 � Your page must be well formed XML.

 � Your page should be served with the application/xhtml+xml 
MIME type, for this you’ll need to make sure your server is serving 
this type (either read up on this or contact your server administrator).

 � Make sure and include the XHTML namespace in your <html> 
element (which we’ve done above).

Closing all your elements, quotes 
around attribute values, valid nesting 
of elements, and all that.

Like we said, with XML there’s a lot more to know and lots of  things to 
watch out for. And, as always with XML, may the force be with you...

We’re using SVG to draw 
a rectangle into our page. 
Check out #5 (next page) 
for more on SVG.



you are here 4  537

leftovers

#5 SVG
Scalable Vector Graphics, or SVG, is another way—aside from canvas—of  
including graphics natively in your web pages. SVG has been around a while (since 
1999 or so) and is now supported in all the current versions of  major browsers, 
including IE9 and later. 

Unlike canvas, which, as you know, is an element that allows you to draw pixels into 
a bitmap drawing surface in your page with JavaScript, SVG graphics are specified 
with XML. “XML?” you say? Yes, XML! You create elements that represent 
graphics, and then you can combine those elements together in complex ways to 
make graphic scenes. Let’s take a look at a very simple SVG example: 

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <title>SvG</title>
  <meta charset="utf-8" />
</head>
<body>
  <div id="svg">
    <svg xmlns="http://www.w3.org/2000/svg">
      <circle id="circle"
              cx="50" cy="50" r="20"
              stroke="#373737" stroke-width="2"
              fill="#7d7d7d" />
    </svg>
  </div>
</body>
</html>

We're using the XHTML-style 
HTML5 because we're using SVG, 
which is XML-based.

We're using an <svg> element 
right in our HTML! 

Our SVG is simple: it contains only a 
circle that is located at position x=50, 
y=50 and has a radius of 20...
... a stroke that is 2 pixels wide 
and colored dark grey...

... and is filled with a medium grey.

SVG defines a variety of  basic shapes, like circles, rectangles, polygons, lines, and so 
on. If  you have more complex shapes to draw, you can also specify paths with SVG—of  
course, at that point things start getting more complex (as you already saw with paths in 
canvas). However, there are graphical editors that will let you draw a scene and export it 
as SVG, saving you the headache of  figuring out all those paths yourself ! 

What’s so great about SVG? Well, one nice aspect of  SVG is that you can scale your 
graphics as big or small as you want and they don’t pixellate, like a jpeg or png image 
would if  you scaled it. That makes them easy to reuse in different situations. And because 
SVG is specified with text, SVG files can be searched, indexed, scripted and compressed.

We’ve barely scratched the surface of  what you can do with SVG, so explore more if  this 
topic interests you.

You can grab this circle 
element just like any 
other element from 
the DOM and do stuff 
with it... for instance 
you could add a click 
handler and change the 
circle’s fill attribute 
to “red” when the user 
clicks on the circle.



538  Appendix

offline web apps and web sockets

#6 Offline web apps
If  you’ve got a smartphone or tablet, you’re probably accessing the Web on the 
go, and with WiFi and cellular networks, you’re connected almost all the time. 
But what about those times when you’re not? Wouldn’t it be great if  you could 
keep on using those great HTML5 web apps you’ve been building for yourself ?

Well, now you can. Offline web applications are supported by all modern 
desktop and mobile browsers (with one exception: IE). 

So how do you make your web application available offline? You create a cache 
manifest file that contains a list of  all the files your app needs to work, and the 
browser will download all those files, and switch to the local files if  and when 
your device goes offline. To tell your web page that it has a manifest file, you 
simply add the filename of  the cache manifest file to your <html> tag, like this:

Here’s what the notetoself.manifest file contains:

This file says: when you visit the web page that points to this file, download 
all the files listed in the CACHE section of  the file. You can also add two other 
sections to the file, FALLBACK and NETWORK. FALLBACK specifies what file to 
use if  you try to access a file that isn’t cached, and NETWORK specifies files that 
should never be cached (for example, visit tracking resources).

Now, before you run off  to go play with this, you need to know two things: first, 
you need to make sure your web server is set up to serve the mime type for cache 
manifest files correctly (just like we had to do for video files in Chapter 8). For 
example, on an Apache server, add this line to your .htaccess file at the top 
level of  your web directory:

The other thing you need to know is that testing offline web applications is 
tricky! We recommend checking out a good reference on the topic and reading 
the HTML5 offline web applications specification.

Once you’ve got basic caching working, you can use JavaScript to be notified 
of  cache events, such as when a cache manifest file is updated and the status 
of  the cache. To be notified of  events, you add event handlers to the window.
applicationCache object, like this:

CaCHE MaNIFEST

CaCHE:

notetoself.html

notetoself.css

notetoself.js

<html manifest="notetoself.manifest">

addType text/cache-manifest .manifest

window.applicationCache.addEventListener("error", errorHandler, false);

With offline web apps, you can 
use your favorite web apps 
when you're not connected!

Every cache manifest file 
must start with this.

List all the files you want to cache 
in the CACHE section: html, css, 
javascript, images, etc.

Implement the 
errorHandler to 
be notified if 
there's an error 
with the cache.



leftovers

  539

#7 Web Sockets
We looked at two ways of  communicating in this book: XMLHttpRequest 
and JSONP.  In both cases we used a request/response model based on 
HTTP.  That is, we used the browser to make a request for the initial 
web page, CSS and JavaScript, and each time we needed something 
else, we made another request using XMLHttpRequest or JSONP.  We 
even made requests when there was no new data for us, which happened 
sometimes in the Mighty Gumball example.

Web Sockets is a new API that allows you to keep an open connection 
with a web service so that any time new data is available the service can 
just send it to you (and your code can be notified). Think of  it like an 
open phone-line between you and the service.

Here’s a high-level overview of  how you use it: first, to create a web 
socket we use the web socket constructor:

You can be notified as soon as the socket is open with the open event, 
which you can assign a handler for:

You can send a message to the web service with the postMessage 
method:

And to receive messages you register another handler, like this:

There’s a little more to it than this, of  course, and you’ll want to check 
out some tutorials online, but there’s not much more to the API. This API 
has been lagging behind some of  the other HTML5 API development, so 
check out the latest browser compatibility guides before you undertake a 
major project.

    socket.onmessage = function(event) {

        alert("From socket: " + event.data);

    };

    var socket = new WebSocket("ws://yourdomain/yourservice");  

    socket.onopen = function(){  

        alert("Your socket is now open with the web service");  

    } 

    socket.postMessage("player moved right");

Notice this URL uses 
the ws protocol, not 
the http protocol.

And remember you or 
someone else is going 
to have to write the 
server code so you have 
something to talk to!

Here we supply a 
handler that is called 
when the socket is fully 
opened and ready for 
communcation.

Here's we're sending the 
server a string; binary 
is coming but not widely 
supported yet.

By registering a handler, we receive all 
messages, which are contained in the 
event's data property.



540  Appendix

more canvas api

#8 More canvas API
We had fun with the canvas in Chapter 7, building our TweetShirt startup. But there 
are lots of  other fun canvas-related things you can do and we wanted to touch on a 
few more of  them here. 

We mentioned very briefly that you can save and restore the canvas context. Why 
would you want to do that? Let’s say you’ve set some properties of  the context, like the 
fillStyle, strokeStyle, lineWidth and so on. And you want to then temporarily 
change those values to do one thing, like draw a shape, but not have to reset them 
all to get back to the property values you had previously. You can use the save and 
restore methods to do that: 

context.fillStyle = "lightblue";

 ...

context.save();

context.fillStyle = "rgba(50, 50, 50, .5)";

context.fillRect(0, 0, 100, 100);

context.restore();

 ...

These methods come in particularly handy when you want to translate or rotate the 
canvas to draw something and then put it back to its default position. What do the 
translate and rotate methods do? Let’s take a look...

context.translate(200, 200);

context.fillRect(0, 0, 100, 100);

We’ve got a 400x400 canvas 
in the page. If we draw a black 

rectangle at x=0, y=0, it is drawn in 
the top left corner, like you’d expect. 

1

context.fillRect(0, 0, 100, 100);

Now, we’ll pick up the canvas and 
move it 200 pixels to the right, and 

200 pixels down.  If we draw another 
rectangle at x=0, y=0, the rectangle is 
drawn 200 pixels right and down from the 
other rectangle. We’ve just translated 
the canvas.

2

We set up a bunch of properties in the 
context and do some drawing.

Now, we save the context. All those properties 
are saved safely. We can change them...

... and then get them all back to where they 
were when we saved them simply by calling the 
restore method! At this point, all our properties 
are what they were before we saved.



you are here 4  541

leftovers

var canvas = document.getElementById("canvas");

var context = canvas.getContext("2d");

var degrees = 36;

context.save();

context.translate(200, 200);

context.fillStyle = "rgba(50, 50, 50, .5)";

for (var i = 0; i < 360/degrees; i++) {

  context.fillRect(0, 0, 100, 100);

  context.rotate(degreesToRadians(degrees));

}

context.restore();

context.translate(200, 200);

context.rotate(degreesToRadians(36));

context.fillRect(0, 0, 100, 100);

What if we rotate the canvas before 
we draw the rectangle? The canvas 

rotates around its top left corner (by 
default), and since we just moved the top 
left corner to 200, 200, that’s the position 
where the canvas rotates.

3

Now let’s put all that together! You can use the translate and rotate methods 
together to create some interesting effects.

Combine these simple transformations with other, even more powerful (and 
complex!) methods like compositing and transforms, and the possibilities for 
creating graphic art with canvas are endless.

We’re saving the context here so we 
can easily restore it to its normal 
grid position after we’re done.

36º

We’re drawing 
10 rectangles by 
rotating the canvas 
36 degrees before 
drawing a rectangle 
at 0, 0 each time 
through the loop.Now our canvas is back at 

its original position!

When you translate or rotate the 
canvas, it’s moved on a grid that’s 
positioned with respect to the top 
left corner of the browser window. 
If you’ve positioned your canvas using 
CSS, those values are taken into 
account. Try it!

And here’s the result. 
Fun!We translate our canvas by 200, 200.



542  Appendix

selectors api and more

#9 Selectors API
You already know how to select elements from the DOM using document.getElementById; 
we’ve used it throughout this book as a way to get HTML and JavaScript working together. 
You’ve also seen how to use document.getElementsByTagName (this method returns 
an array of  all elements that match a tag), and there’s even a getElementsByClassName 
method (returning, you guessed it, all elements that are in a given class). 

With HTML5, we now have a new way of  selecting elements from the DOM, inspired by 
jQuery. You can now use the same selectors you use in CSS to select elements for styling in 
your JavaScript to select elements from DOM with the document.querySelector method. 

Let’s say we have this simple HTML:

<!doctype html>
<html lang="en">
<head>
  <title>Query selectors</title>
  <meta charset="utf-8">
</head>
<body>
  <div class="content">
    <p id="avatar" class="level5">Gorilla</p>
    <p id="color">Purple</p>
  </div>
</body>
</html>

Now, let’s use the selectors API to ask for the “avatar” <p> element:

document.querySelector("#avatar");

That’s essentially the same thing as document.getElementId("avatar"). Now 
let’s use the element’s class to select it:

document.querySelector("p.level5");

We can also select a <p> element that is a child of  the <div> element, like this:

document.querySelector("div>p");

or even like this:

document.querySelector(".content>p");

And, if  what we really want is all the <p> elements in the <div>, we can use the 
other method in the selectors API, querySelectorAll:

document.querySelectorall("div>p");

querySelectorAll returns an array of  elements, just like getElementsByTagName. 
And that’s it!  Those are the only two methods in the API. The selectors API is small, 
but adds powerful new functionality for selecting elements.

Take a close look at the structure of this 
HTML. We’re going to use the selectors API 
to select elements from the page. 

We’ve got a <div> element with the class 
“content”, and two <p> elements, each with 
their own ids, and one with the class “level5”.

 

Now we’re using the tag name and the 
class to select it.

Here, we’re using a child selector to select a 
<p> element that is a child of the <div>. It 
selects the first one, by default.

Now we get all the child <p> 
elements of the <div>!



you are here 4  543

leftovers

#10 But, there’s even more!

Indexed Database API and Web SQL

Okay, we really wanted to keep it to the ten things we didn’t tell you, but it 
looks like we’ve got a ways to go, and instead of  standing between you and 
your reading of  the index, we’re going to give you a bunch more in a single 
page. Here they are (keep in mind some of  these areas are still evolving, but 
we knew you’d want to know about them for future reference):

If  you’re looking for something more industrial than the Web Storage API to 
store your data locally, keep an eye on the web database space. Two competing 
visions are out there right now: Web SQL and IndexedDB. Ironically, Web 
SQL is the more widely supported of  the two, but was recently deprecated 
by the standards bodies (meaning they don’t recommend adopting it as a 
standard, and you probably shouldn’t base your next startup on it). IndexedDB, 
on the other hand, isn’t widely implemented yet, but has support from Google 
and Firefox. IndexedDB provides fast access to a large collection of  indexed 
data, while Web SQL is a small SQL engine that runs in the browser. Keep an 
eye out for where these technologies go; they are changing fast!

Drag and Drop
Web developers have been doing drag and drop with jQuery for a while now, and now this 
functionality is native in HTML5. With the HTML5 Drag and Drop API, you specify something to 
drag, where you can drop it, and JavaScript handlers to be notified of  the various events that occur 
while dragging and dropping. To make an element draggable, just set the draggable attribute 
to true. Just about any element can be dragged: images, lists, paragraphs, and so on. You can 
customize the dragging behavior by listening for events like dragstart and dragend and even 
change the style of  an element to look like you want while it’s being dragged. You can send along a 
little bit of  data with your dragged element using the dataTransfer property; access this through 
the event object to know if, say, the element is being moved or copied. As you can see, there are 
lots of  great opportunities to build new UI interactions with HTML5 Drag and Drop.

Cross-document Messaging
In chapter 6, we used a communication pattern known as JSONP to get around the cross-domain 
communication issues with XMLHttpRequest.  There’s another way you can communicate between 
documents—even documents in different domains. The Cross-document Messaging API specifies that 
you can post a message to a document you’ve loaded using an iframe element. This document could 
even be at a different domain! Now, you wouldn’t want to load just any document into your iframe; 
you’ll want to make sure it’s from a domain you trust and set it up to receive your messages. But the 
upshot is that this is a way to get messages back and forth between two HTML documents. 

And we could go on...
The exciting thing about HTML5 is that there are so many new capabilities being developed at a fairly 
fast pace; there’s even more we could put on the this page, but we’re out of  room. So keep up to date 
with us on the Web at http://wickedlysmart.com for all the latest developments in HTML5!



544  Appendix

html5 guide to new construction

I can’t believe the book is almost over. 
Before you go, we’ve got a little parting gift 

for you from the City of Webville; it’s the guide 
to the HTML5 elements (and what’s new in CSS3)  

that we promised you. Isn’t Webville great?!



you are here 4  545

leftovers

Here in Webville we’ve recently made a few additions to our building codes 
and we’ve prepared a handy guide to any new construction you might be 
considering. In particular we’ve added a bunch of  new new semantic elements 
that give you even more power to architect your pages. Now, our guide isn’t 
exhaustive; rather, our goal here is to give you, the experienced builder, enough 
to be familiar with the new HTML5 elements and CSS3 properties so you 
can use them in the web applications you’re learning how to build in this book 
when you’re ready. So if  you need a quick tutorial on the semantic additions to 
HTML5, take one—they’re FREE (for a limited time only).

The HTML5 Guide to New Construction



546  Appendix

html5 semantic elements

<section>

A <section> is a “generic document”. You could use 
<section> to mark up, oh, say a Guide to HTML. Or to 
enclose the HTML for a game. A <section> is not a generic 
container—that’s <div>’s job. And remember, use <div> if 
you’re just grouping elements together for styling purposes.

<article>

An <article> is a self-contained chunk of content that you 
might want to share with another page or web site (or even 
your dog). Perfect for blog posts and news articles.

<footer>

<footer> is for the bottoms of things. Things like 
<section>s, <article>s and <div>s. You might think you’re 
only allowed one on a page; in fact, you can use it 
whenever you need footer content on a section of your 
page (like a bio or references for an article).

<header>

<header> is for the tops of elements like <section> and 
<article>. You might also use <header> at the top of the 
body to create the main header for your page. 

Webville Guide to HTML5 Semantic Elements
Here in Webville we’ve made some recent changes to our building code and we’ve 
prepared a handy guide for all your new construction. If you’ve been using <div>s for 
common construction like headers, navigation, footers, and blog articles, then we have 
some new building blocks for you. So make sure you’re up to code.

<hgroup>

This one can be tricky. Unlike <header>, which can contain 
any elements related to a header, <hgroup> is specifically 
for grouping headings (<h1>...<h6>) together inside a 
<header>. Good for outlines.



you are here 4  547

leftovers

<nav>

<nav> is navigation and for links, of course. But not just 
any links: use <nav> when you have a group of links, like 
navigation for your site, or a blogroll. Don’t use it for single 
links in paragraphs.

<aside>

<aside> is handy for all kinds of things that are chunks of 
content outside the main flow of your page, like a sidebar, 
a pull quote, or an after-thought.

<time>

Finally! It’s about time. You can mark up your times with 
<time>. No need to rush; take your time and do it right— 
you’ll need to study up a bit on the valid formats for <time>. 

<progress>

Almost done? Yes, we’re making progress through these 
HTML5 elements...<progress> represents how far along 
you are in completing a task. Use with a little CSS and 
JavaScript for some nice effects.

<abbr>

Hey Mr., make sure you use an abbreviation for that long 
word! Great for search, because search engines aren’t 
always as smart about abbreviations as we are.

<mark>

Use <mark> to mark words, for highlighting or editing, say. 
A good one to use with search engine results.

Webville Guide to HTML5 Semantic Elements



548  Appendix

css3 properties

Webville Guide to CSS3 Properties
Now that you’ve got your new building blocks into place, it’s time to think about some 
interior design. You’ll want to make all your new construction look good, right?

Adding style to your new construction with CSS3

New properties
There are quite a few new properties in CSS3, many of which do what web 
page authors have been doing for years with various contortions of HTML, 
images, and JavaScript. Examples:

opacity: 0.5; 

border-radius: 6px;

box-shadow: 5px 5px 10px #373737;

Makes an element 50% opaque

Creates a rounded effect with a 
6px curvature on each corner
A shadow 5px long, 5px high, a blur of 10px and a dark grey color.New layouts

There are a couple of powerful new ways to lay out your page with CSS that 
go beyond positioning and are much easier to use. Examples:

display: table; 

display: table-cell;

display: flexbox; 

flex-order: 1;

This gives you a table layout 
without the HTML tables.

With flexbox you have greater control over how the browser flows boxes, like <div>s onto the page.New animations
With animations, you can animate between property values. For instance 
you can make something disappear by transitioning the opacity from opaque 
to translucent: 

transition: opacity 0.5s ease-in-out;

opacity: 0; 

The transition property 
specifies a property to 
transition into and out of, 
(in this case opacity), how 
long to take to do the 
transition and the easing 
function, so it’s gradual.

By setting opacity to 0, say on 
a hover event, we can create a 
disappear/reappear animation.New selectors

There are a whole slew of new selectors, including nth-child, which lets you 
target specific child elements enclosed in an element. Finally, you can set the 
background color of alternating rows in a list without going crazy.

ul li:nth-child(2n) { color: gray; } This means: select every 
other list item and set the 
background color to gray. 



this is the index  549

Index

Symbols
$ (dollar sign)

$( ) (jQuery function)  534
beginning JavaScript variable names  40, 42

2D drawing context, canvas  292. See also Canvas API; 
context, canvas

defined  293
getting  302

, (comma), separating object properties  132

{ } (curly braces)
enclosing code blocks  26
enclosing object properties  132

. (dot) operator
accessing object properties  133, 134
invoking methods  151

// (forward slashes), beginning comments in JavaScript  
39

+ (plus sign)
addition operator or string concatenation operator  45
string concatenation operator  26

“ ” (quotation marks, double)
around JavaScript property values  133, 308
around codecs parameter of  <source> element  359
denoting empty strings  26, 95, 108
surrounding character strings in JavaScript  39

; (semicolon), ending statements in JavaScript  39

[ ] (square brackets)
accessing and enumerating object properties  133, 160
associative arrays  424
creating and indexing arrays  67
using with localStorage  424

_ (underscore), beginning JavaScript variable names  40, 
42

A
AAC Audio  357

<abbr> (abbreviation) element  547

accuracy, location information  191
enableHighAccuracy option  198

accuracy property, coordinates object  190

addEventListener method  367
calling error handler  406
listener for ended video event  386
popping up play button after video ends  386

addition operator (+)  45

addMarker function (example)  186

addStickyToDOM function (example)  430, 432, 440
passing key as well as value each time it's called  450
using sticky object instead of  string  455

Adobe Premiere Elements  360

Adobe’s HTTP Dynamic Streaming  404

altitude and altitudeAccuracy properties, coordinates 
object  190, 197

angles
measured in degrees, converting to radians  317
startAngle and endAngle parameters of  arc method  

315
animations, new, in CSS3  548

anonymous functions  128
using  129

Apache
telling to serve video files with certain file extensions  

371
using on Mac, PC, and Linux  231

APIs (Application Programming Interfaces)  15, 31



550  Index

the index

appendChild method
element object  158
in addStickyToDOM function (example)  450
ul object method  101

Apple’s HTTP Live Streaming  404

application/xhtml+xml MIME type  536

arc method, canvas context  313
direction, startAngle, and endAngle parameters  315
drawing circles for t-shirt design app  319
interpreting call to, and sketching out all parameters 

on circle  317, 343
using to trace a given path  316
x, y, and radius parameters  314

arguments, function  120
objects as  136
passing to parameters  122, 162

arrays  67
adding items  68
creating and assigning to a variable  67
filling list items from (example)  69
getting value of  items in  68, 303
length of   68
localStorage object as associative array  424
of  objects  134, 457
removing items from  73, 448
solving problems in local storage  439
storing in local storage  440, 467
using to store multiple values  75
video playlist  365
of  workers  508

<article> element  546

<aside> element  547

associative arrays  424

attributes, getting and setting  158
setting attribute on element  379
setting id attribute of  sticky note  450

audio  16, 533
AAC and Vorbis encodings  357
codecs  358
encodings in video files  356
formats  357, 533
methods and properties of  audio API  533

<audio> element  533

autoplay attribute, <video> element  353, 354

B
background color

canvas, filling before drawing new squares  306, 342
setting backgroundColor property for sticky note  455
setting for alternating rows in a list  548

background tasks  95

beginPath method, canvas context  311, 319

“bitmap” drawing, on canvas  336

black and white, converting pixels to  399

<body> elements, adding <script> elements to  53

booleans  40
boolean expressions  43

conditional tests in for and while statements  47, 49
using to make decisions with JavaScript  49

true and false values  39
border-radius property  548

box-shadow property  548

<br> element  26

browsers
audio encodings support  533
background tasks  95
caching and repeated JSONP requests  272, 277
controls for HTML video  355
creating workers  478
cross-browser compatibility of  HTML pages  20
detecting geolocation support  174
detecting support for canvas, in code  293
detecting support, using Modernizr library  532
developer tools to manage local storage  434
exceeding local storage capacity  458
executing code only after page is fully loaded  64
fallbacks for supported video  362
fitting canvas to window in Fractal Viewer (example)  

517
history of  browser storage  414–416
loading and displaying HTML documents  14
local storage capacity  420
localStorage not working when loading from file  422
methods of  determining location  170
mobile devices, canvas support  335
not supporting <canvas>, displaying text contained in 

it  295
not supporting HTML5 features, providing alternative 

for  19



you are here 4  551

the index

parsing HTML and building DOM from it  57, 81
running code stored in local storage  104
same origin policy on video  408
security policy  244
storing data using localStorage  108
support for HTML5  17
support for offline web apps  538
support for Web Workers  482
support for XMLHttpRequest, onload property  239
testing for support of  video formats for video loaded 

by code  368
video encodings supported  358
video file formats  352
video support, determining level of   361, 411
Web Storage support  422

buttons
button object, onclick property  154
clearing local storage  435
click handlers for video booth, JavaScript code  

377–379
controlling effects in video booth  390, 391
CSS styling for video booth  381
handling click event  89, 92, 102, 108
HTML for video booth buttons  375
implementing for video booth  384–386
JavaScript factory code for video booth  376
preview button for t-shirt design application  302
selecting between test videos  387
sticky note application  431

createSticky handler  432
toggle or radio buttons  380
watching position and clearing the watch  193

bwcartoon video filter  400, 410

C
cache, browser  272, 277

cache manifest file for offline web apps  538

callbacks  254, 277
getting tweets sent from Twitter  322

camel case in multi-word variable names  42

canPlayType method, video object  368–374
"maybe" response, but playback fails  371
using to determine video format for your browser  369

 

Canvas API  16, 281–348, 540
adding <canvas> element to web page  286
background color of  canvas, filling before drawing 

new squares  306
BE the Browser exercise

interpreting call to arc method  317, 343
browsers not having support for canvas  295
call to fillBackgroundColor function  307
<canvas> element vs. SVG graphics  537
click handler for canvas in  Fractal Viewer (example)  

515
Code Magnets exercise  327, 345
Crossword Puzzle  340, 346
drawImage method  333
drawing a smiley face  321, 344
drawing on the canvas  290–294

circles  309–317
random circles for t-shirt design app  318
using paths to draw shapes with lines  311
writing drawSquare function to draw squares  304

drawing text  325–332, 345
exercise, drawBird function  334, 346
exercise, using path to draw lines and fill shape with 

color  312, 343
fillStyle property of  canvas context  308
fitting canvas to browser window in Fractal Viewer 

(example)  517
form for t-shirt application interface  298
implementing a scratch buffer  395–398
making canvas visible, adding border using CSS  288
No Dumb Questions  289, 293, 308, 335
Pseudo-code Magnets exercise  303, 342
reviewing t-shirt design application implementation  

296
saving and restoring canvas context  540
and separation of  presentation and content  326
Sharpen Your Pencil exercise

displaying only new squares in preview  306, 342
drawText function  330

summary of  important points  338
text methods and properties  328
translating or rotating canvas  540
t-shirt design web application  282
using as display surface for video  408
using <canvas> element for Fractal Viewer (example)  

503, 514
video processing with  392–394



552  Index

the index

<canvas> element
adding border using CSS  288
adding to web page  286
cubicle conversation about the <canvas> element  285
partnership with <video> element  339, 388

case sensitivity in JavaScript  41

cell phone triangulation  169

chaining
objects and properties, movie example  141
objects, properties, and methods, geolocation  175

character encoding, UTF-8  9

character strings, quoting in JavaScript  39

childElementCount property, element object  158

child elements
adding to parent element in the DOM  108
in DOM tree structure  100
nth-child selector  548
replaceChild method  270

Chrome  20. See also browsers
HTML5 support  18
Ogg/Theora video  357
security restrictions on video+canvas operations  371
security restrictions on Web Workers  482
.webm video files  352
WebM/VP8 video  357

cinema application (example)  138
adding behavior to Movie object with a method  

143–145
creating movie objects  139
implementing getNextShowing function  140
Movie constructor function  150, 152
using Movie constructor to create Movie objects  153
using this keyword to reference Movie object  145

circles, drawing on canvas  309–317, 338
arc method  314
converting angle measurement in degrees to radians  

317
creating paths  311–313

class attribute, <anchor> element  379

class, selecting element by  542

clearInterval method  271

clear method, localStorage object  435

clearStorage function (example)  435

clearWatch method  190

click events
adding handler in canvas application  302, 347
adding handler in geolocation application  194
adding handlers for sticky notes application  431, 435, 

450
assigning handler to element using jQuery  534
handler alerting user of  button clicks  92
handlers for video application  376
handling for Add Song button  89
handling for buttons  108

close() method, worker object  522, 524

closePath method, canvas context  312

codecs
AAC audio  357
codecs parameter of  <source> element's type attri-

bute  359
defined  358
H.264 video  357
main types of   356
Theora video  357
Vorbis audio  357
VP8 video  357

code reuse
functions and  119
methods and  146

colors
choosing for sticky notes, in stickies application  

453–456
fillBackgroundColor function for canvas context  307
fillRect method vs. fillStyle property, canvas context  

308
setting background color of  alternating rows in lists  

548
setting for fillStyle property of  canvas context  304, 

308
specifying in canvas  338

comma (,), separating object properties  132

comments in JavaScript  39

computeDistance function (example)  180

concatenating strings. See also + (plus sign), under 
Symbols

creating marketing slogans (example)  72



you are here 4  553

the index

conditionals  37
testing in while and for loops  47
while loops  46

constructors  146, 160
built-in  151
creating  147
LatLong constructor from Google Maps  183
Map constructor from Google Maps  184
Movie constructor function  150, 152
using  148
using Movie constructor to create Movie objects  153
WebSocket  539

containers  356
defined  358
MIME type for <source> type attribute  359
MP4 container  357
Ogg container  357
in src attribute of  <source> element  359
WebM container  357

Content Delivery Network (CDN) companies, encoding 
services  360

context, canvas  292, 293, 504. See also Canvas API
arc method  313–317
beginPath method  311, 312
closePath method  312
drawImage method  333
fillRect method  292, 304
fillStyle property  330, 331
fillText method  328, 329, 330, 331
font property  329, 330, 331
getting  302
lineTo method  311, 312, 329
moveTo method  311, 312, 329
saving and restoring  540
stroke method  329
strokeText method  328
textAlign property  328, 330, 331
textBaseline property  329
translate and rotate methods  540

controls attribute, <video> element  354

cookies  414–416
factors that make them problematic  416
Fireside Chat, Cookie and Local Storage  426

coordinates
computing distance between  180
latitude and longitude  167

coordinates object  175, 207
altitude and altitudeAccuracy properties  197
latitude and longitude properties  173, 175
properties  190

coords object, latitude and longitude properties  173

coords property, position object  190

createElement method, document object  99, 157, 335, 
450

createSticky function (example)  432
converting to use an array  441
rewriting to store color with sticky note text  454
stickies application, final version  444

createTask function (example)  512

cross-document messaging  543

cross-domain issues with XMLHttpRequest  243–252

CSS  31
declared standard for styling  5
positioning video and canvases  395
property values  308
selectors  542
styling <canvas> element, adding border  288
styling for video booth  381
using to set width and height attributes of  <canvas>  

289
using to style sticky notes  429

CSS3  16, 28, 548
page styling  14

curly braces ({ })
enclosing code blocks  26
enclosing object properties  132

currentTime property, audio object  533

D
data property, event object  485, 524

dataTransfer property, event object  543

datatypes
conversions in JavaScript  41, 45
dynamic typing in JavaScript  39
primitive types  40
variables in JavaScript, no strict types  38

Date object, getTime method  140, 272, 442

defining functions, with parameters  120



554  Index

the index

degradation, graceful  19

degrees
angles measured in  316

converting to radians  317
latitude and longitude in, converting to decimal values  

167
degreesToRadians function  180, 317, 319, 344

deleteSticky function (example)  449
event object passed to, target information  451

deleting object properties  135

developer tools built into browsers  434

direction parameter, arc method  315

displayLocation handler function  173, 175
altering to show map only once  195
alternative implementation  197, 210
calls from watchPosition, controlling  206
displaying new marker only after traveling more than 

20 meters  209
distance

computation and mapping of   197
computing  180
controlling addition of  new map markers  209
writing code to find  181

<doctype> element  3
changes in HTML5  9, 31
changing HTML 4.01 doctype to HTML5  4
omitting  9

document object  56, 154
createElement method  99, 101, 335, 450
getElementById method  59, 157
getElementsByTagName method  270
properties and methods  157
querySelectorAll method  376, 542
querySelector method  542
write method  28

documents, cross-document messaging  543

dollar sign ($)
$( ) function in jQuery  534
beginning JavaScript variable names  40, 42

domain property, document object  157

domains
cross-origin issues with XMLHttpRequests  244–253
local storage allocated per domain  422
origin, and management of  local storage  422

DOM (Document Object Model)  14, 31, 54–65
adding elements to  100
adding stickies from local storage  428, 430
creating  55
creating new <script> elements to continually update 

data  263, 267
deleting sticky note from  452
drawing for songs added to playlist  98, 110
empty <ul> element for <li> elements to hold song 

names  97
getting, creating, adding, or removing elements  66
getting elements from, using jQuery  534
inability to access or change before page fully loads  64
inserting and replacing JSONP <script> elements  

268
interaction of  JavaScript with  54
No Dumb Questions  271
parsing HTML and building DOM from it  81
replaceChild method  270
returning elements by tag name  270
selecting elements from, using Selectors API  542
Sharpen Your Pencil exercise  61
structure and content of   56
summary of  important points  108
workers not allowed to access  480

dot operator (.)
accessing object properties  133, 134
invoking methods  151

Drag and Drop API  543

draggable attribute  543

drawCircle function (example)  318
writing  319

drawImage method, canvas context  333

drawing on the canvas  290–294, 338
arc method  314
drawBird function (example)  334, 346
drawSmileyFace function (example)  321, 344
drawSquare function (example)  302, 342

pseudo-code for  303
writing  304

drawText function (example)  327, 330, 345
completing  331

paths and arcs  311–318
dropshadows, in canvas  335

dynamic typing in JavaScript  39



you are here 4  555

the index

E
effectFunction

calling to apply video filter  397
used as variable to hold video filter function  391

effects  410
applying to videos  389–391
choice of, video  booth  378
creating using canvas context translate and rotate 

methods  541
writing special effects for video  399–404

element objects  158
returned by getElementById method  160

elements
accessing with getElementById  59
adding to the DOM  100
creating  99
getting with getElementById method  114, 157
getting with getElementByTagName method  154
getting with getElementsByClassName method  154
getting with getElementsByTagName method  269
setting attributes with setAttribute method  267

else clauses in if  statements  50

empty strings
assigning as value to variable  26
checking for  95
comparing variables to  108

enableHighAccuracy option  198, 201

encoding your own video  360

ended event, video  365
adding event listener for  386
writing handler for  367

endedHandler function (example)  386

enumerating properties of  an object  133

error handlers
for cache errors  538
Geolocation API  190, 207

for getCurrentPosition  174, 177–179
for watchPosition  194

video errors  406
in workers  522

error property, video object  405

errors
browsers overlooking small errors in HTML files  9
Geolocation API

timeout error  200
types of  errors  178

handling errors with video playback  371
JavaScript syntax  44
localStorage, quota exceeded  458
no XMLHttpRequest errors, 200 response code  239
video error types  405

event handling  89
addEventListener method, registering event handler  

367
button click handler  102
clearWatch event handler  195
creating handler and assigning it to button onclick 

property  91
handler alerting user that button was clicked  92
handleRefresh function  265
handler for ended video event  386
handlers for video booth buttons  377
handler to make image of  canvas drawing  347
HTTP request handler  221
onclick event handler

createSticky (example)  431
deleteSticky (example)  450

onclick event handler to zoom in on canvas in Fractal 
Viewer  515

onload event handler for twitter bird image (example)  
333

onload event handler function for Mighty Gumball 
(example)  229

onload handler as anonymous function  156
onmessage event handler for Web Sockets  539
onmessage event handler for worker  485
onopen event handler for Web Sockets  539
previewHandler function (example)  302
review of  important points  108
reworking handleButtonClick to obtain song title 

typed into form by user  96
types of  events handled by JavaScript  95

event object
data and target properties  485
dataTransfer property  543
target property  451



556  Index

the index

events
anchor click event  376
button click event  90, 91, 92, 93
cache, notification of   538
canvas click event  347, 383, 515
dragstart and dragend events  543
image load event  333
properties for event handlers in objects  154
request load event  221, 222, 229
video  363
video ended event  367, 386
window load event  64, 129, 155, 156, 158, 159

exceptions, QUOTA_EXCEEDED_ERR  458, 468

exercises
BE the Browser  48, 78

building a DOM  57, 81
interface element values  299, 341
interpreting call to arc method  317, 343
rendering user interface  298
Web Workers  488, 526

cliff-hanger, moving to live server  239, 242
Code Magnets  51, 80

canvas, drawText function  327, 345
geolocation  209
lucky/unlucky web service  223, 224
Movie constructor  150, 152
“what is HTML5?”  30

Crossword Puzzle
canvas  340, 346
functions and objects  161, 163
geolocation  208, 212
HTML5  32, 34
interactions of  HTML and JavaScript  109, 111
JavaScript  76, 84
local storage  465, 471
video  409, 411
web apps talking to the Web  278, 280
Web Workers  525, 528

Don't Try This At Home
how fast browser can find location  202
local storage, exceeding quota  458, 468

Express Yourself  (JavaScript)  44
HTML5 archaeology  20
Pseudo-code Magnets, drawSquare function  303, 342
Sharpen Your Pencil

adding song titles to playlist  65, 82

canvas, drawText function  330
canvas, showing only new squares in preview  306, 

342
DOM with secret message  61
functions  122, 162
geolocation  171, 197, 210
HTML5 markup  3, 7, 8
JavaScript statements  44, 77
local storage, deleting a sticky  447, 448
local storage, problems with stickies implementa-

tion  437, 467
populating list items from an array  69, 83
reworking handleButtonClick function  94, 96
testing for user input on a form  94, 96
using setInterval in web applications  266
video control buttons, toggle or radio  380, 382
video playlist, implementing  364, 365
video, western and sci-fi effects  400, 410
Web Workers  481, 490, 527

Shell Game, local storage  425, 466
Who Does What?

geolocation options  200, 211
HTML5 family of  technologies  16, 33
localStorage API  461, 470

expressions  39, 43
evaluating  44, 77
type conversions  45

F
false (boolean value)  39

family of  technologies  12, 29
function of  each  16, 33

file extensions for video  352, 369

fillBackgroundColor function  306, 342
calling  307
Sharpen Your Pencil exercise  306, 342

fill method, canvas context  312

fillRect method, canvas context  292, 304
effects of  fillStyle property on  308

fillStyle property, canvas context  304
closer examination of   308

fillText method, canvas context  325, 328
using with tweet text (example)  331



you are here 4  557

the index

film noir video filter  374, 399

Firefox. See also browsers
HTML5 support  18
Ogg/Theora video  357
.ogv video files  352
WebM/VP8 video  357

Fireside Chats
Cookie and Local Storage  426
XMLHttpRequest and JSONP  260

firstChild property, element object  158

Flash
HTML5 versus  284
use to solve cross-browser issues  20

Flash Video  358

flexbox layout  548

floating point numbers
conversion of  integers to in expressions  45
storing in local storage  423

font property, canvas context  329
setting for tweet text (example)  331

<footer> element  546

for loops  47
deciding between while loops and  47
evaluating (example)  48
if/else statements in  51

forms  16, 85–112
adding button to  91
adding t-shirt design form to HTML page  301
adding tweets to <select> element in form  323
checking whether user entered text input  96
client-side, accessing values in  296
displaying playlist on HTML page  97
getting text from input element  94, 108
HTML5 document to hold form and list element for 

playlist  87
playlist manager application  102
sticky note application  429

updating to add colors  453
tracking position  193
t-shirt application interface  298
using JavaScript for real interactivity  23

forward slashes (//), beginning JavaScript comments  39

Fractal Explorer application, building (example)  494, 503
creating Fractal Viewer HTML page  503
creating workers and giving tasks to  508
final test drive  519
getting workers started  510
handling click events to zoom in  515
how number of  workers affects performance  520
implementing workers  511
managing fractal generations  518
processing workers' results  514
ready-baked code for Mandelbrot Set computation  

504–507
tasks  512
writing the code  509

fractal image, Mandelbrot Set as  495

FTP programs  232

fullscreen playback of  video  360

functions  113–130, 160
anatomy of   121
assigning to window object, onload property  75
built in  119
callbacks  254
constructor  147
creating your own  115
Crossword Puzzle  161, 163
declarations, placement of   127
defining  71
how it works  116
inability to pass to Worker constructor  491
interview with  119
invoking  116
life span of  variables  125
Math library  75
methods versus  151
naming  121
No Dumb Questions  121, 127
object passed to, accessing properties of   134
parameters and arguments  120
passing a function to a function  175
passing arguments to parameters  122, 162
passing objects to  134, 136
return statements in the body  117
reworking as methods  143
scope of  local and global variables  124
setting special effects for videos  391



558  Index

the index

functions, continued
Sharpen Your Pencil exercise  122, 162
using as values  129
as values  128
variables defined in  123, 160

G
generation, fractal (example)  518

geolocation  165–212
accuracy of  location  191
adding a Google marker to your map  186
adding a map to your page  183
Crossword Puzzle  208, 212
displaying map on your page  184
Don't Try This At Home exercise  202
error handler  177
finding how fast browser can find location  202
getCurrentPosition method  175
how getCurrentPosition works  176
mapping your position  182
No Dumb Questions  166, 197
other uses of  Google Maps  188
server required to test code on mobile devices  179
Sharpen Your Pencil exercise  171

alternative implementation for displayLocation  
197, 210

specifying options  201
success handler for getCurrentPosition  174
summary of  important points  207
timeout and maximumAge options  199
tracking movements  192

clearWatch handler  195
with markers on a map  204
watchLocation handler  194
watchPosition method  192

Who Does What? exercise  200, 211
Geolocation API  16. See also geolocation

components of   190
getCurrentPosition method  174, 177, 190, 207
interview with  189
position options  198
watchPosition method  194

geolocation property, navigator object  174

getAttribute method, element object  158, 379

getContext method, canvas object  292, 293

getCurrentPosition method, geolocation object  174, 190, 
207

error handler for  177
how it works  176

getElementById method, document object  58, 72, 157
using to locate element and change its content  59, 60

getElementsByClassName method, document object  157

getElementsByTagName method, document object  157, 
270

getFormatExtension function (example)  369, 370
adding to video booth code  383

getItem method, localStorage object  419, 421

getMyLocation function (example)  172

getNextShowing function (example)  140

GET request (HTTP)  220

getStickiesArray function (example)  443

getTimeFromString function (example)  140

getTime method, Date object  140, 272, 442

global variables  123, 160
life cycle of   125
overuse in JavaScript  127
reasons for sparing use of   127
shadowing  126

Google Chrome. See Chrome

Google Maps  182
adding marker to your map  186
LatLong constructor  183
other uses of   188

GPS (Global Positioning System)  168
devices without, using Geolocation API on  189

graceful degradation  19

graphics, SVG  537

Greenwich, England, longitude measured from  167

H
H.264 video format  352, 356, 357

handleButtonClick function (example)  90
assigning to button onclick property  91
code to create <li> child element and add it to DOM  

101
reworking to obtain song title typed into form by user  

94, 96



you are here 4  559

the index

running when user clicks button  93
handleClick function (example)  515, 516

handleControl function (example)  377, 384
implementing rest of  video controls  385

handleRefresh function (example)  265, 267, 272
adding lastreporttime parameter  275

handleRequest function (example)  523

<head> element
<link> and <script> elements in  5
placing <script> elements in  53
replacing <script> child elements  270

<header> element  546

heading property, coordinates object  190, 197

<hgroup> element  546

hosting services  230, 232

HTML
interaction of  JavaScript with markup  54
parsing and building DOM from  57

HTML5
converting HTML 4.01 document to  2–5
Crossword Puzzle  32, 34

interactions of   HTML and JavaScript  109, 111
family of  technologies  12, 16, 33
final recommendation of  standard  20
handling older browsers  19
how it really works  14
improvements in markup  14
interview with  11
JavaScript as integral part of   21, 118, 130
JSON and JSONP  271
magnets exercise, "what is HTML5?"  30
markup, JavaScript APIs, and CSS  29
Mighty Gumball application page (example)  218
new capabilities and features  12
new elements, reference  545
No Dumb Questions  9, 20, 28, 284
page for t-shirt design application  300
prerequisites for learning  10
Sharpen Your Pencil exercise  3, 7
summary of  important points  31
support in browsers  18
versus using Flash or custom applications  284
what is it  12
what you can do with HTML5 and JavaScript  22
Who Does What? exercise  16, 33

HTML entities in tweets on canvas  335

HTTP-based request/response model  539

HTTP-based video streaming  404

HTTP used with XMLHttpRequest
HTTP requests  219, 220, 239
HTTP responses  219, 221, 239

accessing returned data  222
server required to use  230

I
id attribute. See also getElementById method, document 

object
accessing elements by  59
<canvas> element  290
needed to delete sticky note (example)  450
<script> element  267
<video> element  353

IE. See Internet Explorer

if  statements  49

if/else statements  50

<iframe> element  543

IIS servers, configuring MIME types  371

image, making of  t-shirt design drawn in canvas  347

image objects
creating  333
Image constructor  335

<img> element, <canvas> versus  285

iMovie, encoding video with  360

importScripts global function, Web Workers  493, 511
using to make JSONP requests  523

Indexed Database API  543

indexes, array  75

InfoWindow object  187

init function  64
as anonymous function  159

inline code, writing in HTML5 <script> element  5

innerHTML property  60
element object  158
using to change element content  62

insertBefore method, element object  158 



560  Index

the index

integers
conversions to floating point numbers in expressions  

45
converting from strings  423
storing in localStorage as strings  423

interface transformations on elements, using jQuery  535

Internet Explorer. See also browsers
canvas support, versions 9 and later  294
HTML5 support  18
MP4/H.264 video, supported by IE9  357
no Web Worker support prior to IE10  482
versions 6 and 7, not supporting localStorage  104
video file format  352
XMLHttpRequest object and  240

interval timer, stopping  271

interviews
with Function  119
with Geolocation  189
with HTML5  11
with JavaScript  24, 477
with Video  388
with XMLHttpRequest  225, 240

invoking functions  116
with arguments  120

IP address, location information based on  168

isButtonPushed helper function (example)  379, 384

iterating through localStorage  424

J
JavaScript  31, 35–54

adding behavior with  35
adding to web pages  53
APIs  15
arrays  67, 69, 71–73

and objects  , 133
passing to functions  122
passing to Web Worker  484
returned from getElementsByTagName  270, 271
returned from querySelectorAll  376
and <select> element options  303
storing in localStorage  439, 445

associative arrays  424
BE the Browser exercise  48, 78, 81
browser security policy and  244–246

Code Magnets exercise  51, 80
canvas, drawText function  327
displayLocation handler function  209
Movie constructor  150, 152

creating dynamic HTML page content  28
Crossword Puzzle  76, 84

functions and objects  161, 163
interactions with HTML  109, 111

declaring a variable  38–40
default scripting language in HTML5  5
drawing on canvas  285
enabling preview button on t-shirt design app  302
expressions  43
functions  113–130, 162

summary of  important points  160
getElementById  58
handling events  89

review of  important points  108
how it handles tasks of  typical page  474
how it works  36
and HTML5  21, 22, 118, 130
Image constructor  335
including additional files in worker  493
interaction with page through DOM  15, 58
interaction with your page  54
interview with  24, 477
jQuery  534
line-by-line analysis of  code  26
making decisions, using conditional statements  49
making HTTP requests from  220–225
making use of  HTML5 family of  technologies  24
Modernizr library  532
No Dumb Questions  28, 41, 47, 73

events and handlers  95
functions  121, 127
functions and objects  151
objects  158
Web Workers  491

objects  113, 131–161
summary of  important points  160

property values in  308
repetitive tasks using loops  46–48
reserved words  41
Sharpen Your Pencil exercise

displayLocation implementation  197, 210
functions  122, 162
populating list items from an array  69, 83



you are here 4  561

the index

populating playlist items using an array  65, 82
reworking handleButtonClick function  94
statements  44, 77
using setInterval in web applications  266

single-threaded model  474, 477
summary of  important points  75
syntax  39
testing code in HTML page  27
using with HTML5  22
working with canvas and video  388
writing  25

jQuery  534
online documentation and tutorials  535

JSON (JavaScript Object Notation)  226
adding support to web application  236
converting movie object to and from JSON string 

format (example)  227
creating string representation of  an array  441, 467
Crossword Puzzle  278, 280
as data  249–251
gumball sales returned from Mighty Gumball (ex-

ample)  233
HTML5 and  271
and JSONP  252
No Dumb Questions  271
performance issues with use to convert to and from 

strings  442
tweets returned from Twitter (example)  323
URL to include last report time (example)  275
XML and  226
and XMLHttpRequest  225

JSON.parse method  226
converting JSON string back to object  227
using on arrays or objects retrieved from localStorage  

443, 445
using when object stored in localStorage  455

JSONP (JSON with Padding)  240, 247
Crossword Puzzle  278, 280
Fireside Chat with XMLHttpRequest  260
HTML5 and  271
introduction to  252
making call to Mighty Gumball JSONP API (example)  

257
making call to Twitter JSONP API (example)  322
making it dynamic  264–271
No Dumb Questions  271
P in JSONP, defined  253

security and  259
summary of  important points  277
updating web application with  256–263
using importScripts to make requests  523

JSON.stringify method  226
converting object to JSON string format  227
storing object in local storage  454
using to store arrays or object in localStorage  442, 

445

K
key method, localStorage object  424, 430

key/value pairs
in browser's local storage  417
creating unique keys  442
managing keys in stickies application  433
passing key each time sticky note is added to DOM  

450
storing in an array  439
in string form, getting and setting in local storage  419, 

421
uniqueness of  keys in local storage  422
using key to remove item from localStorage and array  

451

L
<label> element  453

lastreporttime query parameter (example)  275

latitude and longitude  167
accuracy of  geolocation information  179

latitude and longitude properties, coordinates object  184

layouts, new, in CSS3  548

length property
arrays  68
localStorage object  424, 430, 432

letter-boxing video  354

line breaks in HTML  26

lines, drawing shapes in canvas  311

lineTo method, canvas context  311

lineWidth property, canvas context  312

<link> elements, within <head> element, pointing to 
CSS stylesheet  5



562  Index

the index

Linux
Apache server, configuring MIME types  371
setting up server on  231

lists
adding songs to playlist with JavaScript (example)  65, 

82
creating <li> elements  99
filling in items using array (example)  69
finding all child <li> elements of  element with id of  

playlist, using JQuery  535
playlist manager (example)

adding <li> child element to <ul> parent  100, 
110

<li> elements to hold song names  97, 99
<ul> element to hold playlist  87, 97

setting background color for alternating rows  548
stickies application (example)

creating <li> element to hold sticky note  430
stickies from localStorage inserted into <ul> ele-

ment  430
<ul> element to hold stickies  429

load event
and image onload property  333
and window.onload property  64

load method
audio object  533
video object  385

Local Files origin  422

local storage  16, 108, 413–472
5MB limit and domain  422
access by workers  491
array-based code, integrating into stickies application  

443
associative arrays  424
browser-based, instead of  cookies  23
browser issues with file://  422
browsers' tools for managing  434
browser storage, history of   414–416
code to save playlist  104
Crossword Puzzle  465, 471
deleting items  446
designing your application storage  457
Don't Try This At Home exercise  458, 468
exceeding capacity of   458
Fireside Chat, Cookie and Local Storage  426

how HTML5 Web storage works  417
how local storage API works  420
IndexedDB and Web SQL  543
naming of  keys  433, 445
No Dumb Questions  422, 425, 433, 442, 445
problems with using length to store keys  436
sessionStorage object  460
Sharpen Your Pencil exercise

deleting a sticky  447, 448
problems with stickies implementation  437, 467

Shell Game exercise  425, 466
stickies application  418, 428
storing arrays  440
storing non-String data types  439
storing numbers  423
storing objects  454–457
summary of  important points  464
using  462
Who Does What? exercise  461, 470

localStorage object  418
clear method  435
getItem method  419, 421
key method  424
length property  424
removeItem method  433, 446, 449
setItem method  418, 421
treating as associative array  424

localStorage property, window object  422

local variables  123, 160
life cycle of   125
shadowing global variable  126

location
accuracy of   191
Geolocation API in JavaScript  166
how Geolocation API determines it  168

location aware  165

loop attribute, <video> element  354

loop property, video object  385

looping  37, 46–48
deciding between while and for loops  47
evaluating while and for loops (example)  48
for loops  47
using arrays with loops  69, 75
while loops  46



you are here 4  563

the index

M
Mac

Apache server, configuring MIME types  371
setting up server on  231
task monitor on OS X  520

makeImage function (example)  347

makeServerRequest function (example)  523

Mandelbrot, Benoit  495

Mandelbrot Set. See also Fractal Explorer application, 
building

computing  496
equation  495
explorer for  494
ready-baked code for computing  504–507
using multiple workers to compute  497–500

mapOptions object  184

mapping your position  182

maps
adding markers to  186, 204
adding to a page  183
displaying on your page  184
testing map display on your page  185

<mark> element  547

markers, adding to map  186, 204
controlling frequency of  new markers  209
optimizing marker usage  206

markup, new  16, 533

Math.floor function  70, 304, 319

Math library  73, 75

Math.PI  317

Math.random function  70, 304, 319
x, y, and width of  squares drawn on canvas  308

maximumAge option  199, 201

message handler, writing for worker  486

messages
data that can be sent  484, 491
receiving by Web Worker  486
receiving from Web Workers  485
sending and receiving using Web Sockets  539
sending from Web Worker  486
sending to Web Workers  484

messaging, cross-document  543

<meta> tags  31
omitting  9
specifying in HTML5  4

methods  142, 160
code reuse and  146
converting functions to  143
functions versus  151
this keyword, how it works  149

Microsoft. See also Internet Explorer; Windows systems
Smooth Streaming  404
Web Platform Installer  231

Mighty Gumball application (example)  214–218
browser cache, watching out for  272
displaying sales  230
improving the display  235
making JSONP dynamic  264–271
moving to live server  237–246
options to circumvent cross-origin request problems  

247–251
removing duplicate sales reports  273
reviewing the specs  228
reworking code to use JSON  236
testing locally  230, 234
updating code to use JSONP  256–263
updating JSON URL with lastreporttime  275
writing onload handler function  229

milliseconds since 1970  442

MIME types
application/xhtml+xml  536
making sure server is serving video files with correct 

type  371
of  video files  359, 369

mobile browsers  20
HTML5 support  18

mobile devices
browser support for offline web apps  538
canvas on  335
testing geolocation code  179

Modernizr library, JavaScript  532

movements, tracking  192–198
form to start and stop tracking  193

moveTo method, canvas context  311

.mp3 audio  533



564  Index

the index

.mp4 video files  352

MP4 container  357

MPEG-LA group  357

multi-core processors  500

muted property, video object  385

N
names

of  functions  121
guide to better naming of  variables  42
local and global variables with same name  126
localStorage keys  433, 445
of  variables  40

namespaces, XHTML  536

<nav> element  547

navigator object, geolocation property  174

new keyword, using with constructors  148, 160

nextVideo handler function  367

No Dumb Questions
canvas  289, 293, 308
events and handlers  95
functions  121, 127
functions and objects  151
geolocation  166, 197
HTML5  9, 20
HTML5 web applications  284
JavaScript  41, 47, 73
JavaScript and HTML5 technologies  28
local storage  422, 425, 433, 442, 445
objects  158
talking to the Web  271
video  360, 371
Web Workers  491

nth-child selector  548

numbers
conversions to other types in expressions  45
primitive type in JavaScript  40
storing in local storage  423

numeric expressions  43

O
<object> element, using inside <video> element  362

object literals  151

objects  40, 113, 131–161
adding or deleting properties at any time  135
array  73
arrays of   457
in the browser  154
built-in versus created by users  159
constructors  147
converting to and from JSON string format  226, 227
creating  132

movie object (example)  138
using constructors  148, 153

Crossword Puzzle  161
methods  142
No Dumb Questions  151, 158
passing to functions  136
properties  132
storing in localStorage  445, 454
storing shapes drawn in canvas as  336
summary of  important points  160
this keyword  144
uses of   133
writing versus creating with a constructor  151

offline web applications  16, 538

Ogg container format  357

Ogg/Theora video encoding  356, 357

Ogg/Vorbis audio encoding  356, 357, 533

.ogv video files  357

onclick property, button objects  91, 154
adding event handler function to  91, 450

onerror handler, using in workers  522

onload handler function  64, 229
and anonymous functions  129, 156
using to load page before accessing the DOM  64
writing with jQuery  534

onload property
image object  333
window object  156

assigning function to  64, 75, 129, 156, 265
XMLHttpRequest object  239

browsers not supporting, work around for  241
onmessage event handler  485

opacity property  548

opacity, transitioning from opaque to translucent  548



you are here 4  565

the index

open event, Web Sockets  539

Opera. See also browsers
HTML5 support  18
not supporting XMLHttpRequest Level 1  241
Ogg/Theora video  357
.ogv video files  352
WebM/VP8 video  357

<option> element, in stickies application form  453

options, geolocation API  198, 201
summary of   207
Who Does What exercise  200, 211

overlays, Google Maps  188

P
palindromes  51

panTo method, map object  204

parameters, function  120
names of   121
passing arguments to parameters  116, 122, 162

parent element
adding a child element with appendChild  100, 101, 

102
adding child elements to  108
in DOM  100

parseFloat function  423

parseInt function  423

parse method. See JSON.parse method

passing by value  136
passing an object reference to a function  136

paths and arcs in canvas  310, 338
arc method  313–315
drawing a smiley face  344
using arc method and path  343
using arc method to draw a circle  316
using arc method to trace a path  316
using paths to draw shapes  311

pause method
audio object  533
video object  385

PC, setting up server on  231

Phrase-o-Matic application (example)  70

pillar-boxing, video  354

ping pong Web Workers game (example)  484
adding workers  491, 492
BE the Browser exercise  488, 526
pingPong message handler function for worker  486

pixels
accessing in video  392
in bitmap drawing  336
drawing on canvas  281, 306
as presentation, not content  326
processing in canvas scratch buffer  394, 397
processing video pixels and getting them into canvas 

for display  396
play button (example)

handler for video booth  377
popping back up when video ends  386

playlist manager, creating  86
adding code to save playlist  105
app used to enter song, click button, and add song to 

playlist  102
code to save the playlist  104
displaying playlist on HTML page  97
DOM after song titles are added to playlist  98, 110
getting song name from text input element  94
handling Add Song button click events  89
HTML5 document to hold form and list element for 

playlist  87
integrating storage code  106

playlists
creating video playlist  364
implementing for Webville TV (example)  366
populating with song titles using JavaScript array  65, 

82
play method

audio object  533
video object  385

plus sign (+)
addition or string concatenation operator  45
string concatenation operator  26

png image format  347

position object  175, 207
coords and timestamp properties  190

positionOptions, Geolocation API  190, 198

postAQuote function (example)  523

poster attribute, <video> element  353, 354

poster property, video object  406



566  Index

the index

postMessage method
Web Sockets  539
worker object  484, 511, 512

<p> (paragraph) elements, changing using JavaScript  62

preload attribute, <video> element  354

presentation, separate from content, in canvas  326

previewHandler function (example)  302
calling fillBackgroundColor function  307
updating to call drawText function  330

preview in t-shirt design app, problems with  306

primitive types  40

processFrame function (example)  396
running again  397

processing video frame in canvas scratch buffer  397

processWork function (example)  514, 518

programtheweb.com  271

<progress> element  547

progressive video  403

properties  132
accessing, changing value, and enumerating  133
adding or deleting at any time  135
canvas context object  338

fillStyle property  308
text properties  328

document object  154, 157
element object  158
Geolocation API  190
localStorage, length property  424
new, in CSS3  548
objects as collections of   131
specifying values in JavaScript  308
video object  363
window object  155

pushUnpushButtons helper function  376, 379, 384

putImageData method, canvas context  397

Q
querySelectorAll method, document object  376, 542

querySelector method, document object  542

Quicktime  371

QUOTA_EXCEEDED_ERR exception  458, 468

quotation marks, double. See “ ”, under Symbols

R
radians  316

converting degrees to  317
radio buttons  380, 382

radius parameter of  arc method  314

reassignWorker function (example)  514, 518

rectangles, drawing in canvas  338
drawing filled rectangle  292

references, object  136

removeItem method, localStorage object  433, 446

removeStickyFromDOM function (example)  452

repetitive tasks  46

replaceChild method  270

request/response model based on HTTP  539

reserved words in JavaScript  41

resizeToWindow function (example)  517

responseText property, request object  222

restore method, canvas context  540

results from workers' computations
from Fractal Explorer workers (example)  513
processing in Fractal Explorer (example)  514
receiving results from workers  485, 498
stored in event.data property  485

return statements
in function body  117
functions without  119

RGB color values for pixels, processing video frame data  
397, 410

rotate method, canvas context  540

S
Safari  20. See also browsers

developer tools for local storage  434
H.264 video format  352
HTML5 support  18
MP4/H.264 video  357
Quicktime player for mp4 video  371

save and restore methods, canvas context  540

Scalable Vector Graphics (SVG)  537

sci-fi effect for video  374, 400, 410



you are here 4  567

the index

scope, variables  124

scratch buffer, video processing with  390, 393
implementing buffer with canvas  395–398

<script> elements  27
adding to HTML file for call to Twitter JSONP API  

322
adding to HTML in <head> or <body>  53
creating and inserting dynamically  263, 267–269
retrieving data with  248–251, 257
script injection  271
specifying in HTML5  5

scrollMapToPosition function (example)  204
adding to application  205

<section> element  546

security, JSONP and  259

security policy, browsers  244

selectedIndex property, selection form controls  302
how it works  303

<select> element  301, 453

Selectors API  542

selectors, new, in CSS3  548

semicolon (;), ending JavaScript statements  39

send method, XMLHttpRequest object  221

servers  230
moving to live server  237
problem when moving to live server  242
setting up your own Web server  231

sessionStorage object  460

setAttribute method, element object  158, 274, 275
setting sticky's id to its unique key  450
using to set the class attribute  236, 257, 379, 430
using to set the id attribute  267, 269, 450
using to set the src attribute  267, 269

setEffect handler function, video booth (example)  378, 
391

setInterval method, window object  263, 265
using with Web Workers  523

setItem method, localStorage object  418, 421

setTimeout method, window object
timeout parameter of  0  398
using to process video frame data  397

using with Web Workers  523
setupGraphics function (example)  509

setVideo handler function, video booth (example)  378, 
387

SGML  9

shadowBlur property, canvas context  335

shadowColor property, canvas context  335

shadowing variables  126

shadowOffsetX and shadowOffsetY properties, canvas 
context  335

showMap function (example)  184
creating map and displaying marker for initial location  

205
making sure it's called only once  195

single-threaded model, JavaScript  474, 477
breaking down  475

slashes (//), beginning JavaScript comments  39

slow script message  473

<source> element
src attribute  359
type attribute  359
using inside <video> element for each video format  

358
special effects

applying to videos  389–391
functions  399, 410

speed property, coordinates object  190, 197

splice method, Array object  449

SQL, Web  543

square brackets ([ ])
accessing object properties  133
and associative arrays  424
creating and indexing arrays  67
using with localStorage  424

squares, drawing on canvas  302
creating with fillRect  290, 292, 304
filling background color of  canvas before drawing new 

squares  306
pseudo-code for drawSquare function  303
random x, y, and width of  squares  308
writing drawSquare function  304



568  Index

the index

src attribute
<script> element  53, 218, 249

updating with setAttribute  267
<source> element  358, 359
<video> element  353, 354

src property
audio object  533
image object  333
video object  370

startWorkers function (example)  509, 510

statements  37
ending with semicolon  39

stickies application (example)  418, 428
adding "Add Sticky Note to Self" button  431
adding JavaScript code  430
converting createSticky to use an array  441
creating interface  429
deleting sticky from DOM  452
deleting sticky notes  446
design flaw  436
integrating array-based code  443
rewriting to use an array  440
selecting sticky note to delete  450
updating user interface to specify color  453–456

streaming video  403
technologies for  404

string concatenation operator (+)  26, 45

string expressions  43

stringify method. See JSON.stringify method

strings
accessing and enumerating object properties  133
in arrays  71
as associative array indexes  424
conversions to numbers in expressions  45
converting objects to JSON string format  226
converting to floats with parseFloat function  423
converting to integers with parseInt function  423
creating string representation of  an array  441, 467
key/value pairs stored in local storage  418
as objects  159
primitive type in JavaScript  40
receiving from Web Workers with onmessage in event.

data property  485
sending to Web Workers with postMessage  484

stroke method, canvas context  312

strokeText method, canvas context  328

structure  35, 545

<style> element
adding border to canvas  288
CSS is style standard  9, 31

style property  455

subworkers  523

success handler, Geolocation API  174, 175, 190

SVG (Scalable Vector Graphics)  537

T
table and table-cell layouts  548

target property, event object  451, 485

task monitor on OS X or Windows  520

tasks, sending and receiving data from Web Workers 
(Fractal Explorer example)  512

terminate method, worker object  522

textAlign property, canvas context  328
aligning tweet text in t-shirt design app (example)  331

textBaseline property, canvas context  329

text, drawing on canvas  325–332, 338
displaying HTML entities  335
drawText function  345
splitting it into lines  335
text methods and properties in canvas API  328

text <input> element, value property  94
checking whether user entered input  96

Theora video format  357

third-party hosting services  230, 232

this (keyword)  144
adding to movie object (example)  145
questions and answers about  151
using with constructors  147
using with method calls  149, 151

threading. See also Web Workers
adding another thread of  control  476
single-threaded model, JavaScript  474
with Web Workers  478, 524



you are here 4  569

the index

time
Date object, getTime method  442
milliseconds since 1970  442
<time> element  547

timeout option  199, 201

timestamp property, position object  190

timeupdate event  398

title property, document object  157

toDataURL method, canvas object  347

toggle buttons  380, 382

tracking movements  192–198
form to start and stop tracking  193

transition property  548

translate and rotate methods, canvas context  540

triangles, drawing on canvas  311

true and false (boolean values)  39

try/catch statements, capturing exceptions  458, 468

t-shirt  282. See also TweetShirt Web Application

TweetShirt Web Application (example)  282
adding tweets to <select> element in <form>  323
adding user interface form to HTML page  301
creating application design  297
drawing an image  333
drawing circles  318
drawing squares  304
drawing text  324, 327, 330, 331
filling the background color  306
form for application interface  298
getting tweets from Twitter  322
making image of  design to upload and have printed 

on shirt  347
requirements and user interface  283
reviewing implementation plan  296

Twitter JSONP API, making call to  322

type attribute
removal from <link> and <script> tags  5
<source> element  359

U
ul.appendChild method  101

undefined values  73
returned by functions without return statement  121

underscore (_), beginning variable names  40, 42

updateSales function (example)  230

updateTweets callback function (example)  323

URL property, document object  157

URLs
callback parameter  254
setting up JSONP URL (example)  267
updating JSON URL to include last report time (ex-

ample)  275
Web Socket  539
work around for browser caching  272

UTF-8  9, 31

V
value attribute, text <input> element  95

value property, text <input> element  94
value attribute versus  95

values
changing object property values  133
functions as  128, 129
object property values  132

variables
assigning functions to  128
chaining value of   39, 133, 141
comparing to empty string  108
declaring and assigning value  26, 38
local and global  123, 160
naming  40, 42
objects assigned to  136
passing to functions  121
scope of   124
shadowing  126
short life of   125

var keyword  39

vector fonts  329

vector graphics vs. bitmap  336

video  16, 349–412
adding format information  in the <source> element  

359
booth (example)  373

adding special effects  389–391
code to process the video  396
demo unit  374–376



570  Index

the index

video, continued
getting demo videos ready  383
helper functions  379
implementing video controls  384–386
overview of  video processing  392
setEffect and setVideo handlers  378
switching test videos  387
video processing using scratch buffer  393
writing special effects  399–404

browser support, determining level of   361, 411
canPlayType method, how it works  369–375
codecs  357, 358
controls' appearance in different browsers  355
Crossword Puzzle  409, 411
error event, using  406
errors  405
falling back to supported player  362
formats  352, 356, 358

and possibility of  standardization  360
hosted on the web  403
how <video> element works  353
ideas for further development  407
No Dumb Questions  360, 371
Sharpen Your Pencil exercise

control buttons, toggle or radio  380, 382
implementing playlist  364, 365
western and sci-fi effects  400, 410

streaming  403
summary of  important points  408
testing for browser support when using code to load 

video  368
things to watch out for  371
using JavaScript with HTML5  23
Webville TV (example)  350

building with HTML5 technology  350
designing the playlist  365
handler for ended event to go to next video  367
HTML5 page  351
implementing getFormatExtension function with 

canPlayType  369
implementing nextVideo function  367
implementing video playlist  366
integrating getFormatExtension function  370

<video> element
attributes  354, 408
how it works  353
interview with  388

methods, properties, and events  363
new HTML5 element and API  351
<object> element within  362
partnership with <canvas> element  339, 388
<source> element within  358

video object
accessing frame data  396
canPlayType method  368–374
error property  406
load method  385
loop property  385
methods, properties, and events  363
muted property  385
pause method  385
play method  366, 385
properties, methods, and events  408
src property  366, 387
volume property  360

viewport  354

volume property
audio object  533
video object  360

Vorbis audio codec  357

VP8 video codec  357

W
W3C  20

WampServer  231

watchId variable (example)  194

Watch it!
browsers not supporting XMLHttpRequest's onload 

property  229
deleting all items from local store  435
ensuring that server is serving video files of  correct 

MIME type  371
grabbing image from canvas, and code run from 

file://  347
Internet Explorer not supporting Web Workers prior 

to IE10  482
local storage and browser issues with file://  422
pages served from file://, security restrictions in 

Chrome  371
pushing browser over local storage limit  459
Quicktime need to play mp4 video in Safari  371
rapid changes in video support by browsers  411



you are here 4  571

the index

Ready Bake Code not working in some browsers  104
security restrictions in Chrome preventing running of  

Web Workers from file  482
server required to test geolocation code on mobile 

devices  179
work around for browsers not supporting XML-

HttpRequest's onload property  241
watchLocation function (example)  194

watchPosition method, geolocation object  190, 192, 194, 
207

controlling updates of  location  197
too many calls to displayLocation  206

wav audio format  533

web applications
APIs to create  15
examples  22
and HTML5  6, 13
and JavaScript  21, 24
offline  538
what is it  28

WebKit-based browsers  20. See also browsers
HTML5 support  18

.webm video file format  352, 357

WebM/VP8 video container format  357

web pages vs. web applications  28

Web Platform Installer (Microsoft)  231

web services  213
how it works, Mighty Gumball (example)  216
JSONP security issues and  259
keeping an open connection with, using Web Sockets  

539
lucky/unlucky service  224
parameters supported  271, 274
receiving JSON data from  233
specifying callback function for  254
using JSONP with  253
using XMLHttpRequest with  220
ways to access, in public API  271
XMLHttpRequest, cross domain security issues with  

244
Web Sharing (Mac)  231

Web Sockets  539

Web SQL  543

Web Storage API  108, 418. See also local storage; 
localStorage object

support for  422
Web Workers  16, 473–530

adding another thread of  control  476
adding workers to pingPong game (example)  491, 492
BE the Browser exercise  488, 526
browsers' support of   482
building explorer for Mandelbrot Set  494
building Fractal Explorer application (example)  503, 

509
creating  483
creating and giving tasks to  508
Crossword Puzzle  525, 528
data types that can be sent to workers  484
getting workers started in Fractal Explorer application  

510
handling click event to zoom in on canvas in Fractal  

Explorer (example)  515
handling errors in workers  522
how they work  478
how workers make your apps faster  500
implementing in Fractal Explorer application  511
importScripts global function  493
managing fractal generations in Fractal Viewer  518
No Dumb Questions  491
number of  workers

effects on performance  520
limits on  501

processing workers' results in Fractal Explorer  514
ready-baked code for workers' computation of  Man-

delbrot Set  504–507
receiving a message from the worker  485
results from workers' computations  513
rewriting pseudo-code to use workers  502
sending a message to the worker  484
Sharpen Your Pencil exercise

potential uses for workers  481
using compact workers  490, 527

subworkers  523
summary of  important points  524
tasks for Fractal Explorer workers  512
terminating  522
using importScripts to make JSONP requests  523
using multiple workers to compute Mandelbrot Set  

497–500
why workers can't access the DOM  480
writing worker's message handler  486

western effect for video  374, 400, 410



572  Index

the index

“Wherever you go, there you are.” (Geolocation example)  
192

while loops  46
deciding between for loops and  47
evaluating (example)  48
example in JavaScript  26
if/else statements in  50

white space in JavaScript code  39

width and height attributes
<canvas> element  286

setting using CSS  289
<video> element  353, 354

WiFi positioning  169

window object  154
creating onload event handler for  64, 75, 159
document object property  155
as global object  156, 158
localStorage property  422
location property  347
onload property  64, 156
properties and methods  155
setInterval method  155, 265
setTimeout method  155, 397

windows
adding info window for Google Maps marker (ex-

ample)  187
fitting canvas to browser window in Fractal Viewer 

(example)  517
Windows systems

installing web server on  231
making sure server is serving video with correct 

MIME type  371
task monitor  520

worker object. See also Web Workers
close method  522
creating  483
creating and using multiple  491, 492

onerror property  522
onmessage property  485
postMessage method  484
subworkers  523
terminate method  522

X
XHTML  9, 536

problems with  11
XML

JSON versus  226, 271
SVG graphics  537
uses of  XHTML for  536

XMLHttpRequest object  220, 239
accessing response text  222
cross-domain requests, security issues with  244, 277
Crossword Puzzle  278, 280
Fireside Chat with JSONP  260
interview with  225, 240
Level 2  240
onload handler function  229
requests made by workers  491
retrieving JSONP data with  233
server required for use of   230
when to use  246, 277
work around for browsers not supporting Level 2  241

Z
zooming in on canvas in Fractal Viewer (example)  515



you are here 4  573

getting to know HTML5

All interior layouts were designed by Eric Freeman and Elisabeth Robson.  
Kathy Sierra and Bert Bates created the look & feel of the Head First series. The book was produced using 

Adobe InDesign CS and Adobe Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky 

(you think we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro, Skippy Sharp, Savoye LET, 

Jokerman LET, Courier New and Woodrow typefaces. 

Interior design and production all happened exclusively on Apple Macintoshes—two Mac Pros and two 

MacBook Airs to be precise.  

Writing locations included: Bainbridge Island, Washington; Portland, Oregon; Las Vegas, Nevada; Port of 

Ness, Scotland; Seaside, Florida; Lexington, Kentucky; Tucson, Arizona; and Anaheim, California. Long 

days of writing were powered by the caffeine fuel of Honest Tea, GT's Kombucha, and the sounds of Sia, 

Sigur Ros, Tom Waits, OMD, Phillip Glass, Muse, Eno, Krishna Das, Mike Oldfield, Audra Mae, Devo, Steve 

Roach, Beyman Brothers, Pogo, all the people at turntable.fm, and a heck of a lot more 80s music than 

you’d care to know about.

Colophon



Don’t you know about the web 
site? We've got answers to some 

of the questions in this book, 
guides to how to do more and 
daily updates on the blog from 

the authors!

This isn't goodbye
Bring your brain over to 

wickedlysmart.com


	Table of Contents
	How to use this book: Intro
	Who is this book for?
	We know what you’re thinking.
	And we know what your brain is thinking
	Metacognition: thinking about thinking
	The technical review team
	Acknowledgments

	1 Getting to know HTML5: Welcome to Webville
	Upgrade to HTML5 TODAY!
	Introducing the HTML5-o-Matic, update your HTML now!
	You’re closer to HTML5 markup than you think!
	HTML5 Exposed
	Would the REAL HTML5 please stand up...
	How HTML5 really works...
	Who Does What?
	Your First Mission: Browser Reconnaissance
	What can you do with JavaScript?
	Writing Serious JavaScript
	Writing Serious JavaScript Revisited...
	Bullet Points
	Exercise Solutions

	2 Introducing JavaScript and the DOM: A Little Code
	The Way JavaScript Works
	What can you do with JavaScript?
	Declaring a variable
	How to name your variables
	Getting Expressive
	Doing things over and over...
	Make decisions with JavaScript
	Making more decisions... and, adding a catchall
	How and where to add JavaScript to your pages
	How JavaScript interacts with your page
	How to bake your very own DOM
	A first taste of the DOM
	HTML5 is from Mars, JavaScript is from Venus
	You can’t mess with the DOM until the page has fully loaded.
	So, what else is a DOM good for anyway?
	Can we talk about JavaScript again? Or,how to store multiple values in JavaScript
	The Phrase-O-Matic
	Bullet Points
	Exercise Solutions

	3 Events, handlers and all that jazz: A Little Interaction
	Get ready for Webville Tunes
	Getting started...
	But nothing happens when I click “Add Song”
	Handling Events
	Making a Plan...
	Getting access to the “Add Song” button
	Giving the button a click handler
	A closer look at what just happened...
	Getting the song name
	How do we add a song to the page?
	How to create a new element
	Adding an element to the DOM
	Put it all together...
	... and take it for a test drive
	Review—what we just did
	How to add the Ready Bake Code...
	Integrating your Ready Bake Code
	Bullet Points
	Exercise Solutions

	4 JavaScript functions and objects: Serious JavaScript
	Expanding your vocabulary
	How to add your own functions
	How a function works
	Anatomy of a Function
	Local and Global Variables
	Knowing the scope of your local and global variables
	Oh, did we mention functions are also values?
	Did someone say “Objects”?!
	How to create an object in JavaScript
	Some things you can do with objects
	Let’s talk about passing objects to functions
	Objects can have behavior too...
	Meanwhile back at Webville Cinema...
	Adding the “this” keyword
	How to create a constructor
	How does this really work?
	Test drive your constructor right off the factory floor
	What is the window object anyway?
	A closer look at window.onload
	Another look at the document object
	A closer look at document.getElementById
	One more object to think about: your element objects
	Bullet Points
	Exercise Solutions

	5 Making your HTML location aware: Geolocation
	Location, Location, Location
	The Lat and Long of it...
	How the Geolocation API determines your location
	Just where are you anyway?
	How it all fits together
	Revealing our secret location...
	Writing the code to find the distance
	How to add a Map to your Page
	Displaying the Map
	Sticking a Pin in it...
	The other cool things you can do with the Google Maps API
	Can we talk about your accuracy?
	“Wherever you go, there you are”
	Getting the app started
	Reworking our old code...
	You’ve got some Options...
	The world of timeouts and maximum age...
	Don’t Try this at Home (Pushing Geo to the Limit)
	Let’s finish this app!
	Integrating our new function
	Bullet Points
	Exercise Solutions

	6 Talking to the web: Extroverted Apps
	Mighty Gumball wants a Web app
	A little more background on Mighty Gumball
	So how do we make requests to web services?
	How to make a request from JavaScript
	Move over XML, meet JSON
	A quick example using JSON
	Writing an onload handler function
	Displaying the gumball sales data
	How to set up your own Web Server
	Impressing the client...
	Reworking our code to make use of JSON
	Moving to the Live Server
	It’s a cliffhanger!
	Remember, we left you with a cliffhanger? A bug.
	What Browser Security Policy?
	So, what are our options?
	Meet JSONP
	But what is the “P” in JSONP for?
	Let’s update the Mighty Gumball web app
	Step 1: Taking care of the script element...
	Step 2: Now it’s time for the timer
	Step 3: Reimplementing JSONP
	We almost forgot: watch out forthe dreaded browser cache
	How to remove duplicate sales reports
	Updating the JSON URL to include the lastreporttime
	Bullet Points

	7 Bringing out your inner artist: The Canvas
	Our new start-up: TweetShirt
	Checking out the “comps”
	How to get a canvas into your web page
	How to see your canvas
	Drawing on the Canvas
	Failing gracefully
	TweetShirt: the Big Picture
	First, let’s get the HTML in place
	Now, let’s add the <form>
	Time to get computational, with JavaScript
	Writing the drawSquare function
	Add the call to fillBackgroundColor
	Meanwhile, back at TweetShirt.com...
	Drawing with Geeks
	Breaking down the arc method
	A little taste of using the arc
	I say degree, you say radian
	Back to writing the TweetShirt circle code
	Writing the drawCircle function...
	Getting your tweets
	Canvas Text Up Close
	Giving drawText a spin
	Completing the drawText function
	A quick test drive and then LAUNCH!
	Bullet Points
	Exercise Solutions
	TweetShirt Easter egg

	8 Not your father’s TV: Video...with special guest star “Canvas”
	Meet Webville TV
	Plug that set in and test it out...
	How does the video element work?
	Closely inspecting the video attributes...
	What you need to know aboutvideo formats
	How to juggle all those formats...
	Your Next Mission: Video Reconnaissance
	I was told there would be APIs?
	A little content “programming” on Webville TV
	Implementing Webville TV’s playlist
	So what’s up with that event handler code?
	How to write the “end of video” handler
	How the canPlayType method works
	We need your help!
	Step inside the booth, let’s take a look...
	Unpacking the Demo Unit
	Inspecting the rest of the factory code
	The setEffect and setVideo handlers
	And here are the helper functions
	Getting our demo videos ready
	Implementing the video controls
	Taking care of a loose end...
	Switching test videos
	It’s time for special effects
	The FX plan
	Time to get those effects buttons working
	How video processing works
	How to process video using a scratch buffer
	Implementing a scratch buffer with Canvas
	Writing the code to process the video
	How to create the buffer
	How to process the buffer
	Now we need to write some effects
	If only it were a perfect world...
	How to use error events
	Where can you go from here?
	Bullet Points
	Exercise Solutions

	9 Storing things locally: Web Storage
	How browser storage works (1995 - 2010)
	How HTML5 Web Storage works
	Note to self...
	Were Local Storage and the Array separated at birth?
	Getting serious about stickies
	Creating the interface
	Now let’s add the JavaScript
	Completing the user interface
	We need to stop for a little scheduled service
	Do-It-Yourself maintenance
	We have the technology...
	Reworking our app to use an array
	Converting createSticky to use an array
	What needs to change?
	Putting it all together
	Deleting sticky notes
	The deleteSticky function
	How do you select a sticky to delete?
	How to get the sticky to delete from the event
	Delete the sticky from the DOM, too
	Update the user interface so we can specify a color
	JSON.stringify, it’s not just for Arrays
	Using the new stickyObj
	Test drive sticky note colors
	Don’t Try This at Home (or Blowing Up Your 5 Megabytes)
	Now that you know localStorage,how are you going to use it?
	Bullet Points
	Exercise Solutions

	10 Putting JavaScript to work: Web Workers
	The Dreaded Slow Script
	How JavaScript spends its time
	When single-threaded goes BAD
	Adding another thread of control to help
	How Web Workers work
	Your first Web Worker...
	Writing Manager.js
	Receiving messages from the worker
	Now let’s write the worker
	Virtual Land Grab
	How to compute a Mandelbrot Set
	How to use multiple workers
	Let’s build the Fractal Explorer app
	Ready Bake Code
	Creating workers, and giving them tasks...
	Writing the code
	Getting the workers started
	Implementing the worker
	Back to the code: how to processthe worker’s results
	Fitting the canvas to the browser window
	The anal-retentive coder
	IN THE LABORATORY
	Bullet Points
	Exercise Solutions

	Appendix: The Top Ten Topics (we didn’t cover)
	#1 Modernizr
	#2 Audio
	#3 jQuery
	#4 XHTML is dead, long live XHTML
	#5 SVG
	#6 Offline web apps
	#7 Web Sockets
	#8 More canvas API
	#9 Selectors API
	#10 But, there’s even more!
	The HTML5 Guide to New Construction
	Webville Guide to HTML5 Semantic Elements
	Adding style to your new construction with CSS3
	Webville Guide to CSS3 Properties


	Index
	Colophon
	This isn't goodbye



